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Abstract

This paper introduces feature-based textures, a new image representation that combines features and texture sam-
ples for high-quality texture mapping. Features identify boundaries within a texture where samples change dis-
continuously. They can be extracted from vector graphics representations, or explicity added to raster images
to improve sharpness. Texture lookups are then interpolated from samples while respecting these boundaries. We
present results from a software implementation of this technique demonstrating quality, efficiency and low memory
overhead.

Categories and Subject Descriptors(according to ACM CCS): I.3.7 [Three-Dimensional Graphcs and Realism]:
Color, shading, shadowing, and texture

1. Introduction

Texture mapping is a popular and inexpensive technique for
conveying the illusion of scene complexity and increasing
perceived image quality in graphics applications. Texture
maps are fast, simple to use, and remarkably general. How-
ever, they have limited resolution, and thus there is an opti-
mal viewing distance at which the texture has the best image
quality. Viewing textures from distances farther than optimal
creates aliasing artifacts; MIP-maps [Wil83] are often used
to solve this problem. However, when textures are viewed
at closer than the optimal distance, artifacts still arise due
to inadequate sampling of the original scene. Interpolation
alleviates this problem somewhat but causes excessive blur-
ring. Increasing the original texture resolution also removes
artifacts but at the cost of perhaps greatly increased texture
memory usage.

This paper presentsfeature-based textures(FBT) —
an alternative image representation that explicitly com-
bines features and texture samples. Features are resolution-
independent representations of high-contrast changes in the
texture map. They enable accurate, high-quality texturingat
close viewing distances, while texture samples maintain the
flexibility of traditional texture maps.

† {graman, kb}@cs.cornell.edu
‡ bjw@graphics.cornell.edu

Figure1 illustrates how FBTs are created and used. The
top row shows how an input texture map and features for
the map are combined into the FBT. Unusable samples from
the input texture map are automatically discarded. Each FBT
texel stores features and texture samples. Features are repre-
sented as line segments or, for higher quality, splines.

The middle row shows how FBTs are rendered. As in stan-
dard texture mapping, the texture value of a pixel is bilin-
early interpolated from nearby texture samples. However, in
FBTs, interpolated samples always lie on the same side of
all features. Thus interpolation reproduces smooth gradients
while maintaining sharp features.

The bottom row of Figure1 compares FBT rendering with
standard texture mapping using bilinear interpolation. The
FBT captures sharp features of the text and subtle shading
gradations. The bilinearly interpolated raster image output is
blurry by comparison. For this example, an FBT of resolu-
tion 230×256 (416KB) is contrasted against a texture map
of resolution 460× 512 (690KB). To achieve image qual-
ity comparable to this FBT, the texture map would require
41MB of memory.

The rest of the paper is organized as follows: Section3
gives an overview of feature-based textures and how they
are used for rendering. Section4 describes in more detail
how the FBT representation is constructed to support effi-
cient texture lookup. Section5 describes how the FBT is
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Figure 1: Feature-based textures. Top row: FBT combines
features and texture samples. Middle row: Pixel is rendered
by interpolating reachable samples from adjacent FBT tex-
els. Bottom row: FBT captures sharp features unlike stan-
dard bilinear interpolation.

used in rendering textures. Section6 presents results from
a software implementation of FBTs, including a comparison
of image quality and performance for FBT rendering ver-
sus texture mapping. Finally, we conclude and discuss future
work in Sections7 and 8.

2. Related Work

The idea of using arbitrary resolution functions to model
graphics is not new. Vector-based image representations
such as Scalable Vector Graphics (SVG) [SVG] and
PostScript are resolution-independent, and therefore they are
heavily used for printing and illustrations. However, theyare
not amenable to point sampling and cannot be used in ar-
bitrary rendering contexts. Additionally, pure vector-based
techniques are somewhat limited in the visual complexity
they can produce. Raster images can be integrated in these
formats for more visual complexity but then are again sub-
ject to the resolution dependence of the raster representation.

Procedural textures [EMP∗94] completely specify a
resolution-independent texture function that can be directly
sampled and manipulated; these textures are often generated
using mathematical simulations or random noise. While use-
ful for natural phonemena, traditional procedural techniques
are unable to accurately enhance existing images with plau-

sible high-resolution information, making them unsuitable
for image-based texture mapping.

Image superresolution [HT84, EF97, BS98] aims to gen-
erate a high resolution image from a series of low resolu-
tion inputs that capture the same scene from different view-
ing locations. We introduce sharpness by annotating a single
image, but it would be interesting to look at annotation of
multiple images to create a higher quality result.

There is also a lot of relevant work in char-
acterizing image features. Feature finding and analy-
sis [DH72, Can87, MBLS01] is often used in computer vi-
sion for a variety of applications, including stereopsis, shape
recognition, and object tracking. Our goal is different; we
explicitly use features to improve the quality of the rendered
result. The technique we present is perhaps most closely re-
lated to anisotropic diffusion [PM90], which blurs grainy
parts of an image but maintains sharpness in discontinu-
ous regions. There is also similar work in image reconstruc-
tion [CGG91, Car88], but the focus there is on compression
and fundamental image representations, not a mechanism for
point sampling in a rendering context.

Autotrace and Potrace [Sel] are excellent tools for tracing
features in images and extracting vector representations.We
have used Potrace to find features in some textures.

There is a substantial body of work in computer graph-
ics on the explicit use of discontinuities in high qual-
ity reconstruction, such as radiosity discontinuity mesh-
ing [Hec92, LTG92], illumination functions [SLD92], and
silhouette clipping [SGHS00]. Recently, there has been in-
terest in new image representations that capture discon-
tinuities for interactive global illumination [BWG03] and
hardware-based shadowing techniques [SCH03].

Our work is most closely related to that of Salisbury et.
al. [SALS96], who use a hybrid representation with piece-
wise linear discontinuities for resolution-independent pen-
and-ink rendering. Our FBT representation captures both
edges and curved features and is demonstrated for both vec-
tor formats and raster images. Because we focus on texture
mapping, we demonstrate support for fast point queries and
bilinear interpolation. and our technique must be more care-
ful with reconstruction errors (which could be masked in an
NPR setting).

3. Feature-Based Textures

Like a standard texture map, a feature-based texture is a two-
dimensional array of texels. However, FBT texels store both
featuresandsamples. Features are discontinuity boundaries
that intersect the texel; samples are values of the function
being represented by the texture. Figure2 shows some of
the ways a texel can be intersected by features. In the FBTs
shown in this paper, most texels are empty, like the leftmost
texel in the figure. Sampling from empty texels is no more
expensive than an ordinary texture lookup.
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3.1. Features

Features characterize high-contrast changes in the input tex-
tures. A feature is represented by a connected chain of line
segments or splines (Bezier curves in our implementation).
We refer to each line segment or spline in a feature as asub-
feature. Let us assume for now that the features and FBT
resolution are both specified.

3.2. Texel features and regions

One of our goals is to have a representation general enough
to reproduce textures with any configuration of features. For
this reason, care is taken to accurately store all interactions
between features and individual texels. We use the termtexel
feature to refer to a part of a feature intersecting a single
texel. A feature that enters and exits a texel multiple timesis
split into multiple texel features so that each one enters and
exits the texel at most once.

(a) (b) (c) (d)

Figure 2: Example texels, texel features and texel regions.

As shown in Figure2, a texel is divided into disjointre-
gionsby the various features that cross it. Each of these re-
gions contains exactly one sample, which can be used when
interpolating texture values. For compactness, the location
of the sample within the texel is not recorded; it is assumed
to be at the bottom left of the region.

3.3. Rendering an FBT

Texture maps can be queried in various ways. The most ac-
curate and expensive technique is to map the input pixel’s
area into texture space and filter the area to return an an-
tialiased texture value. We use an alternative, cheaper tech-
nique: map a point visible from the pixel into the texture,
and do a lookup using bilinear interpolation. Supersampling
is used to handle antialiasing. Thus FBT texture lookups in-
volve the following operations:

1. Transform the point into texture space pointp.
2. Find the FBT texelt that includesp.
3. Find the regionr in t that includesp.
4. Look up nearby samples in regionr and in reachable re-

gions in adjacent texels.
5. Return the bilinearly interpolated texture value.

Steps 1, 2 and 5 are straightforward and similar to stan-
dard texture map operations, whereas steps 3 and 4 are spe-
cific to feature-based textures. Therefore, the FBT must store
just enough information to do steps 3 and 4 efficiently. Sec-
tion 4 fully describes the FBT preprocess that accomplishes
this.

Locating the region containing a point

Step 3 requires quickly locating the region that includes a
given point. A simple implementation of this operation is to
test which side of each feature the point lies on. However,
this does not provide enough information in the (atypical)
case where features intersect each other within a texel. For
example, Figure2-(d) illustrates two intersecting splines that
split a texel into five regions. To handle such a texel, each in-
tersecting feature is split at the point of intersection, and the
adjacent regions on each side are divided into smaller re-
gions by horizontal lines. This subdivision is combined with
the simpler test to determine the containing region. See Sec-
tion 4.5 for details.

Finding samples for interpolation

Step 4 requires identifying samples that can be used to com-
pute texture values for a given point in the texture, using
bilinear interpolation. For an empty texel (which contains
exactly one region), bilinear interpolation is performed in
the usual fashion using the single sample of that texel, along
with samples from three adjacent texels. Because the sam-
ple is taken from the lower left corner, the three texels to the
right, above, and diagonally above to the right must contain
usable samples (see Figure6-(b)).

For points that lie in nonempty texels, bilinear interpola-
tion is performed using samples from the current texel and
possibly also from regions in adjacent texels. A sample from
an adjacent texel can be used only if the location of the sam-
ple is not separated from the current point by a feature; oth-
erwise, possibly erroneous interpolation would occur across
this feature. Section4.6further explains how reachable sam-
ples are identified and interpolated.

4. Creating Feature-Based Textures

An FBT is a compact data structure that supports efficient,
high-quality rendering. Some preprocessing is needed to
make this possible, and this preprocessing depends to some
extent on the kind of input being used to generate the FBT.

4.1. Input Specification

The input to the FBT preprocess consists of an input image,
a set of features, and a user-selected FBT resolution. This
information is then combined to create an FBT ready for use
in rendering.

Finding features

Different types of input are amenable to different types of
feature extraction. Features are found either through auto-
mated techniques or user input, as discussed below.

Vector-based representations.Vector-based representa-
tions can be queried directly to return all features. Tracing
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programs [Sel] transform bitmaps into vector-based repre-
sentations and could be used with manual intervention.

Manual specification. A user manually marks features to
match the high contrast changes in the input texture. These
features could be line segments or splines. The output of
edge detection algorithms [Can87] could also be used to as-
sist in this process. This user interaction is needed only once
per input texture, and a library of FBTs can be reused by
applications.

Finally, feature-aware procedural texturing algorithms
could also directly output both features and samples.

FBT resolution

Because the FBT represents features explicitly, there is
greater flexibility in choosing its texel resolution. A natural
tradeoff exists between texture quality/efficiency and com-
pactness; different applications have different demands.For
example, an input with gradients should use more texels to
accurately capture shading variations, while a very simple
solid-color SVG input only needs a few texels.

4.2. Feature processing

Each intersecting sub-feature (and its corresponding feature)
is split at points of intersection. Line segments can be inter-
sected trivially against each other. Intersection of splines and
lines is also relatively straightfoward, requiring the useof a
cubic solver. Robust spline-spline intersection is possible us-
ing techniques such as interval-based intersection [Tup01],
or Bezier clipping [SN90].

To accelerate computation involving features, a kd-tree is
constructed for the entire image. It stores sub-features in-
dexed on their positions. For example, each texel uses the
kd-tree to find all of its texel features. The kd-tree is also
used to accelerate the determination of feature intersections.

4.3. Invalidating prefiltered samples

Figure 3: Effect of prefiltered samples. Left: image produced
by bilinearly interpolating texture samples from a raster
texture map. Middle: using prefiltered samples causes ar-
tifacts. Right: eliminating prefiltered samples produces cor-
rect, high-quality rendering.

When constructing an FBT from a raster image, we treat
most texture samples as plausible point samples because

they are in smooth regions. However, texture samples that
lie close to features are often ‘prefiltered’ by the imaging de-
vice used to capture them. For example, most cameras have
some transfer function that filters all incoming light through
a pixel (and nearby pixels). If these prefiltered samples re-
main in the FBT, it will violate the invariant that texture
lookup is only done from samples on the same side of fea-
tures, causing rendering artifacts (as in Figure3, middle).

Therefore, all samples that lie within some distance of
any feature should be eliminated. If the imaging device pro-
ducing the texture map is known, the invalidation distance
can be set based on the characteristics of the device. Often,
however, the camera is not known, so the user can spec-
ify this value explicitly. Typically a (∞-norm) distance of
1 pixel unit in the original texture image suffices. Eliminat-
ing filtered samples improves reconstruction during render-
ing (Figure3)

4.4. Filling holes

The invalidation process described above can create holes in
the texture with no sample. To fill these holes, the remaining
samples are copied to nearby regions as needed. The invari-
ant maintained is that a sample can only fill a hole if there is
no feature blocking the sample from reaching the hole; i.e.,
the sample and hole are on the same side of all features.

In general, since features are composed of splines and line
segments, texel regions can have complex boundaries. To
fill holes we need a way to partition space in the texture.
The constrained Delauney triangluation used in [SALS96]
is limited to line segments; we use a different technique that
handles curves as well. All splines are split into monotonic
segments by finding critical points, and a variant of the trape-
zoid decomposition [O’R93] is used to divide each individ-
ual texel into thin horizontal strips of simple 4-sided sub-
regions. The upper and lower boundaries of the strips coin-
cide with all the start and end points of monotonic spline
segments in the texel; thus, each sub-region has a flat upper
and lower boundary, and its right and left boundaries are ei-
ther splines or sides of the texel. Some care must be taken
to robustly handle sub-features that are exactly horizontal.
Figure4 shows the sub-regions computed for the texel on
the right. While this representation is not compact, it is only
temporary; once used, it is discarded in favor of the FBT
representation.

Once the sub-regions are constructed, they are used in
hole-filling as follows. Each sample propagates in breadth-
first order outward from its sub-region. Features block prop-
agation of samples across them. Each sample is permitted
to propagate for some maximum distance (2 texels in our
implementation). This operation typically fills all holes;the
cutoff distance prevents samples from flooding distant parts
of the texture that are visually unrelated. If further holes
remain, they are filled by searching from the hole (using a
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Figure 4: Intermediate representation for hole filling. A
dashed line is drawn at the curve’s critical point, and its in-
tersection with the middle texel boundary, splitting the right
texel into three strips. Samples propagate in breadth-firstor-
der through sub-regions that are not blocked by features. The
sample in the left texel propagates to the top part of the right
texel as indicated by the arrows. The part under the spline
in the right texel does not receive the sample.

similar breadth first search) till a reachable sample is found.
This second search happens rarely, only where there are very
close features in the original image. After these two opera-
tions are done, all holes are filled.

4.5. Region testing

To perform efficient texture lookup during rendering, a fast
test is needed to determine which texel region a pixel lies in.
Let us consider how a texel feature affects the regions in a
texel. (Note that we are assuming that feature intersections
have already been handled by forming horizontal bands.) If
the feature does not intersect any other feature, it divides
the band into two regions, which can be arbitrarily called
“inside” and “outside”. Figure5 shows various features and
the regions they create. In the figure, each feature intersects
the left boundary and one of the other four boundaries.

Consider a point “inside” the feature. Depending on how
the feature intersects the boundary of the texel, a ray is shot
from the point in one of four directions:(x̂,−x̂, ŷ,−ŷ). The
parity of the number of intersections (odd or even) made by
the ray from the point with the feature determines if the point
is inside the region or not. For example, the features shown
in Figure5 are tested in the directions shown. The rule in
determining the direction for testing a feature is that the di-
rection should not match the boundaries that intersect the
feature. Note that we are assuming that all features enter and
exit a texel. Partial features either terminate at an intersec-
tion point (in which case they are handled) or ‘float’ inside
the texel, in which case they do not partition the texel into
two regions, and are ignored. Closed loops still separate a
band into an “inside” and “outside”, so they are marked as
loops and are otherwise unaffected by the algorithm.

4.6. Texture lookup with interpolation

As described in3.3, we would like to use bilinear interpola-
tion to capture smooth texture shading. In a traditional tex-
ture lookup, the four samples nearest to a point are bilinearly

(c)(b)(a) (d)

Figure 5: Region determination within a horizontal band.
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Figure 6: Bilinear interpolation using neighboring reach-
able samples.

interpolated. Let the texture sample at the pointp be denoted
by tp and let the four nearby samples besi , with the weights
from bilinear interpolationwi . Then,tP = ∑i wisi .

To achieve a visual effect similar to bilinear interpolation
we could store four samples at the corners of each region of a
texel, as in Figure6-(a). However, this would cause roughly
a four-fold increase in memory usage. Our goal is to interpo-
late texture values but only store one sample per region, like
regular texture maps.

Another complication that arises is that regions in the FBT
are irregularly shaped and accurate computation of interpo-
lation weights could be prohibitively expensive. Instead our
reconstruction is performed as if the four samples for any
region lie at the four corners of the texel.

In choosing samples for interpolation, we would like to
use the four nearest samples. To avoid creating artifacts, we
must restrict ourselves to reachable samples only. Figure6
shows some of the possible configurations of texels and the
samples used for bilinear interpolation in each configuration.

An FBT stores only one sample per texel region; this sam-
ple is associated with the bottom left corner of the region
(s0 in Figure6-(a)). As depicted in the figure, the remain-
ing three samples are computed from adjacent texels while
maintaining the invariant that they lie on the same side of
the feature. For simplicity, the only nearby samples used are
samples found at the lower-left corner of adjacent texels.

The reconstruction algorithm tries to preserve gradients
across texel boundaries that have no features intersecting
them; for example, the left and right boundaries in Figure6-
(c). For each region, the samples used in the locations ofs0,
s1, s2, ands3 are determined from the samples stored in the
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regionp0 and the samples from the 3 neighboring texels:p1
from the right texel,p2 from the top texel, andp3 from the
top-right texel.

In Figure 6-(c), consider a point in regionR0. Bilinear
interpolation uses the bottom-left sample of the region and
the sample of the top pixel; i.e.s0 = p0 ands2 = p2. Each
of these samples is also “copied" to the other two locations
(shown along the grey arrows) to get the four “corner" sam-
ples that are bilinearly interpolated (s1 = p0 ands3 = p2).
This rule preserves the gradient across the vertical left edge
of the texel. A similar rule is followed to preserve the gradi-
ent along the horizontal edges in Figure6-(d).

In the final FBT data, the choice of interpolant samples for
each texel region is encoded in 1 byte: 2 bits for each mapped
value. Once all holes are filled and reachability computed,
sub-regions are collapsed and their samples merged through
averaging. Horizontal bands remain wherever features inter-
sect; all other bands along the y-axis are eliminated. For ex-
ample, in Figure4, r0, r1, r3, andr5 are merged into one re-
gion in the texel on the right. Similarlyr2 andr4 are merged
in the final representation.

4.7. FBT Memory usage

To store features, each FBT maintains a global list of 2D
points. Each feature is defined by an array of indices into this
point list, with an index for each sub-feature; each index uses
2 bytes. Splines are represented by 4 control points, while
bounded line segments are represented by 2 points.

Each texel stores an array of horizontal bands, which
stores an ordered list of texel features. Each texel feature
stores the following: feature number (2 bytes), start sub-
feature index (2 bytes), end sub-feature index (2 bytes), start
parameter value (1 float) and end parameter value (1 float).
The start and end parameter are the values of the distance
along a sub-feature when it enters or exits the texel (thet
value for a spline). Together, this information is sufficient
to find the chain of sub-features comprising the texel fea-
ture. Additionally, each texel feature uses 2 bits to denote
which direction a ray should be intersected with the feature
during region determination. In total, each texel feature uses
15 bytes. Additionally, each sample associated with a region
stores 4 bytes (3 bytes for color, and 1 byte encoding the
neighboring sample availability). Givenk texel features in a
horizontal band,k×15+(k+1)×4 bytes of data are stored.

5. Rendering Feature-Based Textures

The previous section discussed the preprocessing necessary
to construct the FBT. We now discuss how FBTs support ef-
ficient rendering, focusing on the two steps from Section3.3
that differ from ordinary texture maps. Given a point that is
mapped to some texture coordinates, the first step is to iden-
tify the region it falls into, and the second step is to find

(a) (b)

R0

R0

R1
R1

R2

Figure 7: Finding the region including a point in a texel.

samples reachable from that point without crossing any fea-
tures.

5.1. Finding the FBT region for a point (Step 3)

Given a 2D pointp that lies in a texelt, we want to effi-
ciently find the region of the texel the point lies in. Within
each texel the y-coordinate ofp determines the horizontal
band to search. Each band stores an ordered list of texel fea-
tures against whichp is tested. The parity of the number
of intersections (odd or even) determines ifp lies inside or
outside the region. If the point is determined to be outside
the region delimited by a feature, the point location is tested
against the next texel feature in the list.

Figure7 depicts this test for some texels. In Figure7-(a),
the point is tested against the stored feature by tracing a ray
alongx̂. If p is in R0, one intersection will be found; other-
wise no intersection will be found. In Figure7-(b) an ordered
list of two features is stored in the texel, creating 3 regions.
The test associated with the first feature is along−ŷ. If there
is no intersection, the point is determined to be inR0. If there
is an intersection, the second feature must be tested. Now a
ray is shot fromp alongx̂. If there are 0 or 2 intersections,p
is in R1, otherwise it is inR2.

Intersecting a ray with features is fast. For a line segment,
the test is straightforward. For splines, the intersectioncan
be directly computed by solving the cubic, which is slow. To
eliminate unnecessary cubic solving we first test the inter-
section of the ray with the spline convex hull. If the point is
inside, the cubic solver is invoked. If the point is outside,the
even-odd test for the spline can be deduced from the test for
the convex hull, so we are done.

5.2. Finding reachable samples (Step 4)

Once the region has been identified, its 1-byte sample avail-
ability mask encodes which neighboring samples to use for
bilinear interpolation. These four samples are then bilinearly
interpolated as described in Section4.6.

6. Results

In this section we present results comparing FBTs to regular
texture mapping, focusing on image quality, memory usage,
and performance issues. The FBT system is implemented in
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Java, and all results were obtained on a dual 3.06 GHz Pen-
tium Xeon machine with 2 GB RAM. Constructing an FBT
from features and samples as a preprocessing step runs in
time proportional mainly to the number of FBT texels; for
the examples we show, this is typically under 30 seconds,
and at worst one minute. Unless indicated otherwise, all im-
ages are generated in a raytracer context, using 4 point sam-
ples per pixel. During rendering the use of FBTs imposes
no noticeable performance overhead over ordinary texture
maps.

Figure 8: Example inputs and their corresponding features.

Two types of input textures were used for this evaluation:
SVGs and raster images. Figure8 shows some example tex-
tures along with their associated features. For the stop sign
and yin yang SVGs, the Batik open-source SVG framework
(http://xml.apache.org/batik/) was used to acquire the input
texture samples and for feature extraction; the yin yang ex-
ample is also from Batik. For the flower, stained-glass, and
wizard skin raster texture maps, we manually annotated the
image with edges. The banana example was annotated with
splines obtained using Potrace.

The wizard skin example is used primarily to illustrate
potential applications in games; it is no different from the
other raster images, and thus it does not appear in any of the
memory / performance tables.

6.1. Memory Comparisons

As mentioned earlier, the user can choose the appropriate
FBT resolution for each texture map. To make comparisons
fair, ordinary texture maps are used that consume strictly
more memory than the FBT being compared against. Table1
shows the memory usage for the two SVG examples.

Example FBT Res. FBT Size Raster Res. Raster Size

Stop sign 16×16 9KB 64×64 12KB

Yinyang 230×256 416KB 460×512 690KB

Table 1: Comparison of resolution and storage size of FBT
vs. raster texture map (stored as packed RGB).

As a point of comparison, a texture map that could achieve
the same quality as the FBT for the zoomed-in viewpoint
shown in Figure9-(a) would require approximately 41 MB.
Similarly, the zoomed-in stop sign in Figure10could be ren-
dered at the same quality as the FBT output if the stop sign
texture map used 3MB.

In the raster texture map examples, our goal was to anno-
tate an existing image with extra sharpness and detail, pro-
viding higher quality at increased magnification. To retain
all of the information in the source texture maps, we con-
structed an FBT with the same dimensions. In our experi-
ence, the overall size of an annotated FBT constructed in
this way is about twice the size of the original.

6.2. Quality Comparisons

Figure 9 compares several image reconstruction methods.
The highest-quality rendering, shown in Figure9-(a), is the
SVG rendering of the image. Figure9-(b) shows results pro-
duced using the FBT. It can be seen that the FBT correctly
captures the sharp detail and subtle gradients of the SVG,
whereas regular texture maps (right side) generate output of
lower quality. Given the poor output of point sampling (c),
for the rest of the results we only compare FBTs with bilin-
early interpolated texture maps (d).

Figure10shows the stop sign comparison. At high magni-
fication, the FBT faithfully reconstructs the image; the raster
texture map exhibits significant artifacts.

Figure 11 compares results of FBT rendering vs. bilin-
ear interpolation from raster texture maps. In each case, fea-
tures have been added to increase the sharpness and con-
trast between different regions of the image. While our sys-
tem supports splines fully (as shown by the raster banana
texture map and SVG results), one can see from the flower
and stained glass images that considerable sharpness can be
added simply by using line segments alone, which is ad-
vantageous when considering a GPU implementation of this
representation.
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Figure 9: Reconstruction of lower left corner of Yinyang im-
age using (a) Vector-based SVG rendering; (b) 230×256
FBT; (c) 460×512 texture map with point sampling; (d)
460×512 texture map with bilinear sampling.

Figure 10: Stop sign quality comparison. Left: with FBT;
Right: with raster texture map.

Texture mapping a 3D model:To demonstrate our results
on a 3D model we acquired a skinned, low-polygon-count
wizard model from the game Warcraft 3 (Figure12). This
is a particularly appropriate example because the game dis-
plays this model both in closeup and at a distance. The skin
was annotated with features along the runes of the cloak and
hood, resulting in significantly improved sharpness. The ef-
ficacy of FBTs is indicated by the quality contrast between
the runes, where we added features, and the hem of the cloak,
where we did not.

Figure 11: Comparisons of the stained glass, flower, and
banana. Left: with FBT; Right: with original texture map.
The stained glass and flower were annotated by hand strictly
using straight edges; the banana was annotated by smooth
splines obtained from potrace.

6.3. Performance

The FBT representation is designed to mimic a raster texture
map whenever possible, and to fall back on more expensive
computations only near features. Thus, the work required for
a single FBT query is proportional to the complexity of the
target texel. Table2 shows the breakdown of texel types in
each of the FBT textures presented above, illustrating the
tradeoff between FBT size and texel complexity (and there-
fore lookup speed).

To analyze cost, we are interested in the number of ray-
spline intersection tests we have to do, because they are
expensive compared to texel lookups and even convex hull
tests (both of which can be coded very efficiently and are
amenable to GPU implementation). Letclookup be the av-
erage cost to map a given point into the correct band for a
region search, letchull be the cost to test against a spline’s
convex hull, and letccubic be the cost of a cubic intersection
test. The average costcq of queryq is approximately

cq = clookup+savg(chull + ftestccubic)

wheresavg is the average number of splines considered in
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Figure 12: Wizard model from the game Warcraft 3. Left:
Antialiased rendering of model using an FBT skin. Right:
zoomed-in comparison (Top: FBT; Bottom: original raster
skin).

Image FBT Res. Empty 2 regions 3+ regions

Stop sign 16×16 50.0% 24.6% 25.4%

Yinyang 230×256 92.9% 6.4% 0.7%

Stained glass 256×256 93.7% 6.3% 0.0%

Flower 128×128 97.1% 2.8% 0.1%

Banana 300×175 98.2% 1.8% 0.0%

Table 2: Breakdown of texel occupancy. Empty texels have
no texel features and sample lookups require no extra work.

each query, andftest is the fraction of splines actually tested
using the cubic solver, on average. In general, the majorityof
texels in an FBT have either one or two regions, so we expect
thatsavg and ftest will be small; additionally, our convex hull
test will reduce these even further. Table3 consolidates this
information for our set of inputs. The small values ofsavg

and especiallyftest demonstrate that performance is reason-
able even ifccubic is high.

7. Discussion and Future Work

In this section we discuss issues that arise when using FBTs.
One issue is that not all types of image discontinuities can
be modeled accurately using sharp features. In vector graph-
ics this is not a problem, but in raster images glaringly sharp
boundaries may look flat or cut-out. This problem can po-
tentially be alleviated by introducing different functions for
discontinuity reconstruction.

FBTs currently support point queries as a basic mecha-

Image savg ftest cubic tests / query

Stop sign 1.051511 0.0051 0.0054

Stop sign zoom 1.571101 0.0078 0.0124

Yinyang 0.092352 0.0041 0.0004

Yinyang zoom 0.268469 0.0009 0.0024

Banana 0.018809 0.0028 < 0.0001

Banana zoom 0.023328 0.0066 0.0001

Table 3: Spline test data for 500×500 renderings of the full
example images and zoomed in images shown in the figures.
The stained glass and flower are not included because they
contain no spline features. Zooming in on complicated re-
gions increases the number of cubic tests per query, but not
significantly.

nism for texture lookup; however, for anti-aliased quality,
this requires supersampling the texture or using features with
an edge-antialiasing rendering system such as [BWG03].
Exploring more sohphisticated anti-aliasing mechanisms
would be interesting. Another issue is that of texture quality
when zooming out of the texture. MIP-mapping of textures
using features is an open question that could require investi-
gation into multi-resolution feature representations. Webe-
lieve this is an important area of future research that will
provide insight into antialiasing techniques as well.

Each FBT texel region stores one representative sample.
Therefore, it is not possible to respect two smooth gradients
in a single region. This could create small blocking artifacts,
but these are typically not noticeable using a large enough
FBT. Some artifacts can arise during sample propagation be-
cause holes are filled with other samples. Even with a cut-
off distance to prevent samples from filling remote regions,
some smearing may be visible under magnification. We have
not found this to be a major problem, but an alternative is to
use pixel-based texture synthesis to fill holes.

A GPU implementation of FBTs raises interesting chal-
lenges in terms of its representation of features because of
our support for curves and variable numbers of features per
texel. We are experimenting with a GPU implementation that
focuses on representing only edges and restricts the number
of features per texel to a small number. Our results suggest
that this is possible because most FBTs texels are empty.
While the stop sign FBT is an exception because of its low
resolution, for other textures, more than 99% of the texels
have fewer than 3 regions.

8. Conclusions

This paper introduces a texture representation that combines
features and texture samples for high-quality texture map-
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ping. The FBT is a compact representation that permits effi-
cient texture lookups. Samples are interpolated from the ap-
propriate regions of FBT texels while accurately preserving
features. We have demonstrated the use of FBTs for render-
ing a range of images with high image quality and a rela-
tively low impact on rendering performance.

FBTs have the potential to substantially improve image
quality both in offline rendering applications and interac-
tive applications. The point-sampling interface supported by
FBTs make them directly applicable to ray tracers and soft-
ware scanline renderers. There is important research to be
done in filtered sampling and minification with discontinity-
based representations (an FBT analog to MIP mapping). In-
vestigating a GPU-based implementation of FBTs also is an
interesting area of future research. Finally, we would like
to experiment with different characterizations of disconti-
nuities so that we may more accurately reconstruct a wider
class of images.
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