
First-Class Phantom Types

James Cheney
Cornell University
Ithaca, NY 14850

jcheney@cs.cornell.edu

Ralf Hinze
Institut für Informatik III, Universität Bonn

Römerstraße 164, 53117 Bonn, Germany
ralf@informatik.uni-bonn.de

Abstract

Classical phantom types are datatypes in which type constraints are expressed using type
variables that do not appear in the datatype cases themselves. They can be used to embed
typed languages into Haskell or ML. However, while such encodings guarantee that only well-
formed data can be constructed, they do not permit type-safe deconstruction without additional
tagging and run-time checks. We introduce first-class phantom types, which make such con-
straints explicit via type equations. Examples of first-class phantom types include typed type
representations and typed higher-order abstract syntax trees. These types can be used to sup-
port typed generic functions, dynamic typing, and staged compilation in higher-order, statically
typed languages such as Haskell or Standard ML. In our system, type constraints can be equa-
tions between type constructors as well as type functions of higher-order kinds. We prove type
soundness and decidability for a Haskell-like language extended by first-class phantom types.

1 Introduction

Generic functions, dynamic typing, and metacircular interpretation are powerful features found in
dynamically typed programming languages but have proven difficult to incorporate into statically
typed languages such as Haskell or Standard ML. Past approaches have included adding a first-class
Dynamic type and typecase expressions [1, 2, 20], defining generic functions by translation from
“polytypic” languages to existing languages [15, 13], and implementing staged computation with
run-time typechecking [8, 25] or compile-time computation [24]. Recently, however, Cheney and
Hinze [6] and Baars and Swierstra [4] found that many of these features can already be implemented
via an encoding into Haskell based on equality types comprising executable evidence of type equality
(e.g. embedding-projection pairs).

However, this encoding has several drawbacks:

• It imposes a high annotation burden on programmers, limiting its usability;

• it incurs unnecessary run-time overhead in the form of calls to embedding and projection
functions;

• it is limited by the constraint-solving abilities of the underlying type-checker, so some inter-
esting and safe programs do not typecheck.

The last limitation is particularly vexing because it places many interesting potential applications
just out of reach. For example, some type-indexed types (e.g. generic generalized tries [12] and
Typerec [10, 7]) can almost, but not quite, be implemented naturally. The obstacle is that the
typechecker does not know certain valid properties of types that are not important for normal
typechecking.

A similar difficulty arises in the context of so-called phantom types, that is, parameterized types
that do not use their type argument(s). Leijen and Meijer [18]) first introduced and used phantom
types to embed domain specific languages into Haskell type-safely. Operations on such types are
typically restricted to a module which hides the internal (untyped) implementation, exposing only

1

the (typed) interface. Classical phantom type encodings can enforce type constraints on constructed
values, but cannot make use of these constraints when decomposing a value. For example, it is
possible to encode typed λ-terms in Haskell or ML with a module such as

module Lam (Lam, fun, app) where
data Lam0 = Fun (Lam0 → Lam0)

| App Lam0 Lam0
type Lam α = Lam0
fun :: (Lam α→ Lam β) → Lam (α→ β)
fun f = Fun f
app :: Lam (α→ β) → Lam α→ Lam β
app m n = App m n

such that only well-typed λ-terms can be formed using fun and app. But functions like

reduce :: Lam β → Lam β
reduce (App (Fun f) t) = f t

typecheck within the module but not outside. Although it is true that f :: α → β and t :: α for
the same α, the standard type inference algorithm will conservatively infer only that f :: α′ → β
for some fresh α′, and typechecking will fail because α′ is not “polymorphic enough”. Thus, this
phantom-type encoding is second-class in the sense that the phantom type constraints can be used to
guarantee that only well-formed data is constructed, but cannot be used to help typecheck intuitively
reasonable computations on such data.

We advocate an approach that fills this gap, and also encompasses encodings of typed type
representations and other type-indexed types within Haskell. These encodings can be viewed as
phantom types in which the abstract type variables do appear in the types of the constructors.
Specifically, in our approach, the formerly unused type variables now appear within type equations
that show how to refine the argument types. Conversely, this technique can be used to enrich
more mainstream phantom types such as the λ-terms mentioned above, to enable typechecking
computations over such data.

In this paper we present a programming construct for defining such first-class phantom types. In
our formalism, datatype cases may be annotated by with clauses of the form with {τ1 = τ ′1; . . . ; τn =
τ ′n}. The equations listed in a with clause must hold whenever the corresponding constructor is
applied and may be used in typechecking case bodies for the constructor. In combination with
existential types, datatype definitions using type equations can be used to implement both intro-
duction and elimination forms for many advanced applications of phantom types, including typed
type representations and typed higher-order abstract syntax.

In the rest of this paper, we describe our proposal in more detail, discuss applications, present
a type system for a core, explicitly typed Haskell-like language with first-class phantom types, and
prove that its type system is sound and that typechecking is decidable. Finally, we discuss related
and future work and conclude.

2 Enriching Phantom Types

2.1 Type representations and generic functions

As an introductory example, we show how to implement typed type representations using phantom
types. The basic idea of type representations is to define for each type constructor a data constructor
that represents the type. For instance, to represent types built from Int and Char using the list and
the pair type constructor we introduce the following data constructors

RInt :: Rep Int
RChar :: Rep Char
R[] :: ∀α .Rep α→ Rep [α]
R× :: ∀α β .Rep α→ Rep β → Rep (α, β).

2

Thus, Int is represented by RInt , the type ([Char], Int) is represented by the value R× (R[] RChar) RInt .
In Haskell 98, the above signature cannot be translated into a data declaration. The reason is

simply that all constructors of a data type must share the same result type, namely, the declared
type on the left-hand side. Thus, we can assign RInt the type Rep τ but not Rep Int . We can,
of course, implement the above interface using classical phantom types. But the usefulness of such
an implementation would be limited because we cannot pattern-match against functions defined in
an interface, thus, outside of the abstraction barrier we cannot deconstruct a value of type Rep a.
Consequently, every new interesting computation over Rep a must be added to the module in which
its implementation is available.

If only we had the means to constrain the type argument of Rep to a certain type. Now, this is
exactly what a with clause allows us to do. Given this extension we declare the Rep datatype as
follows:

data Rep τ = RInt with τ = Int
| RChar with τ = Char
| ∀α . R[] (Rep α) with τ = [α]
| ∀α β . R× (Rep α) (Rep β) with τ = (α, β).

The with clause that is attached to each constructor records its type constraints. For instance, RInt

has type Rep τ with the additional constraint τ = Int . The equations listed in the with clause are
checked whenever the constructor is used to build a value. For example, the term R[] RInt has type
Rep [Int] and is illegal in a context where an element of type Rep Char is required (however, if the
with clauses were left out it would be legal). A type equation may contain type variables that do
not appear on the left-hand side of the data declaration.

Using these type representations we can now define generic functions that work for all repre-
sentable types. Here is how we implement generic equality.

equal :: ∀τ .Rep τ → τ → τ → Bool
equal (RInt) i1 i2 = i1 i2
equal (RChar) c1 c2 = c1 c2

equal (R[] rα) [] [] = True
equal (R[] rα) [] (a2 : x2) = False
equal (R[] rα) (a1 : x1) [] = False
equal (R[] rα) (a1 : x1) (a2 : x2) = equal rα a1 a2 ∧ equal (R[] rα) x1 x2

equal (R× rα rβ) (a1, b1) (a2, b2) = equal rα a1 a2 ∧ equal rβ b1 b2

The equality function takes a type representation as a first argument, two values of the represented
type and returns a Boolean. Even though equal is assigned the type ∀τ .Rep τ → τ → τ → Bool ,
each equation has a more specific type as dictated by the type constraints. As an example, the first
equation has type Rep Int → Int → Int → Bool as RInt constrains τ to Int . For further examples
of generic functions and for an elegant way of combining generic functions with dynamic values the
interested reader is referred to a recent paper by the authors [6].

In general, a with clause may comprise several type equations and each equation may relate
any two type expressions of the same kind (including higher-order kinds). The main constraint
on equations is that they be satisfiable: that is, there must be some substitution for the free type
variables which makes the equations true. An example of a trivially unsatisfiable equation is Int =
Bool ; more subtle examples are α = α → α and α = (β, γ), (Int , γ) = (α, δ). The reason for
forbidding prima facie unsatisfiable constraints is that they do not help us typecheck any additional
useful programs: if a constructor’s constraints are unsatisfiable, then that constructor can never
apepar during the execution of a program.

The reader may be curious whether allowing general type equations, or higher-kinded equations,
is any more expressive than existing techniques, such as Guarded Recursive Datatypes [27]. The
answers are no (as long as we forbid unsatisfiable guards) and yes respectively. We elaborate on
this point in Section 6.6. We will encounter examples of equations at higher kinds in Section 2.4.

3

2.2 Typed λ-terms

We now show how to enrich the definition of typed higher-order λ-terms from the Introduction using
with clauses to allow typechecking of functions like reduce. Working backward from the intended
signature of the type constructors

Fun :: (Lam α→ Lam β) → Lam (α→ β)
App :: Lam (α→ β) → Lam α→ Lam β

we enrich the definition of Lam is as follows:

data Lam τ = ∀β γ . Fun (Lam β → Lam γ) with τ = β → γ
| ∀α . App (Lam (α→ τ)) (Lam α)

Now consider
reduce :: Lam β → Lam β
reduce (App (Fun f) t) = f t

The typechecker can now recover enough information to check that this function is type-safe. The
typechecker will first observe that Fun f ::Lam (α→ β) and t ::Lam α for some α. Thus, f ::Lam γ →
Lam δ for some new γ, δ. But the typechecker also knows that the equation β → α = γ → δ must
hold; this implies that α = γ and β = δ. Now, to typecheck f t , the typechecker needs to unify
Lam γ (the argument type of f) and Lam α (the type of t). This follows from α = γ. Finally, to
typecheck the whole function, it is necessary to unify Lam β (the stated result type) and Lam δ (the
return type of f). This too succeeds because β = δ.

Here we are being cavalier about how the typechecker actually performs this reasoning. The
actual mechanism uses unification to calculate the effect of the current set of type equations on
typechecking, and also can discover that code is actually unreachable based on type equation in-
formation. For example, if we were to add integer constants and addition to Lam, attempting to
pattern-match cases such as App (IntC i) t and Plus (Fun f) (IntC j) will result in collections
of type equations that give rise to inconsistency; this indicates that such patterns can never be
matched by well-formed data. The bodies of such cases are dead code. We make it an error for
there to be dead code of this kind in order to avoid the problem of how to continue to typecheck
code under inconsistent assumptions. Type inference also becomes more complicated in this setting
(see Section 6.4).

2.3 Generic traversals

Building upon the Rep type introduced earlier in this section we proceed to implement a small com-
binator library that supports typed tree traversals (related approaches are strategic programming,
visitor patterns, and adaptive programming). Broadly speaking, a generic traversal is a function
that modifies data of any type.1 The type of traversals is

type Traversal = ∀τ .Rep τ → τ → τ.

Thus, a generic traversal takes a type representation and transforms a value of the specified type.
The universal quantifier makes explicit that the function works for all representable types.

As an example, here is an ad hoc traversal that converts strings to upper case and leaves integers,
characters, pairs and so on unchanged.

capitalize :: ∀τ .Rep τ → τ → τ
capitalize (R[] RChar) s = map toUpper s
capitalize rτ t = t

The simplest traversal is, of course, the identity idT , which does nothing.

idT :: Traversal
idT rτ = id

1Here, any representable type

4

Traversals can be composed using the operator ‘◦’, which has copy as its identity.

(◦) :: Traversal → Traversal → Traversal
(f ◦ g) rτ = f rτ · g rτ

Note that ‘◦’ has a so-called rank-2 type: it takes polymorphic functions to polymorphic functions.
While not legal Haskell 98 most implementations support rank-2 types or even rank-n types. With
support for rank-n types, generic functions become true first-class citizens, a fact, which is put to
good use in the combinator library.

The next combinator, called everywhere, allows us to apply a traversal ‘everywhere’ in a given
value. It implements the generic part of traversals—sometimes called the boilerplate code. For
instance, everywhere capitalize v converts all the strings contained in v to upper case. Note that v
is an arbitrary value of an arbitrary (representable) type. The everywhere combinator is implemented
in two steps. We first define a function that applies a traversal f to the immediate components of a
value: the constructed value C t1 . . . tn is mapped to C (f rτ1 t1) . . . (f rτn

tn) where rτi
is the

representation of ti’s type.

mapT :: Traversal → Traversal
mapT f (RInt) i = i
mapT f (RChar) c = c
mapT f (R[] rα) [] = []
mapT f (R[] rα) (a : as) = f rα a : f (R[] rα) as
mapT f (R× rα rβ) (a, b) = (f rα a, f rβ b)

The function mapT can be seen as a ‘traversal transformer’. It enjoys functor-like properties:
mapT idT = idT and mapT (f ◦ g) = mapT f ◦mapT g .

everywhere, everywhere ′ :: Traversal → Traversal
everywhere f = f ◦mapT (everywhere f)
everywhere ′ f = mapT (everywhere ′ f) ◦ f

Actually, there are two flavors of the combinator: everywhere f applies f after the recursive calls (it
traverses bottom-up, or post-order), whereas everywhere ′ applies f before (it traverses top-down, or
pre-order).

In a similar manner, we can also implement generic queries which transform trees into values of
some fixed type. For further examples and applications we refer the interested reader to a recent
paper by Lämmel and Peyton Jones [17].

2.4 Generalized tries

A trie is a search tree scheme that employs the structure of search keys to organize information
[12]. In contrast to conventional search trees based on ordering relations tries support look-up and
update in time proportional to the size of the search key. This means, however, that every key type
gives rise to a different trie structure. In fact, tries serve as a nice example of so-called type-indexed
datatypes [14], data types that are constructed in a generic way from an argument data type. Using
phantom types we can implement tries and other type-indexed datatypes in at least two different
ways.

A functional encoding A trie represents a finite map, a mapping from keys to values. Conse-
quently, the trie type is parameterized by the type of keys and by the type of associated values and
is defined via ‘pattern matching’ on the first argument.

data Trie κ ν = T1 (Maybe ν) with κ = ()
| T+ (Trie κ1 ν) (Trie κ2 ν) with κ = Either κ1 κ2

| T× (Trie κ1 (Trie κ2 ν)) with κ = (κ1, κ2)

5

A trie for the unit type is a Maybe value (it is Nothing if the finite map is empty and of the form
Just v otherwise), a trie for a sum is a product of tries and a trie for a product is a composition of
tries. Note that Trie (as well as Rep) is not only a phantom type but also a so-called nested (or
non-regular) type [5], as the definition involves ‘recursive calls’, e.g. Trie κ1 (Trie κ2 ν), that are
substitution instances of the defined type.

The generic look-up function on tries is given by the following definition.

lookup :: ∀κ ν .Trie κ ν → κ→ Maybe ν
lookup (T1 m) () = m
lookup (T+ ta tb) (Left a) = lookup a ta
lookup (T+ ta tb) (Right b) = lookup b tb
lookup (T× ta) (a, b) = lookup a ta >>= lookup b

where (>>=) :: M a → (a → M b) → M b is Haskell’s built-in monad composition operator, here
used with the Maybe monad. Note that lookup (as well as equal) requires a non-schematic form of
recursion called polymorphic recursion [22]: the recursive calls are at types which are substitution
instances of the declared type (see also Section 6.4).

Tries are also attractive because they support an efficient merge operation.

merge :: ∀κ ν . (ν → ν → ν)
→ (Trie κ ν → Trie κ ν → Trie κ ν)

merge c (T1 Nothing) (T1 Nothing) = T1 Nothing
merge c (T1 Nothing) (T1 (Just v ′)) = T1 (Just v ′)
merge c (T1 (Just v)) (T1 Nothing) = T1 (Just v)
merge c (T1 (Just v)) (T1 (Just v ′)) = T1 (Just (c v v ′))
merge c (T+ ta tb) (T+ ta ′ tb′) = T+ (merge c ta ta ′) (merge c tb tb′)
merge c (T× ta) (T× ta ′) = T× (merge (merge c) ta ta ′)

The merge operation takes as a first argument a so-called combining function, which is applied when-
ever two bindings have the same key. It is instructive to reproduce why the definition typechecks.
Consider the second but last equation: the patterns constrain κ to κ = Either κ1 κ2 (first parameter)
and κ = Either κ′1 κ

′
2 (second parameter). The arguments of Either are different for each parameter

because they are existentially quantified in the data declaration. However, we may conclude from
Either κ1 κ2 = κ = Either κ′1 κ

′
2 that κ1 = κ′1 and κ2 = κ′2, which allows us to typecheck the

two recursive calls. As innocent as this deduction may seem, this is exactly the point where the
encoding of with types using an equality type fails: there is no way to prove this implication (see
also Section 4).

Perhaps surprisingly, the equations defining merge are exhaustive though only six out of nine
combinations of Trie constructors are covered. The reason is simply that, for instance, the case
merge c (T+ ta tb) (T× ta ′) need not be considered because the equations κ = Either κ1 κ2 and
κ = (κ′1, κ

′
2) cannot be satisfied simultaneously.

A relational encoding A more intriguing alternative way of implementing tries is to encode the
type-indexed type as a binary relation which relates each key type κ of kind ? to the corresponding
trie type Trie κ of kind ?→ ?.

type (ϕ1 × ϕ2) v = (ϕ1 v , ϕ2 v)
type (ϕ1 · ϕ2) v = ϕ1 (ϕ2 v)
data Rep κ ϕ = R1

with{κ = ();ϕ = Maybe }
| R+ (Rep κ1 ϕ1) (Rep κ2 ϕ2)

with{κ = Either κ1 κ2;ϕ = ϕ1 × ϕ2}
| R× (Rep κ1 ϕ1) (Rep κ2 ϕ2)

with{κ = (κ1, κ2);ϕ = ϕ1 · ϕ2}

6

The type Rep can be seem as a type representation type that additionally incorporates the type-
indexed datatype. Note that the second equation in each case relates two type constructors of kind
?→ ?. The operations on tries now take the type representation as a first argument and proceed as
before (the definition of merge is left as an exercise to the reader).

lookup :: ∀κ ϕ .Rep κ ϕ→ ∀ν . κ→ ϕ ν → Maybe ν
lookup (R1) () m = m
lookup (R+ rα rβ) (Left a) (ta, tb) = lookup rα a ta
lookup (R+ rα rβ) (Right b) (ta, tb) = lookup rβ b tb
lookup (R× rα rβ) (a, b) ta = lookup rα a ta >>= lookup rβ b

In a sense, this implementation disentangles the type representation from the trie data structure.

3 Formal Presentation

We now give the static semantics of phantom types. We model the source language λ≡ as a call-
by-name, explicitly typed and kinded variant of Fω with datatypes. Figure 1 shows the syntax
modifications introduced in λ≡; the full syntax, operational semantics, and static semantics can be
found in Appendix A.

Phantom type expressions C [τ] e are constructed by applying a constructor C to existentially
hidden type arguments τ and expression arguments e. Any constraints attached to the constructor
C must be valid when C [τ] e is typechecked. Case expressions case[σ] e of ms take a type argument
σ describing the intended return type, as well as the discriminated expression e and pattern matches
ms. Pattern matches have the form C [β] x→ eC , where β are names for existentially hidden types,
x are names for the constructor’s arguments, and eC is an expression which gives the result of the
case when the C [β] x pattern matches. The equations associated with C are assumed to hold
within eC . We consider only one level of pattern matching.

Our core calculus does not allow direct pattern matching within function definitions or let-
bindings, but does include the basic building blocks for implementing them, including fix and case.
Our system is presented a la Church—λ, fix, case, and constructor expressions are type-annotated
so that typechecking is syntax-directed. We believe that it is (at least conceptually) straightforward
to translate sufficiently annotated general Haskell programs to our calculus. We have not investigated
type inference, although we outline some of the issues in Section 6.4.

Type equations are of the form τ ≡ τ ′, often abbreviated ε when τ, τ ′ are not important. Phantom
datatype declarations are given in a top-level, mutually recursive signature Σ. We write ΣT.C α =
∃β:κ.C σ with ε:κ′ to concisely indicate the components of the type constructor T.C with type
variables α. For brevity, we often omit irrelevant kind annotations.

As a running example, we consider simple type representations for right-associative integer n-
tuples. The declaration of this type in our formalism is

data RTuple a = RInt with a = Int
| ∀b .R× (RTuple b) with a = (Int , b)

We can form a representation of integer triples as follows:

R× [(Int , Int)] RInt (R× [Int] RInt RInt)

with type Rep (Int , (Int , Int)). Note that for large terms, we can expect considerable redundancy
among the type annotations; however, we do not foresee any problems with inferring these anno-
tations using standard techniques for existential types. The case expression is used to deconstruct
representations. For example, we can define a sum function that adds up all the integers in an
arbitrary n-tuple as follows:

sum :: ∀α .RTuple α→ α→ Int
sum r e = case [Int] r of

RInt → e
| R× [β] rb → let (x , y) = e in

x + sum rb y

7

Σ ::= · | Σ;data T α:κ = ΣT

ΣT ::= · | ΣT | ∃β:κ.C σ with ε:κ′
Ψ ::= · | Ψ, ε:κ
ε ::= τ1 ≡ τ2
e ::= C [τ] e | case[σ] e of ms | fail | · · ·

ms ::= · | C [β] x→ e | ms

Figure 1: Syntax modifications for λ≡

v ::= C [τ] e | fail | · · ·
E ::= case[σ] E of ms | · · ·

case[σ] C [τ] e of C [β] x | ms 7→ e[e/x, τ/β]

case[σ] C [τ] e of D [β] x | ms 7→ case[σ] C [τ] e of ms

case[σ] C [τ] e of · 7→ fail

E[fail] 7→ fail

Figure 2: Operational semantics for case

Note that this function is polymorphically recursive, since we call size at Rep b and Rep c in the
second case, where b and γ are unknown types such that α = (β, γ). Hence we must provide a type
signature for the function.

The sum function is relatively straightforward to typecheck because the return type is Int .
However, we do need the type equations in each case. In the first case, we need to use the fact that
α = Int to determine that the use of e as an Int is correct. In the second case, similarly, we need to
use the assumption α = (Int , β) to determine that it is safe to deconstruct e as a pair (x , y), use x
as an Int , and recursively call sum rb y .

In these cases, the reasoning needed to verify type-safety seems clear, but how are we to automate
this intuitive process? In general, our typechecking algorithm uses unification to distill the informa-
tion implied by a given set of type equations to a substitution. Further typechecking is performed
subject to the substitution. Thus, in the first case we unify α and Int , yielding substitution α→ Int .
Under this substitution, the typing problem α = Int reduces to Int = Int , which is obviously OK.
However, this substitution is only active within the case to which the equation α = Int applies. In
the other case, we typecheck modulo the substitution α → (Int , β), which again makes the body
typecheck.

So far this seems rather trivial. Some of the power of this technique becomes evident when we
consider functions with more than one represented value:

eq :: RTuple a → RTuple a → Bool
eq RInt RInt = True
eq (R× rb) (R× rb′) = eq rb rb′

eq RInt (R×) = False
eq (R×) RInt = False

In this example, in the third and fourth cases, we need to unify α = Int , α = (Int , β). But there is
no unifier for these equations. This means that these cases are statically dead code, which we treat
as an error in source programs. Hence, the programmer should erase the latter two cases, resulting
in:

eq RInt RInt = True
eq (R× rb) (R× rb′) = eq rb rb′

This function is total, that is, there are no missed cases. (See Section 6.3 for more on exhaustiveness
checking.)

The operational semantics of datatype and case expressions is completely standard; type equa-
tions have no effect on expression evaluation. As illustrated above, equations may make it possible

8

to deduce exhaustiveness or detect unreachable patterns in more cases. To avoid complicating the
typing rules further, however, we do not include these checks in the base system. Section 6.3 shows
how to do exhaustiveness checking in the presence of equations. If multiple patterns match, only the
first match will be taken; if no match is found, the case[·] · of · expression steps to an exception
value fail.

The static semantics requires a new form of context Ψ consisting of equational assumptions. We
use it in the following judgments:

∆ ` Ψ equation context well-formedness
∆ ` Ψ ⇓ Θ equation context unification
∆; Ψ ` τ1 ≡ τ2 : κ constructor equivalence
∆; Ψ ` σ1 ≡ σ2 type equivalence
∆; Ψ; Γ ` e : σ expression well-formedness
∆; Ψ; Γ ` ms : T τ ⇒ σ pattern-match well-formedness

Equation contexts are well-formed if the left and right sides of each equation are well-formed in
the specified kinds. The well-formedness of all constructors, types, and contexts is assumed in
type equivalence and expression well-formedness derivations. The unification judgment asserts that
Θ syntactically unifies Ψ: that is, Θτ1 = Θτ2 for each τ1 = τ2 in Ψ. Unification is used explicitly
during checking the well-formedness of datatype declarations to ensure that the equations associated
with each case are satisfiable.2

The constructor equivalence judgment states that two type constructors (expressions describing
monomorphic types or type functions) are equal; similarly, the type equivalence judgment asserts
the equality of two possibly-quantified types. Expression well-formedness asserts that an expression
has a given type, and pattern-match well-formedness asserts that a pattern match (a sequence of
pairs of patterns and bodies) is well-formed; that is, each pattern is a well-formed pattern of type
T τ , and under the resulting variable bindings the body is a well-formed expression of type σ. Other
judgments are shown (with rules) in Appendix A.

The type equivalence rules are mostly standard, including reflexivity, transitivity, symmetry, and
congruence rules. We treat the base type constructors ×,→, T as constants with the appropriate
kinds, e.g. (×), (→) : ? → ? → ?. Thus, we need only one congruence rule, which asserts that if
the left and right sides of corresponding applications are equal, then the result of the application is
equal:

∆; Ψ ` τ1 ≡ τ ′1 : κ1 → κ ∆; Ψ ` τ2 ≡ τ ′2 : κ1

∆; Ψ ` τ1 τ2 ≡ τ ′1 τ
′
2 : κ

The other more typical congruence rules can then be derived.
The new rules are the hypothesis rule:

∆; Ψ, ε : κ ` ε : κ ,

which allows us to use an assumed equation between two types to prove that the two types are equal,
and the decomposition rules that invert the congruence rule of equational logic:

∆ ` τ1 : κ1 → κ ∆; Ψ ` τ1 τ2 ≡ τ ′1 τ
′
2 : κ

∆; Ψ ` τ1 ≡ τ ′1 : κ1 → κ

∆ ` τ2 : κ1 ∆; Ψ ` τ1 τ2 ≡ τ ′1 τ
′
2 : κ

∆; Ψ ` τ2 ≡ τ ′2 : κ1

These rules are unusual and deserve further explanation.
In Haskell or ML, (mono)-types are drawn from a first-order language with “constants” such as

Int and Bool and “function symbols” such as List a. Built-in type constructors such as function
2In Haskell, there are no a priori empty kinds, and types are syntactic objects, so a collection of equations

among type constructors is satisfiable if and only if it has a unifier (i.e., there exists a type substitution Θ which
makes all of the equations true). In the presence of an empty kind ∅, existence of a unifier does not imply validity,
since x = x : ∅ is unifiable under the empty substitution but not satisfiable. In the presence of non-syntactic
identities among ground types, such as List (Int , Int) = List (Bool , Int), satisfiability does not imply unifiability,
since List (α, α) = List (Bool , Int) is satisfiable but does not syntactically unify. Fortunately Haskell’s type system
does not admit such identities, so unification is a sound and complete test for satisfiability of type equations.

9

space and pair constructions can also be thought of as (binary) function symbols in this language.
Moreover, the intended interpretation of this language is syntactic. That is, no equations are assumed
to hold among these types apart from syntactic equality. This fact is implicit in type inference: if
we see a term of an unknown type used in integer addition, then we assume it must have type Int ;
we don’t need to consider the possibility that there is some other type syntactically different from
Int but semantically the same.

Pure equational logic (that is, deciding equality under no hypotheses using reflexivity, transitivity,
symmetry, and congruence rules) is complete for syntactic theories. That is, all true single equations
are derivable. However, this is not true when assumptions are added to the mix. For example,
consider the assumption List α = List β. It is a fact that in the syntactic model, this equation
only holds when α = β also holds. Thus, semantically α = β is a consequence of List α = List β.
However, this cannot be derived using the pure equational rules, because the equational rules are
sound in all models and there are non-syntactic models for which List α = List β does not imply
α = β.3 Nevertheless, in the syntactic model the decomposition rules are sound, and they turn out
to be both necessary for proving the adequacy of using unification during typechecking (see Section
5) and useful (see Section 4).

Most of the rules for expression typing are standard. The constructor typing rule is modified by
adding the requirement that type constraints are checked:

∆; Ψ; Γ ` ei : σi[τ ′/α, τ/β] ∆;Ψ ` εi[τ ′/α, τ/β] : κi

∆; Ψ; Γ ` C [τ] e : T τ ′

where ΣT.C α = ∃β.C σ with ε. This rule states that a data constructor application typechecks if,
in addition to the usual requirements, all of the type equations specified in the constructor’s with
clause are satisfied in the current context.

The case rule
∆; Ψ; Γ ` e : T τ ∆; Ψ; Γ ` ms : T τ ⇒ σ

∆; Ψ; Γ ` case[σ] e of ms : σ

simply checks that e is of a data type T τ and passes the equation context Ψ on to pattern-match
typechecking. The pattern-match typing rule introduces new type and variable bindings, and also
looks up the equations associated with the current case, instantiates them with the arguments to T ,
and type checks the body under these added equational assumptions.

∆; Ψ; Γ ` ms : T τ ⇒ σ′ ∆, β; Ψ, ε[τ/α, γ/β]; Γ, x:σ[τ/α, γ/β] ` e : σ′

∆; Ψ; Γ ` C [γ] x→ e | ms : T τ ⇒ σ′

where ΣT.C α = ∃β.C σ with ε. Finally, we include a standard coercion rule:

∆; Ψ; Γ ` e : σ ∆; Ψ ` σ ≡ σ′

∆; Ψ; Γ ` e : σ′

4 Decomposition rules and applications

Type equivalence and unification are closely related. In Hindley-Milner-style type inference systems
like Haskell, unification is used in a bottom-up fashion during type inference: type constraints are
generated from a term, then unification is used to solve the constraints. For example, if we see a
function application f e, then we generate a constraint of the form α = β → γ, where f :: α, e :: β,
and the result of the application has type γ. For an equation to typecheck, all such constraints
must possess a single simultaneous solution, or unifier. Haskell 98 uses a slight generalization of
first-order unification to solve equations like Maybe Int = φ α for φ ::∗ → ∗ and α ::∗. In Haskell, the
only solution is φ = Maybe, α = Int . Generally speaking, a term of the form τ1 τ2 = σ1 σ2 unifies
if and only if both τ1 = σ1 and τ2 = σ2 do (with the same unifier), just as in the first-order case

3For example, consider the one-element model where every type is interpreted as that element.

10

with built-in functions. This is a form of sorted first-order unification, where the sorts are Haskell’s
kinds.

To take full advantage of the power of first-class phantom types, we need to employ top-down
reasoning as well. That is, we need to be able to perform typechecking under temporary assumptions
consisting of type equations. In Haskell, the language of types admits only syntactic equality (which
is why syntactic unification suffices for type inference). However, some facts are true in the actual
syntactic interpretation of types that are not true in general for equational theories. For example,
in a general theory with a function symbol f , knowing f x = f y does not imply x = y . (i.e., not
every function is injective), so clearly this fact is not derivable from pure equational logic (that is,
from the reflexive, symmetric, transitive, and congruence laws). But this is the case for types; for
example, is we know List a = List b, then we can conclude that a = b. So pure equational logic is
not complete for solving equations under hypotheses in Haskell.

The decomposition rules state that Haskell constructor application is injective. Put another way,
these rules state that the usual congruence laws are invertible in Haskell: that is, from a proof of
φ α = ψ β we can always extract proofs of φ = ψ and α = β. Using the decomposition rules, we
can show that to typecheck code in the presence of hypothetical type equations, it suffices to find a
unifier (most general solution) to the equations, apply the resulting substitution to the types in the
environment, and proceed with typechecking as usual.

We have already seen more than one situation where the decomposition rule is useful: in reduce
in the encoding of λ-terms in Section 2.2, and in merge in the functional encoding of generalized tries
of Section 2.4. Generalized tries can be seen as an instance of Typerec, a type constructor found in
intensionally polymorphic languages such as λML

i and λR that defines a constructor by induction on
the structure of another constructor. Thus, Typerec τ τInt τ× is equivalent to τInt if τ = Int , and
τ× τ1 τ2 (Typerec τ1 τInt τ×) (Typerec τ2 τInt τ×) if τ = τ1×τ2. Typical applications of Typerec
include type-directed optimizations like automatic boxing and unboxing [19], array flattening, and
automatic marshaling [10]. Using first-class phantom types, we can simulate Typerec as follows:

data Typerec α τ φ τ ′ = TInt τ with α = Int
| T× (φ β γ (Typerec β τ φ) (Typerec γ τ φ)) with α = (β, γ)

Without the decomposition rule, this form of Typerec would have limited usefulness. Consider as a
simple example the following type function defined using Typerec:

type RevF α β γ δ = (δ, γ)
type Rev α = Typerec α Int RevF

We’d like to define generic transformations from α to Rev α and back. As a first step, we show
simple cases of constructing Rev α values from components:

idInt :: Int → Rev Int
idInt i = TInt i
idPair :: (Rev β,Rev γ) → Rev (β, γ)
idPair (b, c) = T× (c, b)

Now we’d like to define reverse transformations as follows:

unInt :: Rev Int → Int
unInt (TInt i) = i
unPair :: Rev (β, γ) → (Rev β,Rev γ)
unPair (T× (c, b)) = (b, c)

The unInt function typechecks even without decompositions, since we already know that Int = Int .
But without the decomposition rules, the pair case does not typecheck, because the type of p is
(Rev β′,Rev γ′) for some existentially quantified β′, γ′ such that (β, γ) = (β′, γ′), while the desired
type is (Rev β,Rev γ) with β, γ universally quantified. Without decompositions, we cannot conclude
that β = β′, γ = γ′ or that (Rev β,Rev γ) = (Rev β′,Rev γ′), as needed. Thus, phantom types are

11

not only a nice convenience, they are also strictly more powerful than the approach using equality
types.

However, even with decomposition this encoding of Typerec is not ideal. Our encoding uses a
datatype, which stores a tag along with the type-dependent data in each case. On one hand, when
we know what type α is, the tag is redundant. On the other hand, when no other information about
α is known, the tag can be used to disambiguate the two cases. The “standard” Typerec does not
exhibit this behavior: in the absence of a representation for α, Typerec α τi τ× is an abstract type.
We believe that a union construct may be a viable way to handle this behavior:

union Typerec α τ φ = TInt τ with α = Int
| T× (φ β γ (Typerec β τ φ) (Typerec γ τ φ))

with α = (β, γ)

Unions are like standard phantom datatypes, except that the run-time datatype case tags are omit-
ted. In a context where one of the equations is satisfied, a union is treated as a synonym for the
matching body; otherwise, it is treated as an abstract type. Thus, for unions, the equations provide
the only way of disambiguating the cases. As a result, to avoid confusion, the type equations in each
case must be mutually exclusive. We have not studied this construct in detail, but plan to do so in
the future.

5 Type Soundness and Decidability

We now establish the type soundness and decidability of λ≡. In the rest of this section, we give
detailed proofs of these results, emphasizing the differences relative to proofs for similar systems.

5.1 Properties of Equivalence Derivations

We first prove some general substitution lemmas

Lemma 1 (Type Substitution). If ∆ ` τ : κ and

1. ∆, α:κ ` τ ′ : κ′ then ∆[τ/α] ` τ ′[τ/α] : κ′

2. ∆, α:κ; Ψ ` ε′ : κ′ then ∆[τ/α]; Ψ[τ/α] ` ε′[τ/α] : κ′

3. ∆, α:κ; Ψ; Γ ` e : σ then ∆[τ/α]; Ψ[τ/α]; Γ[τ/α] ` e[τ/α] : σ[τ/α]

4. ∆, α:κ; Ψ; Γ ` ms : T τ ⇒ σ then ∆; Ψ[τ/α]; Γ[τ/α] ` ms[τ/α] : T τ [τ/α] ⇒ σ[τ/α]

Proof. Standard.

Lemma 2 (Weakening). If ∆; Ψ ` ε : κ and ∆ ` τi : κ′ then ∆; Ψ, τ1 ≡ τ2 ` ε : κ′. If ∆; Ψ ` ε : κ
then ∆, α; Ψ ` ε : κ.

Proof. Both are simple inductions on the structure of the respective derivations.

Lemma 3 (Syntactic Equality). If ∆ ` τi : κ, then ∆; · ` τ1 ≡ τ2 : κ if and only if τ1 = τ2. If
∆ ` σi, then ∆; · ` σ1 = σ2 if and only if σ1 =α σ2.

Proof. Easy induction on the structure of equivalence derivations.

Definition 1. A type constructor context is a constructor with a “hole” [·] given by the following
grammar:

C ::= [·] | C τ | τ C

Lemma 4 (Constructor Congruence). If ∆; Ψ ` τ ≡ τ ′ : κ and ∆, α:κ ` C[α] : κ′ then
∆; Ψ ` C[τ] ≡ C[τ ′] : κ.

Proof. Simple induction on the structure of C.

12

Lemma 5. If α /∈ ∆ and Ψ, α = τ is satisfiable and ∆ ` τ : κ′ then ∆; Ψ[τ/α] ` ε[τ/α] : κ if and
only if ∆, α:κ′; Ψ, α ≡ τ ` ε : κ.

Proof. (=⇒): Proof is by induction on the number of occurrences of α in Ψ, ε. If there are none, then
we have ∆; Ψ ` ε : κ, and by weakening we can conclude that ∆, α; Ψ, α ≡ τ ` ε : κ. Suppose that
the lemma holds for Ψ, ε with n occurrences of α and suppose we have Ψ, ε with n+ 1 occurrences.
Pick one.

If it is in Ψ, without loss of generality assume Ψ = Ψ′, C[α] ≡ τ ′. By induction we can get
∆; Ψ, C[τ] ≡ τ ′, α ≡ τ ` ε : κ. We need to show that ∆; Ψ, C[α] ≡ τ ′, α ≡ τ ` ε : κ. But we can
derive both ∆;Ψ, C[α] ≡ τ ′, α ≡ τ ` C[τ] ≡ C[α] : κ and ∆; Ψ, C[α] ≡ τ ′, α ≡ τ ` C[α] ≡ τ ′ : κ so
by transitivity we have ∆;Ψ, C[α] ≡ τ ′, α ≡ τ ` C[τ] ≡ τ ′ : κ. Using the Substitution Lemma we
can conclude ∆;Ψ, C[α] ≡ τ ′, α ≡ τ ` ε : κ.

If the instance of α is in ε, without loss of generality assume ε = C[α] ≡ τ . Then by induction
we have ∆; Ψ, α ≡ τ ` C[τ] ≡ τ ′ : κ. Then using context congruence we can derive ∆;Ψ, α ≡ τ `
C[α] ≡ C[τ] : κ, so by transitivity ∆;Ψ, α ≡ τ ` C[α] ≡ τ ′ : κ.

Note that since Ψ, α = τ is satisfiable, we know that α does not occur in τ . This fact is crucial
for the induction step, since it guarantees that there are fewer occurrences of α in C[τ] than C[α].

(⇐=): Proof by induction on the structure of the derivation ∆, α:κ′; Ψ, α ≡ τ ` ε : κ.

• Case (Hyp): If the hypothesis is α ≡ τ , then the desired judgment is ∆;Ψ[τ/α] ` τ ≡ τ : κ,
which follows by reflexivity.

If the hypothesis used is some other hypothesis ε, then the hypothesis rule still applies to derive
∆; Ψ, ε[τ/α] ` ε[τ/α] : κ

• Case (Refl): The desired judgment is also derivable by reflexivity.

• Case (Symm, Trans, Cong, Decomp): The desired judgment is derivable by applying the
respective rules to the results of applying the induction hypothesis to their subderivations.

Corollary 1. If ∆ ` Θ then ∆; Θ ` τ1 = τ2 : κ if and only if ∆; · ` Θτ1 = Θτ2 : κ.

Proof. Follows by induction on the size of Θ from Lemma 5.

Lemma 6. If ∆ ` Ψ ⇓ Θ and ∆; Θ ` ε : κ then ∆; Ψ ` ε : κ.

Proof. Proof by induction on the structure of the derivation of ∆ ` Ψ ⇓ Θ.

• If
· ` · ⇓ ,

then Ψ = ·, Θ = ·, so ∆; · ` ε : κ holds by assumption.

• If
∆ ` Ψ′ ⇓ Θ

∆ ` Ψ′, α ≡ α ⇓ Θ

then Θ is a MGU for Ψ′ also, so ∆; Ψ′ ` ε : κ. By weakening we have ∆;Ψ′, α ≡ α ` ε : κ.

• If
∆ ` Ψ′ ⇓ Θ

∆ ` Ψ′, c ≡ c ⇓ Θ

then the argument is similar to the last case.

13

• If
∆ ` ∆ : τκ ∆ ` Ψ′[τ/α] ⇓ Θ′

∆, α:κ ` Ψ′, α ≡ τ ⇓ Θ′, α ≡ τ

then we have ∆; Θ′, α ≡ τ ` ε : κ and need to show that ∆;Ψ′, α ≡ τ ` ε : κ. By the
reverse direction of Lemma 5, we have ∆;Θ′[τ/α] ` ε[τ/α] : κ. But α does not occur in Θ,
so ∆;Θ′[τ/α] ` ε[τ/α] : κ. By induction since ∆ ` Ψ′[τ/α] ⇓ Θ we can derive ∆;Ψ′[τ/α] `
ε[τ/α] : κ. By Lemma 5 in the forward direction, we can conclude ∆;Ψ′, α ≡ τ ` ε : κ.

• If
∆ ` Ψ′, α ≡ τ ⇓ Θ τ 6= β

∆ ` Ψ′, τ ≡ α ⇓ Θ

then we proceed by induction.

• If
∆ ` Ψ′, τ1 ≡ τ ′1, τ2 ≡ τ ′2 ⇓ Θ
∆ ` Ψ′, τ1 τ2 ≡ τ ′1 τ

′
2 ⇓ Θ

then by induction we have ∆;Ψ′, τ1 ≡ τ ′1, τ2 ≡ τ ′2 ` ε : κ. Moreover,

∆ ` τ2 : κ1 ∆; Ψ′, τ1 ≡ τ ′1, τ1 τ2 ≡ τ ′1 τ
′
2 ` τ1 τ2 ≡ τ ′1 τ

′
2 : κ2

∆; Ψ′, τ1 ≡ τ ′1, τ1 τ2 ≡ τ ′1 τ
′
2 ` τ2 ≡ τ ′2 : κ1

so by the substitution lemma (proved in the next section) we have ∆; Ψ′, τ1 ≡ τ ′1, τ1 τ2 ≡
τ ′1 τ

′
2 ` ε : κ. Similarly,

∆ ` τ1 : κ1 → κ2 ∆; Ψ′, τ1 ≡ τ ′1, τ1 τ2 ≡ τ ′1 τ
′
2 ` τ1 τ2 ≡ τ ′1 τ

′
2 : κ2

∆; Ψ′, τ1 τ2 ≡ τ ′1 τ
′
2 ` τ1 ≡ τ ′1 : κ1 → κ2

so by substitution again we have ∆;Ψ′, τ1 τ2 ≡ τ ′1 τ
′
2 ` ε : κ

Proposition 1. Assume ∆ ` τi : κ and ∆ ` Ψ ⇓ Θ (i.e., Θ unifies Ψ). Then ∆; Ψ ` τ1 ≡ τ2 : κ if
and only if Θτ1 = Θτ2.

Proof. (=⇒): Proof is by induction on the derivation of ∆;Ψ ` τ1 ≡ τ2 : κ.

• Case (Hyp). Then

∆; Ψ, τ ≡ τ ′ ` τ ≡ τ ′ : κ

Then Θτ = Θτ ′ since Θ unifies every equation in Ψ, τ ≡ τ ′.

• Case (Refl). Then
∆; Ψ ` τ ≡ τ : κ

Then Θτ = Θτ .

• Case (Symm). Then
∆; Ψ ` τ ′ ≡ τ : κ
∆; Ψ ` τ ≡ τ ′ : κ

Then by the induction hypothesis we have Θτ ′ = Θτ so by symmetry of equality Θτ = Θτ ′.

• Case (Trans). Then
∆; Ψ ` τ ≡ τ ′ : κ ∆; Ψ ` τ ′ ≡ τ ′′ : κ

∆; Ψ ` τ ≡ τ ′′ : κ

By induction hypothesis we have Θτ = Θτ ′ and Θτ ′ = Θτ ′′, so Θτ = Θτ ′′.

14

• Case (Congr). Then
∆; Ψ ` τ1 ≡ τ ′1 : κ ∆; Ψ ` τ2 ≡ τ ′2 : κ

∆; Ψ ` τ1 τ2 ≡ τ ′1 τ
′
2 : κ

By induction hypothesis we have Θτ1 = Θτ ′1, Θτ2 = Θτ ′2, so Θ(τ1 τ2) = Θτ1 Θτ2 = Θτ ′1 Θτ ′2 =
Θ(τ ′1 τ

′
2).

• Case (Decomp1). Then

∆ ` τ1 : κ1 → κ2 ∆; Ψ ` τ1 τ2 ≡ τ ′1 τ
′
2 : κ2

∆; Ψ ` τ1 ≡ τ ′1 : κ1 → κ2

By induction on the first hypothesis, we have Θ(τ1 τ2) = Θ(τ ′1 τ
′
2), so Θ(τ1) = Θ(τ ′1).

• Case (Decomp2). Then
∆ ` τ2 : κ1 ∆; Ψ ` τ1 τ2 ≡ τ ′1 τ

′
2 : κ2

∆; Ψ ` τ2 ≡ τ ′2 : κ1

By induction on the first hypothesis, we have Θ(τ1 τ2) = Θ(τ ′1 τ
′
2), so Θ(τ2) = Θ(τ ′2).

(⇐=): By Lemma 3, from ∆ ` Ψ ⇓ Θ and Θτ = Θτ ′ we can obtain ∆; · ` Θτ ≡ Θτ ′ : κ. By
Corollary 1, we have ∆; Θ ` τ ≡ τ ′ : κ. By Lemma 6, we conclude ∆; Ψ ` τ ≡ τ ′ : κ.

The proofs of these properties are straightforward.

5.2 Type Soundness

The proof of type soundness is similar in structure to those for related systems λML
i [21] and λR [7].

We already showed substitution lemmas for substituting types into various judgments. We prove
additional equation and term substitution lemmas. We also show that typed values have canonical
forms even with our stronger notion of type equivalence. Next we show that every typed term is
either a value or can make progress, and finally we show that typedness is preserved by evaluation.

Lemma 7 (Equation Substitution). If ∆; Ψ ` ε : κ and

1. ∆; Ψ, ε ` ε′ : κ′ then ∆; Ψ ` ε′ : κ′

2. ∆; Ψ, ε; Γ ` e : σ then ∆; Ψ; Γ ` e : σ

3. ∆; Ψ, ε; Γ ` ms : T τ ⇒ σ then ∆; Ψ; Γ ` ms : T τ ⇒ σ

Proof. The cases for typing derivations are straightforward. We show the interesting cases for
equivalence derivations.

• (Hypothesis) If the hypothesis used is ε : κ, then by assumption we already have a derivation
of ∆; Ψ ` ε : κ. If it is some other hypothesis,

∆; Ψ, ε′, ε ` ε′ : κ′

then the hypothesis rule still applies without ε:

∆; Ψ, ε′ ` ε′ : κ′

as desired.

• (Reflexivity) We have ε = (τ ≡ τ) and

∆; Ψ, ε ` τ ≡ τ : κ′

Then
∆; Ψ ` τ ≡ τ : κ′

15

• (Symmetry) We have ε = (τ ≡ τ ′) and

∆; Ψ, ε ` τ ′ ≡ τ : κ′

∆; Ψ, ε ` τ ≡ τ ′ : κ′

Then by induction we have ∆; Ψ ` τ ′ ≡ τ : κ so we conclude ∆;Ψ ` τ ≡ τ ′ : κ using the
symmetry rule.

• (Trans, Congr, Decomp) Straightforward induction steps

Lemma 8 (Term Substitution). If ∆; Ψ; Γ ` e : τ and ∆; Ψ; Γ, x : τ ` e′ : σ then ∆; Ψ; Γ `
e′[e/x] : σ.

Lemma 9 (Canonical Forms). Suppose v is a value. If v 6= fail, ·; ·; · ` v : σ and

1. ·; · ` σ ≡ Int, then v = i.

2. ·; · ` σ ≡ σ1 → σ2, then v = λx : σ1.e
′ for some x, e′.

3. ·; · ` σ ≡ σ1 × σ2, then v = 〈e1, e2〉 for some e1, e2.

4. ·; · ` σ ≡ T τ , then v = C [τ ′] e for some τ ′i , ei.

5. ·; · ` σ ≡ ∀α:κ.σ′, then v = Λα:κ.e for some e.

Proof. Proof is by induction on the number of uses of the equality rule before we get to a non-
equality rule at the head of the derivation. If there are no uses of the equality rule, then by Lemma
3, σ = Int , σ1 → σ2, σ1 × σ2, etc., respectively, so only the appropriate rule introducing i, λx:σ1.e,
〈e1, e2〉, etc. is applicable. If there are n+ 1 uses of the equality rule, then we combine the last use
with the assumption using transitivity and proceed by induction.

Definition 2. We write γ : Γ to indicate that γ is a function mapping variables bound in Γ to
values such that ·; ·; · ` γ(x) : Γ(x), and similarly δ : ∆; Ψ if δ maps type variables bound in
∆ to type constructors of the appropriate kinds such that each equation in Ψ is satisfied; that is,
· ` δ(α) : ∆(α) and ·; · ` δ(τ) ≡ δ(τ ′) : for each τ ≡ τ ′ ∈ Ψ.

We write δ(σ) and γδ(e) for the result of substituting all the type or term variables in a type or
expression with their values in γ or δ.

Lemma 10 (Progress). If ·; ·; · ` e : τ then either e is a value or there exists e′ such that e 7→ e′.

This proof is essentially the same as the standard proof, since equations have no run-time repre-
sentation or effect.

Proof. We generalize the induction hypothesis to: If ∆;Ψ; Γ ` e : τ and γ : Γ, δ : ∆;Ψ then either
γδ(e) is a value or there exists e′ such that γδ(e) 7→ γδ(e′). First, note that if γδ(e) = E[fail], then
γδ(E) 7→ fail = γδ(fail). So we may without loss assume that fail does not occur as part of the
head redex in e.

Proof is by induction on the derivation of ∆;Ψ; Γ ` e : σ. Most of the cases are standard. The
only unusual case is for case[σ] e of ms expressions.

• (Case) Then e = case[σ] e′ of ms and we have

∆; Ψ; Γ ` e′ : T τ ∆; Ψ; Γ ` ms : T τ ⇒ σ

∆; Ψ; Γ ` case[σ] e′ of ms : σ

Case expressions can never be values, so we must find an evaluation step to take. If γδ(e′) is
not a value, then by induction using the derivation ∆; Ψ; Γ ` e′ : T τ we can find e′′ such that

16

γδ(e′) 7→ γδ(e′′), and thus γδ(case[σ] e′ of ms) 7→ γδ(case[σ] e′′ of ms). If γδ(e′) is a value,
then by Lemma 9 it must be of the form C [τ ′] e since it is not fail and values of type T τ
consist only of constructors applied to values of the appropriate types. There are three cases.
If ms = · then the expression steps to

γδ(case[σ] e′ of ·) = case[δ(σ)] γδ(e′) of ·
7→ fail

= γδ(fail)

If ms = D [β] x→ eD | ms′ where C 6= D then we have

γδ(case[σ] e′ of ms) = case[δ(σ)] γδ(e′) of γδ(ms)
7→ case[δ(σ)] γδ(e′) of γδ(ms′)
= γδ(case[σ] v of ms′)

Otherwise, ms = C [β] x→ eC | ms′

γδ(case[σ] e′ of ms) = case[δ(σ)] γδ(e′) of γδ(ms)
= case[δ(σ)] C [δ(τ ′)] γδ(e) of γδ(ms)
7→ γδ(eC)[δ(τ ′)/β, γδ(e)/x]
= γδ(eC [τ ′/β, e/x])

since β, x are not in the domains of δ, γ.

Lemma 11 (Subject Reduction). If ·; ·; · ` e : τ and e 7→ e′ then ·; ·; · ` e′ : τ .

The only unusual part of this proof is for case[σ] C [τ] e of C [β] x→ e | ms expressions, where
we need to apply the equation substitution lemma as well as the type and term substitution lemmas
in order to prove that e[τ/β, e/v] still typechecks.

Proof. We strengthen the induction hypothesis to: If ∆; Ψ; Γ ` e : τ and δ : ∆; Ψ, and γ : Γ, and
γδ(e) 7→ γδ(e′) then ∆; Ψ; Γ ` e′ : τ .

First note that if γδ(e) 7→ fail then the conclusion follows immediately since fail = γδ(fail)
inhabits any type. Otherwise, γδ(e) = E[γδ(e′)]) 7→ E[γδ(e′′)] for some γδ(e′) 7→ γδ(e′′). Since
evaluation contexts preserve typing, it suffices to consider only the redex cases. The only interesting
nonstandard case is that of case[σ] e of ms expressions.

• (Case) Then e = case[σ] C [τ ′] e′ of ms. We have

D1

∆; Ψ; Γ ` ei : σi[τ/α, τ ′/β]
D2

∆; Ψ ` εi[τ ′/β] : κi

∆; Ψ; Γ ` C [τ ′] e : T τ
D3

∆; Ψ; Γ ` ms : T τ ⇒ σ

∆; Ψ; Γ ` case[σ] C [τ ′] e of ms : σ

If ms = ·, then

γδ(case[σ] C [τ ′] e of ·) = case[δ(σ)] C [δ(τ ′)] γδ(e) of · 7→ fail ,

and
∆; Ψ; Γ ` fail : σ .

If ms = D [β
′
] x′ → eD | ms′ where C 6= D, then

γδ(case[σ] C [τ ′] e of ms) = case[δ(σ)] C [δ(τ ′)] γδ(e) of γδ(ms)
7→ case[δ(σ)] C [δ(τ ′)] γδ(e) of γδ(ms)
= γδ(case[σ] C [τ ′] e of ms′) .

17

Also, D3 is of the form

D4

∆; Ψ; Γ ` ms′ : T τ ⇒ σ
D5

∆, β; Ψ, ε; Γ, x:σ[τ/α] ` eD : σ

∆; Ψ; Γ ` D [β] x→ eD | ms′ : T τ ⇒ σ

so
D1

∆; Ψ; Γ ` ei : σi[τ/α, τ ′/β]
D2

∆; Ψ ` εi[τ ′/β] : κi

∆; Ψ; Γ ` C [τ ′] e : T τ
D4

∆; Ψ; Γ ` ms′ : T τ ⇒ σ

∆; Ψ; Γ ` case[σ] C [τ ′] e of ms′ : σ

Otherwise, ms = C [β
′
] x′ → eC | ms′, and

γδ(case[σ] C [τ ′] e of ms) = case[δ(σ)] C [δ(τ ′)] γδ(e) of γδ(ms)
7→ γδ(eC)[δ(τ ′)/β, γδ(e)/x]
= γδ(eC [τ ′/β, e/x])

We also have
D4

∆; Ψ; Γ ` ms′ : T τ ⇒ σ
D5

∆, β; Ψ, ε; Γ, x:σ[τ/α] ` eC : σ

∆; Ψ; Γ ` C [β] x→ eC | ms′ : T τ ⇒ σ

where β are not free in ∆,Ψ,Γ, or σ. We first apply the type substitution lemma to substitute
τ ′ for β in the derivation D5 :: ∆, β; Ψ, ε; Γ, x:σ[τ/α] ` eC : σ. Since β do not occur in ∆, Ψ,
Γ, or σ, the result of the type substitution lemma is

∆; Ψ, ε[τ ′/β]; Γ, x:σ[τ/α, τ ′/β] ` e′[τ ′/β] : σ

Now we apply the equation substitution lemma to substitute the derivations of ∆;Ψ ` εi[τ ′/β] :
κi (obtained from the constructor typing derivation) in the above derivation, yielding

∆; Ψ; Γ, x:σ[τ/α, τ ′/β] ` e′[τ ′/β] : σ

Finally, we use the term substitution lemma with to substitute the derivations of ∆; Ψ; Γ `
ei : σi[τ/α, τ ′/β] into the above derivation, yielding

∆; Ψ; Γ ` e′[e/x, τ ′/β] : σ

as desired.

Theorem 1 (Type Safety). If ·; ·; · ` e : τ and e 7→∗ e′ then e′ is not stuck; that is, e′ is a value
or e′ 7→ e′′ for some e′′.

Proof. Follows from the preservation and progress lemmas. By induction on the number of steps
from e to e′, we can use subject reduction to prove that ·; ·; · ` e′ : σ; by preservation, either e′ is a
value or there exists e′′ such that e′ 7→ e′′.

5.3 Decidability

Now we turn to the question of the decidability of typechecking for λ≡. Type equivalences are a
special case of general equational implication, which is undecidable. However, we showed earlier
that if Ψ is satisfiable, then ∆; Ψ ` τ ≡ τ ′ : κ if any only if the most general unifier Θ of Ψ satisfies
Θτ = Θτ ′. As a result, constructor and type equivalence are decidable provided the equational
context unifies. We say a derivation is satisfiable if all contexts in it are satisfiable.

18

On the other hand, type equivalence problems in which Ψ is unsatisfiable are not decidable,
because we can encode undecidable equational inference problems as equivalence problems. Even if
general type equivalence were decidable, syntax-directed typechecking with general type equivalences
would be hard, as there is no obvious choice of “natural” normal forms for types relative to an
unsatisfiable context. We believe that it is best to avoid this problem by requiring all equation
contexts that arise during typechecking to be satisfiable. This is a decidable property: we can check
it by checking that the equational context that obtains at each program point unifies. Unsatisfiable
contexts can only help to typecheck dead code, since the contexts can never be satisfied. So, if
typechecking fails for this reason, then the user just needs to remove the dead code to get an
equivalent program that does typecheck.

Definition 3. If ∆ ` Ψ ⇓ Θ, then we say that σ has normal form NF∆;Ψ(σ) = Θσ. When ∆ and
Ψ are obvious from context, we omit the subscript.

A derivation is satisfiable if every context Ψ in it satisfiable. A judgment is satisfiably derivable
if it has a satisfiable derivation.

A typing derivation is normal if it is of the form

D1 · · · Dn

∆; Ψ; Γ ` e : σ R ∆; Ψ ` σ ≡ σ′

∆; Ψ; Γ ` e : σ′

where Ψ is satisfiable, σ′ is in normal form, R is an axiom or inference rule other than coercion,
and D1 . . . ,Dn are normal derivations.

A match typing derivation is normal if it is of the form

∆; Ψ; Γ ` · : T τ ⇒ σ

or

D1

∆; Ψ; Γ ` ms′ : T τ ⇒ σ

D2

∆′; Ψ′; Γ′ ` e : σ′ ∆; Ψ′ ` σ′ ≡ σ

∆′; Ψ′; Γ′ ` e : σ

∆; Ψ; Γ ` C [β] x→ e | ms′ : T τ ⇒ σ

where ∆′ = ∆, β, Ψ′ = Ψ, ε[τ/α], Γ′ = Γ, x:σ[τ/α], Ψ is satisfiable, and D1, D2 are normal deriva-
tions. The type σ is not required to be in normal form, whereas σ′ necessarily is.

Lemma 12 (Normal Forms Equivalent). If Ψ is satisfiable and ∆ ` σ, we have ∆; Ψ ` σ ≡
NF(σ). Conversely, if ∆; Ψ ` σ ≡ σ′, then NF(σ) = NF(σ′).

Proof. Both parts are immediate corollaries of Proposition 1.

Lemma 13 (Normal Derivations). If ∆; Ψ; Γ ` e : σ is satisfiably derivable them ∆; Ψ; Γ ` e :
NF(σ) is normally derivable.

Proof. (⇐=): Suppose we have D :: ∆;Ψ; Γ ` e : NF(σ). Then by Lemma 12 we have

D
∆; Ψ; Γ ` e : NF(σ) ∆; Ψ ` NF(σ) ≡ σ

∆; Ψ; Γ ` e : σ

(=⇒): We proceed by induction on the structure of D :: ∆;Ψ; Γ ` e : σ.

• Case (Var): Then
∆; Ψ; Γ, x:σ ` x : σ

So we have
∆; Ψ; Γ, x:σ ` x : σ ∆; Ψ ` σ ≡ NF(σ)

∆; Ψ; Γ, x:σ ` x : NF(σ)

19

• Case (Int): Then
∆; Ψ; Γ ` i : Int

So we have
∆; Ψ; Γ ` i : Int ∆; Ψ ` Int ≡ NF(Int)

∆; Ψ; Γ ` i : NF(Int)

• Case (App): Then
D1

∆; Ψ; Γ ` e1 : σ → σ′
D2

∆; Ψ; Γ ` e2 : σ
∆; Ψ; Γ ` e1 e2 : σ′

By induction we have normal derivations D′1 :: ∆;Ψ; Γ ` e1 : NF(σ → σ′) and D′2 :: ∆; Ψ; Γ `
e2 : NF(σ). But NF(σ → σ′) = NF(σ) → NF(σ′) so

D′1
∆; Ψ; Γ ` e1 : NF(σ) → NF(σ′)

D′2
∆; Ψ; Γ ` e2 : NF(σ)

∆; Ψ; Γ ` e1 e2 : NF(σ′) ∆; Ψ ` NF(σ′) ≡ NF(σ′)
∆; Ψ; Γ ` e1 e2 : NF(σ′)

• Case (Lam): Then
D

∆; Ψ; Γ, x:σ ` e : σ′

∆; Ψ; Γ ` λx:σ.e : σ → σ′

By induction we have D′ :: ∆; Ψ; Γ, x:σ ` e : NF(σ′). So since σ ≡ NF(σ) and NF(σ → σ′) =
NF(σ) → NF(σ′), we can derive

D′
∆; Ψ; Γ, x:σ ` e : NF(σ′)

∆; Ψ; Γ ` λx:σ.e : σ → NF(σ′) ∆; Ψ ` σ → NF(σ′) ≡ NF(σ → σ′)
∆; Ψ; Γ ` λx:σ.e : NF(σ → σ′)

• Case (Coercion): Then we have

D
∆; Ψ; Γ ` e : σ ∆; Ψ ` σ ≡ σ′

∆; Ψ; Γ ` e : σ′

By induction we have D′ :: ∆;Ψ; Γ ` e : NF(σ), a normal derivation of the form

D1 · · · Dn

∆; Ψ; Γ ` e : σ′′
R

∆; Ψ ` σ′′ ≡ NF(σ′′)
∆; Ψ; Γ ` e : NF(σ′′) .

for some σ′′ such that NF(σ′′) = NF(σ). Observe that since σ ≡ σ′, NF(σ) = NF(σ′), so the
above derivation is a normal derivation of ∆;Ψ; Γ ` e : NF(σ′) as well.

• (Pair, Proj, Fix, TLam, TApp) Straightforward.

• (Case, Con) straightforward.

• Case (Match). If
∆; Ψ; Γ ` · : T τ ⇒ σ

then the derivation is already normal. Otherwise, the derivation is of the form

D1

∆; Ψ; Γ ` ms′ : T τ ⇒ σ
D2

∆′; Ψ′; Γ′ ` e : σ

∆; Ψ; Γ ` C [β] x→ e | ms′ : T τ ⇒ σ

20

By induction we can construct normal derivations D′1 :: ∆;Ψ; Γ ` ms′ : T τ ⇒ σ and D2 ::
∆′; Ψ′; Γ′ ` e : NF∆′;Ψ′(σ). Since ∆′; Ψ′ ` NF∆′;Ψ′(σ) ≡ σ :, we have

D′1
∆; Ψ; Γ ` ms′ : T τ ⇒ σ

D′2
∆′; Ψ′; Γ′ ` e : NF∆′;Ψ′(σ) ∆; Ψ′ ` NF∆′;Ψ′(σ) ≡ σ

∆′; Ψ′; Γ′ ` e : σ

∆; Ψ; Γ ` C [β] x→ e | ms′ : T τ ⇒ σ

which is a normal match derivation.

Theorem 2 (Decidability of typechecking). Assume ∆ ` Γ, ∆ ` Ψ, ∆ ` τi : κ, ∆ ` σi, ∆ ` σ,
and Ψ is satisfiable. It is decidable whether

1. ∆; Ψ ` τ1 ≡ τ2 : κ

2. ∆; Ψ ` σ1 ≡ σ2

3. there exists σ′ such that ∆ ` σ′ and ∆; Ψ; Γ ` e : σ′ has a satisfiable derivation

4. ∆; Ψ; Γ ` ms : T τ ⇒ σ has a satisfiable derivation

Proof. The first two parts are immediate corollaries of Proposition 1.
The third and fourth parts are proved by induction on the structure of expressions and matches.

We prove by induction that it is decidable whether there is a σ′ in normal form such that ∆;Ψ; Γ `
e : σ′ is normally derivable, and it is decidable whether ∆; Ψ; Γ ` ms : T τ ⇒ σ is normally derivable.
Most of the cases are the same as in standard proofs that syntax-directed typechecking is sound and
complete. The unusual cases are those for constructors, cases, and matches.

• Case (Con): Suppose e = C [β] e, where ΣT.C α:κ = ∃β : κ′.C σ′ with ε : κ′′. First, by
induction, we synthesize types σi for the ei. Then, using first-order matching, we can find τ , τ ′

such that σ′i[τ/α, τ
′/β] = σi for each i. Next, we verify that the constructors are of the right

kinds: ∆ ` τ : κ and ∆ ` τ ′ : κ′. Next, we check that each ∆;Ψ ` ε[τ/α, τ ′/β] : κ′′i holds.
If all of these checks and constructions succeed, then we can use the constructor rule to type
e : T τ , and then use the coercion rule to normalize T τ . Otherwise, no normal derivation is
possible.

• Case (Case): Suppose e = case[σ] e of ms. By induction we can decide if there is a normal
form σ′ with ∆; Ψ; Γ ` e : σ′. Since σ′ is in normal form, we can tell by inspection whether it
is T τ for some T and constructors τ . If not, then typechecking fails. Otherwise, by part 4 we
can decide if ∆; Ψ; Γ ` ms : T τ ⇒ σ. If not, then no normal derivation can exist. Otherwise,
we can use the case rule to immediately derive ∆;Ψ; Γ ` case[σ] e of ms : σ, and then since
σ = NF(σ), we can also derive ∆; Ψ; Γ ` case[σ] e of ms : NF(σ).

• Case (Match): If ms = · then we succeed with the normal derivation ∆; Ψ; Γ ` · : T τ ⇒ σ.
Otherwise, ms = C [β] x → e | ms′. We need to show that it is decidable whether
∆; Ψ; Γ ` C [β] x → e | ms′ : T τ ⇒ σ. First we construct a normal derivation of
∆; Ψ; Γ ` ms′ : T τ ⇒ σ. Next, we see if there is a normal form σ′ and normal deriva-
tion of ∆, β; Ψ, ε[τ/α]; Γ, x:σ[τ/α] ` e : σ′, and then we check that ∆, β; Ψ, ε[τ/α] ` σ′ ≡ σ :.
If these checks succeed then we can construct a normal derivation of ∆;Ψ; Γ ` C [β] x →
e | ms′ : T τ ⇒ σ; if one fails, then no such derivation is possible.

We believe that it is reasonable to restrict source programs to typecheck with satisfiable deriva-
tions. Programs that typecheck but do not have satisfiable derivations contain dead code that can

21

never be executed because its equation context can never be satisfied. This (contrived) typecheckable
program

foo :: Rep Int → Int
foo (RInt) = 1
foo (R× ra rb) = 2

would be rejected by the satisfiability restriction because the R× case involves an unsatisfiable
context Int = (β, γ). We treat the presence of statically dead code as an error; however, such errors
can always be fixed by removing the dead code or making the type signature more general.

6 Discussion

6.1 Comparison with λR

One important difference between our system and systems like λML
i and λR is that we are able to do

without trivialization rules. These systems have typecase rules that distinguish between branching
on types with known versus unknown top-level constructors. If the top-level constructor is not
known (i.e., a variable), then appropriate refinements are substituted in each case. If the top-level
constructor is known, then there is no type variable to refine, and so each case must typecheck
without any additional knowledge of the top-level constructor. However, these rules alone do not
suffice to prove the type substitution lemma needed for preservation. This is because there is a
“gap” between what can be derived with the first rule and the second. When the first rule is used
to typecheck a typecase on a type variable for which a known type is substituted, the refining rule
no longer applies, and some of the cases may no longer typecheck using the non-refining rule. For
example, in λR, the left hand side of the following reduction typechecks using the refining rule since
r : Rep α.

(Λα.λr:Rep α.λx:α.
case[δ.δ] r of

RInt → 1
| R× [β, γ] rb rc→ x)[Int] RInt 42

7→

(λr:Rep Int .λx:Int .
case[δ.δ] r of

RInt → 1
| R× [β, γ] rb rc→ x) RInt 42

After the type substitution takes place, the refining rule no longer applies, since r : Rep Int . However,
the non-refining rule no longer suffices to typecheck the right hand side, since the required result
types are Int and β × γ, and in the second case x : Int , not a pair type. As a result, in λR, it is
necessary to add trivialization rules in order for the type substitution lemma to hold.

In our approach, information about type variables is put into the equation context where it may
be used or ignored as needed. Consequently, it is straightforward to show that type substitution
holds for λ≡. In the above example, the first expression’s typing would contain a derivation of
α:?;α ≡ β → γ ` α ≡ β → γ : ?; substituting Int for α in this derivation results in ·; Int ≡ β → γ `
Int ≡ β → γ : ?, which is still valid.

Our approach is still not entirely satisfactory, since in order to prove type soundness we must
permit intermediate program configurations to contain dead code that is forbidden at the source level.
Typechecking (let alone type inference) for statically dead code under syntactically unsatisfiable
hypotheses is both hard (undecidable) and pointless (since we know the code is dead). Although
this approach seems cleaner than the λR solution, it leaves something to be desired. Yet other ways
to address this problem (such as, for example, incorporating a “pruning” step into type substitution)
seem even less desirable.

6.2 Comparison with type classes

Readers familiar with Haskell’s powerful type class mechanism may be (justifiably) skeptical that
first-class phantom types and representation-based generics solve any problems that type classes do
not. We argue that type classes and first-class phantom types address different needs. Type classes
are well-suited to many common cases in generic programming. Type classes are “open”, that is,

22

users can define new instances for new user-defined types. Moreover, these instances can differ on
types with different names but the same underlying structure. In contrast, representations the types
to which generic functions apply to a universe built up of types like sums, products, function spaces,
and basic types, and behavior on two types with the same underlying structure is the same. These
are serious limitations, and we are not advocating the use of representations in their current form
for situations for which type classes are already well suited.

Nevertheless, representations do have some advantages. First, representations are source-level
data that can be manipulated more freely than type classes. Although type classes are translated to
data (namely, dictionaries) in some implementations of Haskell, they are second-class entities within
Haskell itself. Representations, on the other hand, have data structure that can be stored in data
structures and analyzed at run time. For example, they can be used to implement a Dynamic type
directly [6], as opposed to indirectly through type classes [26]. Second, representations facilitate
the definition of type-dependent data structures such as generalized tries, which seem difficult to
simulate using type classes. Finally, representations can in fact be used to implement type classes
(see for example [27]): for a fixed, whole program, a type class dictionary can be factored into a
representation type and a generic function each with one case for each class instance. Moreover,
programming with first-class phantom types goes beyond representations to include embedding of
typed languages within Haskell, as we have seen in Section 2.2.

On the other hand, type classes can be used to ease the burden of constructing and passing
representations in the approaches to generic programming presented in the previous sections. By
defining a class

class Representable a where
rep :: Rep a

with instances such as

instance Representable Int where
rep = RInt

instance (Representable a,Representable b) ⇒ Representable (a, b) where
rep = R× rep rep

for each case of Rep a, we can shift the burden of constructing and passing representations from the
programmer to typechecker. This permits defining a more convenient external interface to generic
functions such as equal :

equal ′ :: ∀τ .Representable τ ⇒ τ → τ → Bool
equal ′ x y = equal rep x y

6.3 Checking pattern-match exhaustiveness and redundancy

It is usually desirable to know whether a pattern-match covers all cases and whether there are any
redundant patterns that can never be matched, for example because they are special cases of earlier
patterns. We briefly sketch how this might be accomplished in this section, but the details remain
to be worked out.

In Haskell or ML, redundancy and exhaustiveness checks can be carried out by building a decision
tree with leaf nodes corresponding to case patterns and internal nodes corresponding to intermediate
matching states. The nodes are labeled with the free variables of the corresponding pattern, and
the edges are labeled with substitutions. We can recover the pattern corresponding to each node by
concatenating the substitutions starting from the root.

Exhaustiveness and redundancy can be expressed in terms of saturation. A node is saturated if
every term which matches it also matches a leaf below the it. Saturation can be checked by checking
that the substitutions leading out of a node cover all of the possible data constructors of the free
variables of the node. Exhaustiveness can be checked by checking whether the root of the tree is
saturated. A pattern is redundant if when it is added to the tree, an ancestor is already saturated.

In the presence of equations, a pattern can be redundant in a new way: we may be able to
statically detect that no typed terms exist which can match it. This happens precisely when the

23

set of equations that must hold as the result of the match are unsatisfiable, that is, when they
fail to unify. Conversely, smaller collections of patterns should be considered exhaustive, because
some patterns might be ruled out because of unsatisfiable equations. Saturation can be checked by
checking that all the possible consistent combinations of data constructors leading out of a node are
matched. The definitions of redundancy and exhaustiveness remain the same.

6.4 Type Inference

A full study of type inference in the presence of equational assumptions is beyond the scope of this
paper. In this section we sketch the main issues and directions for future work.

Many uses of first-class phantom types require polymorphic recursion, for which type inference is
undecidable [11]. In Haskell, polymorphically recursive functions must have explicit type signatures.
This problem is not due to phantom types in and of themselves. But type equations do introduce
type inference problems of their own. For example, it is not possible to infer principal types for
unannotated expressions: the expression

λx → case x of RInt → 0

can have type Rep α → α, but it can also have type Rep α → Int . These two types correspond to
two distinct ways of solving α = Int ⇒ β = Int for β: the first sets β = α and uses the hypothesis,
the second sets β = Int and uses reflexivity. There is no principal type that generalizes these two
types, so standard type inference does not work in the presence of type equations. The solution we
(and others [27]) have adopted in this paper is to require result-type annotations for all phantom-
type case expressions. Polymorphically recursive functions dealing with phantom types need to be
annotated with their intended types anyway, so usually it will be possible to “kill two birds with
one stone” by propagating these type annotations down to cases and other pattern matches.

In many reasonable cases type annotations seem unnecessary. The above example was contrived
to point out the ambiguity arising from a single type equation, but the problem seems to get easier
with more cases, not harder. Consider

size RInt = 1
size (R× ra rb) = size ra + size rb
zero RInt = 0
zero R× ra rb = (zero ra, zero rb)

The first function, size ought to have type Rep α → Int and the second, zero, ought to have type
Rep α → α. This suggests the following algorithm for attempting to find a principal type: First,
infer types for each case branch and normalize the inferred types to σi. Then, using first-order anti-
unification, find a most-specific common generalization σ and substitutions Θi such that σi = Θiσ if
possible. Finally, determine whether the substitutions Θi are compatible with the equation contexts
for each case. This does not work for everything, but it would let us avoid the type annotations for
case in the above two examples, because we can statically tell that size always returns an Int but
that zero constructs an expression of the represented type. Of course, in Haskell we would have to
supply type annotations anyway, in order to typecheck the polymorphically recursive calls.

There are some constraints on the types; they are just not expressible equationally. Since type
equivalence involves implication in λ≡, perhaps the type constraints generated by type inference
need to take implication into account as well. To wit, in the first example, τ ′ must be Int only
if τ = Int ; otherwise it may be anything. We can formalize this by writing τ = Int ⇒ τ ′ = Int .
Indeed, this is exactly the type equivalence judgment that would be necessary to show that

λ(x :: Rep τ) → (case x of RInt → 0) :: τ ′

is well-typed. We conjecture that general type inference in the presence of type equations will require
solving “implicational unification” problems in which we are given a set of equational Horn clauses
Hi = ε1i , . . . , ε

n
i =⇒ εi and seek unifiers that make all of the implications (syntactically) true.

24

6.5 Parametricity

An important concern with introducing a substantial modification into Haskell’s type system is
whether good properties such as parametricity still hold. Since first-class phantom types permit
polymorphic function definitions to vary based on type information (for example, we can define
typecase operators), it may seem at first glance that the outlook for parametricity is bleak. However,
type classes provide similar kinds of behavior, but do not violate parametricity, as can be seen from
the fact that type classes can be implemented via a translation to Fω (for example, this is how GHC
implements them). This is also, we conjecture, essentially the case for first class phantom types as
presented here. In many instances, with-equations can be translated to “evidence” expressed as
type equations using embedding-projection pairs

data a ≡ b = EP{to :: a → b, from :: b → a }

or Leibniz equality, that is,

data a ≡ b = Eq{unEq :: ∀f . f a → f b}

However, it appears that the decomposition rules step beyond what is expressible in pure Fω, because
for neither definition of equality is it possible to extract well-typed terms t1 :: a ≡ c, t2 :: b ≡ d from
a term t :: (a, b) ≡ (c, d). (and similarly for other instances of the decomposition rules). This is
because although type-level functions such as pair and function type formation are (semantically)
injective, there is no way of making use of this fact within the type system. Hence, we cannot
adequately encode first-class phantom types using embedding-projection pairs or Leibniz equality to
reify the with-constraints. This does not preclude there being some more direct encoding, however.

6.6 Other Generalizations on Datatypes

Guarded recursive datatypes were developed by Xi, Chen, and Chen [27], prior to and independently
of this work. A guarded recursive datatype is a ML datatype with local (i.e. existentially quantified)
type variables associated with each data constructor. Each type argument to the datatype can be
specialized within each datatype case. For example, GRDs can also be used to implement type
representations:

datatype rep<*> =
<int> RInt

| {’a,’b}<’a*’b> RPair of ’a rep * ’b rep
| {’a,’b}<’a->’b> RArrow of ’a rep * ’b rep

as well as many other features, like subtyping and objects. They define an explicitly typed internal
language and an implicitly typed, ML-style source language and define a constraint-based elaboration
algorithm that infers type annotations for source language expressions; however, their form of case,
like ours, requires type annotations. Our phantom types are slightly more general than guarded
recursive datatypes, since the guards can be interpreted as equations of the form α ≡ τ : ?, whereas
phantom type equations can be of any form and have any kind. However, to be fair, this is because
this work is grounded in ML, which does not support constructor polymoirphism.

The Calculus of Inductive Constructions [23] permits inductive datatypes to be defined in the
following way, by specifying the types of constructors:

data Rep :: ∗ → ∗ = {
RInt :: Rep Int

| R× :: ∀α β .Rep α→ Rep β → Rep (α, β)
| R→ :: ∀α β .Rep α→ Rep β → Rep (α→ β)
}

The general form of such a datatype is a sequence of assignments of types to constructors such that
the result type of each constructor is of the form T τ , where T :: κ1 → · · · → κn → ∗ and τi : ki for

25

each i. In the Calculus of Inductive Constructions, there is an additional positivity restriction on
occurrences of T necessary to support inductive reasoning about these datatypes; for example, the
type Lam α of section 2.2 would not be permitted.

The object of this section is to show that GRDs, inductive datatypes, and our first-class phantom
types are all essentially the same (modulo inessential language differences such as the lack of higher
kinds in ML, and curried vs. uncurried constructor forms).

To translate an inductive datatype with arguments of kind ∗ to a GRD, we translate the decla-
ration data T :: ∗ → ...→ ∗ to datatype T<*,...,*>, and each constructor

C :: ∀α.σ1 → · · · → σn → T τ1 . . . τm

to a datatype case

{a1,...,an}<t1,...,tm> C of s1 * ... * sn

To translate a GRD into a first-class phantom type, we translate the declaration datatype T<*,...,*>
to data T α1 ... αn (where α1, . . . , αm are fresh) and translate each constructor

{a1,...,an}<t1,...,tm> C of s1 * ... * sn

to a case
C σ1 · · ·σn with α1 = τ1, . . . , αm = τm

The equation guards are clearly satisfiable because they are already in a solved form, and the αi’s
are fresh variables so clearly do not appear in the τi’s.

To translate a first-class phantom type (FCPT) with arguments of kind ∗ to an inductive
datatype, we translate the declaration data T α1 ... αm to data T :: ∗ → ... → ∗ and for each
constructor

C σ1 · · ·σn with τ1 = τ ′1, . . . , τm = τ ′m

we unify the equations in its with clause, relative to the variables α1, ..., αm bound in the datatype
definition. Since well-formed FCPT cases always have satisfiable with clauses, a most general unifier
Θ exists, and the corresponding inductive datatype constructor declaration is

C :: ∀β.Θσ1 → . . .→ Θσn → T Θ(α1) . . .Θ(αm)

where β consists of all the free type variables of the argument and result types.
Given that all three of the above generalizations of datatypes seems equivalent (ML vs. Haskell

differences notwithstanding), how shall we choose among them? Our phantom types seem to require
less drastic syntactic changes to Haskell than either GRDs or inductive datatypes. The equations
of FCPTs make the connection between unification and typechecking explicit. On the other hand,
FCPTs introduce a layer of type-variable indirection in order to refine the type of the data con-
structor, whereas the other two approaches express this refinement more directly (and perhaps more
intuitively). Also, both inductve datatypes and GRDs manage to avoid requiring the extra satisfia-
bility check that is required for FCPTs.

7 Related Work

Part of the motivation for this work comes from attempting to implement the type representations
and typecase of Crary, Weirich, and Morrisett’s λR [7]. First-class phantom types can be used
to implement type representations, typecase, and a limited form of Typerec. The λR system
has additional features like type-level λ-abstractions that are not present in Haskell or our λ≡.
Type λ-abstractions do not seem to be problematic (from a type-checking, rather than -inference,
point of view) if they may not appear in with clauses. However, if λ-abstractions can occur in
type equations, then determining whether a type equation context unifies may require higher-order
unification, which is undecidable.

26

Yang [29] showed how to encode specific type-dependent values in ML’s type system, and how
to encode type representations using first-class polymorphism4 and as embedding-projection pairs
relating typed and untyped representations. The first and third encodings fit within the Hindley-
Milner type system used by SML and Haskell 98, while the second can be implemented directly in
some implementations: in SML/NJ using higher-order functors, and more directly in GHC or Hugs
using first-class polymorphism. The first encoding amounts to simulating type classes “by hand”
by dictionary passing. The third encoding is a generalization of the usual trick of defining type-
dependent functions on a Universal datatype and coercing typed data to and from the Universal .
Yang’s second (and most interesting) encoding is, up to isomorphism, the same as implementing
Rep in Haskell as in [6, 4].

Zenger’s indexed types [30] are very similar in form to our first-class phantom types. Indexed
types are datatypes which may be parameterized by numeric (specifically complex) variables, and
guarded by systems of polynomial equations. Although indexed types do not permit any new
expressions to be typed, they make it possible to give more accurate types to existing functions
like matrix multiply and quicksort, which can be used to detect more errors statically (for example,
multiplying matrices of incompatible dimensions, or dropping elements during sorting). Zenger’s
system can be seen as an instance of Jones’ qualified types framework [16] where the qualifiers are
polynomial equations.

Xi, Chen, and Chen [27] have introduced guarded recursive datatypes, or datatypes whose type
arguments may be constrained in each case. We have compared their approach with ours in detail
in Section 6.6. Guarded recursive datatypes can be seen as a special case of Xi and Pfenning’s
Dependent ML framework [28] where the constraint domain is just syntactic equality among type
expressions. Another related line of research is work on singleton kinds, originating from efforts to
characterize type sharing constraints in module systems like that of Standard ML [9]. Singleton
kinds are kinds S(τ) containing only the type τ ; thus, the kind judgment ∆ ` τ : S(τ ′) implies the
equivalence judgment ∆ ` τ ≡ τ ′. Singleton kinds can encode hypotheses of the form α = τ as
α : S(τ).

8 Future Work

Our system has several limitations. The most serious is that type representations and generic func-
tions definable using first-class phantom types are limited to a fixed universe of types, in contrast
to type classes which are extensible to user-defined datatypes in a modular way. Another limita-
tion is that we only allow predicative type constraints (between type constructors), as opposed to
impredicative constraints (between arbitrarily quantified types). We have focused on this simpler
system because it is useful as it stands and because impredicative constraints seem likely to cause
problems similar to those encountered in polymorphic typecase pattern matching [2, 20]. A third
direction for future work is broadening the scope of phantom type constraints beyond type equations.
Some related systems, like indexed types [30], Cayenne’s dependent type system [3] and Dependent
ML [28], can handle richer constraint domains such as integer inequalities in order to capture more
interesting data-structure invariants.

Type representations implemented using phantom types are fairly limited: in contrast to some
of the encodings presented in [6] they cannot deal gracefully with user-defined datatypes, because
type representations fix a “closed world” of representable types. Furthermore, both approaches
encounter difficulties with higher-order type representations and representations of type-indexed
types, although the relational encoding explored in Section 2.4 can often help. It is a open problem
whether representation-based techniques can be generalized to deal with these problems.

4we mean polymorphic recursion and rank-n polymorphism

27

9 Conclusions

We have presented a language extension called first-class phantom types that generalizes phantom
type encoding tricks found in the literature in that it allows both type-safe construction and de-
construction of constrained values, whereas existing approaches require additional run-time tagging
and dynamic checks for safe destruction. Our phantom types can also be used to define type rep-
resentations, a statically type-safe Dynamic type, and generic functions. They are more usable,
more efficient, and more expressive than previous encodings of these features in Haskell via equation
types.

References

[1] Mart́ın Abadi, Luca Cardelli, Benjamin Pierce, and Gordon Plotkin. Dynamic typing in a stat-
ically typed language. ACM Transactions on Programming Languages and Systems, 13(2):237–
268, April 1991.

[2] Martin Abadi, Luca Cardelli, Benjamin Pierce, and Didier Remy. Dynamic typing in polymor-
phic languages. Technical Report 120, DEC SRC, January 1994.

[3] Lennart Augustsson. Cayenne – a language with dependent types. SIGPLAN Notices,
34(1):239–250, January 1999.

[4] Arthur I. Baars and S. Doaitse Swierstra. Typing dynamic typing. In Simon Peyton Jones, ed-
itor, Proceedings of the 2002 International Conference on Functional Programming, Pittsburgh,
PA, USA, October 4-6, 2002, pages 157–166. ACM Press, October 2002.

[5] Richard Bird and Lambert Meertens. Nested datatypes. In J. Jeuring, editor, Fourth Inter-
national Conference on Mathematics of Program Construction, MPC’98, Marstrand, Sweden,
volume 1422 of Lecture Notes in Computer Science, pages 52–67. Springer-Verlag, June 1998.

[6] James Cheney and Ralf Hinze. A lightweight implementation of generics and dynamics. In
Manuel M. T. Chakravarty, editor, Proceedings of the 2002 Haskell Workshop (Haskell ’02),
pages 90–104, Pittsburgh, PA, October 2002. ACM Press.

[7] Karl Crary, Stephanie Weirich, and Greg Morrisett. Intensional polymorphism in type-erasure
semantics. In Proceedings of the ACM SIGPLAN International Conference on Functional Pro-
gramming (ICFP ’98), Baltimore, MD, volume (34)1 of ACM SIGPLAN Notices, pages 301–
312. ACM Press, June 1999.

[8] Rowan Davies and Frank Pfenning. A modal analysis of staged computation. Journal of the
ACM, 48(3):555–604, May 2001.

[9] Robert Harper and Mark Lillibridge. A type-theoretic approach to higher-order modules with
sharing. In Conference Record of the 21st ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL ’94), Portland, Oregon, pages 123–137, New York, NY,
January 1994. ACM.

[10] Robert Harper and Greg Morrisett. Compiling polymorphism using intensional type analy-
sis. In Conference record of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL’95), San Francisco, California, pages 130–141. ACM Press,
1995.

[11] Fritz Henglein. Type inference with polymorphic recursion. ACM Transactions on Programming
Languages and Systems, 15(2):253–289, April 1993.

[12] Ralf Hinze. Generalizing generalized tries. Journal of Functional Programming, 10(4):327–351,
July 2000.

28

[13] Ralf Hinze. A new approach to generic functional programming. In Thomas W. Reps, ed-
itor, Proceedings of the 27th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL’ 00), Boston, Massachusetts, January 19-21, pages 119–132,
January 2000.

[14] Ralf Hinze, Johan Jeuring, and Andres Löh. Type-indexed data types. In Eerke A. Boiten and
Bernhard Möller, editors, Proceedings of the Sixth International Conference on Mathematics
of Program Construction (MPC 2002), Dagstuhl, Germany, July 8-10, 2002, volume 2386 of
Lecture Notes in Computer Science, pages 148–174. Springer-Verlag, July 2002.

[15] Patrik Jansson and Johan Jeuring. PolyP—a polytypic programming language extension. In
Conference Record 24th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL’97), Paris, France, pages 470–482. ACM Press, January 1997.

[16] Mark P. Jones. Qualified Types: Theory and Practice. Cambridge University Press, 1994.

[17] Ralf Lämmel and Simon Peyton Jones. Scrap your boilerplate: a practical approach to generic
programming. In Proceedings of the 2003 ACM SIGPLAN Workshop on Types in Language
Design and Implementation (TLDI 2003), pages 26–37, March 2003. SIGPLAN Notices, 38(3),
March 2003.

[18] Daan Leijen and Erik Meijer. Domain-specific embedded compilers. In Proceedings of the
2nd Conference on Domain-Specific Languages, pages 109–122, Berkeley, CA, October 1999.
USENIX Association.

[19] Xaver Leroy. Unboxed objects and polymorphic typing. In Proceedings of the 19th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 177–188. ACM
Press, 1992.

[20] Xavier Leroy and Michel Mauny. Dynamics in ML. Journal of Functional Programming,
3(4):431–463, 1993.

[21] Greg Morrisett. Compiling with Types. PhD thesis, Carnegie Mellon University, 1995. Published
as CMU Technical Report CMU-CS-95-226.

[22] Alan Mycroft. Polymorphic type schemes and recursive definitions. In M. Paul and B. Robi-
net, editors, Proceedings of the International Symposium on Programming, 6th Colloquium,
Toulouse, France, volume 167 of Lecture Notes in Computer Science, pages 217–228, 1984.

[23] Christine Paulin-Mohring. Inductive definitions in the system Coq: Rules and properties. In
M. Bezem and J. F. Groote, editors, Proceedings 1st Int. Conf. on Typed Lambda Calculi and
Applications, TLCA’93, Utrecht, The Netherlands, 16–18 March 1993, volume 664, pages 328–
345. Springer-Verlag, Berlin, 1993.

[24] Tim Sheard and Simon Peyton Jones. Template meta-programming for haskell. In Manuel
M. T. Chakravarty, editor, Proceedings of the 2002 Haskell Workshop (Haskell ’02), pages 1–
16, Pittsburgh, PA, October 2002. ACM Press.

[25] Mark Shields, Tim Sheard, and Simon Peyton Jones. Dynamic typing as staged type inference.
In The 25th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL ’98), pages 289–302, New York, January 1998. Association for Computing Machinery.

[26] Stephanie Weirich. Type-safe cast: functional pearl. In Proceedings of the ACM SIGPLAN
International Conference on Functional Programming (ICFP ’00), volume (35)9 of ACM SIG-
PLAN Notices, pages 58–67, N.Y., September 2000. ACM Press.

[27] Hongwei Xi, Chiyan Chen, and Gang Chen. Guarded recursive datatype constructors. In
Proceedings of the 2003 ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL 2003), pages 224–235, January 2002. ACM SIGPLAN Notices, 38(1), Jan-
uary 2003.

29

[28] Hongwei Xi and Frank Pfenning. Dependent types in practical programming. In Proceedings
of the 26th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pages 214–227. ACM, January 1999.

[29] Zhe Yang. Encoding types in ML-like languages. In International Conference on Functional
Programming, pages 289–300, 1998.

[30] Christoph Zenger. Indexed types. Theoretical Computer Science, 187(1–2):147–165, November
1997.

A λ≡ details

A.1 Syntax and Operational Semantics

(type contexts) ∆ ::= · | ∆, α:κ
(equation contexts) Ψ ::= · | Ψ, ε:κ

(substitutions) Θ ::= · | Θ, α ≡ τ
(datatype contexts) Σ ::= · | Σ;data T α:κ = ΣT

(datatype signatures) ΣT ::= · | ΣT | ∃β:κ.C σ with ε:κ′

(term contexts) Γ ::= · | Γ, x:σ

(kinds) κ ::= ? | κ → κ
(constructors) τ ::= α | τ1 τ2 | Int | → | × | T

(equations) ε ::= τ1 ≡ τ2

(types) σ ::= τ | Int | σ1 → σ2 | σ1 × σ2 | ∀α:κ.σ
(expressions) e ::= i | x | λx : σ.e | fix f :σ.e | e1 e2 | 〈e1, e2〉

| π1e | π2e | Λα:κ.e | e[τ]
| C [τ] e | case[σ] e of ms | fail

(matches) ms ::= · | C [β] x → e | ms

(values) v ::= i | λx:σ.e | 〈e1, e2〉 | Λα:κ.e
| C [τ] e | fail

(evaluators) E ::= [·] | E e | π1 E | π2 E | E[c] | case[σ] E of ms

(λx : σ.e)e′ 7→ e[e′/x] fix f :σ.e 7→ e[fix f :σ.e/f]

π1〈e1, e2〉 7→ e1 π2〈e1, e2〉 7→ e2

(Λα:κ.e)[c] 7→ e[c/α]

e 7→ e′

E[e] 7→ E[e′]

case[σ] C [τ] e of C [β] x | P 7→ e[e/x, τ/β]

case[σ] C [τ] e of D [β] x | P 7→ case[σ] C [τ] e of ms

case[σ] C [τ] e of · 7→ fail E[fail] 7→ fail

A.2 Well-Formedness

∆ ` τ : κ

∆ ` Int : ? ∆ ` → : ? → ? → ? ∆ ` × : ? → ? → ?

∆, α:κ ` α : κ

∆ ` τ1 : κ → κ′ ∆ ` τ2 : κ

∆ ` τ1 τ2 : κ′
Σ ` data T α:κ = ΣT

∆ ` T : κ → ?

∆ ` σ

∆ ` τ : ?
∆ ` τ ∆ ` Int

∆ ` σi

∆ ` σ1 → σ2

∆ ` σi

∆ ` σ1 × σ2

∆, α:κ ` σ

∆ ` ∀α:κ.σ

∆ ` Ψ

∆ ` ·
∆ ` Ψ ∆ ` τi : κ

∆ ` Ψ, τ1 ≡ τ2:κ

30

∆ ` Σ

∆ ` ·
∆ ` Σ ∆, α:κ ` ΣT

∆ ` Σ,data T α:κ = ΣT

∆ ` ΣT

∆ ` ·
∆ ` ΣT ∆, β:κ ` τ0

i : ? ∆, β:κ ` τi : κ′
i ∆, β:κ ` τ ′

i : κ′
i β ` τ ≡ τ ′:κ′ ⇓ Θ

∆ ` ΣT | ∃β:κ.C σ with τ ≡ τ ′:κ′

∆ ` Γ

∆ ` ·
∆ ` Γ ∆ ` σ
∆ ` Γ, x : σ

A.3 Unification

∆ ` Ψ ⇓ Θ

∆ ` · ⇓ ·
∆ ` Ψ ⇓ Θ

∆ ` Ψ, c = c ⇓ Θ

∆ ` Ψ ⇓ Θ

∆ ` Ψ, α = α ⇓ Θ

∆ ` Ψ, α = τ ⇓ Θ τ 6= β

∆ ` Ψ, τ = α ⇓ Θ

∆ ` τ : κ ∆ ` Ψ[τ/α] ⇓ Θ

∆, α:κ ` Ψ, α = τ ⇓ Θ, α = τ

∆ ` Ψ, τ1 = τ ′
1, τ2 = τ ′

2 ⇓ Θ

∆ ` Ψ, τ1 τ2 = τ ′
1 τ ′

2 ⇓ Θ

A.4 Type Equivalence

∆;Ψ ` τ ≡ τ ′ : κ

∆;Ψ, τ1 ≡ τ2:κ ` τ1 ≡ τ2 : κ
∆ ` τ : κ

∆;Ψ ` τ ≡ τ : κ

∆;Ψ ` τ ′ ≡ τ : κ

∆;Ψ ` τ ≡ τ ′ : κ

∆;Ψ ` τ ≡ τ ′ : κ ∆; Ψ ` τ ′ ≡ τ ′′ : κ

∆; Ψ ` τ ≡ τ ′′ : κ

∆ ` τ1 : κ1 → κ ∆;Ψ ` τ1 τ2 ≡ τ ′
1 τ ′

2 : κ

∆;Ψ ` τ1 ≡ τ ′
1 : κ1 → κ

∆ ` τ2 : κ1 ∆;Ψ ` τ1 τ2 ≡ τ ′
1 τ ′

2 : κ

∆; Ψ ` τ2 ≡ τ ′
2 : κ1

∆;Ψ ` τ1 ≡ τ ′
1 : κ1 → κ ∆;Ψ ` τ2 ≡ τ ′

2 : κ1

∆; Ψ ` τ1 τ2 ≡ τ ′
1 τ ′

2 : κ

∆;Ψ ` σ = σ′

∆ ` σ
∆;Ψ ` σ = σ

∆;Ψ ` σ′ = σ

∆;Ψ ` σ = σ′

∆;Ψ ` σ = σ′ ∆;Ψ ` σ′ = σ′′

∆;Ψ ` σ = σ′′
∆;Ψ ` σ1 = σ′

1 ∆;Ψ ` σ2 = σ′
2

∆;Ψ ` σ1 × σ2 = σ′
1 × σ′

2

∆;Ψ ` σ1 = σ′
1 ∆;Ψ ` σ2 = σ′

2

∆;Ψ ` σ1 → σ2 = σ′
1 → σ′

2

∆, α:κ; Ψ ` σ1 = σ2

∆;Ψ ` ∀α:κ.σ1 = ∀α:κ.σ2

∆;Ψ ` τ = τ ′ : ?

∆;Ψ ` τ = τ ′

31

A.5 Typing

∆;Ψ; Γ ` e : σ

∆;Ψ; Γ ` i : Int ∆;Ψ; Γ ` x : Γ(x)

∆;Ψ; Γ, x:σ ` e : σ′

∆;Ψ; Γ ` λx:σ.e : σ → σ′
∆;Ψ; Γ ` e1 : σ → σ′ ∆;Ψ; Γ ` e2 : σ

∆; Ψ; Γ ` e1 e2 : σ′

∆;Ψ; Γ, f :σ ` e : σ

∆;Ψ; Γ ` fix f :σ.e : σ

∆;Ψ; Γ ` e1 : σ1 ∆; Ψ; Γ ` e2 : σ2

∆; Ψ; Γ ` 〈e1, e2〉 : σ1 × σ2

∆;Ψ; Γ ` e : σ1 × σ2

∆;Ψ; Γ ` π1 e : σ1

∆;Ψ; Γ ` e : σ1 × σ2

∆;Ψ; Γ ` π2 e : σ2

∆, α:κ; Ψ; Γ ` e : σ

∆;Ψ; Γ ` Λα:κ.e : ∀α:κ.σ

∆; Ψ; Γ ` e : ∀α:κ ∆ ` τ : κ

∆;Ψ; Γ ` e[τ] : σ[τ/α]

ΣT.C α = ∃β:κ.C σ with ε:κ′ ∆;Ψ; Γ ` ei : σi[τ
′/α, τ/β]

∆;Ψ ` εi[τ
′/α, τ/β] : κ′

i ∆ ` τi : κi

∆;Ψ; Γ ` C [τ] e : T τ ′

∆;Ψ; Γ ` e : T τ ∆;Ψ; Γ ` ms : T τ ⇒ σ

∆;Ψ; Γ ` case[σ] e of ms : σ ∆;Ψ; Γ ` fail : σ

∆;Ψ; Γ ` e : σ1 ∆;Ψ ` σ1 ≡ σ2

∆;Ψ; Γ ` e : σ2

∆;Ψ; Γ ` ms : T τ ⇒ σ

∆;Ψ; Γ ` · : T τ ⇒ σ

ΣT.C α = ∃β.C σ with ε ∆;Ψ; Γ ` ms : T τ ⇒ σ′

∆, β; Ψ, ε[τ/α, γ/β]; Γ, x:σ[τ/α, γ/β] ` e : σ′

∆;Ψ; Γ ` C [γ] x → e | ms : T τ ⇒ σ′

32

