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Abstract. A subspace adaptation of the Coleman-Li trust region and interior method is proposed for solving large-scale

bound-constrained minimization problems. This method can be implemented with either sparse Cholesky factorization or
conjugate gradient computation. Under reasonable conditions the convergence properties of this subspace trust region method
are as strong as those of its full-space version.

Computational performance on various large-scale test problems are reported; advantages of our approach are demonstrated.
Our experience indicates our proposed method represents an efficient way to solve large-scale bound-constrained minimization
problems.
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1. Introduction. Recently Coleman and Li [1, 2, 3] proposed two interior and reflective Newton
methods to solve the bound-constrained minimization problem, i.e.,
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. These two methods differ in that a line search to update iterates is used
in [2, 3] while a trust region idea is used in [1]. However, in both cases convergence is accelerated with
the use of a novel reflection technique.

The line search method version appears to be computationally viable for large-scale quadratic prob-
lems [3]. Our main objective here is to investigate solving large-scale bound-constrained nonlinear
minimization problems (1.1), using a large-scale adaptation of the Trust-region Interior Reflective (TIR)
approach proposed in [1].

The TIR method [1], outlined in FIG. 1, elegantly generalizes the trust region idea for unconstrained
minimization to bound-constrained nonlinear minimization. Here B 4 def@DC 
�4E�GFH4 def@IC 2 
�4 . The crucial
role of the (diagonal) affine scaling matrices J 4 and K 4 will become clear in L 2.

An attractive feature of the TIR method [1] is that the main computation per iteration is solving aM
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The TIR Method [1]
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FIG. 1. The TIR Method for Minimization Subject to Bounds
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standard unconstrained trust region subproblem:

minh ���	� � ] 4	�X_�� : jYJ 4'_ j 2 � ∆
4w%#e

(1.2)

The method of Moré and Sorensen [4] can be directly applied to (1.2) if Cholesky factorizations of
matrices with the structure of

Fy4
can be computed efficiently. However, this method is unsuitable for

large-scale problems if the Hessian
Fy4

is not explicitly available or (sparse) Cholesky factorizations are too
expensive. Recently, Sorensen [5] proposed a new method for solving the subproblem (1.2) using matrix
vector multiplications. Nonetheless, the effectiveness of this approach for large-scale minimization,
particularly in the context of our trust region algorithm, is yet to be investigated.

We take the view that solving the full space trust region subproblem (1.2) is too costly for a large-
scale problem. This view is shared by Steihaug [6] who proposes an approximate (conjugate gradient)
approach. Steihaug’s approach to (1.2) seems viable although our computational experience (see Table
4) indicates that important negative curvature information can be missed, causing a significant increase
in the number of minimization iterations.

In this paper, we propose an alternative: an approximate subspace trust region approach (STIR). We
verify that, under reasonable conditions, the convergence properties of this STIR method are as strong
as those of its full-space version. We explore the use of sparse linear algebra techniques, i.e., sparse
Cholesky factorization and preconditioned conjugate gradients, in the context of this approach.

In addition, we demonstrate the benefits of our affine scaling, reflection and subspace techniques
with computational results. First, for (1.1), our affine scaling technique outperforms the classical Dikin
scaling [7], at least in the context of our algorithm. Second, we examine our method with and without
reflection. We show the reflection technique can substantially reduce the number of minimization itera-
tions. Third, our computational experiments support the notion that the subspace trust region method is
a promising way to solve large-scale bound-constrained nonlinear minimization problems. Compared to
the Steihaug [6] approach, the subspace approach is more likely to capture negative curvature information
and consequently leads to better computational performance. Finally, our subspace method is competitive
with, and often superior to, the active set method in LANCELOT [8].

The paper is organized as follows. In L 2, we briefly summarize the existing TIR method. Then we
provide a computational comparison of the subspace trust region method and the Steihaug algorithm in
the context of unconstrained minimization in L 3. We introduce a subspace method STIR, and discuss its
convergence properties, in L 4. Issues concerning the computation of negative curvature directions and
inexact Newton steps are discussed in L 5; computational results are provided indicating that performance
is typically not impaired by using an inexact Newton step. Concluding remarks appear in L 7. The
convergence analysis of the STIR method is included in the appendix.

2. The TIR Method. In this section we briefly review the full-space TIR method [1], sketched in
FIG. 1. This method closely resembles a typical trust region method for unconstrained minimization,
min �z��� � 
l��
�� . The key difference is the presence of the affine scaling (diagonal) matrices J 4 and K 4 .
Next we briefly motivate these matrices and the TIR algorithm.
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The trust region subproblem (1.2) and the affine scaling matrices J 4 and K 4 arise naturally from
examining the first-order Kuhn-Tucker conditions for (1): if a feasible point

�b.{

is a local minimizer,

then

i| B | @ 0 for 1

�/8}�/:
and if B |�. 0 then


i|
is not at any of its bounds. This characterization is

expressed in the nonlinear system of equationsJ ��
���~ 2 C 
l��
�� @ 0
�

(2.1)

where J ��
�� def@ diag
��� �g�;
�����~ 1 � 2 �Y�(2.2)

and the vector
����
��0��� (

is defined below: for each 1
��8���:

,

(i). If B |�. 0 and
�g|l.&$

then
�\| def@ 
i|5"��6|

;
(ii). If B |�v 0 and

��|�m{"�$
then

�\| def@ 
i|5"���|
;

(iii). If B |�. 0 and
�g| @ $ then

�\| def@ "
1;

(iv). If B |�v 0 and
��| @ "�$ then

�\| def@ 1.

The nonlinear system (2.1) is not differentiable everywhere; nondifferentiability occurs when
�u| @ 0.

Hence we avoid such points by maintaining strict feasibility, i.e., restricting

�47�98;:�<)�>=?�

. A Newton step
for (2.1) is then defined and satisfies

ˆ� 4 J 4�_z�4 @ " ˆB 4	�(2.3)

where

ˆB 4 def@ J ~ 14 B 4 @ diag
��� �'4�� 1 � 2 � B 4#�

ˆ� 4 def@ J ~ 14 FH4 J ~ 14 a
diag

� B 4\���5�4 e(2.4)

Here
� � ��
��7�*� (6�E(

corresponds to the Jacobian of
� ����
����

. Each diagonal component of the diagonal
matrix

� �
equals to zero or � 1. If all the components of

�
and

�
are finite,

� � @ diag
�
sgn

� B ��� . If
�\| @ 0,

we define
� �|�| @ 1.

Equation (2.3) suggests the use of the affine scaling transformation: ˆ

 def@ J 4�
 . This transformation

reduces the constrained problem (1.1) into an unconstrained problem: a local minimizer of (1.1) corre-
sponds to an unconstrained minimizer in the new coordinates ˆ



(for more details, see [1]). Therefore a

reasonable way to improve

g4

is to solve the trust region subproblem

min
ˆ
h ���	� � ˆ] 4	� ˆ_z� : j ˆ_ j 2 � ∆

4E%#�
(2.5)

where

ˆ] 4	� ˆ_z� def@ ˆBE`4 ˆ
_0a 1

2 ˆ
_ ` ˆ� 4 ˆ

_'e
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Let
_ @ J ~ 14 ˆ

_
. Subproblem (2.5) is equivalent to the following problem in the original variable space:

minh ���	� � ] 4	�X_�� : jYJ 4'_ j 2 � ∆
4w%#�

(2.6)

where ] 4	�X_z� def@ _ `�B 4�a 1
2
_ ` � 4�_'�K 4 def@ J 4 diag

� B 4����5�4 J 4u�� 4 def@ FH4�a K 4ue
In addition to the close resemblance to an unconstrained trust region method, the TIR algorithm has

strong convergence properties with explicit conditions on steps for optimality. We now describe these
conditions.

The TIR algorithm requires strict feasibility, i.e.,

54�a�_)4��t8X:�<��>=?�

. We use � �4 s��#4�p to denote the
step obtained from

�#4
with a possible step-back for strict feasibility. Let � �4 denote the minimizer along�#4

within the feasible trust region, i.e., � �4 @ argmin � � ] 4	� � �E4z� : j��gJ 4��#4 j � ∆
4u��
64�a � �#4���= %#e Let¡�4f�ts�¡ U � 1 p for some 0

.&¡ U . 1 and
¡�4¢"

1 @�£ � j �#4 j � . Then

� �4 s��#4�p def@ ¡)4 � �4 �#4 def@¥¤ � �4 �#4 if

64ca � �4 �#47�?8X:�<��¦=?�Y�¡)4 � �4 �E4 otherwise

e(2.7)

The above definition implies that
¡�4 @ 1 if


64�a � �4 �#47�98;:�<)�>=?� .
Explicit conditions which yield first and second-order optimality are analogous to those of trust region

methods for unconstrained minimization [1]:

(AS.3)
] 4	�q_�4��c.+§ ] �4 s�" J ~ 24 B 4�p , jYJ 4'_)4 j ��§ 0∆

4	�A
64ca�_�4f�98;:�<)�>=?�
.

(AS.4) Assume that ¨ 4 is a solution to min h �z� � � ] 4	�X_�� : jYJ 4'_ j � ∆
4w%

and
§A©

and
§ ©

0 are two
positive constants. Then

_�4
satisfies

] 4	�X_)4'�c.�§A© ] �4 s ¨ 4�pq� jYJ 4\_�4 j ��§ ©0 ∆
4u��
64ca�_�4ª�8X:�<��>=?��e

Condition (AS.3) is necessary for first-order convergence; (AS.4), together with (AS.3), is necessary
for second-order convergence. Both conditions (AS.3) and (AS.4) are extensions of convergence condi-
tions for unconstrained trust region methods. In particular, when

� @ "�$ and
� @ $ , these assumptions

are exactly what is required of trust region methods for unconstrained minimization problems.
Satisfaction of both conditions (AS.3) and (AS.4) is not difficult. For example, one can choose

_'4
so that

] 4	�q_�4��
is the minimum of the values

] �4 s ¨ 4Yp and
] �4 s�" J ~ 24 B 4)p . However, this does not lead to

an efficient computation process. In [3] and [2], we have utilized a reflection technique to permit further
possible reduction of the objective function along a reflection path on the boundary. We have found in [3]
and [2] that this reflection process significantly enhances performance for minimizing a general quadratic
function subject to simple bounds.
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FIG. 2. Reflection Technique

For all the computational results in this paper,
_z4

is determined from the best of three points
corresponding to

] �4 s ¨ 4Yp , ] �4 s�" J ~ 24 B 4�p and
] �4 s ¨5«4 p where ¨�«4 denotes the piecewise direction path with ¨ 4

reflected on the first boundary it encounters, see FIG. 2.
We can appreciate the convergence results for this approach by observing the role of the affine scaling

matrix J 4 . For the components

�|

which are approaching the “correct” bounds, the sequence of directions�#" J ~ 24 B 4'% becomes increasingly tangential to these bounds. Hence, the bounds will not prevent a large
step size along

�#" J ~ 24 B 4w% from being taken. For the components

6|

which are approaching the “incorrect”
bounds,

�#" J ~ 24 B 4'% points away from these bounds in relatively large angles (the corresponding diagonal
components of J 4 are relatively large and B 4 points away from these bounds). Hence, a reduction of at
least

] �4 s�" J ~ 24 B 4�p implies the scaled gradient
� J ~ 24 B 4#% converges to zero (i.e., first-order optimality).

The scaling matrix used in our approach is related to, but different from, the scaling typically used
in affine scaling methods for linear programming. The affine scaling matrix J affine4 def@ diag

�
min

�;
64¬"�­4	�x��47"-
64\���
[7], commonly used in affine scaling methods for linear programming, is formed from

the distance of variables to their closest bounds. Our scaling matrix J 24 equals to J affine4 only when
min

��
64¢"o�®4u�r��4¯"+
64�� @ � �E4i�
. (Note that even in this case we employ the square root of the quantities

used to define J affine4 .)
Before we investigate a subspace adaptation of TIR, we demonstrate the effectiveness of our reflection

idea and affine scaling technique. We consider random problem instances of molecule minimization
[9, 10], which minimize a quartic subject to bounds on the variables. Table 1 and 2 list the average
number of iterations (over ten random test problem instances for each entry) required for the different
techniques under comparison. The notation

m
in front of a number indicates that the average number is at

least this number because the iteration number exceeds 1000, the maximum allowed, for some instance.
The details of the algorithm implementation are given in L 6.

Table 1 demonstrates the significant difference made by a single reflection. The only difference
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:
100 200 400 800 1000

With Reflection 34.1 41.7 66.8 83.4 93.6
Without Reflection 71.4 >210.1 >425.4 >302.2 > 408.5

TABLE 1
The STIR algorithm with and without reflection: number of iterations:

100 200 400 800 1000
unconstrained: J 4 38.6 47.3 61.4 72.7 93.6J affine4 36.4 49 58.5 73.9 94.6
constrained: J 4 36.6 50.5 65.6 89.7 102.3J affine4 >517.4 >617.6 >517.3 >1000 >1000

TABLE 2
Comparison of the STIR scaling °�± and Dikin scaling ° affine± : number of iterations

between the rows with and without reflection is the following. Without reflection,
_\4

is determined by the
best of the two points based on

] �4 s ¨ 4�p and
] �4 s�" J ~ 24 B 4�p ; with reflection,

_�4
is determined by the best of

the three points based on
] �4 s ¨ 4�p , ] �4 s�" J ~ 24 B 4�p and

] �4 s ¨�«4 p (with reflection). The superiority of using the
reflection technique is clearly demonstrated with this problem.

In Table 2, we compare the computational advantage of the selection J 4 over J affine4 : the only
difference is the scaling matrix. We differentiate between problems that have an unconstrained solution
(no bounds active at a solution) and those with a constrained solution. We observe that, for unconstrained
problems, there is no significant difference between the two scaling matrices. However, for the constrained
problems we tested, the choice J 4 is clearly superior. We observe that when J 4 is used, the number
of iterations for a constrained problem is roughly the same as that for the corresponding unconstrained
problem. For J affine4 , on the other hand, the number of iterations for a constrained problem is much larger
than for the corresponding unconstrained problem.

3. Approximation to the Trust Region Solution in Unconstrained Minimization. There are two
possible ways to approximate a full-space trust region solution in unconstrained minimization.

Byrd, Schnabel, and Schultz [11] suggest substituting the full trust region subproblem in the uncon-
strained setting by

minh ��� � � ] 4	�q_�� : j _ j 2 � ∆
4u��_¬�?²A4'%#�

(3.1)

where
²A4

is a low-dimensional subspace. (Our implementation employs a two-dimensional choice for²A4
.)

Another possible consideration for the approximation of (1.2) is the Steihaug idea [6], also proposed
7



in the large-scale unconstrained minimization setting. In a nutshell, Steihaug proposes applying the
method of preconditioned conjugate gradients (PCG) to the current Newton system until either negative
curvature is revealed, the current approximate solution reaches the boundary of the trust region, or the
Newton system residual is sufficiently reduced.

We believe that a subspace trust region approach better captures the negative curvature information
compared to the Steihaug approach [6]. To justify this we have conducted a limited computational study
in the unconstrained minimization setting.

We implement the subspace method with the subspace
²l4

defined by the gradient direction B 4 and the
output of a Modified Preconditioned Conjugate Gradient (MPCG) method applied to the linear Newton
system:

FH4E_ @ " B 4 . The output is either an inexact Newton step
_)³ �4 defined by,FH4'_ ³ �4 @ " B 4cao´z4 such that j ´z4 jYµij�B 4 j ��R#4	�(3.2)

or a direction of negative curvature, detected by MPCG. Algorithm MPCG is given in greater detail in
FIG. 11, Appendix B. Our implementation of the Steihaug method can also be found in Appendix B.

Both the Steihaug and subspace implementations are wrapped in a standard trust region framework for
the unconstrained minimization problem. For both methods the preconditioning matrix used is ¶ 4 @�· 24
where · 4 is the diagonal matrix computed from · 4 |�| @¹¸ � FH4 |�| � for

Ff4 |�|�º@ 0 and · 4 |�| @ 1 otherwise.
The same strategy is used to update ∆

4
(see L 6 for more details). We let ∆0

@ 0
e
1 j�B 0 j where the j [ j 2 is

used for the subspace method and j [ jY» for the Steihaug method ([6]).
We used twenty different unconstrained nonlinear test problems. All but four are test problems

described in [12], but with all the bound constraints removed. The problems EROSENBROCK and
EPOWELL are taken from [13]. The last two problems, molecule problems MOLE1 and MOLE3, are
described in [9, 10]. For all problems, the number of variables

:
is 260. The minimization algorithm

terminates when j�B�j 2 � 10
~ 6. We use the parameter

R @ 0
e
0005 in both FIG. 11 and FIG. 12.

Tables 3 and 4 compare the Steihaug and subspace methods described above in terms of the number of
minimization iterations and the total number of conjugate gradient (CG) iterations. Table 3 shows problems
for which negative curvature was not detected, and Table 4 shows problems for which negative curvature
was detected. Although not included here, the function values and gradient norms (upon termination) were
virtually the same for both methods for all problems. Since these values were essentially the same among
the two methods, we only discuss the difference in iterations counts. The difference in minimization and
CG iteration counts is plotted in FIG. 3 and FIG. 4.

Most notable in Table 3 and the graphs of FIG. 3 is how strikingly similar the results are for the
Steihaug and subspace methods; the minimization with each method stops within two iterations of the
other in all cases. Furthermore, both methods take an identical number of total CG iterations except for
the problem BROWN1 where the Steihaug method takes four more iterations. When negative curvature
is encountered, shown in Table 4 and in FIG. 4, the iteration counts for each method are again similar
for a few problems. For most problems, however, the Steihaug method takes more iterations, and for
some problems the difference is substantial. This is particularly true for the problems CHAINWOOD,
MOLE1 and MOLE3 (for CHAINWOOD, problem 3 in FIG. 4, the total difference in iteration counts is
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Minimization CG
Problem Subspace Steihaug Subspace Steihaug

1. BROWN1 27 29 39 43
2. BROWN3 6 6 6 6
3. BROYDEN1A 11 11 81 81
4. BROYDEN1B 5 5 34 34
5. BROYDEN2B 7 7 71 71
6. CHAINSING 22 22 188 188
7. CRAGGLEVY 21 21 125 125
8. DEGENSING 22 22 188 188
9. EPOWELL 18 18 72 72

10. GENSING 22 22 83 83
11. TOINTBROY 7 7 58 58
12. VAR 43 43 5590 5590

TABLE 3
Comparison when only positive curvature is encountered: number of iterations

Minimization CG
Problem Subspace Steihaug Subspace Steihaug

1. AUGMLAGN 36 29 267 228
2. BROYDEN2A 22 19 247 196
3. CHAINWOOD 156 988 3905 3878
4. EROSENBROCK 44 46 52 86
5. GEROSE 23 33 166 165
6. GENWOOD 58 63 304 275
7. MOLE1 46 119 460 376
8. MOLE3 125 186 6311 5356

TABLE 4
Comparison when negative curvature is encountered: number of iterations

9



1 2 3 4 5 6 7 8 9 10 11 12
0

20

40

60

80

100

positive curvature problems

m
in

im
iz

at
io

n 
ite

ra
tio

ns
excess Steihaug iterations
excess subspace iterations

1 2 3 4 5 6 7 8 9 10 11 12
0

20

40

60

80

100

positive curvature problems

C
G

 it
er

at
io

ns

FIG. 3. Comparison of subspace and Steihaug trust region methods for unconstrained problems
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explicitly noted as it is beyond the scale of the graph). In general the subspace method does take more CG
iterations on problems with negative curvature, but it is these extra relatively inexpensive CG iterations
that reduce the total number of minimization iterations. (Again, for the problem MOLE3 the difference
in CG iterations is explicitly noted in FIG. 4 as it is beyond the scale of the graph.)

A closer examination of the behavior of the two algorithms indeed shows that when negative curvature
is not encountered, both methods take similar steps. (In this case, if the trust region is large enough,
both methods in FIG. 11 and FIG. 12 will stop under the same conditions after the same number of
CG iterations, as displayed in Table 3.) By the nature of the algorithms, if the Steihaug method detects
negative curvature, then so will the subspace approach. However if the subspace algorithm detects
negative curvature, the Steihaug method may terminate before it finds negative curvature; and then it does
not converge (to a local minimizer) as quickly as the subspace method. The important role that negative
curvature plays is supported by the fact that the subspace method often moves in a substantial negative
curvature direction when the Steihaug method overlooks negative curvature. Furthermore, it is when the
trust region radius ∆

4
is small that the Steihaug method is most likely to stop early and miss negative

curvature. Thus it appears that the effectiveness of the Steihaug idea decreases as nonlinearity increases.

4. The STIR Method. Supported by the discussion in L 3, we propose a large-scale subspace adap-
tation of the TIR method [1] for the bound constrained problem (1.1).

In moving from the unconstrained subspace approach to the box-constrained setting, it seems natural
to replace the full trust region subproblem (1.2) by the following subspace subproblem

minh ���	� � ] 4	�X_�� : jYJ 4\_ j 2 � ∆
4	��_¬�9²�4E%#�

(4.1)

where
²A4

is a small-dimensional subspace in
��(

, e.g., a two-dimensional subspace. A two-dimensional
subspace for the trust region subproblem (2.5) can be selected from the span of the two vectors� J ~ 14 B 4w� ˆ_ �4 % and a negative curvature direction ˆ¼ 4 for ˆ� 4 . This suggests that we form

²�4
from the

directions
� J ~ 24 B 4u� J ~ 14 ˆ

_ �4 � J ~ 14 ˆ¼ 4#% . Will such subspace formulations succeed in achieving optimality?
We examine this issue in more detail.

It is clear that the including the scaled gradient direction J ~ 24 B 4 in
²A4

, and satisfying (AS.3), will
guarantee convergence to a point satisfying the first-order optimality conditions. Let us assume for now
that

��
64#%
converges to a first-order point


 � . To guarantee that

 � is also a second-order point the

following conditions must be met.
Firstly, it is clear that a “sufficient negative curvature” condition must be carried over from the

unconstrained setting [14]. To this end, we can require that sufficient negative curvature of the matrix ˆ� 4
be captured if it is indefinite, i.e.,

²�4
must contain a direction ¼ 4 @ J ~ 14 ˆ¼ 4 such that

ˆ¼ `4 ˆ� 4 ˆ¼ 4j ˆ¼ 4 j ��½�¾#
��#"�¿ (EÀ � �6Á	Â | ( � ˆ� 4���%#e(4.2)

Secondly, it is important that a solution to (4.1) lead to a sufficiently large step — the potential
difficulty is running into a (bound) constraint immediately. This difficulty can be avoided if the stepsize
sequence, along the trust region solution direction, is bounded away from zero. Subsequently, we define:

11



DEFINITION 4.1. A direction sequence
��_z4#%

has large-step-size if lim inf
4YÃ¬Ä{� J 24 _)4i�#.&$ .

If fast local convergence is desired then the subspace
²l4

should also contain a sufficiently accurate
approximation to the the Newton direction J ~ 14 ˆ

_ �4 when ˆ� 4 is positive definite and ˆ
_ �4 @ " ˆ� ~ 14 ˆB 4 . An

inexact Newton step ˆ
_ �4 for problem (1.1) is defined as an approximate solution to

ˆ� 4\_ @ " ˆB 4#�
with accuracy

Rw4
:

ˆ� 4 ˆ
_ ³ �4 @ " ˆB 4cat´�4 such that j ´z4 jYµij ˆB 4 j ��R#4ue(4.3)

Can we select two-dimensional subspaces satisfying all three properties and thus guarantee quadratic
(superlinear) convergence to a second-order point? The answer, in theory, is yes — the subspace adaptation
of TIR algorithm (STIR) in FIG.5 is an example of a subspace method capable of achieving the desired
properties.

To ensure convergence to a solution, the solution sequence of the subspace trust region subproblems
(4.1) need to have large-step-size. Lemma 1 below indicates that this can be achieved if we set

²b4 @
span

� ¼ 4u��Å�4E% , where
� ¼ 4#% and

��Åz4#%
are two sequences of uniformly independent vectors in the sense

that lim inf
� j Åz4�" ¼ 4 j %Æm 0, each with large-step-size.

LEMMA 1. Assume that
� ¼ 4#% and

��Åz4#%
have large-step-size with jYJ 4 ¼ 4 j @ 1 and jYJ 4zÅ�4 j @ 1.

Moreover, lim inf
4YÃ¬Ä�� j Åz4¬" ¼ 4 j %�m 0. Then the solution sequence

� ¨ 4'% to the subproblem (4.1) with²A4 @ span
��Åz4#� ¼ 4#% has large-step-size.

Proof. The proof is very straightforward and is omitted here.

For the STIR method, a natural extension of the condition (AS.4) necessary for second-order opti-
mality is the following.

(AS.5) Assume that ¨ 4 is a solution to min h �z� � � ] 4	�X_�� : jYJ 4'_ j � ∆
4w�d_2�o²A4'%

and
§A©

and§ ©
0 are two positive constants. Then

_�4
satisfies

] 4^�X_�4'�0.�§A© ] �4 s ¨ 4�pq� where jYJ 4'_�4 j �§ ©
0 ∆
4

and

g4Ga�_)4H�98X:�<��>=?��e

Theorem 2 below, with the proof provided in the Appendix, formalizes the convergence properties
of STIR.

THEOREM 2. Let the level set Ç @ ��
!����(
:

���
��0�{
l��


0
����
!��= %

be compact and



:
=È1É�

be twice continuously differentiable on Ç . Let
��
54E%

be the sequence generated by the STIR algorithm in
FIG.5. Then

1. If (AS.3) is satisfied, then the Kuhn-Tucker condition is satisfied at every limit point.

12



The STIR Method
[Let 0

.DPQ.SRT.
1, 0

.
Λ U . Λ V and W 1

.
1
. W 2 be given. Let



0
�8X:�<)�>=?�Y�

∆0
.

Λ V .]
For Z @ 0

�
1
��[)[)[

1. Compute

\4

, B 4 , J 4 , FH4 , and K 4 ; define the quadratic model] 4	�q_�� @ B#`4 _Ga 1
2
_ ` �XFH4ca K 4\��_'e

2. Compute a step
_�4

, with

g4HaQ_�4T�Ê8X:g<)�>=?�

, based on the subspace
subproblem,

minh � ] 4	�X_�� : jYJ 4'_ j 2 � ∆
4w��_7�9²�4E%#�

where the subspace
²�4

is set up as below.
3. Compute k 4 @ 
���
64ba�_)4'��"+
l��
64)�5a 1

2
_ ` 4 K 4'_�4] 4^�X_�4\� e

4. If k 47m*P then set

64Yn

1
@ 
64Ga�_)4 . Otherwise set


g4Yn
1
@ 
64 .

5. Update ∆
4

as specified in FIG.1.

Determine Subspace
²A4

:
[Assume that ¼ 4 @ J ~ 14 ˆ¼ 4 where

� ¼ 4u% has large-step-size. Let 0
. � . 1 be a

small positive constant.]

IF ˆ� 4 is positive definite²A4 def@ span
� J ~ 24 B 4#� ¼ 4w%

ELSE ˆ� 4 is not positive definite

IF
� J ~ 24 sgn

� B 4\��� ` � 4w� J ~ 24 sgn
� B 4����0. �cËxÌbÍ 2±HÎ ± Ë 2Ë�Ï ± Ë 2 ¼ `4 � 4 ¼ 4²A4 def@ span

� J ~ 24 sgn
� B 4\��%

ELSE²A4 def@ span
� J ~ 24 sgn

� B 4\�Y� ¼ 4'%
END

END

FIG. 5. The STIR Method for Minimization Subject to Bound Constraints
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2. Assume that both (AS.3) and (AS.5) are satisfied and ˆ¼ 4 in FIG. 5 contains sufficient negative
curvature information whenever ˆ� 4 is indefinite, i.e.,

ˆ¼ `4 ˆ� 4 ˆ¼ 4j ˆ¼ 4 j 2 �
max

�Ð"�¿ ('À � �6Á min
� ˆ� 4��d�Y�

with
¿ ('À m 0 and 0

. � . 1. Then
(a) If every limit point of

��
�4#%
is nondegenerate, then there is a limit point


 � at which
both the first and second-order necessary conditions are satisfied.

(b) If

 � is an isolated nondegenerate limit point, then both the first and second-order

necessary conditions are satisfied at

 � .

(c) If ˆ� � is nonsingular for some limit point

 � of

��
64#%
and ˆ¼ 4 @ ˆ

_ �4 whenever ˆ� 4 is
positive definite, then ˆ� � is positive definite,

��
g4#%
converges to


 � , all iterations are
eventually successful, and

�
∆
4#%

is bounded away from zero.

The degeneracy definition is the same as in [1].

DEFINITION 4.2. A point

��9=

is nondegenerate if, for each index
8
:B ��
��q| @ 0 @5Ñ ��|l.�
i|�.��6|Ðe

(4.4)

We have established that in principle it is possible to replace the full-dimensional trust region
subproblem with a two-dimensional variation. However, the equally strong convergence properties of
STIR hinges on obtaining (guaranteed) sufficient negative curvature direction with large-step-size. We
discuss this next.

5. Computing Negative Curvature Directions with Large-Step-Size. Is it possible, in principle,
to satisfy both the sufficient negative curvature requirement (4.2) and the large-step-size property? The
answer is yes: let

�54
be a unit eigenvector of ˆ� 4 corresponding to the most negative eigenvalue, i.e.,

ˆ� 4)��4 @ Á min
� ˆ� 4z�q��4 . It is easily verified that for any convergent subsequence lim

4YÃ}Ä Á min
� ˆ� 4���. 0,

the sequence
� J ~ 14 ��4'% has large-step-size.

However, it is not computationally feasible to compute the (exact) eigenvector
�A4

. Therefore,
approximations, and short cuts, are in order. Can we compute approximate eigenvectors with large-step-
size?

A good approximation to an eigenvector corresponding to an extreme eigenvalue can usually be
obtained through a Lanczos process [15]. Using the Lanczos method for ˆ� 4 with an initial vector ˆÒ 4 ,
approximate eigenvectors at the Ó -th step are computed in the Krylov spaceÔ � ˆ� 4#� ˆÒ 4u� Ó � def@ span

�
ˆÒ 4#� ˆ� 4 ˆÒ 4#�)[�[)[)� ˆ�&Õ ~ 14 ˆÒ 4���e

In the context of our algorithm, the vectors J ~ 14 sgn
� B 4�� or J ~ 14 B 4 are natural choices for the initial vector

ˆÒ 4 when applying the Lanczos method.
14



Our key observation is the following. If a sequence
� J ~ 14 ˆÒ 4#% has large-step-size then each sequence

in J ~ 14 � ˆÒ 4	� ˆ� 4 ˆÒ 4w��[)[)[�� ˆ� Õ ~ 14 ˆÒ 4'% retains this property.
Now assume that ˆ¼ 4 is the computed vector from the Lanczos method which contains the sufficient

negative curvature information with respect to ˆ� 4 . It can be verified, based on the recurrence relation,
that

� J ~ 14 ˆÒ 14 �)[)[�[Y� J ~ 14 ˆÒ Õ 4 % all have large-step-size if the Lanczos vectors
�

ˆÒ 14 [)[�[)� ˆÒ Õ 4 % retain orthogonality.
Since ˆ¼ 4 is in the Krylov space

Ô � ˆ� 4#� ˆÒ 4u� Ó � , it is clear that
� ¼ 4 @ J ~ 14 ˆ¼ 4E% has large-step-size. In other

words, in order to generate a negative curvature direction sequence with large-step-size, orthogonality
needs to be maintained in the Lanczos process. Fortunately, as discussed in [16], it is quite reasonable
to assume that until all of the distinct eigenvalues of the original matrix have been approximated well,
orthogonality of the Lanczos vectors are well maintained. Since we are only interested in a direction with
sufficient negative curvature, we expect that it can be computed before loss of orthogonality occurs.

A second (and cheaper) strategy is to employ a modified preconditioned conjugate gradient scheme,
e.g., MPCG in FIG.12. Unfortunately, this process is not guaranteed to generate sufficient negative
curvature; nonetheless, as indicated in [17], the MPCG output will satisfy the large-step-size property.

Finally we consider a modified Cholesky factorization, e.g., [18], to obtain a negative curvature
direction. Assume that

� ˆ� 4#% is indefinite and
���w4'%

is obtained from the modified Cholesky method. We
demonstrate below that

���w4 @ J ~ 14 ˆ�#4'% has large-step-size under a nondegeneracy assumption.
The negative curvature direction ˆ�E4 @ J 4'�#4 computed from the modified Cholesky method (see

[18], page 111) satisfies Ö ` 4 ˆ�E4 @Ø× Õ ± � and ¶�`4 ˆ� 4 ¶ 4ca�Ù�4 @ Ö 4 diag
�XÚY4�� Ö ` 4 �

where

Ö 4
is a lower triangular matrix, ¶ 4 is a permutation matrix and × Õ ± is the Ó 4 th elementary vector,

i.e., × Õ ± �>8Ð� @ 0, if
8 º@ Ó 4 and × Õ ± � Ó 4�� @ 1. Moreover,

Ù�4
is a bounded and non-negative diagonal matrix.

Without loss of generality, we assume that ¶ 4 @�Û .
We argue, by contradiction, that

���w4E%
has the large-step-size property. Assume that

���	4'%
does not

have this property. From

Ö ` 4 ˆ�#4 @Ü× Õ ± and that

Ö 4
is a lower triangular matrix with unit diagonals, it is

clear that ˆ�#4ws jka 1 : n
p @ 0. Moreover, from ˆ� 4 ˆ�#4�a/Ù�4 ˆ�#4 @ ÚY4 Õ ± Ö 4 × Õ ± , ÚY42mÈÚ

for some
Ú�m

0 and
definition (2.4) of ˆ� 4 , the first Ó 47" 1 components of

� J 4 ˆ�#4'% are bounded. This implies that
��� Õ ± %

converges to zero.
From the modified Cholesky factorization, the matrix ˆ� 4is 1: jk

�
1: jk

p
is indefinite but ˆ� 4is 1: jk

"
1
�

1: jk
"

1
p

is positive definite. But this is impossible for sufficiently large Z because, again using the definition (2.4)
of ˆ� 4 , � ˆ� 4us 1: jk

�
1: jk

p�%
converges to a matrix of the formÝ

ˆ� 4ws 1: jk
"

1
�
1: jk

"
1
p

0
0

R#4�Þ
where

Rw4
is positive (because of the nondegeneracy assumption). Therefore, we conclude that

���i4#%
has

large-step-size.

6. Computational Experience. We demonstrate the computational performance of our STIR method
given in FIG.5. Below we report our experience with the modified Cholesky and the conjugate gradient

15



(MPCG) implementations. We examine the sensitivity of the STIR method to a starting point. Finally,
some limited comparisons with SBMIN of LANCELOT [8] are also made.

In the implementation of STIR, we compute
_�4

using a reflective technique as shown in FIG.2. The
exact trust region updating procedure is given below in FIG.6.

Updating Trust Region Size ∆
4

Let
P @ 0

e
25
�}R @ 0

e
75, Λ U @ 1, Λ V @ max

��ß à | min
�d�>�6|g"t��|X� 2 � 1000

�)�
1
�
,

∆0
@ min

�
0
e
1 j�B�j � Λ V � , W 0

@ 0
e
0625

� W 1
@ 0

e
5
� W 2

@ 2 be given.
1. If k 47� 0 then set ∆

4Yn
1
@ W 0∆;

2. If k 47�o� 0 ��P�p then set ∆
4Yn

1
@ max

� W 0∆
4u� W 1 jYJ 4'_)4 j �Ye

3. If k 47�o�;Pl�rRi� then set ∆
4Yn

1
@ ∆

4ue
4. If k 47v�R then

if ∆
47m

Λ U
∆
4Yn

1
@ W 2∆

4
otherwise

∆
4Yn

1
@ min

�
max

�
∆
4w� W 2 jYJ 4'_)4 j �Y� Λ V � .

FIG. 6. Updating Trust Region Size

Our experiments were carried out on a Sun Sparc workstation using the Matlab environment.
The stopping criteria used are as follows. We stop if

either

l��
g4���"t
��;
64Yn

1
�d�0� � 1

�
1
a{� 
l��
64z���á�

or j 
64Yn 1
"�
64 j 2 � � 2

or no negative curvature has been detected for ˆ� 4 and jYJ 4 B 4 j Ä � � 1
e

We define � 1
@ 10

~ 10 and � 2
@Üâ � 1 µ 10 @ 10

~ 6. We also impose an upper bound of 600 on the number
of iterations.

We first report the results of the STIR method using the modified Cholesky factorization. Table 5
lists the number of iterations required for some standard testing problems (for details of these problems
see [12]). (For all the results in this paper, the number of iterations is the same as the number of objective
function evaluations.) The problem sizes vary from 100 to 10

�
000. The results in Table 5 indicate that, for

these testing problems at least, the number of iterations increases only slightly, if at all, with the problem
size. Moreover, in comparison to the unconstrained problems, the presence of the bound restrictions does
not seem to increase the number of iterations. This is depicted pictorially in FIG. 7. In this graph, the
problem size is plotted versus iteration count. For each problem, the corresponding points have been
connected to show how the iteration count relates to the problem size.

Our second set of results are for the STIR algorithm but using a conjugate gradient implementation.
We use the algorithm MPCG in FIG.12 to find the directions needed to form the subspace

²b4
. The

stopping condition applied to the relative residual in MPCG is
R @ 0

e
005. The results are shown in

Table 6 and FIG. 8. Again, for these problems the iteration counts are low and steady. The exception
is for the problem VAR C with 10

�
000 variables, where the iteration count jumps to 86. This is one of
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:
Problem 100 200 500 1000 10000
GENROSE U 25 25 25 25 25
GENROSE C 11 11 11 11 10
GENSING U 24 25 25 26 27
GENSING C 18 19 20 20 21
CHAINSING U 23 23 23 23 23
CHAINSING C 16 16 16 16 19
DEGENSING U 22 23 23 40 39
DEGENSING C 28 28 28 28 29
GENWOOD C 9 10 10 10 11
CHAINWOOD C 9 10 10 10 11
BROYDEN1A U 12 12 13 13 14
BROYDEN1A C 11 11 11 11 11
BROYDEN1B U 7 7 7 7 7
BROYDEN1B C 8 8 8 8 8
BROYDEN2A U 13 13 13 14 14
BROYDEN2A C 14 19 17 19 19
BROYDEN2B U 9 9 9 9 9
BROYDEN2B C 13 11 15 14 15
TOINTBROY U 8 8 8 8 8
TOINTBROY C 9 9 9 9 9
CRAGGLEVY U 16 14 15 16 15
CRAGGLEVY C 29 29 30 30 31
AUGMLAGN C 38 32 35 36 37
BROWN3 U 8 8 8 8 8
BROWN3 C 17 10 11 9 11
BVP U 9 10 9 8 8
BVP C 11 11 10 10 7
VAR U 9 9 10 12 15
VAR C 18 18 23 45 38

TABLE 5
STIR method with exact Newton steps: number of iterations
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FIG. 7. STIR performance with exact Newton steps
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FIG. 8. STIR method with inexact Newton steps

several degenerate problems included in this test set. With a tighter bound
R

on the relative residual in
MPCG, we could decrease the number of minimization iterations for this problem (note that the STIR
with exact Newton steps only takes 38 iterations). However, this change would also increase the amount
of computation (conjugate gradient iterations).

Next we include some results which indicate that our STIR method is fairly insensitive to the starting
point. The results in Table 7 were obtained using exact Newton steps on problems of dimension 1000.
The results in Table 8 were obtained using the conjugate gradient implementation, also on problems with
1000 variables. The starting points are as follows: original is the suggested starting point according
to [12]; upper starts all variables at upper bounds; lower starts all variables at the lower bounds; middle
starts at the midpoint between bounds; zero starts each variable at zero (the origin); upper-lower starts the
odd variables at the upper and the even variables at the lower bounds; lower-upper is the reverse of this.
For all of these, we perturb the starting point slightly if necessary to be strictly feasible. Note that for the
problem BROWN3 C, the iteration count is not shown starting at middle and at origin as the gradient is
undefined at both these starting points. These results are also shown graphically in FIG. 9 and FIG. 10.
From these graphs it is clear that both implementations of STIR are fairly robust when it comes to starting
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:
Problem 100 200 500 1000 10000
GENROSE U 21 21 21 21 21
GENROSE C 10 10 10 10 17
GENSING U 23 23 24 24 25
GENSING C 16 16 16 16 16
CHAINSING U 21 21 21 21 21
CHAINSING C 14 17 19 19 20
DEGENSING U 32 32 33 33 35
DEGENSING C 33 56 35 33 31
GENWOOD C 8 8 8 8 8
CHAINWOOD C 8 8 8 8 8
BROYDEN1A U 11 11 11 11 12
BROYDEN1A C 9 8 8 8 8
BROYDEN1B U 6 6 6 6 6
BROYDEN1B C 7 7 7 7 7
BROYDEN2A U 15 15 19 17 20
BROYDEN2A C 10 10 10 10 10
BROYDEN2B U 8 8 8 8 9
BROYDEN2B C 9 9 9 9 9
TOINTBROY U 7 7 7 7 7
TOINTBROY C 8 8 8 8 8
CRAGGLEVY U 26 26 27 27 29
CRAGGLEVY C 26 26 26 26 27
AUGMLAGN C 26 33 29 34 27
BROWN3 U 7 7 7 7 7
BROWN3 C 7 7 7 7 8
BVP U 13 13 12 13 25
BVP C 15 15 14 14 15
VAR U 34 35 35 37 36
VAR C 19 21 32 36 86

TABLE 6
STIR method with inexact Newton steps, ãrä)ã�å�ãXæ#ã�ç 0 è 005: number of iterations

19



Starting Point
Problem original upper lower middle zero up-low low-up
GENROSE C 11 27 33 15 16 43 27
GENSING C 20 31 45 25 22 31 32
CHAINSING C 16 29 33 13 11 32 30
DEGENSING C 28 47 39 52 42 39 36
GENWOOD C 10 18 14 13 10 17 17
CHAINWOOD C 10 17 14 13 10 17 16
BROYDEN1A C 11 24 25 13 12 25 24
BROYDEN1B C 8 22 19 18 9 19 21
BROYDEN2A C 19 38 38 13 9 38 38
BROYDEN2B C 14 30 34 12 8 33 30
CRAGGLEVY C 30 38 33 26 26 34 37
AUGMLAGN C 36 40 26 36 15 23 37
BROWN3 C 9 28 14 * * 28 14
BVP C 10 17 8 9 10 11 17
VAR C 45 9 32 18 21 23 17

TABLE 7
STIR method with exact Newton steps for é¯ê 1000: number of iterations

points. This is in contrast to active set methods where the starting point can have a more dramatic effect
on the iteration count.

Last we contrast the performance of the STIR method using the conjugate gradient option with the
SBMIN algorithm, an active set method, in the LANCELOT software package [8]. In particular, we
choose problems where negative curvature is present or where it appears that the “active set” at the
solution may be difficult to find. We expect our STIR method to outperform an active set method in these
situations; indeed, we have found this to be the case. For these problems, we use the default settings for
LANCELOT and adjusted our STIR stopping conditions to be comparable if not more stringent.

First consider a constrained convex quadratic problem. The results, given in Table 9, show that our
proposed STIR method is markedly superior (by an order of magnitude) to SBMIN on this problem (c.g. it
is the total number of conjugate gradient iterations). SBMIN takes many iterations on this problem when
the starting point is near some of the bounds — the method mis-identifies the correct active set at the
solution and takes many iterations to recover. Our proposed STIR method, a strictly interior method,
moves directly to the solution without faltering when started at the same point.

Table 10 summarizes the performances of STIR and SBMIN, on a set of constrained problems
exhibiting negative curvature. (Again the problems are from [12] except the last two have been constrained
differently to display negative curvature.) STIR is significantly better on these problems — this is probably
due to the fact that negative curvature is better exploited in our subspace trust region approach than in
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Starting Point
Problem original upper lower middle zero up-low low-up
GENROSE C 10 23 37 17 20 37 23
GENSING C 16 27 57 26 22 30 29
CHAINSING C 19 29 33 11 10 33 28
DEGENSING C 33 43 37 42 37 37 44
GENWOOD C 8 14 10 11 8 13 13
CHAINWOOD C 8 14 10 11 8 13 13
BROYDEN1A C 8 24 21 13 8 21 24
BROYDEN1B C 7 21 16 13 8 16 21
BROYDEN2A C 10 35 35 13 8 36 35
BROYDEN2B C 9 28 32 12 8 31 28
CRAGGLEVY C 26 39 35 27 24 35 45
AUGMLAGN C 34 60 45 32 10 24 46
BROWN3 C 7 29 53 * * 29 53
BVP C 14 21 14 13 14 14 21
VAR C 36 7 34 29 25 28 8

TABLE 8
STIR method with inexact Newton steps for é¬ê 1000: number of iterations
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FIG. 9. STIR method with exact Newton steps at varied starting points

inexact STIR SBMIN: @ 800 iteration c.g. it iteration c.g. it
BIGGSB2 16 5551 281 53157

TABLE 9
STIR with inexact Newton steps vs. LANCELOT SBMIN on a convex quadratic: number of iterations
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FIG. 10. STIR method with inexact Newton steps at varied starting points

inexact STIR SBMIN: :
Problem 100 1000 10000 100 1000 10000
AUGMLAGN U 34 30 37 29 38 46
CHAINWOOD U 122 1004 8953 6594

m
10000

m
10000

GENWOOD U 62 67 63 439 952 554
GENROSE U 29 29 29 76 76 76
CHAINWOOD NC 17 31 16 54 48 61
GENWOOD NC 16 24 23 47

m
1000 60

TABLE 10
STIR with inexact Newton steps vs. LANCELOT SBMIN when negative curvature exists: number of iterations

the Steihaug trust region method, which SBMIN employs. This is consistent with results presented in L 3,
e.g., see Table 4.

7. Conclusion. Based on the trust-region interior reflective (TIR) method in [1], we have proposed
a subspace TIR method (STIR) suitable for large-scale minimization with bound constraints on the
variables. In particular, we consider a two-dimensional STIR in which a subspace is formed from the
scaled gradient and (inexact or exact) Newton steps or a negative curvature direction.

We have designed and reported on a variety of computational experiments. The results strongly
support the different components of our approach: the “subspace idea”, the use of our novel affine
scaling matrix, the modified Cholesky factorization and conjugate gradient variations, and the “reflection
technique”. Moreover, preliminary experimental comparisons with code SBMIN, from LANCELOT [8],
indicate that our proposed STIR method can significantly outperform an active-set approach for some
large-scale problems.
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[4] Jorge J. Moré and D.C. Sorensen. Computing a trust region step. SIAM Journal on Scientific and Statistical Computing,
4:553–572, 1983.

[5] D.C. Sorensen. Minimization of a large scale quadratic function subject to an ellipsoidal constraint. Technical Report
TR94-27, Department of Computational and Applied Mathematics, Rice University, 1994.

[6] T. Steihaug. The conjugate gradient methods and trust regions in large scale optimization. SIAM Journal on Numerical
Analysis, 20:626–637, 1983.

[7] I.I. Dikin. Iterative solution of problems of linear and quadratic programming. Doklady Akademiia Nauk SSSR, 174:747–
748, 1967.

[8] A. R. Conn, N. I. M. Gould, and Ph. L. Toint. LANCELOT: A Fortran Package for Large-Scale Nonlinear Optimization
(Release A). Springer-Verlag, 1992.

[9] Bruce A. Hendrickson. The molecule problem: Determining conformation from pairwise distances. Cornell University
Ph.D thesis, Computer Science, 1991.

[10] Thomas F. Coleman. Large-scale numerical optimization: Introduction and overview. In Allen Kent and James G.
Williams, editors, Encyclopedia of Computer Science and Technology, pages 167–195. Marcel Dekker, INC., 1993.

[11] Gerald A. Shultz, R. B. Schnabel, and Richard H. Byrd. A family of trust-region-based algorithms for unconstrained
minimization with strong global convergence properties. SIAM Journal on Numerical Analysis, 22(1):47–67, 1985.

[12] Andrew R. Conn, N. I. M. Gould, and Ph. L. Toint. Testing a class of methods for solving minimization problems with
simple bounds on the variables. Mathematics of Computation, 50(182):399–430, 1988.

[13] Jorge J. Moré, Burton S. Garbow, and Kenneth. E. Hillstrom. Testing unconstrained optimization software. ACM
Transactions on Mathematical Software, 7:17–41, 1981.

[14] Richard H. Byrd, Robert B. Schnabel, and Gerald A. Shultz. Approximate solution of the trust region problem by
minimization over two-dimensional subspaces. Mathematical Programming, 40:247–263, 1988.

[15] Gene H. Golub and Charles F. Van Loan. Matrix Computations. The Johns Hopkins University Press, 1989.
[16] Jane K. Cullum and Ralph A. Willoughby. Lanczos Algorithms for Large symmetric eigenvalue computations, Vol. 1
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A. Proofs for THEOREM 2. The convergence results (THEOREM 2) for the STIR algorithm can
be obtained in a similar manner to THEOREM 3.10 for the full-space trust region and interior reflective
method (TIR)[1]. Indeed, first-order optimality is a direct consequence of the condition (AS.3). The
second order optimality rests on the fact that the solution subsequence of the subspace trust region
subproblem would have large-step-size if the corresponding

� ˆ� � % were indefinite at a limit point (see
Lemma 3 below). Moreover, if ˆ� 4 is positive definite at a limit point then we prove that the step size
along the subspace trust region solution is sufficiently large in the following sense:� 47vìëAí

∆
4 min

� jYJ ~ 14 B 4 j � jYJ 4#_z�4 j �Y� for some ëAí m 0
e
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Here � 4 is the stepsize, along ¨ 4 , to the boundary of the feasible region ( see Lemma 4 ). Based on this
inequality, it follows that the trust region size is bounded away from zero and Newton steps are eventually
successful.

Assume that ¨ 4 is a solution to a subspace trust region subproblem (4.1) with
²l4 @ span

� ¼ 4	�ÐÅz4'% .
Assume that the columns of î 4 form an orthonormal basis for span

� J 4�Å�4	� J 4 ¼ 4'% . Then ¨ 4 @ J ~ 14 î 4�ï#4
where

ï#4
solves � îH`4 ˆ� 4 î 4�a Á 4 Û �qï#4 @ " îH`4 J ~ 14 B 4w� îH`4 ˆ� 4 î 4�a Á 4 Ûf@{ð `4 ð 4u�(A.1)

and � J 4 ¨ 4�� ` ˆ� 4 J 4 ¨ 40a Á 4 j ï#4 j 2 @ "¬� J 4 ¨ 4�� ` ˆB 4	e(A.2)

Next we prove that the subspace trust region solution sequence from the STIR algorithm in FIG.5.
has large-step-size if the corresponding sequence

� ˆ� 4w% satisfies that lim
4YÃ¬Ä Á min

� ˆ� 4��0. 0.

LEMMA 3. If lim sup Á min
� ˆ� 4\�0. 0 for a subsequence, then the corresponding solution subsequence� ¨ 4'% of the subspace trust region subproblem (4.1) has large-step-size.

Proof. Consider two subsequences of
� ˆ� 4w% : one sequence satisfies

� ²�4	� @ 1 and the other sequence
has

� ²A4	� @ 2.
For the subsequence with

� ²�4	� @ 1, the corresponding trust region solution sequence clearly has
large-step-size.

For the subsequence with
� ²�4^� @ 2, it is clear that lim inf

� jtÌbÍ 2± sgn ñ Î ±YòËqÌbÍ 2± sgn ñ Î ±Yò Ë " Ï ±Ë�Ï ± Ë j %tm 0. Since��Å�4w% @ � J ~ 24 sgn
� B 4\��% and

� ¼ 4w% have large-step-size, we have that
� ¨ 4#% has large-step-size following

Lemma 1.

We state the following result which is similar to Lemma 8 in [1] and omit the proof.

LEMMA 4. Assume that (AS.4) is satisfied. Then" ] 4	�X_)4��cv §�©
2
s
min

�
1
� � 24 % Á 4 ∆24 a min

�
1
� � 4#% j ð 4�ï#4 j 2 pq�

where � 4 is the stepsize along ¨ 4 @ J ~ 14 î 4�ï#4 to the boundary and
ïu4

is defined by (A.1).

Let
_ �4 denote the Newton step (2.3) of (2.1). Then

diag
� B 4\���5�4 J 4�_��4 @ " J ~ 14 B 4¢" J ~ 14 FH4 J ~ 14 J 4�_��4 e(A.3)

The next result is required to establish that Newton steps
_ �4 will eventually lead to successful steps.

LEMMA 5. Assume that ¨ 4 is a solution to the subspace subproblem (4.1) with
²l4 @ span

� J ~ 24 B 4#��_ �4 % .
If
��
64'%

converges to a nondegenerate point

 � where the second order sufficiency conditions are satisfied,

24



then � 47vóë�í
∆
4 min

� jYJ ~ 14 B 4 j � jYJ 4'_��4 j ���(A.4)

for Z sufficiently large, where � 4 is the stepsize to the boundary along ¨ 4 .
Proof. By definition, � 4 @ min| � max

� �­4 | ",
64 |¨ 4 | � ��4 | "�
64 |¨ 4 | ���Ye
For any Z , if J ~ 14 B 4 @ k 4 J 4�_ �4 for some k 47��� 1, then ¨ 4 @ " ∆ ±ËqÌbÍ 1±fÎ ± Ë J ~ 24 B 4 . Hence, if 1ô#õ v j�B 4 j Ä ,
we have � 47vóë�í

∆
4 min

� jYJ ~ 14 B 4 j � jYJ 4'_��4 j ��e
Assume that J ~ 14 B 4 º@ k 4 J 4'_ �4 . We first show that if we can establish¨ 4 @ W 4w�Ð" J ~ 24 B 4E�5a,§g4E_��4 where

§g4fv
0 and W 4fv 0

�
(A.5)

then (A.4) holds. From (A.5) and
� J 4\_ �4 � ` �Ð" J ~ 14 B 4\��v 0, we have�®§�4 J 4'_z�4 � ` � W 4	�Ð" J ~ 14 B 4\���0v 0

e
Using ˆ¨ 4 @ J 4 ¨ 4 @ W 4	�Ð" J ~ 14 B 4���at§�4 J 4'_ �4 again,j ˆ¨ 4 j 2 @ W 24 jYJ ~ 14 B 4 j 2 a 2

� W 4 J 4\_��4 � ` �®§g4u�Ð" J ~ 14 B 4��d�5ao§ 24 jYJ 4'_��4 j 2 e
But j ˆ¨ 4 j � ∆

4
. Hence

0
�+§�47� ∆

4jYJ ~ 14 B 4 j and 0
� W 4H� ∆

4jYJ 4E_ �4 j e
Hence, from (A.3), the boundedness of B 4 , J ~ 14 B 4 , J 4'_ �4 , and the fact that


 � is a nondegenerate
first-order point, it is easy to verify that� 47vìëAí

∆
4 min

� jYJ ~ 14 B 4 j � jYJ 4#_z�4 j �Y� for some ëAí m 0
e

Finally, we need to establish (A.5) under the linearly independent assumption J ~ 14 B 4 º@ k 4 J 4'_ �4 .
Assume that the columns of î 4 form an orthonormal basis for span

� J ~ 14 B 4	� J 4\_ �4 % . Then î 4 î `4 J ~ 14 B 4 @J ~ 14 B 4 , î 4 î `4 J 4'_ �4 @ J 4\_ �4 , and î `4 î 4 @�Û 2 where Û 2 is the 2-by-2 identity matrix. Moreover,¨ 4 @ " J ~ 14 î 4	s îH`4 � ˆ� 4ca Á � Û � î 4Yp�~ 1 îÆ`4 J ~ 14 B 4
where Á � v 0 and if Á � m 0, jYJ 4 ¨ 4 j @ ∆

47m
0. Let ˆ¨ � Á � @ J 4 ¨ 4u� Á � and

ˆ¨ � Á � def@ " î 4us îH`4 � ˆ� 4�a Á Û � î 4�p;~ 1 îÆ`4 J ~ 14 B 4u� for Á v 0
e

(A.6)
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Then there exists
§0� Á � and W � Á � such that

ˆ¨ � Á � @ §0� Á �)�Ð" J ~ 14 B 4'��a W � Á � J 4E_��4 e
First, it is clear that

§0�
0
� @ 0, W � 0 � @ 1. From (A.6),

limö Ã}n�Ä ˆ¨ � Á �j ˆ¨ � Á � j @ J ~ 14 B 4jYJ ~ 14 B 4 j �
and by the linear independence assumption J ~ 14 B 4 º@ k 4 J 4�_ �4 , we have

limö Ã}n�Ä §0� Á �j ˆ¨ � Á � j @ 1jYJ ~ 14 B 4 j e
Hence, for Á sufficiently large,

§0� Á ��m 0.
We now prove that W � Á �)��v 0 by contradiction. Assume that W � Á �)�0. 0 (this means that jYJ 4�_ �4 j m

∆
4
). From continuity of W � Á � , W � 0 � @ 1 and W � Á � ��. 0, there exists 0

. ¯Á . Á � so that W � ¯Á � @ 0. This
implies that §�� ¯Á � J ~ 14 B 4 @ " î 4u� îH`4 � ˆ� 40a ¯Á Û � î 4���~ 1 îH`4 J ~ 14 B 4#e
From ˆ� 4 ˆ

_ �4 @ " J ~ 14 B 4 , î 4 î `4 ˆ
_ �4 @ ˆ

_ �4 , and the columns of î 4 are linearly independent, there exists ë
such that s îH`4 ˆ� 4 î 4�p îf`4 J ~ 14 B 4 @ ë s îÆ`4 ˆ� 4 î 4�p î7`4 ˆ

_z�4 e
Again using î 4 î `4 J ~ 14 B 4 @ J ~ 14 B 4 and î 4 î `4 ˆ

_ �4 @ ˆ
_ �4 , we haveJ ~ 14 B 4 @ ë J 4E_��4 �

which contradicts the assumption J ~ 14 B 4 º@ k 4 J 4'_ �4 .
Similarly, we can prove that

§0� Á �)��v 0 based on
§0� Á ��m 0 for sufficiently large Á . Therefore (A.5)

holds. This completes the proof.

Now we establish the convergence properties of the STIR algorithm.

THEOREM 2. Let the level set Ç @ ��
���� ( :

l��
��b�-
l��


0
����
2�9= %

be compact and



:
=Ê1÷�

be twice continuously differentiable on Ç . Let
��
54E%

be the sequence generated by the STIR algorithm in
FIG.5. Then

1. If (AS.3) is satisfied, then the Kuhn-Tucker condition is satisfied at every limit point.
2. Assume that both (AS.3) and (AS.5) are satisfied and ˆ¼ 4 in FIG. 5 contains sufficient negative

curvature information whenever ˆ� 4 is indefinite, i.e.,

ˆ¼ `4 ˆ� 4 ˆ¼ 4j ˆ¼ 4 j 2 �
max

�Ð"�¿ ('À � �6Á min
� ˆ� 4��d�Y�

with
¿ ('À m 0 and 0

. � . 1. Then
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(a) If every limit point is nondegenerate, then there is a limit point

 � at which both the

first and second order necessary conditions are satisfied.
(b) If


 � is an isolated nondegenerate limit point, then both the first and second order
necessary conditions are satisfied at


 � .
(c) If ˆ� � is nonsingular for some limit point


 � of
��
64#%

and ˆ¼ 4 @ ˆ
_ �4 whenever ˆ� 4 is

positive definite, then ˆ� � is positive definite,
��
g4#%

converges to

 � , all iterations are

eventually successful, and
�
∆
4#%

is bounded away from zero.
Proof. Using Lemma 3, for any subsequence with lim

4YÃ¬Ä Á min
� ˆ� 4z�¯. 0, the corresponding

� ¨ 4#%
has large-step-size. Therefore, there exists

¿
0
m

0 such that � 4!mø¿
0
�

for Z sufficiently large
e

Hence,
using Lemma 4, for some

¿
1
m

0," ] 4i�X_)4��0v-¿
1

§ ©
2
s Á 4 ∆24 a j ð 4 J 4 ¨ 4 j 2 pqe

Condition (AS.5) then implies that
l��
64z��"t
l��
64Yn
1
�0v*PA¿

1

§ ©
2
s Á 4 ∆24 a j ð 4 J 4 ¨ 4 j 2 pqe(A.7)

Now assume that ˆ� � is positive definite and
��
g4'%

converges to

 � . From Lemma 4, we have" ] 4	�X_)4��cv §�©

2
s
min

�
1
� � 24 % Á 4 ∆24 a min

�
1
� � 4#% j ð 4�ï#4 j 2 pqe

where � 4 is the stepsize along ¨ 4 . Let
¿cm

0 be a lower bound for the eigenvalues of ˆ� 4 .
From (A.1), (A.4) in Lemma 5, and jYJ 4'_ �4 j � 1ù jYJ ~ 14 B 4 j , there exists ë m 0 such that� ] �4 s ¨ 4)pr�wv ë min

�
∆24 � jYJ 4'_��4 j 2 %#e(A.8)

Using (A.7) and (A.8), the proof is essentially the same as that of Theorem 3.10 in [1]: replacing
(3.21) in [1] by (A.7) and (3.22) in [1] by (A.8).

B. Implementation Details. We present details of our Steihaug method implementation in FIG.11
and the modified preconditioned conjugate gradient (MPCG) in FIG.12.

For more details on the large-step-size property of the steps computed from FIG.12, see [17].

27



function [
_
] = Steihaug(

F
, B , K ,

R
, ∆)

% Note: K is some preconditioning matrix for H. K must be positive definite.: @ � × : B <�ú�� B � ; Z ½�¾E
 @ : µ 2;Z @ 0; ¨ 0
@ 0; û 0

@ 0;
´

0
@ " B ;

while Z . Z ½�¾E

Step 1: Solve K Åz4 @ ´�4 ;
Step 2: Z @ Z a 1
Step 3: if Z @ 1,

�
1
@ Å

0

else§g4 @ ´ `4 ~ 1
Åz4 ~ 1 µ ´ `4 ~ 2

Åz4 ~ 2 ;
�E4 @ Å�4 ~ 1

a,§g4'�#4 ~ 1

end
Step 4: W 4 @ � ` 4 F��E4
Step 5: if W 4Ø� 0, compute � m 0 so that j�¨ 4ca � �E4 j�ü @ ∆,

_ @ ¨ 4ca � �#4 , return
else� 4 @ ´ `4 ~ 1

Å�4 ~ 1 µ�W 4 ; ¨ 4 @ ¨ 4 ~ 1
a � 4'�#4 ; ´�4 @ ´z4 ~ 1

" � 4�F��#4
end

Step 6: if j�¨ 4 j v ∆
compute � m 0 so that j�¨ 40a � �E4 j ü @ ∆,

_ @ ¨ 40a � �E4 , return, end
Step 7: if j�K ~ 1 j [ j ´z4 j ��Rª[ j�K ~ 1 ´

0 j , _ @ ¨ 4 , return, end
end_ @ ¨ 4 , return

FIG. 11. The Steihaug algorithm
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Step 0: Ó @ 0; ¨ 0
@ 0;

�
0
@ 0;

´
0
@ " ˆB ;

% Note:
R

and
¿

are positive constants.
while Ó . maximum iteration

Step 1: Solve ¶ Å Õ @ ´ Õ
Step 2: Ó @ Ó a 1
Step 3: if Ó @ 1�

1
@ Å

0

else§ Õ @ ´ `Õ ~ 1
Å Õ ~ 1 µ ´ `Õ ~ 2

Å Õ ~ 2� Õ @ Å Õ ~ 1
a,§ Õ � Õ ~ 1

end
Step 4: W Õ @ � `Õ ˆ� � Õ
Step 5: if W Õ � 0, exit:

� @ � Õ , ¨ @ ¨ Õ (B.1)
else if W Õ �-¿��q� `Õ ¶ � Õ � , exit:

� @ 0, ¨ @ ¨ Õ (B.2)
else� Õ @ ´ `Õ ~ 1

Å Õ ~ 1 µ�W Õ¨ Õ @ ¨ Õ ~ 1
a � Õ � Õ´ Õ @ ´ Õ ~ 1
" � Õ ˆ� � Õ

end
Step 6: if j�K ~ 1 j [ j ´ Õ j �ýRª[ j�K ~ 1 ´

0 j , exit: ¨ @ ¨ Õ , � @ 0 (B.3)
end

FIG. 12. MPCG
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