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1. Introduction. This paper is concerned with minimizing a smooth nonlinear
function subject to bounds on the variables:
(L.1) min f(z), [ <z <,
zeER™
where [ € {RU{—o0}}", u € {RU{oc}}", I < u, and f: " — R'. We denote the
feasible set F = {z: [ <z < u} and the strict interior int(F) = {z: [ <z < u}.

Minimization problems with upper and/or bounds on some of the variables form an
important and common class of problems. There are many algorithms for this type of
optimization problem, some of which are restricted to quadratic (in some cases convex
quadratic) objective functions and some are more general (e.g., [2, 5, 11, 13, 14, 15, 20,
22, 23, 24, 25, 29]). However, in contrast to the new approach we analyze here, few
of these approaches represent efficient ways to solve large-scale nonlinear problems to
high accuracy.

The main purpose of this paper is to consider the convergence properties of a
new reflective Newton approach, introduced in [10] for the case where f is a quadratic
function. In particular, here we establish that reflective Newton methods, applied to
twice continuously-differentiable nonlinear functions f, are globally and quadratically
convergent under reasonable assumptions.

Reflective Newton methods appear to have significant practical potential for large-
scale problems. Consider, for example, the results quoted [10] for the “obstacle problem”
on a square m-by-m mesh — see Table 1. The column “its” refers to the number of
iterations required to achieve an accurate solution — the cost of each iteration is roughly
proportional to the cost of a sparse Cholesky factorization of an n-by-n sparse symmetric
positive definite matrix. Full details are given in [10].

TaBLE 1
Obstacle Problem: Lower and Upper Bounds

m n | its
30 900 | 11
40 1600 | 12
50 2500 | 14
60 3600 | 13
100 | 10,000 | 14

A remarkable feature of this type of algorithm, illustrated by this typical example,
is the very slow growth in required number of iterations. Given a class of problems and a
“natural” way to increase the problem dimension, reflective Newton methods appear to
be strikingly insensitive to problem size. Experiments reported in [10] are restricted to
quadratic problems; we are currently experimenting on more general nonlinear problems
and preliminary results continue to support this claim.

A reflective algorithm for problem (1.1) is an algorithm that uses the reflective trans-
formation to maintain feasibility [10]. For a problem with nonnegativity constraints
only, F = {z : > 0}, a reflective mapping is merely the absolute value function,

2



R:R" 2 F ie,ax = R(y) = |y|, where the absolute value notation is meant to
apply to each component. More generally, a reflective mapping (or transformation) for
problem (1.1) is an open mapping R : R" 2% F defined in Figure 1. An illustration
of a 1-dimensional reflective transformation is given in Figure 2.

Case 1: ([; > —o0, u; < )
To evaluate x; = R(y):
w; = |‘y2' — ZZ| mod [Z(MZ — ZZ)], Tr; = min('wi, 2(u2 — ZZ) — wz) + ZZ

Case 2: ([; > —o0, u; = )
To evaluate x; = R(y)i: If y; > l;, x; = yi, else z; = 21, — y;.

Case 3: (I, = —o0, u; < )
To evaluate x; = R(y):: If y; <wuyy x; =y, else x; = 2u; — y;.

Case 4: ([; = —o00, u; = ).
In this case there are no constraints on x; and so x; = ¥;.

Fia. 1. The Reflective Transformation R

Using this reflective transformation R(y), (1.1) can be replaced with the uncon-
strained piecewise differentiable problem:

A

(1.2) min f(y)
where f(y) = f(R(y)). A reflective algorithm for the original problem (1.1) is a descent
direction algorithm?® for f(y) — see Figure 3. Algorithm 1 generates the sequence {yx};
the strictly feasible sequence {x} can be obtained from the relation 2y = R(yx). (Note:
strict feasibility is maintained because the line search does not accept breakpoints —
breakpoints correspond to points on the boundary.)

The straight-line direction s} corresponds to a piecewise linear path in z-space.
This piecewise linear path can be described, recursively, as follows.

For simplicity, and without loss of generality, assume y = x. Define the vector?

(1.3) BR, = max([(l — ) ./ s}, (u—ax) ./ s}1)],

where the notation “ ./ 7 indicates componentwise division. Component i of vector
B Ry, records the positive distance form z; to the breakpoint corresponding to variable

3 Direction s¥ is a descent direction for for f(y) at yp if f(yk tasy) < f(yk) for all positive sufficiently
small «.

4 For the purpose of computing BR we assume the following rules regarding arithmetic with infinities.
If @ is a finite scalar then a + 0o = 00, @ — 00 = —0o, 2 = oo -sgn(a), == = —oco -sgn(a), & =

sgn(a) - oo, G = oo, and =5> = —oo, where sgn(a) = +1if a > 0, sgn(a) < 0 if a < 0.
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Fia. 2. A 1-Dimensional Reflective Transformation Example

Algorithm 1
Choose y; € int(F).
For k =1,2,...

1. Determine a descent direction sj for f(y) at Yk

A

2. Perform an approximate line minimization of f(yx+ as}), with respect to
a, to determine an acceptable stepsize oy (such that «y does not corre-
spond to a breakpoint)

3. Yk+1 = Yk + apsy,

Fic. 3. Descent dir’n algorithm for f(y)

zk, in the direction s}. The piecewise linear (reflective) path is defined by Algorithm 2.
Since only a single outer iteration is considered, we do not include the subscript & with
the variables in our description of Algorithm 2 - dependence on £k is assumed.

Given the current point x; and a descent direction s let pi(«) denote the piecewise
linear path defined by Algorithm 2: For ;' < a < i,

(1.4) pe(e) = b7+ (a — B, )p;.

A two dimensional reflective path is illustrated in Figure 5.

Note that it is now possible to describe Algorithm 1 entirely in z-space without
explicitly introducing either the function f or the variables y. We do this in Algorithm
3 (in Figure 6).

The difference between Algorithm 1 and Algorithm 3 is purely notational. The view
presented by Algorithm 3 has the advantage that it is in the original space — visualization
of the reflective process is natural. The advantage of the first view, Algorithm 1, is that
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Algorithm 2 [Let 8% = 0, p' = 5%, set b° = xy.]
[2, is a finite upper bound on the number of segments of the path to be determined|

For:=1:1,
1. Let 3° be the distance to the nearest breakpoint along p':

B3 =min{BR: BR >0}

2. Define " breakpoint: b = b=t + (3 — B'~1)p".
3. Reflect to get new dir'n and update BR:
(a) p*t =p' | |
(b) For each j such that (b'); = u; (or (6°); =)
o BR(j) = BR(j) + | {52

] (5%);
o (Pt =—(p");

Fic. 4. Determine the linear reflective path p

the algorithm is a straight line descent direction algorithm, a familiar structure. It
is probably useful for the reader to keep both views in mind. In this paper we will
primarily work in the original space (z-space) and Algorithm 3. For simplicity we now
drop the superscript = (e.g., s* becomes s).

What restrictions on s are needed to obtain convergence of Algorithm 37 Clearly
sr needs to be a descent direction for f at x;. However, this is not enough. The
reason for this is that we must get sufficient decrease in f along the path py(a): For
an arbitrary descent direction s; the first breakpoint may be a very short step from
the current point (along si) and there is no guarantee of continued descent past this
breakpoint — the result may be insufficient decrease in f to yield a convergence result.

We use two properties defined in Section 3, “constraint compatibility” and “con-
sistency”, to ensure that sufficient decrease is always achievable. Moreover, to get
second-order convergence we require the use of directions with sufficient negative cur-
vature.

What restrictions on s, guarantee quadratic convergence? It turns out that there
is a Newton system lurking behind the scenes, based on optimality conditions. If we
can guarantee that unit steps be taken (with respect to this system), and satisfy all
other constraints mentioned above, then quadratic convergence will follow. In Section 5
we show that this can be done. Section 6 is concerned with a practical variation of the
basic method suitable for large-scale problems; Section 7 contains concluding remarks

and a look ahead.

Notation: For brevity we denote g = g(x) ef Vi(z); gk f 9(xk); gu défg(:c*) = Vf(z.),

where x, is a specified (usually optimal) point.
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FiGc. 5. A Reflective Path

Algorithm 3
Choose 1 € int(F).
For k =1,2,...
1. Determine an initial descent dir’n sf for f at x; € int(F). Determine the
piecewise linear reflective path pi(«) via Algorithm 2.
2. Perform an approximate piecewise line minimization of f(xx+pe(a)), with
respect to a, to determine an acceptable stepsize oy (such that oy does
not correspond to a breakpoint).

3. Ty = xp + prlow).

Fia. 6. A reflective path algorithm

Optimality conditions. Optimality conditions for problem (1.1) are well-established.
Assuming feasibility, first-order necessary conditions for z. to be a local minimizer are:

(g*)i =0 if ZZ < (.17*)2 < Uy,
(1.5) first order: (94): <0 if (2.); = uy,
(9«)i 20 if (z.): =1

It is interesting to note that the first-order conditions can be expressed as a diagonal
system of nonlinear equations, continuous but not everywhere differentiable. To do this
we define below a vector v(z) and diagonal matrix D(x), where

(1.6) D*(z) = diag(Jo(x))).

i.e., D* is a diagonal matrix with the '* diagonal component equal to |v;(z)|. The
first-order optimality conditions can be written: If a feasible point z, is a local
6



(1) If g; <0 and u; < oo then v; = z; — u;.

(i) If ¢; > 0 and [; > —oo then v; = x; — [;.
(ii1) If ¢; < 0 and w; = oo then v; = —1.
(iv) If g; > 0 and [; = —o0o then v; = 1.

F1G. 7. Definition of v(x)

minimizer of (1.1) then

(1.7) ng* = 0.

Second-order conditions involve the Hessian matrix of f, H = H(x) L Vif(z).
We assume [ is twice continuously-differentiable. Let Free. denote the set of indices
corresponding to “free” variables at point z,:

Free.={i:l; < (x.); < u}.

Second-order necessary conditions can be written®: If a feasible point z, is a local
minimizer of (1.1) then D%g, = 0 and HI"** > 0 where HI"*** is the submatrix of
H,. = H(x.) corresponding to the index set Free,

These conditions are necessary but not sufficient. Sufficiency conditions that are
achievable in practise often require a nondegeneracy assumption. This is the case here.

DEFINITION 1. A point x € R™ is nondegenerate if, for each index i:

gi:() — Zi<lci<ui-

With this definition we can state second-order sufficiency conditions: If a
nondegenerate feasible point z, satisfies D?g, = 0 and HI"*** > 0, then z, is a local
minimizer of (1.1).

The theory we develop allows for some latitude in the manner in which a descent
direction is obtained. Our particular proposal relies heavily on a (reduced) trust region
model to generate directions. In particular, we often determine s, at x, by solving

. 1
(1.8) msm{sTgk + §3TMk5 1Dt sl < Ay, s € Sk}

where Sy is a subspace of R™, Dy is a positive diagonal scaling matrix, and A >
0. Appropriate definitions of matrices M and D are crucial to the determination of
successful directions. We choose

(1.9) M(z) =[H+ J°D%

5 Notation: If a matrix A4 is a symmetric matrix then we write A > 0 to mean A is positive definite;
A > 0 means A is positive semi-definite.
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where H is the Hessian matrix, i.e., H = H(z) = V*f(z); J" is the Jacobian® of v,
where v is defined in Fig. 5. Matrix D% is a diagonal matrix with component 7 defined

v _ @
Dii = Lo

with possible degeneracy. In particular,

for i = 1 : n; vector g™ (z) is an “extended gradient”, extended to deal

(1.10) +_ { gil + 75 i |gi| + [vi|> < 7y

g = lg:] otherwise

where 7, is a small positive constant. Clearly if = is a nondegenerate point and 7, is
sufficiently small then gt = |g|.
The diagonal matrix D(z), used in (1.8), is defined by (1.6), i.e.”,

).

Using definition (1.11), problem (1.8) can be written

B[

(1.11) D(z) = diag(|v(x)|

1 _
(1.12) mgin{ETgk + §§TMk§ :|I15]l2 € A, Dis € Si}
where
(113) Mk = DkMka = DkaDk + JgDi+, gk = Dkgk; s = D;IS,

and D" is a diagonal matrix, D9" = diag(g™).

Typically subspace Sy, is small, e.g., |Si| = 2, and the concerns about s; mentioned
above are satisfied by choosing Sy appropriately. A related reduced trust region idea
has been explored in the unconstrained minimization setting [3, 27]. We discuss the
definition of Sy in Section 6. Given Sy, the subspace trust region problem (1.8) or
(1.12) can be approached in the following way. Let Sy, be defined by the ¢; independent
columns of an n-by-t; matrix V4, i.e®, Sy =< V;, >; Therefore, s = V,s, for some vector
s,. Let Y, be an orthonormalization of the columns of D,;IV;C. Hence,

-1 -1
D;*s =D, Vysy, = Yisy,

for some vector sy,. Therefore problem (1.8) becomes
i 1 —
(1.14) min{sy, Yi'g + 3oy, Yy MiYesy, : [lswills < A}

and set s, = DyYisy,. The solution to (1.14) is of negligible cost once the matrices are
formed, provided |Sy| is small.

6 Matrix JV is a diagonal matrix with each diagonal component equal to zero or unity. For example,
if all the components of u and v are finite then J¥ = I. If variable z; has a finite lower bound and an
infinite upper bound (or vice-versa) then strictly speaking v; is not differentiable at a point g; = 0; we
define Jj; = 0 at such a point. Note that v; is discontinuous at such a point but v; - g; is continuous.

7 Notation: If z is a vector then |z|2 denotes a vector with the i’® component equal to |z|%.

8 If A is a matrix then < A > denotes the space spanned by the columns of A.
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Note that if My is positive definite and the constraint ||sy, ||» < Ay is inactive then
the solution to the reduced trust region problem is s = D;5Y where

(1.15) 5N = —M; g

In a neighbourhood of nondegenerate point satisfying second-order sufficiency, sy is a
Newton step for system (1.7).

Finally, we remark that many of the basic ideas behind the reflective Newton ap-
proach originated in previous work on various convex optimization problems, [6, 7, 8,
9, 21]. Note that convexity is not required in the new reflective Newton approach.

2. The Line Search. It is well known that a descent direction algorithm demands
sufficient decrease at every step in order to achieve reasonable convergence properties.
In the unconstrained setting, min f(z), several such sufficiency conditions have been
proposed. For example, Goldfarb [17] uses the modified Armijo[l] and Goldstein[18]
conditions: Given 0 < 0; < 0, < 1 and a descent direction s, with zy11 = zp + agsg,
oy, satisfies the modified Armijo/Goldstein conditions if

1

(2.1) F@rer) < flen) + ol awgy sk + Fai min(sy Hes, 0))
and

1 .
(2.2) Flarsn) > flar) + oulargs s, + 5% min(sg Hysy, 0)).

Roughly speaking condition (2.1) can be interpreted as restricting the step length from
being too large relative to the decrease in f; condition (2.2) can be interpreted as
restricting the step length from being relatively too small. Both conditions can be
combined to form a single expression: If we define

fzra) = f(zr)

T 1 2 : T
argi sk + zoj min(sy Hesg, 0)

(2.3) Pr(a) =

conditions (2.1) and (2.2) can be expressed as
(2.4) o < ¢k(ozk) < Oy.

We use conditions (2.1) and (2.2) for the piecewise linear path minimization process
where 2441 = 2 + pr(ax) and py is defined by (1.4).

Next we establish that there is an interval (oy, a,), depending on k, such that for
all o € (o, ), (2.4) is satisfied.

THEOREM 1. Assume that f(x) has two continuous derivatives and either gl'sj, < 0
or g;{sk =0 and sfﬂksk < 0 where x, € int(F). Then either f is unbounded below
along the piecewise linear path pp(«) or, for 0 < oy < 0, < 1, there exists an interval
(au, o), depending on k, such that condition (2.4) is satisfied.
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Proof. First we note that lim,_q¥r(a) = 1. To see this consider that from Taylor’s
theorem, for a < 3,

T 12,710
agy sk + ya”sy, Hysy,

Yi(a) =

agl s, + %aQ min(s} Hysy,,0)’
where
Hy = H(zp + 0(a)asy), 0<0(a)<1.

Therefore, if gl's; # 0, ¥%(0) = lim, o ¥x(a) = 1 and so ¥%(0) > o, > oy; if sy =0
then s Hys; < 0 and clearly 1, (0) i limy—0 ¥r(a) = 1 and so 14(0) e limg 0 ¥i(a) =
1.

Assume ¥y (a) < o for some o > 0. Let «,, be the smallest « such that ¥, (a) = o).
Since ¥(0) > o, > oy it follows that ¥x(a) > oy for all a € (0,«,). Therefore by
continuity there exists a positive a; < a,, such that ¥y(a) < o, for all a € (a, ay).
Therefore (2.4) is satisfied on (ay, o).

Now assume the contrary; i.e., ¥x(a) > o for all positive a. But since either
g;{sk <0or S%gk =0 and S{Hksk < 0, it follows that

1
Jiry agf s, + Lo min(s] Hys,0) =~
Therefore to achieve ¥y (a) > ay, for all positive «, it must be that

lim f(xg + pr(@)) — f(ag) = —oc.

a— 00

Consequently f is unbounded below along the path pi(a) as a — oco. [

The interval (g, o, ) contains a finite number of breakpoints. Consequently, we can
choose ay, € (aq, @) such that aj is not a breakpoint.

A basic reflective path algorithm can now be stated. To allow for flexibility, espe-
cially with regard to the Newton step, we do not always require that both (2.1) and
(2.2) be satisfied. Instead, we demand that either both these conditions are satisfied or
(2.1) is satisfied and «y is guaranteed to be bounded away from zero, e.g., a, > p > 0.
The latter conditions are used to allow for the liberal use of Newton steps and do not
weaken the global convergence results.

Note that since x1 € int(F), it follows that x) € int(F).
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Algorithm 4 [ p is a positive scalar.]
Choose 1 € int(F).
For k =1,2,...
1. Determine an initial descent dir’n s, for f at x; . Note that the piecewise
linear path py is defined by xy, si.
2. Perform an approximate piecewise line minimization of f(xx+pe(e)), with
respect to a, to determine «y, such that:
(a) ai does not correspond to a breakpoint
(b) condition (2.1) is satisfied
(c¢) Either
i. ay satisfies condition (2.2), or
. ap >p>0
3. Tpy1 = xp + prlow).

Fia. 8. A reflective path algorithm satisfying line search conditions

3. Constraint Compatibility and Consistency. Satisfaction of the piecewise
line search condition in Algorithm 4 is not sufficient to ensure convergence. However,
it turns out that this condition along with two restrictions on the descent direction s,
“constraint-compatibility” and “consistency”, are enough to obtain first-order conver-
gence, i.e., to guarantee that {Digy} — 0.

We begin with a discussion of constraint-compatibility.

DEFINITION 2. A sequence of vectors {wy} is constraint-compatible if the se-
quence { Dy *wy} is bounded. °

Constraint-compatibility of {s;} is important because it facilitates a sufficiently
long step along si. In particular, if z; is close to a boundary then a direction satisfying
only gl's; < 0 may not guarantee that a sufficiently long step can be taken to obtain a
convergence result — s; may point directly at a nearby constraint and descent beyond
this first breakpoint, along py, is not guaranteed. (Conditions (2.1) and (2.2) can still
be satisfied though.) Constraint-compatibility helps avoid this problem by ensuring
that the distances to breakpoints (corresponding to “correct sign conditions”) remain

bounded away from zero. Specifically, if {s;} is constraint-compatible then the positive

. . . . lj—xg. u;—Tg. .
distance to constraint j along sz, BRk(j) = max{%,%}, is bounded away
J
from zero for any j with the correct “sign condition”. The “sign condition” refers to

. lj—zy. u;—Tg, . .-
a consistency between v; and max{%, %} The “sign condition” holds when
J J

|vk, |

Isk; |

5,9k < 0, and so BRy(j) =

¥ Recall that the diagonal matrix Dy, is defined by (1.11), i.e., D7 = D?*(z;) = diag(|vk])
11



THEOREM 2. If {si} is a constraint-compatible sequence then {BRy(j) : BRi(y) =
vk

m} is bounded away from zero.
J

Proof. By constraint compatibility there exists p > 0 such that, for all iterations &
and all indices 7,

Clearly if BRk(j) =

Theorem 4 below establishes that several useful directions satisty the constraint
compatibility requirement. A technical lemma, and a compactness assumption, are
required before stating and proving Theorem 4.

LEMMA 3. Let {s;} be a sequence of vectors and assume {sy} is bounded. Assume

(31) Ck; Sk, = |

where ey, satisfies |er,| > gf. Assume {z;} is bounded. Then {si} is constraint-
compatible.

Proof. Consider any subsequence, denoted by indices k. If {vz,} is bounded away
from zero then {%} is bounded since, by assumption, {sx} is bounded. On the other
Uk1

hand, if {vz,} — 0 then by (1.10), |er,| > 7, > 0. But {z;,} = {Z=%} is bounded by

|U |
assumption; therefore, {I } is bounded. Since every subsequence of {I } is bounded,

the sequence itself is bounded [

Compactness and Smoothness Assumption: Given initial point z; € F, it is
assumed that the level set £ = {z: = € F and f(z) < f(x1)} is compact. Moreover,
we assume f(z) is twice continuously-differentiable on an open set D O F.

THEOREM 4. Assume 0 < A} < Ap < A, < oo, where A; and A, are positive
scalars satisfying Ay < A,. Under the compactness and smoothness assumption, the
following definitions yield constraint-compatible sequences {sy}:

1. S = _D}%gk
2. sy = —Disgn(gr) *°

10 1f 2 is a vector then w = sgn(z) is a vector: w; = 1if z; > 0, w; = —1 if z; < 0.
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3. sp = Dyug, where uy s a unit etgenvector of My, corresponding to a non-positive

etgenvalue
4. s = Dyp5Y where 57 is the Newton step in the scaled space, 5% = —M; " g,
where gr = Dygr, and assuming |33 || < Ap < A, and My, positive definite

N
5. s = ﬁjﬂ and assuming |5 || > Ap > A; and My, positive definite

6. si is the solution to (1.8) with Sy = R™.

Proof. Constraint-compatibility of the first two choices for s; follows directly from
the definition and boundedness of {gy}.
For case 3, let (pug,ux) be an eigenpair of My with pj, < 0. Then

(;ka — J;;Di+ )Sk = DinDkuk, HE § 0,

where Dg+ = diag(g{). For each index i let k; denote the indices of any subsequence

such that |vg,| < 1. Then J7 =1 and |kl — Ji Di | > gk Using compactness,
{H;Dzuz} and {s;} = {D; uk} are bounded. Therefore by Lemma 3, {s;} is constraint-
compatible.

For case 4, note that s, satisfies

JDY s, = —D2(gi + HyDy5Y).

But if ||5)]| < A, < A, then, using compactness, both {g; + Hy D5y} and {s;} are
bounded. Constraint-compatibility then follows from Lemma 3.
In case 5,

Hy.D,sY

Hsk (A

JDY s, = —D¥( ).

Hkag

| } is bounded.

But |[sY]| > Ar > A; > 0; therefore, using compactness, {” N”

lls

N
ﬁng’“; constraint-compatibility follows from

The sequence {s;} is bounded since s, =

Lemma 3.
Finally in case 6 note that s; satisfies

(3.2) (J' DS + ppl)sk = —D2(gx + HyDy51)

for some gy > 0 and s, = D;'sp. But 5] < Ax < A, and so, using compactness,
both {gr + HrDysr} and {s;} are bounded. Therefore, Lemma 3 can be applied to
yield constraint-compatibility. [

Note that a constraint-compatible sequence {s;} can be obtained by mixing the
various steps s; given in Theorem 4.

Constraint-compatibility is not sufficient to guarantee convergence. It is also im-
portant that first-order descent, represented by glsi, be consistent with first-order
optimality, represented by D?g,. The following definition captures this concept.
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DEFINITION 3. A sequence {wy} satisfies the consistency condition if {w} g.} —
0 implies {Dygr} — 0.

In Theorem 5 we give five useful examples of sequences that satisfy consistency.

THEOREM 5. Under the compactness and smoothness assumption, the following
definitions yield sequences {s} satisfying the consistency condition.
1. s, = —Digy
2. s = —D3isgn(gr)
3. sp = Dy5Y where s = —M[ gy, assuming M}, is symmetric positive definite
4. Sk is a solution to (1.8) with Sy = R".
5. s, ts a solution to (1.8) where Sy has the property that w, = Dyw, € Sy
for some vector wy such that {||wk||} is bounded away from zero and {wy} is
consistent, i.c., {wlg,} — 0 implies {Dygr} — 0.

Proof.
1. The first case is clear since —si gz = HDkngE.
2. In this case sl gp = sgn(gx)? Digr = || Drlgx|2||, and so the result follows.
3. If s 1s the Newton step then

—gF sk = (Drgr)" M7 (Digr).

But by compactness M, is bounded, i.e., there exists a finite bound pys such
that ||My]|2 < par. Therefore, —gt s, > iHDkngQ. The result follows.

4. The solution to (1.8) satisfies sy = Dy5; where'!
5p = —(My + )T gx + wruy

where uj is a unit eigenvector corresponding to the most negative eigenvalue
of My and glu} = 0. Using a trust region solution characterization, e.g.,
[28], the matrix M}, + pil is positive semi-definite and g, € range(My + pxl).
Since Ay > A; > 0, it follows that {ux} is bounded above. Therefore, using
compactness, { My + pxI} is bounded and so there exists a positive scalar 7y
such that

| My, + prIl|l2 < 7ar.
Therefore,
_ 1
—gp 55 = (Drge)" (My + pu )Y (Dygr) > T—HDkng2
M

and the result follows.

I If A is a matrix then A1 denotes the pseudo-inverse of A.
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5. Let S =< Vi > for some full-column rank matrix Vj; let Y, be an orthonor-

malization of the columns of D,;lvk. Since wy € S we can assume, without
Wi

Y- We can write the
[kl

loss of generality, that one of the columns of Y} is

solution to (1.8) as s = Dy Yjsy,, where
sy, = —(YI MYy + ue )Y, g1 + wpup

where uj is a unit eigenvector corresponding to the most negative eigenvalue
of YT M,Y; and (Y,Tgr)Tul = 0. Using a trust region solution characterizion,
e.g., [28], the matrix I MY} + pil is positive semi-definite and (VI gx) €
range(Y,I MYy + ppl). Since Ay > A; > 0, it follows that {yu;} is bounded
above. Therefore, using compactness, {Y;” MYy, 4z I} is bounded and so there
exists a positive scalar myy such that

VI MYy + |2 < 71

Therefore,

_ 1
—gp sk = (YeDiege) (VI MyYs + i) TY, (Drgr) > EHYJCTDkngQ

Wi

Therefore {sl gy} — 0 implies {||Y,I Digr||} — 0. However, e
of Y, and {||w;]|} is bounded from zero. Therefore, {||Y,] Digr||} — 0 implies
{wfg,} — 0 which implies {Dygr} — 0 since {wy} is consistent (by assump-

is a column

tion).
=

4. First-order convergence of the reflective path algorithm. In this section
we establish that constraint-compatibility and consistency allow the reflective path al-
gorithm, Algorithm 4, to achieve first-order convergence. Recall that a feasible point z

is a first-order point if and only if D*(z)g(z) = 0 where D is defined by (1.11).
All results are under the Compactness and Smoothness Assumption (Section 3).

Before stating the main result of this section a technical result is needed which
says that the change in f along pj is primarily represented by the linear term g} s; as
a — 0.

LEMMA 6. Assume that {x.} is generated by the reflective path algorithm, Algo-
rithm 4. Let {sy} be a sequence satisfying the consistency and constraint-compatibility
conditions. Assume {ay} — 0. Then,

flarsr) = f(ar) = awgy sk + O(a}).

Proof. Observe that if 0 < 8. < ay corresponding to variable z;, then Sk, 9k, > 0
(from Theorem 2 and {a;} — 0), where 3} is defined by Algorithm 2.
15



Without loss of generality, and for notational simplicity, suppose that the ordering
of the breakpoints along s; corresponds to the natural variable ordering. Note that
since {a;} — 0 we can assume that the indices corresponding to 0 < 3! < a; are

distinct and so 3, = BRy(:) where BR is defined by (1.3). Assume that

(4.1) 0< Bl <ap< Bt j=1:1t.
Therefore,
(42) Sk]gk] Z 0, J = 1 . tk.

By definition of the piecewise linear path pj (see Algorithm 4) and using (4.2),
(4.3) Ghsk > gl J=1:t+1.

Now using the definition of the breakpoints bé? (Algorithm 2) and applying Taylor’s
theorem (repeatedly),

f(oen) = (o)
- f<:ck+1>—f<bzk>+§[f(b§;>—f(b§;—l>] + ) = fan)

= (o = BHVOF) P + Z Bl = BV P+ BV (@) Tpp + O(ag)

= (=BGt + Z[ﬁk el + Blalpk + O(ad).
Now apply (4.3) to get

Flappn) = flzr) < (= B8 gtbse + Y181 — B Mot sk + Blatse + O(ad)

i=2

= argisr + O(a}).
n

The main result in this section, first-order convergence, i.e., {Digr} — 0, follows.
Theorem 7 also establishes that {a? min(s Hysy,0)} — 0; this is not part of the first-
order conditions but is useful subsequently.

THEOREM 7. Assume that {x;} is a sequence generated by the reflective path
algorithm (Algorithm /) and that {s;} is the corresponding sequence satisfying both the
consistency and constraint-compatibility conditions. Then the corresponding sequences
{D%g1} and {a}min(s] Hysi,0)} converge to zero.

16



Proof. Since condition (2.1) is satisfied,

m—1

fl@m) = flxo) = Y (f(zh4r) — f(zr))
k=0
< mz_: (a;ozkg;{sk + %U[O&i min(sfﬂksk, 0))
k=0
< 0.

By the compactness and smoothness assumption, {f(x)} is bounded on F; therefore,
. T Loy
khm (o10k9; Sk + 591% min(sy, Hysg,0)) = 0.
But
Jlozkg,{sk <0 and o0f min(szﬂksk,()) <0

and so

. T _ : 2 . T _

khm argy Sk =0 and khm ai min(sy, Hysg, 0) = 0.

Now we establish that {D?g,} converges to zero by contradiction. Suppose this is not
true. Since {s;} satisfies the consistency condition, {gis;} does not converge to zero.
Hence gi sy < —c for some ¢ > 0. Therefore, {a;} converges to zero. Using Lemma 6,

Jim y(ay) = lim flarr) — flax)

k—oo gl sy + %ai min(s} Hysy,0)
T 2
arg; sk + O(af)

> lim
T k—oo apgt sy, + %ai min(s} Hysy,0)
= 1.
This contradicts (2.2); hence, {Digx} converges to zero. ]

Theorems 4 and 5 provide several examples of directions satisfying consistency
and constraint-compatibility; therefore, by Theorem 7, Algorithm 4 achieves first-order

convergence with these choices.

5. Second-order convergence. In order to achieve a second-order algorithm
(i.e., guarantee convergence to a second-order point; obtain quadratic convergence) we
further specify the reflective path algorithm (Algorithm 4). In particular, we now as-
sume that when Mj, is positive definite and ||5) || < A then the Newton step s = D5
is taken; if M, is not positive definite the direction s, is defined by a reduced trust region

12,

problem *#: s; solves

) 1 _
(5.1) msln{sTgk + §5TMk3 D s|ls < Ay, s € Skl
17



Algorithm 5
Choose 1 € int(F).
For k =1,2,...,

1. Determine initial descent dir’n sj, for f at xz: If M} is positive definite
and ||5Y|| < Ay, choose s = Dy3Y. If Mj is not positive definite choose
Ay € [Ar, Ay], choose subspace S, and solve (5.1) to get si.

2. Determine ay: If sy = si and zj + pi(1) satisfies (2.1), then set oy = 1;
otherwise, perform an approximate piecewise line minimization of f(xy +
pr(@)), with respect to «, to determine «y, such that
(a) ay is not a breakpoint;

(b) «y satisfies (2.1) and (2.2).

3. Tpy1 = xk + prlow).

FiGg. 9. A second-order reflective path algorithm

Algorithm 5 presents a second-order reflective path algorithm.
Note: If ap = 1 is accepted by the line search but corresponds to a breakpoint, then
modify ay: ap = a; défl — ¢, where &; is not a breakpoint, &, satisfies (2.1), and
€r < Xal|lDrgi| for some y, > 0.

The first important result of this section, Theorem 9, is that provided Sy is chosen
so that negative curvature of M}, is “well-represented”, Algorithm 5 generates points
{1} such that the second-order necessary conditions are satisfied at every limit point

of {xx}.

All results in the remainder of this paper are under the Compactness and Smooth-
ness Assumption (Section 3).

A preliminary technical result is required. We denote the smallest eigenvalue of a
real symmetric matrix A by Amin(A). So if A(A) = {A1, Ag, ..., An}, with Ap <Ay <0 <
Ay then Apin(A) = Aq.

LEMMA 8. Assume that {x,} is generated by the second-order reflective path al-
gorithm, Algorithm 5, where the initial point is strictly feasible. Let {sy} satisfy the
consistency and constraint-compatibility conditions. Let S, =< Y, >, for some or-
thonormal matriz Yy, be chosen such that when Amin(My) <0,

(52) )\mln(}/kTMk}/k) S maX(_ency T)\min(Mk))y

for some ¢,. > 0, 7 > 0. Then for any subsequence satisfying {min(sl Hys;,0)} — 0,
the corresponding subsequence satisfies limy_, oo {min(Amin(My),0)} = 0.

Proof. In this proof subscript k is identified with the subsequence under consider-

12 We do not (yet) specify how s might be determined when Mj, is positive definite and [|sY|| > Aj.
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ation. By definition, s; satisfies
+
si Hesn + sy, Y, DY Yisy, + pellsv |* = sy, Yy Dign.

But by Theorem 7 limy,_.o, Drgr = 0, by assumption limy_..,{min(s Hys;,0)} = 0, and
Di+ is positive semidefinite. Moreover, since s; solves (5.1), ||sy,|| = Ar > A; > 0;
therefore,

dn et =0
However,
0 < — min(Aumin (Y MiY3),0) < pug,
hence
Jim {min(Awia (Y M%), 0)} = 0,

and applying assumption (5.2),

lim {min(max(—é€uc, 7 Amin( Mx)),0)} = 0.

k—o0

Hence

lim {min(Amin(M3z),0)} =0

k—oo

THEOREM 9. Assume that x. is a nondegenerate limit point of {xy}. If the as-

sumptions of Lemma 8 hold then Apin(M.) > 0.

Proof. Our proof is by contradiction. Assume

)‘min(M*) < 0.
Applying Lemma 8, this means that there exists a subsequence with

kh_{EO min(sgﬂksk, 0) < 0.
Using Theorem 7, limy_. o, ay min(s} Hysg,0) = 0; hence, limy_.., a; = 0.
By Theorem 7, D,.g. = 0, and by assumption, z, is a nondegenerate point; therefore,
for k sufficiently large, sgn(gx,) = sgn(g.,) if j € Free.. Hence, for any j ¢ Free,,

BRi(y) = |Uk]|. Alternatively, if j € Free. then |BRk(j)| — oo. By Theorem 2,

|5k]|

{BR(j) : BRr(j) = :Z:J:} is bounded away from zero. It follows, since aj, — 0, that

0 < oy, < B} for sufficiently large k, where 3 is defined by Algorithm 2. Therefore, due to
19




the absence of breakpoints on (0, a; ), Taylor’s Theorem can be applied straightforwardly
to yield, for some subsequence:

. ) Tr + apsgy) — flx
khm ¢k(ak) — khm jf( k . 219 k? .;( k)
—00 —oo Qg Sk + yf min(sy Hysy,0)
5 arglsy, + %ais;{H(:ﬂk + 0(a))sk
= M T T 2T H
k—co aggi Sk + S0 SE Sk
= 1.

0 S H(Olk) S (8953

This contradicts condition (2.2). Hence we conclude that every nondegenerate limit
point is a second order point. [

Next we work toward establishing convergence of the entire sequence {x;}.

First we establish that there is a natural (local) Newton process for problem (1.1).
This view is similar to the development given in [6] for the convex quadratic prob-
lem. Let x. be a specified nondegenerate point satisfying the second-order sufficiency
conditions.

Consider a finite set V of functions defined with respect to z.:

(5.3) Fy(z) = Dy(x)g(z)
where D, (z) = diag(v(z)) and v(z) is a vector defined

+lor —lora;—u;ora;,—1; ifgl=0
(54) v, = xr; — U; if g;-‘ <0
z; — ; if gF > 0.

Note: When ¢* = 0 the choice v; = x; — u; is valid only when w; is finite; the choice
v; = x; — l; 1s valid only when [; is finite.

Each function F), is twice continuously differentiable; furthermore, F,(z.) = 0 for
every possible v. Of course F, cannot be used computationally since x, is not known a
priori. However, since each step of our proposed algorithms is an approximate Newton
step for exactly one set of equations based on the definition of v(z), i.e., v(z) = v(z), V
and F), are useful in a theoretical sense to help establish asymptotic convergence results
of our proposed algorithm.

The next result formalizes the simple observation that any member of V can be used
interchangeably with any other, at any iteration, and there remains a neighbourhood
around z, retaining quadratic convergence properties of a Newton process.

THEOREM 10. Let V = {F, : R* — R"} be a finile set of functions satisfying the
following assumptions:
o Fach F, s continuously differentiable in an open convez set C.
o There is a x. in C such that F,(z.) = 0 and VF,(x.) is nonsingular for all
F,es$.
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o There is a constant ko such that for all F,, € S,
(5.5) IVE,(z) = VF,(2.)|| < kollz — 2.,

forxz € C.
Let {1} and {s;} be sequences such that xypyq1 = x1 + s and suppose

Ny
st — s || = O(llex — 1),
where Sivy’“ is the Newton step for one of the function F,, €V at xy, t.e.,
N,

st = —(VE,(2x)) 7 Fy ).

Then, for C sufficiently small, {xy} converges quadratically to z*.

Proof. The argument is straightforward and uses a standard result in the last step,

e.g., [26],:

ks — 2l = Jlon+ s — 2|
= lop 4 0% —wtsp— s |
< lew 4 sp 7 =l + s — sp |l

Oz — .|}

Our next main result is that the local reflective Newton method is locally and
quadratically convergent. The Local Reflective Newton Method, given in Algorithm 6,
is merely Algorithm 3 with direction s, specified as the Newton step and «ay chosen so
that |ax — 1| = O(]|zx — z«||). We assume that x; € int(F).

Algorithm 6
Choose 1 € int(F).
For k =1,2,...,
1. Solve Mﬁfcv = —gr = Digr, set s, = Dkgiv.
2. Determine oy, s.t. o — 1] = O(]|@r — z.]|) and i + pr(ax) € int(F).
3. Ty = xp + prlow).

Fia. 10. A local reflective Newton method

Note that the k" iteration is computable provided z; is sufficiently close to .
and z; # z.. To see this note that the Newton direction and the step size «j are
always computable in a neighbourhood of z,. In particular, Mj is positive definite
in a neighbourhood of z,, assuming z, is nondegenerate and satisfies second-order
sufficiency, and gr # 0 unless x; = x.. Stepsize o = 1 satisfies the stepsize condition
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(step 2. in Algorithm 5) unless @y + pr(1) is on the boundary, i.e., (zx + pr(1)); is tight
for some index j. In this case o can be chosen slightly smaller than unity, satistying
lag — 1] = O(||xx — ||, and strict feasibility will be maintained. Computationally, the
condition |ay — 1| = O(]|@r — .||) can be assured by using the facts that ||Dygx| =
O(||zr — z.||) and || Drge|| is computable at zy.

A key observation is that, provided z, satisfies nondegeneracy and second-order
sufficiency and z; is sufficiently close to z,, the search direction s; generated by Algo-
rithm 6 is a Newton step for one of the functions in V. Therefore, to establish quadratic
convergence we focus on the relationship between py(ay) and sg. The following result
provides the necessary connection.

LEMMA 11. Let x, be a nondegenerate point satisfying second-order sufficiency
conditions. Assume that v(z) is chosen such that v(z) = v(x). Let s™(x) be the
corresponding Newton direction, i.e.,

(5.6) sN(z) = —(D*H +J'D?)"'D%g

where g = g(z) = Vf(2), H = H(z) = V*f(z), D' = DI(z) = diag(lgl), D* =
D*(z) = diag(|v(z)]), J* = J?(x) is the diagonal Jacobian'® matriz of v. There exists
an open neighborhood C containing x. such that for all * € int(F)NC, s (x) is well-
defined and for each j ¢ Free,,

(5.7) 1= 87 (2)] = Ol — =l])

where ﬁJN = ||:fv((z))l|.

Proof. Since z, satisfies nondegeneracy and second-order sufficiency, it follows that
the matrix D®H 4 J*D9 is nonsingular in a neighbourhood of z, and so s"V(z) is
well-defined. From the definition of the Newton step (5.6) it follows that if j ¢ Free.,

0
5 = —lus| - sgn(gy) — L2 (a5,
1951
which implies
o Ll Ny < 16 < 1ol o il g oy
(5.8) il = 5 [(Hs™ ) < sj | < vl + =5 1(Hs7);-
1951 1951

The first inequality in (5.8) uses the fact that g7 # 0 (by nondegeneracy), and HsN — 0
as ¢ — x*. Therefore,
|(H5Y),] < |57 <14 |(H™),]

193] |0 A

(5.9) -

13 Matrix J? is a diagonal matrix with each diagonal component equal to zero or unity. For example,
if all the components of u and v are finite then J¥ = I. If variable z; has a finite lower bound and an
infinite upper bound (or vice-versa) then strictly speaking v; is not differentiable at a point g; = 0; we
define Jj; = 0 at such a point. Note that v; is discontinuous at such a point but v; - g; is continuous.
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But, by nondegeneracy and continuity, |g;| is bounded away from zero in a neighbour-
hood of z,; H is bounded; ||s™ || = O(||z — z.]|); therefore, from (5.9) it is easy to show
that |1—ﬁJN|:O(Hx—"E*H) [

THEOREM 12. Let x, be a nondegenerate point satisfying the second-order suffi-
ciency conditions. Assume that {xy} is generated by Algorithm 6. Then, for x; € int(F)
and sufficiently close to x., {xr} € int(F) and {x} converges quadratically to x..

Proof. Let 3 be the steplength to the first breakpoint along direction s;. If ap < 3}
then pr(ax) = apsy where si, is the Newton step. However, |a; — 1| = O(||xr — z.]|)
and since sy is the Newton step for some function in F, ||si|| = O(]|xr — x.]|); therefore,
|lpr(ax) — skl = O(]|zx — z4]|*) and so Theorem 10 applies and the result follows.

Assume that 3% < a; < B*'. From the definition of the reflective process, we

can write

iy

pe(ar) — sk =3 (B — By )Pk + (an — BE)pE™ + Bisk — sk

1=2

But applying Lemma 11,

1Pk (k) = sill = O[]l - lzx — .])

But sy is the Newton step for some function in F; hence, ||si|| = O(||zr — x.]|). It
follows that ||pr(ax) — skl| = O(]|zx — z.||*); applying Lemma 10 the result follows. m

We have established global convergence results for Algorithm 4 (and therefore Algo-
rithm 5) and we have established that the local reflective Newton method, Algorithm
6, yields quadratic convergence. We now show that Algorithm 5 reduces to Algorithm
6 in a neighbourhood of a nondegenerate second-order point: global and quadratic
convergence properties follow. In particular, we show that in a neighbourhood of a
nondegenerate point satisfying second-order sufficiency conditions, a Newton step will
satisfy line search condition (2.1).

THEOREM 13. Assume x, is a nondegenerate point satisfying second-order suf-
ficiency conditions and 7, is sufficiently small **. Let 0 < o7 < % Suppose {xy} is

generated by Algorithm 6. Then for xy sufficiently close to x, and k sufficiently large,

(5.10) f(xn + prlar)) < flag) + oi(ghse + %min(s{Hksk, 0)).

Proof. Suppose there are t;, — 1 breakpoints by, b, ..., b, _1, to the left of ay,

corresponding to step lengths 3%, 5%, ..., Z’“_l. For notational simplicity let us label

14 7, is used in the definition of the extended gradient (1.10).
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zp + pr(ag) with b5, Clearly,
tr—1

(5.11) Flar+ prlan)) = flz) = f(b;) — flae) + X_: [F(0) = F(BL)]:

Note that pt™' = D}"*'s; where D]+ is a diagonal matrix with each diagonal entry

equal to £1; therefore HpZ—HH =

I <<ty —1,
PO = £(By)
= (B = B9 P +
= (B = Bg(b) P +
= (B = Bgit +
= (B = Bgepi™ + 58 = B (se) DY HLDE™ 51+ o[k 1)
(B = Bgi pitt + olllsell).

O(||sk]|). Consequently, applying Lemma 11, for any

1
S8 = B () T Hp 4 o8 = Bup )

1 z 7 7.7
S8 = B () Hp + o(llskll®)

+ (B = B Hip + ol [lsll?)

Moreover, using Taylor’s theorem and Lemma 11,

fby) = flzx) = Bighse+ - (ﬁk)2 § Hisi + o(||se]|?)

1
55k Hisk + o(|gi sil) + ol [l ).

_ T
= gk5k+2

The most difficult term to deal with is ¢} pi™'; however, we can show that |¢] pi| =

O(—g?'s;.) and this leads the way to the final result. To show this we use the fact that,
due to second-order sufficiency, there exists g > 0 such that for all k sufficiently large,

(5.12) st Misy > pllsell?,
and
si Misy > pllsill”.
But since s; is the Newton direction,
gr = —Mpysp = —D;leD,;lsk = —D;leEk;
therefore,
(5.13) — gi sk = 55 Mise > pl|se]|*.

But pi! = DJ*'s, where D;**! is a diagonal matrix with each diagonal element equal

to 1. Hence, using the boundedness of {M;},

(5.14) | — gi Pt = |5k DI Mysy,| = |5t Dy Mysi| = O(]|5k %)
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Therefore, combining (5.13) and (5.14),

(5.15) | = gr ot = O(—gj sx)-

Collecting together the terms above, and applying Lemma 11, (5.11) becomes

1
flan + prlow)) — flax) = gp sk + §5£Hk8k + o(|g¢ skl) + o([|skll*)-

But —gis, = sk Mysy, > p|sk]|?, from (5.12). Therefore,

1
(5.16) flar+ pelar)) — flzr) = gise+ §Sfﬂk3k + o(|g7 sk])
1 1 g
= §ngSk - 55517;3 sk + o(|g7 sk]).

But, for k sufficiently large,

1-2
(5.17) o(lgFsel) < L2 r,

2
and —st,?sk < min(s} Hysg, 0) and so, using (5.16).
I .
o+ pilen)) = F(ex) < sl + & min(sT Hess,0)

which implies for o; < 1,

Flai+ prloe)) — F(e2) < on(sTge + 5 min(s] sy, 0))

THEOREM 14. Assume {x} is generated by Algorithm 5 and 1, is sufficiently
small. Let {sy} satisfy constraint-compatibility and consistency. Suppose Yy is a matriz
with orthonormal columns and let Sy =< YY) > be chosen such that, when )\min(Mk) <0,

(518) )\min(E/kTMkifk) S maX(_6n67 T)‘min(Mk))a

for some €,. >0, 7 > 0. Then,
o Fvery limit point of {x} is a first-order point.

o Fvery nondegenerate limit point satisfies the second-order necessary conditions.
o [f a nondegenerate limit point x, satisfies second-order sufficiency conditions
then, provided 7, is sufficiently small, {x1} is convergent to x.. The convergence

rate is quadratic, i.e.,

2k = 2.l = O(lzx — z.]1%).
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Proof. By Theorems 7 and 9 every limit point satisfies the second-order necessary
conditions. Let z, be a limit point satisfying nondegeneracy and second-order sufficiency
conditions. By Theorem 13 a unit step size'?, for some constant x, > 0. will satisfy (2.1)
for ||z — x.|| sufficiently small. Therefore, for ||z) — x.|| sufficiently small, Algorithm 5
reduces to Algorithm 6: quadratic convergence follows from Theorem 12. [

Therefore if we determine s, by solving (5.1) at each iteration with S, = R", for
example, then the assumptions of Theorem 14 will be satisfied and so second-order
convergence will be attained. We state this formally.

COROLLARY 15. Assume x1 € int(F) and let {xy} be generated by Algorithm 5
with {si} determined by solving (5.1) at each iteration with S, = R"™. Then,
o Fvery limit point of {x} is a first-order point.
o Lvery nondegenerate limit point satisfies the second-order necessary conditions.
o If a nondegenerate limit point x, satisfies second-order sufficiency conditions
then, provided 7, is sufficiently small, {xy} is convergent to x.; the convergence
rate is quadratic, i.e.,

2k = 2.l = O(lzx — z.]1%).

Proof. By Theorems 4 and 5 the sequence {s;} satisfies constraint-compatibility
and consistency. Since (5.1) is used to define s, with S = R”, it follows that condition
(5.18) is satistied. Therefore, the assumptions of Theorem 14 are satisfied and the result
follows. [

6. A Practical Reflective Newton Algorithm for Large-Scale Problems.
Algorithm 5 allows for some freedom in the determination of the direction s;. As
we have already remarked, if we determine s; by solving (5.1) at each iteration with
Sk = R", then second-order convergence ensues (Corollary 15). However, this choice
can lead to expensive subproblems (5.1), especially when n is large. Therefore it is
worthwhile exploring alternative choices for Sk, particularly if we can maintain the
strong convergence properties for small values of |Si|. Below we propose a specific way
to choose Sj, restricting |Sg| < 2, whilst retaining strong second-order convergence
properties.

Constraint-compatibility plays a key role in the convergence of a reflective path
algorithm. If a reduced trust region problem (5.1) is used to solve for a direction s; —
which, in turn, defines the piecewise linear path p; — the subspace S must be chosen
with constraint-compatibility in mind. It is easy to see that if s; solves (5.1) for some
subspace Sy then {D;'s;} is bounded. This observation leads to the following two
technical results.

15 If ap = 1 corresponds to a breakpoint then oy = & = 1 — ¢; where &;, is not a breakpoint, &y
satisfies (2.1), and €x < Xal||Drgrl|
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LEMMA 16. Let {Y}} be a sequence of matrices where each matriz Yy has orthonor-
mal columns and suppose Sy =< DpYy >. Assume every column of DYy generates a
constraint-compatible sequence. Let uy, € Sy; assume the sequence { Dy uy} is bounded.
Then, the sequence {ug} is constraint-compatible.

Proof. If up € Sy, then uy, = Dy Y,w;, for some vector wy. But {D;luk} is bounded
by assumption; therefore, {Yjw;} is bounded and, by orthonormality of the columns
of Yy, the sequence {wy} is bounded. It is now easy to see that {uy} is constraint-
compatible, i.e., {Di?uy} is bounded. To see this notice that the sequence generated
by any column of Dj?(D;Y}) is bounded, by assumption, and we have already argued
that {wg} is bounded. Therefore, since u, = Dy Yiwy, the result follows. ]

In the next lemma we indicate that the application of Lemma 16 is straighforward in
the 2-dimensional case — subsequently we will use it in this setting. A definition is
needed.

Definition: Let A be a subspace and w a vector. Define r(A,w) to be the residual
vector of the orthogonal projection of w onto A. If the columns of matrix Y form an
orthonormal basis for A, then r(A,w) = w — YYTw,

LEMMA 17. Let ai be a unit vector and suppose the sequences {Dyap} and {Dyby}
are constraint-compatible; assume there exists a constant T > 0 such that r(ag, by) > 7
for all k. Then if uy € Sy =< Dyay, Dby > and {D;'uy} is bounded, then {u;} is

constraint-compatible.

Proof. Let y} = a; and so
r(a, br) = be — [(y)" belyy.

Since {Dryi} and {Dyby} are both constraint-compatible, and {b;} is bounded due to
Tk

llrell”
From ||rg]| > 7 > 0, {Dxy?} is constraint-compatible. Since {Dyy;} and {Dyyi} are
constraint-compatible and {Sy} = {< Drag, Db >} = {< DiY: >}, it follows from

Lemma 16 that {s;} is constraint-compatible. ]

constraint-compatibility of {Dyby}, {Dyrr} is constraint-compatible. Let yf =

The next algorithm, Algorithm 7, describes a particular way to choose s; (and Sk, when
appropriate) with the large-scale setting in mind. Each subspace S}, satisfies |Si| < 2
and so problem (5.1) is inexpensive.

Two technical results pertaining to Algorithm 7 are needed before establishing the
main theorem. Let pys be the maximum spectral radius of M(z) on £ = {z : z €
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Algorithm 7[Let 7 < 1, 71, and 75 be small positive constants.]

Case 0: M, is positive definite and ||5Y]| < Ay.
Set Sk — Si\] = —DkMk_lgk = Dkgiv.
Case 1: M, is positive definite and HEQTH > Ay

if [|r(s8, gi)ll > 7

S =< Digy,sh >, solve (5.1) to get si.
else

set s, = —D3gy
end

Case 2: M, is not positive definite. Compute wy, = Dywy, where wy, is a unit vector
such that {wg} is constraint-compatible and

wl Mywy, < max{—éne, TAmin( M)}

Dksgn(gk)

Let 2k = 15,5800

if HT‘(‘JJ}C,E;C)H < maX(HDkng, —TQ‘LTJ;;M]C‘IZ’;C)

Sk =< Disgn(gx) >, solve (5.1) to get sg.
else

Si =< Disgn(gx), Drwy, >, solve (5.1) to get sg.
end

Fic. 11. Determination of the descent direction sy

F and f(z) < f(z1)}. Since p(M(z)) is continuous on £, a compact set, the upper
bound pjys exists.

LEMMA 18. Assume {x} is generated by Algorithm 5 with {s;} generated by
Algorithm 7. Then,

1. the subsequence {||Dgsgn(gr)|| )‘min(Mk) < 0} is bounded away from zero,

2. the subsequence {zx = DyZg @ Amin(My) < 0} is constraint-compatible, where
3, — Dy 8gn(gx)
k= IDesgnianll

ﬁ, and that corresponding to any subsequence

{8:} = {< Disgn(gr) >}, {Drgr} converges to zero, and limy_..o Amin(My) < 0, then

Moreover, if we assume that 5 <

B 1 ..
ZI Mz, < aw{Mkwk
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for sufficiently large k.

Proof. First assume there exists a subsequence with limg_..{Drsgn(gx)} = 0 and
Amin(M},) < 0. This implies limg_ .. {vx} = 0 which implies that for k sufficiently large,
M, is positive definite (by virtue of the definition of M), a contradiction. Hence the
subsequence {||Dxsgn(gr)|| : Amin(Mr) < 0} is bounded away from zero and it follows,
using Theorem 5, that the corresponding subsequence {z;} is constraint-compatible.

To prove that zl Myz, < %w{Mkwk for sufficiently large k, first notice that by
Algorithm 7, Sy =< D?sgn(gx) > only when ||r(wy, z1,)|| < max(||Dygxl|, —m2wi Mywy).

Since {Dygr} converges to zero and limy_. oo Amin( M) < 0, || Drgr|| < —mowl Mywy,

for sufficiently large k, Hence ||rg| = ||r(wg, zi)|| < —mowl Myiwy.
From
ry = Wy — (2 W)z
we have
(Zlwi)* 2 Myzy, = w] Mywy — 28 Mg + ri Myrg.

But

[k Mywel < parllrell < parmalwg My,
and

[k Mire| < pallrl® < piy 7w My,
and so

T \2-Txf - Ty - . T -
(25 wi) 2, My 2y, < wy, Mgty + (2ppme + payms ) |wy, Myawy,|.
But 7 < ﬁ; Therefore,
T \2-TAf = ST Loper L g
(zp wi)“ 2z, Myzy, < w, Mpwy + §|wk Mywy| = §wk M. wy.

Finally, since z; and wy are unit vectors, |2,{u7k| < 1 ; moreover, LDkTMkLZ’k < 0 which
implies zf Myz, < 0. Therefore,
Zi Mz, < —wi Mywy.

¢

DO | =

THEOREM 19. Assume {xy} is generated by Algorithm 5 with {sy} generated
by Algorithm 7 and 7 < ﬁ. Then every subsequence {si} satisfies the consistency

condition. Moreover, for any subsequence, if either {||Dypgr||} or {max(0, Amin(My))}
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is bounded away from zero, then the corresponding subsequence {si} is constraint-
compatible.

Proof. Applying Theorem 5 to each case in Algorithm 7, it is easy to see that {s;}
satisfies consistency.

Assume that if either a subsequence {|| Dygx||} or a subsequence {max(0, Amin(My))}
is bounded away from zero. We prove next that the corresponding subsequence {s;} is
constraint-compatible.

(i) Suppose there is a subsequence {||Dxgx||} bounded from zero. If Amin(My) > 0
then by Algorithm 7 there are three possible ways to compute s;. All three possibilities
clearly yield constraint-compatible sequences {s;} using Theorem 4 and Lemma 17. As-
sume then that )\min(Mk) < 0. Algorithm 7 gives two possible ways to compute s in this
case: i.e., Sy =< Disgn(gr) > and solve (5.1) to get si, or Sp =< Disgn(gx), Drwy >
and solve (5.1) to get si. In the first case constraint-compatibility of {Si} follows from
the fact that {||Drsgn(gx)||} is bounded away from zero. In the second case, since
|7 (W, 2k)|| = || Drgrll > 0, it follows from Lemmas 16 and 17 that {s;} is constraint-
compatible.
(ii) Assume {Dygx} converges to zero, limg_ oo Amin(Mg) < 0, and 7, < ﬁ. Again
there are two possible ways in which Algorithm 7 will determine the search direction.
Either S, =< Disgn(gx) > and solve (5.1) to get sy, or S =< Disgn(gx), Drwy >
and solve (5.1) to get sg. In the first case constraint-compatibility of {Si} follows
from the fact that {||Drsgn(gx)||} is bounded from zero. In the second case, since
|7 (W, 2x)|| > —7owE Mywy > 0, {s} is constraint-compatible from Lemmas 16 and 17.
]

The main result follows.

THEOREM 20. Let {x1} be generated by Algorithm 5 with {s;} generated by Algo-
rithm 7 with 7, < ﬁ. Then
o Fvery limit point of {x} is a first-order point.
o [very nondegenerate limit point satisfies the second-order necessary conditions.
o [f a nondegenerate limit point x, satisfies second-order sufficiency conditions
then, provided 7, is sufficiently small, {xy} is convergent to x.; the convergence
rate is quadratic, i.e.,

Jekss — 2]l = Oz — .1,

Proof. Let {s;} correspond to any subsequence such that either {||Dygx||} or
{max(0, Amin(My))} is bounded away from zero. Then by Theorem 19, the correspond-
ing subsequence {s;} is constraint-compatible. By Theorem 19, {s;} also satisfies the
consistency condition. Therefore, by Theorem 14, the result holds for such a subse-
quence.
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Clearly then every subsequence satisfies {||Dygx||} — 0 and {max(0, Apin(My))} —
0. Hence every limit point of {z,} satisfies first-order and second-order necessary con-
ditions. Let z,. be a limit point satisfying nondegeneracy and second-order sufficiency
conditions. By Theorem 13 a unit step size'® will satisfy (2.1) for ||z — z.|| sufficiently
small. Therefore, for ||zx — x.|| sufficiently small, Algorithm 5 reduces to Algorithm 6:
quadratic convergence follows from Theorem 12. [

Three computational tasks remain to be discussed before a practical implementable
method for the large-scale problem is fully specified. First, the theory demands that
Ay € [AA,], with 0 < A} < A, < oo, but imposes no further restriction on Ay. In
our implementation for minimizing quadratic function subject to bounds, we choose

(6.1) Ay = min{max{Ay, ||ve| }, Ay}

This choice satisfies the lower and upper bound constraint and is usually commensurate
with the distance to the solution, at least with respect to the variables tight at the
solution. Experimentally, this choice has performed well.

Second, Algorithm 7 requires that it be determined if M}, is positive definite. This
can be handled, as we do in our implementation, by attempting a sparse Cholesky
factorization (using permutation matrices to limit fill). Iterative methods for sparse
linear systems may be possible — this is the subject of ongoing research.

The main computational task yet to be addressed is the determination of a direction
wy, of sufficient negative curvature 7 such that {w;, = Dy} also satisfies constraint-
compatibility (see Case 2 in Algorithm 7). If a (sparse) Cholesky factorization of M;
does not complete then M} is not positive definite and a direction of non-positive
curvature, wy, is readily available, e.g., [16]. Algorithm 7 can make use of w;, provided
sufficient negative curvature is displayed by wy, i.e.,

(6.2) LDkTMkLDk < max{—¢€ne, TAmin( M) }.

where {wy} is constraint-compatible. A constraint-compatibility test can be designed
by introducing a large constant, y.,, and requiring,

(6.3)

’—1<ch7 1=1:n.
|Uki

If either condition (6.2) or condition (6.3) is not satisfied then w; must be rejected. In
this case we can turn to a Lanczos process.

Consider that if {wy} is constraint-compatible then {DyM; Dy w;} is also con-
straint compatible. To see this observe that

DuMD; i, = Dy DiHy Dy + J DL Dy g = (DEH, + JEDY .

16 If o, = 1 corresponds to a breakpoint then oy = &, = 1 — ¢ where &; is not a breakpoint, &y
satisfies (2.1), and € < xao||Drgrl||, for some xo > 0.

17 Note: Consistency of {wr = Drwy} is not an issue. This is because Algorithm 7 uses wy in such
a way that consistency of the resulting subsequence {si} is guaranteed by part 5 of Theorem 5.

31



Therefore,
D3 (DM Dy wy) = (Hy, + D20y D8 Ywy = (HpD? + JP DY ) Dy 2wy,

But constraint-compatibility of {w;} means {Dj;*w;} is bounded; by compactness,
H.D? + J”Dg+ is bounded. Therefore, {(H,D? + J”Dg+ D %w.} is bounded, i.e.
k Yk 5 k Ve )P ; 1€,
{DyM;D; w;} is constraint-compatible.
This argument can be applied recursively: if {w;} is constraint-compatible then
g pp y p
{w}} is constraint-compatible for any integer m and fixed index k, where

Clearly, from (6.4), the Krylov vectors corresponding to matrix M}, (and starting
vector wy), wk,Mk«wk,Mg«wk,..., yield a set of vectors, Dywy, DkMk«wk,DkM,fwk,...,
each of which can generate a constraint-compatible sequence provided {wy = Dywy} is
constraint-compatible.

So the Krylov vectors, with matrix M) and starting vector wy, generate constraint-
compatible sequences. Let Ki(my,wy) be the Krylov space generated by the first my
Krylov vectors, wy, Mywy, MEwy, ..., M]:nk_lwk for some vector wy where {wy = Dywy}
is constraint-compatible.

An interesting and important question is this: Does a sequence of Krylov subspaces
{Kk} generate a sequence of matrix products { D, Y} } satisfying the conditions of Lemma
16 where the columns of Y, are orthonormal and < Y, >= K;? The answer is yes
provided the Krylov vectors defining subspace Ky are sufficiently linearly independent

for every k.

THEOREM 21. Assume {wy} is a constraint-compatible sequence and define wy, =
Di'wy. Let Ky, = Ky(mg,wi} be the Krylov space defined by the Krylov vectors
Wi, My, M2wg, ..., M "y, Further, assume that |pp| > 7 > 0,Yk, where p, is
the subdiagonal of the tridiagonal matriz Ty = Y,X MyY), = diag(\,0) + diag(ps, 1) +
diag(px, —1) obtained *® from the Lanczos method with Y'Yy = I. Then each column
of DY) generates a constraint-compatible sequence.

Proof. Assume that Y, = [yi, -+, y.*]. Note that g, > 7 implies that m; < n.
The Lanczos vectors {yi} satisfy Myl = Ayl + p2y? and for 1 <i < my, —1 (see [19],
page 477),

(6.5) Myy;, = i i+ Ny + oy
where ply} . Moreover, for 1 <1 < my,
(6.6) A= () Miyg g, = 7l

18 The matrix diag(Ax,0) denotes a diagonal matrix with the diagonal defined by vector Ag; matrix
diag(pg, 1) is a zero matrix except for the main super-diagonal which is defined by vector ux; matrix
diag(pg, —1) is the zero matrix except for the main sub-diagonal which is defined by vector uy
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where r} = (M — A1)y} and for 2 < i < my,

(6.7) ri = (My = N D)yi, — wi wi
Following the usual Lanczos procedure, y; = Hg—’;”, and so by assumption of constraint-

compatibility of {wy}, {Dry,} is constraint-compatible. Clearly, from (6.6), the bound-
edness of {M}}, and the orthonormality of Y;, for 1 < i < my the sequence {\}} is
bounded.

From r} = (My — A1)y} and the boundedness of { M} and {\i}, {¢l} is bounded.
By a simple induction on 7 and (6.6), we conclude that {z}}, 1 < < m, is also bounded.
Using the assumption that |ugz| > 7 > 0, (6.5) and a simple induction on 7, {Dyyi} is
constraint-compatible for 1 <1 < my. ]

Theorem 21 tells us that the usual Lanczos procedure will produce an orthonor-
mal basis Y, of the Krylov subspace Kj such that each column of D;Y) generates
a constraint-compatible sequence, provided the main subdiagonal elements of T} are
bounded away from zero. Fortunately, as discussed in [12], page 139, it is quite rea-
sonable to assume that until all of the distinct eigenvalues of the original matrix have
been approximated well by eigenvalues of the Lanczos matrices, all of the off-diagonal
entries are uniformly bounded away from zero, i.e., g; > 7,,1 <1 < 5 for some 7, > 0.
Therefore, the Lanczos procedure can be continued until an eigenvector of 7} is found,
say Wy, such that (6.2) is satisfied, i.e.,

w,{Mk'wk < max{—¢ue, T)\min(Mk)},

where ||wg|l2 = 1 and 0 < 7 < 1. But since every column of DY}, generates a constraint-
compatible sequence and |[w|2 = 1, {wr = Dywy} is constraint-compatible. Therefore,
wy can be used to satisfy both (6.2) and (6.3).

A good starting vector for the Lanczos procedure is wy = Disgn(gx). This choice
yields a constraint-compatible sequence {wy} and is bounded from zero (except when
. is a vertex in which case the need for a Lanczos procedure does not arise).

7. Concluding Remarks. We have proposed a new method, a reflective Newton
method, for solving nonlinear minimization problems where some of the variables have
upper and/or lower bounds. We have established strong convergence properties. In
particular, reflective Newton methods can achieve global and quadratic convergence.

The proposed reflective Newton method involves the solution of a reduced trust
region problem, (5.1). In (5.1), subspace Sy must be chosen with extreme care to
ensure the second-order convergence properties and to maintain practical viability in
the large-scale setting. In this paper we show that a small dimensional subspace can be
used, i.e., |Sk| < 2, and yet the attractive convergence properties obtained with S, = R"
can be maintained. Our method involves the use of a sparse Cholesky factorization as
well as a Lanczos procedure used to construct S.

Experimental results for the case when the objective function is quadratic are pro-
vided in [10]. These computational results are extremely encouraging and indicate that
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reflective Newton methods have strong potential for large-scale computations. Experi-
mentation on general nonlinear functions is a current research activity and results will
be available in a future report.

Research on two extensions of this work is underway. First, we are studying inezact
reflective Newton methods for problem (1.1). Our current implementation rests on a
(partial) sparse Cholesky factorization of My. A limitation with this approach is that
a (partial) sparse Cholesky factorization is not always economical. Therefore, we are
considering a reflective Newton procedure that only requires the iterative use of Mj.

Second, we are studying the adaptation of reflective Newton methods to bound-
constrained problems with additional linear equality constraints:

(7.1) rrgn{f(”c)  Ax =0, | <z < u}.

If we assume then that z; is a feasible point then, following the lines in this paper, a
feasible descent direction can be obtained by solving

1
(7.2) msin{sTgk + isTMks 1D sl < Ay, s € Sk}

where M(z) = H + J,D%, and Sy, is contained in the null space of matrix A. We have
already sketched a technique in this paper for solving such problems; however, this
approach may not be practical here (in general) since in this case |Sy| is not necessarily
small. Therefore, a different sparsity-preserving method must be used to solve (7.2) —
Coleman and Hempel [4] have developed a technique based on the use of an “augmented”
system that may have some potential here.

A possible reflective Newton approach to problem (7.1) is clear from a geometric
point of view. After generating a search direction from a strictly feasible point z, using
(7.2), a piecewise linear (reflective) path can be searched to find a new (improved) point.
Nevertheless, despite this clear geometric picture, many research issues remain, not the
least of which is the efficient calculation of this piecewise linear path (while exploiting
and maintaining sparsity).

8. Acknowledgements. We thank our colleague Jianguo Liu for many helpful
remarks on this work.
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