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Abstract

Let A be an m-by-n matrix with m = mimz and n = ninz. We
consider the problem of finding B € IR™**™ and C € IR™2*"2 so that
| A— B®C | is minimized. This problem can be solved by computing
the largest singular value and associated singular vectors of a permuted
version of A. If A is symmetric, definite, non-negative, or banded, then the
minimizing B and C are similarly structured. The idea of using Kronecker
product preconditioners is briefly discussed.

1 Introduction

Suppose A € IR™*™ with m = mims and n = nyny. This paper is about the
minimization of

6a(B,C) = |[A-B&C|p

where B € R™ ™, C € IR™**"2, and “®” denotes the Kronecker product.

Our interest in this problem stems from preliminary experience with Kro-
necker product preconditioners in the conjugate gradient setting. Suppose
A € IR™™" with n = nins and that M is the preconditioner. For this solution
process to be successful, the preconditioner should “capture” the essence of A as
much as possible subject to the constraint that a linear system Mz = r is “easy”
to solve. In our context, we capture A through the minimization ¢ ,(B, C) with
B e R ™ and C € IR"**"2. Systems of the foorm Mz = (B® C)z = r are
easy to solve because only O(n3/2) flops are required if n; = ny ~ /n. To
appreciate this point, observe that (B ® ')z = r is equivalent to

czZBT =R (1)

where Z and R are ns-by-n, matrices whose columns are segments of the vectors
z and r respectively:

Z(, k) = z((k — 1)na + 1:kna)
k=1mny.
R(:, k) = r((k — D)na + 1:kny)

(At this point the reader may wish to review the algebra of Kronecker products.
See Horn and Johnson(1991) or Van Loan (1992).) If B and C are nonsin-
gular and we apply Gaussian elimination with partial pivoting to produce the



factorizations P1B = LiU; and P,C = LyUs, then 2(n? + n3)/3 flops are re-
quired. The ensuing multiple triangular system solves involve an additional
2(niny +nyni) flops. If n = n? = nZ, then a total of 16n3/2/3 flops are needed.

An instructive way to look at the above solution process is to recognize that

(P, ®P)(B®C) = (L1 ® Ly)(Uy @ Us)

is an LU (with partial pivoting) factorization of B ® C. This illustrates the
adage that a given factorization of B ® C can usually be obtained by taking the
Kronecker product of the corresponding B and C' factorizations :

Cholesky: 2= 11l B®C)= (L ® Ly)(Ly © Ly)T
: = =
olesky C:Lng ( ) (1 2)( 1 2)
QR: b=t = (BOC)=(Q19Q:)(R ®Ry)T
' C = QaR; T e
SVD B=Um (B®C) = (U1 © Us)(S1 © So)(Vi @ Va)T
: = =
C:U222V2T 1 2 1 2 1 2
Sch B=UDIE (B® C) = (U, ® Us)(Dy ® Dao)(Uy @ Us)H
cnur: =
C = Uy Dy UL 1 V2R = A = Ve

Here we are exploiting the fact that

orthogonal orthogonal
Kronecker products of triangular matrices are triangular
diagonal diagonal

For a practical illustration of Kronecker product factorizations, see Fausett and
Fulton (1992) who apply the idea with QR to solve least squares problems in
photogrammetry.

Some factorizations are not “preserved” when Kronecker products are taken:

e A real Schur decomposition of B ® C' is not obtained by taking the Kro-
necker product of the real Schur decompositions of B and C' because the
2-by-2 bumps in the factors can create “block bumps” in the product.
The computational ramifications of this fact are discussed in Bartels and

Stewart (1972) and Golub, Nash, and Van Loan (1979).

o If QR with column pivoting is used to produce the factorizations BIl; =
QlRl and CH2 = QQRQ, then (B ® C)(Hl ® H2) = (Ql ® Qg)(Rl ® RQ)
is not the factorization rendered by the same algorithm applied to B ® C'.

Despite these anomalies, it is clear that the solution of Kronecker product sys-
tems is a nice problem with much structure to exploit. Not only are O(n3/2)
solution procedures available, but the form of (1.1) suggests opportunities for
using the level-3 BLAS and parallel processing.

The act of finding good preconditioners through an appropriately constrained
minimization of || A — M || is not new. For example, Chan (1988) derives a



useful class of preconditioners for the case when A is Toeplitz by solving

min ||A_M||F

M circulant

Generalizations of this for matrices with Toeplitz blocks are discussed in Chan
and Jin (1992).

Our presentation is organized as follows. First, we characterize the optimum
Kronecker factors B and C' in terms of the singular value decomposition of a
permuted version of A. Algorithms for determining B and C' are discussed is §3
and §4. The important cases when A is banded, non-negative, symmetric, and
definite are handled in §5 along with some additional specially structured ex-
amples. In §6 we briefly examine the use of Kronecker product preconditioners.

We conclude this section with a few pointers to related work. The Kronecker
product has a long history in mathematics and an excellent review is offered
in Henderson, Pukelsheim, and Searle (1983). Computational aspects of the
operation are detailed in Pereyra and Scherer (1973) and de Boor (1979).

Kronecker products arise in a number of applied areas. See Andrews and
Kane (1970), Swami and Mendel (1990), Brewer (1978), Heap and Lindler
(1986), and Rauhala (1980) for Kronecker product discussions of generalized
spectra, higher order statistics, systems theory, image processing, and pho-
togrammetry.

In recent years there have been a number of developments that point to
an increased role of the Kronecker product in the area of high performance
matrix computations. Johnson, Huang, and Johnson (1991) have developed a
parallel programming methodology that revolves around the Kronecker product.
See also Johnson, Johnson, Rodriguez, and Tolimieri (1990). Regalia and Mitra
(1989) and Van Loan (1992) have shown how the organization of fast transforms
is clarified through the “language” of Kronecker products.

2 The Rank-1 Approximation

Consider the uniform blocking of an mjms-by-niny matrix A.

All A12 Al,nl
AZl A22 A2,n1

A = . . . . ;o Ay € R (2)
Aml,l Am1,2 o Aml,nl

Using Matlab colon notation, the (i, j) block is given by
Aij = A((1 — )my + Liims, (j — D)na + 1ijng) |
the submatrix defined by rows (i — 1)msy+1 to émz and columns (j — 1)nz + 1 to

jns. It is not hard to show using the definition of the Kronecker product that

my ni

64(B,C) = > 3| Aij = biiC 5 - (3)

i=1j=1



By keeping the B matrix “intact,” we also have

ma na . )
$4(B,C) = Y Y [ Aij —cij B, (4)
i=1j=1
where .
A;j = A(itmaim, jingn)
is the my-by-n; submatrix defined by rows i, i4+ma, i+2ma, ..., i+ (m1—1)my
and columns j, j 4+ na, j+ 2ng, ..., j+ (n1 — 1)na. Thinking of matrices at

the block level is the key to high performance matrix computations. See Golub
and Van Loan (1989).

To proceed further with the analysis of ¢ ,(B, C), we require the vec opera-
tion, which is a way of turning matrices into vectors by “stacking” the columns:

X(Lp, 1)
X(1:p,2)
X e R = vee(X) = . c IRPY.

X(1:p,q)
It turns out that the vee operator can be used to express the minimization of
|[A-B®C ||; as a rank-1 approximation problem. The idea is to rearrange A

into another matrix A so that the sum of squares that arise in |[A-—B®C ||i,

is exactly the same as the sum of squares that arise in || A-— vee( B)vee(C)T ||iw
For example, in a 4-by-4 problem with 2-by-2 blocks,

@11 Q21 | Gi12 dz2 b1
a31 Q41 | G32 442 ba1
A-B®C = — €11 C21 C12 C22
H HF @13 @G23 | G14 Q24 bio [ ]
@33 Q43 | 34 Q44 bas F

Refer to the above permuted version of A as A. Note that A is not of the form
PAQ where P and () are permutation matrices. Indeed, in our example

e the four rows of A are vec’s of the 2-by-2 blocks of A:

vec(Aq1)T

_ A11 Alg O U@C(Agl)T
A - [ A21 Agg :| = A - U@C(Alg)T
vec(Agg)T

e the vec’s of the 2-by-2 blocks of AT are columns of A:
T [ 1‘:111 %12

A = Aoy Ay ] = A= [vec(ﬁﬂ) | UGC(A?2) | vec(figl) | UGC(A§2)

In general, if m = mymay, n = niny, A € IR™*”, and we have the blocking (2.1),
then we define the rearrangement of A (relative to the blocking parameters my,
maz, n1, and ny) by

A vee(Aq )yr

An, vec(Am, ;)T



Note that R(A) has min; rows and mang columns. Thus, R(A) need not be
the same size as A. For example, if m = mims = 2-2 and n = nyny = 3-2, then
A is 4-by-6 but
@11 Gz1 | @12 G422
431 441 | @32 (42
R(A) — @13 Q23 | @14 (24
@33 (443 | Q34 (G44
@15 dz5 | G1s  A26
a3s 445 | @36 (46

We are now set to establish a key result that connects the problem of mini-
mizing ¢ ,(B, C') with the problem of approximating A with a rank-1 matrix.

Theorem 2.1 Assume that A € IR"*" with m = mymy and n = nin,. If
B e IR™*™ qnd C € IR™*"2, then

|A=B@C|lp = | R(A) = vee(B)vee(C)T ||p.

Proof. By applying the vec operator in (2.2) we get:

n1 My

DO Nl vee(Aij) — bijvee(C) |l

j=11i¢=1

|A-B@C|p

n1 My

2
= D llvec(Ai)T = bijvee(C)T ||,

j=1i¢=1

. . 2
= D I145 = B, vee(C) |

ji=1

= [|R(A) = vee(B)vee(C)T || O

The approximation of a given matrix by a rank-1 matrix has a well-known
solution in terms of the singular value decomposition.

Corollary 2.2 Assume that A € IR™" with m = mims and n = niny. If
A =R(A) has singular value decomposition

UT AV =% = diag(a;)

where oy is the largest singular value, and U(:, 1) and V(:, 1) are the correspond-
ing singular vectors, then the matrices B € IR™ ™ and C € IR™**™* defined by
vee(B) = 01U (:, 1) and vec(C) = V(:, 1) minimize || A— B® C || .
Proof. See Golub and Van Loan(1989, p.73). O

The definition (2.4) of R(A) is in terms of the blocks A;; in (2.1). An

alternative characterization can be obtained in terms of the columns of A. In
particular, we show that

A o Aig,

Anlyl An17n2



where ij € IR™ ™2 is defined by

vec(AZ-Tj):A(:,(i—l)ng +7) 1<i1<m,1<j<ny.
In view of (2.4) we need only confirm that
vec(Aq ;)T
A = 5 = [ A [ Az [ [ Aina ] (7)
vece(Am, )T
For s = 1:my, p = 1:ng, and ¢ = 1:my we have
[Adls (p=1ymate = [vee(Aa)T] (1104, = Alls = Dma + ¢, (i = )na +p) .

But (2.6) immediately follows because we also have

[ A [ A | A 1, maes = [Ai,p]sq = A((s=1)ma+q, (i—1)n2+p).

3 SVD Framework

The Golub-Reinsch SVD algorithm can be used for computing the largest sin-
gular value and corresponding singular vectors of R(A). However, in view of the
potentially large dimension of A= R(A) in some applications, it may be more
appropriate to use the SVD Lanczos process of Golub, Luk, and Overton (1981).
Here is how to proceed with the computation of B € IR™**"* and C € IR™>*">;

Framework 1.

C = initial guess.

v — vee(C)/[| C |l

po—wvi; Po—1; j—0; up =0

while 3; # 0 (or some other less stringent criteria.)

Vi1 — i/ B
j—i+1

rj — Avj — Bj-1uj1
aj — il

uj —rj/a;

pi — ATuj — ajvj;
i — w2

end {while}

Compute the largest singular value o1 and associated left and right
singular vectors ug and vy of the bidiagonal matrix with diagonal
ay,...,a; and upper diagonal 31,...,8;_1.

Define B by vee(B) = o1[ua, ..., u;]us and C by vec(C) = [v1, ..., vj]vs

There are many subtleties associated with the Lanzcos process and we refer the
reader to Cullum and Willoughby(1985) or Golub and Van Loan (1989,p.98ff)
for details.

Our only implementation discussion concerns the matrix-vector products Az
and AT z that are required by the iteration. The explicit formation of R(A) = A
is not necessary. For example, working with the characterization (2.4), here is
a dot product formulation for y — Az:



for j = 1:my
for i =1:m,
y((j — )my +1i) — vee(A4;;)Tx
end
end

A saxpy-based procedure for y «— ATy proceeds as follows:

y(1:many) — 0
for j = 1iny
for 1 = 1:my
y—y+z((j — 1)my + i)vec(A;;)
end
end

By working with (2.5) we have the following alternative block formulation for
y — Azx:

y(l:ming) — 0
for i1 = 1:ng
rows = (i — 1)my + liimy
for j = 1:n,
Define Z € R™ ™2 by vee(Z7) = A(:;, (i — 1)ng + j)
y(rows) — y(rows) + Zz((j — 1)ma + 1:jms)
end
end

Likewise, we can formulate a procedure for y — AT z that is based upon (2.5):

y(l:many) — 0
for i = 1:ns
rows = (i — 1)ma + liimy
for j = 1:my
Define Z € R™**™ by vee(Z1) = A(:, (j — 1)ng + 1)
y(rows) «— y(rows) + ZTz((j — 1)my + 1:jmy)
end
end

Each of these products requires 2minymsny = 2mn flops assuming that Ais
treated as a dense matrix.

4 The Separable Least Squares Framework

Note that if we fix C, then the problem of minimizing ¢ ,(B,C) =||A - B C ||
is a linear least squares problem with unknowns b;;. Likewise, if B is fixed, then
the minimization of ¢, is a linear least squares problem in the ¢;;. The fol-
lowing theorem specifies the solution to these linear least squares problems and
requires the concept of matrix trace:

q
X e R = tT(X) = ZQL‘” .
i=1



Theorem 4.1 Suppose m = mims, n = ning, and A € IR™*". IfC € IR"**"?
is fized, then the matriz B € IR™**™ defined by

bijzilj) I<i<m, 1<j<m (8)
minimizes || A — B® C || where A;; = A((i — 1)my + Liimy, (7 — D)na + L:jns).
Likewise, if B € IR™ ™ is fized, then the matriz C € IR™**"? defined by

tr(/l;-I;-B)

—_— 1< < 1<5<
tr(BT B) Stsmn i) s )

Cij =

minimizes | A— B® C'||j where flij = A(itmaim, jinan).

Proof. Since

tr((Aij — bi; O)F (Aij — b;;C))
= || Aij [l — 26itr(CT As) + B3] C |17

| Asj — bi; C ||

it follows from (2.2) that

99.4(B,C)

= —2tr(CT Ay) + 2by|| C Hi“ :
Ob;;

Setting all these partials to zero defines the required matrix B. The proof of
(4.2) is similar. O

The above result suggests that we can compute B and C' by taking the separable
least squares approach of Barham and Drane (1972). The idea is to minimize
#4(B,C) by alternately improving the B and C' matrices through a sequence of
linear least squares optimizations:

Framework 2.

C = (Y (given starting matrix)

Repeat:
v — tT’(CTC)
for 7= 1:m;
for j = 1:my
bij — tr(CT Aij) /v
end
end
8 — tT(BTB)
for i = 1:ms
for j = 1:ns
Cij — tT(BTAZ']')/ﬂ
end
end

This process requires 4minimons = 4mn flops per iteration, the same as Frame-
work 1. Other methods for nonlinear least squares problems with variables that
separate are discussed in Golub and Pereyra (1973) and Kaufman (1975).



_ Framework 2 amounts to a power method for the largest singular value of
A =R(A). To see this we switch to “tilde-space” and observe that if

d(bc) = |[A—beT |7  beR™™, ceR™",

then the gradient is given by

vo(bc) = 2 [ écb_—((c;clz)bc ]

If b 1s fixed, then the minimizing ¢ is obtained by setting ¢ = ATb/bTb for then
the c-partials are all zero. Likewise, if ¢ is fixed, then the minimizing b is given
by b = Ac/cTc. After k passes through the iteration

¢ = cg (given starting vector)
Repeat:
b— Ac/cTe
c— ATb/bTh
the vector ¢ is~ in the direction of (ATA)’“CO and the vector b 1s in the direction
of (AAT)k_lAco.
The practical implementation of this framework involves all the subtleties

that are associated with the power method. See Wilkinson(1965) for a discus-
sion.

5 Structured Problems

As we alluded to in §1, the Kronecker product of two structured matrices is
usually structured in the same way:

banded banded
non-negative non-negative
symmetric . symmetric

If B and C are positive definite [’ then B® (s positive definite

stochastic stochastic
orthogonal orthogonal

We are interested in the structure of the solution to the Kronecker approxima-
tion problem given that A is structured. In the following subsections we use
Corollary 2.2 and Theorem 4.1 to establish a number results about structured
problems.

5.1 Bandedness
We first show how bandedness in A “shows up” in B and C'.

Theorem 5.1 Suppose n = ningy, A€ IR**" has bandwidth pns, and that each

block in
A o A,

A = AUERM)”M
Anl,l e Anlnl

has bandwidth q orless. If B € IR"**"" and C € IR***"* minimize || A — B® C ||,

then B has bandwidth p and C' has bandwidth q.



Proof. Since A has bandwidth pns, it follows that A;; = 0 if | — j| > p. From
(2.2) we have b;; = 0 whenever |i — j| > p. Since each A;; has bandwidth ¢,
it follows that the minimization of || A;; — b;;C || » requires setting ¢,s to zero
whenever |r — s| > ¢. Thus, a minimizing C' must have bandwidth q. D

5.2 Non-Negativity

We first show that if A and C are non-negative, then the B that minimizes
¢ 4(B, () is also non-negative.

Theorem 5.2 Ifm = myms, n = niny, A € IR™*", and C € IR"**"2 are non-
negative, then there exists a non-negative B € IR™*"" that minimizes||A— B® C ||p.

Proof. Using the non-negativity of C' and Theorem 4.1,

po TGO
YT 4r(CTC) =

fore=1:myand j=1mny. O

In the same way, we can show that if A and B are non-negative, then the C'
that minimizes || A — B ® C'|| is also non-negative. Thus, if we start with a
non-negative C' in Framework 2, then all subsequent B and C matrices are non-
negative. The following theorem shows that this restriction poses no difficultly
because the optimum B and C' are also non-negative.

Theorem 5.3 If m = myms, n = niny, and A€ IR™™" is non-negative,
then there exist non-negative matrices B € IR™ ™ and C € IR™**™? such that
||A—B®C || is minimized.

Proof. Note that A = R(A) has non-negative entries and let o1 be its largest
singular value. Peron-Frobenius theory tells us that there exist non-negative
u € IR™™ and v € R™"? so that AT Av = o2v and AATu = o?u. (See Horn
and Johnson (1985,p. 503). But u and v are the right and left singular vec-
tors of A and so the matrices B and C' as specified in Corollary 2.2 are non-
negative. 0O

5.3 Symmetry

Turning next to the issue of symmetry, we show that if A and C' are symmetric,
then a symmetric B can be found to minimize ¢ ,(B, C).

Theorem 5.4 If n = ningy, A€ IR**" and C € IR***"? are symmetric, then
there exists a symmetric B € IR"*" that minimizes || A— B ® C'||p.

Proof. Since A is symmetric, Aj; = A;T] Using elementary properties of the
trace we have

o tr(Ag ) _ tr(A;;C) _ tr(CAj; _ tr(AJ»TZ»C)
" tr(CTC) tr(CTC) tr(CTC) tr(CTC)
for all 1 < 4,7 < ny. It follows that B is symmetric. 0O

It is equally straightforward to establish that a symmetric C' can be found to
minimize || A — B® C'||p is A and B are symmetric.
Analogous results are applicable if the “frozen factor” is skew-symmetric:

10



Theorem 5.5 If n = niny, A € IR*™" is symmetric and C € IR***"? is skew-
symmetric, then there exists a skew-symmetric B € IR***™ that minimizes|| A — B® C'||p.

Proof. . .
tr(A:.C tr(A;.C
L TUEO)  wtto)
tr(CTC) tr(CTC)

The optimum Kronecker approximation of a symmetric matrix may have
skew-symmetric factors as consideration of the following example shows:

— o oo
o, oo
|
oo~ o
oo o -
I
| |
|
— o
o -
| IS
&
||
|
— o
o -
| IS

For this particular A, it is not possible to find symmetric B and C for which we
have A = B® C. The following theorem summarizes the situation.

Theorem 5.6 Suppose n = niny and A € IR**" is symmetric. If|| A— B® C ||,
cannot minimized by symmetric matrices B € IR*"*™ and C € IR***"?, then it
can be minimized by skew-symmetric matrices B € IR***"* and C € IR*>*">.

Proof. For any positive integer ¢, define the following orthogonal subspaces of

R

Sf) = {z€ Rz = vec(X) for some symmetric X € IR?*? }
sl — {z € Rz = vec(X) for some skew-symmetric X € IR?*? }

Note that R? = Sf) @S,
Now suppose that y = R(A)z and that X € IR***"2 and Y € IR***"* are
defined by # = vee(X) and y = vee(Y), respectively. From (2.1) we know that

¥];

i = vee(Aij) x = tr(Ag;»X) 1<4,7<ny.

Ifze Sim), then since A is symmetric we have

¥];

L]

—-[Y]; = tr((Ag;» - AJ»TZ»)X) = tr((A;»I;» —A;))X) = vec(Ag;» —Ai)Te=0

since Uec(A;I;» —Ai;) € S(_n2). Thus,

ze sl = R(Aw e s

Likewise,
ze s = R(A)w e s
Thus, (SE}_M), Si_nl)) and (S(_M), S(_nl)) are singular subspace pairs for R(A4). Tt

follows that the largest singular value and corresponding singular vectors must
be associated with one of these pairs. O

Theorem 5.6 can also be established by observing that if A is symmetric,
then
P.,R(A)PI = R(A)

11



where P, designates the vec permutation matriz on R
Pyvec(X) = vee(XT) X € R?*Y.

This permutation connects the vec of a matrix and the vec of its transpose. See
Henderson and Searle (1981) for further details.

5.4 Positive Definiteness

We first show that if the initial guess matrix in Framework 2 is positive definite,
then all subsequent B and C' iterates are positive definite.

Theorem 5.7 If n = n?, A€ IR*™"™ and C € IR***™* are symmetric positive
definite, then there exists a symmetric positive definite B € IR"" "™ that min-
imizes ¢ ,(B,C). Likewise, if B € IR***"* is symmetric positive definite, then
there exists a symmetric positive definite C € IR* ™2 that minimizes ¢ ,(B,C).

Proof. If each entry b;; in B € IR ™™ satisfies b;; = tr(C’TAij)/tr(C'TC), and
if y € IR™*, then using the linearity of the trace we have

y' By = Y ) biyiy; = ) wiyitr(CT Ay)/tr(CTC) = tr(CTA) (10)
i=1j=1 i=1j=1
where -
A= "y Ay
i=1j=1

The matrix A is positive definite because for any z € IR™"* we have
1Y
0< @O Az®y) = [21y" | - |z, y" | [435] = 2T Az.

Zn Y

Since C is positive definite, it has a Cholesky factorization C = LLT. From
(5.1) and the fact that the trace is invariant under similarity transformations,
gives

y' By = tr(CTA) = tr(LLTA) = tr(L~YWLLTA)L) = tr(LTAL) > 0.

The proof that C' is positive definite when B is given is similar. a

The next result shows that if A is symmetric and positive definite, then the
same can be said about the optimum B and C.

Theorem 5.8 Ifn = niny and A € IR**™ is symmetric positive definite, then
there exists symmetric positive definite B € IR***™ and C € IR***™* that min-
imize ¢ 4(B,C).

Proof. ;From Theorem 5.6 we may select the optimum B and C' to be either

both skew-symmetric or both symmetric. We first show that the latter must be
the case.

12



If B is skew-symmetric, then there exists a real orthogonal Uy such that
U'BUs = By (11)

where B; is a direct sum of 1-by-1 and 2-by-2 skew-symmetric blocks. The
1-by-1’s are (of course) zero and the 2-by-2’s have the form

=[]

and correspond to the complex conjugate eigenpairs of B. The decomposition
(5.2) is just the real Schur decomposition. Note that the unitary matrix

-4l ]

diagonalizes M :

ZHMZ:[”” 0 ]

0 —im
Let Vi be the unitary matrix that has copies of Z on the diagonal which corre-
spond to the 2-by-2 blocks in By, and which is the identity elsewhere. It follows
that

VAUTBULV, = Dg

is diagonal. Let us refer to this decomposion as the structured Schur decompo-
sition of B. Assume that C' is also skew-symmetric and let

VAUTCU.V. = D,

be its structured Schur decomposition. For a matrix H, let |H| be the matrix
obtained by taking the absolute values of each entry. Since

[ e

—im
it 1s easy to check that the matrices

B, = UgVy|Ds|VHUT
Cy = UcV.|Do|VHEUT

are real and symmetric.
Let Q = Qs ® Qs where Qs = UgVy and Q- = UsV.. Define the off

operation on matrices as follows:

of (M) = Zm?j.

i#j
Setting D, to be the diagonal part of Q7 AQ, we see that

2
|A=By®Cylp = [|QTAQ —|Ds|® [Del |[p
of(Q"AQ) + | Da = |Ds| @ |Do] 7

13



while

2
|A-B&C|p = [1Q"AQ—Ds® Dc |
= ofiQ"AQ)+ || Da— D5 ® De |7
Since Q7 AQ is positive definite, D, has positive diagonal entries. Moreover,

Dy ® D¢ is a real diagonal matrix with some negative diagonal entries. It
follows that

| Da = |Da| © Dol |l < || Da = D5 ® De |-
and so
IA=By©Cyllp < [[A=BOC|p.

This shows that a skew-symmetric pair cannot minimize ¢ (B, C).
Knowing now that the optimizing B and C are symmetric, it remains for us
to show that they are both positive definite. Suppose

QTBQ, = D, = diag(\1,..., M)
Q?CQQ = Dy = diag(pa, .- -, finy)

are Schur decompositions. Set @ = Q1 ® Q2 and let D= diag(dy, ..., dy) be the
diagonal part of F = QT AQ. Thus,

2
|A-B®C|z = |QT(A-BO)Q|r
= |F-Di®Dy|[z = | D= D1® Dy |7 + off(F).
Note that
5 1 N2 .
ID=D1@Ds |7 = 3.3 = (di—iymati — i)
i=1j=1

Since D has positive diagonal entries and
(di—1ynati = Nitti)? = (d—ynong — i D? = il = A2 g, > 0,

it follows that the A; and y; should all have the same sign. Otherwise, B and C'
will not render the minimum sum of squares. Since ¢ ,(—B,—C) = ¢4(B, C), we
may assume without loss of generality that this sign is positive. This implies that
symmetric positive definite B and C' may be chosen to be minimize ¢ ,(B, C).
O

5.5 Sums of Kronecker Products

Next, we consider the situation when the matrix A to be approximated is a sum

of Kronecker products:
P

A=) (GiOF).
i=1
Assume that each G; is mi-by-ny and each F; is mo-by-ns. It follows that if
Ji = vee(F;) and g; = vec(G;), then

P P

A=RA) =Y RGOFR) =Y aff

i=1 i=1
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is a rank-p matrix. This has two important ramifications. First, it means that
matrix-vector products of the form Az and ATz cost O((m + n)p) flops where
m = myms and n = niny. Second, it means that the optimum B and C are
linear combinations of the G; and Fj:

B = O[1G1+~~'+CYpGp
C ﬁ1F1+"'+ﬂpr

The problem of approximating matrices of the form (I ® F) 4+ (G ® I) is dis-
cussed further in §6.

5.6 Approximation with Linear Homogeneous Constraints

Consider the problem of approximating A with a Kronecker product B&® C
that has a prescribed structure. If the constraints on B and C' are linear and
homogeneous, then we are looking at a problem with the following form:
min |A-B®C|p. (12)
STvec(B) =0
STvee(C) =0

Here, A ¢ IR”*", m = mimsy, n = ningy, B € R™M*" C € R"2*"2 S ¢ R™M ">
S, € IR™™2*P2 and we assume that S; and S, have full column rank. By
choosing these constraint matrices properly, we can force B and C' to take on
any prescribed sparsity pattern. Circulant, Toeplitz, Hankel, and Hamiltonian
structures can also be imposed.

To solve the constrained problem we follow the techniques espoused in Golub
(1973) where various modified eigenvalue problems are discussed. Let b =
vee(B), ¢ = vee(C'), and assume that we have the QR factorizations

S1 =@ B Sa = Q2 R (13)
0 0
where Ry and R, are square. If
T _ An 1‘112 Ty _ by T . _ C1
AR = | 11 ] e =[] ee= |0

are partitioned conformably with (5.4), then (5.3) transforms to the problem of

HllIllHllZlIlg
[ 4}11 4}12 :| [ bl :| [ C1 :|
4 121 4 122 b2 C2

subject to the constraints

([ p] =0 (m0[a] =0

F

It follows that b; and ¢; are both zero and that the optimum b5 and ¢5 can be
obtained by solving the unconstrained problem

min|| Azs — bacd || .

Collecting results, we see that B and C' are prescribed by

vee(B) = Qs [ b02 ] vee(C) = QQ[ 0 ] .
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5.7 Stochastic and Orthogonal Problems

The non-negative matrix A € IR**" is stochastic if e A = eI where e, is
the n-vector of ones. If n = niny and B € IR***"* and C € IR**>*™* minimize
#4(B,C), then it does not follow that B and C' are stochastic. For example, if

— = oo

LW N B =
N A
B = b

then, after normalizing B and C so that 11 4+ 31 = 1 we have

B — .6228 .5939 C = 3610 .6657
| 3772 4298 | 5560 3512

Note that B and C' are not quite stochastic. Thus, to get the best stochastic
Kronecker product approximation we must apply a constrained nonlinear least
squares solver to the problem

min |A-B®C|p
eZIB:eZI, B>0
ed C=ck  C>0

Another structured problem that is not solvable by our SVD framework is
the case when A is orthogonal and we insist that the optimizing B and C' be
orthogonal. Tt does not follow that orthogonal B and C' minimize ¢ (B, C).
Thus, we are led to another constrained nonlinear leasts squares problem:

min  ||A=-B®C|,.
BTB=1,,
CTC =1,

A reasonable initial guess (Bg, Cp) in this setting is to set By and Cj to be the
closest orthogonal matrices to the B and C' that minimize ¢ ,(B, C).
6 Kronecker Product Preconditioners

To acquire some intuition about the use of Kronecker products as pre-conditioners,
consider the Az = b problem where

A=a1(In, @ In,) + az(In, @ Ju,) + az(Jn, @ In,) + az(Jn, @ Jn,), (14)

n = nyng, and J,, is the m-by-m symmetric tridiagonal matrix

10 1 -0
Im = :
0 0 1
0 0 10
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Matrices with this structure arise in many applications. For example, the usual
discretization of Poisson’s equation on a rectangle with the “Dirichlet stencil”

az | az | as 0]-1 0

ag | A1 as = -1 41 -1

az | az | as 0]-1 0
leads to

A= 2L, —Jn,)®In, + In, @ (21, — Jn,). (15)

In computer vision, the Laplace stencil defined by

as | dg | A3 —1{-4|-1

ag | A1 as = —4 20| —4

as | dg | A3 —1({-4|-1

is frequently used, see Klaus and Horn (1990). This leads to
1 1
A= 2L, — Jn,)® (I, + EJM) + (51n, + EJ,”) ® (21, — Jn,)-

In general, if we define the constants

. . 7
o) = 2, a2_2(a2—\/a2—a1a3)/a1,

By =ai/4, f2= (a2+ a%—a1a3)/4,
then the matrix A in (6.1) can be expressed in the form
A — (aljnl + a2¢]n1) ® (ﬁljnz +ﬂ2¢]n2) + (ﬁljnl + [)’2Jn1) ® (aljﬂg + a2Jn2) .

Thus, A is the sum of two Kronecker products and the remarks made in §5.5
apply. Since the rank of A is two, the singular vectors that define the opti-
mal B and C' can be computed in O(n) flops. These matrices are tridiagonal,
symmetric, and positive definite in view of the discussions in §5.

Let us focus on the case when A is given by (6.2). For simplicity, define the
[-12 — 1] tridiagonal matrix

T =21y — Jn

and note that
A=Ty, O, + I, ®T,,.

i From §5.5 we know that the optimizing B and C have the form

B = b1]n1+b2Tn1
C = 61[n2+C2Tn2~

The matrix 7, has known eigenvalues:
T — D — diag(A(™ m (m) _ ygin? (27
QLT Qm = D = diag(A{™,... A0M),  A™ = 4sin (m) .
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Using this result, it can be shown that the Kronecker approximation problem
involves choosing b1, bs, ¢1, and ¢y so that
|A-B&C|p=
= H (Tnl ® Iﬂz + Inl ® Tnz) - (bl[nl + b2Tn1) ® (Cl[fw + CQTnz) Hi’
= H (Dnl @ Iﬂz + Iﬂl ® Dnz) - (bl[nl + sznl) ® (Cl[fm + C2Dn2) ”F

niy n2 2
B Z E [()\E”l) * Agnz)) = (b1 + b A (1 + c2A§”2))

i=1j=1

is minimized. The eigenvalue distribution of M ~'A, which is crucial to the
success of M = B ® (' as a preconditioner, can also be examined in closed form
once by, by, ¢1, and ¢y are known:

(b1 + 522 ) (e + 22"

)\Z’]’(M_lA) = (16)

We ran some experiments in the square case n; = ny — 4/n. It can be shown
that about 10n flops are required to solve a system of the form Mz = r assuming
that the LDLT factorizations of B and C' are available. By way of comparison,
about 9n flops are involved when an incomplete Cholesky (IC) preconditioner
is used. In the following table we compare these two preconditioners:

1C Kronecker

/1 | Tterations | Tterations
16 14 19
32 23 33
64 39 56
128 51 74
256 66 93

Random right hand sides were used with termination criteria r7 Ar < 1076
where r = b — Az is the residual of the approximate solution. We have no
“proof” why reasonable convergence occurs before /n steps. A plot of the
spectrum of M~'A using (6.3) reveals that many eigenvalues of M~1A are
clustered about 1:

However, the clustering is not definitive enough to suggest that O(y/n) conver-
gence is provable.

The Kronecker preconditioner applied to the above model problem compares
favorably with many of the other block preconditioners that are reported in Con-
cus, Golub, and Meurant (1985). In a distributed memory environment, we sus-
pect that the Kronecker approach may be very attractive because the precondi-
tioner equation C'ZBT = R is structured perfectly for parallel computation-but
that is the subject of ongoing research.



Distribution of eigenvalues of M*(-1)*A for n =250"2
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Figure 1: Distribution of Eigenvalues
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