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Abstract

Many American option pricing models can be formulated as linear complementarity problems
(LCPs) involving partial differential operators. While recent work with this approach has mainly
addressed the model classes where the resulting LCPs are highly structured and can be solved
fairly easily, this paper discusses a variety of option pricing models that are formulated as
partial differential complementarity problems (PDCPs) of the convection-diffusion kind whose
numerical solution depends on a better understanding of LCP methods. Specifically, we present
second-order upwind finite difference schemes for the PDCPs and derive fundamental properties
of the resulting discretized LCPs that are essential for the convergence and stability of the
finite difference schemes and for the numerical solution of the LCPs by effective computational
methods. Numerical results are reported to support the benefits of the proposed schemes. A
main objective of this presentation is to elucidate the important role that the LCP has to play
in the fast and effective numerical pricing of American options.

1 Introduction

The numerical valuation of options and derivative securities is of central importance to financial
management. The paper by Broadie and Detemple [3] presents a survey of recent numerical meth-
ods for the pricing of these financial products. For a more theoretical treatment, see the paper
by Myneni [23]. For many American and exotic options, the discretized linear complementarity
approach described in Wilmott, Dewynne, and Howison [26] provides a very promising numerical
procedure that has great potential for dealing with a wide range of options, ranging from a vanilla
American option to a highly complex multi-asset option with such complicating factors as stochastic
volatility, transaction costs, path dependency of payoffs, and so on. One of the earliest papers that
used a linear complementarity method (although it was not labeled as such) for pricing an Ameri-
can put option is by Brennan and Schwartz [2]. In spite of the pioneering efforts of these authors
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and others, including Jaillet, Lamberton, and Lapeyre [18] and Dempster and Hutton [10, 11], it is
our belief that the linear complementarity approach to pricing American options is very much at
its infancy and its full potential has yet to be realized.

This paper aims to further explore the linear complementarity problem (LCP) and its exten-
sions as a powerful mathematical tool for the valuation of American options and interest rate
sensitive financial products. The LCP was introduced within the mathematical programming com-
munity more than three decades ago and has now developed into a very fruitful discipline in applied
mathematics. A comprehensive study of this problem, including a complete theory and extensive
algorithms, is presented in the book by Cottle, Pang, and Stone [5]. Among the classic application
areas of the LCP is that of optimal stopping (see Subsection 1.2 in the cited reference), the latter
being at the heart of all option pricing models with a “free” expiry date. Recognizing this connec-
tion, it is then easy for one to accept the LCP as having an important role to play in the treatment
of American options.

Today, there are numerous option and derivative valuation models. Typically, these models
are formulated as second-order, time-dependent, parabolic partial differential equations (PDEs)
for European options with fixed exercise dates and partial differential complementarity problems
(PDCPs) for American options with free exercise dates. In this paper, we study the numerical
solution of the latter option models by discretized LCP methods. We are particularly interested in
those models where the partial differential operators are of the “convection-diffusion” kind [17, 19,
22] that can not be conveniently converted into pure diffusion operators. We discuss second-order
upwind finite difference schemes [4, 22, 24, 27] for approximating the PDCPs and derive some basic
properties of the discretized LCPs, stressing those that are essential for the stability of the finite
difference approximation schemes and for the validity of the LCP methods. Obviously it is not
possible for us to consider in one single paper all the option models that have appeared in the
literature; hopefully, based on the treatment of the models presented herein, one can easily adopt
the methodology to other models. Also, due to space limitation, we have omitted in this paper the
error analysis of the discretization approximations.

Upwind finite difference schemes provide an effective numerical procedure to stabilize the po-
tentially adverse sign oscillation in the convection term of the partial differential operator (that
is, the first-order partial derivative with respect to the state variable). First-order schemes of this
kind typically lead to discretized problems involving Z matrices (that is, square matrices whose off-
diagonal entries are non-positive). For a recent study of these schemes for solving general algebraic
obstacle problems, see the Ph.D. dissertation [25] and the paper [19]; an interesting application
of a first-order finite difference scheme for solving an American option pricing problem in a jump-
diffusion model (which leads to a PDCP with a convection term) is presented in [28]. In the present
paper, inspired by the approach taken in [26, Section 22.4.1] and [13] for pricing the continuously
sampled average strike Asian option, we present second-order upwind methods in order to obtain
second-order approximations of the partial differential operators. As we shall see, the resulting
discretized LCPs, although no longer of the Z-matrix type, can still be solved effectively by a host
of iterative and/or pivotal methods (such as those presented in [5]).

2 One-Factor American Option Models

The options and derivative models treated in this paper are all of the American type; that is, the
option owner can exercise the option at any time before its expiry. The basic framework is that



of Black-Scholes [1] as expanded by Wilmott, Dewynne and Howison [26]. The vanilla American
option with one underlying asset is the most basic of all American options; the discretized LCP
has a defining matrix which is highly structured and has very desirable theoretical properties that
render the problem solvable by most well-known methods, such as the those described in [5]. For
the detailed numerical treatment of the vanilla American option by linear complementarity and
linear programming methods, we refer to [26, 10, 11] and the references therein. We begin our
discussion with a variant of the basic Black-Scholes model.

2.1 Cox’s model of constant elasticity of variance

In 1975, John Cox proposed an option pricing model that generalized the Black-Scholes model, by
postulating a certain non-stationarity of the variance of the stock returns. Although Cox’s original
note was not published until recently [6], his model and the related work [7] had been the basis of
various alternative models, including those with stochastic volatilities; see Subsection 6.4.A of the
book by Gibson [15] for more discussion on the issue of non-stationarity of stock returns’ variance.
In what follows, we discuss Cox’s model of constant elasticity of variance in the context of an
American option. A special case of this model yields the classic Black-Scholes vanilla American
option.

Assuming that the asset pays out the dividend D(S,t)dt in a time interval d¢, the Cox model
postulates that the asset price S(t) satisfies the following stochastic differential equation:

dS = (uS — D(S,t))dt + o 8%/% dW,

where, for simplicity, we assume that p and o are positive constants, a is an elasticity parameter
in the interval (0,2], and dW is a standard Wiener process with mean zero and variance dt. Let
r > 0 denote the constant interest rate. Let A(S,t) denote the given payoff function of an American
option whose time of expiry is denoted T'. Let V(S,t) denote the value of this option as a function
of the asset price S and time ¢. By a standard no-arbitrage argument, this value must satisfy the
following complementarity conditions:

WV e OV av
- £ a _— — - <
5028t S+ (rS=D(8,1) 55—V <0 (1)
V(S,t) > A(S,1) (2)
Y. - - v B _

and some appropriate boundary conditions. Unless a = 2 and D(S, t) is proportional to S (this case
yielding the Black-Scholes model), it is not clear that there is a convenient transformation that will
reduce the linear partial differential operator with variable coefficients in the above complementarity
system to the constant coefficient case.

For the option model described by (1)—(3), the specific form of the payoff function A(S,t) and
the boundary conditions are not critical to the numerical solution of the model, provided that a
proper discretization scheme (to be described shortly) is employed. Of course, this function and
the boundary conditions are essential in practice; however, for reasons given below, the numerical
treatment of the model does not rely on the explicit knowledge of the payoff function and boundary
conditions. Indeed, when the partial differential system is discretized, the function A(S,t) and the



boundary conditions determine the constant vector, but not the matrix, in the resulting discretized
LCP. From well-known LCP theory [5], such a constant vector is not expected to have a dramatic
effect on the problem, provided that the matrix that defines the problem belongs to some broad
class (such as the class of P-matrices; that is, those whose principal minors are all positive). Since
this paper will provide sufficient conditions for the matrix in the discretized LCP to have desirable
properties, the constant vector is of secondary importance, and thus will not be given too much
emphasis in the analysis.

The finite difference discretization

We apply a finite difference approximation scheme to the partial differential complementarity system
(1)—(3). Since there does not appear to be any advantage to make the usual logarithmic change
of variable for the asset price S, we apply finite differences to this system directly. The partial
differential operator

Lcox = 2+l 25‘18—2+( S—D(s,1) 2 -

Cox = 3r 727 7 52 T\T (58) 55 "

is of the convection-diffusion type [17, 19, 22]; see also the technical discussion in [26, page 114].
The first and second partial derivatives, 3/0S and §%/0S52, are the convection and diffusion terms,
respectively. For a partial differential operator of this kind, an upwind finite difference approxi-
mation scheme is frequently used in the PDE literature in order to prevent oscillations due to a
potentially large convection term. In the case of Lcox where the dividend yield function D(S,1t)
is such that S — D(S,t) takes both positive and negative values, this oscillation in sign could
have an adverse effect on the stability of the approximation scheme as well as on the numerical
solution of the discretized LCP. In this case, the upwind scheme should be utilized. The main idea
of such a scheme is that care should be taken in approximating the convection term 9/9S when its
multiplicative factor has a dominant effect on the differential operator.

In what follows, we apply a second-order upwind finite difference approximation to the op-
erator Lcoox in conjunction with the §-method as discussed in [26, Chapter 22]. For the partial
derivative with respect to time, we choose a positive but small time step ¢ and use the following
approximation:

oV V(S t+6t) — V(S,1)

where a function f(z) is said to be O(g(z)) if

+0(5t),

lim sup M < 00
g(x)—0 |g(x)|

For the second partial derivative with respect to the variable S, we choose a positive but small
scalar 4S5 and use an §-weighted central difference approximation:

0%V L V(S+88,t) —2V(S,t) + V(S — 8S,1)
5550 = 0 5P +
V(S+6S,t+0t) —2V(S,t+0t) + V(S —6S,t+ ot



where 6 € [0,1] is a given parameter whose specializations yield the explicit method (6 = 0), the
implicit method (# = 1), and the Crank-Nicolson method (6 = 1/2).

For the first partial derivative with respect to the variable S, we use a 6-weighted second-order
upwind approximation consistent with the second-order approximation for 82V /85%. Specifically,
the term (rS — D(S,t))0V/0S is approximated as follows:

(a) if rS — D(S,%) > 0,
oV

(r§ = D(5,1)) 55 (5.1
—1r§-D(S,0)| [V (E+98) —8V(S1) ~V(S+205,1)
265
AV(S + 88,1+ 6t) — 3V (S, + 6t) — V(S +238,t + 6t
(1-0) TAELELE D IV = VIS L 25 LE I 4 o((55)°).
265
(b) if 7S — D(S,t) < 0,
ov
(rS—D(S,t)) ﬁ(S, t)
_1r5—D(s.1)| [o V=98 —3V(5H) —V(S—205.1)
265
AV(S — 6S,t+6t) —3V(S,t +6t) — V(S — 248, t + ot
(1-0)25 e (2’6S+ - LD 4 o(ssy).

Notice that in case (a), a forward difference is used to approximate the first partial derivative
OH/OR; whereas in case (b) a backward difference is used. The effect of this approximation is
that the diagonal entry of the resulting matrix in the discretized system is always positive, for all
positive values of §.5 and dt.
The PDCP (1)—(3) is approximated on a regular grid with step sizes d¢ and 65, and with the
variable S truncated so that
0 < S < NS,

where N is a (large) positive integer. Write
Vot =V (ndS,mdt) and A" = A(ndS,mdt), for0 <n < Nand0 < m < M,

where M = T/4t is the total number of time steps in the discretization (the step size 6t is chosen
that M is an integer). The system (1)—(3), under the above finite difference approximations and
with the boundary conditions suitably accounted for, leads to the following finite-dimensional LCP
at timet=mdtform=M -1, M —2,...,2,1,0,

0<(V™—A™) L (" +MEV™) 20, (4)

Cox

where the perp notation L denotes the orthogonality relation of two vectors; i.e., a 1 b means
T
a b= 0;



is the (N — 1)-vector of variables of the LCP,

AT gt

A" = : and qm+1 =
1
A4 Q%J—H

are two (N — 1)-vectors of constants of the LCP, and

by a di 0 0 0 0
az ba o da 0 0 0
e3 a3 by c3 ds 0 0
0 e as by c4 dy 0
Mz, =
0 eN-3 aNn-3 by -3 cn-3 dy-3
0 0 -~ 0 ‘env2 an 2 by 2 cN-2
O 0 --- 0 0 eN—1 an—1 by_1

is the (N — 1) by (N — 1) matrix with entries given by:

0(rndéS—DIM)-

en = 555 forn =3,...,N—1

anp = _902na2(55)a—2 — 2(9(rn6(.55‘S—DZL”)_ form=2,...,N -1

by = %Jrea?na(w)a—%30””5?5_17% 47 forn=1,..,N—1
cp = _902n0¢2(55)06—2 — 20(rn5(,55'S—DTT)+ form=1,...,N—-2

d, = 9(rn(5§5;D7T)+ forn =1,...,N —3,

where D™ = D(ndS, mdt) and for a real number z, z* = max(z,0) denotes its nonnegative part
and 7 = max(—uz,0) its non-positive part.

The structure of the matrix M lé%X is typical in a second-order upwind finite difference approxi-
mation of a convection-diffusion operator with one state variable. For one thing, the diagonal entries
of M are all positive; but its off-diagonal entries are not all non-positive (cf. the entries e, and
dp). Thus M is in general not a Z-matrix. More generally, only first-order finite difference
schemes of a convection-diffusion operator will yield an LCP with a Z-matrix. Subsequently, we
will establish some common properties of the matrices obtained by a second-order upwind scheme.



m—+1

The constant vector q is closely tied to the matrix M lélz)x. Indeed, by defining the entries:

(1—6)(rndéS—D)”

! = = PR —
e, = 23S forn =3,...,N—1
2 a—2 _ pm\—
a;z—(1_9)<“” VST y 2lrnd5 - Brf) ) forn =2 N-1
1 9 3|rndS—D|
= _ o 2 o a—2 n f — —
by, &—I—(l 0) (077,((55) + 555 ) orn=1...,N—1
, a?n*(68)*=2 2(rndéS—Dm)*t
a,=—(1-0) 5 + 55 forn=1,...,N -2
— — DM+
d, = (1-6)(rnds—Dy') forn=1,...,N -3

248

and forming the matrix M, in the same way as M. (using the above primed entries instead),
we see that
qm+1 — MICOX Vm—|—1’

Vm—|—1

where is computed from the previous time step (or from the boundary conditions when

m=M—1).

2.2 The continuously sampled average strike option

We choose to discuss the continuously sampled average strike Asian option with early exercise for
two purposes. One is that we wish to clarify the convergence of the (point) projected successive over-
relaxation (PSOR) method for solving the model as mentioned in the references [13, 26]. The other
is that we will use this model to compare the upwind versus the no-upwind finite difference scheme
in order to highlight the benefit of the former for approximating a convection-diffusion operator.
(The no-upwind scheme was used in the references.) The matrix in the resulting discretized LCP
from the upwind scheme can be easily shown to be positive definite (albeit asymmetric) under a
mild condition on the time step dt. In the discussion that follows, we assume that the asset pays
no dividend.

As shown in these references, after a suitable change of variables (similarity transformation) and
reformulation, the continuously sampled average strike Asian option leads to the following PDCP
with the function H(R,t) to be computed:

OH | o ,0%H OH
=41 Z - — 7 <«
e+ 3P R S+ (1T R) 55 < 0 (5)
H(R,t) > A(R,1) (6)
0H | , ,0°H O0H _

with A(R,t) = max(1l — R/t,0). As derived in [26], the no-upwind finite difference approximation
scheme of the partial differential operator leads to a discretized LCP parameterized by the time
step. Specifically, at time t =mdt form=M — 1, M —2, ..., 2, 1, 0, this LCP is

0 <(H™—A™) L (b™ + MYPH™) > 0, (8)

7



where

b a & 0 0 e 0

as by ¢ da 0 e 0

0 a3 b3 c3 ds 0
My =

0 0 an—3 bny_3 cn—3 dn_3

0 0 --- 0 an-2 bNv2 cN-2

0O 0 --- 0 0 an_1 by_1

is the (N — 1) by (N — 1) matrix with entries given by:

anE—gUQnQ form=2,...,N—1
= —+=12 - — f =1,...,N—1
bn 5t+2( o’n 3rn+6R) or n ey
0 4
cp = 2 (—02n2+4rn—@) forn=1,...,N—-2
1
dnzg(—rn—}—ﬁ) forn =1,...,N—-3.

Consistent with the matrix M ¢, , we have left the time step 6t in the denominator in the above
quantity b,. The vector b™ %! is also closely tied to the matrix M"Y in the same way as ¢™*! is
to M. in the Cox model. The details are not repeated.

It is noted in [26, page 355] that the “positive definiteness” of M} is related to the stability
of the finite difference scheme. It is further noted on the next page of the same reference that this
property of M’\.> will ensure the convergence of the PSOR method for all relaxation parameters
between 0 and 2. Before we formally establish some key properties of the matrix M Kg’, we caution
the reader when interpreting the “positive definiteness” property of this matrix.

The main point is that M} is not a symmetric matrix. Thus the positive definiteness of
this matrix can only be taken to mean that its symmetric part (i.e., My + (M\F)T) is positive
definite. Although this usage is very common in the LCP literature, it is not at all in the numerical
analysis literature. Chapter 5 in [5] gives a very detailed convergence analysis of many iterative
methods for solving an LCP, including the PSOR scheme. To the best of our knowledge, we are not
aware of a result in the LCP arena which states that the PSOR method converges for all relaxation
parameters between 0 and 2 when the defining matrix of the LCP is asymmetric positive definite
(and without further property). A precise convergence result will be stated later for the LCP (8).

With an upwind finite difference scheme applied to the system (5)—(7), a backward difference
is employed to approximate @H/JR if the factor 1 — rR is negative. This is in contrast to the
no-upwind scheme where a forward difference is used regardless of the sign of 1 — rR. Specifically,



in conjunction with the #-method, the approximation is as follows:
(a)if 1 —rR >0,

-2 (ry) ~ [1-rR| [9

4H(R+0R 1) ~3H(R,t) - H(R+20R,1) ,

OR 20R

(1-9) 4H(R+6R,t + 6t) — 3H(R,t + 6t) —H(R+25R,t+6t)]
20R

(b)if1—rR <0,

OH AH(R - 0R,t) — 3H(R,t) — H(R — 26R, 1)
1-rR)—(R,t) = |1—rR| |0
(-rRSZRY ~ [1-rR] | 2R +
AH(R - 6R,t + 6t) — 3H(R,t + 6t) — H(R — 26R, t + 6t)
(1-9) .
26R
The matrix that defines the discretized LCP is
Bodd 0 0 0 0
ah by i 0 0 0
ey ay by b s 0 0
w 0 €, a} 7 cy dy 0
MAsi =
0 ev.s ay 3 by 3 vy dy s
0 0 -+ 0 ey, ay, by, dyy
0 0 - 0 0 ey ay_y by
is the (N — 1) by (N — 1) matrix with entries given by:
0(1—rndR)”
e = S5R forn =3,...,N—1
0 20(1—rndéR)”
a;LE—EUQnQ— R forn =2,...,N—1
1 36
o L 2,2, °V . _ _
b, = 5t+90 n +2<5R|1 rndR| forn =1,...,N—1
0 20(1—rndéR)*t
) - 2.2 _ _
Cn = =50 N iR forn=1,...,N—2
(1 —rndR)"
—— — —
d, = 53R forn=1,...,N -3.

The constant vector b™ 1! of the LCP will also be affected by the modified finite difference scheme.
The reader can easily write down the components of this modified vector that corresponds to a
given set of boundary conditions (or inputs from previous time step).



One obvious difference between the entries o), in M,°; and b, in M,.} is that the former entry

is always positive for all positive values of dR and d§t and all integers n whereas the latter entry
is positive if §R and dt satisfy a certain condition. The positivity of such diagonal entries has an
important effect on the stabilization of the numerical scheme.

2.3 Models with transaction costs

We consider a vanilla, American option with proportional transaction costs cast in the periodic re-
balancing framework of Leland [20]; see also [26, Chapter 13] and [16]. Let §t > 0 be a finite fixed
time step so that the portfolio is revised every §t; the random walk of the asset price in discrete
time is assumed to be:

68 = nSot+o8 PVt

where ¢ is a random variable with a standardized normal distribution. Let k& > 0 denote the
investor’s constant of proportionality so that the transaction cost is equal to kS|v| if v shares of
the asset are bought (v > 0) or sold (v < 0). From the derivation in the cited references, we obtain
the following partial differential complementarity system for this model with transaction costs:

OV | 5 0%V 2 ko | 0%V ov
ZZ 41 Z - _ /2 - 7 <
En +50°8 552 x5t S 552 +TSBS rV <0 (9)
V(S,t) > A(S,t) (10)
o 4, 282V_ 2 ko | 0%V o B B
<8t +50°8 552 Vol 532 +rSaS rV | (V(S,t) — A(S,t)) = 0, (11)

along with some appropriate boundary conditions. As noted in [26, 16], the above involves a
nonlinear parabolic partial differential operator, mainly because of the modulus term |- |. Ac-
tually, such nonlinearity is not a handicap at all because the absolute value function is a simple
piecewise linear function which is very easy to deal with. In what follows, we employ a well-known
technique from linear programming to convert the system (in its discretized form) to a finite-
dimensional LCP. Specifically, we recall the fact that every real number z is equal to the difference
of its nonnegative part £ and non-positive part = (i.e., + = T — z7) and the absolute value of x
is equal to the sum of z* and z~. Moreover, 1+ and z~ are “complementary” to each other; that
is, ztz~ = 0.

The discretized LCPs

We introduce the change of variables:
S=exp(X) and 7=T—1t,

and define the model constant:
8

K .
0t

SEES

Letting X
V(X,7) = V(S,t), and A(X,7) = A(S,1),

10



we can easily show that the function V satisfies the following modified differential complementarity
system:

v o [V o*V v o
E‘?[W— m]”a—x”vzo (2
V(X,7) > A(X,7) (13)
ov o2 [ 02V 0°v v o\ o A
(5_7 [W—K e ]—ra—X—}—rV) (V(X,7) - A(X,7)) =0, (14)

For notational simplification, we drop the hat in V and A. We may write

2
‘ %(Xﬂ_) =u" +u,
where 4t and u™ satisfy
2
%(X,T) =ut—u )
and
(ut,u") >0, and w'u = 0. (15)

Substituting these expressions into (12)-(14), we obtain the following equivalent system:

ov o [0V *V _ oV
E_7lW—K<W+2u )]—TG—X+TV20 (16)
V(X,7) > AX,7) (17)
v o% | 0%V v _ 5)%
v _
U+ = W(X’ T) +u ) (19)

along with (15). Following the same finite difference scheme as in Subsection 2.1 (in particular,
using a weighted central difference for the second partial derivative 62V /0X?), letting

Vit =V(néX,mdr), uy =u (ndX,mdr), and A} =A(ndX,mdr),

n

for —-N- <n < Nt and 0 <m < M, and defining the vectors

V-4 uln 4y ATy
|2 ulN— 4o ATy o
| A= , u" = , and A™ = : ,
Vi 2 UN+ o AT+ 5
N1 UN+_1 AGe 4

11



we obtain the discretized LCP at time ¢ = mdéT which is stated in the pair of variables (V™,u™):

Vm A™ qm—l won Vm
u™ a 0 rml + Mim u™

m=1 are appropriate constant vectors, and M{" is the partitioned matrix:

0 < 1 > 0,

where ¢™ ! and 7

cen 2
11 g K I
M =
trn . 0 cen I

M
(6x)2 2

with I being the identity matrix of order (N~ + N — 1), M{{" being the Toeplitz matrix of the
same order:

b ¢ d 0 O 0
a b ¢ d 0 --- 0
0 a b ¢ d 0
cen —
1n =
0 0 a b ¢ d
00 0 a b c
0 0 0 0 a b
whose entries are given by
a:_902(1—K)
2(6X)2
b=i+002(1_K)+30r—|—r
ToT (6X)? 20X
_ _002(1—K) _20r
©= T 206x)2 05X
Or
4= 3%

and M$T" being the tridiagonal matrix:

2 -1 0 0
~1 2 -1 - 0

M3" =
1 2 -1
0 -1 2

12



For K > 1, the diagonal entry b could become negative for certain values of X and §7. In order
to ensure that this entry is always positive for all values of X and d7, we can use a weighted
backward difference approximation for the second partial derivative:

o’V V(X,7) - 2V(X —0X,7) + V(X —26X,7) N

—GXQ(X’T) ~ 0 0X)?

V(X,7—01) =2V (X - 6X,7 — 1) + V(X —20X,7 —61)
(6X)? ’

(1-0)

the matrix that defines the resulting LCP is:

MY ’KI
bac _—
Mtrn = 0 Mbac I
((SX)Q 21

with I being the identity matrix as before, M being the Toeplitz matrix of the same order:

b ¢c d 0 0 O 0
a b ¢ d 0 0 0
e a b ¢ d 0 0
0O e a b ¢ d 0
M =
0 e a b ¢ d
0 0 0 e a b c
00 0 0 e a b

whose entries are given by

:902(K—1)
©= T206x)2
_ 0% (K1)
T T Xy
b:i+002(K—1)+30r+
=or ' 2(x)2 ' 2sx
_ _20r
©=T%x

Or
4= 5%

13



and M52 being the lower triangular matrix:

1 0 0 O 0

-2 1 0 0 0

1 -2 1 0 0
My =

0 1 -2 1 0

0 0 1 -21

A unified approach

We propose a unified method of discretizing the PDCP defined by (9)—(11) that guarantees positive
diagonal entries in the resulting LCP matrix M, regardless of whether K is greater or smaller
than unity. The idea is simply to interchange the roles of v~ and u*. Specifically, we solve for
u~ in terms of v and the second partial derivative 92V /0X?, and substitute = in (16) and (18).
This results in the following equivalent system:

oV  o? | 8%V v 1 ov
V(X,7) > AMX,7) (21)
oV o% | 9%V v n ov
(_7_7 lW—K<—W+2u )]—ra—va) (V(X.1)—A(X,7) =0, (22)
_ v
u = _W(X’T)—{_U_F (23)
(ut,u™) >0, and utu™ = 0. (24)

We use a weighted central difference to approximate the second partial derivative 02V/8X?2. The
resulting LCP matrix is: _
My a?KI
uni _—
Mtrn - 0 Mcen I
(6x)2 2
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with I and M$® being the same matrices as before, and M being the following Toeplitz matrix

of order (N*T + N~ —1):

b ¢ d 0 0 0
a b ¢ d 0 0
0 a b ¢ d 0
uni _—
1n =
00 a b ¢ d
00 0 a b ¢
0 0 0 0 a b
whose entries are given by
a:_902(1+K)
2(6X)?
1 0c*(1+K) 36r
b= —
o7 T 6x)? Ta2ax T
_ _00°(1+K) 20r
=TT 2(6x)2 5X
_ or
T 20X

Note that the diagonal entry b is positive for all values of K (K > 0 by definition).

Other models of transaction costs

The absolute value function is piecewise linear in its argument. By exploiting this piecewise lin-
earity property, we have derived a linear complementarity problem for an American option under
Leland’s local-time model of transaction costs. In [12], a general nonlinear function of the form
F(S,0?V/05?) was introduced as a unification of various transaction cost structures and hedging
strategies. The resulting discretized problems become truly nonlinear complementarity problems
which can be solved by a host of advanced numerical methods, such as those summarized in the
survey article [14]. An alternative approach to include transaction costs in based on utility max-
imization [8, 9]; this leads to a “two-factor” complementarity problem of the “vertical” type [5].
The numerical solution of these other models with transaction costs is the subject of a separate
study which is presently in progress.

2.4 A jump diffusion model

In a recent paper, Zhang [28] presented a detailed numerical analysis of American option pricing in
the context of Merton’s jump diffusion model [21]. Zhang used a first-order approximation of the
convection term and obtained an LCP with a diagonally dominant Z-matrix under an appropriate
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choice of the discretization steps. We examine the same jump-diffusion model and discuss its
numerical solution using a second-order finite difference scheme.

In Merton’s jump diffusion model (where no transaction cost is assumed), the asset price satisfies
the following stochastic process [21, 28]:

D _ it +oaw +d %U-

where (INVy);>0 is a Poisson process with parameter A and (U;);>1 is a sequence of square integrable
i.i.d. random variables, with values in the interval (—1,00). For simplicity, we take the drift x4 to
be a constant; in particular, we assume that the asset pays no dividend. Making the logarithmic
change of variable z = log(S) and assuming that the random variable Z; = log(1 + U;) has a
probability density function g(z), the value u(¢,z) of an American option with payoff 9 (¢,z) can
be computed from the following complementarity system involving an integral-differential operator,
where the integral is the result of the jump diffusion:

ou o? 0%u o2 ou o0
ou o ogu o _ B g
o "2 o (“ 2 ) oz Ut (/oo u(t,z + 2) g(2) dz u(t,w)) <0

u(t,z) —P(t,z) > 0

w  o? 0%u o? U R
[%4—5%4—(#—7)g—x—ru+)\(/_oou(t,a:-i—z)g(z)dz—u(t,:v))](u—i/)):O

along with suitable boundary conditions. In applying an upwind finite difference scheme, the sign
of the constant yu — 02/2 is the deciding factor of whether a forward (second order) or backward
difference should be used to approximate the first partial derivative. In what follows, we consider
only the case where this constant is positive and employ a forward difference. We approximate the
infinite integral .
/ u(t,z + z) g(z) dz

— o0
by a finite sum, appended by a residual term which appears in the constant vector of the discretized
LCP; see [28] for more details. The matrix that defines this LCP is:

Minp = Mjmp + Gjmp
where M jmp 18 the matrix that is the result of discretizing the partial differential operator:

8, L, 2\ o
Limp = 77 T20 W*(H‘? oz "
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specifically,

b ¢c d 0 0 0
a b ¢ d 0 0
00 a b ¢ d 0
Mjmp =
0 0 a b ¢ d
00 -+ 0 a b ¢
00 --- 0 0 a b
where 0t and dz are the discretization steps of time and state, respectively,
0= _ 6 o?
T 2(6x)?
0.2
bzl 0o 39( _7)—1—7‘
8t (0z)? 26z
2
_ 0 o2 20 (“ - %)
€= 2 (6z)? oz
L_t(n-%)
20z

The matrix Gjmp is a Toeplitz matrix given by

90 g1 92 g3 °° gnN-1
g-1 go g1 g2 '+ gN-2
g—2 g-1r g0 91 --° GgN-3
Gimp = M — Aoz
gn-2 -+ g-2 g-1 9o g1
gN-1 gNn-2 - G-2 g-1 90

where the constants g; are positive weights derived from the probability density function g(z)
evaluated at the grid points. With dz sufficiently small, the matrix Gy is both row and column
diagonally dominant. In [28] the matrix Gjmp is multiplied by a factor § € (0, 1] similar to the
9-factor in M smp- For simplicity, we have taken 6=1.

3 Matrix Classes and the LCP

In this section, we present some important properties of the matrices

MY

Cox?

MY, M MM and Mimp (25)

trn» trn?
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and summarize the roles of these properties in the solution of the LCP. We omit the discussion of the
matrix M Z‘;Ii’ because, among other reasons, it is necessary to impose some restrictive conditions
on 0t, 6R, and N in order for the diagonal entries of this matrix to be positive, whereas no such
conditions are needed for the matrix M".. Also we do not discuss M bac hecause it is similar to
M2 We note that the diagonal entries of the matrices listed in (25), with the possible exception
of Mimp (which is due to the discrete jump matrix Gjmp), are all positive for all values of the
time and state discretization steps; this is the consequence of the upwind finite difference scheme.
(The matrix Mm, will have the same property provided that ¢z is sufficiently small.) All of the
matrices in (25) are not symmetric.

We formally introduce several matrix classes that are relevant to the option models discussed
in this paper. Fundamental properties of these matrices can be found in [5]. Throughout the
discussion, matrices are not assumed to be symmetric.

An n x n real matrix M is said to be positive definite if 7 Mz > 0 for all nonzero n-vectors
x. Let PD denote the class of positive definite matrices. The matrix M is said to be a P-matrix
if all its principal minors are positive. Given the matrix M, its comparison matrix is M whose
entries are defined by

— | M| if1 =
M,’j_{

—| Mi;| ifi # j.
The matrix M is said to be an H-matrix if M is a P-matrix. An H-matrix with positive diagonals

is said to be an H,-matrix. The matrix M is said to an S-matrix if there exists a vector z > 0
such that M > 0. There are many characterizations of a P-matrix; among these is the following:

(a) A matrix M is a P-matrix if and only if it reverses the sign of no nonzero vectors; that is, if
and only if the following implication holds:

[0 # ] = [3k such that zx(Mz), > 0].

A class of matrices broader than the class of P-matrices turns out to contain the two matrices M P2

A trn
and M ™. This is the class of strictly semi-monotone matrices, denoted E (for B.C. Eaves who is

among the pioneers in the LCP arena). Specifically, a matrix M is an E-matrix if it satisfies the
following implication:

[0 # x > 0] = [Jk such that zx(Mz), > 0].
We summarize the key facts of the above matrix classes and their connection to the LCP:
0<zl(g+Mz)>0 (26)

these results can all be found in the book [5]. We use the same letter to denote a matrix property
and the corresponding matrix class.

(b) A matrix M is an H-matrix if and only if M is an S-matrix. (Because of this property,
H-matrices coincide with the so-called “quasi-diagonally dominant” matrices.)

(c¢) The following inclusions of matrix classes are valid:

PDUH; CPCECS.
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(d) A matrix M is a P-matrix if and only if the LCP (26) has a unique solution for all constant
vectors g; moreover, this solution is a Lipschitz continuous function of ¢ (with M fixed).

(e) If M is an H,-matrix, then the PSOR method for solving the LCP (26) converges for all
values of w € (0,w), where
M id,

l<@=2mn—2%__ <9
i >, | Mijld;

and d is a vector such that Md > 0 (such a vector d must exist, by (b)); the above estimate
of the upper bound @ tends to be conservative in practice.

(f) If M is an n x n H -matrix, then for any vector d such that Md > 0, the vector

—\T
M+ M
p5<7_;— ) d

is an “n-step” vector of the LCP (26) for all vectors g; that is, with the above vector p,
Algorithm 4.8.2 (the revised parametric principal pivoting (PPP) algorithm) in [5] computes
the unique solution of the LCP in at most n pivots.

(g) If M is an E-matrix, then Lemke’s algorithm will compute a solution of the LCP (26) for
all vectors ¢, under the usual non-degeneracy assumption as in the simplex method of linear
programming.

Contrary to the case of an H-matrix with positive diagonals, the convergence of a PSOR method
for solving the LCP (26) with an asymmetric positive definite matrix M is not very well understood;
at best, the convergence requires highly restrictive conditions. Indeed, it is not common in the LCP
community to apply this method for solving such an LCP; instead, alternative methods such as
Lemke’s method or other recent algorithms can be used.

The implication of (f) is that an LCP with an H -matrix can be solved by a pivotal algorithm
whose computational complexity is a low order polynomial of the dimension of the problem. Fur-
thermore, any special structure of the defining matrix (such as the penta-diagonality in the matrices
M and MY or the special block structure in the matrix M%) can be profitably exploited
in the solution process; often, this will result in substantial reduction in the computational efforts.
Finally, unlike the case of a P-matrix, an LCP with an E-matrix can have multiple solutions.

3.1 Diagonal dominance, P- and E-property

Besides having positive diagonals, the matrices

My, My, M, MY, and  Mjm,
are all (row) strictly diagonally dominant under mild conditions on the discretization steps. Thus all
these matrices are H,-matrices and thus P-matrices. Statements (a)—(f) are therefore applicable to
the LCPs arising from the Cox model, the Asian model, and the jump diffusion model. Additional

treatment is needed for the model with transaction costs because the matrices M$$® and M}
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are only the leading principal submatrices of the matrices M{n and Efnl respectively, the latter

matrices being the ones that define the corresponding LCPs.
We give in the proposition below the precise condition for the matrix M ‘féi to have the desired
diagonal dominance property; similar conditions for the other matrices can be obtained easily.

Proposition 1 With R = NéR, if

5t 1
e in (1. ——
O <mm< : |7~R—1|>

then M g};i is row strictly diagonally dominant.

Proof. We need to show that for each n =0,1,..., N, the quantity b, — (|e},| +|al,| +|c,| +|dL]|) is
positive (although the entries ep, €], dy_;, dy, aj, and ¢y are not present in M ,°., we can include
them in the following verification). We have for each n,

1 0
[l = (len|+lan|+ el +dn]) > = — <51 -rndR|.
It is now easy to verify that under the assumption the right-hand quantity is indeed positive. This

completes the proof. Q.E.D.

Obviously, we can not expect the matrices Mo, and M Ernn‘ to be diagonally dominant. Instead,

we show below that M is a P-matrix if (K < 1 and 95" is row strictly diagonally dominant;
trn 11 y g y

furthermore M (with no restriction on K) is an E-matrix as long as its leading principal block,

Ui s a P-matrix. We also give examples to show that M is not necessarily P-matrices even
if it leading principal block is so. Thus, the LCP arising from the option model with transaction
coefficient K < 1 has a unique solution that can be computed by a host of efficient algorithms
(including one that has a “strongly polynomial” complexity); in contrast, the LCP arising from the
option model with transaction coefficient K > 1 has a (possibly non-unique) solution that can be
computed by Lemke’s algorithm; for the latter model, a central difference scheme applied to the
formulation (20)—(24) is recommended.

The proof of the asserted P-property of the matrix M{7 requires us to review several basic
facts about a general matrix in partitioned form:

[Mn Mo ]
My Moo

M = (27)

where M1, and M9y are square matrices with Moo having a positive determinant. The matrix
M — Myy(Ma) ' My

is called the Schur complement of Mgy in M and denoted (M /Myy). From the Schur determi-
nantal formula [5, Chapter 2]:

det M = detMQQ det(M/MQQ),

it follows that the sign of det M coincides with that of the determinant of the Schur complement
of M 22 in M.
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Proposition 2 If
—+r——= >0, (28)

then M is a P-matriz.

Proof. To simplify the notation, we drop the subscript “trn” and superscript “cen” throughout
the proof; in particular, we simply write M for M. Note that M is of the partitioned form (27)
with M1, being strictly row diagonally dominant (implied by assumption) with positive diagonals
and My being an identity matrix. To show that M is a P-matrix, let M’ denote an arbitrary

principal submatrix of M; we need to show that M’ has positive determinant. We may write
l My, M }

! !
21 22

M' =

where M, is a principal submatrix of M;; (for i = 1,2) and M, (MY;) is a submatrix (not
necessarily principal) of M1y (Ma1). If MY, is vacuous (thus so are the two off diagonal blocks),
then M’ is itself a principal submatrix of M1;. Since M, is itself a P-matrix by the matrix
inclusions mentioned in statement (c) above, it follows that det M’ is positive. Similarly, if M’
is vacuous, the same conclusion trivially holds too.

We now consider the case where both diagonal blocks in M’ are not vacuous. Since M}, is
itself an identity matrix, from the Schur determinantal formula, it follows that

sign det M' = sign det( M}, — M, M5, ).

By the structure of the off diagonal blocks in M, it is not difficult to see that —M/', MY, is
a (possibly not strictly) row diagonally dominant matrix whose nonzero diagonal entries are all
positive. Consequently, the matrix

My, — M, My,
remains strictly row diagonally dominant with positive diagonals; hence its determinant is positive.
Consequently det M’ is positive. Q.E.D.

The next result concerns the matrix M2, Tt is easy to show that under the same condition

28 unl is row strictly diagonally dominant with positive diagonals.
» V11 y diag

Proposition 3 If (28) holds, then M™ is an E-matriz.

trn

Proof. With M} being a P-matrix (because it is row strictly diagonally dominant with positive
diagonals) M Ernnl is a partition matrix of the form (27) where M; is a P-matrix, M9 is a positive
multiple of the identity matrix, and Moo is the identity matrix. It remains to show that any
partitioned matrix having these properties must be an E-matrix. For this purpose, let (z,y) be
a pair of nonzero, nonnegative vectors. On the one hand, if x is nonzero, then the P-property of

M ; implies (cf. statement (a) above) the existence of an index & such that
zp >0 and (Mypz); > 0.
Since y is nonnegative, we clearly have

(Myz+ Mioy), > 0.
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On the other hand, if = 0, then y must be nonzero; so there exists an index ¢ such that
y, >0 and (Moaxz+ May), > 0.

Consequently, the E-property of M follows. Q.E.D.

Incidentally, the condition (28) does not imply that MP2¢ is diagonally dominant; this is illus-

trn

trated in the example below. The same example also shows that MP and M are in general

not P-matrices, although the submatrices MY and M are both P-matrices.

Example. Let
T =1, r = 0.05, c=04, K =13

67 = 0.25, 6X = 001, N— =2, Nt =2.
Condition (28) holds with these values. We have

[127.8 =5 1.25 0.208 0 0 7
—240 1278 -5 0 0.208 0
b 120 —240 127.8 0 0.208
Mtﬁf =
50 0 0 1 0 0
—-100 50 0 0 1
. 50 —100 50 0 0 1 ]
and
[ 1847.8 —925 1.25 0.208 0 0 7
—920 1847.8 —925 0 0.208 0
. 0 —920 1847.8 0 0 0.208
Mim = ;
100 —50 0 1 0 0
—50 —100 50 0 1 0
. 0 -50 100 0 0 1 ]

both matrices have positive diagonals and negative determinants. The leading principal submatrix

of order 3 in MP2¢ is not diagonally dominant, whereas that in MM is row strictly diagonally
dominant. Nevertheless, both of these principal submatrices are P-matrices; the matrices MP2¢

. trn
and M are both E-matrices.

4 Numerical Results

In this section, we report computational results pertaining to the finite difference schemes and the
numerical solutions of the discretized LCPs. Details of the algorithms employed herein can be found
in reference [5]. Three sets of results are presented, each in a separate subsection. The first set of
results aims to demonstrate the benefit of the upwind finite difference scheme (proposed herein)
versus the no-upwind scheme (used in [13]) for solving the Cox model and the continuously-sampled
average strike option model using the PSOR method. The second set of results aims to demonstrate
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the effectiveness of Lemke’s algorithm for solving options with transaction cost. A related aim is to
confirm the benefit of the unified formulation for numerical purposes. The third set of results aims
to demonstrate the effectiveness of the PPP algorithm for solving the jump diffusion model using
the second-order finite difference scheme. Together, these results show that all the (discretized)
option models discussed in the previous section can be solved efficiently by sound LCP methods.

4.1 The Cox model and average strike option

We explore the advantages of using the upwind finite difference scheme versus the no-upwind scheme
for solving the Cox model and the continuously sampled average strike option model. As we have
mentioned, the former scheme guarantees the positivity of the diagonals of the matrices M ,?; and
M ; whereas the latter scheme could lead to matrices with negative diagonals. In addition, as
can be seen from Tables 1-3, the upwind scheme also renders the matrices M ,°. and M positive
definite; whereas this is not the case with the no-upwind scheme.

For these two models, the matrices defining the LCPs are very sparse; thus a natural candidate
for solve these LCPs is the PSOR method. The positive definiteness of the matrices is actually
important for the convergence of PSOR. This consideration provides a sound reason for favoring
the upwind scheme.

The columns in Tables 1-3 are self-explanatory. They give the values of the problem parameters
and the relaxation parameter (w) in the PSOR method we have used in the experiment. The four
columns labeled “upwind”, “dd”, “pd”, and “diag” refer, respectively, to whether upwind or no-
upwind is used, whether the corresponding matrix is diagonally dominant, positive definite, and
whether the diagonals are positive or not. The last column labeled “convergence” refers to the
“average” number of iterations required by the PSOR method to converge under the following
termination rule:

residual = || min(z, g+ Mz )||e < 1078, or max iteration > 500,

where “min” is the component-wise minimum operator of two vectors. Each row in the tables
corresponds to the solution of 7'/ét (number of time steps) LCPs each of size N; the entries in the
“convergence” column are the average PSOR iterations (over time steps) in solving these LCPs in
each row, rounded to the nearest tenth (thus the “+” symbol). The symbol “co” in the convergence
column means that the method fails to terminate under the above rule; “erratic behavior” refers to
runs where the method behaves unpredictably; more specifically, throughout the solution procedure,
the residual was increasing and reached very high values; but all of a sudden (after many iterations),
it dropped below the prescribed tolerance and the method terminated. This erratic behavior can
be attributed to the fact that the diagonal entries of the matrix are not positive; thus there is
no basis to expect reasonable performance of the PSOR method for solving the LCPs. (Similar
results are also obtained with other values of w.) For the Cox model, we use the dividend function
D(S,t) = DyS, where Dy is a constant.

Note that we have only tested cases where the volatility parameter o is relatively small. These
are the cases where the no-upwind matrices will easily have negative diagonals. Without the
positivity of the diagonals, PSOR fails to converge in many cases. From these tables, we conclude
that the upwind finite difference scheme is generally superior to the no-upwind scheme for solving
the continuously-sampled average strike option and the Cox model.
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‘ T H r ‘ o ‘ ot ‘ 08 ‘ Dy ‘ e H upwind ‘ dd ‘ pd ‘ diag ‘ convergence ‘

1| 0.04 |0.03|0.25|0.25]|0.07]|15 no - - + 20+
yes + | + + 10+
11 0.04]003|05 |1.0 |0.07 |15 no - - - 00
yes - |+ + 10+
1| 0.04 |0.01|0.25|0.25]|007]|15 no - - - 20+
yes - + + 10+
2 |10.04]|004|05 |10 |0.07 |14 no - - - 00
yes - + + 10+
2 1009|004 |05 |10 |0.07 |14 no + | + + 10+
yes + | + + 10+
Table 1: The Cox model: N =400 and w = 1.2.

‘THT ‘a ‘57& ‘(5R ‘N ‘w H upwind‘dd‘pd‘diag‘ convergence
1 0.04 | 0.1 0.25 | 0.25 | 400 | 1.2 no + | + + 10+
yes - |+ + 10+
1 | 0.04 | 0.001 | 0.25 | 0.25 | 400 | 1.2 no - - - 10+
yes - + + 10+
1 | 0.04 | 0.001 | 0.25 | 0.25 | 400 | 1.9 no - - - 160+
yes - |+ + 1604
1| 0.04 | 001 |0.25|0.25 | 400 | 1.2 no - - + 10+
yes - + + 10+
1| 0.04 001 |0.25|0.25|400 | 1.9 no - - - 140+
yes - + + 140+
1] 0.05]0.01 |0.25|0.25 400 | 1.2 no - - - 00
yes - |+ + 10+

1] 0.05 001 |0.25]0.25]|400|1.9 no - - - erratic behavior
yes - |+ + 140+
1 ]/ 0.09 | 0.02 0.25 | 0.25 | 800 | 1.2 no - - + o0
yes - |+ + 10+

Table 2: Continuously-sampled average strike option.

For the Cox model, we also compute the value of put options for various values of a. In all
cases, upwind finite difference is used. The parameters are given as follows: the time to expiration
T = 1, the strike price E = 10, the interest rate » = 0.04, the volatility ¢ = 0.4, the time step
0t = 0.25, the state step 65 = 0.4. The results are plotted in Figure 1.
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‘ T H r ‘ o ‘ ot ‘ 0R ‘ N ‘ w H upwind ‘ dd ‘ pd ‘ diag ‘ Convergence

1.5 0.09 [0.03]|05 |10 |400 |1.2 no - - + 00
yes - |+ + 10+
1.5 0.09 | 0.03 0.5 |0.75 | 400 | 1.2 no - - + 00
yes - |+ + 10+
2 0.09 | 0.02 | 0.25 | 0.25 | 400 | 1.2 no - - + 00
yes -+ + 10+
2 0.09 | 0.02 | 0.25 | 0.25 | 1000 | 1.2 no - - + 00
yes - + + 10+
2 0.09 {002 |05 |0.25|400 | 1.2 no - - - 00
yes - + + 10+
2 0.09 | 0.02 | 0.5 | 0.25 | 1000 | 1.2 no - - - 00
yes - + + 10+

5 0.05 | 0.01 | 0.25 | 0.25 | 400 | 1.2 no - - - erratic behavior
yes - |+ + 10+

5 0.05 | 0.01 | 0.25 | 0.25 | 1000 | 1.2 no - - - erratic behavior
yes - |+ + 16+

Table 3: Continuously-sampled average strike option.
E— payoff
o E— a=2.0 n
Al conoesrs |
a =22

a4t \\\ B
3 \\\ a

4.2 Options with transaction cost

Lemke’s algorithm (Algorithm 4.4.5 in [5]) has been applied to solve the various formulations of
the option models with transaction cost. The problem parameters are given as follows: the time to
expiration 7' = 0.5, the interest rate r = 0.10, the strike price £ = 45, the volatility o = 0.40, the
time step 7 = 0.1, the state step dx = 0.1. For K = 0.25, we plot the value of the American put

Asset Price

Figure 1: American put option values given by the Cox model
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option obtained using the centered-difference and using the unified approach in Figures 2 and 3.
In each figure, the solid lines denote the payoff at expiration and the vanilla American put option
value. The dashed line is the put option value in the presence of transaction cost. If, instead, we
apply the backward-difference to this problem, we do not obtain any meaningful result as expected.
For K > 1, we also test Lemke’s algorithm on each of the three approaches: unified, centered-
difference, and backward-difference. In at least one case, though rather artificial, when K = 15,
the centered-difference formulation causes Lemke’s algorithm to fail while the unified formulation
successfully yield a solution to the problem.

K =0.25
T

Option value

o 10 20 30 40 50 60 70 80 90 100
Asset price

Figure 2: American put option with transaction cost: centered-difference, K = 0.25

Unified, K = 0.25
T T

Option value

- I
o 10 20 30 40 50 60 70 80 90 100
Asset price

Figure 3: American put option with transaction cost: unified formulation, K = 0.25

4.3 Jump diffusion model

We have applied the revised PPP algorithm (Algorithm 4.8.2 in [5]) to solve the jump diffusion
model. As in Zhang [28], we assume the random variable 1 + U; follows a lognormal distribution.
The problem parameters are as follows: the time to expiration T' = 0.2, the interest rate r = 0.04,
the strike price E = 2, the volatility o = 0.3, the time step d¢t = 0.05, E[U1] = 0, Var(Uy) = 0.04,
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and the Poisson parameter A = 1.5. We test the PPP algorithm with matrices of difference sizes:
while fixing N~ dz = NT §x = 2, we solve four problems for jz = 0.1, 0.05, 0.02, and 0.01. Hence,
the order of the matrix M, is 41, 81, 201, and 401, respectively. For each problem, the solution
obtained at each time step is plotted in Figures 4-7, with the lowest curve representing the payoff
at expiration and the highest curve representing the value of option at time zero. Note that the
reported number of iterations in each case is the average over the 4 (= T'/4t) time steps.

We make several computational remarks about this set of experiments. The parameters of the
problems are such that the matrix My, is row strictly diagonally dominant; thus statement (f) in
Section 3 is applicable and the indicated vector p is used in the PPP algorithm. Thus the algorithm
is expected to terminate in no more than N~ + Nt — 1 iterations; indeed it does so in less than
half this number in all runs. The Toeplitz structure of the matrix My, can be profitably used in
the implementation to improve the computational efficiency (e.g., a Toeplitz linear solver can be
used for solving the linear equations in each pivot step). Nevertheless, our present implementation
has not taken advantage of such structure.

One referee has pointed out certain non-convexity in Figures 6 and 7. Although Brennan
and Schwartz [2] have provided some theoretical results on the convexity of the value of a vanilla
American put option, we are not aware of a theoretical justification that the value of an American
put in the jump diffusion model must be convex in the asset price. The non-convexity of the curves
in these two figures (where dz is somewhat small) may also be related to the smallness of the
discretization step; the curves appear to be convex in Figures 4 and 5 where {z is larger.

Jump Diffusion Model, dx = 0.10
T T

0.6

0.5

I
IS
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Figure 4: Jump diffusion model: éz = 0.1, number of pivots by PPP = 15

5 Conclusion

In this paper, we have examined in detail American option models of several types: Cox’s model,
the continuously sampled average strike option, options with transaction cost, and finally a jump
diffusion model. Using the linear complementarity approach, we have obtained numerical solutions
to these models via discretized LCPs through a time-stepping scheme. For Cox’s model and the
average strike option, we have introduced a second-order upwind finite difference scheme to deal
with the convection term in the PDCP which may vary in sign. Numerical experiments show
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Figure 5: Jump diffusion model: dz = 0.05, number of pivots by PPP = 30
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Figure 6: Jump diffusion model: dz = 0.02, number of pivots by PPP = 76

that the upwind finite difference scheme is preferred to to that without upwind, especially in the
case of low volatilies. For American options with transaction costs, where the partial differential
operator is initially nonlinear, we have applied a simple technique from linear programming to
convert it into an LCP. The resulting LCP has a highly structured matrix, and we have established
its properties and the solvability of the LCP by Lemke’s algorithm. Finally, we have looked at
an American option model that incorporates a jump diffusion process. Using a second-order finite
difference approximation for the convection term, we have solved the model numerically via the
PPP algorithm, which is guaranteed to terminate in n steps, where n is the order of the defining
matrix of the discretized LCP.

In conclusion, our study has demonstrated the validity and the versatility of LCP methods
for solving American option models of different types. We are confident that these methods can
be similarly applied to such extensions as two-factor models, models with stochastic volatilies,
and bond option models. Further investigation of the LCP approach applied to these and other

28



Jump Diffusion Model
T T

0.4

Option Value, V

° °
N w

o
[

o

I .
15 2 2.5 3 3.5 4
Asset Price, S

Figure 7: Jump diffusion model: éz = 0.01, number of pivots by PPP = 155

extended models is presently in progress and the findings will be reported in due time.
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