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Let E/Q be an elliptic curve. The Sato–Tate conjecture, now a theorem, tells us

that the angles θp = cos−1
(

ap
2
√

p

)
are equidistributed in [0, π] with respect to

the measure 2
π sin2 θ dθ if E is non-CM (resp. 1

2π dθ + 1
2 δπ/2 if E is CM). In the

non-CM case, Akiyama and Tanigawa conjecture that the discrepancy

DN = sup
x∈[0,π]

∣∣∣∣∣ 1
π(N) ∑

p6N
1[0,x](θp)−

∫ x

0

2
π

sin2 θ dθ

∣∣∣∣∣
asymptotically decays like N−

1
2+ε, as is suggested by computational evidence

and certain reasonable heuristics on the Kolmogorov–Smirnov statistic. This

conjecture implies the Riemann hypothesis for all L-functions associated with

E. It is natural to assume that the converse (“generalized Riemann hypothesis

implies discrepancy estimate”) holds, as is suggested by analogy with Artin

L-functions. We construct, for compact real tori, “fake Satake parameters”

yielding L-functions which satisfy the generalized Riemann hypothesis, but for

which the discrepancy decays like N−ε for any fixed ε > 0. This provides ev-

idence that for CM abelian varieties, the converse to “Akiyama–Tanigawa con-

jecture implies generalized Riemann hypothesis” does not follow in a straight-

forward way from the standard analytic methods.

We also show that there are Galois representations ρ : Gal(Q/Q) →

GL2(Zl), ramified at an arbitrarily thin (but still infinite) set of primes, whose

Satake parameters can be made to converge at any specified rate to any fixed

measure µ on [0, π] for which cos∗ µ is absolutely continuous with bounded

derivative.
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CHAPTER 1

INTRODUCTION

1.1 Motivation from classical analytic number theory

Start with an old problem central to number theory: counting prime numbers.

As usual, let π(x) be the prime counting function and Li(x) =
∫ x

2
dt

log t be the Eu-

lerian logarithmic integral. The prime number theorem tells us that as x → ∞,
π(x)
Li(x) → 1. The standard approach to proving the prime number theorem is by

showing that the Riemann ζ-function has non-vanishing meromorphic contin-

uation to < = 1.

Theorem 1.1.1. The function ζ(s) admits a non-vanishing meromorphic continuation

to < = 1 with a simple pole at s = 1, if and only if limx→∞
π(x)
Li(x) = 1.

Since ζ(s) does have the desired properties, the prime number theorem is

true. It is natural to try to bound the difference π(x)− Li(x). Numerical exper-

iments dating back to Gauss suggest that |π(x) − Li(x)| � x
1
2+ε. By this we

mean that the estimate holds for any ε > 0, though the implied constant may

depend on ε. In fact, we have the following result.

Theorem 1.1.2 ([Edw74, Th., p. 90]). The Riemann hypothesis is true if and only if

|π(x)− Li(x)| � x
1
2+ε.

Neither side of this equivalence is known for certain to be true!

There is an analogue of the above discussion for Artin L-functions. Let K/Q

be a nontrivial finite Galois extension with group G = Gal(K/Q). For any

1



rational prime p at which K is unramified, let frp be the conjugacy class of the

Frobenius at p in G. For any complex irreducible representation ρ of G, there is

a corresponding L-function defined as

L(ρ, s) = ∏
p

det
(
1− ρ(frp)p−s)−1 ,

where here, and for the remainder of this thesis, we tacitly omit from the prod-

uct those primes at which ρ is ramified. If ρ is the trivial representation, then

L(1, s) = ζ(s). For each p, let δfrp be the Dirac delta measure concentrated

at frp on G\, the set of conjugacy classes of G. Given a cutoff x, there is a

natural empirical measure Px = 1
π(x) ∑p6x δfrp on G\. Let µ be the normal-

ized Haar measure on G\ (induced from the uniform measure on G), and let

D(Px) = maxS⊂G\ |Px(S)− µ(S)|. Then Px converges weakly to the Haar mea-

sure on G\ if and only if D(Px) → 0. Recall that weak convergence of Px to µ

means
∫

f dPx →
∫

f dµ for all continuous functions f on G\. Since G\ is a fi-

nite set, all functions on G\ are continuous, but later on we will consider weak

convergence on more general spaces.

Theorem 1.1.3 ([Ser89, Th. 2 Cor., A.1]). The measures Px converge weakly to the

Haar measure on G\ if and only if the function L(ρ, s) admits a non-vanishing analytic

continuation to < = 1 for all nontrivial ρ.

Both sides of this equivalence are true, and known as the Chebotarev den-

sity theorem. If K = Q, so that G (and hence ρ) are trivial, then the “Frobenius

elements” are all the identity, so equidistribution holds trivially. However, ζ(s)

does not admit a non-vanishing analytic continuation to < = 1, for it has a sim-

ple pole at s = 1. So the result is only true when K/Q is a nontrivial extension.

Returning to that case (K 6= Q), there is a version of the strong prime number

theorem. It is known that Artin L-functions admit a meromorphic continuation

2



to the complex plane, and that this continuation satisfies a functional equation.

However, in this thesis, we will consider Dirichlet series for which no such con-

tinuation or functional equation exist—even conjecturally. As a result, in this

thesis, by the “Riemann hypothesis” for a Dirichlet series L(s) we mean the

statement that L(s) admits a non-vanishing analytic continuation to < > 1
2 .

Theorem 1.1.4. The bound D(Px) � x−
1
2+ε holds if and only if each L(ρ, s), ρ non-

trivial, satisfies the Riemann hypothesis.

The forward implication follows from Theorem 3.2.1, while the reverse im-

plication is a result of Serre [Ser81, Th. 4]. This whole discussion generalizes

to a more complicated set of Galois representations—those arising from elliptic

curves and more general motives.

1.2 Discrepancy and the Riemann hypothesis for elliptic curves

For background on the Galois representations and L-functions associated to el-

liptic curves, see [Sil09, III§7, C§17]. Throughout this thesis, what we call the L-

function of an elliptic curve (motive, etc.) is the normalized (i.e. analytic instead

of algebraic) L-function. Let E/Q be a non-CM elliptic curve. For any prime l, the

l-adic Tate module of E induces a continuous representation ρl : GQ → GL2(Zl).

It is known that for p not dividing either l or the conductor of E, the quanti-

ties ap = tr ρl(frp) lie in Z, are independent of l, and satisfy the Hasse bound

|ap| 6 2
√

p. For each unramified prime p, the corresponding Satake parame-

ter for E is θp = cos−1
(

ap
2
√

p

)
∈ [0, π]. These parameters are packaged into an

3



L-function as follows:

L(E, s) = ∏
p

1
(1− eiθp p−s)(1− e−iθp p−s)

= ∏
p

det
(

1−
(

eiθp

e−iθp

)
p−s
)−1

.

More generally we have, for each irreducible representation symk of SU(2), the

k-th symmetric power L-function:

L(symk E, s) = ∏
p

k

∏
j=0

1

1− ei(k−2j)θp p−s
= ∏

p
det

(
1− symk

(
eiθp

e−iθp

)
p−s
)−1

.

Numerical experiments suggest that the Satake parameters are equidis-

tributed with respect to the Sato–Tate distribution ST = 2
π sin2 θ dθ. Indeed,

for any cutoff x, let Px be the empirical measure 1
π(x) ∑p6x δθp . The convergence

of Px to the Sato–Tate measure is closely related to the analytic properties of the

L(symk E, s). First, here is the famous Sato–Tate conjecture, now a theorem, in

our notation.

Theorem 1.2.1 ([BLGHT11, Cor. 8.9]). The measures Px converge weakly to ST.

Theorem 1.2.2 ([Ser89, Th. 2 Cor.]). The Sato–Tate conjecture holds for E if and only

if each of the functions L(symk E, s) have analytic continuation to < = 1.

The stunning recent proof of the Sato–Tate conjecture over totally real fields

showed that the functions L(symk E, s) have the desired analytic continuation.

Moreover, it showed that for all k, L(symk E, s) has meromorphic continuation

to the whole complex plane. Even better, when k is odd, the L-function is po-

tentially automorphic. See Theorem 5.3.4 for a result in this thesis where more

can be said about odd symmetric power L-functions than even ones.

The Riemann hypothesis, and its analogue for Artin L-functions, has a nat-

ural generalization to elliptic curves. In this context, the discrepancy of the set

4



{θp}p6x is

Dx (E, ST) = sup
t∈[0,π]

|Px[0, t)− ST[0, t)| .

The following conjecture is made in [AT99].

Conjecture 1.2.3 (Akiyama–Tanigawa). Dx (E, ST)� x−
1
2+ε.

Akiyama and Tanigawa provide computational evidence for their conjec-

ture, then go on to prove a special case of the following theorem, proved in full

generality by Mazur.

Theorem 1.2.4 ([Maz08, §3.4]). If Dx (E, ST) � x−
1
2+ε, then all the functions

L(symk E, s) satisfy the Riemann hypothesis.

This discussion also makes sense when E has complex multiplication (for

simplicity, we consider E/F where F is the field of definition of the complex mul-

tiplication). The Sato–Tate measure for such E is the Haar measure on SO(2),

i.e. the uniform measure on [0, π]. Instead of symmetric power L-functions,

there is an L-function for each character of SO(2). Once again, there is a theo-

rem “Akiyama–Tanigawa conjecture implies generalized Riemann hypothesis.”

For a precise statement and proof, see Section 4.3.

It is natural to assume that the converse to the implication “Akiyama–

Tanigawa conjecture implies Riemann hypothesis” holds. In this thesis, we

construct a range of counterexamples to the implication “generalized Riemann

hypothesis implies fast discrepancy decay ” for sequences in compact real tori.

This suggests that for CM abelian varieties, proving the converse to “Akiyama–

Tanigawa implies generalized Riemann hypothesis” is not as straightforward as

in the case of Artin L-functions.

5



Moreover, we generalize the results of [Pan11] to show that there are (in-

finitely ramified) Galois representations whose Satake parameters exist and are

equidistributed with respect to essentially arbitrary specified measures. More-

over, the rate of decay of discrepancy can be prescribed, and for “odd” mea-

sures, all the odd symmetric-power L-functions can be made to satisfy the Rie-

mann hypothesis. We also show that some of the results of [Sar07] about sums

of the form ∑p6x
ap√

p cannot be generalized to general—in particular, infinitely

ramified—Galois representations.

6



CHAPTER 2

DISCREPANCY

2.1 Equidistribution

Discrepancy (also known as the Kolmogorov–Smirnov statistic) is a way of mea-

suring how closely sample data fits a predicted distribution. It has many appli-

cations in computer science and statistics, but here we will focus on only its ba-

sic properties, such as how discrepancy changes when sequences are perturbed,

transformed by a function, or combined.

First, recall that discrepancy provides a way of sharpening the soft con-

vergence results in [Ser89, A.1]. Let X be a compact topological space, x =

(x2, x3, x5, . . . ) a sequence in X indexed by the rational primes, and C(X) the

space of continuous, C-valued functions on X.

Definition 2.1.1. Let µ be a continuous probability measure on X. The sequence

x is equidistributed with respect to µ if for all f ∈ C(X), we have

lim
N→∞

1
π(N) ∑

p6N
f (xp) =

∫
f dµ.

In other words, x is µ-equidistributed if the empirical measures Px,N =

1
π(N) ∑p6N δxp converge to µ in the weak topology. It is easy to see that x is

µ-equidistributed if and only if
∣∣∣∑p6N f (xp)

∣∣∣ = o(π(N)) for all f ∈ C(X) hav-

ing
∫

f dµ = 0. One can restrict to any set of functions which generates a dense

subpace of C(X)µ=0.

In the discussion in [Ser89, A.1], X is the space of conjugacy classes in a

compact Lie group, and f is allowed to range over the characters of irreducible,

7



nontrivial, unitary representations of the group—these generate a dense sub-

space of C(X)µ=0 by the Peter–Weyl theorem. Serre’s results can be generalized

to a much broader class of Dirichlet series, which are of the form

L f (x, s) = ∏
p

(
1− f (xp)p−s)−1 .

In fact, in light of the following theorem, we can consider functions f which are

only continuous almost everywhere. This allows us to consider step functions

like 1[0,π/2) − 1(π/2,π] on [0, π].

Theorem 2.1.2. Let X be a compact topological space, µ a Radon probability mea-

sure on X, and f : X → C bounded and continuous µ-almost everywhere. If x is

µ-equidistributed, then

lim
N→∞

1
π(N) ∑

p6N
f (xp) =

∫
f dµ.

Proof. We prove the more general result that if {µn} is a sequence of Radon

(i.e. finite and regular) probability measures on X which converges weakly to

µ, then µn( f ) → µ( f ) for all f which are bounded and continuous µ-almost

everywhere.

Let D be the set of points at which f is not continuous. For every ε > 0, there

exists an open Uε ⊃ D with µ(Uε) < ε. By the Tietze extension theorem, there

exists fε ∈ C(X) such that | fε|∞ 6 | f |∞ and fε|XrUε = f |XrUε . Note that

|µn f − µ f | 6 |µn f − µn fε|+ |µn fε − µ fε|+ |µ fε − µ f |. (2.1)

Now |µn f − µn fε| 6 2µn(Uε)| f |∞. Since Uε is open, this converges to

2µ(Uε)| f |∞ < 2ε| f |∞. The second term in (2.1) converges to zero because fε

is continuous, and the third term can be bounded as |µ fε− µ f | 6 2µ(Uε)| f |∞ <

2ε| f |∞. We have shown that lim supn→∞ |µn f − µ f | 6 4ε| f |∞. Since ε was arbi-

trary, the result follows.

8



2.2 Definitions and first results

We will define discrepancy for measures on the d-dimensional half-open box

[~0, ~∞) = [0, ∞)d ⊂ Rd. For vectors ~x,~y ∈ [~0, ~∞), we say ~x < ~y if xi < yi ∀i, and

in that case write [~x,~y) for the half-open box [x1, y1)× · · · × [xd, yd).

Definition 2.2.1. Let µ, ν be probability measures on [~0, ~∞). The discrep-

ancy between µ and ν is D(µ, ν) = sup~x<~y |µ[~x,~y)− ν[~x,~y)|, where ~x and

~y range over [~0, ~∞). The star discrepancy between µ and ν is D?(µ, ν) =

sup~06~y
∣∣∣µ[~0,~y)− ν[~0,~y)

∣∣∣, where ~y ranges over [~0, ~∞).

Lemma 2.2.2. D?(µ, ν) 6 D(µ, ν) 6 2d D?(µ, ν).

Proof. The first inequality holds because the supremum defining discrepancy is

taken over a larger set than that defining star discrepancy. To prove the second

inequality, let ~x < ~y be in [~0, ~∞). For S ⊂ {1, . . . , d}, let IS = {~t ∈ [~0,~y) : ti <

xi ∀ i ∈ S}. Inclusion-exclusion tells us that µ[~x,~y) = ∑S⊂{1,...,d}(−1)#Sµ(IS),

Figure 2.1: The sets I{1} and I{2} when d = 2.

~x•

~y

I{1}
I{2}

and similarly for ν. Since each of the IS are half-open boxes intersecting the

origin, we know that |µ(IS)− ν(IS)| 6 D?(µ, ν). It follows that

|µ[~x,~y)− ν[~x,~y)| 6 ∑
S⊂{1,...,d}

|µ(IS)− ν(IS)| 6 2d D?(µ, ν).

For a discussion and related context, see [KN74, Ch. 2 Ex. 1.2].

9



Since we are only interested in the asymptotics of discrepancy, we will some-

times gloss over the distinction between discrepancy and star discrepancy, using

whichever type of discrepancy makes a proof easier to follow.

We are usually interested in comparing empirical measures and their conjec-

tured asymptotic distribution. Let ~x = (~x1,~x2,~x3, . . . ) be a sequence in [~0, ~∞),

and µ a probability measure on [~0, ~∞). For any N > 1, the empirical measure as-

sociated to the truncated sequence~x6N = (~xn)n6N is P~x,N = 1
N ∑n6N δ~xn . Write

DN(~x, µ) = D
(

P~x,N, µ
)
, and similarly for star discrepancy. In this context,

D?
N(~x, µ) = sup

~y∈[~0,~∞)

∣∣∣∣∣#{n 6 N : ~xn ∈ [~0,~y)}
N

− µ[~0,~y)

∣∣∣∣∣ .

When the measure µ is clear from the context, we will refer to DN(~x, µ)

(resp. D?
N(~x, µ)) as the discrepancy (resp. star discrepancy) of the sequence~x.

If the measure µ is only defined on a Borel subset of [~0, ~∞), we tacitly extend

it by zero to Rd. It is also possible to define discrepancy for sequences lying in

compact Lie groups. For example, if the sequence~x lies in a real torus T, choose

a Lie isomorphism T ' Td = (R/Z)d, and using that isomorphism identify

the torus (as a measure space, not a topological space) with [0, 1)d ⊂ [~0, ~∞).

This gives a definition of discrepancy for sequences in T. Two different Lie

isomorphisms T ' Td will give two different definitions of discrepancy, but

asymptotically they will be bounded above and below by constant multiples of

each other as long as the measure in question is the normalized Haar measure.

In that case, we write DN(~x) in place of DN(~x, µ).

We can even define discrepancy for sequences in compact, connected Lie

groups, though we will only use G = SU(2). Let G be such a group, and

consider a sequence lying in the space G\ of conjugacy classes of G. Choose

10



a maximal torus T ⊂ G, and recall that G\ = T/W, for W the Weyl group

of T. Choose a Lie isomorphism Td = (R/Z)d ' T, and as before we can

identify T as a measure space with [0, 1)d. The Weyl group acts on T, and we

can choose a connected fundamental domain Q for the action of W. Identify-

ing G\ with Q ⊂ [0, 1)d, this gives a definition of discrepancy for a sequence

in G\ with respect to the Haar measure. Of course this definition depends on

the choice of T, Q, and the Lie isomorphism T ' Td, but asymptotically these

definitions are all the same. The paper [Ros13] gives a different definition of dis-

crepancy which only works for semisimple simply-connected groups, but un-

like this thesis, proves an Erdös–Turán inequality for that definition. It is likely

that a reasonable application of isotropic discrepancy would render these defi-

nitions equivalent, at least for asymptotic purposes, but as the two definitions

coincide for SU(2), we do not explore this further.

Sometimes the sequence x will not be indexed by the natural numbers, but

by the rational primes, or some other discrete subset of R+. In that case we will

still use the notations DN(x, µ), x6N = (~xα)α6N, x>N = (~xα)α>N, etc., keeping

in mind that the set {~xα : α 6 N} is involved, and that in formulas 1
N is replaced

by #{indices 6 N}−1.

Why half-open boxes? The choice of sets of the form [~x,~y) in the definition of

discrepancy seems rather arbitrary, and it is. One could easily define another

kind of discrepancy as a supremum over all open or closed balls—and those

definitions generalize to arbitrary metric spaces. There are also more subtle def-

initions involving suprema over open or closed convex sets (isotropic discrep-

ancy). See [KN74] for a discussion and comparison of these differing definitions.

In this thesis, we restrict to half-open boxes because they are computationally
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tractable, fit well with Diophantine approximation on tori, and the theory is

most well-developed for this definition.

2.3 Statistical heuristics

Let Ω be a probability space, and let {θp} be a collection of prime-indexed iid

(that is, independent and identically distributed) random variables on Ω with

continuous joint distribution µ. By this, we mean each θp : Ω → R is measur-

able, and if P is the probability measure on Ω, then
(

∏p∈S θp

)
∗

P = ∏p∈S µ for

all sets S of primes. In the language of statistics, {θp} is a sequence of iid ran-

dom variables with joint distribution µ. For the sake of concreteness, the reader

may take µ = 2
π sin2 θ dθ, supported on [0, π]. Then the discrepancy (known as

the Kolmogorov–Smirnov statistic in this context) is the random variable

DN = sup
x∈[0,π]

∣∣∣∣∣ 1
π(N) ∑

p6N
1[0,x] ◦ θp −

∫
1[0,x] dµ

∣∣∣∣∣ .

Kolmogorov and Smirnov proved that the inside of the absolute value, a

function-valued random variable, converges to zero. The Glivenko–Cantelli

theorem says that DN → 0 almost everywhere, and even better, the normal-

ized discrepancy
√

π(N)DN approaches a limiting distribution (supremum of

the Brownian bridge) which does not depend on µ.

Now let θp be a collection of angles drawn at random from the distribu-

tion ST. Then the Glivenko–Cantelli theorem implies that as N → ∞, the

bound DN(θ, ST) = Θ
(

π(N)−
1
2

)
holds. Of course, if E is an elliptic curve,

the θp are not, a priori, drawn at random from ST, so the Glivento–Cantelli the-

orem does not imply this bound for any actual elliptic curve. However, since

12



we expect the θp of an actual elliptic curve to behave roughly as if they were

drawn randomly from ST, the Glivenko–Cantelli theorem suggests that at least

DN(θ, ST) � N−
1
2+ε (this is the Akiyama–Tanigawa conjecture, i.e. Conjecture

1.2.3). See [AT99] for computational evidence for this conjecture. In a perfect

world, the normalized discrepancy
√

π(N)DN(θ, ST) would also be equidis-

tributed, but sadly, numerical experiments conducted by the author suggest this

is not the case.

2.4 The Koksma–Hlawka inequality

In this section we summarize the results of the paper [Ö], generalizing them

as needed for our context. Recall that a function f on [~0, ~∞) ⊂ Rd is said to

be of bounded variation (in the measure-theoretic sense) if there is a finite Radon

measure ν such that f (~x)− f (~0) = ν[~0,~x]. In such a case we write Var( f ) = |ν|.

If f ∈ Cd(Rd), then Var( f ) =
∫
[~0,~∞)

∣∣∣ dd f
dt1...dtd

∣∣∣.
Theorem 2.4.1 (Koksma–Hlawka). Let µ be a probability measure on [~0, ~∞), f of

bounded variation. For any sequence~x = (~x1,~x2, . . . ) in [~0, ~∞), we have∣∣∣∣∣ 1
N ∑

n6N
f (~xn)−

∫
f dµ

∣∣∣∣∣ 6 Var( f )DN(~x, µ).

Proof. By assumption, there is a finite Radon measure ν such that f (~y)− f (~0) =
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ν[~0,~y]. Recall that 1[~0,~z](~y) = 1[~y,~∞)(~z) for any ~y,~z ∈ [~0, ~∞). Then

1
N ∑

n6N
f (~xn)−

∫
f dµ =

1
N ∑

n6N

(
f (~xn)− f (~0)

)
−
∫ (

f (~x)− f (~0)
)

dµ(~x)

=
1
N ∑

n6N

∫
1[~0,~xn]

(~y)dν(~y)−
∫ ∫

1[~0,~x](~y)dν(~y)dµ(~x)

=
∫ ( 1

N ∑
n6N

1[~y,~∞)(~xn)−
∫

1[~y,~∞) dµ

)
dν(~y).

It follows that∣∣∣∣∣ 1
N ∑

n6N
f (~xn)−

∫
f dµ

∣∣∣∣∣ 6 sup
~y∈[~0,~∞)

∣∣∣∣∣ 1
N ∑

n6N
1[~y,~∞)(~xn)−

∫
1[~y,~∞) dµ

∣∣∣∣∣ · |ν|.
The supremum is bounded above by DN(~x, µ), so the proof is complete.

This theorem is proved in a somewhat restrictive setting, and there are more

general versions of the theorem for less restrictive notions of bounded variation.

For example, for f a function on R+ that is bounded variation in the traditional

sense (any piecewise continuous function will do) and µ an absolutely continu-

ous probability measure, the inequality∣∣∣∣∣ 1
N ∑

n6N
f (xn)−

∫
f dµ

∣∣∣∣∣ 6 Var( f )D?
N(x, µ)

holds [KN74, Ch. 2, Th. 5.1]. In particular, when µ is the Sato–Tate measure

and f is piecewise continuous, we can apply this inequality. When d > 1, the

non-measure-theoretic definition of variation is more general, but much more

complicated, than the measure-theoretic one. See [KN74, 2§5] for a discussion.

2.5 Comparing and combining sequences

Throughout this section, λ is the Lebesgue measure on R. Recall that for an-

other measure µ on R, the Radon–Nikodym derivative of µ with respect to λ
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(when it exists) is uniquely determined by cdfµ(x) =
∫ x
−∞

dµ
dλ (t)dt. The Radon–

Nikodym derivative exists whenever µ is absolutely continuous with respect to

λ, i.e. λ(S) = 0 ⇒ µ(S) = 0 (this is the Lebesgue–Radon–Nikodym theorem)

[Fol99, Th. 3.8]. The following result, a generalization of [KN74, Ch. 2 Th. 4.1],

quantifies how much the discrepancy of a sequence changes when the elements

of the sequence are perturbed slightly.

Lemma 2.5.1. Let x and y be sequences in [0, ∞). Suppose µ is an absolutely contin-

uous probability measure on [0, ∞) with bounded Radon–Nikodym derivative dµ
dλ . Let

ε > 0 be arbitrary. Then

|D?
N(x, µ)−D?

N(y, µ)| 6
∣∣∣∣dµ

dλ

∣∣∣∣
∞

ε +
#{n 6 N : |xn − yn| > ε}

N
.

Proof. Fix ε > 0, and let t ∈ [0, ∞) be arbitrary. Recall that Px,N = 1
N ∑n6N δxn

is the empirical measure associated to (xn)n6N. For all n 6 N such that yn < t,

either xn < t + ε or |xn − yn| > ε. It follows that

Py,N[0, t) 6 Px,N[0, t + ε) +
#{n 6 N : |xn − yn| > ε}

N
.

Moreover, we have |Px,N[0, t + ε)− µ[0, t + ε)| 6 D?
N(x, µ). Putting these to-

gether, we get:

Py,N[0, t)− µ[0, t) 6 Px,N[0, t + ε)− µ[0, t) +
#{n 6 N : |xn − yn| > ε}

N

6 µ[t, t + ε) + D?
N(x, µ) +

#{n 6 N : |xn − yn| > ε}
N

6

∣∣∣∣dµ

dλ

∣∣∣∣
∞

ε + D?
N(x, µ) +

#{n 6 N : |xn − yn| > ε}
N

This tells us that D?
N(y, µ) 6

∣∣∣dµ
dλ

∣∣∣
∞

ε + D?
N(x, µ) + #{n6N:|xn−yn|>ε}

N . Reversing

the roles of x and y, we obtain the desired result.

We can apply the above result to the case where the elements of two se-

quences get closer and closer together. In the proof below, the exponent 1
α+1 is
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optimal.

Corollary 2.5.2. Let x, y, and µ be as in Lemma 2.5.1. Suppose |xn − yn| � n−α for

some fixed α > 0. Then |D?
N(x, µ)−D?

N(y, µ)| � N−
α

α+1 .

Proof. Let C > 0 be such that |xn − yn| < Cn−α for all n. Given N, let εN =

N−
α

α+1 . Note that Cn−α > εN if and only if log C− α log n > − α
α+1 log N, which

is equivalent to n 6 N
1

α+1 C1/α. Lemma 2.5.1 with ε = εN and the estimate #{n 6

N : |xn − yn|} 6 N
1

α+1 C1/α tells us that |D?
N(x, µ) − D?

N(y, µ)| � N−
α

α+1 +

N
1

α+1−1C1/α � N−
α

α+1 .

This next result shows that if a sequence is transformed by an isometry of R,

the discrepancy of the transformed sequence is the same as the discrepancy of

the original sequence.

Lemma 2.5.3. Let σ be an isometry of R, and x a sequence in [0, ∞) such that σ(x) is

also in [0, ∞). Let µ be an absolutely continuous measure on [0, ∞) such that σ∗µ is

supported on [0, ∞). Then DN(x, µ) = DN(σ∗x, σ∗µ).

Proof. Every isometry of R is a composition of a translation and a reflection. The

statement is clear if σ is a translation, as then the two discrepancies are equal.

So, suppose σ(t) = a − t for some a > 0. Since µ is absolutely continuous,

µ{t} = 0 for all t > 0, and similarly for σ∗µ. Thus µ[s, t) = σ∗µ(a− t, a− s] =

σ∗µ[a− t, a− s) for any [s, t) ⊂ [0, ∞). Let ε > 0 be arbitrary, and let I = [s, t)

be such that |Px,N I − µI| > DN(x, µ) − ε. Since Px,N can assign positive mea-

sure to a point, it may not be that Pσ∗x,N(a − t, a − s] = Pσ∗x,N[a − t, a − s).

Consider the family of intervals In =
[

a− t + 1
n , a− s + 1

n

)
. For n sufficiently

large, Pσ∗x,N In = Pσ∗x,N(a − t, a − s] because no element of σ∗x is in either
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(
a− t, a− t + 1

n

)
or
(

a− s, a− s + 1
n

)
. Moreover, since σ∗µ is absolutely con-

tinuous, σ∗µ(In)→ σ∗µ(a− s, a− t] = σ∗µ[a− s, a− t). It follows that

|Pσ∗x,N(In)− σ∗µ(In)| → |Pσ∗x,N(a− s, a− t]− σ∗µ(a− s, a− t]|

= |Px,N(I)− µ(I)|.

This means there exists In such that |Pσ∗x,N(In)− σ∗µ(In)| > DN(x, µ)− ε. We

have proved that DN(σ∗x, σ∗µ) > DN(x, µ). Since σ2 is the identity, we can

repeat this argument with σ∗µ and σ∗x to get the other inequality, so the proof

is complete.

A technique we will use throughout this thesis involves comparing the dis-

crepancy of a sequence with the discrepancy of a pushforward sequence, with

respect to the pushforward measure.

Lemma 2.5.4. Let I, J be closed connected intervals and f : I → J a continuous, order-

preserving (or order-reversing) bijection. If µ, ν are probability measure on I, then

DN(µ, ν) = DN( f∗µ, f∗ν).

Proof. First we suppose that f is order-preserving. Then for any interval [s, t) ⊂

I, we know that f [s, t) = [u, v) for some u, v ∈ J. It follows that |µ[s, t) −

ν[s, t)| = | f∗µ[u, v)− f∗ν[u, v)|, so DN(µ, ν) > DN( f∗µ, f∗ν). Similarly, for any

[u, v) ⊂ J, we know that f−1[u, v) = [s, t) for some s, t ∈ I. It follows that

| f∗µ[u, v)− f∗ν[u, v)| = |µ[s, t)− ν[s, t), which means DN( f∗µ, f∗ν) > DN(µ, ν).

If f is order-reversing, then we may write f as the composition of a reflection

and an order-preserving bijection. Combining Lemma 2.5.3 and the first part of

this proof, we see that DN( f∗µ, f∗ν) = DN(µ, ν).
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Now we show that the discrepancy behaves as expected when two se-

quences are interleaved.

Definition 2.5.5. Let x and y be sequences in [~0, ~∞) ⊂ Rd. We write x o y for the

interleaved sequence (x1, y1, x2, y2, x3, y3, . . . ).

Write Pxoy,N = 1
2

(
Px,N + Py,N

)
for the combined empirical measure of the

interleaved sequence x o y.

Theorem 2.5.6. Let I and J be disjoint open boxes in [~0, ~∞), and let µ, ν be probability

measures on I and J, respectively. Let x be a sequence in I and y be a sequence in J.

Then

max{DN(x, µ), DN(y, ν)} 6 DN(x o y, µ + ν) 6 DN(x, µ) + D(y, ν)

Proof. Any half-open box in [0, ~∞) can be split by a hyperplane (parallel to a

coordinate hyperplane) into two disjoint half-open boxes [~a,~b) t [~s,~t), each of

which intersects at most one of I and J. We may assume that [~a,~b) ∩ J = ∅ and

[~s,~t) ∩ I = ∅. Write A = [~a,~b) and S = [~s,~t). Then∣∣Pxoy,N(A ∪ S)− (µ + ν)(A ∪ S)
∣∣ 6 |Px,N(A)− µ(A)|+ |Py,N(S)− ν(S)|

6 DN(x, µ) + DN(y, ν).

This yields the second inequality in the statement of the theorem. To see the

first, assume that the maximum discrepancy is DN(x, µ), and let [~s,~t) be a half-

open box such that |Px,N[~s,~t) − µ[~s,~t)| is within some arbitrary ε of DN(x, µ).

Just as at the beginning of this proof, use a hyperplane (parallel to a coordinate

hyperplane) between I and J to “cut off” the part of [~s,~t) that does not intersect

I. Replacing [~s,~t) with this smaller box, we may assume it does not intersect

J. Assuming [~s,~t) ∩ J = ∅, we have
∣∣Pxoy,N[~s,~t)− (µ + ν)[~s,~t)

∣∣ = |Px,N[~s,~t)−

µ[~s,~t)|, which yields the result.
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Figure 2.2: The sets I, J, and [~s,~t) when d = 2.

hyperplane
[~s,~t)

I

J

2.6 Examples

Historically, one of the first interesting examples of an equidistributed sequence

is the set of translates of an irrational number modulo one.

Theorem 2.6.1 (Weyl, Sierpiński, Bohl). Let a ∈ R be irrational. Then the sequence

x = (a mod 1, 2a mod 1, 3a mod 1, . . . ) is equidistributed in [0, 1).

We will prove this result in Chapter 4. It is known, and we will prove, that

sequences of this form have discrepancy which decays roughly like N−α, for

some α ∈
(

0, 1
2

)
which controls the “goodness” of rational approximations of x.

It is useful to have a sequence whose discrepancy decays faster. The best known

rate of decay is achieved by the following example.

Definition 2.6.2. For n ∈ N, write n in base 2 as n = ∑ ai2i, and put vn =

∑ ai2−(i+1). The van der Corput sequence is v = (v1, v2, v3, . . . ).

The van der Corput sequence has generalizations to other bases and higher

dimensions, but we will not use them. The discrepancy of the van der Corput

sequence has extremely fast convergence to zero.

Lemma 2.6.3 ([KN74, Ch. 2 Th. 3.5]). DN(v) 6
log(N+1)

N log 2 .
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By [KN74, Ch. 2 Th. 2.3], this is (asymptotically) the fastest rate of decay pos-

sible. The van der Corput sequence is uniformly distributed (equidistributed

with respect to the Lebesgue measure). We can use the results of the previ-

ous section to construct sequences equidistributed with respect to more general

measures.

Theorem 2.6.4. Let µ be an absolutely continuous probability measure on an interval

I. Then there exists a sequence x = (x1, x2, . . . ) in I such that DN(x, µ)� log(N)
N .

Proof. Let I = [a, b]. We rephrase the proof of [KN74, Ch. 2 Lem. 4.2] for our

context. Let v = (v1, v2, . . . ) be the van der Corput sequence (Definition 2.6.2).

For each n, there exists xn ∈ I such that cdf−1
µ [0, vn] = [a, xn]. It follows that for

any t ∈ I, xn < t if and only if vn < cdfµ(t), and thus

|Px,N[a, t)− µ[a, t)| =
∣∣Pv,N[0, cdfµ(t))− cdfµ(t)

∣∣ 6 D?
N(v).

It follows from Lemma 2.6.3 that D?
N(x, µ)� log N

N , hence DN(x, µ)� log N
N .

Now that we can construct sequences with discrepancy decaying rapidly

(with respect to a fixed measure µ), we use the sequences with rapid discrepancy

decay to construct sequences whose discrepancy decays at any specified rate.

The N−α in the following theorem could actually be specified by any decreasing

function of N which converges to zero, but doesn’t decay faster than N−1.

Theorem 2.6.5. Let µ be an absolutely continuous probability measure, supported on

I, whose cdf is strictly increasing on I. Fix α ∈ (0, 1). Then there exists a sequence

x = (x1, x2, . . . ) such that DN(x, µ) = Θ(N−α).

The proof is similar in concept to the proof that a conditionally (but not ab-

solutely!) convergent sequence may be rearranged to sum to any desired value.
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We start with a van der Corput sequence with rapidly decaying discrepancy.

Our sequence begins by adding van der Corput elements until the discrepancy

is smaller than N−α, then repeatedly adds the same element to the end of the

sequence, pushing up the discrepancy until it is bigger than N−α. There are two

main difficulties. First, we need to show that repeatedly adding the same ele-

ment to the end of a sequence eventually forces the discrepancy to increase, and

that when doing this, the discrepancy does not increase or decrease too rapidly.

Proof. Let I = [a, b]. If x6N is a sequence of length N, let x6N : aM be the

sequence (x1, . . . , xN, a, . . . , a) (M copies of a). We begin by showing that the

discrepancy of x6N : aM is eventually large relative to N−α. Recalling that

µ{a} = 0, we have:

D(x6N : aM, µ) >

∣∣∣∣#{n 6 N + M : xn = a}
N + M

− µ{a}
∣∣∣∣ > M

N + M
.

So for fixed N, if we add enough a’s to the end of x6N, the discrepancy

D(x6N; aM, µ) will be larger than (N + M)−α. On the other hand for J = [s, t) ⊂

I,∣∣∣Px6N :aM(J)− Px6N(J)
∣∣∣ 6 ∣∣#{n 6 N : xn ∈ J}+ M− M+N

N #{n 6 N : xn ∈ J}
∣∣

M + N

=

∣∣M− M
N #{n 6 N : xn 6 t}

∣∣
M + N

6
M

M + N
,

which implies that D
(
x6N : aM, µ

)
6 D

(
xN, µ

)
+ M

M+N . This lets us control

how rapidly the discrepancy can increase.

Let v be the µ-equidistributed van der Corput sequence of Theorem 2.6.4,

possibly transformed linearly to lie in [a, b]. We know that D(vN, µ) � log N
N ,

which converges to zero faster than N−α since α ∈ (0, 1).
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We construct the sequence x via the following recipe. Start with (x1 =

v1, x2 = v2, . . . ) until, for some N1, DN1(x, µ) < N−α
1 . Then set xN1+1 = a,

xN1+2 = a, . . . , until DN1+M1(x, µ) > (N1 + M1)
−α. Then set xN1+M1+1 = vN1+1,

xN1+M1+2 = vN1+2, . . . , until once again DN1+M1+N2(x, µ) < (N1 + M1 + N2)
−α.

Repeat indefinitely. We will show first, that the two steps are possible, and that

nowhere does DN(x, µ) differ by too much from N−α.

Note that M+1
N+M+1 −

M
N+M 6 N−1. This tells us that when we are adding a’s

at the end of x6N, the discrepancy of x6N : aM is eventually increasing, and can

increase by at most N−1 at each step. So if D(x6N, µ) < N−α, we can ensure

that D(x6N : aM, µ) is at most N−1 greater than N−α. Moreover, we know that

D(x6N : a1, µ) is at most 2
N+1 away from D(x6N, µ). So when adding van der

Corput elements to the end of the sequence, its discrepancy cannot decay any

faster than by 2
N+1 per a added. This yields

∣∣DN(x, µ)− N−α
∣∣� N−1,

which implies DN(x, µ) ∼ N−α, both of which are even stronger than we need.
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CHAPTER 3

DIRICHLET SERIES WITH EULER PRODUCT

3.1 Definitions and motivation

We start by considering a very general class of Dirichlet series: those that admit

a product formula with degree 1 factors. The motivating example was sug-

gested to the author by Ramakrishna. Let E/Q be an elliptic curve and let

Lsgn(E, s) = ∏
p

1
1− sgn(ap)p−s .

How much can we say about the behavior of Lsgn(E, s)? For example, does it

admit analytic continuation to < = 1? Yes, by [Ser89, A.2]. We will see later

that the Akiyama–Tanigawa conjecture implies the existence of a non-vanishing

analytic continuation of Lsgn(E, s) to < > 1
2 . Can the rank of E be found from

Lsgn(E, s)? Theoretically yes, by the following result, which the author learned

from Harris.

Theorem 3.1.1. If E1 and E2 are non-CM elliptic curves over Q with sgn ap(E1) =

sgn ap(E2) for all p, then E1 and E2 are isogenous.

Proof. Assume by way of contradiction that E1 and E2 are non-isogenous, non-

CM elliptic curves over Q with sgn ap(E1) = sgn ap(E2) for all p. By [Har09,

5.4], the pairs (θp(E1), θp(E2)) are equidistributed with respect to ST × ST =

4
π2 sin2 θ1 sin2 θ2 dθ1 dθ2 on [0, π]× [0, π].

Recall that if f (θ) = 1[0,π/2)(θ)− 1(π/2,π](θ), then sgn(ap) = f (θp). More-

over, g(θ1, θ2) = | f (θ1)− f (θ2)| is non-negative and continuous almost every-

where, and g(θp(E1), θp(E2)) = 0 if and only if sgn ap(E1) = sgn ap(E2). It is
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clear that
∫

g dST× ST > 0. Harris’ equidistribution result tells us that

∫
g dST× ST = lim

N→∞

1
π(N) ∑

p6N
g(θp(E1), θp(E2)) = 0,

which is a contradiction.

It follows that if Lsgn(E1, s) = Lsgn(E2, s) for all s in some right half-plane,

then E1 and E2 are isogenous, so in particular they have the same rank. Can

we recover the rank of E from the behavior of Lsgn(E, s) at s = 1
2? For

k > 1, let rk be the order of vanishing of L(symk E, s) at s = 1
2 . Also, for

f ∈ L1([0, π], ST) = L1(SU(2)\), let f̂ (symk) =
∫

SU(2)\ f (x) tr symk(x)dx be

the symk-Fourier coefficient of f . The heuristics in [Sar07] suggest that if the

Akiyama–Tanigawa (and other natural conjectures) hold, then L f (E, s) has a

zero of order ∑k>1 f̂ (symk)
(
2rk + (−1)k) at s = 1

2 . If f = tr sym1 (this is called

U1 in [Sar07]), then f̂ (symk) vanishes for k > 2, so the order of vanishing of

LU1(E, s) at s = 1
2 is 2r1− 1, which, if we assume the Birch and Swinnerton-Dyer

conjecture, allows us to “read” the rank of E from the behavior of LU1(E, s) at

s = 1
2 . However, for f = 1[0,π/2) − 1(π/2,π], we have f̂ (symk) = 0 when k is

even, and f̂ (symk) = 2
π (−1)

k−1
2

(
1
k +

1
k+2

)
when k is odd. So we should expect

that

ords= 1
2

Lsgn(E, s) =
2
π ∑

k odd
(−1)

k−1
2

(
1
k
+

1
k + 2

)(
2rk + (−1)k

)
.

In light of this, it does not seem like the rank of E can be directly read from the

behavior of Lsgn(E, s) at s = 1
2 .

Definition 3.1.2. Let x = (x2, x3, x5, . . . ) be a sequence of complex num-

bers indexed by the primes. The associated Dirichlet series is L(x, s) =

∏p
(
1− xp p−s)−1.
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If xp is defined only for a subset of the primes, we tacitly set xp = 0 (so the

Euler factor is 1) at all primes for which xp is not defined.

Lemma 3.1.3. Let x be a sequence with |x|∞ 6 1. Then L(x, s) defines a holomorphic

function on the region < > 1. On that region, log L(x, s) = ∑pr
xr

p
rprs .

Proof. Expanding the product for L(x, s) formally, we have L(x, s) =

∑n>1
∏p x

vp(n)
p

ns . An easy comparison with the Riemann zeta function tells us that

this sum is holomorphic on < > 1. By [Apo76, Th. 11.7], the product formula

holds in the same region. The formula for log L(x, s) comes from [Apo76, 11.9

Ex. 2].

Abel summation is a commonly-used result that will allow us to turn ques-

tions on the analytic continuation and non-vanishing of L(x, s) into questions

about the asymptotics of ∑p6N xp.

Lemma 3.1.4 (Abel summation). Let x = (x2, x3, x5, . . . ) be a sequence of complex

numbers, f a smooth C-valued function on R. Then

∑
p6N

f (p)xp = f (N) ∑
p6N

xp −
∫ N

2
f ′(t) ∑

p6t
xp dt.

Proof. If p1, . . . , pn is an enumeration of the primes 6 N, we have

∫ N

2
f ′(t) ∑

p6t
xp dt = ∑

p6N
xp

∫ N

pn
f ′(t)dt +

n−1

∑
i=1

∑
p6pi

xp

∫ pi+1

pi

f ′(t)dt

= ( f (N)− f (pn)) ∑
p6N

xp +
n−1

∑
i=1

( f (pi+1)− f (pi)) ∑
p6pi

xp

= f (N) ∑
p6N

xp − ∑
p6N

f (p)xp,

as desired.
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Theorem 3.1.5. Let |x|∞ 6 1, and assume |∑p6N xp| � Nα+ε for some α ∈ [1
2 , 1].

Then the series for log L(x, s) converges conditionally to a holomorphic function on

< > α.

Proof. Formally split the sum for log L(x, s) into two pieces:

log L(x, s) = ∑
p

xp

ps + ∑
p

∑
r>2

xr
p

rprs .

For each p, we have∣∣∣∣∣∑r>2

xr
p

rprs

∣∣∣∣∣ 6 ∑
r>2

p−r<s = p−2<s 1
1− p−<s .

Elementary analysis gives 1 6 1
1−p−<s 6 2 + 2

√
2, so the second piece of

log L(x, s) converges absolutely on < > 1
2 . We could simply cite [Ten95, II.1

Th. 10] to finish the proof; instead we prove directly that ∑
xp
ps converges abso-

lutely to a holomorphic function on the region < > α.

By Lemma 3.1.4 (Abel summation) with f (t) = t−s, we have

∑
p6N

xp

ps = N−s ∑
p6N

xp + s
∫ N

2
∑
p6t

xp
dt

ts+1 (3.1)

� N−<s+α+ε + |s|
∫ N

2
tα+ε dt

t<s+1 .

Since α−<s < 0, the first term is converges to zero. Since <s + 1− α > 1 and ε

is arbitrary, the integral converges absolutely, and the proof is complete.

The proof of Theorem 3.1.5 actually gives an absolutely convergent expres-

sion for log L(x, s) on the region < > α. Since the term N−s ∑p6N xp in (3.1)

converges to zero, we get

log L(x, s) = s
∫ ∞

2
t−s−1

(
∑
p6t

xp

)
dt + ∑

p
∑
r>2

xr
p

rprs .
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Let X be a topological space, f : X → C a function with | f |∞ 6 1, and x =

(x2, x3, . . . ) a sequence in X. Write

L f (x, s) = ∏
p

1
1− f (xp)p−s ,

for the associated Dirichlet series. In the remainder, we will exclusively focus

on Dirichlet series of this type.

3.2 Automorphic and motivic L-functions

Suppose G is a compact group, G\ the space of conjugacy classes in G. If

x = (x2, x3, x5, . . . ) is a sequence in G\ and ρ is a finite-dimensional unitary

representation of G, put

L(ρ(x), s) = ∏
p

1
det(1− ρ(xp)p−s)

.

Clearly L((ρ1⊕ ρ2)(x), s) = L(ρ1(x), s)L(ρ2(x), s). Now, suppose G is a compact

connected Lie group, let T ⊂ G be a maximal torus, and recall that T � G\

[Bou05, IX.5 Prop. 5]. The representation ρ|T decomposes as
⊕

χ⊕mχ , where χ

ranges over characters of T and the entire expression is W-invariant. We may

regard the xp as lying in T/W, so we have

L(ρ(x), s) = ∏
χ

L(χ(x), s)mχ .

If the trivial representation appears in ρ|T, this product formula will include a

copy (possibly several) of ζ(s). Since χ(xp) ∈ S1, the above formula decomposes

L(ρ(x), s) into a product of Dirichlet series of the type considered above. For

G = SU(2), the trivial representation occurs in symk
∣∣
T if and only if k is even,

and the resulting ζ(s) in the product decomposition of L(symk x, s) may explain
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why some of the results in this thesis (e.g. Theorem 5.3.4) only apply to odd

symmetric powers.

Theorem 3.2.1. Let G\ be the space of conjugacy classes in a compact group, x =

(x2, x3, x5, . . . ) a sequence in G\. If ρ is a nontrivial unitary representation of G and∣∣∣∑p6N tr ρ(xp)
∣∣∣� Nα+ε for some α ∈

[
1
2 , 1
]
, then L(ρ(x), s) admits a non-vanishing

analytic continuation to < > α.

Proof. On < > 1, we have log L(ρ(x), s) = ∑r>1 ∑p
tr ρ(xp)r

rprs . Just as in the

proof of Theorem 3.1.5, we can split the sum into two terms, ∑p
tr ρ(xp)

ps and

∑r>2 ∑p
tr ρ(xp)r

rprs . Analytic continuation and nonvanishing remain the same

when we omit finitely many Euler factors, so we may ignore all primes for

which dim(ρ) >
√

p. Then the second sum converges on < > 1
2 , and assum-

ing
∣∣∣∑p6N tr ρ(xp)

∣∣∣� Nα+ε, an argument identical to the one used in the proof

of Theorem 3.1.5, using Abel summation, shows that ∑p
tr ρ(xp)

ps converges to a

holomorphic function on < > α. This yields the desired non-vanishing analytic

continuation.

3.3 Discrepancy and the Riemann hypothesis

Definition 3.3.1. We say the Riemann hypothesis for L(x, s) holds if the function

log L(x, s) admits analytic continuation to < > 1
2 .

Under reasonable analytic hypotheses, namely conditional convergence of

the Dirichlet series for log L(x, s) on < > 1
2 , the result [Ten95, II.1 Th. 10] gives

an estimate |∑p6N xp| � N
1
2+ε.
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Theorem 3.3.2. Let (X, µ) be a probability space in which discrepancy and Koksma–

Hlawka make sense (i.e., Theorem 2.4.1 applies), and let x = (x2, x3, x5, . . . ) be a

sequence in X with DN(x, µ)� N−
1
2+ε. For any function f on X of bounded variation

with
∫

f dµ = 0, L f (x, s) satisfies the Riemann hypothesis.

Proof. By the Koksma–Hlawka inequality (Theorem 2.4.1), the bound on dis-

crepancy yields the estimate
∣∣∣∑p6N f (xp)

∣∣∣ � N
1
2+ε. By Theorem 3.1.5, the Rie-

mann hypothesis holds for L f (x, s).

The same proof shows that if DN(x, µ)� N−α+ε, then log L f (x, s) condition-

ally converges to a holomorphic function on < > 1− α. This theorem applied

to the function Lsgn(E, s) shows that the Akiyama–Tanigawa conjecture implies

the Riemann hypothesis for Lsgn(E, s). The author is unaware of any results,

conditional or otherwise, that suggest Lsgn(E, s) has analytic continuation past

< = 1
2 or has any kind of functional equation. Also, if

∫
f dµ 6= 0, the function

L f (x, s) will have a singularity at s = 1, but the author is not aware of a way to

continue the function L f (x, s) past < = 1, even if DN(x, µ) decays rapidly.

Let F = Fq(t) be a function field, E/F a generic elliptic curve. There is, for

every prime p of F, a Satake parameter θp ∈ [0, π], defined in the usual way. It

is known [Kat88, Ch. 3] that∣∣∣∣∣∣ ∑
N(p)6x

tr symk
(

eiθp

e−iθp

)∣∣∣∣∣∣� k
√

x. (3.2)

Briefly, let G be a compact Lie group, ρ an irreducible unitary representation of

G. For f ∈ L1(G), the Fourier coefficient of f at ρ is f̂ (ρ) =
∫

f (x)tr ρ(x)dx. If

f ∈ L1(G\), then f = ∑ρ f̂ (ρ) tr ρ. When G = SU(2), the nontrivial irreducible

unitary representations are symk for k > 1.
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Equation (3.2) tells us that for any f ∈ C(SU(2)\) with ∑k>1 | f̂ (symk)| <

∞ and f̂ (sym0) = 0, the strange Dirichlet series L f (θ, s) satisfies the Riemann

hypothesis.

The best estimate on discrepancy is found in [Nie91], where it is shown that

Dx � N−
1
4 by applying a generalization of the Koksma–Hlawka inequality to

SU(2)\. Namely, for any odd r, we have

Dx(θ, ST)� 1
r
+

2r−1

∑
k=1

1
k

∣∣∣∣∣∣ 1
πF(x) ∑

N(p)6x
tr symk

(
eiθp

e−iθp

)∣∣∣∣∣∣ .

Using the estimate (3.2) on character sums, Niederreiter is able to derive Dx �

x−
1
4 . This fits well with the results of [BK15, RT16] in the number field case,

both of which derive estimates of the form DN � N−
1
4+ε, assuming both the

generalized Riemann hypothesis and the functional equation for all symmetric-

power L-functions associated to the (non-CM) elliptic curve in question.
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CHAPTER 4

IRRATIONALITY EXPONENTS AND CM ABELIAN VARIETIES

4.1 Definitions and first results

We follow the notation of [Lau09]. Fix a dimension d > 1, and let ~x =

(x1, . . . , xd) ∈ Rd be such that the xi are irrational and linearly independent

over Q. If d = 1, the irrationality exponent of x ∈ R is the supremum of the set of

w ∈ R+ such that there infinitely many rational numbers p
q with

∣∣∣x− p
q

∣∣∣ 6 q−w.

If x is rational, then it has irrationality exponent 1. If x is an algebraic irra-

tional, then Roth’s theorem says its irrationality exponent is 2. Liouiville con-

structed transcendental numbers with arbitrarily large irrationality exponent.

By [Bug12, Th. E.3], only a measure-zero set of reals, for example the Louiville

number ∑r>1 10−r!, have infinite irrationality exponent. In fact, by the same re-

sult, only a measure-zero set of reals have irrationality exponent 6= 2. In the re-

sults below, we will only consider reals with finite irrationality exponent. When

d > 1, there are a d natural measures of irrationality, but we will use only two

of them.

For the remainder of this thesis, let 〈·, ·〉 be the standard inner product on

Rd.

Definition 4.1.1. Let ω0(~x) (resp. ωd−1(~x)) be the supremum of the set of real

numbers w for which there exist infinitely many (n, ~m) ∈ Z× Zd such that

|n~x− ~m|∞ 6 |(n, ~m)|−w
∞

(resp. |n + 〈~m,~x〉| 6 |(n, ~m)|−w
∞ ).
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It is easy to see that both ω0(~x) and ωd−1(~x) are nonnegative. Even better,

by [Lau09, Th. 2 Cor], ω0(~x) > 1
d and ωd−1(~x) > d. These two quantities are

related by Khintchine’s transference principle [Lau09, Th. 2], namely

ωd−1(~x)
(d− 1)ωd−1(~x) + d

6 ω0(~x) 6
ωd−1(~x)− d + 1

d
.

Moreover, the second of these inequalities is sharp in a very strong sense.

Theorem 4.1.2 ([Jar36]). Let w > 1/d. Then there exists ~x ∈ Rd such that ω0(~x) =

w and ωd−1(~x) = dw + d− 1.

We can relate the traditional irrationality exponent and the invariant ω0 in

the special case d = 1.

Theorem 4.1.3. If d = 1, then ω0(x) = µ− 1, where µ is the traditional irrationality

exponent of x.

Proof. Both µ and ω0 are invariant under translation by Z, so without loss of

generality we may assume x ∈ [0, 1).

First we show that ω0(x) > µ− 1. Suppose there exist infinitely many p/q

with
∣∣∣x− p

q

∣∣∣ 6 q−w. Since x < 1 we may assume that for infinitely many of the

p/q, p < q. Then |qx − p| 6 q−(w−1) = max(p, q)−(w−1), which tells us that

ω0(x) > µ− 1.

Now, we show that µ > ω0(x) + 1. Suppose there exist infinitely many

(n, m) with |nx − m| 6 max(|n|, |m|)−w. By the reverse triangle inequality,

||nx| − |m|| 6 max(|n|, |m|)−w, and since x < 1, for n sufficiently large this im-

plies |n| > |m|. It follows that for infinitely many m
n , we have

∣∣x− m
n

∣∣ 6 n−(w+1),

which implies µ > ω0(x) + 1.
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Here is a statement of Roth’s theorem in the current context.

Theorem 4.1.4 (Roth). Let x ∈ (Q ∩ R)r Q. Then ω0(x) = 1.

Proof. This follows directly from [Rot55] and Theorem 4.1.3.

Given ~x ∈ Rd, write d(~x, Zd) = min~m∈Zd |~x − ~m|∞. Note that d(~x, Zd) = 0

if and only if ~x ∈ Zd. Moreover, d(−, Zd) is well-defined for elements of Td =

(R/Z)d.

Lemma 4.1.5. Let ~x ∈ Rd with |~x|∞ < 1 and ω0(~x) (resp. ωd−1(~x)) finite. Then

1
d(n~x, Zd)

� |n|ω0(~x)+ε for n ∈ Z r 0

(resp.
1

d (〈~m,~x〉, Z)
� |~m|ωd−1(~x)+ε

∞ for ~m ∈ Zd r~0).

Proof. Let ε > 0. Then there are only finitely many n ∈ Z (resp. ~m ∈ Zd) such

that the inequalities in Definition 4.1.1 hold with w = ω0(x) + ε (resp. w =

ωd−1(~x) + ε). In other words, there exist constants C0, Cd−1 > 0, depending on

~x and ε, such that

|n~x− ~m|∞ > C0|(n, ~m)|−ω0(~x)−ε
∞ ,

|n + 〈~m,~x〉| > Cd−1|(n, ~m)|−ωd−1(~x)−ε
∞

for all (n, ~m) 6= (0,~0) in Z× Zd.

Start with the first inequality. Fix n, and let ~m be a lattice point achieving the

minimum |n~x − ~m|∞; then d(n~x, Zd) > C0|(n, ~m)|−ω0(~x)−ε
∞ . Since |n~x − ~m|∞ <

1, the reverse triangle inequality gives
∣∣∣|n| − |~m|∞|~x|∞ ∣∣∣ 6 1

|~x|∞ . So |n| and |~m| are

bounded above and below by scalar multiples of each other, which tells us that
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d(n~x, Zd) > C′0|n|−ω0(~x)−ε for C′0 depending on ~x. Thus 1
d(n~x,Zd)

� |n|ω0(~x)+ε,

the implied constant depending on both ~x and ε.

Now we consider the second inequality. Note that when ~m 6= 0,

d(〈~m,~x〉, Z) = |n + 〈~m,~x〉| for some n with |n| 6 |~m|2 · |~x|2 + 1. Thus

|(n, ~m)|∞ � |~m|2 � |~m|∞ with the implied constants depending on d and ~x,

because any two norms on a finite-dimensional Banach space are equivalent.

This gives us d(〈~m,~x〉, Z) > C′d−1|~m|
−ωd−1(~x)−ε
∞ , for some constant C′d−1, which

implies
1

d(〈~m,~x〉, Z)
� |~m|ωd−1(~x)+ε

∞ ,

the implied constant depending on ~x and ε.

4.2 Irrationality exponents and discrepancy

Let ~x = (x1, . . . , xd) ∈ Rd. The sequence (~x mod Zd, 2~x mod Zd, . . . ) will be

equidistributed in a subgroup of Td. We are interested in the case where this

sequence is equidistributed in the whole torus Td, so assume x1, . . . , xd are ir-

rational and linearly independent over Q (this condition also makes sense for

elements of Td). For ~x ∈ Td, we wish to control the discrepancy of the sequence

(~x, 2~x, 3~x, . . . ) with respect to the Haar measure of Td.

Theorem 4.2.1 (Erdös–Turán–Koksma. [DT97, Th. 1.21]). Let ~x be a sequence in

Td and h an arbitrary integer. Then

DN(~x)�
1
h
+ ∑

06|~m|∞6h

1
r(~m)

∣∣∣∣∣ 1
N ∑

n6N
e2πi〈~m,~xn〉

∣∣∣∣∣ ,

where the first sum ranges over ~m ∈ Zd, r(~m) = ∏ max{1, |mi|}, and the implied

constant depends only on d.
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Lemma 4.2.2. Let x ∈ R r Z. Then
∣∣∑n6N e2πinx

∣∣ 6 2
d(x,Z) .

Proof. We begin with an easy bound:∣∣∣∣∣ ∑
n6N

e2πinx

∣∣∣∣∣ = |e2πi(N+1)x − e2πix|
|e2πix − 1|

6
2

|e2πix − 1|
.

Since |e2πix − 1| =
√

2− 2 cos(2πx) and cos(2θ) = 1− 2 sin2 θ, we obtain∣∣∣∣∣ ∑
n6N

e2πinx

∣∣∣∣∣ 6 1
| sin(πx)| .

It is easy to check that | sin(πx)| > d(x, Z), whence the result.

Corollary 4.2.3. Let ~x generate a dense subgroup of Td. For ~x = (~x, 2~x, 3~x, . . . ) in

Td, we have

DN(~x)�
1
h
+

1
N ∑

0<|~m|∞6h

2
r(~m)d(〈~m,~x〉, Z)

for any integer h, with the implied constant depending only on d.

Proof. Apply the Erdös–Turán–Koksma inequality (Theorem 4.2.1), and bound

the exponential sums using Lemma 4.2.2.

We combine the above results to estimate an upper bound on the discrepancy

of the sequence~x.

Theorem 4.2.4. Let ~x generate a dense subgroup of Td, and let~x = (~x, 2~x, 3~x, . . . ) in

Td. Then DN(~x)� N
− 1

ωd−1(~x)+1+ε
.

Proof. Fix ε > 0 smaller than 1
ωd−1(~x)−1 , and choose δ > 0 such that

1
ωd−1(~x)+1+δ

= 1
ωd−1(~x)+1 − ε. By Corollary 4.2.3, we know that

DN(~x)�
1
h
+

1
N ∑

0<|~m|∞6h

1
r(~m)d(〈~m,~x〉, Z)

,
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and by Lemma 4.1.5, we know that d(〈~m,~x〉, Z)−1 � |~m|ωd−1(~x)+δ
∞ . It follows

that

DN(~x)�
1
h
+

1
N ∑

0<|~m|∞6h

|~m|ωd−1(~x)+δ
∞

r(~m)
.

All that remains is to bound the sum. Clearly

∑
0<|~m|∞6h

|~m|ωd−1(~x)+δ
∞

r(~m)
�
∫ h

1

∫ h

1
· · ·

∫ h

1

max(|t1|, . . . , |td|)ωd−1(~x)+δ

t1 . . . td
dt1 . . . dtd.

For each permutation σ of {1, . . . , d}, call Iσ the set of all (t1, . . . , td) in [1, h]d

with tσ(1) 6 · · · 6 tσ(d). Then [1, h]d =
⋃

σ∈Sd
Iσ, and each integral over Iσ is

easy to bound. For example, the integral over I1 is

∫ h

1

∫ td

1
· · ·

∫ t2

1

tωd−1(~x)+δ
d
t1 . . . td

dt1 . . . dtd �
∫ h

1
tωd−1(~x)+δ−1 dt

d−1

∏
j=1

∫ h

1

dt
t

� (log h)d−1hωd−1(~x)+δ.

It follows that DN(~x)� 1
h +

1
N (log h)d−1hωd−1(~x)+δ. Setting h ≈ N

1
1+ωd−1(~x)+δ , we

see that DN(~x)� N
− 1

ωd−1(~x)+1+δ = N
− 1

ωd−1(~x)+1+ε
.

For a slightly different proof of a similar result, given as a sequence of ex-

ercises, see [KN74, Ch. 2, Ex. 3.15, 16, 17]. Also, this estimate is quite coarse,

but a better one would only have a smaller leading coefficient, which no doubt

would be useful for computational purposes, but does not strengthen any of the

results in this thesis.

Theorem 4.2.5. Let ~x ∈ Td generate a dense subgroup, with ω0(~x), ωd−1(~x) finite.

Let~x = (~x, 2~x, 3~x, . . . ). Then DN(~x) = Ω
(

N
− d

ω0(~x)
−ε
)

.

Proof. We follow the proof of [KN74, Ch. 2, Th. 3.3], modifying it as needed for

our context. Given ε > 0, there exists δ > 0 such that d
ω0(~x)−δ

= d
ω0(~x)

+ ε.
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By the definition of ω0(~x), there exist infinitely many (n, ~m) with n > 0 such

that |n~x − ~m|∞ 6 |(n, ~m)|−ω0(~x)+δ/2
∞ . For any fixed n, where are only finitely

many ~m with |n~x − ~m|∞ 6 1. Since |(n, ~m)|∞ > n, for any fixed n there are

at most finitely many ~m with |n~x − ~m|∞ 6 |(n, ~m)|−ω0(~x)+δ/2
∞ . Thus we derive

the seemingly stronger statement that for infinitely many n, there exists ~m ∈ Zd

such that |n~x− ~m|∞ 6 n−ω0(~x)+δ/2 or, equivalently, |~x− n−1~m| 6 n−1−ω0(~x)+δ/2.

Fix one such n, and let N = bnω0(~x)−δc. For each r 6 N, we have∣∣∣r~x− rn−1~m
∣∣∣
∞
= r

∣∣∣~x− n−1~m
∣∣∣
∞
6 rn−1−ω0(~x)+δ/2 6 n−1−δ/2.

Thus, for each r 6 N, r~x is within n−1−δ/2 of the grid 1
n Zd ⊂ Td. So no element of

{~x, . . . , N~x} lies in the half-open box In =
[
n−1−δ/3, n−1 − n−1−δ/3)d

. Moreover,

In has volume
(
n−1 − 2n−1−δ/3)d

. For n sufficiently large, the volume of In

is bounded below by 2−dn−d, so the discrepancy DN(~x) is bounded below by

2−dn−d. Since nω0(~x)−δ 6 2N, the discrepancy DN(~x) is bounded below by

2−d
(
(2N)

1
ω0(~x)−δ

)−d
= 2

−d− d
ω0(~x)−δ N

− d
ω0(~x)−δ = 2

−d
(

1+ 1
ω0(~x)

)
−ε

N
− d

ω0(~x)
−ε

.

Since DN(~x) can, as N → ∞, be bounded below by a constant multiple of

N
− d

ω0(~x)
−ε

, the proof is complete.

4.3 Pathological Satake parameters for CM abelian varieties

We apply the results of the previous sections to L-functions associated to CM

abelian varieties. For background on the motivic Galois group and Sato–Tate

group of an abelian variety, see [ST68, Ser94, Yu15]. Recall that for E a non-CM

elliptic curve, the Akiyama–Tanigawa conjecture implies the Riemann hypoth-

esis for all L(symk E, s), k > 1. The appearance of symk is dictated by the classi-

fication of irreducible representations of SU(2), the Sato–Tate group of E. If A is
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a CM abelian variety, there should be an L-function (and Galois representation)

for each irreducible representation of the Sato–Tate group of A, which we de-

note by ST(A). In the CM case, ST(A) is a real torus, so things can be described

relatively explicitly.

Let K/Q be a finite Galois extension, A/K a g-dimensional abelian variety

with complex multiplication by F, defined over K, that is, F = EndK(A)Q. Since

the action of F commutes with ρl : GQ → GL2g(Ql), the Galois representation

coming from the l-adic Tate module of A takes values in RF/Q Gm(Ql), where

RF/QGm is the Weil restriction of scalars of the multiplicative group from F to Q.

The functor of points of RF/Q Gm is R 7→ (R⊗ F)×. It follows that the Sato–Tate

group of A is a subgroup of the maximal compact torus inside RF/Q Gm(C).

Recall, following [Ser94], that the motivic Galois group of A should be a

subgroup GA ⊂ RF/Q Gm such that for all primes l, the image ρl(GQ) lies inside

GA(Ql), and is open in GA(Ql). For general abelian varieties, the existence of

the motivic Galois group is a matter of conjecture, but for CM abelian varieties,

it can be described directly. Let a = Lie(A) and deta : RK/Q Gm → RF/Q Gm

be the map induced by the determinant of the action of K on a (viewed as an

F-vector space). Then GA = im(deta) [Yu15], and ST(A) is a maximal compact

subgroup of G1
A(C) = GNF/Q=1

A (C). So ST(A) ' Td for some 1 6 d 6 g (we will

use the same d when applying Theorem 4.2.5), and every unitary character of

ST(A) is induced by an algebraic character of G1
A. Any character of a subtorus

extends to the whole torus, so any character of G1
A is the restriction of a character

of RF/Q Gm.

Let p be a prime of K at which A has good reduction. Then F = End(A)Q ↪→

End(A/Fp
)Q, and the Frobenius element frp ∈ End(A/Fp

)Q comes from an el-
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ement πp ∈ F. In other words, ρl(frp) = πp. The element πp ∈ F is p-Weil of

weight 1, i.e. |σ(πp)| = N(p)1/2 for all embeddings σ : F ↪→ C. The normalized

element θp =
πp

N(p)1/2 lies in ST(A), and we call this the Satake parameter for A

at p. For the Satake parameters to be equidistributed in ST(A), it is necessary

and sufficient for the L-function L(r ◦ ρl, s) to have non-vanishing analytic con-

tinuation to < = 1 for each r ∈ X∗(RF/Q Gm) which has nontrivial restriction

to ST(A). By the Wiener–Ikehara Tauberian theorem, this is equivalent to an

estimate
∣∣∣∑N(p)6x r(θp)

∣∣∣ = o(πK(x)), where πK(x) is the number of primes p of

K with N(p) 6 x.

Theorem 4.3.1 (Shimura–Taniyama, Weil, Hecke). The elements θp ∈ ST(A) are

equidistributed with respect to the Haar measure.

Proof. By [ST68, Th. 10, 11], for every r ∈ X∗(RF/Q Gm) induced by σ : F ↪→ C,

there exists a Hecke character ωr of K such that L(r ◦ ρl, s) = L(s, ωr). For

r = ∑ mσσ, we have L(r ◦ ρl, s) = ∏ L(σ ◦ ρl, s)mσ , so the general result follows.

Moreover ωr is nontrivial if and only if r|ST(A) is. Since L-functions of Hecke

characters have the desired analytic continuation and nonvanishing, the result

follows.

Recall that L(r ◦ ρl, s) = ∏ (1− r(θp)N(p)−s)
−1 (this is the normalized L-

function, not the algebraic L-function). As in Chapter 2, the choice of an

isomorphism Td ' ST(A) yields a definition of discrepancy for sequences

in ST(A). We call the “Akiyama–Tanigawa conjecture for A” the estimate

DN(θ) � N−
1
2+ε, where θ = (θp)p is the sequence of Satake parameters of

A.

Theorem 4.3.2. The Akiyama–Tanigawa conjecture for A implies the Riemann hypoth-

esis for all L(r ◦ ρl, s) with r|ST(A) nontrivial.
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Proof. The Akiyama–Tanigawa estimate implies, via the Koksma–Hlawka in-

equality, an estimate
∣∣∣∑N(p)6N r(θp)

∣∣∣ � N
1
2+ε. By Theorem 3.2.1, the function

L(r ◦ ρl, s) satisfies the Riemann hypothesis.

It is natural to ask: does the Riemann hypothesis for all L(r ◦ ρl, s) imply

the Akiyama–Tanigawa conjecture for A? We proceed to construct L-functions

coming from “fake Satake parameters” which provide evidence to the contrary

for nonmotivic (non-automorphic, in fact) sequences of Satake parameters.

Give Td the Haar measure normalized to have total mass one. Recall that for

any f ∈ L1(Td), the Fourier coefficients of f are, for ~m ∈ Zd:

f̂ (~m) =
∫

Td
e2πi〈~m,~x〉 d~x,

where 〈~m,~x〉 = m1x1 + · · ·+mdxd is the usual inner product. If f is a continuous

function on Td with f̂ (~0) = 0 and~x = (~x1,~x2, . . . ) is equidistributed in Td, then

sums of the form ∑n6N f (n~x) will be o(N). When f is a character of the torus,

and~x is the sequence of translates of an element generating a dense subgroup,

there is a much stronger bound.

Theorem 4.3.3. Fix ~x ∈ Td which generates a dense subgroup, with ωd−1(~x) finite.

Then ∣∣∣∣∣ ∑
n6N

e2πi〈~m,n~x〉

∣∣∣∣∣� |~m|ωd−1(~x)+ε
∞

as ~m ranges over Zd r~0.

Proof. Since ~x generates a dense subgroup of Td, 〈~m,~x〉 ∈ R r Z. Thus Lemma

4.2.2 tells us that∣∣∣∣∣ ∑
n6N

e2πi〈~m,n~x〉

∣∣∣∣∣ =
∣∣∣∣∣ ∑
n6N

e2πin〈~m,~x〉

∣∣∣∣∣� d(〈~m,~x〉, Z)−1,
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and from Lemma 4.1.5, we know that d(〈~m,~x〉, Z)−1 � |~m|ωd−1(x)+ε
∞ . The result

follows.

By writing any function as a Fourier series, we can apply this result to sums

of the form ∑n6N f (n~x).

Theorem 4.3.4. Let ~x ∈ Rd with ωd−1(~x) finite. Let r > d + ωd−1(~x), and fix

f ∈ Cr(Td) with f̂ (~0) = 0. Then
∣∣∑n6N f (n~x)

∣∣� 1.

Proof. Write f as a Fourier series: f (~x) = ∑~m∈Zd f̂ (~m)e2πi〈~m,~x〉. Since f̂ (~0) = 0,

we can compute: ∣∣∣∣∣ ∑
n6N

f (n~x)

∣∣∣∣∣ =
∣∣∣∣∣∣ ∑
n6N

∑
~m∈Zdr~0

f̂ (~m)e2πin〈~m,~x〉

∣∣∣∣∣∣
6 ∑

~m∈Zdr~0

∣∣∣ f̂ (~m)
∣∣∣ · ∣∣∣∣∣ ∑

n6N
e2πin〈~m,~x〉

∣∣∣∣∣
� ∑

~m∈Zdr~0

∣∣∣ f̂ (~m)
∣∣∣ · |~m|ωd−1(~x)+ε

∞ . (4.1)

Recall that an integral of φ over Rd can be re-written in spherical coordinates as∫
φ(r, s)rd−1ψ(s)drds, where r ranges over R+ with the usual Lebesgue mea-

sure, s ranges over Sd−1 with its rotation-invariant measure, and ψ is bounded.

Thus
∫
[1,∞)d |~x|α∞ dx converges (and hence ∑~m∈Zdr~0 |~m|

α
∞ converges) whenever

as d− 1 + α < −1. The sum (4.1) converges since the Fourier coefficients f̂ (~m)

converge to zero faster than |~m|−r
∞ [Fol99, Th. 8.22], ε > 0 is arbitrary, and

d− 1− r + ωd−1(~x) < −1.

Enumerate the primes of K with increasing norms as p1, p2, p3, . . . . Let~x ∈ Td

generate a dense subgroup. The associated sequence of “fake Satake parame-

ters” is ~x = (~xp)p, where we put ~xpn = n~x. For any fixed w > 1
d , by Theorem

4.1.2, we can find ~x with ω0(~x) = w and ωd−1(~x) = dw + d− 1.
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Theorem 4.3.5. The sequence~x is equidistributed in Td, with discrepancy decaying as

DN(~x) � N−
1

dw+d+ε, and for which DN(~x) = Ω
(

N−
d
w−ε
)

. However, for any f ∈

C∞(Td) with f̂ (~0) = 0, the Dirichlet series L f (x, s) satisfies the Riemann hypothesis.

Proof. The upper bound on discrepancy is Theorem 4.2.4, and the lower bound

is Theorem 4.2.5. For the functions f in question, Theorem 4.3.4 gives an es-

timate (stronger than)
∣∣∣∑N(p)6N f (~xp)

∣∣∣ � N
1
2 , and Theorem 3.2.1 tells us this

estimate implies the Riemann hypothesis.

This shows that for a sequence θ = (θp) in Td, even if each L(r(θ), s) satisfies

the Riemann hypothesis, we may not conclude that the discrepancy of θ decays

like N−α for any fixed α. So for CM abelian varieties, the Akiyama–Tanigawa

conjecture does not follow in a straightforward manner from the generalized

Riemann hypothesis together with basic facts about Dirichlet series. Note also

that Theorem 3.2.1 does not tell us that L f (~x, s) has analytic continuation to < >

0, or that there are no zeros in < > 0. For, the term ∑p ∑r>2
f (~xp)r

r N(p)rs will not

converge past < > 1
2 .
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CHAPTER 5

PATHOLOGICAL GALOIS REPRESENTATIONS

5.1 Notation and supporting results

In this section we loosely summarize and adapt the results of [KLR05, Pan11].

Throughout, if F is a field and M a GF-module, we write H•(F, M) in place of

H•(GF, M). All Galois representations will take values in GL2(Z/ln) or GL2(Zl)

for l a (fixed) rational prime, and all deformations will have fixed determinant.

So we consider the cohomology of Ad0 ρ̄, the induced representation on trace-

zero matrices by conjugation.

If S is a set of rational primes, QS denotes the largest extension of Q un-

ramified outside S. So Hi(QS,−) is what is usually written as H1(GQ,S,−). If

M is a GQ-module and S a finite set of primes, denote the corresponding Tate–

Shafarevich group by

Xi
S(M) = ker

(
Hi(QS, M)→ ∏

p∈S
Hi(Qp, M)

)
.

If l is a rational prime and S a finite set of primes containing l, then for any

Fl[GQS ]-module M, write M∨ = homFl(M, Fl) with the obvious GQS-action, and

write M∗ = M∨(1) for the Cartier dual of M∨. By [NSW08, Th. 8.6.7], there is

an isomorphism X1
S(M∗) ' X2

S(M)∨. As a result, if X1
S(M) and X2

S(M) are

trivial, and S ⊂ T, then X1
T(M) and X2

T(M) are also both trivial.

Definition 5.1.1. A good residual representation is an odd, absolutely irreducible,

weight-2 representation ρ̄ : GQS → GL2(Fl), where l > 5 is a rational prime.

Recall that ρ̄ is weight-2 if det ρ̄ is the mod-l cyclotomic character. Simi-
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larly, ρ : GQ → GL2(Zl) is weight-2 if det ρ is the l-adic cyclotomic character.

Roughly, “good residual representations” have enough properties that we can

prove meaningful theorems about their lifts without assuming the modularity

results of Khare–Wintenberger.

Theorem 5.1.2 ([Tay03, Th. 1.3]). Let ρ̄ : GQ → GL2(Fl) be a good residual repre-

sentation. Then there exists a finitely ramified weight-2 lift of ρ̄ to Zl.

Definition 5.1.3. Let ρ̄ : GQS → GL2(Fl) be a good residual representation. A

prime p 6≡ ±1 (mod l) is nice if Ad0 ρ̄ ' Fl ⊕ Fl(1)⊕ Fl(−1), i.e. if the eigen-

values of ρ̄(frp) have ratio p.

Taylor allows p ≡ −1 (mod l), but the results of [Pan11] require p 6≡ −1

(mod l). The following theorem gives a complete description of the versal de-

formation ring for ρ̄|GQp
when p is nice.

Theorem 5.1.4 ([Ram99]). Let ρ̄ be a good residual representation and p a nice prime.

Then any deformation of ρ̄|GQp
is induced by GQp → GL2(ZlJa, bK/〈ab〉), sending

frp 7→
(

p(1+a)
(1+a)−1

)
τp 7→

(
1 b

1

)
,

where τp ∈ GQp is a generator for tame inertia.

We close this section by introducing some new terminology and notation to

condense the lifting process used in [KLR05].

Fix a good residual representation ρ̄. We will consider weight-2 deforma-

tions of ρ̄ to Z/ln and Zl. Call such a deformation a “lift of ρ̄ to Z/ln (resp. Zl).”

We will often restrict the local behavior of such lifts, i.e. the restrictions of a lift

to GQp for p in some set of primes. The necessary constraints are captured in the

following definition.
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Definition 5.1.5. Let ρ̄ be a good residual representation, h : R+ →

R>1 an increasing function. An h-bounded lifting datum is a tuple

(ρn, Rn, Un, {ρp}p∈Rn∪Un), where

1. ρn : GQRn
→ GL2(Z/ln) is a lift of ρ̄.

2. Rn and Un are finite sets of primes, Rn containing l and all primes at which

ρn ramifies.

3. πRn(x) 6 h(x) for all x.

4. Both X1
Rn
(Ad0 ρ̄) and X2

Rn
(Ad0 ρ̄) are trivial.

5. For all p ∈ Rn ∪Un, ρp : GQp → GL2(Zl) satisfies ρp ≡ ρn|GQp
(mod ln).

6. For all p ∈ Rn, ρp is ramified.

7. ρn admits a lift to Z/ln+1.

If (ρn, Rn, Un, {ρp}) is an h-bounded lifting datum, we call another h-

bounded lifting datum (ρn+1, Rn+1, Un+1, {ρp}) a lift of (ρn, Rn, Un, {ρp}) if

Un ⊂ Un+1, Rn ⊂ Rn+1, and for all p ∈ Rn ∪Un, the two possible ρp agree.

Theorem 5.1.6. Let ρ̄ be a good residual representation, h : R+ → R>1 increasing to

infinity. If (ρn, Rn, Un, {ρp}) is an h-bounded lifting datum, Un+1 ⊃ Un is a finite

set of primes disjoint from Rn, and {ρp}p∈Un+1 extends {ρp}p∈Un , then there exists an

h-bounded lift (ρn+1, Rn+1, Un+1, {ρp}) of (ρn, Rn, Un, {ρp}).

Proof. By [KLR05, Lem. 8], there exists a finite set N of nice primes such that the

map

H1(QRn∪N, Ad0 ρ̄)→ ∏
p∈Rn

H1(Qp, Ad0 ρ̄)× ∏
p∈Un+1

H1
nr(Qp, Ad0 ρ̄) (5.1)
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is an isomorphism. In fact, #N = dim H1(QRn∪Un , Ad0 ρ̄∗), and the primes in

N are chosen, one at a time, from Chebotarev sets. Since πRn(x) is eventually

constant and h(x) increases to infinity, h(x) > πRn(x) + 1 for all x > C1 for

some C1. Choose the first prime p in N to be > C1; then πRn∪{p}(x) 6 h(x) for

all x. Repeat this process for for all the other primes in N. We can ensure that

the bound πRn∪N(x) 6 h(x) continues to hold. We also choose the primes in N

to be larger than any prime in Un+1.

By our hypothesis, ρn admits a lift to Z/ln+1; call one such lift ρ∗. For each

p ∈ Rn ∪ Un+1, H1(Qp, Ad0 ρ̄) acts transitively on lifts of ρn|GQp
to Z/ln+1.

In particular, there are cohomology classes fp ∈ H1(Qp, Ad0 ρ̄) such that

fp · ρ∗ ≡ ρp (mod ln+1) for all p ∈ Rn ∪Un+1. Moreover, for all p ∈ Un+1, the

class fp is unramified. Since the map (5.1) is an isomorphism, there exists f ∈

H1(QRn∪N, Ad0 ρ̄) such that f · ρ∗|GQp
≡ ρp (mod ln+1) for all p ∈ Rn ∪Un+1.

Clearly f · ρ∗|GQp
admits a lift to Zl for all p ∈ Rn ∪ Un+1, but it does not

necessarily admit such a lift for p ∈ N. By repeated applications of [Pan11,

Prop. 3.10], there exists a set N′ ⊃ N, with #N′ 6 2#N, of nice primes and

g ∈ H1(QRn∪N′ , Ad0 ρ̄) such that (g + f ) · ρ∗ still agrees with ρp for p ∈ Rn ∪U′,

and (g + f ) · ρ∗ is nice for all p ∈ N′. As above, the primes in N′ are chosen

one at a time from Chebotarev sets, so we can continue to ensure the bound

πRn∪N′(x) 6 h(x) and also that all primes in N′ are larger than those in Un+1.

Let ρn+1 = (g + f ) · ρ∗. Let Rn+1 = Rn ∪ {p ∈ N′ : ρn+1 is ramified at p}. For

each p ∈ Rn+1 r Rn, choose a lift ρp of ρn+1|GQp
to Zl.

Since ρn+1|GQp
admits a lift to Z/ln+2 (in fact, it admits a lift to Zl) for

each p, and X1
Rn+1

(Ad0 ρ̄), X2
Rn+1

(Ad0 ρ̄) are trivial, the deformation ρn+1 ad-

mits a lift to Z/ln+2. The tuple (ρn+1, Rn+1, Un+1, {ρp}) is the desired lift of
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(ρn, Rn, Un, {ρp}) to Z/ln+1.

5.2 Galois representations with specified Satake parameters

Fix a good residual representation ρ̄, and consider weight-2 deformations of

ρ̄. The final deformation, ρ : GQ → GL2(Zl), will be constructed as the in-

verse limit of a compatible collection of lifts ρn : GQ → GL2(Z/ln). At any

given stage, we will be concerned with making sure that there exists a lift to the

next stage, and that there is a lift with the necessary properties. Fix a sequence

x = (x1, x2, . . . ) in [−1, 1]. The set of unramified primes of ρ is not determined at

the beginning, but at each stage there will be a large finite set U of primes which

we know will remain unramified. Reindexing x by these unramified primes, we

will construct ρ so that for all unramified primes p, tr ρ(frp) ∈ Z, satisfies the

Hasse bound, and has tr ρ(frp)
2
√

p ≈ xp. Moreover, we can ensure that the set of ram-

ified primes has density zero in a very strong sense (controlled by a parameter

function h) and that our trace of Frobenii are very close to specified values.

Given any deformation ρ, write πram(ρ)(x) for the function which counts ρ-

ramified primes 6 x. Since we will have πram(ρ)(x) � h(x) and bounds of this

form are only helpful if h(x) = o(π(x)), we will usually assume h(x) � xε,

e.g. h(x) = log x or something which grows even slower (for example, the in-

verse of the Ackermann function). In [KR01], it is proved that for any continu-

ous semisimple ρ : GQ → GL2(Zl), we will have πram(ρ)(x) = o(π(x)). That is,

any continuous Galois representation we consider will be ramified at a density

zero set of primes. However, by [KLR05, Th. 19], it is possible for πram(ρ)(x)

to be Ω( x
log(x)1+ε ). This means the ability to bound πram(ρ)(x) by slow-growing
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functions like log(x) in the following result is non-trivial.

Theorem 5.2.1. Let l, ρ̄, x be as above. Fix a function h : R+ → R>1 which increases

to infinity. Then there exists a weight-2 deformation ρ of ρ̄, such that:

1. πram(ρ)(x)� h(x).

2. For each unramified prime p, ap = tr ρ(frp) ∈ Z and satisfies the Hasse bound.

3. For each unramified prime p,
∣∣∣ ap

2
√

p − xp

∣∣∣ 6 lh(p)
2
√

p .

Proof. Begin with ρ1 = ρ̄. By Theorem 5.1.2, each ρ1|GQp
admits a lift to Zl. By

[KLR05, Lem. 6], there exists a finite set R, containing the set of primes at which

ρ̄ ramifies, such that X1
R(Ad0 ρ̄) and X2

R(Ad0 ρ̄) are trivial. Let R1 be the union

of R and all primes p with l
2
√

p > 2. Since l
2
√

p → 0 as p → ∞, the set R1 is

finite. For all p /∈ R1 and any a ∈ Fl, there exists ap ∈ Z satisfying the Hasse

bound with ap ≡ a (mod l). In fact, given any xp ∈ [−1, 1] and a ∈ Fl, there

exists ap ∈ Z satisfying the Hasse bound, congruent to a modulo l, such that∣∣∣ ap
2
√

p − xp

∣∣∣ 6 l
2
√

p . Choose, for all primes p ∈ R1, a ramified lift ρp of ρ1|GQp
. Let

U1 be the set of primes p not in R1 such that l2

2
√

p > min
(

2, lh(p)
2
√

p

)
; this is finite

because l2

2
√

p → 0 and also eventually h(p) > l. If U1 is empty, then the next

few sentences of the proof are superfluous, but the theorem still holds. For each

p ∈ U1, there exists ap ∈ Z, satisfying the Hasse bound, such that∣∣∣∣ ap

2
√

p
− xp

∣∣∣∣ 6 l
2
√

p
6

lh(p)
2
√

p
,

and moreover ap ≡ tr ρ̄(frp) (mod l). For each p ∈ U1, let ρp be an unramified

lift of ρ̄|GQp
with tr ρp being the desired ap. It may not be that πR1(x) 6 h(x) for

all x. Let C = max
{

πR1(x)
}

; this is finite because R1 is and πR1(x) is constant

past the largest prime in R1. Then for h∗ = Ch, we have πR1(x) 6 h∗(x) for all

x.
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We have constructed our first h∗-bounded lifting datum (ρ1, R1, U1, {ρp}).

We proceed to construct ρ = lim←− ρn inductively, by constructing a new h∗-

bounded lifting datum for each n. We ensure that Un contains all primes for

which ln+1

2
√

p > min
(

2, lh(p)
2
√

p

)
, so there are always integral ap satisfying the Hasse

bound which satisfy any mod-ln+1 constraint, and that can always choose these

ap so as to preserve statement 2 in the theorem.

The base case is complete, so suppose we have (ρn−1, Rn−1, Un−1, {ρp}). We

may assume that Un−1 contains all primes for which ln

2
√

p > min
(

2, lh(p)
2
√

p

)
. Let

Un be the set of all primes not in Rn−1 such that ln+1

2
√

p > min
(

2, lh(p)
2
√

p

)
. For each

p ∈ Un rUn−1, there is an integer ap, satisfying the Hasse bound, such that ap ≡

ρn(frp) (mod ln), and moreover
∣∣∣ ap

2
√

p − xp

∣∣∣ 6 ln

2
√

p . Since p /∈ Un−1, we know

that ln 6 lh(p), s the bound in the previous sentence implies
∣∣∣ ap

2
√

p − xp

∣∣∣ 6 lh(p)
2
√

p .

For p ∈ Un r Un−1, let ρp be an unramified lift of ρn|GQp
such that tr ρn(frp)

is the desired ap. By Theorem 5.1.6, there exists an h∗-bounded lifting datum

(ρn, Rn, Un, {ρp}) extending and lifting (ρn−1, Rn−1, Un−1, {ρp}). This completes

the inductive step.

The implied constant in the bound πram(ρ)(x) � h(x) depends on ρ̄ (and

hence l) but not on h. We will apply this theorem to construct Galois representa-

tions with specified Sato–Tate distributions in the next section, but for now here

is a small consequence, which addresses the results in [Sar07]. Sarnak, assum-

ing the generalized Riemann hypothesis along with linear independence of the

zeros of L(symk E, s), proves that for E/Q a non-CM elliptic curve of rank r, the

partial sums log x√
x ∑p6x

ap√
p approach a limiting distribution with mean 1− 2r.

Corollary 5.2.2. Let L ∈ [−∞, ∞] and ε > 0 be given. Then there exists a weight 2

Galois representation ρ : G → GL2(Zl), such that each ap = tr ρ(frp) ∈ Z satisfies
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the Hasse bound,

L = lim
N→∞

log N√
N

∑
p

ap√
p

and πram(ρ)(x)� log(x).

Proof. Begin with a sequence (xp) in
[
−1

2 , 1
2

]
such that limN→∞

log N√
N ∑p6N xp =

L. If L = ±∞, we can choose xp = ±1
2 . By Theorem 5.2.1, there exists

ρ : GQ → GL2(Zl) with πram(ρ)(x)� log(x), and such that for each unramified

p, ap = tr ρ(frp) ∈ Z, satisfies the Hasse bound. Moreover, after re-indexing

(xp) by the unramified primes of ρ, we can have
∣∣∣ ap

2
√

p − xp

∣∣∣ < l log p√
p . In fact,

by inspecting the proof of Theorem 5.2.1, we can even ensure that the partial

sums ∑p6N

(
ap

2
√

p − xp

)
are bounded. How? When choosing ap, all that Theo-

rem 5.2.1 requires is for ap to be sufficiently close to xp. Since xp ∈
[
−1

2 , 1
2

]
, if

the partial sum up to (but not including p) is < 0, choose ap so that ap
2
√

p is to the

right of xp (hence ap
2
√

p − xp is positive). If the partial sum is > 0, choose ap so

that ap
2
√

p is to the left of xp (hence ap
2
√

p − xp is negative). This is possible for all p

such that l log p
2
√

p < 1
2 , i.e. all but finitely many p. So we cannot control the partial

sums ∑p6N

(
ap

2
√

p − xp

)
for a bounded set of N, but then as N → ∞, the sum

can change by at most l log p
2
√

p at each step. Moreover, once N is sufficiently large,

the partial sum decreases (by at most l log p
2
√

p ) whenever it is > 0 and increases (by

at most l log p
2
√

p ) whenever it is < 0. Thus the partial sums are bounded.

Write AN =
log N√

N ∑p6N
ap

2
√

p and BN =
log N√

N ∑p6N xp, both sums tacitly taken

over ρ-unramified primes. Then

|AN − BN| 6
log N√

N

∣∣∣∣∣ ∑
p6N

(
ap

2
√

p
− xp

)∣∣∣∣∣ ,

which converges to zero because the partial sums ∑p6N

(
ap

2
√

p − xp

)
are

bounded, and log N√
N
→ 0. The proof isn’t quite complete, because we only
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know that limN→∞
log N√

N ∑p6N xp = L when xp is indexed by all the rational

primes, not just by the ρ-unramified ones. We need to prove that BN converges

to L. Let CN =
log N√

N ∑p6N xp, where here the sum is taken with xp indexed

by all primes. Write MN = π−1(π(N) − πram(ρ)(N)); then the number of ρ-

unramified primes 6 N is the same as number of all primes 6 MN. It fol-

lows that BN =
log N√

N

√
MN

log MN
CMN , so to prove BN → L, it suffices to prove that

log N√
N

√
MN

log MN
→ 1. Convergence MN

N → 1 follows from the prime number theo-

rem, so we show that this implies log N
log MN

→ 1. Since log MN
log N = logN(MN), we

want to prove that logN(MN) → 1. Write MN = NαN ; then MN
N = NαN−1. Since

N → ∞, the only way for NαN−1 → 1 is for αN → 1, i.e. log N
log MN

→ 1.

When L 6= ±∞, this shows that the limit in question exists and is L. When

L = ±∞, this shows that the the sums in question diverge to L.

5.3 Galois representations with specified Sato–Tate distribu-

tions

For k > 1, let

Uk(θ) = tr symk
(

eiθ

e−iθ

)
=

sin((k + 1)θ)
sin θ

.

Then Uk(cos−1 t) is the k-th Chebyshev polynomial of the 2nd kind. Moreover,

{1} ∪ {Uk} forms an orthonormal basis for L2([0, π], ST) = L2(SU(2)\).

This section has two parts. First, for any reasonable measure µ on [0, π]

invariant under the same “flip” automorphism as the Sato–Tate measure, there

is a sequence (ap) of integers satisfying the Hasse bound |ap| 6 2
√

p, such

that for θp = cos−1
(

ap
2
√

p

)
, the discrepancy DN(θ, µ) behaves like π(N)−α for
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predetermined α ∈
(

0, 1
2

)
, while for any odd k, the strange Dirichlet series

LUk(θ, s), which we will write as L(symk θ, s), satisfies the Riemann hypothesis.

In the second part of this section, we associate Galois representations to these

fake Satake parameters.

Definition 5.3.1. Let µ = f (θ)dθ be an absolutely continuous probability mea-

sure on [0, π]. If f (θ)� sin(θ) on [0, π], then µ is a Sato–Tate compatible measure.

Recall that cos∗ µ = f (cos−1 t)√
1−t2 dt. So the Radon–Nikodym derivative of cos∗ µ

is bounded if and only if f (cos−1 t)√
1−t2 is bounded. Plugging in t = cos θ, we see that

cos∗ µ has bounded Radon–Nikodym derivative if and only if f (θ)
sin θ is bounded,

i.e. f (θ) � sin θ. So we could rephrase the definition of a Sato–Tate compat-

ible measure to be “an absolutely continuous measure µ such that cos∗ µ has

bounded Radon–Nikodym derivative.” Since ST = 2
π sin2 θ dθ clearly satisfies

this definition, the Sato–Tate measure is itself Sato–Tate compatible.

If µ is Sato–Tate compatible, then cos∗ µ satisfies the hypotheses of Theo-

rem 2.6.5, so there are “N−α-decaying van der Corput sequences” for cos∗ µ,

and also that since cos : [0, π] → [−1, 1] is strictly decreasing, we know that for

any sequence x on [−1, 1], DN(x, cos∗ µ) ≈ DN(cos−1 x, µ), with the difference

being O(N−1). Finally, the Radon–Nikodym derivative of µ (and also cos∗ µ)

is bounded , so Lemma 2.5.1 applies to both µ and cos∗ µ. Recall that for de-

ceasing functions ϕ1, ϕ2, we write ϕ1(N) = Θ(ϕ2(N)) if there exists constants

0 < C1 < C2 such that C1ϕ2(N) 6 ϕ1(N) 6 C2ϕ2(N).

Theorem 5.3.2. Let µ be a Sato–Tate compatible measure, and fix α ∈
(

0, 1
3

)
. Then

there exists a sequence of integers ap satisfying the Hasse bound, such that if we set

θp = cos−1
(

ap
2
√

p

)
, then DN(θ, µ) = Θ(π(N)−α).
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Proof. Apply Theorem 2.6.5 to find a sequence x such that DN(x, cos∗ µ) =

Θ(π(N)−α). For each prime p, there exists an integer ap such that |ap| 6 2
√

p

and
∣∣∣ ap

2
√

p − xp

∣∣∣ 6 1
2
√

p . Let yp =
ap

2
√

p , and apply Corollary 2.5.2. We obtain

|DN(x, cos∗ µ)−DN(y, cos∗ µ)| � π(N)−
1
3 ,

which tells us that DN(y, cos∗ µ) = Θ(π(N)−α). Now let θ = cos−1(y). Apply

Lemma 2.5.4 to θ = cos−1(y), and we see that DN(θ, µ) = Θ(π(N)−α).

We can improve this example by controlling the behavior of the sums

∑p6N Uk(θp) for odd k. Let σ be the involution of [0, π] given by σ(θ) = π − θ.

Note that σ∗ST = ST. Moreover, note that for any odd k, Uk ◦ σ = −Uk, so∫
Uk dST = 0. Of course,

∫
Uk dST = 0 for the reason that Uk is the trace of a

non-trivial unitary representation, but we will directly use the “oddness” of Uk

in what follows.

Theorem 5.3.3. Let µ be a σ-invariant Sato–Tate compatible measure. Fix α ∈
(

0, 1
3

)
.

Then there is a sequence of integers ap, satisfying the Hasse bound, such that for θp =

cos−1
(

ap
2
√

p

)
, we have

1. DN(θ, µ) = Θ(π(N)−α).

2. For all odd k,
∣∣∑k6N Uk(θp)

∣∣� π(N)1/2.

Proof. The basic ideas is as follows. Enumerate the primes

p1 = 2, q1 = 3, p2 = 5, q2 = 7, p3 = 11, q3 = 13, . . . .

Consider the measure µ|[0,π/2). This is supported on [0, π/2), but we extend

it by zero to [0, π]. An argument nearly identical to the proof of Theorem 5.3.2
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shows that we can choose api satisfying the Hasse bound so that

DN

({
θpi

}
, µ|[0,π/2)

)
= Θ(N−α).

Since
api

2
√

pi
∈ 1

2
√

pi
Z and

aqi
2
√

qi
∈ 1

2
√

qi
Z, we cannot obtain

api
2
√

pi
= − aqi

2
√

qi
, but

we can get quite close to equality. That is, we can also choose the aqi such that
aqi

2
√

qi
∈ [−1, 0) and

∣∣∣ api
2
√

pi
+

aqi
2
√

qi

∣∣∣� 1√
pi

.

Let x be the sequence of the
api

2
√

pi
and y the corresponding sequence with the

qi-s. Then Lemma 2.5.3 with σ(t) = −t tells us that the discrepancy of y decays

at the same rate as −y, and then Corollary 2.5.2 with α = 1
2 tells us that the

discrepancy of−y decays at the same rate (within O(N−1/3)) as the discrepancy

of x. Thus the discrepancies of both x and y decay as Θ(N−α). Finally, Theorem

2.5.6 tell us that DN(x o y, µ) = Θ(N−α).

The function Uk(cos−1 t) is an odd polynomial in t, so for t1, t2 ∈ [−1, 1],

|Uk(cos−1 t1)+Uk(cos−1 t2)| = |Uk(cos−1 t1)−Uk(cos−1(−t2))| � |t1− (−t2)|.

It follows that since
∣∣∣ api

2
√

pi
−
(
− aqi

2
√

qi

)∣∣∣ � p−1/2
i , then |Uk(θpi) + Uk(θqi)| �

p−1/2
i . We can then bound∣∣∣∣∣∑i6N

(
Uk(θpi) + Uk(θqi)

)∣∣∣∣∣� ∑
p6N

p−1/2 � π(N)1/2.

Note that this proof actually shows that for any f ∈ C([0, π]) such that f ◦

cos−1 is Lipschitz, and f (π− θ) = − f (θ), the estimate
∣∣∣∑p6N f (θp)

∣∣∣� π(N)1/2

holds.

Theorem 5.3.4. Let µ be a Sato–Tate compatible σ-invariant measure on [0, π]. Fix

α ∈
(

0, 1
3

)
and a good residual representation ρ̄ : GQ → GL2(Fl). Then there exists a

weight-2 lift ρ : GQ → GL2(Zl) of ρ̄ such that
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1. πram(ρ)(x)� log(x).

2. For each unramified prime p, ap = tr ρ(frp) ∈ Z and satisfies the Hasse bound.

3. If, for unramified p we set θp = cos−1
(

ap
2
√

p

)
, then DN(θ, µ) = Θ(π(N)−α).

4. For each odd k, the function L(symk ρ, s) satisfies the Riemann hypothesis.

Proof. Let x be an N−α-decay van der Corput sequence for cos∗ µ|[0,π/2), so that

x is contained in (0, 1]. Let y = −x (contained in [−1, 0)), and put z = x o y,

reindexed by the prime numbers. We have DN(z, cos∗ µ) = Θ(π(N)−α) just

as in the proof of Theorem 5.3.3. Set h(x) = log(x). By Theorem 5.2.1, there

is a ρ : GQ → GL2(Zl) lifting ρ̄ such that πram(ρ)(x) � log x, the tr ρ(frp) are

integral, satisfy the Hasse bound, and
∣∣∣ ap

2
√

p − zp

∣∣∣ 6 l log p
2
√

p . This implies, just as in

the proof of Theorem 5.2.1, that the discrepancy of the sequence
{

ap
2
√

p

}
decays

as Θ(π(N)−α) and by Lemma 2.5.4 with f (t) = cos−1(t), the discrepancies of{
ap

2
√

p

}
and {θp} decay at the same rate.

We’ve proved statements 1–3 in the theorem, which follow essentially for

free from Theorem 5.2.1 and its proof. All that remains is to prove the Riemann

hypothesis for odd symmetric powers. The proof of Theorem 5.3.3 gives us an

estimate
∣∣∣∑p6N Uk(θp)

∣∣∣ � N
1
2+ε, and this combined with Theorem 3.2.1 yields

the result.

This entire discussion works with absolutely continuous measure µ. For ex-

ample, let I be an arbitrarily small subinterval of [0, π] (e.g. I =
[

π
2 − ε, π

2 + ε
]
),

let BI(t) be a bump function for I, normalized to have total mass one. Then The-

orem 5.3.4 gives Galois representations with empirical Sato–Tate distribution

converging at an arbitrarily slow rate to µI = BI(t)dt. This is a strictly stronger

result than [Pan11, Th. 5.2]. Moreover, the proof of Theorem 5.3.3 shows that in
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fact for any f ∈ C([0, π]) with f ◦ cos−1 ∈ C1([−1, 1]) and f (π − θ) = − f (θ),

the Dirichlet series L f (ρ, s) = ∏
(
1− f (θp)p−s)−1 satisfies the Riemann hypoth-

esis.

56



CHAPTER 6

CONCLUDING REMARKS AND FUTURE DIRECTIONS

6.1 Fake modular forms

The Galois representations of Theorem 5.3.4 have “fake modular forms” asso-

ciated to them. Namely, there is a representation of GL2(A) with the specified

Satake parameters at each prime (for now, set θp = 0 at ramified primes). It

is natural to ask if these “fake modular forms” have any interesting properties.

For example, we know that all their odd symmetric powers satisfy the Riemann

hypothesis. The author is unaware of any further results (say about analytic

continuation or functional equation) concerning these fake modular forms.

6.2 Dense free subgroups of compact semisimple groups

Let G be a compact semisimple Lie group, for example SU(2). By [BG03], G

contains a dense free subgroup Γ = 〈γ1, γ2〉. We will now follow the argument

of [AK63] to hint at how Γ may yield equidistributed sequences with “bad”

discrepancy and small character sums.

Given an integer N, let BN be the “closed ball of size N” in Γ, that is the

set of products γσ(1) . . . γσ(n), where n 6 N and σ : {1, . . . , n} → {1, 2} is a

function. We will write σ : [n] → [2] in this case. Given an irreducible unitary

representation ρ ∈ Ĝ, we wish to control the behavior of ∑γ∈BN
tr ρ(γ), ideally
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to show an estimate of the form∣∣∣∣∣ ∑
γ∈BN

tr ρ(γ)

∣∣∣∣∣� (#BN)
1
2+ε .

In fact, #BN = ∑N
n=0 2n = 2N+1 − 1. We can encode these sums in terms of

convolutions of a measure as follows. Let µ be the measure δγ−1
1

+ δγ−1
2

on

G. If ρ is any unitary representation (not necessarily irreducible or even finite-

dimensional) then µ acts on ρ via ρ(µ)
∫

ρ dµ. So, if ρ = L2(G) via the left

regular representation, then (µ · f )(x) = f (γ1x) + f (γ2x), while if ρ ∈ Ĝ and

v ∈ ρ, then µ · v = ρ(γ1)v + ρ(γ2)v. Note that

µ∗n = ∑
σ : [n]→[2]

δγσ(1) ...γσ(n) .

This tells us that ∑γ∈BN
f (γ) = ∑n6N µ∗n( f ). So we really only need to study

how µ and its powers act on the functions tr ρ, ρ ∈ Ĝ.

First note that tr ρ generates a subrepresentation of L2(G) which is iso-

morphic to ρ. On that representation, we claim that µ is invertible, hence

∑N
n=0 µ∗n = (µ∗(N+1) − 1)(µ− 1)−1.It follows that ‖∑N

n=0 µ∗n‖ 6 ‖µ‖
N+1

‖µ−1‖ ,

Note that ‖µ‖N+1 6 2(N+1)α if and only if ‖µ‖ 6 2α. In other words, to get

the Riemann hypothesis for L-functions coming from Γ, we need ‖µ‖ 6
√

2. If

v ∈ ρ has norm 1, then

‖ρ(µ)v‖2 = 〈ρ(γ−1
1 )v + ρ(γ−1

2 )v, ρ(γ−1
1 )v + ρ(γ−1

2 )v〉

= 2‖v‖2 + 2<〈ρ(γ2γ−1
1 )v, v〉.

So, we want <〈ρ(γ2γ−1
1 )v, v〉 6 0 for all irreducible ρ. Sadly, even for SU(2),

this is not possible.

Write γ = γ2γ−1
1 , then the identity 〈ρ(γ)ρ(δ)v, ρ(δ)v〉 = 〈ρ(δ−1γδ)v, v〉 tells
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us that we can restrict our search to γ of the form ( a
a ) with |a| = 1. Now

〈( a
a ) (

u
v ) , ( u

v )〉 = <(a),

which appears to be promising. But a similar computation with sym2 shows

that one can always get 〈sym2 γv, v〉 = 1, so the above approach fails.

There may be alternative ways of bounding the sums ∑ µ∗n(tr ρ), but we do

not investigate them here.
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