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The first essay addresses how investors price risk in the stock market when they

cannot observe the true long-run growth rate of their consumption and dividend

endowments. The model presents a number of import insights into how the abil-

ity of long-run risks to explain the equity risk premium is directly related to the

quality of investors information sets. The second essay addresses the welfare costs

of ambiguity surrounding the probability distribution of shocks driving the growth

rate of their consumption endowment. If an investor faces both long-run risk and

rare disasters in their consumption edowment, then they would forgoe a large share

of their lifetime consumption to absolve ambiguity surrounding disasters, but sub-

stantially less to remove ambiguity about long-run risk. The third essay presents

a dynamic stochastic general equilibrium model of a small open economy (SOE)

that faces time-varying volatility of news about their total factor productivity and

real interest rate. News uncertainty shocks about the interest rate motivate the

SOE to deleverage, however, the same class of shocks in total factor productivity

have insubstantial effects.
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INTRODUCTION
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I present three essays which jointly highlight what happens to asset prices

when investors information sets and/or beleifs are somehow flawed. They focus on

three epsitemological situations faced by investors considering risk: can’t see, don’t

know, and not sure. In the first essay, investors can’t see the true growth rate, and

therefore make their best inference given their information sets. This turns a pop-

ular result driving the equity premium upside down. In the second essay, investors

don’t know the true distribution of risk. They make a constrained-pessimistic best

guess, and this reveals that the risk of a rare bad event is much more costly than

a more probable (but smaller) bad event that persists for a long time. The third

essay focuses on when investors are not sure about how much uncertainty there

is about future events. This leads to substantial fluctations in economic aggre-

gates in response to changing quantities of news risk. Taken together, these essays

underline the importance of information in asset price formation.

The first essay is in Chapter 2, which presents a model of the equity risk

premium. Investors price the stock market with imperfect information. The inter-

esting trade-off in the model is how the quality of investors’ information impacts

the equilibrium price of risk. As the quality of information deteriorates, the price

of risk for shocks impacting investors’ marginal utility shrinks toward zero, dimin-

ishing the risk premium on the stock market. Further, the model matches features

of time-varying disagreement observed in data from professional forecasters. As

volatility of key economic aggregates changes over time, so does the cross-sectional

dispersion of investors forecasts.

These results are best motivated at a more granular level. The economy is

populated with many investors, each having identical risk preferences. Individual

investors have a consumption endowment that grows at exactly the same rate as
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aggregate consumption. The stock market pays out the aggregate dividend in

every period. Consumption and dividend growth are linked by a small, persistent

process that jointly drives their conditional mean growth rates. Shocks to this

process are known as long-run risks. If investors in the model had full information,

long-run risks could generate a price of risk sufficient to explain the historical

equity risk premium in the United States. But investors cannot directly observe

the true growth rate, and instead have a noisy signal providing some information

about the truth. There is no arbitrage in the economy, meaning each investor

correctly prices the stock market in expectation. Further, it’s common knowledge

that investors form model consistent expectations. Taken together, these facts

imply that average expectations of growth are what drive asset prices over time.

These average expectations are otherwise known as higher order expectations.

Investors infer average expectations with the Kalman filter. They use their

private signals in combination with publicly observable data on asset prices and

economic aggregates to forecast the hidden values of average expectations. In

equilibrium, the cross-sectional average of investors’ forecasts of average expecta-

tions pins down the law of motion for average expectations. And these average

expectations are the state variables that drive asset prices.

As the noise in investors’ signals grows large, the equilibrium compensation

for bearing long-run risk approaches zero. The equity risk premium shrinks. The

Kalman filter estimates of average expectations are equivalent to investors’ beliefs.

And as input quality to the filter deteriorates, investors perception of physical risk

is smoothed over time. Therefore the perceived quantity of risk falls, hence so

do risk premia. The filter also matches the time-varying dispersion of forecasts

observed in the data: during bad economic times, forecasts of consumption and
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dividend growth fan out. And in good times, forecasts condense. Investor beliefs

are functions of volatility. When volatility is high, the cross-sectional dispersion

of beliefs spread out.

Chapter 3 presents a model of a representative agent who faces long-run risks

and rare disasters in their consumption endowment. However, the agent does not

know the true probability distribution of these risks. Futher, they have concerns

for robustness: whatever model the agent operationalizes should be reasonably

pessimistic given they do not know the truth. Thus, the agent seeks to construct

a model of consumption growth that simultaneously addresses both model uncer-

tainty and physical risk. The agent solves this problem by choosing the worst

case probability distribution for long-run risks and rare disasters subject to an

entropy constraint: the resulting worst-cast distributions must be hard to reject

given the observed data. With the solution in hand, I ask how much lifetime con-

sumption would the agent give up to resolve ambiguity surrounding the risks in

the endowment. For every level of risk aversion, the agent would pay a substan-

tially larger share of their lifetime consumption to resolve ambiguity surrounding

disasters relative to long-run risk.

Chapter 4 presents a model of a small open economy (SOE) facing time-varying

uncertainty in news about their total factor productivity and real borrowing costs.

An unanticipated change in the volatility of news is called a news uncertainty

shock. When facing a positive news uncertainty shock about borrowing costs, the

SOE responds by reducing its consumption and deleveraging external debt. When

facing a similar shock for total factor productivity, the response of macroeconomic

aggregates is small and negligible.
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CHAPTER 2

DISAGREEMENT OVER THE LONG-RUN: THE EFFECTS OF

HIGHER ORDER EXPECTATIONS ON THE EQUITY RISK

PREMIUM

5



2.1 Introduction

The historically large return premium on risky stocks over safe bonds observed in

the U.S. is an equilibrium outcome resulting from a large population of investors

trading on their subjective views of asset prices and the state of the economy.

Data suggests market participants hold consistently diverse beliefs about the an-

ticipated trajectories of key economic aggregates important to asset prices. For

instance, the Survey of Professional Forecasters exhibits large dispersion in ex-

pectations about the future path of real consumption. Yet the extant literature

on the equity premium neglects targeting the observed level of disagreement in

the data, or how disagreement evolves over the business cycle. In light of these

facts, I contribute a novel consumption-based asset pricing model able to match

import features of both the time series moments of asset prices in addition to the

conditional cross-sectional moments of belief dispersion. In the model, investors

have private information about the conditional mean growth rate of the economy.

They use their private information in combination with publicly available data

on prices and key aggregates to optimally form subjective forecasts of economic

growth. In equilibrium, the model produces an important feature of belief disper-

sion observed in the data–that investors’ forecasts tend to have greater dispersion

during bad times for economic growth when uncertainty is highest. Further, the

model shows that the size of compensation for risks tied to long-run economic

growth is increasing in how precisely agents’ discern the true state of the economy.

If agents’ largely disagree about economic growth, then the associated risk premia

is small and inconsequential to asset returns. The model also exhibits endogenous

countercyclical compensation for risks tied to long-run economic growth, matching

the well established countercylicality of the equity premium borne out in the data.
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I assume agents in the model cannot perfectly observe the conditional mean

growth rate of their ex post identical consumption and dividend endowments. The

stochastic processes driving the endowments are akin to the long-run risks model of

Bansal and Yaron [2004] and Bansal et al. [2012]. The special feature of a long-run

risks endowment is the conditional expected growth rates of both consumption and

dividends are commonly driven by small, persistent, and mean-revering process.

This feature portrays aggregate consumption and dividends as tending to weather

sustained periods of above and below average growth throughout the business cycle.

The shocks driving the conditional mean growth rate are what generate the large

equity premium in a full-information long-run risks model. I refer to these shocks

as long-run news. In my model, agents privately observe noisy signals obscuring

the true conditional mean growth rate, in addition to publicly available price and

economic data. In order for private information to play an important role in the

the model, the time-series evolution of observable prices and economic aggregates

cannot fully reveal the state of the conditional expected growth rate. Such a feature

can be justified by the thinking of Grossman and Stiglitz [1980]. They posit that

if information is costly to acquire, then prices, even if freely observed, cannot fully

reveal all relevant information. Despite agents in the model not observing the

true growth rate, rational expectations of its law of motion is common knowledge

amongst agents. In the absence of arbitrage opportunities, agents are forced into a

situation first described by Townsend [1983] and Sargent [1991] where they must,

“...forecast the forecast of others...” in order to evaluate statistical expectations of

future states in the economy. In equilibrium, the consequence of agents’ private

information, rational expectations, and no arbitrage is the emergence of higher

order expectations. That is, the average forecast of the average forecast becomes

a state variable in the model relevant to asset prices. I employ the technique for
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solving rational expectations models with private information devloped in Nimark

[2011] to solve the model. Common knowledge of rational expectations of the true

state is sufficient to pin down a stochastic process for higher order expectations.

Agents use Bayesian methods to estimate the expectations hiearchy, which, in turn,

also serve as the law of motion for the hierarchy. This realization underlies all of

the interesting results.

The first main result is the model can generate a countercyclical risk price for

long-run news. That is, the price agents would pay to hedge long-run shocks in

their stochastic discount factors changes with economic conditions. This is a stark

contrast to the full information model, where the risk price for long-run news in the

full information model is constant and large. The result can best be understood

by first noting the endowment process for all agents in the model is subject to

common heteroskedastic shocks. If the scale of noise in agents’ private signals

is constant over the business cycle, then the precision of agents’ signals increases

when volatility is high. Therefore, in the aggregate, information about the long-run

growth prospects of the economy improves during spells of high volatility–agents’

effectively improve their collective forecast accuracy of the conditional mean growth

rate. This mechanical feature of the model captures the intuition in the empirical

work of Loh and Stulz [2015] that shows market participants’ earnings forecasts

are relatively more accurate during spells of high volatility. They argue this result

in the data stems from agents’ career concerns, which drive them to work harder

during during bad times.

The second main result is the risk price for long-run news is decreasing in the

scale of noise clouding investors’ perceptions of the true state: the more agents’

heterogeneous information sets disagree about growth, the lower the premium for

8



long-run risk. The intuition behind a shrinking risk price is, in equilibrium, asset

prices are less responsive to news about the state of the economy when noise

inhibits agents’ ability to percieve the true state. Risk prices directly inherit this

property of actual asset prices. Further, when the scale of noise is large relative

to the time series volatility of long-run news, about three to four times larger,

then the risk price for long-run shocks is small and insubstantial. Likewise, asset

returns also grow less sensitive to long-run news when noise is relatively high. In

a nutshell, if agents’ information sets are too disparate, even a strong distaste for

shocks to long-run growth cannot explain the equity premium.

The model is also capable of generating time-varying cross-sectional disagree-

ment in agents’ consumption growth forecasts that matches features of the data.

A simple exercise of partitioning the real consumption growth panel from the Sur-

vey of Professional Forecasters into recession and expansion regimes, periods when

volatility is relatively low and high, shows the interquartile range of consumption

growth forecasts is 1.28% during expansions relative to 1.70% in recessions. After

a recent spell of high volatility, agents prior uncertainty about the state increases,

which drives the larger cross-sectional dispersion in forecasts relative to times when

volatility has been low or normal. This feature permits the model to flexibly target

moments of data from real market participants that measure belief heterogeneity.

Models of heterogeneous beliefs are notoriously difficult to calibrate, and the lion’s

share of such models therefore result in stylized theories with at most a handful of

agents. A plausible (and exciting) next step in this research agenda is to incorpo-

rate measures of trading volume, and to therefore produce an asset pricing model

that jointly explains conditional moments of the time series of returns, measures

of heterogeneous beliefs, and trading activity.
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Perhaps the theoretical foundation for heterogeneous beliefs in asset pricing

stems sprouts from Harrison and Kreps [1978]. They formulate a dynamic economy

populated by risk neutral traders set apart from one another by their differences

in beliefs about the cash flows of a risky asset. If short sales of the risky asset

are prohibited, speculative behavior arises: traders are willing to pay a premium

above and beyond the price that would otherwise induce them to hold the risky

asset forevermore. The premium exists because of other traders’ willingness to

pay higher prices, contingent, of course, on their relative optimism. Varian [1985]

extends the application of heterogeneous beliefs to risk averse agents operating in

a complete market. He shows, again supposing agents have homogeneous prefer-

ences, that asset prices tend to be lower when agents’ beliefs are more dispersed.

Using the theoretical chasis of Detemple and Murthy [1994], Zapatero [1998] poses

a situation where two agents with logarithmic utility have heterogeneous beliefs

about aggregate consumption growth. He finds that differences in beliefs largely

increase the volatility of the real interest rate. Basak [2005] presents a continuous

time economy where risk averse agents can disagree on the mean of consump-

tion growth. If the agents’ preferences are homogeneous, the relative optimism

(pessimism) of a particular agent amplifies their degree of risk sharing. If the dis-

agreement process is correlated with agents consumption, new risk premia terms

enter the model alongside the traditional compensation for uncertain consumption

flows. Recent work by Albagli et al. [2015] shows diverse beliefs held by Bayesian

agents creates a wedge in the way asset prices respond to innovations in state vari-

ables. Barillas and Nimark [2016a] study an economy where agents’ higher order

expectations drive a speculative component of bond yields that is orthogonal to

the traditional component of yields driven by common risk factors. Barillas and

Nimark [2016b] etend their theory with an empirical affine term structure model
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with higher order expectations that is able to match the cross-sectional dispersion

in forecast data of long-term bond yields.

The paper closest to this one is Bhandari [2016]. He reverse-engineers hetero-

geneous beliefs by recasting the incomplete markets asset pricing model of Con-

stantinides and Duffie [1996] with idiosyncratic risk into a complete markets model

with heterogeneous beliefs. The data generating process for idiosyncratic consump-

tion is interpreted as a data generating process for likelihood ratios that distort

individual agents’ beliefs. A key difference from my paper is there is no private

information in the model–agents’ beliefs are driven by a carefully chosen exogenous

process that satisfies desirable aggregation conditions.

Section 2 discusses the model in detail. Second 3 refers to how I calibrate the

model. Section 4 discusses resuts, and section 5 concludes.

2.2 Model

Time is discrete, indexed by t ∈ N. There is a continuum of islands i ∈ (0, 1), and

each island i is populated by one infinitely lived investor with identical preferences

of Epstein and Zin [1989] and Weil [1989]. Investor i maximizes her lifetime utility

over real consumption flows Ci,t subject to a sequence of budget constraints:

Vi,t = max
{Ci,t}

(
(1− β)C

1−1/ψ
i,t + βEi,t

[
V 1−γ
i,t+1

] 1−1/ψ
1−γ

) 1
1−1/ψ

(2.1)

subject to,

Wi,t+1 = Rc,t+1

(
Wi,t − Ci,t

)
(2.2)

Investors accumulate real wealth Wi,t and save with an asset that yields the return

on the aggregate consumption claim Rc,t+1. The parameter β ∈ (0, 1) models
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investors’ time preference, ψ > 0 is the elasticity of intertemporal substituion

(EIS), and γ > 0 is the coefficient of relative risk aversion. I define ϑ ≡ 1−γ
1−1/ψ

to simplify notation when solving the model. Importantly, when ψ > 1 investors

prefer the early resolution of uncertainty, and when ψ < 1, investors would rather

wait until uncertainty is resolved in the future.

Aggregate log consumption growth4ct+1 and log dividend growth4dt+1 follow

exogenous stochastic processes:

xt+1 = ρxxt + ϕxσ(st+1)εx,t+1 (2.3)

4ct+1 = µc+ xt + ϕcσ(st+1)εc,t+1 (2.4)

4dt+1 = µd+ρdxt + ϕdσ(st+1)εd,t+1 + ρcdϕcσ(st+1)εc,t+1 (2.5)

where lowercase letters represent natural logarithms, 4ct+1 = logCt+1 − logCt.

The state variable xt models a persistent, mean-reverting conditional growth rate

of consumption and dividends as in Bansal and Yaron [2004]. Aggregate shocks

are independent and identically distributed normal random variables:

εx,t+1, εc,t+1, εd,t+1 ∼i.i.d. N (0, 1) (2.6)

I allow for correlation between consumption and dividend growth by introducing

the parameter ρcd ∈ R as in Bansal et al. [2012]. Aggregate shocks share a common

stochastic volatility σ(st+1) that is a function of a binary state variable:

st ∼i.i.d. Bernoulli(πh) (2.7)

When st+1 = 1, the volatility of consumption and dividend growth σ(st+1 = 1) =

ςh > 1 is high relatively to normal times σ(st+1 = 0) = 1. Histories of volatility

states have superscripts st+1 ≡ {. . . , st−1, st, st+1}.1 Aggregate consumption is

distributed equally to all investors in each period, hence there is no heterogeneity
1I deviate from the first order autoregression law of motion for a common stochastic variance
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in ex post consumption growth. The difference between the aggregate consumption

and dividend endowments defines agents’ labor income process. For parsimony, I

collect all parameters of the model in a vector Θ.

Investor i prices some asset j such that the consumption Euler equation derived

from the optimality conditions to the problem posted by (2.1) and (2.2):

Ei,t

[
βϑ
(
Ci,t+1

Ci,t

)− ϑ
ψ

Rϑ−1
c,t+1Rj,t+1

]
= 1 (2.8)

I assume consumption growth and returns for any assets in consideration are jointly

conditionally lognormal. Then, investor i’s log stochastic discount factor mi,t+1 is

a function of consumption growth and the return on the aggregate consumption

claim rc,t+1:

mi,t+1 ≡ ϑ log β − ϑ

ψ
4ct+1 +

(
ϑ− 1

)
rc,t+1 (2.9)

and their consumption Euler equation may be conveniently expressed in logs:

Ei,t
[
mi,t+1 + rj,t+1

]
+ 1/2Vari,t

(
mi,t+1 + rj,t+1

)
= 0 (2.10)

There is no arbitrage, thus each investor’s Euler equation pricing any asset j holds

in expectation. For the sake of expositional clarity, I utilize the no arbitrage

assumption to construct an “average agent” whose Euler equation satisfies the

cross-sectional average of (2.10) for every period t:∫
Ei,t
[
mi,t+1 + rj,t+1

]
di+ 1/2

∫
Vari,t

(
mi,t+1 + rj,t+1

)
di = 0 (2.11)

While the true identity of the average agent is unknown, deliberately assuming the

point of view of the average agent conveniently replaces the task of accounting for

an arbitrarily chosen atomistic agent.

in Bansal and Yaron [2004] because solving the model necessitates an iterative procedure to
find a fixed point over a countable number of volatility histories. A continuous support for
volatility shocks paired with persistence makes the task of counting volatility histories, even
under a discretization procedure, numerically unwieldy.
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2.2.1 Information Sets and Higher Order Beliefs

Investors cannot directly observe the conditional mean of consumption growth, xt.

Rather, each investor i privately observes a noisy signal xi,t in each period t:

xi,t = xt + ϕsεi,t (2.12)

where εi,t ∼i.i.d. N (0, 1) is independent and identically distributed over time, as

well as in the cross-section of investors. In any given period agents differ solely by

their expectations of consumption growth. This is the heart of the model.

The consequence of assuming limited information, rational expectations, and

no arbitrage is that agents’ higher order beliefs enter the state space of the model.

That is, agents recursively forecast the forecast of other agents. I motivate this

idea with a simple example: consider the case of power utility when ϑ = 1. After

solving forward in time, the Euler equation for agent i pricing the dividend claim

evaluates to:

pdt = δ +
(
1− 1/ψ

)
Ei,t
[
xt
]
di+ κ1,m

(
1− 1/ψ

)
Ei,t
[
Ei,t+1

[
xt+1

]]
+ · · ·

· · ·+Ei,t
[
Ei,t+1

[
· · ·Ei,t+τ

[
xt+τ

]
· · ·
]]

+· · ·+1/2

∞∑
τ=0

κτ1,mVari,t+τ
(
mt+1+τ+rm,t+1+τ

)
(2.13)

where δ is a constant in terms of model parameters. Inside investor i’s expectation

operator conditional on their information in period t, I substitute out investor i’s

future conditional expectations and replace them with expectations of some agent

j 6= i:

Ei,t
[
Ei,t+1

[
· · ·Ei,t+τ

[
xt+τ

]
· · ·
]]

= Ei,t
[
Ej,t+1

[
· · ·Ej,t+τ

[
xt+τ

]
· · ·
]]

(2.14)

for τ > 0. Investor i has no special information about future expectations of

investor j. I assume investor i’s average expectation is coincident with investor i’s
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expection of investor j’s expectation:

Ei,t
[
Ei,t+1

[
· · ·Ei,t+τ

[
xt+τ

]
· · ·
]]

= Ei,t
[∫

Ej,t+1

[
· · ·
∫

Ej,t+τ
[
xt+τ

]
dj · · ·

]
dj
]

(2.15)

Applying the assumptions in equations (2.14) and (2.15), equation (2.13) can be

modified for the average investor by aggregating over the cross-section of investors:

pdt = δ +
(
1− 1/ψ

) ∫
Ei,t
[
xt
]
di+ κ1,m

(
1− 1/ψ

) ∫
Ei,t
[∫

Ej,t+1

[
xt+1

]
dj
]
di+ · · ·

· · ·+
∫

Ei,t
[∫

Ej,t+1

[
· · ·
∫

Ej,t+τ
[
xt+τ

]
dj · · ·

]
dj
]
di+ · · ·

· · ·+ 1/2

∞∑
τ=0

κτ1,m

∫
Vari,t+τ

(
mt+1+τ + rm,t+1+τ

)
di (2.16)

From the perspective of the average agent in period t, the cross-sectional average

expectation
∫
Ei,t
[
xt
]
di is relevant for determining the price, which I call the first

order expectation. In the model, it is common knowledge that investors form ra-

tional expectations. Hence investors’ first order expectations are optimal forecasts

of the true state, and the first order expectations behave as stochastic processes

with publicly known characteristics. Investors use this knowledge when forming

second order expectations. Since prices recursively discount the present value of

consumption growth into the infinite future, so too does
∫
Ei,t
[∫

Ej,t+1

[
xt+1

]
dj
]
di

and every higher order expectation in the future become relevant state variables.

To tame notation, I follow the convention of Nimark [2011] and define each higher

order expectation:

x(k) ≡
∫

Ei,t
[
x(k−1)

t

]
di (2.17)
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with x(0)

t ≡ xt and the full hierarchy of expectations Xt ∈ R∞:

Xt ≡



xt

x(1)

t

x(2)

t

...


(2.18)

I refer to Xt as the term structure of consensus growth. To simplify the algebraic

manipulations required to solve the model, I define the operator H which acts on

Xt to annihilate the lowest order expectation and replaces it with the next highest:

H =

[
0
∞×1

I∞
∞×∞

]
(2.19)

For example, first order expectations are simply the first element of HXt:∫
Ei,t
[
xt
]
di = e′1HXt (2.20)

2.2.2 Solving the Model

Because I focus the model on explaining time series moments of the equity pre-

mium, I price three assets as in Beeler and Campbell [2012]: a claim on aggregate

consumption, a claim on aggregate dividends, and the ex ante risk free rate. For

analytical convenience, I log linearize the return on the consumption and dividend

claims like Campbell and Shiller [1988]:

rc,t+1 = κ0 + κ1pct+1 − pct +4ct+1 (2.21)

rm,t+1 = κ0,m + κ1,mpdt+1 − pdt +4dt+1 (2.22)

The ex ante risk-free rate rf,t derives from the Euler equation pricing an asset that

matures after one period with a certain a numeriare payoff equal to one:

rf,t = −
∫

Ei,t[mt+1]di− 1/2

∫
Vari,t

(
mt+1

)
di (2.23)
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I conjecture (and verify in the appendix) affine state-contingent functional forms

for the three endogenous prices:

pct = gpc
0 (st) + gpc

x (st)′Xt (2.24)

pdt = gpd
0 (st) + gpd

x (st)′Xt (2.25)

rf,t = grf
0 (st) + grf

x (st)′Xt (2.26)

where the (st) notation indicates a functional dependence of the coefficients on the

realized history of volatility states. Additionally, I conjecture Xt follows a first

order vector autoregression with state-contingent coefficients:

Xt = A(st)Xt−1 + B(st)

 εt
εi,t

 (2.27)

where εt is a nε × 1 vector of aggregate shocks. Investor i is aware of (2.27) but

cannot directly observe Xt. Rather, they observe a ny × 1 vector Yi,t of aggregate

growth rates and returns, in addition to their private noisy signal:

Yi,t =



xi,t

4ct

4dt

rm,t

rf,t−1


(2.28)

where the quantities in (2.28) evolve according to equations (2.3), (2.4), (2.5),

(2.22), and (2.23). Taken together with (2.27), these equations form a state space

system:

Xt = A(st)Xt−1 + B(st)

 εt
εi,t

 (2.29)

Yi,t = µY (st) + C1(st)Xt + C2(st)Xt−1 + D(st)

 εt
εi,t

 (2.30)
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I assume the time series observations of the market return rm,t+1 and ex ante

risk free rate rf,t are peppered with very small noise shocks εrm,t+1 ∼i.i.d. N (0, 1)

and εrf,t+1 ∼i.i.d. N (0, 1) that are scaled by ϕrm and ϕrf , respectively. The noise

shocks play an important role increasing the stochastic rank of the state space

system. Without the noise shocks, the true state xt is an invertible function of

observables, effectively nullifying the role of private information in the model.

Bansal et al. [2012] utilize invertibility, for example, to identify xt by projecting

consumption growth on the risk free rate and the price-dividend ratio. The state

xt is fully revealed to their representative agent in every period. Nonetheless,

investors never learn the true state in my model. The best investor i can do

is to endogenously form expectations of Xt that are optimal by some objective

function, given their information set. A natural candidate for such expectations

is the Kalman filter, which is optimal in the sense it is the minimum variance

estimator of the state. Accordingly, investor i forecasts the state Ei,t
[
Xt

]
≡ Xi,t|t

by utilizing their knowledge (2.29) and (2.30) in combination with the Kalman

filter:

Xi,t|t = A(st)Xi,t−1|t−1 + K(st)
(
Yi,t − µY (st)−

(
C1(st)A(st) + C2(st)

)
Xi,t−1|t−1

)
(2.31)

The technical approach investors employ to form expectations is, from the econo-

metrician’s point of view, similar to Schorfheide et al. [2016], who use a Kalman

filter along with a rich set of measurement errors to estimate long-run risks in the

United States with data reaching back to the Great Depression. The Kalman filter

is also used extensively in real world economic forecasting, so its application in

the model is a realistic foundation for how practitioners can estimate consensus

beliefs. Given the expectations (2.31) of each investor i ∈ (0, 1), the average agent
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estimates the state by a simple aggregation of individual agents expectations:

Xt|t ≡
∫ 1

0

Xi,t|tdi (2.32)

With knowledge of the average agent’s expectations, it is possible now to construct

(2.27). The true long-run risk component xt follows the publicly known law of mo-

tion given in (2.3). Higher order expectations are formed as endogenous functions

of the known model parameters Θ and (2.32). I construct the sets of matrices

A(st) and B(st) by carefully summing the implied dynamics of (2.3) and (2.32):

A(st) =

ρx1×1

0
1×k̄

0
k̄×1

0
k̄×k̄

+

 0
1×1

0
1×k̄

0
k̄×1

[
A(st)−K(st)

(
C(st)A(st) + C2(st)

)]
−

k̄×k̄

+

 0
1×k̄+1[

K(st)(C1(st)A(st) + C2(st))
]
−

k̄×k̄+1

 (2.33)

B(st) =

 ϕx1×1

0
1×nε

0
nε×1

0
nε×nε

+

 0
1×nε+1[

K(st)(C1(st)B(st) + Dε(st))
]
−

1×nε+1

 (2.34)

In the matrices above, the object K(st) is the Kalman gain and Dε(s
t) is a subma-

trix of D(st) omitting the noise shock, which are both explicitly characterized in

the appendix. In their native forms, (2.33) and (2.34) describe the infinite dimen-

sional dynamics of the expectation hierarchy. Therefore any tractable numerical

solution to the model necessitates a finite dimensional approximation to the expec-

tations hierarchy Xt, truncating the size of A(st) and B(st). The minus subscript[
·
]
− indicates the approximation step required to set the order of Xt ∈ Rk̄+1 for

some 0 < k̄ < ∞. The choice of k̄ induces approximation errors in the evolution

of the state Xt, though Nimark [2011] shows such errors can become negligible for

finite k̄. His method demonstrates price dynamics can quickly converge by plotting

impulse response functions for increasing values of k̄.
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Another numerical issue sprouts from the fact the matrices in (2.33) and (2.34)

are functionally dependent on the full history of volatility states st. Given the

model is structured upon an infinite time horizon, this implies the length of st

grows one at a time with each successive period. Since I assume volatility can

attain only two values, a solution to the model has 2t distinct histories of volatility

states, and after a handful of periods the model is more or less impossible to solve

on a conventional computer. I follow Nimark [2014] by shortening the history of st

to rolling window of a predetermined length τ . In this way, the model is solvable

over the 2τ histories of st. I denote the set of truncated volatility histories S(τ) ≡

{(st−τ+1, st−τ+2, . . . , st−1, st)}. Because the number of histories grows exponentially

in τ , so too does the computer time required to solve the model. But computational

speed alone is not a sufficient criteria for choosing the number of states to track,

as shorter histories induce larger approximation errors in the Kalman filtering

equations. Therefore an ideal choice of τ is both numerically fast and yields small

errors. With this in mind, I choose the value τ = 8, which produces 256 distinct

histories for every object in the model dependent upon st. With the state dynamics

of Xt tamed by restricting attention to histories st of finite length, and considering

only the first k̄ orders of expectations, conditional expectations within the model

must be defined explicitly in order to solve the model. For example, the expectation

of the average agent in period t of a random variable in period t + 1 requires use

of truncated histories lead forward one period in time:∫
Ei,t[gpc

x (st+1)Xt+1]di =
(
πgpc

x (st+1
1 )′A(st+1

1 ) +
(
1− π

)
gpc
x (st+1

0 )′A(st+1
0 )
)
HXt

(2.35)

where the histories st+1
1 and st+1

0 drop the most distant volatility state and add a

realization of either a high or low volatility state in the next period, respectively.

I present the full details of a fixed point algorithm for solving the model in the
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appendix.

Rounding up the model solution, I define a limited information equilibrium:

1. A limited information equilibrium is for every truncated volatility history st ∈

S(τ):

1. Functions mapping the state into endogenous quantities (2.24), (2.25), and

(2.26).

2. A law of motion for the state (2.29).

3. The aggregate resource constraints:∫
Wi,tdi = Wt+1 (2.36)∫
Ci,tdi = Ct+1 (2.37)

Wt+1 = Rc,t+1

(
Wt − Ct

)
(2.38)

Such that all investors i ∈ (0, 1) satisfy the optimality conditions of their utility

maximization problems (2.1) subject to their budget constraints (2.2).

2.3 Calibration

In total, the model has sixteen parameters:

Θ ≡
{
γ, ψ, β, µc, µd, ρx, ρd, ρcd, ϕx, ϕc, ϕd, ϕrm, ϕrf , ϕs, ς, π

}
(2.39)

Table 2.1 shows their calibrated values. I calibrate eleven of the sixteen model

parameters in Θ relating to preferences, consumption growth, and dividend growth

using the estimates from Bansal et al. [2012] (BKY). A number of papers estimate
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parameters in the long-run risks model, for example, Bansal and Yaron [2004]

(BY), Beeler and Campbell [2012] (BC), and Schorfheide et al. [2016] (SSY). The

commonality in these papers is that they all focus on U.S. data after 1930, but vary

by their econometric techniques and model assumptions. BY and BKY employ

the generalized method of moments to esitmate the model with annual data. SSY

perform a Bayesian analysis using a sequential monte carlo method to estimate

a nonlinear state-space model with mixed frequency data. Despite differences in

econometric methodology and some minor theoretical variations in the models, all

of the estimations manifest consistency in their best-fit parameter values. Risk

aversion γ is at or near ten, which is commonly hailed as a success for the long-run

risks model in light of the many vintages of asset pricing models prone to generating

values of γ in excess of one hundred– a magnitude that is impossible to reconcile

with the microeconomic evidence. The EIS parameter ψ is consistently greater

than one, which is congruent with the microeconomic evidence of Gruber [2013],

and provides a number of important implications within the model. For instance,

given the level of risk aversion, investors prefer to resolve uncertainty surrounding

future utility flows sooner rather than later. This drives up the equity premium

when volatility is high, or when expected consumption growth is low. Hall [1988]

and Campbell [1999] argue for a value of ψ < 1, close to zero. They estimate EIS by

interpreting it as the slope from projecting time series data of consumption growth

on the real risk free rate and price-dividend ratio. Bansal and Yaron [2004] show

this estimate of EIS is biased downward by stochastic volatility in the process for

consumption growth. All evidence notwithstanding, the debate over EIS remains

an unsettled matter. The estimations performed by BY, BKY, and CB tend to fit

the risk free rate poorly, a challenge unanimously shared by modern consumption

based asset pricing models. SSY improve the model fit by adding a preference
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shock similar to Albuquerque et al. [2015]. However, the exogenous preference

shock serves, more or less, as a reduced form stochastic process suited to match

the risk free rate and lacks a firm microfoundation.

All of the estimations mentioned thus far produce a value of ρx near one,

indicating the existence of a small, mean-reverting component to the conditional

mean of consumption growth. In the full information setting, a large value of ρx

assures the risk price for long-run risk shocks εx,t+1 is large, and is a necessary

component to matching the equity premium. In a recent paper, Nakamura et al.

[2016] estimate parameters in a consumption process with long-run risks using a

panel of sixteen countries with over one hundred and twenty years of data. Their

estimation yields strong evidence for long-run risks in consumption growth, and

has the added benefit of excluding asset price data, immunizing their parameter

estimates from the accusation that asset price data forces the large magnitude of

ρx.

One aspect of my model that reduces its fit to the data is my choice to con-

struct a stochastic volatility process that is independent and identically distributed

over two discrete states. All variants of the full information long-run risks model

discussed in this section have at least one first order autoregressive process driv-

ing the square of volatility. These models can outperform mine insofar as they

offer a continuous support for σ(st+1) and time series persistence, features both

supported by the data. Continuous support for σ(st+1) is problematic for my nu-

merical procedure because it necessitates computing infinitely many fixed points

over infinitely many volatility histories. Discretizing σ(st+1) helps by making the

number of possible volatility histories S countably infinite. Truncating the set of

histories to include only the past τ observations generates a finite set S(τ) with
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precisely 2τ elements, reducing the computational burden from infinitely many

fixed points to 2τ . Given τ , the probability of a high volatility state π and the

level of a high volatility state ς must be chosen in a way that best preserves the

time series fit of the model. This choice offers some flexibility since the parameters

π and ς are not well identified–owing to the infinitely many ways to partition the

time series data into two samples. Therefore I make a stylistic choice to reflect an

intuitive notion of “bad times” that is consistent with the data by setting ς = 2

and π = 0.05. This means, on average, a serious bout of high volatility occurs

approximately once every twenty years. I came to these numbers by simulating

ten million observations from the law of motion for variance using the parame-

ters from BKY. If the value of variance veered into negative territory, I censored it

with a small positive number. Then, I scaled each observation by the ergodic mean

of variance, and took the square root to produce an average volatility multiplier.

The parameter value π = 0.05 reflects the 1− π empirical quantile of the ergodic

distribution of volatility multipliers, and ς = 2 is the sample mean of volatility

multipliers in excess in excess of the 1− π quantile.

2.4 Discussions of Results

The results of the model primary focus on risk premia of financial assets. What

level of compensation do investors require to accept some non-zero weighting of a

given return distribution in their portfolios? The answer to this question is settled

by how the returns of a particular asset of interest covary with investors’ stochas-

tic discount factors. Assets that produce streams of returns with low covariance

to the average investor’s stochastic discount factor carry a small risk premium,

becuase they are less likely to inconvenience the investor with bad payoffs when
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Parameter Calibrated Value

Preferences

γ 10

ψ 1.5

β 0.9989

Consumption Growth

µc 0.0015

ϕc 0.0072

ρx 0.975

ϕx 0.038ϕc

Dividend Growth

µd 0.0015

ρd 2.5

ρcd 2.6

ϕd 5.96ϕc

Noise

ϕs {0, ϕx, 2ϕx, 3ϕx, 4ϕx}

ϕrm 0.02

ϕrf 0.02

Volatility

ς 2.00

π 0.05

Table 2.1: Parameter estimates for the preferences, consumption growth, and divi-
dend growth categories from BKY. They estimate the model using the generalized
method of moments with annual data beginning in 1930 and ending in 2008. I
solve the model over a discrete grid of parameter values for noise ϕs. At the small-
est value ϕs = 0, agents in the model have full information. At the largest value
ϕs = 4ϕx, the risk price for long-run shocks is negligible.
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their marginal utility growth is highest. Oppositely, returns of assets with high

covariance to the investor’s marginal utility growth are a poor hedge for bad times

and therefore require the highest compensation to hold. Because I price asssets in

the model from the point of view of the average agent, it is this agent’s stochastic

discount factor I consider when thinking about risk premia.

Formally, the equity premium is the negative average covariance between the

stochastic discount factor mt+1 and the market return rm,t+1:∫
Ei,t
[
rm,t+1 − rf,t

]
di+

1

2

∫
Vari,t

(
rm,t+1

)
di = −

∫
Covi,t(mt+1, rm,t+1)di (2.40)

where, provided all relevant quantites satisfy joint conditional log-normality, the

average covariance is a simple expectation:

−
∫

Covi,t(mt+1, rm,t+1)di = −
∫

Ei,t
[
λε(s

t+1)′Σ(st+1)εt+1ε
′
t+1Σ(st+1)′βε(s

t+1)
]
di

(2.41)

The fundamental difference between equations (2.40) and (2.41) and consumption-

based models with representative agents are that the moments are cross-sectional

averages. I organize objects on the right-hand side of equation (2.41) inside the

expectaion such that they bare conventional economic interpretations. The nε× 1

vector λε(st+1) contains risk prices for the shocks in εt+1. A risk price is the

premium an investor would pay to perfectly hedge a specific source of risk in their

stochastic discount factor. For instance, if an asset provided a return exactly equal

to the consumption shock every period, then an investor would require a premium

equal to the risk price of the consumption shock to hold the asset. The derivation of

λε(s
t+1) simply requires solving for the innovation in the average agent’s stochastic

discount factor:

mt+1 −
∫

Ei,t
[
mt+1

]
di ≡ λε(s

t+1)′Σ(st+1)εt+1 + λX(st+1)′Xt + λσ(st+1) (2.42)
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where the nε × nε matrix Σ(st+1) is a diagonal matrix that scales each shock in

εt+1 by their respective time series volatility. I refer to Σ(st+1) as the quantity of

risk. Lastly, the nε×1 vector βε(st+1) are sensitivities of innovations in the market

return rm,t+1 to aggregate shocks εt+1:

rm,t+1 −
∫

Ei,t
[
rm,t+1

]
di = βε(s

t+1)′Σ(st+1)εt+1 + βX(st+1)Xt + βσ(st+1) (2.43)

A detailed derivation of all of the objects in (2.41) is in the appendix.

2.4.1 Disagreement Shrinks the Risk Price for Long-Run

Shocks

Figure 2.1 shows the unconditional mean risk price for the long-run shock is a

decreasing function of noise. In fact, for a very small level of disagreement, the

risk price for long-run shocks is negligible. When the level of noise is equal to

the time series volatility of the long-run shocks, ϕs = ϕx, the risk price for long-

run shocks is approximately cut in half relative to the full information model. And

when noise is set to twice the time series volatility of long-run shocks, the reduction

in the risk price relative to the full information model is more than eighty percent.

The bottom line is investors are less willing to pay a substantive premium to hedge

long-run risk shocks in their stochastic discount factors when the precisions of their

signals is low relative to the time series volatility of the long-run risk shock.

To understand this result, consider the risk price for the long-run shock under

full information ϕs = 0:

λεx =
κ1

(
γ − 1/ψ

)
1− κ1ρx

(2.44)
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The large risk price for long-run shocks is driven by a highly persistent autoregres-

sive process for the conditional mean xt, in addition to the coefficient of relative

risk aversion being markedly larger than the inverse EIS γ−1/ψ > 0. Moreover, it is

straightforward to see that under power utility, a special case of Epstein-Zin-Weil

preferences where γ = 1/ψ, the risk price for long-run shocks is necessarily zero.

The important takeaway is that under full information, equation (2.44) is large

and does not change over time.

When the scale of noise is positive ϕs > 0, higher order expectations enter the

state space of the model and the mathematical form of risk price for the long-run

risk shock changes to:2

λεx(s
t) = κ1

(
ϑ− 1

)
gpc
x (st)′

B(st)ex
ϕxσ(st)

(2.45)

Thus the risk price in equation (2.45) is the product of model parameters, the en-

dogenous coefficients mapping higher order expectations to the price-consumption

ratio, and the scaled first column of the instantaneous impact matrix. The lin-

earization constant κ1 ∈ (0, 1) is a function of the steady state price-consumption

ratio, and is very close to one in value regardless of the scale of noise I employ,

hence the latter two terms must drive the negative relationship between noise and

the risk price.

The motivation for this effect is found in the expectations of the average agent

(2.32). In each period, the average agent’s higher order expectations are a weighted

sum of their a priori estimate of the state and a noisy innovation in observed data.

When the scale of noise is zero, ϕs = 0, the average agent perfectly observes

the state in every time period, therefore the Kalman gain allocates zero weight

to the observed evolution of macroeconomic time series and places unity weight
2Despite the visible differences between equations (2.44) and (2.45), the numerical solution to

the model perfectly equates these two quantities when ϕs = 0.
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on investors’ perfectly accurate signals of the conditional mean of consumption

growth. Accordingly, higher order expectations are identical x(0)

t = x(k)

t for all

k > 0 and t ∈ N. As the scale of noise increases ϕs → ∞ and the quality of

investors’ information sets deteriorates, the Kalman gain shifts weight away from

the noisy signal toward the observed macroeconomic aggregates and prices, as these

alternate data series become valuable sources of information regarding investors’

conditional expectations of consumption growth. Importantly, the magnitude of

the shift away from the noisy signal and toward data innovations increases when

signals are less precise. This effects the price dynamics gpc
x (st) and the scaled

impact matrix B(st)ex/ϕxσ(st) in a way that attenuates the magnitude of the risk

price for the long-run shock. That is, the elements of gpc
x (st) and B(st)ex/ϕxσ(st) are

decreasing in the level of noise ϕs, so their product in equation (2.45) naturally

leads to a smaller risk price. This is driven by the first column of the Kalman gain

K(st) in the construction of gpc
x (st) and B(st)ex/ϕxσ(st) through equations (A.43) and

(2.34).

Figure 2 shows the market return’s average beta for the long-run risk shock

is decreasing in noise. The market return is less sensitive to long-run risks as

investors’ information sets disperse. The intuition for this negative relationship

is similar to the negative relationship between risk prices and noise. In the full-

information benchmark, the market return beta for long-run risk is:

βεx = κ1,m
ρd − 1/ψ

1− κ1,mρx
(2.46)

Equation (2.46) shows the market return is more sensitive to long-run risk shocks as

financial leverage ρd increases, when EIS ψ increases, when long-run consumption

growth is more persistent, and for a higher steady state price-dividend ratio. When
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Figure 2.1: The unconditional average risk prices for the long-run risk shock across
different levels of noise. Full information indicates ϕs = 0. I calibrate positive
values of noise to multiples of the time series volatility of the long-run risk shock.
As investors’ information sets grow more disparate, the average risk price for the
long-run shock approaches zero.

the scale of noise ϕs > 0, the beta for the long-run risk shock is given by:

βεx(s
t) = κ1,mg

pd

x (st)′
B(st)ex
ϕxσ(st)

(2.47)

What drives the shrinking βεx(st) as ϕs → ∞? It cannot be κ1,m, because the

steady state price-dividend ratio does not change much with ϕs. The correct

attribution focuses on the shrinking elements in gpd

x (st) and B(st)ex/ϕxσ(st) as noise

ϕs increases. Again, the Kalman gain K(st) is the source of these changes. For

B(st)ex/ϕxσ(st), I refer to the explanation given earlier in this section, and logic

similar to gpc
x (st) holds for gpd

x (st) through equation (A.47). As a result, innovations

in the market return are less sensitive to long-run shocks when investors’ have

heterogeneous beliefs surrounding expected consumption growth.
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Figure 2.2: The unconditional average risk prices and betas for the long-run risk
shock across different levels of noise. Full information indicates ϕs = 0. I calibrate
positive values of noise to multiples of the time series volatility of the long-run risk
shock ϕx. As investors information sets grow more disparate, the average beta for
the long-run shock approaches zero.

2.4.2 The Risk Price for Long-Run Shocks is Countercycli-

cal

Figure 3 shows the risk price for long-run shocks is increasing in recent spells

of high volatility. The leftmost bar indicates the risk price for the long-run risk

shock is slightly larger than fifty after τ periods of consecutive low volatility, a

history of states I call “Smooth Sailing”. The next bar immediately to the right

of “Smooth Sailing” has the same history of low volatility states, except the most

recent volatility state is high. In this case, the risk price nearly doubles to a value

of about one hundred. Moving to the the next bar to the right, the history is of low

volatility states, except the most recent two periods are high volatility. Here, the
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risk price is over one hundred and fifteen. This pattern continues, monotonically

adding another high volatility state until the full history is uniformly high, which

I call “Wild Times”. The takeaway is the risk price for the long-run risk shocks

increases at a decreasing rate in the local history of time series volatility, yielding

a value slightly larger than one hundred and twenty three during “Wild Times”.

The time-varying behavior of the risk price in equation (2.45) is in stark contrast

to the time-invariant risk price (2.44) of Bansal and Yaron [2004]. While Bansal

and Yaron [2004] do achieve time-varying risk premia, this is the consequence of

scaling equation (2.44) by an exogenous law of motion for the quantity of risk.

The model presented in this paper achieves a similar effect because the quantity of

risk Σ(st+1) scales risk prices in (2.41), however, the sources of time-varying risk

premia are twofold because λε(st+1) changes over time as well.

So why is the risk-price for long-run shocks positively related to time series

volatility? The law of motion for xt, equation (2.3), evolves according to a het-

eroskedastic shock. Investors observe a signal (2.12) that obscures xt with ho-

moskedastic noise. The result is the precision of the signal (2.12) is higher during

high volatility states of nature because the volatility of the process driving the true

state ϕxσ(st+1) increases relative to the scale of noise ϕs:∫
Vari,t(xi,t+1) =

(
ϕxσ(st+1)

)2
+ ϕ2

s (2.48)

Then, as shown earlier in Section 2.4.1, the risk price for long-run shocks ap-

proaches its full information limit as the scale of noise approaches zero. I argue for

this feature in the model, that investors have more precise signals in high volatility

states of nature, with the recent empirical work of Loh and Stulz [2015]. They show

in “bad times”, or when ex ante uncertainty is high, analyst forecasts of earnings

are more accurate than in “good times” when uncertainty is low. Loh and Stulz

argue increasing analyst accuracy during bad times is the result of intensified ef-
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forts arising from career concerns. While my model abstracts from the specifics

of agents’ effort or career worries, it accurately captures the same signal-to-noise

dynamics with a homoskedastic noise shock clouding investor information and a

hetroskedastic shock driving the state.

Smooth Sailing Wild Times

0

50

100

150

200

Risk Prices for LRR Shock Conditional on Volatility

Figure 2.3: Risk prices for the long-run risk shock εx,t over different volatility
histories. I define “Smooth Sailing” as a τ -consecutive periods of low volatility, and
oppositely, “Wild Times” as τ -consecutive periods of high volatility. The second
bar immediately to the right of “Smooth Sailing” changes the most recent period
from low to high volatility. The third bar does the same, but for the two most
recent periods. The pattern continues until the last bar, where all states are high
volatility. The scale of noise is calibrated ϕs = 2ϕx.

2.4.3 Three Factors Explain The Term Structure of Con-

sumption Growth

Litterman and Scheinkman [1991] show three statistical factors summarize nearly

all of the time series variation in treasury bond yields. They construct factors

by computing the first three principal components from the empirical covariance
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matrix of a panel of bond yields. The first factor equally weights all bond yields,

a level factor: all bond yields rise and fall together. The second factor puts high

weight on short maturity yields and low weight on long maturity yields, a slope

factor, which proxies a steepening or flattening of the yield curve. The third factor

is a curvature factor, where long and short duration yields move opposite inter-

mediate maturity yields. The success of Litterman and Scheinkman is not limited

to explaining the comovement of bond yields. Research using their procedure re-

veals interesting level, slope, and curvature factors in other asset pricing domains.

For example, Lustig et al. [2011] find a slope factor explains most of the common

variation in the cross-section of currency returns. And in a recent paper, Clarke

[2016] discovers a level, slope, and curvature factor in portfolios of stocks sorted

by their expected returns. He finds, “A standard linearized Consumption Capital

Asset Pricing Model explains almost all of the spread in average returns across

portfolios. Since the Level, Slope, and Curvature model explains almost all of the

variance in the expected return sorted portfolios, another interpretation is that

the model represents high frequency factors mimicking changes in expected future

consumption growth.”

Figure 2.4 shows a level, slope, and curvature factor for the expectations hier-

archy. I construct the three factors by simulating one million observations of the

expectations hierarchy and then computing principal components from the empir-

ical covariance matrix. The first factor equally weights higher order expectations,

a level factor. The second factor puts high weight on lower order expectations, and

low weight on higher order expectations, a slope factor. The third factor puts high

weight on lower and higher order expectations, an low weight on intermediate order

expectations, a curvature factor. Table 2.2 decomposes the variance explained by

the three factors. The first factor accounts for over ninety eight percent of the vari-
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Figure 2.4: Plots of the coefficients from the first three principal components of
the empirical covariance matrix of Xt with a simulated sample of 1,000,000 obser-
vations under τ = 8 and k̄ = 12. X-axis labels refer to the order of expectation,
and the y-axis are scalar magnitudes of loadings on principal components.

ation in higher order expectations, indicating the strong comovement in consensus

expectations of consumption growth. The second factor explains considerably less

than the first, nearly two percent of the variation. And the curvature factor ex-

plains merely twenty basis points. Taken together, the three factors account for

over ninety nine percent of the time series variation in higher order expectations.

Table A.1 decomposes the variance of the individual higher order expectations.

The level factor explains over ninety percent of the variation for every order of

expectation. The slope and curvature factors have the most explanatory power

in the lowest and highest order expectations, and very little in intermediate order

expectations.
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Level Slope Curvature

Share of Explained Variance 0.982 0.016 0.002

Table 2.2: Shares of variance in the empirical covariance matrix of Xt explained
by the first three principal components (level, slope, and curvature). Values in the
table are each principal component’s associated eigenvalue divided by the sum of
all eigenvalues. I estimate the empirical covariance matrix of Xt with a simulated
sample of 1,000,000 observations under τ = 8 and k̄ = 12.

2.4.4 Disagreement Mutes Price Responses to Changes in

State Variables

Figure 2.5 shows impulse response of the price-consumption ratio to a long-run risk

shock. The blue line represents the response under full information, and the green

line represents the response under limited information. The relative response of the

full information price-consumption ratio is over fifty percent larger than the price-

consumption ratio under limited information. Why does the price-consumption

ratio in the limited information economy react to an important shock with iner-

tia? The answer lies in the signal extraction problem faced by investors. Under full

information, investors observe the long-run shock, and given their perfect knowl-

edge of the state, prices accurately represent the evolving state of the economy in

future periods. Under limited information, an arbitrary investor observes the state

with noise, and then solves a signal extraction problem to devise an operative best-

estimate of the state in each future period via the Kalman filter. The hierarchy of

expectations Xt is a construction of investors’ beliefs surrounding the future path

of xt, representing investors’ consensus expectations of their future average con-

sumption growth. The Kalman filter uses information from all aggregate shocks

to optimally estimate the hidden state, thus the noise present in investors’ signals

shifts weight away from the long-run shock and toward the aggregate consumption
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and dividend shocks. This creates meaningful inertia in investors’ expectations,

and consequently in the price-consumption ratio.
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to LRR Shock with Low Vol.
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Figure 2.5: Impulse response functions for the price-consumption ratio from a two
standard deviation shock to εx,t. Data plotted in the top graph was generated
with consecutive periods of low volatility, and the bottom graph was generated
with consecutive periods of high volatility. The level of noise is calibrated to
ϕs = 2ϕx.

Figure 2.7 shows impulse response functions for the hierarchy of expectationsXt

to a long-run risk shock, consumption shock, and dividend shock. In the top plot,

the expectations hierarchy responds positively to a positive long-run risk shock.

The first-order expectation x(1)

t nearly mimics the behavior of the true state xt, the
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Figure 2.6: Impulse response functions for the price-dividend ratio from a two
standard deviation shock to εx,t. Data plotted in the top graph was generated
with consecutive periods of low volatility, and the bottom graph was generated
with consecutive periods of high volatility. The level of noise is calibrated to
ϕs = 2ϕx.

second order expectation x(2)

t nearly mimics the first order expectation x(1)

t , and

so on. Nimark [2011] shows the comovement of the expectations hierarchy Xt is a

decreasing function of the scale of the idiosyncratic noise shocks ϕs. As agents’ in-

formation sets converge to full information, the expectations hierarchy Xt becomes

perfectly correlated with the true state xt, which is equivalent to the original set-

ting of Bansal and Yaron [2004]. Further, in the full information economy, the law
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of motion for xt is purely exogenous, therefore under no circumstances would xt

ever respond to a consumption shock or dividend shock. The expectations hier-

archy Xt, on the other hand, does respond to consumption and dividend shocks

under limited information. The bottom two plots of Figure 2.7 exhibit this inter-

esting behavior. In response to a positive consumption shock, the largest orders

of expectations have a pronounced response relative to the lowest orders. Under

the metaphor that Xt is a term structure of expectations, a positive consumption

shock is tantamount to a positive shock to a steepening factor. Intuitively, the

sign makes sense because a positive consumption shock impacts both consumption

and dividend growth positively, in the same way a positive shock to xt would. The

opposite dynamics hold true for the dividend shock–the expectations hierarchy Xt

responds negatively, and most dramatically in the largest orders of expectations.

2.4.5 Disagreement Increases During High Volatility Spells

Figure 2.8 presents a plot of the expectations hierarchy simulated for one hun-

dred periods. Below it is a plot of the interquartile range of consumption growth

forecasts. The first fifty periods of the simulation have uniformly low volatility.

Then, at the halfway point, the remaining fifty periods have high volatility. Ev-

idently the higher volatility of long-run shocks leads to larger fluctuations in the

expectations hierarchy throughout the second half of the sample. The interquar-

tile range of consumption growth forecasts nearly doubles after transitioning into

the high volatility regime from the low volatility regime. Time series volatility

leads to high levels of disagreement in consumption growth forecasts through the

Kalman updating equation (2.31). To see why, notice each forecast of consumption

growth fi,t+1|t is treated as an independent and identical draw form a conditional
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distribution of forecasts:

fi,t+1|t ∼i.i.d. N
(
µc + e′1HXt, e

′
1HPi(s

t)H′e1

)
(2.49)

where the Pi(s
t) is the conditional cross-sectional covariance matrix:

Pi(s
t) = Ei,t

[(
Ei,t
[
Xt

]
−
∫
Ei,t
[
Xt

]
dj
)(

Ei,t
[
Xt

]
−
∫
Ei,t
[
Xt

]
dj
)′]

(2.50)

Recall the precision of investors signals xi,t varies over time given the heteroskedas-

ticity in long-run shocks, thus increasing the precision of signals during bad states

of nature with high volatility. The consequence of greater precision is the first

column of the Kalman gain places larger weight on xi,t and less weight on other

observed sources of information. By subtracting equation (2.32) from (2.31), it is

clear to see how the time-variation in the Kalman gain directly influences the role

investor-specific noise plays in consensus forecast dispersion:

Ei,t
[
Xt

]
−
∫

Ei,t
[
Xt

]
dj =(

A(st)−K(st)
(
C1(st)A(st)+C2(st)

))(
Ei,t−1

[
Xt−1

]
−
∫
Ei,t−1

[
Xt−1

]
dj
)
+ K(st)Dεεi,t

(2.51)

where the matrix Dε simply contains the scale parameters for investors’ signals:

Dε ≡



ϕs

0

0

0

0


(2.52)

Thus cross-sectional forecasts of consumption growth will tend to disperse when

time the time series volatility of aggregate shocks is high. This feature of the model

is broadly consistent with the data. Figure 2.9 plots the cross-sectional dispersion

of real nondurable consumption growth forecasts from the Survey of Professional
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Forecasters (SPF). Table 2.3 conditions time series averages of the interquartile

range of consumption growth forecasts on ex post business cycle classifications

provided by the National Bureau of Economic Research (NBER). In recession

states of the business cycle, the average interquartile range is about 1.70% relative

to 1.28% during expansion states, indicating greater dispersion in forecasts during

bad times. While the model matches the direction of the relationship between

cross-sectional disagreement and time series volatility, it does not match the scale.

The survey of professional forecasters data yields estimates of the interquartile

range measured in percent, while forecast disagreement generated by the model

is measured in mere basis points. There are a number of possible explanations

for this fact. First, Clements [2014] provides evidence of anti-herding in SPF

data for inflation and output. Rulke et al. [2012] find similar results on a data

set including professional forecasters from around the globe. Forecasters working

in the private sector may have career incentives to enhance the marketability of

their forecasts by straying from the pack, increasing forecast dispersion as a result.

For instance, if customers rank forecasters by their recent relative performance,

and not their career spanning mean-squared errors, forecasters can capture a large

share of new customers by providing extreme forecasts. An example of this is

providing forecasts of a harsh recession when economic indicators begin to show

signs of slowing growth, and then claiming valuable foresight ex post if the extreme

prediction pans out. A second possibility is I have misspecified the information sets

of investors by focusing disagreement on a state variable with a relatively small

volatility. Simply expanding the state-space of the model to include a state with

a volatility similar to the time series volatility of aggregate consumption growth

would increase the spread in consumption growth forecasts to a scale seen in the

data. Third, it may be that professional forecasters are not privy to long-run risks
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in the way utilized in the asset pricing literature, and requiring forecasting agents

of to think of the world as an endowment economy is not a fruitful econometric

exercise.

Cycle Interquartile Range

1983 - 2015

Expansion 0.0128

Recession 0.0170

1990 - 2015

Expansion 0.0095

Recession 0.0143

Table 2.3: Average interquartile range of real nondurable consumption growth
forecasts from the Survey of Professional Forecasters conditioned on ex post NBER
business cycle classifications. The top half of the table reports averages for the full
sample from the third quarter of 1981 through the end of 2015. The bottom
half reports averages from the second quarter of 1990 through 2015. The Federal
Reserve Bank of Philadelphia took over the survey in the second quarter of 1990
and dramatically increased the breadth and quality of the sample.

2.4.6 Consensus Forecast Errors are Priced Risk

Equation (2.53) shows the risk price for the expectations hierarchy:

λX(st)′ = −γe′1
(
I−H

)
+
(
ϑ− 1

)
κ1

(
gpc
x (st)′A(st)−

∫
Ei,t−1

[
gpc
x (st)′A(st)H

]
di
)

(2.53)

The first term in (2.53) indicates the difference between the true state and the

first order expectation carries a risk price of γ. Therefore investors are willing
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to pay a premium to hedge their first order expectations deviation from the true

conditional mean growth rate. The second term in (2.53) prices a forecast error in

the evolution of the price consumption ratio. However, the second term is small

and insubstantial, and may be ignored for that reason. In the full information

economy, the risk price for aggregate consumption shocks is simply the coefficient

of relative risk aversion λεc = γ, and the risk price in the limited information

economy has approximately the same magnitude λX(st) ≈ γ. Intuitively, this

observation implies investors dislike consensus forecast errors between their first

order expectations and the conditional mean of consumption growth equally as

much as transient shocks to aggregate consumption. The tendency for first order

expectations to deviate from the true conditional mean is modulated by the noise

parameter. Section 2.4.4 shows that the in the expectations hierarchy is increasing

in the scale of noise ϕs. Therefore the quantitative importance of consensus forecast

errors grows as investor information sets diverge.

2.5 Conclusion

Consumption based asset pricing links investors’ marginal utility of consumption

to discount rates that price assets. If investors have Epstein-Zin-Weil preferences,

and there is a small, persistent component in expected consumption growth, then

news about the long-run economic growth carries a large risk price. This result

revolves around full information: at every point in time, the state of the economy is

precisely known to a representative investor. I extend the long-run risks economy

to include a large number of heterogeneous investors with imperfect knowledge of

conditional expected consumption and dividend growth. Investors use their knowl-

edge of deep parameters in the economy and the laws of motion of driving the un-
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observed state variables to estimate the true position of the economy via a signal

extraction exercise. Consensus beliefs about economic growth compose the state

space of the model, altering price dynamics relative to the full information bench-

mark. Beliefs about expected economic growth respond more sluggishly to shocks

in the limited information economy because noise obscures the true conditional

growth rate. When investors’ information sets about the state diverge, the risk

price for long-run news about economic growth becomes small and inconsequen-

tial. The implication is, at most, only a handful of basis points can separate the

most optimistic and pessimistic investors’ private beliefs about economic growth in

order for long-run risks to serve as a source of risk premium. Consumption growth

forecasts from professional forecasters exhibit a level of cross-sectional dispersion

that is counterfactually large relative to the model. As investors information sets

converge toward the truth, the risk price for long-run shocks increases toward the

full information limit. Risk prices exhibit large countercylicalility as investor be-

liefs grow more accurate. This happens because the precision of investors’ private

signals increases during periods of high volatility in economic aggregates and asset

prices. This paper attempts to take heterogeneous beliefs seriously in an econ-

omy with long-run risks, and shows disagreement is a challenge for this literature,

opening new empirical targets for the model.
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Figure 2.7: Impulse response functions for the hierarchy of expectations Xt from
a two standard deviation shock to εx,t (top), εc,t (middle), and εd,t (bottom). On
the top graph, the thick dark blue line represents x(0)

t , but this variable is absent
from the other two graphs because it does not respond to consumption or dividend
shocks. The increasingly lighter shades of turquoise and green correspond to higher
orders of expectations. The level of noise is calibrated to ϕs = 2ϕx.
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Figure 2.8: The top plot exhibits a simulation of the expectations hierarchy for
T = 100 periods. The first fifty periods are low volatility states, and the last
fifty periods are high volatility. A vertical dashed line separates the two regimes.
The bottom plot shows the interquartile range of consumption growth forecasts.
Each period, I randomly sample N = 50 independent draws to simulate a panel
of forecasts. I then estimate the 25th and 75th percentiles and compute their
difference.
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Figure 2.9: Cross-sectional dispersion of annual real nondurable consumption
growth forecasts from the Survey of Professional Forecasters. The forecast data
are sampled at a quarterly frequency, beginning in the third quarter of 1981 and
ending in the fourth quarter of 2015. I compute annual consumption growth for
each forecaster in the sample by subtracting their forecast of the previous period
revised log consumption level from the level forecasted four quarters ahead of the
end of the measurement period.
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CHAPTER 3

AMBIGUITY OVER THE LONG-RUN: THE WELFARE COSTS OF

PERSISTENT GROWTH SHOCKS

48



3.1 Introduction

Mehra and Prescott [1985] demonstrate a simple model of a representative agent

with power utility cannot replicate the size of the equity premium. A subsequent

literature seeks to “solve” the equity premium puzzle by enriching economic models

to match the statistical moments of asset price data. Generally, this literature fo-

cuses on two paths to refining such a model. First, one can equip a representative

agent with exotic preferences, with the goal in mind of increasing the flexibility

to the stochastic discount factor to better price risky streams of payoffs. Ideally,

the preference specification and parameter values are corroborated by an economic

theory and microeconomic evidence. Second, and typically in combination with an

exotic preference specification, one can augment the exogenous stochastic process

driving consumption growth with different types of risks. The model of consump-

tion growth should be supported by a basic econometric calibration with a time

series of observed aggregate consumption data. Despite the variety of preferences

and risks in structural asset pricing models, most share a common assumption that

agents inhabit in a world with rational expectations. That is, the representative

agent knows the correct risk model of consumption growth, and prices risky payoffs

with the correct model.

Using the framework Barillas et al. [2009], I take a different route, a route where

the representative agent has the correct risk model of consumption growth in mind

as an approximating model, but is uncertain of the model’s validity. To surmount

model uncertainty, she employs a robust risk model by choosing the worst-case

probability distribution of consumption growth subject to an entropy constraint.

The entropy constraint dictates the worst-case model cannot be “too far” from the

approximating model in a statistical sense–one cannot arbitrarily expect tomorrow
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to be armaggedon with probability one if a simple statistical test suggests such a

model is near the realm impossibility. The result of this exercise is an ability to

robustly price risky assets under a pessimistic view of consumption risk. If assets

are priced in this way, what share of the risk premium on common stocks can

be attributed to model uncertainty? How much would an economic agent pay to

absolve themself from model uncertainty? In particular, I seek answers to these

questions with an updated model of consumption growth having both long-run

risks (LRR) of Bansal and Yaron [2004] and rare disasters of Barro [2006].

The LRR literature conjectures consumption growth has both a persistent com-

ponent and stochastic volatility. When paired with the preferences of Epstein and

Zin [1989] (EZ), a LRR model of consumption growth does a good job matching

key statistical moments of asset price data. A caveat is Bansal and Yaron rely on

a value of the intertemporal elasticity of substitution (IES) to be larger than one,

which conflicts with some earlier estimates, like Hall [1988], who estimates IES to

be approximately one half. The IES is a theoretical parameter that regulates eco-

nomic agents willingness to substitute consumption over time, and subsequently

drives savings behavior. The implication for asset pricing being that, via a stan-

dard Euler equation relationship, fluctuations in the risk-free rate are amplified

fluctuations in consumption growth by a factor greater than one.

The rare disasters literature begins with Rietz [1988], who shows that the infre-

quent market crashes are capable of generating a large equity premium and a low

risk-free rate. Barro [2006] expands this literature by constructing a prolific panel

data set of global consumption growth that reaches back as far as 1790. With a

subsample of 35 countries over 100 years, Barro finds the probability of aggregate

consumption declining by 15 percent or more in a given year is 1.7 percent per
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year. Both Barro and Rietz rely on a simple asset pricing model where the repre-

sentative agent has time-separable power utility, and is subject to iid shocks. More

recent work in Barro [2009], Barro and Jin [2011], and Nakamura et al. [2013] dis-

card time-separable utility in favor of EZ preferences. Asset pricing models with

disasters and EZ pereferences, similar to the LRR literature, require a value of IES

to be greater than one.1

The paper that is most similar to this one is Bidder and Smith [2013]. However,

they focus on a consumption model with stochastic volatility, and without long-run

risks and rare disasters.

3.2 A Model of Consumption Growth

Consumption growth is indexed by discrete time t = 0, 1, 2, . . . and has the form,

4ct+1 = µ+ xt + εct+1 + εdt+1 (3.1)

xt+1 = ρxt + εxt+1 (3.2)

εct+1 ∼i.i.d. N (0, σ2
c ) (3.3)

εxt+1 ∼i.i.d. N (0, σ2
x) (3.4)

εdt+1 ∼i.i.d. Bernoulli(πd) · log(1− b) (3.5)

where the notation 4ct+1 = ct+1 − ct is the first difference of logs and µ is the

trend growth rate. An uppercase letter Ct = exp(ct) is the exponent of the log

value. Rare disasters take two distinct values εdt+1 ∈ {0, log(1 − b)}, and follow a

1In an unpublished set of presentation slides, Viktor Tsyrennikov is to my knowledge the first
to apply the framework of Barillas et al. [2009] to a model of rare disasters.
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two-state Markov chain with a stationary distribution,

fd(εdt+1) = π
εdt+1

log(1−b)
d (1− πd)1−

εdt+1
log(1−b) .

Taken together, the shocks are also represented as a vector εt+1,

εt+1 ≡


εdt+1

εct+1

εxt+1

 ∼ f ε(εt+1), (3.6)

where f ε(·) is the joint distribution function and εt+1 = (ε0, ε1, . . . , εt, εt+1).

3.3 Two Observationally Equivalent Agents

3.3.1 Type-I Agent with EZ Preferences

The type-I agent faces consumption growth (3.1)-(3.2) and has peferences of Ep-

stein and Zin [1989] and Tallarini [2000],

VI(st) = ct − βϑ logEt[exp(−VI(st+1)/ϑ)], (3.7)

where the utility paramter ϑ can be expressed as,

ϑ = − 1

(1− β)(1− γ)
. (3.8)

The parameter β ∈ (0, 1) is a one-period time discount rate, γ > 0 is atemporal

risk aversion, and EIS is fixed equal to one. When γ > EIS, the type-I agent prefers

the early resolution of uncertainty. The state vector st consists of consumption ct

and the time-varying component of the growth rate xt,

st =

ct
xt

 . (3.9)

52



By standard arguments, the stochastic discount factor of the type-I is,

Λt,t+1 = β
Ct
Ct+1

exp(−VI(st+1)/ϑ)

Et[exp(−VI(st+1)/ϑ)]
, (3.10)

and can be used to price any risky payoff. An advantages of fixing EIS equal to

one is that the value function has a closed-form solution. Simply guess the affine

form,

VI(st) = α0 + αcct + αxxt, (3.11)

and after some algebra, arrive at the solution,

α0 =
β

1− β

(
µ

1− β
−
( β

(1− βρ)(1− β)

)2 σ2
x

2ϑ
− (3.12)( 1

1− β

)2 σ2
c

2ϑ
− ϑ log

(
1− πd + πd(1− b)−

1
(1−β)ϑ

))
αc =

1

1− β
(3.13)

αx =
β

(1− βρ)(1− β)
. (3.14)

3.3.2 Type-II Agent with Multiplier Preferences

The type-II agent faces consumption growth (3.1)-(3.2) and has multiplier prefer-

ences as in Hansen and Sargent [2001] and Barillas et al. [2009],

VII(s0) = min
mt+1

∞∑
t=0

E
[
βtMt

(
ct + βϑE

[
mt+1 ln(mt+1)|st

])
|st
]

(3.15)

where,

Mt+1 = mt+1Mt (3.16)

E[mt+1|εt, s0] = 1 (3.17)

mt+1 ≥ 0 (3.18)

M0 = 1, (3.19)
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with s0 given. This agent does not know the true probability distribution f ε(·) of

shocks. To deal with this concern, the type-II agent chooses a scalar mt+1 that

is Borel measurable with respect to (εt+1, s0). The choice of mt+1 minimizes the

agent’s lifetime expected utility, subject to an entropy constraint parameterized by

ϑ. Intuitively, this agent chooses a probability distribution for risks to consumption

growth that is the worst indistinguishable case. That is, it is very difficult for a

discerning econometrician to separate the worst-case distribution from the actual

data generating process with a relatively short time series of data. The recursively

defined sequence {Mt}∞t=0 of likelihood ratios is a non-negative martingale such

that,

E[Mt+1|εt, s0] = Mt. (3.20)

Therefore mt+1 is also known as the minimizing martingale increment. The likeli-

hood ratios {Mt}∞t=0 represent the distance between the type-II agent’s constrained

worst-case model and the approximating model (3.1)-(3.2).

After scaling by M , the same problem restated recursively is,

VII(s) = c+ min
m(ε)≥0

(
β

∫ (
m(ε)VII(s′) + ϑm(ε) log(m(ε))

)
f ε(ε)dε

)
(3.21)

where,

E[m(ε)] = 1. (3.22)

Solving for the minimizer m̂t+1(st+1) and substituting it back into the Bellman

equation (3.21) yields,

VII(st) = ct − βϑ logEt[exp(−VII(st+1)/ϑ)], (3.23)

with the minimizing martingale increment,

m̂t+1(st+1) =
exp(−VII(st+1)/ϑ)

Et[exp(−VII(st+1)/ϑ)]
. (3.24)
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3.3.3 The Worst-Case Probability Distribution

The minimizing martingale increment (3.24) is proportional to,

m̂t+1(εt+1) ∝ exp
(
− 1

ϑ(1− β)
εct+1−

1

ϑ(1− β)
εdt+1−

β

ϑ(1− βρ)(1− β)
εxt+1

)
. (3.25)

To arrive at the worst-case distribution f̃ ε(·), the joint distribution of the approx-

imating model f ε(·) is simply multiplied by the distortion,

f̃ ε(εt+1) ∝ m̂t+1(εt+1)f ε(εt+1). (3.26)

Under the worst-case distribution, the locations of the transient consumption shock

and the persistent shock shift downward,

εct+1 ∼ N
(
− σ2

c

ϑ(1− β)
, σ2

c

)
(3.27)

εxt+1 ∼ N
(
− βσ2

x

ϑ(1− βρ)(1− β)
, σ2

x

)
. (3.28)

And, the disaster risk probability is slightly higher,

fd(εdt+1) ∝
(
e−

log(1−b)
ϑ(1−β) πd

) εdt+1
log(1−b)

(
1− πd

)1−
εdt+1

log(1−b)
. (3.29)

Evidently, the type-II agent’s pessism is reflected in their choice of m̂t+1.

3.4 Thought Experiments

How much consumption would the type-I agent forgo each period to eliminate

different components of physical risk from (3.1)-(3.2)? To answer this question,

one needs the value function (3.11) for the type-I agent under (3.1)-(3.2), in addi-

tion to a value function solved under a less-risky process for consumption growth.

Equating these two value functions permits one to solve for consumption under
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the less-risky process. The difference in these two consumption allocations is how

much the type-I agent would pay to eliminate physical risk. To perform this anal-

ysis, consider the following four processes for consumption growth that eliminate

different sources of physical risk, and are all equal in expectation to (3.1)-(3.2).

No Short-Run Risks :

4ct+1 = µ+
1

2
σ2
c + xt + εdt+1 (3.30)

xt+1 = ρxxt + εxt+1 (3.31)

No Long-Run Risks:

4ct+1 = µ+ εct+1 + εdt+1 (3.32)

No Disasters:

4ct+1 = µ+ πd log(1− b) + xt + εct+1 (3.33)

xt+1 = ρxxt + εxt+1 (3.34)

No Risk:

4ct+1 = µ+
1

2
σ2
c + πd log(1− b) (3.35)

Let j ∈ {c,x,d} index the type of physical risk, and the value function with risk

j eliminated is VI
j(·). Then the compensating variation c0− cI

0,j for a type-I agent

eliminating risk j can be found by solving,

VI(c0) = VI
j(c

I
0,j). (3.36)

A type-II agent has the same value function as a type-I agent, so cI
0,j = cII

0,j. For a

type-I agent, c0 − cI
0,j is compensation for risk, while for a type-II agent, c0 − cII

0,j
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is compensation for both risk and uncertainty. The principle difference between

these two quantities is their expression in terms of β and γ for a type-I agent or ϑ

for a type-II agent.

A type-II agent who does not fear model misspecification has ϑ = +∞ (or

γ = 1). The compensating variation for this type of agent after eliminating physical

risk is,

c0 − cII
0,j(r) = lim

ϑ→∞
(c0 − cII

0,j). (3.37)

The compensating variation for model uncertainty cII
0,j(r)− cII

0 can then be solved

for with the following decomposition,

c0 − cII
0,j = (c0 − cII

0,j(r)) + (cII
0,j(r)− cII

0,j). (3.38)

As Table 1 and Table 2 show, the representative agent is willing to pay more

to resolve ambiguity surrounding rare disasters relative to long-run risks. Figure

1 drives this point home best:

Figure 3.1: The lines represent the share of consumption the representative agent
is willing to forgo to absovle ambiguity surrounding a specific type of physical risk
for a given level of γ.
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3.5 Conclussion

The structural asset pricing literature has long sought to explain statistical mo-

ments of aggregate asset price fluctuations with models of full information rational

expectations. While these models are critically important benchmarks for measur-

ment, in reality the agents who set the prices on risky assets do not all share a

common risk model for a fixed set of underlying physical risks. A more realistic

approach acknowledges that the true underyling risks are ambiguous to economic

agent, and that agents must somehow make the best possible decisions nonetheless.

Two models of consumption growth have come to dominate the recent literature of

structural explanations of the equity premium, long-run risks and rare disasters.

I cast both of these models in a theoretical world where the representative agent

does not know the true stochastic processes for these two sources of risk, but be-

haves optimally by assuming a worst-case joint distribution that would be difficult

to reject with real data. A subsequent welfare analysis reveals that the representa-

tive agent would be willing to forgo a relatively larger share of their consumption

each period for the rest of their infinite life to remove ambiguity surrounding rare

disasters relative to ambiguity surrounding long-run risks.
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CHAPTER 4

NEWS UNCERTAINTY SHOCKS AND SOVEREIGN DEBT
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4.1 Introduction

The budding literature on news shocks shows economic agents’ response to antic-

ipated changes in an economy accounts for a substnatial share of macroeconomic

fluctuations. I contribute to the conversation on news shocks with a model where

news uncertainty, defined as the second moment of the stochastic process gener-

ating news shocks, is allowed to randomly fluctuate over time. Intuitively, this

models exogenous, time-varying changes in agents’ level of certainty of news about

future outcomes. In this paper, I focus on news uncertainty shocks to total factor

productivity (TFP) and interest rates in a small open economy. I show that the

magnitude of an economy’s response to news uncertainty shocks is positively re-

lated to the length of time before news shocks realization in the level, and that an

economy’s response to news uncertainty can eclipse the response to contempora-

neous volatility shocks.1

Why are news uncertainty shocks a valid modelling decision? First, consider

the data. A news shock to interest rates in the context of an open economy can

be interpreted as a shock to the level of a forward rate. Thus, time-varying news

uncertainty is equivalent to conditional heteroskedasticity in forward rates. Figure

4.1 displays the first differences of the two year forward rate on German Bunds. I

use this particular time series because in an open economy DSGE, a shock to the

level of interest rates eight quarters in the future is equivalent to a shock to the two

year forward rate. As the plot shows, throughout the financial crisis, innovations to

the forward rate are large, though they substantially attenuate beginning around

2012.
1There are many different interesting applications for news uncertainty shocks not studied in

this paper, in particular, fiscal policy.
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Figure 4.1: Time series plot of first difference of 2 year forward swap rates on
German sovereign debt with a 3 month tenor. Time observations are at a quarterly
frequency.

Figure 4.2 displays the estimated time series of TFP news shocks using the

identification scheme of Barsky and Sims [2011] and the matlab code and data

of Kurmann and Otrok [2013]. Here, a TFP news shock is defined to be a shock

orthogonal to a conventional TFP shock that accounts for the largest share of

variation in future TFP. News about TFP is anemic in the 1960’s, as well as the

1990’s and 2000s. The variance of TFP news is noticeable larger throughout the

1970’s and 1980’s. A Ljung-Box test of the squared TFP news shock time series

yields strong evidence of conditional heteroskedisticity.2

2The Ljung-Box test is a portmanteau test, meaning it does not provide a sharp definition
of an alternative hypothesis. Further, conditional heteroskedasticity may disappear under future
identification schemes for TFP news shocks. I take the TFP argument from the empirical angle
with a grain of salt, and wish to point out that homoskedasticity was a natural assumption to
initiate studies of economic models with news shocks, though it may be more difficult to justify
against robust alternatives in the wake of advancing numerical methods that are evermore easier

63



1970 1980 1990 2000

-6

-4

-2

0

2

4

6
P
er
ce
n
t

TFP News Shocks

Figure 4.2: Partially identified time series of news shocks to TFP in the United
states at a quarterly frequency, 1959-2005.

The recent literature on news shocks begins with Cochrane [1994] arguing that

a bundle of standard contemporaneous shocks to money and TFP are unable to

account for a majority of economic fluctuations, and that econometric models in-

corporating shocks to anticipated levels of fundamentals may serve as a plausible

candidate for increasing statistical explanatory power. Beaudry and Portier [2006]

create an identification scheme for news shocks to TFP for a VAR with U.S. data,

and show that news shocks may account for approximately 50% of the fluctua-

tions in consumption, investment, and hours worked at business cycle frequencies.

Jaimovich and Rebelo [2009] create a real business cycle model where households

observe news about TFP and investment technology, which can replicate recession

dynamics resulting from lackluster news, and not negative TFP shocks. Barsky

to implement.
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and Sims [2011] further construct a novel identification scheme for news shocks,

and similarly show that news shocks are accountable for around 50% of fluctuations

in key economic aggregates.

Section 2 of the paper describes the model in detail. Sections 3 and 4 are the

calibration and solution technique. Section 5 is a discussion of the results, and

section 6 concludes.

4.2 Model

There is a small open economy populated by a representative household with re-

cursive preferences of Epstein and Zin [1989] and Weil [1990], with flow utility of

Greenwood et al. [1988] (GHH),

Vt =

((
Ct − Γt−1

1

ν
hνt

)1−1/ψ

+ βR
1−1/ψ
t

) 1
1−1/ψ

(4.1)

R1−γ
t = Et

[
V1−γ
t+1

]
, (4.2)

where Rt is the continuation value. Time is discrete, indexed by the non-negative

integers. The household procures utility with consumption Ct of a homogenous

good, and forfeits utility by working hours ht. The parameter ν > 0 determines

the elasticity of the household’s labor supply to wages. Three parameters govern

the household’s attitudes toward time and uncertainty: ψ is the inter temporal

elasticity of substitution, γ is risk aversion, and β ∈ (0, 1) is a one period time

discount rate. 3

As in Aguiar and Gopinath [2007], the embedded GHH flow utility function is
3The notation Vt represents the household’s value function at time t, which is clarified further

in the appendix.
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augmented with a stochastic process for cumulative growth,

Γt = egtΓt−1 (4.3)

with growth shocks following an AR(1) process,

gt = (1− ρg)µg + ρggt−1 + ηgεgt , εgt ∼ N (0, 1). (4.4)

I induce stationarity in the model by dividing quantities in time t by the lagged

value of cumulative growth, Γt−1. For example, the stationary transformation of

the utility function is,

Vt =
Vt

Γt−1

(4.5)

Rt =
Rt

Γt−1

, (4.6)

which yields,

Vt =

((
ct −

1

ν
hνt

)1−1/ψ

+ βegt(1−
1/ψ)R1−1/ψ

t

) 1
1−1/ψ

(4.7)

R1−γ
t = Et

[
V 1−γ
t+1

]
. (4.8)

I write stationary variables lowercase, with the exeption of the two utility variables

in this example. Hereafter, all equations I introduce are stationary.

The household’s objective is to maximize lifetime expected utility subject to a

flow budget constraint,

ct + it + bt −
egtbt+1

1 + ert
+
ϕba
2

(
egtbt+1 − b

)2

≤ wtht + qtkt + dt. (4.9)

In every period t, it may choose consumption ct, hours worked ht, investment it,

and holdings of international risk-free bonds bt+1. Deviations of bond holdings

from steady state b incur quadratic adjustment costs, scaled by the parameter ϕba.
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The household participates in a competitive labor market, and earns a wage wt

per each unit of labor it sells to the representative firm. It also participates in a

competitive capital market, and earns a rental rate qt per each unit of capital lent.

Any profits earned by the firm are transferred back to the household as a dividend

dt in the same period.

The investment good and consumption good are equivalent, and may be cost-

lessly and instantaneously transformed into one another. Capital is durable and

may be stored for future use, though it depreciates at a constant rate of δ per

period and is subject to quadratic adjustment costs,

egtkt+1 = (1− δ)kt + it −
ϕka
2

(
egtkt+1

kt
− eµg

)2

kt, (4.10)

scaled by the parameter ϕka.

Financial markets are incomplete– the household may borrow or lend with a

single risk free bond at the exogenous interest rate 1+ert , which I assume is driven

by stochastic processes,

εrt = ρrε
r
t−1 + eσ

r
t εrt , εrt ∼ N (0, 1) (4.11)

σrt = (1− ρσr)µσ
r

+ ρσrσ
r
t−1 + ησ

r

εσ
r

t , εσ
r

t ∼ N (0, 1) (4.12)

ert = er̄ + εrt . (4.13)

The first order necessary conditions of consumption and labor choices in the

household’s utility maximization problem give rise to two equations,

λt = V
1/ψ
t

(
ct −

1

ν
hνt

)−1/ψ

(4.14)

λtwt = V
1/ψ
t hν−1

t

(
ct −

1

ν
hνt

)−1/ψ

(4.15)

where λt is a Lagrange multiplier for the household’s flow budget constraint.
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In period t, the household values payoffs in period t + 1 with a stochastic

discount factor,

Λt,t+1 = βe−
gt/ψλt+1

λt

(
Rt

Vt+1

)γ−1/ψ

. (4.16)

First order conditions for bond holdings and investment give rise to two Euler

equations,

1 = Et
[
Λt,t+1

(
1

ϕb(bt+1 − b) + 1/1+ert

)]
(4.17)

1 = Et
[
Λt,t+1

(
ϕk
yt+1

kt+1

+ 1− δ +
ϕka
2

((
egtkt+2

kt+1

)2

− e2µg

))
− ϕk

(
egtkt+1

kt
− eµg

)]
(4.18)

The private sector is populated by a profit maximizing representative firm,

which purchases labor and rents capital from the household in order to produce

the consumption good. Output of the representative firm follows a Cobb-Douglas

type production function,

yt = eztkϕkt (egtht)
ϕh , (4.19)

where I restrict ϕk +ϕh = 1 to ensure constant returns to scale. The level of total

factor productivity (TFP) is given by a stationary stochastic process ezt , where,

zt = ρzzt−1 + eσ
z
t εzt , εzt ∼ N (0, 1). (4.20)

σzt = (1− ρσz)µσ
z

+ ρσzσ
z
t−1 + ησ

z

εσ
z

t , εσ
z

t ∼ N (0, 1) (4.21)

Both markets for labor and capital are competitive, hence the first order necessary

conditions of profit maximization also price these factors, respectively,

wt = ϕh
yt
ht

(4.22)

qt = ϕk
yt
kt
. (4.23)
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I assume two transversality conditions for capital and bonds, which taken together

with the Euler equations, are sufficient conditions for the existence of a maximum

to the household’s problem:

lim
t→∞

βtλt+1bt+1 = 0 (4.24)

lim
t→∞

βtλt+1kt+1 = 0 (4.25)

4.2.1 Two Types of News Shocks

In period t, the household observes a news shock [news]t+τt that effects the level of

an exogenous stochastic process in period t+ τ ,

σnt = (1− ρσn)µσ
n

+ ρσnσ
n
t−1 + ησ

n

εσ
n

t , εσ
n

t ∼ N (0, 1) (4.26)

[news]t+τt = eσ
n
t εnt εnt ∼ N (0, 1) (4.27)

where the volatility of news shocks follows an AR(1) process. The first moment

of the news shock process follows Jaimovich and Rebelo [2009], equation (4.26) is

novel component. I write the vector containing all observed news shocks at time t

as newst, and more explicitly as equation (C.3).

News about the Interest Rate

In the first model, I add news shocks to the stochastic process for interest rates at

time horizons 4 quarters and 8 quarters prior to realization in the level,

εrt = ρrε
r
t−1 + eσ

r
t εrt + [news]t+4

t + [news]t+8
t , εrt ∼ N (0, 1). (4.28)

Thus in every period t, the household observes two news shocks: a distant shock

two years away, and a revision shock to a news shock which was initially observed
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one year before. Both shocks occurring in period t share a common distribution,

so a volatility shock to news jointly increases the scale of both the distant and

revision shocks.

News about TFP

In the second model, I add news shocks at the same horizons to the process for

TFP,

zt = ρzzt−1 + eσ
z
t εzt + [news]t+4

t + [news]t+8
t , εzt ∼ N (0, 1). (4.29)

4.2.2 Steady State

I label steady state quantities by omitting the time subscript. To compute the

steady state, first, I solve for capital as a function of labor by combining the

household first order conditions for labor and consumption with the firm’s first

order condition for labor. Then, I substitute out labor in the Euler equation for

capital, which yields the steady state level of capital in terms of given parameters,

k =

((
Λ−1 − 1− δ

)(
ϕhe

µgϕh
(
ϕke

µgϕh
) ϕh
ν−ϕh

)−1
) 1

ϕk−1+
ϕkϕh
ν−ϕh . (4.30)

The steady state level of capital is then used to solve for labor with the previously

established relationship,

h =
(
ϕhe

µgϕhkϕk
) 1
ν−ϕh . (4.31)
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Having the steady state levels of capital and labor in hand, the solutions for the

remaining variables are straightforward:

y = kϕk
(
eµgh

)ϕh (4.32)

r̄ = ln
(
Λ−1 − 1

)
(4.33)

i =
(
eµg − 1 + δ

)
k (4.34)

c = y − i− b+
b

1 + er̄
(4.35)

V =
c− 1

ν
hν(

1− βµg(1−1/ψ)
) 1

1−1/ψ

(4.36)

R = V (4.37)

λ = V
1/ψ
(
c− 1

ν
hν
)1−1/ψ (4.38)

4.3 Calibration

Table 4.1 presents the calibration of the model economy, which closely resembles

Argentina in Fernández-Villaverde et al. [2011]. Parameters are scaled such that

one period in the model corresponds to one quarter in calendar time. I set the

labor elasticity constant to ν = 1000, so the household’s labor response to an

interest rate shock is small and negative. The sign of γ − 1/ψ determines the

household’s attitude toward the resolution of uncertainty over expected utility

outcomes. In the case γ − 1/ψ > 0, the household prefers an early resolution to

uncertainty. If γ = 1/ψ, equations (4.1) and (4.2) are equivalent to time separable

GHH preferences. And lastly, if γ < 1/ψ, the household prefers the resolution of

uncertainty later, rather than sooner. Because γ − 1/ψ = 6 > 0, the household is

averse to increased uncertainty in expected future utility outcomes.
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Description Parameter Value

Discount Rate β 0.980
Depreciation δ 0.014
Risk Aversion γ 8
Labor Elasticity Constant ν 1000
Intertemporal Elasticity of Substitution ψ 0.500
Steady State Bond Holdings b 6
Average Real Interest Rate r̄ 0.019
Capital Share ϕk 0.320
Labor Share ϕh 0.680
Bond Adjustment Cost Scale ϕba 1.75e-3
Capital Adjustment Cost Scale ϕka 6
TFP Persistence ρz 0.950
TFP Volatility µσ

z
ln(0.0075)

TFP Volatility Persistence ρσz 0.950
TFP Volatility of Volatility ησ

z 0.300
Long Run Growth Rate µg ln(1.0048)
Growth Persistence ρg 0.200
Growth Volatility ηg 0.015
Interest Rate Persistence ρr 0.950
Interest Rate Volatility of Volatility ησ

r 0.150
Interest Rate Volatility µσr -6
Interest Rate Volatility Persistence ρσr 0.950
News Volatility µσ

n

News about rt ln(0.0075)
News about zt -6

News Volatility Persistence ρσn 0.950
News Volatility of Volatility ησ

n

News about rt 0.100
News about zt 0.150

Table 4.1: Parameter values for the model calibration. All parameters are scaled
to a quarterly frequency and are values for Argentina used in Fernández-Villaverde
et al. [2011].
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4.4 Solution

Models of dynamic economies with stochastic volatility necessitate a solution ac-

curate to the third order or higher. First order approximations are certainty equiv-

alent, hence the resulting policy functions are invariant to disturbances in second

moments of the shocks driving the model. Second order solutions capture only

interaction terms between shocks. Therefore, I use a perturbation technique to

estimate policy functions accurate to the third order.

Impulse response functions generated by higher order approximations require

additional care beyond what is typically desired for first order solutions. Simply

iterating the policy functions is liable to generate explosive paths for the economy.

This happens because, given the recursive structure of the model, it is possible for

simulated paths to depend upon orders of state variables higher than three. And

these higher order dependencies bias the model, though pruning algorithms are

capable of removing such nuisance terms and restoring policy stability. I use the

pruning algorithm of Andreasen et al. [2013].

The logic for utilizing the deterministic steady state to initiate analyses of

impulse response functions holds for first order solutions, owing to certainty equiv-

alence. If optimal solutions are equivalent in both the stochastic and deterministic

cases, simply initiate the stochastic economy from the deterministic equilibrium.

Fernández-Villaverde et al. [2011] argue the loss of certainty equivalence that comes

with higher order approximations is likely to drive simulated paths of an economy

away from steady state in the long run, and thus propose an alternative technique

addressing this fact. I use their algorithm to generate impulse responses, which

goes as follows: the first step is to simulate the economy for 2096 periods beginning

from the steady state. I discard the first 2000 observations as burn-in, and then
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compute the ergodic mean for the economy with the remaining 96 observations.

Next, beginning at the ergodic mean, for each shock I separately initiate a one

standard deviation impulse and iterate the economy forward 36 quarters.

Figure 4.3 displays plots of the bond policy functions approximated to three

distinct orders of accuracy, simulated for 100 periods beginning at the ergodic

mean. First, observe the ergodic mean of debt is indeed lower than the determin-

istic steady state. The second and third order accurate policies move in lockstep,

however, notice that by the end of the 100 periods, the first order accurate policy

deviates to a level more than 50% above the other two policies.

4.5 Discussion of Results

Figures C.1 and C.2 display impulse response functions for the model with news

uncertainty shocks about the interest rate. Rows are indexed by endogenous vari-

ables, and columns by shocks. The vertical axes are scaled in percentage deviations

from the ergodic mean, and horizontal axes measure time in quarters. For each

displayed endogenous variable, a one standard deviation shock is realized in the

first period. Recall a news shocks is first observed 8 quarters prior to its real-

ization in the level, and then revision shocks subsequently occur 4 and 8 periods

later. The column for news shocks has horizontal dotted lines at 4 and 8 quarters

to highlight these points in time. The initial impulse to the news shock may be

interpreted as the household learning about an uncertain anticipated change to the

level occurring 8 periods ahead. Revision shocks after 4 and 8 periods are zero,

thus what the household initially anticipates comes to pass. Like GHH preferences,

the labor decision arising from GHH-EZ pereferences is immunized from wealth
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Figure 4.3: Policy functions for bond holdings over a 100 period simulation. Line
colors correspond to the order of the perturbation method used- red is accurate to
the first order, green is second, and blue is third. The finely dotted horizontal line
at 6 is the steady state level of bond, and the line with thicker dashes below is the
ergodic mean.

effects driven by changes in the interest rates. In both models with news shocks to

interest rates and TFP, the labor decisions are non-factors in explaining the model

dynamics.

For a shock to news uncertainty, output falls by a mere 2 basis points. Con-

sumption falls by nearly 20 basis points, which is offset by declines in both invest-

ment and bond holdings. The response patterns endogenous variables exhibit to

a news uncertainty shock are generally mirrored by shocks to interest rate volatil-
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ity, although the magnitudes of declines are smaller for consumption and bond

holdings. Both news shocks and contemporaneous level shocks additively feed the

process for interest rates, and it stands to reason that shocks to these processes’

second moments generate similar dynamics. So, what then drives the difference in

the magnitudes? Figure 4.4 displays how sovereign bond responds to news uncer-

tainty shocks about the interest rate at different time horizons τ ∈ {1, 4, 8, 12},

εrt = ρrε
r
t−1 + eσ

r
t εrt + [news]t+τt . (4.39)

As the plot shows, the magnitude of response to a news uncertainty shock is

increasing in the time horizon of news.

Adding more intermediate revision shocks also increases the magnitude of the

economy’s response, because this increases the volatility of the underlying stochas-

tic process. For instance, suppose news shocks arrive eight periods in the future,

news uncertainty is highly persistent, and there are seven intermediate revision

shocks to news in period before the incorporation of news in the level. A large

positive shock to news uncertainty forebodes a high degree of variation in the

subsequent seven revisions.

Figures C.3 and C.4 display impulse response functions for the model with news

uncertainty shocks to TFP. Output rises by not even a basis point. Consumption

falls 6 basis points and bond holdings fall 15 basis points, and the savings are used

to fund increased investment. Despite the small magnitudes, the response of news

uncertainty relative to a TFP volatility shock is threefold for consumption and

bond holdings.
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Figure 4.4: Impulse response functions for sovereign bond holdings responding to a
one standard error news uncertainty shock when the news is 1, 4, 8, and 12 periods
in the future. The dark indigo line with the largest response corresponds to news
12 periods ahead, the blue line to news 8 periods ahead, and so on.

4.6 Conclusion

News uncertainty shocks are important. In a small open economy, shocks to news

uncertainty about the intererst rate generate large responses in bond holdings,

investment, and consumption. News uncertainty about TFP plays a lesser role,

generating meager responses in bond holdings and consumption. One glaring omis-

sion from this paper is the application of news uncertainty shocks to fiscal policy,

which might be an interesting avenue for future research. Further, are news un-
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certainty shocks positively correlated with contemporaneous volatility shocks? If

yes, to what degree are responses amplified? And how do news uncertainty shocks

effect asset pricing in a closed economy?
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CHAPTER 5

CONCLUSION
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Chapter 2 shows the quality of investors’ information sets shapes their be-

liefs about risk, and, in equilibrium, the price of that risk. A popular and well-

established literature argues a small, mean-reverting stochastic process that drives

average consumption and average dividend growth motivates the large historical

equity premium in the United States. That argument rests on investors being

able to perfectly observe the state of the growth rate at every point in time. In

reality, investors cannot, and I show that when their information sets are realisti-

cally challenged with noise, then the compensation for long-run risks is reduced to

an extent that it cannot explain the equity risk premium. I also present a novel

mechanism in the consumption-based asset pricing literature that can explain fea-

tures of the time-varying dispersion in consumption growth forecasts. Chapter 3

illustrates a related situation where a representative investor faces long-run risk

and rare disasters in their consumption endowment, but does not know the actual

probability distribution of these shocks. The agent estimates the worst-case distri-

bution for these risks subject to a constraint that their pessimistic beliefs must be

difficult to reject given the data. I find that the agent would give up a much larger

share of their lifetime consumption to remove ambiguity around rare disasters rel-

ative to long-run risks. Chapter 4 presents a novel theoretical source of risk in a

dynamic stochastic general equilibrium model: news uncertainty shocks. This is

time-variation in the volatility of news shocks. When a small open economy is sub-

jected to a positive news uncertainty shock in their borrowing costs, that is, their

future interest rate becomes less certain, they will making meaningful adjustments

in aggregate consumption and deleverage.

To conclude, asset pricing models offer important insights to finance profes-

sional and everyday investors. Yet if they are founded upon the assumption that

agents have perfect information sets and form rational expectations consistent with
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nature, then asset pricing models risk generating results that match the data yet

fail to match reality. Economists are therefore tasked with creating realistic belief

structures for economic agents that can match both the data and our fundamental

understanding of how human beings metabolise risk and return. This is challeng-

ing work, and will have to continue to push methodological limits to create suitable

models for explaining the fundamental behavior of asset prices.
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APPENDIX OF CHAPTER 1
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A.1 Law of Motion for Higher Order Beliefs

Investor i encounters the state-space system:

Xt = A(st)Xt−1 + B(st)

 εt
εi,t

 (A.1)

Yi,t = µY (st) + C1(st)Xt + C2(st)Xt−1 + D(st)

 εt
εi,t

 (A.2)

Define the conditional expectation of the state Xi,t|t ≡ Ei,t
[
Xt

]
. Applying the

Kalman filter of Nimark [2015] for a state space system with normal shocks and a

lagged state vector in the measurement equation, the conditional expectation may

be expressed:

Xi,t|t = A(st)Xi,t−1|t−1+

K(st)
(
Yi,t − µY (st)−

(
C1(st)A(st) + C2(st)

)
Xi,t−1|t−1

)
(A.3)

Define the matrices Dε(s
t) and Dε:

Dε(s
t) =



0 0 0 0 0

0 ϕcσ(st+1) 0 0 0

0 ρcdϕcσ(st+1) ϕdσ(st+1) 0 0

0 0 0 ϕrm 0

0 0 0 0 ϕrf


(A.4)

Dε =



ϕs

0

0

0

0


(A.5)
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Let the subscript 1 denote the posterior, and 0 the prior. Then posterior covariance

matrix may be computed:

P1(st) = P0(st)−

K(st)
((

C1(st)A(st) + C2(st)
)
P1(st−1)

(
C1(st)A(st) + C2(st)

)′
+(

C1(st)B(st) + Dε(s
t)
)(
C1(st)B(st) + Dε(s

t)
)′

+ DεD
′
ε

)
K(st)′ (A.6)

And the prior covariance matrix:

P0(st) = A(st)P1(st−1)A(st)′ + B(st)B(st)′ (A.7)

Lastly, the Kalman gain:

K(st) =(
A(st)P1(st−1)

(
C1(st)A(st) + C2(st)

)′
+ B(st)

(
C1(st)B(st) + Dε(s

t)
)′)((

C1(st)A(st) + C2(st)
)
P1(st−1)

(
C1(st)A(st) + C2(st)

)′
+(

C1(st)B(st) + Dε(s
t)
)(
C1(st)B(st) + Dε(s

t)
)′

+ DεD
′
ε

)−1

(A.8)

Integrating the posterior estimate of the state over the cross section of agents:

Xt|t ≡
∫ 1

0

Xi,t|tdi (A.9)

Which yields the infinite dimensional state transition equation for higher order

beliefs:

Xt|t =
(
A(st)−K(st)

(
C1(st)A(st) + C2(st)

))
Xt−1|t−1+

K(st)
(
C1(st)A(st) + C2(st)

)
Xt−1 + K(st)

(
C1(st)B(st) + Dε(st)

)
εt (A.10)

The state transition equation can be written as: xt

Xt|t

 = A(st)

 xt−1

Xt−1|t−1

+ B(st)εt (A.11)
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To make the problem numerically tractable, I approximate the infinite dimensional

law of motion by choosing the first k̄ orders of expectations. I construct the

matrices A(st) and B(st) as follows:

A(st) =

ρx1×1

0
1×k̄

0
k̄×1

0
k̄×k̄

+

 0
1×1

0
1×k̄

0
k̄×1

[
A(st)−K(st)

(
C(st)A(st) + C2(st)

)]
−

k̄×k̄

+

 0
1×k̄+1[

K(st)(C1(st)A(st) + C2(st))
]
−

k̄×k̄+1


(A.12)

B(st) =

 ϕx1×1

0
1×nε

0
nε×1

0
nε×nε

+

 0
1×nε+1[

K(st)(C1(st)B(st) + Dε(st))
]
−

1×nε+1

 (A.13)

where a minus subscript indicates orders of expectations greater than k̄ have been

dropped.

A.2 Deriving the Stochastic Discount Factor

Investor i solves the following utility maximization problem:

Vi,t = max
{Ci,t}

(
(1− β)C

1−1/ψ
i,t + βEi,t

[
V 1−γ
i,t+1

] 1−1/ψ
1−γ

) 1
1−1/ψ

(A.14)

subject to,

Wi,t+1 = Rc,t+1

(
Wi,t − Ci,t

)
(A.15)
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I conjecture Vi,t = $i,tWi,t and re-express the value function accordingly:

$i,tWi,t =

max
{Ci,t}

(
(1− β)C

1−1/ψ
i,t + β

(
Wi,t − Ci,t

)1−1/ψEi,t
[(
$i,t+1Rc,t+1

)1−γ] 1−1/ψ
1−γ

) 1
1−1/ψ

(A.16)

Re-arranging:

$
1−1/ψ
i,t = (1− β)

(
υi,t
)1−1/ψ

+ β
(
1− υi,t

)1−1/ψEi,t
[(
$i,t+1Rc,t+1

)1−γ] 1−1/ψ
1−γ (A.17)

where υi,t = Ci,t/Wi,t. Taking the first order condition and solving for the conditional

expectation term:

Ei,t
[(
$i,t+1Rc,t+1

)1−γ] 1−1/ψ
1−γ =

1− β
β

(
1− υi,t
υi,t

)1/ψ

(A.18)

Substituing the first order condition (A.18) back into the objective function leads

to:

$i,t =
(
1− β

) 1
1−1/ψ

(
υi,t
) −1/ψ

1−1/ψ (A.19)

Then I re-express the term inside the conditional expectation in terms of the

consumption-wealth ratio and the return on the consumption claim:

$i,t+1Rc,t+1 =
(
1− β

) 1
1−1/ψ

(
υi,t+1

) −1/ψ

1−1/ψRc,t+1 (A.20)

I substitute the budget constraint in period t into the consumption-wealth ratio in

period t+ 1:

υi,t+1 =
4Ci,t+1

Rc,t+1

υi,t
1− υi,t

(A.21)

where 4Ci,t+1 = Ci,t+1/Ci,t. Putting this back into the term inside the conditional

expectation:

$i,t+1Rc,t+1 =
(
1− β

) 1
1−1/ψ

(
4Ci,t+1

Rc,t+1

υi,t
1− υi,t

) −1/ψ

1−1/ψ

Rc,t+1 (A.22)
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Now putting this back into the first order condition (A.18):

Ei,t

[(
1− β

)ϑ(4Ci,t+1

Rc,t+1

υi,t
1− υi,t

)−ϑ/ψ
R1−γ
c,t+1

]
=

(
1− β
β

(
1− υi,t
υi,t

)1/ψ)ϑ
(A.23)

Simplifying provides:

Ei,t
[
βϑ4C−ϑ/ψi,t+1R

ϑ−1
c,t+1

]
= 1 (A.24)

Next, define the log stochastic discount factor for investor i as:

mi,t+1 ≡ ϑ log β − ϑ/ψ4ci,t+1 +
(
ϑ− 1

)
rc,t+1 (A.25)

The stochastic discount factor for the average agent aggregates over the cross-

section:

mt+1 ≡
∫
mi,t+1di (A.26)

A.3 Solving for Prices

A.3.1 Approximating Returns

I approximate the return on the aggregate consumption claim Rc,t+1 with by log-

linearizing the return function about a deterministic steady state pc ≡ logP −

logC. The one period real return of the consumtion claim is:

Rc,t+1 =
Pc,t+1 + Ct

Pc,t
(A.27)

Let rc,t+1 ≡ logRc,t+1. Taking logs of both sides:

rc,t+1 = log

(
Pc,t+1 + Ct

Pc,t

)
(A.28)
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After some intermediate algebraic manipulations:

rc,t+1 = log

(
Pt+1

Ct
+ 1

)
− log

(
Pt
Ct−1

)
+ log

(
Ct
Ct−1

)
(A.29)

Denote 4ct+1 ≡ logCt+1− logCt and pct ≡ logPt− logCt−1. Then exponentiating

and taking logs yields:

rc,t+1 = log
(
exp(pct+1) + 1

)
− pct +4ct+1 (A.30)

Taking the first order Taylor series expansion of the first term about pc:

log
(
exp(pct+1) + 1

)
≈ log

(
exp(pc) + 1

)
+

exp(pc)

exp(pc) + 1

(
pct − pc

)
(A.31)

Define the linearization constants:

κ0 ≡ log
(
exp(pc) + 1

)
− pc exp(pc)

exp(pc) + 1
(A.32)

κ1 ≡
exp(pc)

exp(pc) + 1
(A.33)

Then the log return on the aggregate consumption claim is:

rc,t+1 = κ0 + κ1pct+1 − pct +4ct+1 (A.34)

By the same line of reasoning, the terms for log return on the aggregate dividend

claim:

κ0,m ≡ log
(
exp(pd) + 1

)
− pd exp(pd)

exp(pd) + 1
(A.35)

κ1,m ≡
exp(pd)

exp(pd) + 1
(A.36)

And the log return on the aggregate dividend claim:

rm,t+1 = κ0 + κ1pdt+1 − pdt +4dt+1 (A.37)
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A.3.2 Price-Consumption Ratio

I solve for the price-consumption ratio with the method of undetermined coeffi-

cients. Begin with the Euler equation pricing the aggregate consumption claim:

0 = ϑ log β + ϑκ0 + ϑ
(
1− 1/ψ

)
µc + ϑ

(
1− 1/ψ

)∫
Ei,t[xt]di+

ϑ
(
κ1

∫
Ei,t[pct+1]di− pct

)
+ 1/2

∫
Vari,t

(
mt+1 + rc,t+1

)
di (A.38)

Substitute in the affine form of the price consumption ratio:

pct = gpc
0 (st) + gpc

x (st)′Xt (A.39)

This leads to:

0 = ϑ log β + ϑκ0 + ϑ
(
1− 1/ψ

)
µc + ϑ

(
κ1

∫
Ei,t[gpc

0 (st+1)]di− gpc
0 (st)

)
+

ϑ
(
1− 1/ψ

)∫
Ei,t[xt]di+ ϑ

(
κ1

∫
Ei,t[gpc

x (st+1)′Xt+1]di− gpc
x (st)′Xt

)
+ 1/2

∫
Vari,t

(
mt+1 + rc,t+1

)
di (A.40)

Evaluating expectations:

∫
Ei,t[gpc

x (st+1)Xt+1]di =
(
πgpc

x (st+1
1 )′A(st+1

1 ) +
(
1− π

)
gpc
x (st+1

0 )′A(st+1
0 )
)
HXt

(A.41)∫
Ei,t[gpc

0 (st+1)]di = πgpc
0 (st+1

1 ) + (1− π)gpc
0 (st+1

0 ) (A.42)

Matching coefficients reveals:

gpc
x (st)′ =

(
1− 1/ψ

)
e′1H + κ1

(
πgpc

x (st+1
1 )′A(st+1

1 ) +
(
1− π

)
gpc
x (st+1

0 )′A(st+1
0 )
)
H

(A.43)

And the intercept term is therefore:

gpc
0 (st) = log β + κ0 +

(
1− 1/ψ

)
µc + κ1

(
πgpc

0 (st+1
1 ) + (1− π)gpc

0 (st+1
0 )
)
+

π/2ϑ
∫
Vari,t

(
γpc(st+1

1 )′Zt+1

)
di+ (1−π)/2ϑ

∫
Vari,t

(
γpc(st+1

0 )′Zt+1

)
di (A.44)
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A.3.3 Price-Dividend Ratio

The Euler equation for the market return:

0 = ϑ log β +
(
ϑ− 1− ϑ/ψ

)
µc +

(
ϑ− 1

)
κ0 + κ0,m + µd+(

ϑ− 1− ϑ/ψ + ρd
)∫

Ei,t
[
xt
]
di+

(
ϑ− 1

)(
κ1

∫
Ei,t
[
pct+1

]
di− pct

)
+(

κ1,m

∫
Ei,t
[
pdt+1

]
di− pdt

)
+ 1/2

∫
Vari,t

(
mt+1 + rm,t+1

)
di (A.45)

I conjecture an affine form for the price-dividend ratio:

pdt = gpd
0 (st) + gpd

x (st)′Xt (A.46)

Then after taking expectations and substituting, the following equation must hold:

gpd
x (st)′ =

(
ϑ− 1− ϑ/ψ + ρd

)
e′1H+(

ϑ− 1
)(
κ1

(
πgpc

x (st+1
1 )′A(st+1

1 ) +
(
1− π

)
gpc
x (st+1

0 )′A(st+1
0 )
)
H− gpc

x (st)′
)
+

κ1,m

(
πgpd

x (st+1
1 )′A(st+1

1 ) +
(
1− π

)
gpd
x (st+1

0 )′A(st+1
0 )
)
H (A.47)

With the constant term:

gpd

0 (st) = ϑ log β +
(
ϑ− 1− ϑ/ψ

)
µc +

(
ϑ− 1

)
κ0 + κ0,m + µd+

κ1,m

(
πgpd

0 (st+1
1 )+(1−π)gpd

0 (st+1
0 )

)
+
(
ϑ−1

)(
κ1

(
πgpc

0 (st+1
1 )+(1−π)gpc

0 (st+1
0 )
)
−gpc

0 (st)
)
+

π
∫
Vari,t

(
γpd(st+1

1 )′Zt+1

)
di+ (1− π)

∫
Vari,t

(
γpd(st+1

0 )′Zt+1

)
di (A.48)

A.3.4 Risk-Free Rate

We can solve for the risk-free rate with:

rf,t = −
∫
Ei,t[mt+1]di− 1/2

∫
Vari,t

(
mt+1

)
di (A.49)
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I conjecture:

rf,t = grf
0 (st) + grf

x (st)′Xt (A.50)

Solving for rf,t yields:

rf,t = −
(
ϑ log β +

(
ϑ− 1

)
κ0 +

(
ϑ− ϑ/ψ − 1

)
µc
)
− ϑ
(
1− 1/ψ − 1/ϑ

)∫
Ei,t[xt]di−(

ϑ− 1
)(
κ1

∫
Ei,t[pct+1]di− pct

)
− 1/2

∫
Vari,t

(
mt+1

)
di (A.51)

The coefficient on higher order beliefs:

grf
x (st)′ = −ϑ

(
1− 1/ψ − 1/ϑ

)
e′1H−(

ϑ− 1
)(
κ1

(
πgpc

x (st+1
1 )′A(st+1

1 ) +
(
1− π

)
gpc
x (st+1

0 )′A(st+1
0 )
)
H− gpc

x (st)′
)

(A.52)

Which leaves us with an intercept term:

grf
0 (st) = −ϑ log β −

(
ϑ− 1

)
κ0 −

(
ϑ− ϑ/ψ − 1

)
µc−(

ϑ− 1
)(
κ1

(
πgpc

0 (st+1
1 ) + (1− π)gpc

0 (st+1
0 )
)
− gpc

0 (st)
)
−

π
∫
Vari,t

(
γrf(st+1

1 )′Zt+1

)
di− (1− π)

∫
Vari,t

(
γrf(st+1

0 )′Zt+1

)
di (A.53)

A.4 Conditional Variances

In order to solve the equations for pdt, pct, and rf,t, I need to solve for three

conditional variances. This may be accomplished by recasting the state space

system to include aggregate shocks in the state vector, and then utilizing the

Kalman filter to compute the state conditional covariance matrix. Define the new

state vector Zt+1 as:

Zt+1 ≡

Xt+1

εt+1

 (A.54)
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The new state space system can be described by the state transition equation:Xt+1

εt+1

 =

A(st+1)
k̄+1×k̄+1

0
k̄+1×nε

0
nε×k̄+1

0
nε×nε


Xt

εt

+

B(st+1)
k̄+1×nε

0
k̄+1×1

I
nε×nε

0
nε×1


 εt+1

εi,t+1

 (A.55)

and the measurement equation:

xi,t+1

4ct+1

4dt+1

rm,t+1

rf,t


= µY (st+1)+



e′1
1×k̄+1

0
1×nε

0
1×k̄+1

ϕcσ(st+1)e′c
1×nε

0
1×k̄+1

(
ϕde

′
d + ρcdϕce

′
c

)
σ(st+1)

1×nε

κ1,mg
pd
x (st+1)′

1×k̄+1

(
ϕde

′
d + ρcdϕce

′
c

)
σ(st+1) + ϕrme

′
rm

1×nε

0
1×k̄+1

0
1×nε



Xt+1

εt+1

+



0
1×k̄+1

0
1×nε

e′1
1×k̄+1

0
1×nε

ρde
′
1

1×k̄+1

0
1×nε

ρde
′
1 − gpd

x (st)
1×k̄+1

′
0

1×nε

grf
x (st)′
1×k̄+1

ϕrfe
′
rf

1×nε



Xt

εt

+

[
0

ny×nε
ϕse

′
1

ny×1

] εt+1

εi,t+1

 (A.56)
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where:

µY (st+1) ≡



0

µc

µd

κ0,m + κ1,mg
pd
0 (st+1)− gpd

0 (st)

grf
0 (st)


(A.57)

The conditional covariance matrix of the state in this system is:

PZ(st+1) ≡ Ei,t
[(
Zt+1 − Zt+1|t+1

)(
Zt+1 − Zt+1|t+1

)′] (A.58)

The conditional variances for the price-consumption ratio, price-dividend ratio,

and risk free rate are can be expressed as functions of Zt+1:

Vari,t
(
mt+1 + rc,t+1

)
= Vari,t

(
γpc(st+1)′Zt+1

)
(A.59)

Vari,t
(
mt+1 + rm,t+1

)
= Vari,t

(
γpd(st+1)′Zt+1

)
(A.60)

Vari,t
(
mt+1

)
= Vari,t

(
γrf(st+1)′Zt+1

)
(A.61)

where the vector for the price-consumption ratio is defined:

γpc(st+1) ≡



ϑκ1g
pc
x (st+1)

0

ϑ
(
1− 1/ψ

)
ϕcσ(st+1)

0

0

0


(A.62)
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and the price-dividend ratio:

γpd(st+1) ≡



(
ϑ− 1

)
κ1g

pc
x (st+1) + κ1,mg

pd
x (st+1)

0(
ϑ− ϑ/ψ − 1 + ρcd

)
ϕcσ(st+1)

ϕdσ(st+1)

ϕrm

0


(A.63)

and lastly, the risk free rate:

γrf(st+1) ≡



(
ϑ− 1

)
κ1g

pc
x (st+1)

0(
ϑ− ϑ/ψ − 1

)
ϕcσ(st+1)

0

0

ϕrf


(A.64)

This variance operator conditions on the information set in period t, therefore the

next period volatility state st+1 is a random variable. Further, the conditional

variance is a mixture of normal distributions with constant mixing weights π and

1− π. By the properties of mixtures of normal distributions with constant mixing

weights, the conditional variance is a simple weighted average:

Vari,t
(
γpc(st+1)′Zt+1

)
≈

πVari,t
(
γpc(st+1

1 )′Zt+1

)
+ (1− π)Vari,t

(
γpc(st+1

0 )′Zt+1

)
(A.65)

I approximate the variance by dropping the small mean correction terms in (A.65).

The impact of approximating conditional variances is negligible on the model,

because risk prices for volatility are close to zero with or without the cumbersome

mean corrections that necessitate solving the model on a large numerical grid over
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Xt. Using the approximation from (A.65) and the state covariance matrix (A.58),

the conditional covariance matrix for the price-consumption ratio is:

Vari,t
(
γpc(st+1)′Zt+1

)
=

πγpc(st+1
1 )′PZ(st+1

1 )γpc(st+1
1 ) +

(
1− π

)
γpc(st+1

0 )′PZ(st+1
0 )γpc(st+1

0 ) (A.66)

Similar experession hold for the conditional variances for the price-dividend ratio

and risk free rate.

A.5 Risk Premia

A.5.1 Deriving Risk Prices

To compute risk prices, begin with the stochastic discount factor in innovations

form:

mt+1 −
∫
Ei,t
[
mt+1

]
di (A.67)

Define the expected value of the slope and intercepts of the price function:

∫
Ei,t
[
gpc

0 (st+1)
]
di = πgpc

0 (st+1
1 ) + (1− π)gpc

0 (st+1
0 ) (A.68)∫

Ei,t
[
gpc
x (st+1)′Xt+1

]
di =

(
πgpc

x (st+1
1 )′A(st+1

1 ) + (1− π)gpc
x (st+1

0 )′A(st+1
0 )
)
HXt

(A.69)
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Dropping constants and substituting leads to:

mt+1 −
∫
Ei,t
[
mt+1

]
di =(
ϑ− 1

)
κ1

(
gpc

0 (st+1)−
∫
Ei,t
[
gpc

0 (st+1)
]
di
)
+(

−γϕcσ(st+1)e′c +
(
ϑ− 1

)
κ1g

pc
x (st+1)′B(st+1)

)
εt+1+(

−γe′1
(
I−H

)
+
(
ϑ− 1

)
κ1

(
gpc
x (st+1)′A(st+1)−

∫
Ei,t
[
gpc
x (st+1)′A(st+1)H

]
di
))
Xt

(A.70)

This results in risk-prices for:

λε(s
t+1)′ ≡

(
−γϕcσ(st+1)e′c +

(
ϑ− 1

)
κ1g

pc
x (st+1)′B(st+1)

)
Σ(st+1)−1 (A.71)

λσ(st+1) ≡
(
ϑ− 1

)
κ1

(
gpc

0 (st+1)−
∫
Ei,t
[
gpc

0 (st+1)
]
di
)

(A.72)

λX(st+1)′ ≡ −γe′1
(
I−H

)
+
(
ϑ− 1

)
κ1

(
gpc
x (st+1)′A(st+1)− (A.73)∫

Ei,t
[
gpc
x (st+1)′A(st+1)H

]
di
)

where I define the matrix Σ(st+1) such that:

Σ(st+1) ≡



ϕxσ(st+1) 0 0 0 0

0 ϕcσ(st+1) 0 0 0

0 0 ϕdσ(st+1) 0 0

0 0 0 ϕrm 0

0 0 0 0 ϕrf


(A.74)

The result is innovations to the stochastic discount factor may be written:

mt+1 −
∫
Ei,t
[
mt+1

]
di ≡ λε(s

t+1)′Σ(st+1)εt+1 + λX(st+1)′Xt + λσ(st+1) (A.75)
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A.5.2 Deriving Betas

To compute betas for the market return by exploiting the equation:

rm,t+1 −
∫
Ei,t
[
rm,t+1

]
di =

κ1,m

(
pdt+1 −

∫
Ei,t
[
pdt+1

]
di
)

+
(
4dt+1 −

∫
Ei,t
[
4dt+1

]
di
)

(A.76)

Define the expected value of the slope and intercepts of the price function:

∫
Ei,t
[
gpd

0 (st+1)
]
di = πgpd

0 (st+1
1 ) + (1− π)gpd

0 (st+1
0 ) (A.77)∫

Ei,t
[
gpd
x (st+1)′Xt+1

]
di =

(
πgpd

x (st+1
1 )′A(st+1

1 )+ (A.78)

(1− π)gpd
x (st+1

0 )′A(st+1
0 )
)
HXt

Then the market return innovation can be expressed as:

rm,t+1 −
∫
Ei,t
[
rm,t+1

]
di =(

κ1,mg
pd

x (st+1)′B(st+1) + ϕdσ(st+1)e′d
)
εt+1+

+
(
ρde

′
1

(
I−H

)
+ κ1,m

(
gpd

x (st+1)′A(st+1)−
∫
Ei,t
[
gpd
x (st+1)′A(st+1)H

]
di
))
Xt+

+ κ1,m

(
gpd

0 (st+1)−
∫
Ei,t
[
gpd

0 (st+1)
]
di
)

(A.79)

Which can be written in terms of betas:

rm,t+1 −
∫
Ei,t
[
rm,t+1

]
di = βε(s

t+1)Σ(st+1)εt+1 + βX(st+1)Xt + βσ(st+1) (A.80)

and are defined as:

βε(s
t+1) ≡

(
ϕdσ(st+1)e′d + κ1,mg

pd

x (st+1)′B(st+1)
)
Σ(st+1)−1 (A.81)

βx(s
t+1) ≡ ρde

′
1

(
I−H

)
+ κ1,m

(
gpd

x (st+1)′A(st+1)− (A.82)∫
Ei,t
[
gpd
x (st+1)′A(st+1)H

]
di
)

βσ(st+1) ≡ κ1,m

(
gpd

0 (st+1)−
∫
Ei,t
[
gpd

0 (st+1)
]
di
)

(A.83)
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A.5.3 Equity Premium

The equity premium is the covariance between the stochastic discount factor and

the market return:∫
Ei,t
[
rm,t+1 − rf,t

]
di+

1

2

∫
Vari,t

(
rm,t+1

)
di = −

∫
Covi,t(mt+1, rm,t+1)di

(A.84)

Using equations (A.75) and (A.80), the covariance is straightforward:∫
Covi,t(mt+1, rm,t+1)di =

∫
Ei,t
[
λε(s

t+1)′Σ(st+1)εt+1ε
′
t+1Σ(st+1)′βε(s

t+1)
]
di

(A.85)

which implies risk premia may be computed by:

−
∫

Covi,t(mt+1, rm,t+1)di = −πλε(st+1
1 )′Σ(s1)Σ(s1)′βε(s

t+1
1 )−

(1− π)λε(s
t+1
0 )′Σ(s0)Σ(s0)′βε(s

t+1
0 ) (A.86)

A.6 Numerical Algorithm

For a given steady state (pd, pc) and truncated volatility history st ∈ S(τ), the

model solution is a fixed point to the equations:

• State space system: (2.29), (2.30)

• Prices: (A.43), (A.44), (A.47), (A.48), (A.52), (A.53)

• Conditional covariance matrices: (A.58)

The procedure is as follows:
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1. Fix a choice for k̄, the order of expectations, and τ , the number of lagged

states to use.

(a) Construct a set of indexes J : S(τ)→ N for every truncated history in

st ∈ S(τ).

2. Choose a small error tolerance ξ > 0, preferably close to 1× 10−12.

3. Given Θ, compute the steady states
(
pc, pd

)
by solving the equations:

E
[
pc− gpc

0 (st)
]

= 0 (A.87)

E
[
pd− gpd

0 (st)
]

= 0 (A.88)

such that max
{∥∥pc− gpc

0 (st)
∥∥,∥∥pd− gpd

0 (st)
∥∥} < ξ is satisfied. If |J | is large,

programming the objective function for the two steady state equations can

be cumbersome. Substituting the full information steady state is useful in

this condition if the approximation errors are small.

4. Iterate the Kalman filter over each history j ∈ J to find a fixed point for

(2.29), (2.30), (A.43), (A.47), (A.52), using the error tolerance ξ to check for

convergence of the matrices as in step 3. Convergence is faster if the Kalman

filter begins with a well educated guess.

5. Conditional on (2.29), (2.30), (A.43), (A.47), (A.52), iterate the Kalman

filter over each history j ∈ J to find a fixed point for (A.58) using the error

tolerance ξ to check for convergence.

6. Conditional on (2.29), (2.30), (A.43), (A.47), (A.52), iterate equations

(A.44), (A.48), (A.53) over each history j ∈ J using the error tolerance

ξ to check for convergence.
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A.7 An Estimation Procedure Utilizing Forecast Panel Data

A.7.1 Conditional Cross-Sectional Covariance Matrix

The conditional cross-sectional covariance matrix is defined:

Pi(s
t) ≡ Ei,t

[(
Ei,t
[
Xt

]
−
∫
Ej,t
[
Xt

]
dj
)(

Ei,t
[
Xt

]
−
∫
Ej,t
[
Xt

]
dj
)′]

(A.89)

Expanding the deviations of investor i’s forecast from the aggregate:

Xi,t|t −Xt|t =(
A(st)−K(st)

(
C1(st)A(st) + C2(st)

))(
Xi,t−1|t−1 −Xt−1|t−1

)
+ K(st)Dεεi,t

(A.90)

The covariance matrices Pi(s
t) for all 2τ histories may be computed as a fixed

point of the following system of equations:

Pi(s
t) = (

A(st)−K(st)
(
C1(st)A(st) + C2(st)

))
Pi(s

t−1)·(
A(st)−K(st)

(
C1(st)A(st) + C2(st)

))′
+

K(st)DεD
′
εKt(s

t)′ (A.91)
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A.7.2 Likelihood

The vector of measured variables Zt+1 is defined:

Zt+1 ≡



4ct+1

4dt+1

rm,t+1

rf,t

ft+2|t+1
nf (t+1)×1


(A.92)

Fix a finite sample of observations ZT =
{
Z1, Z2, . . . , ZT−1, ZT

}
for estimation of

the model. The dimension of the forecast vector nf (t + 1) is a function of time

due to the changing number of respondents in the SPF data each period. Let

ηt+1 ∼i.i.d. N
(
0, Inf (t+1)

)
be a vector of shocks driving individual forecasts:

ft+2|t+1 =
(
µc + e′1HXt+1

)
· 1nf (t+1) +

√
e′1HPi(st+1)H′e1 · Inf (t+1)ηt+1 (A.93)

Then Zt+1 evolves according to the state-space system:

Xt+1 = A(st+1)Xt + B̃(st+1)

εt+1

ηt+1

 (A.94)

Zt+1 = µZ(st+1) + Q1(st+1)Xt+1 + Q2(st+1)Xt + R(st+1)

εt+1

ηt+1

 (A.95)

where the matrix R(st+1) is a combination of aggregate and forecast shock impact

matrices and B̃(st+1) is modified to accompany the forecast shocks:

R(st+1) ≡

Dε(s
t+1)− 0

nY −1×nf (t+1)

0
nf (t+1)×nε

√
e′1HPi(st+1)H′e1 · Inf (t+1)

 (A.96)

B̃(st+1) ≡
[
B(st+1) 0

k̄+1×nf (t+1)

]
(A.97)
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The likelihood function can be evaluated with a prediction error decomposition:

logL
(
Θ, sT |ZT

)
= −1

2

T∑
t=1

(
2π · dim(Zt) + log |Ω(st)|+ Z̃ ′tΩ(st)−1Z̃t

)
(A.98)

where Ω(st) ≡ E
[
Z̃tZ̃

′
t

]
is the covariance matrix associated with the innovation

vector Z̃t:

Ω(st) =
(
Q1(st)A(st) + Q2(st)

)
P̃0(st)

(
Q1(st)A(st) + Q2(st)

)′
+(

Q1(st)B̃(st) + R(st)
)(
Q1(st)B̃(st) + R(st)

)′ (A.99)

The innovation Z̃t ≡ Zt−Zt|t−1 may be computed with the law of iterated projec-

tions:

Z̃t = Zt − µZ(st)−
(
Q1(st)A(st) + Q2(st)

)
Xt−1|t−1 (A.100)

A.7.3 An Adaptive Markov Chain Monte Carlo Estimation

Procedure

• Choose an initial Θ(0) with prior PΘ(·) and a history sT(0) with prior Ps(·).

• Solve the model with Θ(0).

• For τ = 0, 1, 2, . . . , T :

– Randomly partition Θ(τ) into two blocks with equal numbers of param-

eters. For each block b = 1, 2:

∗ Draw a candidate vector Θ̃(τ),b ∼ N
(
Θ(τ−1),b,VΘ,b

)
.

∗ Solve the model for Θ̃(τ),b.
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∗ With probability

πΘ,b =

max

{
min

{ L(Θ̃(τ),b, s
T
(τ−1)|ZT

)
PΘ

(
Θ̃(τ−1),b

)
Ps
(
sT(τ−1)|Θ̃(τ),b

)
L
(
Θ(τ−1), s

T
(τ−1)|ZT

)
PΘ

(
Θ(τ−1)

)
Ps
(
sT(τ−1)|Θ(τ−1)

) , 1}, 0}
(A.101)

· Set Θ(τ) = Θ̃(τ),b

· Otherwise Θ(τ) = Θ(τ−1)

– Draw candidate s̃T(τ) ∼ Qs

(
sT(τ−1)|Θ(τ), Z

T
)

∗ With probability

πs = max

{
min

{ L
(
Θ(τ), s̃

T
(τ)|ZT

)
Ps
(
s̃T(τ)|Θ(τ)

)
L
(
Θ(τ), sT(τ−1)|ZT

)
Ps
(
sT(τ−1)|Θ(τ)

) , 1}, 0}
(A.102)

· Set sT(τ) = s̃T(τ)

· Otherwise sT(τ) = sT(τ−1)

As in Nimark [2014], the proposal density Qs works by randomly changing each

observation in sT(τ) from one to zero (or zero to one) with a given probability

α = 0.05. The proposal covariance matrix VΘ can be computed as the empirical

covariance matrix of candidate parameters
{

Θ(0),Θ(1), . . . ,Θ(τ−2),Θ(τ−1)

}
multi-

plied by a small scaling constant a ∈ R+:

VΘ = aĈov(Θ,Θ) (A.103)
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A.8 Variance Decomposition of the Consumption Growth

Term Structure

Dependent Variable Independent Variable

Level Slope Curvature

x(0)

t 0.922 0.073 0.005

x(1)

t 0.975 0.024 0.001

x(2)

t 0.990 0.007 0.002

x(3)

t 0.996 0.001 0.002

x(4)

t 0.998 0.000 0.001

x(5)

t 0.998 0.001 0.001

x(6)

t 0.997 0.003 0.000

x(7)

t 0.994 0.006 0.000

x(8)

t 0.991 0.009 0.000

x(9)

t 0.987 0.012 0.000

x(10)

t 0.983 0.016 0.001

x(11)

t 0.979 0.019 0.002

x(12)

t 0.975 0.022 0.003

Table A.1: Variance decomposition of higher order expectation in terms of their
first three principal components (level, slope, and curvature). I compute the values
in each row by projecting a simulated time series of higher order expectations onto
the three time series of component scores for the level, slope and curvature factors.
Each variance share is the square of the regression coefficient multiplied by the ratio
of the factor variance to the variance of the higher order expectation. The length
of the simulated sample is 1,000,000 observations with τ = 8 and k̄ = 12. The
t-statistics for the first stage regression are unanimously greater than one hundred,
even after correcting the residuals for autocorrelation and heteroskedasticity, so I
do not report them.
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B.1 Value Functions

B.1.1 Type I & II Agents with γ > 1 or ϑ < +∞

Full Policy Functions

α0 =
β

1− β

(
µ

1− β
−
( β

(1− βρ)(1− β)

)2 σ2
x

2ϑ
−( 1

1− β

)2 σ2
c

2ϑ
− ϑ log

(
1− πd + πd(1− b)−

1
(1−β)ϑ

))
αc =

1

1− β

αx =
β

(1− βρ)(1− β)

No Short-Run Risk

α0 =
β

1− β

(
µ+ 1

2
σ2
c

1− β
−
( β

(1− βρ)(1− β)

)2 σ2
x

2ϑ
−

ϑ log
(

1− πd + πd(1− b)−
1

(1−β)ϑ

))
αc =

1

1− β

αx =
β

(1− βρ)(1− β)

No Long-Run Risk

α0 =
β

1− β

(
µ

1− β
−
( 1

1− β

)2 σ2
c

2ϑ
− ϑ log

(
1− πd + πd(1− b)−

1
(1−β)ϑ

))
αc =

1

1− β
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No Disasters

α0 =
β

1− β

(
µ+ πd log(1− b)

1− β
−
( β

(1− βρ)(1− β)

)2 σ2
x

2ϑ
−
( 1

1− β

)2 σ2
c

2ϑ

)
αc =

1

1− β

αx =
β

(1− βρ)(1− β)

No Risk

α0 =
β

(1− β)2

(
µ+

1

2
σ2
c + πd log(1− b)

)
αc =

1

1− β

B.1.2 Type I & II Agents with γ = 1 or ϑ = +∞

No Short-Run Risk

α0 =
β

1− β

(
µ+ ϕc
1− β

+ lim
ϑ→∞

log
((

1− πd + πd(1− b)−
1

(1−β)ϑ
)−ϑ))

αc =
1

1− β

αx =
β

(1− βρ)(1− β)

No Long-Run Risks

α0 =
β

1− β

(
µ+ ϕx
1− β

+ lim
ϑ→∞

log
((

1− πd + πd(1− b)−
1

(1−β)ϑ
)−ϑ))

αc =
1

1− β
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No Disasters

α0 =
β(µ+ πd log(1− b))

(1− β)2

αc =
1

1− β

αx =
β

(1− βρ)(1− β)

No Risk

α0 =
β(µ+ ϕ)

(1− β)2

αc =
1

1− β
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B.2 Derivations

B.2.1 Derivation of the Distortion

m̂t+1(st+1) =
exp(−VII(st+1)/ϑ)

Et[exp(−VII(st+1)/ϑ)]

=
exp(−α0

ϑ
− αc

ϑ
ct+1 − αx

ϑ
xt+1)

Et[exp(−α0

ϑ
− αc

ϑ
ct+1 − αx

ϑ
xt+1)]

=
exp(−α0

ϑ
− αc

ϑ
(µ+ ct + xt + εct+1 + εdt+1)− αx

ϑ
(ρxt + εxt+1))

Et[exp(−α0

ϑ
− αc

ϑ
(µ+ ct + xt + εct+1 + εdt+1)− αx

ϑ
(ρxt + εxt+1))]

=
exp(−α0

ϑ
− αc

ϑ
µ− αc

ϑ
ct − (αc

ϑ
+ αxρ

ϑ
)xt − αc

ϑ
εct+1 − αc

ϑ
εdt+1 − αx

ϑ
εxt+1))

Et[exp(−α0

ϑ
− αc

ϑ
µ− αc

ϑ
ct − (αc

ϑ
+ αxρ

ϑ
)xt − αc

ϑ
εct+1 − αc

ϑ
εdt+1 − αx

ϑ
εxt+1))]

=
exp(−αc

ϑ
εct+1 − αc

ϑ
εdt+1 − αx

ϑ
εxt+1))

Et[exp(−αc
ϑ
εct+1 − αc

ϑ
εdt+1 − αx

ϑ
εxt+1))]

=
exp(−αc

ϑ
εct+1 − αc

ϑ
εdt+1 − αx

ϑ
εxt+1)

exp(α
2
cσ

2
c

2ϑ2 )(1− πd + πd(1− b)−
αc
ϑ ) exp(α

2
xσ

2
x

2ϑ2 )

B.2.2 Worst-Case Distribution

Individually, the probability distributions of shocks are,

fd(εdt+1) = π
εdt+1

log(1−b)
d (1− πd)1−

εdt+1
log(1−b)

f c(εct+1) =
1√

2πσc
e
−

(εct+1)2

2σ2
c

fx(εxt+1) =
1√

2πσx
e
−

(εxt+1)2

2σ2
x .

By independence, the joint distribution is the product of the marginals,

f ε(εt+1) = fd(εdt+1)f c(εct+1)fx(εxt+1)

= π
εdt+1

log(1−b)
d (1− πd)1−

εdt+1
log(1−b)

1

2πσcσx
e
−

(εct+1)2

2σ2
c
−

(εxt+1)2

2σ2
x .
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The distortion,

m̂t+1(εt+1) =
exp
(
− 1
ϑ(1−β)

εct+1 − 1
ϑ(1−β)

εdt+1 −
β

ϑ(1−βρ)(1−β)
εxt+1

)
exp
(

1
(1−β)2

σ2
c

2ϑ

)(
πd + (1− πd)(1− b)−

1
ϑ(1−β)

)
exp
((

β
(1−βρ)(1−β)

)2
σ2
x

2ϑ

)
∝ exp

(
− 1

ϑ(1− β)
εct+1 −

1

ϑ(1− β)
εdt+1 −

β

ϑ(1− βρ)(1− β)
εxt+1

)
The worst-case distribution,

f̃ ε(εt+1) ∝ mt+1(εt+1)f ε(εt+1).

This evaluates to,

f̃ ε(εt+1) ∝
(
e−

log(1−b)
ϑ(1−β) πd

) εdt+1
log(1−b)

(
1− πd

)1−
εdt+1

log(1−b) 1

2πσcσx
e
−

(
εct+1+

σ2
c

ϑ(1−β)

)2

2σ2
c

−

(
εxt+1+

βσ2
x

ϑ(1−βρ)(1−β)

)2

2σ2
x

= (π̃d)
εdt+1

log(1−b) (1− π̃d)1−
εdt+1

log(1−b)
1

2πσcσx
e
−

(
εct+1+

σ2
c

ϑ(1−β)

)2

2σ2
c

−

(
εxt+1+

βσ2
x

ϑ(1−βρ)(1−β)

)2

2σ2
x

B.2.3 Model-Detection Error Probabilities

The approximating model (3.1)-(3.2) can be thought of as a vector autoregression

(VAR),

ct+1

xt+1

 =

µ
0

+

1 1

0 ρ


ct
xt

+

1 1 0

0 0 1



εdt+1

εct+1

εxt+1

 .

The worst-case distribution is,

ct+1

xt+1

 =

µ
0

+

1 1

0 ρ


ct
xt

+

1 1 0

0 0 1




ε̃dt+1

ε̃ct+1

εxt+1

+


wdt+1

wct+1

wxt+1


 ,

110



where ε̃t+1 is a shock with the same distribution as εt+1 and wt+1 the mean of the

worst-case distribution. This simplifies to,ct+1

xt+1

 =

µ+ π̃ log(1− b)− σ2
c

ϑ(1−β)

− βσ2
x

ϑ(1−βρ)(1−β)

+

1 1

0 ρ


ct
xt

+

1 1 0

0 0 1



ε̃dt+1

ε̃ct+1

ε̃xt+1

 .

Now, we can re-think of this as a Markov-switching VAR with Normal shocks and

a hidden disaster state,ct+1

xt+1

 = µ̃(εdt+1) +

1 1

0 ρ


ct
xt

+

1 0

0 1


ε̃ct+1

ε̃xt+1

 ,

where,

µ̃(εdt+1) =

µ+ π̃ log(1− b)− σ2
c

ϑ(1−β)
+ εdt+1

− βσ2
x

ϑ(1−βρ)(1−β)

 .

B.2.4 Risk-Free Rate

1

rft
= Et[Λt,t+1]

= Et
[
β
Ct
Ct+1

exp(−VI(st+1)/ϑ)

Et[exp(−VI(st+1)/ϑ)]

]
= Et

[
β

exp(ct)

exp(ct+1)

exp(−αc
ϑ
εct+1 − αc

ϑ
εdt+1 − αx

ϑ
εxt+1)

exp(α
2
cσ

2
c

2ϑ2 )(1− πd + πd(1− b)−
αc
ϑ ) exp(α

2
xσ

2
x

2ϑ2 )

]

= Et

[
β

exp(µ+ xt + εdt+1 + εct+1)

exp(−αc
ϑ
εct+1 − αc

ϑ
εdt+1 − αx

ϑ
εxt+1)

exp(α
2
cσ

2
c

2ϑ2 )(1− πd + πd(1− b)−
αc
ϑ ) exp(α

2
xσ

2
x

2ϑ2 )

]

= Et

[
β

exp(µ+ xt)

exp(− (1+ϑ)αc
ϑ

εct+1 −
(1+ϑ)αc

ϑ
εdt+1 − αx

ϑ
εxt+1)

exp(α
2
cσ

2
c

2ϑ2 )(1− πd + πd(1− b)−
αc
ϑ ) exp(α

2
xσ

2
x

2ϑ2 )

]

=
β

exp(µ+ xt)
exp
((

(1 + ϑ)2 − 1
)α2

cσ
2
c

2ϑ2

)(1− πd + πd(1− b)−
(1+ϑ)αc

ϑ

)
(1− πd + πd(1− b)−

αc
ϑ )

=
β

exp(µ+ xt)
exp
((

(1 + ϑ)2 − 1
)α2

cσ
2
c

2ϑ2

)
ϕd
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C.1 Equilibrium Equations

Vt =

((
ct −

1

ν
hνt

)1−1/ψ

+ βegt(1−
1/ψ)R1−1/ψ

t

) 1
1−1/ψ

R1−γ
t = Et

[
V 1−γ
t+1

]
yt = ct + it + bt −

egtbt+1

1 + ert
+
ϕb
2

(
bt+1 − b

)2

egtkt+1 = (1− δ)kt + it −
ϕk
2

(
egtkt+1

kt
− eµg

)2

kt

Λt,t+1 = βe−
gt/ψλt+1

λt
·

(
Rt

Vt+1

)γ−1/ψ

λt = V
1/ψ
t

(
ct −

1

ν
hνt

)−1/ψ

λtwt = V
1/ψ
t hν−1

t

(
ct −

1

ν
hνt

)−1/ψ

1 = Et
[
Λt,t+1

(
1

ϕb(bt+1 − b) + egt/1+ert

)]
1 = Et

[
Λt,t+1

(
ϕk
yt+1

kt+1

+ 1− δ +
ϕk
2

((
egt+1kt+2

kt+1

)2

− e2µg

))
− ϕk

(
egtkt+1

kt
− eµg

)]
yt = eztkϕkt (egtht)

ϕh

zt = ρzzt−1 + εzt + [news]t+τt

σzt = (1− ρσz)µσ
z

+ ρσzσ
z
t−1 + ησ

z

εσ
z

t ,

gt = (1− ρg)µg + ρggt−1 + ηgεgt

εrt = ρrε
r
t−1 + eσ

r
t εrt + [news]t+τt

σrt = (1− ρσr)µσ
r

+ ρσrσ
r
t−1 + ησ

r

εσ
r

t

ert = er̄ + εrt

σnt = (1− ρσn)µσ
n

+ ρσnσ
n
t−1 + ησ

n

εσ
n

t

[news]t+τt = eσ
n
t εnt
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C.2 Competitive Equilibrium

A competitive equilibrium is a sequence {Vt,Rt, ct, ht, it, kt, bt}∞t=0 and prices

{rt}∞t=0 such that in every period:

1. Given prices, the representative household solves its utility maximization

problem.

2. Given prices, the representative firm maximizes profits.

3. All resource constraints and laws of motions bind.
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C.3 Impulse Response Functions
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ĉ

0
48

-0
.0
20

-0
.0
15

-0
.0
10

-0
.0
05

0.
00
0

0.
00
5

0
48

0.
0

0.
2

0.
4

0.
6

0.
8

0
4
8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0
4
8

-0
.0
25

-0
.0
20

-0
.0
15

-0
.0
10

-0
.0
05

0
.0
0
0

0
.0
0
5

0
48

0
e+

0
0

1
e-
04

2
e-
04

3
e-
04

4
e-
04

5
e-
04

6
e-
04

ĥ
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C.3.1 Household’s Problem with Recursive Preferences

The notation Vt = V (kt, bt, εt, newst) represents the following optimization prob-

lem,

V (kt, bt, newst) = (C.1)

max
ct,ht,it,bt+1

((
ct −

1

ν
hνt

)1−1/ψ

+ βegt(1−
1/ψ)Et

[
V (kt+1, bt+1, newst+1)1−γ

] 1−1/ψ
1−γ

) 1
1−1/ψ

subject to,

yt = ct + it + bt −
egtbt+1

1 + ert
+
ϕb
2

(
bt+1 − b

)2

with contemporaneous shocks εt and newst,

εt =



εgt

εzt

εσ
z

t

εrt

εσ
r

t


(C.2)

newst =



eσ
n
t+8εnt+8

eσ
n
t+7εnt+7

eσ
n
t+6εnt+6

eσ
n
t+5εnt+5

eσ
n
t+4εnt+4

eσ
n
t+3εnt+3

eσ
n
t+2εnt+2

eσ
n
t+1εnt+1

eσ
n
t εnt



, (C.3)

given all other laws of motion and the firm’s production function.
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C.3.2 Stationarity

Define the function Vt as the stationary utility function,

Vt =
1

Γt−1

Vt. (C.4)

The analytic form of Vt follows,

Vt =

((
Ct − Γt−1

1

ν
hνt

)1−1/ψ

+ β
[
V1−γ
t+1

] 1−1/ψ
1−γ

) 1
1−1/ψ

=

((
Γt−1ct − Γt−1

1

ν
hνt

)1−1/ψ

+ βEt
[
V1−γ
t+1

] 1−1/ψ
1−γ

) 1
1−1/ψ

=

(
Γ

1−1/ψ
t−1

(
ct −

1

ν
hνt

)1−1/ψ

+ βEt
[
Γ1−γ
t V 1−γ

t+1

] 1−1/ψ
1−γ

) 1
1−1/ψ

=

(
Γ

1−1/ψ
t−1

(
ct −

1

ν
hνt

)1−1/ψ

+ βΓ
1−1/ψ
t Et

[
V 1−γ
t+1

] 1−1/ψ
1−γ

) 1
1−1/ψ

= Γt−1

((
ct −

1

ν
hνt

)1−1/ψ

+ βegt(1−
1/ψ)Et

[
V 1−γ
t+1

] 1−1/ψ
1−γ

) 1
1−1/ψ

= Γt−1Vt.

Hence,

Vt =

((
ct −

1

ν
hνt

)1−1/ψ

+ βegt(1−
1/ψ)Et

[
V 1−γ
t+1

] 1−1/ψ
1−γ

) 1
1−1/ψ

. (C.5)

C.4 Stochastic Discount Factor

Define a generalized stochastic discount factor as,

Λt,t+1 =
∂Vt/∂ct+1

∂Vt/∂ct
. (C.6)
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Then,

∂Vt
∂ct

=
(
u(ct, ht)

1−1/ψ + βegt(1−
1/ψ)R1−1/ψ

t

) 1/ψ

1−1/ψ
u(ct, ht)

−1/ψuc(ct, ht)

= V
1/ψ
t u(ct, ht)

−1/ψuc(ct, ht)

∂Vt
∂ct+1

= βegt(1−
1/ψ)V

1/ψ
t R

γ−1/ψ
t V

1/ψ−γ
t+1 u(ct+1, ht+1)−

1/ψuc(ct+1, ht+1)

And dividing the two resulting equations yields,

Λt,t+1 =
∂Vt/∂ct+1

∂Vt/∂ct
(C.7)

= βegt(1−
1/ψ)V

1/ψ
t R

γ−1/ψ
t V

1/ψ−γ
t+1 u(ct+1, ht+1)−1/ψuc(ct+1, ht+1)

V
1/ψ
t u(ct, ht)−

1/ψuc(ct, ht)

= βegt(1−
1/ψ)

(
u(ct+1, ht+1)

u(ct, ht)

)−1/ψ(
uc(ct+1, ht+1)

uc(ct, ht)

)(
Rt

Vt+1

)γ−1/ψ

(C.8)

Substituting in the analytic form of preferences,

Λt,t+1 = βegt(1−
1/ψ)

(
ct+1 − 1

ν
hνt+1

ct − 1
ν
hνt

)−1/ψ( Rt

Vt+1

)γ−1/ψ

.

Do note that in the paper the stochastic discount factor is scaled by egt because

this simplifies the presentation of the Euler equations.
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