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This dissertation explores three different perspectives on frictions that impact the functioning

of financial markets. My first and third essay explore information economics in financial mar-

kets. My second essay studies the role of regulatory scope and how financial regulation should be

implemented.

In Chapter 1, “Does Social Media Cause Excess Comovement?”, I study social media’s potential

to impact financial markets. When information is costly to produce, information intermediaries

specialize in some stocks, creating flows of information and trading among such stocks. Trading

by customers results in “excess”, seemingly non-fundamental comovement. Consistent with this

theory, I find that co-mentioning of stocks explains increases in comovement. Three different

empirical designs point toward a causal interpretation.

In Chapter 2 (joint with Chicago Booth PhD students Ben Charoenwong and Tarik Umar), “Who

Should Regulate Investment Advisors?”, we study whether national or local regulators best de-

ter investment adviser misconduct. Dodd-Frank provides us a laboratory to observe a large re-

jurisdiction event in which state regulators below an arbitrary threshold were delegated to state

regulation. Consistent with weakened regulation, customer complaint rates increase. The com-

plaints represent more severe, not more frivolous reporting. Finally, they precipitate for firms and

adviser representatives it might be assumed under the weakest oversight, such as those further from

regulators.

In Chapter 3 (joint with Gaurav Kankanhalli and Kenneth Merkley), we study the disclosure

paradox of Arrow (1962) – innovation requires secrecy, while financing or otherwise assessing

economic value of innovation requires disclosure. Using a novel licensing database setting, in

which many agreements are for a decade shrouded in secrecy, we compare the innovation paths

of firms with originally redacted, but later unveiled, licensing activity versus those that don’t.



We find that as expected, firms that suppress information innovate more. However, the market,

recognizing the problem of disclosure, appears to view redaction as a signal of quality, rewarding

such firms high higher outside ownership and stock liquidity. We develop a signaling model to

rationalize these viscerally puzzling results. Consistent with theoretical predictions, we find factors

that reduce or increase adverse selection explain the differential effect on market outcomes of the

redacting firms.
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Chapter 1

Does Social Media Cause Excess Comovement?

1.1 Introduction

Standard asset pricing theory posits that asset prices comove because they have common expo-

sures to state variables or other economic factors. Yet there is a growing literature that suggests

return comovement is generated by forces unrelated to pure fundamentals. Correlated trading activ-

ity by institutional investors, for instance, can drive comovement as common ownership of stocks

increases.1 Another driver of comovement appears to be the selective, specialized production of

information by information intermediaries, such as equity analysts and equity underwriters, who

possess costly-to-obtain private information about only special subsets of the equity universe.2 In

contrast, others argue that psychological biases pervasive across investors can imbue certain stocks

with special appeal, or transitory events make subsets of the stock universe salient to unsophisti-

cated investors, resulting in excess comovement due to investor demand shocks.3

I propose that social media could generate excess comovement. Social media is an interesting

setting because of its widespread adoption in the last decade. While internet communications plat-

forms such as message boards have been around and studied in finance for almost two decades,

modern social media is fundamentally different - it is now a pervasive, entrenched societal insti-

tution.4 In September 2015, over a billion people worldwide used Facebook in a single day, and

today, perhaps one-third of the world is on a social media network of some kind.5

The adoption of social media in the financial services industry is well underway. SocialMe-

1Barberis et al. (2005) and Greenwood (2008) study index inclusions. Anton and Polk (2014) study institutional
ownership, a finding confirmed by Ben-David et al. (2016). Bartram et al. (2015) study an international context. Basak
and Pavlova (2013) rationalize comovement through index-tracking motives of institutional investors.

2Israelsen (2014)and Hameed et al. (2015) discuss equity analysts. Grullon, Underwood and Weston (2014) points
to stock underwriters, and Scherbina and Shluse (2015) points to news media, as drivers of comovement.

3The landmark paper in this is Barberis et al. (2005). Green and Hwang (2009) study nominal price categories.
Kumar and Lee (2006) show retail order imbalances cluster in time. Kumar et al. (2013) and Kumar et al. (2013) study
co-movement among lottery stocks and within geographies.

4A non-exhaustive list includes studies such as Antweiler and Frank (2004) and Tumarkin and Whitelaw (2001).
5WeAreSocial.Net reports that in August 2014, worldwide users of social media surpassed 2 billion across major

social media platforms, such as Facebook, QQ, WeChat, etc.
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diaAnalytics, a data vendor devoted to social media in finance applications, uses platforms like

StockTwits and Twitter to generate trading signals for clients. In addition, in 2014, BNY Mellon

issued a survey to companies, finding that 27% of companies around the world use social media

actively to engage investors, complementing findings from Jung et al. (2015), who find 63% of

the S&P 1500 use Twitter to supplement earnings releases. With large quantities of content being

generated on social media and the essentially free cost of idea dissemination, the implications of

social media for financial markets need to be understood.

Social media’s rapid rise makes it not only an interesting setting, but also an ideal setting to

test theories of excess comovement. Given the vast amounts of content produced by social media,

it is plausible to interpret social media as a mediator of information. Veldkamp (2006) theorizes

that when information is costly to produce, certain subsets of information - especially relatively

inexpensive information - will be oversubscribed, generating excess comovement. Social media

is in this sense “cheap” - social media platforms socialize the cost of procuring information and

create a public good available to any interested internet user. Indeed, increasingly, surveys by

think-tanks and industry groups suggest that social media is increasingly the preferred starting

point for individuals to obtain or find news. Meanwhile, traditional news media continues to see

rapid economic decline, with social media sometimes credited with either providing a substitute,

or redirecting traffic that would traditionally go to news media.6

To measure social media activity, I use proprietary data from StockTwits. Since its launch in

2009, StockTwits has been a pioneer in the financial industry, as the first platform to invent the

“$cashtag” convention widely used by other social media sites, and the first platform to offer itself

as a platform for company earnings releases. Today, StockTwits sits among the top as a market

leader in financial social media. Through its large partnership list, throughout time encompassing

prominent media entities such as Yahoo! Finance, Marketwatch, Bloomberg and Reuters, Stock-

6A report by the Brunswick Group (2012) suggests that 52% of surveyed respondents acquired information from
investments from blogs and a quarter use social media to help make an investment decision. The Pew Research
Institute, more generally, comments that one-third of individuals under 30 use social media as their primary source of
news. Other resources such as Adweek.com echo similar numbers, such as “since 2009, 57% of adults get their news
through Facebook and Twitter”. Please see this link.
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Twits in 2012 claimed to reach 100 million people worldwide, supplementing its own user base of

250,000 users in 2012, which ballooned to 1 million in 2015 and 1.6 million monthly active users

in 2016. AlexaRank suggests in 2015 that StockTwits is one of the 20 most prominent investing-

related websites in the world.7

Using this setting, I study the relation between social media activity and stock return correlation.

For this study, StockTwits provided me with the full survivorship-bias free set of postings on

its website, consisting of 37 million postings referencing a stock ticker through June 2016. The

data contain the time, subject, investor-reported sentiment and data about the users’ identities. I

supplement this data with data I gathered from webcrawling the “social graph” of every poster on

the site, as well as from live screen capturing of the site over 10 months.

I first create a stock-pair-time panel, consisting of a subset of the stock pair universe. I then run

two parallel sets of tests. In my primary test, I study monthly correlations calculated from Fama

and French (2016) five-factor-adjusted daily returns. In a complementary set of tests, I shorten the

horizon to a calendar week and then study intraday, half-hour, market-adjusted return correlations.

While the former measures comovement at an investor-relevant horizon, the latter befits the frenetic

pace of social media.

In my baseline correlations, I show that at the monthly and weekly horizons, there is a strong

relation between social media activity and excess return correlation. In a conservative within-pair,

within-time framework, factor-adjusted correlation increases by 104 basis points at the monthly

level, when social media activity goes from zero to 3 stock pair posts. At a 30 minute, intraday

level, the effect is 34.6 basis points. This is economically large in standalone terms, still when

considering the 25% level in monthly raw return correlation, and more so when considering the

1.5% average excess correlation. The effect is not explained a basic battery of controls, nor is it

simply explained by news announcements. In fact, the effect of social media activity on return

7Retrieved July 7, 2015. In September, 2016 SimilarWeb suggests StockTwits’ worldwide category rank is 41,
a source which the StockTwits head of development suggested was probably the most reliable. For reference, the
category leader is Yahoo! Finance, a StockTwits partner during my sample period. Offhand comparisons of the
SimilarWeb numbers and numbers he revealed to me suggest either Alexa or SimilarWeb are likely underestimates of
true traffic to this site.
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correlation is in fact weaker during periods when exogenous news events happen to coincide (as

captured by Capital IQ’s Key Developments database), and barely budges after adding industry-

pair-time fixed effects.

Still, the natural concern with this analysis is that events that drive correlations may also be ob-

served by social media posters, in the manner of the Manski (1993) reflection problem. To argue

causality, I present two causal experiments and a battery of supportive cross-sectional tests. The

two causal experiments attempt to assign the pairs of stocks that posters co-mention. The experi-

ments are based on the idea that users may be influenced by the way social media idiosyncratically

presents a pair of stocks at the same time, increasing their salience.

In my first experiment, I use social networks, a generic feature of many social media platforms.

The logic of the experiment is that while at any point in time, any post may be endogenous to

an event outside of social media, the way the posts are aggregated by social media is potentially

idiosyncratic. Specifically, I use the number of poster-pairs discussing different stocks who have

ex ante common followers. I scrape the entire StockTwits website to collect and infer posters’ his-

torical followership lists. I compute only ex-ante common followers from at least six-months prior

to a post, pre-empting any concerns over serially correlated news event or social media consumers’

anticipation of future events.

Given two posters independently discuss two different stocks, that they share a follower in com-

mon increases the likelihood that some other user will co-mention these two stocks. Therefore,

given two stocks of the same contemporaneous posting, the count of common followers serves

as a valid instrument for co-posting. That is, controlling for the unconditional level of posting,

the instrumented co-posting is attributable solely to the percolation of ideas through social media.

In the first stage, I find that the relation between the number of co-views is highly positive. The

instrumental variable achieves an F-statistic at the monthly level of 34.34 at the monthly level,

and 54.22 at the weekly level. In the second stage, the effect is extremely robust at the monthly

level; assuming, conservatively, that the only effect comes through these intransitive triads, a 25th

percentile to 75th percentile increase in social media activity corresponds to between 1% and 1.5%
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at the monthly level. The effect reduces, but remains mostly reliable, at the weekly level to about

23.4 basis points (up to about 45), even despite intraday noise.

My second causal experiment uses a strategy that is specific to the StockTwits platform. I

instrument the co-posting intensity on a pair of stocks at the weekly level using the StockTwits

banner, a ticker at the top of the StockTwits web page that comprises one of its most prominent

institutional features. Every 5 minutes, StockTwits sorts stocks by message volume, transformed

by a function that takes into account the 24 hour message volume and stock-specific parameters.

This process is not divulged to the public or even partners, but creates significant distortions: the

most popular stock is Apple Inc. with 5% of message volume, but $AAPL is on the banner during

my sample only 0.5% of the time. Thus, I argue that subject to controls for message volume, stock

volume, turnover, stock sentiment and many higher order terms of stock returns, the within-pair,

within-week display of a stock on the board is quasi-random. I explore this instrumental variable

in a weekly test, as I recorded a dataset of ten second snapshots of the banner over a 10 month

period.

Under many conservative, parsimonious experimental designs, I show that the synchronous dis-

play of two stocks on the StockTwits banner is highly relevant for the within-pair level of co-

postings on a stock-pair. Moreover, not only is being on the board relevant, but where two stocks

are on the board visually is relevant: stocks ranked higher on the board (further left, rather than fur-

ther right) garner more attention, and stocks spaced visually further apart receive fewer co-postings,

all else equal. In the second stage, I provide moderate evidence that instrumented co-postings pos-

itively relate to intraday return correlation. In my most rigorous specification, I show that, even if

being on the StockTwits banner is an endogenous event entering the second stage, simply being

further left on the board is relevant for the intensity of co-postings, and that instrumented intensity

positively relates to excess return correlation.

Third, and finally, to the extent social media cause common movements in market activity and

outcomes, five logical corollaries arise, each of which I confirm. First, consistent with the notion of

poster influence, I show that posters with larger followings, otherwise equal, are 2 to 3.1 times more
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influential, depending on stock sorting characteristic. Second, decomposing stocks by type, I show

that for those pairs who are “vulnerable” to retail investors in the sense of Llorente et al. (2002) or

Baker and Wurgler (2006), the relationship between social media activity and return correlation is

two to three times larger. In addition, I show that stocks that are similar by “style” class in the sense

of Barberis and Shleifer (2003) also comove more when social media activity is high. I study five

style classes industry, price, value, momentum, market beta and investment-to-assets, finding that

return correlation responds to social media activity less when the two stocks are in different style

classes, such that the extremes of some style classes, the effect is fully abated. Fourth, I interact

the main effect with investor-reported sentiment, measured using StockTwits’ commonly used

feature, “the cashtag”. Defined in three ways, disagreement in the direction of sentiment on the

components of a stock pair leads to a reduction in the effect of posting on comovement - one-third

at the monthly level, and almost negative at the weekly level (although statistically unreliable).

While sentiment is not exogenous, this is consistent with the idea that social media consumers

trade according to their reported sentiment, and therefore impact returns accordingly. Finally, I

repeat the analysis briefly on comovement in trading activity, absolute returns and liquidity, and

find evidence suggesting even larger increases in these other market quantities.

This chapter is at the intersection of the burgeoning literature on the role of the news media, and

social media, in financial markets, and the budding field Hirshleifer (2014) terms “social finance,”

which aims to study how “ideas spread and evolve, and how social processes affect financial out-

comes”. In this chapter, I present a setting in which I can directly track the microstructure of social

transactions, which many prior studies can observe only indirectly, and demonstrate that these so-

cial transactions impact financial markets.8 Meanwhile, most research on social media platforms

in finance has traditionally studied social media as an information source. The vast majority of

8Please see Hong et al. (2004), K Pool et al. (2014), or Mitton et al. (2015), who use proximity as a proxy for
social interactions to explain correlated behavior among actors from certain geographies. Simon and Heimer (2012)
and Heimer (2016) provide an exception, studying a small discount brokerage, but do not look at overall market effects.
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investigations have concerned whether posters contribute value-relevant content.9 A smaller but

substantial body of research has studied the use of social media is an investor relations tool that

provides incremental value to news media, as in Jung et al (2015), and particularly for smaller,

less visible stocks, as in Blankespoor et al (2014). A third line of study has utilized social media

as a proxy for investor beliefs or expectations.10 Different from these studies, I focus on return

comovement, and I make a causal statement.

The two papers closest to mine are Bailey et al. (2016)and Jiang et al. (2016). Bailey et al. (2016)

exploit Facebook users’ contact with far-away friends to instrument local housing demand. Jiang

et al. (2016) study a message board in China and its impact on Chinese stock co-movement. My

study differs heavily along methodological lines, provides significant steps toward identification,

and studies a market less pre-disposed to influence by retail investors. Whereas Chinese stock mar-

ket is less disciplined by institutional investors, the US stock market is the premiere equity market

in the world, making it a more stringent setting to test the causal effects of social media. Also, by

developing identification methods based on certain features of modern social media common to

many platforms, I provide an example that can adapted for future research in other contexts or for

other outcomes.

This chapter also contributes to the literature on the origins of excess comovement. In a simple

taxonomy of the drivers of excess comovement - institutional trading, retail investor attention and

psychology, and costly information - I develop the causal link between social media and excess

return correlation. While prior work such as Kumar and Lee (2006) has documented increased

correlated retail trading associated with increased comovement in returns, the channel by which

coordination occurs is unclear, and while consistent with causality, such prior work remains only

9Chen et al. (2014) find value-relevant information in Seeking Alpha, Jame, Johnston, Markov and Wolfe (2016)
find that Estimize users beat the consensus I/B/E/S forecast, and Da and Huang (2015) perform a novel field experiment
on Estimize users to show that social media posters are more informative when they prevented from herding. A large
literature in computer science uses social media as a testing ground for using machine learning methods to predict
stock returns. A far from exhaustive list starts with Bollen, Mao and Zheng (2011), Zhang Fuehres and Gloor (2011),
Bollen and then abounds.

10Along these lines, Giannini et al. (2015) and Cookson and Niessner (2016) use StockTwits to measure investor
disagreement. Further, Kwan (2015) studies StockTwits as a proxy for investor attention, finding user-reported senti-
ment on StockTwits is broadly uninformative and predicts future return reversal.
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suggestive. This chapter argues social interaction and digital communication may be an important

coordination mechanism, and moreover, that this correlated activity may in fact be causal on co-

movement. Finally, such prior evidence uses retail brokerage account data from the early 1990s -

my evidence may be somewhat surprising considering the continued growing of institutional own-

ership in US markets in the last two decades, and the general perception that there has been a large

reduction in retail trader participation in financial markets.11 Yet, while these trends might portend

to the marginalization of their influence, to the extent retail traders coordinate via proliferating

societal practices such as social media, it may still be possible to have a sizable gross footprint on

financial markets despite thinning ranks.

1.2 Data

1.2.1 About StockTwits

Data for this study come from StockTwits, a social media website allowing users to share

thoughts about stocks and market conditions in short messages, similar to its inspiration Twit-

ter. StockTwits started in 2009 and is open to the public, inviting users to create accounts, supply

a digital biography, and post content in the form of short messages containing text, videos and

charts. Subject to terms of service, there are no limits to poster activity. This is in sharp contrast to

Seeking Alpha, for example, which has an editorial board that reviews and rejects submissions and

publishes on a delay.

StockTwits is a pioneer in financial social media. It was the first platform to propose social media

as an investor relations tool during earnings calls. In addition, it designed its platform to enable

users to quickly search for content about specific stock tickers. StockTwits invented a linguistic

convention called the “cashtag”, which consists of a ticker symbol, preceded by a dollar sign (ex.

$AAPL). It is a widely used convention, which has since been replicated by competitors such as

Twitter, Estimize and many others. In 2012, StockTwits extended the cashtag to include “Bullish”

and “Bearish” tags, allowing users to codify their predictions or sentiments about a stock.

11Please see Stambaugh (2014), AFA Presidential Address.
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Figure 1.1: Stocktwits user interface

This is the StockTwits home page using its web interface, using the author’s main account. The frontpage displays content in the form
of short messages, usually coming from other users or stocks the user of StockTwits has subscribed to, or content which StockTwits’
algorithms believe may be interesting to the user.
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Figure 1 displays a snapshot of the StockTwits user interface through my user account. The

interface of the site has changed throughout its life, but resembles the current format with two key

features. Like Twitter, the center of the page is occupied by posts prioritizing stocks or posters

the user “follows”, in descending order of post time. Different from Twitter, StockTwits curates

specific types of content relevant to stock trading. On the top of the page, StockTwits places

“Trending” tickers, used to funnel user attention into tickers of greatest interest on the site. When

viewing a stock page, the sides of the screen display live market data and statistics concerning

current message activity and sentiment. StockTwits does post a small number of ads. However,

the site’s revenue primarily comes from licensing its content or data for use by media sites, hedge

funds or companies, and fees paid by public companies who use the site for investor relations.

StockTwits today calls itself the “#1 social media site for finance”, a claim implicitly speaking

to the site’s popularity. Among crowd-sourced financial media sites, its web traffic is second to

the five-years-older Seeking Alpha. That said, its user base is sizable. StockTwits claimed a user

base of 250,000 in 2012, ballooning to a million unique visitors per month in 2015 and 1.6 million

in 2016. In 2015, AlexaRank ranked StockTwits in the top 20 of its category worldwide, and

SimpleWeb in September 2016 ranked it #41.

These statistics do not count web traffic, for example through its mobile app, nor user impres-

sions formed on the content redistributed through the several dozens of business partners Stock-

Twits has. A few of these partners are boutique discount brokers such as Robinhood or Interactive

Brokers or regional news media, but others are large news platforms, such as Bloomberg, Thom-

son Reuters, Yahoo! Finance (started in 2011, ended in 2016) and Marketwatch.com (ongoing,

signed in 2014). These partnerships lead to prominent display of its content. For example, Ya-

hoo! featured StockTwits’ content for every ticker page and Marketwatch displays the StockTwits

“Trending” banner at the bottom of every page on its site. Pictures showing these integrations are

displayed in Appendix B.1 and B.2. Although the site and its esteemed list of partners grows over

time, unfortunately, no single partnership event stands out to represent a regime shift or interesting

event study during my sample period, a conclusion echoed by StockTwits staff members I talked
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to. Interestingly, in July 2016, StockTwits users can now directly trade via the discount brokerage

Robinhood, which may be an interesting event study in the near future if StockTwits releases this

data to academic partners.

I supplement the StockTwits dataset with data I scraped from the site directly. I first collected fol-

lower lists of every poster on StockTwits through June 2016. For each user’s webpage, StockTwits

allows a social media consumer to navigate through the poster’s user list. Although StockTwits

does not indicate when the poster-pair relationship was initiated, StockTwits evidently displays

followers in descending order of when added. For instance, for Howard Lindzon, the founder of

StockTwits, the last page of his account displays posters who whose accounts were started in 2009.

The ordering of the follower list is likely a website engineering convenience as it avoids the com-

putational expense of sorting lists and updating every server servicing StockTwits content. Given

I know the order in which consumers became followers of a given poster, I am able to back out a

user’s followers based on StockTwits’ reported posters as of a prior post. Additional details on how

I collected the data and related details that may impact my inference will be discussed in Section

5.1, when I introduce the experiment.

I also collected high frequency snapshots of the StockTwits website, which I began collecting

in late May 2015 and ended April 5, 2016. The end date was arbitrary. For the purpose of this

study, I use data from complete months spanning June 2015 to March 2016. I recorded the HTML

from the website every ten seconds on two different computers, giving me a complete record of the

“Trending” banner. I will design an instrumental variable using this data, which I describe in 5.2.

1.2.2 Other data

For this study, I only consider US equities, defined in CRSP as SHRCD 10 or 11. A large

plurality of the site’s discussion is related to ETFs, but the vast majority relate to individual stocks.

Over-the-counter stocks are restricted since early on in 2010 to avoid any concerns of being used

as a platform for market manipulation.

I study return correlations at an investor-relevant monthly level, as well as a short horizon (in-
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traday, weekly) befitting the frenetic pace of social media. When studying returns at a monthly

level, I use daily returns from CRSP. When studying returns weekly level, I use half-hour returns

constructed from DTAQ, using the NBBO cleaned in a manner in keeping with the suggestions

from Holden and Jacobsen (2014).12

I merge with StockTwits based on ticker-date, checking matches by name.13 Stock characteris-

tics supplementing the main analysis are pulled from standard finance databases. I/B/E/S is used

to obtain analyst coverage, Thomson-Reuters 13/F is used to retrieve institutional ownership, and

firm characteristics where relevant are retrieved from Compustat. Capital IQ Key Developments

are used to proxy for the arrival of corporate news events.

1.2.3 Calculating correlations

Because correlation could arise from common exposure to state variable, I purge the returns of

factor exposure before computing correlations. I first calculate daily return correlations within a

month, using in most months between 20-21 observations. For daily returns, this means taking

residuals of 200-day rolling five-factor (Fama French 2015) time-series regressions as in Frazzini

and Pedersen (2014). Some studies prefer to do beta estimations separately from the observation

period of the market variable of interest, but this is not my concern as I am not predicting future

returns. I require 100 daily returns to calculate a beta.

For the weekly horizon, I look at half-hour returns. This is based on 13 bars per day, 5 days a

week - 65 bars. In general, when there is no price update, I carry over the mid-point price from the

prior period. When the NBBO lacks a valid price to start the day, I cannot calculate a return for the

first bar. If a stock is missing any two such bars throughout the week, I delete. Within each week,

12The focus of Holden and Jacobsen (2014) is primarily to discuss how best to clean MTAQ data. For DTAQ, which
I use in this chapter, the main requirement is filter out certain items in the “quote condition” field and any internally
inconsistent prices (bid≥ask, for example).

13After removing punctuation, StockTwits’ tickers and names line up exactly with the names reported in CRSP.
The management of these lists is thorough by StockTwits, as name and ticker changes match to the day either of these
change in CRSP.
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I winsorize across all stocks to minimize issues related to synchronicity of trading.14

My benchmark model uses SPY as a proxy. For convenience of computation, I am calculating

within-week betas. That is, I calculate exposure to the market using all data within the calendar

week (e.g. Monday returns are purged of betas incorporating Friday data of the same week). As

a quick note on robustness, there are slight sampling differences since using 200-day rolling betas

requires more data before a stock pair can enter my sample, but using the same pair-months does

not alter any directional inferences.

I also compute a variety of other correlations. At the intraday level, I use the percent spread,

volume, order imbalance, Amihud liquidity ratio - when no trading, I impute the value of 0 (e.g.

infinite elasticity). I compute the analogous data at the daily level (except order imbalance, which

lacks an analogue). This is for the final analysis which looks at comovement in market activities

such as liquidity and trading volume.

1.2.4 Social media summary statistics

In this section, I describe site statistics. In Table 1.1, I present statistics about the StockTwits

user base, the types of stocks that are popular on StockTwits. Panel A displays annual posting

and poster counts. The site has doubled in the quantities of postings almost every year, increasing

from 1 million posts in 2011 to 7 million in 2014 and 15 million in 2015. Since 2012, there are

several thousand posters who post on average once daily. Note that these numbers are smaller

than the relevant figures quoted in the media for “registered” users. For example, media clippings

suggest 250,000 users in 2012, but my calculations suggest only 22,451 posters who ever posted

in 2012. This suggests, as is common with many social media sites, many users consume but do

not contribute content.

Panel B reports the number of symbols discussed at various frequencies. I refer to 2014, the

middle of the sample. On any given day, the site discusses 1/4th of the equity universe (CRSP

14I have assessed the sensitivity of my inferences at the weekly horizon by simply requiring a certain number of
price updates, or by winsorizing correlations (which may be excessively high when two stocks do not trade). The main
results are not substantially quantitatively different.
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share-codes 10,11), and 3/4ths of the equity the universe in any given month. For each column

that shows the coverage of the equity universe, I also show the number that reach the threshold of

50 posts during that time interval. This suggests that while discussion is disperse, it displays some

tendency to concentrate or cluster. Roughly 1 out of every 50 stocks discussed in a given week

garner at least 50 posts total. In unreported tabulations, I find across the years that daily Herfindahl

of posts is the range of of 1-3%, increasing to 2.8% in 2012 to 1% in 2015 – equivalent to equal

share between 40-100 stocks.

Figure 2 reveals the posts are largely concentrated during the trading day. Intriguingly, the

pattern of message volume follows the classic U-shape pattern documented as far back as Admati

and Pfleiderer (1988), that reaches its peaks at the start and end of the trading day. It suggests that

retail investor attention follows similar patterns to broader market activity.

Table 1.2 describes the distribution of posters characteristics. Panel A shows that 44% of posters

who provide a self-description are “Technical” traders, on a volume-weighted basis, and 20% of

posters are “Momentum” traders, categories that describe the archetypal daytrader. In terms of

posters’ trading experience, over half of posters consider themselves “Intermediate” or above,

suggesting that StockTwits posters are generally active in trading. Panel B describes quantiles of

the StockTwits followership base. The bulk of posters have fewer than 100 followers, and so the

cross-sectional distribution of followers is highly right-tailed.

In Appendix Table A.3, I describe stocks by popularity. Split by decile, stocks that garner

the most message volume unsurprisingly are stocks that are “attention-grabbing” – monotonically

higher beta, growth, large cap and 12-month momentum. Although not perfectly monotonic, rela-

tively popular stocks characteristics include annual skewness, volatility and absolute return. In A.4,

I report some popular names by size trecile in 2015. Among the largest stocks, consumer technol-

ogy companies (Facebook, Apple, Twitter, Tesla) dominate. Among the mid-size and lowest-size

trecile categories, the most popular stocks cover both consumer tech and pharmaceuticals.

14



Figure 1.2: Post Distribution Throughout Trading Day

In this graph, I depict the empirical frequency distribution of StockTwits public user messages by
half hour interval. On the x-axis are times of the day, on the y-axis is the percentage of all-time
messages by StockTwits posts in the half-hour (e.g. 9:30-9:59:59).

1.3 Methodology

1.3.1 Empirical design

The goal of this chapter is to investigate a speculated causal relation between social media

activity and comovement. To do this, I will perform panel regressions of the form:

ρεi jt = αt +αi j + β1SocialMediaActivityi jt + controlsi jt +ψi jt

In the above regression, ij refers to a pair of stocks i and j at time t, ρεi jt is the excess return

correlation over the period t. αt is the time fixed effect while αi j is the pair fixed effect, ruling out

the concern social media activity covers inherently correlated stocks or time periods of abnormal

cross-sectional correlation. Some of the very recent studies that look at excess comovement use
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Table 1.1: StockTwits and Message Volumes

Panel A: Message Volumes on StockTwits (Referring to Trading Tickers), June 2009-June2016 In
this table, I present statistics about the annual number of posts on the StockTwits website, referencing a
stock ticker currently trading. The variable #Messages describes the number of posts that occurred in that
year viewable by a member of the public. #NewPosters describes the users that first appeared in that year.
Annualized multiples the number by 12*#months in my dataset for that year. #DailyPosters describes
the number of posters who post at least 365 times.

year # Messages (106) # New Posters Annualized # Users ≥ 1 post # Daily Posters

2009 0.400 3,810 11,430 3,810 323
2010 0.900 5,681 5,681 8,367 762
2011 1.700 12,095 12,095 17,189 1,366
2012 3.200 19,616 19,616 28,880 2,467
2013 4.200 21,522 21,522 35,294 3,047
2014 6.100 31,691 31,691 50,563 4,440
2015 8.400 46,891 46,891 74,798 5,981
2016 5.500 29,852 59,704 65,359 4,148

Panel B: Number of Stock Symbols (SHRCD 10,11) Covered Per Day, Week or Month In this
table, I present statistics of the average number of US equities covered per day, week or month. I first
present the number of stocks with at least 1 mention in a 1 posting. I then present average number of stocks
with at least 50 postings in a day. The same statistics are calculated at weakly and monthly horizons.

year #Daily ≥ 50posts #Weekly ≥ 50posts #Monthly ≥ 50posts

2009 297.7 2.3 940.5 7.7 1,551.8 19
2010 396.7 3.5 1,162.2 11.9 2,025.9 31.6
2011 614.7 7.4 1,616.3 24 2,579.8 63.8
2012 835.3 16.3 2,020.1 51.5 3,007.6 128.8
2013 1,072.1 22.2 2,515.6 66.1 3,287.7 162.7
2014 1,324.6 37.4 2,832.5 103.1 3,457.7 243.4
2015 1,657.5 53.1 3,097 144.9 3,544.5 336.6
2016 1,611.6 62.8 3,084.4 157.8 3,471.5 352.7

16



Panel C: Distribution of Poster "Sentiment Cashtags"
This table displays counts of posts from July 2009-June 2016 containing a "sentiment" tag, which is a user’s forward
looking prediction about a stock ticker. A Bullish tag indicates the poster is positive about the stock, Bearish
indicates negative sentiment. The sample period begins in 2012 when StockTwits introduces the feature. The vast
majority of messages contain a stock symbol, but not all contain a message concerning sentiment.

N %

Bearish 1,666,130 4.170
Bullish 6,697,820 16.750

All 39,992,152 100

Panel D: Distribution of Posts By Trading Venue of Mentioned Symbol In this table, I list the
proportion of posts that refer to tickers that trade on the listed exchange or trading venue listed below. I grouped all
NYSE equity exchanges together for convenience. Foreign Exchange and INDEX refer the price of a foreign
currency in the spot exchange market, or the price of an index (such as the SPX). "Miscellaneous" refers to tickers
that do not relate to a traded security, but to topics generated by StockTwits.

Exchange %Message

NASDAQ 44.6
NYSE 44.4

Chicago Mercantile Group 3.8
INDEX 2.6

Foreign Exchange 2.6
StockTwits "Miscellaneous" 1.1

Toronto Stock Exchange (TSX) 0.4
OTC 0.3

Private Placement 0.1
ICE 0.1

TSX Ventures 0
EUREX 0
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panel regressions at the pair-time level, with time fixed effects and firm characteristics used to

model comovement.15 Relative to most studies on comovement, this chapter is both (a) relatively

short-term, spanning four years and (b) measures correlations at a higher frequency. At these

higher frequencies, firm characteristics, such as book value or institutional ownership, would be

very slow-moving. But, these higher frequencies give me a great deal of within-stock variation

to exploit. Thus, departing from these prior studies, I use the extra power I have due to repeated

observations of stock pairs, and use within-firm, within-time approach, with standard errors double

clustered by firm and time. These overloaded regressions are generally more conservative than

other approaches I have surveyed from the literature - my magnitudes are larger when I use similar

specifications to other papers.

How can social media generate comovement? Generally, social media may generate comove-

ment if it generates content that induces consumers of social media to trade on some stocks, but

not others. There are two ways this can occur. First, akin to analysts, posters may specialize in

producing information about specific stocks. To the extent their posting influences other posters’

actions, this may generate comovement if this increases the likelihood the affected subset is traded

at the same time. Second, social media is unique in that it coalesces information across different

contributors and directs that content to interested consumers. Social media content may percolate

in a variety of ways. For example, posters may simply log-in to the StockTwits and simply observe

recent posts. Another possibility would be social media posters expressing interest in a particu-

lar topic, and information about all stocks related to that topic may be gathered by social media

platforms and presented in one area.

A third possibility - which I exploit in this chapter - is that social networks may be used to direct

content to users that are socially connected, perhaps not just through first, but perhaps second or

third order connections. Although I cannot directly measure the extent to which information is

15A non-comprehensive list of examples include Israelsen (2014), who studies correlation at the annual level, and
Anton and Polk (2014), who study correlation using daily excess returns. Alternative studies, such as Green and
Hwang (2009) interpret comovement as compute stock betas to the relevant index. This approach is more common
when calculating the increases in comovement (β) of stocks to portfolios; this approach does not fit here. I have tried
an adaptation of this approach and yielded similar inferences.
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viewed and transmitted through social media, I attempt to capture this spread of information by

instrumenting co-posts using posts transmitted through social networks. That is, I argue that even

if the posts themselves are not exogenous, the transmission of information itself is exogenous,

which may result in re-posting. If two stocks are packaged together through common followers,

then this may impact co-posting.

To operationalize the first method, I coin the term co-post. Over some time horizon, I calculate

the pairs of stocks a poster discusses. The horizon I choose is one hour, which is arbitrary. If

social media consumers log on every few hours, this may be appropriate; if they log on once a day,

and check their favorite posters’ latest content, perhaps combining across the day is appropriate.

Narrowing the horizon to five minutes or widening to a day does not substantially affect my results.

To operationalize co-posts across a month, I aggregate all poster-hours in which a stock i and j

were discussed. Specifically:

∑hours
h

∑posters
a 1{postera discussed j & postera discussed i}

At face value, this variable is not exogenous. A poster may report about two stocks that face a

common event, that also drives return correlations. In 5.2, I will instrument this variable.

To operationalize the idea social media coalesces information, I coin the term “concurrent post”,

to represent coalescing of information that arrives synchronously. The main idea is that two in-

dependent posters, speaking to a common audience, may act in concert about these two pieces of

information. To be clear, I cannot actually observe the content viewed by social media posters,

and there may be other dimensions along which a social media platform decides to send content to

some audiences, but not others. However, to the extent social media posters see information at the

same time, consumers of social media may see these stocks around the same time, and they may

be act in concert about the two stocks. At a time interval t, I calculate the hours in which a pair of

stocks was discussed in the same hour h.

∑hours
h

∑postersih
a

∑posters jh
b |#postsi +#posts j |
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Of course, the issue is that the two posters may be reacting to events occurring at the same time,

causing correlations and posting to both increase. Conditional on a level of posting, I design a

variable that captures the tendency for some posts to reach larger audiences due to pre-determined

variation in their audience size. The idea is based on “intransitive triads”, a concept often used

in the social network literature. The idea is to take every pair of independent posters discussing

independent stocks. The only variation I deem exogenous is the number of followers-in-common

belonging to some pairs rather than others. These followers-in-common are likelier to view these

pairs of posts as opposed to other concurrent posts.

To operationalize this concept, I calculate the number of followers-in-common to all poster-

pairs ab (poster a and poster b) that discuss stocks i and j where i , j and a , b. I define the term

CommonFollowersi jt :

∑hours
h

∑postersih
a

∑posters jh
b | f ollowersa ∩ f ollowersb |

I also define an alternative metric, which describes the number of socially connected pairs. This

provides an alternative measure which lowers the influence of extremely popular posters. I define

the term PairsCommonFollowersi jt :

∑hours
h

∑postersih
a

∑posters jh
b 1{| f ollowersa ∩ f ollowersb | > 0}

Because common followership is pre-determined, this variable allows me to make a causal state-

ment. I further describe the experimental design and particulars of the common-follower calcula-

tions using this measure in 5.1.
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1.3.2 Sample selection

One limiting factor in this study is the inability to study the entire panel of stock pairs over

a long time period.16 However, given that my my setting, StockTwits, and social media more

broadly, grows in size dramatically over my sample, I should study social media over a relatively

long time period. Thus, to strike a balance, I select a tractable 360,000 stock pair subset and track

from a time period spanning 2012 to March 2016.

I narrow my sample to a subset of pairs where some threshold level of social media activity

occurred over the sample. The threshold I chose is arbitrary, but narrows the sample substantially.

After doing so, I pick a subset of stock pairs that looks most like the broader stock universe. In this

way, in other words, I choose among stock pairs with social media activity in a way that looks as

representative of the broader stock universe as possible. The steps are as follows. First, I filter all

pairs that receive a certain threshold level of monthly co-postings (5) in a given month at least once

in my sample. Specifically, I choose any stock pair that has ever received a co-posting, e.g. a poster

in the same hour talks about both stock i and stock j.17This yields approximately 1 million stock

pairs. The number still is still intractably high. For each i and j, I compute its median stock size

bin over the sample period. Within each size quartile pair (small-small, small-medium, small high,

etc.) I randomly sample 22,500 pairs, yielding 360,000 pairs over the whole sample. Appendix

A.1 displays the sample selection process steps and the observations at each step.

How does my sampling procedure affect my inferences? First, by looking at only stock pairs

with any social media activity, I limit my inferences to intensive margin estimates. To some extent,

extensive margin estimates are difficult as my site has at best a large plurality of social media

16Consider a 4200 stock universe, roughly the number of stocks in CRSP at the end of 2014. The lower diagonal
of the correlation matrix is 4200*4199/2 = 8817900 cells. Without any changes to the equity universe, a monthly
panel over a year would be 10.5 million observations; a week panel over a year would be 45.85 million observations;
over a year a daily study would be 2.222 billion observations. Each regression would contain at least 8.81 million
fixed effects, with around 4200 more for every additional stock added to the sample. These numbers are dramatic
underestimates as there are in fact 13 million possible pairs since 2011 due to stock listings and delistings, busi-
ness combinations, etc. This is without considering the computational problems posed by processing the correlation
matrices itself, as well as DTAQ, copost measures and common follower measures.

17Many alternative selection methods are possible. Although perhaps one alternative would be to use the
concurrent-posts as a filter, the original draft of this chapter used this co-posting filter.
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Table 1.2: Cross-sectional Distribution of Posters’ Characteristics
Panel A: By Most Recently Self-Reported Classifications

In these tables, I report the number of total posts from June 2009-June 2016 by StockTwits users falling the
reported category. The categories are self-defined, and designations are taken as of a posters’ most recent
post by June 2016. The first panel presents self-categorized "Experience". A blank indicates no response.
The second panel presents self-designated trading classification. A "Day Trader" refers to positions that
last intraday. A "Swing Trader" refers to positions lasting between 2 days to 2 weeks. A "Position Trader"
holds stocks at horizons longer than that. The third table shows trading approaches. Momentum refers to
strategies exploiting recent return movements. Technical strategies include Momentum strategies, but refer
to rule-based strategies that incorporate return movements and security fundamentals. Global Macro refers
to asset-class level strategies taking into account macroeconomic conditions.

Experience # Users # Message %

102,417 14,195,842 35.498
Novice 22,271 2,932,289 7.332

Intermediate 32,462 10,489,743 26.231
Professional 13,998 12,372,674 30.939

Holding Period # Users # Message %

101,991 14,532,962 40.529
Day Trader 14,647 5,536,592 15.440

Swing Trader 27,246 10,815,786 30.163
Position Trader 14,114 4,972,867 13.868

Trading Approach # Users # Message %

104,079 14,803,240 37.017
Technical 26,507 12,253,475 30.641

Momentum 12,062 4,325,606 10.817
Global Macro 2,286 923,253 2.309

Growth 11,163 2,387,820 5.971
Fundamental 8,601 3,094,580 7.738

Value 6,450 2,202,574 5.508
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Panel B: By Followership (as of Latest Post)

In these tables, I report the number of total posts from June 2009-June 2016 by StockTwits users falling
the reported category. The categories are mutually exclusive categories of the size of the poster’s following.
A following is the number of users that have decided to subscribe to a poster’s messages, and the site will
prioritize delivery of content from these posters to the social media user above others. Posters’ follower
counts are taken as posters’ most recent post by June 2016.

Follower Range % # Posts # Users

[0-9) 24.69 9,873,849 3,007
[10-100) 14.02 5,605,323 144,579
[100-1000) 31.57 12,626,133 22,488
[1000-104) 16.12 6,445,851 517
[105,106) 11.91 4,764,070 553
[106,∞) 1.69 676,926 14

activity. Second, one might wonder if characteristic balancing introduces any bias. I argue the

purpose of doing so is to remove this bias, but in my original draft, I did not balance by size and

the inferences were identical. However, in the cross-section, it was difficult to draw inferences

because characteristics were imbalanced.

1.3.3 Sample summary statistics

In this section, I define variables and describe summary statistics of the sample. Appendix A.1

defines all variables again for convenience. Table 1.3 reports the summary statistics.

Panel A of Table 1.3 reports statistics for the monthly sample. The mean excess correlation

is 0.93%, with a large standard deviation of 24.09%. The average raw return correlation has a

similar standard deviation, but is much higher on average: 24.5% for this sample. I will discuss

the measures of social media activity in the relevant sections.

Next, I discuss the measures of social media activity. log(1+#CommonFollowersi jt) approxi-

mates the number of “common impressions” to the stock pair. For this sample of stocks, the stan-

dard deviation is 3.49, or about 32 common followers, and the 25th to 75th percentile range is about
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Table 1.3: Sample summary statistics
This table reports summary statistics at the pair-time level (pair-month, pair week). is the number of institutional owners owning an
above median share of stocks and as of the prior quarter. and are the correlations of residual returns against the relevant benchmark.
FF5 refers to residuals of CRSP daily returns purged of 200-day-beta exposure to the Fama-French Five Factors; refers to residuals of
returns purged of intra-week-beta to the SPY ETF. refers to the correlation of absolute returns. refers to correlation of raw returns; CRSP
daily in the monthly panel. is the log count of poster-hours in which a poster discussed both and at some point in the hour, aggregated
across the relevant horizon. The hours are aligned so that when not during trading hours, the statistic contributes to the next trading day.
is defined as the log count of hour-poster pairs where a poster is discussing stockand another poster is discussing stock n the same hour
(or time unit otherwise specified), where the two posters have a common follower and the poster has at least 50 followers. is the same,
except each pair is scaled by the number of followers-in-common. The common followers are calculated from at least six months prior
to the week or month of posting. is the number of posts about stock during period . Returns and turnover are from CRSP. Extended
descriptions are provided in Appendix A.3 and Section 3.4.

Panel A: Monthly

N µ σ 1st 5th 25th 50th 60th 75th 80th 95th 99th

log(1+#AboveMedianCoownersi jt ) 7,064,231 2.10 1.89 0.00 0.00 0.00 2.64 3.22 3.76 3.93 4.86 5.34
ρ

r f f 5
i jt 7,062,343 0.93 24.09 -53.96 -38.21 -15.39 0.74 6.84 17.03 21.09 40.71 57.94
ρret

i jt 7,062,297 24.53 26.46 -39.38 -20.39 6.59 25.48 32.44 43.67 47.93 66.23 78.53
log(1+CommonFollowersi jt ) 7,064,231 3.66 3.49 0.00 0.00 0.00 3.40 4.64 6.31 6.93 9.98 11.72

log(1+#PairsCommonFollowersi jt ) 7,064,231 1.59 1.69 0.00 0.00 0.00 1.10 1.61 2.64 3.00 4.90 6.50
log(1+#Copostsi jt ) 7,064,231 0.36 0.63 0.00 0.00 0.00 0.00 0.00 0.69 0.69 1.79 2.56

rmonth
it 7,064,048 1.17 15.71 -34.97 -18.13 -4.88 1.03 2.98 6.47 8.05 19.49 41.77

Turnoverit 7,064,231 2.67 11.07 0.21 0.56 1.13 1.76 2.12 2.93 3.37 6.98 13.87

Panel B: Weekly

N µ σ 1st 5th 25th 50th 60th 75th 80th 95th 99th

log(1+#AboveMedianCoownersi jt ) 42,935,297 0.12 0.69 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.11
ρ

ret
εSPY

i jt 42,935,104 3.06 20.12 -46.76 -28.83 -9.08 2.61 7.04 14.92 18.24 36.20 56.05
ρret

i jt 42,935,104 16.12 21.79 -39.28 -17.86 2.06 10.03 15.32 20.84 30.36 34.20 67.05
log(1+CommonFollowersi jt ) 42,935,297 2.00 2.90 0.00 0.00 0.00 0.00 0.69 3.87 4.71 8.13 10.57

log(1+SociallyConnectedPosteri jt ) 42,935,297 0.81 1.25 0.00 0.00 0.00 0.00 0.69 1.39 1.61 3.50 5.14
log(1+#Copostsi jt ) 42,935,297 0.13 0.37 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.69 1.79

rweek
it 42,933,993 0.23 6.71 -17.07 -8.30 -2.32 0.21 1.09 2.65 3.36 8.51 18.22

Turnoverit 42,933,993 13.47 30.31 1.97 3.09 5.56 8.74 10.53 14.61 16.77 36.59 76.75
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630 common followers. I next display the summary statistics for log(1 + #PairsCommonFollowersi jt),

which counts not the number of common followers, but posters with common followers. Some

posters with large followings may dominate the log(1+#CommonFollowersi jt) statistic, so this

provides an alternative measure. Naturally, its standard deviation is smaller as the connection is

not multiplied by the number of followers. The standard deviation is about 5 socially connected

posters, while the interquartile range going from 0 to 20.

To the extent the plausibility of this hypothesis depends on a large audience size, it is important

to note that these numbers underestimate the economic magnitude of these audiences to the extent

the content is redistributed through sub-followers, or organically through “click-throughs”, the act

of a website user following a link to another page. For example, if consumer Andrew follows poster

A and B, and consumer Scott follows Andrew, then Scott may see Andrew’s feed by clicking on

Andrew’s profile link. In that way, Scott’s followers may see Andrew and his feed, and all such

posters may see A and B. Click-throughs can happen in an almost endless number of ways, such

as through sites well-integrated with StockTwits such as Yahoo! or Marketwatch. A final caveat is

that since I am counting posts in a narrow interval, the actual number of “concurrent impressions”

may be much higher over the course of a long day. For example, over the course of a day, poster A

may post at 9AM, but poster B may post at 10AM. A consumer making a choice at 12:00PM may

see both of these posts then.

I next discuss my measure co-posts. This variable has a standard deviation of 0.63, or about 2

coposts. The same caveats apply: these magnitudes generally underestimate the number of actual

impressions, to the extent the content is circulated to a large audience, and the co-posts are counted

in a narrow interval.

Panel B reports the weekly sample. All summary statistics are sensible. The magnitudes of

social media activity are smaller (smaller time interval over which to aggregate), and the average

excess correlation is higher (fewer factors in the market model). The only sharply different statistic

is the number of common owners; 200 day rolling betas requires 200 days since an IPO. I check

this difference is not inference-changing.
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1.4 Baseline correlations

1.4.1 Baseline panel regression

In this section, I discuss a baseline result, that co-postings positively relate to excess return

correlation. These coefficients are meant to assess economic magnitudes, leaving identification to

Section 5.

In Columns 1-4, I establish the relation between co-postings and correlation. I will use the

baseline specification as follows:

ρεi jt = αt +αi j + β1log(1+Copostsi jt )+ β2log(1+#Postsit )+ β3log(1+#Posts jt )+controlsi jt +

ψi jt

The logic of the specification is that the number of co-posts is correlated with the number of

posts idiosyncratic to i and j, and thus capture all stock-specific posting. Column 1 shows that at

the monthly level, direct co-postings about pairs of stocks are highly significantly related to con-

temporaneous factor-adjusted return correlation. The effect is within-pair, within-day. Column 2

repeats the exercise at the weekly level. In Column 1, the very precisely estimated coefficient of

0.7545 (t=13.35) on log(1+#co-postings) suggests that otherwise equal, co-postings are associated

with increased factor-adjusted correlation. It means that going from zero to 3 posts is associated

with 75.45 basis points of excess return correlation which is economically large in general. Coeffi-

cients on log(1+#Postsit ),log(1+#Posts jt ) are negative, suggesting that stock-specific posting,

proxying perhaps for stock-specific events on either i or j, attenuates the pairs’ comovement, which

is sensible.

In Column 2, the coefficient for intraday half-hour returns at a weekly horizon is smaller 0.345,

suggesting the magnitudes at a weekly level are smaller but still economically large. The same

pattern on log(1+ #Postsit ),log(1+ #Posts jt ) appears, which is that otherwise equal, idiosyn-

cratic movements in either stock attenuates comovement. That the coefficient on weekly returns is

smaller is not surprising for a number of reasons. It is possible, for example, that microstructure
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Table 1.4: Baseline correlations

The variable of interest is log(1+Copostsi jt ), which is log count of poster-hours over the course of
the time period that posted about stock pair ij. Additional detail about these variables and additional
variable definitions are provided in Appendix A.2. All regressions, as indicated, contain pair-time
(week or month) fixed effects. The sample period for the monthly sample is 2012-March 2016; for
the weekly sample, it is October 2012 to March 2016. Robust standard errors double-clustered by
pair, time period are reported in parentheses.

ρεi jt

Monthly Weekly Monthly Weekly
log(1+Copostsi jt ) 0.755∗∗∗ 0.349∗∗∗ 0.751∗∗∗ 0.352∗∗∗

(0.057) (0.036) (0.057) (0.035)
log(1+Postsit ) −0.120∗∗∗ −0.373∗∗∗ −0.118∗∗∗ −0.353∗∗∗

(0.022) (0.023) (0.023) (0.025)
log(1+Posts jt ) −0.101∗∗∗ −0.340∗∗∗ −0.097∗∗∗ −0.309∗∗∗

(0.021) (0.0218) (0.023) (0.023)
retit −0.002 −0.015∗∗∗

(0.002) (0.005)
ret jt −0.003 −0.013∗∗∗

(0.002) (0.005)
|retit | 0.0017 0.0040

(0.002) (0.008)
|ret jt | 0.000 −0.001

(0.002) (0.009)
turnoverit −0.001 −0.000

(0.001) (0.001)
turnover jt 0.001 −0.001

(0.002) (0.001)
log(1+AboveMedianCoownersi jt) 0.032 0.0886∗∗∗

(0.029) (0.034)
retit ∗ ret jt 0.001∗∗∗ 0.009∗∗∗

(0.0002) (0.0012)
|retit | ∗ |ret jt | −0.0002∗ −0.0030∗∗∗

(0.000) (0.001)
turnoverit*turnover jt −0.000 0.000

(0.000) (0.000)
Pair FE? Y es Y es Y es Y es
Time FE? Month Week Month Week
Num. obs. 7,062,343 42,935,104 7,061,890 42,933,800
Adj. R2 0.0505 0.0795 0.0506 0.0802
∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1
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noise contaminates the estimate. Conversely, it is possible that social media posters may influence

stock prices over the course of a day, and relatively less adept to handling information that arrives

at a faster pace such as a half-hour interval.

Turning to Columns 3 and 4, I present specifications that include controls for returns, absolute

returns, turnover and above median owners. In both monthly and weekly estimates, the main

effect is resilient, weakening by half a percent at the monthly level, and strengthening by 2%

at the weekly level. The first three controls simply look for concurrently-timed market events,

which might mechanically generate correlation. Above-median owners accounts for the an albeit

relatively low-frequency change in the number of institutional co-owners, which can exacerbate

correlation. The estimate is resilient to these controls, with minor loss of observations stemming

from missing data in CRSP (usually for missing volume). The main takeaway is that the correlation

is not due to simply return events at the same time. I look for other types of events in the next

section. The coefficient on above median owners is positive, but insignificant at the monthly level,

but interestingly significant at the weekly level.

1.4.2 Robustness - is social media activity a substitute for news?

I perform a variety of robustness checks, some of which I report on the Online Appendix. In

this section, I address the concern that social media is just a substitute for news, such as timed

news releases, or industry events. Such events may gather attention, yielding trading and excess

return correlation, with social media activity reporting on these events as a byproduct. In this

analysis, I cast doubt on that concern by evaluating the relation between co-posting and excess

return correlation during periods of news event arrivals.

To define the news, I rely on event taxonomy of Capital IQ Key Developments. Capital IQ Key

Developments is a database that is used by investment bankers to track events, and provides a list

of announcements, categorized by Capital IQ into categories and filtered for duplicates, and the

announcement date-time. As discussed in Edmans et al. (2014), CapitalIQ discovers 234 different

events, and the database’s event coverage predates my sample period. From this taxonomy of
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Table 1.5: Robustness - Co-postings during News Events
In this table, I report panel regression estimates of the form:

ρεi jt = αt +αi j + β1log(1+Copostsi jt )+ β2log(1+#Postsit )+ β3log(1+#Posts jt )+ controlsi jt +ψi jt

The variable of interest is log(1+Copostsi jt ), which is log count of poster-hours over the course of the time period that posted about stock pair ij. Earnings,
Bankruptcy and Business Expansion (and Product Announcement) events are defined as those from Capital IQ’s Key Developments database. The industryi −
industryj − time fixed effects are based on the Fama French 49 affiliation of stock i and stock j coalesced from {Compustat where available, CRSP where avaible,
49 otherwise}. The controls are turnover , log(1+ #AboveMedianCoOwners), ret, and |ret |. Additional detail about these variables and additional variable
definitions are provided in Appenndix A.2. All regressions have the indicated fixed effects. Robust standard errors double-clustered by pair, time period are
reported in parentheses.

ρεi jt
Earnings Earnings Bankruptcy Business Expand AnyKeyDev Industry Industry

Horizon: Month Week Month Month Month Month Week
log(1+Copostsi jt ) 1.072∗∗∗ 0.607∗∗∗ 1.247∗∗∗ 0.739∗∗∗ 0.908∗∗∗ 0.730∗∗∗ 0.290∗∗∗

(0.102) (0.061) (0.335) (0.058) (0.080) (0.053) (0.028)
Devent

i −0.211∗∗∗ −0.110∗∗∗ −0.253∗ 0.068 0.001
(0.061) (0.038) (0.130) (0.072) (0.0421)

Devent
j −0.216∗∗∗ −0.116∗∗∗ −0.197 0.010 0.020

(0.052) (0.038) (0.135) (0.085) (0.040)
log(1+Copostsi jt )∗Devent

i 0.001 −0.217∗∗∗ −0.325 −0.093 −0.237∗∗∗
(0.113) (0.063) (0.338) (0.091) (0.061)

log(1+Copostsi jt )∗Devent
j 0.122 −0.227∗∗∗ −0.212 −0.010 −0.220∗∗∗

(0.111) (0.064) (0.315) (0.076) (0.065)
Devent

i ∗Devent
j 0.306∗∗∗ 0.014 0.143 0.177 0.067

(0.079) (0.041) (0.127) (0.320) (0.052)
log(1+Copostsi jt )∗Devent

i ∗Devent
j −0.212 −0.061 −0.008 −0.485∗∗ 0.085

(0.146) (0.075) (0.338) (0.227) (0.080)
Time FE? Y es Y es Y es Y es Y es Indi ∗ Ind j ∗ t Indi ∗ Ind j ∗ t
Pair FE? Y es Y es Y es Y es Y es Y es Y es
Controls? Y es Y es Y es Y es Y es Y es Y es
Num. obs. 7,064,231 42,935,297 7,064,231 7,064,231 7,064,231 7,064,231 42,933,800
Adj. R2 0.0446 0.0802 0.0507 0.0506 0.0507 0.0705 0.1060
∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1
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events, I extract several types of events: earnings events, industry events, corporate expansions,

bankruptcies.18 I create dummy indicators that ask whether news events occur in a given month

or in the two weeks straddling a week. The specification I run captures the arrival of an event on

stock i, stock j, and both stock i and stock j. Specifically:

ρεi jt = αt+αi j+ β1log(1+Copostsi jt )+ β2log(1+#Copostsi jt )∗1{Eventit }+ β3log(1+#Copostsi jt )∗

1{Event jt }+ β4log(1+#Copostsi jt ) ∗1{Eventit } ∗1{Event jt }+ controlsi jt +ψi jt

Table 1.5 reports the results. Models 1 and 2 explore the behavior of the point estimates during

earnings months. I perform a triple interaction term that captures the relation between posting and

correlation when either or both of the stocks involved is during an earnings month/week. Column

1 and 2 show the behavior of correlations during monthly and weekly time periods. Two patterns

emerge from the data. First, otherwise equal, an earnings event for a company will tend to decrease

the correlation between two stocks; when they coincide, correlation tends to increase, although the

latter effect is weak for the weekly horizon. Second, the relation between concurrent earnings an-

nouncements and co-postings is insignificantly negative, suggesting that co-postings are less likely

to be associated with correlation during earnings events. Meanwhile, the unconditional coefficient

on co-postings, β1, increases dramatically, from 0.75 to 1.072 at the weekly horizon and from .35

to .61 at the weekly horizon, increases of 40% and 80%, respectively. The simplest interpretation

is that earnings events are periods of highly idiosyncratic news and return movements. Outside

of these exogenous events, all else equal, the unconditional effect of co-postings and correlation

becomes much stronger. Similarly, Columns 3, 4 and 5 report business expansions, distress, or

any type of Cap IQ Key Development. The conclusion is similar. If anything, controlling for

exogenous news events, the unconditional relation between social media activity is stronger.

The other obvious explanation to any time-variation in correlation is an industry-level funda-

mental or an industry-level increase in trading activity. To rule this out, in columns 6 and 7, I add

industry-pair-time fixed effects. Industry is based on the Fama-French 49 industries, where indus-

18The events that Capital IQ tracks are often times granular events within a broader class of events I consider. For
example, Capital IQ tracks both a “Dividend Initiation” and a “Preferred Dividend”, an “Earnings Announcement” as
well as the announcement of a future earnings announcement. I categorize the list of events by type and aggregate
them together.
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try affiliation is determined by the SIC code reported in Compustat, then in CRSP, if not available

in Compustat (49 default). These capture all week/month events common to industry pairs, de-

fined by Fama French industries. The number of fixed effects increases the R-squared by 50% in

the weekly regression and 80% in the monthly regression, suggesting this is a large increase in

model terms (2401 per period for 49*49 industry pairs). Yet the main point estimate is largely

resilient, dropping about 2 basis points at the monthly level and 6 basis points at the weekly level.

Of course, it remains possible that my industry classification is imperfect.

Taken together, this suggests social media activity is on average weaker during news events,

not stronger. A news substitution story would yield the opposite. I have tried many additional

robustness checks. My analysis is robust to re-defining co-posting at different time subsamples,

and different baseline control specification.

1.4.3 Robustness - timing of posts

One concern is the nature of relating contemporaneous posts to contemporaneous returns. Al-

though posting could cause same-day comovements, that then manifest in monthly returns, there

may be reaction with a delay. Therefore, we should expect that posts from the first half of a month

affect posts from the second half, and so forth. Appendix A.7 explores this possibility. It decom-

poses co-posts into halves or quarters, and then measures the intensity of co-posting in relation

to posting. The first two columns show that posting from the first half of the month have larger

coefficients than the second half. Similarly, columns 3 and 4 show posts from the first week matter

more than posts from the last week. However, the effects are not strongly well-ordered, with posts

from the second week driving comovement more so than others. However, the last week is notably

the least important economically.
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Figure 1.3: Sample Common Follower Calculation For Identification Strategy
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1.5 Common follower networks as an instrumental variable

1.5.1 Design

In my first experiment, I argue causality by exploiting how information is transmitted through

social networks. Social media platforms provide a platform to distribute content and communica-

tions and have algorithms for determining how to distribute that information. One principal way

these decisions are made is through social networks. Forming social networks on a social media

platform is implicitly subscribing to a social media user’s content. Take three posters discussing

three different stocks at roughly the same time. Denote them poster A, B, C, discussing stocks X,

Y, Z. A viewer of social media that follows A and B will be more likely to observe the postings on

X and Y than she would Z. Based on this, said viewer would in turn trade and/or post on X and Y

as well, in turn generating more trading.

I operationalize this idea in an instrumental variable design. The IV is some variant of the count

of independent poster pairs that share a common follower. Because the count of common followers

requires posting to occur, I control for the number of concurrent posts, regardless of common

followership, because otherwise my IV is endogenous to the omitted variable also driving posting.

First, I create the term log(1+WeightedConcurrentPostsi jt ) which simply counts the number

of posters about stock i, multiplied by her followers, plus the number of stock j, multiplied by

her followers, occurring in the same hour, summed across the month. I perform a large variety of

specification checks and present a view in foregoing analysis. Next, after counting the total level of

posting, I count the common followers to the posts for all such posts that occur in the same hour.

For each stock pair, I aggregate the number of common followers, or simply count the number

of poster pairs that are socially connected. Again, I only count the followers if the followership

decision was made at least six months prior to the event. The first stage is therefore:

log(1+Copostsi jt ) = κ1log(1+CommonFollowersi jt )+ κ2log(1+WeightedConcurrentPostsi jt )+

κ3log(1+#Postsit )+ κ4log(1+#Posts jt )+ controlsi jt +αt +αi j +φi jt

The second stage is therefore:
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ρi jt = β1 ̂log(1+Copostsi jt )+ β2log(1+WeightedConcurrentPostsi jt )+ β3log(1+#Postsit )+

β4log(1+#Posts jt )+ controlsi jt +αt +αi j +ψi jt

The quantity of interest in this example is β1, which is an estimate of the effect of common

mentioning that is due to the extent of how often two stocks are presented to the same social media

user. For two stocks with the same level of posting, the pre-determined common followers can be

interpreted as the effect of social media in transmitting news. Because the common followers were

based on a social network determined before the event, it rules out reverse causality concerns. The

other concern is omitted variables. As I control for the level of posting, and the level of posting

can be interpreted as a proxy for poster reaction to outside news. Thus, I interpret β1 as a measure

of the effect of social media’s transmission of content, controlling for a level of news.

1.5.2 Social graph data

To run the exercise above, I need to the social “graph” of every user. StockTwits does not

provide this data, despite academic inquiry by a number of researchers. However, as explained in

3.2, I infer the historical follower lists as of time t from the data StockTwits provides me, which

lists the number of followers as of the time of a post (or when StockTwits recorded a post). I then

scrape the StockTwits website, which lists followers in the order they were added. The reason they

list followers in the order they were added is probably that this method is simple and requires no

additional effort or computation time to do otherwise. Using these two numbers, I can back out the

likely follower lists, assuming that survivorship bias is not severe. To the extent that I am lagging

posts by six months, the bias is likely very low.19Also, the six month lag mitigates any issue in the

early part of the sample with respect to how followers were recorded. 20

I calculate the following quantities. First, as of every month, for computational reasons, I filter

19To the extent survivorship bias would exist, it would be that a great number of followers deleted their accounts or
removed chose not to follow a poster. As I am using a lagged value of followers, I am unlikely to be counting anyone
who wasn’t a follower at time t, but I may be missing some posters who were followers but later chose to remove
themselves. The other type of survivorship bias would be that posters no longer exist. Of over 81,000 posters by June
2016, fewer than 100 no longer had accounts - most users that ceased to post rarely deleted their accounts. For either
type of survivorship bias, I would take the stance this would simply be measurement noise.

20The lag of post recording is not usually longer than 1 week, or in extreme cases 1 month, but I check the main
inference is robustly significant in the final year, in which no asynchronous recording of followers occurs.
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out posters who six months ago did not have at least 50 followers. Then, I calculate for every such

poster their followers-in-common with every other poster in the network and then convert it to a

count. This list is extremely large, with the symmetric list reaching 134 million pairs of posters

with followers in common by June 2016, from 81,234 posters who have 50 followers or more. This

means that 1.5% of all possible pairs of posters with 50 followers or more have a common follower.

Appendix C plots time series of the follower network, listing the number of total followers, as well

as the edge counts, over time.

From these edge counts, I then compute the common followers as described in Section 3.4.

To recap, for a given month and its six-month-lagged common follower network, I loop across

all hours. Across all hours, I consider all poster-stock/poster-stock pairs, where the posters and

stocks are not the same (e.g. pairs of different posters discussing different stocks). For each

poster, I record the totally hourly counts of the number of socially connected pairs of posters

log(1+#PairsCommonFollowers), and the total of their common followers log(1+CommonFollowers).21

1.5.3 Results

Table 1.6 reports my results. Panel A presents results using posting and correlations at a monthly

resolution, while Panel B presents results at the weekly resolution. The main point of emphasis

will be the monthly results, with the weekly results to match the pace of social media.

Turning to Panel A, I find that the relation between instrumented co-posting and return corre-

lation to be positive. Interpreting column 1, I find that sensibly, the greater the number of firm-

specific posts, Postsit and Posts jt , the greater the number of coposts. This must be at least somewhat

true by construction, as co-posts increase both of these quantities. Interestingly, ConcurrentPostsi jt

is negatively related to co-posts. An albeit ad hoc interpretation may be that during times of large

21This is simply the sum of the followers shared by posters A and B, and posters B and C, etc. If a follower common
to A and B is also common to B and C, I double count. To the extent this consumer receives two impressions of a pair
of stocks, this is an adequate measure. However, one might conjecture that this follower should only be counted once.
However I cannot, for computational reasons, store and load the lists of common followers and take the union of all
followers/content consumers in common for a stock given pair. The computational complexity of such a problem (not
considering the space required to store this data), is O(n2 ∗ t ∗ p2 ∗ s2), where p is the number of posters, t is the number
of time bars, and n is the number of followers per poster p, for all stocks s. Keeping only the number of common
connections, it is O(t ∗ p2 ∗ s2).

35



Table 1.6: Instrumental variable based on on common follower networks

This table presents instrumental variable regressions. The endogenous regressor is ̂log(1+Copostsi jt ). The instrument is the number of common
followers, log(1+CommonFollowers)i jt , or the number of log(1+ #PairsCommonFollowersi jt ). Panel A presents monthly results, Panel B
weekly results. log(1+Postsit ) is the number of posts on stock i throughout the month t. log(1+CoincidentTotalPosts)i jt is the number of posts
in the same hour (or 15 minute window, in the case of weekly intraday results) regardless of whether the posts have common connections. log(1+
CoincidentTotalPosts∗Followers)i jt is the same, except each post is weighted by the number of followers of the posters. Where polynominal order
controls are used, the terms log(1+CoincidentTotalPosts ∗Followers)i jt and log(1+CoincidentTotalPosts)i jt are added to the specification up
to the specified order. All regressions are estimated with pair and time fixed effects, with cluster robust standard errors at the pair-time level.
Panel A: Monthly

ρFF5
i jt

̂log(1+Copostsi jt ) 1.580∗∗∗ 1.476∗∗∗ 2.178∗∗∗ 2.626∗∗∗
(0.214) (0.261) (0.301) (0.304)

log(1+CoincidentTotalPosts*Followers)i jt −0.009∗∗∗ 0.090∗∗∗ −0.020∗∗∗ 0.088∗∗∗ .061 −0.241∗∗∗
(0.001) (0.010) (0.002) (0.011) (0.027) (0.054)

log(1+CoincidentTotalPosts)i jt 0.811∗∗∗ −0.311∗∗
(0.085) (0.157)

log(1+Postsit ) 0.034∗∗∗ −0.342∗∗∗ 0.093∗∗∗ −0.325∗∗∗ −0.467∗∗∗ −0.557∗∗∗
(0.005) (0.035) (0.008) (0.041) (0.039) (0.041)

log(1+Posts jt ) 0.030∗∗∗ −0.322∗∗∗ 0.094∗∗∗ −0.305∗∗∗ −0.443∗∗∗ −0.525∗∗∗
(0.005) (0.037) (0.008) (0.044) (0.043) (0.046)

log(1+PairsCommonFollowersi jt ) 0.204∗∗∗
(0.009)

log(1+CommonFollowers)i jt 0.062∗∗∗
(0.003)

Num. obs. 7,060,175 7,060,175 7,060,175 7,060,175 7,060,175 7,060,175
F-stat 34.34 32.11 18.66 13.055
FE? Y es Y es Y es Y es Y es Y es
IV? Pairs CommonFollowers Pairs Pairs
Control polynomial order? 1 1 1 1 2 3
Controls? No Y es Y es Y es Y es Y es
Adj. R2 0.476 0.050 0.453 0.050 0.050 0.050
∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1
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Panel B: Weekly

ρSPY
i jt

̂log(1+Copostsi jt ) 0.875∗∗∗ 0.320 0.673∗∗∗ 1.421∗∗∗
(0.192) (0.200) (0.174) (0.229)

log(1+CoincidentTotalPosts*Followers)i jt −0.004∗∗∗ 0.019∗∗∗ −0.006∗∗∗ 0.015∗∗∗ .1309 −0.079∗∗
(0.001) (0.005) (0.000) (0.005) (.020) (0.040)

log(1+CoincidentTotalPosts)i jt 0.134∗∗∗ −0.455∗∗∗
(0.058) (0.099)

log(1+Postsit ) 0.047∗∗∗ −0.432∗∗∗ 0.064∗∗∗ −0.357∗∗∗ −0.458∗∗∗ −0.485∗∗∗
(0.004) (0.028) (0.003) (0.030) (0.028) (0.031)

log(1+Posts jt ) 0.047∗∗∗ −0.390∗∗∗ 0.064∗∗∗ −0.314∗∗∗ −0.417∗∗∗ −0.444∗∗∗
(0.004) (0.027) (0.003) (0.030) (0.028) (0.032)

log(1+PairsCommonFollowersi jt ) 0.133∗∗∗
(0.005)

log(1+CommonFollowersi jt 0.032∗∗∗
(0.001)

FE? Y es Y es Y es Y es Y es Y es
Controls? Y es Y es Y es Y es Y es Y es
F-stat 54.22 72.29 35.82 22.49
IV? Pairs CommonFollowers Pairs Pairs
Control polynomial order? 1 1 1 1 2 3
Num. obs. 42,933,800 29,004,813 42,933,800 42,933,800 42,933,800 42,933,800
Adj. R2 0.340 0.080 0.320 0.080 0.080 0.080
∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1
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firm-specific news, posters are less likely to discuss pairs of stocks, but more likely to discuss firm-

specific news. However, the coefficient on the variable of interest, PairsCommonFollowersi jt ,

referring to the number of posters posting in the same hour connected by at least one common

follower, is positive. This suggests that when stocks are juxtaposed together, there is an increased

tendency to co-mention. That is, it is not that simultaneous events matter, but simultaneous view-

ership and the posting it generates, that impacts return correlation. The F-statistic of 34.34 is well

above the necessary condition recommended by Stock and Yogo (2002). In the second stage, I find

that indeed the instrumented co-posting is strongly related to comovement. A standard deviation

increase (0.69) increases comovement by about 1%, double the unconditional mean and is 5% of

the standard deviation. This magnitude is large and sensible. ConcurrentPostsi jt is also positively

related to comovement. Simultaneous posting may represent simultaneous events, which may be

endogenous to an omitted variable which drives coincident movements in prices.

Columns 3 and 4 present alternative instruments based on counting the common followers, not

the intransitively connected pairs. The estimates are quantitatively very similar. Columns 5 and 6

present specification checks. One potential concern with this strategy is that even if I control for the

concurrent posting, β1 is significant because of the correlation between followership and concur-

rent posting. I mitigate this concern in two ways. First, in the forthcoming analysis, I present the

results of raising concurrent posts to the 2nd and third order. Doing so strengthens the economic

magnitude of my results. Second, re-specifying the analysis as a ratio between followers and the

level of concurrent posting yields similar results, although the first-stage F-statistic is not reliable.

ConcurrentPostsi jt and ConcurrentPosts*Followersi jt turn positive in Column 5 (polynominal or-

der 2) but negative in Column 6 (polynominal order 3), meanwhile unreported coefficients on the

polynominal terms are positive.

Panel B reports weekly results. Note that the clock for counting coincident posts and common

followers is now 15 minutes, given the return bars are now based on a window of 30 minutes.

The coefficient estimates are less reliable and smaller in magnitude, but are in most specifications

significant. My preferred estimate from Column 2 suggests that a standard deviation movement in
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co-posting (.37) is related to 87.5 basis points of comovement, or .375 for a one standard deviation

movement. Column 4 presents results based on common followers. The estimate is positive and

economically large, but insignificant. The instrumental variable is very reliable, but heteroskedas-

ticity in the count of common followers might attenuate the coefficient of β1. However, counting

the number of socially connected posters appears to work well, and as columns 5 and 6 indicate,

appears robust to polynominal specification checks.

1.5.4 Endogeneity concerns regarding social connections

Social connections may be endogenous. I assume that many choices of followership are id-

iosyncratic in nature, at least with respect to whether or not a pair of stocks is discussed by two

independent posters at a future point in time. However, it is possible that social connections embed

information about an event unrelated to social media, which may drive both posting and comove-

ment. This would suggest followership decisions are made because followers of posters decide

to follow posters who track events exposed to a common future event. That is, it is possible fol-

lowership decisions are made because they are correlated with events that cause high conditional

correlation. For example, if social media users follow gold stock posters, I may simply be capturing

a persistent shock to gold stocks.

I argue this is unlikely to be driving my results. First, specifications that take into account

recent changes to the pair’s correlation mitigate the possibility that the followership networks are

correlated with an event that also causes high conditional correlation. Specifically, controlling for

the lagged level in correlation does little to affect my main result. In addition, pair-year fixed

effects reduce the possibility any local change in pair relationship drives both the relation between

followership and co-posting and the return correlation.

Third, and most convincingly, Appendix A.6 presents statistics on what percentage of the stock

universe a poster tends to cover, and a tendency for that poster to cover the same stock or industry

ever again. A couple of interesting facts are revealed. First, the average poster covers about 41

symbols, and weighted by the number of intransitive connections they have in the social network
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(number of other posters with which they share a common follower), the average number is 301,

covering 9 sectors and 123 of roughly 200 StockTwits industries. This suggests that no industry

event could explain my findings. As we saw also in Table 5, my results are robust to industry-by-

industry-by-time fixed effects and robust when not considering stocks in the same Fama-French 49

industry. It also suggests that given the breadth of coverage, any followership decision is unlikely

due to be systematically tracking a particular type of stock, because the range of stocks covered by

any poster is so large. The final panel of Appendix A.6 suggests that the conditional probability a

poster will ever mention the same stock, ever again, is less than a quarter. For two posters covering

two different stocks independently, the probability is 1%. Thus, any recurring, common event that

explains followership and posting must reconcile with the fact that the that recurring, common

event very rarely results in a poster-pair referring to the same stock pair, at the same time, in the

future.

1.6 Instrumental variable based on StockTwits banner

1.6.1 Exclusion restriction

In this section, I propose an instrumental variable approach. My work in Section 5.1 obtained

identification using the idea that quasi-random, predetermined variation in social media common

followership created an audience common two stocks. These common audiences process this

information more heavily than other information presented, and the covered subset of the stock

universe comoves more as investors trade. In this section, instead of social media’s role in passing

through information, I argue that social media can also guide or shape content production.

To operationalize this concept, I use the StockTwits “Trending” banner. The idea is that posters

are likelier to discuss stocks on the banner, all else equal, because the banner directs their attention

to a particular set of stocks. I am going to use both the presence of a stock on the banner as

an instrument, as well as where it is on the banner. The “Trending” banner is every page of

StockTwits. In addition, variants are displayed on the sites of many partners that integrate its
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content. Appendix B.1 shows that Yahoo! Finance displayed the top 10 “Trending” stocks in

many places of its site. Appendix B.2 shows that Marketwatch integrates StockTwits directly into

its site, displaying the top 5 “Trending” stocks on every page.

To explain the exclusion restriction, it is worthwhile to describe the mechanics of this ticker

banner. Every 5 minutes, StockTwits sorts stocks by message volume, transformed by a function

that takes into account the 24 hour message volume and stock-specific parameters. The stock-

specific parameter is not known to the public or even partners such as Marketwatch, but I was told

in 2014 that StockTwits scores the stock’s message volume relative to some stock-specific measure

of posting intensity in the past 9 months. After measuring the transformed message volume of all

stocks on the site, StockTwits elects the top 30 and displays a certain fraction on the banner,

depending on the user interface used by social media consumer.

The consequence of this stock-specific parameterization is that the stocks vary widely in their

requirements to enter the StockTwits banner. For example, some stocks can enter the StockTwits

banner with as few as 1 or 2 messages, while others may take dozens or even hundreds on a given

day. The most popular stock, for example, is Apple Inc. with 5% of message volume, $AAPL is

on the banner during my sample only 0.5% of the time.

I present two designs. First, co-display of stocks is random, conditional on the same stock-

level information. The exclusion restriction is plausible. Given a large news event, such as a sharp

absolute or directional return movement, high turnover, or high message volume, posters may react

in such manner so as to generate addition message volume that increases the probability the stock

will enter the “Trending” banner. However, some stocks have high predetermined requirements to

enter the StockTwits banner, and some have relatively low requirements. Further, for any two pairs

of stocks, their propensity to be on the StockTwits banner and their visual placement relative to one

another is affected by the behavior of other stocks whose message volume scores are also being

transformed by an arbitrary statistical function, introducing an additional element of randomness

to the exercise. Thus, subject to controls, I argue entering the StockTwits banner is effectively

quasi-random. The second design is to argue that even of co-display is an endogenous event,
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the conditional visual arrangement of the stocks is quasi-random and there is enough information

on how stocks on the banner are visually displayed to influence the co-posting intensity. To the

extent the exclusion restriction is not completely exhaustive of all alternatives, at the very least,

this instrumental variable exercise limits the possible set of alternatives.

1.6.2 Data, sample period, and design

For this experiment, I have 10 months of data. I started collecting the data in mid-May 2015, and

stopped in April 2016. The end date was arbitrary. As a result, I have 10 full months beginning

June 2016 and ending March 2016. The data consists of snapshots of the StockTwits frontpage

occurring every 10 seconds, on two different computers. This is a much higher frequency than

the frequency at which the banner updates, so synchronicity issues in recording the banner are

relatively minimal.

From this data, I can extract how long a stock pair was on the “Trending” banner at the same

time, and where the stock pair is on the banner. From this information, I create three metrics: first,

I calculate the fraction of the day a given stock pair is on the StockTwits banner. The expectation

is that when stocks are on the board longer, there is a greater increase in the number of co-posts

about them. Second, because it may be relevant where stocks are, both in relation to one another or

whether they are in a visually salient place on the board, I calculate two measures. First, I calculate

the average rank of the pair on the board. A rank of 1 means one of the stocks is in the first slot on

the board, a rank of two means they are in slot 2. The stocks are ordered in terms of their message

volume score from left to right. Second, I also compute the average visual distance of the two

stocks when on the board. When a stock is, on average, in the #2 slot, and another stock is, on

average, in the #15 slot, the distance is 13, while its rank is 8.5. The idea is that stocks that are

spaced relatively close together may be relatively salient compared to other stocks, and so posters

are more likely to be stoked into discussing stocks that are visually near one another, and less so

when they are not. The prediction is that when stocks are further away, they are less likely to be

discussed together. These three variables (time on board, conditional distance, conditional rank)
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are the basis for my instrumental variables.

Finally, to the extent social media posters only respond to the social media site itself during

certain hours of the day, I limit the calculation period of when stocks are on the banner from 4am

to 4pm. It is relatively less likely that posters are responding to stocks on the banner during times

when view posters are contributing at all.

1.6.3 Results

The results presented here are from four parsimonious designs of my instrumental variable ex-

ercise. I only report certain coefficients of interest, but report the return, turnover, volume terms

to the Online Appendix for the interested reader. In the Online Appendix, I also report issues re-

lated to variable construction, summary statistics, results from other instrumental variable designs,

which take into account additional IVs in the first stage, as well as some diagnostics I performed

on the StockTwits banner. For example, the within-pair, within-time tendency to co-post about

two stocks does depend on the relative visual distance between the two stocks when on the banner.

Finally, as a minor detail, in this analysis I change the definition of a co-post to deal with subtleties

of this exercise.22 The key difference is now a co-post is a mention of stocks i and j in the same

message as opposed to the same hour. I do this because I want to only look at the postings that are

relatively likely to be attributed specifically to presence on the StockTwits banner.

Moving to Table 1.7, I report four sets of columns corresponding to four empirical designs. The

first empirical design is a fraction, which describes the percentage of the day a stock is on the

board. This variable takes into account no information about the placement of the stocks relative

to one another, yet it is highly relevant in the first stage (17.64), and marginal at the 10% level in

the second stage. The coefficient of .4091 is 5 basis points larger than the OLS estimate, even in

spite of more controls. Next, I add another instrument; and the average pairwise, visual distance

22In prior analysis, I would define a co-post as an hour interval in which a user would describe a stock i and j,
whether in the same or different posts. Now, I define a co-post as a co-post in the same message. The main reason is
that as stocks may flash on or off the banner every 5 minutes, it would be less ideal to consider as a co-post any stocks
that maybe were not synchronously on the board at the same time. Under the hourly co-post definition, two stocks
need not be on the board at the same time to be influenced by the banner. The results are generally similar under either
definition, and this is actually a somewhat stingier choice.
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Table 1.7: Instrumental variable regressions at the weekly horizon using the StockTwits banner

In this table, I report results of an instrumental variable regression over the time period June 2015-March 2016, for which I have data. The instrumental
variable is based on the StockTwits "Trending" banner, which places 30 stocks at the top of the StockTwits website. The first stage dependent variable
is log(1+CopostsSameMessage

ijt ), which in this table is the number of messages about i and j across the week. The instrument is designed four different
ways. The variable FractDayOnBoard is the fraction of the day the stock pair is on the board at the same time. The variable Distance|Board is
the number of visual slots in between the stock pair when on the board. PairRank is the average position of the stock pair on the board when on the
board at the same time; a lower value indicates further to the left of the screen. When a stock pair is not on the board, its distance or rank evaluate to
the worst possible value (30). All regressions include pair-week fixed effects. Robust standard errors double clustered by pair and week are reported
in parentheses.

Instrument design is.. Fraction of Day Trending Fraction of Day Trending, Fract. Day Trending times PairRank | Board
Conditional Visual Distance Visual Distance FractDay in 2nd Stage

1st 2nd 1st 2nd 1st 2nd 1st 2nd

̂log(1+Copostsi jt ) 0.409* 0.436** 0.468** 0.884**
(0.227) (0.205) (0.220) (0.418)

FractDayOnBoardi jt 7.199*** 5.319*** 4.465*** -3.418
(0.365) (0.312) (0.312) (3.385)

Distance ∗FractdayOnBoardi jt 0.617***
(0.0370)

Distance|Board -0.008***
(0.001)

Pair Ranki jt |Board -0.0123***
(0.0007)

log(1+ postsit ) 0.128*** -0.490*** 0.1240*** -0.494*** 0.129*** -0.499*** 0.123*** -0.551***
(0.005) (0.080) (0.005) (0.083) (0.005) (0.080) (0.005) (0.106)

log(1+ posts jt ) 0.124*** -0.427*** 0.120*** -0.430*** 0.125*** -0.435*** 0.118*** -0.485***
(0.006) (0.079) (0.005) (0.082) (0.005) (0.079) (0.005) (0.104)

FE? Y es Y es Y es Y es Y es Y es Y es Y es
Controls? Y es Y es Y es Y es Y es Y es Y es Y es
F? 17.64 22.83 12.83 12.08
Num. obs. 10,009,957 10,009,957 10,009,957 10,009,957 10,009,957 10,009,957 10,009,957 10,009,957
Adj. R2 0.3705 0.1364 0.3727 0.1364 0.3691 0.1364 0.3731 0.1363

***p < 0.01, **p < 0.05, *p < 0.1
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of the stocks when on the board. The F-Stat improves significantly, and the second stage estimate

is more precise: .5113, which is now significant at the 5% level and almost at the 1% level. The

negative coefficient on distance is exactly as expected: when stock pairs are off the board, or further

apart, they are not co-posted about as often. The overidentification J-Statistic is 2.14, which does

not trigger any concerns for overidentification. For alternative specifications, I arbitrarily create a

product of the two, which I report in Columns 5 and 6. The interpretation of .6173 is plausible

as a larger distance would reduce the intensity of co-posting, while a larger exposure-time would

increase it. Thus the coefficient is positive, but smaller than in Column 1, which is sensible. This

works reliably well.

In the last two columns, I revise the assumption behind the exclusion restriction. The prior three

regressions assumed that if subject to a variety of controls, being on the board is exogenous. In

the last two specifications, I present an alternative argument. Under the assumption being on the

board is an endogenous event, where the pair is on the board is plausibly exogenous. Thus, in the

last instrumental variable design, I promote being “on the board” to the second stage. Column

7 shows that even after doing so, it appears where the stocks are on the board is relevant for co-

posting (F-stat of 12.08), within-pair, within-time, after controls. The coefficient of the time the

pair is on the board interacts with the coefficient on co-posting to enlarge it to 0.884. This large

jump is interesting because it may suggest my prior estimates about the role of social media are

underestimated. The rationale is simple. Social media posters are likely to discuss stock pairs

when their components are newsworthy. News events, all else equal, attenuate correlations, as

evidenced in Table 5. Commonalities in coverage on social media may serve to reverse this effect,

but without correcting for endogeneity, the actual point estimate may be attenuated significantly.

Accounting for such an idiosyncratic event pushes the estimated magnitude upward. This argument

is compatible with the findings of Table 5, when I find that the release of corporate news events

actually diminishes the social media-comovement relation as opposed to capturing it.

In summary, I provide a diverse set of evidence that suggests social media mediates the discus-

sions of its users. To the extent it does so, it may create commonalities in discussion across stocks,
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and this commonality attributable to social media may impact return comovement. While the

evidence is only moderately reliable, these reflect middle-of-the-road estimates, with some speci-

fications capable of bringing the result down to insignificant (always positive, but only reliable at

the 15 or 20% level), or some specifications using additional instruments bringing the power up

but increasing the risk of over-fitting (even though the overidentification J-statistic thresholds are

not triggered) or an inexplicable interpretation for certain first-stage variables.

1.7 Other tests

In this section, I perform additional tests that supplement the identification strategies presented

above. If social media indeed does cause asset price movement, in the cross-section, I should

observe larger effects based on the characteristics of posters, stocks and time-variation in investor-

reported sentiment. Finally, I explore the relation between social media activity and commonalities

in trading activity and liquidity.

1.7.1 Followership

I first decompose posters by their followership. Consistent with causality, we would expect

influential posters to have a larger coefficient on their co-postings. To perform this experiment,

every month, I split the universe into their observed followership as of the prior month. I then

perform three slices: above 500 followers, above 1000, and above the 75th percentile. Of the

followers in these two groups, I select an equal amount of posters (1/4th of the smaller group)

ranked by their posting activity.23 That is, I compare the most active posters in either group to each

other. I then aggregate their co-posts for that time period (weekly or monthly) and then horse race

these two posting counts.

Table 1.8 reports the results. Both at the weekly and monthly level, the results consistently show

that posters with greater ex-ante followings are associated with greater increases in correlation. A
23One alternative method would be to take all posters in the lower group and all posters in the higher group, but one

potential criticism might be that I am comparing the sums of different amounts of random variables, which may have
undesirable statistical properties. In particular, based on the Central Limit Theorem, this may attenuate the estimate of
the smaller group relative to the larger group.

46



Table 1.8: Do posters with more followers have greater influence?

In this table, I report panel regressions of the relation between co-posting activity and excess return correla-
tion. In this analysis, I segment posters by their ex-ante audience size, proxied for by followership. Every
month, I sort the poster universe of active posters by their end-of-month followership into two groups -
above the cross-sectional 75th percentile, above 500 followers, or above 1000 followers. Of the two groups,
I take the N most active (where N is 25% of the smaller sub-group), such that both groups are equal in the
number of social media contributors. I then calculate aggregate co-posts across these groups.

The variables of interest are the relative sizes of the two coefficients between low and high. Specifications
include firm pair - time fixed effects, and controls for returns, absoute returns, turnover and institutional co-
owners. Robust standard errors double-clustered by pair and time are reported.

1 2 3 4 5 6

log(1+Copostslow
≥75thPercentile) 0.341∗∗∗ 0.780∗∗∗

(0.067) (0.119)
log(1+Copostshigh

≥75thPercentile) 0.281∗∗∗ 0.589∗∗∗
(0.035) (0.066)

log(1+Copostslow
≥500Followers) 0.130∗∗∗ 0.190∗∗∗

(0.043) (0.072)
log(1+Copostshigh

≥500Followers) 0.217∗∗∗ 0.671∗∗∗
(0.048) (0.072)

log(1+Copostslow
≥1000Followers) 0.082∗∗ 0.227∗∗∗

(0.042) (0.071)
log(1+Copostshigh

≥1000Followers) 0.224∗∗∗ 0.606∗∗∗
(0.056) (0.082)

FE? Y es Y es Y es Y es Y es Y es
Controls? Y es Y es Y es Y es Y es Y es
Sample? Weekly Weekly Weekly Monthly Monthly Monthly
Num. obs. 43,002,446 43,002,446 43,002,446 7,064,231 7,064,231 7,064,231
Adj. R2 0.0802 0.0802 0.0802 0.0501 0.0500 0.0500
∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1

single post by a poster with more followers, otherwise equal, corresponds to a greater increase in

correlation. The raw coefficient for posters above the 75th percentile is somewhat smaller than

those below the 75th percentile, but much larger when standardized. Specifically, the above 75th

percentile group has twice the standard deviation at the monthly level, and 1.9 times the standard

deviation at the weekly level. For the 500/1000 follower splits, the standard deviations of co-

postings are very close and the coefficient differences can be interpreted as report; the effect of

high follower posters is 2-3 times larger than otherwise active, low followership posters. Taken
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together, my evidence supports the hypothesis that co-postings bear stronger relation when posters

have larger audiences.

1.7.2 Stock characteristics

I next take into consideration stock characteristics. Consistent with the notion that social me-

dia users consume social media, and trade in a manner that impacts stock returns, I expect that to

observe a greater intensive margin among stocks that are more likely to be impacted by retail or

noise traders in the sense of Llorente et al. (2002) and Baker and Wurgler (2006). In addition, I

expected a greater intensive margin among stocks that might fit into “style classes” in the sense of

Barberis and Shleifer (2003). To the extent investors search for information, and tend to acquire

information about and trade stocks within these categories, we expect social media to be particu-

larly potent within these style classes, as opposed to outside of them. I find evidence supporting

both of these hypotheses.

Table 1.9 reports the results of splitting the sample along the lines of Llorente et al. (2002). The

stocks i and j are each sorted into low, medium and high bins, creating six categories {low-low,

low-medium, low-high, medium-medium, medium-high, high-high}. The breakpoints are chosen

to minimize the concentration of the sample in any one of the six bins, although similar results are

obtained using the unconditional sample’s 33rd and 66th percentile. However, due to power issues,

certain estimates from categories, for some measures, yield unreliable point estimates. Table 1.9

suggests that the relation between co-postings and correlation is higher down the diagonal (moving

from low-low to medium-medium), or going from left to right (moving from low-low to low-

medium). Seven of these eight cases are monotonically ordered. The coefficients are such that the

lowest group by analyst coverage, (1-%Spread), ownership or market cap are two to three times

as large as for the highest group by the same measure. he general conclusion that stock pairs with

low coverage, high spreads, low market cap, and low ownership obtains. Seven of eight cases are

monotonic, and all corners (ll vs lh or hh) are well-ordered.

In robustness checks, I have also tried weekly sorts. In contrast to the monthly results, the ev-
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Table 1.9: Is there a larger effect on high arbitrage cost stocks?

In this table, I explore the hypothesis that stock pairs with low analyst coverage, institutional ownership
and market cap, or high percentage spreads, exhibit a higher relation between social media activity and
stock return correlation. I present two panels, defining social media activity differently. Panel A reports
results of regressions where social media activity is defined as co-posting. Panel B defines social media
activity as the number of socially connected pairs between two stocks posting in the same hour, as in Table
6. For each sub-panel, I sort stock legs by one of these four characteristics, defined as of either the prior
month (cap and spread), the prior quarter (ownership) or the prior year (covreage). Decile breakpoints are
chosen to minimize the Herfindahl Index between the six cells. Each regression is re-run separately with a
set of controls from the main specification in Table 4, with pair-month fixed effects. Significance is based
on robust standard errors double clustered by pair and time.

Analyst Coverage % Spread

l m h l m h

l 1.848 (***) 1.260 (***) 0.643 (***) l 0.715 (***) 0.555 (***) 0.524 (***)
m 0.967 (***) 0.636 (***) m 1.52 (***) 2.397 (***)
h 0.686 (***) h 2.783 (***)

Institutional Ownership Market capitalization

l m h l m h

l 1.675 (***) 1.115 (***) 0.985 (***) l 2.473 (***) 1.567 (***) 0.386 (***)
m 0.629 (***) 0.708 (***) m 0.906 (***) 0.545 (***)
h 0.848 (***) h 0.801 (***)
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Table 1.10: Investor style classes

In this table, I evaluate how the posting-correlation relationship when stocks are in the same "style" class. The dependent variable is FF5-residual
return correlation. This is a month-stock panel. The first column tests whether the relation between co-posting and correlation is higher within an
industry, with industry-time fixed effects. The remainder columns test whether the difference in characteristic decile abates the co-posting-return
relation. The variable of interest is the interaction term |bini − bin j | ∗ log(1+#Coposts), which takes a larger value (extreme values are 0 and 9) the
greater the difference in decile. Controls on returns, absolute returns, turnovers and above-median institutional co-owners are suppressed. Except for
column 1, pair and time fixed effects are used. Robust standard errors double-clustered by pair and date are reported.

Industry PRC MOM Value HML Invest/Asset CMA MKT BETA DIV YIELD
log(1+Copostsi jt ) 0.697∗∗∗ 0.960∗∗∗ 1.082∗∗∗ 0.759∗∗∗ 0.877∗∗∗ 1.083∗∗∗ 0.873∗∗∗ 0.910∗∗∗ 0.908∗∗∗

(0.055) (0.078) (0.092) (0.064) (0.082) (0.078) (0.084) (0.076) (0.074)
log(1+Copostsi jt ) ∗DSameFF49 0.304∗∗∗

(0.112)
|bini − bin j | −0.171∗∗∗ −0.236∗∗∗ −0.023 −0.038∗∗ 0.035∗∗ −0.037∗∗ −0.042∗ 0.010

(0.031) (0.019) (0.016) (0.018) (0.015) (0.017) (0.025) (0.015)
bini+bin j

2 −0.369∗∗∗ −0.118∗∗∗ 0.166∗∗∗ 0.008 −0.015 −0.026∗ −0.006 0.024
(0.079) (0.019) (0.055) (0.024) (0.025) (0.016) (0.019) (0.029)

|bini − bin j |log(1+Copostsi jt ) −0.064∗∗∗ −0.098∗∗∗ 0.001 −0.035∗∗ −0.114∗∗∗ −0.033∗∗ −0.060∗∗∗ −0.051∗∗∗
(0.011) (0.018) (0.011) (0.015) (0.020) (0.015) (0.021) (0.011)

Pair FE Y Y Y Y Y Y Y Y Y
Time FE Ind-Ind-Month Month Month Month Month Month Month Month Month
Controls? Y Y Y Y Y Y Y Y Y
Num. obs. 6,984,741 7,059,506 6,880,220 5,061,314 6,644,445 6,858,428 6,644,445 6,984,562 7,059,513
Adj. R2 0.071 0.051 0.052 0.051 0.052 0.051 0.052 0.051 0.051
∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1
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idence is only weakly supportive. Two of the four tabulations behave consistently: the relation

between social media activity and a stocks’ institutional ownership and market capitalization be-

have similarly to the monthly results, but sorts on percentage spread and analyst coverage do not.

What explains the difference? While my monthly results are consistent with prior literature that

measures marginal effects on daily returns, it may be that weekly results contain a certain amount

of noise, or that there is an additional confounding variable: factors we expect to impact arbitrage

costs may impact intraday price formation in a way daily returns are not affected. 24

Next, I consider style-classes. The style classes that investors use are inherently unobservable

and may potentially change over time. I conjecture a few based on prior literature. Following Bar-

beris and Shleifer (2003), I explore whether value, momentum and industry are relevant investor

classes. Interestingly, StockTwits’ “Trading Approach” field for user profiles also lists “Value” and

“Momentum” as trading styles, lending credence to this choice. I also consider stocks sorted by

other Fama-French Five Factor characteristics, and stocks by their price decile, following Green

and Hwang (2009).25 Finally, I design a dividend style class. This is based on prior work suggest-

ing that dividends are preferred by retail investors, for instance, as in Graham and Kumar (2006).

Table 1.10 reports the results for the relation between co-posting and whether stocks are in the

same style class. The analysis is at the monthly level, but all weekly results obtain. Column 1 con-

siders the style class to be the Fama French 49 industry. The baseline coefficient of 0.69689 is about

9% smaller than the baseline coefficient. When two firms are in the same industry, the coefficient

increases by 30 basis points. This coefficient is obtained controlling for industry*industry*date

fixed effects, suggesting that comovement is stronger within an industry conditional on social me-

dia posting, rather than merely coinciding with an event causing it.

For the other columns in this table, I specify characteristic differences as the difference in the

numbered decile. For example, if a stock is in the 10th decile of momentum and the other member

24A potential explanation is that the sorting characteristics, such as market cap, spreads, institutional ownership,
etc. impact the stock’s microstructure, and therefore intraday price formation, in a way daily returns are not affected.

25Green and Hwang (2009) find that low price stocks and high price stocks tend to comove more with stocks in
their respective price deciles, suggesting that investors approximate stocks’ market capitalization using their nominal
share price.
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of the pair is in the 8th decile, the difference is 2. 26 The first of these style classes I consider

is nominal share price. The remainder columns discuss the five Fama-French factors as well as

momentum. For the difference-in-decile regressions, I adopt the following specification:

ρεi jt = β1log(1+Copostsi jt )+ β2 |bini−bin j | ∗ log(1+#Coposts)+ β3 |bini−bin j |+ β4
|bini+bin j |

2 +

controlsi jt +αt +αi j +ψi jt

The estimate of β2 and β4 controls for the unconditional difference and level of stock pair

style. Column 2 shows that being in a different price decile reduces the effect of co-posting. The

coefficient suggests that a difference of 10 deciles would yield a reduction in the coefficient on

co-posting of 0.65, or 2/3rds of the unconditional effect. Similarly, for momentum, the coefficient

of 0.097 suggests that stocks in the opposite ends of the spectrum of return momentum would

have a reduction of coefficient of 90%. The next two columns report results for value stocks,

the loading on the book-to-market decile is an insignificant -0.003, but the coefficient on βH ML

decile is a statistically significant -0.039. One potential reason is that book-value, as commonly

defined in the academic literature, tends to lose a great number of observations, particularly for

growth stocks. Growth stocks might be the most affected by social media. To the extent βH ML is

correlated with value (albeit a covariance itself), it suggests that a similarity in exposure to value

amplifies the relation between social media activity and return correlation. Next, investment-to-

assets and βCM A both support the idea that investors view investment aggressiveness as a style

class. Stocks co-move more within beta and dividend deciles, as predicted. Also, in unreported

tabulations, I find that interaction terms on characteristic differences in spreads, ownership and

analyst coverage do not load negatively, which is sensible as I conjecture these are not style classes

along which investors sort stocks.

26Economically, “category” investing suggests that investors place stocks into rankings or styles and would anchor
on relative ranking. . Further, the cross-sectional dispersion of the characteristic may vary over time. I try to immunize
my results from changes in this distribution. I try a few specification checks, which yield consistent results. Instead
of defining the absolute difference in decile, I define a boolean as being at least 3 categories apart. This yields similar
and in fact somewhat stronger inferences depending on the coefficient.
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Table 1.11: Sentiment
In this table, I explore whether investor-reported sentiment affects the relation between social media activity and comovement. The outcome variable is excess
return correlations at the monthly horizon, from 2012-March2016. Of interest is the interaction of log(1+Copostsi jt ) and a sentiment measure. For the calculation
of netSent, I assign $Bullish cashtags a 1, $Bearish a negative -1, and either equal weight or weight by followership as indicated. The variable 1{Disagree} is a
measure evaluates to 1 if the net-sentiment throughout the month for stocks i and j are disagreeing in sign (one positive, the other negative). NetSent is defined the
signed log count of the absolute sentiment. For example, net -5 posts is log(1+5)*-1. The triple interaction term is such that when both netsenti and netsent j are
positive, they are in agreement. Finally, Sentit

Tagsit
is a ratio of net sentiment to the number of sentiment-related posts. Standard standard errors are double-clustered

by pair-month, with pair-month fixed effects. For brevity, unconditional sentiment is suppressed.

log(1+Copostsi jt ) 0.760∗∗∗ 0.761∗∗∗ 0.759∗∗∗ 0.767∗∗∗ 0.765∗∗∗ 0.831∗∗∗ 0.807∗∗∗
(0.056) (0.057) (0.057) (0.059) (0.062) (0.057) (0.056)

log(1+Copostsi jt ) ∗1{disagree} −0.276∗∗ −0.294∗∗∗ −0.276∗∗
(0.126) (0.111) (0.130)

log(1+Copostsi jt ) ∗ netsenti −0.010 −0.008
(0.007) (0.025)

log(1+Copostsi jt ) ∗ netsent j −0.007 −0.033
(0.009) (0.033)

log(1+Copostsi jt ) ∗ netsenti ∗ netsent j 0.003∗ −0.016
(0.002) (0.021)

log(1+Copostsi jt ) ∗ |
netSentit

tagsit
−

netSent jt
tags jt

| −0.175∗∗∗ −0.135∗∗∗

(0.040) (0.043)
FE? Y es Y es Y es Y es Y es Y es Y es
Follower-Weighted Sentiment? No Log No Log No Log No
Num. obs. 7,061,890 7,061,890 7,061,890 7,061,890 7,061,890 7,061,890 7,061,890
Adj. R2 0.05065 0.05065 0.05065 0.05065 0.05065 0.05065 0.05065
∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1
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1.7.3 Investor-reported sentiment

Next, I interact co-posting measures with sentiment, as defined by social media posters’ use of

cashtags (e.g. $Bearish or $Bullish). Sentiment is not randomly assigned, but it would be puz-

zling if the co-posting-correlation relation does not abate, or instead amplifies, when the observed

attitudes of investors about these two stocks diverges. We may expect reduced buying or even net

selling by social media consumers when pessimism occurs (although there will be gross-buying

due to disagreement or contrarian views). In general, these cases are somewhat rare; StockTwits,

at least, is generally a conduit for expressing $Bullish sentiments.

For monthly results, I report statistics based on contemporaneous sentiment reported in the same

month. For weekly, I use the sentiment calculated from the contemporaneous and prior week

sentiment. The reason is that relative to posters covering a specific topic by tagging the stock,

less 20% of these posts (7.5 million of 37 million) report a sentiment. Also, it is sensible that a

trader on StockTwits would take into account recent sentiment and not only the currently reported

sentiment.

I specify sentiment disagreement in many ways. I first describe it as a disagreement in sign -

when the net sentiment across StockTwits is positive on one stock and negative on another. Second,

I define sentiment as a triple interaction of the logged net sentiment on the stock, which is an

intensity or scale measure of disagreement. If there are five bearish tags, and 10 bullish tags, the

net sentiment is log(5+1); the converse is -1*log(5+1). Third, I define a difference in net sentiment

ratios to the number of overall sentiment posts. To calculate a ratio, I take the net-sentiment divided

by the total number of posts conveying a sentiment. Four positive posts out of five posts conveying

a sentiment would yield a ratio of .6, based on the numbers (4-1)/5. The absolute difference of these

ratios is a measure of disagreement. For these posts, sentiment is sometimes follower weighted,

equal weighted, or log follower weighted.

Table 1.11 reports the monthly results. I report only the monthly results for brevity. Seven of

eight specifications support the hypothesis that disagreement abates the posting-correlation rela-

tionship. Columns 1 through 3 reliably show that co-posting is one-third less effective when the net
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sentiment on the two stocks are both non-zero and pointing in opposite directions. In column 4, the

triple interaction term suggests that when the netSentiment is in the same direction, the co-posting

sentiment relation is amplified; conversely, when they disagree, the co-posting relationship abates.

However, the effect is economically small; the standard deviation on the netSentiment measure in

Column 4 is about 2.4, suggesting the standardized coefficient is about 5.5 times larger or 1.54

basis points. Column 5 repeats the same but is insignificant, possibly because without taking into

account the followership of the posters, the reported sentiment has no influence. Column 6 and

7 shows the impact on the co-posting relationship defining disagreement as the difference of sen-

timent ratios. The coefficients imply that maximal disagreement (fully bearish investors on one

stock, and fully bullish investors on another) would reduce the co-posting relationship by some-

where between 27-35 basis points of a roughly 82 basis point effect, similar in magnitude to the

estimate of the first three columns. Overall, at the monthly level, the net effect of posting and cor-

relation is not negative when overall sentiment is negative. Perhaps disagreement combined with

short-sale aversion may together to partially limit the clout of pessimistic investors. Specifically,

partially negative sentiment on one stock may result in reduced buying pressure as fewer people

sell than buy, but most pessimistic investors sit out if they start out with zero inventory.

I relegate the weekly analysis to the Appendix. The overall inference carries over. The posting-

correlation relationship is in fact far more economically significant, such that the effect of postings

on correlation is actually completely abated or net negative. However, the results are less reliable,

significant in half of specifications.

1.7.4 Other types of comovement

The main focus of this chapter has been return correlation, but in this section I repeat the main

result using other types of correlation: absolute returns, trading activity and liquidity. The main

goal is to augment narrative that social media causes return comovement - if social media activ-

ity relating two stocks increases return correlation, one might this to be implemented by trading

activity occurring at the same time. I also explore the implications for absolute returns and liq-
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Table 1.12: Other types of comovement

In this table, I repeat the main inference in Table 4 with correlations of alternative outcome variables. At
the monthly level, all values are based on CRSP. The Spread is the CRSP ASK field minus the CRSP BID
field. The percent spread is based on the close price. The Amihud value defaults to 0 (infinite inelasticity)
when no trading occurs, which is a very small fraction of trading days. At the weekly level, all values are
computed from half-hour bars from the Daily Trades and Quotes National Best Bid or Offer or the Trades
File. The spread is based on the half-hour end quote, the percent spread is calculated as a percentage of the
midpoint. I report robust standard errors, double-clustered by pair-time, with pair-time fixed effects.

Panel A: Monthly
ρ of ...

|retε | Turnover Volume Amihud % Spread
log(1+Copostsi jt ) 3.619∗∗∗ 5.307∗∗∗ 5.513∗∗∗ 0.590∗∗∗ 0.316∗∗∗

(0.218) (0.372) (0.373) (0.118) (0.085)
log(1+Postsit ) −0.217∗∗∗ −2.633∗∗∗ −2.569∗∗∗ −0.494∗∗∗ −0.385∗∗∗

(0.039) (0.196) (0.188) (0.090) (0.067)
log(1+Posts jt ) −0.255∗∗∗ −2.711∗∗∗ −2.634∗∗∗ −0.452∗∗∗ −0.328∗∗∗

(0.036) (0.210) (0.198) (0.102) (0.062)
Controls? Y es Y es Y es Y es Y es
FE? Y es Y es Y es Y es Y es
Num. obs. 7,059,513 7,061,401 7,061,401 7,061,401 7,061,401
Adj. R2 0.017 0.140 0.138 0.089 0.036
∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1

uidity. Under heterogeneous beliefs, comovement in absolute return correlation could conceivably

see sharper increases than comovement in returns - the impact of buy order flow is attenuated by

disagreeing investors who sell against it. We may also expect liquidity comovement as social me-

dia consumers trade heavily, taking liquidity and causing pressure in market variables. I measure

market activity by turnover and volume. I measure liquidity using the Amihud illiquidity measure,

percent spread, and order imbalance (in the case of weekly results). For this analysis, I report both

weekly and monthly results and their relation to co-posting activity. In Appendix A.5, I report the

summary statistics for all the correlation variables I use as dependent variables in Table 1.12.

Table 1.12 reports the results. Panel A reports monthly results and Panel B reports weekly

results. Turning to Panel A, column 1 reports a coefficient on absolute return comovement of 3.64.

The coefficient is four times as large as the estimate for excess return correlation, although the
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Panel B: Weekly (robustness)

ρ of ...
|retε | |OIB| Volume Amihud OIB % Spread

log(1+Copostsi jt ) 1.346∗∗∗ 0.857∗∗∗ 2.493∗∗∗ 0.256∗∗∗ 0.072 −0.289∗∗∗
(0.076) (0.100) (0.175) (0.048) (0.050) (0.089)

log(1+Postsit ) −0.118∗∗∗ −0.226∗∗∗ −2.150∗∗∗ −0.194∗∗∗ −0.089∗∗∗ −1.820∗∗∗
(0.031) (0.066) (0.068) (0.039) (0.022) (0.069)

log(1+Posts jt ) −0.089∗∗∗ −0.220∗∗∗ −2.070∗∗∗ −0.190∗∗∗ −0.090∗∗∗ −1.790∗∗∗
(0.029) (0.070) (0.070) (0.039) (0.019) (0.061)

Controls? Y es Y es Y es Y es Y es Y es
FE? Y es Y es Y es Y es Y es Y es
Num. obs. 42,933,800 42,733,126 42,733,126 42,349,034 42,733,126 42,732,462
Adj. R2 0.13 0.29 0.29 0.09 0.01 0.41
∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1

mean absolute return comovement more than two times as large. The next two volumes report

turnover and volume. The coefficients on co-posting of 5.3 and 5.51 are seven times as large as

the coefficient for raw return, but the average correlation of turnover and volume, unconditionally,

is 13.4 and 12.8 respectively, or about 12 times larger. Thus, in overall economic magnitudes, the

effect is actually somewhat smaller than the effect on returns. The final columns 4 and 5 reports

estimates for commonality in liquidity. The coefficients of 0.59 and 0.316 are positive and precisely

estimated. Taken together, it seems that social media activity also is related to commonalities in

liquidity and trading activity at the monthly level.

Panel B reports the weekly results. The inferences are similar, except the inference for liquidity

is mixed. It seems that social media activity explains commonalities in Amihud illiquidity, it

does not explain commonalities in spreads. Also, the inference for order imbalance is only weakly

positive. Regardless, the evidence strongly points toward increased commonality in market trading

during periods of social media activity, suggesting that perhaps the mechanism for social media

impacting stock return correlation is through synchronized trading.
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1.8 Conclusion

In this chapter, I show that social media activity that associates two stocks increases within-

pair, within-time excess return correlation. The baseline correlations are not obviously related to

corporate news events or industry events. To argue causality, I show that concurrent postings that

reach pre-determined larger audiences tend to comove more, both at the weekly and monthly level.

In addition, using a subset of the sample for which I continuously captured the StockTwits Trending

banner at a high frequency, I provide some evidence that social media guides poster discussion and

increases the tendency of posters to “co-post” about stocks. I then provide moderately reliable

evidence showing that instrumented co-postings also increase excess correlation. Finally, I show

that many logical corollaries of social media consumers causing comovement are consistent with

the evidence: that posters with larger followings impact markets more, that stocks with greater

susceptibility to small trader influence, or which exist in a common investing category, comove

more during social media episodes, and that sign disagreement in the sentiment of stocks abates

the observed relation between social media activity and correlation.

The magnitudes in this chapter are economically large but plausible. Israelsen (2014) reports

that a standard deviation increase in analyst common coverage increases annual comovement (of

daily returns) by about 3% - my causal estimates are about a quarter to a half in size, using a

much more conservative estimation methodology. Also, it is worth noting that StockTwits is a

market leader, but at most a large plurality in financial social media. Separate discussions held

on Twitter, Seeking Alpha, Estimize, or the smaller sites hoping to make a mark in this exciting

space, are likely dynamic and distinct from the conversations held on StockTwits.27 This suggests

the findings of this chapter are likely understated, especially as social media continues to grow.

It will be interesting to see future research utilize the fascinating institutional details of social

media to identify other causal effects. For example, it is possible social media activity changes

27As far as I know, since 2011, none of the sites are perfectly integrated, allowing posters to cross-pollinate their
content. Originally, Twitter allowed StockTwits posters to mirror their posts to both. However, they removed this
integration as StockTwits grew. When Twitter acquired Gnip, an application programming interface for serving social
data, StockTwits was removed from the menu of offered services. It is clear the two compete.
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the disclosure policy of firms who may want to capitalize on increased liquidity or, alternatively,

strategically avoid high-attention periods. Another possibility is that social media sentiment may

feed back into the real decisions of firms, particularly for consumer retail firms. And, of course, as

social media platforms begin to aggregate and classify non-textual information, social media can

increasingly advance as a window into investor beliefs and behavior. For example, some platforms

crowdsource detailed analysis of firm filings. Finally, with my current empirical design, I cannot

determine whether the influence of social media reflects a transmission of information or noise,

and as a result, I cannot make a welfare statement. However, I plan to explore this in the near

future.
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Chapter 2

Who Should Regulate Investment Advisors?

2.1 Introduction

The registered investment advisory industry is a primary conduit through which investors access

financial markets. In 2015, the industry oversaw over $66 trillion in assets. The Survey of Con-

sumer Finances suggests that 64% of all American households are a customer of some RIA. When

working for advisory firms, their representatives uphold a legally enforceable fiduciary duty to act

in a client’s best interest, as established under the Investment Advisers Act of 1940. However,

after giving advice, adviser representatives often are asked to implement their recommendations,

acting as brokers who profit through commission. Wearing these two hats creates conflicts of in-

terest widely thought to subtract from the quality of financial service, and this incentive problem

is replete throughout the industry. 28

Perhaps in large part to this incentive problem, prior research headlined by Egan et al. (2016)

document that financial advisors frequently engage in misconduct. Misconduct has direct financial

consequences on victims and also lowers general trust in the financial sector, possibly deterring

marginal savers from building wealth. One might assume that, over time, self-correcting market

forces would lead to extermination of misbehavior. However, Egan et al. (2016) argues that mar-

kets appear to tolerate misconduct, observing high recidivism and an ease of finding employment

for even those terminated for cause. That markets fail to fully self-regulate motivates a need to

understand what factors impact the quality of internal or external governance. An important lever

for governance of financial institutions is regulatory design. In this chapter, we ask whether the

scope of a regulator - whether a local or national regulator - better deters advisor misconduct.

We exploit a unique regulatory shift due to the Dodd-Frank Act to study how regulatory juris-

diction affects advisor misconduct. Assessing the importance of regulatory jurisdiction is difficult

28In 2012, various SEC documents suggest that 87% of investment adviser representatives (individuals working for
an investment advisory firm) are also registered in the capacity as a broker-dealer. In 2015, this number has climbed
well past 90%.
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as it rarely changes, and when it does, laws tend to change as well. Our setting bypasses these

standard challenges. The Dodd-Frank Act caused the SEC to transfer oversight of “mid-sized” in-

vestment advisers ($25-100 million in assets under management) from the SEC to state regulators,

except for advisers located in Wyoming and New York.29 This decision was announced on July

21, 2011 and in effect by January 1, 2012. The impetus for the shift was exogenous to mid-size

adviser behavior. The intention was to free up SEC resources so that it could increase oversight

of hedge funds and private equity firms. The size threshold was chosen out of convenience, as it

would reverse a component of the 1996 National Securities Market Investment Act (NSMIA). NS-

MIA had assigned mid-size advisers to the SEC as part of a broader effort to unify state-securities

regulations. Just over 38% of all existing SEC-registered firms were affected by this re-juridiction.

Using a differences-in-differences design, we study how a shift from SEC to state-regulator

oversight affects the probability of a customer complaint. Complaints are a good measure of ad-

viser misbehavior and better than available alternatives. Complaints are publicly disclosed and

observable for every professional in the industry. In addition, complaints are preference-adjusted;

regardless of preferences, complaints reveal the perception of substandard adviser advice. The

most obvious alternative, studying investment returns, is sparsely available, and would yield un-

suitable comparisons across clients of different preferences. Studying regulatory sanctions may

instead represent change in regulator behavior, not adviser behavior. We construct a survivorship-

bias-free panel dataset at the representative-year level. We narrow the time period to the three years

before and after the implementation of Dodd-Frank (2009-2014). We assemble this data using a

variety of regulatory disclosures made by the SEC.

Our main finding is that complaint rates increased by 50% relative to the unconditional prob-

ability of 0.8 percentage-points per year. The result is robust to a variety of sample splits: only

advisers around the $100M threshold, across-state (using only mid-sized advisers in Wyoming and

New York as the control group), within-state (excluding Wyoming and New York), and in matched

samples comparing representatives with similar complaint histories. Whatever baseline we choose,

29Wyoming had no registration requirements for investment advisers at the time and New York does not examine
investment advisers.
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the result is the same: client complaint rates increased for newly state-registered advisers after

Dodd-Frank. Visual diagnostics suggest the increase persists through 2014.

Examining the details of individual complaints, the increase in complaints seem to be advisory-

related, alleging issues such as fraud, misrepresentation, suitability, and unauthorized activity. We

find no statistically significant response in “broker-related” categories of complaints, such as as

fees and churning. This is sensible because advisory-related activities are under state or SEC

purview, which changed as a result of Dodd-Frank, whereas broker activity is FINRA-regulated,

whose jurisdiction did not change in the same way. Also, the increased incidence of complaints did

not represent frivolous charges. If anything, alleged damages rose by about $100,000 per complaint

with no significant change in outcome probabilities for the re-jurisdicted advisers, relative to the

SEC-registered advisers.

Our next analysis aims to disentangle two explanations for the observed increase in complaint

incidence. First, actual misconduct may have increased, which results naturally in more filed

complaints. Second, complaints may be more frequent because state regulators somehow elicit

more complaints. State regulators may be more attentive to mid-size firms, given mid-size firms

are the largest at the state level but the smallest at the national level. Local regulators might have

also better soft information. To distinguish these explanations, we turn to the cross-section. If

a firm is more well-regulated, and receives more complaints, this is consistent with a monitoring

story. Weaker regulation coinciding with more complaints would be consistent with our main result

reflecting increased misconduct.

A variety of cross-sectional supports increased misconduct, not better monitoring. First, if the

increase in complaints is due to better monitoring, we would expect the treatment response to

be stronger in better-equipped states with high regulator-staff-to-adviser ratios. We find instead

that the treatment effect is highest in states with the lowest ex-ante staff-to-firm ratios. Second, if

local regulators exert effort or capitalize on soft information, we expect then the treatment effect

to be highest for firms physically near by the state regulator. Instead, we find that a standard

deviation increase in distance to the regulator resulted in a 50% greater treatment response. This
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finding is robust to a variety of fixed effects that account for how distance may be correlated

to local, time-varying economic conditions around where the firm is headquartered. Third, if

regulatory dilution occurred, then the always state-registered advisers (sub $25 million in AUM)

should also respond to treatment. Indeed, we find that relative to always-SEC-registered advisers,

state-registered advisers also increase their complaint rates, although by a lower amount than the

transitioning firms.

Another possibility is that regulators were not more proactive, but customers view them as sym-

pathetic to or efficient with customer complaints. That is, a change of regulatory scope may elicit

strategic customer responses, as opposed to adviser responses. We present two tests. First, if the

increased complaint incidence represents forum-shopping, complaints should rise the most among

sophisticated clients. Instead, we find that complaints rose most for adviser representatives work-

ing in counties with less educated people, who also tend to be older. These findings are echoed at

the firm-level, where we find treatment effects were lower among firms with more sophisticated

clients. Finally, if somehow regulator or client awareness increases, the equilibrium response by

advisers with poor track records should be reduced recidivism, knowing they are at-risk to strategic

complaints. Instead, we find that representatives with more past complaints saw the greatest in-

creases in customer complaints. Our six cross-sectional tests rule out the two obvious alternatives

to a misconduct story.

Lastly, we aim to shed light on at least one possible mechanism for our findings. Some, such as

reputation or competence, are difficult to assess in the data. State budget constraints seem partly re-

sponsible for the higher misconduct. Using hand collected data, we find that on average the budget

requested by state securities departments did not respond despite significant increases in oversight

responsibilities. This fact alone works against an increased monitoring explanation. While many

states regulators explicitly mentioned additional oversight workloads due to Dodd-Frank in their

2012 budget filings, most states faced budget crises during this period due to the aftermath of the

financial crisis. Consistent with financial constraints driving regulator effectiveness, we find that

even existing state-registered advisers saw an increase in complaints, albeit smaller than the in-
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creases for those that switched from the SEC. If state monitoring ability increased or remained the

same, then misconduct by previously state-registered advisers should decrease or stay the same.

We make two contributions. First, we contribute to the literature on the optimal design of finan-

cial regulation. The paper most relevant to ours is Agarwal et al. (2014), who find that jurisdictional

changes between state and national banking regulators appears to create inconsistent implementa-

tions of banking regulation.30 Our work asserts that national regulators may be stronger, and sug-

gests at least one mechanism through which local regulators may underperform super-local ones:

a lack of local regulatory resources. This speaks more broadly to potential coordination failures

between national and state regulatory agencies. However, other mechanisms, such as institutional

human capital or reputation, are left untested by our work.

The other area we contribute to is the nascent literature in the investment adviser industry. Dim-

mock et al. (2015) study the peer effects of investment adviser fraud, after advisory firms merge.

Foerster et al. (2014) study the quality of investment adviser recommendations, finding they out-

weigh conflicts of interest in terms of costs to client net worth. Gurun et al. (2015) study the role

of trust on use of investment advisers, using the Madoff scandal as a natural experiment. Egan

et al. (2016) document widespread misconduct and recidivism in the investment adviser industry

and suggest that market incentives and firm governance alone do not seem sufficient in eliminating

misconduct, motivating a role for the regulator to investigate and publicize information to clients.

Finally, our results are also of significant interest to recent policy discussions re-evaluating Dodd-

Frank and debates on holding brokers to the controversial Department of Labor fiduciary standard.

2.2 Oversight of Investment Advisers and Broker-Dealers

2.2.1 History of Regulatory Jurisdiction

In the United States, investment advisers are regulated under the Investment Advisers Act of

1940. The legal definition of an investment adviser is broad: an adviser is “any person who, for

30Although unlike in Agarwal et al. (2014), regulatory arbitrage is less relevant in our context, as the impact of our
regulatory change is meant to be permanent, and the low lead time to implementation reduces concerns about partial
anticipation.
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compensation, engages in the business of advising others, either directly or through publications

or writings, as to the value of securities or as to the advisability of investing in, purchasing, or

selling securities, or, who for compensation and as part of a regular business, issues or promulgates

analyses or reports concerning securities”, except when “solely incidental”.31 The individuals

employed by investment adviser firms are termed investment adviser representatives. The Advisers

Act holds investment advisers to a fiduciary standard, requiring investment advisers to act in their

client’s best interests. Advisers are regulated by the SEC or state regulator depending on the

adviser’s assets under management.

In addition to providing securities advice, investment advisers may manage investment port-

folios, provide financial advice, and offer brokerage services (such as buying or selling stock or

bonds).32 Usually, an investment adviser firm has several investment companies (mutual funds,

closed-end funds, unit investment trusts, private funds) and in turn each investment company could

offer several different funds. Thus, common names for investment adviser representatives include

asset managers, investment counselors, investment managers, portfolio managers, and wealth man-

agers.

Almost 90% of investment advisers and representatives are also registered as broker-dealers

as of 2012. Brokers are not held to a fiduciary standard but rather to a “suitability” standard of

conduct. When a broker recommends buying or selling a security, the broker must consider a

client’s income and net worth, investment objectives, risk tolerance, and other security holdings.

Differences in compensation contracts between brokers and investment advisers lead to conflicts

of interest. Brokers typically receive commissions and product fees. Investment advisers typically

earn a fee based on assets under management. Clients who do not understand when their adviser

31“Solely incidental” in laymen terms is meant to construe those whose course of business contains content that
could be construed as investment advice, but not for the purpose of giving such advice. Business school professors in
finance, for instance, do not have to register as investment advisers if discussing efficient market theory or teaching
CAPM.

32

Six years prior to the Investment Advisers Act of 1940, Congress wrote into law the Securities Exchange Act of
1934, which defined a broker-dealer as “any person or company engaged in the business of buying and selling securities
on behalf of its customers, for its own account (as dealer) or both.”
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is acting as a broker or investment adviser may misinterpret the incentives driving the advice. The

overlap in roles also creates an overlap in regulatory jurisdiction. Brokers are regulated by the

Financial Industry Regulator Authority (FINRA), a self-regulating organization. The overlap is so

deep that the SEC actually depends on FINRA to maintain its data on investment advisers.

Responsibility for overseeing investment advisers has shifted between state and federal govern-

ments multiple times over the past several decades. Prior to 1992, the SEC and state regulators

had concurrent regulatory authority over the investment adviser industry. The National Securities

Markets Improvement Act of 1996 (NSMIA) folded mid-size advisers into SEC jurisdiction, as

part of a collection of efforts to integrate national securities regulations and increase the power

of the relevant national regulator. Since NSMIA circumscribed their authority, state securities

regulators have been aspiring to reclaim it. As the North American Securities Administrators As-

sociation (NASAA) Executive Director Russ Iuculano stated, “The financial catastrophe of 2008

gave NASAA a great opportunity to make its case that our system of financial services regulation

must be strengthened, but only through the combined efforts of state and federal regulators."

On July 21, 2010, on the heels of the Great Recession, President Obama signed into law the

Dodd-Frank Wall Street Reform and Consumer Protection Act. Section 410 of the Dodd-Frank

Act raised the AUM threshold for state regulation of investment advisers from $25 million to

$100 million. The primary motivation for this change was that Title IV of the Dodd-Frank Act

repealed the “private adviser” exemption, which had exempted hedge funds, private equity firms

and venture capital firms from registering with the SEC. Raising the AUM threshold freed up SEC

resources to monitor this new cohort, except where state regulators did not subject advisers to

regular examination (Wyoming, and New York, and originally Minnesota until recent regulation).

Figure 2.1, acquired from the SEC announcement, depicts the timeline of the events.

As of the time of the law’s announcement, the SEC estimated 3,200 investment advisers would

be delegated to examination by state law. In particular, 3,512 investment advisers had, as of 2011,

filed with between $25-90MM in regulatory assets under management, and about 300 would be

exempt on the basis they are either foreign advisers, or did their business principally in states where
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investment advisers are not regulated by a state agency delegated the responsibility of security

oversight.

Financial professionals registered as investment adviser representatives or broker-dealers are

generally required to maintain updates with regulators of any material event that clients or em-

ployers may find relevant. Beyond regulatory events and customer complaints, required updates

include disclosures of personal bankruptcy, civil suits, or liens on their personal assets.

Our workhorse variable will be the number of complaints initiated by customers, regardless of

their status.33 These include complaints that are in progress, settled, denied, or withdrawn. This is

different than the definition of misconduct used in Egan et al. (2016), who consider the category,

“Employment Separation After Allegations” to be part of misconduct, and ignore the category

“Customer Dispute - Denied”, as well as other customer disputes. Their purpose is to identify

misconduct of any kind, while ours is to identify misconduct specifically from the perspective of

customers. To the extent our consideration of denied complaints could drive our results, we analyze

the propensity for a complaint to be denied in Section 5.

How costly is it to file a complaint? Figure 2.3 examples the electronic procedure for filing

complaints for the state of New Jersey. Methods for other states are nearly identical. There is no

fee to file a complaint, and complaints are filed electronically. Of course, clients do incur costs in

other ways - carrying through with complaints takes time, can lead to alienating a relationship with

an existing adviser, and reclaiming damages through arbitration or settlement requires processing

fees, as well as potential legal costs.

The IAPD stores all complaints with alleged damages greater than $5,000 filed in the past 10

years. Figure 2.4 examples some complaints. All complaints contain the date received and a

current status (e.g., pending, settled, denied). Often times, the complaints will contain a product

code. For example, 20% of complaints dealt with stocks and 4% with over-the-counter securities.

The complaint data contain unstructured text detailing the nature of the allegation from the different

participants (e.g., regulator, adviser, client), as well as docket identifiers to track legal proceedings

33Customer complaints in BrokerCheck may undergo a variety of status updates. Complaints that are executed
fully are often arbitrated through FINRA’s arbitration process or processed by some other formal procedure.
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Figure 2.1: Event Timeline

Figure 2.2: Annual ADV Deregistration Filings

This graph shows that investment adviser firms de-registered from the SEC in 2012 in response to the Dodd-
Frank Act. To indicate a change in registration status (cessation, merger, or partial deregistration), firms file
a Form ADV-W. In the graph, the line “ADV-W Filings” refers to the total number of filed Form-ADV-Ws.
“Partial de-registration” presents the number of Form ADV-Ws for a partial deregistration. An optional field
in Form ADV-W allows firms to specify the reason for partial deregistration. The line (“# Mention state
de-registration”) indicates how many partial de-registrations specifically mentioned the intention to register
with state-securities regulator.
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Figure 2.3: Filing a Customer Complaint

Figure illustrates how customers file a complaint with the New Jersey Securities Regulator.
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Figure 2.4: Complaint Example & Summary Statistics

The figure shows some examples of customer complaints of varying degree. Disputes can be made against
the investment adviser firm, their representatives, or both. Disputes are automatically stored and appear on
FINRA’s BrokerCheck and the IAPD if the alleged damages are over $5,000, or if the dispute resulted in
some legal action, regardless of legal outcome.

related to a case.

2.3 Data & Methodology

2.3.1 Data collection

Data for this study comes from Form ADV filings filed via the Investment Adviser Registration

Depository (IAPD) with the appropriate SEC or state-securities regulator. Using the Freedom of

Information Act, we obtained the universe of Form ADV filings from 2000-2015. We identify firms

that switched from SEC oversight to state oversight in 2012 using Form ADV-W, which indicates

a partial deregistration with the SEC.

We also retrieve the disclosure histories of investment adviser representatives from the IAPD

and FINRA’s BrokerCheck databases. Both filings to the SEC and FINRA are stored in the Central

Repository Deposit (CRD) database. The close relation between the SEC and FINRA also allowed

linking SEC Filings to FINRA BrokerCheck data through unique CRD identifiers. Both individuals

and firms are given unique CRD numbers. The difference between the two sources is that about

70,000 investment adviser representatives never registered as brokers and are thus not in FINRA’s
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database.34 Because there may also be reporting differences between the two sources, we merge

complaint information from both the IAPD and FINRA BrokerCheck. To obtain detailed complaint

information, we use a web-scraper that takes a representative’s CRD number and queries the IAPD

website. We query all CRD numbers between 1 and 10 million. We then download the detailed

reports in PDF form and extract text using open-source software Tabula and Poppler.

2.3.2 Sample Construction

We develop a data set where for each person-year we have the employing firm, complaints re-

ceived, and relevant individual characteristics. We match representatives to firms using each firm’s

unique CRD number, an internal identifier used by NASD/FINRA and securities regulators. In

each representative’s detailed reports from the IAPD, we see the representative’s full employment

history at the branch level, including start and end dates.35 The IAPD tracks data for any person

employed within the last 10 years.

The resulting sample is an annual panel consisting of individual CRDs and firm CRDs, and

the branch location worked at while the individual was there. We also observe other individual

characteristics, such as professional designations and exams passed (Series 66, Series 63, Series

65). The final data we extract is on disclosures. These include customer complaints, criminal

actions, regulatory actions, litigation, terminations, civil suits and other financial matters such as

liens that might be pertinent to an adviser’s ability to manage money. We extract all fields and

normalize across complaint types. The two difficulties are that the field names and data are hand-

entered and therefore must be cleaned, and that the different disclosure types have different names

for what is effectively the same field (date litigation filed, date complaint received). After this
34On the other hand, approximately 700,000 brokers do not register as investment advisers representatives.
35This section is apparently maintained by hand, as sometimes branch locations are misspelled (ATALANTA, ATL-

NTA, representing ATLANTA, for example). We normalize the names and remain conservative in lumping branches
together. For our analyses, this is a conservative approach because an extra branch fixed effect would simply chip
away from our point estimates of interest. The second unrelated data issue is that in less than 0.25% of individual
years, advisers belong to more than two firms (one they are leaving, one they are going to), owing evidently to cases
where the firm has multiple CRD numbers assigned. These cases are rare in the data. In these cases, we defer to the
first method, which assigns individuals to one firm at a point in time, or assign the individual to the firm CRD most
commonly seen in the sample.
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process, we extract the disclosure and assign a date to it. Similar to prior literature, we assign

a complaint to the year in which it was officially received by the CRD. If an individual did not

receive a complaint, they are assigned a 0 for that year. We drop about 7% of disclosures that do

not include the date received.

2.3.3 Methodology

We hypothesize that a regulator’s monitoring capability acts as a deterrent to misconduct. The

ability to monitor depends on the resources of the regulator. One might assume that the SEC, as the

incumbent regulator for larger firms, attracts higher-human-capital staff and has more experience

auditing more complex and larger firms. In contrast, state regulators may have a local information

advantage. However, having not monitored mid-size advisers for 15 years, state regulators had

a lot to learn about their local mid-size advisers. Our empirical study identifies the average net

impact of these potential effects.

The empirical specification takes the form:

Complaintit = α+ β1Treated+ β2Post2012+ β3Post2012×Treated+ εit

where the coefficient of interest is β3. We perform difference-in-difference analyses using two

methods. The first is an annual panel, and the second is a collapsed-three-year window approach

in the manner of Bertrand et al. (2004). We pick a three-year window around 2012 because com-

plaints may not be filed immediately when the misbehavior happens. Thus, examining complaints

filed during the three-year period gives us more power.36 Clients have 6 years from misdeed to file.

The trade-off between the two methods is that the collapsed window approach has the advantage

that serial correlation of residuals do not mislead inferences, while the annual approach mitigates

the issue of parallel trends or capturing some other event. Also, since individuals may move across

36 Shortening the window to 2 years results in qualitatively similar inferences.
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firms, annual panel estimates mitigate this issue.

The initial outcome variable is the probability of receiving a complaint - the extensive margin

incidence of complaints. We also examine the intensive margin by examining the Act’s effect

on (1) the log count of complaints, or (2) the log(amount of alleged damages). However, not all

complaints seek alleged damages (or the field is not properly populated by the record-keeping

agent). Our outcome variable differs from Egan et al. (2016) in that we look for complaints,

regardless of outcome, whereas they look at complaints that resulted in sanctions and terminations.

Our measure is different because terminations may be initiated by the regulator or the firm, and

confound our interpretation.

Our main specification will be within-firm, within-period. In the annual panel, this means in-

cluding year fixed effects. We cluster standard errors at the state level as each state may have im-

plemented the regulation differently and residuals may be correlated within a state, but are likely

independent across states. We also clustered at the firm level, and sometimes results improved

slightly and sometimes results worsened slightly.

2.3.4 Identifying Treatment and Control Groups

We label firms as “Treated” if their 2011 assets under management are below $100 million,

they file a Form ADV-W indicating partial de-registration (full de-registration implies a business

cessation or change of ownership), and they are located in the affected states (all but New York

and Wyoming). Our criteria likely capture the vast majority of firms actually affected by the re-

jurisdiction. When discussing the regulation change in early 2011, the SEC projected around 3,200

firms would be affected. We find 2,316 firms. This smaller treatment sample is likely due to the bull

market in equities that increased adviser’s AUM. Consistent with this story, an article discussing

the event suggests the SEC reports “over 2,300” firms made the switch through October 201237.

Figure 2.2 shows that in 2012, there was a large increase in Form ADV filings. Clear from the

37See https://www.law360.com/securities/articles/388275/sec-counts-1-500-fund-advisors-registered-under-dodd-
frank
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figure is that, an increase in ADV-W filings drove the spike. To the extent some firms strategically

relocate to avoid regulation, this would attenuate our estimates because these advisers are likely

ones with higher misconduct records. However, strategically relocating is very costly given the

changing client bases, since mid-sized advisers must register with any state in which they have

business activity.

2.3.5 Summary Statistics

Table 2.1 displays the breakdown of observation counts for various subsets of the data. Across

all person-years available in the data, we have 4.6 million observations, winnowed to 3.1 million

for the 10-year period ending in 2016. This corresponds to 492,841 unique individuals and 30,579

unique firms in the IAPD database. The number of unique firms in the SEC data set through 2015

is 6,235, suggesting there are 24,000 firms that were never registered under the SEC. There are

1,791,522 person-year observations across SEC and state-registered advisers. Among the set of

individuals working at once-SEC-registered firms available in the sample at the end of 2014, the

number is 1.29 million person-year observations, corresponding to 382,000 observations in the

two-period sample.38

Table 2.2 presents summary statistics at the firm level. The number of treated firms and untreated

firms is 2,316 and 3,910 respectively, which suggests that the change impacted more than 1/3rd

of investment adviser firms. Percentile-size differences are imposed by the Act’s cutoff of $100

million. Along several dimensions, treated and untreated firms are similar. Both have similar

levels of investment discretion and proprietary conflicts of interest.39 However, compared to non-

treated firms, treated firms are less likely to have custody of assets, less subject to independent

audits, less likely to be private funds, less likely to recommend an external broker, and more

likely to serve individuals and unsophisticated individuals. These compositional differences in
38Conditional on getting a complaint, treated adviser representatives are not any likelier to leave the industry the

next year. However, they are more likely to leave in the same year. Our recidivism findings suggest that this exit would
bias our estimate of interest downwards. Finally, treated firms are not any likelier to shut down than untreated firms
controlling for size. However, this does not take into account labor market mobility.

39Potential proprietary conflicts of interests arise when an adviser’s and clients’ trading incentives may differ.
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Table 2.1: Observation counts

The table below shows summary statistics of our data constructed by merging the universe of firms’ Form
ADV filings and the universe of individual adviser representative reports to create a survivorship bias free
data set.

Sample N
# Unique representative CRDs in IAPD 492,841
# Unique firm CRDs in IAPD 30,579
# Unique CRDs in SEC Form ADV 6,235
# Firm-year observations in IAPD 4,623,292
# Obs (2009-2014) 1,791,522
# Obs (Annual Sample) 1,290,043
# Obs (Three-year-treatment window) 382,665
# Firms treated 2,316
# Individuals treated 23,547
# Individual-year treated 129,171
# Always State-registered firms 17,821
# Always State-registered individuals 97,264

firm characteristics also justify the use of firm fixed effects. In some specifications, we go further

to also include individual fixed effects. To further ease this concern, we also construct a matched

sample comparison designed to maximize the similarity between individuals in each group to guard

against any potential bias these observed differences may create.

Table 2.3 presents information on complaints before and after the Dodd-Frank Act. Panel A

summarizes the probability of complaints and the dollar-value of alleged damages. The average

probability of receiving a complaint in a given year is 1.25%. The complaint probability rises

in bad times and declines in good times, evidenced by the drop in complaint rates from 1.63%

immediately following the financial crisis, 2009-2012, to 0.85% during 2012-2015. Conditional

on having alleged damages, the dollar amount of a complaint is significant with an average over

$200,000. Finally, the sample split shows that in the pre-period, both complaint rates and alleged

damages were higher. We confirm that both groups have similar pre-trends visually (see Figure

2.5) and empirically in several ways.

Although not all complaints are arbitrated, they still reveal misconduct. Around a third of com-
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Table 2.2: Firm Summary Statistics

The table provides summary statistics for investment adviser firms. All summary statistics are reported for
the Form ADV filing for 2011. Firms check whether they have have any custody over assets, independent
audits, specific incentive structures, and their client compositions. They also report the fraction of assets
that they have custody over.

Total Untreated Treated
N with non-missing AUM 6,226 3,910 2,316

Assets:
AUM 10th Percentile 35 103 30
AUM 25th Percentile 57 143 39
AUM 50th Percentile 128 295 53
AUM 75th Percentile 422 882 72
AUM 90th Percentile 1,841 4,090 89

Fraction of AUM with Custody (%) 7 6 14
Fraction of RIAs with Custody (%) 18 24 8

Fraction with Independent Audits (%) 21 29 9

Incentive Structure:
Private Fund (%) 26 32 15

Other Business (%) 16 15 18
Other Business is Main Business (%) 5 5 6

Recommends a Broker (%) 64 68 58
Have Proprietary Conflicts of Interest (%) 87 88 86

Have Sales Conflicts of Interest (%) 20 27 10
Have Investment Discretion (%) 93 94 90

Client Composition:
Individuals (%) 69 66 75

Unsophisticated Individuals (%) 35 29 45
Institutions (%) 43 47 36
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Table 2.3: Summary Statistics around Dodd-Frank
Panel A: The table below shows summary statistics for complaints in the pre- and post-treatment periods.

Complaints are filed ]] against investment adviser representatives and employers, and may contain
additional details such as alleged damages, associated products, complaint type, and outcomes.
Observations are at the investment adviser representative-year level. There are less than 6,587 total firms in
either the pre- or post-treatment period because firms leave the sample for reasons other than switching to
file with the state.

Pre-Period: 2009 - 2012 Post-Period: 2012 - 2015
Total Untreated Treated Total Untreated Treated

Complaints:
P(complaints) (%) 1.63 1.65 1.05 0.85 0.85 0.80

Complaints with Details (%) 99 99 100 99 99 99

Complaint Outcomes:
Withdrawn (%) 52 53 42 50 50 38

Settled (%) 33 33 31 28 28 31
Award or Arbitration (%) 6 6 8 4 4 5

Alleged Damages ($) 262,898 265,353 170,942 201,644 203,387 153,979
Time to Resolution (days) 155 155 154 117 117 128

Panel B: The below table breaks down complaints with details into those associated different products and
complaint types. Complaint types are codified directly by the IAPD to classify complaints. Both the types
of complaints and the products are not mutually exclusive. Customers may file complaints of multiple types,
associated with multiple products.

Product Type
Number % of Total Number % of Total

Annuity 7,122 28.32 Suitability 9,955 39.58
Variable Annuity 6,498 25.84 Misrepresentation 8,620 34.27
Mutual Fund 5,371 21.36 Fiduciary 1,943 7.73
Equity 5,040 20.04 Unauthorized Trading 1,827 7.26
Insurance 2,108 8.38 Fraud 1,484 5.90
Debt 2,051 8.16 Fees 1,306 5.19
Real Estate 1,941 7.72 Portfolio Allocation 669 2.66
OTC 1,105 4.39 Churning 567 2.25
Options 591 2.35
Fixed Annuity 578 2.30
Private Placements 409 1.63

plaints are settled and 5-8% of complaints result in arbitration or restitution. Panel B in Table

2.3 presents complaints by product and allegation type. In terms of product, complaints most fre-
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quently involve annuities, mainly variable annuities, mutual funds, and equities. These are areas in

which a financial adviser may be most useful. Mutual funds and annuities are products that require

sophistication to navigate the large product space, while equities are highly informationally sensi-

tive. In terms of allegation types, the most common complaints are for misrepresentation and lack

of suitability. These standards are typically also standards against which brokers are held, but most

advisers are brokers leading to an interpretation of the standards as violations of the more-stringent

fiduciary standards. The explicit word “fiduciary” is present in about 7% of complaints, suggest-

ing the client is alleging a violation of a broad fiduciary standard. The fourth largest category is

“un-authorized”, also at around 7%, suggesting the adviser made a trade that the client did not

authorize. There are relatively fewer complaints alleging “churning” and “fees,” which are broker

related, because FINRA oversees brokers and FINRA was unaffected by the treatment.

2.4 Results

2.4.1 Complaint Incidence

Our baseline results in Table 2.4 compares the complaint rate for representatives at firms that

switched from SEC to state-regulator oversight (Treated) to those at firms that remain registered

with the SEC (Control). Regression (2) shows that the complaint rate for the treated group in-

creased 50%, or 1.8 percentage-points, relative to the untreated group. This percentage is the

probability of receiving a complaint in the next 3 years after 2012 - the treatment year. Regres-

sion (1) uses an annual panel and finds a 0.5-percentage-points increase in the complaint rate for

the treated group, which is around 1/3 of the three-year effect in regression (2). The estimated

treatment effect is stable across all specifications. Even in regression (5), in which we add firm

and individual fixed effects, the increase in the complaint rate is 1.8 percentage-points. The results

are similarly stable in regressions (6) to (9), which uses a log transformation of the number of

complaints a representative receives in the three years pre- and post-2012.
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Although our baseline results are significant and persistent, we run tests to confirm that the con-

trol group is valid. The concern is that larger investment advisers (Control) may not be comparable

to smaller advisers (Treated), since larger advisers may engage in different business practices with

different clienteles. Also, it may be possible that a positive estimate on Post2012×Treated comes

from a falling number of complaints for the control group rather than a rise in the complaints for

the treated advisers. While firm and individual fixed effects remove unconditional differences be-

tween the treatment and control groups, the fixed effects do not completely rule out the concern

that the treatment and control groups have different exposures to market conditions.

To mitigate these concerns, Table 2.5 considers a variety of robustness checks. First, in re-

gression (3), we repeat the analysis comparing untreated-mid-size advisers headquartered in New

York and Wyoming with treated-mid-size advisers. This test resolves concerns that compositional

differences in advisers across mid-size and large-size advisers drive the results. For the second

test, in regression (2), we exclude mid-size advisers headquartered in New York and Wyoming

and only compare treated mid-size firms to untreated-large-size firms. This test ensures that com-

positional differences between treated-mid-size advisers and advisers in New York and Wyoming

are not driving the results. In both the first and second tests, the response of advisers to treatment

is remarkably similar - a 1.6-percentage-point increase for treated advisers relative to the control

group. For the third test, we ensure that the results are not driven by outliers, removing California

from the treatment group (the state with the largest number of advisers). In this case, we see an

even larger treatment effect of a 4-percentage-point increase compared to the baseline of 1.8 per-

centage points. We also run a placebo test in regression (4), in which we define the treatment year

as 2005. The placebo shows no statistically significant results and the point estimate is negative.

Another concern is a violation of the parallel trends assumption. To resolve this concern, we

repeat the analysis using matched samples. For each representative treated in 2012, we find a

matching representative. The first match in regression (5) requires that representatives have the

same complaint history in the three-year window 2009 to 2011. Specifically, they are matched on

their total cumulative complaint count, and whether they received a complaint in 2009, 2010 and
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Table 2.4: Baseline Results

The table below shows the difference-in-difference estimates of the impact of switching from SEC to state
registration on the propensity to receive a complaint. The sample is investment adviser representatives
working at firms under SEC oversight (firms filing ADV to the SEC) in 2011. The first three columns present
annual, person-year panels while the second three collapse three year period around 2012 as suggested by
Bertrand et al. (2004). In the latter, all individuals must work the entire three year period to be considered.
The dependent variable is the percent receiving a complaint. Robust standard errors clustered by state are
presented.

Dependent variable: 1{Complaintt }*100

(1) (2) (3) (4) (5) (6)
Sample Annual sample Pre-post Sample
Constant 1.266∗∗∗ 3.693∗∗∗

(0.168) (0.479)
Post2012 −0.802∗∗∗ -2.310∗∗∗

(0.088) (0.243)
Treated −0.466∗∗∗ -1.760∗∗∗

(0.171) (0.468)
Post2012×Treated 0.529∗∗∗ 0.544∗∗∗ 0.574∗∗∗ 1.841∗∗∗ 1.764∗∗∗ 1.653∗∗∗

(0.161) (0.143) (0.164) (0.446) (0.431) (0.726)

Fixed Effects Firm + Year
Firm + Year

Firm
Firm + Year

+Individual +Individual
Observations 1,299,819 1,299,819 1,299,819 382,665 382,665 382,665
R2 0.003 0.011 0.252 0.007 0.024 0.628
Adjusted R2 0.003 0.007 0.045 0.007 0.009 0.018

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 2.5: Robustness: Alternative Comparison Groups

The table below shows alternative specifications. Column 1 removes California, which is home to the highest number of investment advisers.
Column 2 excludes New York and Wyoming because advisers in these two states stayed with the SEC. Column 3 removes any adviser with over
$100 million of assets under management, forcing the control group to be other mid-size advisers in New York and Wyoming. Column 4 presents a
placebo estimate defining the treatment year as 2005. Column 5 presents a matched sample exercise, where we find matches with replacement from
the same state, with the same 3 year complaint count, and the same pre-trend (whether they received complaints in 2009, 2010, 2011). Finally, they
are propensity score matched in the post period as working for a firm with the same probability of being treated. Column 6 is an alternative matched
sample, relaxing the constraint that the individual comes from the same state. The unit of observation is at an individual level, in a 3 year window
around the implementation of state registration. Robust standard errors clustered by state are presented in the OLS samples. Standard errors for the
matched samples are clustered at the level of match pair following the recommendation of Abadie and Spiess (2016a).

Dependent variable: 1{Complaintt }*100
(1) (2) (3) (4) (5) (6)

Sample: Exclude CA Exclude NY/WY ≤100 MM Placebo Match 1 Match 2
Post2012 −1.973∗∗∗ −1.954∗∗∗ −4.433∗∗∗ 0.980 −1.648∗∗∗ −1.978∗∗∗

(0.391) (0.477) (1.161) (1.212) (0.162) (0.175)
Post2012×Treated 1.776∗∗ 1.634∗∗ 4.084∗∗∗ −1.218 1.807∗∗∗ 1.729∗∗∗

(0.764) (0.809) (1.193) (1.342) (0.200) (0.213)
Fixed Effects Firm + Individual Firm + Individual Firm + Individual Firm + Individual Firm + Individual Firm + Individual
Observations 362,982 277,158 20,065 225,434 107,240 108,810
R2 0.631 0.648 0.727 0.659 0.651 0.655
Adjusted R2 0.046 0.071 0.151 −0.020 0.570 0.675

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Dependent variable: Pr (Complaintt )

Figure 2.5: Parallel Trends
Figure shows trends in complaint rates for advisers registered with the SEC from 2009 to 2014 (baseline)
with those advisers who switched from SEC to state regulation in 2012 (treated). The baseline group is
formed based on a matched sample, forcing similar complaint rates in 2009 and 2010 and requiring advisers
be in the same state. No complaint matching is done on 2011 data. The trend from 2010 to 2011 is parallel
consistent with parallel trends but then diverges on treatment in 2012, when Dodd-Frank shifts oversight of
mid-size ($25-$100M assets under management) advisers to state regulators.

2011. Representatives also have to operate in the same state and work at a firm with the same

propensity of being treated, determined by a vector of firm characteristics. The matched sample

regressions lead to a similar estimate of the treatment effect of 1.8-percentage-points. Regression

(6) requires exact matches on year-by-year complaint counts pre-treatment and also confirms the

estimate of the treatment effect. It relaxes the assumption of requiring firms to be from the same

state. Figure 2.5 shows a parallel trend graph suggesting no violation in trends. For the graph,

we matched advisers only on complaints in 2009 and 2010. Evidence in the graph, the matched

samples have identical trends in 2011 and divergent trends on treatment in 2012.40

We also use a regression discontinuity design and find confirming results in bands around $100

40In addition to the two main matching algorithms, we also considered other variants: using the same number of
complaints total in history (instead of the pre-period), and forcing the same complaint count every year in the pre-
period. All variants produce very similar results that are sometimes stronger. Other restrictions such as forcing zero
complaints in the pre-period provide a directionally similar estimate. We also tried matching without replacement,
achieving very similar magnitudes.
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Table 2.6: Different AUM cutoffs

This table presents the main result using different AUM cutoffs. Firms with 2011 AUM above the stated amount are excluded, such that the control
group is all untreated firms below the indicated AUM level. Cluster robust standard errors are clustered at the state level.

Dependent variable: 1{Complaintt }×100
(1) (2) (3) (4) (5) (6) (7) (8)

AUM Cutoff = 100MM 150MM 200MM 250MM 300MM 350MM 400MM 450MM
Past×Treated 1.337*** 0.823*** 0.698** 0.640*** 0.491** 0.479** 0.469** 0.444**

(0.217) (0.294) (0.272) (0.236) (0.247) (0.218) (0.214) (0.210)
Fixed Effects Firm+Year+ Firm+Year+ Firm+Year+ Firm+Year+ Firm+Year+ Firm+Year+ Firm+Year+ Firm+Year+

Individual Individual Individual Individual Individual Individual Individual Individual
Observations 66,960 87,047 102,216 113,765 126,390 143,501 153,038 159,435
R2 0.344 0.353 0.353 0.351 0.349 0.341 0.342 0.341
Adjusted R2 0.053 0.069 0.075 0.074 0.076 0.071 0.075 0.076

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.0183



million. However, the results are more noisy, trading off the closeness to the discontinuity threshold

with the number of observations. Contributing to the lack to stability is that the density of firms

immediately around the cutoff is low.41 Also, the discontinuity is not precise as advisers registered

with the SEC do not need to de-register unless assets fall under $90 million while newly registering

advisers have to be above $100 million to register with the SEC. However, our difference-in-

difference test can be performed in a narrower window around the $100 million cutoff. Table

2.6 presents the results. Sensibly, the point estimate is smaller moving further away from the

cutoff. Interestingly, although the results become moderately less precise as we move away from

the cutoff, double-clustering actually improves our results. However, we report single clustered

results to remain consistent.

Taken together, we argue we have a robust finding: switching to state regulation resulted in a

larger number of complaints for affected investment advisers. Additional robustness checks can be

found in the Appendix.

2.4.2 Types of Complaints

The increase in complaints for treated representatives is mostly fiduciary-related, rather than

broker-related. We expect this differential response in complaints because FINRA oversees brokers

and FINRA was not affected by the treatment in 2012. Consistent with this logic, we find no

significant increase in complaints related to churn (excessive trading), a broker-related misconduct.

In contrast, fiduciary and unauthorized trading activity differentially increased after treatment.

The differential increase in complaints for the treated advisers is concentrated among options,

equity, real estate, and private placements. The increase in complaints precipitates among equities

and options, which are risky, complex and informationally sensitive assets that likely require the

assistance of a financial adviser. We see null results for private placements, capturing activity with

sophisticated clients (by the current legal definition, which is based on income and net worth), who

at the margin are likelier to be able to govern their adviser. Annuities also yield a similarly null

41For example, firms are not required to report assets under management down to the dollar.
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result, as annuities are buy-and-hold products and there is less ongoing involvement by an adviser

or adviser representative advising a client after origination and sale.

2.4.3 Recidivism

We find that representatives most likely to take advantage of a weaker regulator do. The first test

shows that regulators with greater histories of misconduct responded the most to treatment:

Complainti = α+ β1PastComplaint
i + β2Treated+ β3PastComplaint

i ×Treated+ εit .

Controlling for the unconditional recidivism rate, we test whether those with past complaints had

a larger treatment effect after the re-jurisdiction. Table 2.8 reports the results. Past history can be

defined using the number of complaints log
(
1+#Complaints

)
, having a complaint 1{Complaints},

or the number of complaints relative to the expected number of complaints based on characteristics

of the advisory firm, εComplaints
t .42 Some specifications control for firm fixed effects, which con-

trols for firm characteristics that predispose the representative to conflicts-of-interest and controls

for selection into bad firms.

Table 2.8 regression (1) shows that representatives that had a complaint during 2009 to 2011

were 9.4% more likely to have a complaint in 2012 to 2015. The unconditional recidivism we

observe is in line with Egan et al. (2016). For representatives at firms that switched to state regu-

lation from SEC oversight, the probability of receiving a complaint during 2012 to 2015 increased

7.2% more, a 77% increase over the control group. In regression (2), we add firm fixed effects and

find very similar results, suggesting that representatives that misbehaved more at a specific firm

also responded more to the treatment than other representatives at the same firm. In regression (3),

we limit the sample to only mid-size advisers to compare treated mid-size advisers to untreated

mid-size advisers located in Wyoming and New York. We find directionally similar results and

42The benchmark is a number of Form ADV characteristics indicating conflicts of interest and assets under man-
agement, plus state fixed effects. The residual comprises excess complaint variation not attributable to the firm or
state.
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the treatment response is even stronger.43 Regressions (5) and (6) do tests using the number of

complaints in the past and future and show that representatives that misbehaved relatively more

also responded relatively more. Regressions (7) to (9) show a similar result but compare a repre-

sentative’s misbehavior to predicted misbehavior using firm and state characteristics.

2.5 Misconduct or Reporting?

We now examine whether the increase in complaints is due to more misconduct or reporting. The

number of observed complaints is a function of actual misconduct and the probability of detection

as well as the probability of a mistaken complaint and the amount of legitimate advisory activity:

Complaints = Pr (Detection)×Misconduct +Pr (False Positive)×Normal Activity.

Changes to the probability of detection of misconduct, would generate an increase in observed

complaints. Also, if customers are more likely to file frivolous complaints, observed complaints

would rise. Any combination of the two could generate the increase in complaints without any

changes in misconduct. In order to distinguish between alternative driving forces behind the higher

complaints, we rely on cross sectional tests.

2.5.1 Serious Complaints

If filing a complaint with a state regulator is perceived as less costly than filing a complaint

with the SEC, then the increase in complaints for treated advisers may be due to more relatively

less-severe complaints. However, there is nothing about the process of filing a complaint that

suggests filing with a state regulator is less costly than filing with the SEC. Both venues allow

online form submissions. To determine whether the increase in complaints is driven by more

relatively-less-severe complaints, we analyze whether the dollar value of alleged damages and

resolution outcomes are related to the treatment.

43The results presented here winsorize past complaints. In some rare cases, past complaints total several dozens,
reflecting the same complaint from multiple clients in a group-action type filing. These outliers attenuate our results
rendering some results less precise (dropping results at the 5% level to the 10% level).
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Table 2.8: The Effect of Regulatory Jurisdiction on Recidivism

This table presents a cross-sectional test of complaints received in the 2012-2014 period. The variable of interest is Past ×Treated, which is the
interaction term between a variable describing the individual’s past complaint history. Also of interest is the unconditional recidivism term, Past,
which measures the amount of recidivism for complaints over the sample period. The measures of past activity include whether the individual has
received a complaint before 1{Past Complaints≥0}, the log number of complaints log (1+#Past Complaints), and the residual number of complaints
εPast . The latter is the residual of a regression based on a benchmark based on the characteristics of firms in which the individual worked in the past.
Robust standard errors clustered by state are shown in parentheses.

Dependent variable: 1{Complaintt }×100
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Past Measure = 1{Past Complaints≥0} log(1+ # Past Complaints) εPast

Constant 2.409∗∗∗ 1.402∗∗∗ 1.380∗∗∗

(0.037) (0.232) (0.053)
Past 9.346∗∗∗ 8.658∗∗∗ 4.800∗∗ 4.752∗∗ 12.139∗∗∗ 6.658∗ 30.206∗∗∗ 27.841∗∗∗ 15.885∗∗

(0.367) (0.369) (2.137) (2.370) (0.533) (3.413) (1.095) (1.181) (7.567)
Treated −0.023 1.032∗∗∗ −0.269

(0.187) (0.298) (0.253)
Past×Treated 7.145∗∗∗ 4.820∗ 11.390∗∗∗ 8.465∗∗ 7.114∗∗ 12.139∗∗ 19.907∗∗∗ 15.581∗ 27.003∗∗

(2.514) (2.513) (3.277) (3.637) (3.626) (5.243) (6.944) (7.963) (11.622)
Fixed Effects Firm Firm Firm Firm Firm Firm
Sample Full Full ≤100 MM ≤100 MM Full ≤100 MM Full Full ≤100 MM
Observations 183,423 183,423 9,723 9,723 183,423 9,723 183,423 183,423 9,723
R2 0.014 0.038 0.028 0.185 0.040 0.186 0.016 0.038 0.185
Adjusted R2 0.014 0.009 0.027 −0.034 0.010 −0.033 0.016 0.009 −0.034

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 2.9 shows that the dollar value of alleged damages increases by between $103,000 to

$105,000 for the treatment group. When including time trends in overall complaints and firm-

specific complaints, complaints had $105,678 more alleged damages. If complaints become more

frivolous, the average alleged dollar value of damages for complaints should be lower for the

treatment group when Dodd-Frank comes into effect. This is not supported by the data. If anything,

damages increase. It could be, however, that these complaints with higher-alleged damages are also

less-well founded and thus more likely to be dismissed. Panel B of Table 2.10 suggests otherwise.

Looking at whether complaints later get withdrawn or closed with no action, regressions 1 and 2

show a negative, but statistically insignificant, coefficient on the interaction term. This suggests

that the withdrawal rate did not change. If anything, it decreased. Regression 3 and 4 show that

follow-up legal outcomes did not change. When complaints were not withdrawn, or closed with no

action, or settled with no admission of guilt, they were not more likely to be denied in arbitration.

The nature of complaints do not seem to be materially different than before. Regressions 1 and

2 in Panel A of Table 2.10 show that complaints did not take longer to resolve. Regressions 3

and 4 focuses on differences in arbitration settlement amounts as a proportion of dollars of alleged

damages (e.g., a $25,000 arbitration award based on $100,000 alleged damages is a settlement ratio

of 25%). If claims were less well founded, then settlement amounts should also decline relative to

alleged damages. Instead, regressions (4) to (6) show that the settlement amounts do not decrease

but if anything seem to increase for complaints against treated advisers. However, if complaints

were less serious, the average time to resolution should decrease, and regressions (1) to (3) are

consistent with the time to resolution decreasing.

Altogether, there is no significant evidence that the complaints filed against treated advisers

became less severe. Complaints had higher alleged damages, but were not more or less likely to be

withdrawn, dismissed, or denied in arbitration. Therefore, the higher incidence of complaints are

not driven only by more frivolous complaints.
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Table 2.9: Alleged Damages Analysis

The table below shows results for alleged damages for client complaints. Alleged damages are in dollars.
Observations are at the investment adviser representative by year level. Robust standard errors clustered by
firm headquarter state are shown in parentheses.

Dependent Variable: Alleged Damages
(1) (2)

Post2012 −117,933.90∗∗∗

(33,218.34)
Post2012×Treated 103,542.90∗∗∗ 105,678.40∗∗

(44,645.19) (53,032.42)
Fixed Effects Firm Firm + Year
Observations 33,992 33,992
R2 0.009 0.010

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 2.10: Complaint Noise-to-Signal Ratio

Panel A: The table below shows results for time to resolution and the monetary compensation relative to
alleged damages for customer complaints. Observations are at the investment adviser representative by year
level. Robust standard errors clustered by IAR state are shown in parentheses.

(1) (2) (3) (4)
Dependent Variable: Time to Resolution $ Award Amount

$ Alleged Damages

Post2012 −40.776∗∗ −6.085
(18.701) (4.776)

Post2012×Treated −7.625 −24.509 5.856 4.259
(38.104) (41.021) (4.776) (3.687)

ln
(
$Alleged Damages

)
2.718∗∗ 1.565∗∗∗

(0.340) (0.808)
Fixed Effect Firm Firm + Year Firm Firm + Year
Observations 33,098 33,098 7,355 7,355
R2 0.100 0.133 0.010 0.022

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Panel B: The table below shows the complaint outcome. 1{Withdrawn/No Action} is an indicator of whether the
complaint was later withdrawn or no further follow-up action occurred. 1{Denied} is an indicator of whether
the complaint was denied, conditional on it not being “Withdrawn” or “Closed/No Action”. Robust
standard errors clustered by IAR state are shown in parentheses.

(1) (2) (3) (4)
Dependent Variable: 1{Withdrawn/No Action} 1{Denied}
Post2012 -0.038∗∗ 0.070∗∗

(0.018) (0.008)
Post2012×Treated −0.037 −0.056 −0.047 -0.020

(0.038) (0.037) (0.049) (0.049)
ln

(
$Alleged Damages

)
-0.004∗∗∗ -0.005∗∗∗ -0.027∗∗∗ -0.024∗∗∗

(0.001) (0.001) (0.003) (0.003)
Fixed Effect Firm Firm + Year Firm Firm + Year
Observations 28,128 28,128 16,594 16,594
R2 0.084 0.102 0.202 0.022

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

2.5.2 Under-staffed State Regulators

States that are more financially constrained are less able to investigate and deter misconduct. In

response, representatives may take advantage of a weaker regulator by misbehaving more. Figure

2.6 shows that although state regulators’ workload increased significantly, on average they did not

increase their requested budgets. To better identify the impact of regulator budget on observed

misconduct, we study heterogenous treatment effects across states with different funding.44

Our main measure of state regulator resources is staff-per-adviser. To measure staff-per-adviser,

we use a report compiled in 1999 by the American Association of Retired Persons on the regulatory

differences for investment advisers in every state. We argue that the staff-per-adviser in 1999

devoted to adviser regulation is likely correlated with the current level of regulatory oversight.

Because it is predetermined, it is not contaminated by reverse causality.45 In some states, the staff-

per-adviser number is not available, which is attributable to the fact that the organization of the

44Another (albeit contrived) interpretation might be that in fiscally constrained states, pension promises are less
credible, demand for investment advisory services are greater, resulting in a greater strategic response.

45 As part of this project, we tried surveying regulators today for the same numbers, but as obtaining pre-2012

numbers was extremely difficult. Even present day numbers are difficult.
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Table 2.11: Staffing of the Investment Adviser Regulatory Office

This table presents the difference-in-difference estimates with triple interactions on the staff-per-regulated-
firm devoted to adviser regulation in the year 1999. Staff-per-Firm is the number of oversight employees
at the state regulator divided by the number of registered investment adviser firms. We drop the state with
missing staff numbers. Robust standard errors clustered by state are shown in parentheses, except in the
matched sample where it is clustered at the level of a matched pair as recommended by Abadie and Spiess
(2016a).

Dependent variable: 1{Complaintt }×100
(1) (2)

Post2012 −2.116∗∗∗ −2.423∗∗∗

(0.176) (0.290)
Post2012×Staff-per-Firm −0.052 −0.240

(0.184) (0.165)
Post2012×Treated 1.222∗∗∗ 1.396∗∗∗

(0.218) (0.428)
Treated×Staff-per-Firm −53.191 0.664∗∗∗

(33.809) (0.137)
Post2012×Treated×Staff-per-Firm −1.249∗∗∗ −0.840∗∗∗

(0.291) (0.317)
Fixed Effects Firm + Year Firm + Year

Sample ≤100MM Annual

Observations 88,761 337,472
R2 0.139 0.024
Adjusted R2 0.101 0.009

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Figure 2.6: State Regulator Budgets

The figure below shows the proposed state regulator budgets, where the requested budget for calendar year
2009 is normalized to be 1 due to different state departmental organizations. The bolded line is the average
across all states. Most states request budgets on a biannual basis.

regulatory body is not devoted to adviser regulation only, but financial services regulation overall.

Table 2.11 shows that states with more staff-per-adviser saw less of a treatment response, con-

sistent with more staff at securities regulators deterring more misbehavior. The first four specifica-

tions impute a value of zero staff for those states with missing values. The last two columns drop

states that may have no staff devoted specifically to adviser regulation, which does not qualitatively

change the results. The equivalent point estimates (1) versus (5) across the two specifications re-

port slightly lower treatment magnitudes when considering only states with designated staff. The

relative magnitudes suggest that the treatment effect is larger if the state had no staff overseeing

advisers more than a decade before treatment, which is sensible.
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2.5.3 Dilution of Regulatory Resources Impacting Incumbent Advisers

Prior to Dodd-Frank, state regulators oversaw small-adviser firms, managing less than $25 mil-

lion in assets. On one hand, if state regulators became less effective due to the added requirement

to oversee mid-size advisers ($25-$100 million of AUM), then misbehavior by small-size advis-

ers should increase. On the other hand, if complaints are driven by the monitoring ability of the

regulator and Dodd-Frank increases the workload for the state-securities regulator, then complaint

rates against small-size advisers should decrease. Table 2.12 regression (1) shows that always-

state-registered firms saw a statistically significant increase in complaint rates of 0.51 percentage-

points. The effect is robust to specifications using individual and firm fixed effects and matched

samples, where the match was again done on the pre-trend.46 This increase in complaint rates by

always-state-registered advisers is consistent with representatives at small-size advisers responding

strategically to a weaker regulatory environment by increasing misbehavior.

2.5.4 Distance from Regulators Impacting Oversight

Another way to show that misbehavior increased for advisers with the weaker regulatory over-

sight is to show that advisers that are harder or costlier to monitor responded more to treatment. If

complaints increased because state regulators are better monitors, then increases should be greater

for treated advisers located closer to the relevant securities regulator. Advisers located closer to a

regulator are easier to travel to and learn about.

To measure distance, we use the longitude and latitude of the zip code of the branch where the

representative worked and the location of the representative’s branch, firm headquarters, nearest

SEC office, and nearest FINRA office. Distances are measured using zip code coordinates from

the 2013 Census, although we try other geocoding measures based on Google Maps and the Bing

Maps API.47

46Since we do not observe the ADV data for the never-SEC-registered firms, we cannot do propensity score match-
ing on which firm characteristics affect the probability of being treated. Instead we do nearest neighbor matching on
historical complaint count and number of years as an adviser representative.

47The distance measurements are quite similar and results were directionally and quantitatively similar.
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Table 2.12: Treatment Effect on Existing State-Registered Firms

The table below shows the treatment effect on firms with who were always state registered (and never regis-
tered with the SEC) which had AU M < $25M . The specifications are either a matched sample on individual
characteristics, an annual panel, or a pre-post collapsed sample a la Bertrand et al. (2004). Dependent
variables are in scaled to be a probability multiplied by 100. Robust standard errors clustered by state are
shown in parentheses, except in the matched sample where it is clustered at the level of a matched pair as
recommended by Abadie and Spiess (2016a).

Dependent Variable: 1{Complaint }×100
(1) (2) (3) (4)

Post2012 -0.9688**
(0.1292)

Post2012× Always State-Registered 0.512*** 0.837*** 0.694* 0.5766**
(0.093) (0.25) (0.393) (0.213)

Specification Annual Pre-Post Pre-Post Match
Observations 1,732,674 662,426 662,426 403,924
Fixed Effects Firm + Year Firm Firm + Individual Firm
R2 0.018 0.036 0.621 0.091
Adjusted R2 0.006 0.005 -0.021 0.061

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 2.13: Distance to Regulator

This table presents difference-in-difference estimates using the annual panel data. Local offices addresses are as of 2015 from the websites of NASAA,
FINRA and the SEC. Distances in miles are calculated using coordinates of the zip code of the firm or regulator’s address. Robust standard errors
clustered by state are shown in parentheses.

Dependent variable: 1{Complaintt }

(1) (2) (3) (4) (5) (6)
Post2012×Treated 0.580∗∗∗ 0.393∗∗∗ 0.015 −0.025 0.046 0.260

(0.139) (0.148) (0.231) (0.244) (0.235) (0.181)
Post2012×log (DistState) −0.005 0.043 −0.245 −0.446 −0.253 0.152

(0.086) (0.069) (0.296) (0.359) (0.276) (0.106)
Post2012×log (DistFINRA) 0.105 0.049 0.107 0.105

(0.173) (0.198) (0.146) (0.163)
Post2012×log (DistSEC ) −0.065 0.016 −0.040 −0.038

(0.247) (0.280) (0.222) (0.215)
Post2012×Treated×log (DistState) 0.276∗ 0.254∗∗ 0.382∗∗ 0.411∗∗ 0.377∗∗ 0.338∗∗

(0.143) (0.109) (0.169) (0.172) (0.160) (0.170)
Post2012×Treated×log (DistFINRA) 0.307 0.334 0.364∗ 0.149

(0.206) (0.219) (0.216) (0.192)
Post2012×Treated×log (DistSEC ) −0.154 −0.284 −0.084 −0.233

(0.372) (0.432) (0.393) (0.262)

Fixed Effects

Firm Firm Firm Firm Firm Firm
Year State×Year HQ Zip×Post2012 Branch×Post2012 HQ Zip×Post2012 HQ Zip×Post2012

Branch×Post2012 Branch×Post2012

Individual
Observations 1,164,033 1,164,033 1,164,033 1,116,530 1,164,033 1,164,033
R2 0.010 0.011 0.011 0.024 0.034 0.272
Adjusted R2 0.006 0.007 0.005 0.009 0.011 0.044

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 2.14: Client Composition

This table presents the difference-in-difference estimates sorted by client composition of the firms. The Private Fund indicator takes a value of 1 if
the investment adviser is a private equity, venture capital, or hedge fund fund, which can only take money from high net-worth clients, institutions
and governments. Regressions 2 through 7 use the majority type of clients that the investment adviser has based on answers to Form ADV Section
5D1 (a)-(m). High net worth individuals are classified as sophisticated individuals. Form ADV include . All specifications include firm and year fixed
effects, subsuming the Post2012, Treated, and Client Composition variables. Robust standard errors clustered by firm headquarter state are shown in
parentheses.

Dependent variable: 1{Complaintt }x100
(1) (2) (3) (4) (5) (6) (7)

Fund/Client Type: Private Fund Government Institutions
Unsophisticated Sophisticated

Individuals
Not

Individuals Individuals Individuals
Post2012×Treated 0.484∗∗ 0.544∗∗∗ 0.554∗∗∗ 0.338 0.538∗∗∗ 0.297 0.554∗∗∗

(0.213) (0.143) (0.158) (0.313) (0.160) (0.479) (0.158)
Post2012×Client Type −0.130 1.298∗∗∗ 0.346∗∗∗ −0.106 0.283∗∗ 0.057 0.351∗∗∗

(0.183) (0.443) (0.119) (0.214) (0.121) (0.307) (0.119)
Post2012×Treated×Client Type −0.003 −0.995∗∗ −0.261 0.294 −0.135 0.321 −0.266

(0.405) (0.475) (0.229) (0.365) (0.250) (0.507) (0.230)
Fixed Effects Firm + Year Firm + Year Firm + Year Firm + Year Firm + Year Firm + Year Firm + Year
Observations 1,299,819 1,299,819 1,299,819 1,299,819 1,299,819 1,299,819 1,299,819
R2 0.011 0.011 0.011 0.011 0.011 0.011 0.011
Adjusted R2 0.007 0.007 0.007 0.007 0.007 0.007 0.007

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 2.13 shows that complaint rates increased more for treated firms located further from

their appropriate state regulator. Regression (1) shows a positive and significant coefficient on the

interaction of treatment and distance using firm and year fixed effects. An adviser one-standard-

deviation farther away from a regulator (181 miles farther) has a 50% higher chance of receiving

a complaint. The point estimates are robust to adding state-by-year fixed effects, zip-by-year fixed

effects, and firm-individual-branch-zip fixed effects. These increasingly stringent specifications

rule out other drivers of the relation like local economic conditions.

Each specification also includes interactions on the relation between treatment and distance

from the closest office of FINRA and the SEC. In all specifications, being far from the relevant

state regulator is primarily responsible for the observed relation between increased complaint rates

and treatment. The distance from a FINRA branch also receives a large point estimate. Clients

may complain to FINRA offices when misconduct increases. The distance from the nearest SEC

offices is not significantly related to treatment and the coefficient is negative, if anything.48

2.5.5 Client Composition and Treatment Response

We find that complaints increased the most for firms whose clients are less sophisticated. Fol-

lowing Egan et al. (2016), we look at client composition at the branch level. Individual adviser

representatives are not required to report their client composition. However, we assume that client

composition is likely correlated to the demographics of the county in which the adviser serves. We

obtain the branch location (city level) in which the adviser works and assign the adviser to a county

based on the city name.49After doing so, we then obtain county-level characteristics from various

48Because investment advisers representatives can move across different firms throughout the sample, we empha-
size annual specifications for this result. Although we report results using a full annual panel, using the ≤$100M AUM
adviser panel yields even stronger results in terms of point estimates. Two-period results point in similar directions,
but are weaker unless taking into account the fact that adviser representatives move across firms. Finally, a purely
cross-sectional test, wherein we control for treatment, past complaints, and and log(distance), we also find that there
is a significant relation between Treated×log(Distance).

49After cleaning branch-city names for misspellings, we assign the city name to all relevant zip codes. Where a
branch-name could correspond to multiple counties, we conservatively assign the adviser representative to the largest
county. The vast majority of adviser representatives report a branch. However, some observations are lost due to a
lack of data, or a branch city location that can not be disambiguated. In some cases, the adviser representative reports
a branch location that is a state or an incomplete city name that does not correspond to a identifiable county.
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Table 2.15: Client Composition

This table presents the difference-in-difference estimates sorted by client composition of the firms. The Private Fund indicator takes a value of 1 if
the investment adviser is a private equity, venture capital, or hedge fund fund, which can only take money from high net-worth clients, institutions
and governments. Regressions 2 through 7 use the majority type of clients that the investment adviser has based on answers to Form ADV Section
5D1 (a)-(m). High net worth individuals are classified as sophisticated individuals. Form ADV include . All specifications include firm and year fixed
effects, subsuming the Post2012, Treated, and Client Composition variables. Robust standard errors clustered by firm headquarter state are shown in
parentheses.

Dependent variable: 1{Complaintt }x100
(1) (2) (3) (4) (5) (6) (7)

Fund/Client Type: Private Fund Government Institutions
Unsophisticated Sophisticated

Individuals
Not

Individuals Individuals Individuals
Post2012×Treated 0.484∗∗ 0.544∗∗∗ 0.554∗∗∗ 0.338 0.538∗∗∗ 0.297 0.554∗∗∗

(0.213) (0.143) (0.158) (0.313) (0.160) (0.479) (0.158)
Post2012×Client Type −0.130 1.298∗∗∗ 0.346∗∗∗ −0.106 0.283∗∗ 0.057 0.351∗∗∗

(0.183) (0.443) (0.119) (0.214) (0.121) (0.307) (0.119)
Post2012×Treated×Client Type −0.003 −0.995∗∗ −0.261 0.294 −0.135 0.321 −0.266

(0.405) (0.475) (0.229) (0.365) (0.250) (0.507) (0.230)
Fixed Effects Firm + Year Firm + Year Firm + Year Firm + Year Firm + Year Firm + Year Firm + Year
Observations 1,299,819 1,299,819 1,299,819 1,299,819 1,299,819 1,299,819 1,299,819
R2 0.011 0.011 0.011 0.011 0.011 0.011 0.011
Adjusted R2 0.007 0.007 0.007 0.007 0.007 0.007 0.007

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 2.16: Client Composition at the Branch Level

This table presents the difference-in-difference estimates interacting treatment with client demographics in the county in which the adviser represen-
tative works. The variable of interest is the triple interaction between treatment in the post period and a relevant demographic characteristic from the
2012 1-year ACS. % College is defined as the fraction of the county’s adult population from age 24-54 with at least a Bachelor’s education, while %
Age > 60 is the fraction of the population aged 60 or above. Robust standard errors clustered by state are shown in parentheses.

Dependent variable: 1{Complaintt }x100
(1) (2) (3) (4)

County Type: % College % College % College %Age > 60

Post2012×Treated 0.578∗∗ 0.567∗∗∗ 0.560∗∗∗ 0.563∗∗∗

(0.166) (0.166) (0.185) (0.182)
Post2012×County Type 0.194∗∗∗ 0.212∗∗∗ 0.0721 −0.057∗∗

(0.183) (0.443) (0.117) (0.028)
Post2012×Treated×County Type −0.187∗∗ −0.194∗∗ −0.232∗∗ 0.345∗∗∗

(0.093) (0.093) (0.0103) (0.092)
Fixed Effects Firm + Year Firm + Year Firm + Year Firm + Year

Branch Branch Branch
Observations 1,232.838 1,232.838 1,179,899 1,180,101
R2 0.011 0.022 0.020 0.020
Adjusted R2 0.006 0.010 0.007 0.010

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

100



government sources.

Table 2.16 reports our results. We use two versions of the American Community Survey. Al-

though there is a minor amount of look-ahead bias, we first use the 2011-2015 American Com-

munity Survey as reported by the United States Department of Agriculture. Second, we use the

American Community Survey 1-year survey from 2012, which has slightly worse coverage at

the county-level for our sample. Columns 1 and 2 interact the treatment effect with county-level

college degree attainment. It shows that a standard deviation increase in the county-level percent-

age of adults without college degrees increases treatment by 18.7 basis points, or about 1/3rd the

unconditional mean. Column 2 shows adds a branch fixed effect. Controlling for county-level

unconditional variation increases the point estimate to 19.4 basis points. Column 3 reports results

based on the 2012 survey. It suggests a similar result: a 1 standard deviation increase in the fraction

of population with bachelor degrees decreases treatment by 23.2 basis points. The fourth column

shows that the treatment effect is greatest in counties with a larger fraction of elderly. However,

slightly inconsistent with Egan et al. (2016), we do not observe a reliable relation between treat-

ment and ethnic demographics.

We also assess client sophistication using reported client compositions by advisers on their Form

ADV filings. We measure the fraction of clients who are less sophisticated with the proportion of

investors who are unaccredited (net worth less than $1 million or less than $300,000 in income).

Table 2.15 shows that complaint rates increased more when clients were unsophisticated and less

when clients were sophisticated investors. Categories of more-sophisticated investors include ac-

credited investors, government institutions, and institutional investors. These more-sophisticated

investors are likely more capable at monitoring their investment advisers. However, these results

are not statistically significant.

2.6 Conclusion

We show evidence that regulation deters misconduct by documenting higher complaints for firms

facing a weaker regulatory regime. Specifically, we find that the re-jurisdiction of firms from SEC
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to state regulators due to the Dodd-Frank Act increased misconduct by 50% on average. Firms in

states with less regulatory resources and those that are further away from the state regulator saw the

highest increases in complaints. Investment adviser representatives with poor prior track records do

worse conditional on treatment. Overall, we estimate the cost in terms of higher alleged damages

to be between $10 and $14 million. Counting increases in complaint incidence, conservatively, the

attributable alleged damages hover around $70 million.

Although client sophistication is able to alleviate this effect to some degree, our suggest reg-

ulation still has a role for governance of investment advisers in the United States. Our findings

suggest that state securities regulators - while well-meaning - may potentially be less of a deterrent

than federal regulators on average. If given only the choice of the state or national regulator, the

results suggest that a Pareto gain would be made by allocating the same resources states have for

regulation to the SEC.50

More broadly, our results provide evidence the regulator matters above and beyond the writ of

regulation itself, buttressing the thrust of Agarwal et al. (2014). In addition, we lay the foundation

for future studies to study the governance of investment advisers by documenting the importance of

regulator involvement and deterrence in understanding why conflicts between advisers and clients

arise. Future research can study how different regulators implement the same law change, how

local securities laws substantively differ between states and how that influences product market

outcomes, and other institutional details that exacerbate agency issues when a firm advises clients

as a fiduciary while also serving them as a broker.

50It is possible that some states are in fact better than the SEC or no worse; however, we only identify the average
effect.
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Chapter 3

Speech is Silver but Silence Is Golden: Information Suppression and the

Promotion of Innovation

3.1 Introduction

It is well-understood that information frictions inhibit financial markets from efficiently allocat-

ing capital towards innovative firms and projects (Hall and Lerner, 2010). Disclosure to investors

helps to alleviate these frictions and is considered a fundamental pillar of modern capital markets.

However, especially in the case of innovative activities, disclosure does not unambiguously serve

the common good. In his seminal work on the welfare economics of knowledge production, Ken-

neth Arrow (Arrow, 1962) put forth the paradox that in order to determine the economic value of an

idea, the inventor is forced to disclose information about the idea, and any such action inherently

reduces its value. Indeed, Arrow’s disclosure paradox has implicitly been at the heart of recent

debates on the design of emerging forms of financing for startups, particularly crowdfunding, in

which the requirement to disclose information to investors poses a risk for entrepreneurs in terms

of eroding their potential competitive advantage.51 It has also influenced calls by policymakers

and scholars to encourage more transparent record-keeping on the activities of innovative firms.52

We provide new empirical evidence on Arrow’s disclosure paradox in the context of intellectual

property (IP) licensing, a setting in which the investors’ need for disclosure comes into conflict

with the innovating firms’ need for secrecy.

IP licensing is an economically important activity to study, unto itself. IP is perhaps the pri-

51In a recent interview, Josh Lerner notes “A lot of my doubts have to do with the inherent contradictions between
the entrepreneurial process and disclosure requirements [...] but the very process of disclosing things is likely to
destroy a lot of the competitive advantage that the entrepreneurs might have”. For text of the full interview, see
https://www.richmondfed.org/publications/research/econ_focus/2016/q2/interview, retrieved 3/11/2017.

52In a recent open letter to the SEC Chien et al. (2016), several legal and innovation scholars including the USPTO
chief economist request the SEC to make data on IP disclosures, which we study in this chapter, more available for
public scrutiny. In 2009, the SEC started requiring firms to electronically file Form D, causing some practitioners to
comment that the disclosure requirement is making it harder for young, innovative firms to raise capital. For more
details, see http://redeye.firstround.com/2008/06/the-death-of-st.html, retrieved 3/11/2017.
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mary asset for innovative firms. For such firms to generate economic value, they must be able to

protect and commercialize their IP assets. Firms commercialize IP either by developing their own

products and services or by trading these assets in the market for ideas (Gans and Stern, 2003).

IP licensing agreements represent the main form by which firms commercialize their IP outside

the firm (Shapiro, 1985), with total IP licensing royalty revenues of US corporations amounting to

$195 billion in 2013.53 Licensing allows for an efficient division of labor between upstream firms

or non-commercial entities (governments or universities) which are better suited for conducting

research, and downstream firms with product market expertise, avoiding duplicative investments

in marketing, manufacturing, and R&D programs.

This vibrant marketplace for ideas offers an ideal setting for examining Arrow’s disclosure para-

dox. Publicly traded firms are required to disclose material IP licensing agreements.54 By the def-

inition of “materiality”, these contracts are of significant economic value to investors. However,

because they contain information on the value of ideas, their disclosure could result in compet-

itive harm to the filing firms by revealing sensitive information to both industry incumbents and

potential entrants. Wary of this issue, the US Securities and Exchange Commission (SEC) allows

firms to file for “Confidential Treatment Requests” (CTR), granting firms the right to redact infor-

mation from their mandatory filings that would constitute “competitive harm” to the filer. This is

equivalent to non-disclosure of the underlying technology and the potential rents from licensing it.

When deciding whether or not to redact information, innovative firms balance the potential ben-

efits of disclosure to investors with the potential costs of revealing information to rivals. However,

firms do not face uniform costs and benefits of redaction. Plausibly, firms with more commercially

valuable IP face greater incentives to redact. This gives rise to the possibility that redaction itself

conveys information to investors. We argue that such signaling may help address Arrow’s disclo-

sure paradox. While investors do not directly observe the commercial value of the IP licensing

deal if it is redacted, they may reasonably infer that redacted agreements are, on average, of higher

53IRS Statistics of Income 2013, “Returns of Active Corporations, Table 6”. 2013 is the latest year for which this
data is available.

54We discuss the definition of materiality and its corresponding threshold in a later section.
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value since firms have greater incentives to redact higher value contracts.

We formalize this intuition in a simple, stylized model in which redaction serves as a credible

signal of a firm’s technology type while shrouding its activities from competitors. A firm faces

competition from a potential entrant. If the firm reveals its technology, the potential entrant enters

and competes over rents. If the firm redacts, it is able to conceal information contained in its

licensing agreement. As a result, the potential entrant is unable to enter the technology or product

market space and compete with the incumbent. At the margin, since their technology is more

valuable, high-type firms enjoy a greater benefit from redaction than low-types. Therefore, in

equilibrium, only high-type firms redact, thus, redaction is viewed as a positive, credible signal

by investors. This result gives rise to the first key implication of our model. While redaction

mechanically reduces the amount of information available to investors, the fact that a firm redacts

itself contains favorable information on the value of the firm’s technology, resulting in a positive

capital market reaction.

The second key implication of our model is that by preempting potential rivals, firms preserve

the economic rents associated with their IP and maintain their competitive advantage. Many li-

censing agreements cover inherently un-protectable IP, such as trade secrets, or as-yet unpatented

inventions that therefore must remain proprietary in nature. Even in a strong IP protection regime,

disclosing a licensed technology is problematic because it encourages competitors with substitu-

tive technology to enter the same market. Finally, to the extent that firms’ present IP licensing

activity is indicative of the nature and scope of their pipeline of impending innovation activities,

shielding information on the technology space and economic value of their existing innovation

prevents competitors from preempting the firm’s impending inventions with their own substitutes.

The protection afforded by redaction thus preserves rents for the filing firm, providing a greater in-

centive to innovate. We thus predict increased innovation and R&D activity for firms that suppress

information from competitors.

We empirically test the two implications of our model in a novel database of IP licensing agree-

ments, sourced from material disclosures in SEC filings. The data cover royalties related to patents,

105



trade secrets, trademarks, copyrights, mining rights and other types of IP. About a quarter of our

sample consist of initially redacted agreements, which are uncovered a decade later through Free-

dom of Information Act requests. At the level of a single disclosure (i.e. an SEC filing), we study

the capital market consequences of firms’ strategic decision to suppress information about the eco-

nomic value of their IP as well as their future innovative activity, relative to firms that chose not to

redact.

The results of our empirical analysis support the signaling value of strategic redaction as implied

by our model. We find that firms which redact enjoy higher stock liquidity post-filing over the

short-, mid-, and long-term horizon (two weeks out from the filing date, 1 quarter out and 1 year

out), relative to firms which fully disclose. That is, we show that the market rewards, not punishes,

firms for non-disclosure. The magnitude is economically large – in the 1 year post-filing, redactors

enjoy an increase in liquidity (gauged by Amihud (2002)’s illiquidity measure) that represents 7%

of the unconditional mean, relative to non-redacting firms. Complementing this result, redaction

also predicts increased equity issuance and institutional ownership. The evidence favors our first

key implication that investors seem to recognize and reward strategic redaction of IP licensing

agreements.

In terms of the redacting firms’ innovation activity, we find that investors’ responses are evi-

dently rational in that redaction predicts higher levels of future innovation and innovative activities

as early as 1 year out and for several years subsequently. Here, the magnitude is strikingly large

– in the 1 year post-filing, redactors produce a greater total-dollar-value of innovation (implied

by stock market reactions to patent grants, as in Kogan et al. (2016)), on the order of 50% of the

unconditional mean, relative to non-redactors. This suggests that the ability to withhold commer-

cially sensitive information about their IP portfolio enhances firms’ ex-ante incentives to innovate,

verifying our second key implication.

Of course, in the limit, for signaling to be credible, not all firms, at all times, should suppress

information. Costless redaction would enable firms with lower-quality agreements to pool together

with better firms, generating an adverse selection problem. We conjecture that the positive capital
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market response to redaction is largely reversed when investors seem to perceive higher informa-

tion asymmetry. This gives rise to the prediction that there should be cross-sectional heterogeneity

in the relationship between redaction and liquidity. Indeed, consistent with the idea that redaction

is not a credible signal for all firms, we find that firms with lower reputation or higher information

asymmetry face a negative marginal relation between redaction and liquidity. These include firms

that are small and young, and firms that are repeated redactors, suggesting that the market rewards

firms that censor – but only up to a point. Finally, we find a positive marginal effect for firms

that are equity-financing dependent, who have to turn to equity markets more frequently to raise

capital, and thus are disciplined by this repeated game with investors.

We emphasize three contributions of this chapter. First, we contribute to the literature on the fi-

nancing of innovation, by analyzing the effect of relaxing a key informational friction (i.e. the dis-

closure paradox) on the ability of innovative firms to raise financing. In their excellent review, Kerr

and Nanda (2015) note four key frictions to financing innovation. First, the payoffs to innovation

are uniquely uncertain. Second, the returns to successful innovation are highly skewed, making

it hard for potential financiers to accurately value projects and diversify. Third, with heightened

information asymmetry, the inability to write state-contingent dynamic contracts is particularly

acute for innovative firms. Finally, since the nature of knowledge and IP is non-rival, the disclo-

sures required in the process of raising finance can subject innovators to risk from competitors.

The focus of this chapter is the last friction, which has received considerably less attention. While

the disclosure issue has also been incorporated into recent theoretical work on the optimal financ-

ing of R&D intensive firms (Thakor and Lo, 2016), to our knowledge, ours is the first study to

empirically study the disclosure problem directly in the context of innovative firms. Studying the

disclosure friction in an empirical setting is difficult, as it is usually impossible to observe the

counterfactual of what was not disclosed. However, as our setting relies on redaction of otherwise

mandatory corporate filings, we circumvent this problem as we are able to retrieve the originally

hidden information long after the fact. Using this setting, we argue that the ability to strategically

withhold information on the value of an idea effectively mitigates this friction.
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Second, our study speaks to theoretical and empirical work in pursuit of the notion that a well-

functioning marketplace for ideas is important in promoting entrepreneurship and innovation (Ak-

cigit, Celik, and Greenwood, 2016; Gans, Stern, and Wu, 2016). Building upon prior empirical

studies on trade in the market for ideas through licensing (Gans, Hsu, and Stern, 2008; Hegde,

2014; Hegde and Luo, 2017), we introduce an extensive database on IP licensing. As far as we

know, it is the largest and most detailed of its kind to be used in academic research. Amidst grow-

ing calls by academics and policymakers for increased transparency and disclosure, our findings

should give pause for thought.

Finally, we provide new insights on the costs and benefits of corporate disclosure, particularly in

the context of innovative firms. Prior empirical studies on redacted disclosure (Boone, Floros, and

Johnson, 2016; Verrecchia and Weber, 2006) find a negative effect of redaction on capital market

outcomes, which they argue is evidence that redaction increases information asymmetry problems

between firms and investors. Our results, which emphasize a positive capital market reaction, differ

due to our focus on innovative firms (i.e. firms that engage in IP licensing55), for whom redaction

itself is informative, as it signals the possession of a good and costly to disclose idea. Further,

Verrecchia and Weber (2006) consider a sample of small firms (between $50 and $100 million

market capitalization), and Boone, Floros, and Johnson (2016) consider a sample of IPO firms,

which are by definition young. These are groups for whom information asymmetry problems are

likely to be more acute, potentially outweighing the positive signaling effect. Indeed, even in our

sample we find that marginal effect of redaction on stock liquidity is negative for smaller and

younger firms.56

The remainder of the chapter is organized as follows. In Section 3.2, we describe the institutional

context and develop our hypotheses based upon a stylized model of redaction. In Section 3.4, we

55The SEC also permits redactions on other types of filings including credit/leasing, customer-supplier, employ-
ment, and equity related agreements. Our sample consists exclusively of licensing agreements, whereas the samples of
Boone, Floros, and Johnson (2016) and Verrecchia and Weber (2006) consider redactions on all types of filings. Our
sample thus allows us to study the role of redaction of specific, IP-related information, corresponding most closely to
the tradeoff implied by Arrow’s disclosure paradox.

56Our findings on the benefits of non-disclosure for innovative firms complement the SEC’s existing concerns
that more disclosure is not better in the sense it creates an information overload for investors. For more details, see
https://www.sec.gov/News/Speech/Detail/Speech/1365171492408, retrieved 3/11/2017.
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describe our data sources and provide descriptive statistics. In Section 3.6 we present our empirical

analysis on the consequences of redaction and in Section 3.7, we conclude.

3.2 Institutional Context and Hypothesis Development

3.2.1 Institutional Context

Since as far back as the Securities Act of 1933, companies with publicly sold securities are

required to state all material facts relevant to investors who might buy their securities. As a guiding

principle, firms are required to disclose “material definitive agreements not made in the ordinary

course of business”. The definition of materiality was sharpened through a variety of historical

developments. The modern standard of materiality was refined in the 1976 case TSC Industries,

Inc. v Northway Inc., which defined materiality as a fact which, if omitted, would have significantly

altered the “total mix of information available” in a shareholder’s decision to purchase a security

or vote.57

In spite of broad guidance provided by regulatory agencies, the decision on whether a given

corporate development crosses the materiality threshold is often subject to the discretion of the

company. Some rules-of-thumb exist. For example, the 5% rule of thumb suggests that reasonable

investors would not be influenced in their investment decisions by actions that lead to fluctuations

of net income of 5% or less.58 For a detailed discussion on the considerations involved in auditors’

determination of materiality, see Choudhary, Merkley, and Schipper (2017). Regardless of the

exact threshold, material disclosures represent significant events, the knowledge of which affects

the decisions of current and prospective investors.

However, recognizing the potential commercial harm of disclosing proprietary information, the
57In the words of Justice Thurgood Marshall, “An omitted fact is material if there is a substantial likelihood that

a reasonable shareholder would consider it important in deciding how to vote. . . . It does not require proof of a
substantial likelihood that disclosure of the omitted fact would have caused the reasonable investor to change his vote.
What the standard does contemplate is a showing of a substantial likelihood that, under all the circumstances, the
omitted fact would have assumed actual significance in the deliberations of the reasonable shareholder. Put another
way, there must be a substantial likelihood that the disclosure of the omitted fact would have been viewed by the
reasonable investor as having significantly altered the ‘total mix’ of information available.”

58See the Journal of Accountancy, http://www.journalofaccountancy.com/issues/2005/may/thenewimportanceofmateriality.html
retrieved 12/10/2016.
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SEC has allowed for firms to request confidential treatment of certain information in material fil-

ings, as stipulated in Rule 406 under the Securities Act of 1933 and Rule 24b-2 under the Securities

Exchange Act of 1934. The Staff Legal Bulletin No. 1 issued in February 1997 and its Addendum

issued in July 2001,59 on the subject of “Confidential Treatment Requests” (CTR) by the Division

of Corporation Finance, contain guidance for filing firms requesting confidential treatment. From

this, we are able to infer details about the SEC’s interpretation of confidential treatment requests.

In particular, the guidance explicitly notes the proprietary cost argument for requesting redaction:

“Sometimes disclosure of information required by the regulations can adversely

affect a company’s business and financial condition because of the competitive harm

that could result from the disclosure. This issue frequently arises in connection with

the requirement that a registrant file publicly all contracts material to its business other

than those it enters into in the ordinary course of business. Typical examples of the

information that raises this concern include pricing terms, technical specifications and

milestone payments.”

The guidance specifies certain requirements for CTRs. First, they should not be overly broad.

Specifically:

“The information covered by an application should include no more text than nec-

essary to prevent competitive harm to the issuer.”

Second, applicants must provide written justification for the exemption. Third, applicants must

specify a particular duration. This portion was later clarified in the Amendment to provide specific

guidance:

“If the remaining term of the contract is greater than 10 years from the date of the

extension application, we generally will only grant confidential treatment for 10 years;

If the remaining term of the contract is less than 10 years from the date of the extension

application, we will consider a request for the remaining term of the contract; If the
59Full text is available at https://www.sec.gov/interps/legal/slbcf1r.htm, retrieved 3/11/2017.
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remaining term of the contract is less than five years from the date of the application,

but there is a possibility that it will be extended beyond its stated term, we will consider

granting confidential treatment for a period of up to five years.”

Fourth, applicants must identify clearly the information that is the subject of the application. Fi-

nally, applicants must consent to the release of the information to the SEC for official purposes,

for instance evaluation or audit.

In Figure 3.1, we give an example of a portion of a redacted licensing agreement between

Genome Therapeutics Corporation and Biomerieux Incorporated dated September 30, 1999. In

the section of the agreement that we have reproduced in Figure 3.1, payment terms including roy-

alty rates, sub-licensing fees etc. are redacted.

Under the Freedom of Information Act (FOIA), the public can request the entire uncensored

contents of specific filings after the expiration of the CTR. The dataset used in this chapter is

partly assembled through thousands of FOIA requests issued to the SEC (in most cases) 10 years

after the date of the original filing. The remainder of the dataset consists of filings that were un-

redacted as of the time of dissemination. As we can compare information that was disclosed with

contemporary, counterfactual information that was withheld from the public eye, we have an ideal

setting in which to test the impact of non-disclosure.

3.3 Model and Hypothesis Development

In order to motivate our empirical hypotheses, we present a simple, stylized model60 that demon-

strates the strategic role of redaction as a signal of technology quality. The setup consists of three

firms, an innovative firm (whose choice of redaction we are modeling), an uninformed rival whose

60Our model follows in the spirit of several theoretical models of voluntary disclosure. The theoretical literature,
starting with Verrecchia (1983), models the tradeoff faced by firms making the decision to voluntarily disclose in-
formation to investors, which is presumed to improve the precision with which the market can value their stock, but
causes them to incur proprietary costs. Verrecchia (1983) establishes the existence of a partial disclosure equilibrium,
and shows that the greater the proprietary cost of disclosure, the less negative traders’ reaction to the withholding of
information. Further studies have endogenized the proprietary cost of disclosure as a function of product market rivals’
responses to the disclosed information (Bhattacharya and Ritter, 1983; Darrough and Stoughton, 1990; Feltham and
Xie, 1992; Wagenhofer, 1990).

111



Figure 3.1: Sample Redacted Licensing Agreement

This figure is an example of a portion of a redacted licensing agreement between Genome Thera-
peutics Corporation and Biomerieux Incorporated dated September 30, 1999. In the section of the
agreement that we reproduced in this figure (the total length of such agreements often exceed 30
pages), payment terms including royalty rates, sub-licensing fees etc. are redacted.

decision to enter the innovative firm’s technology space and compete is a function of the innova-
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tive firm’s redaction decision, and an investor, whose preferences and beliefs determine the market

price of the innovative firm’s stock. The innovative firm, which we denote as A, is endowed with

a technology type t ∈ {t, t}, with t > t, where the unconditional probability P(t = t) = θ is known

by the uninformed potential rival, which we denote as B, and the investor, whom we denote as I.

However, the realization of the technology type, t̃, is known only to A.

Firm A has the choice to disclose t̃, and we denote this choice by D ∈ {0,1}. The choice by firm

A to disclose (which is exactly equivalent to the choice to not redact), D = 1, results in both B and I

observing the reported value of t, t̂. In order to narrow the strategy space, we assume that firm A’s

disclosure of t̃ is truthful, i.e. the reported t̂ = t̃. Thus, for the sake of convenience we simply use

t̃ to denote firm A’s disclosure. The assumption of truthful reporting is reasonable given that the

disclosures in question are SEC filings, subject to auditor approvals as well as SEC review through

the Division of Corporation Finance, and costly shareholder litigation if proven to be false. The

choice by A to not disclose (which is exactly equivalent to the choice to redact), D = 0, means that

both B and I are unable to observe t̃. In case of complete non-disclosure regardless of A’s type,

they both believe that t̃ takes its unconditional expected value t′ = θt + (1− θ)t.

In addition, firm A is associated with an ex-ante degree of information asymmetry, β ∈ {βG, βB}

where βG < βB. Firm A has β = βG with probability λ, and this is independent of its technology

type t. Let the unconditional expected value of β be defined as β′ = λ βG + (1− λ) βB.

Our analysis proceeds in two steps. First, we consider the effect of A′s disclosure decision on B’s

entry decision, and the resulting effect on A’s profits. Second, we analyze the investor’s response

to the product-market equilibrium. For the first step, we assume that the economic rents available

in the market occupied by A, which B is considering entering, are a function of A’s technology

type t̃. Specifically, we assume that the rents are normally distributed with mean t̃ and variance σ2

t̃ ,

i.e. we denote the total rents available in the market as π and π ∼ N
(
t̃, σ

2

t̃

)
. The rents (net of costs)

earned by each firm are indicated by πA and πB.

We now consider Firm B. Firm B incurs a cost c > 0 of entry, if it chooses to enter the market.

B also incurs s, a cost of search, if it wishes to enter the market when firm A does not disclose its
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type, i.e D = 0. The search cost s is a function of B’s belief of A’s type, which we denote t∗. We do

not specify a functional form for s, only that s
(
t
)
= s and s

(
t
)
= s, with s > s > 0, and ∂s

∂t∗ > 0. The

search cost may, for example, correspond to the fact that the company B must conduct research

to determine the nature of the undisclosed technology so as to imitate it. Also, it must develop its

own substitutive technology whose cost is increasing in the type of technology - that is, it is harder

to replicate a good technology than a bad technology.

How does Firm B’s decision affect payoffs for A? Since A is already in the industry, it does not

incur any cost. Both firms A and B are assumed to be risk-neutral profit maximizers. If B does not

enter, we assume that the entire rents are received by A, that is πA = π. If B enters, the two firms

split the rents evenly. So, if B enters, A receives πA = π
2 . For B, if it enters when A has selected

D = 1 (has chosen to disclose), its expected profit is E
[
πB

]
= E

[
π
2

]
− c. If B enters when A has

selected D = 0, its expected profit is E
[
πB

]
= E

[
π
2

]
− c− s. Firm B only enters if, based on its

beliefs on t̃, E
[
πB

]
≥ 0, namely E

[
π
2

]
≥ c+ s. We further assume that t

2 < c, implying that when B

knows A’s type is low
(
t̃ = t

)
, it does not enter as E

[
π
2

]
=

t
2 − c− s < 0. We also assume that t

2 < s,

indicating that the search cost incurred by B when A’s technology is high-type is prohibitive.

To ascertain the equilibrium outcome, consider Firm A’s strategies, which can be represented by

pairs
{
D

(
t
)
,D

(
t
)}

. For example, {1,1} implies that firm A discloses its type both when t̃ = t and

t̃ = t. In Appendix C.1, we evaluate four cases, corresponding to the four strategies available to

firm A (as it has two possible actions and can be of two possible types). This analysis shows that as

long as the probability θ exceeds a lower-bound value (i.e. there exists sufficiently large probability

that A’s technology is high-type), the game has two Nash equilibria in pure strategies. By iterated

elimination of weakly dominated strategies the unique surviving Nash equilibrium strategy is {1,0},

where A discloses if its technology is low-type and redacts if its technology is high-type (see

Appendix C.1 for details). This is an essential condition for non-disclosure (redaction) to be a

credible signal of type. The equilibrium is separating, and as in Gertner, Gibbons, and Scharfstein

(1988), it is the nature of the product-market competition that determines whether the equilibrium

is separating or pooling.
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We now turn to the second part of our analysis, determining the investor’s response to the

product-market equilibrium. In equilibrium, it is optimal for A to redact only if t̃ = t and dis-

close only if t̃ = t. The investor thus infers that t̃ = t if she observes non-disclosure and directly

observes that t̃ = t when the technology is disclosed. The equilibrium payoff to firm A from its

optimal strategy of {1,0} is
{
t, t
}
. We assume that the world ends after the product market compe-

tition takes place, and the investor receives firm A’s total profit πA as a liquidating dividend. As in

Verrecchia (1983), the price of the firm’s stock is determined by the following expression reflecting

the investor’s mean-variance preferences:

P = E
[
πA

]
− βV ar

[
πA

]

Since the equilibrium is separating, the investor prices A’s stock as:

P =




t − βG
σ2

t i f D = 0 and β = βG

t − βB
σ2

t i f D = 0 and β = βB

t − βG
σ2

t i f D = 1 and β = βG

t − βB
σ2

t i f D = 1 and β = βB

The expected price conditional on observing redaction, i.e. D = 0, is E [P |D = 0]=
[
λ ×

(
t − βG

σ2

t

)]
+

[
(1− λ)×

(
t − βB

σ2

t

)]
= t − β′σ

2

t , and the expected price conditional on observing D = 1, i.e.

full disclosure, is E [P |D = 1] = t − β′σ
2

t . The variance of the price conditional on observing

D = 0 is V ar [P |D = 0] = β̃ σ
4

t2 and the variance of the price conditional on observing D = 1

is V ar [P |D = 1] = β̃ σ
4

t2 , where β̃ = λ(1− λ)
(
βG − βB

)2. As β̃ > 0 and t > t, this implies that

V ar [P |D = 0] < V ar [P |D = 1].

Our model generates two main implications, and one cross-sectional implication that we take to

the data.

Implication 1 The first key implication of our stylized model is that redacting firms have a

lower conditional variance of stock price as V ar [P |D = 0] < V ar [P |D = 1]. To the extent that
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the conditional variance of a stock’s price is a proxy for the stock’s illiquidity, this implies that

redacting firms experience better stock liquidity than non-redacting firms.

Implication 2 The second key implication is that redaction is associated with greater innova-

tion, as firms with high-value technology are able to preserve the economic rents from potential

competitors and avoid expropriation. This is consistent with the fact that in equilibrium, the rival

firm B does not enter A’s market and compete.

Cross-sectional Implication If investors are able to observe β, then following a similar ar-

gument that we used to demonstrate that V ar [P |D = 0] < V ar [P |D = 1], it can be shown that

V ar
[
P | βG

]
< V ar

[
P | βB

]
. Thus, in the cross-section, firms which are perceived as having a

worse reputation, or a greater degree of information asymmetry, by investors (i.e. firms with

β = βB) should experience worse stock liquidity conditional on a given disclosure choice.

3.4 Data

3.4.1 Intellectual Property Licensing Data

The main data used in this chapter are drawn from a database of intellectual property licensing

agreements from RoyaltyStat LLC. RoyaltyStat is one of a handful of companies that collect data

on royalty rates of IP licensing transactions, and was the first company to come to market with a

searchable online platform in 2000. The data are sourced from SEC-mandated material disclosures,

wherein the licensing agreements are usually attached as exhibits in both scheduled and one-off

filings. RoyaltyStat has developed a natural language processing engine to identify relevant filings

and automatically populate certain standardized fields. Analysts then review and augment the

output. The data are updated daily.

RoyaltyStat provided us access to every record and a rich set of fields in their databases. To

preserve data confidentiality, we did not custody the data - we were provided access through a

password-protected portal in which we uploaded R scripts and received textual output. Table 3.1

enumerates some of the key fields we derived from their data. We use these fields to account for
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Table 3.1: Data Fields Extracted from RoyaltyStat Data
Identifying Information Description
Licensor (name, CIK, gvkey) The party in possession of the intangible asset contracting to allow

another party to use it in exchange for payment.
Licensee (name, CIK, gvkey) The party paying the possessor of the intangible asset in exchange for

the right to use the intangible for proprietary purposes.
Filer (name, CIK, gvkey) The party which submitted a filing to the SEC documenting the

existence of a contract. The filer is usually (but not always)
identifiably the licensor or licensee.

IsRelatedParty Are the parties subsidiaries of the same company? For the purpose of
transfer pricing, this distinction is made because the contract does not
represent open-market pricing.

Filing Information
Filing date The date of the filing in EDGAR.
FOIA Was the record originally redacted, and later recovered, through the

Freedom of Information Act?
Intangible information
SIC of intangible Based on the technology described in the SEC filing, RoyaltyStat’s

analysts assign the technology covered in a contract a Standard
Industrial Classification code.

RoyaltyStat Industry RoyaltyStat has a classification of 42 industries. Possible values
include: Pharmaceutical Biotech, Medical Devices, and Software.

RoyaltyStat Subindustry Each industry is classified into a number of sub-industries. For
instance, the Pharmaceutical Biotech industry contains Cancer,
Genetic, and Cardiovascular sub-industries.

Intangible numbers Intangible numbers specifically mentioned in a filing. The vast
majority are patents, including both applications and grants.

Description A textual description of the contract and intangible being licensed.
Intangible property type RoyaltyStat’s proprietary categorization of intangibles in a contract.

Possible values include patents, trademarks, copy rights, trade secrets,
software, process know-how, land and mineral rights.
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Contract features
Duration The number of years, if known, a royalty contract is active for. In some contracts,

the duration is unknown, perpetual, or is stated but the contract contains an option
to renew. In econometric analysis, if it is perpetual, it is coded as 100 years.

Agreement type Whether the agreement can be classified as a cross-license, joint-venture,
patent-related, trademark-related, and so forth. From this we create booleans for
each agreement type.

Rights granted For instance, whether the contract gives the licensee the right to sublicense
Territory agreement applies The countries or legal jurisdictions over which the company is granted a license to

use the technology. Possible values include specific countries, worldwide,
cyberspace, or unknown.

Effective date The date the contract terms become effective, if known. In some cases, the
effective date was immediate and the filing date occurred with a delay, and in
some cases the filing date precedes the effective date

Exclusivity Is the contract exclusive to the party?
Payment information
Royalty base The accounting identity against which any royalty rate is assessed. Most

commonly it is net sales. Others include cost-of-goods sold, net profits, per-yard,
per square meter, per unit.

Royalty rate In the units of the royalty base, this is the numerical payment made by the
licensee.

Royalty rate currency The currency against which per-unit royalties are assessed.
Tiered royalty Many royalty contracts have incentive schemes whereby the rate changes at

variable quantities.
Royalty rate low When the rate is tiered, this is the lowest rate that can be charged, if stated.
License fee amount The currency amount of the license fee.
License fee currency The currency in which the license fee is to be paid.
Fee type The vast majority of cases are upfront fees, but in some cases there are scheduled

fees, or renewal fees.
Other payments Booleans that flag additional payment terms (upfront fees, renewal fees, milestone

payments, etc).

contract characteristics in our analysis.

The unit of observation is a licensing contract entered into by two entities, a licensor and a li-

censee. The filer must be a public firm, and is usually either the licensor or the licensee. The

counterparty may not be a commercial entity (for example, a non-profit hospital, university, or

individual inventor), or may be a private or publicly-listed firm. In addition to identifying informa-

tion, we observe when the filing was made, and whether or not the record obtained was retrieved

through FOIA (i.e. its contents were redacted at the time of filing).
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In terms of the contract itself, we observe contract terms, payment terms and intangible in-

formation. Contract information consists of the effective date of the contract, the duration, the

geographic scope of the licensing agreement, and the the rights granted by the licensing firm to

the licensee. Payment terms consist of royalty rates, any upfront fees, and any additional payment

terms such as tiered royalty rates that change as the quantity sold increases, or milestone payments

for reaching certain contracted goals. Finally, intangible information includes descriptors of the

technology, its applicable industry, and where relevant, intangible numbers such as patent grant or

application numbers.

Using this data, we then construct a sample. The details of the sample selection are presented

in Appendix C.2. RoyaltyStat maintains a link to Compustat as a sub-licensor of Compustat data.

We assume their link is valid if available - if missing, we augment their linkage using either the

CIK or filer name using various linktables. Table 3.2 reports the sample sizes at each stage of

the filtering process. We have 7,972 license agreements whose filer can be linked to Compustat

and can be disambiguated as either the licensor or licensee, and of them, 6,579 are US firms with

publicly-traded equity covered by CRSP at the time of filing. Some firms which do not make it

into our sample are penny stocks not covered by Compustat, unlisted firms, or even Canadian or

Mexican public firms. Our regressions also lose observations due to missing values for control

variables such as assets, leverage, or various contract characteristics. However, our qualitative

inferences are not sensitive to excluding either contract or firm characteristics. Finally, we also

lose observations due to missing data for outcome variables.

In most specifications, we have between 3,000 to 4,000 observations. With this sample size, we

make the claim this is the first large-sample analysis of licensing agreements to our knowledge, as

it is larger than the handful of studies with access to licensing contract-level data. Our sample is

about as large as a typical study on syndicated loan contracts or mergers.61

61We have a similar sample size to, for instance, Campello and Gao (2016).
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Table 3.2: Sample Selection Procedure

# Comment

# Observations to start. 17487
As of June 2016, this was the entire number of records
available on RoyaltyStat’s database.

# Obs with filer gvkey
matched to Compustat
North America.

8774
Based on RoyaltyStat’s maintained gvkeys, we can identify
the following number of firms.

# Obs of US contracts
with gvkey after
programmatically
imputing using CIK or
name.

9678

We augment RoyaltyStat’s gvkeys using programmatic
matching of CIK codes to gvkeys based on Capital IQ
Helper. We also match based on names. If a
punctuation-cleaned name is an exact match for a Capital
IQ Company name, CRSP name, Compustat name,
Worldscope name, which can be linked back to a gvkey, it
is in our database.

# Obs where the
identity of the filer can
be disambiguated (i.e.
the filer can be assigned
the status of being
either the licensor or the
licensee), excluding
related party filings.

7972 This is our baseline sample.

# Obs of US contracts
with PERMNOs. 6579

Not all companies have PERMNOs because they are not
exchange-listed, the observation is pre-listing or post
de-listing.

3.4.2 Other Data

We merge the Compustat sample with several other databases. We aim to capture two main

categories of outcomes: capital market outcomes and innovation related outcomes. Many of the

variables we use limit our sample size due to time period coverage, especially the patent data.

Capital Market Outcomes We obtain data on capital market consequences from CRSP, DTAQ,

SDC Platinum and Thomson Reuters 13/F. From the CRSP Daily Stock File, we calculate the

daily bid-ask spread, defined as the closing ask minus the closing bid scaled by the end-of day

price, and the daily turnover, defined as end-of-day price multiplied by volume of shares traded.

For every contract i filed by firm j on date t, we average these daily measures in the subsequent 1

year. We also construct the stock illiquidity measure of Amihud (2002), by computing in each day
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the average ratio of the daily absolute return to the (dollar) trading volume on that day. This daily

measure, too, is averaged into an annual measure over the subsequent 1 year for every contract i

filed by firm j on date t.

From the NYSE Daily Trades And Quotes database, we calculate the price impact of trades

and effective spread. The price impact of trades, also known as Kyle’s Lambda, is measured by

performing regressions of the absolute return over a given time period on dollar volume. The price

impact is defined as the slope from this regression. These slopes are averaged to calculate daily

and annual measures of price impact in an analogous way to the spread and turnover obtained from

CRSP. Higher values of price impact correspond to a given magnitude of trading being associated

with a greater movement in returns, and thus price impact is seen as a measure of stock illiquidity

(in fact, this is an intra-day high frequency analogue of the (Amihud, 2002) measure which we

compute from CRSP). The weekly effective spread is defined as twice the absolute value of the

difference between the actual trade price and the midpoint of the market quote (i.e., between the

quoted bid price and the quoted ask price), divided by the midpoint between these two prices based

on DTAQ.

We use the SDC Platinum database in order to construct a dummy variable 1{Issuance} that

takes the value of 1 if a given firm conducts a secondary equity offering (SEO), in which capital is

raised through an equity issuance, in a given year. The Thomson Reuters 13/F database is used to

calculate institutional ownership (percentage of shares outstanding held by 13/F filing institutions),

ownership by large owners (percentage of shares outstanding held by the top 5 largest institutional

owners), and concentration (Herfindahl-Hirschman Index of institutional ownership by 13/F filing

institutions).

Innovation Outcomes The main innovation outcomes we consider are related to patenting. Al-

though patenting is not the only type of innovation, nor the only type of innovation that firms

license, it is the easiest to objectively measure and quantify. About 54% of contracts in our sample

are patent-related (with 1/4th having intangibles information related to patents). For the contracts

with intangibles that refer to granted patents, we use the Berkeley patent database to calculate nu-
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merous patent statistics related to the number of citations, the number of claims made in the patent,

and the features of the bundle as a whole. To describe innovation activity at the firm level, we use

the NBER 2006 patent sample, which covers all firms in North America and accounts for mergers

and delistings, through 2006. For just the US-listed sample, we also use the patent data provided

by Kogan et al. (2016) through 2010 to obtain firm-level innovation measures. Specifically, we

consider the firm-level annual measures of patenting, TCW and T SM . TCW refers to the forward

citation weighted count of all patents granted to a given firm in a given year, with adjustments for

citation truncation lags. T SM refers to the total dollar value of patents granted to a given firm in

a given year, estimated from the stock market reaction to the patent grants. Detailed definition of

both variables are contained in Kogan et al. (2016). We extend the patents outward through 2014

using the Berkeley patent data to correct for the truncation issue raised in Lerner and Seru (2015).

3.4.3 Summary Statistics

In this section, we provide basic summary statistics to familiarize the reader with our dataset,

and, more broadly, the world of intellectual property licensing. In Figure 3.2 we plot the distribu-

tion of contracts across industries, where the industry classification scheme used is the 42 technol-

ogy industries defined by RoyaltyStat. Specifically, each contract is classified into 1 (or more) of

the 42 technology industries based upon the technology space that best describes the underlying

IP being licensed (this determination is made by RoyaltyStat analysts). As would be expected in a

study focusing on IP-intensive firms, the vast majority of the licensing contracts have underlying

IP that falls under the categories of Pharmaceutical Biotech, Medical Devices and Software.

In Figure 3.3 we plot the yearly distribution of total contracts filed and the proportion which are

redacted. Note that because redacted contracts only enter into the RoyaltyStat database once their

analysts are able to make an FOIA request to retrieve the original un-redacted filing, this implies

that the CTR status of these contracts must have expired. As discussed in the Section 3.2.1, a

CTR lasts around 10 years on average. Therefore, post-2006 we are significantly undersampling

redacted contracts. This is simply because for the average redacted contract filed post-2006, the
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Table 3.3: Contract-level Summary Statistics

Panel A: Distribution of Contracts by Royalty Base
Royalty Base Frequency % of total

Cost of Goods Sold 47 0.60%
Gross Profit 297 3.70%

Manufacturing Cost 34 0.40%
Net Asset Value 15 0.20%

Net Profit 230 2.90%
Net Sales 6704 84.10%

Net Smelter Returns 411 5.20%
Operating Profit 139 1.70%

Overriding Royalty 93 1.20%
Value Added 2 0.00%

Total 7972 100%

Panel B: Distribution of Key Contract Terms
License Fee ($) Royalty Rate (%) Duration (years)

N 2418 7972 6625
Mean 4280652 11.49 19.744

St. Dev. 23279623 14.363 26.049
Min 0 0.005 0
Q1 2 0.5 0
Q5 5000 1 1

Q25 45792 3 5
Q40 100000 5 10

Median 250000 6 17
Q60 500000 8 20
Q75 1500000 12 20
Q95 15000000 50 99
Q99 60000000 70 99
Max 550000000 100 500
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Panel C: Distribution of Contracts by IP type
IP Type Frequency (%) IP Type Frequency (%)

Is Amendment 13.40% Is Patent 54.00%
Is Asset Purchase 0.00% Is Process 14.70%

Is Consulting 0.90% Is Proprietary 2.30%
Is Copyrights 15.70% Is Research 6.30%

Is Cross-License 2.10% Is Services 3.30%
Is Distribution 4.20% Is Shares 1.40%
Is Franchise 3.50% Is Show-How 16.80%

Is Know-How 30.50% Is Software 14.70%
Is Liabilities 2.20% Is Sublicense 2.90%
Is Marketing 1.30% Is Supply 3.60%
Is Mineral 9.30% Is Technology 30.80%
Is Option 4.60% Is Trademark 26.00%

CTR is yet to expire. Thus, the original un-redacted contract cannot be retrieved via an FOIA

request.62 In the pre-2007 period, the rate of redaction appears to be growing over time, and

over the 2000-2006 period in which we observe the most contracts (both redacted and public), the

proportion of total contracts that are redacted ranges between 30% and 45%.

The panels of Table 3.3 display summary statistics of various contract characteristics. In panel

A, we show the distribution of contracts by royalty base. The vast majority of contracts are based

upon net sales. In panel B, we present summary statistics on three key contract features - the

license fee, the royalty rate and the contract duration. The summary statistics confirm that these

are generally economically significant contracts. The median license fee of $250,000 represents

2.3% of the median annual sales of a firm in our sample. These contracts are of a relatively long

duration, with the median contract having a maturity of 17 years. Also, the distributions of rates

and fees are highly skewed, with a long right tail.

In panel C, we show the distribution of agreements by the type of underlying IP. Note that these

categories are not mutually exclusive as the IP underlying a single agreement often encompasses

several types. Hence, the percentages sum to greater than 100. By far the most common form of

IP is patents, followed by know-how, technology, and trademarks.

62Since in the post-2006 period we are significantly undersampling redacted contracts, we rerun our entire analysis
in the pre-2007 sample, and aside from a drop in sample size of around 10% to 15%, our results are qualitatively and
quantitatively similar.
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Figure 3.2: Distribution of Contracts by Technology Industry

This figure plots the distribution of contracts across industries, where the industry classification scheme used is the 42 technology
industries defined by RoyaltyStat and their analysts. Specifically, each contract is classified into 1 (or more) of the 42 technology
industries based upon the technology space that best describes underlying IP being licensed (this determination is made by RoyaltyStat
analysts).
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Figure 3.3: Distribution of Redacted vs. Un-redacted Contracts Over Time

This figure plots the yearly (time-series) distribution of total contracts and the proportion which are redacted.
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Table 3.4: Firm-Level Summary Statistics

In this table, we compare financial characteristics of the firms which appear in our sample, and the financial characteristics of firms which appear in the overall
Compustat sample. Panel A provides summary statistics for key financial variables for the firms in our sample, and Panel B provides summary statistics for the
same variables for all firms in the Compustat sample.

Panel A: RoyaltyStat Sample

Tobin’s Q Leverage Assets Tangibility R&D
Assets

Capex
Assets

Cash
Assets

NetIncome
Assets Age (Years) # Patents Net Sales Int. Capital

N 5601 7281 7361 7293 7361 7202 7312 7320 7619 4206 7320 7552
Mean 2.565 0.307 343.285 0.195 0.317 0.060 0.380 -0.767 12.962 4.040 202.407 174.907

St. Dev. 3.046 0.532 2162.75 0.222 1.206 0.089 0.316 1.534 8.618 34.100 1199.770 1852.900
Q25 0.467 0 6.874 0.042 0 0.009 0.076 -0.772 7 0 0.759 1.733

Median 1.287 0.098 28.240 0.104 0.081 0.028 0.311 -0.248 10 0 10.870 12.451
Q75 3.386 0.372 105.280 0.259 0.319 0.068 0.665 0.019 16 2 61.514 54.223

Panel B: Entire Compustat Sample

N 174132 231232 233184 227049 233184 217945 232062 231783 275865 174,411 231653 240322
Mean 2.702 0.288 2810 0.274 0.070 0.100 0.200 -0.200 16.800 5.700 1396.600 909

St. Dev. 8.107 0.397 9000.810 0.273 0.686 0.100 0.200 1 12.500 69.700 4147.600 5748.500
Q25 0.296 0.027 23.483 0.043 0 0 0 -0.100 8 0 12.400 3.900

Median 0.762 0.190 163.798 0.174 0 0 0.100 0 12 0 89.400 28.500
Q75 1.786 0.390 1043 0.444 0.022 0.100 0.200 0.100 21 0 601.800 175.500
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In Table 3.4 panel A, we present summary statistics that describe the average firm-level char-

acteristics of filers in our sample. In panel B, we compare the firm characteristics of our sample

to the overall sample of public firms in Compustat. Naturally, since we are studying a sample of

innovative firms (i.e. firms which have at least one material IP licensing agreement), the average

firm in our sample is smaller than the average firm in Compustat (mean assets of $343M in our

sample versus $2.81B overall), more R&D intensive (mean R&D/Assets of 31.7% in our sample

versus 7% overall), and younger (mean age of 13 years in our sample versus 17 years overall).

Next, we present graphical evidence that firms with greater proprietary costs of disclosure,

namely firms with higher quality technology or facing more competitive product markets, are more

likely to strategically redact. This is an essential condition for redaction to be a credible signal to

investors, and hence justifies the positive effect of redaction on capital market and innovation out-

comes as implied by our model. In Figure 3.4 panel A, we plot the fraction of redacted contracts

amongst the total set of filed contracts across quintiles of product market competitiveness prox-

ied by the Hoberg and Phillips (2016) measure of product market fluidity. This measure captures

the tendency of new words in your product description to also appear in competitors’ in follow-

ing years, with higher values corresponding to a greater intensity of product market rivalry. The

redaction rate is increasing with product market competitiveness, suggesting firms facing greater

competitive threats are substantially more likely to redact. Firms in the highest quintile of product

market competitiveness, who are more likely to face the threat of potential entry, redact 62% of

their filings, whereas firms in the lowest quintile redact just about 10% of their filings.

In Figure 3.4 panel B, we plot the redaction rate across quintiles of total prior 5 year patent

citations, for the subset of contracts whose underlying IP consists of patents. Patent citations are

well-understood to be proxies for the economic value of patents (Hall, Jaffe, and Trajtenberg,

2005). Thus, contracts which license more economically valuable patents are more likely to be

redacted. This effect is particularly skewed amongst the highest quintile of contracts, which have a

9% higher redaction rate than the immediately preceding quintile. The graphical evidence provides

support for our argument that redaction is a signal used by firms who have more economic value
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Figure 3.4: Relationship Between Redaction Rate and Proprietary Costs of Disclosure

Panel A plots the relation between quintiles of product market fluidity (the tendency of new words
in your product description to also appear in competitors’ in following years), as calculated by
Hoberg and Phillips (2016) and the fraction of redacted contracts amongst total filed contracts
in each quintile. Panel B plots the relation between quintiles of total 5 year patent citations for
contracts whose underlying IP consists of patents and the fraction of redacted contracts amongst
total filed contracts in each quintile.

to lose from being forced to disclose the value of their IP.

We extend this evidence with regressions explaining the probability of redaction. Table 3.5

explains the unconditional determinants of redaction, starting from baseline firm and contract level
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determinants. In the first column, we focus on solely contract-level characteristics. Consistent

with the argument of higher proprietary costs, contracts which are based on IP consisting of know-

how, show-how, which are worldwide, and contain the right to sublicense are associated with

statistically significant increases in the probability of redaction. The marginal effect of “show-

how” on probability of redaction (12-13% higher probability) is almost double the effect of “know-

how” (6-7% higher probability). This suggests that IP that is more difficult to codify, and thus

protect (through patents, trademarks etc.), has a higher proprietary cost of disclosure and hence is

associated with substantially higher probability of redaction.

In the second column, we investigate the effect of firm-level characteristics. As expected, firms

with lower ROA, lower leverage, and higher intangible capital are more likely to redact. We also

construct a composite variable called SizeAge which increases in value as a firm gets older or

bigger. The exact formulation is derived from Hadlock and Pierce (2010), who argue that this

index captures well the extent of financial constraints faced by a firm. We multiply this value by

-1, to derive our index which we call SmallY oung as higher values indicate smaller or younger

firms. Controlling for contract- and firm-level characteristics, however, this does not load. While

these firms may be more innovative, they are also most subject to informational asymmetries and

hence may receive negative capital market consequences post-redaction. We confirm that this is

indeed the case in our subsequent analysis.

In the next two columns, we consider the sample of contracts filed by licensors and licensees

separately. We find that licensors are substantially more likely to redact contracts with “know-how”

than licensees (13.5% vs 2.2%), suggesting it is the erosion of rents for the licensor that matters

most for such contracts. The effect of “show-how”, however is similar across both licensors and

licensees, suggesting that the inability to protect tacit knowledge underlying the contract increases

proprietary costs for both parties. The effect of the sublicense option on probability of redaction

is higher for licensees than for licensors (22% vs 16%), as the option value rests largely with the

licensee. Panel B indicates that firms redact when they have higher quality IP, confirming the

graphical result.
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Table 3.5: Benchmark Model of Determinants of Redaction
Table 5 displays estimated regression coefficients and standard errors (in brackets) from our benchmark model of
contract- and firm-level determinants of redaction. The baseline regression takes the form 1{REDACT }i, j,k,t =
β1Xi, j,k,t−1 +Controlsi, j,k,t−1 + αk + αt + ε i, j,k,t . In all columns of both panels, the dependent variable is a dummy
variable which takes the value of 1 if the contract was redacted and 0 otherwise. We multiply the dummy by 100 such
that coefficients can be interpreted in terms of percentage probabilities. In Panel A, we consider the effects of non-
payment related contract-level terms and firm-level characteristics on the likelihood of redaction. All variables are as
defined in Table 1 and Appendix A.1. The model is estimated using OLS, including industry (SIC2 of the underlying
technology) and year fixed effects. Standard errors (in brackets) are clustered at the technology industry (SIC2) level.

Panel A: Contract- and Firm-Level Determinants of Redaction
Dependent variable: 1{REDACT } ×100

FilerLicensor 3.063 2.668
[3.363] [3.514]

Licensor IsIndividual -17.572*** -15.682*** -17.767***
[3.321] [3.198] [3.876]

Licensor IsNonPro f it -2.705 -2.521 -0.502
[4.3] [4.283] [4.116]

Licensor IsUniversity -5.11** -1.476 -3.519
[2.05] [2.827] [2.505]

IsAmendment 3.344* -0.18 4.43 3.126
[1.767] [1.571] [3.01] [2.07]

IsKnowHow 7.31*** 6.709*** 13.572*** 2.205*
[1.773] [1.738] [4.016] [1.271]

IsShowHow 13.092*** 12.412*** 14.146*** 12.691***
[2.002] [2.281] [1.571] [2.11]

Log(Duration) -0.771 -0.747 -0.475 -1.143**
[0.531] [0.637] [1.126] [0.538]

Worldwide 5.332*** 5.254*** 7.133* 4.172**
[1.903] [1.656] [3.917] [1.658]

Sublicense 20.142*** 19.8*** 16.481*** 22.314***
[3.449] [2.42] [1.992] [4.49]

Exclusive -1.855 -0.607 -1.117 -2.793
[1.463] [1.513] [2.42] [1.773]

ROA -3.107*** -1.288**
[1.085] [0.62]

Leverage -3.524*** -2.389**
[0.88] [0.938]

Log(K Int) 4.675*** 4.229***
[1.113] [1.302]

SmallY oung -0.455 0.54
[1.129] [1.735]

FE? SIC2 + Year SIC2 + Year SIC2 + Year SIC2 + Year SIC2 + Year
Sample Full Full Full Licensor Licensee

N 5798 6314 5284 2283 3515
R2 0.347 0.288 0.368 0.410 0.305
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Panel B: Patent quality and redaction
Dependent variable: 1{REDACT } ×100
5YTotCites 0.191***

[0.046]
5Y AvgCites 0.061***

[0.017]
FE? SIC2 + Year SIC2 + Year

Sample Patents Patents
N 1451 1451
R2 0.334 0.326

Table 3.8 explores the role of competition. Competition is one of the main proxies for propri-

etary costs used in the accounting literature on disclosures, and “competitive harm” is explicitly

mentioned as the main justification for allowing redaction in the SEC’s guidance on requesting

confidential treatment. We use three measures of competition, the HHI, ProdMktFluid, and

T SI M M . HHI is computed at the Fama-French 49 industry level, based on the sample of firms

appearing in Compustat. Given the known deficiencies in this measure as pointed out by Ali,

Klasa, and Yeung (2009), we also use the latter two measures derived from Hoberg, Phillips, and

Prabhala (2014) and Hoberg and Phillips (2016) which represent the degree of product market

threat measured at the firm level, by correlating textual product descriptions from SEC filings. The

first column shows that the standard concentration ratio of sales for Compustat firms in an industry

does not load. However, we find that product market fluidity and textual product similarity both

positively relate to HHI.

Table 3.9 presents a variety of agency measures. At the margin, we may expect firms with

worse internal governance to be likelier to redact, under the hypothesis shrouding information

reflects managerial agency problems. Michaely, Popadak, and Vincent (2014) define four agency

measures, which we replicate. Table 3.9 indicates that across all four measures, none are positively

related to the propensity to redact. Although one may criticize any agency measure, the direction

of the estimate suggests redaction is unlikely to be due to agency problems. If anything, they

are negatively related, significantly so in two of four specifications. In addition, to the extent

competition is a substitute for governance, this suggests that agency problems are very unlikely to
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Table 3.8: Effect of Competition on Likelihood of Redaction
In all columns of both panels, the dependent variable is a dummy variable which takes the value of 1 if the contract
was redacted and 0 otherwise. We multiply the dummy by 100 such that coefficients can be interpreted in terms of
percentage probabilities. In Panel A, we consider the effects of competition on the likelihood of redaction. HHI is the
Herfindahl-Hirschman Index of the filing firm computed based on sales of all firms in its industry that appear in Com-
pustat. The industry classification used in calculating HHI is the Fama-French 49 industries scheme. Lower values of
HHI correspond to higher degree of competition. ProdMktFluid and T SI M M are text-based measures of product-
market competition as defined in Hoberg, Phillips, and Prabhala (2014); Hoberg and Phillips (2016). Higher values of
these two variables correspond to higher degree of competition. Firm controls consist of ROA, Leverage, Log(K Int),
and SmallY oung. Contract controls consist of FilerLicensor , Licensor IsIndividual, Licensor IsNonPro f it,
Licensor IsUniversity, IsAmendment, IsKnowHow, IsShowHow, Log(Duration), Worldwide, Sublicense, and
Exclusive. The model is estimated using OLS, including industry (SIC2 of the underlying technology) and year fixed
effects. Standard errors (in brackets) are clustered at the technology industry (SIC2) level.

Dependent variable: 1{REDACT } ×100
HHI 3.769

[31.122]
ProdMktFluid 1.661***

[0.305]
T SI M M 0.791***

[0.164]
FilerLicensor 2.719 5.323* 4.638

[3.586] [2.786] [3.141]
Firm controls? Y Y Y

Contract controls? Y Y Y
FE? SIC2 + Year SIC2 + Year SIC2 + Year
N 5230 3098 3055
R2 0.366 0.394 0.389
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Table 3.9: Effect of Agency Problems on Likelihood of Redaction
In this table, we consider the effects of competition on the likelihood of redaction. Agency1, Agency2 and Agency3
are measures of agency problems as defined in Michaely, Popadak, and Vincent (2014). Agency1 is a variable that
takes the value of 1 if a firm is large and has few growth opportunities, i.e., market capitalization greater than the
80th percentile and market-to-book ratio less than the 20th percentile in a given calendar year. Agency2 refers to a
dummy variable which takes the value of 1 for firms with managers that tend to overspend on SGA costs without proper
economic reasons, i.e., SG&A expense greater than the 80th percentile and sales growth less than the 20th percentile in
a given calendar year. Agency3 refers to a dummy variable which takes the value of 1 if a firm had positive acquisition
expenses in each of the previous two years and SDC M&A data indicates the acquisitions were not of firms in the
same primary 3-digit SIC industry code as the acquirer i.e. diversifying acquisitions. 1−Ownership refers to 1 minus
the percentage of institutional ownership. Firm controls consist of ROA, Leverage, Log(K Int), and SmallY oung.
Contract controls consist of FilerLicensor , Licensor IsIndividual, Licensor IsNonPro f it, Licensor IsUniversity,
IsAmendment, IsKnowHow, IsShowHow, Log(Duration), Worldwide, Sublicense, and Exclusive. The model
is estimated using OLS, including industry (SIC2 of the underlying technology) and year fixed effects. Standard errors
(in brackets) are clustered at the technology industry (SIC2) level.

The Effect of Agency Problems on Decision to Redact
Dependent variable:1{REDACT }

Agency 1.039 -6.909*** -9.765*** -0.601
[12.109] [1.231] [2.089] [3.3]

FilerLicensor 2.414 2.735 2.58 2.673
[3.473] [3.366] [3.586] [3.531]

Agency Var? Agency1 Agency2 Agency3 1−Ownership
Firm Controls? Y Y Y Y

Contract Controls? Y Y Y Y
FE? SIC2 + Year SIC2 + Year SIC2 + Year SIC2 + Year
N 3805 5269 5278 5284
R2 0.367 0.370 0.369 0.367

be an explanation for redaction propensity.

3.5 Methodology

In this section, we present results from our empirical analysis of the effect of redaction on capital

market and innovation outcomes. The results provide evidence in favor of the two key implications

arising from our model and hypothesis development, first that redaction is associated with positive

capital market outcomes (specifically stock liquidity, equity issuance, and institutional ownership)

due to its signaling value, and second that by allowing firms to preserve IP-related competitive

advantage, redaction promotes future innovation activity (specifically, patenting, intangible capital

stock accumulation and R&D expenditure).

134



We adopt two methodologies in this section. First, we estimate annual contract-level panel

regressions of the form:

∆Yi, j,l,t+k = β11{REDACT }i, j,l,t + β2Yi, j,l,t+k−1+Xγ+
∑

l

αl +
∑

t

αt + ε i, j,l,t (1)

where Y refers to an outcome variable measured at the horizon t+ k, where t is the contract filing

year, k = 1 year for most outcomes, and k = 2 or 3 years for analysis of long-term consequences.

1{REDACT } refers to a dummy variable for whether a given contract i, filed in year t, by firm j,

with underlying technology belonging to SIC2 industry l, was redacted. X is a vector of firm- and

contract-level controls. We include fixed-effects for the SIC2 industry assigned to the technology

underlying a given contract, αl , and year fixed-effects, αt .

The set of firm-level controls that we include in our regression specification consists of the log-

arithm of total assets(log(Assets)), the logarithm of total intangible capital as defined by Peters

and Taylor (2016) (log(Kint )), the ratio of cash to assets
(

Cash
Assets

)
, leverage ratio

(
Debt

Assets

)
, and

the SmallY oung index value which collapses the age and size of the firm into a single index.63

The set of contract-level controls includes dummy variables which take the value of 1 if the fil-

ing firm is the licensor(FilerLicensor), if the licensor is an individual (Licensor IsIndividual),

a non-profit (Licensor IsNonPro f it), a university (Licensor IsUniversity), if the given con-

tract is an amendment of a previous agreement (IsAmendment), if the underlying IP consists of

know-how64 (IsKnowHow), and show-how65 (IsShowHow). We also include the logarithm of

the duration of the contract (log(Duration)), a dummy for whether the licensing rights extend

worldwide (Worldwide), whether the agreement confers the licensee the right to sublicense the

IP (Sublicense), and if the IP is being licensed exclusively to that particular licensee (Exclusive).

We include these variables in order to capture common economic determinants of licensing con-

63The SmallY oung index is calculated as minus one times the SizeAge index as computed by Hadlock and Pierce
(2010). The SmallY oung index is calculated as −1× SizeAge = −1× [(−0.744× Size) + (0.042× Size2) − (0.075×
Age) + (0.001× Age2)], where Size is the log of inflation-adjusted book assets, and Age is the number of years the
firm is listed with a non-missing stock price on Compustat. As in Hadlock and Pierce (2010), when we construct the
index, Size is winsorized at log(4.5×109), and Age is winsorized at 37 years.

64Know-how encompasses unpatentable proprietary information including blueprints, drawings, data etc.
65Show-how consists of proprietary assistance rendered by the licensor to the licensee.
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tract terms (as noted in Varner (2011) and Hegde (2014)).

Our coefficient of interest in equation (1) is β1, and it can be interpreted as a “difference-in-

difference”. Specifically, when k = 1, the coefficient β1 captures the difference in the change in

variable Y from time t (the filing date) to t + 1, denoted as ∆Yt+1 = Yt+1 −Yt , between firms which

redact and firms which do not. A positive estimate of β1 indicates that ∆Yt+1 for redacting firms

is on average greater than ∆Yt+1 for non-redacting firms. We control for the current level of the

dependent variable Yt to mitigate any scale effects not already captured by controlling for total

assets and intangible capital.

Second, we employ matching techniques in order to improve comparability between the sample

of firms which redact and those which do not. We match redacted and un-redacted contracts

on the basis of a propensity score which is a function of the SmallY oung index (size and age

being important unconditional determinants of a firm’s likelihood to file patents) and the level of

intangible capital (log(Kint )). In addition, we require an exact match on the 1-digit SIC industry of

the licensed technology, and we require that the treated and untreated contracts fall within a 3 year

block of each others’ filing dates. Finally, we require an exact match on whether the underlying

IP consists of patents or not, as firms which patent ex-ante are much more likely to continue

patenting. We evaluate the improvement in comparability of the samples generated by the matching

procedure by considering the percent improvement in balance for each of the matching variables,

defined as 100× ( |a |−|b|)
|a| , where a is the balance statistic before and b is the balance statistic after

matching. The balance statistics considered include means of each matching variable, as well as

mean, median and maximum value of the empirical distribution of each matching variable across

the treatment and control samples. In Table 3.10, we show the mean improvement in balance for

each of the variables on which we construct the propensity score, and the score itself, as well as

improvement in the mean, median, and maximum of the empirical distribution of each matching

variable across the treatment and control samples. The score itself (labeled as Distance), improves

by 99% on average, the balance of the SmallY oung index improves by 70% on average, and

the balance of intangible capital improves by 94% on average. As noted by Imai, King, and Stuart
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Table 3.10: Percentage Improvement in Balance as a Result of Matching

In this table, we evaluate the improvement in comparability of the samples generated by matching
by considering the percent improvement in balance for each of the matching variables, defined as
100× (( |a |−|b|)

|a| , where a is the balance statistic before and b is the balance statistic after matching
for a given variable. This table shows the mean improvement in balance for each of the variables
on which we construct the propensity score, and the score itself as well as quantiles of the em-
pirical distribution of the improvement in balance across all observations in the matched sample.
Distance is the propensity score. All other variables are as defined in the text.

Mean Diff. eQQ Med eQQ Mean eQQ Max
Distance 99.988 86.656 87.084 42.903

SmallY oung 70.312 30.984 48.566 16.833
log(K Int) 94.277 93.664 88.578 59.638

(2008), this is a superior way of comparing balance of covariates pre- and post-matching.66 Finally,

in the matching analysis, we cluster the standard errors at the level of the matches, as recommended

by Abadie and Spiess (2016b).67

We interpret the results of the OLS and matching analysis jointly in order to verify the two key

implications of our model. The first implication is that redaction is associated with positive capital

market outcomes. The capital market outcomes we consider include stock liquidity (measured by

the Amihud (2002) illiquidity measure, bid-ask spread, and turnover, as well as percentage price

impact in our robustness analysis), the likelihood of equity issuance (SEO), and institutional own-

ership (measured by percentage institutional ownership, percentage owned by top 5 institutional

owners, and concentration of institutional ownership). The second implication is that redaction

is associated with positive innovation outcomes. The innovation outcomes we consider include

patenting (measured by total citation-weighted patents and total stock market value associated with

patents) granted to a given firm in a given year, research and development spending, and intangible

capital accumulation (as defined by Peters and Taylor (2016)).

After establishing the main result, we then turn to the cross-section. We would expect adverse

66The usual method of computing t-statistics on the difference in means of the variables of interest is highly
misleading for four reasons described in their paper.

67The broad inferences are robust to alternative matching schemes, but we choose a somewhat coarse industry
definition and 3 year time intervals to reduce oversampling a subset of contracts in the control group.
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selection concerns to limit the ability of firms to signal their technology’s type. We therefore

explore cross-sectional heterogeneity in effect of redaction on stock liquidity, and test whether

interaction with variables associated with high information asymmetry and low reputation firms

generates a negative marginal relationship between redaction and liquidity. First, we test whether

the liquidity effects are partially undone for small and young firms, for whom information asym-

metries are likely to be more acute. Second, we test whether firms which have a higher rate of

past redaction also face a negative marginal effect of redaction on liquidity. That is, we check if

there is a degree of concavity in the extent to which firms can credibly signal high quality tech-

nology through redaction. Finally, we test whether firms with greater equity dependence, who due

to repeated interactions with investors are less likely to be affected by adverse selection in capital

markets, experience a positive marginal effect of redaction on stock liquidity.

3.6 Consequences of Strategic Redaction

3.6.1 Redaction and Capital Market Outcomes

In Table 3.11, we consider the effect of redaction on future stock liquidity measured three ways.

For each contract i filed by firm j at time t, we compute daily values of Amihud’s illiquidity

measure (Amihud, 2002) for each day in the 1 year after time t. We do this by by computing the

ratio of the daily absolute return to the (dollar) trading volume on that day, for firm j’s stock. We

average this value across all days in the 12 months after filing time t, to obtain the variable Illiq.

We also compute daily bid-ask spread for firm j’s stock, which is the closing ask minus the closing

bid scaled by the end-of-day price, and average this across all days in the 12 months after filing

time t to obtain the variable Spread. Finally, we compute daily turnover for firm j’s stock, which

is the end-of-day price multiplied by the volume of shares traded. We average this across all days

in the 12 months after filing time t to obtain the variable Turnover . With these three outcome

variables, we estimate the panel regression in equation (1). Results are reported in Table 3.11.

The first three columns contain OLS coefficient estimates for specification (1) with firm- and

138



Table 3.11: Effect of Redaction on Future Stock Liquidity

Table 6 displays estimated regression coefficients and standard errors (in brackets) corresponding to the effects of redaction on future liquidity. The
regression takes the form ∆Yi, j,l,t+k = β11{REDACT }i, j,l,t + β2Yi, j,l,t+k−1 +Xγ +

∑
l αl +

∑
t αt + ε i, j,l,t . For each contract i filed by firm j at time t,

we compute daily values of Amihud’s illiquidity measure (Amihud, 2002) for each day in the 1 year after time t. We do this by by computing the
ratio of the daily absolute return to the (dollar) trading volume on that day, for firm j’s stock. We average this value across all days in the 12 months
after filing time t, to obtain the variable Illiq. We also compute daily bid-ask spread for firm j’s stock, which is the closing ask minus the closing
bid scaled by the end-of-day price, and average this across all days in the 12 months after filing time t to obtain the variable Spread. Finally, we
compute daily turnover for firm j’s stock, which is the end-of-day price multiplied by the volume of shares traded. We average this across all days in
the 12 months after filing time t to obtain the variable Turnover . The first three columns contain OLS coefficient estimates from specifications which
include with firm- and contract-level controls (specified in Appendix C.3), as well as technology-industry (SIC2) and year fixed-effects, with standard
errors clustered at the technology-industry (SIC2) level. The second three columns contain estimates from a matched sample. Matching is done with
replacement based on a propensity score which is a function of SmallY oung and log(K Int), plus exact matching on SIC1 of the technology, filing
dates within a 3 year window of each other, and underlying IP consisting of patents. Standard errors in the matching analysis are clustered at the level
of the matches as recommended by Abadie and Spiess (2016b).

∆Illiqt+1 ∆Spreadt+1 ∆Turnovert+1 ∆Illiqt+1 ∆Spreadt+1 ∆Turnovert+1

1{REDACT } -0.013* -0.042*** 0.072*** -0.011** -0.044*** 0.060***
[0.007] [0.009] [0.021] [0.005] [0.011] [0.017]

Levelt -0.179*** -0.044*** -0.024*** -0.124*** -0.054*** -0.021***
[0.015] [0.004] [0.004] [0.020] [0.005] [0.002]

(Intercept) 0.034*** 0.072*** 0.120***
[0.004] [0.009] [0.016]

Analysis OLS OLS OLS Matching Matching Matching
SIC2 + Year FE Y Y Y N N N

Contract + Firm Controls Y Y Y N N N
N 3324 3303 3324 2632 2621 2632
R2 0.235 0.264 0.200 0.062 0.087 0.072

139



contract-level controls, as well and technology-industry (SIC2) and year fixed-effects, with stan-

dard errors clustered at the technology industry level. The second three columns contain estimates

from a matched sample. The coefficient of interest is the coefficient on 1{REDACT }, which mea-

sures the difference in the growth of the dependent variable in the 1 year post-filing, between

firms which file redacted and un-redacted contracts. For ∆Illiq and ∆Spread, across all spec-

ifications, the coefficients on 1{REDACT } are negative and significant, indicating redaction is

associated with improved liquidity post-filing, whereas the coefficient for ∆Turnover is positive.

These magnitudes are economically significant. For instance, the mean value of Illiq in our sam-

ple is 0.1776, and thus the marginal effect of redaction of -0.013 from the first column indicates

that firms which file redacted contracts are associated with a post-filing improvement in Illiq of

7% of the mean, relative to firms which file un-redacted contracts. In the Appendix (Table C.4.1),

we also report results in event-time that indicate liquidity (measured by price impact and effec-

tive spread) improves in the 2 weeks immediately post-filing, and in the 15 weeks post-filing, for

redacting relative to non-redacting firms. Thus, at the short-, mid-, and long-term horizons, liquid-

ity improves post-filing for firms filing redacted contracts relative to those filing un-redacted ones.

This suggests that contrary to the findings of Verrecchia and Weber (2006), investors do not penal-

ize firms which strategically redact disclosures related to IP licensing agreements through reduced

liquidity.68 These results provide support for the first key implication of our model, that redaction

serves as a credible, investor-recognized signal of technology type, and is associated with a posi-

tive capital market response. All results from our main analyses, and indeed the vast majority of

results from our cross-sectional analyses, obtain even after including technology industry-by-year

fixed effects. We present a selection of these in the Appendix Table C.4.2.

68This can be partially attributed to the fact that Verrecchia and Weber (2006)’s sample differs from ours in two
key ways. First, they focus on small firms (between $50 and 100 million market capitalization). In contrast, the
average firm in our sample has a market capitalization of $990 million, and the largest firm in our sample has a market
capitalization of $279 billion. Second, they consider all varieties of redacted material agreements, including debt,
equity, employment, customer-supplier, and IP licensing related agreements. Our sample focuses exclusively on IP
licensing agreements, and thus includes relatively innovative firms, for whom the benefits of non-disclosure are likely
to be more pronounced. Consistent with their findings, however, we show that small and young firms that redact in
our sample, too suffer a marginally negative effect on their stock liquidity post-filing as compared to firms which do
not redact.
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Table 3.12: Effect of Redaction on Future Equity Issuance and Institutional Ownership

This table displays estimated regression coefficients and standard errors (in brackets) corresponding to the effects of redaction on equity issuance and
institutional ownership. The regression takes the form ∆Yi, j,l,t+k = β11{REDACT }i, j,l,t + β2Yi, j,l,t+k−1 +Xγ +

∑
l αl +

∑
t αt + ε i, j,l,t . 1{Issuance}t

is a dummy variable that takes the value of 1 if a given firm conducts a secondary equity offering (SEO), in which capital is raised through an
equity issuance, in a given year t. InstOwn refers to the percentage of outstanding shares owned by institutions (entities that file 13/Fs), Top5Share
refers to the percentage of shares owned by the top 5 institutional owners, out of all shares owned by institutional investors, and HHI refers to
the Herfindahl-Hirschman index of institutional ownership (with lower values implying lower concentration). The first three columns contain OLS
coefficient estimates from specifications with firm- and contract-level controls (specified in Appendix C.3), as well as technology-industry (SIC2) and
year fixed-effects, with standard errors clustered at the technology-industry (SIC2) level. The second three columns contain estimates from a matched
sample. Matching is done with replacement based on a propensity score which is a function of SmallY oung and log(K Int), plus exact matching on
SIC1 of the technology, filing dates within a 3 year window of each other, and underlying IP consisting of patents. Standard errors in the matching
analysis are clustered at the level of the matches as recommended by Abadie and Spiess (2016b).

Panel A: Effect of Redaction on Equity Issuance
1{Issuance}t+1 1{Issuance}t+2 1{Issuance}t+3 1{Issuance}t+1 1{Issuance}t+2 1{Issuance}t+3

1{REDACT } 0.022*** 0.032** 0.029 0.057*** 0.104*** 0.127***
[0.007] [0.016] [0.020] [0.011] [0.013] [0.011]

Analysis OLS OLS OLS Matching Matching Matching
SIC2 + Year FE Y Y Y N N N

Contract + Firm Controls Y Y Y N N N
N 4943 4943 4943 3664 3664 3664
R2 0.083 0.111 0.127 0.020 0.020 0.020
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Panel B: Effect of Redaction on Institutional Ownership
∆InstOwnt+1 ∆Top5Sharet+1 ∆HHIt+1 ∆InstOwnt+1 ∆Top5Sharet+1 ∆HHIt+1

1{REDACT } 0.031*** 21.809*** -0.037*** 0.043*** 25.002*** -0.017**
[0.006] [3.147] [0.009] [0.006] [3.203] [0.007]

Levelt -0.081*** -0.416*** -0.839*** -0.216*** -0.360*** -0.544***
[0.005] [0.021] [0.031] [0.009] [0.012] [0.026]

(Intercept) 0.098*** 76.258*** 0.144***
[0.005] [3.054] [0.007]

Analysis OLS OLS OLS Matching Matching Matching
SIC2 + Year FE Y Y Y N N N

Contract + Firm Controls Y Y Y N N N
N 4674 4674 4675 3390 3390 3390
R2 0.192 0.260 0.475 0.140 0.248 0.252
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We provide further support for this implication by considering the effect of redaction on post-

filing likelihood of equity issuance and institutional ownership. In Table 3.12 panel A, we consider

the effect of a firm redacting its filing on the likelihood that it conducts a seasoned equity offering

(SEO) in the subsequent 1, 2, and 3 years. The first three columns contain OLS coefficient esti-

mates, and the second three columns contain matching results. The coefficients on 1{REDACT }

indicate that redacting firms have a 2.2% higher likelihood of an SEO in the next 1 year, 3.2%

higher in 2 years, and 2.9% higher in 3 years, relative to firms which do not redact their filings.

The matching results provide even greater economic magnitudes, to the tune of 5.7% to 12.7%

greater likelihood of SEOs post-filing for redacting firms relative to those which do not redact their

filings. Thus, not only do investors reward redacting firms with improved liquidity, these firms are

also more likely to issue equity in the future. This further supports the implication that redaction

serves as a credible signal of the value of the underlying technology to investors.

In Table 3.12 panel B, we measure the effect of redaction on institutional ownership. We use

three proxies for institutional ownership. InstOwn refers to the percentage of outstanding shares

owned by institutions (entities that file 13/Fs), Top5Share refers to the percentage of shares owned

by the top 5 institutional owners, out of all shares owned by institutional investors, and HHI refers

to the Herfindahl-Hirschman index of institutional ownership (with lower values implying lower

concentration). The results from the first and fourth columns indicate that overall institutional

ownership increases subsequent to filing for redacting firms relative to non-redacting firms. The

positive and significant effect of redaction on ∆Top5Share indicates that post-filing, the major

existing institutional owners expand their holdings in redacting firms relative to those which do

not redact. Finally, the negative and significant effect on ∆HHI indicates that concentration of

institutional ownership declines post-filing for firms which redact relative to those which do not.

This implies that both existing owners and new owners recognize the need for innovative firms

to redact their disclosures strategically, to avoid competitive harm. The decrease in concentration

suggests that it is not only existing owners, who may have access to private information, who

expand their holdings in redacting firms post-filing. Thus, rather than deterring them, redaction
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signals the presence of a valuable technology and leads to an expansion in both existing and new

institutional ownership.

Taken together, the results from this section provide counter-evidence to the logic that redaction

is perceived negatively by investors. While redaction mechanically deprives investors of infor-

mation, the ability of firms to signal the value of their technology by redacting is recognized and

rewarded by investors through improved stock liquidity, greater equity issuance, and institutional

ownership.

3.6.2 Redaction and Future Innovation

The next set of consequences we consider are related to future innovation activity. In Table 3.13,

panel A we display regressions in which the dependent variables are various measures of patenting

at a 1 year-ahead horizon with respect to the filing date.

The first three columns contain full-sample OLS estimates, and the last three columns contain

matched sample estimates. We use two measures of patenting, borrowed from Kogan et al. (2016).

TCW refers to the forward citation weighted count of all patents granted to a given firm in a

given year, with adjustments for citation truncation lags. T SM refers to the total dollar value of

patents granted to a given firm in a given year, estimated from the stock market reaction to the

patent grants. Our outcome variable is therefore the logarithm of the innovation output, which

can be interpreted as an intensive margin test. However, un-tabulated extensive margin tests also

produce directionally similar results. Across all specifications, 1{REDACT } loads significantly

and positively, suggesting firms which strategically redact a given contract experience increased

patenting in the 1 year post-filing, measured both in terms of a citation-weighted count, and in

terms of stock market value generated, relative to non-redacting firms. The effect is obtained

in both the matched sample and through OLS estimates, controlling for contract- and firm-level

characteristics, including the firm’s prior patenting and intangible capital stock. Furthermore, when

we allow for asymmetric effects between the licensor and the licensee, the licensor seems to have

a stronger marginal effect in terms of even higher future patenting, as seen in the third and sixth
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Table 3.13: Effect of Redaction on Future Patenting

Panel A displays estimated regression coefficients and standard errors (in brackets) corresponding to the effects of redaction on future patenting at
the 1 year ahead horizon. The regression takes the form ∆Yi, j,l,t+k = β11{REDACT }i, j,l,t + β2Yi, j,l,t+k−1 +Xγ +

∑
l αl +

∑
t αt + ε i, j,l,t . We use two

measures of patenting, borrowed from Kogan et al. (2016). TCW refers to the forward citation weighted count of all patents granted to a given firm
in a given year, with adjustments for citation truncation lags. T SM refers to the total dollar value of patents granted to a given firm in a given year,
estimated from the stock market reaction to the patent grants. The first three columns contain OLS coefficient estimates from specifications with firm-
and contract-level controls (specified in Appendix C.3), as well as technology-industry (SIC2) and year fixed-effects, with standard errors clustered at
the technology-industry (SIC2) level. The second three columns contain estimates from a matched sample. Matching is done with replacement based
on a propensity score which is a function of SmallY oung and log(K Int), plus exact matching on SIC1 of the technology, filing dates within a 3 year
window of each other, and underlying IP consisting of patents. Standard errors in the matching analysis are clustered at the level of the matches as
recommended by Abadie and Spiess (2016b).

Panel A: Effect of Redaction on Future Innovation (1 year ahead)
∆ log(TCW )t+1 ∆ log(T SM)t+1 ∆ log(T SM)t+1 ∆ log(TCW )t+1 ∆ log(T SM)t+1 ∆ log(T SM)t+1

1{REDACT } 0.413*** 0.404*** 0.263*** 0.344*** 0.414*** 0.182***
[0.070] [0.090] [0.064] [0.044] [0.049] [0.060]

1{REDACT } ×FilerLicensor 0.331*** 0.523***
[0.095] [0.107]

FilerLicensor 0.103*** 0.033
[0.040] [0.071]

FilerLicensor × log (TotalPriorPatents) 0.040 -0.021
[0.041] [0.036]

log (TotalPriorPatents) 0.356*** 0.414*** 0.384*** 0.465*** 0.567*** 0.564***
[0.020] [0.029] [0.033] [0.015] [0.018] [0.023]

(Intercept) 0.381*** 0.131*** 0.134***
[0.038] [0.033] [0.041]

Analysis OLS OLS OLS Matching Matching Matching
SIC2 + Year FE Y Y Y N N N

Contract + Firm Controls Y Y Y N N N
N 3316 3316 3316 2438 2438 2438
R2 0.457 0.520 0.530 0.333 0.389 0.404
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Panel B displays estimated regression coefficients and standard errors (in brackets) corresponding to the effects of redaction on future patenting at
the 2 to 3 year ahead horizon. The regression takes the form ∆Yi, j,l,t+k = β11{REDACT }i, j,l,t + β2Yi, j,l,t+k−1 +Xγ +

∑
l αl +

∑
t αt + ε i, j,l,t . T SM

refers to the total dollar value of patents granted to a given firm in a given year, estimated from the stock market reaction to the patent grants. The
first two columns contain OLS coefficient estimates from specifications with firm- and contract-level controls (specified in Appendix C.3), as well as
technology-industry (SIC2) and year fixed-effects, with standard errors clustered at the technology-industry (SIC2) level. The second two columns
contain estimates from a matched sample. Matching is done with replacement based on a propensity score which is a function of SmallY oung and
log(K Int), plus exact matching on SIC1 of the technology, filing dates within a 3 year window of each other, and underlying IP consisting of patents.
Standard errors in the matching analysis are clustered at the level of the matches as recommended by Abadie and Spiess (2016b).

Panel B: Effect of Redaction on Future Innovation (2-3 years ahead)
∆ log(T SM)t+2 ∆ log(T SM)t+3 ∆ log(T SM)t+2 ∆ log(T SM)t+3

1{REDACT } 0.308** 0.404*** 0.383*** 0.501***
[0.120] [0.109] [0.055] [0.059]

log (TotalPriorPatents) 0.391*** 0.354*** 0.578*** 0.563***
[0.027] [0.033] [0.022] [0.024]

(Intercept) 0.115*** 0.107***
[0.037] [0.040]

Analysis OLS OLS Matching Matching
SIC2 + Year FE Y Y N N

Contract + Firm Controls Y Y N N
N 2979 2669 2181 1972
R2 0.493 0.473 0.378 0.350
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columns. This reflects the role of the licensor as the entity generating the IP - a licensee may build

follow-on IP, or simply utilize this innovation in a downstream application.

The magnitudes of the estimated effects are striking in their economic significance. The mean

value of TCW is 0.8204, and the estimate from the first column of 0.4126 implies that redacting

firms have an increase in citation-weighted patenting representing around 50% of the mean, relative

to firms which do not redact. Similarly, the estimated effect of redaction from the second column

is around 53% of the mean value of T SM . The magnitudes from the matched sample are lower,

but still significant, representing 40-50% of the mean of the respective variables.

In panel B of Table 3.13, we show regressions estimates that measure the effects of strategic

redaction on patenting at a longer horizon of 2 and 3 years after the filing date. The estimates of

the coefficients on 1{REDACT } are of similar statistical and economic significance as those in

panel A of Table 3.13. Redacting firms thus seem to follow a sustained, higher innovation path

post-filing when compared with non-redacting firms.

To the extent that patenting is an incomplete measure of firm-level innovation activity, we also

consider the effect of strategic redaction on the growth of various forms of intangible capital as

defined in Peters and Taylor (2016). Although R&D spending is not necessarily innovation output,

the growth of spending itself represents innovation effort, and innovation output is likely increasing

in innovation effort. We consider the following four measures. First, the firm’s expenditure on

research and development divided by total assets
(

R&D
Assets

)
, second, the level of intangible capital

(K Int). This variable is provided through WRDS, and is defined in Peters and Taylor (2016)

as the sum of on and off balance sheet intangible assets, including reported intangible assets that

appear on the balance sheet, and accumulation of R&D expenses, and a fraction of SG&A expenses

using the perpetual inventory method. They also calculate disaggregated components of intangible

capital stock including knowledge capital, or KKnow, which is calculated as the accumulation of

R&D expenses using the perpetual inventory method, and off-balance sheet capital, or KO f f BS,

which includes the accumulation of R&D and a portion of SG&A expenses through the perpetual

inventory method. The latter measure incorporates the portion of a firm’s intangible assets that do
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not appear on the balance sheet since these are expenses listed on the income statement. Results

shown in Table 9 indicate a positive and significant coefficient of 1{REDACT } on all the four

measures, suggesting that post-filing, redacting firms spend more on R&D and accumulate more

intangible capital than non-redacting firms.

On the whole, strategic redaction of an IP licensing agreement predicts significantly greater fu-

ture innovation post-filing based on both patent and non-patent measures. Taken together, these

results provide strong evidence in favor of the second key implication of our model, that by al-

lowing high technology-quality firms to redact enables them to preserve comparative advantage

and prevent competitive entry into their technology space, thereby promoting future innovation

activity.

3.6.3 Cross-sectional Heterogeneity

In this section, we analyze the cross-sectional heterogeneity in the effect of redaction on capital

market outcomes. We propose three tests to capture the intuition of the hypothesis that the positive

capital market effect is muted for firms with a less credible reputation amongst investors. In order

to perform these tests, we modify the initial specification in equation (1) to allow for cross-sectional

heterogeneity in the effect of redaction:

∆Yi, j,l,t+k = β11{REDACT }i, j,l,t + β2Yi, j,l,t+k−1+ β3Zi, j,l,t (2)

+ β41{REDACT }i, j,l,t × Zi, j,l,t +Xγ+
∑

l

αl +
∑

t

αt + ε i, j,l,t

where all variables are as previously defined, except that now we include an additional term

which interacts the main effect, 1{REDACT } with a cross-sectional variable Z .

First, we study whether the effect of redaction on capital market outcomes varies with the size

and age of the filing firm. These attributes are collapsed into a single index, which we denote

SmallY oung (defined previously), which decreases in value as a firm grows in size or age. The
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Table 3.14: Effect of Redaction on Future Intangible Capital Accumulation and R&D Expense

This table displays estimated regression coefficients and standard errors (in brackets) corresponding to the effects of redaction on future intangible
capital accumulation. The regression takes the form ∆Yi, j,l,t+k = β11{REDACT }i, j,l,t + β2Yi, j,l,t+k−1 +Xγ +

∑
l αl +

∑
t αt + ε i, j,l,t . We consider the

following four measures. First, the firm’s expenditure on research and development divided by total assets
(

R&D
Assets

)
, second, the level of intangible

capital (K Int). This variable is provided through WRDS, and is defined in Peters and Taylor (2016) as the sum of on and off balance sheet intangible
assets, including reported intangible assets that appear on the balance sheet, and accumulation of R&D expenses, and a fraction of SG&A expenses
using the perpetual inventory method. They also calculate disaggregated components of intangible capital stock including knowledge capital, or
KKnow, which is calculated as the accumulation of R&D expenses using the perpetual inventory method, and off-balance sheet capital, or KO f f BS,
which includes the accumulation of R&D and a portion of SG&A expenses through the perpetual inventory method. The first four columns contain
OLS coefficient estimates from specifications with firm- and contract-level controls (specified in Appendix C.3), as well as technology-industry
(SIC2) and year fixed-effects, with standard errors clustered at the technology-industry (SIC2) level. The second four columns contain estimates from
a matched sample. Matching is done with replacement based on a propensity score which is a function of SmallY oung and log(K Int), plus exact
matching on SIC1 of the technology, filing dates within a 3 year window of each other, and underlying IP consisting of patents. Standard errors in the
matching analysis are clustered at the level of the matches as recommended by Abadie and Spiess (2016b).

Effect of Redaction on Intangible Capital Accumulation and R&D Expense
∆ R&D

Assets t+1 ∆K Intt+1 ∆KKnowt+1 ∆KO f f BSt+1 ∆ R&D
Assets t+1 ∆K Intt+1 ∆KKnowt+1 ∆KO f f BSt+1

1{REDACT } 0.137*** 0.166*** -0.021 0.112*** 0.032*** 0.201*** 0.244*** 0.206***
[0.023] [0.018] [0.073] [0.024] [0.012] [0.019] [0.020] [0.016]

(Intercept) -0.022** 0.376*** 0.315*** 0.360***
[0.009] [0.015] [0.016] [0.012]

Analysis OLS OLS OLS OLS Matching Matching Matching Matching
SIC2 + Year FE Y Y Y Y N N N N

Contract + Firm Controls Y Y Y Y N N N N
N 3005 3952 3952 3952 2401 2704 2704 2704
R2 0.017 0.114 0.058 0.131 0.002 0.035 0.046 0.049
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Table 3.15: Effect of Redaction for Small and Young Firms

This table displays estimated regression coefficients and standard errors (in brackets) corresponding to the
cross-sectional effects of firm size and age. The regression takes the form ∆Yi, j,l,t+k = β11{REDACT }i, j,l,t +
β2Yi, j,l,t+k−1 + β3Zi, j,l,t + β41{REDACT }i, j,l,t × Zi, j,l,t +Xγ +

∑
l αl +

∑
t αt + ε i, j,l,t . All variables are as

previously defined. The regressions are estimated by OLS with firm- and contract-level controls (specified in
Appendix C.3), as well as technology-industry (SIC2) and year fixed-effects, with standard errors clustered
at the technology-industry (SIC2) level.

∆ log(T SM)t+1 ∆ log(T SM)t+2 ∆Illiqt+1 ∆Spreadt+1

1{REDACT } 0.326*** 0.229** -0.019*** -0.051***
[0.085] [0.115] [0.007] [0.011]

1{REDACT } × SmallY oung 0.323*** 0.244*** 0.032*** 0.047***
[0.077] [0.091] [0.007] [0.018]

SmallY oung -1.079*** -1.229*** 0.001 0.032
[0.249] [0.321] [0.027] [0.020]

Levelt -0.181*** -0.045***
[0.004] [0.004]

log(TotalPriorPatents) 0.418*** 0.398***
[0.026] [0.022]

Analysis OLS OLS OLS OLS
SIC2 + Year FE Y Y Y Y

Contract + Firm Controls Y Y Y Y
N 3316 2979 3324 3303
R2 0.556 0.537 0.238 0.267

results are contained in Table 10. The estimated coefficients on 1{REDACT } × SmallY oung in-

dicate that while smaller and younger firms that redact do innovate more post-filing as measured

by stock market value generated by patent grants in the 1 year post-filing (T SM), their liquidity,

measured by Amihud illiquidity (Illiq) and bid-ask spread (Spread), worsens post-filing relative

to non-redacting firms. The smaller or younger the firm, as measured by the SmallY oung index

value, the more negative the relationship between redaction and liquidity. This is consistent with

the findings of Verrecchia and Weber (2006) and Boone, Floros, and Johnson (2016), who both

document that redaction is negatively associated with liquidity in samples of firms that are skewed

towards smaller and/or younger firms. Specifically, the results found by Verrecchia and Weber

(2006) are nested within ours, as the negative effects of redaction on liquidity that they document

are driven by the fact that their sample consists of only small firms (market capitalization between
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Table 3.16: Effect of Redaction Conditional on Past Redaction

This table displays estimated regression coefficients and standard errors (in brackets) corresponding to
the cross-sectional effects of firms’ past redaction tendency. The regression takes the form ∆Yi, j,l,t+k =
β11{REDACT }i, j,l,t + β2Yi, j,l,t+k−1+ β3Zi, j,l,t + β41{REDACT }i, j,l,t × Zi, j,l,t +Xγ+

∑
l αl +

∑
t αt + ε i, j,l,t .

We measure prior redaction tendency in four ways. First, 1{Prior Redacter } is a dummy variable which
takes the value 1 if a firm has previously filed a redacted agreement in our sample, prior to time t. Second,
log(DaysSinceFirstRedact) captures the number of days since the first redacted agreement filed by the
firm in question was filed. To the extent that we do not capture all redacted filings by a given firm, we
assume that this measure captures prior redaction history assuming a uniform within-firm rate of redaction
over time. Third, the variable log(#Prior Redact) captures the number of prior redacted agreements filed
by the given firm, prior to the filing of the current agreement. Fourth, the variable RedactRate is simply the
fraction of the number of filings by the given firm which were redacted divided by the total number of filings
(both redacted and un-redacted) submitted by the given firm, prior to the filing of the current agreement. All
other variables are as previously defined. The regressions are estimated by OLS with firm- and contract-
level controls (specified in Appendix C.3), as well as technology-industry (SIC2) and year fixed-effects,
with standard errors clustered at the technology-industry (SIC2) level.

∆Spreadt+1 ∆Spreadt+1 ∆Spreadt+1 ∆Spreadt+1

1{REDACT } -0.060*** -0.048*** -0.061*** -0.070***
[0.011] [0.013] [0.008] [0.008]

1{REDACT } ×1{Prior Redacter } 0.053*
[0.027]

1{REDACT } × log(DaysSinceFirstRedact) 0.010***
[0.003]

1{REDACT } × log(#Prior Redact) 0.025**
[0.012]

1{REDACT } × RedactRate 0.058***
[0.020]

1{Prior Redacter } -0.037*
[0.020]

log(DaysSinceFirstRedact) -0.004
[0.003]

log(#Prior Redact) -0.015
[0.010]

RedactRate -0.066***
[0.012]

Levelt -0.044*** -0.044*** -0.045*** -0.045***
[0.004] [0.004] [0.004] [0.004]

Analysis OLS OLS OLS OLS
SIC2 + Year FE Y Y Y Y

Contract + Firm Controls Y Y Y Y
N 3303 3303 3303 3303
R2 0.265 0.265 0.265 0.266
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$50 to $100 million). We find that while smaller and younger innovative firms that redact are

no less innovative, they are are met with a negative capital market response in terms of liquidity.

This suggests that reputation and ex-ante perceived information asymmetry moderates the degree

to which investors perceive redaction as a credible signal.

Second, we analyze whether firms lose their ability to credibly signal high value technology

through redaction if they have frequently redacted in the past. We measure prior redaction tendency

in four ways. First, 1{Prior Redacter } is a dummy variable which takes the value 1 if a firm has

previously filed a redacted agreement in our sample, prior to time t. Second, log(DaysSinceFirstRedact)

captures the number of days since the first redacted agreement filed by the firm in question was

filed. To the extent that we do not capture all redacted filings by a given firm, we assume that

this measure captures prior redaction history assuming a uniform within-firm rate of redaction

over time. Third, the variable log(#Prior Redact) captures the number of prior redacted agree-

ments filed by the given firm, prior to the filing of the current agreement. Fourth, the variable

RedactRate is simply the number of filings by the given firm which were redacted divided by

the total number of filings (both redacted and un-redacted) submitted by the given firm, prior to

the filing of the current agreement. The results are presented in Table 11. The coefficients on the

interaction of each of these variables with 1{REDACT } are significant and positive, suggesting

that serial redactors experience worsened liquidity (measured by bid-ask spread) post-filing, when

they redact, when compared with currently redacting firms which had not redacted as frequently

in the past. Thus, the relationship between redaction and liquidity is concave, and firms can only

credibly signal high value technology up to a point. Repeated, indiscriminate redaction seems to

be viewed negatively by investors.

Third, we analyze whether a firm’s degree of equity dependence affects the relationship between

redaction and liquidity.69 The argument is that firms which are more equity dependent have to turn

to equity markets more frequently to raise financing, and thus are less subject to information asym-

metry induced adverse selection problems. Thus, firms in more equity dependent industries should

69We thank David Brown for this suggestion.
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Table 3.17: Effect of Redaction Conditional on Equity Dependence

This table displays estimated regression coefficients and standard errors (in brackets) corresponding to
the cross-sectional effects of firms’ equity dependence. The regression takes the form ∆Yi, j,l,t+k =
β11{REDACT }i, j,l,t + β2Yi, j,l,t+k−1+ β3Zi, j,l,t + β41{REDACT }i, j,l,t × Zi, j,l,t +Xγ+

∑
l αl +

∑
t αt + ε i, j,l,t .

we use the Rajan and Zingales (1998) definition of industry level equity dependence, and create a dummy
variable HighDependence which takes a value of 1 if a firm belongs to an industry in the 75th (or alterna-
tively, 80th) percentile of industries ranked in increasing order of equity dependence. All other variables are
as previously defined. The regressions are estimated by OLS with firm- and contract-level controls (spec-
ified in Appendix C.3), as well as technology-industry (SIC2) and year fixed-effects, with standard errors
clustered at the technology-industry (SIC2) level.

∆Illiqt+1 ∆Illiqt+1 ∆Spreadt+1 ∆Spreadt+1

1{REDACT } -0.029*** -0.026*** -0.033*** -0.032***
[0.008] [0.009] [0.008] [0.009]

1{REDACT } ×HighDependence -0.026 -0.051** -0.063*** -0.077***
[0.022] [0.023] [0.023] [0.025]

HighDependence 0.003 0.016 0.045* 0.043
[0.022] [0.026] [0.025] [0.028]

Levelt -0.024*** -0.024*** -0.044*** -0.044***
[0.004] [0.004] [0.004] [0.004]

Analysis OLS OLS OLS OLS
SIC2 + Year FE Y Y Y Y

Contract + Firm Controls Y Y Y Y
Equity Dependence Percentile 75th 80th 75th 80th

N 3312 3312 3282 3282
R2 0.254 0.255 0.262 0.262

face a greater positive effect of redaction on liquidity compared to firms which redact and belong to

less equity dependent industries (who are more likely to be adversely selecting investors when they

go to equity markets for financing). Accordingly, we use the Rajan and Zingales (1998) definition

of industry-level equity financing dependence, and create a dummy variable HighDependence

which takes a value of 1 if a firm belongs to an industry in the 75th (or alternatively, 80th) per-

centile of industries ranked in increasing order of equity dependence. The results in Table 12 show

that the coefficients on the interaction term 1{REDACT } × HighDependence are negative and

significant in three out of four cases. Thus, firms that are highly equity dependent and redact have

an even greater improvement in liquidity (measured by bid-ask spread) post-filing, compared to

firms which redact and belong to less equity dependent industries. This evidence suggests that
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firms with greater equity dependence, who face the discipline of capital markets more frequently

and are thus plausibly less affected by adverse selection problems, experience a positive marginal

effect of redaction on stock liquidity.

3.7 Conclusion

In this chapter, we demonstrate that firms which redact information on the value of their IP

in mandatory corporate disclosures experience positive capital market reactions as a result. We

rationalize this finding with a stylized model in which non-disclosure serves as a credible signal of

the value of a firm’s technology. We demonstrate implications of this model in data. Using a novel

licensing database, we show that strategic non-disclosure is rewarded, not penalized, by investors,

evidenced through improved stock liquidity, increased equity issuance and institutional ownership.

As a result of their ability to protect information on their IP, redacting firms subsequently increase

their innovation activities relative to firms which fully disclose. In the cross-section, we find that

signaling through redaction is not uniformly credible for all firms or at all times. Firms with lower

reputations or which face greater information asymmetry, for example smaller or younger firms,

experience a negative capital market reaction to their redaction decision.

This chapter opens the line for many avenues of future work. An immediate and obvious ex-

tension to this chapter would be to provide an extended theoretical framework to understand the

total welfare implications of non-disclosure. Finding the right balance is of urgent need, with the

emergence of new forms of financing for innovative firms, and the disclosure issue being central

in the regulatory debates that surround these developments. Our results would suggest, however,

that between the extremes of voluntary disclosure and mandatory disclosure – extremes which, at

least in principle, favor the firm and the investor respectively – the appropriate balance is perhaps

mandatory disclosure with partial exceptions.
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A APPENDIX (CHAPTER 1)

Table A.1: Sample Selection Process
Subset #

Stocks existing between [2010-2015] 5458
N=5458 ; N*(N-1)/2 14894882

CRSP SHRCD (10,11) Pairs That Ever Co-Existed 13732880

Pairs that ever received 5 monthly coposts 1110234
22500 pairs randomly chosen from 16 size buckets 360000

Sample sizes

Monthly (Sept2012-March 2016) ; 360,000 pairs, less attrition of stocks and controls 7,064,231
Weekly (Sept2012-March 2016) ; 360,000 pairs, less attrition of stocks and controls 42,935,297
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Table A.2: Variable Definitions

Variable Definition
log(1+Copostsi jt ) For most analysis in this chapter, a single co-post is a poster-hour

in which the poster discusses i or j, across all messages in the
hour. In the instrumental variable analysis, I require that a co-post
be, for certain reasons specific to that experiment, the mention
of both legs in the stock pair in a single post. Across a month
or week, it is the summation of all hours. A single poster can
therefore contribute at most the number of hours in the month to
this statistic. Hours are aligned so that if not during trading hours,
it is aligned to the next trading day.

log(1+CommonFollowersi jt ) For every hour, for every pair of posters ab where poster a dis-
cusses stock i in the hour, poster b stock j, I count the number of
followers intersecting between a and b. The hourly value is the
sum across all poster pairs; the monthly value is the sum of this
value across hours.
The followers are calculated from at least six months prior. In
some of the analyses, I limit the observation window to 15 min-
utes or half hour instead of an hour.

log(1 +

PairsCommonFollowersi jt )
For every hour, for every pair of posters ab where poster a dis-
cusses stock i in the hour, poster b stock j, I count the number
of posters a and b with at least one intersecting follower. The
hourly value is the sum across all poster pairs; the monthly value
is the sum of this value across hours. The followers are calculated
from at least six months prior. In some of the analyses, I limit the
observation window to 15 minutes or half hour instead of an hour.

log(1 +

AbovemedianCoownersi jt )
Based on Thomson Reuters 13-F, this is the number of owners
that own both i and j the prior quarter, where their ownership of
both stocks is above the quarter’s cross-sectional median owner-
ship for that stock. This is based on Gao, Ng and Moulton (2015)
and Anton and Polk (2014).

retit The return reported in CRSP for stock i compounded over the
days that form the interval t.

turnoverit As reported in CRSP, this is the volume divided by shares out-
standing.
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Table A.3: Average Annual Stock Characteristics

Bin # Msg. PRC Cap(109) Value 12-mo. ret βMKT βSMB βH ML σ skewness max|ret|

0 0 643.668 1.874 1.848 0.133 0.584 0.501 0.165 0.030 0.758 0.184
1 2.785 12.987 0.187 1.950 0.040 0.435 0.449 0.141 0.034 0.568 0.182
2 14.654 15.280 0.241 1.881 0.090 0.421 0.396 0.180 0.031 0.633 0.167
3 35.637 20.132 0.286 1.160 0.103 0.552 0.581 0.180 0.028 0.558 0.147
4 61.484 21.630 0.481 0.843 0.119 0.741 0.816 0.298 0.026 0.416 0.141
5 94.457 26.154 0.852 0.744 0.116 0.886 0.891 0.293 0.026 0.364 0.148
6 133.356 30.429 1.387 0.712 0.123 0.935 0.828 0.226 0.026 0.317 0.149
7 197.346 31.500 2.180 0.624 0.146 0.988 0.730 0.117 0.026 0.304 0.156
8 314.987 32.479 3.649 0.580 0.151 1.022 0.627 0.081 0.028 0.317 0.167
9 616.726 35.476 7.094 0.574 0.177 1.039 0.548 0.006 0.030 0.395 0.186
10 5,367.280 46.052 23.447 0.506 0.189 1.046 0.430 -0.211 0.035 0.503 0.234

Table A.4: Most Popular Stocks in 2015
The fourth column is based on residuals of a cross-sectional regression of log posts on the stock return and characteristic variables in A.3, plus their
squared terms.

1st trecile 2nd trecile 3rd trecile Net of A Benchmark Linear Model

GREAT BASIN SCIENTIFIC INC MANNKIND CORP APPLE COMPUTER INC IBIO INC
AMEDICA CORP PLUG POWER INC TWITTER INC BIOCEPT INC

F X C M INC SYNERGY PHARMACEUTICALS INC GOPRO INC MAGNEGAS CORP
SOLAR3D INC KANDI TECHNOLOGIES CORP NETFLIX INC HEMISPHERX BIOPHARMA INC

GEVO INC XOMA CORP FACEBOOK INC FUNCTIONX INC
BIOCEPT INC GLU MOBILE INC TESLA MOTORS INC GOPRO INC

ASCENT SOLAR TECHNOLOGIES INC PIPEX PHARMACEUTICALS INC M E M C ELECTRONIC MATERIALS INC F X C M INC
IBIO INC LUMBER LIQUIDATORS INC GILEAD SCIENCES INC MANNKIND CORP

MAGNEGAS CORP RELYPSA INC FITBIT INC SYNTHETIC BIOLOGICS INC
ACTINIUM PHARMACEUTICALS INC ANAVEX LIFE SCIENCES CORP AMAZON COM INC PLUG POWER INC
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Table A.5: Additional summary statistics

In this table, I present correlations of other outcome variables alongside excess return correlation. The monthly outcome variables are derived from CRSP. Amihud
illiquidity ratio is the absolute return over volume traded, assumed to be zero when no trading occurs. The weekly variables are based on DTAQ and the correlations
are computed at the weekly level across half-hour intervals.

Panel A: Monthly

µ σ 1st 5th 25th 40th 50th 60th 75th 99th

ρretε
i jt 0.93 24.09 -53.96 -38.21 -15.39 -5.33 0.74 6.84 17.03 57.94
ρret

i jt 24.53 26.46 -39.38 -20.39 6.59 18.40 25.48 32.44 43.67 78.53
ρ|retε |

i jt 1.88 23.55 -44.06 -32.48 -14.99 -6.23 -0.46 5.67 16.61 64.65
ρAmihud

i jt 8.83 24.52 -43.69 -30.46 -8.82 1.69 8.24 14.89 25.97 64.88
ρturnover

i jt 13.40 28.24 -41.99 -28.97 -7.86 3.47 11.06 19.10 33.01 80.03
ρV olume

i jt 12.79 28.08 -42.12 -29.21 -8.31 2.87 10.38 18.33 32.15 79.67
ρ

%Spread
i jt 3.75 27.17 -54.82 -35.51 -14.50 -5.54 0.87 7.82 19.89 81.47

Panel B: Weekly

µ σ 1st 5th 25th 40th 50th 60th 75th 99th

ρret
i jt 16.12 21.79 -39.28 -17.86 2.06 10.03 15.32 20.84 30.36 67.05
ρretε

i jt 3.06 20.12 -46.76 -28.83 -9.08 -1.68 2.61 7.04 14.92 56.05
ρ|retε |

i jt 14.41 19.23 -19.08 -12.10 0.18 7.23 11.95 16.97 25.93 69.87
ρOrder Imbal .

i jt 1.56 22.22 -67.62 -31.58 -9.46 -2.63 1.25 5.18 12.29 72.89
ρ|Order Imbal .|

i jt 13.91 21.26 -17.19 -10.66 -0.80 5.01 9.14 13.81 22.99 88.00
ρAmihud

i jt 25.92 16.61 -10.08 -0.26 14.34 21.15 25.38 29.69 36.98 66.20
ρ

Spread
i jt 61.64 24.10 -11.18 8.57 50.68 61.71 67.19 71.99 78.77 97.31
ρV olume

i jt 39.09 19.79 -5.23 5.55 25.05 34.22 39.71 45.08 53.58 80.47
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Table A.6: User-level coverage statistics
This table presents statistics describing the number of stocks, sectors or industries covered by a single user throughout
their entire posting history. VW and EW indicate value and equal weighting, where value-weighting refers to the
number of connections the user has in the followership network as of August 2016, accounting for the tendency
of some users to appear more in the "common follower" statistic than others. Sectors and industries are defined
according to StockTwits. There are roughly 50 sectors and 200 industries.

# Symbols #Sectors #Industry

Value-weighted 301.72 8.90 123.29
Equal-weighted 41.42 4.46 15.20

This table quantifies the extent to which mentions of a same stock, industry or sector persist. For a single 3 month
period, I calculate the probability that same stock will be mentioned 3 quarters later.

%Firm % Industry %Sector

17.54 22.92 28.25

This table quantifies the probability a user will mention the same stock ever again until the end of the sample period,
March 2016. For a given year, say 2012, the probability is based on all stocks the user mentioned prior to the January
of that year.

Year % Probability

2012 26.07
2013 19.45
2014 16.61
2015 14.27

165



Table A.7: Timing decomposition
This table decomposes postings at the monthly level into halves or quarters. The hypothesis is that earlier posts should
affect comovement more than later posts, if social media audiences react to postings with a delay.

Halves Halves Quarters Quarters
Z-scored Z-scored

log(1+Copostsi jt )H1 0.244∗∗∗ 0.298∗∗∗
(0.032) (0.039)

log(1+Copostsi jt )H2 0.172∗∗∗ 0.206∗∗∗
(0.031) (0.038)

log(1+Copostsi jt )Q1 0.242∗∗∗ 0.108∗∗∗
(0.043) (0.019)

log(1+Copostsi jt )Q2 0.342∗∗∗ 0.172∗∗∗
(0.058) (0.029)

log(1+Copostsi jt )Q3 0.256∗∗∗ 0.131∗∗∗
(0.056) (0.029)

log(1+Copostsi jt )Q4 0.144∗∗∗ 0.066∗∗∗
(0.041) (0.019)

Num. obs. 7,060,175 7,060,175 7,060,175 7,060,175
FE? Y Y Y Y
Controls? Y Y Y Y
R2 0.074 0.074 0.074 0.074
Adj. R2 0.051 0.051 0.051 0.051
∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1
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Figure A.1: StockTwits integration with Yahoo! Finance and Marketwatch

StockTwits is integrated into other platforms, such as Marketwatch.com, one of the world’s most popular financial news media sites.
Integration has been in place since September 2014. The StockTwits banner is at the bottom of the page.
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This page examples another major StockTwits partner (during the sample period) was Yahoo! Finance.
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Panel A: The number of StockTwits users with at least 50 followers
In this graph, I plot the number cumulative posters across StockTwits with at least 50 posts as of
their latest post prior to the indicated month.

Panel B: The number of followers-in-common across posters
In this graph, I plot the number of followers common to all pairs of posters with at least 50 posts

as of their latest post prior to the indicated month.
Figure A.2: Follower network over time
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B APPENDIX (CHAPTER 2)

Table B.1: State Security Regulators

The table below shows the names of state securities regulators, broken up into divisions and
departments. Divisions are the smallest organizational entities that oversee securities regulation.

For most states, the securities division is a sub-organization of a larger department like the
Secretary of State or the Attorney General’s office. The value is blank when a departmental

hierarchy is not provided.
State Division Name Department Name

Alabama Alabama Securities Commission

Alaska Banking and Securities Division Department of Commerce, Community,

and Economic Development

Arizona Securities Division Arizona Corporation Commission

Arkansas Arkansas Securities Department

California Securities Regulation Division Department of Business Oversight

Colorado Division of Securities Department of Regulatory Agencies

Connecticut Securities and Business Investment Divison Department of Banking

Delaware Investor Protection Unit Attorney General

Florida Division of Securities Office of Financial Regulation

Georgia Division of Securities Secretary of State Office

Hawaii Division of Securities Department of Commerce and Consumer Affairs

Idaho Securities Section Department of Finance

Illinois Securities Department Secretary of State

Indiana Securities Division Secretary of State

Iowa Securities Bureau Insurance Division

Kansas Office of the Securities Commissioner

Kentucky Securities Division Department of Financial Institutions

Louisiana Securities Division Office of Financial Institutions

Maine Office of Securities Department of Professional and

Financial Regulation

Maryland Securities Division Attorney General

Massachusetts Securities Division Secretary of Commonwealth

Michigan Corporations, Securities, and Commercial Licensing Bureau Department of Licensing and Regulatory Affairs

Minnesota Securities, Franchises, and Subdivided Land Department of Commerce

Mississippi Securities Division Secretary of State

Missouri Securities Division Secretary of State

Montana Commissioner of Securities and Insurance Office of the Montana State Auditor

Nebraska Department of Banking and Finance

Nevada Nevada Securities Center Secretary of State

New Hampshire Bureau of Securities Regulation Secretary of State

New Jersey Bureau of Securities Division of Consumer Affairs

New Mexico Securities Division Regulation and Licensing Department

New York Investor Protection Bureau Attorney General

North Carolina The Securities Division Secretary of State
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Table B.2: State Security Regulators (continued)

State Division Name Department Name

North Dakota Securities Department

Ohio Division of Securities Department of Commerce

Oklahoma Department of Securities

Oregon Division of Financial Regulation

Pennsylvania Department of Banking and Securities

Rhode Island Department of Business Regulations

South Carolina Securities Division Attorney General

South Dakota Division of Securities Division of Licensing and Regulation

Tennessee Department of Commerce & Insurance Department of Commerce & Insurance

Texas State Securities Board

Utah Division of Securities

Vermont Securities Division Department of Financial Regulation

Virginia Division of Securities and Retail Franchising State Corporation Commission

Washington Division of Securities Department of Financial Institutions

West Virginia Securities Commission State Auditor’s Office

Wisconsin Division of Securities Department of Financial Institutions

Wyoming Investing Center Secretary of State

B.1 Redacting Customer Complaints

One potential concern regarding our results is that redactions rose for firms that were treated

relative to those that were not treated, driving our results. First, it seems plausible that state regula-

tors may be more susceptible to regulatory capture, seeking to preserve the presence of investment

advisers who may otherwise leave the state. Second, if effect is driven by the inability of adviser

representatives to redact their complaints, being in a state with more regulatory staff means there

are more resources to process the complaints. Moreover, being further away from the correspond-

ing state regulator would also mean that redacting a complaint is more costly. We argue both of

these is not likely in light of the legal environment through which redactions are processed. We

discuss this in detail below.

Records are stored at FINRA through the Central Repository Deposit (CRD) system. Com-

plaints that have alleged damages over $5,000 or resulted in some legal action are both reported in

the system. Upon receiving a complaint, both the investment adviser firm and investment adviser
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representative have to file a complaint disclosure to the CRD system. In August 2010, FINRA be-

gan disclosing all historic complaints, regardless of age. In the past, unproven allegations were not

disclosed after two years. Specifically, there are two types of complaints that investment adviser

representatives may want to remove over which advisers have little control:

1. Denied customer complaints. Although denied customer complaints may seem insignifi-

cant, accusations typically are accompanied by harsh words that remain on the CRD for at

least two years (since 2009, this stays on for 10 years). Even if an adviser’s record shows

patterns of denied rather than arbitrated or settled complaints, firms also may be hesitant to

affiliate with that adviser. Moreover, whether or not complaints are settled in the first place

is mainly up to the investment adviser firm, not the representative him/herself.

2. Termination explanations. Broker-dealers may terminate advisers for any reason. There

may be discrepancies between the self-reported termination explanation and the firm-reported

explanation.

Investment advisers occasionally request for expungement of customer complaints. Since the

records are stored in the CRD, all expungement requests are handled by FINRA. Nonetheless, other

regulators are involved in the process. FINRA may agree to remove disclosures if brokers obtain a

recommendation that is false, erroneous, or that the broker wasn’t involved in the alleged misdeed.

To do this, representatives must acquire a court confirmation after submitting the expungement

request. Once the request of submitted, the corresponding investment adviser regulator (SEC or

state regulator) is informed, giving them a chance to oppose the expungement. State regulators

received a total of 519 requests in 2010, up from 110 in 2009. In total, the process to expunge a

complaint typically takes at least one year. Although FINRA claims to have tracked the number of

expungements granted, they do not publicly disclose it.

Although the expungement process is fairly difficult, FINRA arbitrations could be settled sub-

ject to an agreement that claimants would not oppose the investment adviser representative’s sub-

sequent efforts to seek expungement from a court of competent jurisdiction. Subsequently, rep-
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resentatives would initiate unopposed petitions for expungement in state courts that were often

rubber-stamped. The judge’s order would then be submitted to FINRA, and the arbitration disclo-

sure would be expunged. In response to this practice, FINRA adopted Rule 2130 in 2004. One

of the most significant changes was the need to name FINRA as an additional party challeng-

ing party to expungement. This meant that FINRA also receives all appropriate documents with

expungement, unambiguously increasing the cost of expungement requests. Moreover, although

expungement requests from arbitrated cases are mostly granted, less than 8% of disclosures are

expunged. Of the 7,621 arbitration cases from 2012 to 2014, only 563 records were expunged,

according to the arbitration bar association.

Some of the surge in requests is also the result of new disclosure demands by FINRA. Until

2009, only brokers who were named as a party to a case had to disclose a customer complaint.

Because most investors sue only the brokerage firm, that left a lot of accused individual brokers

with clean records despite complaints that they had mishandled an account. Prior to this, large

brokerage firms could shield individual brokers. However, it is not clear whether they will have this

incentive. Larger firms may also be more likely to place blame on an individual whom they could

terminate, in order to shift blame to the individual. After 2009, FINRA modified this disclosure

practice, requiring all brokers to report complaints regardless of whether they were named directly

as a respondent.

The institutional setting suggests that deletions of customer complaints is not relevant for the

timing of the Dodd-Frank Act. Our phone calls with 3 regulators, Maryland, the SEC, and Califor-

nia also suggest that expungement is not an issue. Moreover, the censoring bias from any deleted

complaints should not be correlated to treatment either. Finally, our specifications with state-year

fixed effects and firmed fixed effects absorb a lot of the drivers of expungement.
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C APPENDIX (CHAPTER 3)

C.1 Full Model Analysis

In this appendix, we solve the model presented in Section 3.3. In order to do this, we consider

the four possible strategies available to A. The first strategy is {1,1} where A discloses t̃ regardless

of its type. In this case, B enters only when it observes t̃ = t. Even though B does not incur the

search cost, it is still not worth entering as t
2 − c < 0. So, A receives t. When t̃ = t, B enters

and receives (in expectation) t
2 − c and A receives t

2 . Thus, the payoffs for A to this strategy are
{
t, t

2

}
. The second strategy is {0,1}, where A discloses if its type is high t̃ = t, but not if its type

is low. Again, in this case B only enters when it observes t̃ = t. B does not enter when D = 0 as

this indicates t = t with probability 1. This is because B’s potential expected profit from entry is
t
2 − c− s < 0, so it does not enter. So, A’s profit is t. When B observes t̃ = t, it enters and receives

(in expectation) t
2 − c and A receives t

2 . A’s payoffs are thus
{
t, t

2

}
.

The next strategy is {1,0}, where A discloses if its type is low, t̃ = t, but not if its type is high. In

this case, B does not enter regardless of type. The rents in the low-type market are not attractive

enough, as t
2 < c, and the search cost is prohibitively high in the high-type market, as t

2 < s.

Thus, A’s profits are
{
t, t
}
. The final strategy is {0,0}. In this case, firm B’s belief on A’s type is

t′ = θt + (1− θ)t. Since s < s (t′) = s′ < s, we require:

θ > θ =
2(c+ s′)− t

t − t

such that B enters. This imposes an lower bound on the probability of A’s technology being

high-type, θ > θ. This condition is more likely to hold if, first,
(
t − t

)
is large, or, second, if the

entry and search costs are not too high relative to t. Specifically, since θ is a probability, we need

θ ≥ 0. This implies that we need c+ s′ ≥ t
2 . We know that t

2 − c < 0 by assumption, and s′ > 0, so,

s′ > t
2 − c =⇒ c+ s′ > t

2 as required. If θ > θ, B enters and A’s expected payoffs are
{ t

2,
t
2

}
. We
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summarize the payoffs of the game in the following table:

t̃ = t

D = 1 D = 0

t̃ = t
D = 1

{
t
2, t

} {
t
2, t

}

D = 0
{
t, t
} {

t
2,

t
2

}

There are two Nash equilibria in pure strategies, {0,1} and {1,0}, however only {1,0} survives

iterated elimination of weakly dominated strategies.
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C.2 Sample Construction and Selection

In this appendix, we provide details on the sample construction and selection procedure.

We first concord the data to financial databases, then disambiguate the economic role of the filer

in the transaction (i.e. classify the filer as the licensor or the licensee). Finally, we filter observa-

tions according to our sample requirements. As aforementioned, table 3.2 reports the sample sizes

at each stage of the filtering process.

To concord the data with financial databases, we first use RoyaltyStat’s provided gvkeys, fol-

lowed by SEC CIK codes and filer names. RoyaltyStat maintains filer names and CIK codes as

reported in the EDGAR log, and the point-in-time gvkey. The remainder of firms, for which such

identifiers are unavailable, are firms that RoyaltyStat could not link to Compustat due to omissions

in their coverage, or because while they do have publicly filed securities, they are not covered by

Compustat. The company suggests that this is most often the case with penny stocks.70 This trans-

lates to about 8,500 contracts with a filer gvkey referring to a firm in Compustat North America.

Second, we augment RoyaltyStat’s coverage of filers using the filer name and the filer CIK.

Given a filer CIK, we coalesce possible names for the company using point-in-time CIK and the

Capital IQ “Helper” table available on WRDS. Given a filer name, we standardize frequently

occurring business words (“company” to “co”, “limited” to “ltd”) and do exact name matching

on company names coalesced from Compustat, CRSP, Capital IQ and other financial databases

that we have at our disposal. This yields approximately 1,000 additional matches for the identifiers

not covered by RoyaltyStat.

Third, we concord each contract to the identifier of the filer and then identify whether the filer

was the licensor or the licensee in the transaction. In order to ensure data integrity, we keep

only contracts in which the filer can clearly be disambiguated as a licensor or licensee in the

70We are in efforts to expand our data to this set, but this draft only includes firms that can be concorded to a firm in
Compustat. In many studies, the excluded firms including penny stocks would be infra-marginal, but when discussing
the role of disclosure for young, innovative firms, this set of firms may be especially important.
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transaction. To do this disambiguation, we first match the filer with the name, CIK or gvkey

provided by RoyaltyStat for the licensor or licensee. Through RoyaltyStat-provided data of 9,678

records, we are initially unable to assign the filer as the licensor or licensee in 2,824 cases. These

remainder cases are either due to ambiguity, or because RoyaltyStat’s efforts on identifying the

licensor and licensee are to this date still in progress.

To match the remainder records, RoyaltyStat provided us a list of company names in its database.

We first apply programmatic rules to match the transaction parties to the filers and then hand-match

the remainder.71

Fourth, we exclude contracts that have a per-unit royalty, which RoyaltyStat flagged as a related

party transaction, or which we flag as ambiguous. The final result set has 7,972 observations,

though sample size varies across analyses due to vastly different data coverage across the various

data sources that we use.

71We process list programmatically by doing three things. First, we flag the counter-party as an individual, univer-
sity or government institute; in these cases, the filer must be the opposite party. Second, we write down a list of nearly
1,500 stem words, such that if the licensor contains the stem word and the filer contained the stem word, it is very
unlikely for the filer to be the licensee, and vice versa. Third, we do exact name matching the subsidiaries of the firm
based on CorpWatch. Finally, for the remainder cases, RoyaltyStat allowed us to export a list of filer names and we
disambiguated (where possible) the role of the filer in relation to the economic transaction when possible. For 1,061
of 2,824, we were not (yet) able to match the filer to the licensor or the licensee. A substantial fraction of these cases
are due to ambiguity and limited information particularly for transactions occurring in some cases over twenty years
ago. We plan on continuing to augment this list.
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C.3 Control Variable Definitions

The firm-level controls are the logarithm of total assets(log(Assets)), the logarithm of total
intangible capital as defined by Peters and Taylor (2016) (log(Kint )), the ratio of cash to assets(

Cash
Assets

)
, leverage ratio

(
Debt

Assets

)
, and the SmallY oung index value which collapses the age and

size of the firm into a single index. The contract-level controls are dummy variables which take
the value of 1 if the filing firm is the licensor(FilerLicensor), if the licensor is an individual
(Licensor IsIndividual), a non-profit (Licensor IsNonPro f it), a university (Licensor IsUniversity),
if the given contract is an amendment of a previous agreement (IsAmendment), if the underlying
IP consists of know-how (IsKnowHow), and show-how (IsShowHow). We also include the
logarithm of the duration of the contract (log(Duration)), a dummy for whether the licensing
rights extend worldwide (Worldwide), whether the agreement confers the licensee the right to
sublicense the IP (Sublicense), and if the IP is being licensed exclusively (Exclusive).
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C.4 Robustness Tests

Table C.1: Effect of Redaction on Future Liquidity in Event-Time

This table displays regression coefficients (and standard errors in brackets) of weekly liquidity measures
around filing events. The liquidity variables are standardized by the event mean and variance, and therefore
can be interpreted in standard deviations. The variable E f f Spread is the weekly effective spread defined
as twice the absolute value of the difference between the actual trade price and the midpoint of the market
quote (i.e., between the quoted bid price and the quoted ask price), divided by the midpoint between these
two prices based on DTAQ. The variable PrcImpact is the weekly price impact. The values are the weekly
median of daily values to minimize the influence of outliers. Post is a variable that takes the value of 1
for all observations that fall in the 2 weeks or 15 weeks (depending on event window being considered)
immediately following the filing date of the disclosure, and 0 otherwise. The standard errors are clustered
by event.

E f f Spread E f f Spread PrcImpact PrcImpact
Event window 15 weeks 2 weeks 15 weeks 2 weeks
1{REDACT } 0.064*** 0.066** 0.029*** 0.046*

[0.018] [0.029] [0.009] [0.025]
1{REDACT } ×Post -0.114*** -0.057*** -0.052*** -0.061***

[0.032] [0.020] [0.016] [0.020]
Post -0.126*** -0.024 -0.013 -0.012

[0.025] [0.015] [0.016] [0.020]
Constant 0.070*** -0.031** 0.007 -0.009

[0.013] [0.013] [0.009] [0.014]

N 109452 15945 106025 15564
R2 0.008 0.001 0.000 0.009
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