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In my dissertation, I have studied the link between the Earth’s changing climate

and air pollution. As we know, air pollution is an externality of any major in-

dustrial activity, day to day vehicle use, electricity generation etc. I establish

the fact that rapidly changing temperature and rainfall patterns exacerbate the

levels of multiple air pollutants, thus entailing larger social costs of the above

mentioned activities. From a policy perspective, such estimates are crucial to

reach the socially desirable level of emissions and technically, this exogenous

causal link from climate change to pollutant formation can be used to get more

precise estimates of the health consequences of air pollution.

In the first chapter, I analyze the impact of climate change on particulate air

pollution, which has the most sever health consequences. Using daily weather

data, daily data on PM10 from 1990-2013 and daily data on PM2.5 from 1997-2013,

I find the first causal estimates of the level of precipitation as well as the precip-

itation frequency on particulate matter concentrations in ambient air. Using my

findings, I exploit exogenous rainfall variation in an instrumental variables ap-

proach to also estimate the effect of increases in ambient particulate matter on

the number of infant deaths. My estimates suggest that a 1 µg/m3 decrease in

ambient PM10 concentrations would imply almost 27 fewer infant deaths per

100,000 live births.

In my second chapter, we propose a novel approach to estimate adaptation

to climate change based on a decomposition of meteorological variables into



long-run trends and deviations from those trends (weather shocks). Our esti-

mating equation simultaneously exploits weather variation to identify the im-

pact of weather shocks, and climatic variation to identify the effect of longer-run

observed changes. We then compare the short- and long-run effects to provide

a measure of adaptation. We apply our methodology to study the impact of cli-

mate change on air quality and estimate the so-called climate penalty on ozone.

We have three main findings. First, a temperature shock of 1◦C increases ozone

levels by 1.7 ppb on average. A change of similar magnitude in a 30-year mov-

ing average increases ozone concentration by 1.2 ppb. Second, we find evidence

of adaptive behavior. For a change of 1◦C in temperature, our measure of adap-

tation in terms of ozone concentration is 0.45 ppb. If adaptive responses are

not taken into account, the climate penalty on ozone would be overestimated

by approximately 17 percent. Third, adaptation in counties with levels of ozone

above the EPA’s standards appears to be over 66 percent larger than adaptation

in counties in “attainment”. This difference is what we call regulation-induced

adaptation. The remainder is our measure of residual adaptation.

In the final chapter, we present a theoretical model that looks at a federal

air pollution regulation and tries to analyze the variablity in attainment and

non attainment designations of counties. Since many areas in the United States

have been in non-attainment for prolonged periods, we argue that it must be

an optimal choice for the counties, driven by parameters among which climate

change is a major one. We find that counties having mild enough climate can

actually choose to be in non-attainment, even after paying the penalties imposed

by the regulation.
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CHAPTER 1

DOES RAIN WASH OUT PARTICULATE MATTER? AN APPLICATION

TO THE EFFECT OF AIR POLLUTION ON INFANT MORTALITY

1.1 Introduction

Over the last 50 years, we have seen a huge environmental movement across

the globe, especially in the developed parts of the world such as the United

States of America. In the 1970s, with the passage of the Clean Air Act, the Clean

Water Act and the establishment of the Environmental Protection Agency (EPA),

the United States took a huge step towards a cleaner environment and a more

secure future. Today, as we approach the 48th Earth Day 1, the United States has

seen substantial improvements in air and water quality. However, we are now

at a crucial juncture where we need to evaluate the past and understand the

costs and benefits of pollution, in an era of rapidly changing climate, in order to

implement effective policies for the future.

One of the major social costs of climate change is the resultant increase in air

pollution that it causes. Particulate matter is one of the air pollutants that have

the most severe health impacts, and interestingly, it is also directly affected by

the climate system. The EPA has designated six commonly found air pollu-

tants, namely, ground level ozone, particulate matter, sulphur dioxide, carbon

monoxide, lead and nitrogen oxides as criteria air pollutants. Concentrations of

each of these pollutants is regularly monitored by the EPA, under the Clean Air

1Each year, Aprill 22nd is celebrated as the Earth Day globally, to mark the birth of the mod-
ern environmental movement in 1970. Almost 20 million Americans took to the streets, parks
and auditoriums on April 22, 1970, to demonstrate for and demand a healthy sustainable envi-
ronment.
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Act and counties that fail to attain the federal thresholds are categorized as be-

ing in “non-attainment”, hence implying stringent regulation. As mentioned

by Dominici et al. (2014), The U.S. Office of Management and Budget (OMB)

is required to provide annual estimates of the benefits and costs of any major

federal regulation to the Congress, and interestingly, reduction in emissions of

Particulate Matter (PM) alone has accounted for about one-third of the mone-

tized benefits of all significant federal regulations. With these estimates playing

such a crucial role in policy making, it is of paramount importance to know if

we are indeed achieving socially desirable reductions in PM and also if we are

under-estimating the costs of particulate pollution in the first place.

In the presence of rapidly changing climate, ever increasing temperatures

and changing rainfall patterns, the costs of air pollution might be larger than in

a counterfactual world having no climate change. Jacob and Winner (2009) pro-

vide a detailed review of the effects of climate change on various air pollutants

and they propose that precipitation and precipitation frequency are one of the

key meteorological factors that can affect PM levels in ambient air as increased

rainfall leads to wet deposition and provides the major atmospheric sink for

PM. The effect of climate change on PM is more complicated and hence fewer

studies, as compared to ozone, have been performed on the same. Model per-

turbation studies have also found an effect of temperature on particulate matter,

especially for sulphates, since higher temperatures lead to faster oxidation of

sulphur dioxide. Barmpadimos et al. (2011) perform another small scale study

using data from 13 monitoring stations in Switzerland, where they estimate the

effects of various meteorological variables on PM concentrations. They find that

the most important variables affecting PM concentrations in the winter, autumn

and spring are wind gust and precipitation, whereas in the summer, afternoon

2



temperature also plays a critical role. Auffhammer et al. (2009) examine the

benefits of the 1990 Clean Air Act Amendments on PM10 concentrations in the

United States from 1990-2005 and they find that in fact the Clean Air Act did

produce substantial improvements in air quality. The authors mention that the

actual contribution of the secondary PM10 precursor gases to total ambient PM10

concentrations depend critically on the atmospheric conditions including tem-

perature, relative humidity, rainfall, wind speed and direction. Temperature

and precipitation not only affect the formation of secondary PM but also affect

the presence of primary particulate matter in the air.

The question of how much precipitation might affect particulate pollution

has economic content because it is of central importance to guide more informed

policy-making. The main intuition behind regulating heavy emitters is that the

emissions caused by such activities (eg. industrial activity, vehicle use, construc-

tion etc.) implies a larger social cost of production as compared to the private

cost that is accounted for by the emitter. Hence, as shown in Figure 1.1 be-

low, the socially optimum level of production/consumption of the commodity

is lower than the private optimum and hence the government needs to regulate

such activities. However, the extent of this externality critically depends on the

ever changing climate system around us and how much and to what extent it

affects pollution. If drier weather implies higher concentrations of particulate

matter, then in the presence of changing rainfall patterns, the social costs might

be larger, implying an even lower socially optimal quantity of production.

3



Figure 1.1: Costs of Climate Change on Air Pollution

Hence, estimates of the effect of climate change on air pollution are needed

to know the socially optimal level of emissions which can then be implemented

through regulations. Also, with wide variations in the level and frequency of

rainfall across the nation, we might need different pollution thresholds for dif-

ferent climatic regions, internalizing their climate patterns. For example, if we

compare the Southwest (driest region in the U.S.) to the Southeast or the North-

east (wetter regions of the U.S.), then the social costs of emitting the same levels

of pollution precursors will be much larger in the Southwest, because in the ab-

sence of rainfall we will end up having more particulate matter in ambient air

than in the other regions. Hence, in order to achieve similar reductions in PM

in the Southwest we might need more stringent thresholds, so that lower levels

of precursors are emitted into air. This might also entail much larger costs of

implementing these regulations which would also enter the cost-benefit calcu-

lations in determining the feasibility and success of regulations on particulate
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matter.

In this paper, I estimate one such cost of climate change on air pollution.

Specifically, I estimate the causal effect of the level and frequency of precipitation

on particulate air pollution (both PM10 and PM2.5). Apart from the reasons men-

tioned above, these estimates can also be used technically, to study the effect of

air pollution on health. The benefit from public health, is the single most im-

portant reason for regulating air pollution and hence, having accurate estimates

of the same is crucial. However, the presence of various confounding factors

makes it econometrically challenging to estimate this effect. In this paper I pro-

pose that we can use the level of precipitation as an instrumental variable for

particulate matter and estimate its effect on infant mortality. The rest of the pa-

per proceeds as follows; Section 2 provides a background on particulate matter,

its formation, sources and health effects; Section 3 provides a detailed descrip-

tion of the data sources and construction of the variables; Section 4 discusses the

empirical methodology; Section 5 reports the main results; Section 6 discusses

the robustness of my main findings; Section 7 discusses the application of these

results to study the effect of particulate air pollution on infant mortality and

Section 8 concludes.

1.2 Background on Particulate Matter

Particulate Matter (PM) is a complex mixture of solid and liquid particles,

present in ambient air 2. These particles often vary in their size, source, composi-

2Information on the background of particulate matter and PM chemistry, formation and
sources has been obtained from the World Health Organization Report (2003) “Health Aspects
of Air Pollution with Particulate Matter, Ozone and Nitrogen Dioxide” and Wheeler (2006),“Air
Quality Modeling and Analysis of Additional Emission Controls on Tennessee Valley Authority
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tion or method of formation. Generally, these suspended particles are classified

by their aerodynamic properties because these characteristics govern the trans-

port of particles from one place to another and also their removal from the air.

Moreover, these aerodynamic properties also determine the deposition of parti-

cles within the human respiratory system. These properties are summarized by

the aerodynamic diameter of particles, i.e. the size of a unit-density sphere hav-

ing identical aerodynamic characteristics. Based on this aerodynamic diameter,

particles are characterized into the following three major categories:

1) Ultra-fine particles (< 0.1µm)

2) Fine particles (0.1 − 2.5µm)

3) Coarse particles (2.5 − 10µm)

where 1µm is 1 millionth of a meter. This paper studies PM2.5, which com-

prises of particles having an aerodynamic diameter less than 2.5 µm, and PM10,

which includes particles having an aerodynamic diameter less than 10 µm. Fig-

ure 1.2 provides a size comparison of PM10 and PM2.5 to human hair and beach

sand.

Figure 1.2: Size comparison of PM to human hair

Coal-Fired Power Plants”
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Particulate matter can be formed through four main processes:

1) Chemical Reaction- precursor gases can react to form particles.

2) Cloud or Fog processes- precursor gases might dissolve in water and then

react chemically. When the water evaporates, particles are left behind.

3) Condensation- gases condense on solid particles to form a liquid droplet.

4) Coagulation- two or more particles might collide and stick together to form

larger particles.

Particulate matter can be either primary, such as suspended dust, sea salt, or-

ganic carbon (OC), elemental carbon (EC) and metals from combustion, which

are directly emitted into ambient air; or it can be secondary, such as particles

which are formed when precursor gases undergo physical and chemical trans-

formations in the atmosphere. For example, sulphur dioxide (S O2) forms sul-

phate particles, nitrogen oxides (NOx) form nitrate particles, ammonia (NH3)

forms ammonium compounds, and volatile organic compounds (VOCs) can

form organic carbon particles, often referred to as, secondary organic aerosol

(SOA). Most of the ambient sulphate particles are secondary in nature, formed

from S O2 emissions. Half of the S O2 oxidation to sulphates happens in the gas

phase through photochemical oxidation in the daytime. NOx and hydrocarbons

can enhance the photochemical oxidation rate. Some S O2 oxidation also takes

place in cloud droplets as air molecules react in clouds. Within clouds, soluble

pollutant gases, such as S O2, are scavenged by water droplets and rapidly ox-

idize to sulfate. Most cloud droplets evaporate and leave a sulfate residue or

“convective debris”. Typical rates for S O2-to-sulfate conversion are 1% to 10%

per hour.

The first step to formation of nitrates is the conversion of NO2 to nitric acid
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HNO3, by reacting with hydroxyl (OH) radicals during the daytime. This con-

version rate is generally about 10% to 50% per hour. At night however, NO2 is

converted to HNO3 following a series of chemical reactions involving ozone and

nitrate radicals. HNO3 reacts with ammonia to form particulate ammonium ni-

trate, NH4NO3. Thus nitrate particles can be formed throughout the day as well

as night. The major components of PM are sulphate, nitrates, organic carbon and

ammonium and these components are mostly secondary in nature. Figure 1.3

provides a schematic view of the composition of particulate matter.

Figure 1.3: Composition of Particulate Matter

Gases as well as suspended particles can be transferred from the earth’s at-

mosphere to the ground by dry and wet deposition processes. Wet Deposition

refers to the removal of species from the atmosphere by precipitation, such as

rain, fog and snow. Particulate matter concentrations in ambient air are ex-
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pected to decrease with increasing precipitation, as wet deposition provides the

main PM sink. Figure 1.4 provides an overview of the processes leading to wet

and dry deposition of particles.

Figure 1.4: Wet Deposition of Particles

Particulate matter can cause serious health hazards. The EPA is particularly

concerned about particles less than 10 µm in diameter (i.e. PM10 and PM2.5) as

they can enter through our throat and nose and reach deep into our lungs and

may also enter our bloodstream. Particulate matter can cause a variety of prob-

lems such as irregular heartbeat, heart attacks, aggravated asthma, decreased

lung function, coughing or difficulty in breathing etc. Long term exposures to

particle pollution might lead to problems such as chronic bronchitis and even

premature death. Whereas short term exposures (maybe hours or days) can

aggravate lung diseases, asthma and also increase susceptibility to respiratory

infections.
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1.3 Data Sources

In order to estimate the causal effect of the level and frequency of precipitation on

the daily maximum values of PM10 and PM2.5 I utilize information from three

major sources, as described below.

Data on Particulate Matter: For data on particulate matter (PM) concentrations

I have used daily readings from the Environmental Protection Agency’s (EPA)

Air Quality Systems (AQS) database which provides daily readings of various

criteria air pollutants from a nationwide network of air quality monitoring sta-

tions. These data were made available by a Freedom of Information Act (FOIA)

request. In my preferred specification, I have used an unbalanced panel of PM

monitors. I have eliminated monitor-days for which exceptional events that

might potentially affect air quality, such as wildfires, have been recorded. For

PM10, I have constructed an unbalanced panel of 3264 monitors, spread over 876

counties for the years 1990-2013. Figure 1.5 depicts the geographical location of

the final sample of PM10 monitors and also the spatial distribution by the nine

different climatic regions. Table 1.1 illustrates the PM10 monitoring network for

the full sample, as well for each year, by the nine different climatic regions. I

have the daily maximum PM10 measurements for a total of 2,922,523 monitor-

days , with sufficient data from each climate region in the country. The gradual

drop in the number of PM10 monitors since 1998 is not surprising as the EPA

started regulating PM2.5 levels from 1997. Similarly, for PM2.5 I have constructed

an unbalanced sample of 2162 monitors spread over 713 counties over 1997-

2013. Figure 1.6 illustrates the geographical location of these PM2.5 monitors by

the nine climate regions and Table 1.2 illustrates the PM2.5 monitoring network

by each year in the sample, segregated by the nine climate regions. I have daily
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maximum measurements of PM2.5 for a total of 2,055,974 monitor-days, again

with sufficient representation from each climate region across the country.

Notes: Each shaded region represents a single climatic region as defined by the NOAA. Figure
1.5 illustrates the geographic location of 3264 PM10 monitors in our sample, using the latitude
and longitude information as obtained from the EPA.

Figure 1.5: PM10 Monitors from 1990-2013
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Table 1.1: PM10 Monitoring Network by Year

Number of Monitors in

Ohio Upper
Year Counties Monitors Observations Valley Midwest Northeast Northwest South Southeast Southwest West Rockies

1990-2013 876 3624 2,922,523 566 240 510 237 274 405 406 531 455

1990 569 1366 96,309 246 92 282 85 104 126 131 171 129
1991 595 1405 101,718 270 83 271 92 113 142 131 171 132
1992 626 1533 114,322 280 91 280 101 126 188 145 170 152
1993 634 1555 121,045 279 77 281 89 130 206 142 189 162
1994 657 1638 131,199 288 80 276 90 132 209 154 237 172
1995 674 1671 138,078 290 75 273 100 134 219 156 245 179
1996 676 1643 140,897 290 80 256 102 129 221 157 244 164
1997 670 1622 142,655 280 89 245 99 122 220 168 237 162
1998 589 1456 126,033 272 78 217 100 74 196 156 247 116
1999 509 1256 110,954 231 68 132 99 68 189 145 226 98
2000 532 1250 115,726 216 65 150 83 73 183 159 228 93
2001 519 1231 122,664 205 57 157 77 80 174 159 211 111
2002 500 1164 124,295 187 47 140 72 83 170 148 206 111
2003 463 1084 120,579 176 46 125 55 87 150 148 198 99
2004 453 1058 125,082 167 43 113 55 78 140 151 201 110
2005 441 1052 130,301 143 47 105 58 75 138 167 202 117
2006 413 1022 129,542 140 36 89 59 66 144 167 204 117
2007 388 971 122,629 135 36 85 44 72 139 163 184 113
2008 362 942 125,098 125 33 85 33 75 129 148 195 119
2009 355 904 123,401 129 36 72 34 71 118 152 188 104
2010 349 887 123,291 125 36 72 32 73 103 142 189 115
2011 339 877 126,813 119 36 70 27 76 99 145 175 130
2012 333 850 131,360 113 40 60 25 73 96 146 175 122
2013 314 785 78,532 106 40 57 20 67 79 133 166 117

Notes: Each shaded region represents a single climatic region as defined by the NOAA. Figure
1.6 illustrates the geographic location of 2162 PM2.5 monitors in our sample, using the latitude
and longitude information as obtained from the EPA.

Figure 1.6: PM2.5 Monitors from 1997-2013
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Table 1.2: PM2.5 Monitoring Network by Year

Number of Monitors in

Ohio Upper
Year Counties Monitors Observations Valley Midwest Northeast Northwest South Southeast Southwest West Rockies

1997-2013 713 2162 2,055,974 350 177 383 175 299 273 145 220 140

1997 3 3 128 0 3 0 0 0 0 0 0 0
1998 20 16 312 0 3 0 7 0 0 0 7 3
1999 974 520 93366 156 85 199 62 145 141 53 93 40
2000 1131 592 136417 177 98 224 75 179 155 72 98 53
2001 1178 604 148627 179 99 237 84 182 160 75 103 59
2002 1164 606 150265 183 96 235 86 184 156 67 102 55
2003 1137 589 132826 182 95 215 80 177 160 72 99 57
2004 1056 565 132067 179 88 190 62 140 174 68 98 57
2005 1082 557 127784 177 88 190 49 168 177 77 99 57
2006 1029 526 122141 186 86 178 40 131 184 78 97 49
2007 988 521 126428 184 82 179 42 105 179 73 97 47
2008 1011 519 127608 184 81 188 47 103 177 72 101 58
2009 1071 526 144160 201 85 192 48 104 178 73 121 69
2010 1081 524 158628 196 85 195 54 106 171 76 126 72
2011 1082 515 170128 200 90 190 49 102 167 83 128 73
2012 1064 506 173653 189 84 195 50 99 155 81 144 67
2013 1049 504 111436 192 88 208 46 95 148 73 138 61

Data on Precipitation: For meteorological data, I have utilized daily measure-

ments of total precipitation, as well as maximum daily temperature from the

National Climatic Data Center’s Cooperative Station Data (NOAA 2008). This

extensive dataset provides detailed daily information on various meteorologi-

cal variables, at over 20,000 weather stations across the United States. I have

acquired relevant data for the period from 1990-2013, to complement my data

on particulate matter. As a data completeness requirement, for every weather

station I have included data on years for which there are valid readings for to-

tal precipitation, maximum temperature and minimum temperature for atleast

75% of the total number of days.

However, the geographical location of these weather stations typically do

not coincide with the location of EPA’s air pollution monitors and hence I use an

algorithm (as described below) to match weather stations to pollution monitors

and eventually get the average weather around each PM monitor in the sample.

Firstly, using information on the geographical location of pollution monitors
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and weather stations, I calculate the distance between each pair of PM monitor

and weather station using the Haversine formula. This formula gives us the

great circle distance between any two points on a sphere using their latitude and

longitude. Using this distance, for every pollution monitor, I then keep only the

closest two weather stations within a radius of 30 km from the monitor 3. In order

to be able to estimate the effect of precipitation frequency on particulate matter,

I have utilized the daily rainfall information to construct a new variable Prcp

Freq, varying at the weather station-day level, which is the number of consecutive

days that a weather station had recorded positive rainfall. For every weather

station and day, Prcp Freq captures the repetitive incidence of rainfall. Finally,

I construct the weighted average, using inverse distance squares as weights, to

get the average level and frequency of precipitation at each pollution monitor.

I use the above algorithm to construct weather realizations for both PM10 and

PM2.5 monitors respectively. To illustrate the accuracy of this matching process,

Figures 1.7 and 1.8 in depict the matched weather stations for the PM10 monitors

as well as for the PM2.5 monitors in the final sample.

3As robustness checks, I have performed the analysis using weather stations within 100km,
150km and 200km as well and the results are robust

14



Notes: Each shaded region represents a single climatic region as defined by the NOAA. Figure
1.7 illustrates the geographic location of 3264 PM10 monitors in our sample along with the
weather stations matched to each pollution monitor, using the latitude and longitude
information as obtained from the EPA.

Figure 1.7: PM10 Monitors and Matched Weather Stations from 1990-2013

Notes: Each shaded region represents a single climatic region as defined by the NOAA. Figure
1.8 illustrates the geographic location of 2162 PM2.5 monitors in our sample along with the
weather stations matched to each pollution monitor, using the latitude and longitude
information as obtained from the EPA.

Figure 1.8: PM2.5 Monitors and Matched Weather Stations from 1997-2013
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Data on Non-Attainment Designations: Finally, I have used publicly available

data on the Clean Air Act Non-Attainment Designations to generate our mea-

sure of non-attainment status for each county and year in the sample. This data

is available from the EPA’s Green Book of Non-Attainment Areas of Criteria

Pollutants. CAANAS, or the Clean Air Act Non Attainment Status, is a binary

variable that takes the value one for counties that fail to comply with the fed-

eral pollution threshold as defined by the EPA, in any given year. In my pre-

ferred specification, I have used a three year lagged version of this variable,

because EPA gives heavy emitters at least this much time in order to comply

with the regulation (i.e. all the thresholds are based on 3 year moving averages

rather than just the contemporaneous level of particulate pollution). Figures 1.9

and 1.10 illustrate the daily maximum PM10 and PM2.5 concentrations, averaged

across all monitor-days for each year and we can see that even though there

has been an overall decline in both PM10 and PM2.5 over the last 20 years, the

pollution levels in non-attainment counties, on average, are higher than that in

attainment counties.
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Notes: This figure represents the average annual PM10 concentrations across all monitors in
attainment (blue line) and all monitors in non-attainment (red line) for each year between
1990-2013.

Figure 1.9: Mean Annual PM10 by CAA Attainment Status

Notes: This figure represents the average annual PM2.5 concentrations across all monitors in
attainment (blue line) and all monitors in non-attainment (red line) for each year between
1997-2013.

Figure 1.10: Mean Annual PM2.5 by CAA Attainment Status
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Having consolidated the data from the above three sources, I have con-

structed my final sample of PM10 monitors from 1990-2013 and PM2.5 monitors

from 1997-2013, along with weather realizations for each monitor-day and CAA

attainment designation for each county-year. Table 1.3 and 1.4 provides a de-

tailed description and summary statistics for the main pollution and meteoro-

logical variables that are of interest in this paper, for the full sample, as well as,

broken down by the nine different climatic regions in US and the attainment

status of counties. Table 1.3 provides these statistics for the sample of PM10

monitors from 1990-2013 whereas, Table 1.4 provides the same information for

the sample of PM2.5 monitors from 1997-2013. From Table 1.3, we see that the

average PM10 across all monitors, years and regions is about 25.5 µg/m3, with

the Southwest and West accounting for the highest average levels of pollution.

In terms of precipitation, the average level of precipitation is about 2mm overall,

whereas the average frequency of precipitation is 0.8 days. From Table 1.4, we see

that the average PM2.5 across all monitors, years and regions is 11.4 µg/m3 with

the West and Ohio Valley accounting for the highest levels of pollution. The av-

erage level of precipitation is 2.6mm whereas the average frequency is 1 day. From

both our samples, we find that the Southeast and Ohio Valley are among the

wettest regions whereas the Southwest is the driest. As expected, we find that

the average PM10 as well as PM2.5 levels are higher in non-attainment counties

than in attainment counties, capturing the fact that counties in non-attainment

have higher levels of pollution precursors. Interestingly, we also find, that in

both the samples, both the level and the frequency of rainfall is higher in at-

tainment counties than in non-attainment counties. This draws attention to the

fact that rainfall, through its effect of particulate matter concentrations, might

indirectly have an effect on the attainment designations of counties. For exam-
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ple, out of two counties that are undertaking similar adjustments in order to

meet the federal pollution threshold, one might be pushed into non-attainment

because of less rainfall or infrequent rainfall.

Figures 1.11 and 1.12 illustrate the strong negative correlation, observed in

the data, between the level of rainfall and PM10 and PM2.5 respectively. Figures

13 and 14 illustrates the negative correlation between the frequency of rainfall

and particulate matter concentrations. Lastly, Figures 1.15, 1.16 ,1.17 and 1.18

depict these correlations, by the nine different climatic regions of USA and we

can see that this negative association between the level/frequency of rainfall

and particulate matter, is present across all regions.

Notes: This figure represents the daily maximum PM10 concentrations and daily total
precipitation, averaged across all monitor-days for each year. The variables have been
detrended in order to eliminate the time trend.

Figure 1.11: Level of Precipitation and PM10
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Notes: This figure represents the daily maximum PM2.5 concentrations and daily total
precipitation, averaged across all monitor-days for each year. The variables have been
detrended in order to eliminate the time trend.

Figure 1.12: Level of Precipitation and PM2.5

Notes: This figure represents the daily maximum PM10 concentrations and precipitation
frequency, averaged across all monitor-days for each year. The variables have been detrended
in order to eliminate the time trend.

Figure 1.13: Precipitation Frequency and PM10
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Notes: This figure represents the daily maximum PM2.5 concentrations and precipitation
frequency, averaged across all monitor-days for each year. The variables have been detrended
in order to eliminate the time trend.

Figure 1.14: Precipitation Frequency and PM2.5

Notes: This figure represents the daily maximum PM10 concentrations and daily total
precipitation, averaged across all monitor-days for each year and climate region. The variables
have been detrended in order to eliminate the time trend.

Figure 1.15: Level of Precipitation and PM10- By Climate Regions
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Notes: This figure represents the daily maximum PM2.5 concentrations and daily total
precipitation, averaged across all monitor-days for each year and climate region. The variables
have been detrended in order to eliminate the time trend.

Figure 1.16: Level of Precipitation and PM2.5- By Climate Regions

Notes: This figure represents the daily maximum PM10 concentrations and precipitation
frequency, averaged across all monitor-days for each year and climate region. The variables
have been detrended in order to eliminate the time trend.

Figure 1.17: Precipitation Frequency and PM10- By Climate Regions
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Notes: This figure represents the daily maximum PM2.5 concentrations and precipitation
frequency, averaged across all monitor-days for each year and climate region. The variables
have been detrended in order to eliminate the time trend.

Figure 1.18: Precipitation Frequency and PM2.5- By Climate Regions

1.4 Empirical Methodology

I exploit plausibly random, daily variation in precipitation, precipitation fre-

quency and maximum temperature 4 in order to estimate the causal effect of

the level and frequency of precipitation on the daily maximum concentrations of

PM10 and PM2.5. To evaluate the average effect of precipitation and precipita-

tion frequency across all counties, and the causal effect of of the Clean Air Act

Non-Attainment on particulate pollution levels, I estimate the following speci-

4I also add maximum temperature in the econometric analysis. Although less important, Ja-
cob and Winner (2009) point out that some components of PM, such as sulphates increase with
temperature, due to faster S O2 oxidation. In contrast, nitrates and organic semi-volatile compo-
nents shift from the particle phase to the gas phase (Bowman (2001),Tsigaridis and Kanakidou
(2007))
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fication:

PMidmy =α + β1Prcpidmy + β2PrcpFreqidmy + β3MaxTempidmy

+β4CAANAS c,y−3 + Xcy + λtyZi + ηi + φrty + εidmy (1)

where i represents a PM monitor located in NOAA climate region r, and d stands

for day, m for month, t for trimester (January-March, April-June, July-September

and October-December) and y for year. The dependent variable PM captures

the daily maximum concentrations of either PM10 or PM2.5 and I will separately

estimate the effects for each pollutant type. Prcp measures the total daily pre-

cipitation, i.e. the level of rainfall recorded at pollution monitor i. PrcpFreq

measures the number of consecutive days that monitor i received positive rain-

fall and hence captures the precipitation frequency. MaxTemp is the daily max-

imum temperature recorded at pollution monitor i. CAANAS (Clean Air Act

Non-Attainment Status) is a binary variable which equals one for counties that

fail to comply with the National Ambient Air Quality Standards (NAAQS) for

particulate matter. This variable is lagged by three years since the EPA gives

heavy emitters at least three years to adjust and comply with the federal stan-

dards. Since emissions of particulate matter might be correlated with economic

activity, I control for X, which represents Population and Per Capita Income 5,

varying at the county-year level. Z represents time invariant covariates (latitude

and longitude of PM monitors), which have been interacted with trimester-by-

year fixed effects in the econometric specification, η represents PM monitor fixed

effects, φ represents region-by-trimester-by-year fixed effects and ε an idiosyn-

cratic error term.

β1 captures the average change in particulate matter concentrations, across
5Data on GDP is not available at the county level. However, the Bureau of Economic Analysis

releases annual estimates of Population and Per Capita Income at the county level, which I have
used in my econometric specification.
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all counties, following a 1-mm change in the level of precipitation, whereas β2

gives us the average change in particulate matter concentrations in response to

a 1-day change in precipitation frequency. If rainfall indeed washes out par-

ticulate matter by providing its main atmospheric sink, then I would expect β1

and β2 to be negative, implying that if there is less rainfall, or if there is infre-

quent rainfall, we would have higher levels of particulate matter in ambient

air. β4 on the other hand gives us the causal effect of a county going into non-

attainment on the levels of particulate matter in its air. Since counties that go

into non-attainment face stringent regulations from the EPA and are forced to

make adjustments in order to comply with the regulation, I would expect β4 to

be negative, hence implying that the particulate matter concentrations decrease

in a county that goes into non-attainment. Thus, β4 measures the pure benefit of

the Clean Air Act regulations, in terms of decrease in particulate matter.

In order to evaluate the differential effects of the level and frequency of pre-

cipitation, in attainment and non-attainment counties, I augment the specifica-

tion in Equation (1) to get my preferred econometric specification as described

below.

PMidmy =α + β1Prcpidmy + β2PrcpFreqidmy + β3MaxTempidmy + β4CAANAS c,y−3

+γ1Prcpidmy ∗CAANAS c,y−3 + γ2PrcpFreqidmy ∗CAANAS c,y−3

+γ3MaxTempidmy ∗CAANAS c,y−3 + Xcy + λtyZi + ηi + φrty + εidmy (2)

The estimates from the above specification gives us the effect of the level and fre-

quency of precipitation, separately for attainment and non-attainment counties.

Unlike in Equation (1), β1 and β2 from Equation (2) measures the marginal effect

of the level and frequency of precipitation in attainment counties only. Whereas,

γ1 and γ2 measures the incremental effect in non-attainment counties. Hence the
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total effect of a 1-mm increase in the level of rainfall in non-attainment counties

is given by β1 + γ1 whereas the total effect of a 1-day increase in precipitation

frequency in non-attainment counties is given by β2 + γ2.

1.5 Results

In this section I report my primary findings regarding the impact of the level of

precipitation and the precipitation frequency on daily maximum concentrations

of PM10 and PM2.5. Then, I also discuss these effects, disaggregated by the nine

different NOAA climate regions in USA.

1.5.1 Main Results

Table 1.5 presents the effects of the two different aspects of precipitation,

namely, the level of precipitation, as measured by the total daily precipitation,

and the precipitation frequency, as measured by the number of consecutive days

having recorded positive rainfall, on the daily maximum concentrations of PM10

in the ambient air. These estimates are based on data from 3264 PM10 monitors

over the years 1990-2013. Columns (1) through (4) report average effects of the

level and frequency of precipitation, across all counties in the sample. Column

(1) reports the estimates, when I just control for the level and frequency of pre-

cipitation. I find that a 1-mm decrease in total daily precipitation would lead to

an increase of 0.23 µg/m3 of daily maximum PM10 concentration, which repre-

sents almost 1% of the average PM10 levels in the sample. Also, if precipitation

becomes less frequent, i.e. if there is one less consecutive day having positive
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rainfall 6 then the daily maximum PM10 level will increase by 1.04 µg/m3, which

represents over 4% of the average PM10 levels in sample. Next, in Column (2),

I also control for the Clean Air Act Non-Attainment status of counties, lagged

by three years. This variable has been lagged by three years since the EPA gives

emitters that much time to bring down their pollution levels. We see that the

inclusion of the CAANAS does not alter our estimates of the effect of the level

and frequency of precipitation on PM10. The coefficient of the CAANAS gives

us a measure of the benefits of the Clean Air Act in terms of lower PM10 lev-

els. The estimates suggest that a county that goes into non-attainment has a

decrease in PM10 concentrations by 0.85 µg/m3 7. In Columns (3) and (4), I have

sequentially added county population and per capita income, in order to con-

trol for economic and demographic factors that might also have an effect on the

air pollution levels. Column (4) reports the effects that I get from estimating

equation (1) and we can see that the magnitude and significance of my esti-

mates for the effect of precipitation remain unaffected by the addition of other

controls. Comparing these estimates with the causal effect of the Clean Air Act

Non-Attainment Status, I find that a 1-mm decrease in daily precipitation can

potentially offset over 30% of the benefits of the landmark regulation, through

higher PM10 levels in ambient air.

Finally, in order to get the differential effects of the level and frequency of pre-

cipitation on PM10 between attainment and non-attainment counties, I estimate

my preferred specification given by Equation (2) and the results are reported

in Column (5). The interaction terms now give us the incremental effects of

6Basically, if we consider two different days, one for which the past 5 days has had rainfall;
and another for which the past 4 days has had rainfall; then the PM10 concentration in the second
day, will be 1.04 µg/m3 higher than the first.

7It is important to note here that decrease in pollution levels after going into non-attainment
does not signify that the pollution levels have become lower than that in attainment counties

29



Table 1.5: Main Estimates- Effect of Level & Frequency of Precipitation on
PM10

VARIABLES (1) (2) (3) (4) (5)

Total Precipitation -0.2331*** -0.2331*** -0.2337*** -0.2337*** -0.2001***
(0.0055) (0.0055) (0.0056) (0.0056) (0.0052)

Precipitation Frequency -1.0427*** -1.0425*** -1.0436*** -1.0435*** -0.8905***
(0.0389) (0.0389) (0.0390) (0.0391) (0.0356)

Lag 3 of CAANAS -0.8489*** -0.8572*** -0.7582*** -0.3100
(0.2339) (0.2336) (0.2399) (0.4305)

Lag 3 of CAANAS x Prec -0.1794***
(0.0150)

Lag 3 of CAANAS x Prec Freq -0.4064***
(0.0994)

Max Temperature Y Y Y Y Y
Lag 3 of CAANAS x Max Temp N N N N Y
Population N N Y Y Y
Per Capita Income N N N Y Y
Observations 2,909,576 2,909,576 2,894,899 2,894,899 2,894,899
R-squared 0.0809 0.0810 0.0808 0.0809 0.0811

Notes: Precipitation Frequency is measured as the number of consecutive days having positive
rainfall. Regressions include fixed effects for PM10 Monitors, Trimester*Year x Climate Region,
Trimester*Year x Monitor Latitude and Trimester*Year x Monitor Longitude. Standard errors
are clustered at the monitor level. ***, ** and * represent statistical significance at the 1%, 5%
and 10% level respectively.

lower or less frequent rainfall on PM10 concentrations in non-attainment coun-

ties. I find that a 1 mm decrease in total daily precipitation leads to an increase

of 0.2 µg/m3 of PM10 levels in attainment counties whereas in non-attainment

counties there is an additional increase of 0.18 µg/m3. Hence, in totality, a 1-mm

decrease in daily precipitation level leads to 0.38 µg/m3 higher daily maximum

PM10 levels in non-attainment counties. Similarly, I find that if there is one less

consecutive day having recorded rainfall (i.e. a 1 unit decrease in precipitation

frequency) then PM10 levels in attainment counties will increase by 0.89 µg/m3

whereas in non-attainment counties it will increase by an additional 0.41 µg/m3,

making it a cumulative increase of 1.3 µg/m3. As has been illustrated in the de-
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scriptive statistics, we know that pollution levels are higher in non-attainment

counties and it is reasonable to believe that non-attainment counties have more

sources of pollution and pollution precursors. Hence, the estimates are aligned

with economic intuition that we should have larger effects on ambient air pol-

lution levels, with the lack of rainfall or less frequent rainfall in non-attainment

counties, as opposed to counties in attainment.

Table 1.6 reports similar estimates, but for the daily maximum concentra-

tions of PM2.5. These estimates are based on data from 2162 PM2.5 monitors

over the years 1997-2013. From Column (4), we find that a 1-mm decrease in

total daily precipitation will lead to an increase of 0.08 µg/m3 of PM2.5, averaged

across all counties in sample. Also, a decrease in precipitation frequency, i.e. if

there is one less consecutive day receiving positive rainfall, the average PM2.5

concentration across all counties will increase by 0.39 µg/m3. I also find that a

county going into non-attainment will have a decrease of 0.21 µg/m3 of PM2.5

which captures the pure benefit from the Clean Air Act in terms of lower PM2.5

concentrations. Hence, a 1-mm decrease in precipitation offsets over 38% of the

benefits achieved due to the Clean Air Act. Next, in Column (5), I again estimate

the differential impacts across attainment and non-attainment counties. Similar

to PM10, even for PM2.5 concentrations, I find larger effects in non-attainment

counties, which follows economic intuition as has been explained above. The

estimates suggest that a 1-mm decrease in total daily precipitation would lead

to an increase of 0.08 µg/m3 of PM2.5 in attainment counties whereas an increase

of 0.14 µg/m3 in non-attainment counties. A one unit decrease in precipitation

frequency on the other hand, would lead to an increase of 0.38 µg/m3 of PM2.5 in

attainment counties whereas an increase of 0.56 µg/m3 of PM2.5 in counties that

are out of attainment.
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Table 1.6: Main Estimates- Effect of Level & Frequency of Precipitation on
PM2.5

VARIABLES (1) (2) (3) (4) (5)

Total Precipitation -0.0840*** -0.0840*** -0.0838*** -0.0838*** -0.0796***
(0.0017) (0.0017) (0.0017) (0.0017) (0.0016)

Precipitation Frequency -0.3944*** -0.3944*** -0.3945*** -0.3946*** -0.3759***
(0.0108) (0.0108) (0.0108) (0.0108) (0.0105)

Lag 3 of CAANAS -0.2046** -0.2121** -0.2114** 2.4659***
(0.0932) (0.0932) (0.0935) (0.3170)

Lag 3 of CAANAS x Prec -0.0609***
(0.0097)

Lag 3 of CAANAS x Prec Freq -0.1172***
(0.0393)

Max Temperature Y Y Y Y Y
Lag 3 of CAANAS x Max Temp N N N N Y
Population N N Y Y Y
Per Capita Income N N N Y Y
Observations 2,051,608 2,051,608 2,038,092 2,038,092 2,038,092
R-squared 0.2548 0.2549 0.2548 0.2548 0.2582

Notes: Precipitation Frequency is measured as the number of consecutive days having positive
rainfall. Regressions include fixed effects for PM2.5 Monitors, Trimester*Year x Climate Region,
Trimester*Year x Monitor Latitude and Trimester*Year x Monitor Longitude. Standard errors
are clustered at the monitor level. ***, ** and * represent statistical significance at the 1%, 5%
and 10% level respectively.

1.5.2 Results by Climate Regions

In this section, I aim to establish the spatial heterogeneity of my main estimates

from Tables 1.7 and 1.8. To do so, I have estimated my preferred specification

given by Equation (2) by the nine different climate regions in United States,

as defined by the National Oceanic and Atmospheric Association (NOAA),

through detailed climate analysis. All counties in a given climate region have

comparable climatic conditions and very similar baselines of precipitation, tem-

perature and other important meteorological variables. Hence, this provides a

reliable criterion for sub-dividing the entire sample and also testing the hetero-
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geneity of the impacts of both the level and the frequency of precipitation. Table

1.7 reports the findings based on the sample of PM10 monitors. For clarity of ex-

position, I have only reported the estimates for the level and frequency of pre-

cipitation, along with the interaction effects. I find that even though the overall

direction and significance of the both these effects are consistent across regions,

there is quite a bit of variability in their magnitudes. For example, I find that a 1

mm decrease in daily precipitation, will cause the largest increases in PM10 con-

centrations in the Northwest, Southwest and Rockies. In almost every region, I

find that the effect is significantly larger for counties that are out of attainment,

which follows our interpretation of the main estimates. On the other hand, if

precipitation frequency decreases by 1 day, then we can see the largest effects in

the South, Southwest, West and Upper Midwest, with non-attainment counties

again mostly having larger effects. Along similar lines, Table 1.8 reports these

estimates based on the sample of PM2.5 monitors. Even in this table I find the

direction and significance of effects to be consistent across space and also the

fact that non-attainment counties mostly have larger impacts on air pollution as

a result of changes in the level or frequency of precipitation. From the sample

of PM2.5, I find the largest effects of the level of rainfall in the Northwest, South-

west and West; whereas the largest effects of a change in precipitation frequency

comes from the South and the West 8

8Apart from a few exceptions, the regional results provide some hint towards a potential
non-linear effect of precipitation and precipitation frequency on particulate matter. The regions
having the largest effects generally have lower average levels of precipitation (both level and
frequency). This can be seen by comparing Tables 1.7 and 1.8 with the summary statistics by
climate regions. I will explicitly test for non-linear effects in the Robustness section.
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1.6 Robustness

1.6.1 Balanced Panel of Pollution Monitors

Muller and Ruud (2016) argue that the placement of pollution monitors might

not necessarily be random. The authors claim that the U.S. Environmental Pro-

tection Agency maintains a dense network of pollution monitors across the

country, mainly for two reasons. Firstly, it wishes to enforce the federal air

quality standards for each criteria air pollutant and secondly, it also wants to

be able to provide detailed informative data for the analysis of important ques-

tions linking air pollution with its various impacts. According to the authors,

these two are conflicting interests since in order to enforce the NAAQS 9 the pol-

lution monitors are generally placed in areas having already high levels of air

pollution. However, in order to get informative as well as representative data,

monitors should ideally be placed in areas having varied levels of air pollution.

The authors assert that most of the monitors are in areas where air pollution

levels have been high and compliance with the federal regulation is a concern.

Going by the above argument, we may have reasons to believe that the location

of PM monitors is essentially endogenous and hence by using an unbalanced

panel of monitors over time I may be observing particulate matter concentra-

tions at monitors which have relatively higher levels of pollution only.

In order to nullify such threats to identification, I now check the sensitivity of

my main estimates reported in Table 1.5, by using a balanced panel of PM10 and

PM2.5 monitors. Starting from my original sample, I only use observations from

PM10 monitors that have been in the sample for every year from 1990-2013 and

9National Ambient Air Quality Standards for criteria pollutants.
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I am left with a balanced sample of 125 monitors. Similarly, I have constructed

a balanced panel of 358 PM2.5 monitors 10. By doing so, I eliminate possible

confounding factors that might be driving the positioning of pollution monitors

and their subsequent selection into the sample. The results from estimating

my preferred specification using a balanced sample of PM10 and PM2.5 monitors

have been reported in Tables 1.9 and 1.10. From Column (4) in Table 1.9, we

see that a 1-mm decrease in precipitation leads to a 0.27 µg/m3 increase in PM10

levels whereas if precipitation frequency decreases by a day, PM10 increases by

1.39 µg/m3, on average across all counties in the sample. From Column (5),

we see that in attainment counties, PM10 increases by 0.2 µg/m3 following a 1-

mm decrease in precipitation and by 0.96 µg/m3 following a 1-day decrease in

precipitation frequency. As in our main estimates, we find higher effects in non-

attainment counties. Cumulatively, in non-attainment counties, PM10 increases

by 0.41 µg/m3 following a 1-mm decrease in precipitation and by 1.93 µg/m3

following a 1-day decrease in precipitation frequency.

From Column (4) in Table 1.10, we see that a 1-mm decrease in precipitation

leads to a 0.09 µg/m3 increase in PM2.5 levels whereas if precipitation frequency

decreases by a day, PM2.5 increases by 0.38 µg/m3, on average across all coun-

ties in the sample. From Column (5), we see that in attainment counties, PM2.5

increases by 0.09 µg/m3 following a 1-mm decrease in precipitation and by 0.33

µg/m3 following a 1-day decrease in precipitation frequency. As in our main esti-

mates, we find higher effects in non-attainment counties. Cumulatively, in non-

attainment counties, PM2.5 increases by 0.17 µg/m3 following a 1-mm decrease

in precipitation and by 0.8 µg/m3 following a 1-day decrease in precipitation

10I use PM2.5 monitors that have been in the sample for every year from 1999-2013. I drop
1997-98 in the balancing process since there are only 16 monitors in those two years. Since PM2.5

just started being regulated in 1997, the monitoring network was still very sparse, and by using
those years we will not be left with enough observations.
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frequency. Most of my estimates from using a balanced panel of monitors are

actually larger than my main estimates reported in Table 1.5. This ensures that

my central estimates are robust to potential errors caused by the non-random

placement of monitors. This is because, had such concerns been valid and pol-

lution monitors were indeed placed in areas of high pollution, then my main

estimates from using an unbalanced sample, should have been overestimating

the effects of precipitation on particulate matter, which do not seem to be the

case.

Table 1.9: Robustness- Balanced Panel of PM10 Monitors

VARIABLES (1) (2) (3) (4) (5)

Total Precipitation -0.2632*** -0.2632*** -0.2657*** -0.2656*** -0.2028***
(0.0214) (0.0214) (0.0220) (0.0220) (0.0164)

Precipitation Frequency -1.3873*** -1.3869*** -1.3904*** -1.3903*** -0.9639***
(0.1421) (0.1419) (0.1431) (0.1430) (0.1051)

Lag 3 of CAANAS -0.7430 -0.8700 -0.6107 -0.1251
(0.7286) (0.7328) (0.7390) (1.0825)

Lag 3 of CAANAS x Prec -0.2095***
(0.0406)

Lag 3 of CAANAS x Prec Freq -0.9699***
(0.2826)

Max Temperature Y Y Y Y Y
Lag 3 of CAANAS x Max Temp N N N N Y
Population N N Y Y Y
Per Capita Income N N N Y Y
Observations 280,524 280,524 277,713 277,713 277,713
R-squared 0.3186 0.3187 0.3177 0.3178 0.3212

Notes: Regressions include fixed effects for PM10 Monitors, Trimester*Year x Climate Region,
Trimester*Year x Monitor Latitude and Trimester*Year x Monitor Longitude. Regressions are
based on observations from a balanced panel of 125 PM10 monitors. Standard errors are
clustered at the monitor level. ***, ** and * represent statistical significance at the 1%, 5% and
10% level respectively.
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Table 1.10: Robustness- Balanced Panel of PM2.5 Monitors

VARIABLES (1) (2) (3) (4) (5)

Total Precipitation -0.0930*** -0.0930*** -0.0926*** -0.0926*** -0.0875***
(0.0032) (0.0032) (0.0032) (0.0032) (0.0030)

Precipitation Frequency -0.3792*** -0.3792*** -0.3814*** -0.3814*** -0.3322***
(0.0248) (0.0248) (0.0249) (0.0249) (0.0218)

Lag 3 of CAANAS 0.0394 0.0243 0.0358 3.5873***
(0.1546) (0.1530) (0.1556) (0.6891)

Lag 3 of CAANAS x Prec -0.0841***
(0.0152)

Lag 3 of CAANAS x Prec Freq -0.4682***
(0.1112)

Max Temperature Y Y Y Y Y
Lag 3 of CAANAS x Max Temp N N N N Y
Population N N Y Y Y
Per Capita Income N N N Y Y
Observations 280,524 280,524 277,713 277,713 277,713
R-squared 0.3186 0.3187 0.3177 0.3178 0.3212

Notes: Regressions include fixed effects for PM2.5 Monitors, Trimester*Year x Climate Region,
Trimester*Year x Monitor Latitude and Trimester*Year x Monitor Longitude. Regressions are
based on observations from a balanced panel of 358 PM2.5 monitors. Standard errors are
clustered at the monitor level. ***, ** and * represent statistical significance at the 1%, 5% and
10% level respectively.

1.6.2 Correlations with Wind Speed

Many studies in the atmospheric sciences literature have made qualitative ob-

servations on the relationship between suspended particulate matter and wind

speed. Jacob and Winner (2009) mention in their review article that changes in

wind speed has stronger effects on particulate matter than on ozone because

of lower PM background concentrations. Jones et al. (2010) look at the depen-

dence of PM10, chloride, sulphate, nitrate, organic and elemental carbon as well

as NOx concentrations on the wind speed using data from three sites in London.

They find that for particulate nitrates, there was a rapid reduction in concentra-

tions associated with higher wind speeds. the authors suggest that this might
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be a result of limiting factors on the production of ammonium nitrate, generated

from precursors, the concentrations of which are themselves governed by wind

speed. Buch et al. (1976) perform a statistical analysis of the connection between

airborne particles and wind speed and wind direction in Denmark. They also

report that mean overall concentrations of particulate matter is decreasing with

increasing wind speeds for most directions.

Hence, in order to check if my preferred estimates are predominantly being

driven by the effect of wind speeds on PM, I have estimated my preferred spec-

ification, controlling for average daily wind speed, measured in meters/sec.

Table 1.11 reports these estimates, both for PM10 and PM2.5. I do find statisti-

cally significant effects of the wind speed on both PM10 as well as PM2.5. More-

over, I find larger effects of wind speed on PM2.5 which is potentially driven by

the fact that lighter particles can be removed or blown away more easily than

larger/heavier ones. However, most importantly, the effects of my variables

of interest, namely, the level and frequency of precipitation, are robust to the

inclusion of this additional control.

1.6.3 Non-linear Effects

In the analysis by climate region, we had seen some suggestive evidence for

larger effects of precipitation and precipitation frequency in regions which had

lower rainfall or less frequent rainfall. This points us toward checking for any

potential non-linear effects of these variables on ambient particulate matter con-

centrations. To do so, I have controlled for the level and frequency of precipi-

tation non-linearly and have also interacted these non-linear controls with the
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Table 1.11: Robustness- Dependence on Wind Speed

VARIABLES PM10 PM2.5

(1) (2) (3) (4)

Total Precipitation -0.2002*** -0.1749*** -0.0630*** -0.0604***
(0.0071) (0.0067) (0.0017) (0.0017)

Precipitation Frequency -1.0909*** -0.9222*** -0.1997*** -0.1592***
(0.0424) (0.0371) (0.0145) (0.0139)

Lag 3 of CAANAS x Prec -0.1546*** -0.0402***
(0.0175) (0.0110)

Lag 3 of CAANAS x Prec Freq -0.4875*** -0.3755***
(0.1056) (0.0671)

Wind Speed -0.5086*** -0.4979*** -1.2726*** -1.2670***
(0.1126) (0.1125) (0.0330) (0.0322)

Observations 1,376,429 1,376,429 1,266,539 1,266,539
R-squared 0.3064 0.3075 0.3027 0.3060

Notes: Regressions include fixed effects for PM Monitors, Trimester*Year x Climate Region,
Trimester*Year x Monitor Latitude and Trimester*Year x Monitor Longitude. Average daily
wind speed, measured in meters/sec. Wind speed data is not available for many monitor-days
and hence I have fewer observations compared to Table 1.5. Standard errors are clustered at
the monitor level. ***, ** and * represent statistical significance at the 1%, 5% and 10% level
respectively.

nonattainment status, to estimate differential effects in attainment vs nonattain-

ment counties as well. Table 1.12 reports the findings from the above estimation.

Both for PM10 and PM2.5 I find statistically significant evidence of non-linear ef-

fects of both the level and the frequency of precipitation. More specifically, I

find evidence of a convex relationship between particulate matter and my main

variables of interest 11.

These results validate our findings in the results by climate region. My esti-

mates suggest that decreases in precipitation as well as precipitation frequency

11Although there is evidence of a convex relationship, the turning points are almost always
above the 99th percentile of the precipitation and precipitation frequency distribution, implying
a predominantly downward sloping and convex relationship.
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leads to increases in particulate matter concentrations, at an increasing rate.

Hence, there will be relatively larger effects of the same decrease in rainfall,

in areas that are already dry and vice versa. As reported in Table 1.5, we see

larger effects in nonattainment counties. However, from these results we also

see more convex effects in nonattainment counties than in counties compliant

with the regulations.

Table 1.12: Robustness- Non-linear Effects of Level and Frequency of Pre-
cipitation on PM

VARIABLES PM10 PM2.5

(1) (2) (3) (4)

Precipitation -0.3599*** -0.2970*** -0.1280*** -0.1227***
(0.0128) (0.0091) (0.0027) (0.0025)

Precipitation Sq 0.0028*** 0.0021*** 0.0007*** 0.0007***
(0.0002) (0.0001) (0.0000) (0.0000)

Precipitation Frequency -1.3831*** -1.2847*** -0.6996*** -0.5983***
(0.1179) (0.0595) (0.0323) (0.0280)

Prec Freq Sq 0.0324*** 0.0386*** 0.0797*** 0.0661***
(0.0106) (0.0051) (0.0056) (0.0050)

Lag 3 of CAANAS x Precipitation -0.3003*** -0.0742***
(0.0305) (0.0127)

Lag 3 of CAANAS x Precipitation Sq 0.0039*** 0.0008***
(0.0005) (0.0002)

Lag 3 of CAANAS x Prec Freq -0.3371** -0.8728***
(0.1655) (0.1193)

Lag 3 of CAANAS x Prec Freq Sq -0.0094 0.1207***
(0.0134) (0.0183)

Observations 2,894,899 2,894,899 2,038,092 2,038,092
R-squared 0.0816 0.0818 0.2517 0.2555

Notes: Regressions include fixed effects for PM Monitors, Trimester*Year x Climate Region,
Trimester*Year x Monitor Latitude and Trimester*Year x Monitor Longitude. Positive
coefficients of the non-linear controls imply a convex relationship. Standard errors are
clustered at the monitor level. ***, ** and * represent statistical significance at the 1%, 5% and
10% level respectively.
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1.7 Application: Effect of Particulate Matter on

Infant Mortality

There has been a consensus among economists, policy makers and govern-

ments of various nations, on the effect of air pollution on public health. In the

United States, one of the major goals in establishing the Environmental Protec-

tion Agency (EPA) as well as implementing the Clean Air Act Amendments in

1970, was to protect public health. However, the EPA did not include infant mor-

tality in the primary cost-benefit analysis of the 1990 Clean Air Act amendments

because of the lack of enough reliable scientific evidence linking air pollution to

infant health [Currie and Neidell (2004)]. Particulate matter is widely accepted

as being one of the most harmful air pollutant, and the EPA is particularly con-

cerned about the health effects of particles that are under 10 µg/m3 in diameter as

these particles can enter through the throat and nose and potentially reach our

lungs. Scientifically, one of the leading theories behind the above mentioned

impact of particulate pollution on health is an inflammatory response which

weakens the human immune system.

Even though quite a few studies have documented this statistical relation-

ship between particulate matter and human health [Holland et al. (1979), Wil-

son (1996), Wang et al. (1997)], there are associated econometric concerns. There

have been cross sectional analyses of the correlation between air pollution in

U.S. cities and adult mortality rates [Lave ans Seskin (1997), Pope and Dockery

(1996)], time series analyses at a given location [Dockery and Pope (1996)] and

also cohort based longitudinal studies which indicates that particulate pollu-

tion might lead to excess mortality [Dockery et al. (1993), Pope et al. (1995)].
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However, the reliability of such estimates have been questioned in the litera-

ture on air pollution and health for several reasons. Firstly, air pollution is not

randomly assigned to different regions, i.e. there are a host of other factors

affecting pollution concentrations and also having a direct effect on health. Al-

though some such factors, such as economic conditions, population etc. might

be controlled for, it can be argued that many of the above mentioned studies

may not be controlling for adequate number of such confounding factors. For

example, parents who are more aware about the environment and the harm-

ful effects of pollution, might be relocating to less polluted areas which would

bias the estimates upwards [Currie (2011)]. Secondly, if we are looking at adult

mortality, current pollution exposure is not necessarily equivalent to lifetime

exposure and hence deaths today might actually reflect pollution exposure that

happened many years ago.

In recent years, there have been a few studies which have successfully ana-

lyzed this link between air pollution and infant health and tackled some of the

econometric issues mentioned above. Examples of such work include the effect

of air pollution on infant mortality and birth outcomes [Chay and Greenstone

(2003), Currie and Neidell (2004), Currie et al. (2009), Currie and Walker (2011),

Knittel et al. (2016)], contemporaneous health factors [Chay et al. (2003), Nei-

dell (2001), Currie et al. (2008)] and life cycle outcomes [Sanders (2011)]. There

has also been a study, specifically focusing on the developing country context

and analyzing this link between air pollution and infant mortality using data

from Mexico City [Arceo-gomez et al. (2012)]. However, almost all of the above

mentioned studies have either looked at a specific state or region for the anal-

ysis, or looked at a very short time frame which basically leads to the lack of

either spatial or temporal variation in the data. This is potentially driven by the
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difficulty in finding large scale data on a variable which only affects infant mor-

tality, through its effect on air pollution levels and can be used as an instrument

for air pollution 12.

In this section, I utilize the exogenous causal effect of the level of rainfall on

PM10, from the previous sections, to establish that rainfall shocks can be used as

an instrument to analyze the statistical link between air pollution on infant mor-

tality. As the importance of this question has already been discussed in detail,

I propose that the availability of rich daily data on precipitation, ever since the

1950s, across more than 20,000 weather stations spread over the entire country

provides enough temporal as well as spatial variation to analyze this question

and get more general estimates for the entire nation. The key exclusion restric-

tion here is the fact that apart from extreme weather events, fluctuations in rain-

fall do not directly affect infant mortality through factors other than particulate

matter concentrations. Since I also explicitly control for county and year fixed

effects, I believe that this is a plausible assumption. It should be mentioned, that

by looking at infant deaths, we can more surely link pollution to health as the

effect is immediate versus adult mortality where the effect might be driven by

lifetime exposure to pollution. Also, infants form the most vulnerable section of

our society and policy-makers as well as the general public are extremely mo-

tivated to protect them. I will present this section, by first describing the data

sources, then the empirical methodology and lastly, the results.

12Chay and Greenstone (2003) have used the 1981-1982 economic recession to look at the
effect of total suspended particles on infant mortality;Knittel et al. (2016) and Currie and Neidell
(2004) have looked at data from California; Currie et al. (2009) have looked at New Jersey and
Arceo-gomez et al. (2012) have used thermal inversions as an instrument, to study the question
using Mexico City data.

45



1.7.1 Data Sources

Mortality and Births Data: The mortality and live births data is obtained from

the Compressed Mortality Files (CMF) which is made available by the National

Center for Health Statistics (NCHS). It is composed of a county level national

mortality file and a county level national population file, spanning the years

1968-2014. I have used information from the CMF for the years 1990-2013 13,

in order to match it with the pollution and weather data. The mortality file

provides the number of deaths for each county, by the year of death, race, sex,

age group and the underlying cause of death. Firstly, since I am only interested

in infant mortality I have used data for the first age group which is “deaths within

one year of birth”. Then, for each county, I have created the total number of

infant deaths by summing the death counts in each category of race, sex and

underlying cause. From the CMF population file, I have used information on

Total Births for each county and year 14, in order to calculate the infant mortality

rate, which is the number of infant deaths per 100,000 live births.

PM10 and Weather Data: I have used the same sample of PM10 monitors and

associated weather data, as in the rest of the paper. However, I have used the

daily weather data on rainfall, minimum and maximum temperature to con-

struct measures of extreme weather events at each pollution monitor and year.

Namely, I have used daily rainfall data to construct measures of Droughts, which

I have defined as more than 30 consecutive days of no rainfall and Floods, de-

fined as more than 2 consecutive days recording more than 25mm (∼ 1 inch) of

13The Compressed Mortality Files for the years 1989-2014 are not available publicly, and was
obtained under Part II Use Agreements, by signing a Data Use and Reporting Agreement with
the NCHS

14I continue to use information on county-level Population and Per Capita income from the
Bureau Of Economic Analysis (BEA) to maintain continuity with the rest of the paper.
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rainfall. Similarly, I have defined a Heat Wave to be more than 10 consecutive

days recording daily maximum temperatures higher than 35◦C and a Cold Wave

to be more than 10 consecutive days recording daily minimum temperatures

less than -10◦C 15. Finally, I have created the number of such instances of ex-

treme weather at each pollution monitor for each year. Since the mortality data

is at the county-year level, I have averaged the pollution and weather variables,

to get the average PM10, rainfall as well as extreme events at the county-year

level which has then been merged with the mortality data to get my final sam-

ple of 11,299 county-years, comprising of an unbalanced sample of 861 counties

spread over 48 states in contiguous United States. Table 1.13 illustrates the de-

scriptive statistics for the three main variables used in this analysis, based on the

data averaged at the county-year level. The average PM10 concentration across

all years and counties is 23.2 µg/m3 and the average annual infant mortality rate

is around 785 deaths per 100,000 live births. In looking at the average levels by

climate regions, we see that Ohio Valley, South, Southeast and Southwest have

very high levels of particulate pollution and also high infant mortality rates.

The average rainfall in the sample is 2.5 mm, with the Southwest and West be-

ing among the driest regions. Figure 1.19 illustrates the close positive associa-

tion between the average infant mortality rate and the average concentrations

of PM10. Figure 1.20 on the other hand illustrates the close negative association

between pollution levels and the instrument, which is rainfall level.

1535◦C and -10◦C represent the 95th percentile and the 5th percentile of the daily maximum
and minimum temperature distributions respectively.
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Notes: This figure represents the average annual PM10 concentrations and annual infant
mortality rate, averaged across all counties for each year. The variables have been detrended in
order to eliminate the time trend.

Figure 1.19: Level of Precipitation and Infant Mortality Rate

Notes: This figure represents the average annual PM10 concentrations and the average level of
precipitation, averaged across all counties for each year. This shows the close association
between the endogenous regressor and the instrument used. The variables have been
detrended in order to eliminate the time trend.

Figure 1.20: Level of Precipitation and PM10
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1.7.2 Empirical Methodology:

My objective is to estimate the effect of PM10 pollution (PMcy) on the number of

deaths per 100,000 live births (Mortcy), in a county and year. Specifically, I would

like to estimate β1 from the following specification:

Equation1 : Mortcy = β0 + β1PMcy + εcy

However, as discussed above, there are reasons to believe that there will be

confounding factors that can potentially bias β1 upwards or downwards. I use

the instrumental variables strategy to tackle this concern, and use rainfall levels

as an instrument for PM10. As has been established in this paper, rainfall has

a negative and significant effect on particulate matter, as it provides the main

atmospheric sink for suspended particles. Since, extreme weather events can

potentially have a direct effect on infant mortality 16, I explicitly control for these

in my preferred specification described below:

Mortcy =β0 + β1PMcy + β2Wcy + β3Populationcy [2nd Stage]

+β4Per Capita Incomecy + λyZc + φyr + ηc + εcy (3)

where c represents a county in climate region r and year y. Mort is the total

number of infant deaths in county c and year y per 100,000 live births; PM rep-

resents the average PM10 concentrations in county c and year y;W includes the

four extreme weather events, namely, the average number of Droughts, Floods,

Heat Waves and Cold Waves in county c and year y, which can have a direct effect

on infant mortality rate Mort. I also include Population and Per Capita Income for

each county and year in order to control for economic and demographic charac-

teristics that may affect infant mortality. Z represents time-invariant covariates
16Deschenes and Greenstone (2011) show that extreme temperatures can have an effect on

mortality rates.
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(latitude and longitude varying at the county level) which has been interacted

with year fixed effects; φ represents climate region-by-year fixed effects, η rep-

resents county fixed effects and ε is an idiosyncratic error term. PM being an

endogenous regressor has been instrumented by Prcp which is the average level

of rainfall in county c and year y, using two stage least squares. The first stage

relationship has been estimated as follows:

PMcy =α0 + α1Prcpcy + α2Wcy + α3Populationcy [1st Stage]

+α4Per Capita Incomecy + λyZc + φyr + ηc + µcy (4)

Next, I summarize the results.

1.7.3 Results

Table 1.14 illustrates the results from the 2SLS estimation of Equation (3). Ex-

treme weather events, county and year fixed effects have been controlled in all

the specifications. All the other controls, as describes above, have been added

sequentially moving from Column (1) to Column (3). In Column (4) I have tried

an alternative measure of Droughts, Heat Waves, and Cold Waves 17. I have de-

fined them using deviations from the climate normal 18 Taking an average of all

four specification, I find that a 1 µg/m3 decrease in PM10 will lead to 27 fewer in-

fant deaths. The Cragg-Donald Wald F-statistic is sufficiently large to reject the

weak IV test, meaning that the instrument is not weak. Table 1.15 illustrates the

first stage results from estimating Equation (4) and we find that precipitation

17I have not tried an alternative definition of Floods since I feel that floods might happen if
we have heavy rainfall, even if its expected. Whereas, for Droughts, Heat Waves or Cold Waves,
these events are often described as “abnormally” high/low temperatures, or “abnormally” low
rainfall.

1830-year moving average of maximum, minimum temperature and rainfall.
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always has a highly significant and negative effect on average PM10 concentra-

tions. A 1-mm decrease in total precipitation leads to an increase of 0.22 µg/m3

of PM10 concentrations.

Table 1.14: Instrumental Variables Estimates- Effect of PM10 on Infant Mor-
tality

VARIABLES (1) (2) (3) (4)

PM 10 25.7024* 25.8219* 28.2283* 27.1392*
(14.7490) (14.7027) (16.5082) (16.0963)

Extreme Prec and Temp Events Y Y Y Y
Per Capita Income Y Y Y Y
Population N Y Y Y
County Lat/Long-Year Fixed Effects N N Y Y
Alternative Measure of Extreme Events N N N Y

Cragg-Donald Wald F Statistic 28.85 29.06 23.87 24.84
Observations 11,104 11,104 11,104 11,104

Notes: Regressions include County and Year fixed effects. Standard errors are estimated using
the Eicker-White formula to correct for heteroskedasticity. Extreme precipitation events (i.e.
droughts and floods) and extreme temperature events (i.e. heat waves and cold waves) have
been controlled for. ***, ** and * represent statistical significance at the 1%, 5% and 10% level
respectively.

1.8 Conclusion

In this paper, I estimate the causal effect of the level of precipitation as well as

the precipitation frequency on daily maximum concentrations of PM10 and PM2.5,

which is the most harmful air pollutant in terms of health effects. Firstly, I find

that a 1 mm decrease in rainfall level will lead to an increase of 0.23 µg/m3 in-

crease in PM10 and an increase of 0.08 µg/m3 of PM2.5. Comparing these es-

timates with the causal effect of the Clean Air Act Non-Attainment Status in
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Table 1.15: First Stage Estimates- Effect of Precipitation on PM10

VARIABLES (1) (2) (3) (4)

Total Precipitation -0.2245*** -0.2253*** -0.2050*** -0.2094***
(0.0403) (0.0404) (0.0407) (0.0406)

Extreme Prec and Temp Events Y Y Y Y
Per Capita Income Y Y Y Y
Population N Y Y Y
County Lat/Long-Year Fixed Effects N N Y Y
Alternative Measure of Extreme Events N N N Y

Observations 11,104 11,104 11,104 11,104

Notes: Regressions include County and Year fixed effects. Standard errors are estimated using
the Eicker-White formula to correct for heteroskedasticity. Extreme precipitation events (i.e.
droughts and floods) and extreme temperature events (i.e. heat waves and cold waves) have
been controlled for. ***, ** and * represent statistical significance at the 1%, 5% and 10% level
respectively.

Column (4) of Table 1.5, I find that a 1-mm decrease in daily precipitation can

potentially offset over 30% of the benefits of the landmark regulation, through

higher PM10 levels in ambient air. The effect is almost 38% of the benefits of

the Clean Air Act, when we look at the estimates for PM2.5 from Table 1.6. On

the other hand, if precipitation frequency decreases by a day, then PM10 will in-

crease by 1.04 µg/m3 whereas PM2.5 will increase by 0.39 µg/m3. Using informa-

tion on the county non-attainment status of the National Ambient Air Quality

Standards for particulate matter, I also find significantly different effects in at-

tainment vs non-attainment counties. Non-attainment counties, having higher

stationary and non-stationary sources of pollution and higher levels of pollution

precursors have larger impacts of both the level and the frequency of precipita-

tion on ambient particulate matter concentrations. I also find substantial spatial

heterogeneity of my main estimates. Finally, using these causal estimates, I an-

alyze the effect of PM10 on infant mortality and find that a 1 µg/m3 decrease in
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PM10 would imply approximately 27 fewer infant deaths, per 100,000 live births

in the United States. According to latest data from the Centers for Disease Con-

trol and Prevention, we have around 580 infant deaths per 100,000 live births

in United States. Hence, my estimates suggest that a 1 µg/m3 decrease in PM10

would signify more than a 4.6% reduction in the number of infant deaths per

100,000 live births.

This paper contributes to the literature on the linkages between air pollution

and climate change in the following ways. Firstly, by consolidating a large and

detailed daily dataset at the pollution monitor level, I provide the first causal es-

timates of the effect of precipitation as well as precipitation frequency on PM10

and PM2.5. Secondly, by estimating this causal effect of precipitation on partic-

ulate matter, I have taken a step towards calculating the social costs of climate

change, in terms of higher air pollution. I have illustrated that in the presence of

changing rainfall patterns, pollution levels can be exacerbated, hence implying

larger external costs of pollution emissions. Thus, such estimates are needed to

guide more informed policy making and reaching the socially desirable level of

emissions. Finally, I have also attempted to illustrate the econometric or techni-

cal gains from this exogenous causal effect of precipitation on particulate mat-

ter. To do so, I have used precipitation in an instrumental variables approach to

study the effect of particulate matter on infant health. I propose that this exoge-

nous link between precipitation and particulate air pollution can be exploited

to study various other important economic questions because the availability

of high frequency data having spatial and temporal heterogeneity provides an

ideal platform to get reliable estimates. A potential direction for further research

would be to design a methodology that could incorporate these estimates into

designing the air pollution thresholds. Also, we might look into various mech-
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anisms and adjustments made by economic agents to adapt to climate change.

Lastly, with this effect of climate change on air pollution understood, we might

want to analyze whether and how firms, industries and other pollution emitters

internalize this linkage in deciding how much to produce.
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CHAPTER 2

ADAPTATION AND THE CLIMATE PENALTY ON OZONE

2.1 Introduction

According to the Fifth Assessment Report of the Intergovernmental Panel on

Climate Change (IPCC, 2013), the warming of the climate system is unequivo-

cal, and global temperatures are likely to rise from 1.5 to 4 degrees Celsius over

the 21st century, depending on the emissions scenario. While human influence

on the climate system is clear, agents may also adapt to the new environment

as the climate changes. Given enough time, or influenced by government in-

stitutions and policy, individuals and firms may adjust economic production

processes by exploiting existing and new technological opportunities (e.g., Bar-

reca et al., 2015, 2016). Adaptation is indeed a key issue, but the degree and

nature of adaptive responses are still not well understood.

In this paper, we propose a novel approach to estimate adaptation and exam-

ine some of its underlying mechanisms using high-frequency data in the context

of the impact of climate change on ground-level ozone concentration (Jacob and

Winner, 2009). As explained below, ozone is not emitted but rather formed in

the presence of sunlight and warm temperatures. Our approach to estimate

adaptation bridges two strands of the climate-economy literature. In the same

estimating equation, we exploit meteorological variation to identify the impact

of weather shocks on surface ozone levels (e.g. Deschenes and Greenstone, 2007;

Schlenker and Roberts, 2009), and climatological variation to identify the causal

effect of longer-run observed climatic changes (e.g. Mendelsohn, Nordhaus,

and Shaw, 1994; Schlenker, Hanemann, and Fisher, 2005). We then compare
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the short- and long-run effects to provide a measure of adaptive responses by

economic agents (Dell, Jones, and Olken, 2009, 2012, 2014; Burke and Emerick,

2016).

A key element of our approach is the decomposition of meteorological vari-

ables into two components: long-run trends and shocks, the latter defined as

deviations from those trends. Taking advantage of high-frequency data, we de-

compose daily maximum temperature into a monthly moving average incor-

porating information from the past three decades, and a deviation from that

lagged 30-year average often referred to as climate normal 1 . This decompo-

sition is meant to have economic content. Agents can only respond to climatic

variables they observe. The 30-year moving average is purposely lagged to cap-

ture all the information available to individuals and firms up to the year prior

to the measurement of ozone levels, our outcome of interest. In contrast, agents

cannot respond to weather shocks by definition. Our measure of adaptation is

the difference between responses to weather shocks and responses to changes

in lagged 30-year moving averages 2. If policymaking can influence adaptive

behavior, then variables representing governmental policies or regulations can

be interacted with those two components of our decomposition to uncover mea-

sures of regulation-induced adaptation and residual adaptation.

For an example of regulation-induced adaptation, consider a county where

emissions of ozone precursors are under control in the baseline. If a rise in tem-

perature leads to higher ozone formation and the violation of EPAs ozone stan-

1Climate normals are three-decade averages of climatological variables including tempera-
ture and precipitation

2Although we present our methodology focusing on adaptation, we are agnostic about the
true effects. They can be adaptation or intensification effects (Dell, Jones, and Olken, 2014).
If economic outcomes are more affected by climatic changes than by weather shocks, agents
may be not only abstaining from adjusting to climate change, but also slacking on any previous
efforts. Perhaps they see those adjustments as too costly for what comes next.
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dards, that county may be forced to install scrubbers to reduce ozone concentra-

tion. Since that technology would have to be used because of higher tempera-

tures rather than higher emissions, we interpret the decline in ozone levels as an

adaptation to climate change induced by clean air regulations. For an example

of residual adaptation, consider a county where ozone levels are below the EPAs

standards in the baseline, and most of the residents have installed rooftop solar

panels. Because those panels would generate electricity more intensively when

ozone formation would be the highest, that county would reduce emissions of

ozone precursors from coal-fired power plants at that critical time. The resulting

decline in ozone concentration would be achieved regardless of ozone regula-

tions. It would be a consequence of exploiting a technology that coincidently

would be more effective at higher temperatures. That would be an unintended

adaptation to climate change. Hence, we call it residual adaptation.

Besides providing the crucial pieces of our measure of adaptation, our de-

composition allows us to understand the impact on air quality of not only one,

but rather two dimensions associated with climate change. The public usually

focuses on changes in average temperature, but extreme weather events are also

expected to become more frequent (IPCC, 2013). The effects of realized weather

shocks should be a good approximation for the effects of those extreme weather

events to occur in future decades. The impact of changes in climate normals

observed to date should represent well the impact of global warming by the

mid-21st century. In fact, variation in these two components, likely present in

high-frequency weather data, would allow one to estimate those two types of ef-

fects. Therefore, when addressing climate change, our approach implicitly takes

into account both changes in temperature levels and changes in the frequency

and intensity of daily temperature extremes.
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We apply our methodology to study the impact of climate change on air

quality. We tackle an issue that is of interest per se: the so-called climate penalty

on ozone. Ground-level or “bad” ozone is not emitted directly into the air

but rather created by chemical reactions between oxides of nitrogen (NOx) and

volatile organic compounds (VOC) in the presence of sunlight and warm tem-

peratures. Hence, meteorological conditions do matter in determining surface

ozone levels, and climate change may increase ozone concentration in the near

future. While the projected impact is not uniform, modeling studies have shown

that climate change has the potential to increase average summertime ozone

concentrations in the contiguous U.S. by as much as 1-5 ppb by 2030, if green-

house gas emissions are not mitigated (EPA 2009; Jacob and Winner, 2009) 3.

This climate penalty on ozone means that climate change might offset some of

the improvements in air quality expected from reductions in emissions of ozone

precursors, and therefore some of the improvements in public health 4. Thus,

stronger emission controls may be needed to meet a given air quality standard.

In fact, when strengthening the standards for ground-level ozone from 75 to 70

ppb recently, the U.S. Environmental Protection Agency (EPA) has recognized

the role climate change may play in driving air pollution in coming decades 5.

In our application, we focus on the effect of daily maximum temperature

on daily maximum ozone concentration since 1980. We choose this outcome

because EPAs ambient ozone standards have been built around it. Likewise,

increases in temperature are expected to be the principal factor in driving any

3These modeling studies are based on coupled global climate and regional air quality mod-
els, and are designed to assess the sensitivity of U.S. air quality to climate change. A wide range
of future climate scenarios and future years has been modeled.

4Graff Zivin and Neidell (2012) provide robust evidence that ozone levels well below federal
air quality standards have a significant impact on labor productivity, for example

5“In addition to being affected by changing emissions, future O3 concentrations will also be affected
by climate change. () If unchecked, climate change has the potential to offset some of the improvements in
O3 air quality () that are expected from reductions in emissions of O3 precursors.” (EPA, 2015, p.65300)
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ozone increases (Jacob and Winner, 2009). Indeed, data on ozone and temper-

ature from our sample, plotted in Figure 2.1, highlights the close relationship

between these two variables.

Figure 2.1: Relationship between Ozone and Contemporaneous Tempera-
ture

We identify the impacts of climate change on ozone concentration by taking

advantage of (i) daily measurements of ambient ozone levels from hundreds

of air quality monitors across the U.S. during 1980-2013; and (ii) the rich spa-

tial and temporal variation with which Clean Air Act regulations were rolled

out. Through a Freedom of Information Act request, we obtained daily air

pollution concentrations for each monitor based on the universe of the state

and national pollution monitoring network. The Clean Air Act Amendments

(CAAA) marked an unprecedented attempt by the federal government to man-

date lower levels of air pollution. If pollution concentrations in a county exceed
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the federally determined ceiling, then EPA designates that county as nonattain-

ment. Heavy emitters in nonattainment counties face far more stringent reg-

ulations than their counterparts in attainment counties. We, therefore, seek to

identify changes in ozone concentrations due to observed changes in tempera-

ture at the times and locations in which the CAAA designations were in effect

vis--vis places that were not facing the constraints associated with being out

of attainment. We use a standard fixed-effects approach, but replace the direct

measurements of temperature with the two components of our decomposition

weather shocks and climatic changes. In our preferred specification, we interact

such components with CAAA nonattainment designations.

We have three main findings. First, a changing climate appears to be affect-

ing ground-level ozone concentrations in two ways. A shock in temperature of

one degree Celsius increases ozone levels by 1.7 ppb on average. A change of

similar magnitude in the 30-year moving average increases ozone concentration

by 1.2 ppb. Therefore, by omitting climate normals, the standard fixed-effect

approach would underestimate the impact of climate change on ambient ozone

concentrations by over 40 percent. The total impact is rather 2.9 ppb, within the

range of the climate penalty on ozone found by modeling studies. Furthermore,

ozone levels seem to be more sensitive to temperature shocks than to changes in

lagged climate normals, which are functions of the weather realized in the past

30 years. Agents may find it difficult to adjust to shocks, but could potentially

respond to information available years in advance.

Second, we find evidence of adaptive behavior. For a change of one degree

Celsius in temperature, our measure of adaptation in terms of ozone concen-

tration is 0.45 ppb. When we compare our estimate of adaptation to the direct
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effect of the CAAA nonattainment designations, it is equivalent to over one-

third of that effect. Also, if adaptive responses are not taken into account in

the measurement of adaptation, then the climate penalty on ozone would be

overestimated by approximately 17 percent.

Third, adaptation in counties with levels of ozone above the EPAs stan-

dards is estimated to be over 66 percent larger than adaptation in counties in

attainment, and is equivalent to about 45 percent of the direct effect of the

CAAA nonattainment designations. Counties out of attainment must reduce

ozone concentration by making costly adjustments in their production pro-

cesses (Greenstone, List, and Syverson, 2012). Thus, part of our measure of

adaptation for these counties is regulation-induced adaptation. Nevertheless,

counties complying with EPAs ozone standards might still adapt by exploiting

technological advances such as photovoltaic panels, as explained before, or by

unconscious behavioral responses. Therefore, part of our measure of adaptation

is residual adaptation. For nonattainment counties, regulation-induced adapta-

tion represents 40 percent of the total adaptation. For completeness, we have

also found (i) a higher degree of adaptation in the 1980s relative to the follow-

ing decades, (ii) a similar magnitude for the estimates of adaptation in the 1990s

and 2000s, and (iii) a remarkable heterogeneity across the nine NOAA climate

regions in the U.S.

This paper proceeds as follows: Section 2.2 explains the conceptual frame-

work that we use to decompose meteorological variables into long-term trends

and contemporaneous weather shocks and describes our measures of adapta-

tion. Section 2.3 provides a detailed background on ozone formation, its re-

lationship with the weather, and the history of ozone regulations. Section 2.4
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describes our data, Section 2.5 presents our empirical methodology, and Section

2.6 reports our main findings. Section 2.7 illustrates the robustness of our es-

timates, and Section 2.8 exhibits the spatial and temporal heterogeneity of our

results. Lastly, Section 2.9 concludes.

2.2 Conceptual Framework

The Fifth Assessment Report of the Intergovernmental Panel on Climate Change

alerts that by late 21st century it is virtually certain that (i) average temperature

will rise, and (ii) heat waves will become more frequent (IPCC, 2013). Implicit

in this assertion is the dual manner climate change is supposed to affect soci-

ety. It should alter not only averages but also the dispersion of climatological

variables.

We propose a unifying approach to identifying the impact of both compo-

nents of climate change and ultimately measuring adaptation. In empirical

work aiming at identifying the effects of climate change, researchers have used

either long- or short-term variation in meteorological conditions. These differ-

ent research designs, however, usually trade off key assumptions. As pointed

out by Hsiang (2016), only in certain conditions weather variation exactly iden-

tifies the effects of climate. Our methodology bridges those two strands of the

climate-economy literature. In the end, because estimates associated with differ-

ent time-horizon variables have distinct informational content, the comparison

between them allows us to uncover a measure of adaptation to climate change.

Decomposition of Meteorological Variables: Long-Run Trends vs. Weather Shocks
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In order to estimate the impact of climate change on ozone concentration,

and ultimately uncover our measure of adaptation, we exploit both climatolog-

ical and meteorological variation. The same estimating equation uses clima-

tological variation to identify the causal effect of longer-run observed climatic

changes (e.g. Mendelsohn, Nordhaus, and Shaw, 1994; Schlenker, Hanemann,

and Fisher, 2005), and meteorological variation to identify the impact of weather

shocks (e.g. Deschenes and Greenstone, 2007; Schlenker and Roberts, 2009). Af-

terward, the comparison between trend and shock effects should provide a mea-

sure of adaptive responses by economic agents (Dell, Jones, and Olken, 2009,

2012, 2014; Burke and Emerick, 2016).

To take advantage of variation in both components, we decompose mete-

orological variables into long-run trends and weather shocks. A similar idea

has been used in the literature of intergenerational mobility following Solons

seminal work. Observed income is noisy: it includes a permanent and a tran-

sitory component. To establish a relationship between the permanent income

of sons and fathers, Solon (1992) suggests averaging fathers income for a num-

ber of years to reduce the errors-in-variables bias. Importantly, the averaging is

not needed for sons income, the dependent variable. We proceed in a similar

way: we decompose only meteorological variables, not ozone levels, our out-

come variable. Illustrating the decomposition with temperature (Temp), we can

express it as

Temp = TempC + TempW (1)

where TempC represents climate patterns and TempW(= Temp − TempC) de-

viations from those long-run patterns. The decomposition highlights the two
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sources of variation that have been used in the climate-economy literature 6.

A Measure of Adaptation to Climate Change

TempC and TempW in the decomposition above are associated with differ-

ent sets of information. On one hand, TempC includes climate patterns that

economic agents can only gather by experiencing weather realizations over a

long period of time. It can be thought of as climate normals. On the other hand,

TempW represents weather shocks, which by definition are revealed to economic

agents only at the time of the weather realization. Now, one can only adjust to

something they know. Therefore, adaptation can be measured as the difference

between responses to changes in TempC relative to effects of weather shocks

TempW 7.

Important contributions to the literature have already pointed out that the

comparison between the “short-” and “long-run” effects provides evidence of

adaptive responses by economic agents (Dell, Jones, and Olken, 2009, 2012,

2014; Burke and Emerick, 2016). Unlike previous work, however, we are able

to estimate and test the equality of those effects within the same econometric

model using insights from Solons (1992) seminal work on intergenerational mo-

bility.

6In related work, Kala (2016) studies adaptation under different learning models. Hence,
variance of climatological variables is an important element of her framework. In our approach,
dispersion shows up only implicitly in the sense that long-run trends take into account the
frequency and intensity of daily temperature extremes.

7In related work, Shrader (2016) introduces a method for identifying adaptation based on
changes in expectations about a stochastic environmental process, and applies his method to
estimate total adaptation by North Pacific albacore harvesters to ENSO-driven climate variation.
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2.3 Ambient Ozone, Weather and Environmental Regulations

Ambient ozone, an important component of smog, is a highly reactive and un-

stable gas capable of damaging living cells, such as those present in the linings

of the human lungs. It has a very characteristic pungent odor. Humans vary

in their ability to smell ozone, but some can smell it at levels as low as 5 ppb.

Ozone is a powerful oxidant its actions can be compared to household bleach,

which can kill living cells such as germs or human skin cells upon contact. Expo-

sure has been associated with several adverse health effects, such as aggravation

of asthma and decreased lung function.

Most of the ozone in the air results from complex chemical reactions between

pollutants directly emitted from vehicles, factories and other industrial sources,

fossil fuel combustion, consumer products, evaporation of paints, and many

other sources. These reactions involve volatile organic compounds (VOCs) and

oxides of nitrogen (NOx) in the presence of sunlight. As a photochemical pollu-

tant, ozone is formed only during daylight hours under appropriate conditions

but is destroyed throughout the day and night. It is formed in greater quanti-

ties on hot, sunny, calm days. Therefore, ozone concentrations vary depending

upon both the time of day and the location.

The ozone that the EPA regulates as an air pollutant is mainly produced

close to the ground (tropospheric ozone). A layer of ozone high up in the atmo-

sphere, called stratospheric ozone, reduces the amount of ultraviolet light en-

tering the earths atmosphere. Without the protection of the stratospheric ozone

layer, plant and animal life would be seriously harmed. Here, ozone refers to

tropospheric ozone.
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This section presents the processes by which ozone is formed and depleted,

the role of weather, and spatial and temporal variations in ozone concentrations.

In addition, it discusses the National Ambient Air Quality Standards (NAAQS)

for ground-level ozone.

2.3.1 Formation and Depletion of Tropospheric Ozone

Ozone is formed in the troposphere when an atom of oxygen (O) associates

with a molecule of oxygen (O2) in the presence of a third body. Key reactions

happen in the NOx cycle and the VOC oxidation cycle (see more details in the

appendix).

In the NOx cycle, the ultraviolet portion of solar radiation triggers the pho-

tolysis of nitrogen dioxide (NO2). As a result, NO2 is broken into an atom of

oxygen and nitrogen monoxide (NO). The oxygen atom reacts with O2 to form

ozone again, but NO reacts with ozone to destroy it. Therefore, the NOx cycle

maintains a photostationary equilibrium. Consequently, for ozone to accumu-

late, an additional pathway is needed to convert NO to NO2; one that will not

destroy ozone. The photochemical oxidation of VOCs, such as hydrocarbons

and aldehydes, provides that pathway.

In the VOC oxidation cycle, hydroxyl radical initially attacks a parent hydro-

carbon. The hydroxyl radical is ever-present in the ambient air and is formed

by photolysis of ozone in the presence of water vapor, nitrous acid, hydrogen

peroxide, or other sources. After the attack, hydrogen or other organic frag-

ments emerge and react with oxygen to generate the peroxy radical. Here is

the most important part of this cycle: through a fast radical transfer reaction
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with NO, peroxy radical converts NO to NO2. Thus, the NO that would be

used to destroy ozone is transformed in NO2. Consequently, ozone formation

might increase, ozone depletion might decrease, and ozone accumulation may

occur. These reactions should explain the typical pattern of ozone concentra-

tions found in the urban atmosphere.

Although VOCs are necessary to generate high concentrations of ozone,

NOx emissions can be the determining factor in the peak ozone concentrations

observed in many places. The relative balance of VOCs and NOx at a particu-

lar location determines whether the NOx behaves as a net ozone generator or a

net ozone inhibitor. When the VOC/NOx ratio in the ambient air is low (NOx

is plentiful relative to VOC), NOx tends to inhibit ozone accumulation. These

locations are called ”VOC-limited”. When the VOC/NOx ratio is high (VOC

is plentiful relative to NOx), NOx tends to generate ozone. Those are ”NOx-

limited” locations. Importantly, the VOC/NOx ratio can differ substantially by

location and time-of-day within a geographic area.

2.3.2 Role of Weather in Ozone Air Quality

The local rate of ozone formation depends on atmospheric conditions such as

the availability of solar ultraviolet radiation capable of initiating photolysis re-

actions, air temperatures and the concentrations of chemical precursors.

Our basic understanding of meteorological processes associated with sum-

mertime ozone episodes has not changed over recent years. Major episodes

of high ozone concentrations in the eastern U.S. and in Europe are associated

with slow-moving, high-pressure systems. High-pressure systems are associ-
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ated with the sinking of air, resulting in warm, generally cloudless skies, with

light winds. The sinking of air results in the development of stable conditions

near the surface that inhibit or reduce the vertical mixing of ozone precursors.

The combination of inhibited vertical mixing and light winds minimizes the

dispersal of pollutants emitted in urban areas, allowing their concentrations to

build up. Photochemical activity involving these precursors is enhanced be-

cause of higher temperatures and the availability of sunlight.

Modeling studies indeed point to temperature as the most important

weather variable affecting ozone concentrations. Dawson, Adams, and Pandisa

(2007), for instance, examine how concentrations of ozone respond to changes in

climate over the eastern U.S. The sensitivities of average ozone concentrations

to temperature, wind speed, absolute humidity, mixing height, cloud liquid wa-

ter content and optical depth, cloudy area, precipitation rate, and precipitating

area extent were investigated individually. The meteorological factor that had

the largest impact on ozone metrics was temperature. Absolute humidity had

a smaller but appreciable effect. Responses to changes in wind speed, mixing

height, cloud liquid water content, and optical depth were rather small.

An association between ambient ozone concentrations and temperature has

also been demonstrated from measurements in outdoor smog chambers and

from measurements in ambient air. Some possible explanations for such a cor-

relation include (EPA, 2006):

(1) increased photolysis rates under meteorological conditions associated with

higher temperatures;

(2) increased H2O concentrations with higher temperatures as this will lead to

greater OH (hydroxyl; hydroxy) production;
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(3) increase of anthropogenic hydrocarbon (e.g., evaporative losses) emissions

or NOx emissions with temperature or both;

(4) the increase of natural hydrocarbon emissions (e.g., isoprene) with tempera-

ture;

(5) relationships between high temperatures and stagnant circulation patterns;

(6) advection of warm air enriched with O3.

It should be noted, however, that a high correlation of ozone with temper-

ature does not necessarily imply a causal relation. Extreme episodes of high

temperatures (a heat wave) are often multiday events, high ozone episodes are

also multiday events, concentrations build, temperatures rise, but both are be-

ing influenced by larger-scale regional or synoptic meteorological conditions.

We will be investigating this relationship using longitudinal variation from U.S.

counties since the 1980s.

2.3.3 Spatial and Temporal Variations of Ozone Concentrations

Ambient ozone concentrations can vary from non-detectable near combustion

sources, where nitric oxide (NO) is emitted into the air, to several hundreds

of ppb of air in areas downwind of VOC and NOx emissions. In continental

areas far removed from direct anthropogenic effects, ozone concentrations are

generally 20-40 ppb. In rural areas downwind of urban centers, ozone concen-

trations are higher, typically 50-80 ppb, but occasionally 100-200 ppb. In urban

and suburban areas, ozone concentrations can be high (well over 100 ppb), but

peak for at most a few hours before deposition and reaction with NO emissions

cause ozone concentrations to decline (Chameides et al. 1992, Smith et al. 1997,
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Seinfeld and Pandis 1998, Finlayson-Pitts and Pitts 2000). Due to the lack of

ozone-destroying NO, ozone in rural areas tends to persist at night, rather than

declining to the low concentrations (<30 ppb) typical in urban areas and areas

downwind of major urban areas that have plenty of fresh NO emissions.

With respect to temporal variation, ozone concentrations tend to vary in

phase with human activity patterns, magnifying the resulting adverse health

and welfare effects. Ambient ozone concentrations increase during the day

when formation rates exceed destruction rates and decline at night when forma-

tion processes are inactive. This diurnal variation in ozone depends on location,

with the peaks being very high for relatively brief periods of time (an hour or

two duration) in urban areas, and being low with relatively little diurnal vari-

ation in remote regions. In urban areas, peak ozone concentrations typically

occur in the early afternoon, shortly after solar noon when the suns rays are

most intense, but persist into the later afternoon. Thus, the peak urban ozone

period of the day can correspond with the time of day when people, especially

children, tend to be active outdoors.

Ozone concentrations also vary seasonally. Ozone concentrations tend to be

highest during the summer and early fall months. In areas where the coastal

marine layer (cool, moist air) is prevalent during summer, the peak ozone sea-

son tends to be in the early fall. The EPA has established ozone seasons for

the required monitoring of ambient ozone concentrations for different locations

within the United States and U.S. territories (CFR, 2000). Table 2.1 shows the

ozone seasons during which continuous, hourly averaged ozone concentrations

must be monitored. Note that ozone monitoring is optional outside of the ozone

season and is monitored in many locations throughout the year.
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Table 2.1: Ozone Monitoring Seasons by State

2.3.4 National Ambient Air Quality Standards (NAAQS) for

Ambient Ozone

The Clean Air Act requires EPA to set national ambient air quality standards

(NAAQS) for ozone and other pollutants considered harmful to public health

and the environment (the other pollutants are particulate matter, nitrogen ox-

ides, carbon monoxide, sulfur dioxide and lead). The law also requires EPA to

periodically review the standards to ensure that they provide adequate health
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and environmental protection, and to update those standards as necessary.

As shown in Table 2.2, the first standard was put in place in 1971, following

the Clean Air Act Amendments of 1970. It was not focusing on ozone, however,

but rather all photochemical oxidants. The first NAAQS for ozone was estab-

lished in 1979 when 120ppb was defined as the maximum 1-hour concentration

that could not be violated more than once a year for a county to be designed as

in attainment.

Table 2.2: History of Ozone NAAQS

In 1997, the standards were revised to be 80ppb, but with a different form for

the threshold: annual fourth-highest daily maximum concentration averaged

over 3 years. EPA justified the new form as equivalent to the empirical 1-hour

maximum to not be exceeded more than once a year. “The 1-expected-exceedance

form essentially requires the fourth-highest air quality value in 3 years, based on ad-

justments for missing data, to be less than or equal to the level of the standard for the

standard to be met at an air quality monitoring site. (U.S. EPA, 1997, p.38868) Another
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reason was the inherent lack of year-to-year stability in the measure of air quality on

which the 1-expected-exceedance form is based. ... [A] more robust, concentration-based

form would minimize such instability and provide some insulation from the impacts of

extreme meteorological events that are conducive to O3 formation. Such instability can

have the effect of reducing public health protection by disrupting ongoing implemen-

tation plans and associated control programs.” (U.S. EPA, 1997, p.38868) The new

NAAQS was challenged in courts, and not implemented until 2004.

The NAAQS for ozone were revised again in 2008 and 2015, and the current

8-hour threshold is 70ppb. In the last revision, EPA raised concerns about how

climate change might affect air quality. “In addition to being affected by changing

emissions, future O3 concentrations may also be affected by climate change. Modeling

studies in the EPAs Interim Assessment (U.S. EPA, 2009a) as well as a recent assess-

ment of potential climate change impacts (Fann et al., 2015) project that climate change

may lead to future increases in summer O3 concentrations across the contiguous U.S.

While the projected impact is not uniform, climate change has the potential to increase

average summertime O3 concentrations by as much as 1-5 ppb by 2030, if greenhouse

gas emissions are not mitigated. Increases in temperature are expected to be the prin-

cipal factor in driving any O3 increases, although increases in stagnation frequency

may also contribute (Jacob and Winner, 2009). If unchecked, climate change has the

potential to offset some of the improvements in O3 air quality, and therefore some of the

improvements in public health, that are expected from reductions in emissions of O3

precursors.” (U.S. EPA, 2015, p. 65300) This suggests that the present study may

contribute to such an important policy debate.

Regarding the patterns of ozone concentration over time, Figures 2.2 and

2.3 depict how much maximum and fourth-highest ozone levels have declined
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with the establishment of the NAAQS. As we can see in Figure 2.2, maximum

concentrations decreased sharply in the late 1980s for the counties designated

to be out of attainment. The same is not true for NAAQS 1997 and 2008. As

Figure 2.3 shows, counties in non-attainment seem to be adjusting slowly to the

new standards.

Figure 2.2: Evolution of Maximum Ozone Concentration

It is important to mention that the observed delay in complying with the

NAAQS is expected. As reported in Table 2.3, for example, EPA allows heavy

emitters up to 20 years to adjust their production processes. “Each area designated

nonattainment for ozone shall be classified at the time of such designation as a Marginal

Area, a Moderate Area, a Serious Area, a Severe Area, or an Extreme Area based on the

design value for the area. For each area , the primary standard attainment date for

ozone shall be as expeditiously as practicable but not later than the date provided.”

(U.S. Code, 2011, p.6325).
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Figure 2.3: Evolution of Fourth Highest Ozone Concentration

Table 2.3: Period to Comply with NAAQS 1979

2.4 Data Sources

To examine the impact of climate change on surface ozone concentrations, and

ultimately estimate our measure of adaptation, we utilize information from

three major sources, as described below.

Ozone Data: For ground-level ozone concentrations, we use daily readings
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from the nationwide network of the EPAs air quality monitoring stations. The

data was made available by a Freedom of Information Act (FOIA) request. In

our preferred specification, we use an unbalanced panel of ozone monitors. We

make only two restrictions to construct our final sample. First, we include only

monitors with valid daily information. According to EPA, daily measurements

are valid for regulation purposes only if (i) 8-hour averages are available for

at least 75 percent of the possible hours of the day, or (ii) daily maximum 8-

hour average concentration is higher than the standard. Second, as a minimum

data completeness requirement, for each ozone monitor we include only years

for which least 75 percent of the days in the ozone monitoring season (April-

September) are valid; years having concentrations above the standard are in-

cluded even if they have incomplete data.

Figure 2.4 shows the geographical location of our final sample of ozone mon-

itors and highlights the spatial heterogeneity of our sample. Figure 2.5 depicts

the evolution of our sample of monitors over the three decades in our data, and

illustrates the expansion of the network over time.

Table 2.4 provides some summary statistics regarding the increase in the

number of monitors, and the decrease in ozone concentration decade by decade.

We have valid ozone measurements for a total of 5,037,851 monitor-days. The

number of monitors increased from 672 in the 1980s to 1026 in the 2000s, indicat-

ing a growth of 17.6 percent of the ozone monitoring network per decade. The

number of monitored counties in our sample also grew from 390 in the 1980s

to 601 in the 2000s. Table 2.18, in the Appendix, describes the sample of ozone

monitors used in our analysis, for every year between 1980 and 2013.

Data on Non-Attainment Designations: We use publicly available data on the
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Figure 2.4: Ozone Monitors in Sample

Table 2.4: Summary Statistics for Monitoring Network by Decades

Clean Air Act Non-Attainment Designations to generate our indicator of non-

attainment status for each county in our sample. This data is available at the

EPA website from the Green Book of Non-Attainment Areas for Criteria Pollu-

tants. In our preferred specification, we use the non-attainment status lagged

by three years because EPA gives heavy-emitters at least three years to comply

with ozone NAAQS (EPA, 2004, p.23954). This is a binary variable that takes

the value of one for counties not complying with the NAAQS for ground-level
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Figure 2.5: Ozone Monitors by Decade of First Appearance

ozone.

Weather Data: For meteorological data, we use daily measurements of max-

imum and minimum temperature as well as total precipitation from the Na-

tional Climatic Data Centers Cooperative Station Data (NOAA, 2008). This

dataset provides detailed weather measurements at over 20,000 weather sta-

tions across the country. We have acquired information for the period 1950-

2013. These weather stations are typically not located adjacent to the ozone

monitors. Hence, we develop an algorithm to obtain a weather observation at

each ozone monitor in our sample. Using the information on the geographical

location of pollution monitors and weather stations, we calculate the distance

between each pair of pollution monitor and weather station using the Haver-

sine formula. Then, for every pollution monitor, we exclude weather stations

that lie beyond a 30 km radius of that monitor. Moreover, for every pollution

monitor, we use weather information from only the closest two weather sta-

tions within the 30 km radius. Once we apply this algorithm, we exclude ozone
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monitors that do not have any weather stations within 30km 8. Figure 2.11, in

Appendix A, illustrates the geographical location of the weather stations that

we have used from 1950-2013, and Figure 2.12 illustrates the proximity of our

final sample of ozone monitors to these matched weather stations.

Our methodology takes advantage of two components of high-frequency

meteorological data: climatological variation and weather shocks. For climato-

logical variation, we construct long-term trends of daily maximum temperature

and precipitation. Precisely, we first construct monthly means of daily weather

measurements and then construct 30-year moving averages of monthly means

to generate our climate variables. We then construct weather shocks as devi-

ations of meteorological variables from their 30-year moving averages. More

details will be discussed in the following section.

Table 2.5 reports the summary statistics for our main meteorological vari-

ables, for each decade. Table 2.19, in the Appendix, presents this information at

a more disaggregated level, for each year in our sample from 1980-2013.

Table 2.5: Summary Statistics for Meteorological Variables

Figure 2.6 illustrates the variation we have in both components of the me-

8For robustness purposes, we have also used 80 km, 100 km and 150 km radii around ozone
monitors.
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teorological variables, namely, the weather shocks and the long-term climate

trends. Figure 2.7 depicts this variation for each of the nine different NOAA

climate regions.

Figure 2.6: Meteorological Variables- Trends and Shocks

Consolidating information from the above three sources, we reach our final

unbalanced sample of ozone monitors over the period 1980-2013. In our appli-

cation, we focus on the effect of daily maximum temperature on daily maximum

ozone concentration since 1980. We choose this outcome because EPA’s ambient

ozone standards have been built around it. Likewise, increases in temperature

are expected to be the principal factor in driving any ozone increases (Jacob and

Winner, 2009). Indeed, data on ozone and temperature from our sample, plotted

in Figures 2.1 and 2.8, highlights the close relationship between these two vari-

ables. Interestingly, we see that not only does contemporaneous temperature

81



Figure 2.7: Meteorological Variables- Trends and Shocks by Region

have an effect on ground level ozone, but the long-term temperature trend also

seems to be affecting it very closely. Figures 2.9 and 2.10 illustrate the spatial

heterogeneity of this close relationship between ground level ozone and these

two different components of the meteorological variables for the nine NOAA

climate regions.

2.5 Empirical Methodology

In this section, we present our methodology to examine the impact of climate

change on ambient ozone concentration. First, we provide an empirical coun-

terpart for the decomposition of meteorological variables described previously.
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Figure 2.8: Relationship between Ozone and Moving Average of Temper-
ature

Second, we introduce and discuss features of our econometric model to estimate

the effects of the two components of weather on ozone levels. Lastly, we use our

novel way to measure adaptation to climate change to estimate behavioral re-

sponses in our application to air pollution.

Decomposition of Meteorological Variables: An Empirical Counterpart

Focusing on temperature (Temp), our primary variable of interest 9, we ex-

press it around ozone monitor i in day d of month m and year y as

Tempidmy = TempC
im,y−1 + TempW

idmy (2)

9As emphasized before, among all meteorological variables, temperature is expected to be
the principal factor driving increases in ozone concentration as the climate changes (Jacob and
Winner, 2009).
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Figure 2.9: Relationship between Ozone and Contemporaneous Tempera-
ture by Regions

TempC represents climate normals and is defined as a 30-year monthly mov-

ing average (MA) of past temperatures. To make this variable part of the in-

formation set held by economic agents at the time that ground-level ozone is

measured, we lag it by one year. For example, the 30-year MA associated with

May 1982 is the average of May temperatures for all years in the period 1952-

1981. Therefore, economic agents have had one year to respond to unexpected

changes in climate normals at the time ozone is measured. We average tem-

perature over 30 years because it is how climatologists usually define climate

normals, and because we wanted individuals and firms to be able to observe

climate patterns for a long period of time, enough to potentially make adjust-

ments 10. We use monthly MAs because it is likely that individuals recall climate

10In the robustness checks, we provide estimates based on alternative 10- or 20-year moving
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Figure 2.10: Relationship between Ozone and Moving Average of Temper-
ature by Regions

patterns by month, not by day of the year. Indeed, meteorologists on TV often

talk about how a month has been the coldest or warmest in the past 10, 30, or 50

years, but not how a particular day of the year has deviated from the trend 11.

TempW represents weather shocks and is defined as the deviation of the daily

temperature from the lagged 30-year monthly MA. By definition, these shocks

are revealed to economic agents only at the time that ozone is being measured.

Thus, in this case, agents may have had only a few hours to adjust, limiting their

ability to respond to such unexpected temperatures 12.

averages.
11As another robustness check, we use daily instead of monthly moving averages. Economic

agents, however, may still associate a day with its corresponding month when making adjust-
ment decisions.

12Because precise weather forecasts are made available only a few hours before its realization,
economic agents may have limited time to adjust prior to the ozone measurement. This might be
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Econometric Model

Given the decomposition of meteorological variables into two sources of

variation, our primary econometric specification to estimate the impact of tem-

perature on ambient ozone is the following:

Ozoneicdmy =α + β
W
T TempW

idmy + β
C
T TempC

im,y−1 + β
W
P PrcpW

idmy + β
C
PPrcpC

im,y−1

+ δCAANAS c,y−3 + λsyZi + ηi + φrsy + εidmy (3)

where i represents an ozone monitor located in county c in NOAA climate re-

gion r, and d stands for the day, m for a month, s for season (Spring or Summer),

and y for the year. As mentioned in the data section, our analysis focuses on the

most common ozone season in the U.S. -April to September - in the period 1980-

2013. The dependent variable Ozone captures daily maximum ambient ozone

concentration. Temp′s and Prcp′s 13 account for the two components of the

decomposition proposed above for both meteorological variables 14. CAANAS

(Clean Air Act Non-Attainment Status) is a binary variable which equals one for

counties not complying with the NAAQS for ground-level ozone counties des-

ignated as “nonattainment” following regulations derived from the Clean Air

Act (CAA) Amendments. This variable is lagged by three years because EPA

true even during Ozone Action Days. An Ozone Action Day is declared when weather conditions
are likely to combine with pollution emissions to form high levels of ozone near the ground that
may cause harmful health effects. Individuals and firms are urged to take action to reduce
emissions of ozone-causing pollutants, but only hours in advance

13We also add precipitation in our econometric analysis. Although less important than tem-
perature, Jacob and Winner (2009) point out that higher water vapor in the future climate may
decrease ground-level ozone concentration.

14In the robustness checks, we also include weather shocks lagged by a few days to evaluate
the extent to which coefficients associated 30-year MAs capture those lagged effects. Because
ozone formed in one day may affect ground-level ozone concentration in the next few days,
weather shocks might have a delayed effect.
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gives heavy-emitters at least three years to comply with ozone NAAQS (EPA,

2004, p.23954). Z represents time-invariant covariates (latitude and longitude

of ozone monitors), which are interacted with season-by-year fixed effects in

our econometric specification, η represents monitor fixed effects, φ region-by-

season-by-year fixed effects, and ε an idiosyncratic term.

As should be clear by now, we exploit plausibly random, monthly variation

in climate normals and daily variation in weather within a season to estimate

the impact of climate change on ambient ozone concentration. Identification of

the effect of weather shocks relies on monitor-level daily variation in the devi-

ation of meteorological variables from lagged climate normals after controlling

non-parametrically for regional shocks to ozone concentration at the season-by-

year level. For instance, let us consider the variation of May 1st, 1982 relative

to the Spring (April-June) of 1982 in the Northeast region. The question we

ask is the following: what happens to ozone concentration in a May 1982 day

when the deviation of temperature from the May 1981 climate normal is one

degree Celsius above the average daily temperature shock in the Northeast in

the Spring (April-June) of 1982? Conditional on business-as-usual ozone pre-

cursor emissions, a higher temperature should lead to more ozone formation

and, consequently, higher ozone concentration.

Identification of the effect of climatic changes on ground-level ozone lev-

els relies on plausibly random, monitor-level monthly variation in lagged 30-

year MAs of meteorological variables after controlling non-parametrically for

regional shocks to ozone concentration at the season-by-year level. As an ex-

ample, let us consider variation of lagged 30-year MA temperature in May 1982

relative to the Spring (April-June) of 1982 in the Northeast region. Again, the
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question we ask is the following: what happens to ozone concentration in a May

1982 day when the normal temperature around the monitor in May 1981 is one

degree Celsius warmer than the average of all 30-year monthly MAs of temper-

ature in the Northeast in the Spring (April-June) of 1981? If economic agents

pursued full adaptive behavior, the unexpected increase in normal temperature

would lead to reductions in ozone precursor emissions to avoid an increase in

ozone concentration of identical magnitude of the weather shock effect in the

same month of the following year. In other words, agents would respond to

“permanent” changes in temperature by adjusting their behavior or production

processes to offset that increase in normal temperature. Unlike weather shocks,

which influence ozone formation by triggering chemical reactions conditional

on a level of ozone precursor emissions, changes in the 30-year MA affect the

level of emissions.

Our preferred econometric specification allows the effects of each compo-

nent of our meteorological variables to differ according to the “nonattainment”

status of the county where each monitor is located. The estimating equation

becomes

Ozoneicdmy =α + γ
W
T TempW

idmy + γ
C
T TempC

im,y−1

+ δW
T (CAANAS c,y−3 ∗ TempW

idmy) + δ
C
T (CAANAS c,y−3 ∗ TempC

im,y−1)

+ γW
P PrcpW

idmy + γ
C
P PrcpC

im,y−1 + δ
W
P (CAANAS c,y−3 ∗ PrcpW

idmy)

+ δC
P(CAANAS c,y−3 ∗ PrcpC

im,y−1) + δCAANAS c,y−3 + λsyZi + ηi + φrsy

+ εidmy (4)

Because of the use of 30-year MAs and deviations from it to characterize
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climate - and ultimately uncover a measure of adaptation - it may be reason-

able to focus on continuous temperature instead of more flexible temperature

bins. We could, however, compute moving averages for the bins as averages of

monthly bin dummies over the past 30 years, and deviations of values of each

dummy variable associated with a bin in the contemporaneous period relative

to the 30-year MA bin. Nevertheless, this procedure may decrease data vari-

ability by smoothing the temperature variables, and lead to a loss in statistical

power when estimating the effect of each temperature bin. Indeed, deviations

of a contemporaneous temperature measurement of 31◦C relative to a 30-year

MA of 23◦C, for example, should be not as smooth as deviations of a contempo-

raneous 30◦-35◦C bin from a 30-year MA associated with the number of months

in that bin. Despite these issues, we provide estimates of such nonlinear effects

in the results section.

Measuring Adaptation

Once we credibly estimate the impact of the two components of temperature

- shocks, and changes in long-run trends on ambient ozone concentration, we

uncover our measure of adaptation. The average adaptation across all coun-

ties in our sample is the difference between the coefficients βW
T and βC

T in equa-

tion (3). If economic agents engaged in full adaptive behavior, βC
T would be

zero, and the magnitude of the average adaptation would be equal to the size of

the weather shock effect on surface ozone concentration. As explained before,

agents would react to “permanent” increases in temperature by reducing ozone

precursor emissions to offset potential increases in ozone concentration.

We can split our measure of average adaptation into two parts: regulation-

induced versus residual adaptation, as shown in Table 2.6.
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Table 2.6: Measures of Adaptation

Regulation-induced adaptation reflects adjustments made by heavy emit-

ters in “nonattainment” counties to comply with ozone NAAQS. EPA mandates

those facilities to cut emissions by using the best pollution abatement technolo-

gies available. Because ozone formation depends on both emissions and mete-

orological conditions, by reducing emissions to abide by the CAA regulations,

agents may be actually adapting to climatic changes 15. Residual adaptation

reflects adaptive responses by economic agents in counties under no pressure

from stringent CAA regulations. They react unintentionally to climatic changes

by changing electricity production and consumption patterns or driving behav-

ior, for example.

15EPA already recognizes the role of climate change on future ground-level ozone concentra-
tion. In the 2015 revision of the ozone NAAQS, the final rule mentions: “In addition to being
affected by changing emissions, future O3 concentrations will also be affected by climate change. (...) If
unchecked, climate change has the potential to offset some of the improvements in O3 air quality (...) that
are expected from reductions in emissions of O3 precursors.” (EPA, 2015, p.65300)
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To provide examples of residual behavioral responses to climatic changes,

we lean on two papers. First, Deschenes and Greenstone (2011) estimate a U-

shape relationship between residential energy consumption and bins of tem-

perature relative to the 50◦-60◦F range. Temperature-days in the highest two

categories (80-90◦F and >90◦F) and the lowest four categories (30◦-40◦F and the

three categories below) are associated with statistically significant increases in

residential energy consumption. In terms of magnitude, temperature-days be-

low 10◦F and above 90◦F are associated with 0.3 percent-0.4 percent increases in

annual residential energy consumption. This overall increase in consumption

should be related to heating or air conditioning. Thus, it might lead to more

ozone precursor emissions by fossil fuel power plants, making reductions in

ozone concentration more difficult.

Second, Leard and Roth (2016) find that mean temperatures above 80◦F (rel-

ative to 50◦-60◦F) imply 5 percent fewer trips per household by light-duty ve-

hicles, which seems to be partially compensated by higher travel demand by

ultralight duty vehicles. The overall decrease in travel demand and the change

in vehicle composition induced by temperatures higher than expected can be

seen as adaptive responses and should imply fewer emissions of ozone precur-

sors by vehicles. Therefore, places with a monthly 30-year MA temperature

higher than average in the previous year may observe an effect on ozone that is

less than the impact of weather shocks because households might have already

adjusted their travel behavior. They may have already acquired bikes and mo-

torcycles, and planned outdoor activities not involving too much driving in that

particular month 16 .

16Graff Zivin, Hsiang, and Neidell (2015) provide another example of unconscious adaptive
response to climate change. They find that short-run changes in temperature beyond 26◦C lead
to statistically significant decreases math performance. In contrast, their long-run analysis re-
veals no effect of climate on human capital, consistent with the notion that adaptation, par-
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Regarding regulation-induced adaptation, it refers to behavioral responses

to climatic changes driven by regulations arising from the CAA Amendments.

Polluters in counties designated as “nonattainment” face far more stringent

regulations than their counterparts in “attainment” counties. Nonattainment

counties may not be complying with ozone NAAQS because of climatologi-

cal changes conditional on particular levels of emissions rather than emissions

surges arising from changes in production processes. Therefore, when heavy

emitters are mandated to adopt costly pollution abatement technologies, they

are implicitly coping with a warmer climate- an implicit adaptive behavior.

Notice that, because those counties are also reducing emissions, some re-

searchers might prefer using the term mitigation. Our argument is that those

polluters would not have undertaken those costly investments if the climate

had not changed, so we would rather call this a response to climate change or,

in other words, regulation-induced adaptation. This is not a new use of the

term adaptation. In the context of responses to natural disasters, Kousky (2012)

explains that “The negative impacts of disasters can be blunted by the adoption of

risk reduction activities. (...) [T]he hazards literature (...) refers to these actions as

mitigation, whereas in the climate literature, mitigation refers to reductions in green-

house gas emissions. The already established mitigation measures for natural disasters

can be seen as adaptation tools for adjusting to changes in the frequency, magnitude,

timing, or duration of extreme events with climate change.”(p.37, our highlights).

In our preferred econometric specification, behavioral responses are allowed

to occur only in the year after the change in temperature trend is observed.

Those adjustments, however, might be related to innovations in temperature

ticularly unconscious compensatory behavior, plays a significant role in limiting the long-run
impacts from short-run weather shocks.
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happening both in the previous year and 30 years before. Indeed, the “moving”

feature of the 30-year MA is, by definition, associated with the removal of the

earliest observation included in the average - 30 years before -, and the inclusion

of the most recent observation - one year before. Nevertheless, in the robustness

checks, we consider cases where economic agents can take a decade or two to

adjust. Because EPA may give heavy emitters up to two decades to comply with

ozone NAAQS 17 , adaptive responses many years after agents observe changes

in temperature trends may be plausible. As Kousky (2012) points out in her

review of the costs of natural disasters, “(...) end-of-the-pipe adjustments, like shut-

ters or increasing the market penetration of air conditioning, will underestimate how

fully communities are adapted to their present disaster risk: infrastructure, building

architecture, street geometries, and even institutions such as emergency response are

all adapted to a current climate, and changing these to fit with a new risk profile, if

sufficiently different, could be a very long-term process (...).” (p.39).

Heterogeneity of Temperature Effects and Measures of Adaptation

Equations (3) and (4) are the econometric specifications used to estimate our

main results. We can adjust them, however, to shed light on the impact of cli-

mate change on ambient ozone concentration for different decades, and for dif-

ferent NOAA climate regions.

In an additional specification, we basically interact the two components of

meteorological variables and the CAANAS with each decade included in our

sample - the 1980s, 1990s, and 2000s. In another specification, we interact those

same variables with each climate region as defined by NOAA - Ohio Valley,

17“Nonattainment” counties are “classified as marginal, moderate, serious, severe or extreme (...) at
the time of designation” (EPA, 2004, p.23954). The maximum period for attainment is: “Marginal -
3 years, Moderate - 6 years, Serious - 9 years, , Severe - 15 or 17 years, Extreme - 20 years” (EPA, 2004,
p.23954).
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Upper Midwest, Northeast, Northwest, South, Southeast, Southwest, West, and

Rockies, as shown in the data section. Once we have the estimates associated

with weather shocks and lagged 30-year MAs in these two cases, we are able to

provide measures of adaptation for each decade and each climate region in our

sample.

2.6 Results

In this section, we report our findings regarding (i) the impact of temperature

on ambient ozone concentration, and (ii) the extent to which economic agents

adapt to climate change in the context of ozone pollution 18. Then, we provide

evidence of the robustness of our main results to alternative specifications and

sampling strategies. Lastly, we explore heterogeneity of our estimates by decade

(the 1980s, 1990s, and 2000s) and by NOAA climate region.

Impact of Temperature on Ambient Ozone Concentration

Table 2.7 presents the effects on ambient ozone of two components of ob-

served temperature: climate, represented by the lagged 30-year monthly MA 19 ,

and weather shock, represented by the deviation from that long-run trend. Al-

though they are uncovered by estimating equation (3), Columns 1 and 2 bench-

mark them against effects that would have been found if one had exploited

either only the cross-sectional (e.g. Mendelsohn, Nordhaus, and Shaw, 1994;

18We report the estimates for precipitation in the tables as well, but do not discuss them in
the paper. As mentioned before, previous evidence has shown that temperature is the primary
factor influencing ozone concentration (Jacob and Winner, 2009).

19As mentioned before, even though we use monthly moving averages in our main estimates,
as a robustness check we also estimate our preferred specifications using daily moving averages.
The results are almost the same and are reported in Table 2.20 in the Appendix A.
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Schlenker, Hanemann, and Fisher, 2005) or only the longitudinal (e.g. Desch-

enes and Greenstone, 2007; Schlenker and Roberts, 2009) structure of the data.

Table 2.7: Main Estimates

Column 1 reports results from a cross-sectional estimation of daily maxi-

mum ozone concentration on daily maximum temperature and total precipita-

tion around each monitor, averaged over the entire period of analysis 1980-2013.
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These variables capture information for all the years in our sample and are good

proxies for the average pollution and climate at each monitor. The estimate sug-

gests that a 1◦C increase in average maximum temperature is associated with a

1.10ppb increase in ozone concentration, approximately. Column 2 reports the

effect of temperature on ozone identified by exploiting day-to-day variation in

maximum temperature. The coefficient indicates that a 1◦C increase in maxi-

mum temperature leads to a 1.53ppb increase in maximum ground-level ozone

concentration. When we decompose daily maximum temperature into those

two components in Column 3, the overall effect on ozone concentration goes to

2.9ppb. A 1◦C shock increases ozone concentration by 1.7ppb, and a 1◦C change

in trends in the same month of the previous year increases ozone concentration

by 1.2ppb. Therefore, by including the two components of temperature - the

lagged 30-year MA and deviations from it - the impact of changes in observed

maximum temperature doubles or triples when compared to the panel or cross-

sectional approaches, respectively.

To emphasize, both unexpected spikes in temperature and rises in long-term

temperature trend have a positive and significant effect on ozone concentra-

tions. The total effect of a higher temperature is almost 2.9 ppb, which is in line

with previous studies in the literature. Jacob and Winner (2009), in their review

of the effects of climate change on air quality, find that climate change alone

can lead to a rise in summertime surface ozone concentrations by 1-10 ppb. The

EPA, in their Interim Assessment (2009) also claim that “the amount of increase in

summertime average ... O3 concentrations across all the modeling studies tends to fall

in the range 2-8 ppb”.

Column 4 shows that the estimates do not change when we include the Clean
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Air Act Non-Attainment Status (CAANAS) in the regression, but Column 5 in-

dicates important heterogeneity in the effect of each component of tempera-

ture across counties in or out of attainment regarding the ozone NAAQS. We

find that in non-attainment counties, daily maximum ozone concentrations are

around 1.22 ppb lesser as compared to counties in attainment. A 1-degree Cel-

sius rise in the climate trend (as measured by the lagged 30-year MA of temper-

ature) also has differential impacts in attainment and non-attainment counties.

In attainment counties, it leads to around 0.98 ppb rise in ozone concentrations,

whereas in non-attainment counties we find an additional increase of around

0.47 ppb, which implies a cumulative increase of 1.45 ppb of summertime sur-

face ozone levels. Similarly, we find heterogeneity in the effect of the weather

shock; a 1-degree Celsius increase in the weather realization increases ozone

levels by 1.3 ppb in attainment counties, whereas it leads to an additional 0.69

ppb increase in non-attainment counties.

Measuring Adaptation to Climate Change

The comparison between the short- and long-run effects of temperature may

provide a measure of adaptive responses by economic agents (Dell, Jones, and

Olken, 2009, 2012, 2014; Burke and Emerick, 2016). When we compare the im-

pact of long-run temperature on ozone concentration in Column 1 of Table 2.7

with the effect of a temperature shock in Column 2, the measure of adaptation

is approximately 0.44ppb. Interestingly, our measure of adaptation - also a com-

parison between the impact of the long-run temperature (lagged 30-year MA)

and the effect of the temperature shock (deviation from the MA) - is very similar:

0.45ppb.

Our results indicate that temperature shocks have a larger impact on ozone
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levels compared to long-term temperature trends. This points to the fact that

economic agents may potentially adapt to climate trends. We summarize our

measures of adaptation in Table 2.8. By comparing the coefficients of the tem-

perature shock and the temperature trend in Column (4) of Table 2.7, we find

that on average across all counties, the level of adaptation is 0.45 ppb. If we ignore

such adaptive responses by economic agents, then we would be overestimating

the climate penalty on ozone by over 17 percent 20 . We find that the level of

adaptation is roughly 37 percent of the direct effect of the Clean Air Act regula-

tion, which means that our measure of adaptation is economically sizeable.

Using our estimates from Column 5 of Table 2.7, we can now disentangle

the overall adaptation into regulation-induced adaptation and residual adapta-

tion. The coefficients of the interaction terms now give us the incremental impacts

of weather shocks and climate change in non-attainment counties. From this

specification, we find that the regulation-induced adaptation (in non-attainment

counties) is 0.22 ppb, whereas the residual level of adaptation 21 (both, in attain-

ment and non-attainment counties) is 0.33 ppb, as shown in Table 2.8. Thus, in

non-attainment counties, we find a total adaptation of 0.55 ppb. More than 40

percent of this cumulative level of adaptation in non-attainment counties should

be driven by the Clean Air Act regulations.

Non-attainment counties adapt over 66 percent more than attainment coun-

ties in absolute terms. To give a sense of the magnitude of our adaptation es-

timates by attainment status, we can compare them to the impact of the CAA

20In the absence of adaptation, the climate penalty would be twice the effect of weather shocks
(i.e. 3.4 ppb) rather than the 2.9 ppb that we actually observe.

21Again, regulation-induced adaptation is defined as (δW
T −δ

C
T ). It reflects adjustments made by

heavy emitters in non-attainment counties to comply with the ozone NAAQS. Residual adapta-
tion is defined as (γW

T −γ
C
T ). It is a measure of adaptive responses by economic agents in counties

under no pressure of stringent CAA regulations.
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Table 2.8: Adaptation- Main Estimates

regulations. As we found in Column 3 of Table 2.7, the CAA regulations reduce

ozone levels by around 1.22 ppb. Hence, in attainment counties, it represents 26.7

percent of the effect of being out of attainment and in non-attainment counties al-

most 45 percent. Therefore, our estimates of adaptation seem sizeable. By ignor-

ing such adaptive measures, we would be overestimating the climate penalty in

attainment counties by 14.5 percent, and by over 16 percent in non-attainment

counties.
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2.7 Robustness Checks

2.7.1 Nonlinearities

Because ozone formation may be intensified with higher temperatures, we also

look at the non-linear effects of daily maximum temperature on surface ozone

concentrations. Instead of using daily maximum temperature continuously, we

have categorized the contemporaneous daily maximum temperature and also

its monthly average into temperature bins of 5◦C. We have put temperatures

below 20◦C (just over the 10th percentile of our temperature distribution) into

our lowest bin and those above 35◦C (90th percentile of our temperature dis-

tribution) into our highest bin. We have then taken the lagged 30-year moving

averages of these temperature bin dummies, to get a measure of the long-term

climate trend; the measure of our weather shock has been constructed by taking

the difference between the contemporaneous temperature bins and the 30 years

monthly moving average of temperature bins. In Table 2.9, we have reported

our estimates from this non-linear specification.

By interacting our temperature bins, with the regulatory variable, as before,

we can analyze the nature and degree of regulation induced and residual adap-

tation at different points of the temperature distribution. From Column 2, as

expected, we find that higher temperatures increasingly lead to hike in ozone

concentrations. As each bin is of 5◦C, we can see that for temperatures between

20◦C and 25◦C, a 1 degree C increase would raise ozone levels by 1.22 ppb on av-

erage; whereas for temperatures between 25-30◦C, 30-35◦C and above 35◦C, the

effects are 3.1 ppb, 4.76 ppb, and 6.54 ppb respectively. From our estimates in

Columns 3 and 4, we have the following results about the degree of adaptation
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Table 2.9: Non Linear Effects of Temperature

at different levels of temperature, which are summarized in Table 2.10.

Average Adaptation (across all counties:) From Column 4 of Table 2.9, like we

had for our main results, we find that the average level of adaptation across all

counties ranges from 0.51 ppb for temperatures between 20-25◦C, to 0.16 ppb
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Table 2.10: Adaptation Estimates for Nonlinearities

for temperatures between 25-30◦C; 0.45 ppb for temperatures between 30-35◦C,

and lastly almost 0.82 ppb for temperatures in our highest bin. So we see that

a lot of the adaptation is driven by the 20-25◦C bin. As the USA as a whole is

predominantly NOx-limited, we would expect that changes in electricity usage

might drastically reduce ozone concentrations (since electricity use is a major

source of NOx, also, since ozone formation has a Leontief like production func-

tion in terms of NOx and VOCs, reduction in electricity use in a NOx-limited

region would imply large changes in ozone formation.) In the below 20◦C bin

or at a temperature above 25◦C people are generally more dependent on either

the heater or the air conditioner and hence might not be able to adjust their
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electricity use.

However, temperatures between 20-25◦C represent very pleasant weather

which might potentially induce people to cut down on electricity demand and

hence cut down on NOx which might be driving the high degrees of adaptation

in this bin. This again points to the fact that most of this adaptation is driven

by the lower temperature bins, where adapting to a warming climate is rela-

tively easier. In a recent paper (Deschenes and Greenstone, 2011), the authors

analyze the non-linear effects of daily average temperature on residential en-

ergy consumption and quite interestingly, they document a U-shaped function

such that the hottest and coldest days are the highest energy consumption ones.

Energy consumption at intermediate levels of temperature of around 60-80 de-

grees Fahrenheit (comparable to our intermediate temperature bin of 20-25◦C),

is the lowest. This also justifies our estimates of adaptation at different levels

of temperature. At intermediate levels of daily temperature, economic agents

can adjust and bring down their energy consumption, hence leading to large

decreases in ozone concentrations. Interestingly, we also see a relatively high

level of adaptation above 35◦C. This can be plausibly explained by the follow-

ing reasons. As discussed in Leard and Roth (2016), higher temperatures signify

more pleasant weather and can lead to changes in transportation patterns in a

way that people might prefer walking or biking rather than driving. Such be-

havioral changes might be driving the higher levels of residual adaptation that

we see across all counties. Also, in regions having temperatures above 35◦C, we

would expect a higher incidence of sunlight which might be leading to the more

extensive use of solar panels to generate electricity or heating. Thus, higher tem-

peratures might be creating an environment that is more suited to shift away

from conventional and dirtier sources power generation, thus leading to higher
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levels of adaptation. Lastly, regions having higher temperatures have a larger

climate penalty on ozone and hence are more strongly regulated. This might

be driving the larger levels of regulation induced adaptation that we see in the

higher temperature bins.

Regulation-induced adaptation + Residual Adaptation(in non-attainment coun-

ties): Similar to our main results, we find a higher degree of adaptation in

non-attainment counties at every level of temperature. However, out of the to-

tal adaptation in non-attainment counties, the proportion of regulation-induced

adaptation varies from around 25 percent for temperatures between 20-25◦C to

around 62.5 percent for temperatures between 30-35◦C.

Residual Adaptation (in attainment and non-attainment counties). From Col-

umn 5 of Table 2.9, we find that the residual adaptation, ranges from 0.13 ppb

for temperatures between 25-30◦C, to around 0.67 ppb, for temperatures above

35◦C.

2.7.2 Lagged Responses

Another potential concern with our preferred specification might be the fact

that we have used the lagged 30 years moving average to capture the long-term

climate trend; hence to avoid such concerns, we test the sensitivity of our esti-

mates using the lagged 20 years and lagged 10 years monthly moving averages

of temperature and precipitation. The results which have in reported in Table

2.21 in Appendix A, prove to be quite robust and the magnitudes are very sim-

ilar to our main results in Table 2.7. This is potentially being caused because of

the 30 years monthly moving average that we use in our preferred specification,
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already has all the information that is present in the 20 years, or the 10-year

moving average. In all the three kinds of moving average used, agents are get-

ting just one year to adapt. Hence, a more interesting robustness check could be

to look at the effects, when agents get 10 years and 20 years to adapt, instead of

just one. In Table 2.11, we provide estimates from our preferred specification;

however, by using 20-year moving averages of temperature and precipitation

(lagged by 10 years); and 10-year moving averages (lagged by 20 years). By doing

so, we are providing agents more time to adapt to climate change. Even though

we expect that the effects of the weather shocks would be similar, we antici-

pate the effects of the climate trend to be slightly smaller than before, as agents

should now be able to adapt more than before. This is what we find from our

estimates reported in Table 2.11.

2.7.3 Non-Random Citing of Ozone Monitors

In a recent working paper (Muller and Ruud, 2016), the authors argue that the

location of pollution monitors are not necessarily random. They claim that the

U.S. Environmental Protection Agency (EPA) maintains a dense network of pol-

lution monitors in the country for two major reasons. Firstly, it wishes to check

and enforce the National Ambient Air Quality Standards (NAAQs) for the cri-

teria pollutants; and secondly, it wants to provide useful data for the analysis

of important questions linking pollution with its varied impacts. The authors

claim that these are conflicting interests because to check attainment status, the

monitors are generally placed in areas where pollution levels are the highest,

whereas, in terms of providing good quality representative data, monitors must

be placed in regions having different levels of pollution.
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Table 2.11: Lagged Responses

The authors further assert that if the most important objective of the EPA

was to provide an unbiased estimate of the level of criteria pollutants across the

nation, then the monitors must be placed more densely, where surface variation

is the largest. However, since the monitors also serve the EPA’s purpose of

enforcing the NAAQs, they are not randomly placed. Most of the monitors tend

to be in areas where pollution levels have been high and compliance with the

regulation is a question. Following the argument of the paper and relying on

their results, we might believe that monitor location is essentially endogenous
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and hence using an unbalanced panel of monitors over time might be giving us

incorrect estimates as we are only observing ozone concentrations at monitors

which have high pollution levels.

To nullify such threats to identification, we can check the sensitivity of our

main estimates reported in Table 2.7, by using a balanced panel of ozone moni-

tors. Starting from our original sample, we only use observations from monitors

that have been in the data for every year from 1980-2013 and we are left with

92 pollution monitors. By doing so we eliminate the various possible confound-

ing factors that might drive the positioning of monitors and their subsequent

selection into the sample. The results from this estimation have been reported

in Table 2.12. We find that a 1-degree Celsius increase in the daily maximum

temperature leads to a rise in ozone concentrations by 1.88 ppb. Average adap-

tation is 0.44 ppb across all counties. We can further disentangle this to find that

regulation induced adaptation in non-attainment counties is 0.24 ppb whereas

residual adaptation in attainment, as well as non-attainment counties, is 0.25

ppb. The effects using a balanced panel are actually even larger than those in

our main results reported in Table 2.7. This ensures that our central estimates

are robust to any sort of errors potentially caused by the endogenous placement

of ozone monitors because had such claims been true, the effects should have

been smaller when we use a balanced sample. As explained before, if monitors

are expected to be placed endogenously in areas having high pollution levels,

then when we use an unbalanced panel in our preferred sample, we should be

overestimating the effect of temperature on ozone concentrations, which does

not seem to be true.
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Table 2.12: Non Random Citing of Ozone Monitors

2.7.4 Dependence on Wind Speed and Sunlight

Although temperature is the primary meteorological factor affecting tropo-

spheric ozone concentrations, other factors such as wind speed and sunlight

have also been noted as potential contributors. Firstly, high wind speeds can

dilute ozone concentrations locally and also potentially lead to the transporta-

tion of ozone to neighboring regions. Strong ventilation with high wind speeds

prevents the build-up of high local pollutant concentrations. Ozone precursors,

namely, NOx and VOCs can also be transported significant distances from their

point of origin and hence can lead to elevated ozone levels in other areas. Sec-
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ondly, ultraviolet solar radiation initiates the photolysis of NO2 to nitric oxide

and a free oxygen atom which can then react with molecular oxygen to form

ozone. In order to test if our main estimates are actually capturing the effects of

wind speed and sunlight, we control for these variables in our preferred speci-

fication.

Table 2.13 reports these estimates. Columns 1 and 2 present our main re-

sults from estimating Equations (3) and (4) respectively. Next we present re-

sults from estimating Equation (4), however, having additionally controlled for

average daily wind speed (meters/sec) in Column 3, total daily sunlight (mins)

in Column 4 and both in Column 5. As expected, we find that higher wind

speeds lead to lower ozone concentrations and more sunlight leads to higher

concentrations. From Column 5, we find that a 1 meter/sec increase in average

daily wind speed would decrease ozone concentrations by 2.2 ppb, whereas

a 1 min increase in daily sunlight leads to 0.02 ppb increase in ozone concen-

trations. More importantly, by comparing Column 2 with Column 5, we find

that our main results do not change dramatically, either in direction or magni-

tude, after the inclusion of these other meteorological variables. We still find

that a shock in daily maximum temperature of 1◦C leads to a 1.24 ppb increase

in daily maximum ozone whereas a 1◦C increase in the climate trend leads to

a 0.72 ppb increase in ozone. Our estimates of the interaction terms suggest a

regulation-induced adaptation of 0.17 ppb in non-attainment counties. Also, we

still find a residual adaptation of 0.52 ppb, across all counties. This ensures that

our primary estimates of the impact of temperature on ozone concentrations,

and hence, our measures of adaptation, are not being driven by the dependence

on other potentially important meteorological factors.
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Table 2.13: Dependence on Wind Speed and Sunlight

2.8 Heterogeneity of Results

2.8.1 Results by Decades

In the following table, we present our results from estimating equation (4) by

decades. We split our sample into three decades, 1980-90, 1991-2001 and 2002-

2013 respectively, so that we have roughly the same number of years in each

decade. In Table 2.14, we present the main results, where we see the hetero-

geneity of our results across time. All the effects discussed in the Main Results
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are present in each decade; however, we find that the effect of contemporaneous

daily maximum temperature is decreasing over time. Also, looking at Columns

3 and 4, we find evidence of adaptation by economic agents, in every decade.

The average adaptation across all counties in our sample ranges from 0.58 ppb

in the 1980s to 0.39 ppb in the 1990s and 0.41 ppb in the 2000s. Also, from Col-

umn 4 we find that the regulation-induced adaptation in non-attainment coun-

ties decreases consistently from around 0.22ppb in the 1980s to about 0.09 ppb in

the 2000s. Residual adaptation in attainment and non-attainment counties var-

ied from 0.42 ppb in the 1980s to 0.27 ppb in the 1990s and 0.38 ppb in the 2000s.

Hence, the 1980s, which marked the initial phases of the regulation and when

the average pollution levels were also higher, exhibit, on one hand, the largest

impacts of the climate on ground level ozone and on the other hand, also show

the largest degree of adaptation over time. The temporal heterogeneity of our

adaptation estimates has been illustrated in Table 2.15.

2.8.2 Results by Climate Regions

Next, we aim to establish the spatial heterogeneity of our results. We have esti-

mated our main specification by the nine different climate regions as defined by

the National Oceanic and Atmospheric Association (NOAA), through detailed

climate analysis. Each of these regions have very similar climatic conditions and

hence, very comparable baselines of temperature, precipitation, and other im-

portant meteorological variables, thus providing a reliable criterion for breaking

up our main estimates to analyze heterogeneity across space. In Tables 2.16 and

2.17 we provide our main estimates from the regional regressions and also the

heterogeneity of our adaptation estimates. In Table 2.16, the main estimates for
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Table 2.14: Results by Decades

each region have been reported. To avoid confusion, we have just presented the

results from estimating equations (3) and (4), for each region. We find that even

though the overall direction of effects of weather shocks as well as long term cli-

mate trends are consistent, their magnitudes are extremely varied across space.

To make things clearer, Table 2.17 reports the adaptation estimates for each cli-

mate region; here, as before, using Column 3 we have first calculated estimates
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Table 2.15: Adaptation Estimates by Decades

on an average level and percentage of adaptation across all counties in each re-

gion. Then, using Column 4, we disentangle this into regulation-induced and

residual adaptation. In this table we also provide the mean daily maximum

temperature (climatic baseline) and the average proportion of counties in non-

attainment in each region, using which we can try to interpret the results in an

improved manner.

As we can observe from Table 2.17, almost all the regions exhibit adaptation

to climate change, as we have discussed before. However, their magnitudes

are quite different, and since we also have the baseline climate for each region,

we can link these estimates to our estimates for non-linear temperature effects,

reported in Table 2.9. As we can see here, most of the adaptation is driven by

the Upper Midwest, Northeast, and Northwest, where average daily maximum

temperatures fall in the range 20-25◦C. This is consistent with our finding in
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Table 2.10, where we claimed that a major portion of adaptation happens at

such lower temperatures. Regions having average temperatures in the range

25-30◦C, namely the Ohio Valley, Southeast, Southwest and West, exhibit lower

degrees of adaptation, which is also consistent with our results on non-linear

effects of temperature. If we analyze the estimates of residual and regulation-

induced adaptation, we find that the West and the Northwest have 0.526 ppb

and 0.724 ppb regulation induced adaptation, which is huge compared to most

other regions. On the other hand, in the Northeast, we actually find evidence of

intensification, rather than adaptation.

To understand this further, we can compare the Northeast and the North-

west, both having a climatic baseline between 20-25◦C, hence implying feasible

conditions for adaptation. However, we find that even though there is a high

level of residual adaptation in both regions, the regulation-induced adaptation

is a huge 0.724 ppb in the Northwest, whereas it is -0.151 ppb in the Northeast.

This can potentially be explained by the fact that regulation in this states, has

already reached the limit of effectiveness. This can be observed from the fact

that in the Northeast, more than three-fourths of the counties are already being

regulated as compared to the Northwest, where this proportion is only about

0.2. Northeast officials have stressed that they have done everything in their

capacity to bring down emissions. However, a huge proportion of the ozone

air pollution in these states are driven by cross-border pollutants from upwind

Southern and Midwestern states. Officials have mentioned on multiple occa-

sions that installing pollution abatement technology would be far less costly for

Midwestern states than it would be for the Northeast. It has been estimated that

the marginal cost of regulation in the Northeast is a whopping $10000 whereas,

in the Midwest, it is only about $200. Hence, we find that regulation has no
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further effect in these states. Looking at the other climatic extreme, we can com-

pare the Southwest and the West, both having average temperatures close to

30◦C. Even though the West has a reasonably high proportion of counties in

non-attainment, we find evidence that there is still some scope of regulation

induced adaptation. However, in both regions, we find evidence of residual

intensification, which is probably driven by the fact that temperatures are too

high and hence unfeasible for economic agents to adjust their behavior patterns.

2.9 Conclusion

In this paper, we propose a novel methodology to study the effect of tem-

perature on ambient ozone concentrations and measure adaptation to climate

change. By decomposing high-frequency daily data on meteorological vari-

ables over the past 64 years, made available by the National Oceanic and At-

mospheric Administration (NOAA), we are able to examine the impact on air

quality of both long-term climatic trends and short-term deviations from such

trends (i.e. weather shocks) in a single estimating equation. Using daily data on

ambient ozone concentrations from EPA’s Air Quality Systems (AQS) database,

we find that unexpected spikes in temperature, as well as increases in the long-

term temperature trend, have positive and significant impacts on surface ozone

levels. A shock in daily maximum temperature of one degree Celsius increases

ozone levels by 1.7 ppb, whereas a similar increase in the 30-year monthly mov-

ing average of temperature leads to a further 1.2 ppb increase in ozone, implying

a total impact of 2.9 ppb. Hence, by ignoring the climate normal, we would un-

derestimate the total effect - or the so-called climate penalty on ozone - by over

40 percent.
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Table 2.16: Results by Climate Regions
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Table 2.17: Adaptation Estimates by Climate Regions

By comparing the long-term “climate effect” with the short-term “weather

effect”, we arrive at our measure of adaptation to climate change. We find an
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average adaptation of 0.45 ppb across all counties in our sample. This measure

captures the fact that the long-term effect of temperature, although positive,

is smaller than the effect of a sudden shock, thus signifying potential changes

in the behavior of economic agents in response to a changing climate. In the

absence of any adaptation, we would expect the impact of higher temperature

to be twice as much as the effect of the temperature shock, i.e. a 3.4 ppb increase

in ozone levels. Thus, by ignoring adaptation, we would overestimate the climate

penalty on ozone by over 17 percent.

Using data on Clean Air Act Attainment designations from the EPA’s Green

Book of Nonattainment Areas for Criteria Pollutants, we are also able to dis-

entangle our measure of adaptation into regulation-induced adaptation, occurring

in counties facing stringent regulations for being out of attainment of ozone

NAAQS, and residual adaptation occurring in all counties. We find that, in both

attainment and non-attainment counties, the residual level of adaptation is 0.33

ppb. However, there is an additional 0.22 ppb regulation-induced adaptation

in non-attainment counties. Hence, in comparison to attainment counties, non-

attainment counties are adapting over 66 percent more in terms of ozone con-

centrations. Comparing our estimates to the benefits coming out of CAA regu-

lations, we find that in attainment counties, adaptation represents 26.7 percent

of the effect of being out of attainment, whereas in non-attainment counties, its

almost 45 percent.

Categorizing temperature into multiple bins, we have also explored the non-

linear effects of temperature on ambient ozone levels. Subsequently, we also get

adaptation estimates for each of these temperature bins. In line with existing

literature, we find that higher temperatures have larger impacts on ozone lev-
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els, with the largest effect of 6.54 ppb being driven by temperatures above 35

degrees Celsius. Finally, we also analyze the spatial as well as temporal het-

erogeneity of our estimates. We find that the 1980s, which marked the initial

implementation phases of the Clean Air Act regulations and also correspond to

the highest pollution levels in our sample, had the largest impact of tempera-

ture on surface ozone concentrations as well as the largest degree of adaptation

to climate change. Having estimated our preferred specification by the nine cli-

mate regions, as defined by the NOAA, we find that most of the adaptation is

driven by the Upper Midwest, Northeast, and Northwest, where average tem-

peratures lie between 20-25 degrees Celsius, which is in line with our non-linear

estimates.

By estimating the causal effect of temperature on ambient ozone, we have

taken the first step towards calculating the costs of climate change in terms of

higher air pollution. We have illustrated that in the presence of climate change,

pollution levels are exacerbated, hence implying larger external costs of emis-

sions. Thus, such estimates are crucial to guide more informed policy making

and reaching the socially desirable level of emissions. This also provides scope

for further research along similar lines, to estimate the climate penalty on other

criteria air pollutants that have severe health effects. Another potential direc-

tion for further research might be to look into various adaptation mechanisms

and behavioral adjustments made by economic agents, such as re-allocation of

production across hours of the day or migration to less polluted regions.
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2.10 Appendix A- Additional Figures and Tables

Figure 2.11: Weather Stations from 1950-2013

Figure 2.12: Matched Ozone Monitors and Weather Stations
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Table 2.18: Summary Statistics for Monitoring Network by Year
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Table 2.19: Summary Statistics for Meteorological Variables by Year
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Table 2.20: Daily Moving Averages
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Table 2.21: 20 Year and 10 Year Moving Averages
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2.11 Appendix B: Scientific Background on Ozone Formation

2.11.1 Formation and Depletion of Tropospheric Ozone

The formation of ozone in the troposphere is a complex process involving the

reactions of hundreds of precursors. The key elements, as summarized in

Finlayson-Pitts and Pitts (2000), and Seinfeld and Pandis (1998) are discussed

below.

Nitrogen Cycle and the Photostationary-State Relationship for Ozone

The formation of ozone in the troposphere results from only one known reac-

tion: addition of atomic oxygen (O) to molecular oxygen (O2) in the presence of

a third “body” (M). M is any “body” with mass, primarily nitrogen or oxygen

molecules, but also particles, trace gas molecules, and surfaces of large objects.

O + O2 + M → O3 + M (B1)

The oxygen atoms are produced primarily from photolysis of NO2 by the

ultraviolet portion of solar radiation (hn).

NO2 + hn→ NO + O (B2)

Reaction 3 converts ozone back to oxygen and NO back to NO2, completing

the “nitrogen cycle.”
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O3 + NO→ NO2 + O2 (B3)

Reactions 1 and 3 are comparatively fast. Therefore, the slower photolysis re-

action 2 is usually the rate-limiting reaction for the nitrogen cycle and the reason

why ozone is not formed appreciably at night. It is also one of the reasons why

ozone concentrations are high during the summer months, when temperatures

are high and solar radiation is intense. The cycle time for the three reactions

described above is only a few minutes. Ozone accumulates over several hours,

depending on emission rates and meteorological conditions.

The nitrogen cycle operates fast enough to maintain a photostationary state.

The net effect of this cycle is neither to generate nor destroy ozone molecules.

Therefore, for ozone to accumulate, an additional pathway is needed to convert

NO to NO2; one that will not destroy ozone. The photochemical oxidation of

VOCs, such as hydrocarbons and aldehydes, provides that pathway.

The VOC Oxidation Cycle

Hydrocarbons and other VOCs are oxidized in the atmosphere by a series of re-

actions to form carbon monoxide (CO), carbon dioxide (CO2) and water (H2O).

Intermediate steps in this overall oxidation process typically involve cyclic

stages driven by hydroxyl radical (OH) attack on the parent hydrocarbon, on

partially oxidized intermediate compounds, and on other VOCs. The hydroxyl

radical is ever-present in the ambient air; it is formed by photolysis from ozone

in the presence of water vapor, and also from nitrous acid, hydrogen peroxide,

and other sources. In the sequence shown below, R can be hydrogen or virtually
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any organic fragment. The oxidation process usually starts with reaction 4, from

OH attack on a hydrocarbon or other VOC:

RH + OH → H2O + R (B4)

This is followed by reaction with oxygen in the air to generate the peroxy

radical (RO2).

R + O2 + M → RO2 + M (B5)

The key reaction in the VOC oxidation cycle is the conversion of NO to NO2.

This takes place through the fast radical transfer reaction with NO.

RO2 + NO→ NO2 + RO (B6)

R can also be generated by photolysis, which usually involves only VOCs

with molecules containing the carbonyl (C = O) bond. The simplest VOC

molecule that contains the carbonyl bond is formaldehyde (HCHO). Because

formaldehyde enters into several types of reactions of importance for under-

standing ozone formation and depletion, we will use it to help illustrate these

reactions. The oxidation cycle for formaldehyde can be written in the following

sequence of reactions.

OH + HCHO→ H2O + HCO (B7)
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HCO + O2 → HO2 +CO (B8)

HO2 + NO→ NO2 + OH (B9)

Hydroperoxyl radical (HO2) is generated by reaction 8, and the hydroxyl rad-

ical (consumed in reaction 7) returns in reaction 9 to complete the cycle. In ad-

dition, reaction 9 produces the NO2 required for ozone formation, as described

above. Also, the carbon monoxide (CO) generated by reaction 8 can react like

an organic molecule to yield another hydroperoxyl radical.

OH +CO→ H +CO2 (B10)

H + O2 + M → HO2 + M (B11)

Another component that formaldehyde provides for smog formation is a

source of hydrogen radicals.

HCHO + hn→ H + HCO (B12)

The hydrogen atom (H) and formyl radical (HCO) produced by this photoly-

sis reaction yield two hydroperoxyl radicals via reaction with oxygen, as shown

in reactions 8 and 11.

The reactions above comprise the simplest VOC oxidation cycle. Actually,

hundreds of VOC species participate in thousands of similar reactions. These
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reactions should explain the typical pattern of ozone concentrations found in

the urban atmosphere.

Ratio of Volatile Organic Compounds to Nitrogen Oxides in Ambient Air

Although VOCs are necessary to generate high concentrations of ozone, NOx

emissions can be the determining factor in the peak ozone concentrations ob-

served in many locations (Chameides, 1992; National Research Council, 1991).

The relative balance of VOCs and NOx at a particular location helps to deter-

mine whether the NOx behaves as a net ozone generator or a net ozone inhibitor.

When the VOC/NOx ratio in the ambient air is low (NOx is plentiful relative

to VOC), NOx tends to inhibit ozone formation. In such cases, the amount of

VOCs tends to limit the amount of ozone formed, and the ozone formation is

called “VOC-limited”. When the VOC/NOx ratio is high (VOC is plentiful rel-

ative to NOx), NOx tends to generate ozone. In such cases, the amount of NOx

tends to limit the amount of ozone formed, and ozone formation is called “NOx

-limited”. The VOC/NOx ratio can differ substantially by location and time-of-

day within a geographic area.
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CHAPTER 3

CLIMATE CHANGE AND ATTAINMENT STATUS

3.1 Introduction

The Clean Air Act is a federal level regulation in United States that was designed

to control and regulate air pollution. The Environmental Protection Agency has

designed National Ambient Air Quality Standards (NAAQs) for six major crite-

ria pollutants namely, ground level ozone, particulate matter, carbon monoxide,

sulphur dioxide, lead and nitrogen oxides. Counties are designated as being in

attainment or non attainment depending on whether they are able to achieve

these standards. Counties that are not in attainment face very strict regulatory

control and states have to submit a State Implementation Plan to the EPA sug-

gesting ways and means by which they can get non attainment counties back

into attainment. Interestingly, even though the terms and conditions of the reg-

ulation are common knowledge, there is a huge number of counties that have

been in non-attainment for prolonged periods of time. The fact that counties

can be in non-attainment inspite of the fact that they have to bear some “costs”

or penalties, points to the interesting question of what exactly defines this vari-

ablity in attainment status of counties? More specifically, is it possible to have

conditions on parameters such that a county optimally chooses to be in non-

attainment?

Quite clearly, the tradeoff facing a county is that of higher production and

hence higher emissions vs lower production and hence no cost of being in non-

attainment. It is documented that climate change (eg. higher temperatures) can

lead to increases in air pollutants like ground level ozone and hence exacerbate
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the effects of emissions. An interesting question from here is, whether climate

change can affect this tradeoff faced by counties and in doing so, can it affect

the county’s choice of being in attainment/non-attainment? As an extension

to the model, we have also tried to incorporate how the federal government

might be optimally choosing the emissions threshold, foreseeing the behavior of

the counties and the firms. The analysis of this part of the paper is provided in

the Appendix. For further work on this paper, we want to think of how exactly

counties and firms react to climate change, in a multi-county and multi-firm

setting. For instance, firms might find it profitable to relocate to other counties

having milder climate, where they might produce and emit more but still avoid

the penalties of being in non-attainment. On the other hand, counties, in trying

to maximize their surplus, will foresee the migration behavior of firms and aim

to strike a critical balance between the penalties imposed by the regulation and

the number of polluting firms they hold on to. Ultimately, we would like to

investigate whether allowing for such relocation and migration across regions

having different climate realizations, can potentially offset the “costs” of climate

change (say, the loss in output had there been no migration) completely.

There is a large body of work on migration and relocation of firms in re-

sponse to tougher environmental regulations. Hanna (2010) analyzes how the

Clean Air Act amendments affected the foreign production decisions of US

based multinationals. Specifically, she finds that the Clean Air Act induced reg-

ulated US firms to increase their foreign assets by 5.3% and their foreign output

by almost 9%. Greenstone (2002) also looks at the impacts of the Clean Air

Act on measures of industrial activity and he finds that in the first 15 years of

its operation, the Clean Air Act led to the loss of approximately 590,000 jobs,

$37 billion capital stock and $75 billion of output in non-attainment counties.
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Becker and Henderson (2000), Eskeland and Harrison (1997), Levinson (1996),

List, McHone and Millimet ( 2004), List, Millimet, Fredriksson and McHone (

2003) are some of the other papers that look at this imporant link between envi-

ronmental regulations and the firms location and migration decisions.

A recent paper by Linnenluecke et al. (2011) looks at the the firms’ migration

decisions as an adaptive strategy in response to climate change. The authors

argue that climate change will bring about large scale environmental changes

like rising sea level, floods, droughts etc. Such extreme events might poten-

tially cause significant disruptions to firm operations and it might become nec-

essary to shift industrial activity away from regions having harsh climate. In

this paper, we are trying to bring these two strands of literature together, by

looking at how climate change affects the regulatory actions and how that in

turn affects the firms’ decisions to relocate to other areas having milder climate.

More specifically, worse climate realizations exacerbate the levels of emissions

by firms and hence, might cause certain areas to go into non-attainment. Thus,

climate change can indirectly affect the extent of regulatory control on polluting

firms and the amount they can produce or emit. As a result, firms might choose

to relocate in order to avoid these costs of climate change.

In the next section, we present a simple theoretical model of a county hav-

ing a single firm, facing a regulation on emissions. We will analyze how the

county’s choice of being in attainment or non attainment can be determined by

climate change, and other parameters like the penalty the county has to pay per

unit of excess emissions, the marginal increase in emissions per unit increase in

output etc. In the Appendix, we provide a preliminary analysis of government’s

optimal choice of emissions threshold ē.
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3.2 A Model of Attainment Designations

Consider a county having a single firm. The firm produces output y and its

productive activities lead to emissions e. For simplicity, let us assume that the

relationship between output and emissions is as follows:

y =
1
α

e

where α > 0.

The firm also has a cost of production given by:

c(e) = e2

As mentioned before, since climate change is an important factor affecting

air pollution, let us assume that θ > 1 is the temperature realization in the county

and that higher temperatures worsen the effect of emissions. More specifically,

let us assume that the effective emissions in the county are given by the following:

ê = f (e; θ) = θe

Now suppose that there is a federal regulation on air pollution such that if

the effective emissions ê exceed a threshold ē then the county has to pay a penalty.

Suppose the penalty function is as follows:
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p(e; θ) =


β(ê − ē) if ê > ē

0 if ê ≤ ē

where β > 0.

Suppose the county has an instrument λ ∈ [0, 1] through which it can make

the environment more or less conducive for the firm. That is, the county bears

a portion λ of the penalty and passes on the remaining (1-λ) to the firm, when

in non-attainment. Hence, we can think of this problem like a sequential game

between the county and the firm such that the county moves first and chooses

a λ. Observing this, the firm chooses its production and emissions; and then

eventually based on the effective emissions the county is designated as being in

attainment or non attainment. We will solve this by backwards induction.

3.2.1 Firm’s Problem

Suppose the county is in non-attainment. The firm will want to maximize its

profit given by the following:

maxe π =
1
α

e − e2 − (1 − λ)β(ê − ē)

F.O.C:

∂π

∂e
=

1
α
− 2e − (1 − λ)βθ = 0

since ê = θe
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⇒ 2e∗ =
1
α
− (1 − λ)βθ

⇒ e∗ =
1 − αβθ(1 − λ)

2α

Proposition 1 (i) As the county bears an increasing share of the penalty, i.e. as λ

increases, the emissions by the firm also increase and hence output y increases.

(ii) With worse climate realizations (higher temperature), i.e. as θ increases, the firm

decreases its emissions level in order to reduce the penalty.

3.2.2 County’s Problem

The county foresees the behavior of the firm and chooses λ to maximize its ob-

jective (surplus) defined as follows:

maxλ R = γe∗(λ) − λβ(ê − ē)

where, γ > 0 is the county’s marginal gain in surplus from a unit increase in

emissions and λβ(ê − ē) is its share of the penalty.

Plugging back e∗ from the firm’s problem, the county maximizes the follow-

ing:

maxλ R = γ(
1 − αβθ(1 − λ)

2α
) − λβθ(

1 − αβθ(1 − λ)
2α

) + λβē
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⇒ R =
γ

2α
−
γβθ(1 − λ)

2
−
λβθ

2α
+
λ(1 − λ)β2θ2

2
+ λβē

F.O.C:

∂R
∂λ
=
γβθ

2
−
βθ

2α
+
β2θ2

2
− λβ2θ2 + βē = 0

⇒ λ∗β2θ2 =
γβθ

2
−
βθ

2α
+
β2θ2

2
+ βē

⇒ λ∗ =
γ

2βθ
+

1
2
+

ē
βθ2 −

1
2αβθ

S.O.C:

∂2R
∂λ2 = −β

2θ2 < 0

This λ∗ maximizes the county’s objective function including the penalty.

However, since the emissions by the firm is directly proportional to λ, the county

can reduce λ to a point such that the firm optimally chooses an emission level

that ensures the county being in attainment.

Let λ̄ be such that if λ ≤ λ̄, then θe∗ ≤ ē and the county will be in attainment.

Hence, if the county keeps reducing its own share of the cost burden, then there

will be a threshold below which the firm will be forced to choose an emission

level such that the federal standard is met (reducing λ would imply an increas-

ing cost burden for the firm). We can calculate this threshold value of λ by using
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the firm’s optimal emission level e∗.

At λ̄ the county will just be in attainment, hence ê = θe∗ = ē.

⇒
θ − αβθ2(1 − λ)

2α
= ē

⇒ θ − αβθ2 + αβθ2λ = 2αē

⇒ λ̄ =
2αē − θ + αβθ2

αβθ2

⇒ λ̄ =
2αē − θ
αβθ2 + 1

Note that if 2αē = θ i.e. if 1
2αθ = ē then λ̄ = 1. This observation is of special

interest because 1
2α is nothing but the firm’s unrestricted level of emission (what

it would choose had there been no regulation.

Proposition 2 If the unrestricted emissions level chosen by the firm is such the effective

emission 1
2αθ = ē (federal threshold), then λ̄ = 1 implying that ∀λ ≤ λ̄ and hence

∀λ ∈ [0, 1], the county will be in attainment.

If however, λ̄ ∈ (0, 1) then the unretricted effective emissions level is above

the threshold. Thus it is not obvious that the county will be in attainment. It can

choose λ∗ and be in non-attainment (paying the penalty for it) or it can choose λ̄

and force the firm to emit less than the threshold, hence coming into attainment.
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This critical decision of the county will depend on its surplus under the two

regimes. The county’s surplus, as a function of λ can be summarized as follows:

R(λ) =


γē
θ

if λ ≤ λ̄

γe∗(λ) − λβθe∗(λ) + λβē if λ > λ̄

Note that for λ < λ̄ the firm will always choose ē
θ

as the deviation from e∗UR is

lower and hence profit is larger, than if it chooses e∗(λ) < ē
θ

(as θe∗UR > ē). Since

e∗(λ) is increasing in λwe know that γe∗(λ)−λβθe∗(λ)+λβē is a quadratic function

that is maximized at λ∗ (as shown in the previous section). We also know that

for all λ ≤ λ̄ the county will be in attainment and for λ > λ̄ the county is in non-

attainment. Lastly, we know that at λ̄, γe∗(λ) − λβθe∗(λ) + λβē = γē
θ

. Depending

on the nature of the quadratic function, we can have the following two cases:

As can be seen from Figures 3.1 and 3.2, we can conclude whether or not a

county chooses to be in attainment by comparing λ∗ and λ̄.

A county will choose to be in attainment if (as seen in Figure 1) λ∗ ≤ λ̄.

⇒
γ

2βθ
+

1
2
+

ē
βθ2 −

1
2αβθ

≤
2αē − θ
αβθ2 + 1

⇒
γ

2βθ
+

ē
βθ2 −

1
2αβθ

≤
2αē − θ
αβθ2 +

1
2

⇒
γαθ + 2αē − θ

2αβθ2 ≤
4αē − 2θ + αβθ2

2αβθ2
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Figure 3.1: County chooses to be in Attainment (λ∗ ≤ λ̄)

⇒ γαθ + 2αē − θ ≤ 4αē − 2θ + αβθ2

⇒ αβθ2 − θ + 2αē − γαθ ≥ 0

⇒ θ[αβθ − 1 − αγ] + 2αē ≥ 0

Since θ > 0 and 2αē > 0 a sufficient condition for λ∗ ≤ λ̄ is as follows:

αβθ − 1 − αγ ≥ 0
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Figure 3.2: County chooses to be in Non-Attainment (λ∗ > λ̄)

⇒ αβθ ≥ 1 + αγ

⇒ θ ≥
1 + αγ
αβ

≡ θ∗

Hence we can conclude that a county chooses to be in attainment or non-

attainment if αβθ(θ − θ∗) + 2αē ≷ 0 respectively.

However, even though θ < θ∗ is a necessary condition for a county to choose

non-attainment it is not sufficient. The county’s choice of being in attainment vs

non-attainment as a function of the various parameters has been summarized

in the following proposition.
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Proposition 3 A county having a climate realization θ ceteris paribus (holding all

other parameters constant), will choose to be in attainment or non-attainment as fol-

lows:

(i) If θ ≥ θ∗, i.e. if the county has a very bad climate realization (say, very high

temperatures), it will surely choose λ ≤ λ̄ and be in attainment, since the climate will

magnify its emissions tremendously leading to high costs of being in non-attainment.

(ii) If θ < θ∗ but αβθ(θ − θ∗) + 2αē ≥ 0, the county still chooses to be in attainment.

(iii) If θ < θ∗ and αβθ(θ − θ∗) + 2αē < 0, the county will choose λ = λ∗ and be in

non-attainment, since the loss due to the penalty of non-attainment will be outweighed

by the gains from more production.

3.2.3 Comparative Statics

In this section, we will analyze how the other parameters in the model affect the

climate threshold and how that in turn can affect the county’s choice of being in

attainment or non-attainment. As we know, θ∗ = 1+αγ
αβ

. Hence,

∂θ∗

∂γ
=

1
β
> 0

∂θ∗

∂β
=
−α(1 + αγ)

α2β2 < 0

∂θ∗

∂α
=
−β

α2β2 < 0
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Using the above relationships and Proposition 1.3, we can infer how a

county’s choice (having a climate realization θ) might be affected by a change

in γ (marginal gain in county surplus per unit increase in output/emissions),

β (penalty per unit of excess emissions) and α (marginal increase in emissions

per unit increase in output). These observations have been summarized in the

following proposition.

Proposition 4 (i) If θ ≥ θ∗ and hence, the county chooses to be in attainment:

(a) As γ increases(hence, θ∗ increaes), the county’s gain in surplus following an

increase in output increases and the county might change its decision and be in non-

attainment if (θ − θ∗) becomes negative enough.

(b) As α or β increases (i.e. θ∗ decreases), the per unit penalty or the marginal rate

of emissions increase and the county sticks to its decision of being in attainment since

(θ − θ∗) becomes larger.

(ii) If θ < θ∗ however αβθ(θ − θ∗) + 2αē ≥ 0 and hence, the county chooses to be in

attainment:

(a) As γ increases, the county might now choose to be in non-attainment as (θ − θ∗)

becomes more negative. (b) As α or β increases, the county’s decision will be ambiguous.

(iii) If θ < θ∗ and αβθ(θ − θ∗) + 2αē < 0 and hence, the county chooses to be in

non-attainment:

(a) As γ increases, the county will continue to be in non-attainment as (θ − θ∗)

becomes more negative. (b) As α or β increases, the county’s decision will be ambiguous.
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3.3 Further Steps

Till now, in this paper we have just looked at a county having a single firm that

undertakes production and hence leads to emissions. By using a very simple

theoretical model, we look at how a county and a polluting firm located in that

county responds to a federal level regulation on air quality, in the presence of cli-

mate change that aggravates the amount of emissions produced by the firm. We

model the behavior of the county and the firm as a sequential move game where,

after having seen the realization of climate, the county decides on how con-

ducive it wants to be for the firm. Specifically, the county chooses the amount

of penalty it will bear, in case it ends up being in non-attainment. Observing

the county’s choice, the firm then decides on the level of output and emissions

it wants to produce. After these choices have been made, the county is desig-

nated as being in attainment or non-attainment based on the effective emissions.

Interestingly we find that ceteris paribus, a county having mild enough climate

can optimally choose to be in non-attainment. Even though very harsh climate

is a sufficient condition for a county to choose to be in attainment, the behavior of

counties having relatively mild climate, will also depend on other parameters

like the marginal rate of emissions, the per unit penalty charged for exceeding

the emissions threshold and also the marginal gain in county surplus per unit

increase in output.

Using the insights from this model, we would like to extend the analysis in

the following ways. Firstly, we would like to include multiple firms in a county,

such that the effective emissions in the county will depend on the overall emis-

sions as well as the climate realizations. In such a setup, firms can behave strate-

gically and we can solve for the Nash equilibrium among the firms. Secondly,
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we would like to introduce the possibility for firms to relocate to other counties

having different climate realizations. We can first analyze this setup, without

allowing the county complete foresight; i.e. each county starts with a number

of firms and chooses a λ, following which, each firm can decide to continue pro-

duction in its own county and get the Nash equilibrium payoff or relocate to

some other county. The equilibrium in this model can be defined by the equal-

ization of profits across all counties. Lastly, we can allow for the counties to

foresee the migration behavior of firms. We will then have a game between

counties where each county chooses a λ, taking care of the fact that this will de-

termine the number of firms it will end up having, and hence, affect the output,

emissions and the attainment status. Comparing the models with and without

migration possibilities, we should then be able to analyze if and to what extent

the costs of climate change can potentially be undone by adaptive strategies.

3.4 Appendix

3.4.1 Optimal Choice of ē

So far, in the paper, we have assumed that the emissions threshold ē is exoge-

nously given by the government. However, a more complete model would be

to incorporate the fact that the government also optimally chooses an ē to max-

imize the social welfare, which is a function of the gains from output as well as

the costs of emissions. In this appendix, we aim to extend the model to incorpo-

rate the governmenet’s choice behavior, foreseeing the behavior of the county

and the firm.
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Suppose the government faces a social welfare function as follows:

W(ē) = e(ē) − φ(θe(ē))2

where φ ∈ (0, 1) is the weight that the government puts on effective emis-

sions θe. Given any ē that the government chooses, we will have an emissions

level e(ē). The social cost of emissions e is (θe)2 where θ > 1 is the temperaure

realization.

According to Proposition 2.3, a county having climate realization θ and fac-

ing an emissions threshold ē will choose to be in attainment if:

⇒ αβθ2 − θ + 2αē − γαθ ≥ 0

⇒ ē ≥
θ + αγθ − αβθ2

2α

Thus, given all other parameters in the model, ∃ E = θ+αγθ−αβθ2

2α such that:

1. If ē ≥ E, then the county chooses to be in Attainment

2. If ē < E, then the county chooses to be in Non-Attainment

Proposition 5 (Comparative Statics on E)

(a) Since ∂E
∂α
< 0 and ∂E

∂β
< 0, as the marginal rate of emissions or the per unit penalty
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increases, the threshold of ē decresaes. This means that even for stricter thresholds, the

county chooses to be in attainment, since the costs of being in non-attainment will be

larger.

(b) Since ∂E
∂γ

> 0, as the county’s gain from output and emissions increases, the

threshold of ē increases. Thus, the county will only choose to be in attainment for very

strict thresholds. This is because the benefits of being in non-attainment and producing

more, are now larger.

(c) For θ > 1+αγ
2αβ , ∂E

∂θ
< 0. Thus, if the county already has very high temperatures,

then a further worsening of climate would decrease the threshold of ē and the county

will choose to be in attainment even for stricter thresholds, since the costs of being in

non-attainment will be larger.

Given the information that we have on how the county and the firm reacts

to this regulation, we can now characterize the exact choices of λ(ē) and e(ē) that

the county and the firm will make respectively.

Regime 1: ē ≥ E: In this case, the county chooses λ = λ̄ to be in Attainment

and the firm chooses emissions level eA = e(λ̄) = ē
θ
. Thus Social Welfare is

WA =
ē
θ
− φē2

Regime 2: ē < E: In this case, the county chooses λ = λ∗ to be in Non-

Attainment and the firm chooses emissions level eNA = e(λ∗) > ē
θ
.

Plugging in the value of λ∗, we can get that the emissions level in the non-

146



attainment regime will be

eNA =
1 − αβθ(1 − λ∗)

2α

=
1

2α
−
βθ

2
+
βθ

2
[
γ

2βθ
+

1
2
+

ē
βθ2 −

1
2αβθ

]

=
1

4α
−
βθ

2
+
γ

4
+

ē
2βθ

=
β

2α
−
β2θ

2
+
βγ

2
+

ē
θ

= k +
ē
θ

Thus, eNA = k+eA, where k = β

2α −
β2θ

2 +
βγ

2 > 0 since we know that eNA > ē
θ
= eA.

Thus Social welfare in this regime wil be

WNA =
ē
θ
+ k − φ(ē + θk)2

As we can see from the expressions, both WA and WNA are quadratic func-

tions in ē. However, in order to accurately represent these functions graphically,

we will find the values of ē that maximize each of these functions. 1

Regime 1 (Attainment):

WA =
ē
θ
− φē2

F.O.C.:

1
θ
− 2φē = 0

1From the first and second order conditions, we know that both WA and WNA are concave
inverted-U shaped functions, attaining their maximum values at ē∗A and ē∗NA respectively. Sec-
ondly, since ē∗NA < ē∗A, we know that WNA intersects WA from above. Thirdly, we also know that
both functions WA and WNA attain the same maximum value.
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⇒ ē∗A =
1

2φθ

S.O.C.: ∂2WA

∂ē2 = −2φ < 0.

⇒ (W∗)A
max =

1
4φθ2

Regime 2 (Non-Attainment):

WNA =
ē
θ
+ k − φ(ē + θk)2

F.O.C.:

1
θ
− 2φ(ē + θk) = 0

⇒ ē∗NA =
1

2φθ
− θk

S.O.C.: ∂2WNA

∂ē2 = −2φ < 0.

⇒ (W∗)NA
max =

1
4φθ2 = (W∗)A

max

The effective Social Welfare function facing the government can now be char-

acterized as follows:

W(ē) =


WNA = ē

θ
+ k − φ(ē + θk)2 if ē < E (Condition A)

WA = ē
θ
− φē2 if ē ≥ E

where k = β

2α −
β2θ

2 +
βγ

2 > 0.
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Thus, given a realization of E, as a function of all exogenous parameters

in the model, the government will optimally choose an ē that maximizes W(ē).

Using Condition A, we can trace out the social welfare function W(ē) facing the

government. There can be three cases of interest, which have been summarized

below:

Case 1: E < 1
2φθ − θk

As represented in Figure 3.3 below, in this case, the social welfare function

facing the government is maximized at ē = 1
2φθ > E.

Following this choice of ē the county will choose

λ = λ̄(ē) =
2αē − θ
αβθ2 + 1

and the firm will choose an emissions level

e(ē) =
ē
θ

to be in attainment. 2

Case 2: E > 1
2φθ

As represented in Figure 3.4 below, in this case, the social welfare function

facing the government is maximized at ē = 1
2φθ − θk < E.

2Pluggin in the value of ē = 1
2phiθ into λ̄(ē) and e(ē) we can calculate the choices of the county

and firm as a function of model parameters.
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Figure 3.3: Government chooses ē > E and County is in Attainment

Following this choice of ē, the county will choose

λ = λ∗(ē) =
γ

2βθ
+

1
2
+

ē
βθ2 −

1
2αβθ

and the firm will choose an emissions level

e(ē) =
1 − αβθ(1 − λ∗(ē))

2α

to be in non-attainment.

Case 3: 1
2φθ ≤ E ≤ 1

2φθ − θk

In this case the government will be indifferent between a choice of ē = 1
2φθ−θk
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Figure 3.4: Government chooses ē < E and County is in Non-Attainment

and ē = 1
2φθ since the welfare function facing the government is maximized at

both these values of ē. This has been represented in Figure 5 below.

Proposition 6 Given all model parameters, and hence, a realization of E = θ+αγθ−αβθ2

2α ,

the government’s choice of the emissions threshold ē and the resultant choice of the

county and firm to be in attainment or non-attainment of standards can be summarized

as follows:

(a) If E < 1
2φθ − θk, where k = β

2α −
β2θ

2 +
βγ

2 > 0, then the government optimally

chooses ē = 1
2φθ . The county chooses to be in attainment.

(b) If E > 1
2φθ , then the government optimally chooses ē = 1

2φθ − θk. The county

chooses to be in non-attainment.
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Figure 3.5: Government is indifferent between ē = 1
2φθ − θk and ē = 1

2φθ .
County can be either in Attainment or Non-Attainment

(c) If 1
2φθ ≤ E ≤ 1

2φθ − θk, then the government either chooses ē = 1
2φθ or ē = 1

2φθ − θk.

The county chooses to be in attainment or non-attainment respectively.
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