PAM 6091: Empirical Strategies for Policy Research II
Spring 2017

Zhuan Pei
Office location: MVR 134
E-mail: zhuan.pei@cornell.edu

Office Hours:
Tuesday
2:50-4:50pm

Lecture: Tuesday, Thursday 1:25-2:40pm, MRV Hall G73

Lecture: Luoyi (Roy) Su; E-mail: ls495@cornell.edu. Office Hours: 3-5pm (435 Uris Hall).

Course description: This course is the second of a two-course sequence. Both PAM 6090 and this course are, for the most part, targeted at students looking to do empirical research into the effects of some X on some Y. Both courses require students to complete problem sets that involve “hands-on” exercises – some based on real data and some using Monte Carlo simulations. The hope is that this “learning by doing” will reinforce what is taught in class. Usually, the first course covers core methods, specifically regression adjustment, matching and instrumental variables. This second course covers regression discontinuity designs, panel data methods, standard error issues and other miscellaneous topics.

Learning goals: Upon successful completion of the course, you will

- Have familiarity with the core methods in empirical research;
- Have proficiency in using Stata;
- Be able to critically evaluate empirical analyses and carry out data-oriented research.

Prerequisites: Ideally, students will have met the requirements for the first course (familiarity with matrix algebra, basic statistics/econometrics and inference procedures) and will have taken the first course. I will not enforce these requirements, but probabilistically you will get more out of the course if you meet these.

Texts and materials: There is no required textbook for the class, but several books serve as good references for empirical researchers, especially Angrist and Pischke.

Statistical Software: We will mainly use Stata for this class, and the class should have access to CISER.

Evaluation: Students will be evaluated on four problem sets and a group presentation. Problem sets will be posted every two or three weeks during the semester. You are encouraged to work on
the problem sets in groups of up to four students and to hand in a single typed answer sheet for the group. Complete problem sets must be submitted to Blackboard by 1:25pm on the due date. Late problem sets will not be accepted under any circumstances. Problem sets will count for 50% of the final course grade.

Students will be randomly divided into teams and assigned a paper to present during the semester. The presenters should aim for a thirty-minute talk, and their performance will be assessed by their peers. I will provide a rubric for the other students to score the presentation, and their scoring needs to be supported by written comments, the quality of which will contribute to their course grades. Within a week after the presentation, the presenting team will also need to submit to me 1) a Stata program that implements the main procedure of the paper if the paper does not have accompanying programs available or 2) documentations of existing Stata program that informs the user what each part of the program does in as much detail as possible. Overall, the presentation component accounts for 50% of the course grade, with the presentation itself accounting for 35%, the Stata program and documentations accounting for 10%, and the quality of peer review accounting for 5%.

Special accommodations: In compliance with section 504 of Rehabilitation Act of 1973 and the Americans with Disabilities Act, reasonable accommodation will be provided to students with documented disabilities. Students with disabilities must provide the College with appropriate documentation of their disability before any accommodation can be made. Reasonable accommodation will be provided, on a case-by-case basis.

Academic integrity statement: Absolute integrity is expected of every Cornell student in all academic undertakings. Integrity entails a firm adherence to a set of values, and the values most essential to an academic community are grounded on the concept of honesty with respect to the intellectual efforts of oneself and others. Academic integrity is expected not only in formal coursework situations, but in all University relationships and interactions connected to the educational process, including the use of University resources. A Cornell student’s submission of work for academic credit indicates that the work is the student’s own. All outside assistance should be acknowledged, and the student’s academic position truthfully reported at all times. In addition, Cornell students have a right to expect academic integrity from each of their peers. For further information regarding the Cornell Code of Academic Integrity see: http://cuinfo.cornell.edu/aic.cfm. Unless you have the express permission of the instructor, you should not buy or sell course materials. Such unauthorized behavior constitutes academic dishonesty.

TurnItIn.com Acknowledgement: Students agree that by taking this course that all papers submitted for the course may be subject to submission for textual similarity review to Turnitin.com for the detection of plagiarism. All submitted papers will be included as source documents in the Turnitin.com reference database solely for the purpose of detecting plagiarism of such papers. Use of the Turnitin.com service is subject to the Usage Policy posted on the Turnitin.com site.
Tentative Course Outline

<table>
<thead>
<tr>
<th>Class</th>
<th>Date</th>
<th>Topic</th>
<th>Student Presentation Paper #</th>
<th>Problem Set Due</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1/26</td>
<td>Introduction and review</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1/31</td>
<td>Introduction and review</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2/2</td>
<td>Nonparametric basics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2/7</td>
<td>Nonparametric basics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2/9</td>
<td>Nonparametric basics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2/14</td>
<td>Nonparametric basics</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2/16</td>
<td>No class</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>2/23</td>
<td>Regression discontinuity designs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>2/28</td>
<td>Regression discontinuity designs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>3/2</td>
<td>Regression discontinuity designs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3/7</td>
<td>Regression discontinuity designs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>3/9</td>
<td>Regression discontinuity designs</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3/14</td>
<td>Cancelled due to snow storm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>3/16</td>
<td>Regression discontinuity designs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>3/21</td>
<td>Regression discontinuity designs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>3/23</td>
<td>Regression discontinuity designs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>3/28</td>
<td>Regression discontinuity designs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>3/30</td>
<td>Regression discontinuity designs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>4/11</td>
<td>Panel methods</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>4/13</td>
<td>Panel methods</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>4/18</td>
<td>Panel methods</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>4/20</td>
<td>Panel methods</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>4/25</td>
<td>Standard error issues</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4/27</td>
<td>Standard error issues</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>5/2</td>
<td>Standard error issues</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>5/4</td>
<td>Standard error issues</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>5/9</td>
<td>Catch up and Summary</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Course Readings (tentative; will be updated as the semester progresses) The main readings for each topic are listed below, with the most important references starred.

Introduction and review

AP, Chapters 2-4

CT, Chapter 4, 6.

Nonparametric Basics

(*) CT, Chapter 9.

Regression Discontinuity Methods

Panel Data

(*) AP Chapter 5

(*) W Chapter 10, 17

Standard Errors

(*) AP Chapter 9

Summary and Overview: Perspectives on Program Evaluation

