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Marine protected areas (MPAs) are increasingly employed worldwide to manage and 

conserve marine ecosystem services such as fisheries, coastal protection, habitat 

restoration, biodiversity conservation and tourism.  They are frequently used as a 

place-based approach with the aim of conserving fishery resources by restricting 

fishing to specific zones.  MPAs are particularly useful for managing species that are 

zoning boundaries.  For example, benthic communities and many invertebrate 

fisheries can be managed by the use of MPAs because their habitat ranges can be 

delineated and zoned for protection or exploitation.  In this work, I have researched 

ecological interactions in the benthic community of MPAs and evaluated governance 

strategies used to promote compliance with MPA regulations.  Enforcement of MPAs 

remains one of the key factors in ensuring sustainable resource use for some fisheries, 

though enforcement mechanisms leading to successful outcomes remain poorly 

understood worldwide.  As a result, it is necessary to consider how different 

governance strategies used to encourage compliance with MPA regulations may best 

sustain fishery resources.  In chapter one, I have analyzed different strategies used to 

promote compliance with regulations on ecological indicators of condition in the 



  

Greater Caribbean region.  I found that the use of both penalties and incentives to 

promote compliance may help form successful governance strategies. I also have 

examined ecological relationships affected by the presence of MPAs.  In chapter two I 

evaluate the distribution of an invasive tunicate, its interaction with the Atlantic sea 

scallop and the impact of the protected area as compared to open areas on this 

interaction.  In chapter three I evaluate how the invasive tunicate interacts with other 

species of the invertebrate community and how these interactions are altered by the 

protected area and the presence of fishing. This work enhances our understanding of 

marine management, though an analysis of MPA governance and ecological 

interactions shaped by MPAs.   Understanding both the governance and ecological 

aspects of MPAs provides a holistic framework for understanding their utility for 

marine conservation and management.  
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PREFACE 

I. Background    

  
Ecosystem-based management of natural resources has become a dominant paradigm in 

conservation science and the establishment of marine protected areas is one approach that can be 

used to implement such conservation strategies (Halpern et al. 2010).  The objective of 

ecosystem-based management strategies is to maintain the long-term sustainability of marine 

ecosystem services such as fisheries, clean water, aesthetic value, renewable energy, protection 

from coastal storms, recreational opportunities and tourism by focusing on the integrated process 

that facilitates ecosystem well-being and human health (Brodziak & Link 2002; Levin et al. 

2009).  The critical need for effective ecosystem-based management is ubiquitous in the 

scientific literature (Brodziak & Link 2002; Pikitch et al. 2004; Smith et al. 2007; Levin et al. 

2009); however, the complexity and uncertainty surrounding marine ecosystem dynamics and 

fishery resources has made implementation of these strategies challenging in many situations.   

Overfishing is one of the major threats to the integrity of marine ecosystems and marine 

protected areas (MPAs) are one method that can be effective in protecting species (Halpern 

2003; Micheli et al. 2004; Babcock et al. 2010; Edgar et al. 2014).  MPAs that restrict fishing to 

recent technological advances for observing ecosystem processes, provide novel opportunities 

for scientists to understand how management actions affect ecological processes that protect the 

integrity of habitat and drive the spatiotemporal distributions of fishery resources.  Information 

on the impacts of fishing beyond target species is invaluable to managers looking to assess the 

ecosystem-wide effects of fishery management actions.  By observing the effects of management 

actions such as closing and opening areas to fishing on the ecology of target and non-target 
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species, we can begin to implement strategies that incorporate ecological processes thereby 

reducing uncertainty in resource management.  Previous research on MPAs has demonstrated 

that different life history strategies and ecological functions must be protected in order for 

protected areas to be effective in an ecosystem context (Palumbi 2004).  Life history 

characteristics such as mobility, body size, habitat requirements and association with benthic 

habitats can influence species responses to protection in an MPA (Micheli et al. 2004; Garcia & 

Cochrane 2005; Ashworth & Ormond 2005; Tupper 2007).  Determining MPA impacts on 

specific ecological relationships is therefore paramount to fully evaluating their utility.   

Beginning in the 1990s marine protected areas became a more widely used management 

approach as many fisheries experienced declines.  For example, clear management failures 

leading to the collapse of a number of fisheries in the 1990s, most dramatically the cod (Gadus 

morhau) fishery on Georges Bank, led managers and conservationists to seek alternative 

management efforts such as the implementation of protected areas.  Two chapters from this work 

evaluate the ecological interactions occurring in Closed Area II of Georges Bank, which was 

originally put in place primarily to protect groundfish such as cod, though it has been more 

successful in contributing to higher yields in the Atlantic scallop fishery.  The work from this 

study evaluates the influence of this large protected area on invertebrate ecology. However, it is 

important to understand the historical underpinnings of the closed areas of Georges Bank and 

their original intent, as well as how the experience in this region has shaped trends in marine 

management worldwide.   

MPA advocates in the 1990s claimed fishery yields would be improved by MPA 

establishment.  However, by the late 2000s the utility of MPAs was extended to include the 

primary purpose of protecting biodiversity rather than being implemented with the sole objective 
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of increasing fishery yields.  The number of marine protected areas has grown exponentially in 

the past 15 years (Lubchenco & Grorud-Colvert 2015).  The Convention on Biological Diversity 

has set a target to protect at least ten percent of coastal and marine areas by 2020, though the 

current level of protection worldwide is around 3.5%, with 0.59% in no-take marine reserves 

(Lubchenco & Grorud-Colvert 2015).   

In cases where MPAs are established for general conservation, expectations frequently 

also include increases in fishery yield resulting in an overlap of conservation and fisheries 

objectives.  However, the methods for studying the consequences of conservation and fishery 

management actions often differ greatly, leading potentially to a mismatch of methods and study 

objectives.  Nonetheless guidelines for a MPA network design that reduce the tradeoff of 

conservation and fishery goals have been developed (Gaines et al. 2010).  Generally biomass of 

target species increases in MPAs, although there can be a large range of responses (Halpern et al. 

2004; Lester et al. 2009).  Numerous studies have outlined the variety of ecosystem responses to 

MPAs including the time it takes to see an effect after implementation (Halpern & Warner 2002; 

Micheli et al. 2004; Russ et al. 2008; Claudet et al. 2010), the types of species that can and 

cannot benefit from their implementation (Hilborn et al. 2004; Russ et al. 2004; Hart 2006; 

White & Kendall 2007; Kaplan 2009), and cascading effects through trophic levels as a result of 

their implementation (Micheli et al. 2004; Baskett 2006; Baskett et al. 2007).   

 A study has identified five conditions under which MPAs are most likely to increase 

abundance of fish: no-take marine reserves; the presence of effective enforcement; in place for a 

significant period of time; large; and isolated by distance from habitat barriers (Edgar et al. 

2014). Empirical data from the Edgar et al. 2014 study indicate that MPAs will increase the 

abundance of target species insides reserves when these conditions are met.  This dissertation 



 

19  
  

includes MPAs that meet some of these conditions, for example Closed Area II of Georges Bank 

is a large well-enforced MPA that has been closed to bottom-fishing since 1994. Yield from 

target fisheries such as the Atlantic sea scallop have increased dramatically since the closed areas 

have been implemented (Hart & Rago 2006). Additionally, since enforcement has been identified 

as a key feature of a successful MPA, this dissertation evaluates 21 MPAs from the Greater 

Caribbean region and assesses the utility of governance strategies for compliance in a region that 

is varied in terms of the strength of its governing institutions.   

 Together these studies provide a background for understanding the effects of MPAs as 

demonstrated in different ecological and managerial contexts.  Their utility in these different 

systems can be evaluated to provide a holistic representation of the conservation value of MPAs 

from both a local and global perspective.  As ecosystems respond to impacts from continually 

expanding human influence, ensuring that resources are managed sustainably is essential for 

future generations to meet their needs.  MPAs are one management tool that can aide in 

protecting fishery resources and meeting conservation goals, however fully assessing the 

implementation and effects of MPAs on ecological processes is necessary to understand both 

their potential and limitations.  

II.            Study  Objectives  

                  In  this  dissertation,  I  provide  a  contribution  to  our  understanding  of  MPAs  in  terms  of  their  

governance  and  their  impact  on  ecological  interactions.    Understanding  resource  user  behavior  

and  compliance  with  MPA  regulations  is  essential  to  evaluating  the  efficacy  of  MPAs  as  a  tool  

for  marine  management.    Evaluating  the  human  dimensions  and  regulatory  efforts  leading  to  

successful  MPA  governance  is  also  necessary  to  ensure  that  MPAs  are  implemented  properly  

and  have  the  greatest  chance  of  success  in  reaching  management  objectives.    Other  studies  have  

indicated  that  enforcement  is  one  of  the  key  features  enabling  MPAs  to  reach  their  conservation  
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potential  (Edgar  et  al.  2014).    Therefore,  evaluating  specific  enforcement  strategies  contributes  to  

our  understanding  of  one  main  aspect  of  successful  MPA  governance.      

                      Furthermore,  evaluating  the  impacts  of  MPAs  on  ecological  relationships  is  necessary  to  

fully  understand  their  effects  in  terms  of  both  target  species  and  non-­target  species.    

Implementing  ecosystem  based  management  requires  an  analysis  of  the  ecosystem  wide  effects  

of  processes  such  as  fishing  as  well  as  the  value  protected  areas  can  add  to  ensuring  ecosystem  

structure  and  function  remain  intact.    For  example,  anthropogenic  impacts  such  as  the  spread  of  

invasive  species  may  be  exacerbated  by  fishing  since  some  invasive  species  spread  using  

commercial  vessels  as  a  vector.    Therefore,  MPAs  may  serve  as  a  refuge  for  many  marine  

populations  by  keeping  habitats  intact  and  reducing  degradation  by  fishing  and  other  

anthropogenic  influences  such  as  introduced  species.  Furthermore,  MPAs  have  utility  in  

protecting  ecological  relationships  that  can  serve  as  a  guide  for  how  organisms  interact  in  

environments  where  human  influence  is  limited  or  excluded.  By  comparing  these  protected  areas  

to  areas  open  to  fishing  pressure  we  can  gain  a  fuller  understanding  of  the  extent  of  the  

consequences  of  extractive  fishing  activities.    Overall  the  work  presented  here  provides  an  

understanding  of  how  successful  governance  of  MPAs  influences  ecosystem  function  by  

protecting  ecological  relationships  among  target  and  non-­target  species.  Below,  I  describe  the  

rationale  for  each  chapter,  the  study  objectives  and  individual  hypotheses  investigated.    A  

summary  of  the  key  findings  are  briefly  presented  following  this  overview.  
  

a. Chapter  1:  Linking  ecological  condition  to  enforcement  of  marine  protected  area  

regulations  in  the  greater  Caribbean  region  

  MPAs  are  designed  to  manage  human  behavior  by  restricting  fishing  access  in  

ecologically  sensitive  areas.    Thus,  a  full  understanding  of  the  potential  utility  of  an  MPA  must  

be  placed  in  the  context  of  managing  human  behavior.    A  primary  challenge  with  implementing  

MPAs  worldwide  is  ensuring  enforcement  is  adequate  and  that  resource  users  abide  by  
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regulations.    Thus,  I  evaluated  different  types  of  governance  strategies  designed  to  promote  

compliance  with  MPA  regulations  in  several  countries  in  an  attempt  to  identify  effective  

governance  mechanisms  for  promoting  sustainable  resource  use.    The objective of this chapter is 

to demonstrate the potential of multi-country comparisons in exploring complex social-

ecological systems, by examining the relationships between various styles of marine resource 

governance and the associated indicators of ecological condition inside MPA boundaries within 

the Greater Caribbean. I explored the influence of both penalties and incentives in promoting 

compliance with marine resource use regulations in 21 MPAs in the greater Caribbean region.  I 

synthesized existing data on MPA governance (Mascia 1999) and ecological condition (AGRRA, 

agrra.org) to explore how variation in MPA governance shapes ecological condition within MPA 

boundaries.  This study focuses on correlations between the strategies used to promote 

compliance with MPA regulations and ecological indicators such as the biomass and density of 

commercially significant fish species, fish in various functional groups, as well as percentages of 

live hard coral cover within the studied MPAs.  Fish metrics of commercially-valued species, in 

particular high trophic level species such as snappers and groupers, are widely used to evaluate 

the effects of fishing on coral reefs (Chiappone et al. 2000).  The life history characteristics of 

these commercial species such as large body size and slow and late maturity make them highly 

vulnerable to the fishing pressure, thus these species are necessary to consider in conservation 

strategies (Kaplan et al. 2014).  For this study I hypothesized that enforcement strategies which 

use a higher number of penalties and incentives to promote compliance with MPA regulations 

will be positively correlated with more sustainable resource use resulting in greater fish biomass 

and density of commercial species. 
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b. Chapter  2:  The  distribution  of  the  invasive  tunicate  (Didemnum  vexillum)  in  Atlantic  sea  

scallop  (Placopecten  magellanicus)  habitat  on  fishing  grounds  and  a  large  protected  

area  of  Georges  Bank  

While the success of MPAs in promoting increases in fish biomass in some fisheries has 

been well-documented, less is known about how MPAs might serve to protect against impacts 

from invasive species.  An invasive colonial tunicate (Didemnum vexillum) has been located both 

inside and outside of the MPAs on Georges Bank since its initial discovery in 1998.  For this 

chapter I determined if the invasive D.vexillum 

valuable fishery, the Atlantic sea scallop. The habitat camera mapping system (HabCam), a 

vessel-towed underwater camera system, was utilized to explore the spatial distribution of sea 

scallops and D. vexillum in protected and unprotected areas of Georges Bank. I assessed if this 

invasive species negatively correlates to the distribution of sea scallops and evaluated the 

potential role MPAs play in limiting the nsion.  The closed areas of 

Georges Bank provide an important opportunity to determine how bottom fishing affects benthic 

community structures since large sections have been closed to bottom fishing since 1994.  

Activities such as scallop dredging and bottom trawling may have the potential to facilitate the 

spread of the invasive D. vexillum due to increased colony fragmentation (Morris & Carman 

2012), or the disturbance from bottom-fishing may create more preferable habitat for D. 

vexillum, though further studies are necessary to evaluate specific mechanisms of its spread. I 

hypothesized that areas open to fishing will have greater concentrations of the invasive D. 

vexillum and that there will be a negative relationship between D. vexillum and sea scallops due 

of adults (Morris et al. 2009).  This work furthers our understanding of invasive species effects 
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and how species interactions may be influenced by the use of protected areas.  Possible 

management actions designed to mollify the negative impacts of the invasive D. vexillum on 

essential fish habitat are also discussed in this chapter.   

 

c. Chapter  3:  Invasive tunicate restructures invertebrate community in fishing grounds and 
a large protected area on Georges Bank 

 
 

This  study  assesses  the  impacts  of  the  invasive  tunicate  Didemnum  vexillum  on  

invertebrate  species  in  the  benthic  community  and  how  these  interactions  are  affected  by  bottom-­

fishing  as  compared  to  those  occurring  in  the  protected  area.    Fishing impacts myriad species and 

processes beyond the fishery, which is evident from numerous studies on the problem of bycatch 

and habitat destruction. Only through a full understanding of the consequences of alternative 

management options beyond target species can we begin to fully comprehend the impact that 

implementing ecosystem-based strategies have for fishery management.   The HabCam system 

can be used, among other things, to address questions related to the extent of damage bottom-

fishing incurs in benthic marine habitats.  Several studies indicate that dredging disturbances 

reduce the diversity and abundance of benthic communities in the region (Collie et al. 1997; 

Auster et al. 1996).  Further studies show that bottom fishing gear damages epifaunal taxa and 

thus reduces habitat complexity (Jennings and Kaiser 1998; Fogarty and Muraski 1998). 

Additionally, invasive species may be degrading valuable fishery habitat in this region, which 

potentially is exacerbated by fishing effects.  Evaluating the ecosystem level effects of these 

processes will provide valuable information to managers to fully assess the impact of 

management actions beyond the target species.  

For  this  chapter,  I  hypothesized  that  D.vexillum  would  demonstrate  a  negative  
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relationship  with  most  other  invertebrate  benthic  species  due  to  its  acidic  colony  surface  and  

allelopathic  compounds  present  in  its  tunics.    I  used  the  habitat  camera  mapping  system  

(HabCam)  to  explore  the  spatial  distribution  of  benthic  marine  invertebrates  and  D.  vexillum  in  

areas  protected  and  unprotected  from  bottom-­fishing  on  Georges  Bank  to  test  if  benthic  

invertebrates  are  negatively  correlated  with  this  invasive  species.    I  also  assessed  how  the  

invertebrate  community  changes  in  the  presence  of  D.vexillum  using  multivariate  data  analysis.  

Additionally,  I  evaluated  if  the  abundances  of  these  invertebrates  is  greater  in  areas  open  or  

closed  to  bottom-­fishing.    I  hypothesized  that  habitat  degradation  may  be  occurring  due  to  the  

combined  effects  of  the  invasive  tunicate  and  bottom-­fishing.    Multivariate  data  analysis  was  

used  to  identify  fishing  effects  and  invasive  species  effects  separately.  The  interactions  among  

benthic  organisms  are  structured  by  both  the  invasive  species  spreading  across  the  habitat  and  the  

effects  of  fishing.  This  work  can  further  our  understanding  of  ecological  interactions  occurring  in  

the  benthic  community  of  MPAs  and  the  role  MPAs  play  in  structuring  these  interactions.     

III. Description  of  key  findings  

  

a. Chapter  1:  Linking  ecological  condition  to  enforcement  of  marine  protected  area  

regulations  in  the  greater  Caribbean  region  

            This  study  included  a  review  of  literature  on  compliance  with  MPA  regulations  and  an  

exploratory  data  analysis  to  evaluate  links  between  strategies  used  to  promote  compliance  with  

MPA  regulations  and  indicators  of  ecological  condition  for  21  MPAs  in  13  different  countries  

and  territories  of  the  Greater  Caribbean  region.  The  results  from  this  study  found  an  increase  in  

the  number  of  incentives  and  penalties  was  positively  correlated  with  higher  commercial  fish  

biomass  in  Caribbean  MPAs.    Although,  penalties  are  generally  employed  to  enforce  regulations,  

this  study  highlights  that  incentives  may  also  play  an  important  role  in  governing  successful  

MPAs.    Additionally,  an  interaction  between  penalties  and  incentives  showed  that  these  methods  
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together  may  be  more  effective  than  using  penalties  alone.    The  sustainable  and  efficient  

management  of  resources  is  conditioned  on  the  imposed  regulations  being  controlled  and  

enforced.    However,  in  developing  countries  resources  for  enforcement  may  be  lacking.    

Therefore,  incentives  may  provide  added  returns  on  efficacy  compared  to  the  investment  

required  to  provide  them.    Additionally,  other  studies  have  supported  that  interactions  among  

incentives  can  lead  to  governance  systems  that  are  more  resilient  in  protecting  marine  areas  from  

anthropogenic  and  natural  perturbation  (Jones  2014).      

  

b. Chapter  2:  The  distribution  of  the  invasive  tunicate  (Didemnum  vexillum)  in  

Atlantic  sea  scallop  (Placopecten  magellanicus)  habitat  on  fishing  grounds  and  

closed  areas  of  Georges  Bank    

            This  study  evaluated  the  invasion  of  Didemnum  vexillum  on  Georges  Bank  and  demonstrated  

a  negative  correlation  with  the  Atlantic  sea  scallop.    The  Atlantic  scallop  is  currently  the  highest  

valued  fishery  in  the  region  with  profits  reaching  about  $500  million  annually.    Both  scallop  and  

D.vexillum  prefer  gravel  habitat  that  also  serves  as  nursery  habitat  for  juvenile  fishes.    The  

species  distributions  were  analyzed  visually  using  data  collected  from  the  vessel-­towed  

underwater  imaging  system  (HabCam).    The  distribution  of  the  invasive  tunicate  was  

significantly  greater  in  the  area  open  to  bottom-­fishing,  which  is  actively  dredged.    Additionally,  

D.vexillum  can  reproduce  asexually  and  colony  fragmentation  from  dredging  may  also  be  a  

possible  mechanism  for  it  spread,  though  more  data  is  necessary  to  investigate  this  hypothesis.    

Overall,  the  results  from  this  study  demonstrate  the  spread  of  an  invasive  tunicate  that  may  affect  

habitat  of  a  valuable  invertebrate  fishery  on  Georges  Bank.      

  

c.     Chapter  3:  Invasive  tunicate  restructures  invertebrate  community  on  fishing  

grounds  and  closed  areas  of  Georges  Bank  

  
        For  this  chapter,  I  assessed  the  impact  of  the  invasive  tunicate  (D.vexillum)  on  the  invertebrate  
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community  of  Georges  Bank.    I  used  data  from  the  habitat  camera  mapping  system  to  determine  

densities  of  invertebrates  and  I  modeled  individual  interactions  of  invertebrates  with  D.vexillum.  

When  present  in  the  invertebrate  community,  D.vexillum  is  a  major  driver  of  variation  among  

sites  analyzed.  Some  species  reassociate  based  on  a  positive  or  negative  response  to  its  presence.      

It  appears  to  restructure  the  invertebrate  community  when  present  forming  a  distinct  grouping  

around  it  in  both  open  and  closed  areas.    Additionally,  the  community  it  forms  generally  are  with  

species  that  are  more  abundant  in  the  area  open  to  bottom-­fishing,  though  associations  for  most  

species  with  D.vexillum  are  consistent  even  in  the  closed  area.    I  observed  that  associations  

among  species  were  more  diffuse  and  not  as  closely  clustered  in  the  area  open  to  fishing  as  

compared  to  the  closed  area,  indicating  that  bottom-­fishing  may  alter  ecological  interactions  

occurring  among  species.    Didemnum  vexillum  may  colonize  space  opened  up  by  bottom-­fishing,  

resulting  in  a  synergistic  interaction  leading  to  habitat  degradation,  though  more  data  may  be  

necessary  to  assess  this  hypothesis.  In  summary,  I  provide  evidence  of  D.vexillum  restructuring  

the  invertebrate  community  on  Georges  Bank  and  demonstrate  the  consequences  that  a  protected  

area  can  have  on  these  interactions  as  compared  to  areas  open  to  fishing.      
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CHAPTER 1 

LINKING ECOLOGICAL CONDITION TO ENFORCEMENT OF MARINE PROTECTED 

AREA REGULATIONS IN THE GREATER CARIBBEAN REGION 

 

Abstract 

Marine protected areas (MPAs) are increasingly employed worldwide to conserve marine 

resources. However, information on the role of governance mechanisms, in particular those 

associated with compliance, in shaping ecological condition inside MPAs at the regional scale 

remains deficient.  An exploratory data analysis was conducted to evaluate links between 

strategies used to promote compliance with MPA regulations (e.g. incentives and penalties) and 

indicators of ecological condition, including biomass and density of commercial fish species, fish 

functional groups and coral cover in 21 MPAs across 13 different countries and territories in the 

greater Caribbean region. The strategies used to promote compliance with MPA regulations were 

correlated with indicators of ecological condition. For example, MPAs in which a larger number 

of incentives and penalties are present in the governance system are associated with higher 

commercial fish biomass and density as compared to those with fewer penalties and incentives 

available to promote compliance.  Although most MPAs in the greater Caribbean use penalties to 

enforce compliance, our results suggest incentives may also be an important governance strategy 

for ensuring efficacy of protected areas in conserving key species. Alternatively, the presence of 

a high number of penalties and incentives in governance systems may also be indicative of 

greater state capacity and political will in these MPAs resulting in better managed MPAs.  

Further research is necessary to evaluate results of the exploratory data analysis presented in this 

study with a more in depth analysis of the de facto use of the regulations evaluated and their 
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efficacy.   Multi-country comparisons of MPA governance and ecological indicators can help 

policy and decision makers maintain MPAs that most effectively achieve MPA conservation 

objectives.  (Originally published as Kaplan et al. 2015).  

 

1. Introduction 

Marine protected areas (MPAs) are increasingly employed worldwide as an ecosystem-

based management strategy used to prevent the degradation of sensitive marine ecosystems and 

to manage and conserve ecosystem services such as fisheries, coastal protection, habitat 

restoration, biodiversity conservation and tourism (Palumbi 2004; Edgar et al. 2007; Halpern et 

al. 2008, 2010).  MPAs are key strategies for sustaining ecosystem services particularly in 

tropical developing countries where regulation of catch and fishing effort are challenging in the 

prevalent multi-species, multi-gear, small-scale fisheries (Gutiérrez et al. 2011). The 

management of MPAs has relied on a diverse set of governance strategies, which have included 

penalties, incentives and appeals to user values, attitudes, and beliefs (Kuperan & Sutinen 1998; 

McCay & Jones 2011; Jones et al. 2013; Jones 2014a).  While much funding and effort has been 

put into the development of MPAs (Edgar et al. 2007, 2014; Guarderas et al. 2008; Jones 2014b) 

those governance strategies that lead to positive social and environmental outcomes remain 

poorly understood (Fox et al. 2012b, 2014).  Wide variation has been observed in the effects of 

MPAs on ecological (Halpern 2003; Micheli et al. 2004; Mumby 2006; Lester et al. 2009; 

Babcock et al. 2010)  and social factors (Mascia 2003; Klein et al. 2008; Mascia & Claus 2009; 

Mascia et al. 2010) , yet explanations of the drivers of this variation remain tenuous.  MPAs that 

al. 2006; McClanahan et al. 2006; Christie & White 2007).  Large-scale multi-country 
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comparisons of governance features and scientific studies measuring the impacts of MPAs are 

necessary to understand the aspects of MPA management that are linked to positive outcomes 

such as maintaining ecosystem structure, function, and delivery of ecosystem services (Halpern 

et al. 2008; Fox et al. 2012a, 2014).  

In this paper, we examine  the potential of multi-country comparisons in exploring 

complex social-ecological systems, by examining the relationships between marine resource 

governance and indicators of ecological condition inside MPA boundaries within the Greater 

Caribbean.  We focus on governance strategies used to promote compliance with marine 

resource use regulations that govern who may use marine resources, as well as how, when and 

where they may use them.  The likelihood of compliance with marine resource regulations is 

shaped by multiple factors including individual-level factors and perceptions, regulatory 

enforcement, as well as incentives and regulatory alternatives.      

1.1 Individual-level factors and perceptions 

At the individual level, fisher perceptions of the regulatory process and its outcomes are 

significant drivers of compliance behavior in marine contexts (Table 1). Moral obligation, social 

influence, shared norms and perceived legitimacy of authorities charged with implementation of 

regulations are important factors influencing fisher adherence to regulations (Ostrom 1990; 

Kuperan & Sutinen 1998; Hatcher et al. 2000).  Regulations must be perceived by fishers as 

biologically meaningful and effective in conserving fish stocks (Raakjær Nielsen & Mathiesen 

2003).  Prevailing distrust among fishers for the work of fisheries scientists and the belief that 

comply with regulations (Raakjær Nielsen & Mathiesen 2003). Therefore, fisher perceptions of 

the legitimacy of the regulations matter greatly (Kuperan & Sutinen 1998; Raakjær Nielsen 
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2003; Viteri & Chávez 2007) .  However, compliance is not only influenced by perceived 

legitimacy of regulations, but also the perceived legitimacy of the process for enforcing 

regulations (Raakjær Nielsen 2003) . Compliance has been shown to increase when monitoring 

of behavior and penalties for noncompliance is accountable, legitimate, and equitable (Raakjær 

Nielsen 2003).  Finally, fisher perceptions of how the process affects themselves and their 

livelihoods relates to compliance behavior (McClanahan et al. 2005). The distribution of benefits 

and costs among MPA stakeholders as a result of regulations must be perceived as fair, as must 

fisher perceptions of how respectfully they are treated by enforcement authorities (Alder et al. 

1994; Kuperan & Sutinen 1998; Hønneland 2000).  

1.2 Regulatory enforcement 

Governance attributes designed to promote compliance have been shown to encourage 

sustainable resource use (Table 1). Monitoring and enforcement of MPA regulations organized 

via graduated sanctions in which rule violators are punished based on the severity and context of 

offense and the characteristics of the violator are considered a successful tool (Ostrom 2008). A 

lack of enforcement leading to regulatory noncompliance is often cited as a main cause of failure 

for many MPA management strategies (Crawford et al. 2004; McClanahan et al. 2006; Edgar et 

al. 2014), while increased enforcement of regulations and subsequent compliance has been 

correlated to higher fish biomass and richness on a global scale two indicators of successful 

conservation (Pollnac et al. 2010; Edgar et al. 2014).  

Classic enforcement models indicate that individuals are deterred from violating 

regulations when the probability of detection is high and the penalty is severe, outweighing the 

potential for illegal gains (Kuperan & Sutinen 1998; Raakjær Nielsen 2003).  However, for 

illegal fishing in many countries the probability of detection and conviction is usually low and 
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sanctions are often lenient and uncertain; thus, the penalties frequently do not offset financial 

gains, leading to violations (Kuperan & Sutinen 1998). For example, previous failures in marine 

management due to high levels of non-compliance behavior in ground fish fisheries on the US 

East Coast can partially be explained by the relatively low economic sanctions compared to large 

economic gains obtained from illegal fishing as well as distrust among stakeholders groups 

(Kaplan & McCay 2004). Therefore, in the context of marine resources and illegal fishing, while 

surveillance and severity of sanctions are important, they may not necessarily be the decisive 

factors influencing compliance (Hønneland 2000).   

Regulatory enforcement is costly and in developing countries in particular resources 

available for conservation purposes are often limited (Balmford et al. 2002).  High transaction 

costs required to monitor and enforce MPAs as well as the high levels of management costs may 

necessitate a conjunction of methods used to promote compliance (Naidoo et al. 2006). 

Incentives may provide added levels of efficacy and may be more cost-effective compared to the 

monitoring and enforcement of penalties (Hutton & Leader-Williams 2003). In addition to the 

costs of a penalties-based approach for MPA management and enforcement, penalties come at a 

cost for the fishers as well (Raakjær Nielsen 2003; Gjertsen & Niesten 2010). In a penalty 

scenario, fishers are forced to weigh the costs of sanctions with the benefits of breaking the rules; 

incentives create scenarios that diminish the opportunity costs of abiding by the rules since by 

abiding by the regulations they experience gains (Hutton & Leader-Williams 2003; Hilborn et al. 

2005; Gjertsen & Niesten 2010). Therefore, consideration of incentives as an addition to 

penalties for encouraging desired fisher behavior might be worthwhile.  

1.3 Incentives  

Incentives that address the individual-level factors and perceptions, as discussed earlier, 
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have been shown to aid in encouraging compliance behavior (Table 1). Incentives are defined in 

this study as regulatory measures designed to encourage resource users to act in accordance with 

strategic policy outcomes intended for MPA objectives to be achieved (Jones 2014a).  Similar to 

classifications of incentives from previous studies (Jones 2014a), incentives can be categorized 

as economic (i.e. market-based solutions and property rights used to achieve MPA objectives), 

participative (i.e. participation of local users in management decisions), interpretative (i.e. 

promoting awareness of conservation features, regulations and restrictions, and benefits of the 

MPA) or knowledge based (i.e. respecting and promoting different sources of knowledge from 

local-traditional to expert-scientific as well as methods for addressing uncertainty and knowledge 

deficits).  Participatory incentives such as, empowering local users to control resource access and 

enforce regulations in small-scale fisheries has been shown to promote sustainable resource use 

in some cases (Basurto 2008; Basurto & Coleman 2010). Collective choice decision-making 

arrangements are hypothesized to enhance the sustainability of marine resource governance 

systems by fostering a shared sense of ownership encouraging responsible fishing (Basurto 2008; 

Ostrom 2009; Basurto & Coleman 2010; Gutiérrez et al. 2011), greater sensitivity to 

socioeconomic and ecological constraints (Gutiérrez et al. 2011), increased compliance with 

regulations through peer pressure (Raakjær Nielsen 2003), as well as greater transparency and 

accountability of monitoring and enforcement (Basurto 2005a).  

Economic incentives such as rights-based management schemes for fisheries in which 

restrictions are placed on access to the fishery through methods such as catch shares have been 

successful in many cases (Costello et al. 2008). Rights-based management schemes create 

incentives for resource users to conserve fish by providing fishers economic property rights to 

the fishery, which ensures fishers bear the costs of overexploitation (Hilborn et al. 2005; Grafton 
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et al. 2006).  Additionally, development of alternative livelihoods to reduce destructive fishing 

practices has been effective for promoting pro-conservation behavior in some MPAs (Nur et al. 

2001). Other economic incentives may include providing compensation to resource users who 

bear costs due to MPA restrictions such as buybacks of fishing vessels, licenses, access, gear, use 

or other rights (Macintosh et al. 2010; Squires 2010; Jones 2014a).  Interpretative incentives 

include public communication, education and awareness on the significance and susceptibility of 

marine ecosystems to anthropogenic and natural threats and the benefits of the MPA (Petrosillo 

et al. 2007; Leisher et al. 2012; Jones et al. 2013).  These incentives may also include promoting 

awareness of MPA regulations and restrictions to promote compliance with regulations (McCAY 

& Jones 2011; Leisher et al. 2012; Jones et al. 2013).  Additionally knowledge-based incentives 

include incorporating different types of knowledge from local and indigenous to expert to form 

MPA management strategies (Drew 2005; Aswani & Lauer 2006; Gerhardinger et al. 2009; 

Jones 2014a).  Knowledge-based incentives may also include strategies for managing 

uncertainty, data deficiency and conflicting objectives when making MPA management 

decisions (Wood & Dragicevic 2006; Salomon et al. 2011; Jones 2014a; Kaplan et al. 2014).  

Studies have focused primarily on penalties used to enforce protected area regulations (Viteri & 

Chávez 2007; Edgar et al. 2014); given the potential for incentives to promote compliance with 

regulations we explore links between incentives and penalties on ecological indicators in MPAs. 

 
Table 1.1 Factors influencing resource user compliance with MPA regulations 

Individual level factors & perceptions Source 

 
Regulations perceived as biologically 
meaningful 

 (Raakjær Nielsen & Mathiesen 2003) 
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Regulations perceived as legitimate 

 
(Raakjær Nielsen 2003; Viteri & Chávez 2007)  

 
Authorities perceived as legitimate 

 
(Raakjær Nielsen 2003; Viteri & Chávez 2007; 
Gutiérrez et al. 2011)  

 
Sense of moral obligation 

 
(Kuperan & Sutinen 1998; Hønneland 2000; 
Raakjær Nielsen 2003)    

 
Treated respectfully by authorities 

 
(Kuperan & Sutinen 1998; Raakjær Nielsen 
2003)  

 
Perceived fairness in cost/benefit 
distribution 

 
(Alder et al. 1994; Kuperan & Sutinen 1998; 
Raakjær Nielsen 2003)   

  

 
Regulatory enforcement factors 

 
Source 

Enforcement strategy exists (Crawford et al. 2004; McClanahan et al. 2006)  

 
High probability of violators being 
detected 

(Kuperan & Sutinen 1998; Raakjær Nielsen 
2003)  

High penalty for violation  (Kuperan & Sutinen 1998; Raakjær Nielsen & 
Mathiesen 2003; Kaplan & McCay 2004)  

 
Graduated sanctions for violations 

 
(Ostrom 2008, 2009)  

  

 
Participatory incentives Source 

  

Opportunity for self-control and self-
enforcement  
 
Co-management of MPAs with fishers 
 

(Basurto 2005b, 2008; Ostrom 2009; Basurto & 
Coleman 2010; Gutiérrez et al. 2011) 
 
 
(Basurto 2005b, 2008; Ostrom 2009; Basurto & 
Coleman 2010; Gutiérrez et al. 2011)   
 

Economic incentives Source 

Provision of alternative livelihoods (Nur et al. 2001)  
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Rights based management schemes 
 
(Hilborn et al. 2005; Costello et al. 2008)  
 

Buyback for fishing gear, licenses or 
rights 

(Macintosh et al. 2010; Squires 2010; Jones 
2014a) 

 
Interpretative incentives 

 
Source 

 
Public communication, education and 
awareness of MPA objectives and 
benefits 

(Petrosillo et al. 2007; Leisher et al. 2012; Jones 
et al. 2013) 

 
Promoting awareness of MPA 
regulations and restrictions 
 
 

(McCAY & Jones 2011; Leisher et al. 2012; 
Jones et al. 2013) 
 

 
Knowledge-based incentives 

 
Source 

 
Incorporating different types of 
knowledge 
 
 

(Drew 2005; Aswani & Lauer 2006; 
Gerhardinger et al. 2009; Jones 2014a)(McCAY 
& Jones 2011; Leisher et al. 2012; Jones et al. 
2013) 
 

Managing uncertainty, data deficiency 
and conflicting objectives 
 

(Wood & Dragicevic 2006; Salomon et al. 2011; 
Jones 2014a; Kaplan et al. 2014) 



 

40  
  

 

1.4 Study aims 

We explored the link between both penalties and incentives intended to promote 

compliance with marine resource use regulations and indicators of ecological condition in 21 

MPAs in the greater Caribbean region.  We synthesized existing data on MPA governance 

(Mascia 2000), Mascia unpublished data, and ecological condition (AGRRA, agrra.org) to 

explore how variation in MPA governance shapes ecological condition within MPA boundaries.  

Our study focused on correlations between the strategies used to promote compliance with MPA 

regulations and ecological indicators such as the biomass and density of commercially significant 

fish species and fish in various functional groups as well as percentages of live hard coral cover 

within the studied MPAs.  Fish metrics of commercially-valued species, in particular carnivores 

such as snappers and groupers, are widely used to evaluate the effects of fishing on coral reefs 

(Chiappone et al. 2000).  The life history characteristics of these commercial species such as 

large body size and slow and late maturity make them highly vulnerable to the fishing pressure, 

thus these species are necessary to consider in conservation strategies (Kaplan et al. 2014).  We 

hypothesized that enforcement strategies which use a higher number of penalties and incentives 

to promote compliance with MPA regulations would be positively correlated with more 

sustainable resource use resulting in greater fish biomass and density of commercial species.  

This study uses quantitative techniques to explore links between governance and ecological data 

though further analysis using qualitative analysis may be necessary to evaluate the results 

indicated. 

2. Methods   

2.1 Study area 
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The number of MPAs in the greater Caribbean region has increased rapidly since the 

orld Database 

Caribbean vary substantially (Guarderas et al. 2008), the general consensus is that fish stocks are 

depleted and severely overfished in some areas (Jackson et al. 2001, 2014; Cramer et al. 2012).  

In addition to problems of overfishing, global climate change and the spread of marine diseases 

in Caribbean MPAs have furthered coral reef decline (Aronson & Precht 2006; Carpenter et al. 

2008; Jackson et al. 2014).  The loss of coral cover in the region has been significant (Jackson et 

al. 2001, 2014; Gardner et al. 2003) and studies have highlighted the need for ecosystem-based 

management strategies focusing on maintaining the resilience of marine ecosystems to a variety 

of perturbations (Bellwood et al. 2004).   Despite these challenges, MPAs remain a key strategy 

in protecting coral reef biodiversity in the Caribbean.  Twenty-one MPAs in 13 different 

countries and territories in the greater Caribbean region were used for analysis in this study 

(Figure 1.1), with the corresponding number of ecological sites analyzed inside each MPA with 

the area and date of establishment (Table A1).  The 21 MPAs were selected as sites that 

overlapped from the Atlantic Reef Rapid Gulf Assessment Program (agrra.org) and the marine 

resource governance survey collected by Mascia 2000 (Mascia 2000), Mascia unpublished data.  
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Figure 1.1. Map of 21 Caribbean MPAs analyzed in this study. 
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2.2 Enforcement of regulations data 

We draw on data collected by Mascia 2000, Mascia unpublished data, to characterize marine 

resource governance in Caribbean MPAs.  Mascia 2000 conducted an international mail survey 

of MPA managers in the greater Caribbean region in 1999 posing 16 constrained-choice 

questions focusing on the marine resource governance system in a single MPA based on the 

methodology described in Mascia 1999.  The individual directly responsible for site management 

in the MPA was chosen as site respondent. Two questions focused on the system of penalties and 

incentives used to promote compliance with MPA regulations.  The respondent was asked if the 

following penalties were present based on the legal framework governing the MPA: verbal or 

written warnings, fines, loss of access to natural resource, confiscation of equipment, 

incarceration, or other.  The respondent was also asked if the following incentives were present 

based on the legal framework governing the MPA: environmental education, skills training, 

exchange of equipment, purchase of equipment, employment, or other.  These incentives can be 

categorized based on incentive type. Interpretative incentives analyzed include environmental 

education and skills training.  Participatory incentives include employment, while purchase and 

exchange of equipment are economic incentives.  One question identified the marine resource 

uses permitted in the MPA and the extent to which these uses were zoned based on the legal 

framework governing the MPA.  MPA managers were asked if the harvest of marine life is 

permitted in all regions of the MPA, restricted in regions of the MPA, or prohibited in the MPA.  

The survey questions regarding the marine resource uses permitted in the MPA were used to 

identify impacts of the different commercial use regulations on indicators of ecological condition 

(Mascia 1999), www.agrra.org.   
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2.3 Ecological data from the Atlantic Gulf Rapid Reef Assessment 

We synthesized data from the Atlantic Gulf Rapid Reef Assessment (AGRRA) database 

n MPAs of the greater 

Caribbean region.   The AGRRA data were originally collected between 1997-2004 to complete 

a regional assessment of the health of coral reefs in the Western Atlantic and Gulf of Mexico 

using a standardized sampling protocol (Table A1). AGRRA sites are surveyed in a probabilistic 

fashion to yield information representative of large areas, such as shelves, islands, countries or 

ecoregions, i.e., at the scales over which many reef structuring processes and impacts occur 

(www.agrra.org).  Benthic cover was recorded at 10 cm intervals on each of six 10 m long 

transect lines, which were conducted at transect lengths of 10 m by 1 m2   during which the size 

and condition of all corals greater than or equal to 4 cm were recorded for AGRRA surveys.  

Benthic cover was recorded via point intercept counts in which substratum was recorded below 

each 10 cm mark along the transect line.  The percent coral cover was calculated as percentage of 

the total cover of substratum. Substratum was recorded as live coral cover, dead coral, pavement, 

rubble, sand or other.   Furthermore fish biomass and density estimates were also obtained from 

the AGRRA dataset, which includes fish at the species and family level as well as biomass and 

density estimates of commercially significant species identified through FishBase (agrra.org; 

fishbase.org).  Biomass is estimated by adding the weights of fish by using body-length and the 

length-weight conversion W=aLb , where (W) is the weight in grams, (L) is the body length in 

cm and (a) and (b) are constants obtained from FishBase .  For fish surveys, roving divers 

determined counts and sizes for all fishes in the water column within 30 m by 2 m wide belt 

transects.  The data used were site-level averages from a series of transects (>4) conducted at 

each site (www.agrra.org; Vallès & Oxenford 2014).  Temporal considerations between the time 

http://www.agrra.org/
http://www.agrra.org/
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of governance data collection and ecological data were researched to determine consistency of 

management regulations during the study time period (Appendix A, Table A1) 

2.4 Data analyses 

Survey data related to compliance and marine resource use was connected to ecological 

indicators for all sites within each MPA for all analyses (Table A1).  The number of penalties 

and incentives present in each MPA was counted and individual penalty types (verbal or written 

warnings, fines, loss of access to resource, confiscation of equipment, incarceration or other) and 

incentive types (environmental education, skills training, exchange of equipment, purchase of 

equipment, employment or other) were correlated to ecological data. Ecological indicators 

analyzed include site-level averages of percent live hard coral cover, total fish biomass, 

commercially significant fish species, and several fish functional groups including: herbivore 

biomass, invertivore biomass, piscivore biomass and parrotfish biomass.  Parrotfish were the 

only group analyzed on the family level because of their well-documented role in maintaining 

resilience in coral reef ecosystems (Bellwood et al. 2004; Mumby et al. 2013) and they can be 

used as an indicator of fishing pressure (Vallès & Oxenford 2014).  Data from 132 sites within 

the 21 MPAs were used for all analyses, except for the analysis of incentives as data were 

lacking from one MPA (Ocho Rios Marine Reserve, Jamaica), thus 20 MPAs were used to 

analyze the impact of incentives.  All statistical analyses were conducted on the R statistical 

platform v. 2.15.3 (R Development Core 2014). In all analyses, stepwise multi-linear regression 

was used to correlate incentive types and penalties types to ecological variables and the most 

parsimonious model of all candidate models was selected using 

(Burnham & Anderson 2002) by use of the step AIC function as part of the MASS package 

[60,61]. We also analyzed spatial auto-correlation of the commercial fish biomass data using 
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geostatistical methods including the variogram function in the gstat package for R (Pebesma 

2004). 

3. Results 

3.1 Regulations on commercial use 

Commercial species biomass was greater in MPAs in which the harvest of marine life for 

commercial purposes is illegal (Figure 1.2, ANOVA F 2,107=4.28, p=0.04).  There was no 

statistically significant relationship related to commercial use in the MPA for total fish biomass 

(ANOVA F 2,107=0.20, p=0.66), herbivore biomass (ANOVA F2,107=0.10, p=0.74), piscivore fish 

biomass (ANOVA F2,107=0.72, p=0.40),  invertivore fish biomass (ANOVA F2,107=0.09, p=0.76), 

and coral cover (ANOVA F2,107=0.87, p=0.35).  
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Figure 1.2.  Commercial fish biomass (g/m2) in MPAs with permitted, restricted and prohibited 

commercial harvest regulations. ANOVA F 2,107=4.28, p<0.05.  Error bars= 95% CI. 
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3.2 Penalties and incentives 

A statistically significant correlation was found in MPAs with an increasing number of 

incentives used to promote compliance with regulations and commercial fish biomass (Figure 

1.3, F 3,109=2.76, p<0.05) and a similar relationship was observed between the number of 

incentives and commercial fish density (Figure 1.4, F 3,109=5.32, p<0.01).  Additionally, a similar 

trend was observed with increasing numbers of penalties and commercial fish biomass, however 

the relationship was marginally significant (Figure 1.5, ANOVA F 4,111=2.279, p=0.06).  The 

same trend was observed in commercial fish density, which was also marginally significant 

(Figure 1.6 ANOVA F 4,111= 2.101, p= 0.09).  MPAs that utilized at least four incentives had 

greater commercial fish biomass and MPAs with five incentives hosted greater commercial fish 

density and biomass (Figures 1.3 and 1.4).  Our sample included no MPAs with three incentives 

total.  The discrepancy between commercial fish biomass and density for four incentives 

indicates that there are larger fish in this category since biomass is high, while density remains 

low (Figures 1.3 and 1.4).   Also, an interaction effect between incentives and penalties on 

commercial fish biomass was observed (ANOVA, F 4,118=4.305, p<0.01, Figure 1.7). We did not 

observe a significant relationship between total fish biomass and incentives (ANOVA, F 

3,109=1.713, p=0.169) or penalties (F 4,111=1.649, p=0.167).   Specific types of penalties did not 

individually correlate to any fish biomass or density indicators.  Specific types of incentives were 

found to have differential impacts on multiple ecological indicators (Table 1.2).  
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Figure 1.3. Commercial fish biomass (g/m2) in MPAs with varying numbers of incentives used to 

enforce MPA regulations. ANOVA  F 3,109=2.764, p<0.05. Error bars= 95% CI. No MPAs with 

exactly three incentives were found in this study. 
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Figure 1.4. Commercial fish density (abundance/ 100 m2) in MPAs with varying numbers of 

incentives used to enforce MPA regulations. ANOVA, F 3,109=5.320, p<0.01. Error bars= 95% 

CI. 
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Figure 1.5. Commercial fish biomass (g/m2) in MPAs with varying numbers of penalties used for 

enforcement of MPA regulations (ANOVA F 4,111=2.279, p=0.07). Error bars= 95% CI. Only 

one site in one MPA used two penalties.   
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Figure 1.6. Commercial fish density (abundance/ 100 m2) in MPAs with varying numbers of 

penalties used for enforcement of MPA regulations (ANOVA F 4,111= 2.101, p= 0.09). Error 

bars= 95% CI. Only one site in one MPA used two penalties.   
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Figure 1.7. Interaction between penalties and incentives (ANOVA, F 4,118=4.305, p=0.003). 
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Table 1.2.   Results from multi-linear regression analyses of types of incentives correlated to 

2) and level of significance:  * p<0.05; ** p<0.01; *** p<0.001 

Incentive Total fish 
biomass 

Commercial 
fish 

biomass 

Herbivore 
fish 

biomass 

Piscivore 
fish 

biomass 

Parrot 
fish 

biomass 

Percent 
coral 
cover 

Environmental 
Education 

     -11.418* 

Skills training  816.8*  548**   

Exchange of 
Equipment 

-
9602.4*** 

-1102.1** -1813* -784.1** -
2298*** 

-6.309* 

Purchase of 
Equipment 

6607.9**    1354***  

Employment       

Other  1509.2*     
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 For example, percent coral cover negatively correlated to environmental education and all 

ecological indicators negatively correlated with the incentive exchange of equipment (Table 1.2). 

However, skills training positively correlated to commercial fish biomass and piscivore fish 

biomass, while purchase of equipment positively correlated to total fish biomass and parrot fish 

biomass and the category other correlated positively to commercial fish biomass.  Additionally 

the variogram demonstrated no spatial auto-correlation in commercial fish biomass or density 

across the sites utilized in this study. 

 

4. Discussion 

4.1 Relationship between governance strategies and ecological condition 

Our multi-country comparison demonstrates correlations between ecological indicators 

and governance strategies used to promote regulatory compliance across Caribbean MPAs.   

MPAs that prohibit harvest of marine life hosted greater biomass of commercial fish species, 

indicating marine reserves are effective in conserving target species (Figure 1.2).  Commercial 

fish biomass and density increased with an increasing number of both penalties and incentives 

used to encourage compliance with MPA regulations (Figures 1.3-1.7).  The results suggest that 

the sustainable use of marine resources is correlated to governance strategies used to promote 

compliance and that having penalties and incentives present as a governance strategy may be a 

key attribute of MPAs that are successful in maintaining high levels of commercial fish biomass 

and density (Pollnac et al. 2010; Edgar et al. 2014).  This finding also suggests that methods used 

to encourage compliance with MPA regulations that combine both penalties and incentives can 

aid in the protection of fishery resources.  Although MPAs have traditionally focused more 
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heavily on penalties to enforce compliance (Crawford et al. 2004), the positive relationship 

between increasing the number of incentives with commercial fish biomass and density observed 

in this study suggests that incentives may help form successful enforcement strategies.  

Consistent with previous governance studies (Jones et al. 2013; Jones 2014a) interactions among 

incentives can lead to governance systems that are more resilient in protecting marine areas from 

anthropogenic and natural perturbations.  A diversity of governance mechanisms designed to 

promote compliance with MPA regulations may be necessary to achieving MPA objectives 

(Gutiérrez et al. 2011; Jones 2014a).   

Alternatively, the higher number of penalties and incentives correlating to greater fish 

biomass and density may be more indicative of greater state capacity and political will present in 

these MPAs rather than being attributed solely to the presence of penalties and incentives.  

Previous studies have shown that greater state capacity, political will, social capital and 

leadership leads to a greater resilience of governance structures and the ability of MPAs to 

achieve conservation objectives (Gutiérrez et al. 2011; Jones et al. 2013; Jones 2014a).  The 

results from this study are intended to explore connections between ecological indicators and 

governance attributes across multiple countries and management regimes.  The data suggest that 

having regulatory mechanisms that employ penalties and incentives have the potential for 

leading to greater density and biomass of commercial species, though as a highly correlative 

study firm conclusions as to the degree of efficacy of these strategies will need further 

investigation on the state capacity of the governance systems analyzed and the degree to which 

these specific strategies are enforced.  Additionally, other studies have demonstrated the 

importance of oceanographic features in driving species distributions (Chollett et al. 2012), 

which were not analyzed in this study; however the lack of spatial auto-correlation in 
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commercial fish biomass and density suggests that these factors may not be the dominant drivers 

of the observed differences.  Commercial fish biomass demonstrated a positive trend with 

incentives and penalties while there was no trend in total fish biomass suggesting that the impact 

of governance systems is greatest upon species whose harvest is governed by the resource use 

regulations.   

The influence of penalties on commercial fish biomass and density were both marginally 

significant (Figure 1.5, p=0.065 and Figure 1.6, p=0.086, respectively).  It is necessary to note 

that our data set had a relatively low sample size in terms of sites with ecological data in MPAs 

with less than three penalties (N=4, Total N=132).   Therefore, MPAs that employ at least three 

penalties with incentives to promote compliance tend to host greater biomass and density of 

commercial species (Figures 1.3-1.7). Alternatively, the data may also indicate that sites with 

greater biomass and density of commercial fish species may increase the likelihood that 

governance systems are stronger.  Since these areas have more commercial fish biomass and 

density, governance systems to protect these resources may have been put in place due their 

economic importance.  This study only focuses on correlations between governance of 

enforcement strategies and ecological condition, thus future research should also examine 

before-after-control experimental designs to fully determine casual relationships in MPA 

performance.  Additionally, overall our sample size of 21 MPAs is relatively small and greater 

contrast in the incentives and penalties may be observed with a larger sample size.   

4.2 The importance of incentives  

 An interaction effect between the presence of incentives and penalties on commercial fish 

biomass was indicated, which suggests that the use of both penalties and incentives has greater 

efficacy in conjunction than using either penalties or incentives alone (Figure 1.7).  This finding 



 

58  
  

is consistent with other studies that have suggested redundancy of management tactics and 

stronger governance institutions in general lead to more successful fisheries management 

(Gutiérrez et al. 2011; Jones et al. 2013; Jones 2014a).  Additionally, providing a conjunction of 

economic, participatory and knowledge-based incentives provide further support that incentives 

can be useful in changing behavior of resource users toward promoting conservation objectives 

(Nur et al. 2001; Grafton et al. 2006; Jones et al. 2013; Jones 2014a).  In this study economic 

incentives were assessed in terms of purchase of fishing equipment, sometimes known as 

buybacks or decommissioning schemes, which positively correlated to total fish biomass and 

parrot-fish biomass (Table 2).  Buybacks can help promote conservation objectives if coupled 

with other economic incentives and can restructure relations among fishers as well as change 

fisher behavior (Guyader et al. 2004; Squires 2010).  Additionally one participatory incentive 

addressed in this study includes employment though this incentive did not positively correlate to 

any indicators (Table 1.2).  Participatory incentives such as including resource users in the 

process of MPA management and decision-making have been shown to promote sustainable 

resource use in some cases (Basurto 2005b, 2008; Ostrom 2009; Basurto & Coleman 2010; 

Gutiérrez et al. 2011), though the efficacy of these strategies may be context dependent.  

Interpretative incentives such as environmental education negatively correlated to coral cover, 

while skills training positively correlated to commercial fish biomass and piscivore fish biomass 

(Table 1.2).  Interpretative incentives such as public communication, education and awareness on 

the significance and susceptibility of marine ecosystems to anthropogenic and natural threats can 

form key components of management and outreach strategies (Petrosillo et al. 2007; Leisher et 

al. 2012; Jones et al. 2013).  Also promoting awareness of MPA regulations and restrictions has 

been demonstrated to promote compliance with regulations (McCay & Jones 2011; Leisher et al. 
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2012; Jones et al. 2013).  The results from individual incentive types should be interpreted with 

caution due to the small sample size and the possibility for random correlations that are not 

necessarily indicative of larger impacts of policy.  For example, the incentive exchange of 

equipment unexpectedly correlated negatively to ecological indicators (Table 1.2). Nonetheless, 

specific types of incentives may more strongly influence compliance behavior than others.   

Thus, future studies may include a more fine scale analysis of specific penalty and incentive 

types for promoting compliance including behavioral surveys of fishers to determine how fisher 

behavior is influenced by specific penalties and incentives.   

Since transaction costs for enforcing penalties in MPA regulations is high, incentives can 

provide added efficacy at lower cost (Hutton & Leader-Williams 2003).  The management costs 

need to be reasonable compared to the economic output obtained from marine resources for 

successful MPA administration (Raakjær Nielsen 2003). Due to the limits in the amount of 

resources management institutions can devote to enforcement activities an objective is to strike a 

balance between the costs of enforcement activities and profit to be obtained from marine 

resource extraction (Raakjær Nielsen 2003).  In addition, an incentive-based approach may 

diminish the opportunity cost of compliance for fishers who may now receive added benefits for 

complying with the regulations (Grafton et al. 2006; Gjertsen & Niesten 2010).  Incentive-driven 

conservation can promote sustainable resource use in the context of protected area management 

providing there is support on a local level (Wells & McShane 2004). Incentives appear to be 

overlooked in many governance strategies designed to promote compliance, though our analysis 

suggests that their inclusion may help ensure sustainable resource use.   

5. Conclusions 

Marine protected areas have become a crucial strategy for conservation of sensitive 
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marine ecosystems, particularly in developing countries. A precondition for the sustainable and 

efficient management of marine resources is that the imposed regulations can be controlled and 

enforced (Raakjær Nielsen 2003). However, the transaction costs for enforcing regulations in 

MPAs, particularly in the developing world, are particularly high due to features such as high 

resource mobility, unpredictable system dynamics, and the large size of the resource system 

(Ostrom 2009; Gutiérrez et al. 2011). An added return on efficacy of regulations may be 

achieved through the use of incentives with relatively low investment as compared to the 

investment required to monitor and penalize users for violating regulations.  The opportunity cost 

of abiding by regulations can be reduced by providing incentives (Grafton et al. 2006; Gjertsen 

& Niesten 2010), since fishers may experience gains by abiding by regulations.  Fisher 

perceptions of both the regulatory process and its outcomes are drivers for compliance behavior, 

and their perceptions of fairness and treatment by enforcement authorities matters (Alder et al. 

1994; Hønneland 2000; Viteri & Chávez 2007). Incentives that better support and empower 

fishers and their livelihoods may be the crux of a successful MPA program (Nur et al. 2001; 

Basurto 2008; Basurto & Coleman 2010).  

Our study indicates that the cumulative impact of an increasing number of incentives and 

penalties is correlated to greater biomass and densities of commercial fish species, which 

suggests that a conjunction of multiple incentives and penalties is the optimal strategy for 

enforcing regulations in MPAs (Jones et al. 2013).  More research assessing the impacts of 

incentives-based approaches to promote compliance with marine protected areas can help reduce 

uncertainty and achieve optimal governance strategies for compliance with regulations.  The 

results of this study are correlative and useful in analyzing multiple countries and multiple 

management regimes, however comprehensive before-after-control- intervention impact 
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evaluations of MPAs coupled with qualitative studies are necessary to reinforce the results of this 

study.  Nonetheless our findings of the positive correlation between the use of incentives and 

penalties in MPAs with higher commercial fish biomass and density provide insight for decision 

makers to develop strategies to improve management of their MPA by recognizing the 

importance of both incentive and penalty-based methods used to promote compliance with 

regulations. 
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CHAPTER 2 

 

THE DISTRIBUTION OF THE INVASIVE TUNICATE DIDEMNUM VEXILLUM IN 

ATLANTIC SEA SCALLOP HABITAT PLACOPECTEN MAGELLANICUS HABITAT ON 

FISHING GROUNDS AND CLOSED AREAS OF GEORGES BANK  

 

Abstract 

An invasive colonial tunicate (Didemnum vexillum) was initially observed on Georges 

Bank in 1998, and it has since spread in benthic environments on fishing grounds and 

areas closed to bottom-fishing. It can form dense mats on gravel substrates that are also a 

preferred habitat for the Atlantic sea scallop (Placopecten magellanicus), which supports 

one of the most valuable commercial fisheries in the United States.  We used HabCam, a 

vessel-towed underwater imaging system, to investigate the spatial distributions of P. 

magellanicus and D. vexillum in a region that includes fishing grounds and an area 

protected from bottom-fishing.   We found a negative relationship between P. 

magellanicus and D. vexillum, after controlling for substrate and management status, 

suggesting that D. vexillum competes for habitat with P. magellanicus.  We also applied 

the geostatistical method of universal kriging to interpolate the distribution of D.vexllium 

based on the covariables gravel, depth and area. Our results indicate that D. vexillum is 

more common in areas open to fishing than in the areas closed to fishing, after taking 

bottom substrate effects into account. Didemnum vexillum appears to have spread over 

large portions of the northern edge of Georges Bank. This research evaluates essential 

fish and invertebrate habitat degradation caused by an invasive species. 
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1. INTRODUCTION 

Marine invasive species are a major threat to biodiversity, since once they are 

established, eradication is unlikely and the interaction with existing communities 

modifies native habitats (Bax et al. 2003; Glasby et al. 2005; Coutts & Forrest 2007; 

Molnar et al. 2008; Smith et al. 2014).  Habitat modification by invasive species can 

interact synergistically with other drivers of environmental change such as global climate 

change, thereby exacerbating effects on native species (Didham et al. 2007; Hellmann et 

al. 2008; Rahel & Olden 2008). Marine invasions most frequently occur through ballast 

water, since at any given 24 hour period between 3,000 and 10,000 different species are 

being transported between bio-geographic regions in ballast tanks alone (Carlton 2001; 

Wasson et al. 2001).  Additionally non-indigenous marine species also spread through 

hull fouling of commercial shipping and recreational vessels, aquaculture, fishing 

equipment, and the aquarium trade (Relini et al. 2000; Bax et al. 2003; Daley & Scavia 

2008; Herborg et al. 2009; Acosta & Forrest 2009). The rate at which foreign organisms 

are establishing in ports has increased dramatically due to human-mediated activities 

(Molnar et al. 2008).  Marine invasive species can have negative impacts on human 

health and decrease economic productivity from resources such as fisheries, aquaculture, 

and tourism (Lovell & Stone 2005; Williams & Grosholz 2008; Molnar et al. 2008; Vilà 

et al. 2010).   

The invasive sea squirt Didemnum vexillum, originating from Japan (Stefaniak et 

al. 2012), was first observed on Georges Bank in 1998 (Bullard et al. 2007). D. vexillum 

has colonized at least 230 km2 of pebble/gravel habitat in Georges Bank leading to 
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concerns about the impact this species may have on valuable fishery resources (Valentine 

et al. 2007b).  It has several characteristics that contribute to its ability to invade, such as 

early maturation, rapid colony growth as a result of asexual budding, ease of attachment 

to firm substrates, toleration of a wide temperature range and the ability to spread by 

colony fragmentation as well the lack of natural predators in the region (Valentine et al. 

2007a; Carman et al. 2009, 2014; Lambert 2009; Stefaniak et al. 2012; Stefaniak & 

Whitlatch 2014).  Didemnum vexillum may also prevent other benthic organisms from 

settling and growing on colony surfaces by sequestering acidic and organic allelopathic 

compounds in their tunics (Valentine et al. 2007a; Carman et al. 2009).  In particular, 

scallop spat cannot settle on D. vexillum colonies (Morris et al. 2009) and D.vexillum also 

can interfere with scallop swimming (Dijkstra & Nolan 2011). Additionally, D. vexillum 

can thrive on gravel substrate that the Atlantic sea scallop (Placopecten magellanicus) 

prefers; thus D. vexillum may be able to reduce the habitat available to sea scallops and 

thereby reduce the overall abundance of scallops. Furthermore, D. vexillum can also 

colonize the upper valve of adult scallops and other bivalves, which may affect their 

ability to feed (Valentine et al. 2007a; Carman et al. 2009).  Thus, D. vexillum exhibits a 

number of characteristics that allow it to successfully outcompete other benthic epifaunal 

and macrofaunal species for limited space.  All of these traits combine to make it a threat 

to benthic marine habitats and fisheries in the area.   

Colonies of D. vexillum on Georges Bank appear as thin encrusting layers or 

produce tendrils that protrude from thick encrusting mats.  It can reproduce both sexually 

and asexually by budding as well as fragmentation (Carman et al. 2014). Larvae from 

sexual reproduction swim for a few hours before attaching to substrate and 
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metamorphosing.  However, asexual reproduction and fragmentation are probably 

responsible for the majority of the spread of this species (Lengyel, et al. 2009).  D. 

vexillum has become a concern as a nuisance species because it reproduces rapidly, has a 

productive marine habitats such as shellfish aquaculture sites and fishing grounds 

(Valentine et al. 2007a; Daley & Scavia 2008; Carman et al. 2009).    

Various methods have been suggested to control the impacts of marine invasive 

species including chemical, mechanical, and biological control options (Thresher & Kuris 

2004; Coutts & Forrest 2007; Switzer et al. 2011).  Since biological control may be 

effective in some cases (Lafferty & Kuris 1996; Mumby et al. 2011), there is interest in 

the broader possibilities to manage invaders in the oceans.  Biological control has 

successfully regulated pest populations in terrestrial agroecosystems, however for marine 

environments, host specificity frequently cannot be guaranteed and thus this practice is 

riskier than on land (Secord 2003).  Additionally, chemical and mechanical control of 

non-indigenous ascidians has been successful in some cases though implementation may 

be difficult or impossible to maintain when applied to large areas in natural environments 

(Coutts & Forrest 2007; Switzer et al. 2011). The challenge of managing marine invasive 

species will require bridging gaps between science and policy to develop an adaptive 

decision making framework that makes use of information systems (Thresher & Kuris 

2004; Williams & Grosholz 2008; Olenin et al. 2014; Faulkner et al. 2014). 

The Atlantic sea scallop (P. magellanicus) is a benthic bivalve mollusk that 

supports one of the highest valued fisheries in the United States, with total revenues 

reaching almost $500 million in 2013 (Lowther & Liddel 2014). This fishery has 
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recovered from a near collapsed state in the mid-1990s using a combination of 

conventional management measures such as effort control and gear regulations together 

with rotational and long-term closed areas (Hart & Rago 2006). In particular, three areas 

on or near Georges Bank were closed to groundfish and scallop fishing in December 

1994 (Murawski et al. 2000, Figure 2.1). Sea scallop biomass inside these closures 

increased over 20-fold between 1994 and 2004; scallop biomass in these areas has 

subsequently declined somewhat after portions of these areas were reopened to fishing 

(Hart & Rago 2006; Hart et al. 2013). 

 

 

Figure 2.1. Georges Bank, with closed areas. 
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In this study we evaluated the distribution of the invasive tunicate D.vexillum in Atlantic 

sea scallop habitat.  We used the habitat camera mapping system (HabCam), a vessel-

towed underwater camera system, to explore the spatial distribution of sea scallops and 

D. vexillum in areas protected and unprotected from bottom-fishing on Georges Bank to 

test if sea scallops are negatively related with this invasive species.  Additionally, we 

evaluated if D.vexillum spread is greater in areas open or closed to bottom-fishing. We 

also applied geostatistical techniques such as ordinary and universal kriging to determine 

the spatial distribution of D.vexillum cover across the entire study area.  Georges Bank 

provides an important opportunity to determine how bottom fishing affects interactions in 

the benthic community because it is well monitored and substantial portions have been 

closed to bottom fishing since 1994.  Activities such as scallop dredging and bottom 

trawling may have the potential to facilitate the spread of the invasive D. vexillum as a 

result of increased colony fragmentation (Morris & Carman 2012), or the disturbance 

from bottom-fishing may open space for D. vexillum to colonize. We hypothesize that 

there will be a negative relationship between sea scallops and D. vexillum.  This 

hypothesis is based on the literature that has demo

settlement of scallop spat and perhaps also increase mortality of adults (Morris et al. 

2009).  We also hypothesize that areas open to fishing will have greater cover of the 

invasive D. vexillum due to greater rates of disturbance and possibly also fragmentation 

of colonies from contact with fishing gear. This work can further our understanding of 

invasive species effects and how species interactions may affect habitat for fishery 

resources.  Finally, possible management actions designed to mollify the negative 

impacts of the invasive D. vexillum on essential fish and invertebrate habitat are 
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discussed.   

2. METHODS: 

2.1 Study area 

Georges Bank is a shallow, highly productive, submerged plateau off the coast of New 

England that supports a number of valuable commercial fisheries (Butman & Beardsley 

1987). Surficial sediments of Georges Bank are dominated by large expanses of sand 

substrate interspersed with gravel and gravel/sand regions that mainly occur on its 

northern and western portions (Twichell et al. 1987).  Interspersed within the gravel 

regions are large glacial erratics and boulders that can provide refuge sites for a diverse 

assemblage of organisms.  The study site is located in the northeastern portion of Georges 

Bank, in the area bounded between 41  

Hague line dividing the U.S. and Canadian E.E.Z. on the east, and a boundary parallel to 

the Hague line on the west (Figure 2.2a). The portion to the west of 67  

fishing, while the portion to the east has been closed to all groundfish and scallop gear 

since December 1994, and is a part of Closed Area II. This area contains both sand and 

gravel substrates as well as high densities of sea scallops and D. vexillum in some 

locations (Figure 2.2).  
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Figure 2.2 (a) Chart of HabCam survey with scallop density (counts/m2) and D. vexillum 

percent cover. Size of data points scaled by density and percent cover. (b) Mean scallop 

biomass in the open and closed portions of the study area, 1982-2016, from the NEFSC 

scallop dredge survey (Hart & Rago 2006). The lines are lowess smoothers with stiffness 
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of 0.25. The closed areas were put in place in December, 1994 (dotted vertical line).   

2.2 Data collection 

Data for this project was collected from HabCam v2, a high resolution imaging system 

that provides visual surveys of benthic marine organisms without disturbing the habitat 

itself (Howland et al. 2006; Taylor et al. 2008; York et al. 2008).  These data can be used 

to evaluate physical features of the environment that drive spatial and temporal variability 

of benthic fisheries such as the Atlantic sea scallop.  The HabCam v2 vehicle is towed at 

speeds of 5-6 knots during which it collects data at a rate of about six images per second 

providing a continuous band of data input along the survey track.  The equipment on 

HabCam v2 includes a digital still camera (UNIQ Vision, Inc. UP-1800-CL), four 

machine vision strobes (Perkin Elmer MVS-5000) mounted in underwater housings 

placed radially around the camera 50 cm apart. Other sensors on HabCam v2 include a 

CTD (SBE 37-IS MicroCat, Seabird electronics Inc.) for conductivity and temperature 

measurements, a YSI 6600 Sonde multiparameter sensor, and a Benthos altimeter (PSA-

916), which measures distance from the vehicle to the bottom.   The data for this project 

were collected on the F/V Kathy Marie by HabCam v2 in July of 2012 in and to the west 

of the northern portion of Closed Area II (Figure 2.2a).  We also present the long-term 

sea scallop biomasses in the open and closed portions of the study area, based on the 

National Marine Fisheries Service Northeast Fisheries Science Center (NMFS-NEFSC) 

scallop dredge survey to help understand the effects of the closure on sea scallops prior to 

the invasion of D. vexillum (Figure 2.2b). These data have been collected since 1982 

using a modified 2.44m New Bedford-style scallop dredge as the sampling gear; see 

(Hart & Rago 2006) for more details on this survey. A lowess smoother (stiffness = 0.25) 
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was used to smooth the dredge survey time series trend.  

2.3 Data processing: 

HabCam images were annotated to identify members of the invertebrate community, 

which were identified to the lowest taxonomic group possible for one in every 200 

images collected by HabCam v2 during the July 2012 survey.   In total 5,309 images 

were annotated for members of the invertebrate community both in and adjacent to 

Closed Area II (Figure 2.2).  All images used in the study were annotated by the same 

annotator (K.H.). 

Scallops were separated into recruits (less than or equal to 75 mm shell height) and adults 

(greater than 75mm shell height) based on shell height.   Locations were identified as 

being inside or outside of the closed area using the intersect and difference geoprocessing 

tools in Quantum GIS (QGIS development team 2015), and these were subsequently 

separated for analyses.  Density estimates for scallops were obtained by dividing species 

counts by the area of the field of view for each image.  Sediment type was evaluated 

visually based on the fraction of the image covered.  D. vexillum percent cover was also 

evaluated based on visual estimates of the fraction of the image that it covers.  Sediment 

composition and D.vexillum percent covers were estimated based on 5% increments.  

2.4 Data analysis: 

Modeling the relationship between D. vexillum and scallop distributions 

The effects of D. vexillum on adult and recruit scallop populations were analyzed using 

generalized linear models (GLM), generalized additive models (GAMs), non-linear least 

squares (NLS) as a result of the non-linear nature of the relationship observed. Model fits 

from generalized additive models were selected based on lowest AIC. In order to reduce 
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localized effects and issues with sample auto-correlation data for adult and recruit 

scallops, D. vexillum and proportional gravel cover were first averaged based on 

approximately over 10 image blocks, covering approximately 1 km. Over-dispersion was 

detected in the scallop data; therefore a (quasi-)Poisson family was used in the GAM, in 

parameter, thus allowing variance to be greater than the mean. Gravel substrate and 

protected area (open/closed to fishing) were used as a covariate and factor respectively in 

the GAMs to isolate the influence of D. vexillum on adult and recruit scallop distributions 

according to the formula:  

scallop density ~ s(D. vexillum)+ c*factor(Open/Closed)+s(proportional gravel cover)+  

where s represents a spline smoother, c is an estimated parameter, and  is an error term.  

Temperature was also considered in all models, but not found as a significant predictor of 

scallop density thus it was eliminated as a predictor variable.    

Determining the effect of the closed area on scallops and D. vexillum  

The influence of the area closed to bottom-fishing on adult and recruit scallop density, 

and D. vexillum proportional cover from HabCam data were analyzed using analysis of 

covariance (ANCOVA) with the proportional cover of gravel substrate as a covariate, 

since both P. magellanicus and D. vexillum are most abundant on gravel substrate.   Co-

linearity was observed between the two most dominant substrate types, gravel and sand 

(adjusted R2=0.875), and hence only gravel was used as a covariate in the analyses. The 

effect of protected area on mean density of adult sea scallops, recruit scallops and D. 

vexillum proportional cover with greater than or equal to 50% gravel substrate 
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Figure 2.4. 

Interpolating Didemnum vexillum distribution across the study area using geostatistics 

The distribution of D.vexillum was modeled by universal kriging with gravel, depth and 

the categorical variable region, representing whether a point was inside or outside the 

closed area, as covariables using the R package gstat and sp (Pembesa, E.J. 2004; Bivand 

et al. 2013).  The universal kriging geostatistical approach results in the best linear 

unbiased estimates of the parameters and optimally weights each sample observation 

prediction (Cressie 1993).   A 100x100 grid was created for the study area to interpolate 

over using the spatial structure in conjunction with gravel, depth and area covariables.  

Gravel and depth were each spatially interpolated using ordinary kriging to provide input 

into the spatial linear model for predicting the proportional cover of D.vexillum (S1 

Appendix). The exponential model was used to fit the variogram for both gravel and 

depth (S1 Appendix).  The kriged estimates for depth and gravel were then used to create 

the prediction grid (S2 Appendix).  Once this grid was created, gridded points were 

identified as being in Closed Area II or the region open to fishing and region was added 

as a grid co-variable (QGIS development team 2015). A variogram was fit with a 

spherical model of the residuals from the linear regression with the covariates gravel and 

depth and the categorical predictor variable region (Figure 3). The universal kriging 

model applies the following equation where our interpolated value for D.vexillum (Z) is 

based on the covariables, gravel, depth and region and the variance-covariance matrix 

( : 

 

Where   
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This model is then used to demonstrate the interpolated density of D.vexillum infestation 

over the entire study area.   

 

 

 

Figure 2.3. Variogram model with spherical fit for D.vexillum using co-variables: gravel, 

depth and area. 
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3. RESULTS: 

3.1 Interaction between scallops and D. vexillum 

The relationship between adult scallops and D. vexillum, and recruit scallops and D. 

vexillum was modeled using generalized additive models due to the non-linear 

relationship observed (Figure 2.4, Table 2.1).  Since both the substrate and region (i.e. 

open or closed to bottom-fishing), were found to significantly influence the densities of 

scallops and D. vexillum, gravel substrate and region were included in both adult and 

recruit models as a covariate and factor, respectively (Table 2.1, Figure 2.4).  The 

relationship for adult scallop density and D. vexillum essentially follows an exponential 

decline function with increasing D. vexillum; recruit scallop density showed a similar 

relationship.  Model predictions were made holding gravel substrate at the mean level 

from all sites to isolate the influence of D. vexillum on scallop density (Figure 2.4).  At 

higher D. vexillum densities, the mean predicted recruit density also increased slightly 

(Figure 2.4b), but this is likely an artifact since there are few data points supporting this 

prediction as reflected by the increasingly large confidence intervals (N=20 for recruits in 

areas with greater than 0.15 proportional D. vexillum cover, as compared to a total 

N=530).   

 

 

 

 

 

 



 

85  
  

Table 2.1.  Interaction between adult and recruit sea scallops with D. vexillum using generalized 

additive models p<0.05*,p<0.01**,p<0.001*** 

Response variable D. vexillum Area (SE) gravel 
Adult density 
Deviance explained =53.6% 
Distribution: Poisson 

*** -0.819 ***  
(0.128)    

*** 

Recruit density 
Deviance explained= 48.2% 
Distribution: Poisson 

*** -0.214* 
(0.095) 
 
 

*** 
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Figure 2.4.  a. Prediction of adult scallop density from the generalized additive model 

response to D. vexillum proportional cover with gravel substrate held at its mean value in 

both open and closed areas shown with 95% confidence intervals. b. Prediction of recruit 

scallop density from the generalized additive model response to D. vexillum proportional 

cover with gravel substrate held at its mean value in both open and closed areas with 95% 

confidence intervals. 

 

 3.2 The effect of the closed area on scallops and D. vexillum 

Adult sea scallop density was significantly greater in the areas closed to bottom-fishing 

and positively correlated with gravel substrate, with a significant interaction between the 

two (ANCOVA, Region: F1,526 = 99.87, p<0.001; covariate gravel estimate: 4.31, F1,526  = 

41.34, p<0.001; interaction: F1,526 =5.59, p<0.05, Figure 2.5a).   Recruits were not 

significantly greater in the region closed to bottom-fishing (F1,526 0.24,p>0.05), however 

recruit density was positively associated to gravel substrates (gravel covariate estimate = 

1.20, F 1,526 =131.37, p<0.001; interaction not significant: F 1,526 =0.24, p>0.05, Figure 

5b).    Proportional cover of D. vexillum was significantly greater in the regions open to 

bottom-fishing and positively associated to gravel substrate (ANCOVA; Region: F 1,526 = 

89.49, p<0.001; covariate gravel estimate: 0.06; F 1,526 = 28.24, p<0.001; interaction not 

significant: F 1,526 = 0.13, p>0.05, Figure 2.5c).  Additionally, the time series of the 

dredge survey (1982-2015) for scallop biomass also demonstrates the efficacy of the 

closed areas over time as evidenced by the increase in scallop biomass inside the 

protected area after it was closed in 1994 (Figure 2.2b).   
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Figure 2.5. (a) Density of adult sea scallops in areas closed and open to bottom-fishing 

(p<0.001) with gravel substrate (p<0.001) (b) Density of recruit sea scallops in areas 

closed and open to bottom-fishing (p>0.05) with gravel substrate (p<0.001) (c) 

Proportional cover of D. vexillum in areas closed and open to bottom-fishing (p<0.001) 

with gravel substrate (p<0.001). 

 category is less than 

50% gravel. Error bars represent 95% confidence intervals. 

 

3.3 Interpolated estimates of D.vexillum distribution over the study area 

The kriged estimates of gravel in the study area indicate that 39.8% of the study area is 

gravel habitat (S1 Appendix a).  Universal kriging of D.vexillum using the gravel, depth 

and the categorical predictor region (inside or outside the closed area) as co-variables was 

conducted to demonstrate the proportion of the study area covered (Figure 2.6).  

Interpolated values are as high as 51.7% of area covered with D.vexillum in some cells of 

the prediction grid, with a mean value of the total study area covered being 2.9% (Figure 

2.6).  The variance of the interpolated proportional cover is also demonstrated showing 

areas with lower data coverage have higher variance (Figure 2.6).  Didemnum vexillum is 

shown to cover significant portions of the study area, with the greatest density shown in 

the region open to fishing adjacent to Closed Area II.  
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Figure 2.6.  (a) D.vexillum proportional cover from universal kriging estimates. (b) 

Variance from universal kriging estimates. 
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4. DISCUSSION: 

4.1 The effect of the invasive D. vexillum on sea scallop habitat 

The results from this study demonstrate the negative relationship of the invasive 

D. vexillum on sea scallop distributions.  We found D.vexillum cover is negatively related 

to adult and juvenile sea scallop densities in both areas that were open and closed to 

bottom-fishing, and densities of D.vexillum were much greater in the region open to 

fishing, even after controlling for substrate. Additionally, scallops as well as D. vexillum 

appear in greater densities in areas of high gravel substrate, suggesting there is 

competition for habitat. Our interpolated estimates of gravel proportional cover indicate 

that 39.8% of the study area is gravel substrate, which is preferred habitat for both 

scallops and D. vexillum.  Scallop spat cannot settle on D. vexillum, likely as a result of 

its acidic tunic (Morris et al. 2009). In addition to overgrowing the gravel, ascidian 

colonies also can cement grains together making is more difficult for scallops to burrow 

into the substrate (Mercer et al. 2009).  Therefore, colonization of gravel substrate by D. 

vexillum turns preferred sea scallop substrate into unsuitable habitat. It is unlikely that D. 

vexillum is outcompeted by scallops in the closed area because D. vexillum has been 

observed to smother scallops and other bivalves by using their shells as substrate (Bullard 

et al. 2007; Carman et al. 2009).  The interpolated estimates of D.vexillum demonstrate 

that it covers significant portions of the study area.  In some areas over 50% of the habitat 

is covered by D.vexillum with the mean of the total study area being around 2.9%.  In 

regions open to fishing the mean proportional cover of D. vexillum was over 6%, 

indicating the spread of this invasive species has the potential to cause a loss of fishing 

grounds and yield for New England fisheries, though more data is necessary to determine 
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the effects of D. vexillum on fishery productivity.   

Bottom-fishing methods can cause fragmentation, and therefore may spread D. 

vexillum colonies (Bullard et al. 2007; Morris & Carman 2012). Fragments of D. vexillum 

colonies can lodge in fishing gear and spread to other areas (Daley & Scavia 2008).  

Additionally sea scallops are typically shucked at sea; discarded scallop shells colonized 

by D. vexillum could potentially generate new colonies (Daley & Scavia 2008).  There 

may also be a possibility that bottom disturbance caused by fishing gear facilitates the 

spread of D. vexillum by clearing the substrate of established native epifauna (Collie et al. 

1998; Hermsen et al. 2003). Additionally, the disturbance created from bottom-fishing 

can also generate more organic matter in the benthos, which could be a significant food 

source for filter-feeding D.vexillum colonies.  These mechanisms may explain the 

relatively lower proportion of D. vexillum observed in areas closed to bottom-fishing as 

found in this study.  Alternatively, other factors may also account for the observed 

differences in D. vexillum abundances such as oceanographic conditions, or the initial 

location where D. vexillum was introduced on Georges Bank, which was most likely in 

the open area via hull-fouling of vessels or commercial fishing. Even if bottom-fishing 

gear is a primary vector for the spread D. vexillum, it can spread by other natural 

mechanisms, and thus it may eventually occur in greater densities in the closed area.  

The time series from the scallop dredge survey (1982-2015) demonstrates a 

dramatic increase in scallop biomass after the closed areas were put in place in 1994 in 

both the closed and open areas as a result of management efforts that decreased fishing 

mortality (Hart & Rago 2006). In particular, the closure of a portion of our study site as 

part of Closed Area II of Georges Bank induced substantially greater densities of adult 
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scallops as a result of its protection from bottom-fishing, but at best only a weak, non-

significant effect was observed for recruits.  The strong closed area effect on adults that 

are targeted by the scallop fishery is to be expected, but recruits (< 75mm) are much 

smaller than the 102mm ring size of commercial scallop gear, and thus most recruits 

would pass through the gear and not be captured. While patterns observed in recruitment 

from a single year class should be treated with caution, the fact that recruitment was 

higher in the area closed to fishing, while controlling for substrate, might be due to the 

lower levels of D. vexillum in the protected area. Moreover the spread of D.vexillum in 

our study area coincides with a decline in scallop biomass beginning in 2010, based on 

the dredge survey data, due in part to reduced recruitment in this area.  Thus, the 

productivity of the scallop fishery may be affected by the inhibiting effects of D.vexillum 

on scallop settlement and recruitment, though further data is necessary to determine the 

impact on the fishery.   

Fish populations may also be affected by the spread of D. vexillum.  The gravel 

substrate where D. vexillum is found in greatest density also serves as important nursery 

grounds for juvenile cod and haddock (Collie et al. 2000), as well as spawning grounds 

for Atlantic herring, so D. vexillum may alter habitat and food availability for several 

commercially important species.  Additionally, allelopathic chemicals from D. vexillum 

overgrowing on substrates may negatively impact the viability of eggs of fish that rely on 

gravel pavement for spawning sites such as Atlantic herring (Dijkstra et al. 2007).   

4.2 Management considerations 

In order to manage the spread of D. vexillum, further research is necessary to 

evaluate which of these mechanisms contribute most significantly to spreading this 
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species. Habitat restoration efforts that include attempts to remove D. vexillum from some 

areas might be considered.   Other marine pest species such as jellyfish, ctenophores, 

nemerteans, snails, sea urchins, polychaetes, burrowing shrimps, crabs, and fishes may be 

amenable to biological control efforts, though strategies adopted from terrestrial realms 

require special considerations for marine environments (Lafferty & Kuris 1996; Secord 

2003).  Sea urchins (Strongylocentrotus droebachiensis and Strongylocentrotus 

franciscanus) are predators of D.vexillum, though in experimental tests these urchins 

preferred other food sources when available (Epelbaum et al. 2009).  The periwinkle 

(Littorina littorea), which is also not indigenous, is a predator of D. vexillum, but it is of 

limited value since it only consumes senescing D. vexillum and is an intertidal to shallow 

subtidal snail  (Valentine et al. 2007a; Carman et al. 2009).  Predators were not successful 

at controlling fouling from D.vexillum on Pacific oysters in experimental treatments 

(Switzer et al. 2011). Thus options for biological control of D.vexillum are limited.  

Manual eradication methods have been used by shellfish aquaculturists since D. 

vexillum is a shellfish pest capable of encapsulating and smothering bivalves (Carman et 

al. 2009). For example, chemical and mechanical treatments have been shown to reduce 

fouling from D. vexillum in oyster aquaculture, though survival of oysters was also 

reduced in lime-treated oysters (Switzer et al. 2011).   Eradication methods such as 

smothering with dredge material, filter fabric, and plastic, as well as manual removal and 

treating boat hulls with dilute bleach have been used in Shakespeare Bay, New Zealand 

(Coutts & Forrest 2007).  Smothering by dredge material killed 100% of colonies 

occupying an approximately 3200 m2 area of relatively homogenous seabed substrate, 

although efforts were not successful in completely eradicating D. vexillum from the 
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region.  However these methods can also have negative effects on native species, thus 

eradication methods must be used with caution. Additionally, while these methods may 

be useful for control in small-scale near shore environments, they would be more difficult 

and expensive to attempt on Georges Bank and may not have lasting benefits (Coutts & 

Forrest 2007). 

As with many marine invasive species, limiting the spread of D. vexillum will 

require controlling transport vectors that facilitate its spread such as vessel fouling, 

aquaculture, and commercial fishing (Tamburri et al. 2002; Bax et al. 2003; Daley & 

Scavia 2008).  D.vexillum most likely spreads through fouling of vessel hulls, aquaculture 

transfers and commercial fishing (Herborg et al. 2009; Acosta & Forrest 2009).  

Maintaining databases on transport vectors such as ship movement will provide 

information that can be used to develop risk assessment programs to control the transport 

vectors for D. vexillum and other nonindigenous species (Daley & Scavia 2008; Herborg 

et al. 2009; Acosta & Forrest 2009).  Additionally environmental niche models combined 

with vector models can provide spatially explicit predictions of the potential distributions 

of the invasion to inform risk assessments (Herborg et al. 2009). This information can be 

used for regulatory agencies to control transport vectors through voluntary or mandatory 

practices that minimize the risk of spreading D. vexillum. Given the value of the sea 

scallop fishery, controlling the spread of this invasive species has both economic and 

ecological importance.   

5. Conclusions 

 In this study, we demonstrate a negative relationship between sea scallops and 

the invasive species D. vexillum on commercially important fishing grounds.  We also 
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demonstrated that there are higher concentrations of D. vexillum in areas open to bottom-

fishing than areas closed to bottom-fishing.  Future studies should evaluate the 

relationship between fishing effort and the spread of this invasive species, to determine 

the degree to which bottom-fishing is propagating the spread of this invasive and the 

potential for protected areas to mitigate habitat degradation caused by D. vexillum. 

Management of this invasive species may require coordinated efforts to restore degraded 

habitat and limit its spread through the various transport vectors discussed. Future studies 

also may address more long-term monitoring efforts of this invasive species to determine 

its impact on commercially valued fish species.  
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CHAPTER 3 

INVASIVE TUNICATE RESTRUCTURES INVERTEBRATE COMMUNITY ON FISHING 

GROUNDS AND A LARGE PROTECTED AREA ON GEORGES BANK 

Abstract: 
  
Marine invasive species can profoundly alter ecosystem processes by displacing native species 

and changing community structures. The invasive tunicate Didemnum vexillum was first found 

on the northern edge Georges Bank in 1998.  It can form encrusting colonies on gravel substrates 

that are also a preferred habitat for several species of the invertebrate community.  In this study 

we used data collected via HabCam, a vessel-towed underwater imaging system, to investigate 

the distribution of D. vexillum and the relationship of this species to other invertebrates in the 

benthic community in a portion of Georges Bank that includes fishing grounds and an area 

protected from bottom-fishing.  This novel technology provides high resolution imaging of 

species distributions in areas of the benthic environment that were previously unobservable. We 

found that D.vexillum density negatively correlates with the density of several species of the 

invertebrate community. However, it positively associates with densities of crabs of the Cancer 

genus, the tube forming polychaete Filograna implexa and sea stars of the genus Asterias. The 

hypothesis that D.vexillum restructures the invertebrate community is supported by principal 

components analysis revealing it as a primary driver of variation in the community when present. 

Additionally, as consistent with previous studies, there is an effect of the closed area as 

compared to fishing grounds on the structure of the invertebrate community and the abundance 

of certain species.  Principal components analysis revealed that bottom-fishing also appears to 

weaken clustering among species in the invertebrate community as compared to the community 
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structure in the closed area.  Biodiversity in high gravel sites, as measured by the Shannon 

diversity index, also declined with increasing D.vexillum percent cover, while the open and 

closed areas were not significantly different in their level of biodiversity.   Didemnum vexillum 

appears to be the key driver of biodiversity decline when present, rather than other processes 

such as direct disturbance from dredging.  This research evaluates ecological responses to the 

presence of an invasive tunicate and suggests that this invasive species is a major force in 

shaping the ecological interactions in invaded areas.    

  
1. INTRODUCTION:  
  
Marine invasive species are a threat to marine biodiversity and a major contributor of 

environmental change (Bax et al. 2003, Molnar et al. 2008).  Invasive species in marine 

environments have been shown to displace native species, change community structure and food 

webs, and alter fundamental ecosystem processes (Molnar et al. 2008).  Additionally, marine 

invasive species can decrease economic activity such as productivity from resources including 

fisheries, aquaculture and tourism (Lovell & Stone 2005, Williams & Grosholz 2008, Molnar et 

al. 2008, Vilà et al. 2010).  The primary vectors for the introduction of marine invasive species 

are ship fouling, ballast water, and accidental introductions from mariculture, fisheries and the 

aquarium trade (Grosholz 2002, Bax et al. 2003, Padilla & Williams 2004, Herborg et al. 2009).  

Marine coastal environments are the most heavily invaded ecosystems (Ruiz et al. 1997, Molnar 

et al. 2008, Reusch et al. 2010).   It is nearly impossible to eliminate marine invasive species 

once they become established in marine ecosystems, therefore management efforts are most 

likely only effective in reducing their impacts (Carlton & Ruiz 2005). Furthermore, there is a 

paucity of information on marine invasive species and data are often found to be not comparable 

(Ricciardi et al. 2000, Thresher & Kuris 2004, Crall et al. 2006), which highlights the need for 
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additional research aimed at understanding invasive species impacts on marine ecosystems. 

Invaded communities that are distinct from the native environment of the invasive species 

may afford an ecological advantage for invasive species due to a lack of shared evolutionary 

history with species in the invaded community (Keane & Crawley 2002, Mitchell & Power 

2003).  For example, the enemy-release hypothesis states that the introduced species have left the 

community that was shared with co-evolved natural enemies and consequently the lack of natural 

predators makes them safer than other prey species in the invaded community (Colautti et al. 

2004, Liu & Stiling 2006). Furthermore, the competitive release hypothesis indicates that release 

from competition in habitats with new competitors or no competitors allows invasive species to 

thrive (Blossey & Notzold 1995).  Additionally, novel prey may be well-defended against 

introduced predators than co-evolved predators (Strauss et al. 2006, Salo et al. 2007).  Any of 

these mechanisms can cause introduced species to have wide spread community impacts.  

 Alternatively, the biotic resistance hypothesis proposes that introduced species may be 

limited by native enemies that they have not developed defenses or competitive advantages 

against (Colautti et al. 2004, Levine et al. 2004).  Determinants of establishment success are 

specific to species and location in marine ecosystems (Stachowicz et al. 1999, Nyberg & 

Wallentinus 2005).  For example, species with high dispersal capabilities, a range of climatic 

tolerances and competitive abilities are generally successful invaders (Nyberg & Wallentinus 

2005).  Locations in the marine environment that permit the introduction of species harbor less 

diverse communities (Stachowicz et al. 1999).  The insurance hypothesis, similar to the biotic 

resistance hypothesis, states that species diversity enables some native species to use the majority 

of the resources available leading to decreased opportunities for non-indigenous species (Yachi 

& Loreau 1999). In fact, increased species richness has been shown experimentally to enable 
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biotic resistance to marine invasive species (Stachowicz et al. 1999, Marraffini & Geller 2015).  

Areas low in diversity and abundance may facilitate invasions and these patches, once colonized 

by invasive species, may resist both native and non-native species recruitment (Marraffini & 

Geller 2015).    Additionally, invaders may take advantage of other drivers of habitat 

modification interacting synergistically to alter habitats and limit native species (Gurevitch & 

Padilla 2004, Didham et al. 2005, 2007a).  Generally, habitats that are disturbed have been found 

to be more susceptible to invasive species (Lozon & MacIsaac 1997, Marvier et al. 2004). 

It has been difficult for researchers to disentangle the effects of habitat modification and 

invasive species on native species diversity leading to debate about the direct and indirect 

processes driving invasive species dominance (MacDougall & Turkington 2005, Didham et al. 

2005, Chabrerie et al. 2008).  Habitats with invasive species are generally modified by other 

processes, therefore it is frequently unclear if the invasive species drive native species loss and 

declines in biodiversity, if they are opportunists taking advantage of habitat modified by other 

processes in which low diversity enables their dominance, or if disturbance causes both 

ecological change and invasion independently (MacDougall & Turkington 2005, Didham et al. 

2005, Chabrerie et al. 2008).  While the driver hypothesis states that invasive species drive 

ecosystem changes, the passenger hypothesis posits that other processes drive ecological change 

and invasive species then are able to dominate environments as an indirect consequence 

(MacDougall & Turkington 2005).  While some studies have supported the passenger hypothesis 

(MacDougall & Turkington 2005, Chabrerie et al. 2008, Grarock et al. 2014, South & Thomsen 

2016), other studies have found that invasive species are the drivers of ecological change 

(Hermoso et al. 2011, White et al. 2013).  Another alternative hypothesis is the back-seat driver  

hypothesis which states that the invasive species requires and benefits from disturbance to 
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ecosystem processes leading to the decline of native species, but then the invasive contributes to 

further declines of native species (Bauer 2012), which other studies have also supported (Berman 

et al. 2013, Fenesi et al. 2015).  Although disentangling these forces is difficult, large scale in 

situ observations of invasive species in habitats characterized by different disturbance regimes 

can help elucidate the forces driving community change.    

In 1998, an invasive sea squirt Didemnum vexillum was detected on Georges Bank 

(Bullard et al. 2007a).  Didemnum vexillum originated from coastal Japan (Stefaniak et al. 2012) 

and is a global invader that has spread to Europe, New Zealand and both coasts of North 

America (Kott 2002, Bullard et al. 2007b, Gittenberger 2007). Additionally, D.vexillum has 

colonized at least 230 km2 of pebble-gravel habitat on Georges Bank (Valentine et al. 2007).  

This tunicate is considered a nuisance species because it can foul ship hulls and maritime 

structures in addition to invading shellfish aquaculture sites and fishing grounds (Daley & Scavia 

2008, Carman et al. 2009).   Didemnum vexillum can reproduce both sexually and asexually, 

however asexual reproduction and fragmentation are most likely the method by which the 

species spreads (Lengyel, et al. 2009).  Although, the species is a widespread invader it has 

limited natural dispersal since larvae only remain in the water column for generally less than one 

day (Osman & Whitlatch 2007).  Additionally, there is limited information on the ability of this 

species to spread naturally via floating debris or other means.  However, anthropogenic transport 

is considered the primary vector for the spread of this species long-distance (Osman & Whitlatch 

2007, Herborg et al. 2009).  The most probable transport vector for D.vexillum is direct transport 

of colonies fouled on aquaculture equipment, boat hulls or other mobile structures, or the indirect 

transport of colony fragments where small parts of the colonies break off during transport or 

disturbance by dredging or trawling (Herborg et al. 2009).   
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Additionally, D. vexillum has been shown to invade habitat of a highly valued 

commercial shellfish fishery on Georges Bank (Kaplan et al. in review).  The characteristics of 

D. vexillum have resulted in rapid population growth such as, early maturation, rapid colony 

growth due to asexual budding and spread via colony fragmentation, ease of attachment to firm 

substrates, toleration of a wide range of temperatures, and the lack of natural predators (Bullard 

et al. 2007, Carman et al. 2009, Valentine et al. 2009). The combination of these characteristics 

leads D. vexillum to outcompete other benthic epifaunal and macrofaunal species. For example, 

D. vexillum has been shown to inhibit other benthic species from settling and growing on colony 

surfaces due to acidic and organic allelopathic compounds in their tunics (Valentine et al. 2007, 

Carman et al. 2009, Morris & Carman 2012).   

The presence of closed areas on Georges Bank provides a unique opportunity as a 

location for collecting control data to compare to a habitat disturbed by dredging on benthic 

community structure.  The habitat camera mapping system (HabCam), a vessel-towed 

underwater camera system, was recently deployed in the Georges Bank and Mid-Atlantic 

regions. HabCam image data can provide a wealth of information on the habitat of commercial 

species, non-target species and invasive species as well as information on the impacts of fishing 

gear used in this region. These data provide visual surveys of invertebrate communities in their 

habitat without disturbing the habitat itself.  The HabCam system can be used to address 

questions related to the extent of damage bottom-fishing incurs in benthic marine habitats and 

the extent of invasion from an introduced species.  Several studies indicate that dredging 

disturbances reduce the diversity and abundance of benthic communities in the region (Auster et 

al. 1996, Collie 1997).  Further studies indicate that bottom-fishing gear damages epifaunal taxa, 

thereby reducing habitat complexity (Jennings & Kaiser 1998, Fogarty & Murawski 1998).  



 

110  
  

However, no studies in this region have examined the interaction of disturbance from dredging 

with the spread of an invasive species.  Data from the HabCam system can be used to address 

questions about the relative importance of disturbance from bottom-fishing and invasive species 

on biodiversity.  Evaluating the ecosystem level effects of these processes will provide valuable 

information to managers seeking to fully assess the extent of management actions beyond the 

target species. 

In this study we use data collected from the habitat camera mapping system (HabCam) to 

explore the spatial distribution of benthic marine invertebrates and D. vexillum in areas protected 

and unprotected from bottom-fishing on Georges Bank.  We hypothesized that the presence of 

D.vexillum alters the benthic community and is the primary driver of biodiversity decline. We 

assessed how the invertebrate community changes in the presence of D.vexillum using principal 

components analysis and we evaluated correlations between invertebrate species density and 

D.vexillum density.  We also determined if bottom-fishing influences associations among species 

using principal components analysis and assessed if the abundances of these invertebrates is 

greater in areas open or closed to bottom-fishing.  Using the closed area as a control to compare 

to the area disturbed by bottom-fishing, we evaluated if D.vexillum or disturbance from bottom-

fishing is the main driver of biodiversity loss.  This work can further our understanding of 

invasive species as a direct or indirect influence on biodiversity and ecological communities.  

The closed area, where bottom-fishing is prohibited, and the open area disturbed by bottom-

fishing provide a natural experiment for assessing the impact of an invasive species relative to 

dredging disturbance on biodiversity and invertebrate communities. 

2. METHODS: 

Study area 
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Georges Bank is a shallow, highly productive, submerged plateau off the coast of New England 

that supports several valuable commercial fisheries (Butman & Beardsley 1987). Surficial 

sediments of Georges Bank are dominated by large expanses of sand substrate interspersed with 

gravel and gravel/sand regions that mainly occur on its northern and western portions (Twichell 

et al. 1987).  On the northeastern part of the bank, currents transport sand into deep water leaving 

gravel habitat along the northern edge.  The study site is located in the northeastern portion of 

Georges Bank, in the area bounded between 41  

Hague line dividing the U.S. and Canadian E.E.Z. on the east, and a boundary parallel to the 

Hague line on the west (Figure 3.1). The portion to the west of 67  

the portion to the east has been closed to all groundfish and scallop gear since December 1994, 

and is a part of Closed Area II. This area contains both sand and gravel substrates as well as high 

densities of D. vexillum in some locations (Figure 3.2).  
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Figure 3.1. Georges Bank, with closed areas.   
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Figure 3.2. Map of Closed Area II with HabCam track showing percent Didemnum vexillum 

cover from 2012 survey.  

Data collection 

Data for this project was collected from HabCam (v2),  a high resolution imaging system that 

provides visual surveys of benthic marine organisms without disturbing the habitat itself 

(Howland et al. 2006, Taylor et al. 2008, York et al. 2008).  These data can be used to evaluate 

physical features of the environment that drive spatial and temporal variability of benthic 

invertebrates.  The HabCam vehicle is towed at speeds of 5-6 knots during which it collects data 

at a rate of about six images per second providing a continuous band of data input along the 

survey track.  The equipment on HabCam v2 includes a digital still camera (UNIQ Vision, Inc. 

UP-1800-CL), four machine vision strobes (Perkin Elmer MVS-5000) mounted in underwater 

housings placed radially around the camera 50 cm apart. Other sensors on HabCam v2 include a 
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CTD (SBE 37-IS MicroCat, Seabird electronics Inc.) for conductivity and temperature 

measurements, a YSI 6600 Sonde multiparameter sensor, and a Benthos altimeter (PSA-916), 

which measures distance from the vehicle to the bottom.   The data for this project was collected 

on the F/V Kathy Marie by HabCam v2 in July of 2012 in and to the west of the northern portion 

of Closed Area II (Figure 3.2).   

Data processing: 

HabCam images were annotated to identify members of the invertebrate community, 

which were identified to species, genus or family level depending on the species for one in every 

200 images collected by HabCam v2 during the July 2012 survey (K.H.).   In total 5,309 images 

were annotated for members of the invertebrate community both in and adjacent to Closed Area 

II (Figure 3.2).   

Locations of invertebrates were identified as being inside or outside of the closed area 

using the intersect and difference geoprocessing tools in Quantum GIS (QGIS development team 

2015) and these were subsequently separated for analyses.  Density estimates for each species 

were obtained by dividing species counts by the area of the field of view for each image.  

Sediment composition was evaluated visually based on the fraction of the image covered.  

Bryozoan and D. vexillum percent cover was also evaluated based on visual estimates of the 

fraction of the image that it covers.   

Data analysis 

Species interactions with D.vexillum 

Interactions with D.vexillum were assessed in the open and closed areas using hurdle models 

where the presence or absence of the species was modeled using a generalized linear model 

under a binomial distribution, then the nonzero count data were modeled using a Poisson 
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distribution to identify the relationship between the density of each species using D.vexillum as a 

predictor (Potts & Elith 2006).  The coefficients from presence-absence and count model 

predictions were then multiplied to create the final predictions used in the analysis shown (Figure 

3.3).  Hurdle models were used since there were a large number of images containing zero 

species. Over-dispersion was detected for many species; therefore for these species a Poisson 

quasi-likelihood was used to fit the GLMs

overdispersion parameter, thus allowing the variance to be greater 

than the mean. Additionally, gravel substrate was used as a predictor in all models with gravel 

held at the mean value for model predictions since substrate also was a main predictor of species 

distributions.  Data for all species and percent gravel cover were first averaged based on 

approximately 1 km blocks to reduce localized noise as well as spatial auto-correlation.  

Additionally associations among species were assessed using principal components analysis 

(PCA) in the presence and absence of D.vexillum to assess if D.vexillum restructures associations 

among species.   A scaled correlation matrix was used for all principal components analyses 

since species were assessed on different scales, as counts or percent coverage.  

Closed area effect on invertebrate community 

The influence of the protected area on the invertebrate community was analyzed using analysis 

of covariance (ANCOVA) with the percentage gravel substrate as a covariate, since most of the 

species analyzed appear to correlate positively with gravel. Co-linearity was observed between 

the two most dominant substrate types, gravel and sand (adjusted R2=0.875), and hence only 

gravel was used as a covariate in the analyses. Associations among species were determined 

using principal components analysis (PCA) in the open and closed areas. Additionally, the 

Shannon biodiversity index was calculated for the areas open and closed to fishing with all sites 
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pooled by area to indicate overall which area contained greater biodiversity.  The influence of 

D.vexillum and the closed area effect were also assessed by measuring species diversity using the 

Shannon diversity index calculated per site.  Areas containing high gravel (>50%) were 

separated from non-gravel areas for the site-level biodiversity analyses.   

3. RESULTS: 

Species interactions with D.vexillum 

Based on model fits using the hurdle models, species demonstrating a negative correlation to 

percent coverage of D.vexillum were the Atlantic sea scallop (P.magellanicus), barnacles (genus 

Balanus), the tube anemone (genus Cerianthus), the green sea urchin (S.droebachiensis), the 

globular sponge of the genus Polymastia, and bryozoans (Figure 3.3 a-f).  A positive correlation 

was observed with the Cancer crabs (C.irroratus and C.borealis), sea stars of the genus Asterias, 

sponges of genus Lophon and the lacy tubeworm (Filograna implexa) (Figure 3.3 g-k). Several 

species showed no significant correlation with D.vexillum in the hurdle models including the 

sunstar Crossaster papposus, mussels of the family Mytildae, marine worms of the genus 

Myxicola and the stalked tunicate (B.overifera) (Figure 3.3 l-m). HabCam images are shown of 

D.vexillum with some species which it positively associates with such as Asterias sea stars, the 

Cancer crab C.borealis, the encrusting sponge of the genus Lophon as well as species it 

negatively associates with such as, sea scallops (P.magellanicus) and barnacles (Balanus) 

(Figure 3.4 a-d).  Sea stars appear to traverse areas with patchy D.vexillum infestation (Figure 3.4 

c).  However, no other species appear in areas that are almost entirely covered with D.vexillum 

(Figure 3.4 a).  In high gravel habitat, principle components analysis (PCA) demonstrated that 

D.vexillum was a strong driver of variation among sites in the first principal component when 

present in the community in closed and open areas (Figure 3.5).  The invertebrate community 
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without D.vexillum appears to be characterized by three distinct associations, whereas groupings 

among these species are rearranged in the presence of D.vexillum (Figure 3.5 a-d). The 

community of species that exists in the area despite the presence of D.vexillum is comprised of 

species such as the sunstar (Crossaster papposus), bryozoans, mussels of the family Mytildae, 

and the stalked tunicate B.overifera, which appear in the PCA as a distinct community 

orthogonal to the D.vexillum community (Figure 3.5 b, d). Also, the marine worm (Myxicola), 

the sunstar C. papposus and the Jonah crab (C.borealis) were not found in open area sites 

without D.vexillum, showing overall lower species richness.  The sunstar C. papposus was also 

not present in closed area sites without D.vexillum since these species are relatively rare on 

Georges Bank. The total number of C. papposus sunstars found was 19 out of 5,309 images 

annotated in this study, while the total number of Jonah crabs C.borealis found was 18 indicating 

these two species are rare in this area in comparison to all other invertebrate species for which 

over 100 individuals of each species were found, shown in a rank abundance plot (S1 Appendix 

C). 
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Figure 3.3.  Model fits for relationship of D.vexillum and other invertebrate species in benthic 

community using hurdle models.   
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Figure 3.4.  Images from Habcam with invertebrate species positively associating with 

D.vexillum shown in circles, species with negative association with D.vexillum shown in squares. 

a) Didemnum vexillum covering benthic environment. b) Cancer crab with D.vexillum patches. c) 

Sea scallops (P.magellanicus), barnacles (Balanus), sea stars (Asterias), and encrusting sponge 

of the genus Lophon. d) Sea stars (Asterias) over D.vexillum patches. 
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Figure 3.5.  Sites with greater than 50% gravel substrate (a) closed areas without D.vexillum, (b) 

closed areas with D.vexillum present, (c) open areas without D.vexillum and (d) open areas with 

D.vexillum present.  

Closed area effect on invertebrates: 

The effect of the protected area was assessed using ANCOVA with significant interactions 

shown (Table 3.1, Figure 3.6 a,b). Barnacles of the genus Balanus, sea scallops 

(P.magellanicus), the green sea urchin (S. droebachiensis), bryozoans, mussels (family 

Mytilidae), the marine worm (genus Myxicola), globular sponges (genus Polymastia), and the 

stalked tunicate (B.ovifera) were more abundant in the closed area than the open area (Figure 
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3.6).  Conversely, sea stars (genus Asterias), the tube anemone (genus Cerianthus), the 

encrusting sponge (genus Lophon), the sunstar (Crossaster papposus), D.vexillum, the lacy 

tubeworm (F.implexa), and the crabs (C.irroratus and C.borealis) were found in greater 

abundance in the area open to bottom-fishing (Figure 3.6).  Associations among species change 

in the open area as compared to the closed area indicating bottom-fishing influences these 

relationships (Figure 3.5 a-d).  A distinct group is present with D.vexillum in both the open and 

closed area PCA, though this group is more closely clustered in the area closed to fishing than 

the area open to fishing.  However, Asterias sea stars and the crab C.borealis associate more 

closely with the D.vexillum community in the area open to bottom-fishing, but are not part of that 

community in the closed area (Figure 3.4, Figure 3.5).  
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Figure 3.6.  The effect of the closed area on abundances of benthic invertebrate species in (a) low 

gravel and (b) high gravel habitats. ANCOVA results are reported in Table 1.  

Table 3.1.  Closed area effect on invertebrate species of Georges Bank.  Analysis of covariance 
(ANCOVA). Significance levels: *p<0.05, **p<0.01, *** p<0.001 
Species Closed area effect 

(+/-) 
Gravel coefficient Interaction  

Balanus *** (+) 0.021** ** 
P.magellanicus *** (+) 0.016***  
Asterias  *** (-) 0.009***  
S. droebachiensis * (+) 0.006*** ** 
Bryozoan  *** (+)   
Mytilidae ** (+)   
Cerianthus  0.004***  
Mxyicola *(+)   
Lophon *** (-) 0.001** ** 
Polymastia *(+)   
 Crossaster    
Didemnum *** (-) 0.13*** ** 
F. implexa *** (-) 0.01***  
B. ovifera ** (+)   
C.irroratus *** (-) 0.0003*** * 
C.borealis **(-) 1.06 x 10-4 *  

 
 

Didemnum vexillum and bottom-fishing impacts on biodiversity 

The closed area contained greater biodiversity when sites were pooled resulting in a Shannon 

index of 1.83, compared to the open area with pooled sites having a Shannon index of 1.46.   The 

total abundance of all counted species in the closed area was 4459 individuals, whereas in the 

open areas the total abundance was 1150 individuals.  Didemnum vexillum and bryozoans were 

assessed by percent coverage and not included in count totals.  
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Figure 3.7. Didemnum vexillum impacts on biodiversity as measured by Shannon index of 

biodiversity per site in high gravel habitat only. A generalized additive model was used to predict 

Shannon index response to D.vexillum, gravel percent cover and Area (closed or open) (Table 

3.2). 

 
Table 3.2 Generalized additive model fit for Shannon index response to D.vexillum, gravel and 

Area predictors (p<0.001=***, p<0.01=**,p<0.05=*) 

Response variable D. vexillum (edf) Area (SE) Gravel 
(edf) 

Shannon index 
Deviance explained =65% 

*** 
(3.91) 

-0.065 
(0.05) 
Not significant 

* 
(6.60) 
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4. DISCUSSION: 

The presence of D.vexillum appears to shift associations among species since it is a major 

driver of variation among sites when present in the community. Increasing percent coverage of 

D.vexillum also demonstrated a decline in biodiversity as measured by the Shannon index, 

though the effect of the different disturbance regimes, open or closed to bottom-fishing, had no 

significant effect on the decline in biodiversity observed (Figure 3.7).  This finding indicates that 

D.vexillum is the major driver of biodiversity decline particularly when it comes to dominate the 

community, rather than other causes of habitat modification such as disturbance from bottom-

fishing.  Additionally, species associated together in the absence of D.vexillum appear to 

aggregate based on a positive or negative association with D.vexillum, creating a realignment in 

the invertebrate community when it is present (Figure 3.5).  Didemnum vexillum positively 

associates with some invertebrates, which may have more tolerance to the acidic tissues the 

tunicate produces, while it appears to have negative associations with other key species of the 

benthic environment that may be more sensitive to its presence.  For example the Cancer crabs 

C.borealis and C. irroratus, the lacy tubeworm F.implexa and sea stars of the Asterias genus are 

positively correlated with D.vexillum D.vexillum 

independently. In assessing the multivariate PCA of high gravel habitat, more motile species, 

such as the Cancer crab C.irroratus, as well as less motile species such as the lacy tubeworm 

F.implexa, the marine worm Myxicola and the encrusting sponge of the genus Lophon seem to 

form a distinct community with D.vexillum.  Conversely species such as barnacles of the genus 

Balanus, the Atlantic sea scallop (P.magellanicus), the tube anemone of the genus Cerianthus, 

the green sea urchin (S. droebachiensis), and mussels of the family Mytilidae negatively 

correlate to D.vexillum.  It is important to note that the majority of species which negatively 
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associate with D.vexillum are also less abundant in the area open to fishing since these species 

are more sensitive to disturbances due to bottom-fishing (Asch & Collie 2008).  Other studies 

have shown that disturbed habitat is more susceptible to invasive species (Lozon & MacIsaac 

1997, Marvier et al. 2004).  The results from this study appear to support this hypothesis since 

the open area disturbed by bottom-fishing is more heavily invaded.   Furthermore, D.vexillum 

may be more abundant in the open area since fishing vessels are likely a vector for its spread 

(Herborg et al. 2009); dredging may fragment colonies that can attach to fishing gear and further 

its spread in the benthos.  Therefore, the disturbance caused by dredging and commercial fishing 

vessels acting as a vector for its spread may interact to introduce and then allow D.vexillum to 

proliferate in the more disturbed habitats. However, once the area has been invaded by 

D.vexillum, its presence, rather than the process of bottom-fishing is likely the strongest driver of 

biodiversity decline.  

Since several species analyzed in this study have a negative correlation with the presence 

of D.vexillum, there may be a decline in the abundance of members of the invertebrate 

community in areas infested with D.vexillum.  Alterations to the benthic habitat on Georges Bank 

due to D.vexillum may also affect productivity of fisheries in the region since the gravel habitat it 

prefers is also habitat for juvenile fishes and scallop spat, though more research is necessary to 

D.vexillum include 

sea urchins (Strongylocentrotus droebachiensis and Strongylocentrotus franciscanus), although 

in experimental tests these predators prefer other food sources when available (Epelbaum et al. 

2009).  Unexpectedly, the green sea urchin (Strongylocentrotus droebachiensis) was found to be 

negatively correlated to D.vexillum and is not part of its community cluster in either open or 

closed area PCAs when D.vexillum is present. Another study in New Zealand indicated that sea 
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star and sea urchin predators may limit the spread of D.vexillum (Forrest et al. 2013), although 

the species of predators examined in these studies are not found on Georges Bank.  Therefore the 

spread of D.vexillum on Georges Bank may at least be partially due to the lack of natural 

predators and competitors, supporting the enemy-release and competitive-release hypotheses 

(Liu & Stiling 2006; Blossey & Notzold 1995).   

The lacy tubeworm F.implexa, was found to positively associate with D.vexillum and is 

part of the same community in the multivariate analysis.  Consistent with other studies, 

encrusting taxa such as the lacy tubeworm have been found in disturbed shallow habitat in high 

densities and are known as early colonizers (Asch & Collie 2008, Collie et al. 2009). The lacy 

tubeworm may also have a relationship with the Cancer crabs, since crab species are also known 

to utilize the calcareous tubes the lacy tube worms produce as habitat to reduce risk of predation 

(Heck & Hambrook 1991). The calcareous tubes created by serpulid polychaetes are modified by 

environmental factors (Bornhold & Milliman 1973); thus the presence of D.vexillum

tissues in the environment may alter the chemical environment that these species use to create 

calcareous tubes, which serve as habitat for several other species. Furthermore, laboratory 

experiments have indicated that Cancer crabs can prey on other species of solitary ascidians such 

as Ascidiella aspersa, Ciona intestinalis, and Styela clava but not on colonial ascidians such as 

D.vexillum (Dijkstra & Harris 2007).  

Bottom-fishing also appears to restructure some associations among species as found in 

our multivariate analysis.  Specifically sea stars of the genus Asterias and the crab C.borealis 

were more closely associated with species found in the D.vexillum community in the open areas 

whereas these species were not associated with the D.vexillum group in the closed areas (Figure 

3.5).  Sea stars of the genus Asterias were also found to be more abundant at disturbed sites in 
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high gravel habitat (Figure 3.6), which may be explained by the fact that they scavenge and have 

been reported to feed on organisms damaged by bottom-fishing (Ramsay et al. 1998, Jenkins et 

al. 2004).  Sea stars may be tolerant of D.vexillum tissues as demonstrated by their close spatial 

association in HabCam images (Figure 3.4).  Moreover, sea star predation as well as intra and 

interspecific interactions among sea stars have been shown to affect the distributions of 

invertebrate prey species (Gaymer et al. 2004, Shank et al. 2012).   

The most motile species analyzed in this study are the Cancer crabs and their motility 

may enable them to inhabit and traverse areas infested with D.vexillum without having a 

significant negative impact on their distribution in these areas.  Moreover, Cancer crabs are 

scavengers that may colonize disturbed habitats and consume prey items damaged or discarded 

from bottom-fishing (Collie et al. 2009).  Studies have shown that they utilize chemical cues to 

detect, locate and identify food items (Rebach 1996); thus the presence of discards and prey 

items damaged by bottom-gear may attract these crabs to the open area.  Scavengers including 

Cancer crabs and Asterias sea stars in the Irish Sea have been shown to aggregate around 

damaged scallops in particular, having implications for an increase in incidental scallop mortality 

caused by dredge gear (Jenkins et al. 2004). Cancer crabs have also been shown to break open 

even lightly damaged scallop shells (Jenkins et al. 2004). Therefore, Cancer crabs higher 

abundance in the open area may be explained by greater access to food resources as a result of 

fishing.  

Bottom-fishing may alter interactions among species that together drive variation among 

the sites as observed in the PCA.  The clustering among three species groups identified in both 

closed area PCAs appears more diffuse and not as tightly clustered in the open area PCAs 

(Figure 3.5).  Species may associate with each other to form mutualistic relationships that serve 
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an ecological purpose such as predator avoidance in the case of Cancer crabs using calcerous 

tubes formed by the lacy tubeworm F.implexa (Heck & Hambrook 1991), although this 

relationship may be altered in the presence of bottom-fishing if these tubes are crushed. 

Generally, scallop dredging on Georges Bank creates a high level of disturbance as compared to 

natural disturbances created by storm events (Jennings & Kaiser 1998).  Previous research has 

shown that areas impacted by bottom-fishing are found to have lower abundance of organisms, 

lower species richness and lower diversity as compared to areas that are undisturbed (Collie et al. 

1998, Asch & Collie 2008).  Additionally, bottom-fishing affects the physical structure of the 

benthos and benthic community functional groups (Tillin et al. 2006, Hinz et al. 2009).  Heavily 

trawled areas have been found to have greater abundances of motile animals, as well as infaunal 

and scavenging invertebrates, while attached filter-feeding, and larger more sedentary animals 

are more abundant in areas with lighter trawling effort (Tillin et al. 2006).  These findings are 

consistent with our results when examining pooled data based on open and closed areas, though 

area as a factor did not have a significant effect on the decline in biodiversity as measured by the 

Shannon index per site, which was driven primarily by D.vexillum.   

Studies conducted in the Gulf of Alaska and Irish Sea show that most motile organisms 

are less severely affected by chronic and experimental trawling than anthozoans, sponges, 

bryozoans, tubicolous polychaetes and barnacles (Freese et al. 1999, Bradshaw et al. 2002).  

Species with softer tissues are more vulnerable to bottom-fishing impacts as compared to 

encrusting species (Asch & Collie 2008).   In this study encrusting sponges of the genus Lophon 

were more abundant in the open area than the closed area whereas globular sponges of the genus 

Polymastia demonstrated the opposite relationship since their softer tissues may make them more 

sensitive to bottom-fishing impacts (Asch & Collie 2008).  The effects of bottom-fishing may be 
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cumulative, therefore small-scale experimental studies cannot capture large scale spatial and 

temporal trends that can be extrapolated to the ecosystem level (Hinz et al. 2009).  In contrast to 

small-scale experimental studies, this observational study evaluates a large area in situ providing 

detailed observations of ecological interactions in the northern edge of Georges Bank, though 

more data is needed to evaluate trends over time. 

Didemnum vexillum may also be more widespread in habitat disturbed by dredging since 

disturbed habitats are generally more susceptible to invasive species (Lozon & MacIsaac 1997, 

Didham et al. 2007b).  Closed areas contain higher levels of biodiversity as measured by the 

Shannon index in comparison to dredged areas when sites were pooled by area.  Therefore, the 

higher biodiversity in this area may make it less susceptible to invasion, which is consistent with 

the insurance hypothesis; higher biodiversity leads to lower susceptibility to invasive species 

since there are fewer resources available in the more biodiverse area for the invasive to exploit 

(Yachi & Loreau 1999, Stachowicz et al. 1999, Marraffini & Geller 2015).  Didemnum vexillum 

is also present in the closed area, albeit at lower densities than the open area, though its presence 

there also has a strong impact in driving variation among sites.  Didemnum vexillum appears to 

be a key driver of ecological change in the study area regardless of disturbance regime, which is 

consistent with other studies supporting the driver hypothesis of invasive species impacts on 

native communities (Light & Marchetti 2007).  The area effect, representing different levels of 

disturbance from bottom-fishing processes, was not significant in affecting the Shannon index as 

measured per site, which would be expected to show a significant effect if bottom-fishing was a 

driver of biodiversity loss as indicated in the passenger and back-seat driver hypotheses (Bauer 

2012; MacDougall & Turkington 2005).  Therefore, the results from this study are most 

consistent with the driver hypothesis in characterizing the effects of this invasive species on 
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biodiversity. 

In this study we examined interactions of an invasive tunicate D.vexillum with other 

species of the invertebrate community on Georges Bank and found it appears to restructure the 

invertebrate community when present.  This study demonstrates the impact of this invasive 

tunicate is stronger in altering the ecological community and biodiversity than the disturbance 

caused by bottom-fishing.  Furthermore, we have demonstrated the extensive impacts an invasive 

species can have on benthic communities and biodiversity using advanced technology for 

observing a commercially important region over a large scale.  Large scale in-situ studies 

comparing fished and protected areas provide valuable insights into understanding ecological 

interactions in these communities, which can be used to implement ecosystem-based strategies 

into marine management.   
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APPENDIX A: Chapter 1 supplementary materials 

Governance and ecological data temporal considerations 

 The following eight MPAs included ecological data from sites collected after 2000: Biscayne 

National Park, Culebra National Wildlife Refuge, Florida Keys National Marine Sanctuary, Dry 

Tortugas National Park, John Pennekamp Coral Reef State Park, Parque Nacional Marino Punta 

Frances, Parque Nacional Jaragua and Parque Nacional Marino Bastimentos (Table 2).  The time 

of collection of ecological indicators and governance data collection in 1999 were researched to 

determine if MPA management regulations had changed in this time period.  (Roman 2012).  

Monitoring and enforcement of the Florida Keys National Marine Sanctuary during the 

collection of the ecological data in this study was conducted by the Florida Fish and Wildlife 

Conservation Commission which began in 1997 acting in partnership with NOAA law 

enforcement in accordance with the Florida Keys National Marine Sanctuary code of Federal 

regulations which were in effect through the time of the AGRRA surveys (National Marine 

Sanctuary Act 1997 sec. Subpart 

Monument was re-designated as a national park and expanded in 1980 (Public Law 96-287) and 

the comprehensive general management plan formed in 1983 for the park was active for the time 

of the governance and AGRRA surveys used in this study (National Park Service, U.S. 

Department of Interior 2015).   Culebra National Wildlife Refuge, Puerto Rico, during the time 

of governance data collection and AGRRA surveys was managed by the Department of Natural 

and Environmental Resources in Puerto Rico (DNER) operating under the Fisheries and Wildlife 
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Strategic Plan 1996 and enforced by the Puerto Rico DNER law enforcement division during the 

governance and ecological surveys used in this study.  The Dry Tortugas National Park 

regulations were implemented by the U.S. National Park Service established in 1992 established 

by Public Law 102-525 under which regulations were overseen during the time of the 

governance survey and ecological data collection.  The John Pennekamp Coral Reef State Park 

during this time period operated under the 1998 management plan which was not replaced until 

2004, after the governance and AGRRA survey data collected for this project were collected 

e

Nacional Marino Punta Frances in Cuba was governed as part of the National System of 

Protected Areas under the Decree-Law 201/1999, which established regulations with regard to 

the administration and control defining protected area categories for Cuba and regulated the level 

and types of use allowed in protected areas including regulations for control, management, 

funding and administration (Angulo-Valdés 2005).  This law was active during the period of 

governance survey data collection and AGGRA survey data collection (Angulo-Valdés 2005).  

Parque Nacional Jaragua in the Dominican Republic was created in 1983 and management was 

updated in 2000 under the General Law of the Environment and Natural Resources No. 64 and 

the Law of Protected Areas No. 202 in 2004 (Perdomo,L. et al. 2010), however the management 

ica para la 

Elaboración y/o Actualización de Planes de Manejo de Áreas Protegidas de República 

Bastimentos in Panama is governed under the General Law of the Environment No. 41 enacted 

in 1998 and administered by the National Authority of the Environment (Autoridad Nacional del 
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06).   

 

Table A1.  List of the 21 MPAs analyzed in this study by country, year established, marine area 

and the number of AGRRA sites with ecological data within the MPA. 

MPA Country 
(Region) 

Year 
established 

Marine 
Area 
(km2) 

Number 
of 
AGRRA 
sites 

Year of 
AGRRA 
survey 

Biscayne National Park USA 
(Florida) 

1969 728.43 6 2003 

Culebra National 
Wildlife Refuge 

USA (Puerto 
Rico) 

1909 0.5 3 2003 

Dry Tortugas National 
Park 

USA 
(Florida) 

1935 261.87 16 2004 

Florida Keys National 
Marine Sanctuary 

USA 
(Florida) 

1990 9515 21 2003 

Flower Garden Banks 
National Marine 
Sanctuary 

USA (Texas) 1992 145.04 2 1999 

Glover's Reef Marine 
Reserve 

Belize 1996 308 10 2000 

John Pennekamp Coral 
Reef State Park 

USA 
(Florida) 

1959 217.05 8 2003 

Montego Bay Marine 
Park 

Jamaica 1992 15.3 5 2000 

Ocho Rios Protected 
Area 

Jamaica 1966 133.186 3 2000 

Parque Nacional 
Marino. Punta Frances 

Cuba 1996 11 4 2001 

Parque Nacional 
Cahuita 

Costa Rica 1970 10.68 3 1999 

Parque Nacional 
Jaragua 

Dominican 
Republic 

1983 0.91 1 2004 

Parque Nacional Marino Panama 1988 132.26 4 2002 
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Bastimentos 

Parque Nacional Sur de 
Guanahacabibes 

Cuba 1997 90 4 1999 

Reserva de la Biosfera 
Sian Ka'an 

Mexico 1986 1200 12 1999 

Reserva Especial de la 
Biosfera Isla Contoy 

Mexico 1961 48.96 10 2000 

Saba Marine Park Netherlands  1987 8.7 7 1999 

Salt River Bay National 
Historical Park and 
Ecological Preserve 

US Virgin 
Islands 

1992 2.43 1 1999 

South Water Cay 
Marine Reserve 

Belize 1996 477.01 1 2000 

Tobago Cays National 
Marine Park 

Saint Vincent 
and the 
Grenadines 

1987 50 5 1999 

United States Virgin 
Islands National Park 

US Virgin 
Islands 

1962 22.87 6 1999 

Total    132  
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S1 Appendix B.  Variogram model fits for (a) Gravel using the exponential model and (b) Depth 

also using the exponential model.  
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S2 appendix B. (a) Gravel proportional cover over study area based on ordinary kriging 

estimates. (b) Depth (m) based on ordinary kriging estimates. Kriged estimates were used to 

create prediction grid for D.vexillum distribution. 

APPENDIX C:  Chapter 3 supplementary information 

 

S1 Appendix. Rank abundance plot of all count species found in the study area.


