Outline

• Why must users of restricted-access data learn about confidentiality protection?
• What is statistical disclosure limitation?
• What are privacy-preserving data mining and differential privacy?
• Basic methods for disclosure avoidance (SDL)
• Rules and methods for model-based SDL
• SDL-based noise methods
• Differential privacy methods
Why Are We Covering This?

• The vast majority of data users have no exposure to the SDL techniques applied to the data they use

• The tradition in SDL is to protect the details of what was done as part of the protocol
 – Here’s the complete description for the American Community Survey public-use micro sample: http://www.census.gov/acs/www/data_documentation/pums_confidentiality/
Explosion of Research in Computer Science

• Differential privacy, developed by Cynthia Dwork and many collaborators fundamentally changed the nature of the discussion

• The standards of modern cryptography apply:
 – An algorithm only provides protection if it can survive an attack by anyone armed with all the details of the protection algorithm except the actual random numbers, if any, used in the protection
Restricted-access Data Users

• Must normally subject their analyses to statistical disclosure limitation, including limitation by differential privacy methods

• It is extremely important to understand what this means for the quality of the released research and its replicability
Statistical Disclosure Limitation

• Protection of the confidentiality of the underlying micro-data
 – Avoiding identity disclosure
 – Avoiding attribute disclosure
 – Avoiding inferential disclosure

• Identity disclosure: who (or what entity) is in the confidential micro-data

• Attribute disclosure: value of a characteristic for that entity or individual

• Inferential disclosure: improvement of the posterior odds of a particular event (identity or attribute)
Privacy-preserving Datamining and Differential Privacy

• Formally define the properties of “privacy”
• Introduce algorithmic uncertainty as part of the statistical process
• Prove that the algorithmic uncertainty meets the formal definition of privacy
• Differential privacy defines protection in terms of making the released information about an entity as close as possible to being independent of whether or not that entity’s data are included in the tabulation data file
General Methods for Statistical Disclosure Limitation

• At the Census Bureau SDL is called Disclosure Avoidance Review
• Traditional methods
 – Suppression
 – Coarsening
 – Adding noise via swapping
 – Adding noise via sampling
• Newer methods
 – Explicit noise infusion
 – Synthetic data
 – Formal privacy-preserving sanitizers
Suppression

• This is by far the most common technique
• Model the sensitivity of a particular data item or observation ("disclosure risk")
• Do not allow the release of data items that have excessive disclosure risk (primary suppression)
• Do not allow the release of other data from which the sensitive item can be calculated (complementary suppression)
Suppression in Model-base Releases

• Most data analysis done in the RDCs is model-based

• The released data consist of summary statistics, model coefficients, standard errors, some diagnostic statistics

• The SDL technique used for these releases is usually suppression: the suppression rules are contained (up to confidential parameters) in the RDC Researcher’s Handbook
Coarsening

• Coarsening is the creation of a smaller number of categories from the variable in order to increase the number of cases in each cell
• Computer scientists call this “generalizing”
• Geographic coarsening: block-block group-tract-minor civil division-county-state-region
• Top coding of income is a form of coarsening
• All continuous variables in a micro-data file can be considered coarsened to the level of precision (significant digits) released
• This method is often applied to model-based data releases by restricting the number of significant digits that can be released
Swapping

• Estimate the disclosure risk of certain attributes or individuals
• If the risk is too great, attributes of one data record are (randomly) swapped with the same attributes of another record
• If geographic attributes are swapped this has the effect of placing the risky attributes in a different location from the truth
• Commonly used in household censuses and surveys
• Rarely used with establishment data
Sampling

• Sampling is the original SDL technique
• By only selecting certain entities from the population on which to collect additional data (data not on the frame), uncertainty about which entity was sampled provides some protection
• In modern, detailed surveys, sampling is of limited use for SDL
Rules and Methods for Model-based SDL

- Refer to Chapter 3 of the RDC Researcher’s Handbook
- Suppress: coefficients on detailed indicator variables, on cells with too few entities
- Smooth: density estimation and quantiles, use a kernel density estimator to produce quantiles
- Coarsen: variables with heavy tails (earnings, payroll), residuals (truncate range, suppress labels of range)
SDL by Noise Infusion

• Introduction
• Application to the Quarterly Workforce Indicators
• Measures of protection
• Measures of analytical validity
Explicit Noise Infusion

• Adding noise to the published item or to the underlying micro data to disguise the true value
• Example: QWIs and work place data in OTM
The Quarterly Workforce Indicator System

• Multiplicative noise infusion system
• Establishment level micro data are distorted according to a permanent distortion factor
• Distortion factor always moves the fuzzed item away from the actual item by a minimum and maximum percentage
• All release data are computed from the fuzzed items
References for QWI

Noise Factor Distribution

\[p(\delta_j) = \begin{cases}
(b - \delta)/(b - a)^2, & \delta \in [a, b] \\
(b + \delta - 2)/(b - a)^2, & \delta \in [2 - b, 2 - a]
\end{cases} \]

\[F(\delta_j) = \begin{cases}
0.5 + \left[(b - a)^2 - (b - \delta)^2 \right]/\left[2(b - a)^2 \right], & \delta \in [a, b] \\
\left[(\delta + b - 2)^2 \right]/\left[2(b - a)^2 \right], & \delta \in [2 - b, 2 - a]
\end{cases} \]
Graph of Noise Distribution
Implementation of Noise Infusion

- Differences: JF, JC, JD, FJF, FJC, FJD, DWA, DWFA, DWS, DWFS
- In OTM, B is distorted as a count
Multiplicative Noise Infusion

- B_{jt} is beginning of quarter employment; E is end of period; $E-bar$ is the average.
- Z_W2 is end of quarter employee earnings, $W2$ is total payroll for end of quarter employees.
- JF is net job flows
- Asterisk indicates distorted values.

$$B^*_{jt} = \delta_j \times B_{jt}$$

$$Z _ W_{2_jt}^* = \frac{W_{2_jt}^*}{E_{jt}^*} = \frac{\delta_j \times W_{2_jt}}{E_{jt}}$$

$$JF_{kt}^* = G_{kt} \times \overline{E}_{kt}^* = JF_{kt} \times \frac{\overline{E}_{kt}^*}{\overline{E}_{kt}}$$

$$Z _ DWA_{kt}^* = \frac{\Delta WA_{kt}}{A_{kt}} \times \frac{A_{kt}^*}{A_{kt}}$$
Weighting

• Each fuzzed micro-data item is weighted by the QWI final weight before aggregation

• This means that all input data are real numbers (not integers)

• Final disclosure control formulas must reflect rounding of the counts
Protection Properties of the QWI Algorithm
<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5+</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>99.61</td>
<td>0.39</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>1</td>
<td>0.00</td>
<td>98.57</td>
<td>1.43</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>2</td>
<td>0.00</td>
<td>1.04</td>
<td>96.10</td>
<td>2.85</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>3</td>
<td>0.00</td>
<td>0.00</td>
<td>2.19</td>
<td>93.21</td>
<td>4.60</td>
<td>0.00</td>
</tr>
<tr>
<td>4</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>7.30</td>
<td>82.52</td>
<td>10.18</td>
</tr>
<tr>
<td>5+</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.60</td>
<td>98.40</td>
</tr>
</tbody>
</table>

Note: The data represent county data for Maryland/NAICS Industry Group. Cells represent row percentages and sum to 100.
<table>
<thead>
<tr>
<th>Variable: B</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unweighted/Undistorted vs. Weighted/Distorted</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5+</td>
</tr>
<tr>
<td>0</td>
<td>99.19</td>
<td>0.81</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>1</td>
<td>0.14</td>
<td>89.29</td>
<td>10.56</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>2</td>
<td>0.04</td>
<td>1.39</td>
<td>67.45</td>
<td>30.70</td>
<td>0.42</td>
<td>0.00</td>
</tr>
<tr>
<td>3</td>
<td>0.03</td>
<td>0.04</td>
<td>2.19</td>
<td>50.99</td>
<td>42.76</td>
<td>3.99</td>
</tr>
<tr>
<td>4</td>
<td>0.03</td>
<td>0.02</td>
<td>0.03</td>
<td>3.07</td>
<td>41.04</td>
<td>55.81</td>
</tr>
<tr>
<td>5+</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.02</td>
<td>0.33</td>
<td>99.64</td>
</tr>
</tbody>
</table>

Note: The data represent county data for Maryland/NAICS Industry Group. Cells represent row percentages and sum to 100.
Table 1C
Variable: B
Unweighted/Undistorted vs. Synthesized

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5+</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>99.17</td>
<td>0.82</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>1</td>
<td>7.85</td>
<td>84.74</td>
<td>6.62</td>
<td>0.78</td>
<td>0.01</td>
<td>0.00</td>
</tr>
<tr>
<td>2</td>
<td>0.51</td>
<td>11.93</td>
<td>61.06</td>
<td>24.14</td>
<td>2.24</td>
<td>0.12</td>
</tr>
<tr>
<td>3</td>
<td>0.06</td>
<td>0.76</td>
<td>7.53</td>
<td>47.50</td>
<td>39.13</td>
<td>5.02</td>
</tr>
<tr>
<td>4</td>
<td>0.03</td>
<td>0.11</td>
<td>0.93</td>
<td>7.40</td>
<td>38.84</td>
<td>52.69</td>
</tr>
<tr>
<td>5+</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.11</td>
<td>0.71</td>
<td>99.16</td>
</tr>
</tbody>
</table>

Note: The data represent county data for Maryland/NAICS Industry Group. Cells represent row percentages and sum to 100.
Analytical Validity Properties
Error Distribution for B (Micro-data)
Error Distribution for W (Micro-data)
Table 7

Distribution of the Difference Between Autocorrelation Coefficients
Unweighted/Undistorted vs. Unweighted/Distorted

<table>
<thead>
<tr>
<th>Percentile</th>
<th>B</th>
<th>H</th>
<th>R</th>
<th>E</th>
<th>A</th>
<th>S</th>
<th>M</th>
<th>F</th>
<th>FA</th>
<th>FS</th>
<th>H3</th>
</tr>
</thead>
<tbody>
<tr>
<td>99</td>
<td>0.067</td>
<td>0.058</td>
<td>0.042</td>
<td>0.066</td>
<td>0.061</td>
<td>0.061</td>
<td>0.079</td>
<td>0.059</td>
<td>0.056</td>
<td>0.054</td>
<td>0.056</td>
</tr>
<tr>
<td>95</td>
<td>0.036</td>
<td>0.035</td>
<td>0.025</td>
<td>0.036</td>
<td>0.036</td>
<td>0.036</td>
<td>0.042</td>
<td>0.032</td>
<td>0.034</td>
<td>0.033</td>
<td>0.035</td>
</tr>
<tr>
<td>90</td>
<td>0.025</td>
<td>0.025</td>
<td>0.015</td>
<td>0.024</td>
<td>0.025</td>
<td>0.025</td>
<td>0.028</td>
<td>0.021</td>
<td>0.024</td>
<td>0.023</td>
<td>0.024</td>
</tr>
<tr>
<td>75</td>
<td>0.009</td>
<td>0.009</td>
<td>0.005</td>
<td>0.009</td>
<td>0.010</td>
<td>0.010</td>
<td>0.011</td>
<td>0.008</td>
<td>0.009</td>
<td>0.008</td>
<td>0.008</td>
</tr>
<tr>
<td>50</td>
<td>0.000</td>
</tr>
<tr>
<td>25</td>
<td>-0.008</td>
<td>-0.011</td>
<td>-0.005</td>
<td>-0.009</td>
<td>-0.010</td>
<td>-0.010</td>
<td>-0.011</td>
<td>-0.008</td>
<td>-0.009</td>
<td>-0.008</td>
<td>-0.009</td>
</tr>
<tr>
<td>10</td>
<td>-0.023</td>
<td>-0.028</td>
<td>-0.016</td>
<td>-0.023</td>
<td>-0.026</td>
<td>-0.027</td>
<td>-0.027</td>
<td>-0.022</td>
<td>-0.026</td>
<td>-0.024</td>
<td>-0.026</td>
</tr>
<tr>
<td>5</td>
<td>-0.035</td>
<td>-0.038</td>
<td>-0.025</td>
<td>-0.037</td>
<td>-0.036</td>
<td>-0.038</td>
<td>-0.041</td>
<td>-0.033</td>
<td>-0.037</td>
<td>-0.035</td>
<td>-0.038</td>
</tr>
<tr>
<td>1</td>
<td>-0.061</td>
<td>-0.063</td>
<td>-0.045</td>
<td>-0.065</td>
<td>-0.059</td>
<td>-0.065</td>
<td>-0.074</td>
<td>-0.061</td>
<td>-0.061</td>
<td>-0.059</td>
<td>-0.062</td>
</tr>
</tbody>
</table>

Note: The data represent county data for Maryland/NAICS Industry Group. Cells represent the difference between the autocorrelation coefficients the percentile designated by the rows.
Table 8

Distribution of the Difference Between Autocorrelation Coefficients
Unweighted/Undistorted vs. Weighted/Distorted w/ Suppressions

<table>
<thead>
<tr>
<th>Percentile</th>
<th>B</th>
<th>H</th>
<th>R</th>
<th>E</th>
<th>A</th>
<th>S</th>
<th>M</th>
<th>F</th>
<th>FA</th>
<th>FS</th>
<th>H3</th>
</tr>
</thead>
<tbody>
<tr>
<td>99</td>
<td>0.318</td>
<td>0.592</td>
<td>0.538</td>
<td>0.325</td>
<td>0.602</td>
<td>0.652</td>
<td>0.330</td>
<td>0.366</td>
<td>0.606</td>
<td>0.656</td>
<td>0.648</td>
</tr>
<tr>
<td>95</td>
<td>0.153</td>
<td>0.326</td>
<td>0.221</td>
<td>0.158</td>
<td>0.294</td>
<td>0.304</td>
<td>0.134</td>
<td>0.181</td>
<td>0.317</td>
<td>0.352</td>
<td>0.359</td>
</tr>
<tr>
<td>90</td>
<td>0.086</td>
<td>0.196</td>
<td>0.136</td>
<td>0.084</td>
<td>0.173</td>
<td>0.181</td>
<td>0.063</td>
<td>0.108</td>
<td>0.196</td>
<td>0.218</td>
<td>0.229</td>
</tr>
<tr>
<td>75</td>
<td>0.021</td>
<td>0.060</td>
<td>0.049</td>
<td>0.019</td>
<td>0.053</td>
<td>0.053</td>
<td>0.017</td>
<td>0.025</td>
<td>0.068</td>
<td>0.070</td>
<td>0.087</td>
</tr>
<tr>
<td>50</td>
<td>-0.002</td>
<td>-0.006</td>
<td>0.000</td>
<td>-0.003</td>
<td>-0.006</td>
<td>-0.008</td>
<td>-0.006</td>
<td>-0.001</td>
<td>-0.004</td>
<td>-0.004</td>
<td>-0.001</td>
</tr>
<tr>
<td>25</td>
<td>-0.029</td>
<td>-0.075</td>
<td>-0.063</td>
<td>-0.031</td>
<td>-0.071</td>
<td>-0.078</td>
<td>-0.037</td>
<td>-0.026</td>
<td>-0.070</td>
<td>-0.084</td>
<td>-0.082</td>
</tr>
<tr>
<td>10</td>
<td>-0.085</td>
<td>-0.188</td>
<td>-0.162</td>
<td>-0.091</td>
<td>-0.170</td>
<td>-0.190</td>
<td>-0.099</td>
<td>-0.077</td>
<td>-0.169</td>
<td>-0.200</td>
<td>-0.190</td>
</tr>
<tr>
<td>5</td>
<td>-0.150</td>
<td>-0.289</td>
<td>-0.242</td>
<td>-0.154</td>
<td>-0.258</td>
<td>-0.288</td>
<td>-0.176</td>
<td>-0.141</td>
<td>-0.262</td>
<td>-0.300</td>
<td>-0.286</td>
</tr>
<tr>
<td>1</td>
<td>-0.393</td>
<td>-0.551</td>
<td>-0.474</td>
<td>-0.426</td>
<td>-0.505</td>
<td>-0.531</td>
<td>-0.489</td>
<td>-0.419</td>
<td>-0.499</td>
<td>-0.538</td>
<td>-0.527</td>
</tr>
</tbody>
</table>

Note: The data represent county data for Maryland/NAICS Industry Group. Cells represent the difference between the autcorrelation coefficients the percentile designated by the rows.
Table 9

Distribution of the Difference Between Autocorrelation Coefficients
Unweighted/Undistorted vs. Weighted/Distorted w/ Synthetic Replacements

<table>
<thead>
<tr>
<th>Percentile</th>
<th>B</th>
<th>H</th>
<th>R</th>
<th>E</th>
<th>A</th>
<th>S</th>
<th>M</th>
<th>F</th>
<th>FA</th>
<th>FS</th>
<th>H3</th>
</tr>
</thead>
<tbody>
<tr>
<td>99</td>
<td>0.107</td>
<td>0.246</td>
<td>0.223</td>
<td>0.096</td>
<td>0.238</td>
<td>0.263</td>
<td>0.210</td>
<td>0.227</td>
<td>0.260</td>
<td>0.157</td>
<td>0.294</td>
</tr>
<tr>
<td>95</td>
<td>0.056</td>
<td>0.144</td>
<td>0.126</td>
<td>0.051</td>
<td>0.134</td>
<td>0.166</td>
<td>0.123</td>
<td>0.112</td>
<td>0.145</td>
<td>0.076</td>
<td>0.185</td>
</tr>
<tr>
<td>90</td>
<td>0.036</td>
<td>0.104</td>
<td>0.092</td>
<td>0.033</td>
<td>0.099</td>
<td>0.120</td>
<td>0.084</td>
<td>0.075</td>
<td>0.108</td>
<td>0.049</td>
<td>0.133</td>
</tr>
<tr>
<td>75</td>
<td>0.011</td>
<td>0.050</td>
<td>0.043</td>
<td>0.010</td>
<td>0.047</td>
<td>0.058</td>
<td>0.037</td>
<td>0.031</td>
<td>0.051</td>
<td>0.018</td>
<td>0.066</td>
</tr>
<tr>
<td>50</td>
<td>-0.004</td>
<td>0.003</td>
<td>0.007</td>
<td>-0.005</td>
<td>0.005</td>
<td>0.007</td>
<td>0.006</td>
<td>0.002</td>
<td>0.007</td>
<td>-0.003</td>
<td>0.009</td>
</tr>
<tr>
<td>25</td>
<td>-0.030</td>
<td>-0.043</td>
<td>-0.013</td>
<td>-0.030</td>
<td>-0.032</td>
<td>-0.032</td>
<td>-0.017</td>
<td>-0.018</td>
<td>-0.030</td>
<td>-0.034</td>
<td>-0.037</td>
</tr>
<tr>
<td>10</td>
<td>-0.065</td>
<td>-0.109</td>
<td>-0.067</td>
<td>-0.064</td>
<td>-0.089</td>
<td>-0.095</td>
<td>-0.049</td>
<td>-0.056</td>
<td>-0.095</td>
<td>-0.082</td>
<td>-0.128</td>
</tr>
<tr>
<td>5</td>
<td>-0.092</td>
<td>-0.167</td>
<td>-0.120</td>
<td>-0.093</td>
<td>-0.142</td>
<td>-0.145</td>
<td>-0.081</td>
<td>-0.088</td>
<td>-0.144</td>
<td>-0.116</td>
<td>-0.194</td>
</tr>
<tr>
<td>1</td>
<td>-0.166</td>
<td>-0.295</td>
<td>-0.257</td>
<td>-0.176</td>
<td>-0.257</td>
<td>-0.268</td>
<td>-0.168</td>
<td>-0.187</td>
<td>-0.277</td>
<td>-0.233</td>
<td>-0.343</td>
</tr>
</tbody>
</table>

Note: The data represent county data for Maryland/NAICS Industry Group. Cells represent the difference between the autocorrelation coefficients the percentile designated by the rows.
QWIPU: Aggregating Formulas

- Counts and magnitudes:
 - Add

- Ratios and differences
 - Multiply by released base
 - Aggregate numerator and denominator separately
 - Add

- Job creations and destructions
 - Handle like counts but understand that there is an inherent loss of information
QWIPU: Handling the Suppressions

• Status flag 5 suppressions
 – Must be treated as missing data and estimated

• Status flag 9 data
 – Not suppressed; should be used as published
Research Uses of the Micro-data

• QWI Micro-data (UFF_B)
 – Use the undistorted confidential data (establishment level) in models
 – Use conventional model-based disclosure avoidance rules
 – No fuzzed data should be used

• OTM Micro-data (WHAT_B)
 – All micro-data and all imputations of missing data used to build OTM
 – Contain both fuzzed and unfuzzed values with separate weights
 – Unfuzzed data should be used in models, weighted as appropriate
CRYPTOGRAPHIC AND STATISTICAL ADVANCES IN CONFIDENTIALITY PROTECTION
Outline

- Motivation: formal privacy models and statistical disclosure limitation
- The basic OnTheMap application
- The statistical structure of the OnTheMap data
- Applying differential privacy to OnTheMap
- The trade-off between analytical validity and confidentiality protection
- Other recent developments
Formal Privacy Models and Statistical Disclosure Limitation

• Formal privacy protection methods are based on open algorithms with provable properties
• The standard in privacy-preserving datamining or differential privacy is based on cryptography
 – Only the private key (password, encryption key) is confidential; all algorithms and parameters are public
 – Attacker (= user) can have massive amounts of prior information
The Cryptographic Critique of SDL

• Standard SDL techniques fail because
 – They and do not have provably protective properties when the attacker (= user) is allowed full access to the algorithm
 – They depend upon the realized data and not the algorithm

• Many standard SDL techniques are viewed as very risky when the cryptographic critique is applied
Point of Common Ground

• Federal Committee on Statistical Methodology working paper 22 offers the desirable disclosure avoidance property:

> Disclosure relates to inappropriate attribution of information to a data subject, whether an individual or an organization. Disclosure occurs when a data subject is identified from a released file (identity disclosure), sensitive information about a data subject is revealed through the released file (attribute disclosure), or the released data make it possible to determine the value of some characteristic of an individual more accurately than otherwise would have been possible (inferential disclosure). (page 4)

• Evfimievski, Gehrke and Srikant (2003), Dwork (2006) show that disclosure avoidance in this sense is impossible to achieve in general
Focus on Synthetic Data and Randomized Sanitizers

- The SDL technique known as synthetic data most closely resembles the cryptographic data protection techniques.
- The cryptographic techniques are known as differential privacy, privacy-preserving datamining, randomized sanitizers, and e-privacy.
Definition of Synthetic Data

\[X \equiv \text{confidential data} \]

\[\Pr[\tilde{X} | X] = \text{PPD of } \tilde{X} \text{ given } X \]

Release data are samples of \(\tilde{X} \)

• Synthetic data are created by estimating the posterior predictive distribution (PPD) of the release data given the confidential data; then sampling release data from the PPD conditioning on the actual confidential values.

• The PPD is a parameter-free forecasting model for new values of the complete data matrix that conditions on all values of the underlying confidential data.
Connection to Randomized Sanitizers

$X \equiv$ confidential data

$U \equiv$ random noise

$\text{San}(X, U): (X, U) \rightarrow \tilde{X}$

$\Pr[\tilde{X}|X] \equiv$ probability of \tilde{X} given X

- A randomized sanitizer creates a conditional probability distribution for the release data given the confidential data.
- The randomness in a sanitizer is induced by the properties of the distribution of U.
- The PPD is just a particular randomized sanitizer.
\(\varepsilon\)-Differential Privacy

Definition (\(\varepsilon\) - Differential Privacy): Let \(A\) be a randomized algorithm, let \(S\) be the set of all possible outputs of the algorithm, and let \(\varepsilon > 0\). The algorithm \(A\) satisfies \(\varepsilon\) - differential privacy if for all pairs of data sets \((D_1, D_2)\) that differ in exactly one row,

\[
\forall S \in S, \quad \frac{P(A(D_1)) = S}{P(A(D_2)) = S} \leq e^\varepsilon \quad \text{or} \quad \ln \left| \frac{P(A(D_1)) = S}{P(A(D_2)) = S} \right| < \varepsilon.
\]

- Differential privacy (Dwork, and many co-authors) is difficult to maintain in sparse applications when geographically near blocks have very different posterior probabilities
Disclosure Set

Definition (Disclosure Set): Let D be a table and \mathcal{D} be the set of tables that differ from D in at most one row. Let A be a randomized algorithm and S be the space of outputs of the algorithm A. The disclosure set of D, denoted $\text{Disc}(D,\varepsilon)$, is

$$\left\{ S \in S \mid \exists X_1, X_2 \in \mathcal{D}(D), |X_1 \setminus X_2| = 1 \land \ln \frac{P(A(X_1) = S)}{P(A(X_2) = S)} > \varepsilon \right\}.$$

- This set describes the outcomes where differential privacy fails
Probabilistic Differential Privacy or (ε, δ) Differential Privacy

Definition (Probabilistic Differential Privacy): Let A be a randomized algorithm and S be the space of outputs of A. Let $\varepsilon > 0$ and $0 < \delta < 1$ be constants. Then A satisfies (ε, δ)-probabilistic differential privacy (or (ε, δ)-pdp) if for all tables D, $P(A(D) \in \text{Disc}(D, \varepsilon)) \leq \delta$.

- PDP allows us to control the probability that differential privacy fails
- The analytical validity of sparse applications can be controlled with PDP because the restrictions on the prior used in the synthesizer are reasonable for use with sparse tables
\((\varepsilon, \delta)\)-Differential Privacy

Definition \((\varepsilon, \delta)\) - Differential Privacy: Let \(A\) be a randomized algorithm, let \(S\) be the set of all possible outputs of the algorithm, and let \(\varepsilon > 0\) and \(\delta > 0\). The algorithm \(A\) satisfies \((\varepsilon, \delta)\) - differential privacy if for all pairs of data sets \((D_1, D_2)\) that differ in exactly one row,\
\[
\forall S \in S, [P(A(D_1)) = S] \leq e^\varepsilon [P(A(D_2)) = S] + \delta.
\]

- Probabilistic differential privacy and \((\varepsilon, \delta)\)-differential privacy are equivalent
Disclosure Limitation Definitions

\[X = x^{(1)} \text{ and } X = x^{(2)} \]

\[\tilde{X} = \tilde{x}, \text{ realization of the synthesizer} \]

• Consider two confidential data matrices that differ in only a single row, \(x^{(1)} \) and \(x^{(2)} \)

• Use the PPD to evaluate the probability of a particular release data set given the two different confidential data sets
Synthetic Data Can Leak Information about a Single Entity

\[
\Pr[\tilde{X} = \tilde{x} | X = x^{(1)}] \neq \Pr[\tilde{X} = \tilde{x} | X = x^{(2)}]
\]

- Changing a single row of the confidential data matrix changes the PPD or the random sanitizer
- The PPD or the random sanitizer define the transition probabilities from the confidential data to the release data
- True for all SDL procedures that infuse noise
The posterior odds ratio for the gain in information about a single row of X is equal to the differential privacy from the randomized sanitizer that creates release data by sampling from the specified conditional distribution.
Connection Between Differential Privacy and Inferential Disclosure

\[
\frac{\Pr[X = x^{(1)} \mid \tilde{X} = \tilde{x}]}{\Pr[X = x^{(2)} \mid \tilde{X} = \tilde{x}]} = \frac{\Pr[\tilde{X} = \tilde{x} \mid X = x^{(1)}]}{\Pr[\tilde{X} = \tilde{x} \mid X = x^{(2)}]}
\]

The posterior odds ratio for the gain in information about a single row of \(X\) is the Dalenius (1977) definition of an inferential disclosure. Bounding the differential privacy therefore bounds the inferential disclosure.
Taking Account of Formal Privacy Models

• A variety of papers in the cryptographic data privacy literature (Dwork, Nissim and their many collaborators, Gehrke and his collaborators, and others) show that the confidentiality protection afforded by synthetic data or a randomized sanitizer depends upon properties of the transition probabilities that relate the confidential data to the release data.

• Exact data releases are not safe. Not surprising since

\[
\Pr[\tilde{X} | X] = I
\]

implies that the sanitizer leaves the confidential data unchanged.

• Off-diagonal elements that are zero imply infinite differential privacy: exact disclosure in some cases with probability 1.

• For a full explanation of the relation between the transition matrix and differential privacy measures see Abowd and Vilhuber (2008).
Relationship to Post-randomization

- Post-randomization (Kooiman et al. 1997) focuses on the diagonal elements of

\[\Pr[\tilde{X}|X] \]

- When off-diagonal elements of this transition matrix are zero, infinite differential privacy usually results.
- Swapping, shuffling, stratified sampling, and most noise-infusion methods result in off-diagonal elements that are zero.
A DETAILED EXAMPLE: SYNTHETIC DATA
The Multinomial-Dirichlet Model

• The data matrix X consists of categorical variables that can be summarized by a contingency table with k categories.

• n_i are counts.

• π_i are probabilities

\[
\begin{align*}
\mathbf{n} &= (n_1, \ldots, n_k), \\
n &= \sum n_i \\
\alpha &= (\alpha_1, \ldots, \alpha_k), \\
\alpha_0 &= \sum \alpha_i \\
\pi &= (\pi_1, \ldots, \pi_k) \\
n &\sim \mathcal{M}(n, \pi) \\
\pi &\sim \mathcal{D}(\alpha), \text{ a priori} \\
\pi &\sim \mathcal{D}(\alpha + \mathbf{n}), \text{ a posteriori} \\
\mathbf{m} &= (m_1, \ldots, m_k), \\
m &= \sum m_i \\
\mathbf{m} &\sim \mathcal{M}(m, \pi)
\end{align*}
\]
The Multinomial-Dirichlet Synthesizer

\[\Pr[m|n] = \mathbb{E}_{\pi|n}[M(m, \pi)] \]

- The synthetic data are samples from the synthesizer, and can be summarized by their counts, \(m \)
- Since all the random variables are discrete, the synthesizer can be expressed as a simple transition probability matrix
k = 2

α_i = ½; α_0 = 1

n = m = 5

The table displays the transition probabilities that map **n** into **m**

<table>
<thead>
<tr>
<th>n_1</th>
<th>n_2</th>
<th>m_1</th>
<th>m_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0.647228</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>0.237305</td>
<td>0.294194</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>0.067544</td>
<td>0.241227</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>0.012559</td>
<td>0.087911</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0.000977</td>
<td>0.014648</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0.000004</td>
<td>0.000004</td>
</tr>
</tbody>
</table>
\(\varepsilon\)-Differential Privacy

\[
\left| \ln \frac{\Pr[m | n^{(1)}]}{\Pr[m | n^{(2)}]} \right| < \varepsilon
\]

- The two confidential data matrices, \(n^{(1)}\) and \(n^{(2)}\) differ by changing exactly one entity’s data
- Bounding by \(\varepsilon\) the log inferential disclosure odds ratio in the M-D synthesizer amounts to controlling the probabilities in \(\Pr[m | n]\) appropriately
The table shows all of the differential privacy ratios for the example problem.
The \(\varepsilon \)-differential privacy of this synthesizer is the maximum element in this table, 5.493061.
The differential privacy limit is attained when the synthesizer delivers (0,5) and the underlying data are either (5,0) or (4,1) (or (0,5) with original data (1,4) or (5,0)).
If I release (5,0) and you know 4 people are in category 2, then the odds are 243:1 (= \(\exp(5.493061) \)) that the unknown person is in category 1.

|\(n^{(1)}_1 \)| \(n^{(1)}_2 \)| \(n^{(2)}_1 \)| \(n^{(2)}_2 \)| \(m_1 \)| \(m_2 \)
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5</td>
<td>1</td>
<td>4</td>
<td>1.003353</td>
<td>5.493061</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>1.256572</td>
<td>2.554128</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1.682361</td>
<td>1.682361</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>2.554128</td>
<td>1.256572</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>5</td>
<td>0</td>
<td>5.493061</td>
<td>1.003353</td>
</tr>
</tbody>
</table>
Probabilistic Differential Privacy

- This definition of differential privacy allows the ε-differential privacy limit to fail with probability δ (Machanavajjhala et al. 2008)
- To compute the PDP, the joint distribution of m and n must be examined for outcomes with differential privacy that exceed the limit to ensure that they occur with total probability less than δ
The table is $Pr[m,n]$, where the marginal $Pr[n]$ is based on the prior $D(\alpha)$.

If we want to have ε-differential privacy of 2, then the synthesizer fails in the highlighted cells.

With prior $D(\alpha)$, probabilistic differential privacy has $\varepsilon = 2$ and $\delta < 0.000623$, which is just the sum of the highlighted cells in each row (row by row).
A DETAILED EXAMPLE: RANDOM SANITIZER
Laplace Sanitizer

• Dwork et al. (2006) show that ε-differential privacy can be achieved in the Multinomial model with a sanitizer using independent double exponential noise (Laplace noise) with mean zero and variance $2/\varepsilon$

• The numerator, 2, is called the “global sensitivity”

• Note that in our application the total n is released without noise

\[n \sim M(n, \pi) \]

\[u \sim i.i.d \ Lap\left(0, \frac{2}{\varepsilon}\right) \]
The table displays the transition probabilities that map \(n \) into \(m \).

- \(k = 2 \)
- \(n = m = 5 \)
- \(\varepsilon = 2 \)
- Note that the diagonals are larger than the M-D model and the extreme outcomes have greater probability.
The table confirms that the transition matrix on the previous page has $\varepsilon = 2$
Challenges and Applications

• Realistic problems are all very sparse
• Probabilistic differential privacy can solve the sparseness problem
 – But, it requires coarsening and domain shrinking to deliver acceptable analytical validity.
• The Laplace synthesizer can solve the sparseness problem by adaptive histogram coarsening or the sparse vector method
 – But the user cannot directly control the coarsening hence analytical validity for some hypotheses is low
• OnTheMap uses probabilistic differential privacy
A REAL APPLICATION: US CENSUS BUREAU’S ONTHEMAP/LODES
Where residents of Sausalito, CA with high wages are employed

4/1/2013

© John M. Abowd and Lars Vilhuber 2013, all rights reserved
The OnTheMap/LODES Data Structure

• Set of linked data tables with a relational database schema

• Main tables (micro-data)
 – Job: [Person_ID, Employer_ID, ...]
 – Residence: [Person_ID, Origin_Block, ...]
 – Workplace: [Employer_ID, Destination_Block, ...]
 – Geo-code: [Block, Tract, Latitude, Longitude, ...]
Detailed Geo-spatial Data in OTM/LODES

• Workplace and residence geographies are defined using Census blocks
• Statistical analysis to estimate the PPD is based on Census tract-to-tract relations
• There are 8.2 million blocks and 65,000 tracts in the U.S. (Census 2000 geography)
• Every workplace block with positive employment has its own synthesizer
Dirichlet-Multinomial Synthesizer

- I residences (origins)
- Model each workplace (destination) j separately for each demographic segment (age, earnings, industry)
- Sample data X tabulated into n
- Synthetic data tabulated into m
- Often, $m = n$, but not in the OTM application

$$n = \left(n_1, \ldots, n_I \right), n = \sum n_i$$
$$\alpha = \left(\alpha_1, \ldots, \alpha_I \right), \alpha_0 = \sum \alpha_i = |\alpha|$$
$$\pi = \left(\pi_1, \ldots, \pi_I \right)$$
$$n \sim M(\pi, n)$$
$$\pi \sim D(\alpha), \text{ a priori}$$
$$\pi \sim D(\alpha + n), \text{ a posteriori}$$

$$m = \left(m_1, \ldots, m_I \right), m = \sum m_i$$
$$m \sim M(\pi, m), \text{ a posteriori}$$
Synthetic Data Model

• Likelihood of place of residence (index \(i\)) conditional on place of work (index \(j\)) and characteristics (index \(k\)):

\[
p(n_{ijk} \mid \pi_{i|jk}) \propto \prod_{i=1}^{I} \pi_{i|jk}^{n_{ijk}}
\]

• The resulting posterior for \(\pi\) is Dirichlet with parameter \(n_{jk} + \alpha_{jk}\) for each unique workplace and characteristic combination (age, earnings, industry, race, ethnicity, education).

• Synthesize residence counts by sampling from the posterior predictive distributions conditional on already protected (and published) destination employment counts, \(m_{jk}\).
Search Algorithm Implements PDP

- We rely on the concept of \((\varepsilon, \delta)\)-probabilistic differential privacy, which guarantees \(\varepsilon\)-differential privacy with 1-\(\delta\) confidence (Machanavajjhala et al. (2008)).
- Search algorithm finds the minimum prior sample size to guarantee \(\varepsilon\)-differential privacy with failure probability \(\delta\).
- This minimum prior sample size is then used as the lower bound of the prior sample sizes \((\alpha)\).
- The privacy-preserving algorithm implemented in OnTheMap guarantees \(\varepsilon\)-differential privacy protection of 8.99 with 99.999999% confidence \((\delta = 0.000001)\).
Measures to Improve Validity

• Coarsening of the domain
 – Reducing the number of support points in the domain of the prior

• Editing the prior domain
 – Eliminating the most unlikely commute patterns (from prior and likelihood) based on previously published data

• Use of informative priors
 – Impose likely shape based on previously published data subject to minimum prior sample size that ensures ϵ, δ-PDP

• Pruning the posterior
 – Randomly eliminating a fraction support points with no likelihood support
 – Pruning comes with a penalty in terms of privacy protection
Refinement: Coarsening the Domain

- Blocks are collected into larger geographic areas—SuperPUMAs, PUMAs, Tracts
- Reduces the dimensionality of the domain of each destination’s synthesizer
- Theorem 5.1 in Machanavajjhala et al. shows that ε-differential privacy, and (ε, δ)-probabilistic differential privacy both survive coarsening with unchanged parameters
Coarsening Steps

• If origin block very far away from destination block (distance > 90th percentile of CTTP commute distribution) coarsened to Super-PUMA (400,000 population in Census 2000)

• Else if origin block far away from destination block (distance > 50th percentile of CTTP commute distribution) coarsened to PUMA (100,000 population in Census 2000)

• Else if origin block close to destination block (distance < 50th percentile of CTTP commute distribution) coarsened to Census Tract (4,000 population on average).

• Idea: “marginal differences in commute distances between candidate locations have less predictive power in allocating workers the farther away the locations are”
Effects of Coarsening

• Coarsening in formal privacy models is effectively the same as coarsening in traditional methods.

• After coarsening, an entity (in this case a block) is chosen randomly to represent the coarsened unit (one block per SuperPUMA, PUMA, or tract, as appropriate).

• This ensures that the transition matrix has no zero elements at the block level.

• Ratios of the elements of this transition matrix determine the differential privacy.
Refinement: Editing the Prior Domain

• For each work tract:
 – if point in domain has zero probability in prior data then do:
 • eliminate point with $p=0.98$ if distance > 500 miles
 • eliminate point with $p=0.9$ if distance > 200 miles
 • eliminate point with $p=0.5$ if distance > 100 miles
 • do not eliminate if distance < 100 miles
 – else retain point

• Note: contribution of any likelihood data in eliminated points also eliminated
Fraction of Points in the Prior Domain with Positive Counts in Census Transportation Planning Package Data

<table>
<thead>
<tr>
<th>Distance (in miles)</th>
<th>State A</th>
<th>State B</th>
<th>State C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>SD</td>
<td>Mean</td>
</tr>
<tr>
<td>- low-10</td>
<td>0.47</td>
<td>0.37</td>
<td>0.40</td>
</tr>
<tr>
<td>- 10-25</td>
<td>0.30</td>
<td>0.26</td>
<td>0.19</td>
</tr>
<tr>
<td>- 25-100</td>
<td>0.01</td>
<td>0.13</td>
<td>0.09</td>
</tr>
<tr>
<td>- 100-500</td>
<td>0.01</td>
<td>0.03</td>
<td>0.01</td>
</tr>
<tr>
<td>- 500-high</td>
<td>0.00</td>
<td>0.01</td>
<td>0.00</td>
</tr>
<tr>
<td>All</td>
<td>0.18</td>
<td>0.28</td>
<td>0.14</td>
</tr>
</tbody>
</table>
Fraction of Points in the Domain with Positive Counts in CTPP after Eliminating Extremely Unlikely Commute Patterns

<table>
<thead>
<tr>
<th>distance (in miles)</th>
<th>Large State</th>
<th>Medium State</th>
<th>Small State</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>SD</td>
<td>Mean</td>
</tr>
<tr>
<td>- low-10</td>
<td>0.47</td>
<td>0.37</td>
<td>0.40</td>
</tr>
<tr>
<td>- 10-25</td>
<td>0.30</td>
<td>0.26</td>
<td>0.19</td>
</tr>
<tr>
<td>- 25-100</td>
<td>0.13</td>
<td>0.13</td>
<td>0.09</td>
</tr>
<tr>
<td>- 100-500</td>
<td>0.06</td>
<td>0.09</td>
<td>0.03</td>
</tr>
<tr>
<td>- 500-high</td>
<td>0.07</td>
<td>0.13</td>
<td>0.06</td>
</tr>
<tr>
<td>All</td>
<td>0.21</td>
<td>0.27</td>
<td>0.15</td>
</tr>
</tbody>
</table>

Fraction of likelihood data eliminated by eliminating unlikely commute patterns is about 3-7% depending on state and year.
Support Points in Prior Domain (before Posterior Pruning)

<table>
<thead>
<tr>
<th>Support points:</th>
<th>Large State (A)</th>
<th>Medium State (B)</th>
<th>Small State (C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Support points:</td>
<td>Mean Min Max</td>
<td>Mean Min Max</td>
<td>Mean Min Max</td>
</tr>
<tr>
<td>Total</td>
<td>1,005 583 2,067</td>
<td>1,027 619 1,560</td>
<td>672 602 818</td>
</tr>
</tbody>
</table>

By level of coarsening

<table>
<thead>
<tr>
<th>Level</th>
<th>Large State (A)</th>
<th>Medium State (B)</th>
<th>Small State (C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Super-PUMA</td>
<td>526 519 538</td>
<td>526 518 539</td>
<td>537 535 539</td>
</tr>
<tr>
<td>- PUMA</td>
<td>39 9 73</td>
<td>47 7 79</td>
<td>10 4 19</td>
</tr>
<tr>
<td>- Census Tract</td>
<td>438 32 1,506</td>
<td>453 72 998</td>
<td>125 56 272</td>
</tr>
</tbody>
</table>

By distance (in miles) between centroids

<table>
<thead>
<tr>
<th>Distance Range</th>
<th>Large State (A)</th>
<th>Medium State (B)</th>
<th>Small State (C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>- low-10</td>
<td>265 1 878</td>
<td>188 1 438</td>
<td>15 1 49</td>
</tr>
<tr>
<td>- 10-25</td>
<td>127 8 794</td>
<td>195 13 612</td>
<td>16 1 60</td>
</tr>
<tr>
<td>- 25-100</td>
<td>85 23 289</td>
<td>121 45 296</td>
<td>54 15 169</td>
</tr>
<tr>
<td>- 100-500</td>
<td>139 119 206</td>
<td>181 151 238</td>
<td>80 29 233</td>
</tr>
<tr>
<td>- 500-high</td>
<td>389 361 412</td>
<td>343 300 373</td>
<td>508 486 519</td>
</tr>
</tbody>
</table>
Refinement: Informative Priors

• In year 2002: Public-use CTTP data
• In year 2003-2010: Public-use previous year OnTheMap data (not posterior)
• $\alpha = \max[\min_{\text{alpha}}, f(\text{prior density})]$ minimum prior sample size is the larger of the PDP value (min_alpha) or the informative prior value
• Priors unique to each employment tract
• Not strictly Bayesian because the posterior is not published, and published data are required for prior by PDP
Refinement: Posterior Domain Pruning

• Domain may still have too many blocks for good analytical validity

• Algorithm 2 prunes the posterior domain for a given destination j:
 – Keep all origins in the likelihood support (confidential data)
 – For all other origins, add to domain with probability f_i;
 (generates \min_p below)
 – From Machanavajjhala et al. 2008:

$$
\left\{ \begin{array}{l}
\frac{2}{\ln \max \left(1, \frac{1}{f_i} \right) + \max_{i \in \{ |n_i| = 0 \}} \left\lceil \alpha_i \right\rceil \ln 2}
\end{array} \right.
$$

Theorem 5.2 (summary): Applying the domain pruning algorithm 2 changes the (ε, δ)-pdp to

$$
\varepsilon' = \varepsilon + \max_{i \in \{ |n_i| = 0 \}} \left(\ln \left(\frac{1}{f_i} \right) \right) + \max_{i \in \{ |n_i| = 0 \}} \left\lceil \alpha_i \right\rceil \ln 2
$$
Effects of Posterior Domain Pruning

• Posterior domain pruning leaves all of the support points that appear in the likelihood function in the posterior
• Posterior domain pruning removes some of the prior support points that have no likelihood
• Posterior domain improves analytical validity, but because it depends upon the confidential data, it increases the effective differential privacy limit
Final Privacy Settings for OnTheMap/LODES

• Unadjusted $\varepsilon = 4.6$
• Probability of failure $\delta = 0.000001$
• Minimum retention probability $min_p = 0.025$
• Adjusted $\varepsilon = 8.9$
• Kullback-Leibler and Integrated Mean Squared Error loss functions used to set parameters of prior
• Multinomial-Dirichlet Posterior sampled for every workplace block in the U.S. (about 1.4 million)
Analytical Validity Measures

• The divergence between posterior and likelihood for a population is measured by the Kullback-Leibler Divergence index (KL) and the Integrated Mean Square Error (IMSE) over a 29 point grid defined by the cross product of:
 – 8 commute distance categories (in miles: 0, (0-1), [1-4), [4-10), [10-25), [25-100), [100,500), [500+)
 – 5 commute direction categories (NW, NE, SW, SE, “N/A”)
• $D_{KL} = 0$ if identical; $D_{KL} = \infty$ if no overlap

$$D_{KL} (P \parallel L) = \sum_i L(i) \ln \frac{L(i)}{P(i)}$$
Summary: Varying ε

- Figures show the population-weighted D_{KL} for all and small (1 to 9) workforce populations for $\varepsilon = 2, 4, 4.6, 10$ and 25
- Overall, D_{KL} close to zero for values of $\varepsilon > 4$
- Significant gains in analytical validity for small populations as we increase ε further to 4.6
- The marginal improvements in analytical validity from even higher values of ε hard to justify in terms the costs in privacy protection loss
Kullback-Leibler Divergence and Prune-adjusted Epsilon by Minimum Retention Probability in Prune Function: All Populations

Minimum Retention Probability in Prune Function

- State C
- State B
- State A
- Adjusted Epsilon
Kullback-Leibler Divergence and Prune-adjusted Epsilon by Minimum Retention Probability in Prune Function: Small Populations

Minimum Retention Probability in Prune Function

- State C
- State B
- State A
- Adjusted Epsilon
Summary: Varying min_p

- Figures show the population-weighted D_{KL} for all and small (1 to 9) workforce populations and ε for $min_p = 0.1, 0.05, 0.025$ and 0.001.

- Large gains in analytical validity as min_p is decreased from 0.1 to 0.05 for all populations and further large gains for small populations as min_p is decreased to 0.025.

- The marginal improvements in analytical validity from even lower values of min_p; hard to justify in terms the costs in privacy protection loss.
Summary: Varying δ

• We evaluate $\delta = 0.001, 0.0001, 0.00001$ and 0.000001

• Only very marginal improvements in analytical validity as we decrease confidence from 1 in a million to 1 in a 100

• No reason to consider values of $\delta > 0.000001$
Posterior, Likelihood and Prior Mass across Commute Ranges for All and for Small Populations

<table>
<thead>
<tr>
<th>Distance</th>
<th>All</th>
<th>Small (min-10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.07</td>
<td>0.07</td>
</tr>
<tr>
<td>(0-1)</td>
<td>0.15</td>
<td>0.15</td>
</tr>
<tr>
<td>[1-4)</td>
<td>0.23</td>
<td>0.23</td>
</tr>
<tr>
<td>[4-10)</td>
<td>0.26</td>
<td>0.26</td>
</tr>
<tr>
<td>[10-25)</td>
<td>0.28</td>
<td>0.28</td>
</tr>
<tr>
<td>[25-100)</td>
<td>0.14</td>
<td>0.13</td>
</tr>
<tr>
<td>[100-500)</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>[500-high]</td>
<td>0.02</td>
<td>0.02</td>
</tr>
</tbody>
</table>
LODES Quality Measured by Jensen-Shannon Divergence

- Posterior-Likelihood
- Synthetic-Likelihood

Expected Adjusted Epsilon

($\sqrt{\text{JSD}}$)
LODES Quality Measured by Jensen-Shannon Divergence (zoomed)
LODES Quality Root Mean Integrated Squared Error

Expected Adjusted Epsilon

- Posterior-Likelihood
- Synthetic-Likelihood

RMISE
Overall Summary

• Synthetic data as an privacy protection algorithm is a promising alternative to traditional disclosure avoidance methods, especially when data representation is sparse
• Hard to quantify degree of disclosure protection – synthetic data methods may leak more information than intended
• LODES/OnTheMap demonstrates the successful implementation of formal privacy guarantees based on the concept of probabilistic ε-differential privacy
• To achieve acceptable analytical validity results with privacy guarantees requires experimentation
References

OTHER RESEARCH ON PRIVACY AND CONFIDENTIALITY
Privacy in Statistical Databases

POSTDOC Positions available

• **Main theme:** NSF CDI-Type II: Collaborative Research: Integrating Statistical and Computational Approaches to Privacy
 – Social, Behavioral & Economic data (simulated and real-life data)
 – Trade-off between data utility and disclosure risk
 – Rigorous privacy definitions (e.g., Differential Privacy)
 – Privatization of social networks data
 – Private Genome-wide association studies
 – Privacy with Distributed databases

• Collaborators:
 – Penn State: NSF-BCS-0941553
 Aleksandra Slavkovic (www.stat.psu.edu/~sesa/)
 Adam Smith (www.cse.psu.edu/~asmith)
 Sofya Raskhodnikova (www.cse.psu.edu/~sofya)

 – Cornell: BCS-0941226, John Abowd (ILR) (https://courses.cit.cornell.edu/jma7/)

 – Carnegie Mellon: BCS-0941518, Steve Fienberg (STAT/ML) (www.stat.cmu.edu/~fienberg)

• Today two examples
 – Privatization of social networks data & Synthetic social networks

 – Genetic data in Genome-Wide Association Studies (GWAS)
Publishing Network Data

Goal: Enable sharing of social-network data under rigorous privacy guarantees & maintain data utility for statistical inference.

Epidemiological studies on sexual networks

- Survey number of partners – Degree Sequence
- Reconstruct a typical network

Can we do this while protecting the privacy of individuals?

Anonymization not sufficient e.g. see Narayanan, Shmatikov (2009)
Publishing network data

Algorithm for releasing graphical degree sequences and synthetic graphs for simple undirected graphs under DP framework.

Goal
- **Utility** - Release synthetic graphs with given degree sequences with statistical utility
- **Risk** - Provide rigorous privacy guarantee, no assumptions about attacker’s prior information/algorithm

Diagram:
- **Database**
 - \(f(G) \)
- **Queries**
 - e.g. Degree Sequence
 - answers
 - Synthetic Graph
- **Users**
 - Government, researchers, businesses
 - (or)
 - Malicious adversary
Utility - Beta Model for Graphs

- Let G be a graph on n nodes and m edges, $p_{ij} = \frac{e^{\beta_i + \beta_j}}{1 + e^{\beta_i + \beta_j}}$.

- Exponential family - Degree sequence is a sufficient statistic

\[P(G = g) \propto \exp \sum \beta_i d_i \]

\[d = \{2, 2, 2, 2, 1\} \]

- Find the MLE and perform conditional inference – similar to contingency tables analysis

Chatterjee et al. (2011), Rinaldo et al. (2012)
Risk - Differential privacy for relationships

ϵ-differential edge privacy:
For all pairs of neighbors G, G' and for all events S:

$$\frac{\Pr[f(G) \in S \mid G]}{\Pr[f(G') \in S \mid G]} \leq e^\epsilon$$

- Probability is over the randomness of mechanism f
- Definition requires that the distributions are close:

![Diagram showing probability distributions $f(G)$ and $f(G')$ with a close overlap area under the curve.](image)
Laplace Mechanism

\[f : G \rightarrow \mathbb{R}^k \]

Laplace Mechanism: \[f(G) + \text{Lap}(0, \frac{GS(f)}{\epsilon}) \]

Global Sensitivity: \[GS(f) = \max_{\Delta(G,G')=1} \| f(G) - f(G') \|_1 \]

- \(f(G) \) a synthetic graph under beta model?
- Release sufficient statistics of the beta model
- Let \(f(G) \) degree sequence with \(GS(f)=2 \)
 - BUT utility for MLE existence and for GOF testing requires output to be *graphical degree sequence*
Graphical Degree Sequences

• A degree sequence is graphical if it has a \textit{simple} graph associated with it.

E.g. \((2,2,2,1,1)\) is graphical. \((2,2,1,1,1)\) is not.

• Conditions for graphicality – Havel ‘55, Hakimi ‘62

Set of graphical degree sequences is \(DS_n\)

• If a sequence is graphical, it may have more than one graph associated with it.

Set of all graphs that have the same degree sequence is \(G(d)\)
Algorithm for Differentially Private Graphical Degree Sequences

Input: Degree Sequence \(d \)

Output: Differentially private synthetic graph \(G \)

1) Use the Laplace Mechanism
 \[
 z = d + \text{Lap}(0, \frac{2}{\epsilon})
 \]

2) Find the nearest non-decreasing set of integers
 \[
 c = \arg\min_{w \in \mathbb{Z} \leq z} ||w - z||_1.
 \]

3) Find the nearest graphical degree sequence
 \[
 d_p = \arg\min_{d \in D S_n} ||d - c||_1
 \]

4) Output a graph \(G \) associated with \(d_p \)

"Isotone"
Hay et al (2009)

"Isotone Havel-Hakimi"
Karwa and Slavkovic (2012)
Simulation Results

- Goal – Release synthetic datasets from the beta model
- Compare – Our algorithm (IsotoneHH) with Hay et al. (Isotone)

Simulation settings:
1) Start with a graphical degree sequence
2) Release graphical degree sequences with Laplace noise 500 times.
3) Compute the MLE of the beta model
 a) Check for the existence of MLE via Karwa & Slavkovic Theorem
 b) If MLE exists, estimate the parameters

<table>
<thead>
<tr>
<th>Likoma</th>
<th>n = 250, m = 248</th>
<th>Degree sequence of people on Likoma Island</th>
</tr>
</thead>
<tbody>
<tr>
<td>Karate</td>
<td>n = 34, m = 78</td>
<td>Network of Members of Karate club</td>
</tr>
</tbody>
</table>
Simulation Results – Karate Data

Table 1: $P(\text{MLE exists})$

<table>
<thead>
<tr>
<th></th>
<th>Karate</th>
<th>Likoma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isotone HH</td>
<td>0.998</td>
<td>0.99</td>
</tr>
<tr>
<td>Isotone</td>
<td>0.499</td>
<td>0.23</td>
</tr>
</tbody>
</table>
Simulation Results – Likoma Data

Table 1: $P(\text{MLE exists})$

<table>
<thead>
<tr>
<th></th>
<th>Karate</th>
<th>Likoma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isotone HH</td>
<td>0.998</td>
<td>0.99</td>
</tr>
<tr>
<td>Isotone</td>
<td>0.499</td>
<td>0.23</td>
</tr>
</tbody>
</table>
GOF: Empirical Distribution of number of triangles
Summary

- Algorithm to release differentially private graphical degree sequences
 - Equivalent to maximum likelihood reconstruction of degree sequences
 - *If the MLEs of the observed degree partition exist, the MLEs of the private version of the degree partition should also exist.*
 - Rigorous privacy guarantee AND statistical utility for the beta model

- L_1 or L_2 distance between the original and released DP “data” is not sufficient for statistical utility

- Ongoing work: extensions to other network models and data

NIH Guidelines

- Health Insurance Portability and Accountability Act of 1996 (HIPAA)

- HIPAA Privacy Rule: provides a formal legally enforceable policy for safe guarding protected health information (PHI)

- HIPAA Security Rule: specifies administrative, physical, and technical safeguards to assure the confidentiality, integrity, and availability of electronic protected health information (ePHI).

- HIPAA Final Rule (ACTIVE as of MARCH 26, 2013): implements a number of provisions of the Health Information Technology for Economic and Clinical Health (HITECH) Act, strengthen the privacy and security of health information

- Data sharing, data enclaves, encryption of limited data, privacy risk assessment:
De-Identification

Figure 1. Two methods to achieve de-identification in accordance with the HIPAA Privacy Rule.
The identities of data subjects cannot be readily ascertained or otherwise associated with the data by the repository staff or secondary data users (Common Rule); and the following data elements have been removed (HIPAA Privacy Rule).

1. Names.
2. All geographic subdivisions smaller than a state, including street address, city, county, precinct, ZIP Code, and their equivalent geographical codes, except for the initial three digits of a ZIP Code if, according to the current publicly available data from the Bureau of the Census: a. The geographic unit formed by combining all ZIP Codes with the same three initial digits contains more than 20,000 people. b. The initial three digits of a ZIP Code for all such geographic units containing 20,000 or fewer people are changed to 000.
3. All elements of dates (except year) for dates directly related to an individual, including birth date, admission date, discharge date, date of death; and all ages over 89 and all elements of dates (including year) indicative of such age, except that such ages and elements may be aggregated into a single category of age 90 or older.
4. Telephone numbers.
5. Facsimile numbers.
6. Electronic mail addresses.
7. Social security numbers.
8. Medical record numbers.
9. Health plan beneficiary numbers.
10. Account numbers.
12. Vehicle identifiers and serial numbers, including license plate numbers.
15. Internet protocol (IP) addresses numbers.
16. Biometric identifiers, including fingerprints and voiceprints.
17. Full-face photographic images and any comparable images.
18. Any other unique identifying number, characteristic, or code, unless otherwise permitted by the Privacy Rule for re-identification.
NIH GWAS: Identifiability of de-identified data

- 2008 Policy on GWAS data sharing @ http://gwas.nih.gov/

- Data repository, Data submission, Data access
NIH GWAS: Identifiability of de-identified data

- Possible to identify a specific individual’s genetic profile in a dataset containing only aggregated genomic data
 - NIH removed all aggregate genomic data (contingency tables, odds-ratios, of χ^2 statistics, p-values) from public websites
 - Access only through a formal approval process
Private data sharing of GWAS statistics

Aim: Release aggregate genomic data and relevant summary statistics to enable data sharing for exploratory statistical analysis but minimize risk to study participants (and others).

Approach: Differential privacy provides rigorous privacy guarantees in the presence of arbitrary external information

Contribution: Release of private χ^2 statistics, p-values, and most significant single-nucleotide polymorphisms (SNPs) via differentially private logistic regression with the following cost of privacy:

- For small to large N and no sparseness, with private χ^2 statistics minimal cost
- For most relevant SNPs, moderate sample size increases
- For bigger and sparser data, models that integrate across SNPs, these simple releases are not sufficient for privacy nor utility
Overall project summary

- Integrating the SDL and cryptographic approaches
- Design scalable computational techniques that are statistically sound, yield broadly useful data and preserve privacy in the face of external information.

1. Integrating the rigorous definitions of privacy emanating from computer science with notions of utility from statistics.
2. Developing cryptographic protocols for distributing privacy-preserving algorithms among a group of servers to avoid pooling data in any single location.
3. Understanding the practical potential of the developed techniques by applying them to social, behavioral and economic sciences data

Many ongoing problems being worked on.