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Abstract 

This thesis presents a stated preference study of vehicle choice using survey data from 

1226 respondents who were asked to indicate vehicle preference among: gasoline, 

hybrid, plug-in hybrid electric and battery electric vehicles. We estimated a latent class 

random utility model and used it to estimate the willingness to pay for three vehicle 

attributes: driving range, fueling/charging time and accessibility to fueling/charging 

infrastructure. Results showed that certain populations were enthusiastic to electric 

vehicles and were willing to pay on average $40-70 for a mile of additional driving 

range (100 miles as base). We confirmed that willingness to pay for driving range was 

diminished as driving range increased.  The results were then applied to five electric 

vehicles on the market; low-end battery electric vehicles had leverages in making profit 

from improving driving range than high-end ones. Future battery improvements would 

strengthen the strategy of making profit from improving driving range.  
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Chapter 1 Introduction 

Growing concerns about energy security and climate change, along with advances in 

battery technology have stimulated a trending interest in electric vehicles, from a 

policy, economic and technology perspective. Back in 2008, with gas prices averaging 

nearly $4 a gallon, President Obama set a goal of getting one million plug-in vehicles 

on the road by 2015. 1  In his 2011 State of the Union Address, President Obama 

affirmed and highlighted this goal aimed at building U.S. leadership in technologies 

that reduce dependence on oil (Office of Energy Efficiency & Renewable Energy, 2011). 

Since then, his administration has backed billions of dollars in electric vehicle (EV) 

subsidies for consumers2 and the industry3 (Office of Energy Efficiency & Renewable 

Energy, 2011). Encouraged by these facts, along with advanced battery technology and 

recent successful stories in the development of EVs, automobile manufacturers have 

adopted and begun a trend of launching plug-in EVs. The industry continues to roll out 

new models in response to government mandates and its own ambition to create 

                                                           
1 The President first announced this goal as a candidate in a speech in Lancing, Michigan on August 4, 
2008. He first reiterated the goal as President at a speech in Pomona, California on March 19, 2009. 
2 The Recovery Act established tax credits for purchasing electric vehicles ($2,500 - $7,500 per vehicle, 
depending on the battery capacity) and conversion kits to retrofit conventionally powered vehicles with 
electric vehicle capability ($4,000 per vehicle, maximum). The President has also proposed transforming 
the existing $7,500 EV tax credit into a rebate that will be available to all consumers immediately at the 
point of sale. 
3 $2.4 billion in loans to three of the world’s first electric vehicle factories in Tennessee, Delaware, and 
California. $2 billion in grants to support 30 factories that produce batteries, motors, and other EV 
components. 
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brands for environmental innovation. Yet today – with gas price near $2 a gallon – only 

about 400,000 electric vehicles have been sold (Inside EVs, 2016).  

 
Fig.1 U.S. Monthly EV Sales and Regular Retail Gasoline Prices, Since 2011 

Sources: (Inside EVs, 2016) and (U.S. Energy Information Administration, 2016) 

There are several challenges that are preventing better sales of EVs. In fact, the main 

obstacles for EVs are their high purchasing price and short driving range; especially 

when the gasoline price is low, customers will switch gear to Internal Combustion 

Engine Vehicles (ICEVs) as they simply offer longer driving range4. Fig. 1 shows the 

monthly EV sales (Inside EVs, 2016) and monthly regular conventional retail gasoline 

prices (U.S. Energy Information Administration, 2016) in the U.S. since 2011. It can be 

                                                           
4 Tesla CEO Elon Task said cheap oil will hurt EV sales according to FORTUNE report, Jan 2016. In Reuter 
report, Jan 2016, Energy Sec. Ernest Moniz said sales of electric vehicles (EVs) in the United States may 
not top one million until 2020. 
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observed from Fig. 1 that the rise and fall in monthly EV sales matched the fluctuation 

in gasoline prices. Last year, as the gasoline price kept going down, national EV sales 

fell 6 percent over the previous year, despite the industry offering about 30 EV models 

(Shepardson & Woodall, 2016).  

On the bright side, green car advocates say EVs are a crucial part of the effort to reduce 

greenhouse gas emissions5 (Michalek, Chester, & Samaras, 2012) and can help wean 

the U.S. off imported oil (Batlle, 2011). In the long term, they argue, oil price are almost 

certain to rise again which makes EVs more viable. GM chairman and CEO Mary Barra 

said she was convinced that consumers want EVs and that gas price would not stay low 

forever. Meanwhile, automakers are ambitious to make EVs more appealing by 

launching EVs with longer driving range. Besides, manufacturing cost is certainly going 

down because of the breakthroughs in the battery technology. EVs are still expected 

to have a good future. California, which is the most enthusiastic state in U.S. for EVs, 

accounted for about 40% of the total amount of EV sales in U.S. since 2011. It 

previously offered rebates of $2,500 for new battery-electric cars and $1,500 for plug-

in hybrids, but beginning in March 2016, the amount will vary depending on the 

buyer's income. Governor Jerry Brown has called for cutting petroleum use in vehicles 

on California roads in half by 2030--a goal that was later turned into legislation. While 

                                                           
5 Electric vehicles beat gasoline cars in cradle-to-grave emissions study, reported by Los Angeles Times, 
Nov 2015. http://www.latimes.com/business/autos/la-fi-hy-ucs-electric-vehicles-emissions-study-
20151110-story.html 



4 
 

California leads the nation in electric-car sales, however, it will need to boost its 

current sales significantly to meet that target6. 

Motivated by these anticipations, the aim of this research is to verify them with survey 

data and econometric and engineering models, to test our hypotheses and, finally, to 

provide and support marketing directions for automakers. We are interested in the 

potential consumer demand for EVs and whether or not they can become an economic 

attractive alternative. To this end, we used data from a stated choice experiment to 

estimate how much consumers are willing to pay for EVs. In this research, we analyze 

demand for EVs using a discrete choice model with discrete heterogeneity distribution 

for the taste parameters. We focused on the willingness to pay for pure battery electric 

vehicles (BEVs) rather than plug-in hybrid vehicles (PHEVs). We addressed the current 

EV features such as high battery cost, short driving range, long charging time and 

limited recharging infrastructure. Recent advances in technology suggest that driving 

range can be extended, charging time shortened and battery cost lowered. After a few 

years of mass production, the unit cost for EVs is likely to fall. It seems to be the right 

time to take a look at the economic potential of EVs. 

This research focuses on answering the following questions: 

 Are auto consumers interested in EVs? To what extent? 

                                                           
6 The amount of EV sales in California counts for one-third to one-half of all EV sales nationwide and 
it’s expected to grow. http://www.greencarreports.com/news/1102251_how-many-electric-cars-
does-california-buy-one-third-to-one-half-of-all-of-em 
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 Do auto consumers treat PHEV and BEV differently? 

 Is there any sociodemographic characteristic which drives the intention of 

adopting or not adopting an EV (PHEV or BEV)? Such as gender, knowledge, 

income etc. 

 How people value attributes of EVs? Can improving driving range be a possible 

strategy for automakers to boost both sales and profit? What about lowering 

manufacturing cost? 

The remainder of this thesis is organized into five parts. Chapter 2 states relevant 

literature regarding the modeling approach to analyzing demand for EVs. Chapter 3 

reviews the theory and formulation of latent class discrete choice models. Chapter 4 

summarizes the survey data and model specification and presents the model estimates. 

Chapter 5 gives a case study with five BEVs to explain how results from our model can 

be applied in the automotive industry. Finally, chapter 6 gives conclusions and 

opportunities for future study. 
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Chapter 2 Recent studies on EV adoption 

Given the early stage of development for alternative fuel vehicles, empirical revealed 

preference data from actual purchases have not been sufficiently accumulated 

(Brownstone, Bunch, & Train, 2000)7. Therefore, we adopted a stated preference (SP) 

method. SP data come from survey responses to hypothetical choices, which take into 

account certain types of market constraints useful for forecasting future changes in 

consumer behaviors. Most demand studies for EVs have used SP analysis in some form. 

Characteristics theory of value by Lancaster (1966) provided the theoretical basis of SP 

methods. Random utility maximization theory (McFadden, 1974) established the 

econometric foundations for their development and application. The earliest SP 

studies in the automotive market started in response to the 1970s oil crisis. Beggs et 

al. (1981) studied the potential demand for EVs by applying an ordered logit model to 

SP data in which individuals provided rank ordering for hypothetical vehicle 

descriptions. Calfee (1985) studied only the potential private demand for EVs, using 

discrete choice SP data and a fully disaggregated logit model. Train (1980) used a 

vehicle-type choice model (multinomial logit model developed by Lave and Train 

(1979)) to estimate the potential demand for EVs. Hensher (1982) focused on the 

demand elasticities for EVs in Sydney, Australia. Those researches examined 

                                                           
7 Revealed preference (RP) theory is a method of analyzing choices made by individuals, mostly used 
for comparing the influence of policies on consumer behavior. RP models assume that the preferences 
of consumers can be revealed by their purchasing habits. 
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individual’s tradeoffs between vehicles’ purchase price, operating cost and driving 

range, while ignoring their sensitivity to variations in fuel availability and refuel time. 

U.S. studies of this period only surveyed on multi-vehicle households due to higher 

tolerance of range limitation. Their main conclusion was that EVs’ short driving range 

can indeed account for strong impediments to consumer adoption. 

Another wave of EV studies happened in early 1990s due to the zero-emission vehicle 

mandate in California. These studies tried to predict the demand of EV in California. 

Bunch et al (1993) implemented a nested multinomial logit model with data from a 

mail-back based SP survey. Results indicated that range between refueling or 

recharging is an important attribute, particularly if range for an alternative fuel vehicle 

is substantially less than that for gasoline.  Brownstone et al. (1996) used both RP and 

SP information from a mail-based survey. They used the standard multinomial logit 

model to explain the discrete choices. Their model forecasted the demand for future 

vehicles conditional on the current holdings of the household and involved vehicle 

transaction decision. Vehicle range was a very important concern to households when 

they buy alternative-fuel vehicles, refueling time seemed not too important from their 

estimates. Brownstone and Train (1999) compared multinomial logit and mixed logit 

models for data on California households' revealed and stated preferences for 

automobiles. The mixed logit models provided improved fits over multinomial logit 

that were highly significant, and showed large heterogeneity in respondents' 
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preferences for alternative-fuel vehicles. The effects of including this preference 

heterogeneity were demonstrated in forecasting exercises. The 1990s studies had also 

added some novel elements in regard with the attributes relevant for alternative fuel 

vehicles such as refuel duration and timing, the availability of refuel infrastructure and 

air emissions. The majority of these studies find that all the aforementioned attributes 

are significant determinants of consumers’ vehicle choice. Some of the 1990s studies 

went further to acknowledge that consumers’ evaluation of driving range is not 

independent from the levels of refuel/recharge time and availability of 

fueling/charging infrastructure presented to them (e.g., Segal, 1995; Ewing and 

Sarigollu, 1998).  

The first two waves of studies supported an explosive third wave, which instead has 

focused more on the trade-offs that control the potential adoption of EVs. The typical 

trade-offs involve purchase cost (e.g., Thiel et al., 2010; Daziano R.A., 2013), 

convenience (such as driving range, availability of charging stations and charging time, 

e.g., Dimitropoulos et al., 2013), operating cost and environmental utility (Mckinsey 

2009). In particular, the willingness to pay for marginal improvements in driving range 

is an economic measure of the tradeoff between purchase price and driving range of 

electric vehicles, which is a key input for welfare and cost-benefit analysis of 

investments in improving electric batteries. Dimitropoulos et al. (2013) carried out a 

meta-analysis on the willingness to pay for marginal improvements in driving range. 
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Inference on willingness to pay can be derived from the estimates of discrete choice 

models. Among those researches, Sandor and Train (2004), Train and Sonnier (2005) 

and Hess et al. (2006) assumed both willingness to pay for and consumer surplus from 

improvements in driving range were constant. However, Kavalec (1999), Hess et al. 

(2012) and Daziano R.A. (2013) claimed that driving range should exhibit diminishing 

returns, which means an additional mile in driving range gives different marginal utility 

for vehicles with different scales of range. A number of additional studies are also 

conducted in California (e.g. Adler et al., 2003; Axsen et al., 2009; Nixon and Saphores, 

2011). Table 1 provides a summary of different willing to pay estimates for a one-mile 

improvement in driving range in the U.S. market. 

Table 1 
Willingness to pay estimates for marginal improvements in driving range. Results from 
different studies in the US. 

Main References Market WTP ($/mile) 
Mean est. Min est. Max est. 

Beggs and Cardell (1980) US (1978) 85 61 132 
Calfee (1985) California 

(1980) 
195 195 195 

Bunch et al. (1993) California 
(1991) 

101 95 106 

Golob et al. (1997) California 
(1994) 

117 76 202 

Tompkins et al. (1998) US (1995) 64 44 102 
Brownstone et al. (2000) California 

(1993) 
99 58 202 

Train and Hudson (2000), Train 
and Sonnier (2005) 

California 
(2000) 

100 87 131 

Hidrue et al. (2011) US (2009) 58 29 82 
Nixon and Saphores (2011) US (2010) 182 46 317 
Hess et al. (2012) California 

(2008) 
43 36 49 
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Daziano (2013) California 
(2000) 

103 75 171 

Source: Daziano R.A. (2013) 

The stated choices resulted from such SP experiments have been analyzed on the basis 

of discrete choice models. As stated at the beginning of this chapter, discrete choice 

has been widely applied to analyze the demand for alternative fuel and electric 

vehicles. In the early period, most of the research (Bunch et al., 1993; Golob et al., 

1997; Ewing and Sarigollu, 1998; Brownstone et al., 2000) used the multinomial logit 

model (MNL) (McFadden, 1974) or the nested logit model (Daly and Zachary, 1978; 

McFadden, 1978; Williams, 1977). However, these basic models have several 

shortcomings. The most notably is MNL’s assumption of independence from irrelevant 

alternatives (IIA). The mixed logit model (McFadden and Train 2001; Hensher and 

Greene, 2003) stands out as one of the most significant extensions of the MNL model. 

Some comparison results from previous research (Brownstone and Train, 1999) 

showed that mixed logit models (MIXL) provided improved fits over MNL that were 

highly significant, along with large heterogeneity in respondents' preferences for 

alternative-fuel vehicles. Hidrue et al. (2011) used latent class model (LC) which 

resembles the mixed logit but assumes discrete preference heterogeneity instead of 

continuous distributions. LC can be viewed as a semi-parametric extension of the MNL 

and also a relaxation of MIXL due to its assumption of discrete distribution of taste 

parameters. Greene and Hensher (2003) contrasted MIXL and LC and they concluded 

that both models offer alternative ways of capturing unobserved heterogeneity and 
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other potential sources of variability in unobserved utility. The LC has the virtue of 

being a semi-parametric specification which frees the analyst from possibly strong or 

unwarranted distributional assumptions about individual heterogeneity, whereas the 

MIXL provides the modeler a tremendous range within which to specify individual 

unobserved heterogeneity. 

In this research, we modeled discrete choice with a LC to capture unobserved 

individual heterogeneity. We tested other models such as MNL, MIXL, MMLM (Mixed-

mixed logit model), but the results were not reasonable. Results from other models 

are presented in Appendix B for further reference.  
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Chapter 3 Model explanation 

3.1 Random Utility Maximization models 

In economics, utility is a ubiquitous concept to measure the satisfaction attained when 

an individual performs certain activity, such as choosing a product or a service. The 

choice decision involved in most economic situations is based on subjective utility. 

When considering choosing a product, individuals compare the utility of each 

alternative product. Generally, we assume individuals are all rational so that they 

always choose the product or service which gives them the maximum utility (i.e. they 

are satisfied the most from their choices). Based on this nature, researchers can infer 

people’s choices ideally by mapping consumers’ preferences. 

Effectively, due to the subjective nature of utility, we cannot directly observe nor 

calculate its exact value because it is unrealistic to observe or measure every 

characteristic of the individual, the product and the choice situation that compose and 

affect the choice decision. We can only estimate the utility and predict the choice from 

some observable information about the individual, the product and the choice 

situation. A random utility maximization model presumes that utility inu  provided to 

individual n by alternative i (from a total of J alternatives) can be decomposed into an 

observable deterministic part inv and a random part in which is unobservable, such 

that 
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ininin vu                                                                                                                 (1)                                                                                                                  

where  Ji ,...,2,1 ,  Nn ,...,2,1 . inv  is the deterministic part of utility which comes 

from a set of observable attributes inz . inz is related to the attributes vector inx  of 

alternative i for individual n, maybe interacted with the characteristics vector inw  of 

individual n, so inz can actually be a function  ninin wxzz , . in  is the random part of 

utility which contains all the unobservable factors which also influence the  individual’s 

choice. 

Let   denote the coefficient vector of the corresponding observable attributes inz . 

Suppose inz  reflects inv  and enters utility function in a linear form, so that Eq. 1 can be 

then written as: 

ininin zu   '                                                                                                              (2) 

According to random utility theory, the probability of alternative i chosen by 

individual n is 

 iiuuPP niinin  ','       

 iivvP niniinin  ',''   

 iivvP niininni  ',''                                                                                 (3)  
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where  niin vv '  is also a deterministic value once given the choice situation, and 

inni  '  is random. So inP  is the probability of random term inni  ' below the 

corresponding value niin zz '''   , ii  ' . In sum, the choice probability is a cumulative 

distribution. 

3.2 Multinomial Logit Model 

MNL is used when the dependent variable is nominal and can be taken from more than 

two categories. It is widely applied in practice because generally there are more than 

two alternatives in the choice set. Multinomial logit assumes that there is no 

correlation among alternatives and the error term in the utility function is independent 

and identically distributed Gumbel (also known as type-1 generalized extreme value 

distribution). The choice probability for an MNL model takes the following form: 

 

 



J

i

ni

in
in

z

z
P

1'

''exp

'exp




                                                                                                     (4) 

Based on random utility model, multinomial logit model assumes that data are case 

specific, and each independent variables has a single value for each choice situation. 

The independent variables are not necessarily statistically independent from each 

other. There might exist some collinearity among independent variables, but relatively 

low.  
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3.3 Latent class logit model 

Multinomial logit model is a very restrict model because it does not consider any 

possible correlation among alternatives and among responses from the same 

individual. Latent class logit model takes unobserved preference heterogeneity into 

consideration. LC seeks to identify unobservable groups (clusters or classes) of 

individuals in the data that share similar preferences based on a parametric logit model 

for assignment to clusters. 

Due to its flexibility, LC is used in this research. Latent class model assumes that 

individual choice depends on observable attributes and on latent heterogeneity 

through a model with discrete parameter variation. It assumes that individuals are 

sorted into Q classes, but which individual to which class is unknown both to the 

individual and the researcher. For each individual, the probability of being assigned 

into class q is determined by a set of observable characteristics which enter the model 

for class membership. Denote iq  the probability of individual n being assigned to class 

q, then 





Q

q
qn

qn

nq

w

w

1

'

'

'

' )exp(

)exp(




 , Qq ,...,2,1                                                                            (5) 
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where nw is the vector of observable variables for membership, which as mentioned 

before is the vector of a list of individual characteristic data. The parameters of one of 

the classes in Q are normalized to zero to ensure model identification. 

If within a class, the conditional probability of person n choosing alternative i when he 

or she is in class q is actually a multinomial logit form as Eq. 4: 





J

j
qjn

qin

qin

x

x
P

1

'

'

|

)exp(

)exp(




, Jji ,...,2,1,                                                                        (6) 

Therefore, the unconditional probability of observing person n choosing alternative i 

would be: 
































Q

q
J

j
qjn

qin

Q

q
qn

qn

qin

Q

q

nqin

x

x

w

w
PP

1

1

'

'

1

'

'

|

1 )exp(

)exp(

)exp(

)exp(

'

' 






                                      (7) 

3.4 Maximum likelihood estimation 

The objective of building any kind of regression model is to fit the data and use the 

model for future prediction. We expect to maximize the likelihood function by 

selecting the set of model parameters, this maximizes the likelihood of estimating the 

right choice result given the data. The likelihood of observing the choices in the dataset 

is: 
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    
  














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


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


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Q

q
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y

qinnqinin
inPzyL

1 1 1

| )(|;,                                                          (8) 

And the log-likelihood, which is easier to maximize, is: 

    
  














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


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


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n

Q

q

J
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qinnqinin
inPzyL

1 1 1

| )(|;,ln                                                       (9) 

where 1iny  if individual n chooses alternative i,  and 0iny  otherwise. 

By maximizing the log-likelihood of observing the data in the sample and by changing 

the value of the parameters in the model until a maximum value of the likelihood is 

attained, we can obtain the maximum likelihood estimates: 

   inininin xyLxyL |;,lnmaxarg|;,maxarg,  
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                        (10) 

LC captures preference heterogeneity with differing preference parameters across 

classes; some classes may even have greater propensity for choosing a specific 

alternative than others. Shonkwiler and Shaw (2003) and Swait (2007) show that the 

LCM is not constrained by the IIA property of MNL. However, as pointed out by Greene 

and Hensher (2003) LC assumes independence of multiple choices made by the same 

individual. 
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Chapter 4 Survey data and model estimation 

We use data from an online survey conducted U.S. nationwide in 2014, focusing on 

people’s stated preference towards vehicles with different kinds of propulsion, which 

are a gasoline vehicle, hybrid vehicle, BEV and PHEV. There were three parts in the 

survey related to our EV study. First people were asked questions focusing on their 

current vehicle ownership and driving habits, and then they were randomly assigned 

8 choice situations in which they had to choose the vehicle they preferred among four 

alternatives and finally they were asked to give personal information about themselves 

and their family. There were 1226 individuals who participated and completed the 

choice experiment in the survey, this gave us 9808 observations that we used to 

estimate LCM. Detailed summary of the survey questions is presented in the Appendix 

A.  

4.1 Attributes of the alternatives 

The survey had 16 different vehicle choice experiments. Every participant was asked 

to complete 8 choice experiments, which were randomly assigned to them. In each 

choice experiment, participants were asked to consider four vehicles: Gasoline Vehicle 

(GV), Hybrid Vehicle (HV), Electrical Vehicle (BEV) and Plug-in Hybrid Vehicle (PHEV). 

In correspondence with our objective, the attributes of vehicles in the choice 

experiments are: vehicle purchasing price, vehicle operating cost, driving range, 

fueling/charging time and accessibility of recharging station (network). 
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As a dominant factor affecting people’s purchasing choice in daily life, vehicle 

purchasing price was introduced into the variables. Gasoline vehicle was designed as 

the cheapest car in every choice experiment. Vehicle operating cost is basically the fuel 

or electricity cost plus maintenance cost per 100 miles in U.S. dollars. Driving range is 

the maximum distance in miles the vehicle can travel after one full fueling or charging 

and without refueling or recharging. Most BEVs can only go about 80-150 miles 

between charging while GVs can go over 300 miles before refueling. For PHEVs, we 

only consider their driving ranges when powered from electric system. We use the 

logarithm of driving range to reflect its decreasing marginal effect on utility. Charging 

time is the time measurement in hours which gives the required amount of time 

vehicle needs to be fueled or charged from empty to full. Accessibility of the refueling 

station or network is a scaled variable which is in scale 0 to 100%. We use the density 

of gas station as the base 100%, the density of recharging station of BEV and PHEV is a 

ratio to that of gas station, which is below 100%. 

Table 2 summarizes the values used in the choice experiments. GV has the cheapest 

purchasing price and highest operational cost. HV has the longest driving range and is 

more fuel efficient than gasoline vehicle. They both has the shortest refueling time and 

their refueling station density are 100% as base. BEV and PHEV are more expensive 

and have low operational cost.  
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Table 2 
Summary of alternative attributes 

 Gasoline 
option 

Hybrid  
option 

Electric  
option 

Plug-in Hybrid 
option 

Purchasing Price,  
$ 

15,500 
16,500 

19,000 
21,000 
26,000 
28,000 

20,000 
21,000 
31,000 
33,000 

22,000 
24,000 
29,000 
31,000 

Operating Cost, $/100 
miles 

15.20 
15.80 

7.00 
8.80 

3.20 
4.00 

5.50 
6.50 

Driving Range,  
mile 

495 
550 

540 
590 

80 
150 

15 
40 

Fueling/Charging 
time,  
hour 

5/60 5/60 1.50 
8.00 

2.00 
4.00 

Network,  
% 

100 100 20 
40 
60 
80 

20 
40 
60 
80 

 

Until now, we have the variables which enters the model as inx . 

4.2 Sociodemographic characteristics 

The survey was taken online by 1730 of US residents above 17 years old. After 

qualification and ad justification of the completed answers, the useable number of 

sample came down to 1226 adults countrywide. 

Questions for individual’s characteristics were asked. We expected there are effects 

from those sociodemographic characteristics. For example, younger people are 

expected to be bolder, more liberal and might be more open to new technology which 

might cause a higher adoption rate of non-conventional vehicle among them, but they 
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also might earn relatively lower income which is an impedance for them to purchase a 

relatively more expensive vehicle. The older generations, on the other hand, are 

expected to be more conservative and might be less open to new technology, but they 

also might have more money to afford an expensive electric car.  

Table 3 summarizes the sociodemographic variables as used in estimation. Most of the 

sociodemographic data are transformed into indicator variables. 
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Table 3 
Definitions and descriptive statistics (N=1226) for variables used in LC model. Either % or 
mean is shown, depending on whether the variable is dichotomous or not. 

Variable Description % in sample Mean (SD) 
Age Individual age  47 (13) 
Below40 1 if 18-40 years of age; 0 otherwise 32  
Above40 1 if 40-80 years of age; 0 otherwise 68  
Male 1 if male; 0 otherwise 50  
Married 1 if married; 0 otherwise 54  
Income Household income, $1,000  61 (40) 
Currgas 1 if current car is gasoline, 0 otherwise 94  
Currhyb 1 if current car is hybrid, 0 otherwise 3  
Currelec 1 if current car is electric, 0 otherwise 0.4  
Nvehadd Number of additional car  1.3 (0.4) 
Morethan2days
80miles 

1 if travels over 80miles more than 2 days 
in a month , 0 otherwise 

39  

Compcollege 1 if has complete college, 0 otherwise 53  
Hschorless 1 if has high school diploma or less, 0 

otherwise 
23  

Ownhouse 1 if family owns a house, 0 otherwise 70  
Singfamh 1 if lives in a single family house, 0 

otherwise 
76  

Apartment 1 if lives in an apartment, 0 otherwise 18  
Yrsdriving Years of driving  25 (10) 
Fulltime 1 if works as full time, 0 otherwise 66  
Parttime 1 if works as part time, 0 otherwise 9  
Hmaker 1 if works as home maker, 0 otherwise 8  
Student 1 if is a student, 0 otherwise 1  
Conserv 1 if is conservative, 0 otherwise 40  
Lib 1 if is liberal, 0 otherwise 22  
Independent 1 if is independent, 0 otherwise 38  
West 1 if lives in the west, 0 otherwise 17  
Midwest 1 if lives in the Midwest, 0 otherwise 24  
Northeast 1 if lives in northeast, 0 otherwise 21  
Childcnt Number of children   1.4 (1.3) 
Ownercar 1 if is the owner of car, 0 otherwise 96  
White 1 if is white, 0 otherwise 85  
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4.3 Model Estimation 

We estimated a latent class discrete choice model using the choice microdata collected 

in the survey. We are going to discuss about the class membership assignment and the 

random utility part of LCM separately. After getting the estimates of the parameters, 

we derived the willingness to pay for vehicle attributes. 

4.3.1 Random utility model estimation 

The random utility portion of the model is show in Table 4. We estimated the model 

with 2, 3 and 4 latent classes. With more classes, the value of parameters seems to 

have deteriorated and some of the models did not even converge. This indicated that 

a model with 2 latent classes was good enough. Two latent class models are compared. 

One of these two models has more individual characteristics as membership 

assignment variables. The main difference between the two is how much of the 

information we observed can be applied to the model and still have a reasonable 

explanation for the outcome. On the one hand, we might prefer more reasonable 

sociodemographic data entering into the model, which is model A. On the other hand, 

producing a model which gives more information simply by adding more variables 

might also cause an over fitting problem. In case of over fitting, we considered 

Bayesian Information Criteria (BIC) for each latent class model.  The Bayesian 

Information Criteria penalizes more for a higher number of variables. In this case, 

model B is preferred. 
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The two models do not differ too much regarding the values of the estimated 

preference parameters. As expected, the negative and significant parameters for 

vehicle purchasing price, operating cost and charging time indicate that vehicles with 

higher purchasing price, higher operating cost and longer charging time are less likely 

to be chosen. The positive and significant parameter of log driving range and network 

indicate that vehicles with longer driving range and higher accessibility of recharging 

station would be preferred by the individuals. These effects are common in every class 

of each model. 
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Table 4 
Random utility model estimates for two LCMs 

 Model A  Model B  
Parameters Estimates  

(Std. Error) 
t-stats Estimates 

(Std. Error) 
t-stats 

Class 1     
Electric Constant 0.9605 

(0.4430) 
2.1683 1.0469 

(0.4401) 
2.3790 

Hybrid Constant -0.5156 
(0.2876) 

-1.7321 -0.4586 
(0.2953) 

-1.5529* 

Plug-in Hybrid 
Constant 

2.3384 
(0.3344) 

6.9934 2.3899 
(0.3326) 

7.1845 

Price  
($,000) 

-0.0780 
(0.0055) 

-14.0774 -0.0778 
(0.0055) 

-14.1642 

Operating Cost 
($/month, 00) 

-0.0720 
(0.0381) 

-1.8867 -0.0648 
(0.0379) 

-1.7094 

lnRange  
(ln mile)  

0.3089 
(0.0658) 

4.6953 0.3022 
(0.0653) 

4.6257 

Fueling/Charging 
Time (hour) 

-0.0220 
(0.0104) 

-2.1112 -0.0219 
(0.0103) 

-2.1137 

Network 
 (%) 

0.4825 
(0.1610) 

2.9969 0.4850 
(0.1605) 

3.0214 

Class 2     
Electric Constant 4.1308 

(0.5288) 
7.8123 3.9354 

(0.5284) 
7.4481 

Hybrid Constant -0.5082 
(0.3392) 

-1.4984* -0.3834 
(0.3404) 

-1.1265* 

Plug-in Hybrid 
Constant 

2.7718 
(0.4454) 

7.8123 2.6011 
(0.4468) 

7.4481 

Price  
($,000) 

-0.0597 
(0.0055) 

-10.8866 -0.0593 
(0.0055) 

-10.7690 

Operating Cost 
($/month, 00) 

0.0441 
(0.0439) 

1.0052* 0.0290 
(0.0440) 

0.6851* 

lnRange  
(ln mile)  

0.4047 
(0.0735) 

5.5072 0.4037 
(0.0739) 

5.4647 

Fueling/Charging 
Time (hour) 

-0.0322 
(0.0097) 

-3.3229 -0.0319 
(0.0097) 

-3.2752 

Network 
 (%) 

0.1520 
(0.2102) 

0.7338* 0.1379 
(0.2073) 

0.6651* 

Log-likelihood Value -10871  -10878  
BIC 22174.94  22031.94  

*Parameter estimate is not significant at 90% confidence level 
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Inside each class, the alternative specific constant (ASC) indicates the intrinsic 

preference toward alternatives when all the attributes are the same. For example, in 

reality some people are naturally more resistant to adopt electric vehicles, they would 

have a strong preference for gasoline vehicles even when all the attributes of the 

available vehicles are the same. In our model, the alternative specific constant for 

conventional gasoline vehicle is normalized to zero as a base. The insignificant 

estimates of ASC for hybrid vehicles means there is no significant preference between 

hybrid vehicles and gasoline vehicles (everything else held constant). The positive and 

significant estimates of ASC for electric vehicles and plug-in hybrid vehicles suggests 

people prefer these two vehicles to gasoline vehicles. The larger the ASC is, the more 

favored the alternative is. The two classes in each model differ in the ASCs for electric 

vehicles and plug-in hybrid vehicles. People in class 1 prefer plug-in hybrid vehicles the 

most while people in class 2 prefer electric vehicles the most instead.  

From the results, it is surprising that people in both class show a preference toward 

electric vehicles and plug-in hybrid vehicles than conventional vehicles. This is a good 

sign because EVs are more environmentally friendly. For our research, this might be a 

good sign for BEV and PHEV automakers. However, it could be that our sample contains 

environmentally-conscious consumers, and this results may not be representative of 

the average preferences in the population. 
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In the PHEV-oriented class, operating cost has a significant effect on people’s choice 

decision. Generally, operating cost for PHEV is higher than BEV because it involves 

gasoline consumption sometimes and PHEV has a lower driving range when it only uses 

the propulsion from electric battery. The reason people prefer PHEV than GV is 

generally its lower operating cost and the consumer would like to see higher savings 

even though PHEV still may be burning gasoline. So people who are PHEV-oriented 

might care more about the operating cost. Network has a possible and significant 

effect on their choices because PHEV has the shortest driving range when powered by 

a battery system, which makes it important to have access to either fuel or charge on 

the road. 

In the BEV-oriented class, accessibility of recharging station (network) is not significant 

even though it has the expected sign. BEV only uses power from its battery system. On 

the one hand, consumers may have thought they would charge at home, making the 

availability of charging stations less relevant. On the other hand, people who are BEV 

oriented might care less about recharging if BEV provides good driving range. 

4.3.2 Membership model estimation 

The parameters of PHEV oriented class are normalized to zero, so the parameters 

showed below refer to BEV oriented class. They represents the impact of an attribute 

on the probability of being assigned to the BEV oriented class. For example, the 

positive and significant parameter of age indicates older participants are more likely 
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to be BEV oriented. Table 5 shows the class membership model results from model A 

and table 6 shows the results from model B. 

Table 5 
Model A - Class membership model estimates (Class 1 is normalized to zero) 

Variables Coefficient T-stats Odds Ratio 

Class 2 Membership Constant -1.1995 -3.8556 0.3 
Morethan2days80miles 0.2115 3.8863 1.2 
Nvehadd 0.0427 0.7860* 1.0 
Childcnt 0.0179 0.9444* 1.0 
Hispanic -0.1513 -1.5770* 0.9 
Ownercar 0.4445 3.5348 1.6 
Currgas 0.7712 4.0755 2.2 
Currhyb 0.2394 1.0432* 1.3 
Currelec -0.1389 -0.2877* 0.9 
Age 0.0167 4.4257 1.0 
Male 0.1964 3.8475 1.2 
Married 0.1831 3.3299 1.2 
Compcollege -0.0066 -0.1079* 1.0 
Hschorless -0.1804 -2.5122 0.8 
Ownhouse -0.3342 -4.9219 0.7 
Yrsdriving -0.0161 -3.2516 1.0 
Fulltime 0.0582 0.7650* 1.1 
Parttime 0.4217 4.0401 1.5 
Hmaker 0.3046 2.7182 1.4 
Student 0.7598 2.7009 2.1 
Conserv 0.1854 3.3369 1.2 
Lib 0.2306 3.5628 1.3 
West -0.1772 -2.4915 0.8 
Midwest 0.3213 5.0366 1.4 
Northeast 0.2409 3.6013 1.3 
Singfamh -0.3862 -3.6344 0.7 
Apartment -0.7566 -5.9845 0.5 
White -0.2687 -3.6846 0.8 
Urban -0.0536 -1.0360* 0.9 
Lninc -0.0543 -1.3180* 0.9 
monthmiles 0.0171 4.3824 1.0 

*Parameter is not significant at 90% confidence level 
**Omitted variables are ones that set as base 
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From model A, individuals with following attributes would be more likely to be 

assigned into the BEV-oriented class: 

 Having more days in a month driving more than 80 miles 

 Owning a car currently 

 Having a vehicle with conventional engine like gasoline or hybrid 

 Being elder 

 Being male 

 Being married 

 Having a higher degree of education 

 Not owning a house 

 Having fewer years driving 

 Working as part-time, home maker or student 

 Being very conservative or liberal, not independent 

 Living in the Midwest or Northeast 

 Living places other than single family house and apartment 

 White 

 Earning lower income 

Table 6 
Model B - Class membership model estimates (Class 1 is normalized to zero) 

Variables Coefficient T-stat Odds Ratio 

Class 2 Membership 
Constant 

-0.4701 -2.4596 0.6 
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Morethan2days80miles 0.2469 4.6293 1.3 
Currgas 0.6933 6.6390 2.0 
Below40 -0.1993 -3.7036 0.8 
Male 0.1412 2.8735 1.2 
Married 0.1758 3.4200 1.2 
Fulltime -0.1853 -3.3835 0.8 
Hschorless -0.1045 -1.7869 0.9 
White -0.2915 -4.1973 0.7 
Conserv 0.1523 2.7969 1.2 
Lib 0.1794 2.8275 1.2 
Midwest 0.3038 5.4996 1.4 
lninc -0.0841 -2.1938 0.9 
monthmiles 0.0189 4.9663 1.0 

 

From model B, individuals with following attributes are more likely to be assigned into 

BEV-oriented class: 

 Having more days in a month driving more than 80 miles 

 Having a vehicle with gasoline engine 

 Older than 40 years old 

 Being male 

 Being married 

 Working not as a full-time worker 

 Having higher level of education 

 Being not white 

 Being independent 

 Living in Midwest 

 Earning lower income 
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 Having higher monthly miles 

The significant and negative sign of class 2 constant from both models indicates that 

when given no sociodemographic characteristics, people are less likely to be assigned 

into class 2, which is the BEV-oriented class. 

As explained, model A involves more individual characteristics in the model and has a 

larger log likelihood. However, it might not be as a good model as model B because it 

has the possibility of overfitting. In fact, some results from model A are not expected. 

For example, model A suggests BEV-oriented people do not own a house and the place 

they live in is not a single family house or apartment. This might diminish the possibility 

for them to have an at-home charging facility which is critical for BEV. Results from 

Model B will be discussed in part 4.4. 

4.3.3 Willingness to pay for vehicle features 

One objective of this research is to learn people’s attitudes and then inform 

automobile manufactures about the preferences of their potential customers. 

Willingness to pay is a monetary measurement of people’s attitudes toward the 

attributes of the alternatives. There are generally two ways of deriving willingness to 

pay from customers. One method is to directly ask for the willingness to pay in the 

survey (contingent valuation). Another method is to derive estimate of the marginal 

rate of substitution from random utility model. 
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Since willingness to pay is the amount of money an individual would spend to get one 

attribute marginally improved, it can also be interpreted as the marginal rate of 

substitution between that marginal improvement and money. In economics, the 

marginal rate of substitution is the rate at which a consumer is willing to give up one 

good in exchange for another good while maintaining the same level of utility. In our 

random utility model, utility and attributes of alternatives are assumed as continuous 

variables, so that the willingness to pay for the alternative’s attribute K: 

   
 

  ricerice
Price,

PU

KU

PMU

KMU
KMRSKWTP




                                  (11) 

For charging time and network, the willingness to pay for each can be calculated as: 

 
 

 riceP

K
AWTP




                                                                                                 (12) 

For driving range, the willingness to pay is based on the specific value of driving range 

of the alternative. We can first assume the driving range to be 100 miles for all models: 

 
 

  RangeP

Range
geDrivingRanWTP




rice


                                                           (13) 

Operating cost is also a monetary variable as price. The willingness to pay for operating 

cost is the amount of current payment people are willing to make for $1 saving in the 

future cost. In economics, the ratio between the estimated parameters of price and 
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operating cost is subjective discount rate r8 (Frederick, Loewenstein, & O’donoghue, 

2002), which tells how people think about current investment compared to future cost. 

If r is larger, people value present cost higher than future cost. 

Table 7 shows the subjective discount rate, the willingness to pay for driving range 

(base is 100 miles), charging time and network in each model. 

Willingness to pay calculated from each model is very close to each other simply 

because of the close values of estimated parameters. We will just use model B in the 

following analysis because model B is a better fit as discussed before, also for the 

sake of convenience.  

Table 7 
Willingness to pay estimates and subjective discount rate estimates 

 Model A  Model B  
 PHEV-oriented 

Class 
BEV-
oriented 
Class 

PHEV-oriented 
Class 

BEV-
oriented 
Class 

Willingness to Pay     
Driving Range* 

($/mile) 
40 68 39 68 

Fueling/Charging Time 
($/hour) 

282 539 281 538 

Network 
($/%) 

62 25** 62 23** 

Subjective Discount Rate 
(%) 

11 N.A. 12 N.A. 

* The base value of driving range is 100 miles. 
** Parameter is not significant at 90% confidence level. 

                                                           
8 In the neoclassical theory of interest due to Irving Fisher, the interest rate determines the relative price 
of present and future consumption. Time preference, in conjunction with relative levels of present and 
future consumption, determines the marginal rate of substitution between present and future 
consumption. This marginal rate of substitution is the subjective discount rate. 

https://en.wikipedia.org/wiki/Neoclassical_economics
https://en.wikipedia.org/wiki/Irving_Fisher
https://en.wikipedia.org/wiki/Marginal_rate_of_substitution
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People in the BEV-oriented class are willing to pay more for longer driving range and 

shorter charging time. From the class membership assignment analysis, this might be 

because they have more days traveling long distance so that they need vehicles to 

cover longer range and is faster to charge. Also it might be because they are more likely 

to have a gasoline car which suggests that they are used to longer driving range and 

shorter charging time. This finding is in line with the previous studies. They are not 

sensitive to the accessibility of recharging station because they pay more interest on 

driving range and charging time which decrease the possibility of charging at stations.  

People in PHEV-oriented class has a subjective discount rate of 12%. Our respondents 

seem to care about more about future savings, even though 12% still is higher than 

market interest rates. 

We would like to pay more attention here to the willingness to pay for driving range. 

As explained before, the willingness to pay derived from this model is actually a 

function of the base driving range. To better understand the nature of willingness to 

pay for driving range, we simulate it with the Krinsky-Robb approach (Krinsky & Robb, 

1986): 

price   and rangeln  are asymptotically bivariate normal: 
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For each class, we considered driving ranges between 20 miles and 250 miles, and 

simulated 10,000 pairs of 













range

price

ln


for every selected value of driving range. We then 

derived the willingness to pay using Eq. 13. Then we obtained the 95% confidence 

interval for every value of driving range using the simulated values. Fig. 2 and Fig. 3 

show the willingness to pay variation as a function of driving range. 

 
Fig.2 Willingness to pay simulation result for PHEV-oriented class 

 



36 
 

 
Fig.3 Willingness to pay simulation result for BEV-oriented class 

From the two charts it is clear that people in the BEV-oriented class are willing to pay 

about 2 times more for driving range than people in the PHEV-oriented class as 

explained before. More importantly, the willingness to pay for range decreases as 

driving range increases, and so does the standard error of the estimate. This support 

the hypothesis that people tend to be less sensitive for the extra one mile as driving 

range goes up. This is also in accordance with the findings of Daziano R.A. (2013). 
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4.4 Summary of findings and comparison with early studies 

From our model result, we have found that people are actually open to EVs, they can 

be grouped into PHEV-oriented or BEV-oriented classes. This is the natural result from 

the rising interest in EV and its advances over the years. 

For sociodemographic characteristics, we found that people who are older (above 40 

years old), having higher degree, and male are more BEV-oriented. This is in line with 

the findings from Nixon and Saphores (2011). For income effects, we found that even 

though BEVs are more expensive, people with higher household’s income do not 

prefer BEVs even they are more possible to afford BEVs. This is in accordance with 

results from Bunch et al. (1993), who also found that higher-income households 

indicated a preference for gasoline vehicles over alternative-fuel vehicles. Besides, 

people who currently have gasoline vehicles, who are not fulltime workers, who are 

not white, who are more independent, and who travel longer distance or have more 

days in a month which travels more than 80 miles would prefer BEVs over PHEVs, 

which are kind of unexpected. One possible interpretation is people in BEV-oriented 

class are BEV enthusiasts and if BEVs are improved, their preference toward BEVs 

would be enhanced, for example, BEV enthusiasts are willing to pay more for driving 

range because they drive longer distance. Midwest is the location of many BEV 

manufacturing plants, this might be the incentive for people there to be more open to 

BEV, but not necessarily have one yet. Household number of vehicles is not significant, 
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which is unexpected. But this might be because all the participant in our survey had at 

least one vehicle in household. There are few studies which covered these features so 

we cannot make valid comparison. Since discrete models are data sensitive, more 

detailed results from our model might result from the data we used. 

We confirmed that driving range, charging time, and accessibility to charging 

infrastructure remain to be the main concerns when people considering EVs. The 

average willingness to pay regarding driving range from our model is from $40 to $70, 

on the 100 miles base. This range of value is close to the average willingness to pay 

from Beggs and Cardell (1980), Tompkins et al. (1998), and Hidrue et al. (2011) who 

also used U.S. nationwide survey data. The average values of willingness to pay 

regarding driving range from studies based on California survey data are higher. More 

importantly, the willingness to pay per mile decreases at higher driving range, which is 

expected and is in line with studies by Daziano (2013). BEV-oriented people are willing 

to pay more for driving range and charging time than PHEV-oriented people, they are 

more likely to be BEV enthusiasts and drive longer distances. 

So far, model results have shown consumers’ rising interest toward EV which is a good 

trend for the auto market. In this model, people can be either PHEV-oriented or BEV-

oriented depending on their sociodemographic characteristics. Results has shown that 

there is opportunity for BEV to target consumers with particular attributes. For future 

improvement in EV options, driving range is still the main concern, especially for BEV. 
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The opportunity of economic benefits might differ for different EVs regarding marginal 

profit which leads to the following study of marginal manufacturing cost and 

consumers’ willingness to pay. 
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Chapter 5 Study on current BEVs 

In the U.S. market, mass-produced EVs has entered the market as full performance 

passenger vehicles. Nissan entered the U.S. market with the LEAF five-door hatchback 

in December 2010. As the most popular all electric vehicle in the U.S. market, 2016 

year model of Nissan LEAF with a 24 kWh battery has a driving range of 84 miles as 

proved by the U.S. Environmental Protection Agency (EPA). Other makers such as Ford, 

Chevrolet and BMW are also producing BEVs in the U.S. market. More established ICEV 

makers are launching BEV models as an alternative and the entry-level BEVs are usually 

priced around $30,000. On the other hand, the U.S. based Tesla company is an all-new 

BEV-only auto manufacturer that entered the market as a high-end passenger vehicle 

producer. Unlike the Nissan LEAF, the Tesla model S is a luxury sedan that costs 

between $70,000 to $110,000, depending on the features and battery system. The EPA 

proved driving range of 2016 year model of Tesla S 70 is 230 miles, which is about 3 

times that of the low-end BEVs and almost reaches parity with ICEVs. Starting from 

2016, Tesla decided to enter the mass market as it unveiled a brand new model, the 

Tesla model 3, which is a lower-end version of Tesla S. Model 3 starts at $35,000 and 

still features an EPA proved driving range of 215 miles. Fig. 4 shows the MSRP for 

several BEVs on the current market. 

These days EVs all have settled on lithium-ion (Li-ion) battery because this chemistry 

offers the most charge density per unit of weight in all the battery systems and 
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technology breakthroughs keep increasing the charge density (Daziano, Electricity and 

hydrogen as alternative fuels, 2014). High charge density is beneficial because the curb 

weight of BEVs has a negative effect on the driving range. Inversely, the target driving 

range also influence the size of battery system. 

 
Fig.4 MSRP of current BEVs on the market 

To find out how our results match  current BEV models in the market, we used the 

2016 Nissan Leaf and the 2016 Ford Focus EV for the low-end BEV,  and the 2015 Tesla 

S 60 (no longer in production), 2016 Tesla S 70D and 2016 Tesla S 90D for the high-end 

BEV. Following the calculation methods raised up by Daziano R.A. (2014), we calculated 
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the manufacturing cost for each vehicle and the marginal cost regarding driving range 

to compare with the willingness to pay we got from our model. 

5.1 Manufacturing cost 

We used an empirical model from Daziano R.A. (2014) in this section to calculate the 

cost. According to this model, we assumed that EV charge availability is constant down 

to the maximum depth of discharge maxDD (as a fraction of 100%). The simplified 

model also assumes a constant average energy intensity in terms of the energy 

required to marginally move the vehicle (  measured in [Wh/kg-km]). If CD is the 

charge density, batteryW  is the mass of the batteries in kilograms, and vehicleW  is the 

mass of remainder of the vehicle in kilograms (not including the battery), then range 

can be estimated as (range in km): 

 batteryvehicle

battery

WW

WDDCD
R








max                                                                                         (14) 

Following the range model, and if the fixed cost of the vehicle is fixedC  (without the 

cost of the batteries) then the total cost, included the cost of the battery can be 

expressed as follows: 
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CTC 
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                                                           (15) 
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where batteryC  is the unit cost of the batteries in dollars per kilogram. 

Before using this equation to estimate battery requirements and total costs as a 

function of range, we collected related data for the models we listed above. Table 8 

shows the properties of these five BEV models. 

Table 8 
Attributes of five BEVs 

Model Range 
(mile) 

Range 
(km) 

Curb Weight 
(lb) 

Curb Weight 
(kg) 

2016 Nissan Leaf S 84 135 3256 1477 
2016 Ford Focus EV 76 122 3640 1651 
2015 Tesla S 60 208 335 4323 1961 
2016 Tesla S 70 230 370 4608 2090 
2016 Tesla S 90D 288 463 4824 2188 

 

We assumed that all the vehicles have the same 0.128 [Wh/kg-km]. Weissler (2010) 

reported the energy density of Li-ion battery used by general BEVs is 140 Wh/kg. 

According to Dr. Menahem Anderman's Tesla Battery Report, the cells in Model S offer 

a specific energy of 233 Wh/kg due to the NCA chemistry and high-density electrodes. 

This is roughly 50% greater than the current industry standard, exemplified by the 140 

Wh/kg. According to an article on BEV’s battery cost by Ottaway (2014), in 2015, the 

battery value of vehicles except Tesla is 300 $/kWh, the battery value of Tesla is 260 

$/kWh. We also assumed that the maximum depth of discharge is 80%. We get the 

estimated battery cost and manufacturing cost for the five BEV models as shown in 

Table 9. 
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Table 9 
Estimated manufacturing cost of 5 BEVs 

Model MSRP  
($) 

Battery Cost  
($) 

Manufacturing Cost  
($) 

Profit Margin 
(Profit/MSRP, %) 

2016 Nissan Leaf 
S 

29,010 9,571 26,771 7.7 

2016 Ford Focus 
EV 

29,170 9,668 26,868 7.9 

2015 Tesla S 60 69,900 27,328 52,628 24.7 
2016 Tesla S 70D 75,000 33,571 59,871 20.0 
2016 Tesla S 90D 88,000 42,174 68,474 22.2 

 

According to market study and company summary, it’s safe to estimate the profit 

margin  of Nissan Leaf and Ford Focus EV to be around 7%-9%9 and the profit margin 

of Tesla model S to be around 25%10. We assumed the fixed vehicle cost for general 

BEVs and Tesla BEVS to be $17,200 and $26,200. We got the estimated profit margins 

for Nissan Leaf and Ford Focus EV to be 7.7% and 7.9% which are within the expected 

range of 7%-9%. Tesla S 70D and 90D are estimated to have profit margins at 20.0% 

and 22.2%. The estimated markup for Tesla S60 is higher. This might be because the 

values for cost calculation are based on current battery properties which are far better 

than that when Tesla S 60 was produced and sold. The profit margins calculated for 

Model S are around 25%. The calculations here are based on our assumptions of the 

                                                           
9 According to a report in Wall Street Journal, January 2013, Ford’s average pretax profit in North 
America per vehicle sold is $2,500, which is assumed here to be the average profit of Ford Focus. 
http://blogs.wsj.com/corporate-intelligence/2013/01/29/fords-margins-its-all-about-the-trucks/ 
 Also assume Nissan LEAF has a similar profit rate as Ford Focus.  
10 According to a report in The Motley Fool, Dec 2015, Tesla Model S currently boasts a gross profit 
margin of around 25%. Tesla CEO Elon Musk also said their goal is to steadily improve gross profit margin 
and hopefully exceed 30% on Model S with 18 months. 
http://www.fool.com/investing/general/2015/12/01/tesla-motors-incs-path-to-profits.aspx 
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fixed manufacturing cost, which might cause a bias. We tried to minimize the gap 

between our cost assumption and real cost by comparing our calculated profit margins 

with the actual profit margins. 

It is obvious that when considering making and selling one vehicle, higher end EVs like 

Tesla give higher profits to its producer. Lower end EVs like Nissan Leaf give lower 

profit but they have an advantage in pricing. Compared with the Ford Focus EV, the 

Nissan LEAF is cheaper, has lower curb weight and longer driving range, which might 

be the reason why it’s the most popular BEV in the US market. 

5.2 Marginal cost and willingness to pay for driving range 

Automobile manufacturers think about the opportunity of improving their current 

BEVs and making a higher profit. In our research, we wanted to compare the 

willingness to pay for driving range estimated by our discrete choice model with the 

marginal cost for driving range derived from the simplified empirical range model, for 

the five BEVs. If the willingness to pay is larger than the marginal cost, then there is 

potential profit by increasing the driving range, otherwise, the manufacturer may not 

consider improve the option.  

The marginal cost can be derived from Eq.14 as follows: 

 2max

max








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batteryvehicle                                                                                (16) 
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For each BEV model, we simulated the willingness to pay and marginal cost regarding 

range using the same cost values as before. Table 10 shows the estimated willingness 

to pay for driving range for each BEV from both classes and the estimated marginal 

manufacturing cost for each BEV. Note that the mean and selected quantiles of 

willingness to pay are all shown as below. Note that the battery cost for low-end BEV 

(e.g. Nissan Leaf) is 300 $/kWh, the battery cost for high-end BEV (e.g. Tesla) is 260 

$/kWh. 

Fig. 5 shows the boxplot of the willingness to pay for driving range for the five BEVs. 

Note that low-end BEVs are associated with a higher willingness to pay for driving 

range. People in the BEV-oriented class are willing to pay more than people in the 

PHEV-oriented class. This might be because they are prone to drive longer distances 

as observed in our membership model result. 
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Fig. 5 Willingness to pay for 5 vehicles 
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Table 10 
Mean and selected quantiles of the willingness to pay estimates for 5 vehicles 

 Willingness to Pay  
($/mile) 

Marginal Cost 
($/mile) 

Quant. PHEV-oriented Class BEV-oriented Class  

 2016 Nissan LEAF (84 miles) 

Mean 46 82 

84 
2.5% 25 50 
25% 38 70 
75% 54 94 
97.5% 71 119 

 2016 Ford Focus EV (76 miles) 

Mean 51 91 

92 
2.5% 28 55 
25% 42 77 
75% 60 104 
97.5% 78 132 

 2015 Tesla S 60 (208 miles) 

Mean 19 33 

106 
2.5% 10 20 
25% 15 28 
75% 22 38 
97.5% 29 48 

 2016 Tesla S 70D (230 miles) 

Mean 17 30 

118 
2.5% 9 18 
25% 14 25 
75% 20 34 
97.5% 26 43 

 2016 Tesla S 90D (288 miles) 

Mean 13 24 

133 
2.5% 7 14 
25% 11 20 
75% 16 27 
97.5% 21 35 

 

For the Nissan LEAF and the Ford Focus EV, the marginal cost of improving driving 

range is about the same as the estimated average willingness to pay from the BEV-

oriented class. But the true value of the willingness to pay could be lower or higher if 
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the 2.5% and 97.5% are taken as confidence interval bounds.  On the other hand, the 

PHEV-oriented people have a willingness to pay that is consistently lower than 

marginal cost so that they might not be a good target regarding range improvement, 

compared to the BEV enthusiasts. 

For all 3 Tesla models, the marginal cost regarding driving range is much higher than 

that of the LEAF and Ford Focus. However, people’s willingness to pay are pretty low 

from both classes. This indicates that Tesla can barely make any higher profit by 

improving driving range. But this makes sense as the driving range is already very high 

and the marginal benefit from the extra one mile on utility should be relatively low as 

discussed before. 

Table 11 
Marginal costs regarding driving range at different battery costs 

Vehicle Marginal Cost ($/mile) 

400 ($/kWh) 300 ($/kWh) 200 ($/kWh) 100 ($/kWh) 

2016 Nissan Leaf S 112 84 56 28 
2016 Ford Focus EV 123 92 61 31 
2015 Tesla S 60 163 122 82 41 
2016 Tesla S 70D 182 137 91 46 
2016 Tesla S 90D 205 154 103 51 

 

Note that due to the continuous advances in battery technology, the average battery 

cost has dropped down from 500 $/kWh to 300 $/kWh and it is expected to keep going 

down in the future. Because of this, we simulated the battery cost at 400 $/kWh, 300 

$/kWh, 200 $/kWh and 100 $/kWh. Table 11 above lists all the marginal costs for the 

5 vehicles regarding different battery costs. All the marginal costs come down with the 
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battery cost decreasing. The effects on the Nissan LEAF and Ford Focus EV are more 

economically beneficial. When the cost comes down to 200 $/kWh, the marginal cost 

is close to the 2.5% quantile willingness to pay for BEV-oriented class which means 

about 97.5% estimated willingness to pay in BEV-oriented class are empirically higher 

than the marginal cost. Meanwhile, the marginal cost at 200 $/kWh is close to the 75% 

quantile willingness to pay for PHEV-oriented class which means about 25% estimated 

willingness to pay in PHEV-oriented are empirically higher than the marginal cost. This 

is already a great improvement compared with 300 $/kWh. When the marginal cost is 

100 $/kWh, the proportion of estimated willingness to pay which are more than the 

marginal cost in BEV-oriented and PHEV-oriented class are about 100% and 97.5%. 

However, even when the battery cost comes down to 100 $/kWh, the marginal costs 

for Tesla models are still higher than the 97.5% quantiles of willingness to pay. Fig.5 

and Fig.6 shows the marginal cost at different driving ranges by battery cost of Nissan 

Leaf and Tesla S 70D. Even though lowering battery cost gives more decrease in 

marginal cost of Tesla S 70D, its marginal cost is still very high compared with Nissan 

Leaf. Figures for the other 3 models are covered in Appendix C. 
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Fig. 6 Marginal cost for Nissan LEAF regarding driving range by battery cost 
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Fig.7 Marginal cost for Tesla S 70D regarding driving range by battery cost 

We can conclude from our case study that for low-end BEV makers, increasing driving 

range can bring higher profit as well as appeal to more consumers, especially when 

lowering battery manufacturing cost. While for high-end BEV makers, improving 

driving range on the current base might not be a good strategy to make profit. 

However, the profit rate from making and selling one high-end BEV is much higher than 

a low-end BEV based on our cost assumption and references from profit reports. These 

findings are consistent with the competitive landscape on the auto market. 
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Chapter 6 Conclusion 

This research added new insights into the demand for electric vehicles and confirms 

some earlier findings. We found that people in our sample were actually more open to 

BEVs and PHEVs than we expected, especially that current gasoline vehicle drivers have 

tendency to be BEV oriented when purchasing their next vehicle. We found person’s 

propensity to be a BEV enthusiast increases with education, age, independence, 

traveling longer distance, having more free time, being married, living in Midwest. It 

also increases if a person is male and non-white. It’s surprising that income has a 

negative effect on purchasing BEV which means people with lower income have 

tendency to buy BEV. This might be because both federal and some states provide 

compensation and also BEV is the most economical in operating cost. Besides, the 

number of vehicles a household owns is surprisingly not important either [at least in 

our sample]. But this might be because all the participants in the survey already have 

at least one vehicle in their households. Some results are unexpected and one possible 

interpretation is people in BEV-oriented class are BEV enthusiasts and if BEVs are 

improved, their preference toward BEVs would be enhanced, so as their purchase 

decisions. 

Our analysis also confirmed similar findings of earlier studies. Range anxiety, long 

charging time and high purchase price remain as main obstacles for people to adopt 

EVs. For example, we found that people are willing to pay on average about $68 (95% 
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confidence interval of [40,98]) to get one mile improvement when the driving range is 

100 miles, and about $280-$530 for one hour saving in charging time. 

Given the expectation of diminishing marginal effects when the driving range increases, 

our model specified a logarithmic transformation of range. The average estimated 

willingness to pay for driving range for the 2016 Tesla S 70D (230 miles) is about 37% 

of that for 2016 Nissan LEAF (84 miles).  

From our case study on the current BEVs on the market, the marginal manufacturing 

cost regarding improving driving range for low-end BEV is far less than high-end BEV, 

plus the willingness to pay regarding driving range for low-end BEV is much higher. We 

also conducted the calculation and comparison between the estimated willingness to 

pay and marginal cost regarding driving range. It is proved that at current battery costs, 

there can be economic benefits from improving driving range for low-end BEV makers. 

And if automakers can lower the battery cost more, this benefit will be more assured. 

For high-end BEV makers like Tesla, making profit by increasing driving range will not 

be very promising. 

One thing to keep in mind is that discrete choice modeling is highly sensitive to data. 

In this research, we use U.S. nationwide survey data which might also be the reason of 

some different findings compared to earlier studies which mainly used survey data in 

California. 
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In our research, people can either be PHEV or BEV enthusiasts. Actually, plug-in hybrid 

electric vehicles use power from internal combustion engine when electric system is 

depleted. To better tell the difference between vehicles in EV family, future research 

should focus on the comparison between plug-in hybrid and battery electric vehicles. 

Most researches so far did not preselect survey participants. To better understand 

people’s preference toward ICEVs and EVs, future research can focus on the choice 

difference between households with no vehicle available and households with vehicles. 

Meanwhile, future research should combine stated and reveal preference data to 

compensate for the gap between stated intention and actual behavior. 
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Appendix A: survey summary by questions 

Fig. A.8 – Fig. A.52 are the intuitive summary of sociodemographic characteristics results in the 
survey. 

 

Fig. A.8 Number of vehicle household owns 

 

 

Fig. A.9 Days in a month drive more than 80 miles 
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Fig. A.10 Distance of one-way daily travel 

 

 

Fig. A.11 Vehicle ownership 
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Fig. A.12 Production year of the most-driven car 

 

 

 

Fig. A.13 Upgraded model ownership 
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Fig. A.14 Propulsion of current vehicle 

 

 

Fig. A.15 Annual mileage of current vehicle 
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Fig. A.16 Consideration regarding fuel cost 

 

 

Fig. A.17 Consideration regarding fuel cost by income level 
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Fig. A.18 Purchase decision on next car 

 

 

Fig. A.19 When to purchase next vehicle 
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Fig. A.20 How long to keep next vehicle 

 

 

Fig. A.21 Purchasing method of next vehicle 
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Fig. A.22 Propulsion of next vehicle 
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Fig. A.23 Propulsion of next vehicle by generations 

 

 

Fig. A.24 Budget plan for next vehicle 
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Fig. A.25 Budget plan for next vehicle by household income level 
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Fig. A.26 Expected annual mileage for next vehicle 

Consider that you are about to buy a new car. Suppose an optimal engine was available, just 
as good in all respects as the engine you may consider buying, but more fuel efficient. If the 
optimal engine would save you $2,000 in fuel over 5 years, how much EXTRA would you be 
willing to spend for the vehicle? 

 

Fig. A.27 Willingness to pay for $2,000 savings in future fuel cost 
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Max Min Mean Std 

15,000 0 1053.416 1012.666 

 

 

Fig. A.28 Cumulative distribution of WTP for $2,000 savings in fuel cost  

If the optimal engine would save you $6,000 in fuel over 5 years, how much EXTRA would 
you be willing to spend for the vehicle? 
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Fig. A.29 Willingness to pay for $6,000 savings in future fuel cost 

Max Min Mean Std 

11,250 0 2269.745 1734.267 

 

 

Fig. A.30 Cumulative distribution of WTP for $6,000 savings in fuel cost  
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If the optimal engine would save you $8,500 in fuel over 5 years, how much EXTRA would 
you be willing to spend for the vehicle? 

 

Fig. A.31 Willingness to pay for $8,500 savings in future fuel cost 
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Fig. A.32 Cumulative distribution of WTP for $8,500 savings in fuel cost  
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Suppose you will be given a $5,000 award. What is your expected interest so that you are 
willing to receive it 2 months later. 

 

Fig. A.34 Expected interest in 2 months 
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Fig. A.36 Year of birth 

 

 

Fig A.37 Gender proportion 
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Fig. A.38 Relationship status 
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Fig. A.40 Highest level of education 

 

 

Fig. A.41 Housing type 
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Fig. A.42 Type of housing ownership 

 

 

Fig. A.43 Number of individuals in household 
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Fig. A.44 Number of driver’s licenses in household 
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When you drive with family or close friends, do you prefer to be the driver or do you prefer 
to be a passenger? 

 

Fig. A.46 Preference of driving 

 

 

Fig. A.47 Employment status 
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Fig. A.48 If job related to vehicle operating 
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Fig. A.50 Latino or Hispanic 
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Fig. A.52 Household income before tax 
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Appendix B: Estimates from other models 

Table B.13 – B.22 show the results from other models, including MNL, MIXL, LC, MMLM. We 

only list 10 typical models here because other models has similar results. 

Multinomial Logit Model Estimates 

Table B.13 
MNL model with sociodemographic characteristics 
                 Estimate  Std. Error  t-value  Pr(>|t|)     
e:(intercept)  0.14981870  0.47633194   0.3145  0.753122     
h:(intercept) -0.04228436  0.49956050  -0.0846  0.932545     
p:(intercept)  0.29923132  0.41187700   0.7265  0.467528     
price         -0.05307747  0.00301601 -17.5986 < 2.2e-16 *** 
ocost         -0.00159775  0.00211528  -0.7553  0.450046     
lnrange.e      0.28571587  0.06790212   4.2078 2.579e-05 *** 
lnrange.p      0.32897449  0.05429444   6.0591 1.369e-09 *** 
charget.e     -0.03045830  0.00648828  -4.6944 2.674e-06 *** 
network.e      0.36333711  0.12436202   2.9216  0.003482 **  
network.p      0.36261238  0.13420946   2.7018  0.006896 **  
e:days80miles  0.08079361  0.03016231   2.6786  0.007392 **  
h:days80miles  0.07661130  0.04166464   1.8388  0.065950 .   
p:days80miles -0.00147090  0.03241814  -0.0454  0.963810     
e:currgas     -0.16282502  0.24178503  -0.6734  0.500674     
h:currgas      0.21648933  0.36409418   0.5946  0.552113     
p:currgas     -0.35138593  0.24908076  -1.4107  0.158324     
e:currhyb     -0.40783002  0.29482274  -1.3833  0.166571     
h:currhyb      0.22739941  0.43088790   0.5277  0.597676     
p:currhyb     -0.24154400  0.30289235  -0.7975  0.425185     
e:currelec    -0.76653667  0.52596594  -1.4574  0.145009     
h:currelec     0.40927285  0.67137797   0.6096  0.542126     
p:currelec    -0.51890468  0.54392519  -0.9540  0.340084     
e:age          0.00251996  0.00264354   0.9533  0.340463     
h:age         -0.00331635  0.00369110  -0.8985  0.368935     
p:age         -0.00029589  0.00281606  -0.1051  0.916319     
e:male         0.10138922  0.06608664   1.5342  0.124984     
h:male         0.14489780  0.09250730   1.5663  0.117269     
p:male         0.04427516  0.07046899   0.6283  0.529812     
e:married      0.12499879  0.06876313   1.8178  0.069092 .   
h:married      0.18700663  0.09626241   1.9427  0.052055 .   
p:married     -0.00970678  0.07321547  -0.1326  0.894527     
e:fulltime    -0.11932477  0.09625878  -1.2396  0.215114     
h:fulltime    -0.11034808  0.13507101  -0.8170  0.413949     
p:fulltime    -0.07784350  0.10247398  -0.7596  0.447469     
e:parttime     0.36567514  0.14235718   2.5687  0.010208 *   
h:parttime     0.15738868  0.19630913   0.8017  0.422704     
p:parttime     0.21825377  0.15178333   1.4379  0.150454     
e:hmaker       0.04993981  0.14151067   0.3529  0.724160     
h:hmaker      -0.09923962  0.20100481  -0.4937  0.621506     
p:hmaker      -0.02506538  0.15150431  -0.1654  0.868595     
e:student     -0.05835485  0.32627356  -0.1789  0.858054     
h:student     -0.82199496  0.58889552  -1.3958  0.162767     
p:student     -0.33634878  0.35419467  -0.9496  0.342308     
e:white        0.07800866  0.16632435   0.4690  0.639059     
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h:white        0.01572555  0.23141584   0.0680  0.945823     
p:white        0.21772009  0.17851996   1.2196  0.222623     
e:africam      0.24564924  0.19366912   1.2684  0.204656     
h:africam     -0.14586975  0.27704685  -0.5265  0.598529     
p:africam      0.17210644  0.20838955   0.8259  0.408868     
e:asian        0.50712191  0.26315010   1.9271  0.053965 .   
h:asian        0.57962627  0.34405399   1.6847  0.092047 .   
p:asian        0.50777999  0.27933103   1.8178  0.069088 .   
e:conserv     -0.04108246  0.07240253  -0.5674  0.570431     
h:conserv      0.01720231  0.10018385   0.1717  0.863668     
p:conserv     -0.19775435  0.07738657  -2.5554  0.010606 *   
e:lib         -0.02198853  0.08441501  -0.2605  0.794493     
h:lib         -0.12455041  0.12076104  -1.0314  0.302363     
p:lib         -0.07261177  0.08941880  -0.8120  0.416768     
e:west         0.06914978  0.09150754   0.7557  0.449845     
h:west         0.25744452  0.12657665   2.0339  0.041961 *   
p:west         0.15057501  0.09616426   1.5658  0.117393     
e:midwest      0.26043251  0.08188437   3.1805  0.001470 **  
h:midwest      0.27289428  0.11457427   2.3818  0.017228 *   
p:midwest      0.04961058  0.08826821   0.5620  0.574086     
e:northeast    0.17028831  0.08544414   1.9930  0.046264 *   
h:northeast    0.20523800  0.12056635   1.7023  0.088702 .   
p:northeast    0.07244896  0.09119231   0.7945  0.426926     
e:monthmiles   0.00138189  0.02549848   0.0542  0.956780     
h:monthmiles  -0.00206263  0.01743959  -0.1183  0.905851     
p:monthmiles   0.00360749  0.02057947   0.1753  0.860847     
e:urban        0.01409304  0.06499631   0.2168  0.828342     
h:urban       -0.10505740  0.09162867  -1.1466  0.251565     
p:urban        0.11776785  0.06915044   1.7031  0.088555 .   
e:lninc       -0.08173884  0.05027063  -1.6260  0.103955     
h:lninc       -0.13927927  0.06935426  -2.0082  0.044619 *   
p:lninc       -0.05946158  0.05330370  -1.1155  0.264626     
--- 
Signif. codes:  0 ‘***’0.001 ‘**’0.01 ‘*’0.05 ‘.’0.1 ‘’1 
 
Log-Likelihood: -11507 
McFadden R^2:  0.030566  
Likelihood ratio test : chisq = 725.64 (p.value = < 2.22e-16) 

 

We implemented mixed logit models with different distributions for parameters. 

Table B.14 shows the estimates from a simple MIXL model with no sociodemographic 

characteristics. All the parameters for alternative specific attributes were assumed to follow 

normal distributions. All the mean estimates has the right sign, but the stand deviations of 

parameters for price, operating cost, lnrange and network were too large. 

Table B.14 
MIXL with normally distributed taste parameters, no sociodemographic characteristics 
                 Estimate  Std. Error  z-value  Pr(>|z|)     
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e:(intercept)  0.23634881  0.22631156   1.0444 0.2963228     
h:(intercept) -0.14720700  0.06937846  -2.1218 0.0338548 *   
p:(intercept)  0.31074318  0.16946738   1.8336 0.0667066 .   
price         -0.05849752  0.00327199 -17.8783 < 2.2e-16 *** 
ocost         -0.00382996  0.00079364  -4.8258 1.394e-06 *** 
lnrange        0.30633367  0.03900074   7.8546 3.997e-15 *** 
charget       -0.02697644  0.00592568  -4.5525 5.302e-06 *** 
network        0.43973515  0.12715253   3.4583 0.0005435 *** 
sd.price       0.03544472  0.00539241   6.5731 4.929e-11 *** 
sd.ocost       0.00491916  0.00067650   7.2715 3.557e-13 *** 
sd.lnrange     0.27487779  0.01330996  20.6520 < 2.2e-16 *** 
sd.charget     0.00583556  0.00948407   0.6153 0.5383557     
sd.network     0.02392315  0.21491912   0.1113 0.9113687     
--- 
Signif. codes:  0 ‘***’0.001 ‘**’0.01 ‘*’0.05 ‘.’0.1 ‘’1 
 
Log Likelihood: -11188  

 

Table B.15 shows the estimates of a MIXL model with sociodemographic characteristics. All 

the parameters for alternative specific attributes were assumed to follow normal distributions. 

The stand deviations for operating cost, lnrange, charging time and network were too large. 

Sociodemographic data did not have a good significance level. 

Table B.15 
MIXL with normal distributed taste parameters, with sociodemographic characteristics 
                   Estimate  Std. Error  z-value  Pr(>|z|)     
e:(intercept)    2.39874223  0.94294751   2.5439  0.010963 *   
h:(intercept)   -0.39273883  0.81846451  -0.4798  0.631335     
p:(intercept)    3.00699086  0.93745880   3.2076  0.001338 **  
e:days80miles    0.08230146  0.06738973   1.2213  0.221982     
h:days80miles    0.08573940  0.05906550   1.4516  0.146613     
p:days80miles   -0.03061558  0.06903541  -0.4435  0.657421     
e:nvehadd        0.10516199  0.15931466   0.6601  0.509196     
h:nvehadd       -0.07978520  0.13684730  -0.5830  0.559877     
p:nvehadd        0.23283709  0.16301488   1.4283  0.153200     
e:nvehannmiles   0.03475624  0.09543437   0.3642  0.715716     
h:nvehannmiles   0.08524658  0.08437088   1.0104  0.312314     
p:nvehannmiles   0.10176738  0.09762383   1.0424  0.297206     
e:googlecar     -0.12545490  0.15873784  -0.7903  0.429336     
h:googlecar     -0.03844895  0.13379784  -0.2874  0.773832     
p:googlecar     -0.21566439  0.16408750  -1.3143  0.188737     
e:childcnt       0.05497334  0.05561077   0.9885  0.322889     
h:childcnt       0.02770396  0.04746530   0.5837  0.559444     
p:childcnt       0.03495904  0.05768494   0.6060  0.544492     
e:accident      -0.09832838  0.14103178  -0.6972  0.485673     
h:accident      -0.03556739  0.12122746  -0.2934  0.769221     
p:accident      -0.03502996  0.14549075  -0.2408  0.809733     
e:preferdriving  0.19456981  0.15785809   1.2326  0.217739     
h:preferdriving  0.12897727  0.13802535   0.9344  0.350074     
p:preferdriving  0.14580141  0.16193723   0.9004  0.367930     
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e:joboperateveh  0.07054496  0.23529871   0.2998  0.764322     
h:joboperateveh  0.16749324  0.20783260   0.8059  0.420298     
p:joboperateveh  0.11808620  0.24012879   0.4918  0.622888     
e:hispanic       0.09878970  0.30259004   0.3265  0.744061     
h:hispanic       0.45742748  0.25361016   1.8037  0.071284 .   
p:hispanic       0.21833249  0.31126638   0.7014  0.483033     
e:ownercar       0.46229199  0.35290426   1.3100  0.190208     
h:ownercar       0.52556922  0.30119645   1.7449  0.080996 .   
p:ownercar       0.18754464  0.35305121   0.5312  0.595273     
e:currgas       -0.31913080  0.48760364  -0.6545  0.512797     
h:currgas        0.20745748  0.43599648   0.4758  0.634200     
p:currgas       -0.54419414  0.49921559  -1.0901  0.275670     
e:currhyb       -0.69466287  0.61623257  -1.1273  0.259627     
h:currhyb        0.15516789  0.53888906   0.2879  0.773392     
p:currhyb       -0.48535543  0.63127680  -0.7688  0.441984     
e:currelec      -1.42163518  1.09816756  -1.2946  0.195475     
h:currelec       0.20559699  0.92074752   0.2233  0.823307     
p:currelec      -1.44482312  1.16730760  -1.2377  0.215813     
e:age           -0.00083300  0.01107795  -0.0752  0.940060     
h:age           -0.00522637  0.00939742  -0.5561  0.578109     
p:age           -0.01222071  0.01146695  -1.0657  0.286544     
e:male           0.07343449  0.15503058   0.4737  0.635730     
h:male           0.09776770  0.13296778   0.7353  0.462173     
p:male           0.01494967  0.15869359   0.0942  0.924947     
e:married        0.07123933  0.15444977   0.4612  0.644622     
h:married        0.18944629  0.13419335   1.4117  0.158026     
p:married       -0.13885764  0.15894749  -0.8736  0.382332     
e:compcollege    0.01452328  0.17218180   0.0843  0.932779     
h:compcollege    0.11503636  0.14974944   0.7682  0.442373     
p:compcollege    0.03257689  0.17664664   0.1844  0.853685     
e:hschorless    -0.12325964  0.19743799  -0.6243  0.532434     
h:hschorless    -0.10842294  0.17246701  -0.6287  0.529572     
p:hschorless    -0.05405638  0.20357468  -0.2655  0.790597     
e:ownhouse      -0.34322677  0.16629642  -2.0639  0.039023 *   
h:ownhouse      -0.32252792  0.14204052  -2.2707  0.023167 *   
p:ownhouse      -0.12155852  0.17175929  -0.7077  0.479115     
e:yrsdrivng      0.00405663  0.01451265   0.2795  0.779843     
h:yrsdrivng      0.00417893  0.01240811   0.3368  0.736275     
p:yrsdrivng      0.01917509  0.01499592   1.2787  0.201007     
e:fulltime      -0.14006532  0.21301809  -0.6575  0.510842     
h:fulltime      -0.17857880  0.18454739  -0.9677  0.333215     
p:fulltime      -0.16464530  0.21819369  -0.7546  0.450499     
e:parttime       0.68949529  0.33689071   2.0466  0.040693 *   
h:parttime       0.40907123  0.27816204   1.4706  0.141393     
p:parttime       0.53608382  0.34642974   1.5475  0.121754     
e:hmaker        -0.12056061  0.30062040  -0.4010  0.688391     
h:hmaker        -0.23768896  0.26704532  -0.8901  0.373428     
p:hmaker        -0.21564226  0.31393457  -0.6869  0.492145     
e:student       -0.54887045  0.72838643  -0.7535  0.451124     
h:student       -1.25130373  0.70919036  -1.7644  0.077663 .   
p:student       -0.81653432  0.74033212  -1.1029  0.270058     
e:white          0.21006423  0.39200304   0.5359  0.592046     
h:white          0.23697222  0.33786292   0.7014  0.483062     
p:white          0.34923676  0.40051206   0.8720  0.383222     
e:africam        0.44171263  0.45186165   0.9775  0.328302     
h:africam        0.17562167  0.39635037   0.4431  0.657696     
p:africam        0.34696758  0.45961006   0.7549  0.450299     
e:asian          0.64775686  0.55742044   1.1621  0.245210     
h:asian          0.79457291  0.48320906   1.6444  0.100100     
p:asian          0.73508801  0.57328193   1.2822  0.199757     
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e:conserv        0.03757247  0.16372694   0.2295  0.818494     
h:conserv        0.07478843  0.13782102   0.5426  0.587372     
p:conserv       -0.17359205  0.16708437  -1.0389  0.298829     
e:lib           -0.08110327  0.18746427  -0.4326  0.665281     
h:lib           -0.22314132  0.16363886  -1.3636  0.172687     
p:lib           -0.14681841  0.19339538  -0.7592  0.447756     
e:west           0.10006892  0.20428852   0.4898  0.624246     
h:west           0.30174949  0.17382303   1.7360  0.082571 .   
p:west           0.20933584  0.21026643   0.9956  0.319457     
e:midwest        0.42783395  0.18206023   2.3500  0.018776 *   
h:midwest        0.42721911  0.15744868   2.7134  0.006660 **  
p:midwest        0.21368071  0.18708735   1.1421  0.253394     
e:northeast      0.31463131  0.19512993   1.6124  0.106871     
h:northeast      0.32387710  0.16770506   1.9312  0.053455 .   
p:northeast      0.24820763  0.19909095   1.2467  0.212506     
e:monthmiles     0.02106270  0.02757301   0.7639  0.444934     
h:monthmiles    -0.00557922  0.02483927  -0.2246  0.822281     
p:monthmiles     0.00115011  0.02822067   0.0408  0.967492     
e:urban         -0.10327202  0.14810193  -0.6973  0.485613     
h:urban         -0.20111709  0.12547523  -1.6028  0.108969     
p:urban          0.01542556  0.15212530   0.1014  0.919233     
e:lninc         -0.00066958  0.11750429  -0.0057  0.995453     
h:lninc         -0.13601918  0.10116719  -1.3445  0.178787     
p:lninc          0.02213326  0.12030308   0.1840  0.854030     
price           -0.06312107  0.00335389 -18.8203 < 2.2e-16 *** 
ocost           -0.00042469  0.02665658  -0.0159  0.987289     
lnrange          0.43864031  0.04489922   9.7694 < 2.2e-16 *** 
charget         -0.03094892  0.00635232  -4.8721 1.104e-06 *** 
network          0.44516781  0.13563082   3.2822  0.001030 **  
sd.price         0.01954917  0.00953890   2.0494  0.040421 *   
sd.ocost         0.14999253  0.00802655  18.6870 < 2.2e-16 *** 
sd.lnrange       0.46889713  0.01998517  23.4623 < 2.2e-16 *** 
sd.charget       0.05668105  0.01245920   4.5493 5.382e-06 *** 
sd.network       0.40571555  0.29461775   1.3771  0.168484     
--- 
Signif. codes:  0 ?**?0.001 ?*?0.01 ??0.05 ??0.1 ??1 
Log Likelihood: -10903 
BIC: 22889.74 

  

Table B.16 and B.17 show the estimates from MIXL models with all or some parameters for 

alternative specific attributes following log-normal distributions. Neither of these models 

converged. 

Table B.16 
MLM with log-normally distributed taste parameters, no sociodemographic characteristics 
               Estimate Std. Error  z-value  Pr(>|z|)     
e:(intercept)  0.884638         NA       NA        NA     
h:(intercept) -0.112450         NA       NA        NA     
p:(intercept)  0.744134         NA       NA        NA     
adprice       -2.971909   0.039064 -76.0779 < 2.2e-16 *** 
adocost       -7.566688         NA       NA        NA     
lnrange       -3.573625   0.564591  -6.3296 2.458e-10 *** 
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adcharget     -5.095525         NA       NA        NA     
network       -2.212697         NA       NA        NA     
sd.adprice     0.325679         NA       NA        NA     
sd.adocost     1.407876         NA       NA        NA     
sd.lnrange     3.127768   0.401171   7.7966 6.439e-15 *** 
sd.adcharget   1.702522         NA       NA        NA     
sd.network     3.759481         NA       NA        NA     
--- 
Signif. codes:  0 ‘***’0.001 ‘**’0.01 ‘*’0.05 ‘.’0.1 ‘’1 
Log Likelihood: -11182  

 

Table B.17 
MLM with log-normally distributed taste parameter for driving range and network, and 
normally distributed taste parameter for price, operating cost and charging time.  
                 Estimate  Std. Error  z-value  Pr(>|z|)     
e:(intercept)  0.50568620  0.14373428   3.5182 0.0004345 *** 
h:(intercept) -0.08059446  0.06690040  -1.2047 0.2283217     
p:(intercept)  0.54464240  0.11656015   4.6726 2.974e-06 *** 
price         -0.06258830  0.00328472 -19.0544 < 2.2e-16 *** 
ocost         -0.00245728  0.00068256  -3.6001 0.0003181 *** 
lnrange       -1.86915364  0.19745954  -9.4660 < 2.2e-16 *** 
charget       -0.02909711  0.00609867  -4.7711 1.833e-06 *** 
network       -1.56512673  0.46901054  -3.3371 0.0008466 *** 
sd.price       0.02916245  0.00598413   4.8733 1.098e-06 *** 
sd.ocost       0.00339257  0.00068920   4.9225 8.546e-07 *** 
sd.lnrange     1.79096824  0.19923315   8.9893 < 2.2e-16 *** 
sd.charget     0.01251811  0.01141501   1.0966 0.2728004     
sd.network     2.24937268          NA       NA        NA     
--- 
Signif. codes:  0 ‘***’0.001 ‘**’0.01 ‘*’0.05 ‘.’0.1 ‘’1 
Log Likelihood: -11133 

 

Table B.18 show the estimates from MIXL model with fixed parameter for network, normally 

distributed parameters for price, operating cost, charging time and network. The stand 

deviation estimates were too large and sociodemographic data did not have significant impact. 

Table A.18 
MIXL with normally-distributed taste parameter for price, operating cost, driving range, and 
charging time, fixed taste parameter for network 
                 Estimate Std. Error  z-value  Pr(>|z|)     
e:(intercept)   2.1502895  0.8831749   2.4347 0.0149030 *   
h:(intercept)  -0.5345872  0.7801322  -0.6853 0.4931849     
p:(intercept)   3.1730036  0.8326149   3.8109 0.0001385 *** 
network         0.4809216  0.1306842   3.6800 0.0002332 *** 
e:days80miles   0.0774016  0.0640265   1.2089 0.2267016     
h:days80miles   0.0806228  0.0574195   1.4041 0.1602886     
p:days80miles  -0.0267223  0.0624163  -0.4281 0.6685567     
e:nvehadd       0.0353359  0.1513529   0.2335 0.8153987     
h:nvehadd      -0.1272399  0.1338721  -0.9505 0.3418793     
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p:nvehadd       0.1361652  0.1463233   0.9306 0.3520721     
e:nvehannmiles  0.0546696  0.0924934   0.5911 0.5544765     
h:nvehannmiles  0.0706226  0.0836467   0.8443 0.3985039     
p:nvehannmiles  0.1429088  0.0898597   1.5904 0.1117547     
e:googlecar    -0.1751076  0.1506038  -1.1627 0.2449496     
h:googlecar    -0.0612510  0.1320682  -0.4638 0.6428030     
p:googlecar    -0.2644270  0.1465369  -1.8045 0.0711517 .   
e:childcnt      0.0491975  0.0528029   0.9317 0.3514813     
h:childcnt      0.0280446  0.0467978   0.5993 0.5489924     
p:childcnt      0.0426084  0.0511688   0.8327 0.4050118     
e:hispanic      0.1826071  0.2740627   0.6663 0.5052213     
h:hispanic      0.4311076  0.2428740   1.7750 0.0758936 .   
p:hispanic      0.3440979  0.2641901   1.3025 0.1927580     
e:ownercar      0.4417497  0.3134527   1.4093 0.1587457     
h:ownercar      0.5484589  0.2883490   1.9021 0.0571625 .   
p:ownercar      0.0793686  0.3052697   0.2600 0.7948677     
e:currgas      -0.1897776  0.4570750  -0.4152 0.6779954     
h:currgas       0.2145961  0.4305233   0.4985 0.6181641     
p:currgas      -0.3559662  0.4404485  -0.8082 0.4189811     
e:currhyb      -0.5074451  0.5812995  -0.8729 0.3826906     
h:currhyb       0.1637694  0.5340194   0.3067 0.7590922     
p:currhyb      -0.2690894  0.5602985  -0.4803 0.6310420     
e:currelec     -1.4350596  1.1126826  -1.2897 0.1971446     
h:currelec      0.2057127  0.9261583   0.2221 0.8242252     
p:currelec     -0.9939472  1.0630944  -0.9350 0.3498106     
e:age           0.0021805  0.0106001   0.2057 0.8370195     
h:age          -0.0044884  0.0092078  -0.4875 0.6259392     
p:age          -0.0099620  0.0102605  -0.9709 0.3315971     
e:male          0.0589506  0.1418782   0.4155 0.6777751     
h:male          0.1010986  0.1257593   0.8039 0.4214519     
p:male          0.0171956  0.1378748   0.1247 0.9007458     
e:married       0.0804429  0.1520233   0.5291 0.5967023     
h:married       0.1583205  0.1330757   1.1897 0.2341633     
p:married      -0.0985415  0.1472252  -0.6693 0.5032884     
e:compcollege   0.0259974  0.1691948   0.1537 0.8778829     
h:compcollege   0.1057923  0.1491347   0.7094 0.4780924     
p:compcollege   0.0573437  0.1643549   0.3489 0.7271630     
e:hschorless   -0.0448438  0.1915013  -0.2342 0.8148532     
h:hschorless   -0.0772314  0.1707458  -0.4523 0.6510398     
p:hschorless    0.0346845  0.1856326   0.1868 0.8517824     
e:ownhouse     -0.2878406  0.1552776  -1.8537 0.0637799 .   
h:ownhouse     -0.2751809  0.1382466  -1.9905 0.0465350 *   
p:ownhouse     -0.0835201  0.1509225  -0.5534 0.5799913     
e:yrsdrivng    -0.0027086  0.0137873  -0.1965 0.8442511     
h:yrsdrivng     0.0019224  0.0119918   0.1603 0.8726395     
p:yrsdrivng     0.0132400  0.0133605   0.9910 0.3216919     
e:fulltime     -0.1205559  0.2099395  -0.5742 0.5658047     
h:fulltime     -0.1720250  0.1855160  -0.9273 0.3537821     
p:fulltime     -0.1311731  0.2016349  -0.6505 0.5153385     
e:parttime      0.5681317  0.2935583   1.9353 0.0529500 .   
h:parttime      0.3648550  0.2633233   1.3856 0.1658757     
p:parttime      0.3722498  0.2849273   1.3065 0.1913918     
e:hmaker       -0.0272062  0.2996354  -0.0908 0.9276535     
h:hmaker       -0.1449715  0.2698936  -0.5371 0.5911689     
p:hmaker       -0.1150675  0.2907123  -0.3958 0.6922437     
e:student      -0.6165588  0.6636682  -0.9290 0.3528805     
h:student      -1.2915836  0.6957215  -1.8565 0.0633871 .   
p:student      -0.8457512  0.6482982  -1.3046 0.1920389     
e:white         0.1804052  0.3737396   0.4827 0.6293067     
h:white         0.2007313  0.3363565   0.5968 0.5506533     
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p:white         0.3460230  0.3588147   0.9643 0.3348705     
e:africam       0.3771287  0.4339194   0.8691 0.3847807     
h:africam       0.1213359  0.3941233   0.3079 0.7581868     
p:africam       0.3377249  0.4171719   0.8096 0.4181942     
e:asian         0.4996295  0.5269821   0.9481 0.3430807     
h:asian         0.6887151  0.4756300   1.4480 0.1476154     
p:asian         0.5782109  0.5125474   1.1281 0.2592726     
e:conserv       0.0406159  0.1519994   0.2672 0.7893069     
h:conserv       0.0748087  0.1334826   0.5604 0.5751805     
p:conserv      -0.1634453  0.1471303  -1.1109 0.2666167     
e:lib          -0.0374675  0.1748406  -0.2143 0.8303168     
h:lib          -0.2197086  0.1594644  -1.3778 0.1682679     
p:lib          -0.0918149  0.1697421  -0.5409 0.5885711     
e:west          0.1442591  0.1879607   0.7675 0.4427868     
h:west          0.3385549  0.1683153   2.0114 0.0442797 *   
p:west          0.2271478  0.1832327   1.2397 0.2150980     
e:midwest       0.3970385  0.1720639   2.3075 0.0210266 *   
h:midwest       0.4104784  0.1528483   2.6855 0.0072415 **  
p:midwest       0.1789451  0.1672075   1.0702 0.2845303     
e:northeast     0.2176491  0.1875385   1.1606 0.2458222     
h:northeast     0.2922942  0.1647621   1.7740 0.0760569 .   
p:northeast     0.1135586  0.1813796   0.6261 0.5312608     
e:monthmiles    0.0145535  0.0269215   0.5406 0.5887894     
h:monthmiles   -0.0020977  0.0246717  -0.0850 0.9322424     
p:monthmiles   -0.0110143  0.0261683  -0.4209 0.6738260     
e:urban        -0.0359149  0.1389417  -0.2585 0.7960298     
h:urban        -0.1797444  0.1225507  -1.4667 0.1424594     
p:urban         0.0846667  0.1348067   0.6281 0.5299645     
e:lninc         0.0154544  0.1122758   0.1376 0.8905196     
h:lninc        -0.1267077  0.0988995  -1.2812 0.2001315     
p:lninc         0.0184173  0.1076010   0.1712 0.8640954     
price          -0.0564325  0.0032612 -17.3043 < 2.2e-16 *** 
ocost          -0.0468616  0.0259416  -1.8064 0.0708518 .   
lnrange        -0.6686374  0.0767265  -8.7146 < 2.2e-16 *** 
charget        -0.0278842  0.0062472  -4.4635 8.064e-06 *** 
sd.price        0.0248731  0.0083841   2.9667 0.0030101 **  
sd.ocost        0.1438331  0.0076079  18.9058 < 2.2e-16 *** 
sd.lnrange      0.6208095  0.0389512  15.9381 < 2.2e-16 *** 
sd.charget      0.0556292  0.0132905   4.1856 2.844e-05 *** 
--- 
Signif. codes:  0 ‘***’0.001 ‘**’0.01 ‘*’0.05 ‘.’0.1 ‘’1 
Log Likelihood: -11001  

 

Table B.19 and B.20 show the estimates for LC models with three and four classes (clusters). 

None of them converged. 

Table B.19 
LC model with 3 classes, with same sociodemographic characteristics as model A 
                   Estimate  Std. Error  z-value  Pr(>|z|)     
class.1.price    0.01638800  0.02618110   0.6259 0.5313492     
class.1.ocost   -0.07110363  0.01929936  -3.6842 0.0002294 *** 
class.1.lnrange  1.10589554  0.24298652   4.5513 5.332e-06 *** 
class.1.charget  0.03118432  0.05369490   0.5808 0.5613963     
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class.1.network  0.39412428          NA       NA        NA     
class.2.price   -0.04447094  0.00424233 -10.4827 < 2.2e-16 *** 
class.2.ocost   -0.00327098  0.00074561  -4.3870 1.149e-05 *** 
class.2.lnrange  0.36465032  0.02328765  15.6585 < 2.2e-16 *** 
class.2.charget -0.03204794  0.00786526  -4.0746 4.609e-05 *** 
class.2.network  0.95886073  0.19734652   4.8588 1.181e-06 *** 
class.3.price   -0.08390944  0.00679314 -12.3521 < 2.2e-16 *** 
class.3.ocost   -0.00097735  0.00058602  -1.6678 0.0953599 .   
class.3.lnrange  0.10989373  0.03243908   3.3877 0.0007048 *** 
class.3.charget -0.03023919  0.01458603  -2.0732 0.0381573 *   
class.3.network  0.68250409  0.22353195   3.0533 0.0022636 **  
(class)2         1.36850849  0.03858625  35.4662 < 2.2e-16 *** 
(class)3         0.70358609  0.06019501  11.6884 < 2.2e-16 *** 
--- 
Signif. codes:  0 ‘***’0.001 ‘**’0.01 ‘*’0.05 ‘.’0.1 ‘’1 
Log Likelihood: -11098 

 

Table B.20 
LC model with 4 classes, with same sociodemographic characteristics as model A 
                   Estimate  Std. Error  z-value  Pr(>|z|)     
class.1.price   -0.02965620  0.00650362  -4.5600 5.116e-06 *** 
class.1.ocost   -0.00064180  0.00119084  -0.5389 0.5899214     
class.1.lnrange  0.08494112  0.05267186   1.6126 0.1068212     
class.1.charget -0.04570033  0.01189938  -3.8406 0.0001228 *** 
class.1.network  5.01445278  1.16050817   4.3209 1.554e-05 *** 
class.2.price   -0.08774254  0.00692526 -12.6699 < 2.2e-16 *** 
class.2.ocost   -0.00123296  0.00059299  -2.0792 0.0375972 *   
class.2.lnrange  0.17073255  0.02870950   5.9469 2.733e-09 *** 
class.2.charget -0.02865875  0.01391916  -2.0589 0.0394997 *   
class.2.network  0.10392320  0.23507708   0.4421 0.6584303     
class.3.price    0.01445979  0.05751992   0.2514 0.8015145     
class.3.ocost   -0.08433991  0.04828181  -1.7468 0.0806676 .   
class.3.lnrange  1.82109296  0.65310139   2.7884 0.0052973 **  
class.3.charget  0.09709301  0.23506591   0.4130 0.6795730     
class.3.network  0.36170912          NA       NA        NA     
class.4.price   -0.06807404  0.00884260  -7.6984 1.377e-14 *** 
class.4.ocost   -0.00734492  0.00162751  -4.5130 6.392e-06 *** 
class.4.lnrange  0.68106756  0.05736111  11.8733 < 2.2e-16 *** 
class.4.charget -0.01417555  0.01342878  -1.0556 0.2911466     
class.4.network -2.17331911  0.41651838  -5.2178 1.810e-07 *** 
(class)2        -0.00164955  0.08594951  -0.0192 0.9846878     
(class)3        -1.23899832  0.08298647 -14.9301 < 2.2e-16 *** 
(class)4         0.04872844  0.09211275   0.5290 0.5967995     
--- 
Signif. codes:  0 ‘***’0.001 ‘**’0.01 ‘*’0.05 ‘.’0.1 ‘’1 
Log Likelihood: -10985 

 

Table B.21 and B.22 show the estimates for MML models with normally distributed parameters 

for alternative specific attributes in each class (cluster). None of them converged. 

Table B.21 
MML model with 2 classes 
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                      Estimate  Std. Error  z-value  Pr(>|z|)     
class.1.price      -0.06078462  0.00328771 -18.4884 < 2.2e-16 *** 
class.1.ocost      -0.00211343  0.00048799  -4.3309 1.485e-05 *** 
class.1.lnrange     0.24360042          NA       NA        NA     
class.1.charget    -0.03498637  0.00647195  -5.4058 6.450e-08 *** 
class.1.network     1.41050391          NA       NA        NA     
class.2.price      -0.04963821  0.01433656  -3.4624 0.0005355 *** 
class.2.ocost      -0.05349411          NA       NA        NA     
class.2.lnrange     1.12409988  0.09550444  11.7701 < 2.2e-16 *** 
class.2.charget    -0.02025956  0.03093676  -0.6549 0.5125515     
class.2.network    -4.95164377  0.63493996  -7.7986 6.217e-15 *** 
class.1.sd.price    0.04132114  0.00421140   9.8117 < 2.2e-16 *** 
class.1.sd.ocost    0.00379512  0.00057034   6.6541 2.850e-11 *** 
class.1.sd.lnrange  0.14649114          NA       NA        NA     
class.1.sd.charget  0.01619794  0.01026817   1.5775 0.1146827     
class.1.sd.network  0.99528198          NA       NA        NA     
class.2.sd.price    0.04564707  0.02450288   1.8629 0.0624726 .   
class.2.sd.ocost    0.03040704          NA       NA        NA     
class.2.sd.lnrange  0.25619929          NA       NA        NA     
class.2.sd.charget  0.04581873  0.04382568   1.0455 0.2958027     
class.2.sd.network  1.01492200  0.69047744   1.4699 0.1415931     
(class)2           -1.91318577  0.04194316 -45.6138 < 2.2e-16 *** 
GenerationX:class2  0.32482361  0.10007454   3.2458 0.0011711 **  
class2:BabyBoom     0.19899661  0.09664932   2.0590 0.0394985 *   
class2:Silent       0.29598418  0.16352467   1.8100 0.0702915 .   
--- 
Signif. codes:  0 ‘***’0.001 ‘**’0.01 ‘*’0.05 ‘.’0.1 ‘’1 
Log Likelihood: -11060 

 

Table B.22 
MML model with 2 classes 
                      Estimate  Std. Error  z-value  Pr(>|z|)     
class.1.price      -0.06076551  0.00335151 -18.1308 < 2.2e-16 *** 
class.1.ocost      -0.00166767  0.00046113  -3.6165 0.0002986 *** 
class.1.lnrange     0.23061716          NA       NA        NA     
class.1.charget    -0.03525529  0.00676392  -5.2123 1.866e-07 *** 
class.1.network     1.75356793          NA       NA        NA     
class.2.price      -0.05261330  0.01415757  -3.7163 0.0002022 *** 
class.2.ocost      -0.01403389  0.00444472  -3.1574 0.0015917 **  
class.2.lnrange     1.36813861          NA       NA        NA     
class.2.charget    -0.00900348  0.02458494  -0.3662 0.7142015     
class.2.network    -4.62415238          NA       NA        NA     
class.1.sd.price    0.03900064  0.00435963   8.9459 < 2.2e-16 *** 
class.1.sd.ocost    0.00352573  0.00049589   7.1099 1.162e-12 *** 
class.1.sd.lnrange  0.12344927          NA       NA        NA     
class.1.sd.charget  0.02004381  0.01074667   1.8651 0.0621649 .   
class.1.sd.network  1.25574256          NA       NA        NA     
class.2.sd.price    0.05148254  0.01775814   2.8991 0.0037424 **  
class.2.sd.ocost    0.01276143  0.00353948   3.6054 0.0003116 *** 
class.2.sd.lnrange  0.71691488          NA       NA        NA     
class.2.sd.charget  0.02778357  0.03882638   0.7156 0.4742477     
class.2.sd.network  0.11640492  0.53719105   0.2167 0.8284485     
(class)2           -2.87553558  0.24544738 -11.7155 < 2.2e-16 *** 
GenerationX:class2  0.48500418  0.09817608   4.9401 7.806e-07 *** 
class2:BabyBoom     0.23685542  0.09996999   2.3693 0.0178235 *   
class2:Silent       0.47768988  0.16081698   2.9704 0.0029742 **  
class2:days80miles  0.21501843  0.02816657   7.6338 2.287e-14 *** 
class2:currgas      0.65322334  0.16871200   3.8718 0.0001080 *** 
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class2:married      0.30718961  0.07372302   4.1668 3.089e-05 *** 
class2:parttime     0.80541711  0.09741108   8.2682 2.220e-16 *** 
class2:student     -6.40532680          NA       NA        NA     
class2:africam      0.36126653  0.12265222   2.9455 0.0032248 **  
class2:asian        0.31358719  0.19794026   1.5843 0.1131365     
class2:lib         -0.44607943  0.08718125  -5.1167 3.109e-07 *** 
class2:west         0.08792534  0.09374274   0.9379 0.3482738     
class2:midwest      0.54762674  0.07696187   7.1156 1.115e-12 *** 
class2:lninc       -0.07806329  0.05063861  -1.5416 0.1231765     
--- 
Signif. codes:  0 ‘***’0.001 ‘**’0.01 ‘*’0.05 ‘.’0.1 ‘’1 
Log Likelihood: -11040 
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Appendix C: Supporting charts for case study 

Fig. C.53 – Fig. C.55 shows the marginal manufacturing cost regrading driving range by 

battery cost for 2016 Ford Focus EV, 2015 Tesla S 60 and 2016 Tesla S 90D. 

 
Fig. C.53 Marginal cost regarding driving range, 2016 Ford Focus EV 
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Fig. C.54 Marginal cost regarding driving range, 2015 Tesla S 60 

 
Fig. C.55 Marginal cost regarding driving range, 2016 Tesla S 90D 
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