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Abstract 

 

Spinach (Spinacia oleracea, cv. Carmel) was grown in a conventional glass greenhouse 

under three different nutrient solution treatments. Lighting and temperature conditions 

were identical. Six growing systems were used to provide a duplicate trough system for 

each of these three treatments. Six crops (referred to as trials) were harvested from each 

system over a two month time period. Two treatments received hydroponic nutrient inputs, 

with one treatment at pH 7.0 (referred to as H7) and the other at pH 5.8 (referred to as 

H5), and the third treatment was aquaponic (referred to as A7), receiving all of its 

nutrients from a single fish tank with koi (Cyprinus carpio) except for the addition of 

chelated iron. The pH of the systems were regulated by adding K2CO3 to the aquaponic 

systems, and KOH to the hydroponic systems. Plants were harvested at a marketable size 

for baby-leaf spinach. Comparisons made between the treatments were total yield (fresh 

weight and dry weight), leaf surface area, tissue elemental content, and dry weight to fresh 

weight ratio. Despite some differences in nutrient solution and tissue composition, it was 

found that dry weight biomass yield values were not different in pairwise comparisons 

between treatments (A7 vs. H5: p=0.59 fresh weight, p=0.42 dry weight). Similarly, surface 

area results were not different between treatments. Statistically non-different biomasses 

were achieved in the A7 and H5 systems for both dry weight and fresh weight. The 

important comparison is A7 vs. H5, because the H7 treatment is at a pH rarely used in 

hydroponics, and received slightly more light due to its greenhouse position.  
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Introduction  
 

 Hydroponics is a method of growing plants using mineral nutrient liquid solution without 

soil. The method of application of the nutrient solution to the roots varies widely (Jensen & 

Collins, 1985). Aquaponics is a method of growing plants hydroponically using waste water of 

an aquaculture system. Aquaponics makes multiple uses of resources such as water and nutrients 

(Rackocy, 2012; Timmons & Ebeling, 2013). Hydroponics is an increasingly important field as 

the demand increases for more food and sustainably produced products (Resh, 2012). With urban 

agriculture on the rise (Mok, 2014), greenhouses are growing food on rooftops and in decaying 

buildings and abandoned warehouses (Resh, 2012). Hydroponics uses inorganic nutrient 

fertilizers, while aquaponic treatments rely on fish waste, which has the potential to be at less 

than ideal concentrations for plants. Aquaponics uses fish waste water to generate the nutrients 

needed by plants, meaning the nutrient composition is not formulated to exact concentrations and 

can be less stable. Growing plants in aquaponic waste water provides a sustainable use of the fish 

waste, which has an added value in marketing to a certain class of consumers. The plants also 

help filter the fish water and help to reduce nitrate which can be toxic to some fish salmonid 

species at elevated levels, e.g., greater than 40 mg/L (Timmons and Ebeling, 2013). 

 The objective of this study is to compare aquaponic and hydroponic spinach yield, and 

look for differences in leaf surface area and elemental composition between treatments. Two 

hydroponic treatments were chosen, pH 5.8 and pH 7.0, and one aquaponic treatment was used at 

pH 7.0. The aquaponic treatment received nutrients from fish waste, with the exception of 

chelated iron. Fish waste has no iron in it; fish food is iron-free because iron accumulates in the 

livers of fish to their detriment (Enduta, 2011). Chelated iron is commonly added to the water of 

an aquaponic system; the amount of iron being absorbed by the fish directly from the water is 

considered small and non-harmful (Rakocy, 2012). 

 The solution formula employed for the hydroponic spinach was a formula derived for 

lettuce by Sonneveld and Straver (1994). In earlier research, the lettuce formula was found to be 

as effective at half the concentration recommended by Sonneveld and Straver as at full 

concentration (Both et al., 1997). Half strength Sonneveld and Straver solution has an 

electroconductivity of 1300 microSiemens/cm. Moderately low pH, around 5.8, keeps most ions 

available in solution while higher pH, around 6.5 and higher, can cause nutrient deprivation 

because of nutrient precipitation (Bugbee, 2003). The Sonneveld and Straver solution used in 

this research was originally designed for use with a pH around 5.8, and both Bugbee (2003) and 

Both et al. (1997) used this pH for lettuce to maximize nutrient availability.  

 An added constraint in this research was that our aquaponic treatment needed to be kept 

at the same low root zone temperature as the two hydroponic treatments to combat Pythium root 

disease, which is a major hazard in spinach production. Pythium aphanadermatum is a 

devastating organism to which spinach is particularly susceptible. This disease largely has 

prevented wide scale success in hydroponic spinach production in the world. Diseased plants are 

characterized by brown roots, upright leaves in the early stages, and slimy black roots and 

completely wilted tops in the later stages of the disease. The course of the disease is affected by: 

time of inoculation, concentration of inoculum, and root zone temperature. There are several 

methods that have been practiced to combat Pythium disease in spinach, and most are only 

partially successful. In this experiment, the main methods used were maintaining a low root zone 

temperature, harvesting after 13 days in pond water, and maintaining thorough sanitation by 

spraying 70% ethanol on all potentially contaminated surfaces during planting and solution 
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sampling. Harvesting at the baby-leaf stage reduces the risk of Pythium because baby spinach 

does not grow long enough for the pathogen to complete its full growth cycle (de Villiers & 

Shelford, 2007). 

 A major difference of aquaponics compared to hydroponics is its potential for non-

uniformity in water nutrient conditions; the system does not have a fixed nutrient solution, and is 

reliant upon the fish water to provide all nutrients at all times with the exception of chelated iron. 

This non-uniformity is possibly one of the reasons that aquaponics is sometimes found to have 

lower yields than hydroponics (Pantanella et al., 2010). Nutrient levels are highly dependent on 

the fish activity, fish number, and fish species (Endut et al., 2009; Liang & Chien, 2013). Even if 

the fish waste provides adequate nutrients to successfully grow high yielding plants, the 

hydrodynamics of the aquaponics system flow can be detrimental to the plant side of the system. 

For example, the flow rate and rate of recirculation in the system can reduce yield if they are too 

slow or too fast which causes root stress (Shete et al., 2013). The overall objective of this study 

was to compare yields in an aquaponics system to yields obtained from a conventional 

hydroponics system. 
 

Materials and Methods  
 

Seeds were germinated at high humidity in a temperature controlled growth chamber for 

three days (additional details of growth chamber provided below). After germination, flats of 

spinach were grown for 13 additional days using deep-flow troughs/channels housed in a 

conventional glass greenhouse under three different treatments which consisted of three different 

nutrient solution conditions. Two treatments received hydroponic nutrient inputs, with one 

treatment at pH 5.8 (referred to as H5) and the other at pH 7.0 (referred to as H7). The source 

water used reverse osmosis (RO) water to make up the nutrient solutions. Growing conditions 

mimicked conventional deep-flow grow ponds and plants were grown using a modified 

Sonneveld nutrient solution designed for lettuce (described later). The third treatment was 

aquaponic (referred to as A7), receiving its nutrients from aquaculture waste with the addition of 

chelated iron (initial concentration of 3 mg/L). The aquaponic source water was tap water that 

was initially high in alkalinity. This carbon filtered water had average macro-elemental contents 

of 50mg/L Ca, 13mg/L Mg, 5.5mg/L S, and an EC of 450µS/cm. The concentrations of the 

makeup water for Ca, Mg and S varied slightly seasonally. Adjustments in pH were initially 

made to achieve target values and then made daily using 1 M K2CO3 to the aquaponic system or 

1 M KOH to the hydroponic systems. Prior to the experiment, initial pH adjustments were made 

using HNO3 or the treatment's respective base as just mentioned. 

The spinach crops in all treatments were grown in the same greenhouse and aerial space 

under the same lighting and temperature conditions, with periodic harvest of old and insertion of 

new trials into hydroponic growing channels (described further below). Six trials were conducted 

from January 17 to February 19, 2016, with a preliminary trial conducted to validate procedures. 

Root zone temperature was also matched across all treatments at 18° C. All treatments were 

grown for 13 days once a flat was floated in its respective channel. Each of the three treatments 

was applied in a duplicate growing system, resulting in six growing systems. The two 

hydroponic treatments had four completely independent recirculating systems including their 

source waters, while the water from the fish tank for the two aquaponic systems was 

continuously being mixed. An individual trial ended with the harvest of all six flats of spinach 

from each growing system. Each trial was offset by three days; additional harvest details are 
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provided below. Styrofoam floats covered all water surfaces to reduce algae growth, minimize 

evaporation, and block solar radiation, which would have destructed the iron chelator.  
 

The Greenhouse: 

 The spinach was grown in a middle section of a multi-sectioned glass greenhouse built in 

1953, with dimensions 9 m x 11 m x 7 m high to the ridge, oriented east west (Figure 1). An 

Argus monitoring and control systems logged CO2, humidity, aerial temperature, and light level, 

and also controlled aerial temperature and daily light integral (DLI). There was no carbon 

dioxide supplementation. Two identical water-to-air heat exchangers on opposite sides of the 

greenhouse rated at 115,000 kJ/h used fans to move air through radiators then across the 

greenhouse, providing air mixing and rapid adjustment of air temperatures to target values.  

 A target DLI of 17 mol/m
2
/day was used for all trials. The DLI is the quantity of 

photosynthetically active radiation (PAR, in units of moles/m
2
/day) achieved by controlled use 

of a lighting array to supplement natural light radiation. The environmental parameters were 

sampled approximately every two seconds and data queues averaged and logged every 2 

minutes. DLI was controlled to its target value by supplementing natural light using an array of 

20 high pressure sodium (HPS) lights (General Electric, 400 watt clear S51/O, Mogul Base rated 

ED18 HSP, LU 400/H/ECO). The DLI was reset daily at 6:00 am. The greenhouse had a heating 

set point of 24°C, and a cooling set point of 25°C. The quantity of both natural and supplemental 

lighting received at plant level was recorded using a LiCor quantum sensor. The average DLI for 

trials was consistently between 17.0 and 17.1 mol/m
2
/day for all trials. The average natural light 

integrals were 4.0, 4.1, 4.7, 4.6, 5.4, and 5.4 mol/m
2
/day for trials 1-6 respectively. The average 

supplementary light integrals were 13.0, 12.9, 12.3, 12.4, 11.6, and 11.6 mol/m
2
/day for trials 1-6 

respectively.  
 

The Channels: 

Flats of spinach were floated in six channels raised 1.27 m above the floor. The channels 

were made of 2x12 lumber, which provided insulation on the sides and ends. They were also 

insulated at the bottom with 25 mm polystyrene and 12 mm of plywood, and carefully lined with 

0.006 in plastic to prevent leakage. The outside dimensions of the channels were 29 cm high x 

42.5 cm wide x 244 cm long. Internal dimensions were 26 cm deep x 35 cm wide x 236 cm long. 

Each channel was accompanied by a reservoir at floor level (volume 50 L). Nutrient solution was 

cooled in the reservoir, pumped up to the far end of the channel, then drained back to the 

reservoir by gravity with depth controlled by a standpipe at the downstream end of the channel. 

The channels were filled to roughly 24 cm with 2 cm of freeboard, which provided a total 

volume of 200 L per channel plus reservoir volume. The tops of the floating flats were 1.27 m 

above the floor and 1.30 m below the light fixtures to maximize light uniformity (natural and 

supplemental) among all channels. At the water level heights maintained, the top of the floats 

cleared the channel sides. The channels were labeled 1 through 6 and were grouped into three 

blocks: channels 1 and 2 were block 1 (A7 treatment), channels 3 and 4 were block 2 (H7 

treatment), and channels 5 and 6 were block 3 (A7 treatment) (see Figure 1).  

In a previous investigation of effect of channel position within the greenhouse, plants 

were found to grow non-differently in the outer pairs of channels (blocks 1 and 3; de Villiers and 

Anderson, 2016). In that six-trial study, yields per flat were almost identical in given trials, and, 

as a consequence a paired two-tailed t-test gave a p value of 0.83 in comparing the pairs of outer 

channels (channel 1&2 versus channel 5&6). Due to the central placement of the 6 channels 

under the lighting array, the lighting array’s central placement in the greenhouse, and the 
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greenhouse’s bilateral symmetry, we expected no location effect on growth between our outside 

channel locations (1&2 and 5&6), but block 2 (channel 3&4) showed a 7% increase in growth 

compared to the outer blocks (de Villiers and Anderson, 2016). On a fresh weight basis, p=0.016 

in a one-tailed paired t-test of 3&4 with 1&2, and p=0.013 in a similar test of 3&4 with 5&6 (see 

Table 1). This increase correlated with a higher light level measured in the middle of the 

greenhouse in mapping the supplemental lighting array, and increased natural light in the middle 

due to geometry (see Figure 2). In view of the advantage in light intensity in the middle block 

position, we chose the two outside blocks for the A7 and H5 treatments, since this was our 

primary comparison of interest for commercial application and there was no yield advantage 

between these channels. Based upon these considerations, we conducted all trials without 

reversal of channel positions for treatment assignments. A general overall photo of the 

experimental arrangement is shown in Figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Floor plan of greenhouse. Fish tank is separated from spinach channels by a thin greenhouse 

partition wall. Channels are numbered 1 through 6. 

[A] Heat exchangers used to cool and filter individual hydroponic channels. 
[B] Duplicate channels of H5 treatment 

[C] Duplicate channels of H7 treatment 

[D] Shared aquaponic reservoir water, with pumps to returnwater to the fish system 

[E] Block 3: Channels of A7 treatment, not duplicate because of shared water 
[F] Bead filter to filter fish waste 

[G] Fish tank  

[H] Sump pump and settling tank for recirculting fish system  
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Position 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

12 140 143 159 175 180 177 185 194 188 178 181 173 157 143 138 

11 160 169 183 200 204 200 200 217 196 195 205 197 179 166 158 

10 176 183 196 211 214 209 217 223 219 210 215 208 190 182 173 

9 182 191 199 212 215 210 215 221 213 211 217 211 194 187 177 

8 185 197 199 208 212 207 211 217 212 209 214 209 194 190 183 

7 186 198 194 200 207 201 204 212 209 205 209 202 189 188 180 

6 188 202 194 200 207 201 202 211 207 203 207 200 189 189 180 

5 189 206 198 203 211 205 205 214 209 206 209 202 191 189 179 

4 184 204 198 205 214 209 208 215 210 207 210 201 191 187 176 

3 179 195 190 201 210 206 206 214 209 206 208 199 189 183 172 

2 162 177 172 183 193 193 193 202 198 194 196 187 176 170 160 

1 141 151 150 162 169 171 172 180 178 174 174 165 160 155 141 

 
Figure 2. Light map of all greenhouse, in units of lux. Colors and numbers both represent light intensity, 

from green to red, showing light symmetry about the center. North is pointing up, making orientation the 

same as Figure 1. Position units are arbitrary locations in the greenhouse, with channel 1 at the right, and 
channel 6 at the left. The important result is the similarity and comparibility of the exterior channels, and 

advantage of the center, as described in Biomass Results. 

 
 

 
Figure 3. Picture of channels and general experimental setup. The two channels on the left are the 

hydroponic pH 5.8 treatment. The two channels in the middle are the hydroponic pH 7.0 treatment. The 
two channels on the right are the aquaponic treatment. The insulated PVC pipe coming in from the top 

right is the inflow and the outflow from the fish tank in a greenhouse to the right, off screen. 
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Table 1. Fresh weight biomass results (grams/plant) from experiment conducted to measure and test any 

potential differences between channels, in order to justify the decision not to reverse treatment positions; 
the major factor of concern was light distribution throughout the greenhouse (de Villiers and Anderson, 

2016). 
      Channel           

Trial 1 2 3 4 5 6   Average 

1 3.64 3.48 3.98 3.88 3.97 3.61   3.76 

2 2.82 2.80 3.36 2.88 3.12 3.20   3.03 

3 3.88 3.69 4.00 3.77 3.64 3.47   3.74 

4 3.24 3.08 3.63 3.49 2.87 3.53   3.31 

5 2.19 2.20 2.14 2.19 1.94 2.15   2.14 

6 2.53 2.75 2.74 2.79 2.53 2.54   2.65 

                  

Average 3.05 3.00 3.31 3.17 3.01 3.08   3.10 

 

Seeding: 

The seeding protocol involved hand-seeding spinach (Spinacia oleracea, cv. Carmel) 

seeds into each cell of each flat. During trials 1 and 2, seeds were double seeded in each cell, but 

due to somewhat low germination in the flats, trials 3 to 6 were triple seeded. After germination, 

stands were thinned to only one plant per cell prior to floating the plants in the channels (see 

Stand correction below for more details). 

We have found the notorious and historical difficulty in geminating spinach largely 

disappears if seeding is into pre-moistened medium and the moisture content of the medium is 

controlled. Potting media used was LM-1 germination mix, by Lambert. Pre-moistened medium 

was created by adding 1 L of reverse osmosis water for every 1 kg of LM-1 potting media, to 

achieve a moisture content of roughly 3 parts water to one part dry matter (the potting media is 

roughly half water as received). Potting media was screened through a 6 mm sieve into multi-cell 

Styrofoam flats. Depth of seeding was controlled by a wooden dibbler, that compacted the 

medium to a set depth. Germination success is improved by discarding any seeds that looked 

unhealthy, e.g. misshapen, discolored, or oddly sized, which we practiced. The goal of seed 

selection was to create the most uniform plant stand possible.  

After seeding, the trays were sealed in 15 liter white plastic bags, to control humidity to 

near saturation, and germinated in a growth chamber shielded from light, for eighty hours. The 

germination chambers were maintained at 24° C. We found that eighty hours was the best time to 

float the flats, as that was the time when most plants had recently emerged but minimal growth 

or stretching had occurred.  

After floating, the plants were grown in the channels for an additional 14 days under full 

lighting. The seeding, floating, and growing procedures were the same for all trials and 

treatments except the increased seeding as previously described. Trials overlapped with each 

other in their channels, since flats were added every 3 days as a new trial, so it took five 

successive trial placements (trials) before the first trial was harvested; thus trial 1 and 6 were 

completely independent in all ways, including their water environments.  

 

Stand Correction: 

An attempt was made to control for the variation in germination among flats. The 

procedure entailed adjusting plant stands to a set number of healthy, equivalent, plants in the 
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interior of each of the flats for each particular trial. The number was determined by the worst 

germination of the six flats in a given trial after having removed any deformed or very late 

emerging plants. From the remaining plants, additional healthy plants were removed so that each 

trial had the same number of plants per flat. Once the number of plants to remove from each flat 

was determined, these plants were randomly selected and removed. 

Even though trials were stand corrected to be the same within trial, there were small 

differences between trials since each trial had a different number of healthy plants at the time of 

floating. The number of plants varied from 44 to 51 out of the 56 potential guarded cells that 

were to be harvested for data analysis.  
 

The Hydroponic Systems: 

The hydroponic channels were closed-loop recirculating water systems, with each 

channel independent and unconnected to others. Circulating pumps (24 L/min) mixed the water 

in the channels at a rate equal to a hydraulic retention time (HRT) of 8 minutes. This flow rate 

maintained good mixing in the channels and roots appeared to be kept under gentle movement, 

which we did to avoid possible problems of root stress previously mentioned by Shete et al., 

2013. A crucial part of the hydroponic channels was the nutrient solution reservoir (made with 

modifications to a cooler chest). Each channel’s flow went through its reservoir, in which 

temperature was computer-controlled by activation of cooling coils in which water cooled to 7° 

C was passed when necessary. Two hundred liters of nutrient solution were added to each 

channel to begin the experiment. Nutrient solution was added on an as-needed basis to replace 

water loss by evaporation or transpiration. For each given trial, one flat was floated in each 

channel at the same time to commence that particular trial. The flats were 6.3 cm thick and 

comprised 132 cells in an 11 by 12 matrix. Cell density in the flats was 1250 cells/m
2
. Only 

plants from the central 56, doubly-guarded cells, were harvested. 
 

The Aquaponic System: 

The aquaponic system contained koi (Cyprinus carpio) separately housed in an adjacent 

section of the climate-controlled greenhouse range, as shown in Figure 1. Koi were chosen as the 

fish because the common carp is a hardy fish and can tolerate a wide range of water temperature, 

and koi retain that resilience. The fish tank was 1000 L and had been in continuous operation for 

two years. The system continually recirculated water with minimal water discharge and used a 

bead filter to capture and mineralize solids. The bead filter was back-flushed once per week to 

remove retained solids, which allowed significant time for solids mineralization. The fish system 

was plumbed to flow water from the bead filter to the two aquaponics channels before returning 

the water to the fish tank. The flow from the aquaponics channels was calibrated to be 5 L/min 

per channel. It was controlled by a sump pump in a common reservoir, similar to that in the 

hydroponic systems, connected to both aquaponic channels. The resulting aquaponic HRT value 

was 20 minutes per channel, over twice the hydroponic HRT, because higher flow rates seemed 

to disturb the fish. However, the aquaponic HRT was only higher in the reservoir, because the 

internal HRT remained uniform throughout all treatments due to each channel volume being the 

same.  

The pH of the system was regulated daily by adding 1M K2CO3. Due to fish nitrification 

and fish respiration, the pH was stable, so there was no need for pH lowering chemicals such as 

acid. Fish were fed a synthetic manufactured Koi feed (Blackwater Creek’s Max Growth Koi 

Food “Premium Koi and Goldfish Food”). The fish were fed 90 g on weekdays, and 60 g on 

weekends, which was approximately 1% body weight per day on weekdays; the koi were 
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approximately 200 - 400 g in size. See Table 2 for the elemental analysis of the fish feed used as 

determined by the Cornell Nutrient Analysis Lab (CNAL). 

 
Table 2. Blackwater creek farm Max Growth formula elemental contents via acid digestion. 

Element Content Units 

Total C 40 % 

Total N 6.3 % 

Total H 6.3 % 

Ca 4.1 % 

P 2.2 % 

K 1.2 % 

S 5623 mg/kg 

Na 4137 mg/kg 

Mg 3545 mg/kg 

Fe 789 mg/kg 

Al 283 mg/kg 

Sr 269 mg/kg 

Zn 226 mg/kg 

Mn 88 mg/kg 

B 28 mg/kg 

Cu 16 mg/kg 

Ba 15 mg/kg 

As 4.2 mg/kg 

Cr 1.7 mg/kg 

V 1.2 mg/kg 

Pb 1.1 mg/kg 

Ni 1.0 mg/kg 

Cd 0.7 mg/kg 

Mo 0.5 mg/kg 

Co 0.5 mg/kg 

Ti 0.0 mg/kg 

 

The aquaponic treatment channels were not independent water systems from one another. 

Water from both systems came from and was returned to the fish tank, and the systems shared a 

reservoir which was cooled in the same way as the hydroponic channels.  

The fish tank was separated from the spinach channels by a glass greenhouse partition 

wall, which had the advantage of allowing the fish tank to be kept at a colder air temperature. 

Since spinach root zone temperatures needed to be kept at 18° C, we maintained the fish water 

near 20° C and the rest of the chilling was accomplished by the chiller described above.  
 

Measurements: 

Alkalinity was measured by titrating to an endpoint of pH 4.5 using 0.01 M (0.02 N) 

sulfuric acid. The resulting equilibrium alkalinities were approximately 20 mg/L CaCO3 for the 

H5 treatments and 40 mg/L CaCO3 for both the H7 treatment and the aquaponic treatment. The 

alkalinity measurement had an accuracy of +/-4 mg/L as CaCO3. 

Electroconductivity (EC) was measured between 1200 to 1500 µS/cm. EC was not 

controlled in the treatments, but due to the differences among treatments, slightly different EC 

ranges resulted. In the aquaponic treatment, the average EC was 1400 - 1500 µS/cm. In the H5 
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and H7 treatments, the average EC was 1200 - 1300 µS/cm and 1300 - 1400 µS/cm, respectively. 

Typically, there was very low variability in the nutrient solution EC in the H5 treatment. The 

additional nutrient ions in the A7 treatment resulted in the EC stabilizing at the highest values. 

The pH control partially resulted in the H7 treatment having a higher EC values than the H5 

treatment. 
 

Nutrients: 

The hydroponic treatments received a custom-made inorganic hydroponic fertilizer. To 

set up the hydroponic experiment, each of the four hydroponic channels was filled with 200 L of 

the modified Sonneveld and Straver lettuce solution (Sonneveld and Straver, 1994). To create 

200 L, one liter each of two concentrates known as Stock A and Stock B, were mixed. The 

nutrients contained in each Stock solution are shown in Table 3. 

 
Table 3: Nutrient contents of Stock solutions. 

Stock A B 

Nutrients Calcium nitrate (Ca(NO3)    3H2O 

Chelated iron (Sprint 330, Fe-DTPA) 

Ammonium nitrate (NH4NO3) 

Potassium nitrate (KNO3) (33% of N) 

Potassium nitrate (KNO3) (67% of N) 

Epsom salts (MgSO4·7H2O) 

Manganese sulfate (MnSO   1H2O) 

Boric acid (H3BO3) 

Ammonium molybdate 

(NH4)6Mo7O24·4H2O) 

Zinc sulfate (ZnSO4·7H2O) 

Copper sulfate (CuSO4·5H2O) 

Potassium sulfate (K2SO4) 

 

The tubs were first filled with water, then Stock A and B concentrates were added on a 

1:1 ratio sequentially while vigorously stirring between additions. Additional modified 

Sonneveld and Straver solutions were created in 200 L quantities in barrels, using RO water and 

then used for replenishment of lost tub water over the course of each trial. 

To set up the aquaponic experiment, each of the two aquaponic channels was filled with 

200 L of fish water, during a time when the fish tank was routinely replenished with tap water (to 

replace water lost during solids filter cleaning). The aquaponic channels required the addition of 

iron, since iron is a required element for plants so we added chelated iron in the form of Fe-

DTPA (Sprint-330) to the aquaponic system. The chelated iron is in a form which is not taken up 

by fish but is available to the spinach.  

 Upon completion of the experiment, tissue analysis data were run by the Cornell Nutrient 

Analysis Laboratory using hot plate acid digestion plus ICP-AES metal analysis and combustion 

ash analysis for carbon and nitrogen. Nutrient solution analysis was done immediately before and 

after the entire experiment. One sample was taken immediately prior to the addition of the first 

plants , and the other sample was taken after trial 6 was harvested. The nutrient solution analysis 

was also run by the Cornell Nutrient Analysis Laboratory. Elemental analysis results are shown 

in Tables 5 and 6.  
 

Harvest: 

Plants were harvested after 14 days of grow-out in the channels, at a typical marketable 

size for baby-leaf spinach. During harvest, flats of plants were removed from the channels one at 

a time and taken out of the greenhouse. Plants were harvested at night because they are growing 
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very fast in the day, so night harvesting minimized any advantage a particular flat could have 

received by its order of harvest. If harvested during the day, flats harvested later would have a 

relative yield advantage.  

Each flat had 132 cells for possible plants, but the two outer perimeter rows of plants 

were perimeter guarding plants. After removing the two perimeter rows, each flat had the plants 

from interior/guarded cells for analysis. During harvest, plants were snipped where the stem 

emerges from the medium and the number of plants per row were counted. All plants within the 

same row were grouped, and stems and leaves were separated in each row. Finally, total stems 

and leaves per row were weighed with an accuracy of 0.01 grams. This data was used to 

calculate both total flat mass and average mass per plant. 

After separation, stems and leaves were placed in labeled brown paper bags and dried in 

ovens maintained at 70° C for three days. We consider dry weight to be a pure representation of 

biomass yield, since water concentration can make interpretation difficult. We also present fresh 

weight data as being equally important because fresh weight is marketable weight. 
 

Leaf Surface Area  

In order to determine and calculate surface area, leaves were cut after weighing and 

pressed flat for measurement with a clear scratch-resistant acrylic polycarbonate plexiglass. Each 

row would all fit underneath a 25 cm x 50 cm piece of the plexiglass. Images of the pressed 

leaves were then used to determine total leaf surface area. 

Surface area was measured using the computer software called ImageJ. ImageJ is an 

open-source image processing program, with the intent of being used for scientific 

multidimensional images. To use the software, a picture was loaded, and the brightness and hue 

threshold of the image was changed to the point where only green color was recognized. Surface 

areas were extracted using a reference length within the picture. 

 

Statistical Analysis 

Three treatment conditions (H5, H7, and A7) were evaluated based primarily upon fresh 

and dry matter responses. We collected data for six trials from January 13 to February 19, 2016, 

corresponding to a total day length increase of 84 minutes (9 hr 19 min to 10 hr 43 min, or a 15% 

increase in natural day length). We first evaluated if there was a trial effect on biomass response 

across all trials, which may have been impacted by changing day length. We also evaluated trial 

effect on individual plant response since our stand correction procedure gave us the same number 

of plants for each flat but resulted in a different number of plants per flat by trial and the natural 

daylenth increased for each trial. After evaluating for a trial effect, data was combined among 

trials to provide increased degrees of freedom for statistical analysis of treatment effects. After 

combining data by treatment, treatments were compared using paired t-tests.  

 

Results and Discussion 

 

Trial Effect 

 We found no statistical difference in biomass responses for wet and dry weights within 

each treatment between trials (p=0.29). Inspection of the data for plant size (Table 4a) shows a 

trend of slightly decreasing individual plant size as trials progress. This may have been due to the 

increasing natural light as part of a fixed DLI target, but it may have been also related to the 

number of plants per flat increasing slightly over the trials conducted. While the DLI was 

http://imagej.net/Open_source
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controlled to a constant value of 17 mol/m
2
/day, successive spinach trials received an increasing 

percentage of natural light for each successive trial (see The Greenhouse section). Obviously, a 

much larger number of plants in an individual flat would result in smaller individual plants. 

However, probably the most important response variable for commercial interest is the total fresh 

weight (biomass) produced from an individual flat. Table 4c shows this variable. Here we also 

saw no significant effect (p=0.25) by trial when treatments were grouped. Note that this last 

analysis meant that our sample number was only 6, compared to a sample number of 42, when 

we used the flat row as an individual data point, which then meant we obtained 42 as our sample 

number when combining across treatments because each flat had 7 rows and there were 6 flats 

per trial. The remainder of the analysis results are from grouping trial response by treatment (12 

responses for each treatment) and then comparing treatment effect. 

 

Biomass Results 

 Our biomass results, which were normally distributed, as shown in Tables 4 and 5, 

showed no statistical differences between the A7 and H5 treatments, (A7 vs. H5: p=0.59 fresh 

weight, p=0.42 dry weight). Similarly, leaf surface area results were not different between 

treatments.  

 The H7 treatment obtained higher yields than the other two treatments for fresh weight 

(H7 vs. A7: p=0.03 fresh weight, p=0.42 dry weight, H7 vs. H5: p=0.01 fresh weight, p=0.84 dry 

weight). However, research reported by Anderson et al. (submitted) for butterleaf lettuce showed 

that a H7 treatment reduced growth by 24% compared to the H5 treatment. If we reduce the 

yields of H7 by 7% to account for the possible benefit of additional light in the center two 

channels, the response of the H7 is statistically not different from the other two treatments. The 

more important result is the similar yield of A7 vs. H5, implying that fish waste may provide 

everything spinach needs to grow other than iron. This result is especially significant given the 

exterior position symmetry of these two treatments, and the symmetry of yield in the channel 

equivalency experiment (de Villiers and Anderson, 2016).  
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Table 4. Average plant fresh weight (a) and dry weight (b) data for all channels and trials, in grams per 

plant. Standard deviations given for average values in parentheses. Total flat biomass (c) is shown for 
fresh weight data, in grams. Channel 1 and 2 is aquaponics (A7), Channel 3 and 4 is hydroponics pH 7 

(H7), Channel 5 and 6 is hydroponics pH 5.8 (H5). 

 (a)     Channel           

Trial 1 2 3 4 5 6   Average 

1 3.01  3.09 3.21 3.18 3.16 3.11 

 

3.13 (0.07) 

2 2.85  2.99 3.08 2.90 3.00 2.94 

 

2.96 (0.08) 

3 2.76  3.23 2.92 2.99 2.62 2.87 

 

2.90 (0.21) 

4 2.59  2.62 2.93 3.03 2.87 2.82 

 

2.81 (0.17) 

5 2.96  2.86 3.10 3.07 2.96 3.02 

 

2.99 (0.09) 

6 2.72 2.73 2.71 2.82 2.68 2.84 

 

2.75 (0.06) 

  
        Average 2.82 

(0.16) 

2.92 

(0.23) 

2.99 

(0.18) 

3.00 

(0.13) 

2.88 

(0.20) 

2.93 

(0.11) 

   

 (b)     Channel           

Trial 1 2 3 4 5 6   Average 

1 0.152 0.157 0.161 0.163 0.163 0.161 

 

0.159 (0.004) 

2 0.144 0.160 0.156 0.154 0.160 0.152 

 

0.154 (0.006) 

3 0.162 0.170 0.156 0.160 0.147 0.154 

 

0.158 (0.008) 

4 0.145 0.154 0.158 0.161 0.170 0.149 

 

0.156 (0.009) 

5 0.159 0.156 0.163 0.154 0.165 0.157 

 

0.159 (0.004) 

6 0.155 0.150 0.147 0.154 0.157 0.157 

 

0.153 (0.004) 

  
        Average 0.153 

(0.007) 

0.158 

(0.007) 

0.157 

(0.006) 

0.158 

(0.004) 

0.160 

(0.008) 

0.155 

(0.004) 

   

 (c)   Channel       
Trial 1 2 3 4 5 6   Average 

1 108 111 110 118 109 115   111 (3.8) 
2 124 120 120 130 128 120   123 (4.4) 
3 121 117 116 120 115 100   114 (7.5) 
4 105 103 125 114 120 106   112 (7.6) 
5 126 141 140 143 130 144   137 (6.2) 
6 130 142 134 142 136 140   137 (3.0) 

  
      

  
 Average 119 

(11.9) 

122 

(13.0) 

124 

(11.2) 

127 

(11.9) 

123 

(10.3) 

120 

(17.0) 
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Table 5. Treatment-averaged fresh weight leaves + stems biomass data for each treatment for all trials. 

This table also shows the number of plants to which each trial was stand corrected (potential maximum of 
56), determined by the lowest germination number.  

  Block FW, g/plant Number of plants per 

flat (post stand 

 

Trial A7  H7  H5 correction) Average 

1 3.05 3.19 3.14 44 3.14 

2 2.92 2.99 2.97 47 2.95 

3 2.99 2.95 2.74 46 2.92 

4 2.60 2.98 2.84 44 2.86 

5 2.91 3.08 2.99 51 3.01 

6 2.72 2.76 2.76 48 2.77 

      Average 2.87 2.99 2.91 47  

 

Elemental Composition Results 

 Generally, many plant tissue elements were lower in the aquaponic trials, but many were 

similar. Specifically, notable elements that were significantly lower (alpha value 0.05) in 

aquaponic tissue were: calcium (Ca), cobalt (Co), manganese (Mn), molybdenum (Mo), and lead 

(Pb), potassium (K), sulfur (S), and strontium (Sr). Surprisingly, zinc (Zn) was significantly 

higher in aquaponic tissue. The standard error is the standard deviation divided by the square 

root of n (n=6 in this case).  

Tissue elements in Table 6 are summed. Not included in the elemental analysis are 

oxygen and hydrogen which have been reported in plant tissue to be 45% for oxygen and 6% for 

hydrogen (Curtis, 2008). Adding this 51% or 510,000 mg/kg to our other elements results in a 

cumulative tissue elemental mass of 97 to 98% of the possible 1 million mg/kg; the small 

difference between our summation and 1 million could be attributed to variations in carbohydrate 

content for our particular cultivar compared to the reference data or laboratory errors in 

measurements of the macro elements, but are certainly within reasonable analytical accuracy. 

For nutrient solution comparisons between treatments, A7 nutrient solutions (Table 7) 

that were significantly lower (before and after) were: sodium (Na), Ca, Mn, Mo, and Pb. 

Elements that were significantly higher in the aquaponic nutrient solution (both before and after) 

were: iron (Fe), magnesium (Mg), Co, Na, and Zn. Two of these, Co, Na, were significantly 

lower in the tissue analysis comparison even though they were elevated above H5 and H7 

concentrations in the nutrient solutions. Additionally, Pb was higher in aquaponic nutrient 

solution before the experiment, but lower at the end of the experiment, which implies that Pb was 

potentially taken up by the fish system (fish or biological filter).  

The nutrient solution composition at the start and end of the experiment gives insight 

regarding spinach uptake and requirement of elements. Percent differences and concentration 

differences were calculated to show relative increase or decrease of elements with time (see 

Table 8). If there was a large increase in the nutrient solution, plants did not utilize the available 

elements, and if there was a decrease, they potentially could have used more if available. Since 

many of the elements increased but not largely, using the Sonneveld lettuce formula seems to 

work well for spinach. The source of Pb in the channels was due to contamination in the water 

due to leaching from garden hose that was used as parts of the water recirculating systems; the 
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higher initial values in A7 were because of a longer exposure time before starting the actual 

experiment. 

We performed a mass balance to double check the methods used to determine elemental 

increase or decrease with time. The tissue analysis data was used to determine the amount of a 

given element extracted by plants from the water. Forty liters of nutrient solution was added to 

each of the hydroponic channels (channels 3-6) over the duration of the experiment. The total 

amount of a given element added to the channels was then calculated using the Sonneveld and 

Straver formula. Using Ca as an example, the amount extracted was 907 mg/channel for the H5 

treatment, which was calculated using the value 6250 mg/kg (Table 6) and using the number of 

plants per flat and average weight of H5 plants. The amount added was 3600 mg/channel, using 

the Sonneveld target of 90 mg/L times the 40 L addition. The net excess of Ca was calculated to 

be 14.1 mg/L, using 200 L as the volume of the channel. The measured net addition of calcium 

was 13.2 mg/L, confirming the accuracy of the calculations. 
 

 

Table 6. Tissue analysis results comparing the three treatments averaged over all six trials. Variability 

between trials of each treatment was not significant (p=0.29), which allowed averaging over all trials. 
Superscript letters identify that significant differences occur between values with different superscript 

letters for a given element. 

Element [mg/kg] A7 H5 H7 Standard Error 

Macronutrients 

    C 333264 331684 335368 755 

N 57213 57312 57545 69.5 

K 41574
a
 41623

a
 42903

b
 308 

Mg 12180 11772 12208 100 

P 10063 9659 10957 271 

Ca 5389
a
 6250

b
 6380

c
 220 

S 3485
a
 3782

b
 3934

c
 93.3 

Micronutrients 

    Na 868
b
 747

a
 892

c
 31.7 

Fe 89.0 91.1 98.1 1.94 

Zn 80.1
c
 67.5

b
 59.8

a
 4.17 

Sr 28.6
a
 29.4

b
 30.8

c
 0.47 

Al 26.0
b
 24.7

a
 28.0

c
 0.68 

Mn 22.0
a
 39.4

b
 42.6

b
 4.54 

Cu 5.39 4.58 3.67 0.35 

Ba 1.89 2.00 1.77 0.05 

Mo 1.46
a
 2.39

b
 2.50

c
 0.23 

Cr 1.21 1.20 1.25 0.011 

Ti 1.11
b
 1.06

a
 1.16

c
 0.020 

Pb 1.03
a
 1.32

b
 1.35

b
 0.074 

As 0.87 0.87 0.85 0.004 

Cd 0.84 0.86 0.87 0.007 

Co 0.70
a
 0.74

b
 0.73

b
 0.007 

V 0.68 0.73 0.73 0.010 

Total 464330 463139 470504 1614 
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Table 7. Nutrient solution analysis results comparing the three treatments averaged over the channel 

duplicates. Data is from samples taken at the start of Trial 1after pH stabilization and at the conclusion of 
Trial 6; expressed in mg/L. Superscript letters identify that significant differences occur between values 

with different superscript letters, which applies both to treatment differences and start/end differences. 

 

Start End 

 Element 

[mg/L] A7 H5 H7 A7 H5 H7 

Standard 

Error 

Macronutrients 

       K  214 216 219 255 205 246 8.12 

Ca  87.6
a
 93.8

b
 94.0

b
 94.5

b
 107.0

c
 111.2

c
 3.70 

Mg  22.6
c
 12.8

a
 13.1

a
 23.7

c
 15.9

b
 15.7

b
 1.92 

S  21.0 19.3 19.6 23.7 23.4 23.5 0.835 

Na  19.34
c
 4.73

a
 5.59

a
 17.74

c
 6.38

b
 7.00

b
 2.69 

P  12.4 30.5 31.1 16.9 32.2 34.0 3.73 

N: NO3-N 135.1 149.7 154.7 165.7 141.1 142.7 5.12 

TAN 1.1 8.9 9.5 1.1 9.0 8.6 1.1 

Micronutrients 

       Fe  2.891
c
 0.868

a
 0.870

a
 1.882

b
 1.011

a
 1.006

a
 0.3328 

Sr  0.552 0.586 0.590 0.632 0.628 0.663 0.0163 

Zn  0.517
b
 0.182

a
 0.184

a
 0.627

c
 0.209

a
 0.215

a
 0.0805 

Al  0.100 0.090 0.090 0.089 0.091 0.090 0.0017 

Cu  0.045 0.050 0.050 0.039 0.052 0.050 0.0020 

Mn  0.033
a
 0.162

c
 0.157

c
 0.020

a
 0.070

a
 0.047

a
 0.0255 

Ba  0.018 0.016 0.011 0.018 0.016 0.008 0.0016 

As  0.010 0.006 0.006 0.009 0.006 0.007 0.0008 

Pb  0.010
c
 0.000

a
 0.000

a
 0.002

a
 0.005

b
 0.005

b
 0.0015 

Cd  0.004 0.003 0.003 0.004 0.003 0.003 0.0001 

Co  0.003
b
 0.001

a
 0.001

a
 0.003

b
 0.001

a
 0.001

a
 0.0004 

V  0.0029 0.0025 0.0025 0.0025 0.0024 0.0024 0.0001 

Mo  0.002 0.025 0.026 0.002 0.023 0.027 0.0050 
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Table 8. Relative change of nutrient solution elements in A7 and H5 treatments. Percent change shows the 

magnitude of the element increase or decrease (depending on whether the percent is greater or less than 
100%). Calculations were performed using the nutrient solution element data from start of experiment to 

end.  

 
Percent Change (start to end) Net Concentration Change (mg/L) 

Element    A7      H5   A7      H5 

Macroelements 

    K  119.1 94.8 40.926 -11.133 

Ca  107.8 114.0 6.890 13.209 

Mg  104.9 123.8 1.119 3.055 

S  112.7 121.2 2.685 4.095 

Na  91.7 134.9 -1.598 1.652 

P  136.6 105.5 4.531 1.678 

Microelements 

    Fe  65.1 116.5 -1.009 0.143 

Sr  114.4 107.1 0.080 0.042 

Zn  121.3 114.8 0.110 0.027 

Cu  87.8 104.5 -0.005 0.002 

Mn  60.9 43.4 -0.013 -0.092 

Ba  99.8 99.2 0.000 0.000 

Cd  103.7 108.4 0.000 0.000 

Al  88.7 101.2 -0.011 0.001 

Co  99.6 156.0 0.000 0.000 

Cr  72.1 79.3 0.000 0.000 

As  89.3 112.5 -0.001 0.001 

B  77.4 105.6 -0.005 0.008 

Ni  96.4 291.6 0.000 0.002 

Mo  70.6 92.3 -0.001 -0.002 

Pb  22.5 3496.3 -0.008 0.005 

V  89.1 99.3 0.000 0.000 

 

Applicability 

 This study brought to light the idea that non-optimal nutrient conditions for spinach 

growth (fish waste water) can still produce the quality product that the inorganic hydroponic 

nutrient combinations produce. Although it was concluded that aquaponic spinach grew to a non-

different yield than hydroponic spinach, these results may not be repeatable with different crops 

or greenhouse environments. Every crop responds differently to different nutrient components 

and ratios, but the hydroponic solution formulated specifically for lettuce is typically used for 

many leafy greens. An important question we must ask is what would have happened if a 

formulation for a different crop were used, or if there existed a nutrient formulation specifically 

for spinach. 

 This study does not go into the sustainability of one treatment over the other, nor does it 

consider the economics of either. Economically, aquaponics has potential for reducing the initial 

capital investment, since part of the RAS filtration and waste removal components can be 
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eliminated or reduced in size. Aquaponic management appears to be simpler in complexity than 

what is required in a hydroponic system, since the aquaponic system only requires 

supplementation of iron, with the rest of the nutrients being adequately supplied from the fish 

operation. 
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