Spotted Lanternfly

Spotted Lanternfly, also known as Chinese blistering cicada, is a plant hopper native to China and Southeastern Asia. Discovered in Pennsylvania in 2014, the spotted lanternfly presents a threat to both woody and non-woody hosts that are present throughout the United States. While their list of hosts is large, the greatest agricultural concern falls on grapes, hops, apples, blueberries, and stone fruits. Effort is underway to try to eradicate this insect in Pennsylvania. However, in 2018, it was found in Delaware, Maryland, New Jersey, New York, and Virginia.

Concern
Due to the fact that this insect has already been found in the United States, there is great concern about its effect on vineyard, orchard, and forest industries. Its presence could lead to crop loss and increased management costs. Spotted lanternfly eggs are laid on any hard, smooth surface, including plants, trunks, stones, and bricks. Because of this, egg masses may be spread unknowingly. Spotted lanternfly nymphs are able to feed on many hosts, while adults prefer Tree of Heaven (Ailanthus altissima) and grapevine (Vitis vinifera). Furthermore, abundant excretion of sticky honeydew by swarms feeding on shade trees and the associated growth of sooty mold can severely restrict people’s enjoyment of parks and their own backyards.

Description
Spotted lanternfly adults are very colorful when their wings are displayed during hopping. They have red hind wings with black spots, have a black head, and a yellow abdomen with black bands. Their grayish forewings have black spots with a distinctive black brick-like pattern on the tips. There is one generation per year, with adults developing in July, laying eggs in September, and overwintering as eggs. Each egg mass contains 30-50 eggs that are covered in a waxy brown substance. The first nymphs to develop are wingless, black, and have white spots, while the final nymph stage turns red before...
becoming adults. Adult males are slightly smaller than the inch-long females, but are almost identical in appearance. Adults and nymphs commonly gather in large numbers on host plants to feed, and are easiest to see at dusk or at night.

Damage

This plant hopper is able to feed using specialized mouth parts that can pierce the plant and suck up sap. Both nymphs and adults feed this way, on leaves, stems, and trunks. Piercing the plant’s tissues and feeding on the sap weakens the plant, causing it to ooze and weep, which may result in a fermenting odor and a gray/black trail on the bark. Spotted lanternflies also excrete honeydew while feeding, which overtime may encourage the growth of sooty mold if infestation levels are high. The presence of the fermenting odor and honeydew may also attract other insects.

Found a Spotted Lanternfly in New York?

1. Take pictures of the insect, egg masses, or infestation you see and, if possible, include something for size, such as a coin or ruler.
2. If possible, collect the insect. Place in a bag and freeze, or in a jar with rubbing alcohol or hand sanitizer.
3. Note the location (street address and zip code, intersecting roads, landmarks, or GPS coordinates).
4. Email pictures and location spottedlanternfly@dec.ny.gov

For More Information

New York State Department of Environmental Conservation: Spotted Lanternfly dec.ny.gov/animals/113303.html

PennState Extension: Spotted Lanternfly extension.psu.edu/spotted-lanternfly

Prodced by the New York State Integrated Pest Management Program, which is funded through Cornell University, Cornell Cooperative Extension, the NYS Department of Agriculture and Markets, the NYS Department of Environmental Conservation, and USDA-NIFA. Special funding for this project was provided by USDA Farm Bill 10201. Funding administered by the NYS Department of Agriculture & Markets and USDA-APHIS. Design by Karen English, New York State IPM Program. Cornell Cooperative Extension provides equal program and employment opportunities. © 2016 Cornell University and the New York State IPM Program. Posted August 2018 at the NYSIPM Publications collection: hdl.handle.net/1813/43943