<u>Title</u>: Increasing use of biocontrol in NYS greenhouses with a producer-based biocontrol mentoring network

<u>Project Leader(s)</u>: Elizabeth M. Lamb, NYS IPM Karen Dean Hall, NYS Flower Industries Brian Eshenaur, NYS IPM Gary Couch, NYS IPM

Abstract:

There is a low adoption of biocontrol for pest management in NYS greenhouses although it has been used successfully elsewhere for years. Because lack of experience is a deterrent for adoption, a project to encourage grower-to-grower training and discussion on biocontrol was initiated, funded by NYFVI. A group of NY growers toured Canadian greenhouses using biocontrol and participated in outreach activities after their return to share what they had learned. Because the number of tour participants was low, and additional meetings were needed to encourage the exchange of information, a series of 6 on-farm grower discussions were held around the state. Sites were chosen based on grower experience or interest in biocontrol, and the grower led the discussion, explaining how they used biocontrol in their operations. Other resource people, from research, industry and extension, contributed information but the discussion followed the questions from the audience. In most cases, the group also toured the greenhouse to see biocontrol in action. Evaluations after the event showed that most growers intended to try biocontrol. Response was very positive on the interaction and the format as well as the information presented.

Background and justification:

While biocontrol methods have been used successfully for insect control as a part of Integrated Pest Management (IPM) programs for many years, there is a low adoption of these practices by NYS greenhouse producers. In a 2000 survey of greenhouse growers (Lamboy, IPM Pub. 417), only 13% (65 of 507) reported that they used biological control. Information from growers suggests that the low adoption of biological control as a method of IPM is based on lack of experience with the procedures or unsuccessful previous attempts. Because biocontrol requires a lot of new information and adaptation to each situation, it is a good candidate for farmer-to-farmer mentoring with a grower who has successfully implemented it.

There are several examples of producer to producer interaction being successful in transferring new technologies and procedures, including the Tactical Agriculture (TAg) teams used by NYS IPM in field crops. Small groups of growers discuss pest management problems and compare methodologies that have worked to give everyone the benefits of the group's knowledge. The Ontario greenhouse growers are another example of producer-to producer interaction intended to result in reduced pest losses for all the participants and is one of the reasons that they have successfully adopted biological control.

This project was funded by the New York Farm Viability Institute.

Objectives:

1. Identify and work with a base group of producers to increase their knowledge of biocontrol methods for greenhouse production

2. Encourage the formation of a producer to producer teaching/mentoring web for increasing adoption of biocontrol as a pest management method in NYS greenhouses

Procedures:

The initial step in the project was a tour to visit floriculture greenhouses in Ontario, Canada that were successfully using biological insect control in order to give a group of growers the experience of seeing successful biocontrol and talking directly to growers using it. Ontario was chosen as the site of the tour because there is a concentration of growers using biological control in an area that can be toured in a relatively short period, without extensive or expensive travel to get there. A tour was chosen as the means of transferring information as producers can see the procedures 'in action' and discuss them with producers who have similar production, quality, environmental, etc. constraints.

On the suggestion of the tour participants who saw local workshops as a way to encourage the discussion of biocontrol in greenhouses, particularly retail operations, we planned a series of 6 workshops around NY. The locations were Williamsville, Warwick, Cicero, Keene Valley, Peconic, and Rensselaer. In most cases, local CCE Educators helped us identify the locations and also helped with registration and local arrangements. There was no set agenda for the program but a variety of resources were provided. At each program, several people were involved in the discussion in addition to the local grower. John Sanderson, Department of Entomology/Cornell, Carol Glenister, IPM Labs, Mark Yadon, Mischler's Florist, Laurie Mickaliger, Land Stewardship/Long Island, Jim Willmot and Rick Yates, Griffin, and local CCE Educators each participated in some of the programs. The intent was to encourage questions from the audience based on the grower's descriptions of the biocontrol procedures they had tried and how successful they had been. In most cases the discussion was followed by a tour of the facility to see the biocontrol in action.

Results and discussion:

The tour was successful in that the participants were enthusiastic about the information and the majority intended to apply it in their own greenhouses. Further evaluations indicate that about a third started or increased their use of biocontrol. The limitation in the tour was the low number of participants. While each did participate in one or more outreach activities, there was not a large enough base, nor were they confident enough in their knowledge, to serve as the foundation for a mentoring network. Therefore, we decided to put on the series of on-farm tour/discussion workshops.

Approximately 135 people attended the workshops. Most were growers but several Master Gardeners also attended. The growers ranged from those experienced with biocontrol to others that were just considering it and from owners of large wholesale greenhouses to small retail operations. Based on the 96 responses to the evaluation, 36% were already using biocontrol, most commonly for aphids, whitefly and thrips. Eighty-two percent were considering using it after the program. Future evaluation will give us a more complete view of how many try biocontrol in the next season. Thrips, fungus gnats and aphids were highest on that list, probably in part because of the experienced growers' explanations of their successful use of biocontrol to manage these pests. In fact, the 'experts' would not have suggested thrips biocontrol as a good place to start, so the growers were definitely providing a mentoring effect.

There was a wide range of additional information requested. On-site visits and hands-on assistance were most frequently requested. Other 'hot' topics are insect id training, compatibility

with pesticides, and application methodology. Workshops were considered the best way to extend information. On-farm tours and printed materials were also requested and we are starting to see requests for web-based information. In the open ended comments section, several people noted that they liked the interaction and atmosphere of the discussion format.

Although it is difficult to create mentoring groups from a single event, 84% of those answering the questionnaire said they would be willing to help us share the information with other growers, which suggests there is a basis for cooperative information exchange. Several comments indicated that just learning that the grower wasn't the only one with a particular situation was helpful and that they enjoyed the opportunity to share information. We are hoping to hold follow-up meetings in the same locations with specific educational content to build on the interactions already formed. As one participant said, "Don't give up hope – adapt, adjust and <u>overcome</u>!

Implications:

There is certainly growing interest in the use of biocontrol, particularly in retail greenhouses in NY. With a large number of growers just starting out with biocontrol, it may be difficult to set up mentoring networks, on the one hand, because of a small number of experienced growers. On the other hand, new adopters might be willing to share information as in a sense they are all in the same boat and understand where each other are in the process. It will certainly take more work to see a functioning information/mentoring network in place, but I think the groundwork has been laid.

Project location:

<u>On-farm workshops</u> C. J. Van Bourgondien, Inc., Peconic, Suffolk Mischler's Florist, Williamsville, Erie Becker's Farm, Rensselaer, Rensselaer Technigrowers Greenhouse, Warwick, Orange Barone's Greenhouse, Cicero, Onondaga Rivermede Farm, Keene Valley, Essex

<u>Samples of resources:</u> General information on biocontrols (below)

Deborah Sweeton describes her biocontrol program to other growers at her farm in Warwick NY

General information on biological control agents

Biological control	Pests controlled	Application method	Comments
type			
Wasps			
Aphidius colemanii	Green peach aphid	Mummies mixed with	Golden brown mummy
	Melon aphid	carrier	
Aphidius ervi	Potato aphid	Mummies mixed with	Golden brown mummy
	Foxglove aphid	carrier	
Aphelinus	Potato aphid	Adults (feed and	Black mummy
abdominalis	Foxglove aphid	parasitize eggs)	
Encarsia formosa	Greenhouse whitefly	Loose pupae	Black pupae
		Pupae on cards	Parasitize and feed on
			larvae
Eretmocerus eremicus	Greenhouse whitefly	Pupae with carrier	More tolerant of higher
	Silverleaf whitefly		temperatures than
			Encarsia
Eretmocerus mundus	Silverleaf whitefly	Loose pupae	More tolerant of high
		Pupae on cards	and low temperature
			than E. eremicus
Diglyphus isaea	Leafminer larvae	Adults	Parasitize and feed on
			larvae
			Will work on high
			populations
Dacnusa sibirica	Leafminer larvae	Adults	Use with low
			populations
Synacra	Fungus gnat larvae		Wild spp?
Hexacola	Shoreflies		Wild spp?
neoscatellae			
Mites			
Phytoseiulus	Two spotted spider	Adults and nymphs	Red mites
persimilis	mite	mixed with carrier	Can move plant to
			plant if plants touch
			Doesn't tolerate high
			temperature or low RH
Amblvseius	Two spotted spider	Adults and nymphs	More tolerant of high

californicus	mite	mixed with carrier	temperature and low
	Broad mite		RH than <i>P. persimilis</i>
	Cyclamen mite		Will also feed on
Ambling oing on onin	Thring	Slow rologg gashata	pollen Will also food on
Ambiyseius cucumeris	Thrips	Slow release sachets	will also reed on
(Iveoseiulus)		mites	ponen
		Sprinkled with carrier	
		Blown with carrier	
Amblyseius swirskii	Greenhouse whitefly	Slow release sachets	
	Silverleaf whiefly	with bran and bran	
	Thrips larvae	mites	
		Sprinkled with bran	
Amblyseius	Thrips	Adults and nymphs	More tolerant of low
degenerans		mixed with carrier	RH than <i>A. cucumeris</i>
			Better in flowers
	E	A 1-14 1	Also feeds on pollen
Hypoaspis miles	Fungus gnat larvae	Adults and nymphs	Best used
	Root aphids		preventativery
Hypoaspis aculeifer	Bulb mites	Adults and nymphs	
	Fungus gnat larvae	mixed with carrier	
	Thrips pupae		
	Root aphids		
Gall midges		D 11	
Aphidoletes	Aphids	Pupae with carrier	
aphidimyza Eolti olla, a ognious a	Two anotted anidon	Dunce on loof	Use in combination
Feillella acarisuga	Two spotted spider	Pupae on leaf	with P porsimilis
	Carmine spider mite		
Rove beetle			
Atheta coriaria	Shore fly larvae	Adults with or	Adults and larvae feed
	Fungus gnat larvae	without carrier	in soil
	Thrips pupae		Adults can fly
т. •			
Lacewings	Ambida	T amyo a in a 11 1	Only lange - time
Cnrysopa spp.	Aphias Others, thring spider	Larvae in cardboard	Unly larva active
	mites whitefly small	cens	temperature and RH
	caternillars		fluctuations
	mealybugs		
Ladybugs			
Adalia bipunctata	Aphids	Larvae with carrier	Adult and larva active

Stethorus punctillium	Two spotted spider mite Carmine spider mite Spruce spider mite		Used with predatory mites
Cryptolaemus montrouzieri	Mealybugs	Adults	Adults and larvae active
Delphastus pusillus	Greenhouse whitefly Silverleaf whitefly	Adults	
Harmonia axrydis (Multicolored Asian ladybeetle)	Aphids		Aggregation and odor
Hippodamia convergans (Convergent ladybeetle)	Aphids		Dispersal unless fed
Predatory bugs			
<i>Orius insidiosus</i> (Minute pirate beetle)	Thrips Other - whiteflies, aphids, red spider mites	As adults with carrier	Also feeds on pollen Takes time to become established
Orius laevigatus	Thrips Other - whiteflies, aphids, red spider mites	As adults with carrier	
Orius majusculus	Thrips Other - whiteflies, aphids, red spider mites	As adults with carrier	
Macrolophus caliginosus	Whitefly	Nymphs and adults with carrier	
Dicyphus hesperus	Whitefly		
Nematodes			
Steinernema feltiae	Thrips Fungus gnat larvae		
Hoverflies			
Episyrphus balteatus	Aphids	Pupae on cards	
Hunter fly			
Coenosia attenuata	Fungus gnat adults White fly		Introduced Catches insects on the fly