Kolmogorov Extension, Martingale Convergence, and Compositionality of Processes

Dexter Kozen
Cornell University
December 30, 2015

Abstract

We show that the Kolmogorov extension theorem and the Doob martingale convergence theorem are two aspects of a common generalization, namely a colimit-like construction in a category of Radon spaces and reversible Markov kernels. The construction provides a compositional denotational semantics for standard iteration operators in programming languages, e.g. Kleene star or while loops, as a limit of finite approximants, even in the absence of a natural partial order.

1 Introduction

Compositionality is a key desideratum in programming languages. The behavior of a large complex program depends on the behavior of its constituent parts, and it is essential for effective reasoning that this dependence is properly understood. This maxim is no less true of probabilistic programs than deterministic ones.

Unfortunately, the classical foundations of probability and measure theory provide little support for compositional reasoning. Standard formalizations of iterative processes prefer to construct a single monolithic sample space from which all random choices are made at once. The central result in this regard is the Kolmogorov extension theorem [14] (see [1] or [4, Theorem 3.3.6]), which identifies conditions under which a family of measures on finite subproducts of an infinite product space extend to a measure on the whole space. This theorem is typically used to construct a large sample space for an infinite iterative process when the behavior of each individual step of the process is known.

The Kolmogorov extension theorem is normally formulated in terms of measures alone, but for purposes of compositional reasoning, a more general formulation is needed. Probabilistic programs are commonly interpreted denotationally as Markov kernels [5,16,20,21]. The chief benefit of this characterization is that it allows programs to be composed sequentially via Lebesgue integration.

Another important classical result that is relevant in this context is the martingale convergence theorem of Doob [6] (see [17] or [7, Theorem VII.9.2]). This theorem states that a martingale has a pointwise limit that is unique up to
a nullset. Martingales are normally presented as a model of betting strategies, but in fact they are much more general and quite relevant in the semantics of probabilistic programming languages, as they characterize the evolution of conditional probabilities as an infinite process progresses. In our treatment, the finite approximants to an infinite iteration comprise a collection of martingales, and the martingale convergence theorem gives the probabilities of events in the continuation conditioned on the final outcome of the iteration.

Modern presentations of the martingale convergence theorem go even further toward the removal of any compositional aspect. At least with the classical formulation of the Kolmogorov extension theorem, the product space structure is still apparent. But once the limit measure is constructed, the product space structure can be discarded. The martingale convergence theorem is typically formulated in terms of a *filtration*, a sequence of ever finer σ-algebras on a common set of states. All compositional structure is lost.

In this paper we recast these results in terms of *reversible* Markov kernels. A kernel is reversible if it has a deterministic right1 inverse; this is simply an abstract way of remembering history. We show that the limiting object in our version of the Kolmogorov extension theorem is again a reversible Markov kernel. This immediately gives a compositional denotational semantics for standard iteration operators, e.g. Kleene star or *while* loops, as a limit of finite approximants, even when the notion of approximation does not involve a natural partial order as with classical domain-theoretic approaches. This is the case, for example, with the system reported in [8].

More interestingly, the construction establishes an unexpected connection between Kolmogorov extension and martingale convergence: they are in fact two aspects of a common generalization, namely a colimit-like construction in the category of Radon spaces and reversible Markov kernels. In this view, the Kolmogorov extension theorem is the construction of the colimiting object and the martingale convergence theorem gives a universal arrow.

We say the construction is colimit-like because it is not a colimit or weak colimit in the strict sense of the word. The exact nature of the discrepancy is technical, but it is essentially due to the fact that certain key properties hold only up to a nullset. Whether the construction can be characterized as a true colimit or weak colimit using a point-free approach is a tantalizing topic for future investigation.

Kolmogorov’s original formulation of the extension theorem was in terms of finite subproducts of an infinite product space. Many authors [2, 3, 9, 18, 19, 22, 23] have observed that this is essentially a projective limit construction. Our development involves a projective limit as well, but it is important to note that, unlike projections, the morphisms of our category (reversible Markov kernels) go in the chronologically positive direction. Connections between Kolmogorov extension and martingale theory have also been previously drawn [18, 19, 23], although the relationship presented here seems to have escaped notice.

1 in diagrammatic order
2 Definitions and Notation

In this section we briefly review some basic definitions and notation. More comprehensive treatments can be found in [1,4,7,10].

Let \((S, \mathcal{B})\) be a Borel space. A probability measure \(\mu : \mathcal{B} \to [0,1]\) is said to be \textit{inner regular} if the measure of any \(A \in \mathcal{B}\) can be approximated arbitrarily closely from below by compact sets. Formally, \(\mu\) is inner regular if for all \(A \in \mathcal{B}\) and \(\varepsilon > 0\), there exists a compact set \(C\) such that \(C \subseteq A\) and \(\mu(A - C) < \varepsilon\) (see e.g. [1]). A Borel space in which every probability measure is inner regular is called a \textit{Radon space}.

We will restrict our attention to Radon spaces. This assumption is quite weak. Most natural spaces in real-life applications, including all Polish and Suslin spaces, are Radon. This assumption is needed for the Kolmogorov extension theorem.

\textbf{Markov Kernels} Let \((S, \mathcal{B}_S)\) and \((T, \mathcal{B}_T)\) be Borel spaces. A \textit{Markov kernel} (Markov transition, measurable kernel, stochastic kernel, stochastic relation) is a function \(P : S \times \mathcal{B}_T \to [0,1]\) such that

- for fixed \(A \in \mathcal{B}_T\), the map \(P(\cdot, A) : S \to [0,1]\) is a measurable function; and
- for fixed \(s \in S\), the map \(P(s, \cdot) : \mathcal{B}_T \to [0,1]\) is a probability measure.

Programs will be interpreted as Markov kernels. Some authors allow \textit{subprobability measures} in which the universal event may occur with probability less than one; however, we will allow this only in \textit{guards} (see below).

The Markov kernels are the morphisms of a category whose objects are measurable spaces, the \textit{Kleisli category of the Giry monad}; see [5, 20, 21]. In this context, we write \(P : (S, \mathcal{B}_S) \to (T, \mathcal{B}_T)\) or just \(P : S \to T\). Sequential composition is given by Lebesgue integration: for \(P : S \to T\) and \(Q : T \to U\),

\[
(P ; Q)(s, A) = \int_{t \in T} P(s, dt) \cdot Q(t, A).
\]

Associativity of composition is essentially Fubini’s theorem (see [10, VII.36.C] or [4, p. 59]). The identity kernels

\[
1(s, A) = \chi_A(s) = \delta_s(A) = \begin{cases}
1, & s \in A, \\
0, & s \notin A
\end{cases}
\]

are left and right identities for composition. Here \(\chi_A\) is the characteristic function of \(A \in \mathcal{B}_S\) and \(\delta_s\) is the Dirac (point mass) measure on \(s \in S\).

If \(P : S \to T_1\) and \(Q : S \to T_2\), the kernel \(P \times Q : S \to T_1 \times T_2\) on a given \(s \in S\) gives the product measure \(P(s, \cdot) \times Q(s, \cdot)\) on \(T_1 \times T_2\). Thus for \(A \in \mathcal{B}_{T_1}\) and \(B \in \mathcal{B}_{T_2}\),

\[
(P \times Q)(s, A \times B) = P(s, A) \cdot Q(s, B).
\]
Convergence We will have the occasion to consider convergence of sequences of kernels. A common mode of convergence is pointwise almost everywhere (a.e.) convergence with respect to an ambient measure μ. A sequence P_n converges pointwise a.e. to Q with respect to μ if for all B, the measurable functions $P_n(\cdot, B)$ converge to the measurable function $Q(\cdot, B)$ pointwise outside a μ-nullset. Note that this does not immediately imply that Q is a kernel, as it may not be countably additive in its second argument; that has to be established separately. Note also that the μ-nullsets on which the $P_n(\cdot, B)$ fail to converge may be different for different B.

Deterministic Kernels A Markov kernel $S \to T$ is deterministic iff there is a measurable function $f : S \to T$ such that the kernel’s value on $s \in S$ and $A \in \mathcal{B}_T$ is

$$1_T(f(s), A) = 1_S(s, f^{-1}(A)).$$

Every measurable function $f : S \to T$ gives a deterministic kernel of this form, thus the deterministic kernels and the measurable functions are in one-to-one correspondence. We write f for both the set function and its associated kernel, thus

$$f(s, A) = 1_T(f(s), A) = 1_S(s, f^{-1}(A)).$$

Deterministic kernels compose on the left and right with arbitrary kernels as follows:

$$(f ; P)(s, A) = \int f(s, dt) \cdot P(t, A) = \int 1(f(s), dt) \cdot P(t, A) = P(f(s), A)$$

$$(P ; f)(s, A) = \int P(s, dt) \cdot f(t, A) = \int P(s, dt) \cdot 1(t, f^{-1}(A)) = P(s, f^{-1}(A)).$$

Guards A guard is a subprobability kernel $A : S \to S$ of the form

$$A(s, B) = 1_S(s, A \cap B)$$

for some $A \in \mathcal{B}_S$. Guards can be used in sequential composition expressions to limit integration:

$$(P ; A ; Q)(s, B) = \int_{t \in A} P(s, dt) \cdot Q(t, B).$$

Reversible Kernels A Markov kernel $P : S \to T$ is reversible if it has a deterministic right inverse $f : T \to S$; thus $P ; f = 1$. If $P : S \to T$ and $Q : T \to U$ are reversible with inverses $f : T \to S$ and $g : U \to T$ respectively, then $P ; Q$ is reversible with inverse $g ; f$. The measurable spaces and reversible kernels form a subcategory of the Kleisli category of the Giry monad.
Reversibility is simply an abstract way of saying that history is preserved. Normally this is done with projections as in the usual formulation of the Kolmogorov extension theorem. Any Markov kernel \(P : S \to T \) gives rise to a reversible kernel \(P' : S \to S \times T \) by just remembering the first argument:

\[
P'(s, A \times B) = \begin{cases}
P(s, B), & s \in A, \\ 0, & s \notin A. \end{cases}
\]

The inverse is then the projection onto the first component.

Lemma 1.

(i) For any \(A \in \mathcal{B}_S \) and reversible \(P : S \to T \) with right inverse \(f : T \to S \), we have \(A ; P = P ; f^{-1}(A) \).

(ii) For \(A \in \mathcal{B}_S \) and deterministic \(f : T \to S \), we have \(f^{-1}(A) ; f = f ; A \).

(iii) The right inverse of any reversible kernel is surjective.

Proof.

(i) For any \(s \in S \) and \(B \in \mathcal{B}_T \),

\[
(A ; P)(s, B) = \int A(s, dt) \cdot P(t, B) = \begin{cases} P(s, B), & s \in A, \\ 0, & s \notin A. \end{cases}
\]

\[
(P ; f^{-1}(A))(s, B) = \int P(s, dt) \cdot (f^{-1}(A))(t, B) = P(s, B \cap f^{-1}(A)).
\]

If \(s \notin A \), then

\[
P(s, B \cap f^{-1}(A)) \leq P(s, f^{-1}(A)) = (P ; f)(s, A) = 1(s, A) = 0,
\]

thus \(A ; P \) and \(P ; f^{-1}(A) \) agree in that case. If \(s \in A \), then \(s \notin \sim A \). By the above argument, \(P(s, B \cap f^{-1}(\sim A)) = 0. \) Then

\[
P(s, B \cap f^{-1}(A)) = P(s, B \cap f^{-1}(A)) + P(s, B \cap f^{-1}(\sim A)) = P(s, B),
\]

therefore \(A ; P \) and \(P ; f^{-1}(A) \) agree in that case as well.

(ii) For any \(s \in S \) and \(B \in \mathcal{B}_T \),

\[
(f^{-1}(A) ; f)(s, B) = f^{-1}(A)(s, f^{-1}(B)) = 1(s, f^{-1}(A \cap B)) \\
= (1 ; f)(s, A \cap B) = f(s, A \cap B) = (f ; A)(s, B).
\]

(iii) Suppose \(P \) is reversible with right inverse \(f \). By (i), for any \(s \in S \),

\[
(P ; f^{-1}([s])) ; f)(s, S) = ([s] ; P ; f)(s, S) = [s](s, S) = 1(s, [s]) = 1,
\]

so it cannot be that \(f^{-1}([s]) = 0. \)
Conditional Expectation. Let \((S, \mathcal{B}, \mu)\) be a measure space with \(\mu\) a probability measure. The conditional expectation \(\mathbb{E}(X \mid \mathcal{F})\) of a \(\mathcal{B}\)-measurable function \(X\) with respect to a \(\sigma\)-subalgebra \(\mathcal{F}\) of \(\mathcal{B}\) is any \(\mathcal{F}\)-measurable function such that for \(A \in \mathcal{F}\),

\[
\int_A \mathbb{E}(X \mid \mathcal{F})(s) \cdot \mu(ds) = \int_A X(s) \cdot \mu(ds).
\]

The conditional expectation exists and is unique up to a \(\mu\)-nullset. It can be obtained as a Radon–Nikodým derivative, as the integral on the right-hand side, as a function of \(A \in \mathcal{F}\), is absolutely continuous with respect to \(\mu\); that is, the integral vanishes whenever \(A \in \mathcal{F}\) and \(\mu(A) = 0\).

Applied to characteristic functions of measurable sets \(B \in \mathcal{B}\), conditional expectations are also measures as functions of \(B\). As such, they are Markov kernels \(\mathbb{E}_{\mathcal{F}} : (S, \mathcal{F}) \to (S, \mathcal{B})\) with \(\mathbb{E}_{\mathcal{F}}(s, B) = \mathbb{E}(\chi_B \mid \mathcal{F})(s)\). This representation affords some notational advantages:

(2.1) A well-known property is that for \(\mathcal{F} \subseteq \mathcal{G} \subseteq \mathcal{B}\),

\[
\mathbb{E}(\mathbb{E}(X \mid \mathcal{G}) \mid \mathcal{F}) = \mathbb{E}(X \mid \mathcal{F}).
\]

In our notation, this translates to

\[
\mathbb{E}_{\mathcal{F}} ; \mathbb{E}_{\mathcal{G}} = \mathbb{E}_{\mathcal{F}}.
\]

(2.2) Suppose that \(\mathcal{F} \subseteq \mathcal{G}\) and we are given two kernels \(P : (S, \mathcal{F}) \to T\) and \(Q : (S, \mathcal{G}) \to T\), and we wish to show that \(P(-, B) = \mathbb{E}(Q(-, B) \mid \mathcal{F})\) with respect to an ambient measure \(\mu\). We would need to show that for all \(A \in \mathcal{F}\),

\[
\int_A P(s, B) \cdot \mu(ds) = \int_A Q(s, B) \cdot \mu(ds).
\]

Regarding \(\mu\) as a kernel \(\mu : S_0 \to S\) on a one-point space \(S_0\), it suffices to show

\[
\mu ; A : P = \mu ; A : Q
\]

for all \(A \in \mathcal{F}\). This gives the desired equation for all \(B \in \mathcal{B}_{\mathcal{F}}\) uniformly. In particular, if \(Q(-, B) = \chi_B\), so \(Q = 1\), then it suffices to show

\[
\mu ; A : P = \mu ; A.
\]

(2.3) A special case of the martingale convergence theorem is the Lévy zero-one law, which states that if \(\mathcal{F}_n\) is a sequence of \(\sigma\)-algebras on \(S\) such that \(\mathcal{F}_m \subseteq \mathcal{F}_n\) for \(m \leq n\), and if \(\mathcal{F}_{\omega}\) is the smallest \(\sigma\)-algebra containing \(\bigcup_n \mathcal{F}_n\), then for any \(X : S \to \mathbb{R}\) measurable with respect to \(\mathcal{F}_{\omega}\), \(\mathbb{E}(X \mid \mathcal{F}_n)\) converges to \(\mathbb{E}(X \mid \mathcal{F}_\omega)\) pointwise outside of a \(\mu\)-nullset. In our notation, this becomes

\[
\mathbb{E}_{\mathcal{F}_n} \to \mathbb{E}_{\mathcal{F}_\omega} \text{ pointwise a.e.}
\]
Martingales Let \((S, \mathcal{F}_\omega, \mu)\) be a measure space. A sequence of random variables and \(\sigma\)-algebras \((X_n, \mathcal{F}_n)\) on \(S\), \(n \geq 0\), is called a martingale if

(i) \(\mathcal{F}_m \subseteq \mathcal{F}_n\) for \(m \leq n\),

(ii) \(\mathcal{F}_\omega\) is the \(\sigma\)-algebra generated by \(\bigcup_n \mathcal{F}_n\),

(iii) \(X_n\) is \(\mathcal{F}_n\)-measurable,

(iv) \(X_m = \mathcal{E}(X_n \mid \mathcal{F}_m)\) for all \(m \leq n\).

The martingale convergence theorem of Doob [6] (see [17] or [7, Theorem VII.9.2]) states that the sequence \(X_n\) has a pointwise limit \(X_\omega\) outside a \(\mu\)-nullset.

By property (iv) of martingales and the definition of conditional expectation, for all \(A_m \in \mathcal{F}_m\) and \(n \geq m\),

\[
\int_{A_m} X_m(s) \cdot \mu(ds) = \int_{A_m} \mathcal{E}(X_n \mid \mathcal{F}_m)(s) \cdot \mu(ds) = \int_{A_m} X_n(s) \cdot \mu(ds),
\]

thus by the martingale convergence theorem,

\[
\int_{A_m} X_m(s) \cdot \mu(ds) = \int_{A_m} X_\omega(s) \cdot \mu(ds) = \int_{A_m} \mathcal{E}(X_\omega \mid \mathcal{F}_m) \cdot \mu(ds).
\]

Again by the definition of conditional expectation, we have that

\[
X_m = \mathcal{E}(X_\omega \mid \mathcal{F}_m). \tag{2.4}
\]

3 Main Results

Suppose we have a chain of Radon spaces \((S_n, \mathcal{B}_n), n \in \omega\) along with reversible Markov kernels \(P_{mn} : S_m \to S_n\) for each \(m \leq n\) such that

\[
P_{kn} = P_{km} : P_{mn}, \quad k \leq m \leq n \quad P_{nn} = 1_{S_n}. \tag{3.1}
\]

Since the \(P_{mn}\) are reversible, their deterministic inverses \(f_{nm} : S_n \to S_m\) for \(m \leq n\) satisfy

\[
f_{nk} = f_{nm} : f_{mk}, \quad k \leq m \leq n \quad f_{nn} = 1_{S_n}. \tag{3.2}
\]

The chain \(S_n\) has a projective limit \(S_\omega\), where

\[
S_\omega = \{(s_n \mid n \in \omega) \in \prod_{n \in \omega} S_n \mid \forall m \leq n \ f_{nm}(s_n) = s_m\}.
\]

Let \(\mathcal{B}_\omega\) be the weakest \(\sigma\)-algebra on \(S_\omega\) such that all projections \(\pi_m : S_\omega \to S_m\) are measurable. Then \((S_\omega, \mathcal{B}_\omega)\) is the limit of the spaces \((S_n, \mathcal{B}_n)\) in the category of Radon spaces and measurable functions.

The following local consistency condition corresponds to the premise needed to apply the Kolmogorov extension theorem (see [4, Theorem 3.3.6]).
Lemma 2. For all \(k \leq m \leq n \),
\[
P_{km}(s, A) = P_{kn}(s, f_{nm}^{-1}(A)).
\]

Proof. This is equivalent to the assertion that \(P_{km} = P_{kn} ; f_{nm} \). But
\[
P_{km} = P_{km} ; 1_{S_m} = P_{km} ; P_{mn} ; f_{nm} = P_{kn} ; f_{nm}.
\]

\(\square\)

Let \(\mathcal{F}_n = \{ \pi_n^{-1}(A_n) \mid A_n \in \mathcal{B}_n \} \subseteq \mathcal{B}_\omega \). Then \(\bigcup_n \mathcal{F}_n \) is a Boolean subalgebra of \(\mathcal{B}_\omega \). By the monotone class theorem ([10, Theorem I.6.B] or [4, Theorem 2.1.1]), \(\mathcal{B}_\omega \) is the smallest class containing \(\bigcup_n \mathcal{F}_n \) and closed under unions of countable ascending chains and intersections of countable descending chains.

Lemma 3.

(i) If \(m \leq n \), \(A_m \in \mathcal{F}_m \), and \(A_n \in \mathcal{F}_n \), then \(\pi_n^{-1}(A_n) = \pi_m^{-1}(f_{nm}^{-1}(A_m)) \) if and only if \(A_n = f_{nm}^{-1}(A_m) \).

(ii) If \(m \leq n \), then \(\mathcal{F}_m \subseteq \mathcal{F}_n \).

Proof. Clause (ii) and the reverse implication of clause (i) follow from the fact that \(\pi_m = \pi_n ; f_{nm} \). Thus
\[
\pi_m^{-1}(A_m) = \pi_n^{-1}(f_{nm}^{-1}(A_m)) \in \mathcal{F}_n.
\]

For the forward implication of clause (i), assume that \(\pi_n(s) \in A_n \) iff \(\pi_m(s) \in A_m \). Since \(\pi_m = \pi_n ; f_{nm} \), we have that
\[
\pi_n(s) \in A_n \iff f_{nm}(\pi_n(s)) \in A_m \iff \pi_n(s) \in f_{nm}^{-1}(A_m).
\]

It follows from Lemma 1(ii) that the \(\pi_n : S_\omega \rightarrow S_n \) are surjective, thus \(A_n = f_{nm}^{-1}(A_m) \). \(\square\)

We now wish to show that \((S_\omega, \mathcal{B}_\omega) \) is the colimiting object of the chain. We need to define reversible Markov kernels \(P_{m\omega} : S_m \rightarrow S_\omega \) that commute with the \(P_{mn} \). As with the Kolmogorov extension theorem, inner regularity is needed for this part of the argument; once this is done, the assumption of inner regularity is no longer needed.

For each \(\pi_m^{-1}(A_m) \in \mathcal{F}_n \) with \(m \leq n \), define
\[
P_{m\omega}(s, \pi_m^{-1}(A_m)) = P_{mn}(s, A_m). \tag{3.3}
\]

We must argue that \(P_{m\omega} \) is well defined. If \(k \leq m \leq n \) with \(\pi_m^{-1}(A_m) = \pi_n^{-1}(A_n) \), we have by Lemma 3(i) that \(A_n = f_{nm}^{-1}(A_m) \). Then
\[
P_{kn}(s, A_n) = P_{kn}(s, f_{nm}^{-1}(A_m)) = (P_{kn} ; f_{nm})(s, A_m) = P_{km}(s, A_m).
\]

Theorem 1. The map \(P_{m\omega} : S_n \times \bigcup_n \mathcal{F}_n \rightarrow [0, 1] \) extends to a reversible Markov kernel \(P_{m\omega} : S_n \rightarrow S_\omega \) with right inverse \(\pi_n \).
Proof. We must show:

(i) For fixed $s \in S_n$, the map $P_n \omega (s, -) : \bigcup_n F_n \to [0, 1]$ extends to a measure $P_n \omega (s, -) : B_\omega \to [0, 1]$.

(ii) For fixed $A \in B_\omega$, the map $P_n \omega (-, A) : S_n \to [0, 1]$ is a measurable function.

For (i), using inner regularity one can show that for fixed $s \in S_n$, the map $P_n \omega (s, -) : \bigcup_n F_n \to [0, 1]$ is countably additive on $\bigcup_n F_n$, therefore by the Carathéodory extension theorem (see [10, Theorem 13.A] or [12, Theorem 7.27.7]) extends to a measure $P_n \omega (s, -) : S_\omega \to [0, 1]$. This is essentially the Kolmogorov extension theorem in this setting.

For (ii), the proof is by induction on the stage at which A becomes an element of B_ω via the monotone class theorem. The basis is (3.3). For the induction step, we use the fact that the pointwise supremum of a countable ascending chain of uniformly bounded measurable functions is measurable. If $A = \bigcup_n A_n$ for a chain $A_0 \subseteq A_1 \subseteq \cdots$, we have that the functions $P_n \omega (-, A_i)$ are measurable by the inductive hypothesis, and $P_n \omega (-, \bigcup_i A_i)$ is the pointwise supremum of the $P_n \omega (-, A_i)$, therefore measurable. The argument for intersections of countable descending chains is similar.

That π_n is the right inverse of $P_n \omega$, that is, $P_n \omega ; \pi_n = 1_{S_n}$, is just (3.3) with $m = n$. \qed

The next theorem establishes a universality property of the space (S_ω, B_ω) as a form of colimit of the (S_n, B_n) with coprojections $P_n \omega : S_n \to S_\omega$ in the category of Radon spaces and reversible Markov kernels. As mentioned, it is not a true colimit or even a weak colimit; nevertheless, the space (S_ω, B_ω) is universal in a sense to be made precise by part (ii) of the theorem.

Theorem 2.

(i) The kernels $P_n \omega$ commute with the kernels $P_m n$ in the sense that for all $m \leq n$, $P_m \omega = P_m n ; P_n \omega$.

(ii) Let (T, B_T) be any measurable space with reversible Markov kernels $Q_n : S_n \to T$, each with a deterministic right inverse $g_n : T \to S_n$ such that $Q_m = P_m n ; Q_n$ for all $m \leq n$. There exists a reversible Markov kernel $Q_\omega : S_\omega \to \hat{T}$ such that $Q_n = P_n \omega ; Q_\omega$, where \hat{T} is the completion of T with respect to the pseudometric

\[d_T(t, t') = \begin{cases} 2^{-n}, & \text{if } n \text{ is the least number such that } g_n(t) \neq g_n(t'), \\ 0, & \text{if } g_n(t) = g_n(t') \text{ for all } n. \end{cases} \]

(3.4)
Proof. (i) We have by (3.3) and Theorem 1 that for $k \geq n$,

\[P_{m\omega} : \pi_k = P_{mn} : P_{nk} = P_{mn} : P_{n\omega} : \pi_k. \]

Because of the composition with π_k on the right, $P_{m\omega}$ and $P_{mn} : P_{n\omega}$ agree on the generators of \mathcal{B}_ω, therefore also on all of \mathcal{B}_ω.

(ii) Under the premises of the theorem, $g_m = g_n : f_{mn}$ and $Q_m : g_n = P_{mn}$ for all $m \leq n$. Since $(S_\omega, \mathcal{B}_\omega)$ is the limit of the (S_n, \mathcal{B}_n) in the category of measurable spaces and measurable functions, there is a measurable function $g : T \rightarrow S_\omega$ such that $g_n = g : \pi_n$ for all n.

For all $n \geq m$, we have

\[Q_m : g : \pi_n = P_{mn} : Q_n : g_n = P_{mn} = P_{m\omega} : \pi_n. \]

Because of the composition with π_n on the right, $(Q_m : g)(s, -)$ and $P_{m\omega}(s, -)$ agree on the generators $\bigcup_n \mathcal{F}_n$ of \mathcal{F}_ω, therefore also on \mathcal{F}_ω. Thus

\[Q_m : g = P_{m\omega}. \tag{3.5} \]

We now construct a universal arrow Q_ω with right inverse g. Unfortunately, the limit construction does not guarantee that g is surjective, which by Lemma 1(iii) it must be in order to be the right inverse of a kernel. However, its image $g(T) = \{g(t) \mid t \in T\}$ is dense in S_ω with respect to a certain metric, and we can form the completion \hat{T} of T without affecting the values of the Q_n. This will allow g to be extended to a surjective function $\hat{g} : \hat{T} \rightarrow S_\omega$, which will allow the construction of a kernel $S_\omega \rightarrow \hat{T}$. Moreover, the ideal $\{A \in \mathcal{B}_{S_\omega} \mid A \cap g(T) = \emptyset\}$ contains only $P_{m\omega}$-nullsets, since if $A \cap g(T) = \emptyset$, then by (3.5),

\[P_{m\omega}(s, A) = (Q_m : g)(s, A) = Q_m(s, g^{-1}(A)) = 0, \]

thus points not in $g(T)$ can be deleted from S_ω to give a kernel $g(T) \rightarrow T$ if desired.

The completion \hat{T} of T is taken with respect to the pseudometric d_T, where

\[
\begin{align*}
 d_{S_\omega}(s, s') &= 2^{-n}, \quad \text{if } n \text{ is the least number such that } \pi_n(s) \neq \pi_n(s'), \\
 d_T(t, t') &= d_{S_\omega}(g(t), g(t')).
\end{align*}
\]

Concretely, let \hat{T} be the disjoint union of T and $S_\omega - g(T)$. Define

\[
\begin{align*}
 \hat{g}(t) &= \begin{cases}
 g(t), & t \in T, \\
 t, & t \in S_\omega - g(T),
 \end{cases} \\
 \hat{g}_n(t) &= \begin{cases}
 g_n(t), & t \in T, \\
 \pi_n(t), & t \in S_\omega - g(T).
 \end{cases}
\end{align*}
\]

Extend \mathcal{B}_T to $\mathcal{B}_{\hat{T}}$ by including all subsets of $S_\omega - g(T)$. Extend $Q_n : S \rightarrow T$ to $\hat{Q}_n : S \rightarrow \hat{T}$ by taking subsets of $S_\omega - g(T)$ as nullsets; that is, $\hat{Q}_n(s, B) = Q_n(s, B \cap T)$. Note that $g(T)$ is dense in S_ω under the metric d_{S_ω}. One can show
that \(\hat{Q}_n \) is reversible with right inverse \(\hat{g}_n \) and that \(P_{mn} : \hat{Q}_n = \hat{Q}_m \). Moreover, \(\hat{g} : T \to S_\omega \) is surjective. Let us therefore assume henceforth that the original \(g \) is surjective and that \(T = T \).

We now show that the kernels \(Q_n \) give rise to two collections of martingales. For the first collection, fix \(B \in \mathcal{B}_T \) and \(s_0 \in S_0 \). We show that the measurable functions \((\pi_n : Q_n)(-, B) \) form a martingale with respect to the filtration \(\{ F_n \mid n \geq 0 \} \) and the ambient measure \(P_{0\omega}(s_0, -) \) on \(S_\omega \). Let us check the four properties of martingales listed in \(\S 2 \).

(i) \(F_m \subseteq F_n \) for \(m \leq n \),

(ii) \(F_\omega \) is the \(\sigma \)-algebra generated by \(\bigcup_n F_n \),

(iii) \((\pi_n : Q_n)(-, B) \) is \(\mathcal{F}_m \)-measurable,

(iv) \((\pi_m : Q_m)(-, B) = \mathcal{E}(\pi_n : Q_n)(-, B) \mid F_m \) for \(m \leq n \).

Properties (i) and (ii) are immediate from Lemma 3. For (iii), \((\pi_n : P_{n\omega})(-, B) \) is \(\mathcal{F}_m \)-measurable because \(\pi_n \) is. Finally, for property (iv), by (2.2) it suffices to show that for any \(A_m \in \mathcal{B}_m \),

\[
P_{0\omega} ; \pi_n^{-1}(A_m) ; \pi_n ; Q_n = P_{0\omega} ; \pi_m^{-1}(A_m) ; \pi_m ; Q_n.
\]

Let \(A_n = f_m^{-1}(A_m) \). By Lemma 3(i), \(\pi_m^{-1}(A_m) = \pi_n^{-1}(A_n) \). Using this, Lemma 1(ii), Theorem 1, and the fact \(Q_n = P_{mn} ; Q_n \), (3.6) reduces to

\[
A_m ; P_{mn} = P_{mn} ; A_n.
\]

But this is just Lemma 1(i).

By the martingale convergence theorem, the \((\pi_n : Q_n)(-, B)\) converge pointwise to an \(\mathcal{F}_\omega \)-measurable function \(Q_\omega(-, B) \) outside a \(P_{0\omega}(s_0, -) \)-nullset, thus the \(\pi_n : Q_n \) converge pointwise a.e. to \(Q_\omega \).

The map \(Q_\omega \) will be our universal arrow. However, note that we have not yet shown that \(Q_\omega \) is a measure in its second variable nor that it is reversible with right inverse \(g \). We will do this below, but we must be careful not to inadvertently use these properties until they are established.

The \(Q_k \) factor through \(Q_\omega \) as desired: for \(k \leq m \leq n \),

\[
P_{kw} ; \pi_m ; Q_m = P_{kw} ; \pi_n ; Q_n = Q_k,
\]

therefore

\[
P_{kw} ; Q_\omega = \lim_n P_{kw} ; \pi_n ; Q_n = \lim_n Q_k = Q_k.
\]

The second collection of martingales is defined on \(T \). Define the filtration

\[
\mathcal{G}_n = \{ g_n^{-1}(A) \mid A \in \mathcal{B}_n \} = \{ g^{-1}(A) \mid A \in \mathcal{F}_n \} \in \mathcal{B}_T
\]

and let \(\mathcal{G}_\omega \subseteq \mathcal{B}_T \) be the \(\sigma \)-algebra generated by \(\bigcup_n \mathcal{G}_n \). As above, fix \(B \in \mathcal{B}_T \) and \(s_0 \in S_0 \). We claim that the functions \((g_n : Q_n)(-, B) \) form a martingale with respect to the filtration \(\{ \mathcal{G}_n \mid n \geq 0 \} \) and the ambient measure \(Q_0(s_0, -) \) on \(T \). The four properties of martingales we must check are
(i) \(\mathcal{G}_m \subseteq \mathcal{G}_n \) for \(m \leq n \),

(ii) \(\mathcal{G}_\omega \) is the \(\sigma \)-algebra generated by \(\bigcup_n \mathcal{G}_n \),

(iii) \((g_n : Q_n)(- , B) \) is \(\mathcal{G}_n \)-measurable,

(iv) \((g_m : Q_m)(- , B) = \mathcal{E}((g_n : Q_n)(- , B) \mid \mathcal{G}_m) \) for \(m \leq n \).

As above, properties (i)–(iii) are straightforward: (i) is immediate from Lemma 3, (ii) is by definition, and (iii) is from the fact that \(g_n \) is \(\mathcal{G}_n \)-measurable. Finally, for (iv), by (2.2) we must show that for any \(A_m \in \mathcal{B}_m \),

\[
Q_0 : g_m^{-1}(A_m) ; g_m ; Q_m = Q_0 : g_n^{-1}(A_m) ; g_n ; Q_n. \tag{3.7}
\]

Let \(A_n = f_{nm}^{-1}(A_m) \). By the fact that \(g_m = g_n \circ f_{nm} \), we have \(g_m^{-1}(A_m) = g_n^{-1}(A_n) \). Using this, Lemma 1(ii), and Theorem 1, (3.7) reduces to

\[
Q_k ; g_m ; A_m ; Q_m = Q_k ; g_n ; A_n ; Q_n,
\]

which follows by equational reasoning from Lemma 1(i) and the properties

\[
Q_m = P_{mn} ; Q_n \quad Q_m : g_m = 1 \quad P_{km} ; P_{mn} = P_{kn}.
\]

Again using the martingale convergence theorem, the \((g_n : Q_n)(- , B) \) converge pointwise to a \(\mathcal{G}_\omega \)-measurable function outside a \(Q_0(s_0 , -) \)-nullset. In this case, the limit is \((g ; Q_\omega)(- , B) \):

\[
\lim_n g_n ; Q_n = \lim_n g ; \pi_n ; Q_n = g ; Q_\omega.
\]

As above, the \(g_n ; Q_n \) converge pointwise a.e. to \(g ; Q_\omega \).

Note that none of these calculations required integration with respect to the second argument of \(Q_\omega \). As the reader will recall, we have yet to establish that \(Q_\omega \) is countably additive in its second argument. We do that now.

Lemma 4. \(g_n : Q_n = \mathcal{E}_{\mathcal{G}_n} \), the conditional expectation with respect to the measure \(Q_0(s_0 , -) \) on \(T \).

Proof. Using (2.2) and various equational properties,

\[
Q_0 : g_n^{-1}(A_n) ; g_n ; Q_n = Q_0 : g_n ; A_n ; Q_n = P_{0n} ; Q_n : g_n^{-1}(A_n) = Q_0 : g_n^{-1}(A_n).
\]

By the Lévy zero-one theorem (2.3), \(\mathcal{E}_{\mathcal{G}_n} \) converges pointwise a.e. to \(\mathcal{E}_{\mathcal{G}_\omega} \). We have already argued that \(g ; Q_\omega \) is the a.e. pointwise limit of the \(g_n ; Q_n \). Thus by Lemma 4, \(g ; Q_\omega = \mathcal{E}_{\mathcal{G}_\omega} \) a.e. This says that for all \(t \in T \),

\[
Q_\omega(g(t), -) = (g ; Q_\omega)(t, -) = \mathcal{E}_{\mathcal{G}_\omega}(t, -).
\]
The kernel $E_G\omega$ is a conditional probability, therefore a measure in its second argument. As g is surjective, $Q_\omega(s,-)$ is also measure for all $s \in S_\omega$, therefore it is a Markov kernel.

It remains to show that Q_ω is reversible with right inverse g. Observe that

$$P_{n\omega} ; \pi_n = 1_{S_n} = Q_n ; g_n = P_{n\omega} ; Q_\omega ; g_n.$$

Thus $Q_\omega ; g_n$ and π_n agree outside a $P_{n\omega}$-nullset, and this is true for arbitrary n. By the universality of the arrow g to the projective limit \mathcal{B}_ω of the spaces \mathcal{B}_n, we have $Q_\omega ; g = 1_{S_\omega}$.

3.1 Discussion

The kernel Q_ω constructed in the proof of Theorem 2 is not unique, as the martingale convergence theorem determines Q_ω only up to a nullset for each $B \in \mathcal{B}_T$. Moreover, there is some flexibility in the formation of the completion \hat{T}. Thus the construction is at best a weak colimit.

If g is not surjective, the kernel Q_ω is not a universal arrow in the strict sense of the word, as it is not necessarily of type $S_\omega \to T$. An extension of T to \hat{T} may be required to accommodate the orphans $s \in S_\omega$. This can always be done in a straightforward way as we have done in the proof of Theorem 2, but the type of the arrow is then $S_\omega \to \hat{T}$, not $S_\omega \to T$. As we have noted, the orphans can be omitted, giving a kernel of type $S'_\omega \to T$ for a dense subset $S'_\omega \subseteq S_\omega$, but this is not of the correct type either. However, under the assumption that T is complete with respect to the pseudometric (3.4), the construction becomes a genuine weak colimit.

We made use of inner regularity in the construction of the $P_{k\omega}$. Moy [19, p. 907] makes the following claim:

Clearly, μ^* is a non-negative finite-valued additive set function on $\bigcup_{t \in T} \mathcal{F}_t$ and is countably additive on every \mathcal{F}_t. Kolmogorov has proved that such a set function is also countably additive on $\bigcup_{t \in T} \mathcal{F}_t$ [13].

Moy is working in the space of real sequences, which is implicitly inner regular. The claim does not hold more generally, as the following counterexample shows. Let \mathcal{F}_n be the σ-algebra on \mathbb{N} generated by the sets $\{0\}, \{1\}, \ldots, \{n-1\}$ and $\{n, n+1, n+2, \ldots\}$. Then \mathcal{F}_n is finite and $\bigcup_n \mathcal{F}_n$ consists of all finite and cofinite sets. The σ-algebra \mathcal{F}_n generated by $\bigcup_n \mathcal{F}_n$ is the full powerset of \mathbb{N}, as every set is a countable union of singletons.

Now let U be a nonprinciple ultrafilter and let

$$\mu(A) = \begin{cases} \frac{1}{2} + \sum_{n \in A} 2^{-(n+2)}, & A \in U, \\ \sum_{n \in A} 2^{-(n+2)}, & A \not\in U. \end{cases}$$
Then μ is nonnegative, finite-valued, and countably additive on every F_n, but not countably additive on $\bigcup_{n \in \mathbb{N}} F_n$, since
\[
\sum_{n \in \mathbb{N}} \mu(\{n\}) = \frac{1}{2} \quad \mu(\mathbb{N}) = 1.
\]
The space is not inner regular, as any set in U is at least $1/2$ heavier than any compact subset.

3.2 Encoding Kolmogorov Extension

The standard Kolmogorov extension theorem is a special case involving measures on product spaces

\[
S_n = \prod_{n=0}^{n} S_n' \quad S_\omega = \prod_{n=0}^{\infty} S_n'.
\]

The functions $f_{nm} : S_n \rightarrow S_m$ for $m \leq n$ and $\pi_n : S_\omega \rightarrow S_n$ are simply the projections onto lower-dimensional products:
\[
f_{nm}(s_0, \ldots, s_n) = (s_0, \ldots, s_m), \quad m \leq n \quad \pi_n(s_0, s_1, \ldots) = (s_0, \ldots, s_n).
\]

The generalization to projective limits of spaces connected by measurable functions f_{nm} has been observed by several authors [2,3,9,18,22,23].

In the classical treatment, we are given component probability measures μ_n on the S_n satisfying the consistency condition $\mu_m = \mu_n \circ f_{nm}^{-1}$ for all $m \leq n$. The Kolmogorov extension theorem guarantees the existence of a unique probability measure μ on S_ω such that $\mu_n = \mu \circ \pi_n^{-1}$ for every n.

In our framework, the kernels $P_{mn} : S_m \rightarrow S_n$ are the conditional expectations $P_{mn}(s, A) = \mathcal{E}_m(s, A)$ for $s \in S_m$ and A a measurable subset of S_n. The kernels compose properly by virtue of (2.2). The necessary consistency condition among the component measures is given by Lemma 2: for $k \leq m \leq n$, $s \in S_k$, and A a measurable subset of S_m, $\mathcal{E}_k(s, A) = \mathcal{E}_k(s, f_{mn}^{-1}(A))$.

3.3 Encoding Martingales

Given a $[0, 1]$-valued martingale (X_n, F_n) on a space (S, F_ω, μ), we can encode it as a cocone on a chain of measurable spaces and reversible Markov kernels. This can be done in two distinct but equivalent ways, the first closer in spirit to classical martingale theory on a single space with a filtration of σ-algebras, the second closer to probabilistic semantics involving a chain of state transition systems.

In the first approach, we define $S_n = S$, $B_n = F_n$, and for $m \leq n$, $s \in S$, and $A \in F_n$,
\[
P_{mn}(s, A) = \mathcal{E}_m(s, A) \quad f_{nm}(s) = s.
\]
As observed in §2, the conditional expectation $E_m(s, A)$ is a measurable function in s and a measure in A, thus a Markov kernel. Note that $P_{mn}(s, A)$ does not depend on n. The standard property (2.2) of conditional expectations implies that composition works correctly: for $k \leq m \leq n$ and $A \in F_n$,

$$ (P_{km} : P_{mn})(s, A) = \int_{t \in S} E_k(s, dt) \cdot E_m(t, A) = E_k(s, A) = P_{kn}(s, A). $$

The function f_{nm} is a measurable function with respect to the measurable sets F_n on its domain and F_m on its range, since $F_m \subseteq F_n$. Moreover, f_{nm} is the right inverse of P_{nm}: for $A_m \in F_m$,

$$ (P_{mn} ; f_{nm})(s, A_m) = \int_{t \in S} E_m(s, dt) \cdot 1(t, A_m) = E_m(s, A_m) = 1(s, A_m). $$

The projective limit S_ω of the S_n is just S itself, and $\pi_n(s) = s$. This gives

$$ P_{mn}(s, A) = P_{mn}(s, \pi_n^{-1}(A)) = P_{mn}(s, A) = E_m(s, A), \quad A \in F_n. $$

Since $P_{mn}(s, -)$ and $E_m(s, -)$ agree on $\bigcup_n F_n$, they agree on all of F_ω.

Now to encode the martingale X_n, let X_ω be the pointwise limit of the X_n as guaranteed by the martingale convergence theorem. Let

$$ T = S \times \{0, 1\} \quad g(s, 0) = g(s, 1) = s $$

$$ G_\omega = \{ g^{-1}(A) \mid A \in F_\omega \} = \{ A \times \{0, 1\} \mid A \in F_\omega \}, \quad \alpha \in \omega \cup \{\omega\} $$

$$ B_T = \{(A \times \{1\}) \cup (B \times \{0\}) \mid A, B \in G_\omega\}. $$

The set B_T is the σ-algebra generated by $G_\omega \cup \{S \times \{1\}\}$. Define the kernel $Q : S \to T$ by

$$ Q(s, (A \times \{1\}) \cup (B \times \{0\})) = X_\omega(s) \cdot 1(s, A) + (1 - X_\omega(s)) \cdot 1(s, B) $$

for $A, B \in G_\omega$. In other words, $Q(s, -)$ is a weighted sum of Dirac measures on $(s, 1)$ and $(s, 0)$ with weights $X_\omega(s)$ and $1 - X_\omega(s)$, respectively:

$$ Q(s, S \times \{1\}) = Q(s, \{(s, 1)\}) = X_\omega(s) $$

$$ Q(s, S \times \{0\}) = Q(s, \{(s, 0)\}) = 1 - X_\omega(s). $$

Intuitively, from state s, flip an $X_\omega(s)$-biased coin and enter state $(s, 1)$ on heads and $(s, 0)$ on tails. This Q will turn out to be $Q_\omega : S_\omega \to T$ for the sequence $Q_n : S_n \to T$ we are about to define.

For $A \in F_\omega$, we have

$$ (Q : g)(s, A) = \int_{t \in T} Q(s, dt) \cdot g(t, A) = \sum_{i \in \{0, 1\}} Q(s, \{(s, i)\}) \cdot 1(g(s, i), A) $$

$$ = X_\omega(s) \cdot 1(s, A) + (1 - X_\omega(s)) \cdot 1(s, A) = 1(s, A), $$

therefore g is the right inverse of Q. 15
Now define

\[Q_n = P_{n\omega} : Q \quad \quad g_n(s, 0) = g_n(s, 1) = s. \]

Then

\[Q_m = P_{m\omega} : Q = P_{mn} : P_{n\omega} : Q = P_{mn} : Q_n, \]

and for \(A \in \mathcal{F}_n \),

\[(Q_n : g_n)(s, A) = (P_{n\omega} : Q)(s, A) = P_{n\omega}(s, A), \]

and since \(P_{n\omega} \) agrees with \(P_{nn} \) on \(A \in \mathcal{F}_n \), this is \(1(s, A) \), thus \(g_n \) is the right inverse of \(Q_n \).

Finally, to show that \(Q_n \) encodes the martingale,

\[Q_n(s, S \times \{1\}) = (P_{n\omega} : Q)(s, S \times \{1\}) = \int_{t \in S} P_{n\omega}(s, dt) \cdot Q(t, S \times \{1\}) = \int_{t \in S} \mathcal{E}_n(s, dt) \cdot X_\omega(t) = \mathcal{E}(X_\omega | \mathcal{F}_n)(s) = X_n(s). \]

3.4 An Alternative Construction

There is another construction equivalent to the one of §3.3 but closer in spirit to state transition systems as they arise in programming language semantics.

As above, suppose we are given a martingale \((X_n, \mathcal{F}_n)\) on a probability space \((S, \mathcal{F}_\omega, \mu)\). For \(s, t \in S \), define

\[s \equiv_n t \iff \forall A \in \mathcal{F}_n \ (s \in A \iff t \in A) \quad [s]_n = \{t \in S \mid s \equiv_n t\} \]

\[A/\equiv_n = \{[s]_n \mid s \in A\}, \quad A \in \mathcal{F}_n \quad S_n = S/\equiv_n \quad \mathcal{B}_n = \{A/\equiv_n \mid A \in \mathcal{F}_n\}. \]

The Boolean operations on \(\mathcal{F}_n \) respect the equivalence relation \(\equiv_n \), therefore \((S_n, \mathcal{B}_n)\) is a measurable space.

For \(A/\equiv_n \in \mathcal{B}_n \) and \(m \leq n \), we define

\[P_{mn}([s]_m, A/\equiv_n) = \mathcal{E}_m(s, A) \quad f_{nm}([s]_n) = [s]_m. \]

The standard definition of conditional expectation as a Radon–Nikodým derivative ensures that \(\mathcal{E}(A_n | \mathcal{F}_m) \) is \(\mathcal{F}_m \)-measurable, so if \(s \equiv_n t \), then \(\mathcal{E}(A_n | \mathcal{F}_m) \) takes the same value on \(s \) and \(t \), thus \(P_{mn} \) is well defined up to a \(\mu \)-nullset. Also, \(f_{nm} \) is well defined, since \(\mathcal{F}_m \subseteq \mathcal{F}_n \), therefore \(\equiv_n \) refines \(\equiv_m \).

One can define \(T, g, \mathcal{B}_T, \mathcal{G}_n, Q_n, g_n \), and \(Q \) as in §3.3. The collection of maps \([\cdot]_\alpha : (S, \mathcal{F}_\alpha) \to (S_\alpha, \mathcal{B}_\alpha) \) for \(\alpha \in \omega \cup \{\omega\} \) constitute a natural isomorphism between the two cocones \((S, \mathcal{F}_\alpha)\) and \((S_\alpha, \mathcal{B}_\alpha)\). As such, they preserve all relevant measure-theoretic structure.
4 Conclusion

We have characterized the Kolmogorov extension theorem as a colimit-like construction in a category of Radon spaces and reversible Markov kernels. The Doob martingale convergence theorem is used to establish universality. These results provide a compositional denotational semantics for standard iteration operators in programming languages as a limit of finite approximants, even in the absence of a natural partial order. This is the case, for example, with the system reported in [8].

In Theorem 2(ii), the function g would already be surjective and one would not need to take the completion \hat{T} if T were already complete with respect to the pseudometric (3.4). It would be interesting to identify the weakest possible completeness assumptions on T that guarantee this. Another intriguing question is whether a point-free approach as in [11] might yield a true colimit.

We have forgone several possible generalizations: continuous time, signed measures, and more general colimits. Such matters present themselves as interesting topics for future investigation.

Acknowledgments

Sincere thanks to Nate Foster, Jean Goubault-Larrecq, Lionel Levine, Konstantinos Mamouras, Prakash Panangaden, John Pike, Mark Reitblatt, Alexandra Silva, Alex Simpson, Ana Sokolova, and Harald Woracek.

References

