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In the 70s, the interplay between microscale electronics and mechanics gave

birth to micro- and nanoelectromechanical systems (MEMS/NEMS) that are

prevalent in our daily life. The emergence of silicon photonics in the 90s was

a result of the marriage between microelectronics and optics promising extreme

communication bandwidth and processing power. A few years ago, the field of

microscale optomechanics that harnesses the interaction between light and me-

chanics on a nanoscale emerged. The field witnessed the birth of many exciting

technologies as quantum limited detection of ultra-weak forces, preparation of

micromechanical oscillators close to their motional quantum ground states and

enabling self-sustaining oscillations of mechanics with light.

The aim of this thesis is to explore and address a few challenges in coupled

optomechanical systems. So far, most work in this area focuses on single device

behaviors. One could imagine that like connecting many transistors together

leads to complex computing machines, a network of coupled optomechanical

devices have the potential to offer dynamics that are not accessible with single

optomechanical devices. In this thesis, I show that indeed, light can be used to

synchronize arrays of mechanical oscillators even when they are not physically

connected.

I will also show in this thesis that coupling distinct optical and mechanical

elements together could also enable a new paradigm of devices. We couple a

single Carbon Nanotube (CNT) strongly to on-chip high-Q optical microcavi-



ties. Despite the tiny size of CNT, we show that the optical microcavity is still

extremely sensitive to the CNT motion. We demonstrate that we can observe in

real-time the thermal Brownian motion of a single CNT for the first time. The

unique carbon-optical system also enables an almost completely dissipative op-

tomechanical system that has not been achieved in any other type of systems to

date.
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CHAPTER 1

INTRODUCTION

Scaling played a paramount role in the development of modern technology.

The emergence of microelectronics revolutionized signal processing and com-

puting. Advanced fabrication techniques have led to an explosion of indus-

trial and scientific research in the field of micro- and nanoelectromechanical

(MEMS/NEMS) devices where microelectronics is combined with microme-

chanics [1]. MEMS enabled technology includes advanced navigation systems,

high precision clocks and accelerometers. Combining microelectronics with

photonics on the other hand, enabled the field of nanophotonics and optoelec-

tronics devices [2]. For example, silicon photonics promises unparalleled band-

width for on-chip data communication [3]. In recent years, a new field of op-

tomechanics has emerged where light is controlled to interact with mechanics

[4]. The scaling down of optical and mechanical devices push the devices into a

regime where the force of light could control and alter the mechanics and vice

versa. The field of optomechanics and optoelectromechanics, which I will dis-

cuss in this thesis, will be a integral part of future on-chip devices.

An optomechanical resonator consist of an optical and a mechanical res-

onator. The optical and mechanical degrees of freedoms are coupled such that

the change of one influence the other. The first discussion of the optomechanical

effect was by Braginsky in 1969 [5], where he discussed the radiation pressure,

or the optical force interacting with a movable mirror. A typical representation

of optomechanical system consists of an optical cavity formed by two opposite

facing mirrors (a Fabry-Perot cavity) with one of the mirror free to move. The

movable mirror is attached to a mechanical spring.
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In a Fabry-Perot optical cavity, light can only be coupled into the cavity if

the length of the of the cavity (L) is a half-integer multiple of the wavelength

of the light (λl) (L = 1
2nλl, n ∈ 1, 2, 3, ...). When such matching condition occurs,

light passes multiple trips around the cavity and leads to energy build up in the

cavity. In each reflection, the momentum of the light changes sign and due to

the conservation of momentum, the mirror must absorbs the same amount of

momentum. This leads to the motion of the mirror. As the mirror displaces by

δx, the displaced cavity length is changed (Ld = L + δx). The optical resonant

condition is no longer satisfied and the optical energy leaks out of the optical

cavity. As the optical energy and the optical force in the cavity reduces, the me-

chanical spring brings the mirror back in its original position. The light energy

builds up and the cycle repeats.

The first merit of cavity optomechanics provide is its high displacement sen-

sitivity. Laser light which is often used to excite the optical cavity is the ’quietest’

source as it may only be limited by the noise of the vacuum. This means that

when the mechanical object makes a tiny displacement, there will be a footprint

on the optical transmission signal as long as the induced amplitude or phase

change of the light is above the quantum noise floor. It is not uncommon to

reach sub fm/
√

Hz sensitivity in typical integrated optomechanical devices [6].

On the other hand, the interaction between the optical and mechanical de-

grees of freedom can lead to accurate control of nanomechanical devices, such

as amplification and damping of the mechanical mode. Recently, it has been

shown that light can cool (coherent damping) a mechanical mode to its ground

state [11] and quantum coherent coupling is possible between light and the me-

chanical degree of freedom [12]. The quantum nature of light and the long
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coherence time of micromechanical resonators may become an essential com-

ponent for on-chip quantum information processing. The amplification in op-

tomechanics can lead to self-sustaining oscillations of the mechanical oscillator

when only driven by continuous-wave lasers, which is promising for compact

frequency sources and mass sensing.

In this thesis, we explore the high sensitivity and the novel dynamics of

optomehcanical system in two parts. For the optomechanical dynamics part,

we study microscale double-disk optomechanical resonators and show that dis-

tant and dissimilar mechanical resonators can be synchronized to oscillate at the

same frequency coupled only through light. The second part of the thesis ad-

dress a unique enabling technology where we study the real-time dynamics of a

single carbon nanotube (CNT) only a few nanometers in diameter by coupling

it strongly to a high quality factor and high finesse optical microcavity.

1.1 Thesis Organization

We give a brief background in chapter 2 of the concept of cavity optomechanics

that is used in this thesis. Chapter 3 describes our effort on achieving high

mechanical quality factor in a double-disk optomechanical resonator. Chapter

4 discusses synchronization of two such devices coupled evanescently through

the optical field. We show in chapter 5 that synchronization can be achieved in

a much larger array of optomechanical resonators which means it is scalable. In

chapter 6, we couple a single suspended CNT to the near field of a high finess

optical cavity and show that we can monitor the mechanical vibrations of a

single CNT in real-time.
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CHAPTER 2

THEORETICAL BACKGROUND

We start our discussion of cavity optomechanics from whispering gallery mode

(WGM) optical resonators, as all work in this thesis somewhat revolves around

WGM optical resonators. The name WGM is originated from sound waves

travelling along the walls of Whispering Gallery of St Paul’s Cathedral. Op-

tical waves can be trapped inside a circular high index dielectric medium just

like the sounds waves can be trapped in the walls via total internal reflection.

The optical medium can be in the form such as a sphere, a disk or a ring.

When a propagating optical wave completes a round trip and travels back to

its starting point, if it interferes constructively with itself, an optical resonance

is formed. The discrete wavelengths where the resonances occur are called the

optical resonant wavelengths. We call these resonances the optical modes of the

cavity. The spatial-temporal geometry of the WGMs can be explicitly solved

from Maxwell’s Equations [7], but here we shall focus on the mode dynamics of

the WGMs by simply denoting an optical mode as am(t), which is the mth com-

plex modal amplitude of the optical cavity. We further abbreviate the notation

by removing m as we mostly work with only one resonance in the experiments

described in this thesis.

2.1 Classical Equations for an Optomechanical Resonator

The beauty of working with the complex modal amplitude a is that one can ana-

lyze an optical system using coupled mode theory [8]. Under the rotating wave

approximation, which assumes that the laser excitation wavelength is close to
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the optical resonant frequency (ωL ∼ ωo), the evolution of an optical resonant

mode can be expressed as

ȧ = i(ωL − ωo)a − γ
2

a +
√
γexts (2.1)

where γ is the optical loss rate, γext is the external optical coupling rate, and s is

the time dependent input optical amplitude with Pin = |s|2.

The mechanical displacement x of any dielectric material interacting with

the optical field, such as the cavity itself or an external object, can couple to the

optical mode of the cavity through perturbing the optical resonant frequency ω

(and even the damping rate γ as we shown later in the thesis). A measure for

the strength of this interaction is the optomechanical coupling rate gom ≡ dω
dx .

Equation 2.1 now becomes

ȧ = i(Δ + gomx)a − γ
2

a + i
√
γexts (2.2)

where Δ = ωL − ωo is the laser cavity detuning. At the same time, the optical

field exert a force on the mechanical object with the magnitude Fopt =
dU
dx where

U = |a|2 = N�ω is the total energy of N photons inside the cavity. The optical

force has a magnitude of

Fopt =
dU
dx
= N�

dω
dx
=
|a|2
mω

gom (2.3)

The master equation that governs the mechanical object is then

ẍ + Γx + Ω2x =
gom

ω
|a|2 (2.4)

Equations 2.2 and 2.4 fully describes the classical dynamics of a single optome-

chanical resonator.
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2.2 Dynamical Back-actions

An optomechanical resonator can be understood as two second order linear sys-

tems with parametric (mechanical to optical) and nonlinear (optical to mechani-

cal) coupling. Such coupling leads to interesting dynamical effects including the

optical spring effect and heating and cooling of mechanical vibration modes.

Our resonators work in the so called unresolved-sideband limit (USL) where

the mechanical frequency is much less than the cavity damping rate (Ω << γ).

Physically, USL means the optics reaches equilibrium much faster than the me-

chanics. In this regime, we can analyze the dynamical effect between the optical

and mechanical degree of freedoms by making some approximations to equa-

tions 2.2 and 2.4. We assume that the optics reaches the steady state with ȧ = 0.

Equation 2.2 can then be explicitly solved for a(x),

a(x) = i
√
γexts

i(Δ + gomx) − γ2
(2.5)

plug this into equation 2.2, we get

ẍ + Γx + Ω2x =
gom

mω
γext|s|2

(Δ + gomx(t − τ))2 −
(
γ

2

)2 (2.6)

Notice that we include a delay τ in the displacement on the RHS of the equa-

tion above. Although τ is much smaller than the mechanical period, the delay

cannot be omitted in the analysis because it gives rise to the optical damping

and amplification effect. This can be visualized by performing a retardation ex-

pansion of equation 2.6 with x(t − τ) ∼ x(t) + 2
γ

˙x(t) + O( ¨x(t)) where the delay is

approximated by the optical cavity life time τ ∼ 2
γ
. The mechanical equation

now reads

ẍ + Γ′x + Ω′2x = 0 (2.7)
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where

ΔΓ = Γ′ − Γ = − 16g2
oms2γ2

extΔ

mγ((γ/2)2 + Δ2)2ω0
,ΔΩ = Ω′ −Ω = 8g2

oms2γ2
extΔ

mΩ((γ/2)2 + Δ2)2ω0
(2.8)

ΔΓ describe the optical induced damping and amplification of the mechani-

cal resonator and ΔΩ is the optomechanical spring effect. This approximation is

somewhat oversimplified but nevertheless capture the essential dynamics that

is relevant for the discussion in this thesis.

We introduce two ways to understand the physics of the optomechanical

damping/gain and spring effect: a feedback picture and a scattering picture.

In the feedback picture, the sign of the laser detuning determines whether the

optical response lead or lag the mechanical motion. The optical response is re-

tarded with respect to the mechanical motion because the optical cavity have a

finite response time as describe previously. The optical response therefore can

be decomposed in to a in-phase component which give rise to ΔΩ and a quadra-

ture component that give rise to ΔΓ. In the scattering picture, when the laser

is detuned from the cavity resonance, the photons can either absorb or emit a

phonon creating two sidebands to the laser that are offset by the mechanical

frequency Ωm from the laser. The amplitude of the two sidebands are asymmet-

ric due to the shape of the optical resonance resulting in the amplification or

damping of the mechanical resonator.

2.3 Optical Readout of Mechanical Motion.

When an optomechanical resonator is interrogated at low optical powers, the

optical force is small and does not significantly affect the mechanical oscilla-

7



Optical Foce
Mechanical DisplacementAmplitude

Time

Amplitude

Time
Feedback Picture Sideband Picture

Frequency

Amplification

Damping

Gain phonons
Loss phonons

Figure 2.1: Optomechanical gain and damping process. The amplifica-
tion and damping in the mechanical degree of freedom when
the cavity is driven by a continuous wave laser can be under-
stood using a feedback picture (left) or a scattering/sideband
formalism (right). In the feedback picture, the delay between
the optical and the mechanical response determines the sign of
the effective change in the mechanical damping. In the side-
band formalism, the cavity transmission creates asymmetry in
the probability for the light to gain or loss phonon energies
which effectively changes the damping.

tion. The light can therefore be used to readout the mechanical motion of the

resonator. This can be visualized through a simple approximation of the optical

transmission T where

T = |s + i
√
γexta|2 = s2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝1 − γext

(Δ + gomx)2 −
(
γ

2

)2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ (2.9)

For a small change of Δx the change in the optical transmission is approxi-

mately
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δT ∼ dT
dx
δx =

dT
dω

dω
dx
Δx =

dT
dω

gomδx (2.10)

With a small displacement δx and Δ >> gomδx

dT
dω
=

Δγext(
Δ2 +

(
γ

2

)2
)2 (2.11)

which is a constant for a given laser-cavity detuning Δ. Therefore at low opti-

cal power, the displacement of the mechanical resonator x is directly trasduced

on to the optical transmission with a fixed gain. At the optimum laser-cavity

detuning Δ = γ/2, the optical trasduction is

δT = 2ηgomδx (2.12)

where η = γext/γ is the ideality coupling factor describing the external optical

coupling strength [9]. So we can see that for small amplitudes δx, the mechani-

cal spectrum will be linearly imprinted onto the optical spectrum. This concept

will be used through out the thesis.

2.4 Self-sustaining Optomechanical Oscillator

When the laser is blue detuned to amplify the mechanical motion, if it exceeds a

certain threshold power to overcome the intrinsic mechanical damping (Γ′ → 0),

the optomechanical resonator spontaneously starts oscillation and become a

limit cycle oscillator, characterized by a sudden linewidth narrowing and am-

plitude growth of the mechanical power spectrum. The amplitude of the os-

cillation is limited by the nonlinearity in the optical transduction. The thresh-

old power at which the oscillation occurs at the optimum laser-cavity detuning

(Δ = γ2 ) can be obtained by setting Γ′ = 0 in equation 2.8 which gives

9



Pth =
Ωmmeffω

4

8ηg2
omQmQ3

(2.13)

where Q = ω/γ is the optical quality factor, Qm = Ω/Γ is the mechanical quality

factor.

In chapter 4 and 5, we focus on the amplification and the limit cycle of op-

tomechanical oscillators.
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CHAPTER 3

HIGH QUALITY FACTOR OPTOMECHANICAL RESONATORS

3.1 Background

Optomechanical resonators have fostered record detection of ultra-weak

forces [10], preparation of micromechanical oscillators close to their motional

quantum ground states [11, 12], enabling self-sustaining mechanical oscillator

dynamics [13, 14, 15], and optomechanical photodetection [16]. But like all

micromechanical resonators, their performance suffers from the dissipation of

mechanical energy. The dissipation of mechanical energy in such devices re-

duces their sensitivity, shortens their coherence time, increases their power con-

sumption and degrades the phase noise performance [17, 18]. This mechani-

cal dissipation is often dominated by anchor losses at the necessary supporting

clamps [19, 20, 21], among other mechanisms responsible for the overall dissi-

pation such as thermo-elastic damping [22], phonon scattering [20], and defect

relaxations [23]. Recent efforts in reducing anchor losses in micromechanical

devices include using spoke design [6, 21], phononic bandgaps [24, 25] and ma-

terials with high internal stress [26]. The spoke design creates an artificial bottle-

neck of energy flow at the cost of structural rigidity, whereas phononic bandgap

materials are less suitable for lower frequency resonators as the size of the unit

cell scales up and they occupy larger real estate.
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3.2 A tuning fork analogue

Here we show that the structural loss of an optomechanical oscillator can be

effectively eliminated through the destructive interference of elastic waves, by

emulating the principle of a tuning fork resonator. A tuning fork resonator pro-

duces a long lasting sound when excited, as a result of its high mechanical qual-

ity factor. When a tuning fork vibrates, its two prongs oscillate 180 degrees out

of phase. The elastic wave produced from each prong largely cancels out lead-

ing to no net motion therefore no loss at the base. Here, in order to create the

tuning fork effect, we use double-disk optomechanical resonators [27, 28].

We emulate the tuning fork principle using a dual-disk resonator, consisting

of a pair of thin silicon nitride (Si3N4 ) disks separated by a narrow gap (Fig.

3.1a,b). The thin SiO2 sacrificial layer mechanically couples the top and bottom

resonator, allowing the mechanical waves to interfere. This sub-wavelength gap

also results in the evanescent coupling of the optical fields, creating coupled

optical modes that span both the top and the bottom disks. The attractive optical

forces efficiently excite the antisymmetric mechanical modes, illustrated in Fig.

3.1c,d as the freestanding edges moves in opposite directions. The symmetric

mechanical mode is however much less sensitive to the optical excitation.

When the two freestanding edges are identical, the structural dissipation of

the antisymmetric mechanical mode is minimized. The origin of the anchor loss

in our structures is due to the displacement induced in the clamping area by the

oscillation of each freestanding edge. Such displacement radiates elastic waves

towards the pedestal and the substrate and therefore dissipates energy from the

mechanical resonance (Fig. 1c,d). The antisymmetric mechanical mode excited
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Figure 3.1: Device schematic. (a) Scanning electron micrograph of the
fabricated device. The inset is a close-up of the freestanding
double-disk edges. The two horizontal strings are for support-
ing tapered fibers. (b) Schematic of the cross section of the de-
vice, ut and ub are the undercut depth of the top and bottom
layers, respectively. The false-color scale shows the transverse
electric optical mode profile which spans the top and the bot-
tom disks. (c,d) Finite-element model showing the impact of
the thickness difference of the top and bottom cantilever, lead-
ing to an unbalanced interference of the elastic wave emitted
by the moving edges. (e, f) A lumped theoretical model con-
sists of three masses: mt and mb for the two edges and mp for
the pedestal, each with mechanical frequencies ωt, ωb, ωp and
damping rate γt, γb, γp

.
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experiences much less structural loss than the symmetric mechanical mode due

to the destructive interference between the elastic wave radiated from the top

and the bottom disks.

3.3 Modelling the anchor loss

In order to gain a physical intuition of the dissipation process, the dual-disk

mechanical mode structure could be dissembled into simpler building blocks,

the two freestanding edges (resonators T and B) emulating a tuning fork and

the pedestal (resonator P), as depicted in Fig. 3.1e. Since all the mechanical

energy inside the pedestal leaks to the bulk substrate, the structural loss rate

of the resonator can therefore be established as the mechanical coupling rate

between the freestanding resonators and the pedestal resonators. The higher the

coupling between the freestanding edges and the pedestal resonator the more

energy dissipation there is through the pedestal.

The coupling strength of the freestanding edges to the pedestal is reflected

in their dispersion curves as a function of the midlle SiO2 layer thickness (tm).

In the case where there is no coupling, the mechanical frequencies of the edge

modes would be independent of tm, which is a parameter of the pedestal mode.

Therefore the more sensitive the mode frequencies are to the SiO2 layer thick-

ness tm, the stronger the coupling is to the pedestal. We numerically inves-

tigate the coupling strength between the freestanding edge and the pedestal

resonators using a finite-element (FEM) solver (COMSOL) through varying the

thickness tm of the middle SiO2 layer . As shown in Fig. 3.2a, the antisymmet-

ric (blue curve) mechanical mode stiffens and the symmetric (red curve) edge
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mode softens as tm reduces. The rapid softening of the symmetric mechanical

mode indicates a strong mechanical coupling to the pedestal mode. Whereas the

antisymmetric mode displays an almost flat dispersion relation to tm, indicating

that the antisymmetric mode is insensitive to tm of the pedestal resonator and

therefore is weakly coupled to the pedestal mode. This is due to the cancelling

of the elastic wave from the two counter oscillating edges.

Figure 3.2: Device Simulations. (a) Dispersion of mechanical frequencies
as function of middle SiO2 thickness; grey-dashed: pedestal
mode, solid-blue: antisymmetric (AS) mode, solid-red: sym-
metric (S) mode, vertical solid-grey shows position of 200 nm
SiO2 thickness. (b) Damping rate as function of top and bot-
tom disks thicknesses difference for 3 μm (dashed, left scale)
and 200 nm (solid, right scale) middle SiO2 thickness, for the
AS (blue) and S (red) modes. (c-e) ẑ component of mechanical
Poynting vector spatial distribution (false-color scale) for a top
disk thicker δt = 20 nm (c), equal δt = 0 (e), and thinner δt = −20
nm (f) than the bottom one.

The vital role of the thickness difference in the freestanding edges can be

visualized through the mechanical dissipation rate shown in Fig. 3.2b. Our

numerical simulation of the structural loss rate as a function of the thickness

difference between the two edges in Fig. 3.2b confirms that indeed the loss rate
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is a minimum when the two disks are of equal thickness. Note that for a thick

sacrificial layer (dashed curves) the minimum structural loss for the antisym-

metric edge mode occurs when the top disk is slightly thicker. This is due to

the symmetry breaking from the finite undercut radius of the bottom disk. Figs.

3.2c-e show the z-component of the mechanical energy flow (mechanical Poynt-

ing vector) for three top disk thickness differences when tm = 200 nm. It is clear

that the elastic wave radiation into the pedestal is drastically reduced when the

two disks are of equal thickness.

3.4 Fabrication and experiment

We develop a pre-compensation technique to fabricate the freestanding edges

of the double-disk structure and ensure that they are equal in thickness. We

deposited a 240/200/220 nm Si3N4 /SiO2 /Si3N4 film stack on a silicon wafer

with 3 μm of thermal SiO2 . The stoichiometric Si3N4 films are deposited via

low pressure chemical vapor deposition technique and the SiO2 layer is de-

posited via plasma-enhanced chemical vapor deposition and subsequently N2

annealed at 1100 ◦C over 1 hour. The 20 nm difference in the thickness of the two

Si3N4 layers is designed to pre-compensate the change in their relative thickness

as a result of the releasing wet etching step. We pattern the wafer with e-beam

lithography and transfer the pattern with reactive ion etching (CHF3/O2). The

devices are then undercut in a buffered oxide etch (6:1). This wet etching pro-

cess has a finite selectivity to Si3N4 and SiO2 , roughly 1:100. Therefore it not

only etches SiO2 at 80 nm/min but also removes Si3N4 at a slower rate of 0.8

nm/min. As the top Si3N4 layer is more exposed, it etches slightly faster than

the bottom Si3N4 layer. After the designed release time, the resulting structure
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has two suspended Si3N4 layers with nearly identical thickness.

We experimentally demonstrate a high mechanical quality factor of 104 at

102.3 MHz, close to the material limited loss of Si3N4 at this frequency range

[26]. This is more than a threefold improvement over previously demonstrated

devices with uncompensated films whose typical measured mechanical quality

factors are Qm = 2500 [15]. We measure the mechanical quality factor of our

devices by coupling a low power continuous wave laser to the devices through

a tapered optical fiber, as show in the schematic of Fig. 3.3a. The devices are

characterized inside a vacuum chamber (5-10 mTorr) at room temperature to

minimize air damping. The mechanical spectrum can be observed through the

optical transmission detected by a fast photodiode (Newport 1811A) which is

connected to a radio-frequency spectrum analyzer. We test the optomechanical

resonator by tuning the laser to an over-coupled optical resonance near 1530

nm with a loaded optical quality factor of 1.5 × 105. When the low power laser

is slightly detuned from the cavity resonance, the thermal Brownian motion

of the mechanical resonator is transduced to the optical signal as amplitude

modulated radio-frequency (RF) signals. A typical RF spectrum of the detected

photocurrent, which is proportional to thermal Brownian mechanical spectrum

power density, is shown in Fig. 3.3c for an optimized cavity. The quality factor

Qm, is obtained from a Lorenztian fit through the relation Qm = ωm/δωm, where

δωm = 2γm is the full width half maximum of the thermal Brownian peak and ωm

and γm are the mechanical frequency and damping rate. We used an input op-

tical power of 6 μW, well below the estimated threshold power of regenerative

oscillation of 180 μW. At this input power level, the optomechanical feedback

[29] does not affect the measured Qm significantly. This is ensured by optimally

detuning the laser on both sides of the optical resonance and verify that the
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Figure 3.3: Experimental results.(a) Simplied schematic of the experimen-
tal setup. (b) Optical transmission showing a resonance cen-
tered at λ0 =1530.6 nm with a loaded optical quality factor
Qopt = 1.5 × 105. (c) Radio-frequency power spectral density of
the transmitted optical signal. A typical AS mechanical mode
resonant frequency centered at ν0 = 102.3 MHz for the opti-
mized thickness device showing a quality factor Qm = 104. (d,e)
Measured mechanical frequency (d) and dissipation (e) of the
devices etched through different times. The solid curves are
the fitted analytical model prediction, the dashed line is the
thermoelastic damping contribution. The error bars in (e) are
obtained from the standard deviation among five identical de-
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difference between the blue and red-detuned Q-measurement is less than 1 per-

cent. The measured mechanical frequencies (dissipation)) are shown as circles

in Fig. 3.3d (Fig. 3.3e). The mechanical quality factors of the devices with pre-

compensated layers have an average mechanical quality factor of (8.0±0.8)×103.

3.5 Coupled mechanical resonator model

We show that the results from the numerical simulations and the experiment

can be explained by a simple analytical lumped model of coupled resonators.

We decompose the structure into the two freestanding edge resonators and the

pedestal resonators as our qualitative analysis described previously. This ana-

lytical model agrees with the frequency dependence and the mechanical quality

factors observed in both our numerical simulations and experimental results

(Fig. 3.3d,e). In the analysis, we associate a mass-spring lumped model with

each resonator identified in Fig. 3.1e. The resulting coupled system is illus-

trated in Fig. 3.1f. Note that when the masses move in opposite phase, there is

no net motion of the pedestal and therefore the damping contribution from the

pedestal damping γp is negligible. The normal modes of the coupled system are

given by the eigenvectors of the matrix of the system:

M(Ω) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

iΔp + γp iκ/2 iκ/2

iκ/2 iΔt + γt iβ/2

iκ/2 iβ/2 iΔb + γb

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (3.1)

where Δp,t,b ≡ Ω − ωp,t,b is the detuning of the sought eigenvalue (Ω) and the

lumped resonators frequencies (ωp,t,b), κ is the coupling rate between the top

and bottom resonators to the pedestal, and ωp the pedestal frequency. β is
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the coupling between the top and bottom resonators and γt,b,p are the damp-

ing rate of the three oscillators We assume the frequency dependence of the

freestanding edges (ωt, b) on the undercut (ut) and thickness (ti) is given by a

circular-plate analytical model, ωi(ti) = xtiu−2
t E1/2[12ρ(1−ν2)]−1/2, where (E, ρ, ν) =

(250 GPa, 3100 kg/m3, 0.25) are respectively the Young modulus, density and

the Poisson ratio for Si3N4 . The numerical factor x ∼ 1.4 is comparable to the

value obtained by solving the plate problem with a clamped-free boundary con-

dition [30]. By solving the characteristic equation given by det[M(Ω)] = 0 we

obtain a complex eigenvalue (Ω) whose real and imaginary parts correspond

to the mechanical frequency and damping of the normal modes, respectively.

The solid blue and red lines on Figs. 3d and 3e show the fitted model pre-

diction for the mechanical frequency and dissipation (Q−1 = 2Im [Ω] /Re [Ω]),

respectively. The bare frequenies ωp,t,b(ut) are calculated from the analytical

circular-plate analytical model and is also used to calculated the bare damp-

ing rates (γt, b = ωp,t,b/(2Qt,b)), with the bare quality factors (Qt,b) inferred from

FEM simulations. Since the model parameters impact very distinctively the real

and imaginary parts of the complex eigenvalue, they were iteratively adjusted

using both the measured frequencies (Fig. 3d) and damping rates (Fig. 3e).

The fitted parameters are given by (Qp, κ, β, x) = (1.2; 110Mhz, 5.96Mhz, 1.36)

for which their initial values are estimated also by FEM simulations. When

the structural loss is eliminated, the dominant loss will be thermoelastic damp-

ing. We show in Fig. 3e, dashed-red line, the fundamentally limited dissipation

based on thermoelastic damping prediction using the typical Si3N4 parameters

(cp, κt, α,T ) = (710 JK−1; 3.2 Wm−1K−1; 2 × 10−6 K−1, 300 K), representing respec-

tively the specific heat, thermal conductivity, thermal expansion coefficient, and

temperature [22, 26, 31, 32]. This shows that our demonstrated device is within
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a factor of 1.3 of the material limited damping. Despite the simplicity of the

model, the obtained fit parameters are in good agreement with values inferred

from the FEM simulations.

3.6 Conclusion

Reducing the structural loss using destructive elastic wave interference is not

only limited to double disk optomechanical oscillators. Using the same method-

ology, one could design for example an identical pair of loosely spaced singly or

doubly clamped cantilevers. When they are excited in an anti-symmetric fash-

ion, their support loss can be eliminated. Our method opens a path towards the

deterministic design of micro- and nanomechanical resonators that are limited

only by material losses.
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CHAPTER 4

SYNCHRONIZATION OF TWO COUPLED OPTOMECHANICAL

OSCILLATORS

4.1 Background

Christiaan Huygens in 17th century noticed that clocks hanging close to each

other on the same wall often become synchronized, which he called an odd

kind of sympathy [33]. He realized that the tiny motion of the wall caused by

the swing of the pendulums is enough to induce synchronized motion between

the two clocks. Later synchronization has found to be a universal phenomena.

In nature, fireflies can flash synchronously possibly for better chances of mating.

In human heart, regular beating occurs because of the synchronized oscillations

of individual pacemaker cells. In fact, it is not uncommon that the pacemaker

cells could oscillate asynchronously giving rise to a condition called arrhythmia.

The circadian cycle is the synchronization of ones’ biological metabolism to the

external cycle of day and night [34]. Some neurons in the brain exhibit complex

network dynamics including synchronization [35]. In the world of technology,

synchronization is the basis for modern communication, navigation and signal

processing. The electric grid also relies on synchronized generators to provide a

stable and high power electrical source [36]. Synchronization could also enable

novel computing and memory concepts [37, 38] such as pattern recognition

[39].

Synchronization of a large network of nanoscale oscillators could revolu-

tionize timing technologies. Synchronized oscillator arrays could enable high

power, high accuracy and low cost frequency sources integrated in a pla-
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narized process. For scientific interests, coupled oscillators arrays integrated

on a chip could put many large complex networks exhibiting exotic nonlin-

ear behaviours in practice [40, 41, 42, 43]. The major challenge with building a

large network of coupled oscillators are non-configurable and short range cou-

pling which limits the control, the size and the topologies of the oscillator net-

works [44, 45, 46, 47, 48]. Previously, synchronization between two micro- and

nanoscale oscillators has been observed in MEMS and spin-torque systems. The

two MEMS oscillators by Shim et al. [42] couple through a mechanical beam

which limits how far away the oscillators can be placed.

We show in this chapter that we can synchronize two physically discon-

nected micromechanical oscillators through only an optical field. Recently, it

is proposed that micromechanical oscillators can be coupled and synchronized

through an optical field. This could form an all-to-all coupling that could over-

come the neighbourhood restriction [45, 49]. Here we use two double-disk op-

tomechanical oscillators (OMO) that we discussed in the previous chapter and

couple them together with light. The two optically coupled OMOs [right (R) and

left (L)] with different mechanical frequencies are placed close to each other but

separated by a narrow gap of ∼ 400 nm which precludes any mechanical cou-

pling. The optical coupling means the mechanical displacement of one OMO

will lead to a force on the other OMO through the optical field. This force is

responsible for the effective mechanical coupling between the two OMOs. As

the OMOs are pumped by a blue-detuned CW laser into self-sustaining oscilla-

tions, the R (L) OMO not only experiences the oscillation at its natural frequency

but also a modulated optical force at the L (R) OMO’s mechanical frequency. As

the coupling between the two oscillators is increased, each OMO is eventually

forced to oscillate at an intermediate frequency between their natural frequen-
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Figure 4.1: Design of the optically coupled optomechanical oscillators
(OMOs). (a) Schematic of the device illustrating the mechani-
cal mode profile and the optical whispering gallery mode. (b)
False-colored scanning electron micrograph (SEM) image of
the OMOs with chrome heating pads (blue) for optical tun-
ing by top illumination. (c,d) The symmetric (S) and anti-
symmetric (AS) coupled optical supermodes. The deformation
illustrates the mechanical mode that is excited by the optical
field. (e) The dynamics of the coupled OMOs can be approxi-
mated by a lumped model for two optically coupled damped-
driven nonlinear harmonic oscillators.

cies (ΩR and ΩL), that is, the onset of synchronization [50, 49, 51]. We also show

that this optical coupling, as oppose to mechanical coupling can be turned on

and off through thermal optical tuning. We observe both the individual free-

running and synchronized oscillation dynamics by switching on and off the

purely optical coupling between two OMOs. This work lays the foundation

for building OMO arrays which is described in the next chapter and large scale

OMO networks [52, 53, 54].
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4.2 Device and fabrication

Our OMO consists of two suspended vertically stacked Si3N4 disks, where the

optical and mechanical modes of such a cavity are localized around the OMO’s

free-standing edge (figure 7.1a,b) . The two disks are 40 μm in diameter and

200 nm in thickness, while the air gap between them is 190 nm wide. Such a

small gap and the relative low refractive index of Si3N4 (n ≈ 2.0) induce a strong

optical coupling between the top and bottom disks. The resonant frequency of

the optical modes of the stacked disks depend strongly on their separation [27];

therefore any mechanical vibration that modulates the vertical gap width also

modulates the optical resonant frequency. The principle of the double-disk

OMO is similar to that of a traditional Fabry-Perot optical cavity except that

the moving mirror is replaced by the moving free-standing edge and the optical

force is changed from radiation pressure to gradient force.

We fabricate the double-disk OMOs using standard lithography techniques.

The double disk devices are patterned using electron-beam lithography fol-

lowed by dry and wet etching steps. The two 210 nm thick stoichiometric Si3N4

films are deposited using low-pressure chemical vapour deposition (LPCVD).

The 190 nm SiO2 layer is deposited by plasma-enhanced chemical vapour de-

position (PECVD). The underlying substrate is a 4 μm SiO2 formed by thermal

oxidation of a silicon wafer. The OMOs are defined by electron beam lithogra-

phy which is then patterned by reactive ion etching. We also patterned heaters

for thermo-optic tuning (detailed in sections below) which are subsequently de-

fined by photolithography lift-off process. After defining the circular pads with

lift-off resist, 200 nm of chrome is deposited on the device using electron beam

evaporation and the residual chrome is lift-off afterwards. In order to release
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the structure, the device is immersed in buffered hydrofluoric acid (6 : 1) for

an isotropic etch of the SiO2 in between the disks and the substrate layer. The

device is then dried with a critical point dryer to avoid stiction between the two

Si3N4 disks.

4.3 Coupled optical cavities

We describe in this section how the two double-disk OMOs are coupled opti-

cally. The two OMOs are separated by a distance of dg = (400±20) nm, minimiz-

ing direct mechanical coupling. This gap results in evanescent optical coupling

between the OMOs when their optical resonant frequencies are close. The op-

tical coupling leads to two optical supermodes spatially spanning both OMOs:

a symmetric, lower frequency mode b+(t) (figure 7.1c) and an anti-symmetric

higher frequency mode b−(t) (figure 7.1d). Their eigenfrequencies are given by

ω± = ω̄ ± κ/2, where ω̄ = (ωL + ωR)/2 and ωL (ωR) is the uncoupled optical reso-

nant frequency of the L (R) OMO and κ is the optical coupling rate: a reflection

of the distance between the two cavities. The optical supermodes can be ana-

lytically solved using coupled mode theory [8], assuming that the coupling is a

weak perturbation to the individual cavity eigenmode (κ << ωFS R).

4.3.1 Coupled mode equations

The optical modes a1 and a2 of each optical cavity are coupled through the op-

tical near-field. Due to scattering, there is also coupling between the clockwise

(cw) and counter-clockwise (ccw) optical modes, therefore we need to consider
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four optical modes, a(cw,ccw)
1 and a(cw,ccw)

2 . The coupled equations satisfied by these

modes are given by [8, 55] ,
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ȧcw
1

ȧccw
1

ȧcw
2

ȧccw
2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−γ1
2 − iω1

iβ
2

iκ
2 0

iβ
2 −γ1

2 − iω1 0 iκ
2

iκ
2 0 −γ2

2 − iω2
iβ
2

0 iκ
2

iβ
2 −γ2

2 − iω2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

acw
1

accw
1

acw
2

accw
2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+
√
γ1ηcs1(t)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

0

0

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(4.1)

where ωm are optical resonance angular frequencies, γm is total damping rate,

κ/2 is the inter-cavity optical coupling rate, ηc = γe/(γi1 + γe) is the coupling

ideality factor, γe is the external loss rate (due to the bus waveguide) and γi is

the intrinsic damping rate [9].

The system of Eqs. (4.1) can be diagonalized exactly, each eigenvector is gov-

erned by an equation of the form

ḃ(m,±) =
[−i (ω̄ + (−1)mξ/2 ± β/2) − γ̄/2]

b(m,±)(±)m κ
√
γ1ηcs1(t)

2ξ
, for m = 1, 2, (4.2)

where ω̄ = (ω1+ω2)/2, γ̄ = (γ1+γ2)/2, ξ = κ
√

1 − (δ/κ)2 and δ = (γ1−γ2)/2+ i(ω2−
ω1). The original fields acw,ccw

1,2 can be recovered from the eigenvectors through

the relation, ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

acw
1

accw
1

acw
2

accw
2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

1
2ξ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−κb(1,−) + (ξ + iδ)b(2,−)

−κb(1,+) + (ξ + iδ)b(2,+)

κb(1,−) + (ξ − iδ)b(2,−)

κb(1,+) + (ξ − iδ)b(2,+)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(4.3)
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where b(m,±) =
(
accw

m ± acw
m

)
, Eq. (4.3) will be used to calculate the optical transmis-

sion function in the section 4.3.2 below.

4.3.2 Steady-state transmission

To obtain the low-power steady-state optical transmission spectrum, we assume

that the laser driving term in Eq. (4.1) is oscillating at ω, i.e., s1(t) = s1eiωt.

Eq. (4.2) can be written in a rotating frame c(m,±)(t) = c̃(m,±)(t)eiωt. The resulting

equations will be of the form,

˙̃b(m,±) =
[
iΔ(m,±) − γ̄/2]

b̃(m,±)(±)m κs1
√
γ1ηc

2ξ
, for m = 1, 2, (4.4)

where Δ(m,±) = ω− (ω̄ + (−1)mξ/2 ± β/2) is the laser-cavity frequency detuning for

each of the optical supermodes. The steady-state solution to (4.4) is given by

b̃(m,±) = (∓)m κs1
√
γ1ηc

2ξ
[
iΔ(m,±) − γ̄/2] , for m = 1, 2. (4.5)

The driving laser excites directly only the mode acw
1 , therefore the steady state

optical field transmitted through the bus waveguide is given by,

sout
1 (ωl) = s1 − √γ1ηcacw

1 (4.6)

where the optical field a1(ωl) is given by Eq. (4.3). The normalized field trans-

mission, t(ω) = sout
1 (ω)/s1 is given by,

t = 1 − i
γ1ηcκ

2ξ2

∑
j=1,2

(
ξ + iακ

(−1) jβ + ξ + 2Δ̄ + iγ̄
+

(−1) jκ

(−1) jβ − ξ + 2Δ̄ + iγ̄

)
, (4.7)

where Δ̄ = ωl− ω̄ is the detuning from the average frequency of the two cavities.

The normalized power transmission is obtained from the relation T (ω) = |t(ω)|2.

We measure the optical transmission of the coupled cavity system using a ta-

pered optical fiber as shown in figure 4.2. The tapered optical fiber is positioned
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Figure 4.2: Measuring the optical transmission. Schematic of the experi-
mental setup for characterizing the optical transmission of the
coupled cavity system with tuning using external laser heating.
PD: photodiode.

in the proximity of one of the OMOs and excites the coupled optical super-

modes through optical evanescent coupling. We sweep the laser wavelength to

obtain the transmission spectrum as shown in figure 4.3. The optical mode we

work with is a high Q mode highlighted in green in figure 4.3a. A closer look

of this mode (Fig. 4.3b) reveals the split supermodes that results from the cou-

pling between the two disks and the cw and ccw directions. In figure 4.3c, we

show the transmission T (ω) using the best-fit parameters ω̄/(2π) = 188.442 THz,

γ̄/2π = 299 MHz, (κ, β)/2π = (1700, 298) MHz, and ηc = 0.65. The fit loaded

optical quality factor is Q = ω̄/γ̄ = 630, 000.

4.3.3 Top illumination thermal tuning

We integrate Chrome heaters on top of each cavity so that the system can be

reconfigured to exhibit either coupled or single OMO dynamics by control-
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Figure 4.3: Optical transmission. (a) Transmission spectrum of the cou-
pled disks. The two colored resonances represents the two op-
tical modes we work with in the experiment, one for driving
the system and one for probing the system. (b). S (blue) and AS
(red) optical supermodes with optical coupling rate . NT: nor-
malized transmission.(c) Best-fit steady-state normalized opti-
cal transmission (red-line), calculated using equation (4.7), and
measured transmission spectrum (blue circles). The fit param-
eters are described in the text.
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ling the optical mode coupling between the two oscillators. While the dis-

tance between the two OMOs is fixed (i.e. fixed κ), their optical coupling can

be turned off (on) through increasing (decreasing) the optical frequency mis-

match δ = ωR − ωL between them. For large optical frequency mismatch among

the two OMOs (δ � κ) the supermodes reduce to the uncoupled optical modes

of the individual OMO, (b+, b−) → (aL, aR). This can be readily seen from the

expression of the optical supermodes amplitudes, which are given by linear

combinations of the uncoupled modes of the left aL(t) and right aR(t) cavities:

b±(t) = aL(t) − aR(t)iκ/(δ ∓ (δ2 − κ2)1/2). We tune δ experimentally using thermo-

optic effect, for which the optical frequency dependence on temperature can be

approximated as ω j(T j) = ω
( j)
0 − gthT j for j = L,R, where ω( j)

0 is the intrinsic opti-

cal frequency and gth is the thermal-optic tuning efficiency. The optical coupling

can therefore be continuously tuned through changing the relative temperature

of the two OMOs: at ΔT = 0 the OMOs have identical optical resonant frequen-

cies and the optical coupling is maximized, manifested by the almost symmetric

resonance dips in the optical transmission spectrum (figure 4.3b,c). Whereas for

ΔT = ±25K, the relative frequency difference is large (δ � κ) and the optical

mode does not couple the two OMOs. The OMOs follow the usual single-cavity

optomechanical dynamics [56].

The thermo-optic tuning is accomplished by heating each individual disk

from top-illumination. We choose to use 200 nm thick chrome pads as the heat-

ing element since they absorb 25% of 1550 nm light at normal incidence, tak-

ing into account its reflectivity. Chrome is also resistant to buffered oxide etch

which follows in the fabrication steps. The heating light source is provided

by a near-IR laser (JDS SWS16101), operating at 1550 nm, and amplified by a

high power EDFA (Keopsys KPS-CUS-BT-C-35-PB-111-FA-FA) that can provide
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Figure 4.4: Thermal-Optical tuning of the coupling. (a) Measured ther-
mal optical tuning of the coupled cavities as a function of the
cavity temperature difference between the two cavities. Nega-
tive values are achieved by switching the cavity being heated
by the laser. The color scale indicate transmission. (b) Theo-
retical optical transmission showing the thermal tuning of the
coupled cavities, the false-color scale indicates the transmis-
sion. This map is obtained from (4.7) using ω1(T ) = ω10 + gthΔT ,
in good agreement with the experimental data.

a maximum power of 2 W. The light is sent to the microscope optics which fo-

cus the light on to the device. Typically during an experiment, 50 mW of laser

power incident on the device is needed to achieve the desired tuning range. The

heat absorbed by the chrome pads induces a temperature change ΔT = RthPabs,

where Rth = ∂ΔT/∂Pabs ≈ 5.2 × 103 K/W is the simulated effective thermal resis-

tance of our device. Due to thermo-optic effect, the temperature frequency shift

rate is given by the perturbation expression,

gth =
∂ωT

∂ΔT
= − ω0

2ng

∫
α(r, z)Trel(r, z)|E|2dV∫ |E|2dV

(4.8)

where 0 < Trel(r, z) < 1 is the dimensionless relative temperature distribution of

the device, α is the material-dependent thermo-optic coefficient, and ng is the

optical mode group index. If we define the overlap integral Γ =
∫

S iN
|E|2/ ∫

all
E|2,
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Eq. (4.8) is approximately given by gth ≈ −(T (SiN)
rel )ω0αSiNΓ/(2ng). In Fig. 4.5 we

show the simulated relative temperature field Trel(r, z), at the edge of the disk

Trel = T (SiN)
rel ≈ 0.83. From these results we can estimate the top illumination laser

power needed to tune the cavity’s optical frequency by ΔωT ,

Pabs =
ΔωT

gthRth
≈ 2ng

Rth(T (SiN)
rel )αSiNΓ

(
ΔωT

ω0

)
(4.9)

For our device, tuning of δλ ≈ 0.2 nm is sufficient to completely decouple the

two cavity modes. Using ng ≈ 1.8, αSiN = 3 × 10−5 K−1, and Γ ≈ 0.59, Eq. (4.9)

gives a tuning efficiency gth/2π ≈ −256 MHz/K, therefore a laser power of P =

Pabs/25% ≈ 24 mW is needed to control the optical coupling between the cavities

(see section 4.3.2).This value is in reasonable agreement with the experimental

power range.
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Figure 4.5: Laser heating of a double-disk cavity. Simulated temperature
(ΔT = T − T0) profile of the optical micro cavity. The bottom
boundary act as a heat reservoir with constant temperature
T0 = 300 K. In the mirroring edge, where the optical modes
are localized, the temperature is T ≈ 0.83ΔT
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4.4 Coupled Optomechanical Oscillators and Experimental

Characterization

In this section, we discuss how the mechanics is coupled through the optical

coupling describe in the previous section. We further show our experimental

result on synchronization which is due to this effective mechanical coupling.

4.4.1 Mechanical equations and optomechanical Coupling

The mechanical degrees of freedom of each cavity x1, x2 follows the usual op-

tomechanical equations [57, 58, 56, 59],

ẍ1 = −Γ1 ẋ1 −Ω2
1x1 +

gom

m(1)
e f fω0

(∣∣∣acw
1

∣∣∣2 + ∣∣∣accw
2

∣∣∣2) + FT
1 (t), (4.10a)

ẍ2 = −Γ2 ẋ2 −Ω2
2x2 +

gom

m(2)
e f fω0

(∣∣∣acw
1

∣∣∣2 + ∣∣∣accw
2

∣∣∣2) + FT
2 (t), (4.10b)

where Ωi,Γi,m
(i)
e f f represent the mechanical resonant frequency, dissipation rate,

and effective motional mass. FT (t) is the thermal Langevin random force

with expectation value
〈
FT

i

〉
= 0 and correlation function

〈
FT

i (t)FT
i (t + τ)

〉
=

2kBTm(i)
e f fΓiδ(τ), where kB is the Boltzmann constant and δ(τ) is the Dirac delta

function. In contrast to the phonon-laser regime [60], we ignore terms which

couples, through the mechanical displacement field, the optical modes b(±,1)

with b(±,2); this is justified because κ � ΩL,R. Here we used the optical force

as the positive gradient of the energy, this is a convention but must be consis-

tent with whether the cavity frequency increases or decreases with increasing

mechanical displacement; in our case the optical frequency decreases with the

mechanical displacement [58]
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The full optomechanical dynamics is obtained by solving simultaneously

Eqs. (4.10) and (4.1), such dynamics is discussed in detail in section 4.5. It is

however instructive to analyze how a prescribed mechanical motion of the two

mechanical oscillators is read-out through the optical modes (see section 4.4.2),

also how the optical force term in Eqs. (4.10) couples to the two of them. –

4.4.2 Optical transduction of mechanical oscillations

To account for the mechanical effect on the optical transmission we first as-

sume that the mechanical motion is independent of the optical fields [46], which

is equivalent to ignoring the dynamical back-action. Therefore we can use

Eqs. (4.2) for the optical eigenvectors and simply replace the optical cavity’s

resonant frequency by ωi → ωi + gomxi, where xi is the mechanical displacement

amplitude for each cavity. The resonant frequency of each eigenmode b(m,±) will

be given by,

ω(1,±)(xi, x j) = ω̄(xi, x j) ± ξ(xi, x j)/2 ± β/2, (4.11a)

ω(2,±)(xi, x j) = ω̄(xi, x j) ± ξ(xi, x j)/2 ± β/2, (4.11b)

where ω̄(xi, x j) =
[
ωi(xi) + ω j(x j)

]
/2, ξ(xi, x j) = κ

√
(1 − [δ(xi, x j)/κ]2 and δ(xi, x j) =

(γi − γ j)/2 + [ω j(x j) − ωi(xi)]. Due to the nonlinear ξ(xi, x j) dependence on the

mechanical displacement amplitudes x1,2, the usual analytical approach to de-

rive the optomechanical transduction coefficient does not apply [46]. However

we can get insight into the problem if we consider the strong optical coupling

limit, i.e., δ(xi, x j)/κ = gom(xi − x j)/κ � 1 which means that the optical frequency

splitting between the cavities is large compared to the mechanically induced

frequency shift, therefore ξ(xi, x j) ≈ κ + O(δ2/κ2). To further simplify the anal-
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ysis we assume that the two cavities share identical optical optical properties,

i.e., ω1(x1 = 0) = ω2(x2 = 0) = ω0 and γ1 = γ2 = γ0. In this case Eq. (4.11) is

approximated by,

ω(m,±)(x1, x2) ≈ ω0(m,±) + gom (x1 + x2) (4.12)

where ω0(m,±) = ω0+ (−1)m+1κ/2±β/2. Combined with the above relations, Eq. 4.2

yields the following equation for the optical eigenmodes b(m,±),

ḃ(m,±) =
[−iω0(m,±) − igom(x1 + x2) − γ̄/2]

b(m,±)(±)m
√
γ1ηc1s1eiωt

2
, for i=1,2. (4.13)

The equations above (4.13) can be formally integrated for a prescribed mechan-

ical motion (xi = Ai sin(Ωit + φi)). The homogeneous solutions (s1 = 0) decay

exponentially and does not contribute after the initial transients. To find a par-

ticular solution satisfying (4.13) we employ a common approach relying on the

Jacobi-Anger expansion [46, 49],

exp
[
iμ1 cos(Ω1t + φ1) + iμ2 cos(Ω2t + φ2)

]
=

∞∑
p,q=−∞

ip+qJp(μ1)Jq(μ2)ei(pΩ1+qΩ2)t+i(φ1+φ2),
(4.14)

where μi = gomAi/Ωi is the optomechanical modulation depth. Inserting

Eq. (4.14) in (4.13) and solving the resulting equations gives,

b(m,±)(t) =

(±)ms1
√
γ1ηc1

2
ei[ωlt+

∑
j=1,2 μ j cos(Ω jt+φ j)]

∑
p,q

ip+qJp (μ1) Jq (μ2) ei(pΩ1+qΩ2)t

γ̄/2 + i
(−Δ0(m,±) + pΩ1 + qΩ2

) , (4.15)

where the sum over m, n extends over [−∞,∞], and Δ0(m,±) = ωl − ω0(m,±). From

Eq. (4.15) we can clearly see the that cavity field exhibit tones at combinations

of the mechanical frequencies (mΩ1 + nΩ2) of the two cavities.
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4.4.3 Intrinsic Optical and Mechanical Parameters

We measure the optomechanical transduction of the coupled OMOs using the

setup shown in figure 4.6. As we discussed in the previous chapter, the mechan-

ical vibration of the OMO is printed on the optical transmission which can be

analyzed with a radio-frequency spectrum analyzer (RSA). The detailed setup

for measuring the mechanical degree of freedom of the system is shown in fig-

ure 4.6. The green (red) line indicates the pump (probe) laser path. The pump

laser drive the system while the weak probe laser could measure the system

without inducing significant perturbations. Both the pump and the probe laser

are fibre-coupled, tunable, near-infra (IR) lasers (Tunics Reference and Ando

AQ4321D). Their optical power is controlled using independent variable optical

attenuators. The pump and probe light are individually sent to a polarization

controller and combined with a 50 : 50 directional fiber coupler. A fraction of

the power is monitored by a power meter which indicates the equivalent input

optical power to the system. To prevent the back scattered light from entering

the laser, an optical isolator is used before feeding the laser into a vacuum probe

station (Lakeshore TTPX) operating at a pressure of 10−5 mT. The light is evanes-

cent coupled to the OMOs through a tapered optical fiber waveguide by using

a micro positioning system.

A small portion of the transmitted light (10%) is also monitored by a power

meter. The remaining transmitted light is split with a wavelength division mul-

tiplexing coupler to separate the pump and the probe laser. Since the pump

power used is low, especially for sub-threshold measurements, the pump light

is optionally amplified with a low noise erbium pre-amplifier (EDFA, Amonics

AEDFA-PL-30) before coupling to a 125 MHz bandwidth photodiode (New Fo-
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Figure 4.6: Detailed experimental setup.

cus 1181). An additional detector (Thorlabs PDB150C-AC) can be switched on

when the probe measurement is necessary. Half of the detected signal is sent

to an oscilloscope and the remaining is coupled to a radio-frequency spectrum

analyser (RSA, Agilent E4407B).

We measured the mechanical quality factors of the two coupled OMOs us-

ing a low power laser coupled to the lower frequency optical supermodel (right

peak in Fig. 4.3a). The excited optical supermodes spatially span both cav-

ities therefore picking up the mechanical oscillation of both OMOs. The RF

spectrum (100 averages) showing the two mechanical modes is shown in Fig.

4.7 from which we can extract the mechanical properties of each OMO. The

fit parameters are the mechanical frequencies and quality factors: ( fL, fR) =

(50.283, 50.219) MHz and (QmL ,QmR) = (3.4 ± 0.3, 2.3 ± 0.2) × 103.

A measure for the efficiency of the optomechanical interaction is the optome-

chanical coupling constant, defined as gom = ∂ω/∂x where ω is the optical fre-
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the text.

quency and x is the mechanical mode amplitude [56, 61, 27]. Our device exhibits

a large optomechanical coupling rate, calculated to be gom/2π = 49 GHz/nm

(detailed below). The mechanical mode that couples most strongly to the op-

tical field is also illustrated by the deformation of the disks edge in figures 7.1

which has a natural frequency of Ωm/2π ≈ 50.5 MHz. Note that the two cavi-

ties are not identical and without the optical coupling they oscillate at different

mechanical frequencies.

To obtain the optical and mechanical modes of the optomechanical disk cav-

ity we rely on finite element simulations using COMSOL®. From these numer-

ical simulations we derive parameters for the lumped model that describes the

optomechanical dynamics, such as the effective motional mass me f f , and the op-

tomechanical coupling rate gom. The optical modes are sought by solving the

Helmholtz vector wave equation with an ansatz E(r, z, φ) = E(r, z) exp(imφ). In

the table 4.1 we show the mode radial electric field profile for the lowest order

optical transverse-electric (T E) modes. The mechanical displacement field is
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sought by enforcing complete cylindrical symmetry, u(r, φ, z) = u(r, z), the mode

profiles are also shown on table 4.1. From the sought eigenmodes, the optome-

chanical coupling coefficients for the supported optical modes are calculated

using boundary perturbation theory [62, 63],

gom ≡ ∂ω
∂x
=
ω0

2

∫
(U · n̂)

(
Δε12

∣∣∣E · t̂∣∣∣2 + Δε−1
12 |D · n̂|2

)
dA∫

ε |E|2 dV
, (4.16)

where the dimensionless displacement field is defined as U ≡ u/max |u|, the

relative permitivity differences are given by Δε12 = ε1 − ε2 and Δε−1
12 = 1/ε1 − 1/ε2,

the unit vectors t̂ and n̂ indicate the tangential and normal components of the

vectors. The effetive motional mass is calculated as,

me f f =

∫
ρ |U|2 dV. (4.17)

4.4.4 Single Cavity Measurements

We characterize the individual dynamics of the two OMOs by switching their

optical coupling off (T = ±25K, figure 4.4b). Each cavity is individually ex-

cited with a continuous-wave laser through a tapered optical fibre. When one

OMO is tested, the remaining one is heated by the heating laser with high power

(∼ 50 mW) to ensure that they are completely decoupled. As the laser frequency

is tuned (from a higher to a lower frequency) into the optical resonance, the

transmitted laser signal is detected by a photodiode (PD) and analyzed using

a RF spectrum analyser (RSA). The RF spectral maps are obtained by detuning

the laser from blue to red into the optical resonance in a stepwise fashion, as

controlled by a voltage applied to laser’s external cavity piezo; the laser used

has a tuning coefficient of 1.1 GHz/volt. For each voltage step, the RF spectrum
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230 nm

230 nm
190 nm

20 μm

5 μm

2.37 μm

a

Mechanical mode Ωm
2π (MHz) me f f (pg)

50.5 110

28.7 194

Profile (|E · r̂|) Mode T En
m λ0 (nm) gom/2π(GHz/nm)

T E1
115 1582.28 49.4

T E2
110 1584.87 11.3

T E3
106 1582.31 17.9

T E4
101 1591.01 10.6

Table 4.1: Optical and mechanical modes parameters. (a) Geometry of
the optomechanical cavity used to calculate the modes and pa-
rameters shown in the tables. For the optical modes profiles, it
is shown the modulus of the radial electric field |E · r̂|; gom is cal-
culated using Eq. (4.16). whereas for the mechanical modes it is
shown the displacement amplitude |u| as colors and the defor-
mation represents the normalized displacement.

is recorded. Therefore, the step size determines the vertical resolution of the

RF spectra map whereas the resolution bandwidth of the RSA determines the

horizontal resolution. Here we used a detuning step size of 3 MHz and a reso-

lution bandwidth of 1 kHz (100 Hz video bandwidth). This allows us to obtain

a high resolution map while keeping the data collection time reasonable (≈ 20
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minutes). The RF spectra show the mechanical modes have natural mechanical

frequencies of ( fL, fR) = (ΩL,ΩR)/2π = (50.283, 50.219) MHz, and intrinsic quality

factors of (Q(L)
m ,Q

(R)
m ) = (3.4 ± 0.3, 2.3 ± 0.2) × 103 (figure 4.8a,b). Note that these

intrinsic frequencies are slightly lower than the OMO self-sustaining oscillation

frequency. This is due to the optical spring effect as described in chapter 2. Due

to the increased optomechanical back-action and intracavity optical power the

OMOs have their frequencies increased and amplitudes grown as the laser is

tuned into the optical resonance. Above a specific laser-cavity detuning, indi-

cated by the horizontal white dashed lines on figure 4.8a,b the intrinsic mechan-

ical losses are completely suppressed by the optomechanical amplification. At

this point the optomechanical resonator starts self-sustaining oscillations and

becomes an OMO characterized by sudden linewidth narrowing and oscillation

amplitude growth [45, 46, 49]. It is clear from figure 4.8a,b that each cavity has

only one mechanical mode in the frequency range of interest. Due to the slight

difference in geometry, these frequencies differ by Δ f = fL− fR = (70.0±0.5) kHz.

4.4.5 Coupled Cavity Measurements

The mechanical modes of each cavity can be approximated by a lumped model

consisting of two damped harmonic oscillators, which are driven by the nonlin-

ear optical supermode forces,

ẍ j + Γ j ẋ j + Ω
2
j xi = F( j)

opt(xR, xL)/m( j)
eff, for j, k = L,R

where x j,Ω j,Γ j,m
( j)
eff represent the mechanical displacement, mechanical reso-

nant frequency, dissipation rate, and effective motional mass of each mechan-

ical degree of freedom. The optical force is proportional to the optical en-

ergy stored in the coupled optical modes, which depend both on xR and xL,
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Figure 4.8: RF spectra of the OMOs (a, b) RF power spectra of cavity L (a)
and R (b) as a function of laser frequency when the coupling
is turned off. The horizontal white lines indicate the onset of
self-sustaining oscillation. PSD: power spectral density.

i.e. F( j)
opt(xR, xL) ∝ |b±(xR, xL)|2. Therefore the optical field not only drives but

also mechanically couples each OMO. The nonlinear nature of this driving and

coupling force form the basis for the onset of synchronization. In a first or-

der linear approximation when the two OMOs are evenly coupled (ωL = ωR),

the effective mechanical coupling force between the two oscillators is given by

F(i)
coup = −kI x j + kQẋ j where kI and kQ are the position and velocity coupling coef-

ficients (see subsection 4.6.2). In the unresolved side band limit (optical damp-

ing rate γ � Ω j), these coupling coefficients are determined by both the input

optical power Pin and laser-cavity detuning Δ as kI ∝ PinΔ((γ/2)2 + Δ2)−2 and

kQ ∝ Pin(γ/2)Δ((γ/2)2 + Δ2)−3. Therefore, by varying Δ and Pin, hence the ef-

fective mechanical coupling strength, synchronization of the two OMOs can be

captured.
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Figure 4.9: RF spectra of the OMOs and synchronization (a) When the
coupling is turned on, at an input power Pin = (1.8 ± 0.2) μW
cavities L and R do not synchronize and oscillate close to their
natural frequencies. (b) At Pin = (11 ± 1) μW synchronization
occurs after the horizontal solid white line after a brief region
of unsynchronized oscillation (between the dashed and solid
white lines). (c) The system oscillate directly in a synchronized
state at input optical power Pin = (14 ± 1) μW.

We show the onset of spontaneous synchronization by switching their op-

tical coupling on. Using the heating laser, we tune the optical coupling to its

maximum value, indicated by the dashed white line (TR − TL = 0) in figure

4.4b. The laser frequency sweeping is performed at various optical power lev-

els corresponding to different effective mechanical coupling strength. The op-

tical power ranges from slightly above the estimated oscillation threshold (i.e

weaker mechanical coupling), P(L,R)
th ≈ (640, 880) nW, up to several times their

threshold power (i.e. stronger mechanical coupling). At a relative low input

power, Pin = (1.8±0.2) μW, the mechanical peaks at fR and fL are simultaneously

observed on the RF spectrum shown in figure 4.8c, below the dashed-white line.

When the laser frequency is closer to the optical resonant frequency, more en-

ergy is available and the L OMO starts self-sustaining oscillation. Since cavity

R has a higher oscillation threshold, due to its lower mechanical quality factor,
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it requires more optical power and only oscillates at a redder detuning; it can

be noticed from figure 4.8c that both OMOs oscillate close to their natural fre-

quency. Therefore they exhibit asynchronous oscillations at this lowest power

level. At a higher input optical power level of Pin = (11 ± 1) μW, the first oscil-

lation takes place at ΔωL/2π ≈ −0.10 GHz, and similarly to the case shown in

figure 4.8c, the L OMO oscillates first. However, as the laser frequency further

moves into the optical resonance, there is enough energy for both OMOs to start

self-sustaining oscillations; the two OMOs spontaneously oscillate in unison at

an intermediate frequency of fS = ΩS /2π = 50.37 MHz due to the increased ef-

fective mechanical coupling, which is a clear sign of synchronization. At this

time, the output optical RF power is increase by more than 5 dB in comparison

with the L OMO oscillating only case showing that the two OMOs are phase-

locked. At an even higher optical input power, Pin = (14 ± 1) μW, the OMOs do

not oscillate individually, instead they go directly into synchronized oscillations

above the white-dashed line in figure 4.8e.
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Figure 4.10: Detector voltage time trace for the L OMO oscillating only
state (left) and the synchronized state (right). The synchro-
nized optical RF power is more than 3 time higher than the L
OMO oscillating only state.

We record the real-time trace of the output detector signal with an oscillo-
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Figure 4.11: Pump-probe measurements of the oscillations of individual
OMO operating as in fig. 4.8d. (a,b,c,d) The uneven probe
intensity distribution of the cavities, observed by an infrared
CCD camera when the pump laser is off. (e) Normalized
transmission (NT) spectrum for the probe resonances. The
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region for probing the L (R) OMO, as illustrated in (a,b). (f)
The red (blue) curve is the L (R) cavity probe transmission RF
spectrum when the two OMOs are asynchronous: a strong
peak at fL is observed but with very different amplitude for
two probing conditions.(g) Same curves shown in (f) but with
the OMOs synchronized: the two probing conditions have al-
most identical amplitudes.

scope for both the asynchronous state (between dashed and solid line in Fig

4.9b) and the synchronized state (above solid line in Fig 4.9b). As shown in the

RF power spectrum in Fig 4.9b and figure 4.10 The oscillation output RF power

is increased by more than 5 dB as a the two OMO synchronizes. This is expected

since when both OMOs are synchronized, their phases add coherently result in

a maximum of four-fold (6dB) increase in the total output power.
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4.4.6 Pump-Probe Confirmation of Synchronization

To experimentally verify that both structures are indeed oscillating at the syn-

chronized frequency, we probe the mechanical oscillation of each cavity indi-

vidually. This demonstrates that the single oscillation peaks observed in figures

4.8d,e are not caused by one OMO resonantly driving the other; it also verifies

that amplitude death of one of the OMOs does not occur, a known phenomenon

in coupled nonlinear oscillators [64]. Therefore, the pump probe measurements

provide direct evidence for the synchronization of the two OMOs. The indi-

vidual probe of each cavity, as shown in figure 4.3, relies on the asymmetric

coupling of one the higher order optical supermodes. This asymmetry arises

due to their different optical resonant frequency which stems from the slight

difference in the geometry of the two OMOs. This leads to a different mode

splitting for the higher and lower order optical modes. In the devices we have

tested, the majority of them show similar non-identical mode splitting.

Due to its lowers optical quality factor (Q) and reduced optomechanical cou-

pling gom, the threshold power for self-sustaining oscillations [6] of the probe

resonance is Pthprobe ≈ 20 mW, which is roughly 20, 000 times larger than the

pump resonance threshold optical power Pthpump ≈ 1 μW. We used a probe power

of Pp = (20 ± 2) μW, ensuring a low-noise detected probe signal without affect-

ing the cavity oscillation dynamics. We used a weak CW probe laser to excite

an optical resonant mode that is not strongly coupled between the two OMOs

(figure 4.3 a,b); this scheme allows us to selectively probe the oscillations of

the L or R OMO. While these probe optical modes exhibit a low optical quality

factor (Qopt ≈ 4 × 104) that minimizes probe-induced perturbations to the me-

chanical oscillations, the pump condition is identical to the one used in figure
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4.8d. When the L OMO is probed, and the pump detuning range is between

the dashed and solid lines in figure 4.8d, the probe RF spectrum shows a strong

peak at fL, which is shown in the red curve in figure 4.11d. When the R OMO is

probed, a peak also appears at this frequency, but it is 13 dB weaker as shown

in the blue curve in figure 4.11d; a weak peak at fR can also be noticed on the

blue curve, indicating small amplitude oscillations of the R OMO. These results

confirm that the oscillation state is very asynchronous in this detuning range

with the L OMO oscillating at much larger amplitude. When the pump laser

detuning is above the horizontal solid line in figure 4.8d there is only a single

RF peak at the synchronized frequency fS when probing either OMO (figure

4.11e); moreover, they differ in amplitude by less than 0.5 dB. This shows that

both cavities are indeed oscillating with similar strength at the synchronized

frequency.

4.5 Synchronization Numerical Simulation

4.5.1 Simulation approach

We confirm that the OMOs are indeed synchronized by performing numerical

simulations corresponding to each of the power levels we tested. To simulate

the synchronization dynamics and obtain the results shown in figure 4.12, we

numerically integrate the system of equations (4.1), including the displacement

dependent optical resonant frequencies, i.e. ω1,2(x) = ω1,2+gomx1,2, together with

the two harmonic oscillator equations (4.10). This is accomplished using the

NDSolve function in the commercial software Mathematica®. In the absence
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of the random thermal noise force in Eq. (4.10), it is numerically challenging

to capture the dynamics before the regenerative oscillation threshold is reached,

this is because the steady-state is a static one, i.e., ẋ1,2 = 0. To overcome this issue

we add a weak (low-temperature T = 1 K) noise that prevents the dynamics to

reach such static equilibrium. Since NDSolve is a deterministic solver we include

the thermal drive by assigning to FT
1,2(t) the outcome of a random variable with

with expectation value and correlation function given by

〈
FT

i

〉
= 0 (4.18)

〈
FT

i (t)FT
i (t + τ)

〉
= 2kBTm(i)

e f fΓiδ(τ), (4.19)

where kB is the Boltzmann constant. The discontinuity of this random driv-

ing term can lead to instabilities in NDS olve, to overcome this we smooth

out thenoise term by interpolating the random force with a correlation time

tc = (2π/Ωi)/30. Such short correlation time ensures that the noise power spec-

trum density (PSD) is white within the frequency range of interest.The relia-

bility of this approach is confirmed by verifying that for weak pump powers

(P � Pth), the integrated power spectrum density S xi(Ω) = |xi(Ω)|2 satisfy the

fluctuation-dissipation theorem [65].

〈
x2(Ω)

〉
=

1
2π

∫ ∞

0
S xx(Ω)dΩ =

kBT

2m(i)
e f fΩ

2
i

(4.20)

A complete analysis of the noise in synchronized systems is beyond the

scope of this work, since an accurate numerical noise dynamics will require the

simulation of the coupled non-linear stochastic dynamics of the optomechanical

cavities[66, 67]. The computational complexity of such systems is also high due

to the requirement for slow convergence, first order, fixed time step simulation

[68, 69, 70].
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4.5.2 Simulation results
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Figure 4.12: Numerical simulation of the coupled oscillation dynamics.
From a to e: transmission RF spectra, displacement power
RF spectra of the L and the R OMOs, and the displacement
phase diagram of the L and the R OMOs, for input powers
at (A)Pin = 4.9 μW, (B)Pin = 15.8 μW and (C) Pin = 17.9 μW.
xL (xR): displacement of the L and R OMOs.

The simulation also allows us probe not only the optical transmission PSD,

but also the mechanical displacement PSD and time series of each OMO. The

complete simulation results for the pump laser powers described previously are

shown in fig. 4.12. The only parameter we adjusted to obtain the maps shown

in the experimental measurements and 4.12 was the optical pump power.

In figures 4.12A (Pin = 4.9 μW), the mechanical power spectrum of the os-

cillators (fig. 4.12A(b,c)) shows that for (−0.25 < Δω/2π < −0.13 GHz), only L
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OMO is oscillating; the R OMO is forced to oscillate at the L OMO’s frequency

but have not yet reached its oscillation threshold. This is illustrated by the dis-

placement state space figures shown in fig. 4.12A(e) for Δω/2π = −0.21 GHz

(blue dashed line in fig. 4.12A(a)), note that |xL| is about 20 times larger than

|xR|. At Δω/2π = −0.25 GHz, marked by the red-dashed line in fig. 4.12A(a), the

situation changes and the R OMO oscillates with larger amplitude (|xR| ≈ 3.5|xL|)
but at different frequencies; the result is a Lissajous figure that fills in the whole

state space.

In figures 4.12B (Pin = 15.8 μW), in the asynchronous region, indicated by

the blue dashed line, the L OMO oscillates with an amplitude roughly 15 times

of the R OMO in agreement with the measured RF spectrum and the pump

probe measurement. In the unified frequency region, for both power levels

Pin = 15.8 μW and Pin = 17.9 μW in fig. 4.12C, the phase diagram shows the

two oscillators are synchronized and their amplitude differ less than 20% in

agreement to the pump-probe measurements. The synchronization phase for

figs. 4.12C(d-e) is roughly φ = 160◦, also all the simulations for our system re-

sulted in phase differences close to π, in agreement with the discussion in [49]

that the anti-phase synchronization is a more stable state when the oscillations

amplitude xL, xR are not identical. The simulated spectra in figure 4.12 exhibit

all the essential features observed and show good agreement with the measured

spectra. It also allows us to confirm under which conditions the two OMOs are

indeed oscillating.

The criteria for the optimum fitting is the matching of the laser frequency at

which the bifurcation occurs, which is sufficient for explaining all of the non-

linear phenomnena observed. The difference in the simulation power level and
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experimentally measured power level may be due to the variations in etched

geometry, film thickness and optical losses. Fitting the entire spectra may pro-

vide a closer numerical match but it requires a full analysis taking account of of

non-linear error propagation, detector and spectrum analyzer response function

and multidimensional fitting that is beyond the scope of this thesis.

4.6 Toy model for synchronization

In this section we derive an approximate model to describe the essential fea-

tures of our coupled oscillators. Although we develop a first order linear ap-

proximation of the two coupled optomechanical oscillators, they constitute an

intrinsically a nonlinear system, as described in detail elsewhere [49].

4.6.1 Optically mediated mechanical coupling

The optical force driving terms in Eqs. (4.10) can be written in terms of the di-

agonal modes b(m,±) from Eq. (4.15) by using Eqs. (4.3). As in section 4.4.2, for

large optical coupling the terms are only resonant with the driving laser one at a

time, therefore we can focus on the effect of a particular choice of (m,±). To sim-

plify the notation we use Δ0(m,±) ≡ Δm and b(m,±) ≡ bm below. We also assume that

effective motional mass of the individual oscillators are identical, i.e. m( j)
eff = meff.

The driving force in each oscillator is proportional to |bm|2,

F( j)
opt =

gom

ω0(m)
|bm|2 = −gomPinγ1ηc1

4ω0(m)

∣∣∣∣∣∣∣
∑
p,q

ip+qJp (μ1) Jq (μ2) ei(pΩ1+qΩ2)t

γ̄/2 + i (−Δm + pΩ1 + qΩ2)

∣∣∣∣∣∣∣
2

, (4.21)

which contains both DC terms and oscillatory terms.
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Although our oscillators may exhibit large oscillation amplitude (gomx j >

γ̄), it is instructive to analyze the small amplitude dynamics arising for the the

driving term in Eq. (4.21). This treatment is entirely analogous to the one used

to derive the optomechanical damping and spring effect in uncoupled OMO’s

[56, 58]. For the small amplitude oscillation, the modulation parameters are

small, i.e., μi = gomxi/Ωi � 1, therefore the Bessel functions in (4.21) can be

approximated by their small argument limit, Jn(μ) ≈ 1
n! (
μ

2 )n. We neglect any

terms which are quadratic in the μ1,2, which also account for summing Eq. (4.21)

only over p, q = 0,±1 since higher order terms will result in terms which are

O(μ2). The p, q = 0 terms result in a DC component of the force,

F( j)
optDC

=
∑
j=L,R

gom

ω0(m)

(
Pinγ1ηc1

Δ2
m + (γ̄/2)2

)
. (4.22)

The impact of the DC term above is to shift the static equilibirum position of the

mechanical oscillators. As a result, the actual optical detuning is also shifted, to

account for this DC shift we substitute Δm → Δ′m, where Δ′m = Δm + gom(x1 + x2).

When p, q = ±1 the resulting terms are quadratic in μ1,2 and will be neglected

in this first order approximation, therefore the lowest order AC terms are given

by combinations (p, q) = (0,±1) and (p, q) = (±1, 0).

F( j)
optAC

=
g2

omPinγ1ηc1

ω0(m)

∑
j=L,R

Aj

[
− cos(Ω jt) fI(Δ′m,Ω j) + sin(Ω jt) fQ(Δ′m,Ω j)

]
(4.23)

where the functions fI,Q(Δ), which correspond to the in-phase (∝ sin (Ω jt)) and

quadrature of phase component (∝ cos (Ω jt)) of the AC force, are given by

fQ(Δ′m,Ω j) =
4( γ̄2 )Δ′m

2Ω2
j

(
( γ̄2 )4 − Δ′4m

)
+ Ω4

j

(
( γ̄2 )2 + Δ′2m

)
+

(
( γ̄2 )2 + Δ′2m

)3 , (4.24a)

fI(Δ′m,Ω j) =
2Δ′m

(
( γ̄2 )2 + Δ′2m −Ω2

j

)
2Ω2

j

(
( γ̄2 )4 − Δ′4m

)
+ Ω4

j

(
( γ̄2 )2 + Δ′2m

)
+

(
( γ̄2 )2 + Δ′2m

)3 . (4.24b)
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We can now use the transformations sin(Ω jt)→ x j/Aj, cos(Ω jt)→ ẋ j/(AjΩ j) and

rewrite (4.23) as

F( j)
optAC

=
g2

omPinγ1ηc1

ω0(m)

∑
j=L,R

[
−x j fI(Δ′m,Ω j) +

ẋ j

Ω j
fQ(Δ′m,Ω j)

]
(4.25)

Equation (4.25) above shows that for each oscillator the driving force will have

a component proportional to its displacement (x j) and its velocity (ẋ j). But there

are also terms proportional to the displacement and velocity of the opposing

OMO; these are the terms that couple the two OMOs and form the basis for

synchronization in our system. Note that if higher order terms were kept in

the expansion of Eq. (4.21), nonlinear terms would appear in Eq. (4.25).

Above we derived the small amplitude form of the optical forces driving

our coupled oscillators, we did not use the fact that our cavities are in the so-

called unresolved sideband regime where the mechanical frequencies are much

smaller than the optical linewidth, i.e., Ω j/γ̄ ≈ 0.2 � 1. In this limit, Eqs. (4.24)

can be written as,

fQ(Δ′m) ≈ 4( γ̄2 )Δ′m(
( γ̄2 )2 + (Δ′m)2

)3 , (4.26a)

fI(Δ′m) ≈ 2Δ′m(
( γ̄2 )2 + (Δ′m)2

)2 . (4.26b)

Now we can write the (4.10) as two coupled harmonic oscillators,

ẍ1 + Γ
′
1 ẋ1 + (Ω′1)2x1 = −kIx2 + kQ ẋ2, (4.27a)

ẍ2 + Γ
′
2 ẋ2 + (Ω′2)2x2 = −kIx1 + kQ ẋ1, (4.27b)

where the modified frequency and damping rate are given by (assuming δΩ2
j ≈
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2Ω jδΩ j),

Γ′j = Γ j − β j fQ(Δ′m), (4.28a)

Ω′j = Ω j +
β j

2
fI(Δ′m), (4.28b)

k( j)
Q = β jΩ j fQ(Δ′m), (4.28c)

k( j)
I = β jΩ j fI(Δ′m) (4.28d)

with β j = g2
omPinγ1ηc1/(m

j
effω0(m)Ω j).

Therefore, in the small modulation regime (μ1,2 � 1), our system resemble

harmonic oscillators in which both the damping and frequency are controlled

by the optical field; this result is exactly what one would get from uncoupled

OMOs. With the reduction of the mechanical damping rate for a blue detuned

laser. (Δ′m > 0), these two damped oscillators may undergo a bifurcation when

the effective damping rate (Γ′i) reverses sign. In this first order approximation

there is no additional nonlinearity to prevent the oscillations to grow unbound,

however it is known that the higher order terms in the force expansion ((4.21))

will balance the amplitude growth and eventually lead to a stable periodic orbit

(limit cycle) [45, 46, 49]. The optical coupling in our system couples the two

harmonic oscillators with both amplitude and velocity dependent terms, with

coupling strengths kI, kQ, respectively. The functional dependence of such cou-

pling is the same as the self-induced optical spring and damping rate, as given

by (4.28).

4.6.2 Approximate Kuramoto model

In the small amplitude approximation that lead to Eq. (4.27), one can also de-

rive slowly-varying phase and amplitude equations that describe the dynamics
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of our system. To accomplish this we assume the following form for our dis-

placement amplitudes,

x1(t) = r1(τ) exp iφ1(τ) exp iΩt, (4.29a)

x2(t) = r2(τ) exp iφ2(τ) exp iΩt. (4.29b)

where Ω = (Ω1 + Ω2)/2 is the average frequency of oscillation. Substituting this

ansatz in Eqs. (4.27) and assuming that the negative damping induced by the

optical wave exactly balances the intrinsic viscosity of the oscillators (Γ′ ≈ 0) we

obtain the following amplitude and phase equations,

ṙ1 = −kQr2

4Ω3

((
Ω2 + Ω2

2

)
cos(Δφ)

)
− kIr2 sin(Δφ)

2Ω
, (4.30a)

ṙ2 = −kQr1

4Ω3

((
Ω2 + Ω2

1

)
cos(Δφ)

)
+

kIr1 sin(Δφ)
2Ω

, (4.30b)

Δ̇φ = 2ΔΩ +

(
R2 − 1

)
cos(Δφ)

(
γkQ + 2kI

)
2RΩ

+

(
R2 + 1

)
sin(Δφ)kQ

R
(4.30c)

where Δφ = φ1 − φ2, R = r1/r2 and ΔΩ = Ω′1 −Ω′2. Note that in this approximation

the limit cycle has zero amplitude; this is the case because we neglected the

higher order terms when deriving Eq. (4.27). Despite such limitations of this

toy model, the phase dynamics given by Eq. (4.30) enables us to visualize how

does the Arnold tongue (|ΔΩ| < kI) behaves as we vary the laser detuning. We

assume that limit cycles of the individual oscillator will have similar amplitude

(R = 1) and require Δ̇φ = 0 for a synchronized oscillation. When |ΔΩ| < kI this

conditions can be satisfied and defines an Arnold tongue for this simple model;

inside the Arnold tongue the system can synchronize (Δ̇φ = 0). In Fig. 4.13 we

show the Arnold tongue plot for our system, in Fig. 4.13a we plot it in the usual

way, as function of the coupling coefficient (kI), whereas in Fig. 4.13b we plot

the tongue as a function of the laser detuning by using Eq. (4.28). Due to the

model simplicity and lack of higher order terms, it does not predict the precise
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values for the synchronization region observed in the experiment ( Fig. 4.13b),

however it does agree qualitatively; for higher optical power levels the tongues

get wider and allows a given mechanical frequency difference to synchronize at

larger detuning, as shown in figure 3 of the main text.

Figure 4.13: Arnold tongue for the simplified Kuramoto model, inside
the tongues the system can exhibit synchronized oscillation.
(a) Usual tongue as a function of the coupling parameter kI.
(b) Tongue when kI is explicitly written in terms of the laser-
cavity detuning. The three tongues in (b) are obtained with
the optical input power values of Pin = 1, 5, 15 μW, the lower
power is the blue whereas the highest power is red tongue. f
is the average mechanical frequency of the oscillators.

4.7 Conclusion

We have demonstrated the onset of synchronization between two optomechan-

ical oscillators coupled only through the optical radiation field. The ability to

control the coupling strength is promising for realizing oscillator networks in
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which the oscillators can be addressed individually. Furthermore, established

and future micro-photonics techniques such as electro-optic and thermo-optic

techniques can now be extended to switch, filter and phase shift the coupling

of these oscillators. These results may enable a new class of devices in sensing,

signal processing and on-chip non-linear dynamical systems.
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CHAPTER 5

SYNCHRONIZATION IN OPTOMECHANICAL OSCILLATOR ARRAYS

5.1 Background

Synchronization many coupled oscillator systems is a ubiquitous phenom-

ena found in nature [34]. Heart beat is a result of synchronized motion of

pace maker cells [71], circadian rhythm arises because of coordinated body

physiology[72] and power grid relies on collective dynamics of many power

generators [73]. On the nanoscale, synchronization has emerged as a paradigm

for emergent collective dynamics in complex systems [40, 74, 75, 76]. Nanome-

chanical oscillators fabricated on a chip naturally have a spread of mechani-

cal frequencies due to unavoidable fabrication variations [77]. Synchronization

could allow these oscillators to work coherently together enabling high power

and low noise integrated frequency sources which play a key role in the essen-

tial time keeping in modern technology [42].

Synchronizing a large array of oscillators could dramatically improve the

phase noise performance of the oscillation signals in comparison to operating

individually [78, 79]. Phase noise describes the fluctuation of the phase of the

oscillation signal in a self-sustaining oscillator system, which is a key figure of

merit in characterizing an oscillators performance [80]. Theory predicts that the

phase noise is reduced to 1/N as N oscillators in a network are synchronized

[79, 81]

The roadblock in realizing a large synchronized oscillator network on a chip

is the need for scalable oscillator units and means to couple them efficiently
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and controllably [82, 45]. Synchronization between only two nanomechanical

oscillators has been experimentally demonstrated in nanomechanical systems

coupled through mechanical connections [42], electrical capacitors [83] , off-chip

connections [84] and more recently though an optical cavity [15, 85]. However

all these approaches are not scalable. Mechanical connections are limited in

bandwidth and are lossy due to the necessary anchors. Capacitive coupling is

limited in topology and is vulnerable to environmental electric field.

Here we show that synchronization can occur in a large array of nanome-

chanical oscillators mediated through a common optical cavity field, and

demonstrate that the noise performance in the synchronized oscillator arrays

can be reduced by almost 10 dB below the noise performance of an individual

oscillator. We address the scaling and coupling challenging by showing experi-

mentally that nanomechanical oscillator arrays with up to seven oscillators can

be synchronized using light with less than a milliwatt of optical power.

5.2 Mechanical coupling mediated through a common optical

cavity field

Free running micromechanical oscillators can be synchronized when cou-

pled purely through a common electromagnetic field as predicted by theories

[82, 46, 49]. A conceptual view of array of mechanical resonators coupled

through a common electromagnetic field is illustrated in Figure 1a. Each me-

chanical resonator possesses a slightly different frequency of oscillation (Ωi) but

are only connected through a common optical field (blue background). When

a continuous wave laser is coupled to a common electromagnetic field mode
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spanning several micromechanical oscillators, the light can provide both the

drive for self-sustaining oscillations and the necessary coupling between the in-

dividual oscillators for synchronization through optical forces. The frequency

for each individual mechanical oscillator is set by their natural mechanical fre-

quency Ωi. When the laser power is just above the self-sustaining oscillation

threshold of the mechanical oscillators, and the mechanical frequencies of these

individual oscillators are slightly different, they are expected to vibrate at their

own frequencies. When the laser power is high and the coupling is strong

enough to overcome the difference in Ωi, the mechanical oscillators can reach

synchronization

The effective coupling between the mechanical resonators can be visualized

through the following equation

ẍ + Γi ẍ + Ω2
i = F(i)

opt,

F(i)
opt ∝ |b(x1, ..., x j)|2

(5.1)

where xi,Γi,Ωi are the mechanical displacement, damping and the mechanical

frequency of the ith OMO and b(x1, , x j) is the coupled optical supermode that

spatially spanning all cavities. It is clear from the equation above that the optical

force (Fopt) depends on the energy stored in the optical supermodes which is af-

fected by the displacement of each individual cavity. Therefore the optical field

provides an effective nonlinear mechanical coupling between the different oscil-

lators that form the basis for synchronization [15]. The onset of synchronization,

which intrinsically relies on nonlinearity [50], could therefore be captured as Fopt

is increased through increasing the optical driving power[85, 15]

The individual oscillator is we use here consists of a double-disk OMO con-
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Figure 5.1: Experiment concepts (a) Concept of mediating coupling be-
tween mechanical oscillators (yellow) by a coupled global op-
tical field (blue). The optical field provide energy for each me-
chanical oscillator to vibrate at their natural frequencies Ωi, j

and also provide coupling between each mechanical oscillator.
When the optical coupling is strong, the oscillators synchro-
nize and vibrate at a common frequency. (b) A schematic of
each individual double-disk. The edges are partly suspended
to allow for mechanical vibration (c) Cross-section of a double-
disk showing the mechanical and the optical mode shape. (d)
Microscope images of coupled optomechanical double-disk os-
cillator arrays. The oscillators are mechanically separated by a
narrow gap (∼ 150 nm) and coupled solely through the optical
evanescent field. The squares and strings consists of tapered
fiber support.

sisting composed of two free-standing silicon nitride circular edges that support

high quality (Q) factor optical and mechanical modes as shown in figure 5.2b

[86, 87]. The co-localized modes lead to a strong coupling between the optical

and the mechanical degree of freedom. When the cavity is excited by a contin-

uous wave laser above the oscillation threshold, the mechanical edges oscillate

coherently and modulate the laser producing a radio frequency (RF) tone at the

mechanical frequency of the vibrating edges. The loaded optical quality factors
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of these resonators are Qo ∼ 500, 000. The measured mechanical frequencies of

the OMOs are centered at ∼ 132.5 MHz with quality factors of Qm ∼ 1100. Fabri-

cation variation causes the mechanical frequency of different OMOs in an array

to spread around ±0.5 MHz. The interaction strength between the optical and

the mechanical mode is characterized by the optomechanical coupling strength

gom = dω/dx ∼ 2π × 50 GHz/nm [15].

We fabricate an array of micromechanical oscillator arrays with double-disk

OMOs that are optically coupled through the evanescent field27. The OMOs are

physically separated by a narrow gap (∼ 150 nm) which precludes any mechan-

ical connections while the optical evanescent field can still propagate through

the gap. Mechanical coupling through the substrate connection is negligible as

the mechanical mode we excite is a high Q mode that is well isolated from the

substrate [87].

The challenge in coupling optically large arrays of mechanical structures is

the variation in the natural variations of their optical frequencies of each of the

oscillators due to variation in the exact fabricated dimensions. We overcome

this challenge by ensuring that the optical coupling is large compare to the fre-

quency variation and the individual decay rate of each cavity. The optical cou-

pling strength we designed (κ(i, j) ∼ 5 GHz) is much larger than the optical decay

rate of the cavity (γi ∼ 400 MHz) and to the cavity optical frequency spread from

fabrication variations. This ensures that the optical modes are strongly coupled

which means the light travels between the cavities many times before it is lost

via other channels.
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We excite the optical supermodes that spatially span over all cavities to en-

sure that there is optical coupling among all cavities (Fig. 5.2a dashed boxes).

The strong optical coupling between the optical modes of each individual cav-

ity (ai) leads to the formation of optical supermodes bi(ai, , aj) that have different

optical frequencies and spatial geometries. We can estimate the spatial distri-

bution of the optical supermodes by analytically finding the eigenmode of the

coupling matrix using coupled mode theory. Figure 5.2a illustrates the spatial

profile of different optical supermodes bi when the optical resonant frequency of

individual cavity (ωi) is identical. The colored halos around the disks illustrate

the field distribution in the particular supermodes. The red and purple high-

lights a phase difference between the cavity fields. These optical supermodes

have different resonant frequencies which are highlighted in figure 5.2a, where

the mode shapes are arranged such that the high (low) frequency modes are to

the left (right) of the figure. Note that not all supermodes have a field that span

over all cavities. We position a tapered optical fiber to the close proximity of

one OMO in the arrays to couple light to the system (Fig. 2). We monitor the

transmission through the tapered fiber by an amplified photodiode and feed the

electrical signal to a spectrum analyzer.

5.3 Optical Transmission

The strongly coupled optical modes can be diagonalized to the optical super-

mode basis since the optical part of the coupled system is linear. Similar method

has been used in previous work of two coupled double disk OMOs [15].
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Figure 5.2: Experimental configuration (a) Optical supermodes spatial
structures. The colored halos shows where the optical cavity
field resides for different types of arrays. The more opaque col-
ors illustrate higher cavity field intensities when compared to
the rest of the cavities. The supermodes that spatially span over
all cavities with equal intensities are identified by dashed lines.
(b) Experimental setup. The coupled optomechanical oscillator
array is placed in a vacuum chamber and excited by a tunable
infra-red (IR) camera through a tapered optical fiber. The op-
tical transmission is detected by an amplified photodiode and
analysed by an oscilloscope and spectrum analyser.
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√
γ1ηcs1(t)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

0

...

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(5.2)

where γi,Ωi are the total damping rate and the resonant frequency of each

individual optical mode ai. κi j is the optical coupling strength between ith and
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jth OMO. ηc is the optical criticality factor, the ratio between the cavity damp-

ing rate and the external coupling rate. s(t)2 is the optical power that excites

the array of resonators through the first cavity. In the strong coupling regime

(κi j � γi ∀i, j), individual optical modes hybridize and fully splits into optical

supermodes bi where some supermode span over all cavities. The strong cou-

pling is visualized by the fully split optical supermodes shown in the optical

transmission in figure 5.3. To visualize the spatial geometry of the optical su-

permode, we approximateγi and Ωi of individual OMO are identical. We can

then exactly diagonalize the coupling matrix in equation 5.2 where the Jacobian

would indicate the spatial geometry of the coupled optical mode as shown in

figure 5.2.
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Figure 5.3: The optical transmission in the (a) three, (b)four and (c) seven
cavity arrays respectively. The well split resonant mode and
the high extinction of each split supermodes shows that the
optical modes are strongly coupled.

Figure 5.3 shows images from the IR camera when the supermodes spanning

over all cavities are excited. It is clear from the image that all cavities light up

with approximately equal intensities.
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a b c

Figure 5.4: Image of the scattered light when sychronization is onset for
(a) three-cavity (b) four-cavity and (c) seven-cavity arrays. The
radius of the disks are 20 μm.

5.4 Mechanical modes

The mechanical modes of the double disk is the flapping mechanical mode

where we can control the mechanical frequency of the mode by the undercut

depth of the sacrificial silicon dioxide layer. In the particular device we used

in the experiment, we fabricated the devices with mechanical frequency near

132 MHz and quality factor near 1000 (Fig. 5.4). In the OMO arrays, when

the system is coupled to a laser at very low power, we measured a distribution

of mechanical frequencies corresponding to different OMOs. Figure 5.4 shows

the mechanical spectrum in the three, four and seven cavity arrays respectively.

In the three OMO array, the mechanical frequencies are clearly different where

as in the four OMO and seven OMO arrays, the mechanical mode frequencies

overlaps.

In synchronized oscillator arrays, the phase noise reduces as the number of

synchronized oscillators increase. Experiments and theories [88, 81, 84] show

that the noise reduces as 1/N where N is the number of synchronized oscilla-

tors. This can be intuitively understood as coordinated oscillators while hav-

ing the same frequency but having an increased effective mass which improves
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Figure 5.6: The mechanical spectrum in the (a) three, (b)four and (c) seven
cavity arrays respectively. The disorder in mechanical frequen-
cies is evident from the distribution is evident from the split-
ting of the peaks.

their resistance to environmental thermomechanical fluctuations. In our sys-

tem, proving synchronization by studying the dynamics of individual cavities

in the arrays is desirable but it is technically challenging given the compact size

of the array. Therefore we choose the phase noise as a figure of merit as it is

fundamentally limited by the thermomechanical process.
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5.5 Synchronization in different sizes of arrays

We show the onset of synchronization by increasing the excitation laser power

which effectively increases the coupling between the OMOs. The laser wave-

length is blue detuned relative to the spectrum of the even optical supermode

(Fig. 5.2a dashed boxes). In the case of three coupled OMO array, as the laser

power increases well beyond the oscillation threshold for each individual os-

cillator, the RF spectrum of the OMOs show strong oscillation peaks as well as

sidebands and a broad noise floor (Fig 5.5a). The increase in the noise floor is

due to finite interaction between the mechanical modes mediate by the optical

field but not yet strong enough to transition into a locked state. This sidebands

are formed due to beating between the different mechanical modes observed in

other photonic cavity coupled systems. As the laser power further increases, the

onset of synchronization (Fig. 5.5a) is evident as the peaks on the RF spectrum

merge into a single large peak and the noise floor is reduced. The much weaker

sidebands around the main oscillation signal are now due to quasi-periodicity

in the synchronized state 20. In the case of four couples OMO array, similar to

the three cavity case, the beatingbetween different mechanical modes and the

broad noise floor also appears. When the optical power is further increased to

Pin = 360μW, synchronization is evident again from the appearance of a sin-

gle oscillation peak (Fig. 5.5b). and from the dro p in the noise floor. In the

case of seven coupled OMO array, we observe similar beating behaviours and

high noise floor before synchronization. As the optical power increases above

the synchronization threshold, the noise floor drops and a single narrow peak

appears (Fig. 5.5c).
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5.6 Phase noise in synchronized oscillators

Leesons model predicts the phase noise of self-sustaining oscillators from the

linewidth of the oscillation signal. The linewidth (ΔΩ) of a thermally limited

oscillator is given by

ΔΩ =
kBT

2Pout
Γ2

m (5.3)

where kB is Boltzmann’s constant, T is the temperature, Pout is the output power

of the oscillator and Γm is the natural damping rate of the oscillator. Since the

double disk we use have a small effective mass (meff), which means a low oscilla-

tor power, the phase noise is limited by thermomechanical noise. The oscillator

power Pout is given by,

Pout =
1
2

meffΩ
2x2 (5.4)
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where x is the displacement amplitude of the oscillator. Equation (5.3) can be

represented as,

ΔΩ =
kBT

4meffΩ2x2Γ
2
m (5.5)

The phase noise performance of an optomechanical oscillator, when limited

by thermomechanical noise, improves when the laser power is increased. At

high laser driving powers, the phase noise roughly stays constant as the laser

power is further increased. We calibrate the single oscillator phase noise perfor-

mance by measuring the phase noise at 10 kHz carrier offset at different laser

driving powers. Figure 5.6 clear shows that the phase noise does not vary sig-

nificantly when the power is above 4 × Pth. where Pth = 10μW is the typical

threshold power for individual OMO. This is in agreement with the experimen-

tal observation reported by Mani et. al [89]. and theory by Fong et. al [90].
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Figure 5.8: Phase noise of a single OMO as a function of the laser driving
power.

Leeson’s model for phase noise [91] states that the phase noise represented

in dBc/Hz at an offset frequency of Δ f is L(Δ f ) where,

L(Δ f ) = 10Log10

(
ΔΩ

2πΔ f 2

)
(5.6)
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Substituting the parameters and x ∼ gom/γ = 10 pm to equation 5.6, we obtain

the thermal mechanical noise limit of our oscillators is −62 dBc/Hz at 104 kHz

carrier frequency offset, agreeing well with our experimental measurements.

We corroborate the observation of synchronization through monitoring the

phase noise of the optomechanical oscillator arrays. The phase noise of the mod-

ulated output light is expected to drop as the oscillators are synchronized [79].

This can be used as an indicator for the onset of synchronization when the indi-

vidual oscillator phase is inaccessible, as observed in many other coupled oscil-

lator systems [92, 93]. We measure the phase noise of our oscillators at 10 kHz

offset from the carrier oscillation frequency, where the phase noise of our oscil-

lator is dominated by thermomechanical fluctuation [89, 90, 94], a fundamental

limit imposed to the mechanical oscillator due to the thermal bath of the envi-

ronment. Our individual OMO oscillates with a typical phase noise of - 61±2

dBc/Hz at 10 kHz carrier offset when the OMOs are being driven at high opti-

cal driving powers (∼ 10Pth) in agreement with estimation using Leesons model

of thermomechanical noise limited self-sustaining oscillators [91]. To confirm

the drop of phase noise can be used to reflect the onset of synchronization in

optomechanical systems, we measured the phase noise in a two synchronized

OMOs system as previously reported [95]. Indeed, we observe the phase noise

dropped by ∼3 dB as the two OMOs move from one OMO oscillating state to a

synchronized oscillation state. As shown in figure 5.6a, the single OMO phase

noise at low power is ∼ -60 dBc/Hz and is gradually increased as the laser

power is increased. The increase of phase noise is due to phase slipping be-

tween the two OMOs [84]. As the OMOs are more and more strongly coupled

with the increase of laser power, they are synchronized characterized by a drop
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in phase noise of ∼ 3 dB below the individual oscillation state. As the oscillators

are nearly identical, synchronized oscillations can be viewed as two oscillators

working coherently providing a larger effective mass while not reducing the

oscillation frequency [94].
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Figure 5.9: Phase noise reduction in arrays (a) phase noise in a two-OMO
system at 10 kHz carrier offset as a the laser power is increased.
The noise increases due to mode competition between possible
oscillation states and then decreases by ∼ 3 3dB below the noise
level of one OMO oscillation state. (b) The phase noise of the
synchronized oscillation signal for different sizes of OMO ar-
rays. The blue curve is the phase noise level predicted by the-
ory for identical synchronized oscillators (c) Power spectrum
of a state where four OMO are oscillating (black) and of a state
two OMO oscillating (green). The phase noise drops by ∼ 3 dB
following the transition.

We show that in large arrays of OMOs, the phase noise of the synchronized

signal can be reduced below the noise of an individual OMOs thermomechan-

ical noise limit by almost 10 dB. We measure the phase noise of each type of

array by driving the system at high optical powers and the detuning where the

phase noise is a minimum. The lowest phase noises measured in each array of

different sizes are plotted in figure 5.6c which is close to the 1/N dependence

predicted by theory [79, 45].

The drop in phase noise can also be used to indicate the number of OMOs
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synchronized in different oscillation states in a single array. We measure the

phase noise in an 2 × 2 array as the oscillators change from a state where only

two OMOs are oscillating to a state where all four OMOs oscillating, as we ob-

served from the light scattering intensities captured on the IR camera. Figure

5.5b shows the power spectrum of the transmitted light at when the laser is

tuned from exciting an optical mode that spans two cavities to an optical mode

that spans all four cavities (Fig. 5.2a) while staying at the same optical power.

Following the transition, the four OMO oscillation state shows an increase of ∼
3dB in the oscillation signal and ∼ 3dB drop in the phase noise. At the same

time, all four resonators lights up on the IR camera. This strongly indicates that

such transition is caused by the four oscillators being synchronized.

5.7 Conclusion

In conclusion, we demonstrate synchronization in highly integrated arrays of

micromechanical oscillators coupled through the optical field. We show the on-

set of synchronization in the array by tracking the emergence of a single oscil-

lation frequency in the optical power spectrum. Synchronization is further cor-

roborated by our study of the phase noise in the arrays. The reduction of phase

noise with oscillator array size and the scalability of our devices could enables

low noise frequency and high power integrated frequency sources. Our work

paves a path towards large scale monolithically fabricated oscillator networks

that have the potential to compete with the performance of bulk resonators and

to exhibit rich nonlinear dynamics opening the door to novel metrology, com-

munication and computing techniques.
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CHAPTER 6

COUPLING A CARBON NANOTUBE TO A HIGH FINESS OPTICAL

MICROCAVITY

6.1 Introduction

Carbon nanotubes (CNTs) are one dimensional strand of carbon atoms [96, 97].

The atoms are arrange such that CNTs are folded cylinders of graphene sheets.

These 1d structures possess some of the most exotic properties that are known

today. CNTs have the largest tensile strength and are the stiffest material [98]

and they also are some of the smallest transistors [99]. However, because the

CNTs is tiny (normally a few nm in diameter), it is extremely challenging to

make them interacting efficiently with the environment. Even the size of a

tightly focus laser spot under a high numerical aperture microscope objective

can be hundreds of times larger than a typical CNT. This means that typical

measurements of CNT requires long averaging times and the small interac-

tion strength between the CNTs and the measurement tool produce very low

signal-to-noise ratio signals forbidding the observation of fast dynamics. Previ-

ous measurements of CNTs often relies on drive and detect measurements and

long averages [100]. Passive measurements such as detecting the thermal Brow-

nian motion of CNTs has only started recently and have very limited progress

[101, 102]

The idea of using an optical cavity is to optically readout the mechanical mo-

tion of carbon nanotubes as discussed in chapter 1. Recently, there is emerging

interest in coupling CNTs to microwave microstructures [101] and fiber opti-

cal cavities to access the mechanical properties of the CNTs [102]. However,
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Figure 6.1: An artistic impression of a pair of gold microtweezers hold-
ing a CNT over the evanescent optical field of a microdisk
cavity. The optical cavity is excited by a tapered optical fiber
waveguide.

efficiently coupling them to optical fields is challenging since the diameter of a

CNT is more than two orders of magnitude smaller than the wavelength of light.

Here we demonstrate a novel platform that shows strong interaction between a

single CNT and an optical microresonator. This work is done in collaborate with

Arthur Barnard and Professor Paul McEuen at Cornell Physics department. We

use electrically contacted microtweezers to pick up individual while simulta-

neously using the tweezer probes to measure the photocurrent response of the

nanotube. We choose a free-standing silicon nitride optical disk cavity as it is

high quality factor, high finesse, relative small modal volume and easily cou-

pled with light.

We developed electrically contacted microtweezers to pick up individual

CNT and place them with nm-scale accuracy near an optical cavity [103]. The

optical cavity is designed so that the evanescent optical field propagating out-
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side of the cavity can be directly accessed by the CNT while not being perturbed

by the microtweezers [6]. This is in stark contrast to the traditional approach of

directly integrating CNTs on to the chip using planarized process. The advan-

tage of studying CNTs in a controllable fashion like the microtweezers position-

ing here is that it allows the construction of a full set of spatial dependent data.

This is critical in the understanding of CNT dynamics. Being able to move the

CNT into and out of the optical evanescent field enables a direct comparison of

the signals with and without the CNT. This allows identification of signals that

originates from the CNTs.

6.2 Experimental setup

We designed and build a vacuum chamber (also a cryostat) to accommodate

the microtweezers picking up CNTs and tapered fiber optical cavity coupling

simultaneously. The project is supported through an instrumentation project

by the Kavli Institute for Nanoscience at Cornell, so we often refer this cham-

ber as the Kavli cryostat. The idea is to pick up a CNT from a CNT growth

chip and move the microtweezers with the CNT to an optical cavity chip which

is mount on the same stage. The vacuum chamber hosts a colder finger cryo-

stat (Janis ST-500) at the center and emerging from the bottom of the vacuum

chambe. We attached a cryogenic compatible xyz-piezo sample stage (Attocube

ANPx340/LT, ANPz101eXT/LT) on the cold finger which can be cooled down

to 10 K. This stage allows the sample to travel up to 20 × 20 mm in the sam-

ple plane and 12 mm vertically out of the plane. The large dynamic range of the

stage plays a crucial role in transporting the lifted CNT over to the optical cavity.
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Tapered Fiber Stage

Microtweezers Stage

a

b
Reentrant Window

Tapered Fiber Stage

Sample Stage

Figure 6.2: Experimental chamber designed for the CNT optics experi-
ment.(a) Top view of the chamber we designed for picking up
CNTs and placing them near a tapered fiber coupled optical
cavity. The two sets of xyz piezo stages holding the tapered
fiber and the microtweezers are at 90 degrees to each other
pointing to the sample holder. (b) Cross-section view of the
chamber where a re-entrant window is shown. The reentrance
at the center of the chamber lid allows short working distance
objective to get close to the sample for fine imaging.
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Around the sample mount, we installed two xyz-piezo stages at 90 degrees

to each other facing the sample mount to hold the tapered optical fiber (with an

Attocube ANPx101/RES/LT, ANPz101/RES/LT) and the microtweezers (with

a PiezoJena miniTRITOR) respectively. We designed the tapered optical fiber

holder to hold a straight taper under tension such that the gap between the

cavity and the tapered fiber can be readily controlled (Fig. 6.2).

Figure 6.3: Photo of the Kavli Chamber A photo showing the inside of the
vacuum chamber with the tapered optical fiber, microtweezers,
optical cavity chip and CNT growth chip installed.

Besides the high versatility in low-T compatible motion control, optical and

electrical feedthrough, the probe station is also designed for high resolution

imaging. We design an re-entrant window as shown in figure 6.2 to allow high

NA long working distance objectives (Mitutoyo) to be used. High resolution

imaging is critical in realizing the fine control for CNT pick-up and positioning.
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6.3 Device fabrication

CNTs are grown using chemical vapor deposition (CVD) on a micro-patterned

corrugated substrate. The resulting structure consists of flow-aligned CNTs

with suspended regions between corrugations. Using two-terminal electrically

contacted home-built microtweezers we pick up CNTs, with electrical end-point

detection used to determine when a tube spans the tweezer probes. We move

the microtweezers above the surface of the growth substrate with piezo stages

until electrical conductivity is observed. We then lift-up the microtweezers to

free the tube from the substrate. The separation of the microtweezers can be

tuned from 5 to 30 μm via piezo actuation, which enables us to buckle the CNT

out of plane as well as to tension it, controlling the mechanical, electronic and

optical response.

In the course of the experimental development, we continuously opti-

mized the fabrication process to increase the optical quality factor of the cav-

ity. The Si3N4 optical cavities are fabricated on standard thermal SiO2 (thick-

ness ∼ 3.5 μm) on Si wafers. A thin layer (∼ 350 nm)of stoichiometric Si3N4 is

deposited on the wafer using LPCVD technique at 800 C. Individual optical

cavities with varying radius (6 − 50 μm) is then patterned using electron beam

lithography. We also patterned a thin mechanical tether near the optical cavity

to use as a ’parking lot’ for the tapered optical fiber. The Van der Waal’s force

between the tapered fiber and the tether allows the position of the tapered fiber

to be continuously fine tuned even when it is positioned very close to the cavity.

Without such intervention, snapping due to electrostatic or Van der Waals force

between the fiber and the cavity can make fine positioning difficult.
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The particular e-beam resist we used for the highest optical quality factor

measured is the MaN-2410 resist which is negative tone with a thickness of ∼
1μm. The resist is developed and reflowed at 135 C◦ for 5 minutes to reduce the

side wall roughness at the cost of increased side wall angle. The pattern is then

transferred onto the wafer using reactive ion etching with CF4. Using CF4 as

oppose to C2F2 or CHF3/O2 aims at reducing fluorocarbon polymerization [104]

on the side walls at the cost of increased side wall angle. The resists are then

removed by immersing the wafer in a hot piranha (H2SO4:H2O2) bath at 60 C

for 20 minutes. Removing the resist using piranha as opposed to oxygen plasma

prevents the stress build up in the Si3N4 layer which could cause the disk to

deform when suspended. Following the resist removal, we further cleaned the

wafer through a standard MOS clean process (10 minutes dilute NH4OH/H2O2

and 10 minutes dilute HCL/H2O2 at 75 ◦C). We then anneal the processed wafer

at 1200 C for 2 hours to reduce hydrogen content in the Si3N4 film which reduces

optical absorption loss [105]. The patterned wafer is then cladded with a 50 nm

layer of high temperature oxide (HTO) to prevent contamination of the optical

cavity from further processing steps.

The wafer is then diced into 10 × 1.5 mm chips and release in diluted hy-

drofluoric acid (49% HF:H2O 6:1) for approximately 30 minutes to undercut the

Si3N4 disks for about 3 μm. The etching time is chosen such that a symmetric

optical mode profile is ensured while still maintaining the Si3N4 layer, since HF

has a finite etching selectivity (∼ 100:1) of SiO2 to Si3N4 . To further enhance

the optical quality factors, we perform cycles of heated piranha (120 ◦C) clean,

dilute HF (1:100 to H2O) dip and H2 annealing to remove organics compound

on the surface, absorptive defects in Si3N4 and stripping the native oxide layer

[106].
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6.4 Basic CNT-optical cavity characterization

6.4.1 Optical cavity response to CNT

NA

FFT
Si Chip

Microcavity

CNT Gate contact

Tunable Laser PD

Vacuum

Gold contact

Figure 6.4: A schematic of the experimental setup for the CNT opti-
cal cavity system. The red dashed box is a close up of
the tweezers-cavity region highlighting how the CNT is posi-
tioned. The silicon chip hosting the optical cavity is also elec-
trically contacted so the CNT could also be gated. PD: photo-
diode, NA: network analyzer, FFT: fast Fourier transform.

We position the microtweezers with a CNT held between the two contacts

close to the edge of the microdisk to measure the photo-response of the CNT.

The two arms of the microtweezers are controlled to have a minimum separa-

tion of ∼ 10μm such that when the CNT is positioned over the optical cavity,

the metallic tweezers arms do not perturb the optical cavity field. We move

the CNT incrementally closer to the top surface of the optical cavity with the

tweezers piezo stage (negative Z). At the same time, we constantly sweep the

wavelength of the laser around a high finesse resonance of the cavity to moni-

tor the cavity transmission. This method gives us a direct measure of how the

presence of a single CNT changes the optical cavity transmission, namely, the
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cavity decay rate γ, the cavity extinction Text and the cavity resonant frequency

ωcav.

We experimentally measures two types of CNT-optical cavity interaction.

The first type of CNT introduce a combination of dispersive and dissipative ef-

fect on the optical cavity transmission. The CNT both refract and scatters the

light corresponding to an effective real and imaginary index of refraction [107].

The second type features a predominantly dissipative effect on the optical cav-

ity. The CNT mainly absorb and scatters light whereas the refraction is much

less than the other two contributions. Our measurements suggests that the first

type of interaction involves a semiconducting CNT where a there is a bandgap

at the wavelength of the laser excitation. In the second scenario, the CNT is ei-

ther metallic or has a very small bandgap. Here the CNT would have a large

optical absorption cross section. The strength of the CNT optical interaction is

characterized by the dispersive and dissipative optomechanical coupling con-

stant gω =
dωcav

dx and gγ =
dγtot
dx . Figure 6.4.1 shows the optical transmission when

the two types of CNTs are placed close to and far away from the optical cavity.

From the linewidth of the transmission, we extract the optomechanical coupling

coefficient for the semiconducting CNT to be gω ∼ 100 kHz, gγ ∼ 80 kHz when

the CNT is close to the surface of the cavity. For the metallic CNT, the optome-

chanical coupling coefficient is gγ ∼ 1.2 MHz.

We measure a strong photocurrent response of the CNT when it is placed

in the evanescent field of the microdisk optical cavity [108]. As the laser wave-

length is scanned over the optical resonance centered at 1553 nm, both the op-

tical transmission of the microdisk measured through the tapered optical fiber

and the photocurrent measured across the CNT show a Lorentzian response,
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Figure 6.5: DC measurements with the CNT optical cavity system (a) The
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optical cavity. (b) The optical cavity transmission for a metallic
CNT.

with a loaded optical quality factor of 2 × 105 (Fig 6.4.1a,b). The photocurrent

exhibits a linear response to the optical power at an input optical power up to

1 μW (Fig 6.4.1c). The extracted responsively of the device is 38 μA /W which

is orders of magnitude larger than when the we illuminate the CNT with a fo-

cused light. The responsivity is highly dependent on the position of the CNT

relative to the field. When it is moved over a distance of less than 1 μm, the re-

sponsivity increases to 0.35 mA/W. We show in the following sections that we

could use the photocurrent generated by the CNT to image the standing optical

wave inside the optical microcavity.

6.4.2 Optical detection of CNT mechanics

Suspended carbon nanotubes (CNTs) are sensitive to small forces which makes

them a prime candidate for force sensors. This same property, combined with

their unique photonic and electronic properties makes them attractive for build-

ing novel hybrid nanosystems [102, 109]. In previous sections, we investigated

84



30

25

20

15

10

P
ho

to
cu

rr
en

t (
pA

)

800600400200

Dropped optical power (nW)

30

25

20

15

10

P
ho

to
cu

rr
en

t (
pA

)

-4 -2 0 2 4

0.95

0.90

0.85

0.80

0.75

0.70

T
ra

ns
m

is
si

on

Laser-cavity detuning (GHz)

� � � � � � � � 	 
 � � 
 �

� 	 � � � � �a

b

c

Figure 6.6: Photocurrent generated from CNT (a)Transmission of the mi-
crodisk resonator mode we excite measured through a tapered
optical fiber (b) Photocurrent response measured across the
CNT as the laser is scanned over the optical resonance. (c) The
photocurrent shows a linear dependence with optical power.
The responsivity is 38 μA/W

primarily quasi-static interactions between the CNTs and the optical cavity. In

this section, we show that we could take advantage of the low noise and high

sensitivity nature of optical field and use it to detect the mechanical motion of

the CNTs.

We optically detect the mechanical motion of a CNT driven electrically by a

AC voltage applied between the CNT and the gate. The electrical drive is pro-

vided by a network analyzer and the optical signal detected on a photodiode is

connected to the return port of the network analyzer. We gradually approached

the CNT to the optical cavity until strong mechanical resonance peaks are ob-

served on the network analyzer. The gate voltage is then varied as the spatial

position of the microtweezers remain fixed. The result (Fig.6.4.2a) shows that

the mechanical frequency of a CNT can be tuned by almost a decade with less
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Figure 6.7: Optical detection of CNT mechanics(a) Electrical drive and
optical detection of CNT. Vg is the gate voltage between the
tweezers and the CNT. (b) Thermal Brownian motion of the
CNT measured optically by positioning the CNT inside the
evanescent optical field. (c) Thermal Brownian motion of the
CNT measured electrically under similar conditions. It is evi-
dent that the optical detection has a superior sensitivity.

than 10 V change in gate voltage. The fundamental mechanical mode for exam-

ple, is tuned from < 500 kHz to ∼ 2.3 MHz when the gate voltage is changed

from 0 V to 8 V. This is in stark contrast to conventional micromechanical oscilla-

tors where the tuning range is usually within a few percent. Note that there are

several sign flips in the mechanical spectrum as the gate voltage is varied. This

is likely a reflection of the locality of the interaction between the optical field

and the CNT. As the gate voltage varies, the tension in CNT is changed there-

fore the shapes of the mechanical modes are also affected. The sign flip reflects

the optical field detecting spatially different part of the CNT. We show in the

following sections that as we further improve the interaction strength between

the optical and mechanical degree of freedom, we could image the mechanical

mode shape of a single CNT using optical detection.
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We also show that we can detect the thermal Brownian motion of the CNT

through the optical cavity. Figure 6.4.2b shows the power spectrum of the op-

tical transmission obtained when the gate AC drive is turned off, i.e. the CNT

is only driven by environment thermal noise. There are five mechanical modes

readily seen with a noise floor at 30 pm/
√

Hz. To compare, we also measure the

Brownian motion with electrical readout with the gate at similar conditions. The

optical readout is an order of magnitude more sensitive than electrical readout

in this case.

6.5 CNT-optical cavity dynamics with ultrahigh Q and ultra-

high finesse Si3N4 optical cavities

In order for the CNT-optical cavity system to form an efficient feedback system,

a high optical quality factor and high finesse cavity is necessary. This is evident

from the optomechanical oscillation threshold equation in chapter 2, where the

threshold for self-sustaining oscillation is inversely proportional to Q3
opt and g2

om.

Increasing the cavity finesse, i.e. increasing the quality factor while keeping the

same optical modal volume, would also increase the optomechanical coupling

coefficient gom. We design and fabricated Si3N4 micro optical cavities that have

intrinsic optical quality factors as high as 5 million and finesse over 40000 using

the optimized process we developed and described in section 6.3.
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Figure 6.8: High Q and high finesse Si3N4 optical cavity (a)A photo of the
high Q silicon nitride optical cavity taken by a microscope. The
sample is positioned to tilt at ∼ 45◦ and is illuminated laterally.
(b) A typical transmission spectrum of the high Q cavity. The
loaded optical quality factor here is Qtot ∼ 4 × 106.

6.5.1 Near-field photocurrent imaging of the optical cavity field

with a CNT

We can use the CNT as a optical field sensor to image the optical evanescent

field by spatially scanning the CNT while monitoring the photocurrent. The

high optical quality factor cavity exhibit a fully split resonance doublet because

of the inhomogeneities induced scattering between the clockwise and counter-

clockwise propagating optical mode 6.5. The split is fully resolved in the high Q

cavity because the linewidth γ < 100MHz of the resonance are much narrower

than the previous generation of devices with γ ∼ 500 MHz. The two split modes

are two standing waves that are spatially π out of phase with each other as illus-

trated in figure 6.5.1a. When a CNT is positioned perpendicular to the standing

wave, because of its small diameter, it has different spatial overlaps with the

two modes resulting in a difference in the detected photocurrent intensity. Fig-

ure 6.5.1b shows the optical transmission and the photocurrent generated from
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the CNT where the discrepancies on the to modes are evident.

The CNT is then scanned along the standing wave pattern (Y-direction)

while we monitoring the optical transmission and photocurrent. While the opti-

cal transmission remains relatively unperturbed, the photocurrent signal shows

a clear alternating structures when plotted on a colormap as in figure 6.5.1c. We

analyze these data by fitting a Lorentzian curve to the photocurrent signal. The

peak of the fitted curves as a function of Y is plotted in figure 6.5.1d, where

we extracted a periodicity of 400 nm. This is consistent with the periodicity of

the standing wave predicted by the optical excitation wavelength of our cavity

(1600 nm) and the refractive index of Si3N4 (nSiN = 2).

6.5.2 Optical near-field imaging of the mechanical modes of a

CNT

We elaborated in the previous sections that the localized optical mode could

provide spatial information on the mechanical modal profile of the CNTs. With

the improved sensitivity, we show that we can scan the optical mode along the

CNT to image the mechanical mode shape of the CNT. The setup here is similar

to the electrical drive and optical detect scenario. Instead of changing the gate

voltage, we move the CNT in the X-direction while monitoring the mechanical

mode with a network analyzer. Figure 6.5.2a illustrate the localized interaction

of the optical mode with the different mechanical modes of the CNT. As the

CNT is moved along in X, the optical mode would have a different response

depending on the spatial structure of the mechanical modes.
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Figure 6.9: Photocurrent imaging of optical standing wave with CNT
(a)A schematic of the standing wave interaction with the CNT.
(b) The optical transmission spectrum (top) and the photocur-
rent signal detected in the carbon nanotube. The asymmetry in
the photocurrent signal is prominent. (c) photocurrent imag-
ing of the optical mode as the CNT is scanned in y-direction.
(d) The peak intensity of the two standing wave modes as the
CNT is moved showing a period of ∼ 0.5μm

Figure 6.5.2b shows the spectrum of the mechanical mode detected by the

optical signal. Three distinct mechanical modes with different frequencies are

clearly identifiable. The blue and the white color corresponds to a different sign

on the signal from the network analyzer. We can see that as the CNT is scanned

along X, the high frequency mechanical modes exhibit sign flips where as the

lowest frequency mechanical modes merely changes signal strength. This is be-

cause as the optical mode is moved from one mechanical antinode to another,

there is a π phase change in the mechanical vibration. Therefore the low fre-
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Figure 6.10: Detecting CNT mechanical mode shapes (a)Concept of de-
tecting mechanical mode shape of a CNT using localized op-
tical mode. (b) Electrical driving and optical detection of the
mechanical mode revealing phase-flips (blue to white) that
corresponds to node in the CNT vibration.

quency mechanical mode has only one antinode in the range of scanning where

as the high frequency mechanical mode indeed exhibit phase flips as we illus-

trate in figure 6.5.2a. This is the first time that the mechanical mode shape of

such a small object is imaged using optical method. The slight shift in the fre-

quencies of the three modes is due to the CNT experiencing a changing electro-

static force while moved relative to the optical cavity.

6.5.3 Ultrasensitive detection of CNT thermal Brownian mo-

tion

We shown in section 6.4.2 that we can detect the thermal Brownian motion of

CNTs using the optical cavity readout. As the cavity quality factor is dramat-

ically improved, we show in this section that we can detect many mechanical

modes simultaneously with >30 dB signal to noise ratio (SNR) in the power
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spectrum. Traditionally, detecting the mechanical motion of a CNT usually in-

volves advanced techniques such as lock-in detection and have low signal to

noise ratio. Because of the sensitive cavity optomechanical interaction, we show

that not only we have large spectral SNR, we can also detect the thermal Brow-

nian motion of the CNT in real time as shown in figure 6.5.3b.

We couple 20 μW of light into the optical cavity and tune the laser wavelength
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Figure 6.11: Thermal Brownian motion of a CNT measured with high
Q optical cavity (a)Thermal Brownian motion spectrum of a
CNT revealing > 30 dB SNR in spectral power. (b) The real
time signal measured corresponding to the fundamental me-
chanical mode of a CNT exicted by environmental thermal
force.

to be at the center of an optical resonance. The transmitted light is coupled to

a photodetector and fed into a digital oscilloscope (Picoscope 5244B) where the

real time and FFT spectrum signals are recorded. Figure 6.5.3a shows the op-

tical power spectrum of the transmitted light through the optical cavity. The

peaks corresponds to different mechanical modes of the CNT. We extract the

mechanical quality factor of the lowest frequency mechanical mode by fitting

a Lorentzian curve. The mechanical quality factor we measured appears to be
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Qm ∼ 100.

Our high SNR real time photodetection reveals a striking feature of the CNT

mechanics. Figure 6.5.3b shows a small section of the raw data the oscilloscope

collects highlighting real time detection of the CNT thermal Brownian motion.

These vibrations are the fundamental flexure mode of the CNT excited by the

environmental thermal phonons. If we take a shorter time window to perform

the FFT, we can see that the measured mechanical quality factor is much higher

than if the data is acquired for a long time. This phenomena is called spectral

diffusion and it has been observed in other type of systems [110, 111, 112]. The

spectrum is smeared out by the fact that the frequency of the mechanical os-

cillator is varying at a time-scale that is shorter than the rate the spectrum is

recorded. Figure 6.5.3 suggests that the actual quality factor of the CNT oscil-

lator is much higher than if measured with a much slower technique such as

using a lock-in detection method.
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Figure 6.12: Spectral diffusion of CNT(a) The power spectrum of the fun-
damental flexural mode of a CNT taking over 1 second of av-
eraging. (b) Same set of data taken with a much shorter FFT
time window (1ms) showing that the actual mechanical qual-
ity factor is masked by the temporal fluctuation of the me-
chanical frequency.
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6.5.4 CNT cavity optomechanics and nonlinear mechanics

So far, we have demonstrated the optical cavity provide a localized and sensi-

tive means of detecting the CNT mechanical motions. The ultimate goal of this

experimental construction is to take the advantage of the low noise and highly

efficient optomechanical interaction to control the CNT dynamics. One appli-

cation is to make a compact self-sustaining CNT optomechanical oscillator. The

unique feature of this device is that it could provide decades of frequency tun-

ing range as oppose to only a few percent in traditional MEMS oscillator. We

show in this section that we are indeed operating in a regime where the light

can affect the mechanical properties of the CNT through optical forces.

We position the CNT as close to the cavity as possible without touching the

surface of the cavity. We scan the laser across the standing wave mode that spa-

tially overlaps with the CNT and record the transmission on the FFT spectrum

analyzer. At Pin = 20 ∼ μW, we observe both a spring effect and an amplification

effect. Figure 6.5.4 shows the linewidth and center frequency for the fundamen-

tal mechanical mode of a CNT as a function of laser wavelength ωL. As the

laser is tuned into the optical resonance, the mechanical mode of the CNT stiff-

ens and the linewidth reduces. Note that the measure mechanical quality factor

improved to a saturation value of Qm ∼300 from Qm ∼110. The actual mechani-

cal linedwidth could be much narrower as our previous analysis shown due to

spectral diffusion. It is likely that the amplification and spring effect is due to

photothermal effect as the almost purely dissipative optomechanical coupling

does not provide a coherent feedback force [113].

Finally, we show that we could excite and measure the nonlinear dynamics

of the CNT by increasing the interaction strength of the CNT and the optical
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Figure 6.13: Optomechanical effect in CNT resonators Spring effect and
amplification of the mechanical vibration due to optical
forces. As the laser in tuned into the cavity resonance, the
mechanical mode of the CNT stiffens and the linewidth im-
proves as the laser drives the cavity stronger.

cavity. We incrementally step the CNT close to the optical cavity with the laser

tuned into the optical resonance at large optical input power Pin = 20 ∼ μW.

As the CNT is brought closer to the cavity, the optical evanescent field inter-

acts stronger with the CNT through improving the optomechanical interaction

strength gκ. We observe that the CNT mechanical spectrum grows and also

higher order harmonics start to appear. We also observe that in the time domain,

when a CNT is driven strongly, period doubling could occur. This is possibly a

result of the Duffing nonlinearity in the CNT when it vibrates in large amplitude

where the mechanical motion is coupled to the spring constant through tension

in the CNT [114].
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Figure 6.14: Nonlinear dynamics with CNT (a) The spectrum of a CNT
shows signs of period doubling and tripling as the CNT is
driven stronger and stronger through approaching the optical
cavity. (b) Real time trace of a CNT when driven strongly
shows period doubling behaviour

6.6 Conclusion

We demonstrate a novel and versatile platform for ultrasensitive detection of

CNTs, a string of only a few nm in diameter, using optical microdisk resonators.

We devised electrically conductive microtweezers to achieve nm precision in

position a suspended CNT over a high Q Si3N4 optical cavity. We showed that

we could measure the mechanical vibration of the CNT in real time and even

control the mechanics of the CNT through optomechanical interactions. The ul-

trahigh CNT displacement sensitivity would allow the CNT to be used as an

ultrasensitive mass and force sensor. The control over the dynamics of the CNT

could enable measuring very interactions, for example a CNT interacting with a

single spin, in real time. Furthermore, studying the real time dynamics of CNTs

may shed light into the fundamental dissipation mechanism that ultimately lim-
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its the quality factor of CNT oscillators [115].

97



CHAPTER 7

CONCLUSION AND OUTLOOK

We explored in this thesis the interaction of many optomechanical systems and

a unique system where a high quality optical microscale resonator is coupled to

a nanoscale carbon nanotube mechanical resonator.

Synchronization in a large array of integrated micromechanical resonators

could be used for low noise frequency sources. Through low loss optical fibers,

mechanical resonators could be synchronized even when they are very far apart.

The amazing phenomena of synchronization in a large coupled system could be

considered merely as a ’ground state’ of a coupled nonlinear system. As the

coupled system grow in size and complexity, one could imagine that more and

more intricate high energy stable states could appear. The importance of com-

plex networks has long been realized. For example, intelligence emerge in a vast

complex network of simple neurons. Our work shows a scalable platform that

one could combine optomechanics with existing technologies in nanophotonics

such as waveguiding, switching and phase shifting and even electronic circuits.

Very recently, we demonstrated that we could optically tune suspended cavities

through integrated heaters that overhangs the optical cavity while not perturb-

ing the optical field. One concept for a future device would be large optical

coupled resonator arrays controlled through arrays of metal heaters wired to

a circuit control board to demonstrate controllable synchronization and oscilla-

tion state switching.

Our technology of ultrasensitive displacement sensing of a carbon nanotube

with an optical microcavity is mature for further exploration. Examples include

atomic level mass sensing, near-field scanning optical microscopy and the more
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Figure 7.1: Large scale and tunable optomechanical oscillator arrays.
(a) Recent effort on integrating suspended metal heaters for
thermo-optic tuning of free-standing optomechanical struc-
tures (b) Large optomechanical oscillator arrays fabricated on a
Si3N4 substrate. Combining thermo-optic tuning and the large
scale array fabrication could put these devices into full opera-
tion.

fundamental aspect of CNT properties such as mechanical dissipation mecha-

nisms, strongly coupled exitons and polaritons and spin coupled to mechanical

vibrations. The optical cavity could also be optimized for even higher coupling

efficiency, such as using nanobeam photonic crystal cavities.

Our work serves an initial exploration of the new dynamics emerge out of

several well understood optomechanical resonators and the unique properties

of a special mechanical oscillator coupled to an optical microcavity. A further

speculation is that these ’coupled’ technologies can be integrated together. The

required level of scaling and sensitivity would be possible due to the low loss

and low noise of light. It is possible to form a even large networks of oscillators

and sensors enabling a new paradigm of devices.
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