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Identifying social influence among people is a problem that has vexed sociol-

ogists, social psychologists and marketers for decades. As more and more of

our activities are mediated by online sharing networks, there is a unique oppor-

tunity in terms of large-scale access to data about people’s decisions, but also

new challenges around understanding how interfaces and algorithms on these

socio-technical systems affect people’s decision-making on items. This thesis

presents a mixed-methods analysis of social influence on the two decisions that

comprise much of online information exchange: adoption and sharing.

First, we show the prevalence of preference locality—similarity in item prefer-

ences among friends—for two popular sharing networks, Twitter and Facebook.

We find that friends’ data alone can be used for recommendation algorithms

that predict people’s actions as good as those using the full network’s data. We

then present a sequence of experimental and data mining efforts that help us in

explaining how such preference locality emerges in social networks, specifically

on the interplay between people’s personal preference and social influence.

We present two experimental studies using the Facebook platform that ex-

amine the role of people’s personal preference and social influence on their

decisions to adopt or share items such as movies or musical artists. For

adoption, we study the influence effect of showing social information about

a recommendation—such as “X and n others like this”—and find that people’s



own preferences play a primary role in their adoption decision, even when in-

formation about the item is scarce. Similarly, people tend to share items that

they like, even when they are targeting shares to specific recipients. Both stud-

ies indicate that people’s own preferences are the dominant force for shaping

their decisions.

To see how these findings extend to other websites and item domains,

we analyze traces of activity on a broad range of sharing networks: Last.fm,

Goodreads, Flickr and Flixster. On all the websites we studied, not more than

3% of a user’s actions are copies of their friends’ actions and thus potentially at-

tributable to influence. Further, using a novel statistical procedure for estimat-

ing influence that controls for underlying preference locality among friends, we

find that we can attribute influence as a cause for only about 1% of total user

actions on these websites.

Our findings present a contrasting picture to the popular narrative of the

huge role of influence in online social networks. While influence does exist, it

only affects a minority of people’s actions and most of the locality in prefer-

ences can be explained as a result of homophily selection processes where peo-

ple form connections with others of similar preference (and subsequently follow

their own preferences). These results on influence, based on an explicit model-

ing of people’s personal preferences, have a practical import for designing fu-

ture socio-technical interactions: through recommender systems that model so-

cial processes and through accurate diffusion models that incorporate people’s

past preferences. Further, this thesis demonstrates a mixed-methods analysis

pipeline—a combination of experimental rigor with large-scale data mining—

that is necessary for answering complex social science questions through the

messy, incomplete picture that trace data from socio-technical systems provide.



Dedicated to my parents.
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CHAPTER 1

INTERPLAY OF PERSONAL PREFERENCE AND SOCIAL INFLUENCE

In 2011, an unknown singer called Rebecca Black burst onto the mu-

sic scene when her song, Friday, went “viral” on social media and

collected over 167 million views on YouTube in three months. 87%

of the feedback on her song was negative, which is rare for popular

musical videos on YouTube1. Why were so many people drawn to a

song that was not liked by most people? Perhaps more puzzlingly,

why were people sharing a song they evidently did not like to their

friends on social media, so much so that it became widely popular

within a span of days?

Answers to the above questions require an understanding of people’s

decision-making on such cultural items and how knowledge of others’ activ-

ities influences these decisions. This thesis sheds light on how people make

decisions on items—what to adopt and what to share to others—in social net-

working websites.

Such questions on processes of decision-making and influence from others’

actions have been studied for decades in the social sciences including psychol-

ogy, sociology and economics [1, 2, 3, 4]. In general, social influence can lead to

powerful effects on people’s decisions, making them more likely to conform to

a group’s opinion, follow activities of others due to social proof or change their

decision based on interpersonal influence from some specific individuals [1].

1http://en.wikipedia.org/wiki/Friday (Rebecca Black song)
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Social networking websites provide an opportunity to understand how these

effects of influence affect people’s decision-making in online settings. On web-

sites such as Facebook and Twitter, exposure to activities from others influences

our decisions in a wide range of contexts such as our consumption of infor-

mation [5], adoption of new products [6], and even decisions like going out

to vote [7] or making health choices [8, 9]. In addition, as usage of online

social networks becomes ubiquitous in society—from sharing entertainment-

centric items to boosting productivity in the workplace [10, 11], from being

the global cultural commons to enhancing local community networks [12, 13]—

understanding how these processes of influence impact people’s consumption

and sharing decisions on such networks becomes an important endeavor.

In many ways, activities on online social networks are similar to that in the

offline world. However, being socio-technical systems, people’s activities are

mediated and influenced by system interfaces which presents unique challenges

and opportunities. Similar to the offline world, people form connections with

each other within online social networks. They also interact with items: a per-

son expresses her evaluation of an item by liking it (or adopting it) and/or shar-

ing it to their social connections on social networks like Facebook. These two

actions—adopting and sharing an item—form key decisions in an online social

network, collectively deciding how and which items spread among people.

Unlike offline settings, however, online systems afford new ways to engi-

neer or mediate these adoption and sharing decisions. Specifically, the system

design, user interface and underlying algorithms of these socio-technical sys-

tems affect which items and whose activities people get exposed to, which in

turn, affects which items are adopted or shared. Most sharing networks employ
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an activity feed interface that shows recent activities of others. They also show

item recommendations based on activities of others. These feed and recommen-

dation interfaces may influence people’s decisions on items. For example, a feed

showing popular content may encourage behaviors based on social proof, while

one that shows activities of friends may emphasize interpersonal influence.

Estimating the power of such social influence in social networks can help

us become aware of the influence of such engineered system features and allow

system designers to evaluate and better support user goals around adopting and

sharing. Further, understanding people’s motivations, considerations and the

role of social influence in adoption and sharing decisions can help to understand

how items become popular (or not)—such as Black’s Friday song above—and be

of practical import to content creators, marketers and change-makers that aim

to spread their message to a wider audience.

1.1 Factors affecting sharing and adoption decisions

To focus on people’s decision-making on items in social networking websites,

let us first introduce the term sharing network to denote a network of people

who adopt and share items of a certain domain. For example, YouTube may

be considered as a sharing network for videos, Twitter for tweets or hashtags,

Last.fm for songs, Goodreads for books, Flickr for photos, and so on.

In sharing networks, almost all information exchange between people in-

volves two decisions: adopting and/or sharing an item. Typically, adoption

refers to the use of a certain item or technology, but in the context of sharing

networks, we define adoption as a specific feedback by an individual that con-
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veys that she consumed the item and liked it. For example, Favoriting a song

on Last.fm, Liking a URL on Facebook, and Upvoting a video on YouTube are

examples of adopting an item in sharing networks2. Sharing an item means to

send it directly to another person or broadcast it to a group of people, typically

friends or followers of an individual on a sharing network.

These two fundamental decisions for information exchange—sharing and

adopting an item—are expected to be guided by people’s personal preference.

Intuitively, a person may be more likely to adopt or share an item if it aligns

with her preferences. The concept of personal preference relates to the decision a

person would make on an item in the absence of any external factors.

However, this is rarely the case in sharing networks. In fact, most sharing

networks thrive on exposing people to others’ activities, thus helping them to

find and discover new items. Some of this is manually initiated, such as when

people share items directly to specific social connections. A major part of ex-

posure to activity from others happens automatically though, through feeds or

recommendations that show adoptions and broadcast activity from other peo-

ple, as we discussed above.

Adoption

Given such exposure to others’ activities, decisions to adopt an item depend not

just on personal preferences, but also on social influence. Recent experiments in

online sharing networks demonstrate this effect. In one of the first experiments

on influence through online systems, Salganik et al. constructed alternative iso-

2Whenever we use a term to refer to its meaning specific to an online sharing network, we
capitalize the first letter to differentiate from its general English usage.
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lated worlds in a music discovery system and found that showing current pop-

ularity information about songs changed which songs became the most popular

[14]. Similarly, on Reddit, a news aggregation website where people can upvote

or downvote stories, manipulating the number of upvotes to a story changes

people’s likelihood of clicking on it [15].

Based on theories of interpersonal influence and conformity [1], these ef-

fects may even be stronger when information about friends’ activities are shown

to a user, instead of overall activity. An experiment on Facebook showed that

showing names of friends associated with an advertisement can boost click-

through rates [16]. Similarly, an experiment during the 2012 United States elec-

tion demonstrated that showing a user that their friends had voted increased

her chances of voting as well [7]. Influence effects also vary from person to per-

son. The role of social influence in a person’s decisions depends on the strength

of her relationship with people associated with an item [1, 17], and her suscep-

tibility to social influence in general [18, 19, 20, 21].

Sharing

The decision to share is also guided by social forces. Motivations such as the

need to express oneself [22, 23], provide information [24], demonstrate exper-

tise [25] or help others [26], and concerns such as self-presentation [27, 28] influ-

ence people’s sharing decisions and their propensity to share [29]. In addition,

sharing decisions are guided by the nature of relationship between sharer and

recipient, including how close they are [30] and whether they trust each other

[31].
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Thus, understanding how items are adopted and shared requires modeling

both people’s personal preferences as well as the social forces that guide their

decisions. This thesis tackles questions on the interplay of people’s personal

preferences, social influence and recommendations in sharing networks: how

they impact people’s decision-making on adopting and sharing items and in

turn, guide the bigger picture of influence and virality in sharing networks.

To explore this interplay, we will draw on two main fields of study around

people’s decision-making on items: information diffusion and recommender

systems. Diffusion models provide mathematical abstractions for the spread

of items—and implicitly, the impact of social influence—within a sharing net-

work. Recommender systems suggest new items to users by modeling their

preferences toward items.

1.2 Models for information diffusion

Most of the current models for diffusion fall into two major categories: threshold

models and independent cascade models. Inspired by epidemiology, threshold

models [32, 33, 34] assume an individual adopts an item once a certain number

of her neighbors adopt it, or more generally, her exposure to the item exceeds

her threshold. These models are informed by theories of social proof and con-

formity [1], that suggest that individuals are likely to adopt an item if they see

many others have done so or conform to the opinions of people in a group. Em-

pirically, the threshold for each individual can be estimated using a k-exposure

curve [35, 36], which shows the probability of adopting an item given some k

number of friends have adopted the item.
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In contrast, independent cascade models [37, 38, 39] assume transmission

parameters for each directed edge in a social network that indicate the proba-

bility of an item being adopted through that edge. These models emphasize the

effect of interpersonal influence. The transmission probability between a sharer

and a recipient can be considered as an indicator of the influence exerted by the

sharer on the recipient. They may also account for the the nature of relationship

between the sharer and the recipient, which threshold models are unable to do.

Given data on past adoption decisions in a sharing network, machine learning

models can estimate the most likely transmission probabilities for edges in the

sharing network [38].

Formulation of information diffusion based on these models have been used

to theoretically identify structural conditions for an item to spread in a social

network [34] and users who are likely to influence the maximum number of

users [39]. However, the models are not well-suited for online sharing networks

[40], because they assume (re)transmission is automatic; all adopted items are

shared. This viral analogy breaks down when, unlike diseases, nodes of the

network can voluntarily decide what to share and to whom. Similarly, people

can also decide whether to adopt items shared to them and later share them to

others.

Model-free analysis of data from online sharing networks avoids the above

limitations. Instead of parametrically restricting diffusion mechanisms, em-

pirical studies on networks such as Twitter [36], Facebook [41] and others

[35, 42, 43, 44] study actual trends in people’s activity data and yield insights

about the temporal, network-structural and content-based properties of diffu-

sion of items in a sharing network.
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Still, a major limitation of both empirical and theoretical approaches is that

they consider the spread of items one at a time. On sharing networks, each item

is not shared in a vacuum; the same people act on different items in sharing

networks, likely informed by their personal preferences. Therefore, accounting

for people’s personal preferences is important for building accurate models of

diffusion.

1.3 Recommender systems for sharing networks

Happily, recommender systems are all about modeling personal preference.

Based on the assumption that past activities of people are a good proxy for their

preferences, one can create models of what a person is likely to consume next.

Recommender systems fueled by such models are widely successful, contribut-

ing to page visits and revenue for many e-commerce (e.g., Amazon), media (e.g.,

The New York Times) and content-streaming (e.g., Netflix) websites.

A popular class of models for recommendation is collaborative filtering,

which is based on recommending items liked by people similar to the current

user [45, 46]. Typically, collaborative filtering accounts for similarity in pref-

erences across the full population of users. For example, memory-based algo-

rithms [47] are based on finding items liked by others that most similar to the

items already liked by a user. Model-based algorithms like matrix factorization

and its variants [45] approximate a user’s preferences—the objective is to min-

imize the global error between her predicted and actual rating for each item—

and consequently, find items liked by others with a high predicted rating.
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With the advent of sharing networks, new models have been proposed that

utilize people’s social connections as an additional signal for learning what peo-

ple will like [48]. These models augment collaborative filtering by adding as-

sumptions about the social network, such as friends should be similar to each

other [49, 50, 51] or that trust between people flows through network edges

[52, 53, 54, 55]. However, incorporating social data into collaborative filtering

algorithms offers varying, often modest improvements [56]. This leads us to

question whether the assumptions about social influence encoded in these algo-

rithms actually capture the dynamics of preferences in sharing networks.

Apart from boosting accuracy of recommendations, using people’s social

connections can also improve the utility and user experience of recommender

systems [57, 58]. Recommender systems within a sharing network provide a

social context for recommendations and influence how we think about them:

seeing familiar people associated with items makes recommendations more per-

suasive, informative or trustworthy [59, 60, 61, 62]. For example, providing ad-

ditional social information about an item might influence people’s willingness

to try out an item because a trusted friend has endorsed it or they want to be able

to talk about it with their friends. They might influence people’s ratings, just as

displaying predicted ratings in a recommender system affects people’s actual

ratings [20]. Finally, they might even influence our opinion of the recommender

system itself, by making its recommendation algorithm more transparent [63].
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1.4 Accounting for both personal preferences and influence

Owing to their singular focus on either modeling the spread of items or peo-

ple’s preferences, however, current work on diffusion and recommendation fails

to present a complete picture on people’s decision processes that involves both

personal preference and social influence.

To understand the interplay between the effects of personal preference and

social influence on people’s adoption and sharing decisions, we will need to

tackle a new set of questions straddling social psychology, interface design and

algorithms [64]. These are questions around how exposure to social information

impacts people’s adoption decisions, how personal preferences impact people’s

sharing decisions and how recommendation systems and activity feeds mediate

these decisions. Answers to such questions can, in turn, help advance the study

of information diffusion and recommender systems within sharing networks.

For adoption, we argue that accounting for people’s personal preference, as

in the recommender systems literature, can lead to a more accurate understand-

ing of people’s decision processes. In addition to the number of friends who

have adopted an item (threshold) or the transmission probability from friends to

an individual, the adoption decision likely depends on how well an item aligns

to the individual’s personal preferences. Recommender systems will also im-

prove through a deeper understanding of the extent of influence effects when

adopting items. Better models of susceptibility to influence [21] will help de-

sign recommendations with more useful social information. For instance, sys-

tems can personalize the kind of social information shown (e.g., overall activity-
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based versus activities of certain friends) based on what information is most

useful or persuasive to an individual.

Explicit modeling of personal preference will also help to understand shar-

ing decisions. Sharing is largely ignored by models for diffusion and recom-

mendation, both of which focus on adoption decisions. Both threshold and

independent cascade models for diffusion implicitly assume no distinction be-

tween adoption and sharing—any item that is adopted automatically becomes a

candidate for sharing. In the recommender systems literature, while the merits

of suggesting items to social connections has been studied [26], little is known

about how to model and predict people’s sharing decisions. Models of personal

preference, for both sharer and the recipient, can be useful to operationalize peo-

ple’s motivations for sharing and predict which items get shared and to whom.

Such models can also help to support more effective sharing by recommending

what to share to whom.

More generally, while past work on diffusion and recommendation deals

with adoption and sharing, the underlying processes of people’s decision-

making—what to adopt, what to share and to whom—are less understood.

Based on studies on information diffusion in multiple sharing networks and

item domains [7, 14, 15, 42, 65, 66], we expect social influence to play an im-

portant role. Based on the success of recommender systems, people’s personal

preferences should also matter in making such decisions. Understanding the

interplay of personal preference and social influence in people’s decisions can

provide a viable framework for studying how items are adopted and shared in

sharing networks.
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In the next chapter, we will discuss why estimating the role of influence in

sharing networks is a tricky problem and describe how we make progress by

defining influence in terms of personal preferences of people in a sharing net-

work. To do this, first we will introduce the concept of preference locality—

preferences of people closer to each other in a sharing network tend to be more

similar—and present evidence for it in popular sharing networks.
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CHAPTER 2

PREFERENCE LOCALITY: TO WHAT EXTENT ARE PEOPLE’S

PREFERENCES SIMILAR TO THEIR FRIENDS’?

In 2012, Facebook launched a widget called “Recommendations

box”1 for website owners that presents content recommendations for

a user based on activities of her friends on the same website (see Fig-

ure 2.1). A driving assumption for such recommendations is that

people would enjoy content that their friends also enjoyed on that

website. Do friends always like similar content? Given that there

are thousands of people (and often more) using a sharing network,

could there be some strangers who are more similar to a user in their

preferences than the user’s friends?

In this chapter, we investigate preference similarity between a user and her

friends in a sharing network and compare that to the similarity between the user

and strangers. In doing so, we introduce the concept of preference locality, which

suggests that people with similar preferences are clustered together within a

sharing network.

In general, friends tend to be similar to each other in their demographic pro-

file, attitudes, beliefs and behavior [67]. Multiple studies on sharing networks

show that friends adopt similar items and that a person’s probability of adopt-

ing an item increases as more of her friends adopt that item [36, 66]. How-

ever, the predictive power of friends’ preferences is less understood: how well

can a user’s actions be predicted from her friends’ actions? Answers to this

1http://mashable.com/2012/07/26/facebook-recommendation-bar/
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Figure 2.1: An example screenshot of the Facebook recommendation wid-
get. The widget recommends articles from the same website
that have been Liked by friends of the current user. Screenshot
from www.allthingsd.com, a website for technology news.

question can help reason about the efficacy of using data from social ties in

recommendation—in what domains and networks might they be relevant—as

well as provide preliminary evidence for understanding how an individual’s

preferences become similar to her friends’ preferences.

To this end, we compare how recommendations based on only friends com-

pare with those computed from the entire network of users. Using datasets

from popular sharing networks such as Facebook and Twitter, we find that rec-

ommendations computed from friends perform comparably to those computed

from strangers (where a stranger is anyone in the dataset who is not a friend).

This is a surprising result, especially because friends are fewer than strangers

and further, we find that the k-most similar strangers are more similar to a user

than k-most similar friends. As an attempt to explain the goodness of friend-
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based recommendations, we propose metrics that quantify the notion of prefer-

ence locality in a sharing network.

While these metrics help us characterize observed locality, they expose lit-

tle about how preferences of friends become similar to a user’s preferences and

how the effects of personal preference and social influence play out. Two social

processes are likely to contribute to such similarity in preferences: homophily,

which suggests that people make connections with others who are similar to

them, and social influence, which suggests that knowing about others’ adop-

tion of some content makes it more likely for people to adopt that content. Due

to the homophily selection process, it is possible for friends’ preferences to be

more similar to a user’s preference than non-friends’ preferences, even in a net-

work where everyone follows their personal preference (and thus, void of any

influence effects). This problem of disentangling influence and homophily has

vexed sociologists for decades. We will lay the foundation for reasoning about

the contributing social processes of homophily and influence, and outline our

contributions—involving both behavioral experiments and data mining—at the

end of this chapter.

2.1 Basic definitions

Let us start with some definitions. For the purposes of this thesis, we use the

term item to denote any entity or content that people may adopt or share in a

sharing network. These could be cultural items such as books, movies or songs,

entities such as musical artists or bands, or domain-specific artifacts such as

hashtags on Twitter.

16



We assume preferences of people are proxied by their past actions, usually

as a set of items they have already adopted. This can be thought of as a unary

rating, well-suited for decisions in sharing networks where a person may either

adopt an item or not. Similarity between preferences is measured using the

Jaccard measure [68], a common measure for similarity between sets and for

unary ratings in recommender systems [69]. For two users u1 and u2, it is given

by:

JS =
|Adopts(u1) ∩ Adopts(u2)|
|Adopts(u1) ∪ Adopts(u2)|

Our insight is that a comparison of measures of interest for friends versus

non-friends can be useful for reasoning about preference locality in sharing net-

works. We use an ego network—a subgraph of the social network containing a

user and her friends—as our unit of study. In contrast to analyzing full net-

works, considering ego networks provides an apt focus for studying the pro-

cesses that lead to locality—most sharing networks only show friends’ activities

to a user—while also reducing data collection and computation costs.2 Further,

such networks are commonly used in the social sciences to estimate network

properties and peer effects on an individual [70, 71]. Figure 2.2 shows an exam-

ple of a ego network, where the central node in the star-shaped graph is the ego

user, or a core user.
2Most online sharing networks offer APIs that expose data in an ego-centric way, providing

data about friends for each user. This makes ego networks especially suitable for collection and
analysis from sharing networks.
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Figure 2.2: An ego network showing the ego user (u) and her friends. Note
that friends of a user may also be connected to each other but
we ignore such connections and focus only on the connections
of the ego user.

2.2 Comparing social and non-social recommenders

A number of recommender systems that use only the ego network for gener-

ating recommendations have been proposed [60, 64, 72]. Through user stud-

ies, such friend-based recommendations are reported to be more trustworthy

[61] or interesting [60, 62] than those based on people’s preferences alone. In

addition, recommendations based on the ego network are faster to compute

since they avoid the the computational costs of processing all users of a sharing

network. However, in these studies, users know which recommendations are

sourced from friends, which may introduce influence effects in their feedback.

A more neutral comparison would be to compare how friend-based algo-

rithms compare with typical collaborative filtering techniques when people do

not know whether a recommendation is sourced from someone they know. In

such a setting, it is less clear whether friend-based recommendations would be

more relevant than those computed from all the non-friends [60, 66, 73]. To

answer this question for sharing networks, we examine the performance of rec-
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ommendation systems that rely only on friends’ preferences versus those that

rely on all of non-friends’ preferences on three different item domains. First let

us describe the datasets that we use.

2.2.1 Data from Facebook and Twitter

We use three datasets: two from Facebook (one for movies, one for musical

artists) and one from Twitter (hashtag use). The Facebook datasets were col-

lected as a part of user studies involving university students [64, 74], while the

Twitter data was collected using their public API [75]. In all three cases, data

was collected in an ego-centric fashion: each consenting participant would al-

low access to her past activity on items in the sharing network as well as her

friends’ or followees’3 activity.

Thus, the datasets are a collection of individual ego networks, where each

core user is expected to have all his first-degree connections. The preference data

is a set of user-item pairs, where items are movies or musical artists Liked in

Facebook or hashtags used in Twitter. We use the term adoption to refer to a Like

on Facebook or usage of a hashtag.

Table 2.1 shows the statistics for the three datasets. The two Facebook net-

works have both a higher average number of friends than Twitter and a higher

average adoptions per item. The distribution of adoptions for items (Figure 2.3)

shows that adoptions for artists and movies are concentrated toward the most

popular items: the 10% most popular artists and movies receive around 5/6

3Throughout the rest of the thesis, we use the term friend to denote reciprocal social connec-
tion between two people in a sharing network and follower/followee to denote directed social
connections.
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Artists Movies Hashtags

Total users 63230 51365 69414
Total core users 153 149 935
Friends/user (µ;σ) (499; 341) (352; 156) (126; 61)
Total items 139986 78244 214941
Total adoptions 1289340 873261 1230169
Adoptions/user (µ;σ) (20; 34) (17; 33) (17; 17)
Adoptions/item (µ;σ) (9; 117) (11; 96) (6; 29)

Table 2.1: Overview of datasets. Both the Facebook artists and movies
datasets have a higher friend average and average number of
adoptions per item compared to Twitter.

of the adoptions, versus about half for hashtags. This is a common, long-tail

distribution [43, 76, 77] of activity over items in a population.

Artists and movies have fairly similar profiles with a long tail and an un-

even distribution of popularity. We suspect that this happens because of exoge-

nous effects such as media exposure for the most popular artists and movies

that generates large amounts of attention for a relatively small number of items.

Hashtag use in Twitter, on the other hand, is much more evenly distributed,

perhaps because hashtags receive less exposure outside of Twitter itself and so

must spread largely inside the Twitter network.

2.2.2 Comparing recommendation quality

We now use these datasets to examine the basic assumption of recommender

systems that use friend information, that such information provides useful sig-

nal. We use the k-nn recommender algorithm [78] for reporting our results be-

cause it provides a transparent interpretation into how it computes its recom-

mendations using similarity between users. We also tried other collaborative
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Figure 2.3: Distribution of item adoptions for the three domains, showing
the cumulative percentage of total adoptions for items in the
kth percentile of popularity. Compared to hashtags, adoptions
for artists and movies are skewed toward popular items.

filtering algorithms such as matrix factorization; the patterns were similar to

k-nn.

We divide each core user’s preference data into 70:30 train-test splits, be-

cause using 30% test items means even users with few adoptions have at least

one in the test set. For each user, we compute top-10 recommendations using

items adopted by the k nearest neighbors, weighted by Jaccard similarity. For

evaluation, we use normalized discounted cumulative gain (NDCG), a common

metric used to compare ranked results [79, 80]:

NDCG =
Rel1 +

∑
2..N Reli/ log2 i

1 +
∑

2..N 1/ log2 i
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Figure 2.4: NDCG for k-nn recommender using only friends (Local) versus
non-friends (Global). On average, friends are better for artists
and hashtags, worse for movies. The black marker within each
bar represents a recommender choosing people randomly. Er-
ror bars represent standard deviation of the mean.

Figure 2.5: Average Jaccard similarity of a user with her top-k friends (Lo-
cal), and her top-k non-friends (Global). For the Facebook
datasets, non-friends are more similar at all values of k. For
hashtags on Twitter, friends appear to be more similar than
non-friends at k = 10, but non-friends are still more similar
otherwise.
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where N = {min(10, |TestS et|)} and Reli = 1 if the ith ranked item is in the test set

and 0 otherwise.

To focus on the effect of friends, we compare ego-centric recommendations

based on only friends to recommendations that use only non-friends from the

full network. Figure 2.4 shows NDCG values averaged across 10 random 70:30

splits. Compared to non-friends, friends are comparable for making recommen-

dations for movies and artists, even though they are much fewer in number.

In particular, NDCG values for friend-based recommendations are higher for

artists at k = 10 and lower for movies at k > 10. For hashtags, friend-based

recommendations are better than those based on non-friends.

2.2.3 Comparing preference similarity

A likely reason for the goodness of friend-based recommendations could be that

friends’ preferences are more similar to a user’s preferences than those of non-

friends. We examine this hypothesis by comparing average preference simi-

larity between a user and her friends, and between her and comparable non-

friends.

Random Similarity. We first look at how similar a person is to his friends ver-

sus an equal number of randomly selected people in the full dataset. We mea-

sure this directly by comparing the average Jaccard similarity between a core

user and his friends versus that between the core user and an equal number of

randomly chosen non-friends.
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Friends Non-Friends

Artists 0.040 0.023
Movies 0.020 0.013
Hashtags 0.043 0.002

Table 2.2: Average pairwise Jaccard similarity between a user and her
friends, or an equal number of randomly selected non-friends.
Friends are, on average, more similar to a user than random non-
friends.

Table 2.2 shows the results averaged over 10 random sets of non-friends.

In all three datasets, friends are in fact more similar. The effect is strongest

with hashtags, consistent with our expectation of relatively strong endogenous

effects in the adoption of hashtags compared to artists or movies.

k-nn similarity Recommender algorithms (like the k-nearest neighbor algo-

rithm we chose above) typically choose the most similar neighbors, so we now

look at how a user’s k most similar friends compare to the most similar k non-

friends in the network. We use the Jaccard measure to compute similarity.

Figure 2.5 shows the results. As expected, average similarity decreases as k

increases. However, for artists and movies, top-k friends are less similar than

top-k non-friends. Hashtags offer a similar scenario where top-k non-friends

are more similar than top-k non-friends (except at k = 10).

These trends in k-nn similarity show that recommendation performance

does not align directly with preference similarity. Even for movies where recom-

mender performance (as measured by NDCG) is slightly higher for non-friends,

the difference between the NDCG values for friends and non-friends is much
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lower than might be expected based on the large differences in k-nn similari-

ties.

2.3 Why friend-based recommendations are effective

The above results are counter-intuitive for two reasons:

• Top-k non-friends are more similar compared to top-k friends of a core

user. Yet, when we make recommendations based on adoptions by top-k

friends, the recommendations turn out to be better (or comparable) pre-

dictors of a user’s actions than combined items from top-k non-friends.

• Friends are much fewer compared to non-friends which should make it

harder to find users with similar preferences. We have over 50k non-

friends for all three datasets, while only hundreds of friends for each user.

2.3.1 The preference locality observation

Together, the two observations suggest that the goodness of friend-based recom-

mendations involves additional factors that are not fully explained by pairwise

preference similarity alone. We find that preferences of friends taken together

are good predictors of a user’s preference, but the most similar friend is not

necessarily more similar to a user than any non-friend.

A possible explanation would be that preferences are clustered within an ego

network: rather than pairwise similarity, preferences within an ego network as

a whole might be a better proxy for recommender accuracy. Then, the extent
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of such clustering in a sharing network, which we call preference locality, could

drive the effectiveness of friend-based recommendations. For instance, a high

preference locality would imply that a lot of the decisions on items made by

a user are also common to her friends, which would lead to a low sparsity in

the user-item matrix for any ego network. A less sparse matrix would, in turn,

help to better model the user’s preferences [46]. Another way to think about

locality is in terms of the number of ego networks that an item is adopted in. In

a sharing network with high preference locality, it is likely that an item adopted

by an individual is adopted in few other ego networks. This raises the chances

that recommendations based on friends would also include that item and thus

lead to a higher NDCG score for friend-based recommendation.

Friends Non-Friends

Artists 0.73% 0.01%
Movies 0.87% 0.02%
Hashtags 3.60% 0.01%

Table 2.3: Density of the user-item matrix in ego networks versus the net-
work as a whole (excluding friends). A higher density implies
higher preference locality.

2.3.2 Characterizing preference locality

Specifically, we define preference locality as the observation that friends of a user

are more likely to have similar adoptions to a user than a comparable set of

non-friends.4 This definition allows us to propose measures for locality based

4Note that this definition can be extended to friends of friends (second-degree connections)
and so on outwards from the core user, but we restrict ourselves to first-degree preference lo-
cality since a major feature of sharing networks is enabling exposure to friends’ or followees’
actions on items.

26



on comparing friends and non-friends, that can be computed from adoption

data from a sharing network.

Sparsity. Ratings sparsity is common in preference datasets [81], including

ours, which have an average user-item matrix density of 0.02% or less. How-

ever, preference locality suggests that this sparsity should be unevenly dis-

tributed. Table 2.3 shows that this is in fact the case: for all datasets, ratings

for the items in a given ego network are two orders of magnitude denser than

in the full dataset. The effect is stronger for hashtags than for movies or artists,

demonstrating their higher locality. These values align with recommendation

accuracy in Figure 2.4, reflecting that a denser preference matrix for ego net-

works increases the chances that friends of a user would have adopted a rele-

vant item before the user.

Ego Coverage Metrics. Another way to think about preference locality is to

look at coverage, or what percentage of available items can be potentially rec-

ommended to a user. This is a common way of evaluating a recommender sys-

tem and aims to maximize the number of items over which it can make recom-

mendations [82, 83]. Here we consider coverage metrics for each item and then

average them over the entire set of items. Intuitively, as people’s preferences for

an item are more localized, it will be adopted in fewer ego networks, reducing

coverage of the item across the sharing network. There are a number of ways

we might formalize this notion.

The simplest approach is to look at the percentage of ego networks in which

at least one person adopts a given item. Averaging this over all items gives us

a measure of ego network coverage: what percent of possible ego network-item
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pairs exist in the dataset? We then subtract from 100 so that higher numbers

correspond to increased locality, and call this the Uncovered Ego of the network.

Uncovered Ego, however, does not account for item popularity. For instance,

items with one adoption will look maximally local—true but uninformative—

while an item with many adoptions should appear in many networks, and thus

appear less local even if its preferences are more concentrated than we expect.

Thus, we might want to account for the expected number of ego networks an

item should appear in. To do this, we compare ego coverage with a random

network, which we construct by randomly distributing the items among users.

Such null models have been useful in the past in modeling network growth [84],

as well as testing similarity in networks [85]. Here we create a network with

identical friend connections and number of adoptions per node, but with the

items randomly distributed (subject to the constraint that each node can only

adopt a given item once). Dividing the number of ego networks that contain

a given item in the randomized network by the number of ego networks that

contain it in the real network gives a measure of how much preferences devi-

ate from what we would expect if they were distributed without reference to

the friend network. We call this metric Random Item/Ego, with higher numbers

indicating greater locality.

In some ways, that approach is too random because it doesn’t account for

patterns of individual preferences—that, as Amazon reminds us, people who

bought X also tend to buy Y. One way to account for this is to randomize at the

network level rather than the item level: keeping the same number of friends

for each core user and the same itemsets, but randomly reassigning the friend

links. We call this metric Random Friend/Ego.
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Uncovered Ego Random Item/Ego Friend/Ego

Artists 97.4% 1.19 1.16
Movies 96.3% 1.20 1.28
Hashtags 99.7% 1.78 1.79

Table 2.4: Ego network coverage by dataset. Compared to random, hash-
tags exhibit the highest locality for all three metrics. Between
artists and movies, the metrics are divided.

Table 2.4 shows these metrics averaged across all items in each dataset. All

datasets exhibit more locality than random. As with the sparsity and similarity

measures, hashtags are more local than movies or artists. The effect of random-

izing by friend versus by item varies by network, indicating that the amount of

item-item correlation in the networks is also different.

Putting our recommendation and locality results together implicates prefer-

ence locality as an important reason why using social network information can

improve recommendations [49, 72], as ego-centric recommender performance

roughly correlates with preference locality. Because of the high locality in the

sharing networks we studied, friend-based recommendations are comparable in

accuracy to algorithms that use the full network’s preference data even though

any given ego network, on average, only contains a small fraction of items po-

tentially available to a user. It seems likely that social network information be-

comes more valuable for recommendation as locality increases.

2.4 Understanding how preference locality emerges

Still, locality metrics do not capture fully why social information matters—some

metrics show higher locality for artists versus movies, and vice versa, despite
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the higher performance of local k-nn for artists over movies. Knowing more

about why and how people decide to adopt items may help us understand lo-

cality and the resulting recommendation results better.

In this sense, our findings generate more questions than answers: how does

locality emerge in sharing networks? What is the role of social influence in lead-

ing to locality? What factors lead to the variance that we see between Twitter

and Facebook? We discuss these questions next, and keep coming back to them

in the rest of the thesis.

2.4.1 Emergence of locality: A tricky problem

Understanding how preference locality emerges is a tricky problem because

there can be multiple social processes that lead to a common item adoption be-

tween two friends. These processes fall under two major classes: homophily

and social influence.

Homophily. Homophily refers to the social processes by which people con-

nect to other people who are similar to them [67]. Homophily is seen in social

networks on different dimensions, such as race, gender, age, socio-economic sta-

tus and personal preferences or opinions. On average, these dimensions tend

to correlate with each other, so people who connect based on having the same

demographics are also more likely to have similar preferences on items.

Thus, due to the homophily selection process through which people form

ties with similar people, friends are more likely to have similar preferences.
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Social Influence. Observing others’ actions may cause a person to be influ-

enced by those actions, through the general process of social influence [1]. Social

influence operates through many sub-processes, such as being swayed through

social proof of an action endorsed by others, conforming to a group’s opinion, or

being influenced by a certain individual’s actions (interpersonal influence).

Most online sharing networks thrive off exposing people to their friends’ ac-

tivities. Based on the processes of social influence, such exposure would influ-

ence a person to copy her friends’ actions and thus increase preference locality.

Therefore, a high preference locality could be due to homophily or influence;

it is hard to tell them apart given only observational data such as the datasets

from Facebook and Twitter. For example, if a person (let us call her A) adopts

a song on Friday and her friend (B) does so on Tuesday, was B influenced by

A’s adoption, or do they both happen to have a personal preference for that

song? What if B adopts the song a few minutes after A? In general, without ei-

ther strong assumptions about influence mechanisms (e.g., [86, 87, 88]) or strong

knowledge of latent variables that indicate homophily (e.g., [6]), distinguishing

them from observational data alone is somewhere between impractical and im-

possible [89].

2.4.2 Towards identifying the role of influence and homophily

While sharing networks offer unprecedented data about people’s activities,

these data hide the underlying decision process—why and how do people de-

cide to adopt or share an item—that is important to flesh out accurate models

of their actions. As we saw above, logs may indicate that two friends adopted
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the same item, but it is unclear whether they both discovered the item by them-

selves or one influenced the other.

In this thesis, we develop algorithms and experimental designs to under-

stand the role of influence and homophily in two fundamental decisions on

items in sharing networks: adopting or sharing. To fully understand people’s

decision-making on items, we need to understand people’s motivations and

considerations for sharing and adopting items, in addition to studying the data

generated from their actions. Therefore, we employ a mixed-methods approach.

We use behavioral experiments to understand people’s decision-making and

build individual-level models of how people adopt and share items. We use

data mining to see how our experimental findings extend to large-scale activity

on different sharing networks.

2.4.3 Influence in terms of personal preference

A common thread throughout our work is the use of preference models that

allow us to characterize and tackle questions around social influence. By us-

ing personal preferences, we obtain specific, operational definitions of influence

that can be mapped into specific domains and that make the processes and mea-

sures clear. This allows for more accurate measurement (as we will see, naive

measures of “influence” overstate it), better connection of influence to the theo-

ries that underlie it, consideration of the role of systems in mediating influence,

and perhaps a better ability to compare results from other studies.

Using the lens of personal preference, we define social influence as follows.

A person’s current preferences provide a prior for his future decisions on items.
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Any deviation from this prior caused by exposure to friends’ activities can be

considered as social influence. Thus, using past activity of users to construct

preference models gives us a way of isolating the effect of influence: change in

activity that is not expected from following one’s past actions.

Admittedly, this is not always feasible. For example, when studying the ef-

fect of influence in activities that do not happen often, such as starting to smoke

[89], it is hard to construct a reliable prior for a person’s own preference for

smoking. However, when relevant past activity data is available, influence can

be estimated with less stringent assumptions. This is common in online sharing

networks (especially for domains like music, movies, games and apps) where

we have multiple data points about a user’s past activities, which we exploit in

our work.

2.5 Contributions

The rest of the thesis is organized in three parts. In Part II, we present experi-

mental evidence that shows that personal preference is the dominant factor in

helping people decide to adopt and share items. These results gain external

validity in Part III, where we estimate the extent of influence on log data from

a broad range of websites and find that only a small minority of people’s ac-

tions (and thus preference locality) can be attributed to influence. In Part IV, we

discuss the implications of our results.

We make the following contributions.
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Part II. First, we describe a social recommendation platform, PopCore, that acts

as an experimentation platform as well as a recommender system in its own

right (Chapter 3). Through a pair of experiments on PopCore, we demonstrate

that personal preference is the dominant force in people’s decision-making on

adopting or sharing an item.

In Chapter 4, we conduct a randomized experiment to study the effect of

exposing an individual to others’ activity on a recommended item.

• We find that the effect of social influence—as embodied by additional so-

cial information shown alongside items—is secondary to that of people’s

personal preference, even when minimum information about the item is

shown.

• We build a generative mixture model for rating that combines the effect of

people’s personal preference and social influence. Estimates from the fit-

ted mixture model confirm the finding that social influence has a relatively

minor effect.

• Although the relative contribution of social influence due to explanations

is minor overall, the effect on each individual varies widely. Based on

our generative model, we suggest strategies to find the more susceptible

people to influence and further personalize the kind of social explanation

for those users.

• Different kinds of explanations have different effects in aggregate—some

are just more influential—but even those that are most influential don’t ap-

pear to help people make good decisions with respect to their preferences,

further suggesting that preference and influence have a complicated rela-

tionship.
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The dominant role of personal preference is also seen when people share

items to others (Chapter 5). Through a paired experiment that allows friends to

share items to each other from a list of recommended items, we find that:

• Even when people share items to a specific known recipient, which may

allow them to personalize their shares based on the recipient’s preferences,

their own preferences dominate in deciding what is shared.

• An individual’s personal preference over items, in conjunction with her

promiscuity (or frequency) of sharing, can predict more than two-thirds

of her sharing decisions.

• Still, a majority of participants claimed that they were personalizing their

shares for the recipient. We propose a preference-salience sharing model

that explains these contrasting results: people share what they like them-

selves, but may select the actual item to share based on salience due to the

recipient or exposure from the user interface of a system.

• When shown items aligned with the recipient’s preferences, people shared

items that were liked comparably by the recipients and themselves. This

suggests that salience of items through the system interface can alter what

gets shared, which can be utilized by recommender systems to encourage

effective sharing among people.

Part III. In Part III, we consider a common situation in online sharing net-

works that Part II characterizes, where people adopt and broadcast—share to

their social connections—what they like and their activities are shown to their

social connections in the form of an activity feed with a social explanation (“X

liked this item”) for each item [24, 41, 77]. We are interested in how such expo-
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sure to friends’ recent activity influences people’s adoption (and thus, implicitly,

resharing) behavior.

To tease out the effect of people’s personal preference and social influ-

ence from activity feeds, we introduce a general statistical procedure, Preference

Matching Estimation (PME), in Chapter 6.

• By controlling for preference similarity among friends due to homophily,

the PME procedure estimates the fraction of actions taken due to influence

from social feeds in sharing networks. The use of preference data as a

proxy for homophily allows a precise specification for influence yet broad

applicability of the PME procedure on different sharing networks.

• Unlike past work on estimating influence [6], our procedure relies on com-

monly available data from sharing networks: user activity and social con-

nections among people.

• The PME procedure is able to provide both individual and network-level

estimates for the effect of social influence from exposure to friends’ ac-

tivities in a sharing network. This enables personalized models of sus-

ceptibility to influence that can useful for making recommendation and

understanding diffusion processes more accurately.

In Chapter 7, we apply the PME procedure to data from sharing networks

that cover a wide range of item domains such as books, photos and music.

• We find that estimates of social influence used in past work [90, 91], such

as the fraction of common adoptions between friends within a certain time

period, overestimate the extent of influence in sharing networks, often

substantially.
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• Further, our results show a subdued effect of influence on people’s adop-

tion decisions. Influence accounts for less than 1% of the total users’ activ-

ity on items in these domains.

• Finally, we find a wide variation in individuals’ susceptibility to influence.

The majority of users in all four networks appear not to be influenced by

activity feeds at all.

These findings confirm the results from our experiments in Part II, indicating

that the effect of influence in sharing networks might be overrated; personal

preference of people dominates a vast majority of their actions, at least in these

feed contexts on sharing networks.

Part IV. Overall, our empirical results indicate a modest effect of influence,

questioning the popular wisdom around influence and contagion in online shar-

ing networks. In this sense, our work joins recent work [40, 92] in uncovering

the relatively low effect of influence in sharing networks and demonstrating

that even with continuous exposure to others’ activities on social media, peo-

ple’s personal preferences largely dictate their online activities on items.

We discuss implications of these results in Chapter 8. Our work opens up

new questions around diffusion and recommendation models for sharing net-

works, informed by better models of personal preference and social influence.

We demonstrate how modeling an individual’s personal preference when shar-

ing, and her susceptibility to influence when adopting can lead to better models

of her decisions on items. Our findings are also useful for advancing recom-

mender systems within sharing networks, such as by personalizing social ex-
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planation strategies in adoption or modeling people’s preferences in sharing

decisions.

More generally, our work points to the merits of using precise, context-

specific definitions of influence rather than aiming for a grand unified theory.

Our results on the interplay of personal preference and social influence in peo-

ple’s adoption and sharing decisions are made possible by a precise operational-

ization of influence in terms of deviation from people’s personal preference. For

any given sharing network, such a formulation for influence is easily adaptable,

concretely defined and thus testable using data on people’s activities. Rather

than general theories about influence, we believe that formulations based on

specific processes and contexts—like we did with social influence within a shar-

ing network—are more likely to advance our understanding of people’s deci-

sion processes.

Finally, we demonstrate the value of combining research methods—

experimentation and data mining—to tackle tricky questions about social pro-

cesses in online sharing networks. The combination of experimental rigor in

Part II and large-scale external validation in Part III allowed us to identify the

effects of personal preference and social influence at the individual as well as

the aggregate level, thus enriching our understanding of adoption and sharing

decisions in a way that neither experimentation or data mining efforts alone

would have been able to.
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Part II

Experimental Evidence: Modeling

adoption and sharing decision

processes
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In this part, we study the two fundamental decisions that people make on

items in sharing networks: adoption and sharing. Different sharing networks

may have different ways or nomenclature on how people interact with items,

but at their core, almost all of the decisions can be thought of in terms of adop-

tion or sharing. For instance, adoption may be referred to as Liking an item on

Facebook, Loving a song on Last.fm, Favoriting a photo on Flickr, rating highly

a book on Goodreads and so on. Sharing has fewer names (retweeting or simply

sharing), but differs in how people select recipient(s) to share to. People may

broadcast to their social connections such as when posting a status update on

Facebook or Twitter, or share items directed to certain friends in a direct message

on Twitter or a recommendation on Goodreads.

Still, on all sharing networks, adoption and sharing decisions of each user

propagate to their social connections, who may then adopt and/or share

too. If we ignore the effects of external forces (e.g., advertisements, featured

lists, and/or algorithmic sorting of items), these two decisions—sharing and

adopting—decide the fate of an item in a sharing network.

Through online experiments on a social recommendation platform, we will

study the processes by which people decide to adopt or share. Experiments pro-

vide us a window into the motivations, processes and social influences in these

decisions in ways that data mining of log data cannot. For adoption, we are

interested in how exposure to friends’ activities influences a person’s decision.

For sharing, we are interested in how people consider their friends’ likes and

dislikes when making their decisions.

Additionally, underlying both these decisions—adopting and sharing—in

a sharing network is the personal preference of each individual. Despite the
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presence of social influence around adoption, and the potential consideration

of friends’ interests when sharing, we will see that people’s personal preference

plays a dominant role in both decision processes.
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CHAPTER 3

POPCORE: A SOCIAL RECOMMENDATION PLATFORM

To facilitate behavioral experiments on adoption and sharing of items, we built

a recommendation system on top of the Facebook social network. Instead of

aiming for individual consumption as most recommender systems available at

the time (early 2011) did, we developed our system, PopCore1, as a social plat-

form that provides people recommendations based on their friends’ activities

while facilitating awareness of others’ activities and sharing of items [93].

This chapter describes the relevant features of the system. As a research

platform, the goal was to push forward friends-based recommendation algo-

rithm development, understand how people perceive recommendations asso-

ciated with their friends, and how people share items to each other [64]. In

addition, the system also served to collect useful data about people’s social con-

nections and their past activities. The Facebook data used in the preference

locality study (Chapter 2) was captured through the system, notably via a study

on people’s adoption decisions that we will see in Chapter 4.

3.1 System design

PopCore is implemented as a Facebook application that provides recommenda-

tions in the entertainment domain, covering music artists, movies, books and

television shows. We chose Facebook as the underlying social network because

it provides us both network and preference data (through Likes), and also sup-

ports a diverse set of domains for items. We chose the entertainment domain
1A delightful twist on the word popcorn, symbolic of watching entertainment.

42



due to its relative popularity of Likes on Facebook compared to items from other

domains.

A user logs in to PopCore using her Facebook credentials and gives the app

permission to access her Likes and her friends’ Likes in movies, music, books

and TV shows. Once the appropriate data permissions are obtained, the system

uses her Likes and her friends’ Likes to compute recommendations.

3.1.1 Friend-based recommendations

PopCore provides a general framework for plugging in different recommenda-

tion algorithms, which was used to compare different friend-based algorithms

in earlier work [64]. Since recommendations need to be computed with minimal

delay once a user logs in and provides access to their Likes, an algorithm that

can compute recommendations online is ideal. For the experiments presented

in the thesis, the system uses the k-nearest neighbors algorithm [78, 94] over

friends’ data, a memory-based technique [45, 46]. At this scale (people tend to

have hundreds of friends on average), k-nn runs reasonably fast. In Chapter 2,

we also saw that k-nn recommendation accuracy based only on friends’ data is

comparable to that based on a much larger preference dataset.

3.1.2 User interface

Figure 3.1 shows how the recommendations are presented. The recommenda-

tions may also have some optional social information that adds social context.

These convey the number of friends who have Liked the item, names of spe-
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Figure 3.1: PopCore interface. Recommendations are computed based on
Likes of friends of a user. Upon clicking an item, its thumbnail
is replaced by the possible actions a user may take: Like, rate
or share (“Recommend”) that item to her friend(s).

cific friends who have done so and/or the overall number of Facebook Likes for

the item. This is a common feature in many recommender systems and activity

feeds in popular sharing networks such as Facebook, Goodreads or Last.fm.

Users may give feedback on the recommended items, and share some of

those items to their friends.

Feedback on items

There are two ways of giving feedback on an item, as shown in Figure 3.1. A

user may rate an item on a scale of 0.5-5 stars or choose to Like it on Facebook

(which is added to her Facebook profile and accessible according to her privacy

settings). Though the Like button and a high rating both can be used for positive

feedback on an item, they convey different signals. To Like an item is to publicly
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identify oneself with it, while a rating serves as a private affirmation of interest

[64].

Directed sharing

Direct person-to-person sharing is a natural part of social communication. To

facilitate such sharing, the system recommends candidate people to share to

when a user clicks the Recommend button. This is computed based on the friends

whose preference is closest to the current item, but have not already Liked the

item on Facebook. This is just a default suggestion; the user is free to choose

any friend that they wish to share to.

3.2 PopCore as an experimental platform

One of the goals for the PopCore system was to serve as a useful recommenda-

tion system, but the system failed to gain much traction among people. Never-

theless, its infrastructure and interface elements remained useful for conducting

behavioral experiments. We did so by creating custom interfaces and inviting

study participants to use those versions of the system. We explicitly ask for con-

sent before people participate in experiments, and these experiments have been

approved by Cornell’s IRB.
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CHAPTER 4

HOW DO SOCIAL EXPLANATIONS AFFECT PEOPLE’S LIKELIHOOD

TO ADOPT

In recent years, every major website seems to be in a mad scramble

to tell us what our friends did. Not just in sharing networks like

Facebook and Twitter, explanations of the form ”X, Y and 10 other

friends endorse this” accompany products on Amazon and search

results on Google (Figure 4.1). How much does such additional so-

cial information affect people’s decisions? If all your friends jumped

off a bridge, would you jump too?

A major component of online sharing networks is that they provide aware-

ness about our friends’ activities. This may be manifested in the form of feed

interfaces which show recent actions on items by our friends, recommenda-

tions that show which of our friends like an item, and even advertisements that

use our friends’ information. Often, each item is accompanied by the name(s)

and/or number of friends who have already adopted that item.

This extra social information can be thought of as a social explanation for the

item, borrowing the name from explanations—supporting information—in the

context of recommendation systems [95, 96]. Facebook provides probably the

most ubiquitous context in which we see such social explanations, powered by

the Like button. Users on Facebook can Like status updates, Facebook pages rep-

resenting entities such as products, movies, music, and books, and even external

URLs as long as they are appropriately coded1. These items are then presented

1Applicable for webpages that support the Open Graph protocol (http://ogp.me/)
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Figure 4.1: An example of social explanations typically found online. Here
we show screenshots from Facebook’s page recommender,
Google’s search engine and Amazon’s product page. Names
and counts of friends, and number of people who like an item
are presented to the user.

along with information about how many people in general, or how many of a

person’s own friends, have Liked them on Facebook, as shown in Figure 4.1.

In general, these social explanations follow a few basic forms that theories

of social influence suggest might impact people’s decision-making [1]. Such

explanations rest on the idea of social proof, that people follow other people’s

behaviors because they assume that others have reasons for doing those things

[19]. Other social explanations provide the names of particular friends who

have Liked the item; particularly if the names chosen are good friends, this

47



might tap into the idea that people we like are more persuasive [60, 97]. Social

explanations can also combine these kinds of information, for instance, provid-

ing both names and counts of others’ activity around items (see Figure 4.1).

Influence due to such social explanations in sharing networks could be a

cause of the preference locality in sharing networks that we saw in Chapter 2.

Seeing their friends’ actions on recommended items may increase the likelihood

that people adopt the recommendations shown, thus leading to common adop-

tions between friends. However, such influence is hard to identify from log data

of people’s adoptions, because homophily might also lead to common adop-

tions between friends. Further the logs typically do not show the explanations

presented along with a recommendation.

In this chapter, we present a randomized experiment that controls for per-

sonal preference effects and captures how different kinds of social information

influence people’s decisions. Using the PopCore platform, the first phase of

our experiment showed people social explanations for musical artists that they

knew little about (assuming that this would remove the effect of personal prefer-

ence in their decision) and asked them to rate their likelihood of trying out those

artists. In the second phase of the experiment, they return about a week later

and actually listen to music by artists (without any social explanation) they had

been exposed to earlier and provide a consumption rating.

We are interested in how influence from social explanations impacts a per-

son’s likelihood to try out an item, and how actual consumption ratings—when

no social explanations are shown—correlate with likelihood ratings. We sum-

marize results from both phases of the experiment below.
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Likelihood phase. We find that different kinds of social explanations do have

different effects on likelihood ratings. However, it is only a secondary effect,

with the dominant influence on most people’s likelihood ratings being their in-

herent expectations of how they will like the item, even with minimal available

information about the artist. Further, social explanations are not always per-

suasive. People’s comments show that a trusted friend’s name can increase the

credibility of a recommendation, but a friend whose interests are unknown or

incompatible negatively influences likelihood ratings. More generally, when

people identify with the source of the explanation, they tend to give it more

credibility.

Based on these insights, we present a generative model that explains much

of the interplay between social explanations and inherent preferences on likeli-

hood ratings, a model that can be generalized to include other sources of expla-

nation as well. There is a wide variation in how susceptible people are to the

effect of social explanation and to different kinds of social explanation, which is

also reflected in people’s comments about having different strategies for making

sense of social explanations. These findings suggest that personalizing strate-

gies for explanations might have real value.

Consumption phase. We find that the effect of different kinds of social expla-

nations does not transfer to the consumption phase. In fact, like past work on

explanations in recommender systems [59], we find a low correlation between

likelihood and consumption ratings people give to the same artist. This suggests

that there are different motivations and goals for the two phases, and further,

that although explanations are persuasive, they are not very informative and

may lead people astray.
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4.1 Background: How explanations affect people’s adoption of

recommendations

We build on existing work that shows the value of explaining recommendations

in general and the growing trend to use social information in sharing networks

for explaining recommendations.

4.1.1 Effect of explanations for recommendations

Deciding whether to consume a recommended item is not done in isolation, but

in a situated context [98]. Terming rating as a cognitive process, Lueg argues

that the ratings are a dynamic result of the interaction of an individual with

an “information situation”. In our context, an explanation is part of the infor-

mation presented about a recommendation, and studies show that explanations

play an important role in helping a user evaluate a recommendation [57, 99].

In one of the first studies of explanations, Herlocker et al. evaluated 21 types

of explanation interfaces for a movie recommender system [95]. Similar to our

study, they presented no actual information about the item and found that a

histogram showing the ratings of similar users is the most persuasive for users

when asked about their likelihood to see a movie.

However, being persuasive has drawbacks. Another study found that al-

though explanations might persuade a user to try an item, they were not good

for accurately estimating the quality of an item [59]. The authors further argue

the goal of a recommender should not be to persuade people to adopt a recom-

mended item (which they call promotion), but rather to enable a user to make a
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more accurate judgment on the true quality of the item for that person (which

they call satisfaction).

Besides helping users make an informed choice, explanations may also in-

crease the acceptability of a recommender system overall, by communicating

why an item has been recommended to a user [100] and thus helping them

understand the system. These explanations and other presentational choices

can be designed to increase the system’s trustworthiness [101], and a number

of real systems incorporate explanations (e.g., Amazon’s explanation of “Cus-

tomers who bought this also bought these”, and Netflix’s explanation by gen-

res). Tintarev et al. provide a number of desirable attributes of explanations,

including transparency, scrutability, trustworthiness, effectiveness, persuasive-

ness, efficiency, and satisfaction [96].

One outstanding problem it that is not clear how to characterize explana-

tions’ influence on either likelihood or consumption ratings. Computing per-

suasiveness is difficult because people’s likelihood decisions are also informed

by the merits of the recommended item and by other information presented in

the interface. And, though Cosley et al. found that displaying predicted rat-

ings caused people to change their own ratings of movies [20], this was likely a

short-term effect caused by displaying the predicted rating at the same time as

the user the rated movie. Here, we attempt to tease out persuasiveness through

comparing a number of different social explanation strategies, by putting a sub-

stantial delay between the likelihood and consumption ratings and, like Her-

locker et al. [95], by minimizing people’s ability to judge the merits of the item.
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4.1.2 Using social information for explanations

Social information can also be used to explain a recommendation, as with the

neighbor-based ratings in Bilgic and Mooney [59]. Using user-generated tags,

based on their popularity and relevance, is another source of social information

that has also been studied for explanation in a sharing network [102]. More

recently, friends’ activities on an item have been used for explaining search en-

gine results [103, 104] and news articles [105], where they have been found to

be useful for providing social context.

Our work directly addresses the effects of such social explanations on peo-

ple’s adoption decisions. A fundamental question is whether, and how, these so-

cial explanations influence user decisions. In addition, we would like to inves-

tigate how different types of social information vary in their impact. Analogous

to the likelihood and consumption phases of the experiment, we are interested

in both the persuasive power of such explanations, as well as their informative

power (whether they lead to satisfying choices). Based on the discussion above,

we articulate four high-level research questions:

RQ1: How do different social explanation strategies influence likelihood rat-

ings?

RQ2: How do social explanations interact with an individual’s personal prefer-

ences?

RQ3: How can we model the influence of explanations on likelihood ratings?

RQ4: Do high likelihood ratings translate to high consumption ratings in the

absence of any social explanation?
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4.2 Description of the user study

We now describe the details of our experiment for estimating influence due to

social explanations on the decision to adopt musical artists. We chose the music

domain for this experiment because it is relatively easy to acquire consumption

ratings of previously unknown artists (three minutes per song, versus two hours

per movie, for example), allowing us to explore whether explanations would

influence consumption ratings.

4.2.1 Experiment design

The experiment proceeds in two main phases. We initially collect the artists that

the participant and her friends Liked. We then show all the artists the partici-

pant’s friends Like that she hasn’t yet Liked and ask her to identify a minimum

of 30 that she is not familiar with. We ask for this information to minimize the

effects of prior knowledge or personal preference. To minimize position bias,

we ordered artists randomly.

Phase I

Phase I begins immediately after the initial selection. The experiment is a

within-subjects design, where each participant sees the artists they selected, ran-

domly assigned to one of five explanation strategies:

• Friend Popularity: The number of friends of a user who Like an artist

(FriendPop, Figure 4.2(a)).
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• Overall Popularity: The number of Likes by all Facebook users for an

artist (OverallPop, Figure 4.2(b)).

• Random Friend: The name of a particular friend, chosen from those that

Like an artist (RandFriend, Figure 4.2(c)).

• Good Friend: The name of a “close” friend, chosen from those that Like

an artist (GoodFriend, Figure 4.2(c)).

• Good Friend & Count A combination of Good Friend and Friend Popu-

larity (GoodFrCount, Figure 4.2(d)).

These roughly align with commonly used social explanation strategies de-

scribed earlier. Given a user and an item, OverallPop and FriendPop explana-

tions are straightforward to compute using the total number of Facebook users

or friends who Like an artist, respectively. For RandFriend, we choose a friend

at random among all the friends that Like an artist. For GoodFriend and GoodFr-

Count, we choose the friend with the highest tie strength who Likes the artist,

assuming there exists such a friend with non-zero tie-strength. Using a rough

proxy of interaction frequency, loosely inspired by Gilbert and Karahalios’ work

on predicting tie strength in Facebook [106], we define tie strength between a

user and a given friend as the number of interactions (likes, comments, and

wall posts) between them among the last 500 interactions involving the user.

For each artist, we show the artist’s name, their profile picture on Facebook,

and the associated explanation. For GoodFriend and GoodFrCount, it was often

the case that there were no friends with non-zero tie strength who had Liked

the item. In these cases, we skipped the item, leading us to show fewer artists

in these conditions; we saw this as preferable to assigning artists that random

friends had Liked because we were afraid that might dilute the effects of close
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(a) Friend Popularity (b) Overall Popularity

(c) Good/Random Friend (d) Good Friend & Count

Figure 4.2: Different explanation strategies used in the experiment, shown
along with an artist’s name and profile picture. This setup was
chosen as a tradeoff between realistic recommendation scenar-
ios (artist information shown) and ideal experiment conditions
(no other information).

friendship. For each recommendation, we ask the user how likely is she to check

out the recommended artist and how sure is she about her answer. We use a 0-

10 (inclusive) Likert scale to collect these answers2. To reduce order effects of

either artist or explanation strategy, we randomize the order of presentation for

artists.
2The initial slider value is 5 and participants usually moved the slider, leading to a relative

lack of 5 ratings.
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Once all artists are shown, the user fills out a questionnaire that asks about

their reaction to the explanations: which ones were more convincing or effec-

tive and why, and how she used the information presented to think about the

recommended items.

Phase II

In the second phase, users listen to songs by a randomly chosen subset of the

artists they had rated in Phase I. Explanations are not shown in this phase. We

also required participants to wait at least three days between Phase I and Phase

II. The goal of this delay, and of not re-showing the social explanation during

Phase II, was to see whether there was a lasting effect of the explanation on peo-

ple’s consumption ratings [20]. Participants could choose their date for Phase

II; the average delay was 5.2 days.

We used Grooveshark3 to provide the top three songs for a musician, assum-

ing that a musician’s best songs are a reasonable representation of the artist.

Since listening to the top three songs for a given artist takes 6-9 minutes, we

randomly chose two artists from each explanation strategy from Phase I to keep

the experiment between 60 and 90 minutes. This meant that participants lis-

tened to 10 songs in total. After listening to the songs, we asked the user to

rate how much they liked the artist and their surety about the rating. As before,

feedback was collected on a 0-10 Likert scale.
3http://en.wikipedia.org/wiki/Grooveshark. A popular music service at the

time, ceased operations in April 2015.
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4.2.2 Participants and descriptive overview

Participants were drawn from two on-campus experimental subject pools cov-

ering undergraduate and graduate students as well as staff at the university.

Participants were compensated with either money or with experiment partici-

pation credits required by some courses. A total of 237 users took part. Out of

these, 175 people completed both phases, while the rest completed only Phase

I. The gender ratio was 68% female, 32% male and the average age 20.5 years.

We collected a total of 4458 ratings for Phase I and 835 for Phase II.

4.3 Influence of different social explanation strategies on like-

lihood ratings

First, we address RQ1: How do different social explanation strategies influ-

ence likelihood ratings? Table 4.1 shows the mean likelihood ratings for differ-

ent explanation strategies4. GoodFrCount and GoodFriend have relatively high

mean ratings, while FriendPop and RandFriend have relatively low ones, sug-

gesting that good friends are more persuasive than counts or random friends.

An ANOVA with repeated measures shows that there is a significant difference

between the different explanation strategies (F(4, 763) = 4.96, p = 0.0006). A

post-hoc Tukey test shows that GoodFrCount is significantly higher than Rand-

Friend (p = 0.002) and FriendPop (p = 0.006).

4As a reminder, the good friends-based strategies have fewer ratings because many of the
items that were randomly assigned to them hadn’t been Liked by a good friend and so were
skipped.
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Explanation Strategy N Mean Std. Dev.

Friend Popularity (FriendPop) 1203 2.12 2.42
Random Friend (RandFriend) 1225 2.08 2.49
Overall Popularity (OverallPop) 1191 2.36 2.69
Good Friend (GoodFriend) 434 2.52 2.69
Good Friend & Count (GoodFrCount) 405 2.71 2.90

Table 4.1: Likelihood ratings for different explanation strategies. Strate-
gies based on good friends have higher ratings.

Answer Theme Prevalence (%)

Good Friends 26
Similar Friends 18
Overall Popularity 13
Expert Friends 12
Popular Among Friends 12
Artist Name and Cover 10
None 9

Table 4.2: Answer themes and their prevalence for the kinds of informa-
tion participants found most convincing. Some of these were
explicitly shown (e.g., overall popularity), while others were
raised by participants (e.g., friends having similar taste in music,
or perceived to be experts).

Users’ qualitative responses give confirmation, explanation, and depth to

these differences, showing the importance of good friends and, no matter which

explanation strategy, the importance of identifying with the source of the recom-

mendation. Table 4.2 shows how useful people saw the different information

available to them in explanations, based on coding their responses to a ques-

tion about what aspects of explanations they found most powerful. We used

inductive coding to arrive at the six categories, using two researchers to code

participants’ answers.
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4.3.1 Showing the right friends matters

The most important source of information was the name of the friend who liked

the item: “The best recommendation was the showing which one of my friends liked a

song. I didn’t really care when I was vaguely told ‘2 friends’. It was important to see

names because I know some of my friends’ music tastes.” (P78)

Good friends were seen as more influential and informative than others: “I

would only be interested in the recommendations based on people who are relatively

close to me (compared to random individuals/acquaintances on my friends list).” (P23)

This is likely because people are better able to think about whether they

know and trust good friends’ tastes, as suggested by [107]: “I found it most pow-

erful when I could see what friend likes the artist. I know what kind of music my friends

listen to and that helps me know if I would like the artist or not.” (P105)

As Table 4.2 shows, people also trusted those friends more who were per-

ceived to have similar interests, or a good taste in music: “Certain friends who

I’m close with and have similar interests/music tastes to mine made me feel more likely

to listen to a band.” (P141) “I found the recommendation for Falluah most convincing

because it was liked by one of my close friends who has great taste in music.” (P51)

Disagreement, on the other hand, could lead an explanation to be less per-

suasive: “Sometimes I judged the artist solely based on which friend liked it. If it was

a friend that I did not think I would have similarly music taste too, then I immediately

ruled the artist out which may be an incorrect judgment.” (P15)

59



4.3.2 Popularity only matters if people identify with the crowd

People were more divided about the efficacy of popularity-based explanations.

For some, social proof was clearly an important influence: “The recommendations

that had more ‘likes’ were most powerful. I assume that there is a reason that so many

people like that music.” (P172)

This is particularly true when people see the crowd as providing useful

information, as with this person who found recommendations through his

friends: “The recommendations that were most convincing to me were the ones that

displayed that a decent number of my friends listened to or liked the artist. I often like to

hear my friends’ feedback on certain artists and music tastes so that I might get a better

idea of what is out there that I might like as well.” (P32)

However, when people don’t see their friends as informative for them, they

dismissed friend count information: “Me and my friends’ music tastes rarely match

up, so I’ve learned to not care about what music my friends like. Since I mostly listen to

mainstream music that means that I would more likely listen to artists with more likes.”

(P96)

4.4 Interaction of social explanations with people’s personal

preferences

We have seen that different kinds of social explanations are differently persua-

sive, and further, that there is variation between individuals in how useful they

60



Answer Theme Prevalence (%)

Helped make decision 34
Useful information 40
No use or influence 20
Other 6

Table 4.3: Answer themes and prevalence for how much participants
thought they were influenced by social explanations overall. On
balance, people saw them as presenting some useful informa-
tion, though the amount of influence varied.

find different kinds of social explanations. We now look at RQ2: How do expla-

nations interact with an individual’s personal preferences?

4.4.1 People are differently susceptible to social explanation

Table 4.3 shows three main groups that emerged when we asked people how

they felt about the social explanations and coded their responses. On balance,

people felt that social explanations could influence their decisions about artists,

but the amount of influence varied quite a bit between people.

As with their reactions to particular kinds of explanation, the differences ap-

pear to hinge on whether people expect the social information to be informative:

“I think that it influenced my choice on the degree to which I thought I would search

the artist and how confident I felt in that decision. If I knew the person well, trusted

them, or was friends with them, or if a lot of my Facebook friends liked that artist, I was

definitely more likely to think about researching the artist and feeling confident about

it.” (P22)
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4.4.2 Social explanation is only part of the story

Although not cited as important as the social information, the artist’s name and

photo had an effect too: “What influenced me the most was the picture associated

with the band or artist.” (P66)

For most (Table 4.2), social explanations were useful, but they were just a

part of a story in which other factors also mattered: “The albums with the most

interesting picture, or interesting name, with a lot of likes. If the name struck me, such

as ‘Formidable Joy’, I found myself wondering more. If a lot of my friends liked it, it

must be good!” (P7)

And, as we saw earlier with friends who had incompatible preferences in

music, people would sometimes combine social explanation with artist infor-

mation in order to reject a recommendation: “The recommendations didn’t really

convince me that much. It more mattered what my interests were, not my friends’. If

anything, some of the recommendations convinced me not to look up the bands; if the

artist looked like a rapper, and the kid who suggested it was a younger boy from my high

school who thinks he is cool I was positive that I was not going to look it up.” (P59)

4.4.3 Influence from social explanations is a second order effect

Our final observation is that, based on our data, influence from social expla-

nations is a second order effect. The standard deviations for likelihood rating

shown in Table 4.1 were high and the effect size is small (Cohen’s d ≈ 0.25) even

between the most and least persuasive social explanation strategies, GoodFriend

5We report Cohen’s-d [108] as a measure of effect size throughout.
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Explanation Fraction > 5

Friend Popularity 0.137
Random Friend 0.141
Overall Popularity 0.175
Good Friend 0.200
Good Friend & Count 0.239

Table 4.4: Fraction of likelihood ratings above 5 (neutral rating) for each
explanation strategy. Good friends-based strategies have higher
fractions of ratings above 5.

and RandFriend. This suggests that other factors play an important role in peo-

ple’s decision-making around recommendations.

Participants’ responses comments confirmed that the effect of explanations

may depend on pre-conceived notions of quality or prior information, both of

which would be informed by people’s personal preferences: “Recommendations

of artists that seemed established AND were endorsed by people who I respect were the

most powerful. Even if they were endorsed by someone I know and respect, if they

seemed to be a garage band, I did not find the recommendation powerful.” (P117) “I

tended to find the most powerful recommendations were the ones whose genre I knew in

advance and were liked by my Facebook friends that were closest to me.” (P132)

Further evidence is provided by the distribution of likelihood ratings (Fig-

ure 4.3), which shows that most ratings are below 2. This trend is consistent

across explanation strategies, which suggests that in addition to explanation,

underlying every rating there is a base decision process, that on average, leans

towards rejection.
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Figure 4.3: Overall distribution of likelihood ratings across explanation
strategies. The mode is 0; frequencies decrease thereafter ex-
cept for the anomalous 5 and a bump around 6.

4.5 A generative model for likelihood ratings

In this section we address RQ3: How can we model the influence of explana-

tions on likelihood ratings? Figure 4.4 shows the overall distribution of likeli-

hood ratings, along with the distribution for each social explanation strategy.

Although GoodFrCount and GoodFriend have a higher proportion of likelihood

ratings over 5 (see Table 4.4), it’s clear that no matter which explanation strategy

is used, people have an underlying model of likelihood that has a stronger in-

fluence on their ratings than explanations. This also came out through people’s

comments in Section 4.4.

Both the graphs and the comments suggest that a mixture model for the

ratings might be appropriate, thus, we assume that a person’s likelihood rating

is derived from a probability distribution that is a mixture of two independent

distributions. One represents her inherent likelihood estimate for the item, and

the other describes the effect of the social explanation. The density function h
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for the ratings can be written as:

h(x) = a f (x) + (1 − a)g(x)

where f (x) and g(x) are continuous density functions representing the inherent

preferences and explanations respectively. We model x as a continuous variable,

although it is discrete in the data. a is a parameter that represents the rigidness

of the underlying likelihood model, compared to explanations; the higher a is,

the less effect explanations have on people’s decision-making.

We first specify the base likelihood model, f (x), which in this case includes

both a person’s personal preferences and the effect of showing an artist’s name

and photo. Note that we are not modeling actual preferences; rather, we are

estimating whether the user is likely to try out an artist. Our data shows a

large percentage of artists with very low ratings. This is not surprising, since

we chose artists that users claimed they knew little about. Thus, we model

f (x) as an exponentially decaying function controlled by α, the discernment of an

individual; discerning individuals tend to give relatively few high ratings.

f (x) = αe−αx (4.1)

We now turn to modeling the influence due to social explanations, g(x). Peo-

ple described how explanations with specific friends’ names had both positive

and negative effects, depending on their perception of that friend’s usefulness as

a source of information. Those who valued popularity-based explanations men-

tioned how the number of people associated with an explanation helped them

decide. It seems plausible that most explanations, whether names or counts,

will only be average in their persuasion, as opposed to very convincing ones

on either side. Thus we model the effect of explanations by a µ-centered distri-

bution, as shown in equation 4.2. The center of the distribution gives a sense
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Figure 4.4: Likelihood densities for different explanation strategies. Note
how GoodFrCount and GoodFriend have higher bumps after 5
than others. The line plot shows the fit of our proposed mixture
model.
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of the receptiveness of an individual, while the standard deviation σ represents

how different explanations of the same type might affect them differently, the

person’s variability.

g(x) =
1
√

2πσ
e−

1
2

(x−µ)2

σ2 (4.2)

Putting things together, we get the following mixture model.

h(x) = a(αe−αx) + (1 − a)(
1
√

2πσ
e−

1
2

(x−µ)2

σ2 ) (4.3)

The mean of density h(x) is given by a/α+ (1− a)µ. Constraining the mean to

be equal to the mean of the original likelihood distribution (c), we have

α =
a

c − (1 − a)µ

Thus, the parameters of the model are the receptiveness (µ), the variability

(σ), and the rigidness (a) of an individual. Given an artist and an explanation,

a user draws her rating from the distribution h(x) as a mixture of her preference

and explanation models specified by the triplet (µ, σ, a). Over a set of the user’s

ratings, the prevalence of a certain rating x can be approximated by h(x).

4.5.1 Aggregate effects of explanation strategies

We first see how well the model explains the aggregate ratings. For the aver-

age user represented by these ratings, we fit the model parameters for ratings

from each explanation strategies separately, as well as for the combined case

(Figure 4.4). We evaluate the fits using residual standard error.
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Explanation Error α(computed) µ σ a

Friend Popularity 0.022 0.44 6.85 3.61 0.74
Random Friend 0.018 0.49 7.10 3.57 0.71
Overall Popularity 0.026 0.49 6.89 3.10 0.66
Good Friend 0.030 0.46 6.46 2.51 0.66
Good Friend & Count 0.034 0.50 6.84 2.26 0.61
Combined 0.022 0.47 6.88 3.05 0.69

Table 4.5: Fit parameters for likelihood densities of different explanation
strategies. GoodFrCount has the lowest rigidness (a), which sug-
gests people were more swayed by this explanation strategy.

Cl# N Ratings Error µ σ a

1 89 1817 0.001 0.05 78.82 0.62
2 84 1610 0.01 1.43 1.98 0.50
3 64 1119 0.04 4.99 3.22 0.08

Table 4.6: Fitted parameters for three clusters of users. The effect of expla-
nations increases from Cluster 1 to 3, as shown by the values for
a.

Table 4.5 shows the fitted parameters for the different explanation strategies.

First, we observe that values for α are very close to one another for all strate-

gies, giving weight to the assumption of an inherent discernment parameter for

the average user that does not depend on explanation strategy. GoodFrCount ex-

hibits the lowest value of a, suggesting that explanations of that type influence

user ratings more. The receptiveness (µ) and variability (σ) scores together ex-

plain how GoodFrCount and GoodFriend have more ratings above 5, and hence

are more consistently persuasive than the others (and giving further support to

our earlier findings).
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Figure 4.5: Likelihood rating distributions for three clusters of users.
These distributions bring out the three types of users: ones on
whom explanations had no effect, those who found them use-
ful and those who relied on them more heavily. As before, the
line plots show the fitted mixture models.

4.5.2 Different users, different models

Until now, we have analyzed the distribution of the aggregate population.

However, as we saw earlier, people are differently influenced by explanations;

we now look at how we might refine the models by exploiting the differences in

susceptibility to explanations demonstrated by Table 4.3. To do this, we group

users into three clusters using a standard k-means algorithm, representing users

by their mean and variance of ratings. The mean ratings in the three computed

clusters are 0.67, 2.44, and 4.89 respectively. Figure 4.5 shows the distribution of

likelihood ratings for the three clusters, and Table 4.6 shows the fitted parame-

ters (we do not fit for individuals for fear of overfitting, since users have about

30 ratings).
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The plots give evidence of these three types of users in the data, with clus-

ter 1 roughly representing the “no use or influence” case, cluster 2 representing

“useful information”, and cluster 3 representing “helped make decision”. Pa-

rameter a decreases from cluster 1 to 3, suggesting the decreasing rigidness of

individuals towards explanations. Clusters 1 and 3 serve as composing exam-

ples of the mixture model: cluster 1 illustrates the dominance of the exponential

distribution, while cluster 3 is highly gaussian.

Personalization. In Section 4.4, we observed how people are differently sus-

ceptible to influence from social explanation. The above data provides weight

to that observation, and opens up opportunities for personalization of expla-

nations. In a practical system, this could be done in multiple stages. When

users first join the system, they can be assigned population averages for these

parameters for each explanation strategy. As they encounter explanations, their

preferences can be either explicitly captured (e.g., through rating whether an

explanation is helpful, as with Amazon reviews) or inferred based on their re-

action to the explained recommendation. As we build up data, we can compare

them to cluster models such as those described here to see whether explana-

tions are helpful at all, or have individual models for each user. Eventually, we

can infer which types of explanations are the most appropriate for an individual

user and prefer showing them when possible.
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Explanation N Mean Std. Dev. Mean (Likelihood)

Friend Popularity 190 4.14 2.85 2.12
Random Friend 192 4.57 3.09 2.08
Overall Popularity 198 4.86 2.92 2.36
Good Friend 133 4.57 2.86 2.52
Good Friend & Count 122 4.63 2.84 2.71

Table 4.7: Listening ratings for artists, binned by explanation strategy.
OverallPop performs the best in Phase II, but we found no sig-
nificant difference between the ratings.

4.6 Comparing likelihood and consumption ratings

Having analyzed likelihood ratings, we now focus on RQ4: Do high likelihood

ratings translate to high consumption ratings in the absence of social explana-

tion? First, we study how the different explanation strategies shown in Phase I

affected consumption ratings in Phase II. We then contrast the overall consump-

tion ratings with likelihood ratings.

4.6.1 Do explanations affect consumption ratings?

Table 4.7 shows the consumption ratings for different explanation strategies.

We note that the means for consumption are higher than for likelihood. While

GoodFrCount performed best for likelihood, we find that OverallPop records the

highest mean for consumption. However, we must be careful with making con-

clusions since (except for FriendPop), the means for different strategies are quite

close, and an ANOVA with repeated measures confirms the differences are not

significant (F(4, 378) = 1.64, p = 0.2).
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Figure 4.6: Distribution of consumption ratings for all users. Apart from
very high ratings {9,10} and the anomalous 5, ratings are
evenly distributed.

Since OverallPop, GoodFrCount and GoodFriend all have comparable ratings,

this implies that explanations lose their influence on a user’s decision after a

delay of a few days. This is also shown in figure 4.6 where ratings are close to

uniformly distributed across the 11-point scale (except ratings above 8 which

show a dip, and the anomalous 5). The different explanation strategies exhibit

similar distributions.

4.6.2 Does likelihood predict consumption?

We next look at whether likelihood ratings can predict later consumption rat-

ings. Figure 4.7 shows how the two compare, z-score adjusted to control for
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Figure 4.7: Z-scores of likelihood and listening ratings. The two ratings
show little correlation (correlation coeff=0.17)

individual biases in numerical ratings. It is apparent that there is little correla-

tion between likelihood and consumption ratings (r = 0.17), suggesting that the

persuasiveness and informativeness of an explanation are quite different [59].

In the limiting case where we provide almost all the information about an item

in a recommendation (such as recommending pictures), these ratings should

be close together. But our results show that these two ratings can be quite far

apart, suggesting that it will be useful to think about the two kinds of rating

independently.
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Considering them separately gives designers more freedom to optimize

users’ experiences and support different recommendation goals [109]. Our

initial proposed model suggests that increasing persuasiveness might increase

overall user activity and consumption, though at some risk of eroding trust if

the system persuades users to consume items they don’t actually like. Systems

might also effectively support serendipity by increasing the persuasiveness of

explanations for items where the consumption model predicts high ratings and

the likelihood model predicts low ratings. Tuning the likelihood threshold

might also support users who prefer either riskier or more conservative rec-

ommendations.

As a practical import, the notions of likelihood and consumption are natu-

ral parallels to the ideas of click-throughs and purchases online. Scenarios of

two-phase recommendation are common on the web—for example, clicking a

movie recommendation on Netflix and rating it after watching, or clicking a

Page recommendation on Facebook and deciding to Like it. In general, cur-

rent approaches to information filtering assume that the two ratings are corre-

lated (or have access to only one), and hence optimize only one of the rating

objectives. For example, recommender systems research focuses mainly on con-

sumption ratings [45], while ad systems typically optimize click-through rates

[76, 110]. The gap between likelihood and consumption suggests that rather

than optimizing one or the other, it would be fruitful to model both.
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4.6.3 Modeling likelihood and consumption separately

One way we could make use of modeling both likelihood and consumption is by

conceptualizing the decision-making as a sequential process. A user proceeds to

consume an artist recommendation only after he evaluates a high enough like-

lihood for liking that artist. Thus we could set up an optimization framework:

maximize R s.t. L > εu

where L and R are the likelihood and consumption ratings for an artist respec-

tively6. ε can be initialized to a reasonable global value (such as 5 in our case), or

a user-specific εu. Models could iteratively decrement ε in case enough recom-

mendations cannot be retrieved, or depending on recommendation goals, may

use alternate values for ε. For serendipity, one may prefer may prefer to set ε

lower, for instance. Note that in a domain where R and L are highly correlated,

equation reduces to the standard one-phase optimization, maximizing R.

L may depend on the explanation shown, in which case there will be multi-

ple likelihood values for a single item. The models for L and R can be based on

standard collaborative filtering models [45] or socially enhanced variants [49].

4.7 Opportunities for improving explanations

We find that social explanations, especially ones involving close friends, are

persuasive, though they have secondary effects compared to other sources of

information about recommended items. However, our data also shows that per-

suasive explanations may not be informative—that people’s ratings of expected
6Our formulation is different from multiple objective optimization [111, 112], since the two

objectives are sequential.
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liking aren’t good proxies of their actual liking of the artists. In this section, we

discuss the opportunities for designing explanations that our findings point to.

4.7.1 Improving expectations of informativeness for social ex-

planations

One major finding is that the effect of social explanations is based heavily on a

user’s expectations of how informative the explanation will be: how they per-

ceive a friend’s music tastes to be similar to theirs, or how much they expect to

agree with the crowd. Our explanation interfaces were fairly minimal because,

as shown in Figure 4.1, many real social explanation settings—particularly those

that present a list of recommended items—convey little additional information

beyond a title and a social explanation.

Our results suggest that this might be a mistake, and that systems should de-

sign explanation interfaces to increase the informativeness of the explanation.

For instance, the interface could show information about similarity to people

used in social explanations, either by translating similarity metrics into legi-

ble indicators (as with some of the explanation interfaces shown in [95]) or by

using representative examples of items liked. It could also show information

designed to convey expertise, such as the quantity, diversity, or rarity of items

an explainer likes. Based on our results, an effective display of this kind of infor-

mation might make both individual-based and crowd-based social explanations

more useful.
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4.7.2 Increasing informativeness of explanations

Our results also call the difference between persuasiveness and informative-

ness into sharp focus [59], showing that social explanations along with basic

artist information have a limited ability to help people predict their actual lik-

ing of a recommended item. Section 4.6.3 talks about one way to deal with this

difference, by modeling persuasiveness (likelihood) and informativeness (con-

sumption) separately.

An alternative approach to managing the gap between likelihood and con-

sumption ratings would be to enrich explanations in order to close the gap. Our

suggestions above about increasing the informativeness of social explanation

are one such strategy. However, as we’ve seen, social explanations are just one

part of people’s decision-making process. A number of other interface elements

have been proposed that might help explain recommendations, including tags

associated with the item [102], indicators of the system’s confidence in the rec-

ommendation [109], and the predicted rating itself [20].

These interface elements fall into four main classes: tokens of the item it-

self (such as genres or music clips for music, or trailers, genres, and actors

for a movie); data that people attach to the item (ratings, tags, reviews); meta-

data about those people (similarity information, their ratings); and information

about the recommendation system’s algorithms (confidence, predicted ratings).

Our hypothesis is that item information is more informative, and social and

algorithm information are more persuasive, but this is an open question. The

space for designing explanations is rich, and more work is needed to explore

the effect of these sources of information on both the persuasiveness and the

informativeness of explanations of these various types.
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4.8 Summary

We want to point out four main factors around our study that readers should

bear in mind when applying our results. First, our users are fairly young and

primarily drawn from a single university. Older users might have different per-

ceptions of the usefulness and acceptability of social explanations. Second, we

focused on the music domain. This was intentional, to support the collection

of consumption ratings, but does mean that our results may not apply in do-

mains where consuming items is more costly in terms of money or time. Third,

although we took care not to include artists familiar to a user, they were all

chosen from her friends’ Likes. This might have introduced a selection bias,

especially if a few friends Liked most of the artists. Finally, although we chose

a representative sample of social explanation strategies, we did not cover the

entire space. Interfaces might show multiple names, or combine other sources

of social information.

Still, our results suggest that when it comes to adopting an item in a shar-

ing network like Facebook, preferences of people play a bigger role than social

influence due to other people’s involvement or endorsement of that item. Even

in the presence of explanations and when people presumably are not familiar

with the item, their own preferences towards an item play a significant role

in deciding their actions despite minimal information being available to guide

those preferences.

In the next chapter, we will see how strongly this observation holds for shar-

ing decisions.
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CHAPTER 5

HOW DO PREFERENCES AFFECT PEOPLE’S SHARING DECISIONS

“I tend to share ... when I understand something about the other person

and I think that a certain movie, book, song, etc., might interest that per-

son, whether it be to challenge what someone is saying or feeling, or to

reinforce and reaffirm what someone is thinking or feeling. Sure, with close

friends, with whom you maintain a close relationship, you might just say,

‘hey I liked this movie. check it out.’ But I think we do that because we

already know the person and the person already knows us. There’s a certain

level of mutual understanding and respect already established. I say I don’t

recommend ‘all willy-nilly’ and I mean that I don’t run up to strangers and

recommend they read George Orwell, because I don’t know anything about

that person or how they feel. Unfortunately, to some extent, we do do just

that, we all do that sometimes, when we recommend in order to show off

our own interests, to show how cool we are, to show how much we know,

to show how diversified our interests are, to show how much niche-specific

music we listen to. You know, when we’re self-interested assholes.” (P23)

Apart from adopting (or liking) an item, sharing it to others is the second

fundamental decision on items in sharing networks. Many people get recom-

mendations for movies, music, articles, and products through their social con-

nections both online and off. Online, we often think of sharing primarily as

a public broadcast through tweets, status updates, and the like. Much online

sharing, however, is narrower, targeted at specific audiences (as with Google+

circles or Pinterest boards) or directed [26] at specific individuals through email,

chat, and person-to-person messages (e.g., suggesting movies on Netflix [113]).
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Further, recent studies show that sharing content through email is still popular

[26, 114], surpassing social media in certain product categories [115].

While there is extensive research on understanding people’s adoption be-

havior and predicting their ratings or feedback for items, primarily in the rec-

ommender systems community [45], little is known about people’s online shar-

ing behavior and its predictability. Sharing to others is a surprisingly complex

process affected by a number of considerations, as illustrated by the quote from

a study participant above. Untangling this complexity is important for under-

standing how items are shared (and potentially diffused through a sharing net-

work).

In this chapter, we make progress toward both that question and our larger

question about the interplay of preference and influence by examining the role

of personal preferences in sharing. To do that, we conducted an empirical study

on the PopCore platform where pairs of friends were independently shown the

same set of movies and asked to rate those movies and/or share them with their

friend. 87 pairs of Facebook friends took part in the study, providing rating and

sharing data along with answers to open-ended questions about their sharing

behavior. Our results provide several concrete findings about person-to-person

sharing.

First, a sharer’s personal preference is the dominant factor for sharing items.

Shared items are rated significantly higher by sharers than items that aren’t

shared. Further, sharers’ ratings are significantly higher than recipients’ ratings

for shared items.
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Second, participants describe customizing their recommendations based on

the recipient, consistent with results from earlier studies [26, 116]. We argue that

these two seemingly contrary results—people claiming to personalize but still

sharing items that they themselves like—can be best explained by the follow-

ing decision process: people choose items to share based on their preferences

and context, then decide to share or not depending on the recipient. We for-

malize this process as the preference-salience model of sharing and provide some

evidence for it.

Third, we show that we can (noisily) predict which items a person might

share in the context of the experiment. A model using sharers’ and recipients’

preferences for movies along with sharers’ promiscuity—their overall tendency

to share—can predict shares by study participants with more than 75% preci-

sion. We also find that item characteristics such as average rating and popu-

larity play little role in predicting sharing decisions compared to people’s own

preferences for an item.

5.1 Background: Why do people share?

5.1.1 Motivations of individuation and altruism

From past research on word-of-mouth product sharing and information sharing

on the web, we know that people share items for many reasons: enhancement of

personal image, personal interest in the item, helping others, a desire to help or

harm the item’s producer, seeking advice, and so on [22, 117, 118]. On balance,

these motivations can be seen as special cases of two primary drivers of sharing
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proposed by Ho and Dempsey: individuation, the need to establish a distinct

identity for oneself, and altruism, the desire to help others [23].

Based on the primary motivations of individuation and altruism, we can

expect people to share content that is some balance of their own and others’ in-

terests. What that balance is, and how it comes to be so, however, is an open

question. A recent study on Twitter suggests that the balance is tilted toward

the self: around 80% of people primarily share content about their activities and

opinions, while only 20% share informational content more likely to be useful to

others [24]. However, this may be because of the broadcast nature of sharing on

Twitter where in the absence of a specific recipient, sharing becomes an expres-

sion of one’s thoughts and ideas [119]. When people share to specific recipients,

they may be more likely to think about usefulness for the recipient (and thus be

more altruistic) than when they share to larger groups [26, 116].

5.1.2 Mapping motivations to preferences

When sharing items such as movies, these two motivations of individuation and

altruism can be mapped to sharing based on one’s own preferences or the au-

dience’s. These can be estimated from the rich preference data available online.

Ratings for movies by the sharer can be considered as a proxy for her preference

in movies, which in turn is expected to reflect her self-image (individuation).

Similarly, we regard sharing movies that align with the recipient’s preferences

as other-oriented altruistic behavior. We are interested in studying the relative

effect of these two factors.
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RQ1: To what extent do people tend to share items that they like themselves

(individuation) versus those that they perceive to be relevant for the recipient

(altruism)?

In addition, we aim to build models of sharing that account for the role of

personal preference in sharing. If successful, these models can explain how

people weigh their own and recipients’ preferences when sharing items and

present a computational framework for predicting future shares. This model

can be used to estimate sharing probabilities for different recipients and items;

diffusion models can leverage these probabilities to better account for these in-

fluences and make more accurate predictions around diffusion. Recommender

systems within sharing networks will also benefit from better models of sharing

decisions. These models can be used to support sharing online by suggesting

which items to share and who to share them with [26, 120].

RQ2: How well can we predict whether an item is shared using readily avail-

able information about people’s preferences and properties of people and items?

5.2 Description of the user study

To tackle the above questions, we conducted an empirical study on the Pop-

Core platform where pairs of friends were independently shown the same set

of movies and asked to rate those movies and/or share them with their friend.

87 pairs of Facebook friends took part in the study, providing rating and sharing

data along with answers to open-ended questions about their sharing behavior.
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We chose movies as the item domain for several reasons. Movies are a com-

mon domain in recommender systems research and an important cultural item

that people often share and discuss, making them a natural domain for study-

ing sharing. They are also fairly popular to Like on Facebook [64] (among our

participants, µ = 18.2, σ = 31.8), allowing us build reasonable user profiles for

making recommendations.

5.2.1 Experiment design

Figure 5.1 shows an overview of the experiment, which proceeded in three main

stages. In the first stage, a participant (A) signs up for the study and invites one

of her Facebook friends as a partner (B) through email sent by our system. When

Person B accepts the invitation, the second stage starts. Person B is shown a set

of movie recommendations which he is asked to rate and/or share with Person

A, followed by a questionnaire that asks about B’s relationship with A and his

practices around sharing items in general. Person A then gets a notification and,

in the third stage, performs the same tasks on the same items, then answers the

same questions as Person B.

Showing both partners the same items allows us to get overlapping sharing

and rating data to address the research questions. The asynchronous design

allows partners to participate independently, making the study easier to com-

plete. To minimize explicit social influence that might affect sharing and rating

behaviors [74], participants do not see information about their partner’s ratings

or shares.
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Figure 5.1: The flow of the experiment. Person A invites a Facebook friend
(B) to take part in the study. Once B accepts, B rates and shares
recommendations computed from both A and B’s past movie
Likes. Finally, person A logs into the study again and rates and
shares an identical set of recommendations. To reduce effects
of social influence, there is no direct communication between A
and B and the system presents no information about the other
person’s decisions.
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Figure 5.2: A screenshot of the interface. A maximum of 20 movies was
shown; participants rate and/or share as many movies as they
wish. The study partner was shown as the default recipient.

Figure 5.2 shows a screenshot of the interface, based on PopCore and de-

signed to broadly resemble other systems that recommend lists of items. Partic-

ipants were free to choose the movies to rate or share among the movies shown.

All ratings are on a Likert scale from 0.5-5, with half ratings allowed. Movies

are shared by clicking on the Recommend button and providing a short mes-

sage explaining the recommendation. The system showed the study partner as

the default choice for sharing; all but four shares were to their partner so we

removed those four shares from the dataset.

After the rating and sharing task, participants completed a short question-

naire asking how close they were to their study partner, as well as open-ended

questions about how and why they suggest items, and how and when they re-

ceive suggestions from others.
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5.2.2 Computing recommendations

For each user, we computed recommendations using PopCore’s friends-based

k-nearest neighbors algorithm (Chapter 3). We first selected the user’s k = 20

most similar friends based on Jaccard similarity of their Likes with the user. We

then computed a score for each movie based on its similarity-weighted popu-

larity among the k friends:

S core(itemi, u) =

∑k
j=1 JS im(u, f j)Likes( f j, itemi)∑k

j=1 JS im(u, f j)

where Likes is 1 if friend f j likes itemi and 0 otherwise.

The ten highest scoring movies for each user that were not already liked

by her were chosen as recommendations. Some users may have less than 10

recommendations because they do not have enough friends or enough Likes in

their profile to compute recommendations. Further, Facebook API errors and

rate limits prevented some users’ Likes from being fetched. Thus, participants

saw between 0 and 20 movies; we pruned those who saw less than 10.

Recommendations for both partners were computed and stored in the sec-

ond stage, ensuring that both saw the same set. Each pair’s recommendations

were combined and presented in a randomized order to minimize presentation

order effects.

5.2.3 Participation

We recruited participants through two sources, a pool of participants at a large

northeastern U.S. university and Amazon Mechanical Turk. The university
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pool consists of students and staff who elect to take part in user studies. We

conducted a drawing with a 1/3 chance of winning $10 gift cards to motivate

participation inside the university and paid Mechanical Turk users a flat $2.50.

There were no significant differences in terms of the number of shares, ratings,

or Facebook Likes between the groups so we treat them as a composite sample

(Table 5.1).

After pruning people who saw fewer than ten recommendations, a total of

87 pairs took part, 59% female. Due to turnover between the three stages, only

142 participants saw recommendations. Figure 5.3 shows the distribution of

number of ratings and shares by the participants. 118 participants rated at least

one movie and 86 shared at least one movie for a total of 966 ratings and 314

shares to their partner; each session took 11 minutes on average. These are the

data that we consider for our analysis.

We expected pairs to know each other (and their preferences) well since peo-

ple chose their own partners. When asked to evaluate the statement “We are

very close to each other”, 83% of participants answered “Agree” or “Completely

Agree”, indicating that most pairs were close ties.

5.2.4 Three non-randomized participant groups

Participants were divided into three groups based on the recommendations they

saw during the experiment. Note that these groups are not randomly assigned;

as mentioned earlier, Liking behavior and API errors in data fetching affected

the recommendations any participant saw and thus which group they are in.
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Participants’ statistics MTurk Univ All

Number of users who rated at least once 36 82 118
Number of users who shared at least once 28 58 86
Number of ratings/person 6.83 8.81 8.18
Mean rating/person 3.82 3.87 3.85
Number of shares/person 2.69 2.64 2.66
Number of Likes/person 16.2 19.1 18.2

Table 5.1: Aggregate statistics for participants recruited from Amazon Me-
chanical Turk and the university. About a third of the partici-
pants were recruited through Mechanical Turk. There was no
significant difference in study activity between the two popula-
tions.

Figure 5.3: Distribution of ratings and shares per participant. On average,
people rated about three times more items than they shared.
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Condition No. of Users Ratings Shares

Both-Shown 60 609 141
Own-Shown 29 179 96
Other-Shown 29 178 77

All users 118 966 314

Table 5.2: Aggregate rating and sharing statistics for users in the three
groups. Both-Shown participants saw a mix of recommendations
for themselves and their partner, Own-Shown participants saw
only recommendations made for themselves, and Other-Shown
only saw recommendations made for their partners.

• Both-Shown: All participants who saw more than 10 movies belong to this

group. Since our algorithm computes a maximum of 10 recommendations

for each user, this means they saw movies recommended based on both

their own profile and their partner’s. The least number of movies shown

is 14 for this group.

• Own-Shown: These participants saw 10 movies that were recommended

based on their own profile.

• Other-Shown: These participants saw 10 movies that were recommended

based on their partner’s profile. Since both participants in a pair see the

same movies, this means that partners of participants in Own-Shown are

in Other-Shown and vice versa.

Table 5.2 shows the breakdown of participants between the three groups.

5.2.5 Sanity checks

Before we discuss factors affecting sharing, a couple of sanity checks for our

study design are in order. The first concerns the efficacy of our recommen-
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dation algorithm. The average rating of items recommended using a partici-

pant’s own Likes is significantly higher than those recommended for her part-

ner (µ = 3.93, σ = 1.00,N = 515; µ = 3.76, σ = 1.17,N = 451; t(887) = 2.37, p =

0.02; d = 0.2). This indicates that the algorithm does capture users’ preferences

to some extent.

Second, while we designed the study so that participants do not have an

incentive to tell their partners about their shares (compensation was for com-

pleting the study, not for agreeing on movie ratings with their partners), noth-

ing prevents participant B from disclosing her shares to A before A logs on to

the study again (especially if they are close to each other). To check whether

our study results may have been impacted by such information exchange, we

compared the average ratings for received movies (i.e., those that were shared

by their partner) between participants who completed the experiment first and

those that completed the experiment after their partner. A t-test revealed no

significant difference (µA = 3.87, µB = 3.89), which makes us believe that such

disclosure between A and B was not prevalent.

5.3 Sender’s preferences and the sharing decision process

We start with RQ1, examining the extent to which people share items they

like themselves versus those they perceive to be relevant for the recipient. We

use both people’s sharing data and their open-ended answers to the question:

“How/why do you suggest items to people?”
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Figure 5.4: Probability of different sharer ratings for shared and non-
shared items. Highly rated items are more likely to be shared
than lower-rated items.

5.3.1 Senders’ own preference matters

We first analyze whether senders tend to share movies they like by compar-

ing their ratings for shared and non-shared movies. The overall distribution of

ratings for shared and non-shared movies is shown in Figure 5.4. On average,

shared movies are rated higher: 77% of the shared movies are rated 4 or above.

Using the t-test, Table 5.3 shows that for all three groups of participants,

shared movies are rated significantly higher than those that are not shared. The

effect size is biggest for the Other-Shown group. For this group, we would expect

the overall average rating to be lower because those movies are targeted at the
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Shared Non-Shared

Group N µ σ N µ σ Significance Effect Size

Both-
Shown

140 4.20 0.93 469 3.81 1.07 t(258) = 4.20; p <
10−4

0.4

Own-
Shown

90 4.16 0.87 89 3.56 1.05 t(170) = 4.14; p <
10−4

0.6

Other-
Shown

71 4.18 1.08 107 3.31 1.24 t(164) = 4.92; p <
10−4

0.7

All
users

301 4.18 0.95 665 3.70 1.11 t(671) = 6.98; p <
10−4

0.5

Table 5.3: Comparison of sender ratings for shared and non-shared
movies, along with results of an unpaired t-test and Cohen’s-
d effect size measure. In all three groups, shared movies are
significantly higher rated than non-shared movies.

recipient not the sharer, but the mean rating for shared movies (µ = 4.18) is as

high as for other groups. This suggests that people still only share the movies

they like a lot.

We must caution here that ratings are not strictly normal and independent,

which are assumptions for conducting standard significance tests such as the t-

test. There is a skew towards higher ratings and ratings for the same movie or by

the same user may be interdependent. Thus, we also considered a linear mixed-

effects model to account for sender and item variability as a random effect with

sharing as a fixed effect.

Mixed-effects analysis (or hierarchical regression) [121] accounts for the in-

terdependence in data by identifying the fixed and random effects on the de-

pendent variable (in our case, people’s ratings). We can encode the dependence

between ratings by the same user or for the same item as random effects due

to user and item, and consider our specific experimental manipulation as the
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Group N χ2(1) p-value

Both-Shown 609 6.6 < 0.01
Own-Shown 179 5.4 0.02
Other-Shown 178 13.6 < 0.001

All users 966 23.5 < 0.001

Table 5.4: Significance tests using a linear mixed-effects analysis for com-
paring senders’ ratings of shared and non-shared movies.
Across all groups, shared movies are rated significantly higher.

fixed effect. Being a form of regression, the specific assumptions made are that

the residual errors have expectation zero, are independent, and have equal vari-

ances.

When comparing ratings given by senders for shared and non-shared

movies as in Table 5.3, whether a movie was shared or not can be considered

as a fixed effect on the rating. The sender and the movie are random effects on

the rating, which leads us to the following model:

rating ∼ shared or not + (1|participant) + (1|movie) + ε

where ε denotes the random error. Using this formulation, we compare this

model against a null model which does not incorporate the sharing variable.

rating ∼ (1|participant) + (1|movie) + ε

We analyze the significance of whether a movie was shared or not by compar-

ing the likelihood of the observed data given our model and the null model.

Table 5.4 shows the results, using lme4 in R1, including by-participant and by-

movie random slopes for the effect of sharing. As before, shared movies are

rated significantly higher than non-shared ones in all three groups.

1http://CRAN.R-project.org/package=lme4
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5.3.2 Item characteristics are not informative

One possible explanation for shared movies having higher ratings is that shar-

ers may only share high quality or popular movies. To check this, we collected

average rating and popularity data from the popular movie reviewing web-

site IMDB2. For each movie, IMDB reports an average rating on a scale of 1-10

(IMDB rating) and the number of people who have rated that movie (IMDB pop-

ularity).

We find that there is no significant difference between shared and non-

shared movies for either IMDB rating (µ = 7.64, σ = 1.23; µ = 7.48, σ = 1.20)

or IMDB popularity (µ = 11.2M, σ = 9.68M; µ = 13.1M, σ = 10M). This indicates

that aggregate opinions about items such as average rating or popularity did

not matter much when sharing movies. These results align well with the moti-

vation of individuation, which suggests that people will share items that help

establish a distinct identity for themselves.

5.3.3 Participants’ responses support individuation

These results are supported by participants’ accounts of how they select items

to share. For more than half of the participants, liking the item themselves is the

most important factor in sharing an item with someone.

“Usually when I suggest, it depends on the item, not the target individual,

because I want to share what I enjoyed.” (P8)

2Internet Movie Database www.imdb.com, accessed Feb. 2014.
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Sharing items that one likes may also signal expertise [122].

“I suggest items to people because in my case, I’ve usually seen more movies

than they have and I have a better relative perspective of what is considered

good or bad.” (P61)

It can also be a useful way to have shared experiences and discussions around

items.

“I suggest because I like something and I want to see if other people feel the

same way about an item. When I suggest items to my friends we are able to

talk and laugh about the certain item.” (P91)

All of the above can be connected to individuation, or personal preference, as

the guiding motivation for sharing.

5.3.4 Sharing promiscuity varies widely

While all participants tended to share movies that matched their preferences, we

saw great variability in how much people shared, or their sharing promiscuity.

Among the users who shared movies, the minimum number of movies shared

was 1 and the maximum was 17 (µ = 3.65, σ = 3.05), as shown in Figure 5.3.

For many people, sharing is reserved only for “something I really, really enjoy”

in part because sharing too frequently “tends to water down my stamp of approval.”

(P16)
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Selective sharing is also connected to the common problem of managing

one’s image in social media [123].

“Sometimes I’m paranoid that if I suggest items to someone I don’t know

very well, they will change their perception of me.” (P15)

A likely hypothesis connected to sharing promiscuity is that people tend to

select items for sharing in decreasing preference order. This suggests that shar-

ing more items should lead to lower average ratings by both senders and recip-

ients. This is borne out in the data: there is a negative correlation between the

number of items shared and both average sender (corr = − 0.31) and recipient

(corr = − 0.36) ratings.

5.4 How useful are shares for the recipient?

Analysis of recipients’ ratings for shared items reveals more about the relative

effects of senders’ and recipients’ personal preference (individuation and altru-

ism, RQ1).

5.4.1 Senders rate shared items higher than recipients

A total of 171 shares were rated by both sharers and recipients. Figure 5.5 shows

the difference between their ratings. About half of the shares have a higher

sender rating and a quarter have equal ratings. A paired t-test for these shares

shows that senders’ ratings are significantly higher than recipients’ (µ = 4.19, µ =

3.88; t(170) = 2.90; p = 0.002).
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Figure 5.5: Comparison of sender and recipient ratings for shared movies.
The x-axis represents the difference between the sender and re-
cipient rating; on average, sender ratings are higher than recip-
ient ratings.

Although recipients’ ratings for shared items are lower than senders’, many

participants claimed that they consider the recipient’s preferences before shar-

ing an item.

“I make suggestions to people if I think they might gain enjoyment. Obvi-

ously it really depends on their personality and their likes/dislikes.” (P22)

This disconnect between people’s self-reports and actual sharing behavior is

surprising; we will consider likely explanations for it later in Section 5.6.
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Sender Rating Recipient Rating

Group N µ σ µ σ Significance Effect Size

Both-
Shown

81 4.12 0.95 3.80 1.05 t(80) = 2.19; p =
0.01

0.3

–Own
Algo-
rithm

38 4.14 0.94 3.71 1.27 t(37) = 1.93; p =
0.03

0.4

–Other
Algo-
rithm

43 4.10 0.97 3.88 0.81 t(42) = 1.14; p =
0.13

0.2

Own-
Shown

49 4.40 0.75 3.67 1.34 t(48) = 3.52; p <
0.001

0.7

Other-
Shown

41 4.06 1.09 4.28 0.70 t(40) = 1.10; p =
0.14

0.2

All
users

171 4.19 0.94 3.88 1.09 t(170) = 2.90; p =
0.002

0.3

Table 5.5: Comparison of sender and receiver ratings for shared movies
using a paired t-test. Across all groups, shared movies have a
significantly higher rating from the sender than the recipient
when the sender shares from a list close to her movie prefer-
ences. The difference is not significant when a sender shares
from a list close to the recipient’s movie preferences; still, sender
ratings in this case are high (µ > 4).

5.4.2 Recipients’ ratings depend on the item set shown

When senders saw recommendations from both algorithms (Both-Shown group),

sender rating is significantly higher than the recipient rating for a shared item

(Table 5.5). However, when we break up the shares in the Both-Shown con-

dition by algorithm, a more complex picture emerges. Although participants

shared movies about equally from both sets of recommendations, the differ-

ence in sender and receiver ratings is significant only for the movies selected by

sender’s Own Algorithm.
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We see a similar pattern when we compare the Own-Shown and Other-Shown

groups. As shown in Table 5.5, participants in the Own-Shown group had sig-

nificantly higher ratings than the recipient, but not those in the Other-Shown

group. In fact, recipients’ ratings were higher than senders’ ratings for shares in

the Other-Shown group (but, not significantly higher).

It is not surprising that recipient ratings are higher when shares come from

movies recommended by Other Algorithm because those recommendations are

based on the recipient’s past Likes. Still, senders’ rating for shares is high across

groups and algorithms. These findings, coupled with higher ratings by senders

for shares versus non-shares, lead us to conclude that one’s personal preferences

(and thus individuation) are the dominant criterion when choosing movies to

share.

5.5 Predicting shares

From the last two sections, it seems that senders’ own preferences for movies

matter more than the recipients’ in sharing decisions. To know more about how

senders’ and recipients’ preferences contribute to a sharing decision, we now

examine how well we can predict sharing decisions (RQ2) using information

about senders, recipients, and items. We build a series of models—starting from

simple ones that use a single feature—to predict shares.
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5.5.1 Data and method

We have 279 shares for movies that also have IMDB rating and popularity data.

We use these shares to create 10 balanced datasets by randomly sampling sets

of 279 non-shares. For each model, we perform 10 cross-fold validation in each

dataset and average the results. For ease of interpretability, we use a decision

tree classifier from the WEKA machine learning toolkit [124].3

Computing features. Based on our results earlier, we consider a sharer’s own

preferences and the recipient’s preferences for the item as features for predic-

tion. We also consider the sharer’s sharing promiscuity, which is simply the

number of shares by her in the training dataset. In addition to these features,

we add preference similarity between the sharer and recipient to examine ef-

fects of homophily, along with IMDB rating and IMDB popularity to examine

effects of item characteristics.

The sharer’s and recipient’s rating are not available for every item, so we

estimate their preference for a movie through a method similar to item-based

collaborative filtering [47]. Since Likes on Facebook—which appear on the indi-

vidual’s profile and may be shared automatically to her friends—are typically

reserved for items that people really, really liked [64], we convert ratings in the

study to a unary scale by denoting each rating 4 or above as a Like and combine

those with the people’s Likes before the study. We chose 4 as a useful thresh-

old between admissibility and filtering: a threshold of 4.5 would admit too few

items and a threshold below 4 may not convey a high degree of preference for

the item. For people who did not take part in the experiment but were friends

3We also tried random forests, logistic regression, and support vector machines. Results were
qualitatively similar.
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Features Precision Recall Accuracy

Item-based
Average IMDB Rating 49.5 61.9 50.1
Popularity 51.8 60.6 51.1
Both 51.8 62.1 50.9

Recipient-based
Recipient-Item Similarity 64.0 38.5 58.7
Sender-Recipient Similarity 64.8 41.2 58.7
Both 62.9 54.1 60.5

Sender-based
Sender-Item Similarity 66.3 79.2 68.4
Sharing Promiscuity 69.0 72.1 69.1
Both 72.3 74.9 72.7

Sender+Recipient 78.4 70.8 75.7

Table 5.6: Precision, recall, and accuracy for predicting whether an item is
shared. Bold numbers are per-metric maximums. Item features
such as popularity and average rating do little better than ran-
dom guesses. Recipient-based features improve precision, but
the most predictive features are connected to the sharer.

of one of the participants, we consider only their Likes before the study, giving

a total of 43K users and 785K likes on all movies.

We represent each movie as a set of users who Liked the movie and compute

Jaccard similarity between each pair of movies. To estimate a user’s prefer-

ence for a movie, we compute the average Jaccard similarity between the given

movie and the movies that a user had Liked. We use this similarity score be-

tween a user and a movie as a feature denoting their preference for the movie,

computing both the sender’s and recipient’s preference for each movie.

Finally, we compute the sender-recipient similarity feature as the Jaccard

similarity between sets representing each user’s movie Likes as defined above.
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5.5.2 Prediction performance

Table 5.6 shows each model’s precision, recall, and accuracy, common metrics

for evaluating such models. Accuracy is the overall fraction of correct predic-

tions of whether an item is shared or not. Sometimes it makes sense to focus

only on predicted or actual shares; to do this, we also compute precision and re-

call. Precision is the fraction of correct predictions among all the items predicted

as shares and recall is the fraction of true shares that were correctly predicted.

Item-based features of movies such as quality or popularity have little pre-

dictive power, with accuracy close to the 50% that a random predictor would

achieve on the balanced dataset we created.

Using only recipients’ similarity with a movie gives a precision of 64%, but

the recall is low (38%). This is because sharers tend to share what they like, as we

found in Section 5.3. Thus, while a high recipient rating is a better than random

predictor of a share, it does not cover many other shares that may have lower

recipient ratings (which in turn, leads to low recall). If we use the similarity

between Likes of the sharer and the recipient directly, then we get comparable

precision and recall to a model using recipients’ similarity.

Sender-based features are more useful. A sender’s similarity with a movie

is able to predict whether a movie is shared or not with 66% precision and 79%

recall, higher than recipient-based features. These results are consistent with the

results around individuation described earlier.

Sharing promiscuity of a sender is also important; shares can be predicted

with 69% precision based only on promiscuity. The model, though, is trivial,
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Figure 5.6: Fitted decision tree model based only on sender-based fea-
tures. Sender-item similarity, corresponding to the sender’s
own preference for the item, is the most discriminating feature.

predicting that users above a certain threshold of promiscuity would share all

movies shown to them while those below the threshold will share none.

The model that includes both promiscuity and similarity (the sender-both

line in the table) is more interesting. Precision increases to 72% compared to

either alone; a fitted decision tree is shown in Figure 5.6. Similar movies above

a threshold are shared depending on the sharer’s promiscuity, but not those

below it.

Finally, combining sender-based and recipient-based features leads to a de-

cision tree (Figure 5.7) that achieves an accuracy of 76% and precision of 78%.

Knowledge about preference similarity between the sender and the recipient

helps; however, the decision tree ignores a recipient’s similarity to the item.

Although our experiment design restricted the set of movies that can be

shared and we used a modified, balanced dataset of shares and non-shares,

these results demonstrate the potential of predicting sharing decisions using

people’s preferences.
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Figure 5.7: Fitted decision tree model based on both sender’s and recipi-
ent’s features. Sender-item similarity, sender’s sharing promis-
cuity and similarity between the sender’s and the recipient’s
preferences are the three features used by the model.

5.6 A preference-salience model for sharing

When broadcasting as on Twitter, past research shows that most people post

messages about themselves rather than sharing information [24]. Based on re-

sults in communication around tuning messages for the audience [125] and re-

cent work showing that people think more about usefulness for the recipient

as the audience size decreases [116], we expected people would weigh recipi-
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ents’ preferences more when sharing to an individual. However, all three sig-

nals from our study—people’s sharing data, their self-reports and prediction

results—underscore the importance of their own preferences. For RQ1, the an-

swer is clearly that sharing is more driven by people’s own preferences than

recipients’.

Yet people claimed to customize their shares for the recipient. Looking at

recipients’ ratings for shared items, we find that the items shown to a person

affected their sharing behavior. When restricted to a set of items recommended

for the recipient, people share items that are on average rated comparably by

the recipient than their own rating, but not when they are shown a mix of rec-

ommendations for them and and their partner. This suggests that while sharing

decisions are driven by a sender’s own preference, the salience of items shown

to the sender can influence what items are shared and consequently, how well

those shares are received.

To explain these results, we propose a novel process model based on pref-

erence and salience and provide some evidence for it. One way of explaining

the disconnect between people’s data and descriptions of how they personal-

ize shares for recipients is that people do not really try to balance individuation

and altruism when they share items. Rather, they share based on their prefer-

ence for items and what is salient to them at the moment. Here salience denotes

the particular items and recipient that the sharer is thinking of.

“I try to assess if the individual that I am recommending to would like the

movie that I am suggesting. Otherwise, I do not tell them about the movie,

and may think of someone else who would like the movie.” (P5)
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In addition to their own preferences, people’s selection of a candidate item

for sharing also depends on the context that makes a certain item salient. When

asked “When do you suggest items to others?”, participants responded that

they share just after consuming an item, during conversations when a relevant

topic comes up, or when asked explicitly.

“I usually suggest either after I see the content or if something related comes

up in conversation.” (P82)

Thus, a likely process for sharing can be described as follows. People’s per-

sonal preferences determine shareable items. Among these candidates, some

items become salient based on the context and then are shared or not depend-

ing on whether the sharer thinks they are suitable for the recipient4.

This process can explain how participants shared items that they like, yet

claim to be personalizing for the recipient. Out of the movies shown, partic-

ipants considered the movies that they like for sharing, and then decided to

share or not in part based on their perception of their partner’s preferences. The

increase in recommendation quality for shares when selecting from items tuned

to recipients underscores the saliency aspect: showing items appropriate for the

sharing task led to shares that recipients rated higher.

The preference-salience process is also supported by the structure of the

sharing prediction decision tree in Figure 5.7. The biggest factor in deciding

whether an item is shared is the sender’s personal preference for that item.

Additionally, if sender’s and recipient’s preferences happen to be similar, the

chances of sharing an item are higher since the recipient is expected to like what
4This is somewhat the dual of the FeedMe system’s making possible recipients for an item

salient by recommending them as targets [26].
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the sender shares. In this model, each sender’s sharing promiscuity limits the

number of items that she shares.

5.6.1 Comparison with other candidate models

We believe our preference-salience model presents a reasonable abstraction of

people’s sharing decisions that has more empirical support than two other mod-

els we considered:

• High Quality Model. It is possible that people simply share higher qual-

ity items which are likely to be liked by all. This is supported by the

fact that shares are rated highly by the senders, are comparable to recom-

mended items in matching recipients’ preferences, and are significantly

higher-rated on IMDB than recommendations. However, there is no dif-

ference between overall IMDB ratings for shared and non-shared movies,

which led us to reject this model.

• Misguided Altruism Model. It could also be that people do try to customize

shares to recipients but fail because of imperfect knowledge [125]. This is

supported by participants’ accounts of how they personalize for recipients

and the fact that shared items are not rated as highly by recipients as they

are by sharers. However, across all groups of participants, senders’ own

ratings are significantly higher for shares than for non-shares, which indi-

cates that even if people do try to personalize for the recipient, their own

preferences still play an important role.
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5.6.2 Still, a simplification of a complex process

While we propose the preference-salience model as a likely explanation of our

observations, our binarization of motivations into individuation and altruism

is a simplification that does not account for other motivations (e.g., to dissuade

people from trying an item) or factors (e.g., relationships between people) that

affect sharing behavior.

In particular, the closeness of ties between most of our participants might

have played a role in people’s decisions. Knowing a recipient well increases

people’s chances of knowing his preferences and customizing their suggestions.

“I’ll only recommend a movie to a close friend or relative because I know

them well enough to know what they would like in a movie.” (P54)

Close ties may also allow people to be more open about their preferences.

“With my close friend I feel like I can share anything, but with an acquain-

tance, I will feel less open to sharing my interests.” (P71)

Finally, people don’t just share good items; sharing may also warn others

about bad items.

“if i really liked something i want others to experience it too...if i hated it i

want to help them avoid it.” (P34)
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5.7 Limitations and open questions

It is also important to keep in mind the limitations of our study while interpret-

ing the above results. First, although we broadened our sample by recruiting

from two different participant pools in the U.S., differences in demographics

and culture may affect people’s decisions around sharing.

The design of our experiment may also have affected people’s sharing be-

havior. We allow participants to invite their own partners so they can choose

people with whom they feel comfortable sharing and whose preferences they

would be more likely to know. This led to high tie strength for most of the par-

ticipant pairs; understanding more about sharing between weaker ties would

be an interesting area to study.

We also restricted the set of items in order to get ratings from both members

of a pair. Many real contexts also make subsets of an item domain salient, such

as in recommendation lists and filtered activity feeds, and we expect our results

apply best there. Studying scenarios where items are not made explicitly salient

(e.g., searching for an item and sharing) would tell us more the relative effects

of salience and personal preferences.

Finally, we studied movies as a specific domain. Though a reasonable choice,

sharing decisions in other domains such as news or photos might be different

because of differences in cost of consuming an item or ease of sharing items.

Our results may also less readily apply to knowledge sharing scenarios where

goals may be more strategic and individual preference may be expected to be

less discriminating (such as sharing job information or advice).
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5.8 Summary

Still, our results demonstrate connections between people’s preferences and

their sharing behavior that pave the way for better models of sharing in sharing

networks. Personal preferences of senders appear to dominate, despite the fact

that altruism (and other considerations such as the nature of the relationship

and identity management) are both theoretically and self-reportedly present.

The preference-salience model serves to explain why this may be so. We posit

that people select an item to share based on a combination of their personal pref-

erence for it and what is salient at the moment and show that this information

can help to predict sharing decisions.

Combined with our results on adopting items from Chapter 4, these findings

demonstrate that even though sharing networks are designed around friends

and their activities, people’s personal preferences play the biggest role in mak-

ing decisions about adopting and sharing items. For adoption, we saw that

even when people saw unfamiliar items and had little accompanying informa-

tion about the items, their personal preferences towards items dominated their

decision. For sharing too, even when sharing to a specific recipient—which in-

creases the chances of consideration for the recipient’s preferences as opposed

to broadcast sharing—people’s personal preferences emerge as the dominant

driver of their decisions.

Further, note that in the sharing experiment, recipients did not know which

items were shared to them. Thus, we conclude that even without knowledge of

who shared an item and any possibility of being influenced by it, changes in the

system interface, such as making certain items less or more salient to the sender,
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can influence what gets shared and consequently, the recipient’s response. This

finding reveals the intricate interplay between system interfaces (such as rec-

ommendations and activity feeds), personal preference and social influence in

a sharing network. Algorithms for selecting recommendations and feed items

influence which items an individual shares and adopts. These items are then

shown to her friends with social explanations, which are adopted (or reshared)

based on a combination of personal preferences and social influence (Chapter 4).

These adoptions are further shown to friends of friends and the interplay of the

feed, personal preference and social influence continues.
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Part III

Observational Evidence: Estimating

the extent of influence from activity

feeds
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Both studies on adoption and sharing suggest that personal preferences play

a dominant role in people’s decisions on items. This indicates that a large part

of observed preference locality between friends might just be due to the ho-

mophily selection process—people with similar preferences tend to befriend

each other—and not due to any social influence from their friends’ activities.

It would be useful to see how these results extend to other sharing networks

beyond Facebook and for other item domains. In this part of the thesis, we

use large-scale observational data from a broad range of sharing networks to

attack the question about separating out the effects of homophily and influence.

Such an analysis is made possible through public APIs of sharing networks that

provide data about people’s activities on items as well as their social network

relationships. For each user, we obtain data in the form of triplets, <user, item,

timestamp>, that tell us exactly which items she acted on and when.

We propose a statistical procedure to estimate the extent of influence in peo-

ple’s decisions from such activity data. This procedure utilizes the fact that

many sharing networks employ an activity feed—a list of recent actions by

friends—as a primary interface element that exposes users to their friends’ ac-

tivities. If we can make a realistic model of a user’s feed from the activity data,

we can use it to estimate the extent of influence from such feeds. Based on our

observations so far, a key issue will be to account for preference similarity be-

tween friends, which forms the major endeavor of Chapter 6.

Estimates of influence on data from the sharing networks we studied—

Last.fm, Goodreads, Flickr and Flixster—show that personal preferences of peo-

ple can explain a majority of people’s adoption decisions on items. In fact, the

effect of influence is not just secondary, it is genuinely small: only about 1% of
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people’s actions on items in these sharing networks are attributable to influence.

While these results confirm and extend our experimental findings, they seem

contrary to popular perception and scholarly work around influence which do

find significant effects of social influence in different decisions that people make.

Towards the end of this part, we will discuss how to reconcile the general per-

ception of the power of social influence with the subdued findings from our

analysis on a broad range of online sharing activity.
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CHAPTER 6

PREFERENCE-BASED MATCHED ESTIMATION (PME): A PROCEDURE

FOR ESTIMATING THE EFFECT OF INFLUENCE

Varun is a Facebook user. He views the articles, pictures or videos

that his friends post in Facebook’s aggregated news feed and rou-

tinely Likes them. Would he have Liked the same posts had Face-

book not shown him information about his friends’ endorsements of

the content? How much do his friends’ activities influence what he

Likes?

Answering questions like the above requires distinguishing between influ-

ence and personal preference in sharing networks. In Part II, we described be-

havioral experiments that allow us to study the relative effect of personal pref-

erence in adopting or sharing items. While experiments provide a clean, con-

trolled setup to study people’s decision processes, they are often hard to pull off

on online sharing networks. Experiments may be costly or infeasible without

access to the network, and can raise ethical concerns around consent even with

such access.

It is relatively easy to obtain data (for example, through server logs or from

web-based APIs of sharing networks) about people’s actions, which make it en-

ticing to develop methods for distinguishing between influence and personal

preference using observational data alone. However, outside of controlled ex-

periments, identification of influence is not straightforward. Naive measures,

such as simply counting the number of common actions between friends within

a given time period likely overestimate influence, as any observed data is si-

multaneously affected by both influence and personal preference (Chapter 2).
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Due to the homophily selection process, people select friends similar to them,

and thus when a person copies her friend’s action, it is hard to tell whether it is

because of underlying similarity in personal preferences or social influence.

Further, even when people are not similar to each other, they may be ex-

posed to the same item through media outside of the sharing network, through

a process called external exposure [66]. For example, two friends may like the

same item after watching an advertisement for it. While some external expo-

sure (such as mass media) does not depend on social ties, other kinds of expo-

sure (such as co-location or shared contexts) are likely to be correlated among

friends more than among strangers, in part due to the homophilous nature of

social ties. Thus, there might be a similarity in two friends’ adoptions even

when the main influence for both was an external event. In general, without

making broad, parametric assumptions about the influence process or observ-

ing all the homophilous attributes (covariates) of people that lead to similarity

in actions, a simple analysis of the causal graphical model encoding influence

and homophily [126] shows that it is impossible to distinguish influence from

homophily and external exposure [89].

One way to get around this problem is to identify and formulate specific

mechanisms for influence, based on the context in which decisions on items are

made. Instead of a general test for influence, pinning influence down to spe-

cific mechanisms can enable methods for estimating influence based on salient

features of each mechanism, such as the nature of the system interface and how

users interact with it.

In this chapter, we look specifically at influence from activity feeds—a list of

recent actions by a user’s friends. We choose exposure from feeds as the influ-
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Figure 6.1: A reverse chronological feed of songs loved by friends of a user
on Last.fm. This interface is shown as a widget on the home
page for each logged-in user, along with a similar widget for
recent songs listened to by friends.

ence mechanism because these feeds are a primary interface element in many

online sharing networks through with people come to know (and are possibly

influenced by) their friends’ actions [41]. For example, on Last.fm, a sharing

network we will study, people leave a trail of their music consumption by lov-

ing or listening to songs. These actions on songs are shared to their friends or

followers through an aggregate feed in which each user sees the actions by her

friends (Figure 6.1).

Given the prevalence of feed interfaces, we propose an influence estima-

tion procedure which follows directly from a model of the mechanism through

which influence from feeds operates in online sharing networks and only re-

quires access to past activity data of users. To do this, we construct a model

of how people are exposed to others’ activities through such feeds and define

a specific process of influence within the context of our model: the copy-process
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of influence, by which people copy or mimic their friends’ actions in the feed.

Using the assumptions in the model, we estimate the extent to which expo-

sure to friends’ activities through an aggregated feed influences a user. Un-

like past work on estimating influence [6, 86, 127], our procedure is broadly

applicable—requiring only social network and past activity data—and provides

both individual-level and network-level estimates. We also present a validation

of our procedure that shows that it provides a better estimate of copy-influence

than simply tracking common activities between friends within a certain time

duration.

6.1 Background: Estimating influence from observational data

There are two major approaches to obtain estimates of influence from obser-

vational data. In the first approach, controlling for influence mechanisms, for

example, by reversing the direction of directed connections [86], provides con-

ditions for estimating the extent of influence. In the second approach, influence

is identified by controlling for homophily, such as by matching up activities of

comparable individuals [6] or by shuffling network edges randomly [128].

6.1.1 Controlling for influence

One way to estimate influence is to compare the observed data with an alterna-

tive world with no influence and attribute the differences to influence. A core

part of such a test is to obtain, or create, data for the alternative world.
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For directed edges, Christakis et al. presented an edge-reversal test, where if

person A has an edge to B but not vice-versa, then comparing B’s influence on

A with that of A on B would give us a measure of influence due to the directed

edge [86]. The intuition behind the test for influence is that there cannot be

any influence from A to B if B does not consider A as a social connection. This

test was used to examine whether obesity is contagious: if someone’s friend

becomes obese, does it influence her to become obese too? Applying this test

to health data for people at two different time steps revealed that influence is

significantly higher in the direction of the directed edge than the opposite direc-

tion.

However, there are methodological and data quality issues with the method

[129]. For example, since participants self reported only up to 3 social connec-

tions, it is likely that many actual friends were not reported in the data. Fur-

ther, continuing with the example above, the efficacy of the test depends on the

assumption that B has little chance of being influenced by A. This could be rel-

evant when directed edges control exposure to information such as on Twitter,

where people do not see their followers’ updates. For networks with undirected

edges, this method is not useful.

Randomized statistical tests overcome some of the shortcomings of Chris-

takis et al. in creating alternative worlds with zero influence. Randomization,

for instance, can remove the causality aspect of influence, as with Anagnos-

topoulos et al.’s shuffling of all actions by users randomly in time [87]. In the

absence of influence, the expected probability of a user acting upon an item

given some number of their friends have already done so—called k-exposure in
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other studies [36, 66]—should be the same in the observed data and the time-

shuffled data.

Comparing the rate at which the probability of adoption increases with the

number of friends in the observed and time-shuffled data can be used to detect

the presence of influence. Applying this method to data from Flickr showed no

significant difference in the rate coefficient for the two worlds, suggesting the

increase in probability of adoption with the number of friends who have already

adopted an item may just be due to preference locality. However, the authors do

not rule out influence, giving examples from their dataset which demonstrate

influence effects, and concede that their method is unable to estimate the extent

of such effects.

6.1.2 Controlling for homophily

Randomization may also be used to control for preference similarity and thus

estimate influence. La Fond and Neville [128] use shuffling of social network

edges to estimate influence given activity data at two time intervals. They first

calculate the average correlation in activity between friends. To control for pref-

erence similarity due to homophily, they randomize the edges between peo-

ple and inspect whether friends’ actions are correlated even when people form

edges randomly. To control for preference similarity due to external exposure,

they also subtract out the correlation effect when both edges and preferences

are randomized. Any difference that one finds then, must be due to influence;

this intuition can be formalized as a randomized test for detecting influence.
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Using data on Facebook groups joined by students at a public university at

two different timestamps (a year apart), La Fond and Neville found that the

relative effect of homophily or influence varies with the group: some groups

exhibited a significant influence effect, while others exhibited a significant ho-

mophily effect.

Another way to control for preference similarity would be to directly account

for its indicators. If we are able to observe underlying attributes (such as demo-

graphics, and other features that affect people’s preferences) that could lead to

similarity in preferences, then we can identify influence by controlling for these

observed attributes. Using this intuition, Aral et al. [6] used propensity score

matching on such attributes to create matched pairs of users, such that one of

them had been exposed to an item through at least one of her friends, and the

other had not. Then, the difference in adoption rates within each group should

give the relative impact of influence due to friends. This method was applied

to adoption data for a new web service on Yahoo network. To control for ho-

mophily, Aral et al. listed out 46 attributes based on both personal and network

characteristics and found that a majority of adoptions can be explained without

any influence effects.

A fundamental problem with their method, however, is that it depends

heavily on the choice of underlying similarity attributes, which are often not

available for each user. Even if they are, one needs to be convinced that the

set of attributes are sufficient for explaining the similarity in actions between

people.
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6.2 Using personal preferences to control for homophily

Combining ideas from the above two lines of work, we present a broadly appli-

cable statistical procedure for estimating the extent of copy-influence in sharing

networks. We control for preference similarity while also limiting the time du-

ration of exposure to friends’ actions to model the mechanism of copy-influence

in feeds than k-exposure models [35, 87]. Further, our estimation procedure for

distinguishing between the effects of homophily and the influence of friends’

behavior in online social networks does not require a comprehensive list of indi-

cators of homophily and makes reasonable assumptions about influence mech-

anisms in these systems.

For estimating homophily, we borrow from the recommender systems lit-

erature [45] and use similarity metrics based on past activity. This avoids cost

and methodological issues around using panel data collected at fixed intervals

[88, 127, 128]. Using similarity metrics also allows broader application of the

matching technique from Aral et al. [6] that required additional person-level

and network attributes, because continuous streams of data about people’s ac-

tions on online social networks are often publicly available. Specifically, these

activity data can be used to construct preference models, which allow us to con-

trol for homophily by serving as individual-specific priors for expected actions

of people without the effects of social influence.

As for the influence mechanism, we consider copy-influence from feeds as

the primary mechanism within sharing networks. Admittedly, feeds are not the

only such interface elements: profile pages, collaborative filtering-based recom-

mendations lists, social explanations of presented content, and out-of-system
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interaction may all convey information and perhaps influence from friends.

However, feeds are ubiquitous and commonly studied as conveyors of influence

[41, 65, 77], and we argue that they are the dominant feature through which peo-

ple see behaviors enacted by friends in social networks, and thus the dominant

feature through which influence might be conveyed in these networks.

Below we present a model for how people make actions on items in social

network feeds and then provide an overview of the copy-influence estimation

procedure given the model assumptions.

6.2.1 A simple model for users’ interaction with feeds

Let us start by formally defining what we mean by a feed within a sharing net-

work. As defined in Chapter 2, the term friend refers to a social connection of

an individual in a sharing network. We define the feed to be the aggregated

activity of all of a user u’s friends presented in reverse chronological order. This

is an approximation: feeds can contain advertisements or content from outside

of a person’s chosen friends (e.g., sometimes Facebook presents actions from

friends of friends), while algorithmic filtering can hide or reorder items shown

in the feed. Still, in many networks it is a very good approximation; we consider

how to handle situations where the feed is algorithmically filtered or reordered

in Section 6.5.

As shown in Figure 6.1, users often see a feed interface showing their friends’

activities whenever they use online social networks. We assume that friends’

activities are shown in a reverse chronological order and that users scan the

feed from top to bottom. Thus, when a user adopts an item, she may have
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been recently exposed to some number M of friends’ recent actions in their feed.

In contrast to k-exposure models [35, 87] that assume people attend to all of

their friends’ actions, the parameter M represents a user’s attention budget for

friends’ actions and we argue this more realistically models copy-influence in

social network feeds. That said, M is also an approximation; in practice users

likely have different cutoffs and modeling those would be interesting future

work.

We define copy-actions as actions by a user which are also listed in the last M

items in her feed (e.g., loving one of the songs in Figure 6.1). A baseline measure

of copy-influence could be the fraction of actions by a user that are copy-actions,

as reported in some studies [90, 91]. Note, however, that all copy-actions may

not be due to copy-influence. They could be based on her personal preferences

(and common to the friends’ feed due to homophily), or driven by common ex-

ternal exposure (e.g., seeing an advertisement or being present at a local music

event). Our goal is to estimate which actions are due to copy-influence: copy-

actions that can’t be attributed to personal preferences or external influences,

and thus are more likely to represent situations in which a friend’s activity in-

fluenced the user’s.

6.2.2 Basis for estimation of copy-influence

As we argued above, even without any copy-influence, it is possible for friends’

actions to be more correlated than non-friends’ because of homophily selection

processes. Let us now consider a hypothetical feed constructed from users who

are not friends with the user u. When non-friends’ feed actions are correlated
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with a user’s actions, that is most likely due to following their own preferences

or having a common external exposure. Influence between the two is ruled

out because within our model, a user does not see the non-friends’ actions. This

intuition drives our procedure for estimating copy-influence: if we can find non-

friends who are as similar to a user as that user’s friends, we may use them to

control for the effects of homophily. Note that this is similar to how La Fond

and Neville [128] control for homophily. However, instead of choosing the non-

friends randomly, we choose non-friends that are as similar in preferences to a

user as her actual friends, to better control for preference similarity.

Our insight is that in a network with a history of activity, we can directly use

users’ observed activities to represent their preferences and measure similarity

between them. These past actions implicitly capture factors such as demograph-

ics, prior external and social influence, and other hidden factors that determine

people’s preferences on items [130, 131]. In other words, the list of past actions

provides a reasonable proxy for personal preferences and can be used to control

for underlying homophily—any two users with identical action history could

be considered to have the same probability of acting on an item in the future,

minus any social influence. Thus, we estimate the extent of copy-influence by

comparing the number of copy-actions between a user and her friends’ feed

with the number of copy-actions between a user and the synthetic non-friends’

feed—activities from a matched set of non-friends who are as similar to a user

as the friends.

In addition to controlling for homophily, our procedure can also control for

some kinds of external exposure for the same reason as explained above. These

would include mass advertisements or widely popular items where any two
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users with the same personal preference would have an equal probability of

acting on the item, irrespective of the distance between them in the social net-

work. However, for cases where exposure is due to shared context (two friends

attending the same music concert), our estimation procedure will not be able

to control for it. Thus, the proposed estimate is expected to be a tighter over-

estimate on the extent of copy-influence than simply counting the fraction of

common actions between an individual and her friends.

6.3 Estimating copy-influence from feeds

Our proposed copy-influence estimation procedure proceeds in two phases:

Matching and Estimation. We divide the data into two parts at a fixed time T ,

performing the matching phase on data before T and the estimation phase on

the data after T . In the matching phase, for each user u, we generate a set of

non-friends (“similar strangers”) who at time T are as close in preferences to

the user as their friends. In the estimation phase, we compute the percentage of

actions taken after time T by u that are copy-actions of a feed based on friends

(F) and copy-actions of a feed based on the pre-computed similar strangers (S ).

We call the fraction of actions that are common between a user and her friends

Friends-Overlap and the fraction of actions that are common between a user

and similar strangers Strangers-Overlap.
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6.3.1 Preference-based Matched Estimation (PME) procedure

We now formally describe our copy-influence estimation procedure, which we

call Preference-based Matched Estimation (PME).

Matching Phase

For each friend f of a core user u, we find a matching non-friend w at random

such that both of the following conditions are satisfied:

• The similarity between the non-friend w and u is approximately equal to

the similarity between f and u. We compute similarity between two users

by using the Jaccard measure between their activity streams up to time T .

Let A(u)
0,T denote the activity stream of a user u consisting of all her actions

until time T . Then, we compute the similarity between two users u and v

as:

S im(u, v) = J(A(u)
0,T , A

(v)
0,T ) =

|A(u)
0,T

⋂
A(v)

0,T |

|A(u)
0,T

⋃
A(v)

0,T |

• The number of actions by the non-friend |A(w)| is approximately equal to

the number of actions by the friend |A( f )|, up to time T . Assuming that the

rate of activity stays the same before and after T , this condition ensures

the non-friend and friend are expected to have an equal number of actions

that will appear in u’s feed after T .

We compute both these conditions on data prior to time T to ensure that we

do not peek into the future: matched non-friends are dependent only on activity

prior to the copy-influence estimation phase.
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To implement the matching phase, we sample a non-friend randomly (with-

out replacement) and check whether it matches with an unmatched friend until

there are no more unmatched friends left, or no more non-friends to choose. We

allow matches to be approximately equal: εs is the allowed percentage difference

in similarity between matched non-friends and friends. Using a percentage in-

stead of the raw difference helps to normalize for different levels of similarity.

Similarly, the percentage difference in the number of actions between non-friend

and friend should be at most εa.

Estimation Phase

For the data after time T , we compute the percentage of actions taken by u that

copied recent actions by either the set of friends (F) or similar strangers (S ) that

we computed in the matching phase. Because we assume that people have a

finite amount of attention for their feed, we only consider the M most recent

actions by the set before each action of u.

More formally, let A(u)
T,∞ denote u’s activity stream after time T , and Feed(u,W)

M

denote the most recent M actions taken by a set of users W before u acts on a

given item. We define the Overlap between u and the users in W as:

Overlap(u,W)
M =

∑
a∈A(u)

T,∞
1{a ∈ Feed(u,W)

M }

|A(u)
T,∞|

where 1{x} represents the indicator function which is 1 whenever x is true and 0

otherwise.

The difference in Overlap between a user and her friends (FriendsOverlap)

versus the similar strangers (S trangersOverlap) should give us an estimate of the

copy-influence due to the friends’ activity feed, over and above the homophily
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effects captured by similarity in preferences with the non-friends, and over and

above any external influences that affect both friends and non-friends.

CopyIn f luenceu = Overlap(u,F)
M − Overlap(u,S )

M

where F denotes the friends of a user and S denotes the non-friends, or the

similar strangers.

The mean of this per-user copy-influence estimate over all users gives us an

average estimate of copy-influence in a sharing network.

6.3.2 Interpretation

Note that this estimate ranges between−1 and 1, since the estimate is just the dif-

ference between two fractions for each user. An estimate close to 1 implies that

copy-influence is the dominant force driving people’s actions, while an estimate

close to zero implies that all of Friends-Overlap can be explained by underly-

ing similarity in preferences. In cases where friends have lower overlap with

a user than non-friends, the estimate can also be negative. This indicates that

Friends-Overlap is no better than Strangers-Overlap from similar non-friends

(e.g., when a person tends to adopt items that are popular outside her ego net-

work), and thus we consider copy-influence to be zero in such cases.

6.4 Validation on semi-synthetic data

To check the efficacy of the proposed procedure in identifying copy-influence,

we first run it on simulated worlds based on data from Last.fm, where we fix the
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Feature Listen Love

Number of users with ≥ 10 actions 312461 437299
Number of core users 96029 141346
Mean number of friends per user (with standard error) (75;0.7) (70;0.6)
Number of actions 656M 140M
Mean number of actions per user 2101 320
Number of songs 23M 13M
Mean number of actions per song 28 10.8

Table 6.1: Descriptive statistics for the Last.fm dataset. On average, each
user listened to 2101 songs during the 3 month period and loved
a total of 320 songs during his lifetime.

relative effects of copy-influence, personal preference and external exposure by

generating simulated activity streams of users. We consider six cases for evalu-

ation: three cases where only one of the three processes is active in the sharing

network, and three when there is a mixture of copy-influence and personal pref-

erence active.

Let us first describe how we collected social network and preference data

from Last.fm, a sharing network for music. Using the underlying social network

thus obtained, we present a sanity check for our influence estimation method in

Section 6.4.2.

6.4.1 Describing the Last.fm dataset

Last.fm is a music service that records the songs that its users listen to on the

last.fm website or supported desktop/mobile devices. Users can listen to, love,

or ban songs. It also allows users to add other users as friends; both parties

have to agree, so these links are undirected. Each user sees her friends’ recent

activity (songs listened to and loved) on her last.fm homepage (see Figure 6.1),
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aggregated and presented in two reverse chronologically ordered widgets—one

for friends’ loves and one for listens—in the way our model of copy-influence

assumes.

We used Last.fm’s API to collect listens, loves and network data for users.

Because Last.fm’s API (and many other APIs) only returns the current list of

friends for each user without timestamps for when links were created, we run

the risk of incorrectly considering someone as a friend of a user before the actual

link was made. To reduce this problem, we randomly selected 1000 user ids of

people who joined before 2010, with the thought that these older members of

the system would tend to have more stable friend networks.

Starting with this seed set, we followed a weighted breadth-first search to

obtain other users, adding friends to the search queue weighted by the number

of already-found users they were friends with. This weighting resulted in a

reasonably well-connected component of the last.fm social graph. The crawl

was completed over the months of April-June 2014.

In addition to the social network, we also collected users’ timestamped ac-

tions on items through the end of February 2014. For loves, we collected the

user’s entire history since they joined; for listening, which is much more fre-

quent, we collected songs they had listened to starting in November 2013 to

keep the dataset size reasonable. For both listen and love actions, we filtered

out any users with less than 10 actions. Table 6.1 shows some statistics for the

data we collected. Although listening is a more frequent activity, the number of

users with at least 10 listen actions is fewer than the corresponding number for

the love action (Table 6.1). This is because we collected listening data for only
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3 months, so users who were inactive during the period will not appear in the

listening dataset.

Since we collected a sample of the entire social network, some users do not

have all of their friends in the dataset. We fetched the actual number of friends

for each user from the Last.fm API and labeled users that have at least 75%1 of

their friends in the dataset as core users. We apply the PME procedure to only

such core users, for whom we have a reasonable sample of the their total friends.

6.4.2 Generating semi-synthetic data

The three processes are operationalized as follows:

• Copy-influence: Analogous to a reverse chronological feed, a user selects

an item at random from a set containing the last M items acted upon by

her friends.

• Personal preference: First, we select the k most similar users to the current

user by comparing the Jaccard similarity of their current activity streams.

A user then selects an item at random from the last M items acted upon by

these k most similar users.

• External exposure: We model such exposure by assuming that a user se-

lects the next item to act upon randomly from the set of all items, weighted

by their current popularity.

1We chose the threshold percentage 75% as a tradeoff between having a representative sam-
ple for friends and being too restrictive for filtering. We also tried thresholds of 50, 90 and 100
and did not see a significant change in our analysis.
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For our experiments, we selected time T at three equally-spaced timestamps:

2014/01/01, 2013/10/01 and 2013/07/01. We choose values closer to our crawl

date so that the friend set that we use for estimation is closest to the actual

friend set. To generate synthetic data, we start from the state of the Last.fm

loves dataset at time T , after which we replace the songs that users actually

loved with songs generated by either the copy-influence, personal preference

or external exposure process, while maintaining the original social network and

timestamps of actions. For cases where we have a mixture of copy-influence and

personal preference, we fix the relative probability of selecting copy-influence

over personal preference and each user decides which of the processes to use

for his next action based on this probability.

For the results presented, we set M = 10, although we also tried M =

{3, 15, 20} and get the same general results. For the personal preference process,

we choose a low value of k = 10 as these users are more likely to be actually

similar to a user’s personal preference. Both εs and εa were set to 0.1, thus en-

suring that the differences are within 10% of the corresponding similarity and

activity for friends of a user. To get reliable estimates for similarity and copy-

influence before and after time T respectively, we consider only those users who

have at least 10 actions both before and after T . Finally, we generated data 100

times using each process and ran the PME procedure for determining the extent

of copy-influence in each. Results shown are averaged across the 100 runs and

across all three timestamps.
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Process Friends-Overlap Copy-Influence Std. Error

External Exposure (EE) 0.0001 −2.4 ∗ 10−5 8.1 ∗ 10−6

Personal Preference (PP) 0.04 0.001 0.0001
Copy-Influence (CI) 1.00 1.00 0.0004
CI-PP (50%-50%) 0.529 0.501 0.0001
CI-PP (10%-90%) 0.156 0.102 0.0001
CI-PP (1%-99%) 0.055 0.011 0.0002

Table 6.2: Sanity check on the proposed PME procedure using loves on
songs, showing Friends-Overlap, copy-influence estimate and
standard error on the copy-influence estimate for each process.
Each dataset simulates either external exposure, personal pref-
erence, copy-influence or a mixture of personal preference and
influence processes. The test correctly does not ascribe most of
the copy-actions in homophily and external exposure processes
to copy-influence. For mixtures involving copy-influence, the
test retrieves the true probability of copy-influence with a lower
error than Friends-Overlap.

6.4.3 PME procedure recovers simulated copy-influence

Observed Friends-Overlap

Before we report the copy-influence estimates, let us first look at the observed

Friends-Overlap. This would be the naive estimate of copy-influence in case we

do not control for homophily effects. Comparing the value of Friends-Overlap

and the actual copy-influence estimate gives the amount of correlation that the

PME procedure is able to rule out copy-influence for. We would expect rela-

tively high Friends-Overlap for the copy-influence process, and a low Friends-

Overlap in the external exposure process. In addition, due to latent homophily

between friends, we expect Friends-Overlap for the personal preference process

to be greater than that for external exposure.
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Table 6.2 shows the mean Friends-Overlap for all three processes. Friends-

Overlap for copy-influence is 1 because users always selected songs from their

friends’ feed, while Friends-Overlap for external exposure is less than 10−4.

Friends-Overlap for personal preference is higher than that for external expo-

sure, giving evidence that an individual’s preferences are similar to her friends’

preferences. However, this measure does not tell us whether preferences be-

came similar due to homophily or due to copy-influence from exposure to

friends’ actions.

Copy-influence estimate

We now use our PME procedure over the semi-synthetic data to estimate the

effect of copy-influence due to exposure to friends’ actions. As the third col-

umn in Table 6.2 shows, our copy-influence estimate is able to correctly rule out

most of the correlated actions in external exposure and personal preference pro-

cesses, while it still shows a high copy-influence estimate (rounded to 1.00) for

the copy-influence process.

Likewise, the PME procedure is able to provide better estimates of the true

copy-influence than Friends-Overlap in the cases with a mixture of personal

preference and copy-influence. However, for all the cases, the copy-influence

estimate is slightly higher than the true extent of copy-influence that we fixed

while generating the data. Even for the personal preference process, our test is

not able to rule out copy-influence completely and provides a copy-influence

estimate of 0.001. The reason is that our matching may be inexact: in theory, for

the personal preference process, matched non-friends should have an equal cor-
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relation with the user as her friends, but in practice, our measure of preference

similarity may not be able to capture their preferences completely.

Nevertheless, the observed error is much lower than that obtained with

Friends-Overlap, so accounting for preference similarity provides a more ac-

curate estimate of copy-influence.

6.5 Applicability to online sharing networks

We presented a simple estimation procedure for separating copy-influence from

preference behavior in online sharing networks that does not need any addi-

tional person-level attributes, does not depend on the directionality of edges,

and provides both overall and person-level estimates of not just the presence

but the amount of copy-influence. Additionally, the procedure requires only ac-

tivity data and social network data for users, which is easily available through

activity logs (and for many sharing networks, publicly available through web

APIs), thus making it a well-suited procedure to apply to online sharing net-

works.

Before applying the PME procedure to an online sharing network, it is im-

portant to verify whether the specific network is amenable to the assumptions

laid out in our model. We make two major assumptions: use personal prefer-

ences and matching as a proxy for homophily, and consider a reverse chrono-

logical feed.
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Preference and matching as proxy for homophily. We use preference similar-

ity as a proxy for modeling underlying similarity between people. To do this,

one needs to have sufficient data to make reasonable preference models; this

appears to be not a problem for many online social networks in which users

generate large volumes of activity.

We also chose to account for personal preference by matching friends with

non-friends. A natural alternative would be to directly compute a user’s affinity

for an item (e.g., using a recommender algorithm [45]) and use that to control

for a user’s own preference. However, the drawback is that the interpretation of

influence estimates would depend strongly on the quality of the recommender

algorithm as a proxy for personal preference, while such a recommender would

not be able to account for external influences that might be evident in other

users’ activities.

Reverse chronological feed. It is also important to verify that a sharing net-

work does not violate the reverse chronological feed assumption that exposes

users to actions by their friends. For instance, the assumption is less appropriate

for networks with opaque feed ranking algorithms such as Facebook. In such

cases it would be important to capture data about which feed items are actually

shown to a user or use knowledge about the algorithm to approximate the real

feed from the chronological timestamps.

Still, there are many websites for which such assumptions hold. In the next

chapter, we will apply the PME procedure to data from four such websites span-

ning a broad range of online sharing activity: actions on books, movies, songs

and photos.
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CHAPTER 7

HOW MUCH DOES INFLUENCE FROM AN ACTIVITY FEED AFFECT

PEOPLE’S ADOPTION DECISIONS

If you read news headlines about the power of influence through

sharing networks—e.g., “Facebook as tastemaker”, “Does social me-

dia influence your buying habits?”, “How Facebook can influence

your vote this election day”, and “Does Facebook’s news feed con-

trol your world view?”1—you might start to get excited (or worried)

about the influence from your friends on social media. How power-

ful is this influence? Here’s a simple question to ponder: How many

of the recent articles, videos or products that you saw were due to

influence from your friends?

Using our preference-based influence estimation procedure (PME), we now

estimate the extent of copy-influence due to feeds on different sharing networks.

We consider data from four sharing networks: Last.fm for songs, Goodreads for

books, Flickr for photos and Flixster for movies. In Chapter 6, we already saw

that Last.fm is a sharing network where people listen to and love songs. Simi-

larly, Goodreads allows users to rate books, Flixster allow users to rate movies

and Flickr allows users to favorite photos that other users post on the website.

As on Last.fm, on each of these websites, users can act upon items and form

(undirected) connections with other users. Finally, all of these websites satisfy

1Full articles available at the following URLs:
www.nytimes.com/2011/09/23/technology/facebook-makes-a-push-to-be-a-media-hub.html

www.huffingtonpost.ca/parmjit-parmar/social-media-shopping_b_6306234.html

www.pcworld.com/article/2842958/how-facebook-can-influence-your-vote-this-election-day.

html

www.cbsnews.com/news/facebooks-news-feed-limits-your-world-view/
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our model assumptions by having a similar feed mechanism, where a user sees

aggregated activity by her friends in a (loosely) reverse chronological order2.

For these sharing networks, our main research goal is to estimate the extent

by which activity feeds influence people to copy their friends’ actions on items.

Copy-influence estimates from the PME procedure highlight two major obser-

vations.

First, we find that naive estimates of copy-influence do overestimate such

influence, often substantially. The degree of overestimation, however, varies

widely across the different datasets. This variation is likely due to differences

in characteristics such as item domain, ease of consumption of items and feed

design between sharing networks that might affect the prevalence of copy-

influence. In addition, we find a wide variation in copy-influence estimates

for people.

Second, despite these differences, we find a consistently low overall estimate

for the extent of copy-influence: less than 1% of the total user actions in these

sites can be attributed to copy-influence from the feed. Even the more generous

Friends-Overlap estimate, which, by definition, is an upper bound on the actual

copy-influence, indicates that copy-influence accounts for no more than about

3% of total user actions on items.

Overall, these findings show a subdued picture of the role of copy-influence

in these sharing networks. At least for the websites we study, personal prefer-

ences account for a majority of the actions on items on these sharing networks,

2Flixster changed its website after 2010 and moved away from being a sharing network for
movies. This dataset was collected before the change and thus, satisfies our assumptions.
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confirming and extending our experimental findings on the dominant role of

personal preferences in people’s decisions from Part II.

7.1 Copy-influence from the friends’ feed on Last.fm

We first apply the PME procedure to the actual observed activity of users on

Last.fm for both love and listen actions. We used the same parameters as we

did for validation on semi-synthetic data (Section 6.4), setting M = 10 and εs =

εa = 0.1. Since we have listens data only for three months, we set T differently

for listen and love actions. For love actions, we set T = 2013/07/01 as before,

and for listen actions, we set T = 2014/01/01. We discuss the robustness of our

estimates to changes in these parameters at the end of this section.

A user may listen to the same song more than once, raising the question of

how to treat repeated activity. One option would be to only look at the first time

a user heard a song, on the assumption that copy-influence plays a minimal

role in re-experiencing the song versus a user’s own preferences about the song

after listening to it. On the other hand, a user might be influenced to re-listen to

a song they like by seeing it in their feed; in this case, we would want to measure

copy-influence on all actions. For our copy-influence estimates, we consider all

actions taken by users, including re-listens.

7.1.1 Friends-Overlap overestimates copy-influence

Our first major observation is that for both listens and loves, Friends-Overlap

tends to overestimate copy-influence. Table 7.1 shows the mean effect of copy-
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Action on song Friends-Overlap Copy-influence Std. Error

Listen 0.004 0.001 2.5 ∗ 10−5

Love 0.023 0.004 7.8 ∗ 10−5

Table 7.1: A comparison of copy-actions from the friends’ feed (Friends-
Overlap) with the proposed copy-influence estimate on Last.fm.
For both actions, Friends-Overlap overestimates copy-influence.

influence, along with Friends-Overlap, for listening to or loving songs. In par-

ticular, our copy-influence estimate indicates that on average, only 0.4% of the

actions by users can be attributed to influence for loves. Note that the copy-

influence estimate is only about one-fifth of the naive Friends-Overlap.

Friends-Overlap and copy-influence for loves is higher than those for lis-

tens, indicating first, that a higher fraction of love actions are correlated among

friends than for listens, and second, a higher fraction among love actions are

also copied from friends than for listens. A possible reason could be that loves

are rarer, and thus spend a longer time in a user’s feed compared to listens. We

might also expect loves by other users to be considered as stronger endorse-

ments, and thus, have a higher copy-influence effect than listens.

7.1.2 Variation in the effect of copy-influence within users

In addition to estimating network-level effects of copy-influence, in many cases,

it is useful to estimate copy-influence on individual users. One way to interpret

individual estimates is that we are measuring the susceptibility to copy-influence

for an individual [21]. Such an estimate can be used in diffusion models to set

personalized thresholds or transmission probabilities, and in recommendation
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Figure 7.1: Per-user variation of Friends-Overlap (left panel) and copy-
influence (right panel) for loves on songs, among users with
non-zero Friends-Overlap. Even among the users with non-
zero Friends-Overlap, about a third of them have a zero or neg-
ative copy-influence estimate, indicating that their actions are
not influenced by a feed of their friends’ actions.

systems to employ more of friend-based information for more susceptible peo-

ple, as we showed in Section 4.5.2.

We look into how the effect of copy-influence varies on different users for

the love action on songs and find a wide variation in the effect of copy-influence

among users. A striking feature of Friends-Overlap values over users is that a

majority (over 54%) of the values are zero. This implies that more than half of

users on Last.fm are not influenced at all from the feed of their friends’ loves.

The high number of zeros makes visual inspection of the full distribution of

Friends-Overlap and copy-influence difficult. Thus, we show the distribution of

Friends-Overlap and the copy-influence estimate only for users with Friends −

Overlap > 0 in Figure 7.1. Among these users with non-zero Friends-Overlap,

about a third of the users have their copy-influence estimate less than or equal

to zero, which indicates that even with non-zero Friends-Overlap, all of their

actions can be explained by preference similarity alone.
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Figure 7.2: Variation of Friends-Overlap and copy-influence for loves on
songs as we increase M, the length of the feed from friends that
we consider for estimating copy-influence. Blue line shows the
Friends-Overlap which increases with increase in M. On the
other hand, we observe that the copy-influence estimate (in
red) decreases as we increase M.

Overall, the copy-influence estimate is zero or negative for about 70% of core

users. This helps to explain the low overall effect we see for copy-influence, as

well as providing additional empirical evidence of a wide range of susceptibility

among users of a given system [21, 87].

7.1.3 Variation with PME parameters

The parameters we use in the PME procedure are T , M and the two error thresh-

olds, εs and εa. To check whether our results are robust to changes in parameters,

we tried a range of values for each of the parameters. Let us first consider the

two cutoff parameters for the matching phase, εs and εa. Increasing εs allows less

similar people to be matched, since a random individual is more likely to be dis-

similar than similar to an individual. Similarly, people with a higher number of
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actions are rarer, and thus increasing εa allows people with fewer actions than

actual friends to be matched. These observations suggest that increasing εs and

εa should decrease the extent to which we can rule out copy-influence and vice

versa, which we do find on varying these parameters. Nevertheless, the high-

level finding that most actions could be ruled out as not due to copy-influence

stays consistent.

We find an interesting variation on the extent of copy-influence with M, the

number of recent past actions by friends that we consider for copy-influence

estimation. Figure 7.2 show the variation of both Friends-Overlap and the copy-

influence estimate as we increase M. Friends-Overlap increases along with M,

which is not surprising as increasing M allows each action from a user to be

compared to a larger pool of actions from friends. However, our copy-influence

estimate decreases. We are not sure why this happens. It could be that having a

larger time window increases our chances of detecting actions due to common

external exposure, or that a longer non-friend feed more accurately depicts a

person’s preferences.

This change in the copy-influence estimate with M underscores a key as-

sumption of our test: a truncated reverse chronological feed. Future work on

setting M to personalized values for each user might lead to more fine-grained

estimates of susceptibility and copy-influence.

7.2 Estimating copy-influence on other sharing networks

We have focused so far on Last.fm as a running example for explaining and ex-

ploring the PME procedure. We now we apply it to compute copy-influence
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Feature Goodreads Flixster Flickr

Number of users with ≥ 10 actions 252K 50.0K 183K
Number of users with friendship data 252K 48.8K 175K
Average number of friends per user 29 13 74
Number of actions 28M 7.9M 33M
Average number of actions per user 112 157 182
Number of items 1.3M 48.4K 10.9M
Average number of actions per item 21 163 3

Table 7.2: Descriptive statistics for the datasets from Goodreads, Flixster
and Flickr. Flixster data has the lowest number of items and
consequently, more actions per item (163) than Goodreads (21)
and Flickr (3). The average number of actions per user is above
100 for all three datasets.

estimates on other sharing networks and see how our results generalize to dif-

ferent item domains, feed interfaces and system designs.

We use existing datasets from Goodreads [132], Flixster [53] and Flickr [44].

These datasets cover a diverse set of item domains: Goodreads is a sharing net-

work for books, Flixster for movies, and Flickr for photos. As on Last.fm, on

each of these websites, users can act upon items and form (undirected) connec-

tions with other users. In addition, each sharing network has a feed interface

that shows friends’ rating or favoriting activities, aggregated and presented in a

(loosely) reverse chronologically order in the way our model of copy-influence

assumes.

7.2.1 Describing the datasets

We present aggregate statistics for each of the datasets in Table 7.2. The number

of items available and the number of actions per item both vary among the

three datasets. On average, an item is acted on 3 times on Flickr, 21 times on
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Goodreads, and 163 times on Flixster (the same average was 11 loves per song

on Last.fm, which is the most similar activity to rating or favoriting items on

these websites). In comparison, per-user activity is similar: in all datasets, each

user rates or favorites an average of more than 100 items. More details about

each dataset can be found in the papers that introduced them [44, 53, 132].

Unlike unary adopt actions on Last.fm and Flickr, Goodreads and Flixster

allow users to rate items on a scale of 0.5-5. A higher rating by a friend is in-

dicative of a strong preference for the item, although a rating is shown in a

user’s feed irrespective of whether it was high or low and is thus a candidate

for influencing the user. For the results presented next, we consider all ratings

by users of Goodreads and Flixster for our analysis. To better account for prefer-

ence similarity, we also tried a variation where we filtered out any rating below

3 or 4. The results are qualitatively the same.

Further, since we do not know the real number of friends for each user in

these datasets, we consider any user with a non-zero number of friends as a core

user. All friend relations are still without timestamps, so we assume a static

social network and set T so that only 10% of the actions are after time T . For

consistency, we use the same values for all other parameters as for Last.fm.

7.2.2 Vast majority of actions are due to personal preference

We now present the results of applying the PME procedure to these datasets.

Each user is expected to rate or favorite an item only once, so all of these datasets

contain actions on unique items for each user.
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Figure 7.3: Friends-Overlap and copy-influence estimates on different so-
cial networks. While both Friends-Overlap and the ratio of
Friends-Overlap to copy-influence varies, the copy-influence
estimates for all websites fall below 0.01, or less than 1% of the
user actions on items on these social networks.

Figure 7.3 shows the Friends-Overlap and copy-influence estimates for all

four datasets, along with the standard error on the copy-influence estimate.

We find varying estimates for Friends-Overlap on these datasets, from 0.023

on Last.fm to 0.008 on Flickr. Similarly, the amount of Friends-Overlap ex-

plained by preference similarity varies widely; the copy-influence estimate is

15% of Friends-Overlap for Flixster and over 85% of Friends-Overlap for Flickr.

Such differences are plausible, and in fact, expected: except for the fact that they

are all online sharing networks, these websites differ from each other in many

characteristics: their item domains, types of actions, distribution of the actions

on items with respect to users, and system interfaces. We will talk about these

characteristics in the next section.
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However, after controlling for preference similarity, we find that the copy-

influence estimates for all four domains fall into a narrow range between 0.003-

0.007. This is a surprising result, given the differences between these websites.

Interpreting the copy-influence estimate as the average fraction of user actions

due to copy-influence, these results imply that less than 1% of the total user

actions in these sites can be attributed to copy-influence from the feed.

7.2.3 Copy-influence from feeds is overrated (?)

The above results suggest a subdued picture of the role of copy-influence in on-

line sharing networks. Even without controlling for homophily, we find the per-

centage of copy-actions (which is an upper bound on the actual copy-influence)

is low: less than 3% of users’ actions are copy-actions on all four datasets (Fig-

ure 7.3). While we do not rule out the existence of copy-influence, our estimates

indicate that more than 99% of all actions on these websites can be explained

without copy-influence. Finally, when we break up the copy-influence estimate

for each user (as for song loves on Last.fm), we find that a majority of the users

are not influenced by the feed of their friends’ activities at all.

In this sense, our work joins past work in questioning the extent of influence-

based contagion in online social networks. Just as viral retweets in Twitter are

rare and a vast majority of tweets do not even breach the ego network of a

Twitter user [40], influence-based copying is a rare event in comparison to all of

users’ actions on items and affects only some susceptible users of a website. We

conclude that even when exposed to feeds, most of people’s actions are driven

by their current personal preference.
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7.3 Factors that affect the extent of copy-influence

That said, we do observe variations in the degree of over-estimation for copy-

influence between different actions (listen and love on Last.fm) and between

different websites and it will be useful to understand the reasons for these dif-

ferences. Two factors play a prominent role in affecting users’ exposure to their

friends on online sharing networks: characteristics of the item space and the

design of the feed.

7.3.1 Characteristics of the item space

One set of factors that might affect estimates of copy-influence have to do with

properties of the items and domain. For example, photos on Flickr, being

user-generated items, are numerous compared to the relatively mass-consumed

items such as movies, music or books that we studied on other websites. This

leads to the low mean popularity of 3 for a photo that we see in Table 7.2.

Further, photos, like songs, are quick consumption items and thus are more

amenable to mimicry on exposure from friends’ feeds than a book or a movie.

A user may favorite a photo right after viewing it in her feed, or love a song after

listening to it for a few minutes. For domains like books or movies which take

hours to consume, we would expect less of such spontaneous mimicry. Finally,

items like books, movies and songs have a well-defined existence outside of the

sharing networks we study that might lead to more effects from external expo-

sure. Photos, on the other hand, often exist only on Flickr (like Twitter hashtags

in Chapter 2) and thus it may be harder to discover new ones from outside the

sharing network’s system interfaces.
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Item properties Flickr Goodreads Last.fm Flixster

No external existence Yes No No No
Sparse actions/item Yes Yes Yes No
Quick consumption Yes No Yes No

Table 7.3: A summary of item properties for the four datasets that we
studied. Photos on Flickr score well on each of the properties
that promotes copy-influence. On the other hand, Flixster does
not satisfy any of these properties and delivers the lowest copy-
influence estimate among our datasets.

These characteristics of the item space can affect the amount of correlation in

activity between friends, as well as the actual copy-influence flowing between

them. Table 7.3 summarizes these factors for the four websites we studied. We

note that implications from the item characteristics roughly match the copy-

influence estimates. The column for Flixster in the table suggests why movie

ratings on Flixster may have a low copy-influence: the dataset does not qual-

ify for any of the three factors that promote the likelihood of copy-influence.

On the other hand, Flickr, where preference similarity could rule out only a

small fraction of Friends-Overlap, satisfies all these criteria. Finally, Last.fm

and Goodreads lie somewhere in the middle.

7.3.2 Feed Design

These websites also differ in how they show friends’ activities to a user. Since

users are typically exposed to their friends’ activity through the feed, the design

of the feed interface and the algorithms behind ranking of the activities in a feed

likely impact the extent of copy-influence in a network.
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We showed in Figure 6.1 one example of a feed for love actions. However,

Last.fm shows activities of friends in different ways on different webpages. For

example, on the page for an artist, it shows the recent loves or listens by friends

for that artist. On Last.fm, all of these feeds occupy small widgets in the user

interface. Further, the interface is often in the background while people listen to

music and attend to other tasks, rather than the interface itself, likely reducing

the feed’s influence relative to other sites. The interface for Flickr lies on the

other side of the spectrum: most of the available space is devoted to a feed

of others’ photos, and using the interface is a focal activity that concentrates

attention on the photos shown in the feed.

Further, some feeds might make consumption or endorsement actions for

items quicker or easier, which increases the likelihood of capturing influence ef-

fects and may compensate for specific item properties. We already saw how lis-

tening and loving a song have different estimates of copy-influence. In general,

making it easy to convey interest in an item might increase our ability to record

the effect of copy-influence: a user might not read a book or watch a movie

right away, but if the interface lets her put it in a queue, that might support

more rapid consumption of others’ items (and thus, likely increase estimates of

copy-influence when measured on the queuing action).

Finally, this is not an exhaustive account of reasons why copy-influence

might differ between domains and individuals (in particular, network factors

such as tie strength and knowledge of friends also affects people’s copying de-

cisions [5, 7, 74, 133]). We presented these factors to call attention to the need

for nuance in thinking about how copy-influence arises in sharing networks.

The system design and characteristics of the item space impact people’s relative
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exposure and ability to act on items from their friends, thus impacting what

we measure as copy-influence in these sharing networks. Even though the PME

procedure is broadly applicable to sharing networks—requiring only social net-

work edges and preference data—it is important to interpret the resultant influ-

ence estimates with respect to the design and context of the sharing network.

7.4 Limitations and future work

It is also important to keep in mind the assumptions inherent in our copy-

influence estimate. In Chapter 6, we discussed two assumptions that a sharing

network must satisfy for the PME procedure to be applicable: appropriate data

such that preference matching can be used as a proxy for homophily and a re-

verse chronological feed. Here, we consider two additional assumptions of the

procedure that help in computing the estimate; these are not strictly necessary

and may be lifted in future work to better estimate copy-influence. Specifically,

the PME procedure considers a reasonably static network and does not differ-

entiate between different friends of a user.

7.4.1 A reasonably static network and preferences

The datasets we studied didn’t have timestamps for tie formation, so we as-

sumed a static social network. When timestamps for edge formation are avail-

able, we can make a simple modification in the procedure to consider only the

friends of a user up to time T when computing the similarity and considering

the current friends of a user when computing Friends-Overlap.
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Another limitation of our estimation procedure is that by considering all ac-

tions in the Matching phase (before time T ) as proxy for personal preference,

we miss out on the effects of copy-influence in those actions. If copy-influence

is higher early in someone’s life in a sharing network, we might end up un-

derestimating copy-influence, as the effects of any early copy-influence would

merge into an individual’s personal preference. Models that relax the time T as-

sumption and compute both preferences and friend sets across the history of the

dataset are computationally expensive, but possible—and would be interesting

for bringing simulation-based results around contagion and network change to-

ward real datasets [134, 135], as well as understanding how users’ susceptibility

changes as a function of their time in the system and their networks.

7.4.2 All friends being equal

Finally, by comparing all friends of a user in aggregate with their matched non-

friends, we do not consider the individual differences in copy-influence due to

a friend, which is an important factor for influence: people perceive actions by

different friends differently based on their relationship with them, as we saw

in Chapter 4. In our current datasets, we did not have any good principled

ways to estimate tie strength. Future work would include accounting for these

tie-specific variations in influence estimation.
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7.5 Summary

Our results extend past work [6, 87, 127] that suggests that accounting for ho-

mophily is an important factor in estimating influence from feeds, demonstrat-

ing this in a variety of systems and domains and providing a method for doing

so using publicly available data (requiring only activity data and social connec-

tions). We also find that the extent of overestimation varies widely with differ-

ent websites, raising questions around how characteristics of the item domain

and design of the feed impact the extent of copy-influence in sharing networks.

As for the interplay between personal preference and influence, estimates

from the PME procedure show that copy-influence accounts for a just a tiny frac-

tion of total people’s actions on items, across a broad range of sharing networks

and types of actions. Often, what appears to be someone copying a friend’s

action is more likely driven by shared preferences rather than influence. These

results are even stronger than what we found experimentally from Part II, where

influence was found to be a secondary effect to people’s personal preference.

At first, these results may seem contrary to both popular perception and

scholarly work on social influence. The idea of a particular item or opinion start-

ing from a few sources and spreading virally to a large component of a sharing

network is riveting and often highlighted in mainstream media. Further, social

influence on sharing networks has been shown to be potent for diverse activities

including reading articles [15], adopting new products [43], adopting healthy

practices [9], emotional well-being [136] and even voting [7].

Our results do not necessarily contradict such findings nor rule out the ef-

fect of influence. In Chapter 4, for instance, we do find that named friend-based
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social explanations are more persuasive than other explanation strategies and

demonstrate their influence on people’s likelihood ratings.3 But our results do

call out attention to the tiny role of copy-influence in affecting the routine, over-

all activity around items in the sharing networks we study.

Most discussion of influence and diffusion focuses on the unusual: events

where people do adopt their friends’ behaviors and items spread widely. How-

ever, the mundane reality is when we consider people’s entire action history

over items, we find that most of their actions are not affected by copy-influence

at all, rather guided by their own preference. This is supported by recent work

by Flaxman et al. [92], who shows that only about 3-4% of online news con-

sumption is referred through social media, thus giving an upper bound on the

fraction of news articles read due to influence from others in a social network.

This study, like our work, is able to put the effect of social media on news con-

sumption in perspective by comparing it against the total number of news ar-

ticles visited by users and not just focusing on the ones shared within social

networks. Likewise, the vast majority of tweets never breach the sender’s ego

network [40].

We conclude that influence from the feed does exist and may lead to signif-

icant changes for susceptible people and some of their actions, but at least for

the websites we studied, a vast majority of people’s adoptions can be explained

without any social influence effects.

3It could also be that we are missing the aggregation of influence over time: 1% of all actions
seems tiny, but 1 influenced action out of 100 may aggregate to be a significant effect on people’s
decisions.
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Part IV

Discussion and Conclusion
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CHAPTER 8

DISCUSSION

“Measurement is the first step that leads to control and eventually

improvement. If you can’t measure something, you can’t understand

it. If you can’t understand it, you can’t control it. If you can’t control

it, you can’t improve it.” – H. James Harrington [137]

We started out with the goal of understanding the interplay between per-

sonal preferences and social influence in shaping people’s decisions on items in

sharing networks. Influence from exposure to friends’ activities may lead to the

widely-observed locality of preferences in sharing networks, but it could also

be that people largely follow their own preferences and locality emerges due to

similar people becoming friends through the homophily selection process.

To understand how people make decisions on items, we looked at two fun-

damental processes of information exchange in sharing networks: adoption and

sharing. We found that social influence through interface elements such as ex-

planations plays a secondary role in deciding which items to try out. People’s

own preferences toward items have a bigger effect, even when people know

little about items (Chapter 4). Similarly, when sharing, personal preferences of

the sender play a dominant role in deciding what to share (Chapter 5). These

empirical observations provided evidence for a smaller role of influence than

people’s own preferences when it comes to making decisions on items, even

though awareness of others’ activities and information sharing among friends

are key features of any sharing network.
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In Chapter 7, we found that our empirical claim about the small role of in-

fluence generalizes to a broad range of online sharing networks that differ in

their item domains, purpose and system interfaces. Using a novel statistical

procedure to estimate the effect of copy-influence from observational data (in-

troduced in Chapter 6), we saw that on average, influence from the feed ac-

counts for less than 1% of the total actions on items in sharing networks. Even

without controlling for homophily through the PME procedure, data from the

four different sharing networks shows that common actions within reasonable

time-windows between friends—and thus a natural upper bound on the actual

copy-influence—are not more than 3% of the actions an average user makes.

Combined with our experimental findings, these results demonstrate a subdued

effect of copy-influence in adoption decisions on sharing networks. The effect

of copy-influence is not just secondary to personal preference: it is genuinely

small since the vast majority of people’s actions on items can be explained with-

out any influence from the feed.

Overall, our findings run contrary to the general wisdom around online

sharing networks that portrays them as a hotbed of influence. In this regard,

we join recent work in questioning the virality and extent of influence in shar-

ing networks [40, 92]. Influence may be still a powerful force in many scenarios,

but at least for the contexts in online sharing networks that we studied, its effect

pales in comparison to that of people’s own preferences for items.

While the average effect of influence is low, the effect of influence from

friends’ activities varies widely for different users, as we demonstrated with

the variance in people’s susceptibility to social explanation (Chapter 4) and in-

fluence from feeds (Chapter 7), and their promiscuity for sharing items (Chap-

159



ter 5). This underscores the importance of modeling individual-level variations

in people’s decision-making.

Finally, rather than a grand unifying theory of influence, our results point to

the importance of scoping the study of influence to clearly defined mechanisms

and contexts. In this chapter, we first discuss how our preference-based defi-

nition of influence provides a concrete, testable framework for studying influ-

ence. Tractable estimates of influence, in turn, promise to improve both models

of behavior and design for online sharing networks. We will discuss how such

estimates can lead to better models for diffusion in online contexts as well as

better personalization in recommendation systems. Knowledge about the effect

of influence would also be useful for system designers, marketers and change-

makers, and users of a sharing network. We will end our discussion by ar-

guing for the importance of modeling underlying processes that guide people’s

behavior—as we did for influence—rather than simply relying on observational

estimates. To this end, our mixed-methods approach, combining experimental

and data mining methods, can be a promising way forward.

8.1 Towards testable formulations of influence

Since social influence operates in diverse scenarios and contexts, it is hard to pin

it down to general, tractable measures and mechanisms. Theories of influence

provide a general compass to design and formulate measures of influence; how-

ever, what those measures mean vary with studies and their specific contexts.

Our definition of influence—as the deviation from expected behavior based

on following personal preference—provides a concrete framework for opera-
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tionalizing theories of influence [1] in sharing networks. In this framework,

the specific process of influence under study is specified by two components: a

model of people’s personal preference and the mechanism by which influence is

expected to operate. Depending on how one specifies the preference model and

the influence mechanism, our preference-based framework for influence leads

to specific claims that can be verified from available data.

8.1.1 Personal preference model

The personal preference model characterizes expected behavior of an individual

in the absence of any social or external influences. Models of personal prefer-

ence allow for a data-driven estimation of influence, making recent definitions

of influence based on utility theory—influence changes the utility a person ex-

pects from acting on an item [138]—more amenable to empirical methods. They

also allow us to utilize the rich knowledge from advances in recommender sys-

tems, where preference models are widely used [45].

The idea of the preference model is general, but needs to be specialized to

context. For our first experiment on adoption, we showed people unfamiliar

items and thus our preference model simply predicted an exponential distribu-

tion over ratings from 0-10. When past activities of people are available, they

are valuable for building preference models. For instance, for the sharing study,

our preference model was based on the ratings and Likes by participants and

for our observational study, it was based on people’s past adoptions in each

sharing network.
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Such formulations can be easily extended to other settings to set more ac-

curate priors for activity without any influence effects. For example, instead

of assuming that all common URLs between friends are due to influence as in

Bakshy et al. [65], constructing a preference model based on a user’s past tweets

can lead to better estimates of actual influence between Twitter users. Preference

models can also be included in generative models of activity that seek to explain

effects of influence. For example, Crandall et al.’s generative model for edits on

Wikipedia [66] may be augmented by positing that people choose a biased sam-

ple of actions based on their preferences, rather than sampling uniformly from

others’ activities in the absence of influence.

8.1.2 Influence mechanism

In addition to personal preferences, it is important to specify the mechanism by

which we expect influence to operate. Having a clear formulation for the influ-

ence mechanism allows us to encode the implicit assumptions in our methods

for estimation, based on specific system interfaces, and data and expectations

around people’s behavior.

Defining the influence mechanism involves two parts: identifying the key

elements of a system interface and formulating a user behavior model around

it. For instance, in Chapter 4, we identified social explanations for recommen-

dations as the key interface element, and assumed a model where people look

at each recommendation and its explanation sequentially. For developing the

PME procedure in Chapter 6, we identified the activity feed as the key interface
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element and assumed a behavior model where people looked at items from top

to bottom up to a cutoff for the number of items.

Often, these mechanisms are implicit in past studies on influence. For exam-

ple, k-exposure models [36]—counting the number of friends who have already

adopted an item—implicitly assume that people are equally exposed to all ac-

tivities of their friends, which may or may not apply to a given sharing network.

For instance, such a mechanism may not be appropriate for algorithmically fil-

tered feeds as employed by Facebook. In such a case, we may either obtain

the actual items shown to a user through server logs of the feed (as discussed

in Chapter 6), or model the important properties of the feed such as increased

focus for popular items or those from close friends. Making the mechanism ex-

plicit allows one to evaluate whether the resultant influence estimate would be

reasonable in the specific context under study.

More generally, for specifying the influence mechanism, we are interested

in how people are exposed to others’ activities. This can include consideration

for the system interface as well as the background algorithms that decide which

items are shown to users.

8.1.3 Combining preference model and influence mechanism

Combined, specifying a personal preference model and an influence mechanism

operationalizes social influence to a set of data-driven and testable claims. For

our experiment on adoption, we considered any change in rating from the ex-

ponential preference model as evidence for the effect of influence due to so-

cial explanation. With observational data, we were able to derive estimates for
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feed influence by using preference models that control for a user’s tendency to

choose items that align with preferences common to the user and her friends.

These claims can be easily verified in other sharing networks that satisfy our

formulation of the influence process, as we showed for four different sharing

networks in Chapter 7. Further, our framework is general enough to support

scenarios where the mechanisms of influence change—e.g., exposure to a fil-

tered feed on Facebook—or when a different preference model is used—e.g.,

translating past adoptions to latent feature spaces—and allows for a principled

comparison of influence effects in these different contexts.

Rather than aiming for a unified theory of influence, we believe that scop-

ing social influence problems within well-defined contexts will allow us to bet-

ter understand what’s really happening. We studied the effect of influence on

people’s decision-making in a specific context: exposure to friends’ activities

through recommendations or feeds within online sharing networks. We do be-

lieve, however, that our preference-based framework for influence, and asso-

ciated methodological contributions such as the PME procedure, can be viable

tools for identifying social influence effects in diverse contexts.

8.2 Implications for diffusion models

By demonstrating the effect of people’s preferences on adoption and sharing de-

cisions, this thesis joins recent work in questioning assumptions used in general

diffusion models [40, 92]. Much of the scholarly work on diffusion—deriving

from threshold and cascade models—assumes that all adopted items are shared,

items are adopted independent of each other, people are equally susceptible to
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influence, and all friends’ activities are equally shared to a user. Our results

show that these are seldom true in sharing networks.

8.2.1 Separating out adopting and sharing

A major drawback of current diffusion models is that they make no distinction

between adopting and sharing. If an item is adopted by a person, it automat-

ically is assumed to be shared to her neighbors, inspired from how diseases

spread in epidemiology [33] and social scenarios where neighbors can transpar-

ently see an individual’s actions [32]. In some sharing networks, this assump-

tion holds; people’s adoptions are automatically transmitted through activity

feeds, as we saw in Chapter 7. However, a lot of sharing is based on explicit

choices: for example, people decide of their own volition to retweet on Twitter

or share a URL on Facebook.

One way to account for people’s volition would be to assume that people

share only the most liked items. However, in Chapter 5, we found that not all

highly rated items were shared, indicating that there is more to sharing deci-

sions than simply a strong alignment with personal preference. In addition to

the sender’s personal preference, sharing depends on the recipient’s preference

and the sender’s sharing promiscuity, which in turn is informed by concerns

around identity management and consideration for others.

Acknowledging the difference between sharing and adopting can be useful

for modeling diffusion accurately. In such a model, each person makes two sep-

arate decisions on an item: adoption and sharing. This can be realized through

a fruitful combination of threshold and cascade models. Implicitly, these classes
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of diffusion models simulate either of adoption or sharing: threshold models fo-

cus on the process of adoption based on exposure to neighbors’ activities, while

cascade models focus on the process of sharing between a sender and a recip-

ient. Combined, they can become the constituents of an integrated diffusion

model, where a person decides to adopt based on a threshold number of adop-

tions by her friends, and decides to share based on the transmission probabilities

between her and the recipient.

8.2.2 Using preferences to model people’s decisions on items

Combining the two models would lead to added complexity in modeling diffu-

sion. Fortunately, the concept of personal preference provides tractable ways of

instantiating the integrated model, while also allowing us to reason about the

diffusion of multiple items simultaneously through a sharing network. As we

argued in Chapter 1, people do not make decisions on items in a vacuum; these

decisions are guided by their personal preference. Thus, instead of indepen-

dently focusing on the spread of one item at a time as current diffusion models

do, using people’s preferences can lead to better models of people’s decisions.

For adoption, this implies relaxing thresholds for an individual based on

how close an item is to her personal preference. To account for differences in

friends’ influence over an individual (such as the effect of activities from close

friends as we saw in Chapter 4), the threshold may be a weighted sum instead

of a simple count. For sharing, rather than having independent transmission

probabilities for each network edge, we may specify the probability in terms
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of the sender’s preference, recipient’s preference and the item, as we do in our

prediction model (Section 5.5).

8.2.3 Modeling differences in susceptibility and sharing

promiscuity

In addition to their personal preference of items, our results indicate that people

differ in their overall susceptibility to influence and tendency to share (sharing

promiscuity). For instance, we saw a wide variation in people’s susceptibility to

influence from the feed in Chapter 7 and found sharing promiscuity to be an

important predictor of people’s sharing decisions in Chapter 5. Thus, account-

ing for these individual-level variations in people’s decision-making can further

improve our understanding of diffusion. This would mean having a personal-

ized threshold for susceptibility to influence and a cutoff for sharing promiscu-

ity for each individual, as proposed in a recent study on diffusion within blog

networks [139].

8.2.4 Accounting for salience from system interfaces

Finally, our results also show the importance of accounting for the effects of

salience of items, as described in the preference-salience model from Section 5.6.

Unlike the assumption in diffusion models, all friends’ activities do not receive

equal visibility in a sharing network. What gets shared, and consequently how

recipients react to the shared items depends, in part, on which items are made

salient by system interfaces. For example, an individual’s adoptions may be
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automatically broadcast to her friends through the feed interface, or selectively

shown to others as recommendations.

Thus, apart from explicit decisions by people, system elements such as ac-

tivity feeds and recommendation systems also determine the spread of items in

a sharing network. In Chapter 7, we studied the impact of salience from unfil-

tered, reverse chronological feeds on people’s adoption decisions. When feeds

are algorithmically filtered, as on Facebook, the nature of filtering can further af-

fect people’s decisions, and potentially, their preferences; this has led to growing

concerns about the biases due to filtering algorithms [140, 141]. Going forward,

modeling the effect of different kinds of feed filters and recommendation algo-

rithms on items’ salience—and consequently, their adoption and sharing—are

interesting, open questions and we believe that our preference-based formula-

tion for influence provides a suitable basis for tackling such questions.

8.3 Implications for recommender systems in sharing networks

Our work also suggests that recommender systems should explicitly consider

social influence. Even though social influence is not a dominant factor, it does

contribute to people’s behavior as we saw with the effect of explanations in

Chapter 4. Modeling the effect of such influence can help recommendation

systems utilize social information better and also lead to personalized expla-

nation strategies, based on individuals’ susceptibility to influence. Our work

also points to the value of recommending items to share, not just consume, in

sharing networks.
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8.3.1 Using social information in recommendation algorithms

Prior work on incorporating social information, such as by Ma et al. [55, 142],

considers it as additional signal for improving matrix-based collaborative fil-

tering models for recommendation. Results from this thesis suggest alternative

strategies for making use of social information in recommendation algorithms.

Our first major strategy is that recommendations based on only ego net-

works can be effective, even though they use much less data than typical collab-

orative filtering systems, as we saw in Chapter 2. Such recommendations can

be useful in contexts where computational power is limited or preferences from

only the ego networks are available. For example, when data or computation

is local to a mobile device (such as peer to peer recommenders, or mobile rec-

ommenders that keep data local to support privacy, as in PocketLens [137]), it

may be infeasible or undesirable to compute on a large dataset. Likewise, many

websites such as Flixster, TripAdvisor, and CNET use existing social networks

such as Facebook to support their user accounts. These sites essentially see in-

dividual ego networks drawn from the underlying full Facebook network; our

results show that those views may be valuable for recommendation.1

Coverage for ego-network only recommendations, however, may be a prob-

lem, leading to concerns that people may be restricted to a narrow set of items

liked by their friends [140, 141]. Further, as we saw in Chapter 4, some peo-

ple are not influenced by social explanations at all and may not find value in

recommendations based on their friends’ preferences. Thus, our second major

strategy is to have decoupled, hybrid recommenders [143] that balance the role

1Facebook changed its API policy in April 2015, which makes it harder to obtain all friends’
activities. Still, APIs from many other networks such as Twitter continue to provide ego-centric
slices of a user’s network.
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of friends-based versus collaborative filtering recommendations. This has the

added benefit of allowing personalized weighting of social versus preference-

based signals, instead of matrix-based models that assume the same weights

for every user [55]. Such flexibility in increasing the social component of recom-

mendations will help in accounting for differences in susceptibility to influence

from friends. It will also help in alleviating the cold start problem of having little

preference data [144], as an individual transitions from being a new user to an

experienced user of the system.

8.3.2 Personalizing explanation strategies

In addition to the recommendation algorithm, we could also personalize the ex-

planation strategies shown alongside recommendations, since the effect of influ-

ence from social explanations and activity feeds varies widely between people

(Chapter 4).

The generative model for the effect of social explanations that we presented

in Section 4.5 provides a basis for such personalization. Using such a model,

recommender systems can personalize the kinds of explanations shown to users

(not just the explanation) based on which explanation strategy is the most use-

ful for an individual. Although we considered only social explanations, such

personalization could be extended to non-social explanation strategies as well.

For example, we found that some users (cluster 1, Figure 4.5) do not seem to

be affected by social explanations at all, but it is possible they may find other

explanations (such as tags, genres) useful.
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8.3.3 Recommending for different goals: adoption and sharing

As we saw in Chapters 4 and 5, people’s decision process for trying out items

can be different from actually liking them, which are in turn, different from

the processes for sharing items. In the case of optimizing for discovery ver-

sus consumption, tuning the relative contribution of social and collaborative

recommendations can be useful. For example, if the goal is to expose users

to new items, showing more recommendations from slightly dissimilar friends

and providing persuasive explanations could be a good strategy. If the goal is to

maximize consumption, it would make sense to give preference-based collabo-

rative filtering more importance. Often, we would like a balance, since maxi-

mizing the likelihood of trying out an item might increase overall user activity

and consumption, but also erode trust if the system persuades users to con-

sume items they don’t actually like. In such cases, a two-phase optimization

framework that models likelihood and consumption separately like the one we

proposed in Section 4.6.3 can be useful.

For sharing, we would need to model both senders’ and recipients’ prefer-

ences as we saw that both are important factors for modeling people’s shares in

Section 5.5. Such preference-based models can be valuable for recommending

which items to share, a design goal that is often overlooked in the recommender

systems community (perhaps because of the traditional focus on e-commerce

applications). They may also be used to suggest who to share items to, using

similarity between potential items and recipients (as in FeedMe [26]). In the

case of broadcast sharing, where we have multiple recipients, modeling aggre-

gate preferences of the ego network can help in recommending items that are

expected to be received well by a user’s audience as a whole.
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In addition, we saw that the results of sharing differed based on which items

were shown to a sender as candidates for sharing. Shares were well-received

when a sender was restricted to sharing items based on the recipient’s prefer-

ence than when she saw a mix of items based on both of their preferences (Sec-

tion 5.4). This effect of salience can be used profitably in recommender systems

to feature task-appropriate items: systems could recommend items for self in

consumption contexts and items for others in sharing contexts. That is, when

the goal is sharing, giving more weight to recipients’ preferences will likely lead

to shares that are well-liked. For example, when a user browses her friend’s

profile, systems could recommend items based on the friend’s preferences to

encourage effective sharing.

8.4 Towards better models of activity in sharing networks

More generally, our work points to the importance of modeling underlying pro-

cesses such as influence for understanding people’s decisions on items. Rather

than simply computing observational estimates, such models are likely to con-

vey more accurate and generalizable insights about adoption and sharing ac-

tivity in sharing networks. Below, we discuss why modeling underlying pro-

cesses of decision-making matters, and how our mixed methods methodology

can be useful to make progress on understanding people’s activity in sharing

networks.
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8.4.1 Importance of modeling underlying processes

The popularity of sharing networks allows access to unprecedented scales and

granularity of data about people’s decisions and activities. These data can be

used to make observations about people’s decisions and their aggregate effects,

such as tracking locality of preferences (Chapter 2), spread of items like the song

Friday [41, 77], and identifying well-connected or far-reaching people in a net-

work [39, 145]. However, such analyses gloss over the underlying processes that

lead to the observed data. These processes hold the key to causal questions—

how and why do people make the decisions they do—that are important to mak-

ing sense of activity on sharing networks.

In this thesis, we focused on understanding people’s adoption and sharing

decisions. Observational data from sharing networks showed high locality of

preferences which may be attributed to social influence between friends. How-

ever, when we accounted for the role of preferences in decision-making, we

found that influence accounts for only a small fraction of people’s actions on

items. Thus, developing measures of the effect of influence led to a better under-

standing of people’s decision-making. This can in turn, inform advancement of

theory about influence and other social processes in technology-mediated con-

texts such as sharing networks.

Interpretable estimates of influence are also of practical import for a number

of stakeholders including system designers, marketers and change-makers, and

users of a sharing network. System designers can use our methods to analyze

the effect of influence in their sharing networks and improve user experiences.

They can learn more about how interface elements like social explanations and

activity feeds influence their users’ activity and make informed evaluations of
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changes in those interfaces. This would be based on system goals: for example,

a news website may want to decrease social influence to prevent balkanization

[146], while a fashion discovery website may want to promote more social in-

fluence. Marketers and change-makers would also benefit from having accurate

estimates about the effect of influence in swaying people’s decisions. Instead of

relying on observational data on adoption and sharing activity which may lead

to incorrect conclusions, estimates of influence can help them evaluate the ef-

fectiveness of different strategies and spread their message better. Finally, like

Cialdini2, we hope that the results from this thesis are useful for users of shar-

ing networks too, making them aware of (and perhaps adapt to) the factors that

influence their decisions.

8.4.2 Mixed-methods: a viable methodology for understanding

online activity

To understand the role of influence in people’s decision-making on items, we

used a mix of experimentation and data mining efforts. We used data mining,

specifically recommendation algorithms, to demonstrate locality of preferences

in sharing networks. Since the available activity data from sharing networks

could not tell us more about how preference locality emerges, we turned to ex-

perimental methods to understand people’s motivations and considerations for

adopting and sharing items. To gain external validity for our results, we turned

back to data mining and devised a computational procedure to estimate the ex-

tent of influence in a variety of online sharing networks.

2Robert Cialdini. Author of a widely-read book on social influence [1].
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We argue that mixed-methods approaches are more likely to lead to real in-

sights about people’s behavior in online contexts and make progress on the

general goals of computational social science [147]. As more and more of our

activities shift online, we need to develop new computational methods to pro-

cess the data being generated and make sense of the underlying processes. At

the same time, we need experiments to investigate how that data was gener-

ated (identify the processes) and provide assumptions and guiding theories for

developing the computational methods. Experiments also provide qualitative

data about people’s activities, which reveal people’s rationale and concerns that

might otherwise be missed in data analysis. For instance, people’s comments

about the effect of social explanations in Section 4.3 guided our formulation of

the mixture-based generative model for their rating.

Finally, we hypothesize that tighter integration of these methods—

experimentation and data mining—can be a big win, as with the idea of us-

ing models of sharing behavior and social influence derived from experimental

work to set (or add) parameters of diffusion models. We leave these investiga-

tions for future work.
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CHAPTER 9

CONCLUSION

We presented a mixed-methods analysis of the role of personal preference and

social influence in shaping people’s decisions in sharing networks. Even though

sharing networks are built around showing friends’ activities through system el-

ements such as feeds, social explanations and recommendations, the main result

from both experimental and observational studies is that personal preferences

dominate people’s decisions to adopt or share items; influence only plays a mi-

nor role.

Besides demonstrating our main result in a variety of sharing networks, we

made a number of concrete contributions that will help advance the under-

standing of influence. First, our preference-based formulation of influence pro-

vides a viable framework to scope influence problems to specific contexts and

develop tractable methods for its estimation. Second, our generative model for

adopting items presents a general approach to estimate both network-level and

individual-level effects of personal preference and social influence. Third, we

proposed a decision-tree model based on sender’s and recipient’s preferences

that can be used to model people’s sharing decisions. Finally, we presented the

Preference-based Matched Estimation (PME) procedure for estimating the ex-

tent of influence from feeds in sharing networks, based only on observational

data on people’s activities.

More generally, our journey through understanding the role of influence and

personal preference in sharing networks underscores the importance of mod-

eling the processes behind people’s decision-making and their interplay with

system design and interfaces. Estimates of the effect of underlying processes
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provide a deeper understanding about people’s decisions, as well as make it

possible to evaluate the effect of current system elements—such as feeds, rec-

ommendations and other social algorithms [148]—on people’s decisions and

the goals of both designers and users of sharing networks. To that end, we

hope that the mixed-methods methodology that we demonstrated, combining

experimental and data mining efforts, will be a viable approach for answering

questions about people’s behavior from the noisy, incomplete picture that data

from sharing networks provide.
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of ir techniques. ACM Transactions on Information Systems (TOIS), 20(4):

422–446, 2002.

[80] Chuan He, Cong Wang, Yi-Xin Zhong, and Rui-Fan Li. A survey on learn-

ing to rank. In IEEE International Conference on Machine Learning and Cy-

bernetics, volume 3, pages 1734–1739, 2008.

[81] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. Analysis

of recommendation algorithms for e-commerce. In Proc. ACM Electronic

commerce, 2000.

[82] Guy Shani, David Heckerman, and Ronen I. Brafman. An MDP-based

recommender system. Journal of Machine Learning Research, 6, 2005.

[83] Mouzhi Ge, Carla Delgado-Battenfeld, and Dietmar Jannach. Beyond ac-

curacy: Evaluating recommender systems by coverage and serendipity.

In Proc. ACM RecSys, 2010.

[84] Bela Bollobas. Random Graphs. Cambridge University Press, 2001.

[85] David Jensen, Jennifer Neville, and Matthew Rattigan. Randomization

tests for relational learning. In International Joint Conference on Artificial

Intelligence, 2003.

[86] Nicholas A Christakis and James H Fowler. The spread of obesity in a

large social network over 32 years. New England journal of medicine, 2007.

187



[87] Aris Anagnostopoulos, Ravi Kumar, and Mohammad Mahdian. Influence

and correlation in social networks. In Proc. KDD, 2008.

[88] Christian Steglich, Tom A. B. Snijders, and Michael Pearson. Dynamic

networks and behavior: Separating selection from influence. Sociological

Methodology, 2010.

[89] Cosma Rohilla Shalizi and Andrew C Thomas. Homophily and conta-

gion are generically confounded in observational social network studies.

Sociological Methods & Research, 40(2):211–239, 2011.

[90] Rumi Ghosh and Kristina Lerman. Predicting influential users in online

social networks. In Proc SNA-KDD: KDD workshop on social network analy-

sis, 2010.

[91] Jie Tang, Sen Wu, and Jimeng Sun. Confluence: Conformity influence in

large social networks. In Proc. KDD, 2013.

[92] Seth Flaxman, Sharad Goel, and Justin M Rao. Ideological segregation

and the effects of social media on news consumption. Available at SSRN

2363701, 2013.

[93] Amit Sharma, Meethu Malu, and Dan Cosley. Popcore: A system for

network-centric recommendations. In Proc. RSWEB Workshop, ACM Rec-

Sys, 2011.

[94] Michael J Pazzani and Daniel Billsus. Content-based recommendation

systems. In The adaptive web, pages 325–341. Springer, 2007.

[95] Jonathan L. Herlocker, Joseph A. Konstan, and John Riedl. Explaining

collaborative filtering recommendations. In Proc. CSCW, pages 241–250,

2000. ISBN 1-58113-222-0.

188



[96] Nava Tintarev and Judith Masthoff. A survey of explanations in recom-

mender systems. In Proc. IEEE International Conference on Data Engineering

Workshop, 2007.

[97] N.A. Christakis and J.H. Fowler. Connected: The surprising power of our

social networks and how they shape our lives. Little, Brown, 2009.

[98] Christopher Lueg. Social filtering and social reality. In In Proceedings of the

5th DELOS Workshop on Filtering and Collaborative Filtering, pages 10–12.

ERCIM Press, 1997.

[99] Nava Tintarev and Judith Masthoff. Designing and evaluating explana-

tions for recommender systems. In Recommender Systems Handbook. 2011.

[100] P. Symeonidis, A. Nanopoulos, and Y. Manolopoulos. Providing justifi-

cations in recommender systems. IEEE Transactions on Systems, Man and

Cybernetics, Part A: Systems and Humans, 38(6), 2008.

[101] Pearl Pu and Li Chen. Trust building with explanation interfaces. In Pro-

ceedings of the 11th international conference on Intelligent user interfaces, IUI

’06, 2006.

[102] Jesse Vig, Shilad Sen, and John Riedl. Tagsplanations: explaining recom-

mendations using tags. In Proc. International conference on Intelligent user

interfaces, 2009.

[103] Aditi Muralidharan, Zoltan Gyongyi, and Ed Chi. Social annotations in

web search. In Proceedings of the SIGCHI Conference on Human Factors in

Computing Systems, CHI ’12, 2012.

[104] Jennifer Fernquist and Ed H Chi. Perception and understanding of social

annotations in web search. In Proc. WWW, pages 403–412, 2013.

189



[105] Chinmay Kulkarni and Ed Chi. All the news that’s fit to read: a study of

social annotations for news reading. In Proc. CHI, 2013.

[106] Eric Gilbert and Karrie Karahalios. Predicting tie strength with social me-

dia. In Proc. CHI, 2009.

[107] Saverio Perugini, Marcos André Gonçalves, and Edward A. Fox. Recom-
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