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The advent of genomic analysis has identified regions of functional significance in several 

mammalian species. However, for horses, relatively little such work was done compared to other 

farm animals. The current archive of genetic variations in the horse is mostly based on the 

Thoroughbred mare upon which the reference sequence (EquCab2.0) was generated.  Thus, more 

investigation of the equine genomic architecture is critical to better understand the equine 

genome.  

Chapter 2 of this dissertation represents an analyses of next generation sequencing data of six 

horses from a diverse genetic background. I have utilized the most advanced techniques to 

identify, and annotate genetic variants including single nucleotide polymorphism, copy number 

variations and structural variations pertaining to these horse breeds. The analysis discovered 

thousands of novel SNPs and INDELs and hundreds of CNVs and SVs in each of the horses. 

These newly identified variants where formatted as online tracks and should provide a 

foundational database for future studies in horse genomics. Chapter three of the thesis discusses 

a genome wide association study aimed at the discovery of QTLs affecting body size variation in 

horses. I used the Illumina Equine SNP50 BeadChip to genotype 48 horses from diverse breeds 

and representing the extremes in body size in horses. Unlike most association studies, I have 

utilized a dominant model to identify these QTLs. The analysis revealed an association in 

chromosome one at the ANKRD1 gene (involved in muscle myocytes and cardiomyocyte growth 



 

and differentiation). In chapter four, I represent the results of a genomic study in which 36 

Egyptian Arabian horses were genotyped using the Illumina Equine SNP70 BeadChip. The study 

was conducted to elucidate the genetic background of the herd, relatedness within the herd and to 

estimate genomic inbreeding values. I was able to re-establish the genetic links between the 

horses and to confirm their Egyptian ancestry among other Arabian horse bloodlines. Genomic 

inbreeding values were highly correlated with the pedigree estimated ones. Altogether, our 

results signify the benefit of using this BeadChip technology to infer relationships within herds 

and ancestry of herds and to estimate inbreeding in herds lacking pedigree recording.   
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CHAPTER 1 

INTRODUCTION 

 

Producing a whole-genome sequence of an organism is a fundamental step towards understanding 

its genetic architecture, identifying the sequence and special pattern of expressed genes, and 

characterizing genomic variations at the base pair level.  It also helps understanding the 

demographic and evolutionary history of various breeds/varieties and to catalog them according to 

their significance. Therefore, the availability of genomic sequence data is essential for the 

characterization and conservation work carried out on both captive and wild horse populations. 

The works documented in the subsequent chapters discuss the evolution of sequencing and 

genotyping technologies and the related statistical techniques used to leverage their capabilities.  

Additionally, the novel genomic techniques and their potential in improving our understanding of 

the horse genome, genes and diversity are discussed.  

DNA sequencing technology began with the development of the Sanger sequencing (Sanger et al. 

1977) in the late 1970s. This sequencing method uses chain termination of dideoxynucleotides 

followed by capillary electrophoresis size separation of fragments and finally detection of 

nucleotide bases using florescence dyes. Gradual development of the Sanger sequencing method 

has improves sequence length up to approximately 1000 bp with per-base accuracies as high as 

99.99% (Wang et al. 2012). Excellent accuracy and long reads quickly established the Sanger 

sequencing method as a standard in the industry. Dominating the DNA sequencing market for 

nearly two decades, it lead to the completion of a number of high quality whole genome sequences 

including that of the humans (Metzker 2010). However, the cost and long run time for the Sanger 

sequencing technology made it prohibitive to utilize for project with limited funding.  

The demand for cheaper and faster sequencing methods resulted in the development of what is 
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now known as Next Generation Sequencing (NGS) technologies in the mid-2000. NGS technology 

can be generally divided into 2nd and 3rd generations sequencing technologies (Glenn 2011).  Most 

2nd generation sequencing platforms, such as the 454/Roche, Solexa/Illumina, and the SOLiD 

platform (Applied Biosystems), follow the cyclic array sequencing approach (Shendure et al. 

2008). In principle, the approach is inspired by the shotgun sequencing which was first 

implemented by the Human Genome Project (Zhang et al. 2011) in order to refine the human 

genome. It basically involves shearing the genomic DNA, ligating adapters unto it, amplifying a 

library of millions of similar DNA fragments through polymerase chain reaction (PCR) and then 

sequencing using an approach unique to each platform.  

On the other, hand 3rd generation sequencing platforms sequence individual DNA molecules 

directly without the need for amplification. It is generally faster in both sample preparation and run 

time required. Additionally, the sequences are typically longer than 2nd generation sequencing, for 

example the PacBio RS system can reach up to tens of kilobases (van Dijk et al. 2014). This made 

it the method of choice for improving current genome assemblies especially in highly repetitive 

areas of the genome. However, high error rates and relatively low throughput are still limiting 

factors for 3rd generation sequencing technologies (van Dijk et al. 2014).  

Compared to Sanger sequencing, NGS technologies are much faster and cheaper and have 

outperformed Sanger technology by a factor of 100-1000 in terms of daily yield (Kircher & Kelso 

2010). Using Sanger technology, the estimated cost of the human genome project which took 

approximately 13 years to complete was about 3 billion dollars (Hayden 2014). On the other hand, 

re-sequencing a human genome using current NGS platforms typically costs less than $10,000 and 

takes about a week. However, NGS technologies come with their own disadvantages, notably short 

read length and higher error rate compared to Sanger sequencing.  
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Illumina technology is one of the most widely used sequencing technologies and currently 

outperforms other NGS in the number and percentage of error-free reads (Glenn 2011).  The 

Illimina Hi-Seq 2000 Genome Analyzer released in 2010 is able to produce > 200 giga basepair 

(Gbp) of 2 × 100 base reads  per run, with a raw accuracy of the bases higher than 99.5% (Zhang 

et al. 2011).  The extremely high throughput produced by this machine translates to a higher depth 

of coverage across the genome, providing more certainty to the genomic variants called using this 

technology. In early 2014, Illumina announced the release of the HiSeq X Ten (a collection of ten 

HiSeq X sequencers) which is capable of producing 1.8 Tera base pairs of sequence per run at a 

cost of only $1000 dollars.  

Illumina paired end reads (reads of both ends of a DNA fragment) are generated by sequencing 

from each end of DNA template, leaving out the middle portion of the template, in a process 

known as bridge amplification. These reads can be very useful for detecting genomic variants and 

chromosomal rearrangements such as deletions, insertion and inversion. However, the same reads 

can be also used to detect copy number (CNVs) as well as single nucleotide polymorphisms 

(SNPs). In principle, there are two ways to analyze these reads. The first one is to generate a de 

novo assembly of the genome followed by variants discovery using specialized software.  De novo 

assembly can be either guided or unguided by the reference genome of the organism and is usually 

computationally demanding, especially when utilizing the relatively short 100 bp paired end reads.  

The second method, guided assembly, maps the reads to the reference and then calls variants.   

The assembly of the current equine reference (EquCab 2) was completed in 2009 by the Broad 

Institute of MIT and Harvard (Wade et al. 2009) after sequencing the DNA of an inbred 

Thoroughbred Mare named Twilight using primarily the Sanger method off sequencing. The 

genome is considered of a high quality since its depth of coverage is 6.8x and > 95% of its 
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assembled sequences were anchored to the equine chromosomes. Also, the N50 contig size of the 

genome is 112-kb and it has a 46-Mb N50 scaffold size. With 53% of horse genome showing 

similarity to a single human chromosome, it is considered closer in structure to the human genome 

than many mammalian genomes including the dog (which has just 29% homology to humans) 

(Wade et al. 2009). Therefore, it is not surprising to know that the horse shares about 90 genetic 

disorders that may serve as models for human disorders (Wade et al. 2009). However, in spite of 

the fact that the horse genome is considered high quality, about 5 % of the sequences were not 

anchored to chromosomes and now make up what is known as chromosome unknown (chrUn) in 

the current, EquCab2.0, assembly. Utilization of the current genome assembly is also hindered by 

a lack of horse specific annotation as most genes are based on computational predictions from 

other species. Realizing the potential for improvement of EquCab2, a team of equine geneticists 

have recently begun work on the third version of the assembly and has so far generated 40X of 

Illumina paired end and mate pair sequence data from Twilight to complement the existing Sanger 

sequencing data used to create EquCab2 (Kalbfleisch T  2015). 

In addition to the lack of gene annotations, the archive of genetic variations in the horse includes 

variants from only a handful of breeds. The current database includes variants that were primarily 

identified by the Horse Genome Project , and re-sequencing studies of the Quarter horse (Doan et 

al. 2012) and the Marwari horse (Jun et al. 2014).  The total number of non-redundant SNPs 

yielded by these studies is approximately 6 million SNPs. Nevertheless, there are approximately 

400 distinct breeds of horses  each with a unique physical characteristics (Hendricks 1995). 

Therefore, to capture the breadth of existing functional variation in the horse, additional horse 

breeds need to be sequenced. The genetic variation that would be discovered in these breeds is a 

valuable addition to the variants currently available and aid investigating the relationships among 
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them in a comparative genomics framework. Additionally, breed specific variants shed more light 

on the genetic uniqueness of each of the breeds and its selection and domestication history.  

In chapter one, we utilized Illumina NGS technology to fully re-sequence six horses from diverse 

breeds using the paired end sequencing approach. After filtering and mapping the reads to 

EquCab2 we used cutting edge variant discovery tools in order to discover genetic variation unique 

to each horse. These newly discovered variants will enrich the current genetic variant archive of 

the horse. They are now available to the horse genomics community and can be loaded easily into 

genome viewing web interfaces such as University of California Santa Cruz (UCSC) genome 

browser.  

Obtaining a complete archive of genetic variants is imperative since variation at the sequence level 

is eventually manifested as phenotypic variation between individuals. Genetic mapping, or 

association, is aimed at the detection and localization of genetic variation underlying phenotypic 

variation. The idea of genetic association studies is not new. In the 1950s, a study suggested the 

association between blood-group antigens and peptic ulceration (Aird et al. 1954). In the 1980s, 

apolipoprotein E locus (APOE) was found associated with variations in the onset and risk of 

Alzheimer's disease (Strittmatter & Roses 1996). In general, most early genetic mapping studies 

used only a handful of genetic markers. Recently however, the developments of SNP genotyping 

arrays for humans as well as the majority of economically important livestock species have 

revolutionized genetic mapping. These arrays provide genotypic information on thousands to 

millions of SNPs across the genome depending on species of interest. Genome wide association 

studies (GWAS) are a form of genetic mapping that involves utilizing these arrays in genotyping 

SNPs of many individuals to find genetic variations associated with the phenotype or phenotypes 

of interest. These studies have detected a number of loci involved in human phenotypes such as 
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height (Li et al. 2010), breast cancer (Easton et al. 2007) and schizophrenia (Lencz et al. 2013). In 

horses, GWAS has also been successful in detecting loci linked to height (Makvandi-Nejad et al. 

2012), Guttural Pouch Tympany (Metzger et al. 2012) and Lavender Foal Syndrome (Brooks et al. 

2010a).  

However, the systematic sharing of ancestry in cases and controls can create allele frequency 

differences between them leading to spurious associations or false positives unrelated to the 

outcome of interest (Hoffman et al. 2014). This systematic sharing of ancestry is commonly called 

population structure. Early methods suggested to help account for the population structure in 

GWAS beginning with genomic control (GC) (Devlin & Roeder 1999) and later principle 

component analysis (PCA) (Price et al. 2006). However, GC correction may over or under correct 

certain SNPs depending on their ancestry. On the other hand, if the population structure is the 

result of several discrete subpopulations, PCA analysis will not be able adjust for it since it uses 

eigenvectors as continuous covariates (Liu et al. 2013). Additionally, these methods do not always 

account for the relatedness (kinship) between individuals. In recent years, many studies have 

suggested using linear mixed model (LMM) to correct for population structure and kinship 

simultaneously (Hoffman 2013). Mixed models equations (MME) were first suggested  by  

Henderson in 1949 (Henderson 1949) but were only formalized in 1963  (Henderson 1963). Since 

then, they have been used successfully up to this day in genetic evaluations to predict the genetic 

merit of animals and in genetic evaluations of dairy cattle, and soon after, beef cattle in the US.  

Predictions from MME are known as Best Linear Unbiased Predictions or BLUP, a term first 

coined by Goldberger (Goldberger 1964). Typically, mixed models account for relatedness by 

fitting the Wright’s numerator relationship matrix (or the A matrix) in the as a random effect in the 

mixed models equations (MME). The relationship matrix can nowadays be estimated from 
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genotypic data and would then be called the genomic relationship matrix or the G matrix.  

When applying mixed models to GWAS, the G matrix can be included in the random part of the 

mixed model GWAS which is then defined as follows: 

 � = �� + �� + � 

Where y is an n × 1 vector of phenotypes, X is an n × q matrix of fixed effects including mean, 

the SNPs being tested, in addition to other confounding variables such as age or gender. β  is a 

q × 1 vector of fixed effects coefficients vector. Z is an incidence matrix that maps the phenotype 

to the corresponding breed or strain. u is the random effect with Var (u) = ��
� K, where K is a � × �  

genomic relationship matrix and e ~ N(0, I ��
�) is the residual effect. The phenotypic variance 

covariance matrix is given by  � = �� 
� �� �� + �� 

��. 

In chapter two, we fitted a G matrix in our GWAS using the software EMMA (Kang et al. 2008). 

EMMA uses a simple method to estimate the G matrix that guarantees positive semidefiniteness in 

GWAS. Additionally, the global restricted maximum likelihood (REML) solutions for variance 

components are attained using a Newton-Raphson search algorithm which is guaranteed to 

converge as long as the kinship is positive semidenfinite (Kang et al. 2008).  

By fitting relationships between individuals as random effects in our GWAS, we were able to 

account for the cryptic relatedness between individuals and account for the population structure 

correctly. Using the same method in an additive model framework, Makvandi-Nejad et al. (2012) 

discovered four loci that account for more than 80% of the variation in horse body size. Using a 

dominant model, we detected a locus in chromosome one that was highly associated with height 

variation in horses. We also successfully accounted for the existing cryptic relatedness between the 

horses used in the study. Our finding was later confirmed using a PCR and Restricted Fragment 

Length Polymorphism (RFLP) test in an independent set of American Minature and Falabela 
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horses.  

Typically, mixed models GWAS presume that the trait follows an infinitesimal genetic 

architecture i.e all SNPs are assumed to contribute equally to the variation in phenotype. However, 

for dichotomous traits such as health disorders, that assumption may not be true as these traits 

could be affected by few major genes as in Lavender Foal Syndrome (Brooks et al. 2010a). 

Modeling the genetic architecture using a noninfinitesimal model so that most SNPs have a small 

effect while others have major effect can therefore increase the GWAS power for such traits 

(Tucker et al. 2014). Bayesian models allow for the flexibility of specifying the genetic 

architecture of the trait so that, depending on prior knowledge of its nature, its genetic architecture 

can be modeled more accurately.  

Akin to mixed models, Bayesian models in animal breeding were developed to be used primarily 

for genetic evaluations. However, many researchers started using them for GWAS due to their 

flexibility in modeling the genetic variance attributed to SNPs. A fundamental difference between 

Bayesian and Mixed models GWAS is that Bayesian models fits all the SNPs as random effects in 

the model simultaneously where as in Mixed models, SNPs are fitted individually and their effects 

are estimated separately from one another. Additionally, in the mixed models framework, each 

SNP is assigned a p-value indicating the magnitude of its association with the phenotype where as 

in Bayesian models GWAS, the SNP effects are calculated as percentage of variance explained 

inferred from posterior distributions.  The general form of the Bayesian statistical model is: 

� = �� + � ��� ��

�

���

+ � 

where y is the vector of phenotypes, X is the fixed effects incidence matrix, � is the fixed effects 

solutions vector, K is the number of SNPs, ���  is the value of the SNP k (k= 0, 1, or 2) pertaining 
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to individual i . �� is the substitution effect of SNP k,  with �� sampled from N(0, σ��
� ) with a 

probability of  (1−π) and ��=0 with probability π, where π is the fraction of SNPs with no effect. 

When π =0.5 half of the SNPs will be drown from a distribution with 0 effects and the other half 

from N (0, σ��
� ). σ��

�  has a scaled inverse chi square distribution with 4 degrees of freedom  (�� =

4) and a scale parameter S�
� =

��
�(����)

(���)∑ ���(����)��
�
���

 where ��  is the allele frequency and  ��
�  is 

the additive genetic variance inferred from the markers. e ~ N(0, I ��
�) is the residual effect. The 

variance explained by the SNP is usually estimated using the Monte-Carlo means or medians of 

the posterior distribution computed by a Gibbs sampling. These Bayesian models or have been 

successful in mapping threshold traits in livestock species such as calving ease in beef cattle 

(Peters et al. 2013) and continuous traits such as body composition in pigs (Fan et al. 2011). 

Another application of the genome-wide SNP genotypes provided by high-throughput arrays is the 

calculation of genomic inbreeding values. Calculating inbreeding and relationships between 

individuals is another advantageous use of these genomic data especially in situations where 

pedigree information is not available or is imprecise. The classical measure of inbreeding as first 

proposed by Wright (1922) was calculated using pedigree information. This measure was meant to 

estimate the proportion of the genome that is identical by descent (IBD) and homozygous.  This 

statistic, termed “F”, was defined as the inbreeding coefficient and is equal to one half the additive 

relationships between parents of an individual. Then the path method was introduced (Wright 

1934) in and improved the calculation of Wright’s inbreeding coefficient. Later, a recursive 

method to calculate relationships and inbreeding coefficient was introduced and greatly 

accelerated the calculation of inbreeding coefficients in large pedigrees (Emik & Terrill 1949).  

The negative impact of mating individuals whose parents are related, i.e inbred animals, has long 

been recognized by biologists (Darwin.C 1868).  Compared with outbred populations, inbred 
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populations have a higher prevalence of recessive genetic disorders (Modell & Darr 2002). 

Therefore, accurate estimates of inbreeding are essential in mating decisions and assessment of 

herd genetic diversity. In the field of animal breeding, algorithms were developed to directly 

control long term inbreeding while maximizing genetic gain in what is known as optimal 

contribution selection (Meuwissen 1997). However, pedigree based inbreeding estimates are only 

as good as the pedigree they were estimated from. The depth and quality of the pedigree can 

largely impact them and imprecise pedigrees can largely compromise their value. Also, because 

they consider only the additive alleles (estimated shared loci) from parent to offspring, they do not 

account for mendelian sampling variation between half sibs. With the development of genotyping 

arrays for most agriculturally important animal and species, genome-wide inbreeding values for an 

individual can now be estimated empirically from levels of genomic homozygosity. Simulation 

results have shown that genomic calculations of inbreeding and relationships are closer to the true 

values than those estimated from pedigrees (Keller et al. 2011). This could be explained by the fact 

that they reflect mendelian sampling which pedigree inbreeding calculations cannot directly 

observe (Hill & Weir 2011). The benefit of such genomic inbreeding values was demonstrated 

previously in the Thoroughbred horse (Binns et al. 2012) and more recently in a variety of other 

breeds (Petersen et al. 2013). Within the Arabian horse population the impacts of popular sires 

could increase inbreeding by reducing the overall pool of mates. Therefore, obtaining accurate 

measures of inbreeding is imperative in order to monitor genomic diversity within breeding 

programs. In chapter three, we use genotypic data on a herd of 36 German Arabian horse herd and 

estimate various measures of inbreeding and also reconstruct genetic relationships between 

individuals in the herd.  
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The tools and techniques discussed above have certainly yielded valuable findings in each of the 

corresponding projects. We demonstrated the utility of those tools in the discovery of novel 

genetic variants, assessing the diversity of horses and enriching the current catalog of the horse 

genetic variation. Our findings can be utilized in improving our understanding of the horse biology 

and provide a starting point for future investigations.  
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ABSTRACT 

Completed in 2009, the reference genome assembly of the domesticated horse (EquCab 2.0) 

produced the majority of publically available annotations of genetic variations in this species.  

Following that effort a few other projects have focused on variant discovery, but only in a 

particular breed or two. In this project we aim to identify and annotate single nucleotide 

polymorphisms (SNPs), insertions and deletions (INDELs), copy number variations (CNVs) and 

structural variations (SVs) in the genomes six horses of diverse genetic background using next 

generation sequencing. We used paired-end Illumina sequencing to interrogate the genomes of an 

Arabian, a Percheron, an American Miniature, Mangalarga Marchador (Brazil), Native Mongolian 

Chakouyi, and a Tennessee Walking Horse to an average sequence coverage of 10x to 24x. 

Employing the GATK haplotype caller as well as the existing dbSNP variants as priors, we utilized 

an iterative approach for variant discovery that resulted in the identification of 8,128,658 SNPs and 

830,370 INDELs. We also discovered an average of 924 CNVs and 5336 SVs regions in each of 

the horses and functionally annotated these features using ENSEMBL gene models. To facilitate 

accessibility to our findings, we formatted all the discovered variants into user friendly tracks, 

currently hosted in public databases. Genome-wide diversity (π) revealed regions involved in 

skeletal development in the Percheron horse including MYO3B, HOXD12, and HOXD1 on ECA 18 

and ANKRD1 (ECA 1). Our SV analysis also detected a putatively functional duplication in ZFAT 

gene (ECA 9) unique to the American Miniature horse and an inverted duplication unique to the 

Percheron horse in HMGA1. Our CNV analysis detected a copy number gain in a gene cluster that 

includes the latherin gene (LATH) that could be the result of an evolutionary selection for heat 

endurance and athleticism in the horse. 
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INTRODUCTION 

Understanding genetic variation is an important theme in modern biology and population genetics. 

Technological advances in genomics in recent years greatly benefitted livestock genomics in that 

they allow examination of genetic variation at an unprecedented scale and resolution. Cataloging 

that variation lays the ground for dissecting the complex genetic architecture of different traits 

which has a much anticipated application in livestock health, welfare, physiology and production 

traits (Womack 2005; Daetwyler et al. 2014). It also improves inference of ancient demographic 

and evolutionary histories and the mechanisms underlying the adaptability of the species (Orlando 

et al. 2013). In addition, cross-species comparison of genetic variation allows a better 

understanding of the mammalian genome through comparative genomic studies (Thomas et al. 

2003).  

Domesticated approximately 5,500 years ago, horses are one of the oldest livestock species to be 

domesticated and were historically used for transportation, trade warfare and as draught animals 

(Schubert et al. 2014). Throughout domestication, horses were selected for a range of physical and 

behaviorally desirable traits resulting in the formation of more than 400 horse breeds (Warmuth et 

al. 2015) . A study comparing ancient to domesticated horses genomes revealed 125 potential 

domestication target genes that have undergone positive selection (Schubert et al. 2014). 

Advantageously, the equid species possess a particularly old and diverse fossil record, aiding not 

only in characterizing their demographic history but also ancient human movement and migration 

(Orlando et al. 2013; Schubert et al. 2014; Warmuth et al. 2015). Nevertheless, compared to other 

livestock species, relatively few studies have focused on the discovery of the standing genetic 

variation within different horse breeds (Doan et al. 2012).  
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Currently, there are only about 5,572,537 SNPs (www.ncbi.nlm.nih.gov/projects/SNP/ [build 144]) 

cataloged in the database for genetic variation (dbSNP) for the horse. The majority of these SNPs 

were discovered in only two studies, one of which was the genome assembly project (Wade et al. 

2009) and the other a genome re-sequencing study limited to a single American Quarter Horse 

(Doan et al. 2012). Therefore, additional investigation of the equine genomic architecture is 

critical for a better understanding of the equine genome per se, and also for expanded comparisons 

of variation across diverse mammalian species. Furthermore, the equine industry itself provides an 

eager opportunity to apply genomic discoveries towards improvements in the health and well-

being of this valuable livestock species.  

Our objective was to enrich the current collection of genetic variants in the horse, and to provide 

some functional prediction for these newly identified variants, including single nucleotide 

polymorphisms (SNPs), copy number variations (CNVs) and structural variations (SV). As a result 

of its remarkably high sequencing throughput, Next Generation Sequencing (NGS) provides access 

to the large collection of the existing genetic variation in the genome. Therefore, we used Illumina 

paired-end NGS technology to sequence the genomes of six horses belonging to six diverse horse 

breeds. Namely, the chosen individuals were two females, an American Miniature and a 

Percheron, as well as four males, an Arabian, a Mangalarga Marchador, a Native Mongolian 

Chakouyi, and a Tennessee Walking Horse. Aside from an extreme contrast in body size, these 

horses were also selected to perform distinct tasks and, hence, each has developed its own unique 

adaptive physiology. After applying rigorous filtration criteria to the read qualities, we detected 

and annotated SNPs, INDELs, CNVs and SVs in the six horses. These genetic variants will be 

useful for many future research projects. They are now publically available in dbSNP, dbVAR as 

well as in the National Animal Genome Research Program (NAGRP) VCF Data Repository. 
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CNVs and SVs are often difficult to access in public databases, therefore we have processed these 

novel variants into user-friendly tracks available for download at 

http://www.animalgenome.org/repository/horse. 

MATERIALS AND METHODS 

DNA Collection and Whole Genome Sequencing  

DNA was extracted from either blood using Puregene whlole-blood extraction kit ( Qiagen INc., 

Valencia, CA, USA) or hair samples using previously published methods (Locke et al. 2002). 

Paired-end sequencing was performed at the Biotechnology Resource Center, Cornell University. 

For the construction of sequencing libraries, genomic DNA was sheared using a Covaris acoustic 

sonicator (Covaris, Woburn MA) and converted to Illumina sequencing libraries by blunt end-repair 

of the sheared DNA fragments, adenylation, ligation with paired-end adaptors,  and enriched by PCR 

according to the manufacturer’s protocol (Illumina, San Diego CA). The size of the sequencing 

library was estimated by capillary electrophoresis using a Fragment Analyzer (AATI, Ames IA) and 

Qubit quantification (Life Technologies, Carlsbad CA). Cluster generation and paired-end 

sequencing on Illumina HiSeq instruments were performed according to the manufacturer’s 

protocols (Illumina, San Diego) at the Biotechnology Resource Center, Cornell University. The 

Percheron (PER), Miniature and Arabian horse (AMH) had a library read length of 100 bp and an 

average insert size of 188 bp, 181 bp and 181 bp respectively. On the other hand, the Brazilian 

Mangalarga Marchador (MM), a Native Mongolian Chakouyi (CH) and a Tennessee walking horse 

(TWH) had a library read length of 140 bp and an average insert size of 248 bp, 168 bp and 207 bp 

respectively. 

 



 

23 

Read Filtering and Alignment 

The raw reads were first inspected using the quality control check program FastQC v10.1 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Then, the reads were quality filtered 

using Trimmomatic (Bolger et al. 2014) which also removed the adapter sequences from the reads. 

The quality filtering utilized a sliding window of 4 bp and required a minimum mean Phred quality 

score of 20 within each window. Windows with an average quality less than 20 were sequentially 

removed from a read. Subsequently, reads with less than 60 bp of sequence remaining were 

removed from analysis along with their corresponding pairs. The genomes were then aligned to 

EquCab2 using BWA (Li & Durbin 2009) in the bwa aln procedure and the aligned .sai files were 

combined into Sequence Alignment (SAM) files using bwa sampe procedure designated for paired 

end sequences. The SAM files were sorted and converted to Binary Alignment (BAM) files using 

PICARD toolkit v1.89 (http://sourceforge.net/projects/picard/) using SortSam.jar, then, the 

duplicate reads in the BAM file were removed using MarkDuplicates.jar in the same toolkit. The 

Genome Analysis Toolkit (GATK) v2.6-5 (DePristo et al. 2011), procedures 

RealignerTargetCreator and IndelRealigner, were used to perform local realignment of the BAM 

file reads around the INDELs in order to correct misalignments due to the presence of INDELs. 

 

Base Quality Score Recalibration and Calling SNPs and small INDELs 

SNPs and small INDELs (<50bp) were detected using the GATK HaplotypeCaller procedure  (Van 

der Auwera et al. 2013). The GATK HaplotypeCaller was designed to be very permissive so that it 

did not miss rare variants. In order to recalibrate base quality scores we used the BaseRecalibrator 

procedure in GATK. Since we do not currently have a gold standard set of variants for the horse 

(required by the procedure), we undertook an iterative approach (described in the GATK best 
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practices (version 2.4-3). The approach simultaneously recalibrated base quality scores and 

eventually resulted in the final set of variants. First, the GATK HaplotypeCaller procedure  (Van 

der Auwera et al. 2013) obtains an initial set of variants subsequently used to recalibrate base quality 

scores and generate recalibrated BAM files for each genome. The recalibrated files were then used 

to call variants in the next iteration. Subsequently, variants called in each iteration were used as a 

bootstrap set in place of gold standard variants to recalibrate the base quality scores in the following 

iterations. The procedure was iterated until the number of variants and the base quality score 

recalibrations stabilized, which in our pipeline occurred following the fifth iteration. After that, we 

used the GATK VariantRecalibrator procedure to recalibrate the variants using polymorphisms 

obtained from the horse genome assembly project as training set 

(www.ncbi.nlm.nih.gov/projects/SNP/). The VariantRecalibrator algorithm is designed to assign 

probabilities and quality scores used to filter out those false positives using a statistical machine 

learning approach. The algorithm learns the best quality score filters based on the data itself and 

allows the user to trade off sensitivity and specificity. It builds a Gaussian mixture model which uses 

variants from the input set that overlap variants in the training set.  Once the model is trained, variants 

in the input set that have desired properties as determined by the Gaussian mixture model were 

filtered using the ApplyRecalibration procedure. After careful examination of the tranches plot 

(resulting from ApplyRecalibration) a tranches filter level of 99 was used (Figure 2.1). This tranches 

level was chosen because it resulted in the highest number of true positive SNPs while minimizing 

false positives. 
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Figure 2.1: Tranches plot generated by GATK VariantRecallibration procedure. The plot shows the 

trade off in (gain in cumulative false positives (FP)) resulting from choosing a certain level of 

cumulative true positive (TPs) variants. Tranche specific true positives and false positives are shown 

in blue and orange respectively. 

 

Identifying Structural Variations and Copy Number Variations 

The structural variations (SVs) and large INDELs were identified using SVDetect (Zeitouni et al. 

2010). The program uses anomalously mapped read pairs to localize rearrangements within the 

genome and classify them into their various types. After filtering out correctly mapped pairs, we 

used a sliding window of size 2μ + 2√2σ to partition the genome, where � is the estimated insert 

size and � is the standard deviation. The length of steps in which the sliding window moved across 

the genome were set to half of the window size. Control-Freec  (Boeva et al. 2012)  was used to 

detect copy number variations (CNVs). The program uses GC-content and mapability profiles to 
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normalize read count and therefore gives a better estimate of copy number profiles in high GC or 

low coverage regions (Boeva et al. 2012). A breakpoint threshold of 0.6 and a coefficient of 

variation of 0.05 were used in the analysis.  

Variant Annotation 

We used SNPEff v4.0  (Cingolani et al. 2012) to annotate the SNPs and short INDELs using the 

latest available ENSEMBL gene annotation database (EquCab2.76). The output of SNPEff is a full 

list of effects per variant. SNPs and Indels located within 5,000 bases (5 kb) upstream or 

downstream genes as well as those within exons, introns, splice sites, and 5’ and 3’ untranslated 

regions (UTRs) were also annotated.  Since SNPEff output can be integrated into GATK VCF file, 

we have produced an annotated version of the GATK VCF file which can be loaded and viewed 

easily in genome browsers. The CNVs and SV breakpoints overlapping ENSEMBL genes were 

detected using Bedtools (v2.23.0).  Ensembl gene IDs were then converted to gene names using 

Biomart.  

We used the Nucleotide Diversity (π) to identify candidate regions targeted by selection using an 

empirically based outlier approach described in (Kolaczkowski et al. 2011). For each of the 

genomes, the nucleotide diversity (π) was calculated for the SNPs in 1 MB non-overlapping 

windows using VCFtools v1.10 (Danecek et al. 2011). Regions in the lower 1% tail of the π 

distribution were considered under positive or balancing selection. Genes in these regions were 

annotated for biological process, using Panther v10.0 (Mi et al. 2013). Circos plots (Krzywinski et 

al. 2009) summarizing the distribution of the genomic variations were then created for each of the 

genomes and a summary circos plot was created to highlight variants in common  between the six 

genomes. To enhance visualization, we removed the small intrachromosomal elements (endpoints 

size <10 bp) and interchromosomal elements (endpoints size <500 bp) due to their abundance in 
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the output which makes it difficult to visualize in the circos plot. 

RT q-PCR analysis of the Latherin CNV 

We used Quantitative PCR to quantify the copy number variation within each exon in the horses 

included in this experiment, the EquCab 2.0 reference genome horse and a control horse. Primers 

were targeted within exons overlapping the copy number variation and were designed in Primer3 

(Untergasser et al. 2012) (Table 2.1). Genomic DNA (25 ng) was amplified in 10 uL reactions 

using the Quanta Biosciences PerfeCta SYBR Green (FastMix) as per the manufacturers 

recommended conditions (Gaithersburg, MD, USA). ASIP exon 2 was amplified as reference 

single-copy gene. Thermocycling  and detection were performed using PCR on the Illumina Eco 

Real-Time PCR System using parameters recommended for the Quanta Mix (58°C annealing). 

Copy numbers were calculated relative to the reference genome horse. We substituted the 

Percheron and American Miniature horses by horses from the same breed, as DNA samples from 

the original two horses was unavailable. 

 

Table 2.1: Real-time quantitative PCR primers. 
 

Gene Forward primer Reverse primer Amplicon size (BP) 

LATH AGGACTCCTTGACGGGAACT AGGGCCAACCAAGATGTTC 112 

BPIFA1 GGAGAAGCACTCACCAGCTC CTCCAGAGTTCCCGTTTCCT 207 

BPIFB4 TGTTGGTGGTGTTCCCTACA TAGTCGCCATTTCGAAGGTC 198 

BPIFA2 CGTTTTTGTCAGGTGTCTTCC CCCAAAGAACCATCCACAGT 157 

 

 



 

28 

RESULTS AND DISCUSSION 

Whole genome sequencing and alignment 

Sequencing was completed using the Illumina HiSeq2500 (Illumina, San Diego, CA) with 

manufacturer recommended reagents and procedures by the Biotechnology Resource Center at 

Cornell University. The number of the paired-end reads before and after filtering and their 

corresponding depth of coverage values are given in Table 2.2. The raw number of reads resulting 

from sequencing the six horses ranged between 324,123,384 reads on the American miniature to 

142,502,233 reads on the Native Mongolian horse. After filtering the reads, between 83,123,251 

reads (Mangalarga Marchadore) and 187,223,705 reads (Percheron) were retained. This 

corresponded to an average depth of coverage of 6.16 x to 13.87 x on the filtered reads.  After 

mapping, the average depth of coverage ranged from 10.03 to 16.7845x (Table 2.2). The 

percentage of reads where both pairs successfully mapped were between 91.57% and 97.20%, 

which indicates a fairly successful mapping procedure comparable to previous studies (Doan et al. 

2012). A diagram summarizing the process of reads filtering, mapping, variant identification and 

the tools used in each step is shown in Figure 2.2. 
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Table 2.2: Yield, filtering and mapping summary of the next generation sequencing data of six 
horses from different breeds. 

  
Arabian Percheron 

American 
Miniature 

Tennessee 
Walking 

Mangalarga 
Marchador 

Native 
Mongolian 
Chakouyi 

Number of paired end reads 

before trimming 
241,480,555 296,460,133 324,123,384 198,749,393 169,680,137 142,502,233 

Read lengths 100/100 100/100 100/100 150/150 150/150 150/150 

Estimated average depth of 

coverage before trimming1 
17.8x 21.96x 24x 14.72x 12.57x 10.56x 

Number of paired end reads 

after trimming 
165,277,009 187,223,705 138,772,441 161,659,278 83,123,251 121,744,242 

Estimated average depth of 

coverage after trimming1 
12.24x 13.87x 10.28x 11.97x 6.16x 9.02x 

Total number of aligned 

reads 
330,554,018 374,447,410 277,544,882 323,318,556 269,464,788 243,488,484 

Percentage  of mapped reads  98% 93% 93% 97% 95% 96% 

Percentage of reads where 

both pairs mapped 
97% 92% 92% 96% 94% 94% 

1. Estimated using the formula C= L*N/G 
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Figure 2.2: An overview of the pipeline used in the reads processing and variant detection. 
Description of the step and the name of the program/software given in parenthesis. 

 

Identification of Variants 

SNPs and INDELs 

In total, 8,562,696 SNPs were detected using the GATK HaplotypeCaller. These were processed 

using the GATK VariantRecalibrator procedure, producing a final set of 8,128,658 SNPs. The 

number of SNPs is about 0.3 % of the size of the genome (about 1 every 300 base pairs) which is 
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very similar to the percentage of SNPs estimated in the human genome (Gibbs et al. 2003). 

Amongst those, 11,537 SNPs (0.14 %) were multi-allelic. The mean transition to transversion ratio 

in these horses is 1.998 (range 1.991 to 2.008) (Table 2.3) which is very similar to other 

mammalian species (Abecasis et al. 2012). The allelic frequency spectrum (Figure 2.3) showed an 

expected decline in the frequency of SNPs as the observed number of the alternative allele 

increased, as observed in other studies (Manske et al. 2012),(Gravel et al. 2011). The mean, 

median and standard deviation of Phred-scaled quality scores for the SNPs were 785.78, 543 and 

732.85, respectively, which signifies a very high call accuracy. Relative to the chromosome size, 

the highest proportion of SNPs was found in chromosome 12 (0.5 %) followed by chromosome 20 

(0.4%) (Figure 2.5).  

Genotype counts of homozygous reference, heterozygous, homozygous alternative, as well as the 

number of missing SNPs for each of the horses is shown in Table 2.3. A close examination of the 

table reveals that the numbers in each category were generally similar in all horses. The highest 

numbers of SNPs calls were homozygous reference calls, comprising 43 to 47 % of the genotypes 

in each horse (Table 2.3). An interesting observation is that the highest proportion of homozygous 

reference genotypes was found in the Arabian horse. This may be explained by the fact that, 

among the breeds included, the Arabian horse has the closest historical relationship to the 

reference genome derived from a mare of the Thoroughbred breed. In fact, the Thoroughbred horse 

population originated by mating three prominent Arabian stallions to native mares in England 

during the 17th century (Bower et al. 2012).  
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Table 2.3: Genotype categories of SNPs and INDELs and counts of CNVs and SVs in the six 
horses. 

 

A comparison of these SNPs with the horse SNP database in dbSNP 

(www.ncbi.nlm.nih.gov/projects/SNP/) and Ensembl (ftp://ftp.ensembl.org/pub/release80/ 

variation/vcf/equus caballus/Equus caballus.vcf.gz) showed that 5,221,242 novel and 2,907,416 

known variants (Figure 2.4). Two of the sequenced horses were genotyped previously using the 

Illumina EquineSNP50 array (Illumina Inc.) enabling a test of the genotype concordance between 

the two methods. The concordance of the genotypes detected using the Equine SNP50 genotyping 

array and those detected by NGS was 96% for the American Miniature and 98% for the Percheron 

horse, illustrating that the SNPs detection is comparable to array-based methods and is reliable for 

the purposes of this study. 

  
Arabian Percheron American   

Miniature 
Tennessee 
Walking 

Mangalarga 
Marchador 

Native 
Mongolian 
Chakouyi 

SNPs       
Homozygous Reference 3861988 3549746 3814288 3530966 3731291 3577545 

Heterozygous 2328125 2491424 2266059 2658622 2387676 2513707 
Homozygous  Alternative 1907689 2054426 1998897 1922879 1954411 1989304 

Missing 30856 33062 49414 16191 55280 48102 

Transitions 4090739 4406054 4179785 4335010 4194652 4321840 

Transversions 2052764 2194222 2084068 2169370 2101846 2170475 

 INDELs       
Homozygous Reference 272640 254728 276892 255475 277540 244701 

Heterozygous 193566 198211 182198 208226 189440 210612 
Homozygous Alternative 356999 370374 357710 359412 337514 360065 

Missing 7165 7057 13570 7257 25876 14992 

CNVs 999 1007 923 976 934 706 

Gains 854 863 776 814 794 613 

Losses 145 145 147 162 141 96 

Structural Variations  3166 4072 10707 4385 8296 1394 

Interchromosomal 178 201 116 708 1495 198 

Intrachromosomal  2988 3871 10591 3677 6801 1196 



 

33 

 

Figure 2.3: The allele frequencies of SNPs from whole-genome sequence data of the six horses 
showing a lower frequency as observations of the alternate allele increased. 
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Figure 2.4: Comparison of SNP data detected in the present study with SNPs currently deposited 
Ensembl and dbSNP databases. The present study was the highest in terms of the number of 
private SNPs. 
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It is well established that INDELs are the second most common form of genomic variations, 

altering a similar total proportion of base pairs as SNPs (Mullaney et al. 2010). We detected 

830,370 small INDEL loci jointly with the SNPs in the GATK HaplotypeCaller procedure. 

Within this set, 10,811 INDELs were multi-allelic. The mean, median and standard deviation of 

Phred-scaled quality scores for the INDELs were 1,025, 785 and 1,076 respectively which 

signifies a higher accuracy, but more dispersion in accuracy, to their SNPs counterparts. The 

INDELs size ranged between 0 and 219, with mean of 1.164 bp and the majority of INDELs 

were < 10 bp. The INDELs were split almost equally between insertions and deletions (48 % and 

52 % respectively), as is observed in the pattern of INDELs in humans (Mills et al. 2006), 

(Bhangale et al. 2005). Unlike SNPs, the most frequent small INDELs calls were the 

homozygous alternative calls which ranged between 40 and 44 % of the total INDELs calls in 

different horses. INDELs are more rare events than SNPs and are thus more likely to be unique 

to a breed of horses than to be shared between breeds (Ajawatanawong & Baldauf 2013). In fact, 

the resolution of the Eukaryotic phylogenetic tree can be improved by incorporating INDELs 

(Bapteste & Philippe 2002). It is noteworthy to indicate that the incidence of homozygous 

alternative (non-reference homozygous) SNPs and INDELs genotypes was highest in the 

Percheron horse. This could be a result of a larger evolutionary distance between the reference 

genome and the Percheron relative to the other breeds. The SNPs and INDELs missingness was 

the highest in the Mangalarga Marchadore (the sample with the lowest coverage) and was 

inversely correlated with the aligned read depth (Tables 2.2 and 2.3). 
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CNVs and SVs 

CNVs and SVs are often complex and may contain DNA sequence belonging to different sites in 

the genome. However, genome-wide datasets produced by NGS technologies are revealing a 

wealth of knowledge about their frequency and structure. The number of CNVs and SVs in 

various horses is given in Table 2.3. Of the identified CNVs, the number of gains was 

consistently higher than the number of losses for all horses. Since many of the gains are shared 

between horses, we hypothesize that the excess of gains is an artifacts of the computational 

assembly of EquCab2.0, compressing regions of repetitive sequences and highly homologous 

gene families. Numerous regions (or genes) in the genome could be actual duplication events, yet 

a failure to assign these sequences to their correct locus, often annotating them as ChrUn by 

default, has rendered them difficult to study.  

Additionally, we also observe a consistent excess of intrachromosomal SVs compared to the 

interchromosomal SVs (Table 2.3). Bias towards intrachromosomal SVs is not uncommon in 

this type of analysis and is often due to intrachromosomal joining bias resulting from the relative 

closer proximity of genomic regions and has been observed studies of the mouse  (Klein et al. 

2011), humans (Lieberman-Aiden et al. 2009) and chicken (Bourque et al. 2005). It is proposed 

that a biological mechanism preferring proximal intrachromosomal rearrangement reduces large-

scale genomic alterations, and therefore maintains genomic stability (Klein et al. 2011).  

Compared to other horses, the American miniature horse possessed the highest number of the 

Intrachromosomal SVs (n= 10591) and the Mangalarga Marchador the largest number of 

Interchromosomal translocations (n=1495).  These results are more than double the average of 

the corresponding values in the other horses and may be an artifact of imperfect library 
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preparation or fragment size selection prior to sequencing. Indeed, filtering of such artifacts is a 

significant challenge for reliable discovery and genotyping of SVs by sequence based methods. 

We formatted our SVs into two separate tracks for inter- and intra- chromosomal translocations 

with different colored assigned to different SV types. Interchromosomal translocations were 

formatted into a click button format such that clicking on the feature link the user to the 

chromosomal address of the other end of the feature. For the intrachromosmal translocations, the 

putative breakpoints of the feature are displayed in a GFF style joined together. The CNVs were 

formatted into a bed format with different colors for gains, losses and normal copy numbers. 

These tracks are available for download at http://www.animalgenome.org/repository/horse and 

can be loaded directly into UCSC genome browser. The resulting CNVs and SVs were annotated 

using the ENSEMBL genes they overlap with and the results can also be downloaded at 

http://www.animalgenome.org/repository/horse.  

Annotation of Detected Variants 

The majority of SNPs were intergenic, followed by intronic, comprising 60 % and 27 % of 

SNPs, respectively (Table2.4) (Zhao et al. 2003). The small proportion of exonic SNPs likely 

results from strong negative selective pressure exerted on coding regions due to functional 

implications of these alterations (Bhangale et al. 2005). Likewise, lower diversity was observed 

for SNPs around 3’ UTR, 5’ UTR  and coding regions compared to other regions which was also 

reported in other studies (Zhao et al. 2003) (Table2.4).  A lower allelic diversity within the 5’ 

UTRs and around coding regions was also observed in the INDEL category of polymorphisms, a 

phenomenon also found in studies of the human genome (Bhangale et al. 2005).  
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Table 2.4: Annotation of SNPs and INDELs by type in the six horses genomes. 

  SNPs   INDELs   

Effects according to region         
Exon  7383 0.08% 618 0.06% 
Intergenic  5760944 60.29% 583364 57.94% 
Intron  2601880 27.23% 289589 28.76% 
3’-UTR   4665 0.05% 707 0.07% 
5’-UTR    1657 0.02% 418 0.04% 
Downstream  286342 3.00% 49622 4.93% 
Start lost  28 0.00% 1 0.00% 
Stop gained  242 0.00% 5 0.00% 
Upstream  413882 4.33% 48894 4.86% 
Unclassified 286342 3.00% 26758 2.66% 
Effects according to functional impact (SNPs only)         
Non synonymous coding  26322 0.28%     
Non synonymous start  4 0.00%     
Splice site acceptor  187 0.00%     
Splice site donor  269 0.00%     
Splice site region  6188 0.07%     
Start gained  255 0.00%     
Stop lost  17 0.00%     
Synonymous coding  33593 0.35%     
Synonymous stop  15 0.00%     
Effects according to functional impact (INDELs only)         
Codon change plus codon deletion  55 0.01%     
Codon change plus codon insertion  37 0.00%     
Codon deletion  83 0.01%     
Codon insertion  80 0.01%     
Frame shift  2863 0.28%     
Frame shift+start lost  5 0.00%     
Frame shift+stop gained  11 0.00%     
Frame shift+stop lost  3 0.00%     
Intragenic  3 0.00%     
Splice site acceptor  669 0.07%     
Splice site donor  645 0.06%     

Splice site region  2396 0.24%     
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In terms of predicted functional impact, the majority of SNPs found in coding sequences (33593, 

0.35%) were likely synonymous. Yet, 26322 (0.28 %) SNPs are predicted to result in a non-

synonymous amino acid change. This proximity in percentage of Synonymous and non-

synonymous SNPs was previously reported in the quarter horse (Doan et al. 2012). On the other 

hand, 2863 (0.28%) INDELs caused frame-shifts, which is number very similar to that obtained 

in a previous study in the Quarter horse genome (Jun et al. 2014),(Doan et al. 2012). 

Copy number variation and structural variations are given relatively less attention than SNPs in 

studies of diversity. Nevertheless, they are ubiquitous in the horse genome and influence a 

number of phenotypes (Gizaw et al. 2013; Wang et al. 2014). We found that chromosomes 12 

and 20 had the highest density of CNVs. Functional annotation of these regions revealed genes 

involved in olfactory reception and immunity which are also enriched in genes overlapping 

human CNVs  (Nguyen et al. 2006). This observation was previously reported in a CNV an 

analysis of six horse breeds  (Wang et al. 2014). Additionally, our CNV annotation showed a 

copy number gain in a gene cluster that includes latherin gene in all the horses in this study. This 

copy number gain was previously reported in the quarter horse using NGS data (Doan et al. 

2012), although using array CGH a copy number loss was observed in the same region (Wang et 

al. 2014).  LATH (also known as BPIFA4) is a member of the palate lung and nasal epithelium 

clone (PLUNC) family of proteins that is common in the oral cavity and saliva of mammals 

(Bingle et al. 2011; Vance et al. 2013). In horses and other equids this gene produces a surfactant 

protein that is expressed in the saliva and sweat (McDonald et al. 2009). Equine latherin protein 

is postulated to play a role in mastication of fibrous food and evaporative cooling in horses 

(Vance et al. 2013). Therefore, it is reasonable to postulate that the gain in LATH copies 

observed in this study results from an evolutionary pressure for improved evaporative dissipation 
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of heat, yielding athleticism and endurance in hot environments.  

Our RT-qPCR analysis of the CNV region in a number of horses (Figure 2.5) revealed evidence 

of between 2 and 6 copies of LATH relative to a single copy control gene. Our analysis also 

suggested polymorphism in the number of copies of nearby genes BPIFB4, BPIFA2 and 

BPIFA1. Accumulation of copies of these genes could be an adaptation to improve evaporative 

cooling. Validation of this CNV polymorphism is challenging due to a poor quality of assembly, 

a complex structure within that part of the genome, and the technical limitations of qPCR. Thus, 

precise determination of polymorphisms in LATH will require more precise techniques like 

digital qPCR (Baker 2012).  

Our annotation of the SVs showed duplication events within the ZFAT gene (ECA 9) 

unique to the American Miniature horse. ZFAT gene was previously shown to be associated with 

withers height and overall skeletal size in horses (Makvandi-Nejad et al. 2012; Signer-Hasler et 

al. 2012). We also detected an inverted duplication unique to the Percheron horse in HMGA1. 

HMGA1 appears to play a role in overall body size. HMGA1 showed a reduced body weight and 

size compared to wild type mice (Federico et al. 2014).  These small SVs may impact regulatory 

motifs in these genes, leading to the size phenotypes observed in these breeds, though additional 

work is required to investigate this. 
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Figure 2.5: RT-qPCR results of the LATH CNV region. Results for different primers are 

shown relative to their position in the genome. Evidence of a copy number variation is seen in 

BPIFB4 (a) and BPIFA1 (d) genes that flank LATH (c). 
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Genome-wide diversity (π) 

Nucleotide diversity (π) (Nei & Li 1979) is defined as the average number of nucleotide 

differences per site between two randomly chosen sequences in a population. Assessment of 

nucleotide diversity provides a valuable insight into the divergence of populations, inferring the 

demographic history of the species, as well as the historical size of the population (Yu et al. 

2004). Areas of lower than expected nucleotide diversity may signify signatures of past selection 

events (Quach et al. 2009). In order to find such regions we calculated the nucleotide diversity 

(π) for the resulting SNPs belonging to each horse using 1 megabase (MB) non-overlapping 

windows.  

The average nucleotide diversity across all six horses was 0.00097 for all SNP polymorphisms, 

and ranged from a minimum of 0.00090 for the American Miniature Horse and 0.0011 for the 

Tennessee Walking Horse. This could reflect a higher inbreeding in the American Miniature 

horse compared to the Tennessee Walking Horse sequenced in this study. Average diversity in 

the autosomal chromosomes for all horses was 0.0010, which is four times as high as the mean 

diversity observed in the X chromosome (0.00026). Since the X chromosome has three-quarters 

the effective population size (Ne) of that of the autosomes, lower nucleotide diversity for the X 

chromosome is to be expected. However, a lower diversity level could also be due to a lower 

mutation rate (μ). Besides that, the fact that the reference genome was based on a female horse 

has largely impacted the nucleotide diversity levels in the male horses used in this study (Figure 

2.6). It is expected to observe more differences (homozygous alternate SNPs) between the 

reference genome X chromosome and two copies of the X chromosomes in female horses 

compared to males horses with only one copy.   
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Notably, the SNP dense region on ECA20 and ECA12 were amongst the highest 1% regions in 

nucleotide diversity (π) (Figure 2.6). PANTHER statistical over-representation analysis of genes 

in these regions revealed that they are enriched for immune response and immunological 

response and antigen processing (ECA20) and metabolic and sensory perception in (ECA12). On 

the other hand, among the lowest 1% of the empirical distribution of π values, the most 

represented GO terms categories in all six horses were metabolic process (42.32 %) followed by 

cellular process (29 %) and biological regulation (18.45 %). Remarkably, statistical over-

representation analysis of those regions in respective horses showed enrichment for skeletal and 

digestive system development in the Percheron horse. Regions with lowest 1% π values in the 

Percheron included HOXD12, MYO3B, and HOXD1 on ECA 18 and ANKRD1 (ECA 1). 

HOXD12 and HOXD1 belong to the HOX family of transcription factor genes are known for 

their role in skeletal and limb development (Knezevic et al. 1997; Pitera et al. 2001; Di-Poï et al. 

2009). ANKRD1 is a transcriptional factor to the muscle ankyrin repeat proteins (MARP) family 

(Duboscq-Bidot et al. 2009) and linked to size by GWAS in chapter two of this work. MARP 

proteins are expressed in developing skeletal muscles and are important for muscle development 

(Baumeister et al. 1997).On the other hand Myo3B belongs to the class III myosin genes and is 

expressed primarily in the retina but is also expressed in the kidney, and testis (Dose & Burnside 

2002; Dosé et al. 2003).  
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Figure 2.6: Circos plot summarizing the genetic variants detected in each horse. From the inside 

out, each plot shows two endpoints of the inter- (orange) and intra- (blue) chromosomal 

translocations. Intrachromosomal translocations > 5MB are in dark blue. The yellow ring shows 

the copy number variations (green =normal, blue = loss, red=gain). The histogram (in orange) 

shows the density of SNPs detected using 1MB windows. The outermost track in yellow marks 

the lower 1% (red) and upper 1% (blue) values of the average nucleotide diversity calculated 

using 1 MB windows. Lower nucleotide diversity levels in the X chromosomes can be seen in 

male vs female horses. The dense clustering of SNPs amidst chromosomes 12 and 20 was 

expected given that both chromosomes contain structurally complex regions important for 

immunity. To enhance visualization, intrachromosomal translocations with end points <10bp and 

interchromosomal translocations with end points < 500 bp are not displayed here.
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We compared our findings with two previous studies that investigated signatures of selection in 

the horse. The first study (Petersen et al. 2013) used an Illumina SNP50 Beadchip to scan the 

genome of multiple breeds using an FST-based statistic, while the second study compared NGS 

data on ancient Przewalski’s horses to modern domesticated horses to pinpoint selection 

signatures in modern breeds (Schubert et al. 2014). We found no overlap between genes under 

selection found in this study and those reported in (Petersen et al. 2013) possibly due to the 

technical difference and genome coverage between NGS used in this study and the Illumina 

SNP50 Beadchip. However, three genes under selection reported in (Schubert et al. 2014) were 

also found in this study, namely NINJ1 and SEC63 in the Tennessee walking horse and 

COMMD1 in the Arabian horse. NINJ1 codes for ninjurin a protein that is highly expressed in 

human brain endothelial (Ifergan et al. 2011) and becomes up-regulated after nerve injuries in 

Schwann cells and in dorsal root ganglion neurons (Araki & Milbrandt 1996). SEC63 encodes a 

membrane protein of the Endoplasmic Reticulum which is highly conserved in humans and is 

part of protein translocation apparatus of the endoplasmic reticulum (Davila et al. 2004). Certain 

mutations in SEC63 cause autosomal dominant polycystic liver disease in humans (Davila et al. 

2004). On the other hand, COMMD1 is involved in copper storage in dogs and copper-storage 

disorder in Bedlington terriers is a known autosomal recessive disorder that causes rapid 

accumulation of copper in the liver of affected dogs (Fedoseienko et al. 2015).  
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CONCLUSION 

 We present a next generation sequencing and variants detection analysis of six horses belonging 

to six different breeds. Functional annotation of the detected variants was indicative of selection 

pressure for specific phenotypic characteristics in the breeds of horses included in this study. We 

detected a copy number gain in the Latherin gene common to all horses that could be the result 

of an evolutionary selection for athleticism and heat tolerance. Our results also revealed 

putatively functional variants unique to each horse including HOXD12 and HOXD1 and 

ANKRD1 and HMGA1 in the Percheron and ZFAT gene in the American Miniature horse. Our 

results also showed a copy number gain of genes involved in immunity and olfactory reception 

in ECA 20 ECA 12 respectively.  
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ABSTRACT 
 
Withers height is an important trait for the American Miniature horses since the breed objective 

is to produce the small and proportionate animals. Accordingly, the breed registry dictates that 

the height of the mature Miniature horse at the withers must not exceed 34 inches (0.864 meters) 

(American Miniature Horse Association Accessed April 28, 2014). Therefore, identification of 

Quantitative Trait Loci (QTLs) affecting this trait will result in a better understanding of the 

genetic architecture and biological pathways contributing to skeletal height in the horse. Using 

the Equine SNP50 bead chip (Illumina Inc),  we  previously genotyped  48 horses  from  16  

different breeds  that  represent  extremes  in  body  size (Makvandi-Nejad et al. 2012).  We 

applied a dominant model Genome Wide Association Study (GWAS) and found loci affecting 

size variation in the horse that were not previously reported.  We complemented our GWAS 

findings by conducting a genome wide FST estimation as well as a cross-population composite 

likelihood ratio test (XP-CLR) test between the eight large and eight small breeds.  The ECA1: 

37676322 bp markers, positioned within an intron of the ANKRD1 gene, were detected by both 

the GWAS and the XP-CLR scan. To confirm our findings at this locus, we used a PCR–

Restriction Fragment Length Polymorphism (PCR-RFLP) to genotype 90 additional American 

Miniature horses. Within this population we verified that ECA1: 37676322 bp marker indeed 

follows a dominant mode of inheritance. Horses possessing the GG or AG genotypes were 4.064 

cm (1.6 inches) taller on average than horses with the AA genotype. ANKRD1 is a transcription 

factor that is involved in muscle myocytes and cardiomyocyte growth and differentiation and 

may contribute to height by influencing the overall growth of the horses. This marker will be a 

valuable tool for selection of breeding stock in breeds with height restrictions for registration. 

 



 

64 

INTRODUCTION 
 
Horses have been selected for generations for diverse skeletal compositions in order to perform 

various tasks (Brooks et al. 2010b). As a result of that selection, they now have ample skeletal 

size variability both within and between breeds. Skeletal size in the horse is highly heritable with 

an overall mean heritability of 0.49 ± 0.065 (Saastamoinen (1990). This means that 49 % of the 

variation in horse height is due to additive genetic inheritance. The genetic architecture of horse 

size variation seems to be controlled by a few genes due to intense selection for size. Makvandi-

Nejad et al. (2012) found 4 loci that together explained 83% in horse size variation. In contrast, 

height variation in humans is controlled by over 600 loci and only 36% of the variability could 

be explained by these loci (Wood et al. 2014).  Withers height was used successfully to map 

QTLs involved in height variation in horses close to LCORL/NCAPG genes in chromosome 3 

and ZFAT gene in chromosome 9 (Signer-Hasler et al. 2012). However, the first principal 

component (PC1), created by pooling 33 body measurements, is a comprehensive, quantitative 

trait that explained the majority (65.9%) of skeletal size variation in horses (Makvandi-Nejad et 

al. 2012). 

Using genome-wide association study (GWAS) has aided researchers to identify biologically 

meaningful candidate genes close to the significant SNPs. The availability of a high-density SNP 

chip for the horse, helped conducting GWAS that resulted in mapping QTLs at a very fine-scale 

(Brooks et al. 2010a). Mixed model GWAS greatly reduces the population structure, and 

therefore false positive results (Shin & Lee 2015), which narrows down the regions of the 

genome that are more likely to contain the causative mutations. Therefore, they are used 

extensively in studies involving admixed or related groups of individuals e.g (Sutter et al. 2007) 

and (Guo et al. 2012). SNP chip genotypes can also be used in screening the genome for regions 

containing signatures of selection.  This lead to the discovery of various biologically relevant 
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genes in cattle (Pérez O’Brien et al. 2014), pig (Rubin et al. 2012) and sheep (McRae et al. 

2014). 

The aim of this study was to identify QTLs controlling size variation in withers height in the 

horse. We used withers height as a proxy to measure skeletal size phenotype as it is easy to 

measure and is highly correlated with PC1 (r=0.93, p<0.005). Instead of the standard additive 

model GWAS, we used dominance and a recessive mixed model GWAS. Advantageously, our 

data set was comprised of diverse breeds representing the extremes in skeletal morphology in an 

equal proportion. We therefore decided to conduct a genome-wide search for regions harboring 

signatures of selection using two methods by splitting the animals into two groups of large and 

small breeds. The first method was the FST genetic differentiation test to search (Weir & 

Cockerham 1984). The second method is called the cross-population composite likelihood ratio 

test (XP-CLR) test which is based on the multi-locus allele frequency differentiation between 

two populations (Chen et al. 2010). Both the FST and XP-CLR utilize the variation in allele 

frequencies between two populations to detect selective sweeps. We found that, using a 

dominance model, we could detect loci that were not previously reported. Using both, GWAS 

and XP-CLR, we detected that ANKRD1 is significantly associated with withers height variation 

in the horse. 

 

MATERIALS AND METHODS 

Animal resources, samples collection and genotyping 

The trait withers height was defined following Brooks et al. (2010b), as the measure from the 

ground to the highest point of the withers as shown in Figure 3.1. Samples and measurements 

were taken from horses of volunteering horse owners. In total, there were 48 horses belonging to 
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16 different breeds (3 from each breed) used in this study (Table 3.1). Horses were measured 

either by their owners or by laboratory staff and collaborators. The breed identity and animal age 

were provided by the owner and confirmed by examining the photo of each animal. DNA was 

collected either from whole blood or tail hair bulbs using standard methods as previously 

described in (Cook et al. 2010). Genotyping was performed using the equine SNP 50 Illumina 

BeadChip (GeneSeek, Lincoln, NE, USA). 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1. Illustration of the withers height phenotype shown as the measure from the 
ground to the highest point of the withers. 
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Table 3.1. Three horses of each of the following horse breeds have been genotyped for the study. 

The breed name and mean withers height for each breed in cm are given.   

 
 
           
 
 

 

 
 
 

 

 

 

 

 
SNPs quality control  

SNPs with more than 20% missingness rate or those with a minor allele frequency less than 10% 

were filtered out of the dataset. Of the initial set of 54,624 SNPs, 16,938 SNPs were removed 

due to low minor allele frequency and 505 SNPs (0.92%) were removed due genotype 

missingness, leaving 37,584 SNPs for analysis. We also tested for samples duplicates using 

identity by state (IBS) check in PLINK (Purcell et al. 2007) and detected no sample duplicates.  

Statistical analyses for the GWAS 

We first performed the GWAS analysis using a standard dominance model association (with 

gender as a covariate) using the option --dominant in PLINK. Later we ran the same analysis 

using EMMA (Kang et al. 2008) which, unlike the standard linear model, includes the kinship as 

a random effect in a mixed model approach. Using a mixed model for the analysis allowed us to 

Breed Mean withers Height 
American Belgian 171.0 
American Miniature 77.6 
Ardennais 155.4 
Brabant 168.9 
Caspian 116.4 
Clydesdale 179.5 
Dartmoor Pony 125.3 
Falabella 87.6 
Friesian 163.8 
Percheron 177.0 
Puerto Rican Paso Fino 133.8 
Shetland Pony 109.5 
Shire 190.9 
Suffolk Punch 165.1 
Welsh Mountain Pony 119.8 
Welsh Pony 126.4 
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account for the population structure and therefore reducing false positive hits (Kang et al. 2008). 

Our model was as follows: 

� = �� + �� + � 

 

Where y is the vector of phenotypic values of withers height in inches, X is a 48 by 3 matrix of 

fixed effects including the mean (μ) , SNPs, and gender. β  is the fixed effects coefficients 

vector. Z is a design matrix that maps the phenotype to the corresponding breed. u is the random 

effect with Var (u) = ��
� K, where K is the genomic kinship relationship matrix and e is the 

residual effect where e ~ N(0, I ��
�). Assuming that A and a be the major and minor alleles at a 

SNP respectively, our genotype coding (scores) for the dominant model was 0, 1, 1 for AA, 

Aa/Aa, aa. The genotype coding for the recessive model was 0, 0, 1 for AA, Aa/Aa, aa. 

Genome-wide search for selective sweeps  

First, the animals were separated into a large and a small breeds group. A cutoff of 60 inches 

(152 meters) was chosen to separate the animals into these small (24 animals) and large (24 

animals) groups, based on the distribution of withers height measurements (Figure 3.2). In order 

to search for regions with unusually strong polymorphism patterns genome wide ( i.e regions of 

elevated population subdivision signals), the FST genetic differentiation test was calculated (Weir 

& Cockerham 1984). The FST test was performed using the R package pegas (Paradis 2010). To 

search for regions were the change in allele frequency occurred quickly, perhaps as a result of 

random drift, we calculated the cross population XP-CLR scores using the script available at 

(http://genetics.med.harvard.edu/reich/Reich_Lab/Software.html). Our parameters were as 

follows: non-overlapping sliding windows of 50 kb with a maximum number of SNPs per 

window being 30 SNPs and a correlation level of 0.95 was required to down-weight the 
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contribution of SNPs to XP-CLR. The top 1% values of the empirical distribution of FST and XP-

CLR values were considered ‘selection outliers’, i.e suggestive of a positive and/or divergent 

selection.  

 

 

Figure 3.2. Horses for this study were selected to represent the extremes of skeletal size 
variation. Distribution of withers height in cm is shown in the figure. For the Fst and 
XP-CLR analysis a cut off of 152 cm was chosen representing the midpoint of the 
distribution. 

Functional annotation of GWAS results and selective sweeps regions 

Loci surpassing a genome wide significance level as well as genomic regions with “significant” 

selection signals identified by Fst and XP-CLR tests were annotated to the closest ENSEMBLE 

genes in EquCab2. Genes overlapping a span of 50 KB around significant selection signals 

positions were considered candidate genes.  A span of 50 KB was used since it is the average LD 

length across breeds of horse (Wade et al. 2009). 
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PCR–RFLP detection 

Genomic DNA was amplified for the ANKRD1 locus by PCR using the primers: ANKRD1_F2 

5’- GTC TGT GAC GAG GTA AGG CT – 3’ and ANKRD1_R2 5’ – GCC AAA TGT CCT 

TCC AAG CA – 3’. Reactions were made to a 20 µl volume using FastStart Taq DNA 

Polymerase and all necessary reagents according to the manufacturers recommended conditions 

(Roche Diagnostics, Indianapolis, IN). Thermocycling on an Eppendorf Mastercycler Ep 

Gradient (Eppendorf Corp., Westbury, NY) was also according to the manufacturer's 

recommendations with an annealing temperature of 58°C and a total of 40 cycles for this primer 

pair. The restriction digest used 10 µl PCR product, 0.5 U of Cac8I (New England Biolabs Inc. 

(NEB), Ipswitch, MA), 1x NEB Cutsmart Buffer, and enough MilliQ water to achieve a total 

volume of 20 µl per reaction, and were incubated at 37°C for two hours. The digest products 

were visualized following electrophoresis on a 2% agarose gel (Omnipur Agarose, EMD 

Chemicals Inc, Gibbstown, NJ). Agarose gels were stained (SYBRsafe DNA gel stain (10,000X) 

concentrate, Invitrogen Molecular Probes, Eugene, OR) and visualized under UV illumination 

(FluroChem HD2, Alpha Innotec Corp., San Leandro CA).  The G allele resulting in fragments 

of 675, 402, and 20bp in size, while the A allele produced 1077 and 20bp fragments. 

RESULTS AND DISCUSSION 

Association analysis 

The QQ plot of GWAS p-values for the linear model (PLINK) and the mixed model (EMMA), 

presented in Figure 3.3, shows clearly the EMMA correction for the population structure within 

this population. The genomic inflation factor (λ) after EMMA correction was 1.0695, which is 

suitable for GWAS.  We detected no significant associations using the recessive model. Using 

the dominance model we detected 3 out of the 4 loci found by Makvandi-Nejad et al. 2012 
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(Figure 3.4.a). In addition, we detected two novel loci; the first locus was within an intron of the 

Ankyrin Repeat Domain 1 (ANKRD1) gene at ECA1: 37676322. ANKRD1 is a transcriptional 

factor that belongs to the muscle ankyrin repeat proteins (MARP) family, and encodes a cardiac 

ankyrin repeat protein (CARP) (Duboscq-Bidot et al. 2009). Of the members of the MARP 

protein family, ANKRD1 (CARP) is mainly expressed in cardiac muscle. The other two members 

of the MARP family are the Ankyrin repeat domain protein 2 (Ankrd2/Arpp) is expressed in 

skeletal muscle, and the diabetes related ankyrin repeat protein (Ankrd23/ DARP) which is 

expressed at similar amounts in cardiac and skeletal muscle (Bang et al. 2014). During 

embryonic development, MARP proteins are expressed in developing skeletal muscles and are a 

vital for muscle morphogenesis (Baumeister et al. 1997). It is suggested that MARP as a nuclear 

cofactor is crucial in the signaling pathways starting with prospective tendon mesenchyme to 

forming muscle. It is also deemed to be involved in the signaling pathways from activated 

muscle interstitial cells to denervated muscle fibers (Baumeister et al. 1997). It is well 

established that the ANKRD1 is upregulated in response to cardiac hypertrophy (Aihara et al. 

2000). Missense mutations in ANKRD1 were found to be causative of hypertrophic 

cardiomyopathy (Arimura et al. 2009).  Nevertheless, Bang et al. (2014) showed that mice knock 

out for all three MARP genes (MKO mice) have normal heart morphology and function. MKO 

mice had an increased expression of the MyoD and Muscle LIM protein genes, suggestive of the 

role of the MARP proteins play in the expression regulation of muscle genes (Barash et al. 

2007). ANKRD1 itself is involved in the signaling pathways of muscle remodeling and  
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Figure 3.3 : The QQ plots for the GWAS analysis. The QQ-plot of the mixed model analysis 
using EMMA (solid circles) shows the considerable control of population structure (genomic 

inflation factor of 1.0695) compared to the standard linear model analysis in PLINK (solid  
triangles). 
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Figure 3.4: a. Manhattan plot of withers height of 48 horses from 16 breeds of extreme size 
based on a dominant model GWAS conducted in EMMA. The horizontal line indicates a 
genome-wide significance (alpha =0.05). b. Genome wide FST statistic values. The horizontal 
line at 0.75 is the significance level i.e line above which the highest 0.01 of the FST hits belong. 
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differentiation (Kojic et al. 2011). It was also found to be involved in wound healing through 

stimulating collagen gel contraction and actin fiber organization (Samaras et al. 2015). The 

second marker we identified as associated with height in the horse was within an intron in 

insulin-like growth factor 2 mRNA binding protein 2 (IGF2BP2) which is at ECA19: 23815750. 

IGF2BP2 is best known for its role in insulin regulation (Groenewoud et al. 2008) and risk of 

type 2 diabetes (Saxena et al. 2007). It is a member of the conserved family of Insulin-like 

growth factor 2 mRNA-binding proteins family (IGF2BP) which also includes IF2BP1 and 

IGF2BP3. The IGF2BP family is highly expressed in embryonic development, specifically in the 

period between zygote and embryo stages (Hansen et al. 2004). IGF2BP1 and IGF2BP3 are 

primarily expressed during embryonic development rather than in adult tissues (Bell et al. 2013). 

Although IGF2BP2 is also expressed in embryonic development, it continues to be expressed in 

adult mice and human tissues such as the brain, muscles, kidney, liver and bone marrow 

(Christiansen et al. 2009). Targeted silencing of HMGA2, a gene previously implicated to affect 

overall size in horses (Makvandi-Nejad et al. 2012), causes the downregulation of IGF2BP2 but 

not its family members IGF2BP1 and IGF2BP3 (Brants et al. 2004). HMGA2-deficient mice 

display the pygmy-phenotype and their IGF2BP2 expression was below detectable levels which 

is suggestive of the role of IGF2BP2 in embryogenesis, growth and development (Brants et al. 

2004). The involvement of the HMGA2-IGF2BP2 axis in myoblast growth and overall 

development are supported by a similar but more recent experiment in which expression 

IGF2BP2 rescued the phenotype strongly supporting its involvement in growth (Li et al. 2012). 

 
 
 
 
 
 



 

75 

 
Identification of signals for selective sweeps  

Loci bearing signatures of selection may elucidate the forces that helped shape an animal during 

evolution and domestication, and can facilitate the identification of variants that affect different 

morphologies. Scanning the genome for such signatures in domestic animals is particularly 

interesting as they harbor more phenotypic diversity than experimental organisms (Andersson et 

al. 2015). In a way, humans have conducted a long term genetic experiment in which they have 

altered the frequency of desired/undesired mutations in domesticated species to their advantage. 

The horse breeds used in this study have been selected for millennia for different skeletal types 

in order to meet specific tasks. Therefore, searching for selection signatures in such a set of 

extreme morphology for size can show how artificial selection has rapidly shaped this 

phenotype. These scans have previously shed light on the genomic regions affecting size 

variation in humans  (Jarvis et al. 2012) and horses (Petersen et al. 2013b).   

Numerous methods exist to search for selection signatures using genotypic data. These can be 

broadly divided into between populations and within population methods. Example of the within 

population methods include Tajima's D (Tajima 1989)  and the integrated haplotype score ( iHS) 

(Voight et al. 2006) and Compsite Likelihood Ratio Test (CLR) (Nielsen et al. 2005). Both 

Tjima’s D and CLR test are based on the change on the allele frequency around a sweep whereas 

the iHS is based on LD patterns around the sweep. Here we utilized two different between 

populations methods to infer putative selective sweeps. The first was the FST statistic (Wright 

1949) and is a more traditional method for that uses variation of allele frequency between two 

populations to detect selection footprints. Since its introduction, different flavors of it were 

developed such as the Fst-based Bayesian hierarchical model (Riebler et al. 2008) and the two-
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step Fst method (Gianola et al. 2010). The second method was the Cross Population Composite 

Likelihood Ratio (XP-CLR) (Chen et al. 2010) is composite likelihood method that uses an 

outgroup population to detect departures from neutrality which maybe be compatible with soft or 

hard sweeps close to the beneficial allele. Like FST, XP-CLR also utilizes the variation of allele 

frequency between two populations to identify signatures of selection. A possible downside to 

this method is that it is sensitive to recent selection and could miss selective events that occurred 

a long time ago (Ma et al. 2014).Other methods to detect selective sweeps by comparing two 

populations exist  such as the Cross Population Extend Haplotype Homozygosity Test (XPEHH) 

which searches for the selection footprint around beneficial sites through assessing linkage 

disequlibrium (LD) patterns (Sabeti et al. 2007). 

 We identified four sweep regions using a genome-wide FST approach (Figure 3.4.b). The four 

markers suggestive of a recent selective sweep were within introns of the R3H domain and 

coiled-coil containing 1-like (R3HCC1L), Microtubule-Actin Crosslinking Factor 1 (MACF1), 

Calcineurin Binding Protein 1 (CABIN1), and IGF2BP2 genes. R3HCC1L, is known to be 

involved in growth inhibition and differentiation (www.genecards.org). On the other hand, 

MACF1 is involved in microtubule actin cross-linking development and mice with MACF1 

deletion (MACF1−/−) exhibit growth retardation (Chen et al. 2006). CABIN1 was found to play 

a role in skeletal muscle development (Friday et al. 2000). Given that all these genes are 

involved in growth related functions, it is plausible that they may also exert an effect in skeletal 

size variation in horse. This is specially the case for the IGF2BP2 locus which was also detected 

in the GWAS analysis. In addition, genes within a 50 KB window of significant FST locations 

(Table 3.2) include D-dopachrome tautomerase (DDT) and deSUMOylation (SENP2). DDT 
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produces a cytokine that is up-regulated in Patients with Sepsis or Invasive Cancer (Merk et al. 

2011) whereas SENP2 is involved in liver cancer cell proliferation (Tu et al. 2015). 

Genes within 50 KB of the XP-CLR sweeps are shown in Table 3.2. The four highest genome-

wide XP-CLR scores were at the ANKRD1 locus, providing further evidence for its role in 

growth and development of the horse. Amongst the loci within the top 1% of XP-CLR scores we 

also detected the High-mobility group AT-hook (HMGA2). HMGA2 is primarily expressed 

during embryonic development but is also found in human benign tumors of mesenchymal origin 

(Fedele et al. 2002). Over-expression of HMGA2 leads to increased secretion prolactin/growth 

hormone leading to cell pituitary adenomas (Fedele et al. 2002).The product of the HMGA2 gene 

is suggested to confer variation in growth through regulation of cellular proliferation (Young & 

Narita 2007). The gene was also previously reported in height GWAS studies of height in dogs 

(Boyko et al. 2010) and humans (Weedon et al. 2007). In humans, an overgrowth syndrome 

affected an individual who carried a chromosomal inversion truncating the HMGA2 (Ligon et al. 

2005). In mice deletions of homolog of IGF2BP2 result in dwarfism  (Zhou et al. 1995) and the 

dwarf phenotype in chicken was mapped to syntenic region (Ruyter-Spira et al. 1998). As noted 

earlier, HMGA2 is hypothesized to alter skeletal growth by directly regulating the IGF2BP2 gene 

(Li et al. 2012).  
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Table 3.2. Genes within 50 KB of the GWAS, FST and XP-CLR significant regions. ANKRD1 

was detected using the XP-CLR and the GWAS, while IGF2BP2 was detected using the GWAS 

and the FST scan. 

XP-CLR GWAS FST 

ANKRD1 ANKRD1 R3HCC1L 
RPP30 RPP30 MACF1 
HTR7 HTR7 CABIN1 
HMGA2 HMGA2 DDT 
ZAP70 IGF2BP2 IGF2BP2 
TMEM131 SNORD61 SENP2 
RUNX3 ECA-MIR-763  
CLIC4 ABCA9  
ACTR1B ABCA8  
CDC42EP1 RPL23  
LGALS2 FBXO47  
ANKRD54 LASP1  
TRIOBP SNORA21  
GCAT C17ORF98  
PLCE1 CWC25  

HSPB9   
KAT2A   
DHX58   
ZNF385C   
NKIRAS2   
DNAJC7   
SEMA6A   
GORASP2   
TLK1   
ENOX1   
AGBL4   
LMO4   
TFEC   
MRPS6   
MICU3   
FGF20   
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Validation of the ANKRD1 locus in a second population of animals 

We chose markers near ANKRD1 for subsequent validation as these possessed the highest XP-

CLR score and the smallest p-value in the GWAS. We used a custom PCR-RFLP assay to 

genotype a total of 90 American miniature horses at for the A>G SNP at ECA1: 37676322 bp. 

Our PCR-RFLP results verified that there was a significant association between this locus and 

the height at the withers in this second sample set (p-value < 0.0005). Horses carrying the GG or 

AG genotypes at ANKRD1 were taller on average (mean = 34.36, SD= 2.31) than individuals 

with the AA genotype (mean= 32.76, SD=2.31) (Figure 3.5). 

 

 
 

Figure 3.5. Boxplot at ANKRD1 locus (at ECA1: 37676322 bp) genotypes by withers height 
(in inches) using a dominant model.  Horses with the GG or GA genotypes are on average 1.6 
inches (4.064 cm) taller than those possessing the AA genotype horses. 
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CONCLUSIONS 

In the present study we have identified QTLs contributing to size variation in the horse. Some of 

the significant QTL markers discovered were located within or near genes previously reported to 

influence size variation in the horse, while others are reported for the first time. Among the 

newly discovered QTLs affecting the withers height phenotype, the A>G SNP in an intron of the 

ANKRD1 gene at ECA1: 37676322 bp variant was verified in an independent set of 90 American 

Miniature horses. The ANKRD1 gene is a transcriptional factor that is apparently involved in 

determining the overall size by affecting muscle growth and differentiation. Further investigation 

is required to determine the mechanism by which ANKRD1 affects the overall size in the horse. 
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ABSTRACT 

 

Horse breeders rely heavily on the accurate identification of individual ancestry through 

pedigrees. Errors in such pedigrees may inaccurately assign horses to false lineages or breed 

memberships, and can result in inaccurate estimates of inbreeding. Moreover, discrepancies in 

pedigree records can lead horse owners into making misguided purchasing and breeding 

decisions. Genome-wide SNP data provides a robust and quantitative tool to resolve lineage 

assignments errors and provide genomic measures of inbreeding. The aim of this project was to 

pilot a comparison between pedigree and genomic relatedness and inbreeding measures in a 

closed herd. Here, we describe a herd of 36 pedigreed Egyptian Arabian horses genotyped using 

the Equine SNP70 (Geneseek, Inc.).  Genomic inbreeding values and pair-wise relatedness 

between horses within the herd were estimated from the genotypic data. Multi-dimensional 

Scaling Analysis (MDS), and clustering analysis were performed to describe the relationships 

within the herd and the results were compared to the pedigree information. Pedigree inbreeding 

values had a moderate but significant correlation with the genomic inbreeding values (r = 0.406, 

p=0.014). Conversely, the correlation was higher between genomic relationships and pedigree 

relationships (r=0.77, p<0.005). Although first degree relationships between individuals were 

successfully reconstructed, more distant relationships were more difficult to resolve. In 

comparing the herd to a sample of US, Polish and Egyptian Arabian horse populations the herds’ 

historically recorded Egyptian lineage was successfully recovered among other Arabian horse 

sub-groups. Our conclusion is that genome-wide genotypes are superior to pedigree derived 

inbreeding predictions and have utility in verification of the integrity of pedigrees where records 

are unavailable or in doubt. Although still considered costly, application of genomic tools in a 

breeding program can be advantageously utilized to measure inbreeding in valuable lines of 
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horse, and in breeds already at risk for loss of genomic diversity.  

INTRODUCTION 

 

Throughout a long history alongside humans Arabian horses were selected for their endurance, 

intelligence and beauty (Porter V 2002). Therefore, the Arabian horse breed contributed during 

the development of many of the modern horse breeds like the Thoroughbred  (Bower et al. 2012) 

, Marwari (Jun et al. 2014), French horses  (Pirault et al. 2013) and a number of Spanish Arabian 

horse breeds (Cervantes et al. 2009). Yet, in recent history stringent selective breeding within the 

Arabian horse may result in a loss of heterozygosity within the breed, and potentially inbreeding 

depression. Arabian horses tend to have relatively high inbreeding levels (Pirault et al. 2013) 

which may be the result of the intentional mating of relatives within the breed (Moureaux et al. 

1996).  In Arabian horses, inbreeding has resulted in elevation of the incidence of recessive 

genetic disorders such as Lavender Foal Syndrome (Brooks et al. 2010a) and Severe  Combined 

Immunodeficiency (Wiler et al. 1995). Presently, horse breeders can utilize commercially 

available single-locus tests for a number of genetic disorders to make informed breeding 

decisions. However, the need for precise quantification of inbreeding is imperative for 

maintenance of genetic diversity and avoidance of yet undiscovered recessive conditions. 

Moreover, high inbreeding levels can result in a reduced fitness of the population as a whole. 

Incomplete or erroneous pedigrees may lead to inaccurate estimates of the inbreeding 

coefficient (Mucha & Windig 2009). Furthermore, the reliability of inbreeding estimates from 

pedigrees depends largely on its depth (Lutaaya et al. 1999). Even in the presence of deep 

pedigrees, like those available for the Arabian Horse, these estimates could be of a limited value 

as they converge to one as the pedigree depth increases unless the pedigree is truncated at some 

generation in the past (Speed & Balding 2014).  



 

96 

In recent years, the availability of equine genome-wide SNP genotyping platforms provided an 

alternative to estimate inbreeding and relationships measures without relying on pedigrees.  This 

had enabled the comparison of genomic inbreeding levels between horse breeds  (McCue et al. 

2012) and to assess its extent within a given breed (Binns et al. 2012). In this project, we 

compared pedigree inbreeding and relationship values to their genomic counterparts in a herd of 

36 Arabian horses genotyped using the Equine SNP70 (Illumina Inc). Additionally, we compared 

various clustering and genetic similarity measures within the herd and in comparison to Arabian 

horses from a diverse background.  

 

MATERIALS AND METHODS 

Description of the herd 

This herd provides an excellent test population for this comparison due to the availability of high 

quality pedigrees and a recent bottleneck event following closure of the herd to outside 

bloodstock in 1981. Pedigree information was obtained for the 36 horses of the herd from the 

German National Genetic Evaluation Centre and traced back to 1840, yielding a total of 1130 

ancestors born between 1840 and 2013. A detailed description of the herd’s pedigree is given in 

Table 4.1.  
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Table 4.2. Summary of the pedigree used for the inbreeding and relationships calculation. 

 

Category  Count 

Number of Sires 374 

Number of Dams 534 

Number of Sires’ progeny 898 

Number of Dams’ progeny 880 

Individuals with no progeny 222 

Number of individuals with both known parents 874 

 

Pedigree Completeness DNA extraction and genotyping   

 

36 Arabian horses representing the last three generations in the pedigree were chosen for 

genotyping (Figure 4.1).  DNA was extracted from hair following a modified Puregene protocol 

(Cook et al. 2010). The DNA samples were then genotyped using the equine SNP 70 Illumina 

BeadChip (GeneSeek, Lincoln, NE, USA). Additionally, 36 US Arabian, 15 Egyptian Arabian 

and 11 Polish Arabian horses that are part of an unpublished study were genotyped using SNP 50 

Illumina BeadChip (GeneSeek, Lincoln, NE, USA). 
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Figure 4.1: Pedigree of sampled population of horses.  Grey shading denotes individuals chosen for genotyping; ovals are females 
and rectangles males. 
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To ensure a fair comparison between the pedigree and genomic inbreeding values, we sought to 

assess the extent of the pedigree completeness for all the genotyped individuals. Therefore, the 

pedigree completeness index (PCI) was calculated using three generations back using the method 

proposed by MacCluer et al. (1983). In order to void animals with less complete pedigrees, we 

chose the year 1941 as reasonable truncation point in the pedigree and calculated PCI values for 

animals born in that year onwards. 

For each animals, PCI =
 ������ ����

����������
 

Where the terms Csire and Cdam correspond to the contributions from the paternal and maternal 

lines respectively.  

C= 
�

� 
∑ ��

�
���  

ai is the proportion of known ancestors in generation i; and g is the number of generations 

considered (g = 3). 

Pedigree based inbreeding and pair-wise relationships 

 

Pedigree-based inbreeding was calculated using the indirect method proposed by (Colleau 2002) 

using the program CFC (Sargolzaei et al. 2006). Pair-wise pedigree relationships based on the 

additive numerator relationship matrix were also calculated using CFC. We included animals 

born in the year 1941 and onwards to avoid over estimating pair-wise relatedness between 

individuals. 

Genotypes summary, filtering and genomic inbreeding calculation 

 

The Equine SNP70 array produced genotypes for 65,157 markers. As a quality control, 

markers with a minor allele frequency (MAF) less than 10% or with a missingness rate greater 
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than 20% were excluded from the analysis. This reduced the number of markers to 25666 

markers. We further pruned the data by linkage disequilibrium before calculating inbreeding 

values such that we have a set of markers that is in linkage equilibrium. This was done in order 

to avoid over-estimating inbreeding due to areas in the bead-chip where markers in tight LD 

occur in higher density. In the pruning process, we randomly discarded one of a pair of markers 

in a given window of 50 markers (step size 5 markers) if the LD between them was larger than 

��=90. After pruning by LD, 7217 markers remained for the analysis. Genomic inbreeding and 

homozygosity values for each animal were then calculated based on these markers in PLINK 

(v1.07) (Purcell et al. 2007) using the command --het.  The percent homozygosity was calculated 

as the ratio of the observed homozygous markers to the total number of markers.  

Estimation of the minimum number of markers sufficient for genomic inbreeding 
calculation using bootstrap 
  
We investigated the ability of various sizes of reduced sets of randomly chosen SNPs (n=500, 

1000, 2000, 3000 and 5000) in obtaining genomic inbreeding estimates comparable to those 

obtained using the full set of markers in linkage equilibrium. 1000 samples were generated of 

each set size by sampling from the 7217 SNPs in linkage equilibrium using the --thin command 

in PLINK. The gain in accuracy as the number of SNPs was increased was measured using the 

correlation between the inbreeding values in each sample of a reduced set and the full set in 

linkage equilibrium. Additionally, we calculated the mean inbreeding for each sample of the 

reduced SNP set. Overall means of inbreeding values, their correlations with the full set and 

corresponding 95% confidence intervals were calculated for the 1000 samples of each set in 

Microsoft Excel (2007).  
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Pair-wise IBS, genetic distance and genetic background analysis 
 
Genome wide markers have remarkable power to discern cryptic relationships between 

individuals and detect pedigree errors. In order to leverage that ability, we used PLINK to 

generate a pair-wise identity by state (IBS) matrix of individuals using the option                        -

-cluster --matrix.  

The --genome command then calculates an IBS distance (Dst) metric which represents the 

proportion of IBS alleles shared and is defined as follows: 

��� =
���2 + 0.5 × ���1

�
 

 Where IBS2 and IBS1 are the number of loci that share 2 or 1 alleles IBS, respectively, and N is 

the number of loci tested. 

We used the IBS distance metric (Dst) to calculate the genetic distance (D) between individuals 

in pair-wise combinations following Ai et al. (2013), where D was defined as 1-Dst. 

Additionally, we performed a multidimensional scaling analysis (MDS) to assess clustering 

within group (i.e the herd itself) and for the herd’s founders amongst other Arabian horses using 

the command --cluster --mds-plot in PLINK.  

In order to further describe relatedness among these horses, we assessed the genetic admixture 

within the group and for the group’s founders amongst other Arabian horses using the bayesian 

clustering algorithm STRUCTURE (Pritchard et al. 2000) using a burn-in period of 10,000 

iterations followed by 20,000 iterations from which estimates were obtained. For the choice of 

the optimal number of putative genetically-defined populations i.e K, 20 structure runs were 

conducted for each K value from K=1 to K=8. The best K was determined using the method of 

(Evanno et al. 2005) which is based on the change in the log probability of data between 

successive K values. The analysis showed that the best K value was 3 for the analysis of the herd 
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amongst American, Polish and Egyptian Arabian horses. The within herd analysis best K value 

was 5.  The results were plotted using CLUMPP (Jakobsson & Rosenberg 2007).  

 

Genomic relationship measures  
 
Although we recognize the potential for a better pair-wise relatedness measure from SNPs, we 

chose the concordance with the pedigree as a criterion to compare between methods as it was 

previously used as gold standard in other studies e.g Lopes et al. (2013b) and (Santure et al. 

2010). Also, the Arabian horse is a well-documented breed, and we had a deep pedigree with a 

high PCI for all genotyped animals. We compared the relationship coefficients obtained from the 

following four software packages to the pedigree relationships: 

1) The R package GenABEL (Aulchenko et al. 2007) was used to obtain kinships measures 

weighed by the frequency of the alleles using the IBS function. 

2) In the program KING (Manichaikul et al. 2010), we used the Robust estimator which 

assumes all individuals are unrelated. For comparison, we also used the --homo option 

which assumes all samples are from a homogeneous population. 

3) We used the R package SNPRelate (Zheng et al. 2012), to obtain the method of moments 

as well as the maximum likelihood estimated of pair-wise relatedness using the 

snpgdsIBDMoM (essentially equal to PLINK’s IBD relationship estimate i.e PI HAT) and 

snpgdsIBDMLE functions respectively.   

4) Pair-wise kinship measures were obtained in GCTA (Yang et al. 2011) using the 

command --make-grm. 
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RESULTS AND DISCUSSION 

Pedigree Completeness Index 

The average PCI by year of birth was consistently above 85 % after the close of the herd 

in 1981 (Figure 4.2).  For the genotyped animals, the PCI was 100 %. This indicates that for this 

population the pedigree is of an excellent quality and can be reliably used to compare the 

inbreeding values derived from it with the genomic measures of inbreeding. 

 

Figure 4.2. Average Pedigree Completeness Index by Year of Birth 

Pedigree Inbreeding, Genomic Inbreeding and Homozygosity 

      There was a significant moderate correlation between pedigree and genomic inbreeding 

values (r = 0.41, p=0.014) (Figure 4.3-A). Yet, the magnitude of this correlation indicates that 

pedigree inbreeding and genomic inbreeding do not strongly agree with one another. Some 

individuals with low genomic inbreeding values had relatively high pedigree inbreeding values. 

Also, a number of individuals with similar pedigree inbreeding values (e.g halfsibs) had very 

different genomic pedigree values. Such discrepancies can result from errors in the pedigree 

itself, but are frequently attributed to Mendelian sampling which is ignored in pedigree 
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inbreeding. Also, the small herd size of 36 horses could have contributed to a bias in the 

estimation of the actual allelic frequencies as these are derived only from the genotypes of these 

36 animals. In an ideal situation allelic frequencies in the base population would be used but in 

practice this is not often possible (Speed & Balding 2014). In a simulation study, use of allele 

frequencies estimated in the base population resulted in improved agreement between pedigree 

and genomic estimated inbreeding values (VanRaden 2008). In fact, adjusting for allele 

frequencies in the base population also made genomic estimated breeding values (GEBVs) more 

accurate (VanRaden et al. 2011). Nevertheless, we used the correlation between pedigree and 

genomic inbreeding values as an easy way to check the concordance of these two approaches.  

 

The pedigree estimated inbreeding values (FPED), their corresponding genomic inbreeding values 

(FSNP) and percentage of homozygous markers for each individual are shown in Table 4.2. The 

overwhelming majority of the animals had negative genomic inbreeding values with a mean of -

0.184 (SD=0.128). This is a result of the usage of the current population as the base population 

to estimate allelic frequencies as mentioned above (Powell et al. 2010). However, it is indicative 

that for most animals, the observed homozygosity at the individual level is lower than the 

expected by chance (Purcell et al. (2007) and Powell et al. (2010) ). Therefore, the inbreeding 

value of each animal should be interpreted in the context of the rest of the animals in this herd. 

The genomic inbreeding value and percentage of homozygous markers were very highly 

correlated (r=0.99, p < 2.2e-16). Indeed the genomic inbreeding estimates implemented in the 

PLINK software rely on the number of homozygous SNPs expected by chance and the number 

of homozygous SNPs observed (Purcell et al. 2007) . 
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Figure 4.3.   A. Pedigree Inbreeding vs Genomic Inbreeding values. 
               B. Pair-wise Pedigree Relationships vs Genomic Relationships.  
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Table 4.2. Pedigree estimated inbreeding values and percentage of homozygous markers across 
the genome for each animal in the herd. 
 

 

Animal 
ID 

Year of 
Birth 

Pedigree inbreeding 
(F) 

Genomic 
inbreeding % Homozygosity 

42 2013 0.383 -0.342 45.75 

44 1996 0.242 -0.4174 42.79 

47 1992 0.235 -0.2874 48.26 

56 2010 0.163 -0.2658 49.04 

46 2005 0.285 -0.5317 38.16 

65 2009 0.291 -0.2915 48.02 

72 2013 0.292 -0.3393 45.92 

66 2010 0.291 -0.4106 42.77 

54 2001 0.166 -0.05591 57.53 

50 2010 0.287 -0.2592 49.28 

41 2007 0.314 -0.2351 50.34 

63 2008 0.283 -0.1757 52.76 

55 2005 0.278 -0.1335 54.45 

43 2012 0.341 -0.1545 53.50 

45 2001 0.285 -0.2037 51.64 

51 2011 0.287 -0.2417 49.87 

71 2013 0.291 -0.1578 53.48 

60 1998 0.273 -0.161 53.35 

59 2005 0.294 -0.1713 52.89 

62 2006 0.325 -0.1869 52.23 

61 2001 0.273 -0.1663 53.13 

38 2001 0.306 -0.2169 51.03 

67 2010 0.317 -0.1016 55.76 

53 2013 0.365 -0.1072 55.52 

64 2008 0.291 -0.168 52.98 

48 2004 0.376 -0.107 55.50 

39 2008 0.383 -0.1049 55.50 

73 2013 0.383 -0.1812 52.50 

49 2005 0.344 -0.09916 55.84 

52 2012 0.365 -0.05799 57.50 

70 2013 0.369 -0.05088 57.79 

40 2009 0.383 -0.06017 57.42 

69 2012 0.369 0.04782 61.74 

58 2012 0.321 0.005146 60.01 

68 2012 0.355 0.05384 61.99 
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Since pedigree-estimated inbreeding values are not equal to the true inbreeding values 

(VanRaden et al. 2011), they do not perfectly reflect of the level of homozygosity in the genome. 

For example, horse ID: 42 is predicted based on her pedigree to be among some of the most 

inbred individuals in the sample set (FPED= 0.383), yet with just 45.75 % homozygous markers, 

she is below the herd mean of 52.33 %. On the other hand, horse ID: 58, has an FPED value of 

0.321 and a genomic homozygosity value of 60.0 %, which is notably higher compared to that of 

horse ID: 42. Indeed, full siblings with same pedigree inbreeding values have different levels of 

homozygosity. For instance, horses ID: 64, ID: 71 and ID: 65 are full siblings with identical FPED 

values of 0.291 but their genomic homozygosity varies from 48.02% to 53.47%. Thus, when 

considering matings for individual animals rather than a population of individuals, genomic 

values are more accurate in assessing the level of homozygosity across the genome. 

In the horse, selection is often applied though mate choice and culling of very specific 

individuals, rather than simultaneously across a group or herd.  Individual horses can be of high 

monetary value, and therefore the benefits in increased accuracy of inbreeding measures through 

genomics may be well worth the added expense. For example, while individuals ID:46 and ID:45 

both possessed a pedigree estimated inbreeding value of 0.285, individual ID:46  has a 33 % 

lower genomic inbreeding value and is likely the better choice as a future breeding animal for the 

goal of maintaining genetic diversity.    

Correlation of birth year and pedigree-estimated inbreeding levels suggested a significant trend 

toward increasing inbreeding in later foal crops (r= 0.402334, p-value 0.01499) (Figure 4.4), 

which was expected given the closure of the herd in 1981. Yet, birth year was not significantly 

correlated with either genomic homozygosity (r= 0.223, p= 0.189) nor genomic inbreeding (r= 

0.229, p= 0.178). Improved accuracy of genome based calculations may have highlighted an 
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underlying effect of simultaneous selection for overall health. The lack of correlation here is 

perhaps more reflective of the reality within the herd as there is a rigorous effort to select horses 

based on health and conformation traits. This selection could be enough to favor individuals with 

higher heterozygosity and choosing them would therefore maintain genomic diversity within the 

herd.  

 

 

Figure 4.4. Pedigree estimated inbreeding values (F) and genomic inbreeding for the herd 
over the years.  

 

Estimation of the minimum number of markers sufficient for inbreeding calculation 

Although the cost of genotyping by high throughput arrays is falling, application of these 

technologies in animal production is still economically challenging for most producers. 

Therefore, determining the minimum number of unlinked loci required to provide a reasonable 

estimate of inbreeding is important for future development of low-cost genotyping panels. We 
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found that decreasing the number of unlinked SNPs used to measure genomic inbreeding did 

decrease the correlation of these values with those obtained using the full set of 7219 SNPs in 

linkage equilibrium (Figure 4.5). The correlations ranged from 0.77 to 0.83 for subsets 

comprised of 500 to 5000 SNPs. The true mean inbreeding value of  -0.1843 was captured 

successfully by all reduced sets, although the 95% confidence interval was 5 times wider in the 

smallest (500 SNPs, CI = 0.0027) than that in the largest set (5000 SNPs, CI = 0.00052). 

However, increasing the number of markers from 2000 to 5000 did not considerably increase the 

correlation, which improved only by 1% (from 0.82 to 0.83). Therefore, we recommend that sets 

of at least 2000 markers in linkage equilibrium be used for inbreeding estimation in the Arabian 

horse and breeds of similar structure. The same number of markers was found sufficient for 

calculating inbreeding in pigs (Lopes et al. 2013a)  and is very close to the 2500 SNPs suggested 

for beef cattle to estimate relationships (Rolf et al. 2010). However, as other horse breeds and 

livestock species may possess significantly different haplotype length across the genome, this 

marker depth is likely not universally appropriate.  
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Figure 4.5. Mean correlations and Inbreeding (with 95% confidence intervals) from the 
bootstrap analysis. The x-axis represents different numbers of linkage equilibrium randomly 
chosen SNPs in each of the 1000 replicates. Squares shows the mean correlation between the 
inbreeding measures using the full set (7217 SNPs) and diamonds shows mean inbreeding 
obtained for each run.  

 

Evaluation of Genetic Relationships Methods 

 Since the utility of genomic markers gained traction, numerous methods/software packages for 

measuring genetic similarity have been developed. Thus, the choice of an effective measure of 

genomic relationships can be challenging and here, we chose the genomic relationships that 

correlated the most with pedigree relationships. Pair-wise correlations between relationships 

estimated between those programs are shown in Figure 4.6. The KING program, using the 

Robust estimator, produced the most concordant (r= 0.77, p < 0.005) pair-wise relationship 

estimates to the pedigree relationship coefficients (Figure 4.3-B) and therefore we decided to use 

its estimates in this study. This correlation was surprisingly low given the number of SNPs used. 

However, it was still within the range of 0.73 and 0. 858 previously reported by Santure et al. 

(2010) and Lopes et al. (2013b) respectively. It is worth mentioning that the SNPRelate (MOM) 
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ranked the second with a correlation of (r=0.71, p < 0.005). Although theoretically MLE 

estimates are more reliable (Zheng et al. 2012), SNPRelate (MLE) estimate did not perform as 

well as their MOM counterparts (r=0.58, p < 0.0005). This may be due a result of the 

asymptotically unbiased nature of MLE estimates, requiring larger sample sizes to yield accurate 

estimates.  

Genetic Structure and Relationships within the Herd 

Relationship measures derived from genomic data are more accurate as they are derived from 

identity by state sharing of alleles, rather than the probability of sharing by descent predicted 

from pedigrees (Speed & Balding 2014). Thus, genotype based methods allow observation of  

between-sibling variation resulting from Mendelian sampling (Lopes et al. 2013b). Pedigree 

estimates of relatedness also assume that founder animals are unrelated (Wang et al. (2014) and 

Speed and Balding (2014)). Yet, this assumption is unrealistic as all individuals are related at 

some time point in the past (Powell et al. 2010). As expected, pair-wise D values were inversely 

correlated with the pedigree relationships (r= -0.75, p= 2.2e-16). This means that the genetic 

distance between pairs of individuals became less the higher the pedigree relationships between 

them and vise versa. However, the mean pair-wise D value for these animals was only 0.28 (SD 

=0.036), which is only slightly higher than the within breed mean of 0.23 (SD=0.009) observed 

by McCue et al. (2012) for Arabian horses. It is remarkable that the two values are this close, 

given that the animals used in our study belong to the same herd. 
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The matrix of proportion of alleles identical by state (IBS) between horses can be found in Table 

4.3.  It is a straightforward calculation of the proportion of markers that are identical in genotype 

between all possible pairs of two individuals.  This matrix is useful in finding pairs of individuals 

that are more similar or different from each other than would be expected by chance in a random 

homogenous sample. For instance, in the two daughters of the dam ID: 47, daughter ID: 51 is 

0.784 similar to her mother, while daughter ID: 50 is 0.773 similar (despite identical pedigree 

derived relationship values).  An interesting observation was that of horse ID: 54 has an 

overwhelming majority of pair-wise IBS values below 0.65 which is in agreement of the 

pedigree (Figure 4.1). On the other hand, most pair-wise IBS values for horses ID: 59 and ID: 45 

are relatively high (> 0.80). This makes sense since they have the largest contribution of progeny 

in this herd.  
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Figure 4.6. Pair-wise correlations between various programs used to estimate relationships and the pedigree estimated relationships. 

Name of the program is shown in the diagonals. Upper diagonal elements represent correlations (their significance in parenthesis) 

between relationships measures of various programs. King_1= King (assuming homogenous population, King_2=King (robust 

estimation), SNP_relate_MLE= SNPRelate (using maximum likelihood estimation), SNP_relate_MOM= SNPRelate (using the 

method of moments), Genabel=GenABEL (using allele frequencies), GCTA=GCTA (using the default kinship measure).  
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Table 4.3. Pairwise identity-by-state (IBS) genetic similarity between individuals depicting a higher genome sharing between close 
relatives. Relatives with the same pedigree based relationships (e.g half sibs) can have different IBS values. 

 

 1642 1650 1658 1666 1643 1651 1659 1667 1644 1652 1660 1668 

1642 1 0.736711 0.724093 0.705788 0.733695 0.736798 0.776804 0.720573 0.784708 0.736784 0.679901 0.71382 

1650 0.736711 1 0.73584 0.715398 0.735832 0.759266 0.775801 0.735308 0.709387 0.725515 0.68914 0.757775 

1658 0.724093 0.73584 1 0.689189 0.743137 0.739835 0.784592 0.745425 0.732438 0.729329 0.685865 0.740894 

1666 0.705788 0.715398 0.689189 1 0.707659 0.731974 0.7349 0.693317 0.744997 0.692229 0.720926 0.684279 

1643 0.733695 0.735832 0.743137 0.707659 1 0.723501 0.79562 0.736975 0.751651 0.726125 0.69412 0.743517 

1651 0.736798 0.759266 0.739835 0.731974 0.723501 1 0.793517 0.716621 0.717547 0.748594 0.696157 0.725534 

1659 0.776804 0.775801 0.784592 0.7349 0.79562 0.793517 1 0.79948 0.775597 0.776814 0.730189 0.80893 

1667 0.720573 0.735308 0.745425 0.693317 0.736975 0.716621 0.79948 1 0.719717 0.724602 0.725127 0.756513 

1644 0.784708 0.709387 0.732438 0.744997 0.751651 0.717547 0.775597 0.719717 1 0.754314 0.685881 0.729654 

1652 0.736784 0.725515 0.729329 0.692229 0.726125 0.748594 0.776814 0.724602 0.754314 1 0.691452 0.722149 

1660 0.679901 0.68914 0.685865 0.720926 0.69412 0.696157 0.730189 0.725127 0.685881 0.691452 1 0.672559 

1668 0.71382 0.757775 0.740894 0.684279 0.743517 0.725534 0.80893 0.756513 0.729654 0.722149 0.672559 1 

1645 0.750642 0.749604 0.753168 0.689848 0.729258 0.747714 0.723186 0.705151 0.747079 0.737703 0.663999 0.737511 

1653 0.720954 0.744838 0.758682 0.692265 0.7453 0.767449 0.809637 0.750807 0.756567 0.779892 0.687044 0.752417 

1661 0.702355 0.720607 0.721708 0.751714 0.728284 0.740474 0.789925 0.749782 0.679607 0.710519 0.818642 0.699971 

1669 0.711867 0.730562 0.724176 0.711249 0.724003 0.706742 0.792994 0.742736 0.741553 0.709116 0.727002 0.741073 

1638 0.747304 0.684151 0.681145 0.689297 0.686762 0.69372 0.715053 0.692935 0.805054 0.70327 0.671102 0.687775 

1646 0.720858 0.711819 0.683295 0.798127 0.694629 0.723611 0.704413 0.674323 0.79783 0.699202 0.671394 0.680886 

1654 0.650729 0.667786 0.656504 0.653846 0.640913 0.652351 0.658664 0.659547 0.647562 0.650682 0.656439 0.636115 

1662 0.691145 0.716338 0.689626 0.70678 0.710686 0.718901 0.710183 0.720707 0.718954 0.710171 0.694773 0.797409 

1670 0.719027 0.725901 0.731752 0.729294 0.727864 0.74207 0.805958 0.740163 0.734609 0.728231 0.739896 0.751164 

1639 0.782438 0.686894 0.694652 0.684894 0.703422 0.702304 0.695168 0.668756 0.789948 0.709008 0.664109 0.68751 

1647 0.699265 0.773412 0.689313 0.716249 0.676792 0.784718 0.681232 0.681885 0.663415 0.693793 0.67175 0.688767 

1655 0.696959 0.693451 0.786501 0.682635 0.697724 0.704954 0.691494 0.711911 0.709913 0.692873 0.675997 0.694772 

1663 0.714445 0.696021 0.703401 0.688509 0.69368 0.714745 0.710909 0.758656 0.702858 0.686562 0.679718 0.728373 

1671 0.701991 0.707804 0.681194 0.739385 0.686388 0.69718 0.732244 0.68915 0.724729 0.677464 0.796736 0.705534 

1640 0.740213 0.702459 0.722392 0.680935 0.70889 0.711893 0.792645 0.740185 0.766492 0.721936 0.673379 0.71725 

1648 0.691233 0.677635 0.698305 0.67749 0.692166 0.71479 0.686957 0.678292 0.750717 0.804032 0.646285 0.689497 

1656 0.670702 0.688007 0.672739 0.716143 0.659576 0.688607 0.678392 0.673209 0.70523 0.659665 0.664834 0.661252 

1664 0.672999 0.675512 0.681271 0.757433 0.67774 0.684027 0.7038 0.688445 0.702759 0.668956 0.760451 0.684159 

1672 0.723669 0.715098 0.696069 0.796208 0.710775 0.719488 0.765805 0.705622 0.744285 0.698002 0.71323 0.688469 

1641 0.734571 0.721567 0.718915 0.704328 0.787607 0.711574 0.719835 0.707154 0.744842 0.700859 0.676867 0.721002 

1649 0.682255 0.687724 0.685218 0.691074 0.684576 0.689292 0.681884 0.65912 0.710679 0.692119 0.670789 0.68834 

1657 0.705482 0.68722 0.690513 0.724346 0.685109 0.690532 0.705043 0.6774 0.72598 0.697204 0.675529 0.673477 

1665 0.693672 0.689144 0.680868 0.762589 0.675278 0.6956 0.707997 0.671609 0.717367 0.682547 0.763725 0.657452 

1673 0.719858 0.720014 0.704515 0.715328 0.723227 0.733578 0.792152 0.767198 0.719372 0.71853 0.701355 0.734562 
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Table 4.3 (Continued) 

 1645 1653 1661 1669 1638 1646 1654 1662 1670 1639 1647 1655 
1642 0.750642 0.720954 0.702355 0.711867 0.747304 0.720858 0.650729 0.691145 0.719027 0.782438 0.699265 0.696959 
1650 0.749604 0.744838 0.720607 0.730562 0.684151 0.711819 0.667786 0.716338 0.725901 0.686894 0.773412 0.693451 
1658 0.753168 0.758682 0.721708 0.724176 0.681145 0.683295 0.656504 0.689626 0.731752 0.694652 0.689313 0.786501 
1666 0.689848 0.692265 0.751714 0.711249 0.689297 0.798127 0.653846 0.70678 0.729294 0.684894 0.716249 0.682635 
1643 0.729258 0.7453 0.728284 0.724003 0.686762 0.694629 0.640913 0.710686 0.727864 0.703422 0.676792 0.697724 
1651 0.747714 0.767449 0.740474 0.706742 0.69372 0.723611 0.652351 0.718901 0.74207 0.702304 0.784718 0.704954 
1659 0.723186 0.809637 0.789925 0.792994 0.715053 0.704413 0.658664 0.710183 0.805958 0.695168 0.681232 0.691494 
1667 0.705151 0.750807 0.749782 0.742736 0.692935 0.674323 0.659547 0.720707 0.740163 0.668756 0.681885 0.711911 
1644 0.747079 0.756567 0.679607 0.741553 0.805054 0.79783 0.647562 0.718954 0.734609 0.789948 0.663415 0.709913 
1652 0.737703 0.779892 0.710519 0.709116 0.70327 0.699202 0.650682 0.710171 0.728231 0.709008 0.693793 0.692873 
1660 0.663999 0.687044 0.818642 0.727002 0.671102 0.671394 0.656439 0.694773 0.739896 0.664109 0.67175 0.675997 
1668 0.737511 0.752417 0.699971 0.741073 0.687775 0.680886 0.636115 0.797409 0.751164 0.68751 0.688767 0.694772 
1645 1 0.760905 0.666885 0.714546 0.699495 0.750409 0.647072 0.784323 0.720396 0.781751 0.793015 0.777446 
1653 0.760905 1 0.725755 0.716854 0.703281 0.699959 0.654548 0.712395 0.744054 0.70312 0.720752 0.728102 
1661 0.666885 0.725755 1 0.706659 0.66353 0.65841 0.671323 0.698752 0.735699 0.645757 0.701161 0.692274 
1669 0.714546 0.716854 0.706659 1 0.695172 0.73238 0.639852 0.707634 0.817271 0.689302 0.682552 0.673932 
1638 0.699495 0.703281 0.66353 0.695172 1 0.726003 0.652447 0.690553 0.700584 0.799293 0.664337 0.676375 
1646 0.750409 0.699959 0.65841 0.73238 0.726003 1 0.656376 0.727996 0.727217 0.735535 0.738562 0.688367 
1654 0.647072 0.654548 0.671323 0.639852 0.652447 0.656376 1 0.651311 0.631138 0.635363 0.67285 0.675008 
1662 0.784323 0.712395 0.698752 0.707634 0.690553 0.727996 0.651311 1 0.706081 0.723829 0.745064 0.73216 
1670 0.720396 0.744054 0.735699 0.817271 0.700584 0.727217 0.631138 0.706081 1 0.68728 0.690822 0.672031 
1639 0.781751 0.70312 0.645757 0.689302 0.799293 0.735535 0.635363 0.723829 0.68728 1 0.697278 0.718465 
1647 0.793015 0.720752 0.701161 0.682552 0.664337 0.738562 0.67285 0.745064 0.690822 0.697278 1 0.7294 
1655 0.777446 0.728102 0.692274 0.673932 0.676375 0.688367 0.675008 0.73216 0.672031 0.718465 0.7294 1 
1663 0.786266 0.712123 0.685586 0.69936 0.686158 0.696381 0.657883 0.764323 0.702135 0.709274 0.736172 0.747965 
1671 0.695977 0.688876 0.729934 0.738137 0.704227 0.752305 0.644701 0.684219 0.745592 0.697798 0.709696 0.673666 
1640 0.673933 0.750417 0.708622 0.717437 0.799296 0.688868 0.644394 0.660044 0.730335 0.719579 0.650272 0.657141 
1648 0.790385 0.797743 0.64687 0.666592 0.703775 0.713761 0.651852 0.708178 0.67364 0.7195 0.731881 0.718825 
1656 0.688928 0.688511 0.658309 0.691092 0.670469 0.760076 0.77263 0.682772 0.685598 0.662971 0.728678 0.682361 
1664 0.687491 0.682919 0.692816 0.787813 0.686027 0.760565 0.634468 0.692308 0.801053 0.673913 0.704792 0.676072 
1672 0.692301 0.712448 0.740627 0.73682 0.698464 0.777816 0.647018 0.697533 0.730246 0.703444 0.705388 0.682475 
1641 0.798481 0.718509 0.680553 0.704061 0.723745 0.729045 0.647527 0.741958 0.700857 0.76856 0.73246 0.724246 
1649 0.762796 0.690484 0.665721 0.666561 0.676151 0.713763 0.625184 0.718662 0.661204 0.718858 0.715706 0.68749 
1657 0.702953 0.691576 0.669409 0.713229 0.692196 0.773155 0.770731 0.703201 0.692044 0.684949 0.712878 0.694385 
1665 0.694938 0.69441 0.719147 0.706961 0.690923 0.781399 0.654612 0.683307 0.729832 0.680689 0.728114 0.683483 
1673 0.716896 0.745312 0.758854 0.709411 0.667062 0.711948 0.647029 0.734166 0.718168 0.682072 0.701456 0.690919 



 

116 

Table 4.3 (Continued) 

 1663 1671 1640 1648 1656 1664 1672 1641 1649 1657 1665 1673 

1642 0.714445 0.701991 0.740213 0.691233 0.670702 0.672999 0.723669 0.734571 0.682255 0.705482 0.693672 0.719858 

1650 0.696021 0.707804 0.702459 0.677635 0.688007 0.675512 0.715098 0.721567 0.687724 0.68722 0.689144 0.720014 

1658 0.703401 0.681194 0.722392 0.698305 0.672739 0.681271 0.696069 0.718915 0.685218 0.690513 0.680868 0.704515 

1666 0.688509 0.739385 0.680935 0.67749 0.716143 0.757433 0.796208 0.704328 0.691074 0.724346 0.762589 0.715328 

1643 0.69368 0.686388 0.70889 0.692166 0.659576 0.67774 0.710775 0.787607 0.684576 0.685109 0.675278 0.723227 

1651 0.714745 0.69718 0.711893 0.71479 0.688607 0.684027 0.719488 0.711574 0.689292 0.690532 0.6956 0.733578 

1659 0.710909 0.732244 0.792645 0.686957 0.678392 0.7038 0.765805 0.719835 0.681884 0.705043 0.707997 0.792152 

1667 0.758656 0.68915 0.740185 0.678292 0.673209 0.688445 0.705622 0.707154 0.65912 0.6774 0.671609 0.767198 

1644 0.702858 0.724729 0.766492 0.750717 0.70523 0.702759 0.744285 0.744842 0.710679 0.72598 0.717367 0.719372 

1652 0.686562 0.677464 0.721936 0.804032 0.659665 0.668956 0.698002 0.700859 0.692119 0.697204 0.682547 0.71853 

1660 0.679718 0.796736 0.673379 0.646285 0.664834 0.760451 0.71323 0.676867 0.670789 0.675529 0.763725 0.701355 

1668 0.728373 0.705534 0.71725 0.689497 0.661252 0.684159 0.688469 0.721002 0.68834 0.673477 0.657452 0.734562 

1645 0.786266 0.695977 0.673933 0.790385 0.688928 0.687491 0.692301 0.798481 0.762796 0.702953 0.694938 0.716896 

1653 0.712123 0.688876 0.750417 0.797743 0.688511 0.682919 0.712448 0.718509 0.690484 0.691576 0.69441 0.745312 

1661 0.685586 0.729934 0.708622 0.64687 0.658309 0.692816 0.740627 0.680553 0.665721 0.669409 0.719147 0.758854 

1669 0.69936 0.738137 0.717437 0.666592 0.691092 0.787813 0.73682 0.704061 0.666561 0.713229 0.706961 0.709411 

1638 0.686158 0.704227 0.799296 0.703775 0.670469 0.686027 0.698464 0.723745 0.676151 0.692196 0.690923 0.667062 

1646 0.696381 0.752305 0.688868 0.713761 0.760076 0.760565 0.777816 0.729045 0.713763 0.773155 0.781399 0.711948 

1654 0.657883 0.644701 0.644394 0.651852 0.77263 0.634468 0.647018 0.647527 0.625184 0.770731 0.654612 0.647029 

1662 0.764323 0.684219 0.660044 0.708178 0.682772 0.692308 0.697533 0.741958 0.718662 0.703201 0.683307 0.734166 

1670 0.702135 0.745592 0.730335 0.67364 0.685598 0.801053 0.730246 0.700857 0.661204 0.692044 0.729832 0.718168 

1639 0.709274 0.697798 0.719579 0.7195 0.662971 0.673913 0.703444 0.76856 0.718858 0.684949 0.680689 0.682072 

1647 0.736172 0.709696 0.650272 0.731881 0.728678 0.704792 0.705388 0.73246 0.715706 0.712878 0.728114 0.701456 

1655 0.747965 0.673666 0.657141 0.718825 0.682361 0.676072 0.682475 0.724246 0.68749 0.694385 0.683483 0.690919 

1663 1 0.694846 0.668531 0.704164 0.68163 0.684833 0.683239 0.71364 0.704703 0.685027 0.676695 0.780831 

1671 0.694846 1 0.685168 0.656926 0.702082 0.784203 0.771212 0.70695 0.689232 0.705594 0.784545 0.684535 

1640 0.668531 0.685168 1 0.695312 0.67314 0.68305 0.72291 0.703891 0.680641 0.683857 0.686465 0.71206 

1648 0.704164 0.656926 0.695312 1 0.693073 0.68912 0.679922 0.730119 0.742156 0.707904 0.693936 0.69524 

1656 0.68163 0.702082 0.67314 0.693073 1 0.727086 0.722232 0.69437 0.675958 0.808449 0.731535 0.689223 

1664 0.684833 0.784203 0.68305 0.68912 0.727086 1 0.754434 0.708833 0.67874 0.726731 0.805432 0.698004 

1672 0.683239 0.771212 0.72291 0.679922 0.722232 0.754434 1 0.71201 0.70444 0.737691 0.767972 0.747631 

1641 0.71364 0.70695 0.703891 0.730119 0.69437 0.708833 0.71201 1 0.742747 0.717135 0.710518 0.718268 

1649 0.704703 0.689232 0.680641 0.742156 0.675958 0.67874 0.70444 0.742747 1 0.683632 0.689575 0.694717 

1657 0.685027 0.705594 0.683857 0.707904 0.808449 0.726731 0.737691 0.717135 0.683632 1 0.737163 0.70748 

1665 0.676695 0.784545 0.686465 0.693936 0.731535 0.805432 0.767972 0.710518 0.689575 0.737163 1 0.710625 

1673 0.780831 0.684535 0.71206 0.69524 0.689223 0.698004 0.747631 0.718268 0.694717 0.70748 0.710625 1 



 

117 

        The within herd MDS analysis (Figure 4.7-A and 4.7-B) allows consideration of 

components of variation from across the entire herd, rather than only between pairs of animals. 

Therefore, horses with similar genetic makeup cluster together in multidimensional space. The 

MDS analysis demonstrates the uniqueness of horse ID:54 which is clearly separated from the 

herd.  The within herd STRUCTURE analysis showed that the best K value is K=5, which is 

approximately equal to the number of families in the herd. The STRUCTURE analysis (Figure 

4.8-a) supports the MDS analysis on horse ID:54 and assigns her and her daughters to the same 

sub-group membership, which agrees with the reported recent addition of this individual to the 

herd. The MDS analysis also confirms the high degree of relatedness of horses ID: 59 and ID: 45 

to a many members of this group.  STRUCTURE analysis also detected this relationship, 

depicting ID: 59 and 45 as ancestors in the herd with many individuals sharing their ancestry. 

The STRUCTURE analysis also accurately captured parent-offspring relationships. For example, 

parent ID: 38 and offspring ID: 39 as well as parents ID: 59 and ID: 64 and their offspring ID: 69 

and ID: 70. Each of these methods demonstrates the power and utility of SNPs as a tool for 

reconstructing unknown, prehistoric or erroneous pedigree relationships.  
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Figure 4.7. Within herd multidimensional scaling analysis of genotypes. A. Dimension one vs two right B. Dimension two vs three. 
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Genetic Similarity of the Herd to Other Arabian Horses 

As a whole, this herd of horses is markedly genetically similar to the reference Arabian 

horses of Egyptian origin. The founders of this herd are clearly clustered by the MDS analysis 

within the Egyptian Arabians (Figure 4.8-c). The extension of this analysis (dimension two vs 

three) adds detail, separating horse ID: 54 from the other founder animals of this herd and closer 

to the other Egyptian and US Arabians. The STRUCTURE analysis comparing the herd to other 

Arabian horses also supported their reported Egyptian ancestry (Figure 4.8-b). The herd’s 

grandparents share ancestry with most of the Egyptian Arabian reference individuals (shown in 

brown). The best K value of 3 was expected since we had Arabian horse belonging to 3 distinct 

origins (American, Polish and Egyptian Arabian horses). Differences among the founders are 

also apparent.  Horse ID: 44, for example, possesses a 4 % proportion of his ancestry in common 

with polish bloodlines (shown in yellow). Also, horse ID: 54 has some 4.2 % similarity to the 

reference US-registered horses (as detected by the MDS analysis, Figure 4.8-c). The results also 

showed that an individual identified as Egyptian Arabian had a striking similarity of 99% to US 

Arabian horses. This finding was also supported by the MDS analysis (Figure 4.8-c) where the 

horse clusters with US Arabian horses. Given the evidence from all aforementioned analyses, we 

presume that this may be a result of misidentification of the horse as such a finding is difficult to 

have arisen due to chance alone. Altogether, the three types of population genetic analyses 

strongly illustrate the Egyptian Arabian ancestry of the herd.  
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Figure 4.8. a. Population of origin assignments using STRUCTURE for the animals with 

the group to each of the five clusters. Different colors indicate different assignment combinations 

(proportions of membership). Animals’ IDs are shown in the labels below the figure. b. 

Population of origin assignments using STRUCTURE for the group’s founders amongst other 

Arabian horses to each of the three clusters. Actual population of origin for each individual is 

shown in labels below the figure. Proportion of membership is colored in Blue for US Arabian, 

yellow for Polish Arabian and brown for Egyptian Arabian horses. c. Multidimensional scaling 

of the group’s founders amongst other Arabian horses. Left figure is dimension one vs two and 

right figure is dimension two vs three. 
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CONCLUSION 

The purpose of this study was to elucidate the genetic background of the herd using modern 

high-throughput genotyping techniques. Estimates of relatedness within the herd and amongst 

the herd founders and other Arabian Horses highlighted some key differences from pedigree 

inferred relationships and historical data. Additionally, analysis based on genotypes enabled re-

capitulation of the familial relationships among these horses and demonstrated their Egyptian 

ancestry among other Arabian horse bloodlines. Altogether, our results signify the practical 

benefits of genome-wide genotyping methods for quantification of inbreeding and inference of 

relationships beyond those illustrated in the pedigree. 
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CHAPTER 5 
 

SUMMARY 
 

The recent improvements in the methods of whole genome sequencing and genotyping have 

largely benefitted the horse genetics community as well as other livestock and non-model 

organisms. These improvements coincided with a rapid development of tools and applications as 

well as in computational power available to analyze the relatively large amount of data resulting 

from sequencing and genotyping projects.  

Following completion of the horse genome in 2009, a plethora of studies have utilized the 

sequence information. The SNPs identified as part of the equine genome project helped design 

the 50K and later 70K Illumina equine genotyping array. These genotyping arrays assisted in the 

characterization of the phylogenetic, diversity and inbreeding measures in a large number of 

horse breeds (Binns et al. 2012; McCue et al. 2012; Petersen et al. 2013). Additionally, these 

genotyping arrays enabled mapping a number of important morphological and health traits in the 

horse (Brooks et al. 2010; Makvandi-Nejad et al. 2012). The falling cost of next generation 

sequencing technology resulted in generation of a number of sequences for several breeds of 

horse (Doan et al. 2012; Jun et al. 2014). To date these projects have added to the known 

variants for each of those breeds.  

In chapter two of the thesis, variants discovered by next generation paired-end sequencing 

technology generated were annotated in six genomes belonging horses from six different breeds.  

This technology proved to be very successful recently in genome annotation and variants 

discovery in cattle and chicken (Daetwyler et al. 2014; Yan et al. 2014). The functional 

Annotation of Animal Genomes (FAANG) project, an international  efforts in annotating various 

livestock genomes is primarily utilizing next generation sequencing technologies to achieve its 
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objectives (Andersson et al. 2015).  The work in this dissertation adds to the growing wealth of 

genomic data made available for the horse. We detected and functionally annotated 8,128,658 

SNPs and 830,370 small INDELs. Of the SNPs we detected, 5,221,242 SNPs were novel SNPs 

not reported previously in ENSEMBL or dbSNP data bases. Additionally, we were able to detect 

structural and copy number variations unique to each of six horses that we also functionally 

annotated. Incorporating a larger number of breeds than previous studies enabled us to discover a 

larger number of variants of all types. It also enabled us to determine the private variants 

pertaining to each horse which is informative of the specific biology of these horse breeds. These 

variations are a valuable addition to the existing genomic variation in the horse. We formatted 

them into user friendly tracks and are now available publically on-line for the horse genetics 

community for future studies. These annotations will be utilized in the construction of SNPs and 

INDELs marker panels as well as in the creation of high density linkage maps. In addition, our 

analysis revealed a copy number gain at the latherin locus (LATH) in all six horses but the 

magnitude of the gain was different between different horses. Latherin is a surface-active, non-

glycosylated protein that is hypothesized to play an important role in the thermoregulation of the 

horse. It is presumed to do that by acting as a wetting agent that facilitates evaporative cooling 

by reducing water surface tension at low concentrations (McDonald et al. 2009). 

In chapter three, a mixed model based GWAS study was used to identify QTLs contributing to 

the variation in height at the withers in horses. Mapping QTLs in the horse was largely based on 

traditional methods such as linkage mapping. However, the availability of genome-wide 

genotyping arrays revolutionized the QTL mapping studies by making available thousands of 

SNPs across the genome that were used in GWAS studies to map QTLs. However, a hurdle that 

was always of concern when conducting a GWAS was the existence of confounding factors such 
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as kinship and population structure which results in false positive results. Mixed models are very 

powerful in accounting for both these factors in GWAS studies and are now considered the gold 

standard method for that purpose (Hoffman 2013). Unlike most GWAS studies which assume an 

additive model, we used a dominant model to map the QTLs which enabled us to discover QTLs 

affecting withers height dominantly. To complement GWAS, a cross-population composite 

likelihood ratio test (XP-CLR) test was applied in order to search for regions under selection in 

the genomes of horses of large versus small skeletal size. Both the GWAS and the XP-CLR test 

detected a significant locus at ECA1: 37676322 in an intron of the ANKRD1 gene. ANKRD1 is 

involved in the signaling pathways of muscle remodeling and differentiation which is suggestive 

of the role it might be playing in influencing withers height variation between horses. We were 

able to verify our finding by genotyping an independent sample of 90 American Miniature 

horses. Our results showed that horses possessing the GG or AG genotypes were 4.064 cm taller 

than those with the AA genotype.  

Chapter four of this thesis demonstrates the utility of the Equine SNP70 genotyping array in 

assessing relatedness, inbreeding and genetic structure in an Arabian horse herd. Traditionally, 

the genetic structure was assessed using microsatalite markers (Khanshour et al. 2013) and 

inbreeding was calculated using pedigree information (Pirault et al. 2013). The Equine SNP70 

genotyping array provided a very powerful alternative to microsatellite markers in assessing 

inbreeding and genetic structure. Estimates of relatedness within the herd and amongst the herd 

founders and other Arabian Horses highlighted some key differences from pedigree 

relationships. Moreover, the analysis based on the SNP70 genotyping array enabled re-

capitulation of the familial relationships among these horses and demonstrated their Egyptian 

ancestry among other Arabian horse bloodlines.  
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During the past decade, a remarkable improvement has taking place in the cost, speed and read 

length of NGS technology. The ever increasing technological advancement will result in even 

longer reads at a lower sequencing cost. For instance PacBio RS II system has a mean of 20 

kilobases for a very competitive price making it an ideal tool to finish genome assemblies. 

Nevertheless, errors during sample preparation or sequencing are still a limiting factor in NGS 

technologies. Sequencing errors could be the result of amplification bias during PCR, 

polymerase mistakes. These errors especially impact the ability to detect of rare variants (Edward 

J Fox 2014). Therefore, future research needs to focus at improving the accuracy of base calling 

in different NGS technologies. Future NGS platforms should also ideally be affordable, fast, and 

have high accuracy. In addition, more advancement needs to be made both in computational 

algorithms and molecular genotyping in detecting SNVs and SVs using NGS reads.  More 

specifically, more improvement in the boundaries of SVs and CNVs events and more precise 

quantification of CNVs is required (Handsaker et al. 2015). New technologies such as droplet 

digital PCR (ddPCR) proved to be very accurate in determining copy number variation (with a 

concordance rate of 99.9%) although its cost is still a limiting factor. That been said, NGS is very 

promising in revolutionizing genetic diagnostics, prognostics, disease association and clinical 

microbiology (Salipante S. J. 2013; Lohmann & Klein 2014). An excellent example of the 

application of NGS technology in diagnostics is the development of a NGS test for mutations 

BRCA1 and BRCA2 genes implicated in the development of breast cancer in humans 

(Feliubadaló et al. 2012). Also, in horses, NGS have proved successful for discovery and 

screening of causal variants in rare genetic disorders such as Incontinentia Pigmenti (Towers et 

al. 2013).  
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Being a non-model organism, variants in the equine genome are still poorly characterized. The 

work presented in this thesis utilizes the recent advancements in sequencing and genotyping 

technology and forms the basis for many future research studies. The NGS variants annotated in 

this work could be utilized in the discovery of causal mutations for various production and health 

traits in the horse. Moreover, these variants are a valuable asset to fully exploit the similarity 

between the equine and human genomes in human biomedical research. In addition, the work 

presented here utilized the equine Equine SNP50 and Equine SNP70 genotyping arrays for QTL 

mapping and characterizing the genomic inbreeding of an Arabian horse herd respectively. 

Therefore, the findings discussed in this dissertation can be utilized by equine breeders, 

clinicians and researchers in future studies.  
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