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Silicon photonics has the potential to enable continued scaling of computing

performance by providing efficient high speed interconnects within and be-

tween logic processors, memory, and other peripherals, which are currently lim-

ited by fundamental limits of RF attenuation and spatial bandwidth density of

electrical interconnects. However, the path to high performance, cost effective,

and scalable integration of silicon photonics with CMOS microelectronic com-

ponents has not been clear.

In this dissertation, we present the vision of the Backend Deposited Silicon

Photonics (BDSP) platform that can seamlessly integrate silicon photonics with

CMOS microelectronics without disrupting the CMOS fabrication process. Ev-

ery aspect of BDSP platform, including excimer laser annealed polycrystalline

silicon, low loss silicon nitride waveguide, modulator, detector, electrical inter-

face, backend CMOS compatibility, and 3D waveguide integration, is discussed

in detail.

We experimentally demonstrate key components of the backend deposited

silicon photonics platform. We experimentally establish the post processing

thermal budget limit for a 90 nm bulk CMOS process as 400◦C for 90min. We

then demonstrate fabrication of high quality passive polysilicon optical res-

onators with quality factors above 12,000 using excimer laser anneal. Build-

ing on this work, we demonstrate gigahertz electro-optic polysilicon modulator



compatible with CMOS backend integration and also show photodetector oper-

ation. Optical resonators and waveguides monolithically integrated on CMOS

and 3D integration of silicon nitride waveguide and polysilicon waveguide are

also demonstrated. In addition, we demonstrate quasi-linear electro-optic phase

modulation in silicon using optical mode and PN junction engineering. Finally,

results are summarized and possible future works based on BDSP are discussed.

This demonstration of the proposed backend deposited silicon photonics

opens up a whole new horizon to silicon photonics integration on CMOS. By

decoupling CMOS fabrication from photonics fabrication, we lower the barrier

to introducing silicon photonics into CMOS foundries and potentially accelerate

the adoption of silicon photonics.
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CHAPTER 1

INTRODUCTION

1.1 Silicon photonics

Silicon photonics, the field of integrating optical components and systems with

microelectronics in a shared silicon Complementary Metal Oxide Semiconduc-

tor (CMOS) platform, has made enormous progress in the past decade. Its

promises are numerous, including dramatic reduction of cost in fabricating pho-

tonic components and enabling large scale integration of optical components

for complex systems. One of the biggest promises of silicon photonics is in en-

abling continued scaling of computing performance by enabling efficient high

speed interconnects within and between logic processors, memory, and other

peripherals, which are currently limited by fundamental limits of RF attenua-

tion and spatial bandwidth density of electrical interconnects. Advances in sil-

icon photonics have produced high performance building blocks such as mod-

ulators, detectors, switches, and multiplexers / demultiplexers that are highly

desirable for integration with CMOS systems to enable optical interconnects [1].

Silicon modulators operating at 40 Gbps have been demonstrated by multiple

groups [2–4], and comparable detectors exist as well [5, 6].1

Device performances suitable for optical interconnects, especially on-chip

interconnects, have already been reached, satisfying architectures that optimize

energy and bandwidth. In an on-chip interconnect setting in which the total

available power is limited by heat extraction from the chip and the associated

cooling cost, energy comes at a premium. In such scenarios, where energy per

1Portions of this chapter are reproduced with permission from [7–9].
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bandwidth is an important figure of merit, multiple slower channels operat-

ing at small multiples of the system clock rate (e.g. 10 Gbps x 4 wavelengths)

are favored over one fast channel (e.g. 40 Gbps x 1 wavelength) due to reduced

electrical power and circuit complexity overhead paid in Serialization and De-

serialization (SerDes) and optoelectronic transceivers [10].

1.2 Integration requirements

While existing devices meet the performance needs, they remain incompatible

for integration with the standard CMOS processes used in fabricating the latest

generation of microprocessors and memories. This is because the majority of sil-

icon photonics has been developed on Silicon-On-Insulator (SOI) wafers while

the majority of electronics, including CPUs and memory, are built on bulk sili-

con wafers. This discrepancy is a result of silicon photonics’ requirement for a

single-crystalline silicon (c-Si) layer and a thick undercladding for optical guid-

ing that bulk silicon wafers, and even many SOI wafers, do not provide.

Guiding of light requires sufficient optical isolation from the surrounding,

i.e. a separation between the waveguide and the silicon substrate. The thick-

ness of this isolation layer depends strongly on the refractive index contrast,

geometry, and wavelength and is typically on the order of 1µm in a Si - SiO2 ma-

terial system at the telecommunication wavelengths. This requirement cannot

be met in a typical CMOS process, with bulk processes offering no isolation and

modern 45 nm Silicon-On-Insulator (SOI) processes offering less than 200 nm of

Buried OXide (BOX) [11]. Furthermore, the BOX thickness of SOI CMOS devices

is projected to shrink further down to 10∼30nm. Guiding of light also requires
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minimum dimensions in order to ensure sufficient optical confinement, typi-

cally on the order of 150∼400 nm in silicon. This requirement is in direct conflict

with predictions that the thickness of the silicon device layer of an SOI wafer

will shrink to 5∼10nm [12] for Fully Depleted SOI (FD-SOI) transistors due to

device electrostatics and thermal conductivity. Therefore, there is a strong need

to address these limitations of silicon photonics’ incompatibility with CMOS, es-

pecially so for the more advanced process nodes for which optical interconnect

is geared towards.

1.3 CMOS integration approaches

Previous attempts at integrating silicon photonics with bulk and SOI CMOS in-

clude localized substrate removal [11, 13] and electro-optic polymers [14], but

process compatibility, scalability and manufacturability have hindered main-

stream adoption of these approaches. Localized substrate removal involves use

of XeF2 gas to isotropically undercut the silicon substrate beneath waveguides

to prevent optical leakage into the substrate. However, it suffers from the fun-

damental difficulty and cost of frontend integration, as well as wasting silicon

real estate that could be used for transistors. A germanium electro-absorption

modulator has also been demonstrated [15], but it requires a crystalline silicon

layer as well as thermal processing at 550◦C. Polymers have low upper thermal

processing limits, and a high poling voltage (> 10 V) is required, posing compat-

ibility and reliability issues for CMOS integration. Furthermore, active polymer

devices require c-Si waveguide for operation making backend integration diffi-

cult.
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Other approaches involve transfer or bonding of thin films, individual de-

vices, or complete dies. Bonding of patterned crystalline silicon [16] allows sin-

gle crystalline material on CMOS BEOL, but it does not reduce the high thermal

budget required for dopant activation to fabricate active devices. For transfer of

completely fabricated devices [17], yield and alignment tolerance remain chal-

lenging. Flip-chip bonding of a complete SOI photonic die [18, 19] onto an elec-

tronics die has also been used due to the maturity of flip-chip bonding technol-

ogy. However, flip-chip bonding suffers performance penalties from electrical

parasitics, limited architectural freedom, and high cost.

1.4 Organization of dissertation

No preexisting integration scheme simultaneously addresses the issues of pro-

cess compatibility, scalability, manufacturability, cost, and performance of sil-

icon photonics. Therefore, we propose and demonstrate Backend Deposited

Silicon Photonics (BDSP) as a novel platform that is designed from the bottom

up to simultaneously address these issues. In chapter 2, we propose and lay out

the BDSP platform in detail, including its overall architecture, benefits, and ma-

terial system. We then experimentally establish compatibility of the proposed

platform for CMOS integration in chapter 3. In chapter 4, we introduce the ex-

cimer laser anneal, discuss the fabrication details, and characterize the resulting

low thermal budget polysilicon. We then use the excimer laser anneal in chapter

5 to demonstrate the core element of BDSP - the first CMOS backend compatible

silicon modulator. In chapter 6, we design and experimentally demonstrate 3D

integration of polysilicon and silicon nitride, another core element of BDSP. We

then switch gears in chapter 7 to propose and demonstrate a novel silicon mod-

4



ulator design that linearizes the response of a depletion-mode silicon modulator

by optical mode and PN junction engineering. We conclude the dissertation in

chapter 8 with a summary and potential future directions of the work presented

in this dissertation.
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CHAPTER 2

BACKEND DEPOSITED SILICON PHOTONICS

In this chapter, we propose an approach for integrating silicon photonics

on CMOS back end of line. This process adheres strictly to CMOS compatible

material systems and does not depend on a particular CMOS foundry process.

Instead, we incorporate and build on a recently demonstrated multilayer silicon

nitride platform for passive devices [20], and on laser annealed polycrystalline

silicon for active devices [21]. Our proposed platform is fundamentally differ-

ent from other backend integration schemes [22,23], as these approaches depart

from the standard silicon photonics material system by using electro-optic poly-

mers [22] and III-V materials [23]. We show that backend integration is possible

without departing from standard silicon photonics material system, which en-

ables the use of CMOS foundries for fabricating photonics independent of the

underlying microelectronic fabrication process.1

2.1 What is Backend Deposited Silicon Photonics

CMOS backend deposited photonics is enabled by two technologies - low tem-

perature Excimer Laser Annealed (ELA) polysilicon for active devices and low

loss Silicon Nitride (SiN) for passive waveguides. We combine these two

technologies into the Backend Deposited Silicon Photonics (BDSP) platform as

shown in figure 2.12, which clearly delineates the deposited photonics on top of

the CMOS backend from the underlying CMOS. CMOS microelectronics con-

sist of the Front End Of Line (FEOL), which includes the transistors and other
1Portions of this chapter are reproduced with permission from [7].
2The figure is adopted with permission from [7].
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Figure 2.1: Cross-sectional view of BDSP. The boundary between tradi-
tional CMOS and deposited photonics is clearly delineated.

active devices fabricated on the silicon substrate at the bottom in green, and the

Back End Of Line (BEOL), which is the system of multiple layers of metal (as

many as 15 or more in state-of-the-art logic processes) and interlayer dielectric

that connect the transistors together to form a circuit. BEOL traditionally ends

with the last metal layer that interfaces with the outside and the passivation

layer on top to protect the BEOL, but BDSP augments this BEOL with multi-

ple photonic layers. In the upper deposited photonics layer in figure 2.1, we

show two layers of SiN waveguides in blue, and one layer of ELA polysilicon

in green for clarity. As in any photonics platform, waveguides need optical iso-

lation, and this isolation is provided by a layer of SiO2 deposited using Plasma

Enhanced Chemical Vapor Deposition (PECVD), depicted in a light shade of

gray. The SiN waveguides in multiple layers traverse in orthogonal direction in

order to minimize unwanted interlayer crosstalk and crossing losses, and a ring
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resonator can be used as an optical via to couple from one layer to another very

efficiently as demonstrated by Sherwood-Droz et al., with crossing losses as low

as -0.04 dB / cross and interlayer coupling insertion loss as low as -0.6 dB [20].

This crossing loss can be further reduced by increasing the gap between the lay-

ers. In order to modulate and detect optical data, we propose separate active

layers that are placed in between any of the multiple SiN waveguide layers to

efficiently couple to and from the bus waveguides.

2.2 The benefits of BDSP

Backend deposited silicon photonics offers multiple benefits - independence

from complex CMOS frontend processes, reduced constraint in photonic foot-

print, and multi-level architecture. In a modern CMOS process, it is not uncom-

mon to find a process flow with more than 40 mask layers. In such a complex

set of processes, every small tweak to a given processing step can lead to un-

intended compounding of side effects that can adversely affect yield or even

render a process unstable. It does not help that the industry’s profit margin is

thin, so it is almost natural for the CMOS foundries to be very risk adverse and

unreceptive to bringing new processes or modules into their facility, including

photonics.

The FEOL of a CMOS is the most sensitive part of the process, and thus

foundries are rightfully opposed to making changes at the frontend to accom-

modate photonics. BDSP decouples photonics from the most sensitive part of

a CMOS process, and adds the whole photonics module after the very end of

a CMOS process, so that foundries are not required to change their process.
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In fact, backend photonics processing can in principle be done in a different

foundry from one the CMOS wafer was fabricated in, since the photonics pro-

cess is its own complete module that does not intrude upon, nor depend on

other processing steps of the underlying CMOS. This aspect greatly lowers the

barrier of introducing silicon photonics into manufacturing.

The cost of adding the photonics module is kept low by use of i-line or

248 nm lithography, as used in non-critical backend layers. The SiN waveguide

has a width of 1 um, and polysilicon active waveguides are 700 nm wide, well

within the capability of i-line lithography. Furthermore, the overlay require-

ment across layers is expected to be around 50∼100 nm depending on specific

extinction ratio requirements, which is easily met even by an i-line tool with

12 nm overlay [24]. A photonic module will add approximately 7 mask layers

per active layer and 1 layer per passive SiN waveguide, where much of active

layer masks can be reused for patterning additional devices in different layers

in some scenarios to reduce cost. Note that the masks become exponentially

more expensive as the process node becomes smaller, with a set of reticles in

sub 100 nm technology costing around $1 million [25]. By using backend pro-

cess lithography, which lags a generation or two behind the process node, total

cost of the photonic module can be kept down to a small fraction of the total

mask cost [26].

Backend deposited silicon photonics also greatly alleviates the constraints

on footprint of photonic devices. The frontend silicon real estate is considered a

highly valuable commodity, since every savings in area translates to more dies,

hence revenue, per wafer. This is the reason why the microelectronics indus-

try has pursued larger wafers and smaller transistors. If integrating photonics
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in the frontend means that total die area is going to increase significantly, one

takes a hit not only because there are fewer dies per wafer, but also because yield

of a die decreases exponentially with die area [27]. Therefore, if photonics is to

be introduced in the frontend, its footprint is critical. While a ring resonator

is one of the most compact photonic structures short of photonic crystal cavi-

ties, a typical ring resonator is still several microns in radius, which translates

to hundreds of micron squared of footprint once optical isolation is considered.

In addition, typical photonic transceiver circuits are several hundreds of micron

squared per channel, which further adds to the total area. Therefore, moving the

photonic devices out of the frontend significantly decreases the total real estate

needed for photonic interconnects, enhancing its area competitiveness. This

competitive edge becomes even more apparent when we consider other com-

mon designs like Mach-Zehnder Interferometer (MZI) based modulators which

can easily approach a millimeter in length in order to achieve sufficient extinc-

tion ratios at CMOS voltages. Therefore, by separating the photonics to dedi-

cated layers, we greatly alleviate the issue of photonic footprint.

Similar to the multiple metal layers in a CMOS backend, BDSP naturally

lends itself to multi-layer optical routing, but it goes even further by enabling

multiple layers of active devices. A network-on-a-chip (NOC) that supports

communication between cores in a massively multicore chip multiprocessor,

for example, requires a closely knit network that can only be realized with many

waveguide crossings. In-plane waveguide crossing is inherently lossy, and even

the relatively low loss of 0.7 dB / cross [28] accumulates quickly and renders a

network topology infeasible [29]. Recently, Liu et al. have demonstrated in-

plane crossings with loss comparable to the multilayer approach [30], but this

crossing only works for single mode waveguides, which limits potential use of
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mode division multiplexing for further bandwidth scaling. However, in BDSP

with multiple layers of low loss waveguides with very low crossing losses as

discussed earlier, such a network is perfectly feasible. Another benefit of hav-

ing photonics on the backend is the easy access to end fire coupling from the

periphery of a die. In a logic die, where the top of the chip is completely cov-

ered with solder bumps for electrical I/O connections, accommodating fibers

vertically among arrays of bumps may be very difficult. However, sides of the

die remains clear and by using plasma etching to define the smooth facet re-

quired for end fire coupling [31], very efficient side coupling can be achieved

while remaining compatible with both flip-chip packaging and mass manufac-

turing. In addition, on-wafer testability can be maintained by use of grating

couplers in SiN layers enhanced by polysilicon back reflector for optical testing

before bump metallization [32].

2.3 Conditions for CMOS BEOL compatibility

2.3.1 Materials and processes

Integration in CMOS BEOL not only requires compatibility with respect to

CMOS materials and processes, but also requires a strict thermal budget limit

to prevent performance degradation. CMOS compatibility is considered a gold

standard in silicon photonics because its basis lies in leveraging of the CMOS

fabrication infrastructure and processes. However, the notion of compatibility

is often stretched to the point where any material not explicitly listed as being

incompatible with CMOS (such as gold) is accepted as being CMOS compati-

11



ble. For realistic adoption by the industry, we adopt a much stricter definition of

compatibility as consisting exclusively of materials already in use in commercial

CMOS foundries, including SiN, polysilicon, SiO2, and Ge. Furthermore, the

process flow of BDSP consists of Plasma Ehanced Chemical Vapor Deposition

(PECVD), photolithography, Inductively Coupled Plasma (ICP) etch, Chemical

Mechanical Polishing (CMP), and Excimer Laser Anneal (ELA), all of which are

all standard CMOS processing steps with the exception of ELA, which we will

address.

2.3.2 Thermal budget

In addition to material and process criteria, thermal budget, i.e. the duration

and temperature of thermal processing, is a very important factor in a CMOS

process. The modern process flow is very complex with intricate device doping

profiles, gate oxides approaching atomic scale, exotic silicides, and metalliza-

tion diffusion barriers to name a few. The whole process is only as strong as

the weakest point. One of these points is the widely used nickel silicide, which

can undergo a metallurgical phase change around 750◦C causing contact resis-

tance to increase [33]. Similarly, copper diffusion occurs at temperatures as low

as 600◦C [34]. Another critical point is the degradation of highly doped source

and drain regions of transistors, as they can degrade by deactivation of phos-

phorus and arsenic at temperatures as low as 500◦C [35]. Aluminum metalliza-

tion degrades from thermal processes as low as 1 hour at 450◦C [36,37], though

this degradation is attributed to the low melting point of aluminum in BEOL,

and not the FEOL. Here we remain conservative and propose a platform that

maintains the thermal budget below 90 min at 400◦C.
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2.4 Material system

There are several low loss optical materials that can be deposited and therefore

used to facilitate integration of photonics on the backend of CMOS. However,

most such materials have high band gaps or low mobilities, precluding them

from enabling active devices such as modulators and switches. Examples of

such materials include silicon nitride (SiN) [20, 38], silicon oxynitride, hydro-

genated amorphous silicon (a-Si:H) [39], and aluminum nitride [40]. SiN is a

dielectric with bandgap of 5 eV making it electrically inactive, and a-Si:H with

its inherently high defect density and low mobility requires high voltage incom-

patible with latest CMOS transistors and is unable to operate at gigahertz speed.

Aluminum nitride has recently drawn attention due to due to its low loss and

Pockels effect that allows for modulation. However, its modulation voltage can-

not be scaled to CMOS compatible level due to its relatively weak electro-optic

Pockels effect, and the modulation bandwidth is limited due to the requirement

for high resonant enhancement to compensate for its small electro-optic effect.

Therefore, we choose polysilicon for modulation, germanium for detection, and

silicon nitride for low loss passive waveguides.

2.4.1 Active - Polysilicon

Most silicon photonics devices rely on single-crystalline silicon (c-Si), which

prohibits their use in the backend due to absence of c-Si on the backend. c-Si

has low optical losses in the telecommunication wavelength range and, perhaps

even more importantly, has high carrier mobility and carrier lifetime. c-Si has

both mobility and carrier lifetimes that are much higher than that of a-Si due to
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absence of defect assisted scattering and recombination. These excellent electri-

cal characteristics enable low resistivity and dynamic control of free carriers in

photonic devices, which makes silicon great at high speed modulation.

Unfortunately, ways to obtain c-Si on the backend is severely limited to

wafer bonding or other exotic and high temperature methods like molecular

beam epitaxy. Because wafer bonding is not preferred due to its cost and scala-

bility issues and high temperature methods are not backend compatible, paths

for integrating high quality silicon layer on the backend in a cost effective and

compatible manner have not been available until recently, with the advent of ex-

cimer laser annealed polysilicon, which will be discussed in detail in chapter 4.

Polysilicon exists in the regime between c-Si and a-Si, embodying electri-

cal properties and optical properties in between that of the two phases. Poly-

crystalline silicon, as its name suggests, exists as an aggregate of small ’grains’,

which are packets of c-Si. Polysilicon inherits properties of c-Si, modified by the

existence of grain boundaries, which are atomically thin layers of a-Si between

the grain interfaces. Therefore, polysilicon appears more and more like c-Si the

less a device crosses grain boundaries.

Despite its potential as an alternative to c-Si, polysilicon has rarely been used

in silicon photonics due to its inherent high losses [41]. These losses originate

from scattering and absorption due to surface roughness, grain boundaries, and

dangling bonds. Surface roughness can be somewhat minimized using CMP,

while grain boundaries can be minimized by maximizing grain sizes, and dan-

gling bonds can be somewhat minimized by intentionally terminating them

with hydrogen, as often done for a-Si to reduce losses. With such advances in

polysilicon waveguide fabrication using hydrogenation and 16 hours of 1100◦C
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anneal, waveguide loss as low as 9 dB / cm has been demonstrated [42]. How-

ever, out diffusion of hydrogen at temperatures above 300◦C increases loss [43],

and hydrogen-dopant complexes decrease dopant activation efficiency leading

to lower electrical conductivity of the film [44]. Therefore, hydrogenation, while

useful for making low loss waveguides, may not be optimal for making stable

and high performance active devices.

One other important characteristic of polysilicon is its ability to detect pho-

tons in the telecommunication wavelength. Silicon’s bandgap prevents efficient

absorption in the telecom band, but detectors can be made by making use of, or

intentionally creating, defects that give rise to mid-gap states that allows sub-

bandgap absorption. Preston et al. demonstrated responsivity of 0.15 A / W

at 1550 nm in a compact polysilicon PIN ring resonator [45], and Geis et al

demonstrated millimeter scale waveguide photodetector with high responsivity

of 0.5∼0.8 A / W using Si implantation [46]. While these detectors do not match

the performance of dedicated Ge detectors at the moment, pure silicon detector

can be beneficial when trying to reduce process complexity.

We leverage the three-dimensional nature of BDSP platform to maximize the

potential of polysilicon by limiting the use of polysilicon to use in active devices.

Instead of attempting to lower the propagation loss of polysilicon at the expense

of its electrical property and stability, we use resonantly enhanced structures to

overcome its loss and utilize the full potential of large grain polysilicon that

is only possible with ELA. We will show that by utilizing polysilicon only for

resonant devices, and utilizing low loss waveguides in a separate layer for light

propagation, we can effectively mitigate its relatively high loss and reach the

full potential of polysilicon.
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2.4.2 Active - Germanium

Germanium is also an excellent candidate for making detectors in the backend

for the telecommunication wavelength. While BDSP platform champions ELA

polysilicon as its active material, Ge can be just as easily processed through

ELA. While Ge CVD produces high quality material capable of achieving high

responsivity, it comes with a prohibitively high thermal budget for BDSP requir-

ing temperature beyond 700◦C [47]. Instead, one can deposit Ge at low temper-

ature using evaporation or sputtering which can then in principle be excimer

laser annealed [48]. This ELA Ge can be formed on top of an ELA polysilicon

waveguide to form a Ge on Si detector similar in geometry to that of Zhang et

al. [49], which allows seamless integration of Ge detectors with minimal addi-

tional processing steps. We chose not to pursue germanium integration in this

work, and focused our efforts on polysilicon.

2.4.3 Passive - Silicon Nitride

Silicon nitride (SiN) is attractive as a material for low loss passive optical waveg-

uides due to its low propagation loss. While polysilicon can be an excellent

optoelectronic material, it is not an ideal material for low loss optical intercon-

nect due to its inherent lossy nature due to defects in the crystalline structure.

Therefore, the platform benefits greatly by incorporating silicon nitride as a

passive optical material. Traditionally, low loss SiN waveguide has only been

used for visible wavelengths due to stress issues complicating the deposition

of nitride films thick enough for guiding in the telecom wavelength range [50].

Gondarenko et al. have demonstrated high confinement SiN waveguide for
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the telecom wavelengths, with losses as low as 0.065 dB / cm [51] based on an-

nealing and thermal cycling of LPCVD SiN. Sherwood-Droz et al. have demon-

strated low temperature PECVD SiN multilayer 3D integrated SiN waveguide

system with losses slightly over 1 dB / cm in the L-band increasing to 6 dB / cm

at the lower bound of the telecom C-band [20].

We choose PECVD SiN for our backend deposited silicon photonics plat-

form for its low deposition temperature of 400◦C and acceptably low loss for

centimeter-scale interconnects. Currently demonstrated PECVD SiN waveg-

uides exhibit enhanced propagation loss in the lower C-band due to Si-H and

N-H bond absorption harmonics. However, these bonds can in principle be

lowered with deposition process optimization. We will show the integration of

PECVD SiN waveguides with polysilicon waveguides in chapter 6, demonstrat-

ing the advantage of this multi-material platform.

2.5 Electrical interface

Electrical connections with low parasitic capacitance and resistance are needed

to maximize the performance of BDSP active devices. As shown in figure 2.1,

the structure that connects the last metal layer of CMOS BEOL to the active

device resembles a Through Silicon Via (TSV) in that it penetrates through the

entire stack of photonic layers. For BDSP, one needs robust low resistance vias

of length as short as 3 µm to as long as 10 µm or longer depending on the number

of photonic layers. Fortunately, these requirements are easily met with the exist-

ing TSV technologies that have been under active research for the purpose of 3D

stacking in the microelectronics industry [52]. However, these long vias intro-
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duce additional fringing capacitance that can limit system’s RC time constant

and may also be susceptible to capacitive coupling between unwanted neigh-

boring signals, which must be carefully mitigated. Literature suggests that the

capacitance and coupling can be minimized with judicious use of shielding and

spacing [53].
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CHAPTER 3

CMOS BACK END OF LINE COMPATIBILITY

In this chapter, we discuss the result from post-backend processing of CMOS

test vehicles. We present the test structures used in establishing compatibility

and the processing to which the test vehicles were subjected. We then character-

ize the integrity of the transistors, interconnects, and digital system subjected to

various processing conditions, and establish a guideline for a compatible ther-

mal budget.1

3.1 Introduction

Establishing CMOS BEOL compatibility is fundamental to the proposed BDSP

platform. Therefore, it is important to thoroughly consider every criterion for

compatibility and experimentally establish compatibility where necessary. As

stated in section 2.3, conditions for compatibility are mainly divided into mate-

rial, process, and thermal budget.

Material criterion is easily satisfied by adoption of a strict definition of

CMOS compatible material, using only those that already exist in a generic

CMOS process. BDSP satisfies this criterion by employing SiN, polysilicon,

SiO2, and Ge, which are all preexisting materials in the CMOS stack.

Process criterion is similarly straight forward to satisfy, as Plasma Enhanced

Chemical Vapor Deposition (PECVD), photolithography, Inductively Coupled

Plasma (ICP) etch, Chemical Mechanical Polishing (CMP), and physical vapor

deposition are all used in a CMOS process. The only non-preexisting process

1Portions of this chapter are reproduced with permission from [8].
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is the excimer laser anneal, but ELA is already being used in mass production

by the Thin Film Transistor (TFT) industry, and literature discusses ELA as an

enabling technology for the advanced CMOS nodes [54, 55], making it a low

risk process. Details on the ELA process will be presented in chapter 4.

Thermal budget criterion is the least well defined, and the hardest to deter-

mine because the effect of thermal degradation is cumulative up to the point of

failure, and can only be empirically determined. Each circuit, due to its different

design and function, will react differently to any effects of various thermal bud-

gets. Therefore, establishment of compatibility needs to be approached from

the bottom up, starting from individual transistors that form a circuit, up to

the interconnects that connect the transistors together, then to the verification of

functionality of a large scale integrated system.

3.2 Experimental verification of compatible thermal budget

3.2.1 Test vehicle design

Ideally, a compatible thermal budget would be determined for each CMOS pro-

cess due to the intricacies and uniqueness of individual processes. However in

practice, the CMOS industry uses very similar materials and processing tech-

niques for each technology node. Therefore, due to such similarity, one can

reason that the thermal budget limit of one foundry’s process of a given node

can be generalized and be very close to that of another foundry. A question that

needs to be addressed is the question of which CMOS process node to use for

the test vehicle. CMOS processes generally become more fragile as the node
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shrinks due to miniaturization of features and elaborate material engineering

implemented in them to improve performance. Therefore, a thermal budget

limit established at a smaller node will likely hold for processes at larger nodes.

Another question is the choice between bulk and SOI CMOS; we chose bulk

because BDSP is specifically geared towards enabling photonic integration in a

non-SOI platform.

We chose IBM’s 9LP process, which is a bulk CMOS process at the 90 nm

node. The 9LP process, although several generations behind the current main-

stream sub-22 nm logic process that Intel and others use, contains much of the

technologies representative of modern advanced CMOS processes, including

ultrathin gate oxides, shallow trench isolation, and copper interconnects. Such

shared characteristics allow results of this study to be extrapolated to other

modern bulk CMOS processes.

Circuit designers design a circuit in a CMOS process through a Process

Design Kit (PDK), which is an assortment of all the available building blocks.

Therefore, the most fundamental and thorough way to establish compatibility

is by testing each of the building blocks in the PDK. The components in the

PDK can be broadly categorized into two component groups - transistors, and

the interconnect that connects the transistors together.

The transistor, or more precisely Field Effect Transistor (FET), is the heart of

a CMOS process, and come in two varieties - n-type FETs and p-type FETs. In

addition to the two types, a FET’s behavior depends critically on two design

parameters - width of the channel and length of the gate. Due to the impact of

transistor geometry on its behavior and reliability, we cover all four extremes,

or ’corners’, of the transistor design space in addition to a device squarely in the
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middle of the sizing envelope. The following table tabulates the parameters of

all transistor test structures.

Corner PFET NFET
(width / length) (width / length)

Minimum 0.12µm / 0.1µm 0.13µm / 0.13µm
Wide & Long 5µm / 5µm 5µm / 5µm
Wide & Short 5µm / 0.1µm 5µm / 0.13µm

Narrow & Long 0.12µm / 5µm 0.13µm / 5µm
Moderate 5µm / 1µm 5µm / 1µm

Table 3.1: Transistor test structure dimensions.

Transistors, especially ones with thin gate dielectrics in deep submicron pro-

cesses, are prone to plasma induced gate oxide damage, commonly referred to

as the ’antenna effect’. The deposition of thin films, including silicon dioxide,

silicon nitride, and amorphous silicon used in BDSP, are typically achieved us-

ing plasma enhanced chemical vapor deposition, which exposes metallic wires

and pads to charged plasma environment that can create damagingly high po-

tential differentials across different metal wires. This problem becomes more

pronounced for metal structures connected to the gates of FETs that are large

in comparison to the gate area (proportional to width multiplied by length). To

address this problem, a CMOS process PDK enforces ’antenna rules’ as part of

the Design Rule Check (DRC) routine, setting an upper bound to the ratio of

total area of metal connected to the gate to the area of the gate.

The same concern for antenna effect applies to BDSP, as it is effectively an

extension to a CMOS process flow. Test structures will be exposed to various

plasma environments, and have large top metal pads connected to the gates for

ease of probing and testing. To mitigate possible damage from antenna effect

and assess the necessity for protective measures, a second bank of test structures
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identical to those in table 3.1 are designed, but with the addition of ’tie down

diodes’ to mitigate antenna effect. Tie down diodes work by providing a leakage

path for accumulated charges to dissipate during plasma processing, turning

into a reverse-biased diode under normal operation post-fabrication. Because

tie down diodes adversely affect the power and speed of transistors by acting

as capacitive loads, tie downs are only used when absolutely necessary.

If the FET is the heart of the CMOS process, then interconnects are the blood

vessels. The performance and reliability of a circuit is critically affected by these

interconnects. The speed of a circuit is heavily affected by capacitance and resis-

tance of the interconnects. Of the two, capacitance is determined solely by ge-

ometrical considerations to first order and therefore is not affected by thermal

processing. However, resistance can change significantly due to thermal pro-

cessing due to diffusion of metal ions and crystallographic phase changes. Fur-

thermore, long-term reliability of the interconnections may be affected through

electromigration, which is beyond the scope of this study. We investigate all

parts of the interconnection system, which comprises contacts, vias, and metal

wires.

Contacts are formed at the interface between underlying silicon and first

layer vias by use of a silicide. Silicides are compounds of silicon and metals,

critical in forming a good ohmic contact to silicon. A silicide is typically formed

by depositing a suitable metal such as titanium, nickel, or cobalt on top of sil-

icon, then annealing the wafer at very specific conditions in a forming gas en-

vironment to form very specific phases of the metal-silicon compound. The

resistance of the resulting silicide is highly dependent on the phase of the com-

pound, and silicide can go through adverse phase transitions after formation if
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the maximum thermal budget is exceeded.

In the IBM 9LP process, there are three types of contacts that need to be

characterized - P-substrate contact, N-well contact, and polysilicon gate con-

tact. Source and drain contacts are not explicitly tested, as they are substan-

tially similar to the substrate and N-well contact in fabrication, and are indi-

rectly characterized through FET test structures. We designed Transfer Length

Method (TLM) structures with 4 terminals in order to characterize the contact

resistances. TLM structures comprise contact points separated by monotoni-

cally increasing lengths of conducting material. By fitting a linear relationship

to the resistance - length plot, one can determine contact resistance from the y-

intercept and sheet resistance of the conducting material from the slope.

Vias are small vertical channels filled with metal that connects a lower layer

of metal to one above it. Due to their relatively large surface to volume ratio and

small dimensions, vias are more susceptible to various modes of failure includ-

ing mechanical stress, surface chemical reaction, and diffusion. We designed

via chain structures consisting of a series of vias from one layer to another,

connected by minimum length runs of metal in alternating layers to facilitate

resistance measurement.

Metal wires connect point A to point B, usually from a via from underneath

to a via connecting upward. A state of the art CMOS backend process has as

many as 15 metal layers. The IBM 9LP process provides 8 copper metal layers

in addition to the poly gate layer that can be used as local interconnect. We test

for resistance changes in the conducting layers by designing a serpentine path

in respective layers to provide a high resistance path to facilitate measurement.
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Figure 3.1: Die micrograph of the fabricated test vehicle.

In addition to FETs and interconnect elements covered above, a CMOS PDK

contains other circuit elements such as resistors, capacitors, and inductors. We

did not test those elements as they are not fundamental building blocks of a

CMOS process, but are derived from metal and poly layers. Figure 3.1 shows

the die micrograph of the fabricated test vehicle.

3.2.2 Experimental method

We chose temperatures and processing times that are relevant for BDSP process-

ing; temperatures between 400◦C to 600◦C and durations of 90min or 180min to

allow for sufficient time for full BDSP processing. 400◦C is the optimal tempera-

ture for deposition of thin films used in BDSP, and 450◦C is the temperature used
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for our process-specific dehydrogenation anneal of a-Si film. 550◦C an 600◦C is

included to evaluate whether polysilicon deposition by low pressure chemical

vapor deposition technique in a furnace would be a viable alternative to PECVD

a-Si deposition.

Thermal annealing was performed using an atmospheric furnace from MRL

Industries, in a nitrogen ambient. Nitrogen was chosen to ensure that any

change in electrical characteristics is from thermal effects and not from surface

oxidation of the electrical pads. The furnace has a long tube with large thermal

inertia, which results in significant delay between sample loading and reach-

ing temperature set point. To mitigate this effect, the furnace was preheated to

the desired temperature and unloaded and loaded at the fastest possible rates

allowed by the tool. Despite such efforts, the furnace temperature dropped by

several tens of degrees Celsius during loading of the sample. Therefore, the

time it took to ramp back up to temperature set point was taken into account in

achieving the desired annealing time. In addition to thermal annealing, we em-

ulated plasma processing steps of BDSP processing by performing 60min 400◦C

anneal, followed by 5 minutes of PECVD silicon dioxide deposition at 400◦C,

followed by etch back of the oxide using reactive ion etching for 26 minutes.

This process exposed the test structure pads to plasma from both PECVD depo-

sition and RIE etching, sufficiently emulating BDSP processing.

Electrical measurements were made using Keithley Source Meter Units

(SMUs) and fine point SM-35 tungsten probe tips from Signatone. Test vehi-

cle shared ground and Vdd and were biased at 0V and 1.2V, respectively. Full

IV curves of the test structures were taken, sweeping from 0V to 1.2V in steps of

40∼50 mV. Resistance was extracted by taking the average of differential resis-
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tances through the full voltage sweep, and contact resistance was determined by

performing a linear fit to TLM measurements. To accurately characterize small

changes induced by post processing, individual test dies were fully character-

ized before being submitted to post processing conditions. The test dies were

then measured again following post processing and compared against baseline

measurements to determine the effects of the post processing.

Repeatability of probe touch downs and measurement to measurement vari-

ability were characterized to ensure reliable detection of small changes. Mea-

surement to measurement variability without re-touchdown of probes was less

than 0.1% for FET IV curves, and better than 0.5Ω for resistance measurements.

Variability of probe contact resistance between consecutive touchdowns were

significantly larger at 3Ω, which we reflect through error bars in the following

resistance measurements.

3.2.3 Material and structural integrity

The most obvious sign of a irreversible damage can be evaluated visually. The

test dies have a distinct brown tint to it under the microscope due to the poly-

imide passivation layer that protects the top surface. This passivation was in-

tact after a 400◦C anneal, as evidenced by the color, but the passivation was

completely removed by the 500◦C anneal, giving the chip a distinctly metallic

white color. However, the structure of the die remained unaffected, and no vis-

ible change to the surface morphology was observed. However, at 550◦C the

top metal layer showed partial structural deformation and some pads changed

color from white metallic to black, and it was no longer possible to make reliable
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electrical contact. Even where electrical contact was possible, the measured re-

sistance values were more than 50% higher than baseline, clearly failing to meet

compatibility criteria. At 600◦C, all pads showed extensive damage similar to

that at 550◦C, resulting in complete structural and electrical failure. Having ob-

served 550◦C as the point of failure, we increased the length of anneal at 500◦C to

180 minutes to assess whether an increased thermal budget would cause failure.

Even after 180min anneal, the die appeared to be intact under visual inspection.

Therefore, we proceeded to electrically characterize all samples other than the

destroyed 600◦C sample.

3.2.4 Transistor integrity

FETs were characterized by gate voltage sweeps and drain voltage sweeps while

monitoring the drain current and gate current. For NFETs, drain and gate were

biased at Vdd for gate voltage sweep and drain voltage sweep, respectively, and

at ground for PFET measurements.

We plot Id vs Vgs of the 5 NFET test structures of different geometries (figures

3.2, 3.3, 3.4, 3.5, 3.6), plotting in crosses the measurements from 90min at 400◦C,

400◦C + plasma, 90min at 500◦C, 180min at 500◦C, and 90min at 550◦C condi-

tions, with their respective baseline measurements in solid diamonds. We see

that two curves line up almost perfectly in most cases, with notable exception

for 550◦C condition, resulting in complete failure of the 5u/1u device as evident

from drastically different traces along with larger than typical deviation from

baseline for other dimensions. 180min at 500◦C resulted in small but consis-

tent decreases in drain current across all dimensions except 5u/1u, which dis-
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Figure 3.2: NFET Id vs Vgs, 5u/1u.

played a small increase. The remaining three conditions do not show consistent

changes larger than the measurement uncertainty. We also note that plasma pro-

cessing did not adversely affect the devices with and without tie down diodes

for antenna effect mitigation.

We also repeated the same measurement for 5 PFET test structures and plot

the result in figures 3.7,3.8,3.9,3.10,3.11. We found that PFETs are more vul-

nerable to damage from post processing then NFETs, as all five test structures

suffered complete failure after 90min at 550◦C compared to just one failure in

NFETs. Furthermore, plasma processing caused complete failure of two devices

that had minimum dimension gate lengths of 0.1u. Test structures with tie down

diodes also suffered similar damages, which calls for extra caution in prevent-

ing PFET plasma damage. However, we note that the test structures present

extreme cases of antenna effect where 10000µm2 of top metal is connected to

less than 1µm2 of gate area corresponding to antenna ratio greater than 10,000.
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Figure 3.3: NFET Id vs Vgs, 0.13u/5u.

Figure 3.4: NFET Id vs Vgs, 5u/0.13u.

30



Figure 3.5: NFET Id vs Vgs, 5u/5u.

Figure 3.6: NFET Id vs Vgs, 0.13u/0.13u.
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Figure 3.7: PFET Id vs Vgs, 5u/1u.

Conventional designs will have significantly smaller ratios, so such plasma in-

duced damage would be unlikely. Looking at the remaining conditions, we

see that 180min at 500◦C and 90min at 400◦C do not show consistent changes

larger than the measurement uncertainty. However, 90min at 500◦C caused un-

expected reduction of more than 20% in drain current for 5u/0.1u device. We

believe that this unexpected and conflicting observation may be due to slight

overshooting of annealing temperature during the post processing, as thermal

damage is typically irreversible and 180min at 500◦C does not reproduce this

behavior.

We conclude from measurements of NFETs and PFETs that 90min at 400◦C

is a compatible thermal budget with a conservative margin, and thermal pro-

cessing up to 90min at 500◦C is also compatible with a margin as established by

180min at 500◦C condition. Plasma processing is also compatible with all tran-

sistors as long as extra care is given to minimize antenna effect for PFETs with
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Figure 3.8: PFET Id vs Vgs, 0.12u/5u.

Figure 3.9: PFET Id vs Vgs, 5u/0.1u.
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Figure 3.10: PFET Id vs Vgs, 5u/5u.

Figure 3.11: PFET Id vs Vgs, 0.12u/0.1u.
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minimum gate lengths.

3.2.5 Interconnect integrity

Integrity of interconnect elements was characterized by measuring changes in

resistances of metal, via, and contact test structures according to the procedures

described in the experimental method subsection. The percentage change in

resistance was calculated by using the formula %∆R = (post-baseline) / baseline

x 100. Due to space constraint of the test vehicle, test structures of the highest

2 levels of metals and vias had resistances less than 10Ω. The resulting change

in resistance was dominated by contact resistance measurement uncertainty of

3Ω over any underlying change due to post processing. Therefore, data from

those four test structures are left out of the following plots. However, their raw

resistance values fell within measurement uncertainty, with exception of large

degradation observed at 550◦C.

Figure 3.12 plots the measured percentage change in metal resistance. The

bars are grouped by metal levels, with 5 individual bars representing different

post processing conditions. The bars are arranged from bottom most poly layer

on the left to 3rd highest M12B layer on the right. We immediately see that

increase in resistance is minimal at less than 2% for all levels and conditions

with the exception of M12B layer. 550◦C condition increased M12B’s resistance

by 50%, failing the compatibility test, while 90min at 500◦C decreased the resis-

tance by 7%, which remains compatible because decrease in resistance does not

adversely affect performance of a circuit. Therefore, all but 550◦C processing are

compatible with all metal wiring levels.
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Figure 3.12: Measured percentage change in metal wiring resistances from
various post processing conditions.

Figure 3.13: Measured percentage change in via resistances from various
post processing conditions.

Figure 3.13 plots the measured percentage change in via resistance. The bars

are similarly grouped by via levels in ascending order. In contrast with the pre-

vious plot, we see resistance increases from 10∼35% at 500◦C and above. Vias

are more susceptible to degradation due to surface reactions as the surface to
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volume ratio is much higher than that of metal wires due to their plug-like ge-

ometry. In contrast, both 400◦C conditions yielded less than 6% increase, which

is within acceptable range as it is much smaller than the ∼50% process variation

window for vias in this process. Furthermore, an increase in total interconnect

resistance due to this small change would be further reduced due to resistive

contributions from the metal wires.

Figure 3.14: Measured percentage change in contact resistance from vari-
ous post processing conditions.

Figure 3.14 plots the measured percentage change in contact resistance for

completeness. We again see that 550◦C processing causes undesirable large

changes. In comparison, the remaining conditions are acceptable at less than

6% change.

We conclude from the analyzed data that 400◦C post processing with and

without plasma process is compatible with respect to interconnect components.
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3.2.6 System integrity

A digital system is the sum of the elements that we characterized so far in this

chapter. It is reasonable to expect that such system would be functional after

going through plasma processing and thermal annealing of up to 500◦C as es-

tablished above. However, the only way to establish compatibility beyond any

doubt is to subject an entire system to the same conditions as above to rule out

any adverse issues that may stem from interactions and compounding effects

from individual elements.

We chose a prototype asynchronous Field Programmable Gate Array (FPGA)

designed and provided by Teifel and Manohar [56] at Cornell’s Computer Sys-

tems Laboratory for system-scale testing. This FPGA was chosen in particular

due to its sufficient complexity to be representative of modern digital systems,

availability of bare semiconductor dies that allowed us to perform post process-

ing, and ease of testing. It was fabricated in TSMC’s 180 nm bulk CMOS process

with 5 layers of metal, which is only 2 generations behind the test vehicle. De-

tails of the FPGA’s design can be found in [56].

We performed 90min at 400◦C, 400◦C + plasma processing, 90min at 500◦C,

500◦C + plasma processing, and full optical processing to the FPGA dies. Plasma

processing was simplified to 30 seconds of oxygen plasma at 150W, while the

full optical processing condition was much more extensive. The full optical

processing condition consisted of 60 minutes of PECVD deposition at of 400◦C

followed by 180 minutes of plasma RIE etching to etch back everything that

was deposited during the full optical waveguide processing. This set of pro-

cesses is representative of worst case processing conditions, and actual full op-

tical waveguide process would be much shorter in duration. More detail on this
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optical processing can be found in section 6.

The FPGAs were characterized by measuring their throughputs in a con-

figuration that taxes the performance limiting critical path [57], which max-

imizes their sensitivity to post processing induced performance change. FP-

GAs needed to be electrically packaged prior to testing, but packaging pre-

cluded post processing. Therefore, individual baselines were not taken. In-

stead, a global baseline from [57] was used in making comparisons. We show

the throughputs of the FPGAs under different conditions in Table 3.2.

Baseline 400◦C 500◦C
Thermal +Plasma Full process Thermal +Plasma

674 MHz [57] 685 MHz 676 MHz 670 MHz 523 MHz 504 MHz

Table 3.2: Measured FPGA throughput from different post processing con-
ditions

We observed that 90min at 400◦C, 400◦C + plasma, and the full optical pro-

cessing samples have consistent throughput without degradation. Fang et al.

characterized throughput of this FPGA at 674 MHz [57], which is in good agree-

ment with the three conditions at 400◦C. In contrast, we observed more than

20% degradation of throughput in 500◦C and of 500◦C + plasma samples. These

two large deviations from the expected throughput are determined to be due to

degradation caused by thermal processing, as all samples came from the same

wafer, and two such large and consistent deviations cannot be explained by

process variation.

Combining this system measurement with component level testing above,

we establish a empirically determined and conservative thermal budget of

90min at 400◦C.
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3.3 Summary

We established CMOS backend compatibility of BDSP with respect to materi-

als, processes, and thermal budget, experimentally establishing thermal budget

compatibility of BDSP processing up to 90min at 400◦C. We used these compat-

ibility criteria in further developing BDSP process flow that is truly compatible

with backend CMOS integration.
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CHAPTER 4

EXCIMER LASER ANNEALED POLYSILICON

Polysilicon is a low loss material that is deposited and could in principle en-

able high performance active devices, but it traditionally exhibited much lower

performance than its crystalline counterpart. Polysilicon is a collection of grains

of c-Si separated by grain boundaries consisting of a few atomic layers of amor-

phous silicon. Grain boundaries not only act as small perturbations causing

photon and electron scattering, but also create states within the silicon bandgap

that cause excess optical loss. Since the groundbreaking work on polysilicon

photonics [58], much progress has been made, including active devices. Various

groups using high temperature annealed polysilicon have demonstrated low

losses on the order of 10 dB / cm [59], and electro-optic modulation [21, 60, 61].

However, these works are not compatible with backend deposited silicon pho-

tonics due to their high thermal budget that is fundamental to furnace annealed

polysilicon, constraining them to frontend integration in CMOS and DRAM.1

Recent advances in nanophotonics enable the use of polysilicon in high per-

formance photonic devices since the sizes of devices have become small enough

that photonic devices can span only a handful of grain boundaries. In the limit

where grain sizes are much larger than the device of interest, device behaves

essentially as if fabricated in c-Si. A ring resonator as small as 1.5 µm in radius

has been demonstrated [62], and with less than 10 µm of circumference in such

device, the device would traverse only a few grain boundaries when fabricated

in polysilicon with grain sizes on the order of 5 µm. Such a feat is unlikely to

be possible in traditional, high thermal budget furnace annealed polysilicon in

1Portions of this chapter are reproduced with permission from [7].
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which grain sizes are typically limited by crystallization kinetics to within the

same order as the film thickness.

Excimer laser annealing is essential to realizing backend deposited silicon

photonics, as it enables both low thermal budget fabrication of active devices

and formation of large polysilicon grain. ELA is a breakthrough technology

widely used in fabricating high performance Thin Film Transistors (TFT) on

glass to manufacture touch screens and LCD screens. This industry proven

technology has throughput of 100 cm2 / s, exceeding even that of state of the art

CMOS lithography tools, corresponding to over five hundred 300mm wafers

per hour [63]. Therefore, ELA can be seamlessly integrated into a CMOS pro-

cess flow.

4.1 Excimer laser annealing method

Excimer laser annealing of amorphous silicon (a-Si) works by irradiating the

surface of thin film a-Si with a short intense pulse of ultraviolet (UV) light. a-Si

has an extremely strong absorption in the UV spectrum, larger than α= 106 cm−1

around λ= 300 nm [64]. This absorption coefficient translates into greater than

99.8% absorption of the pulse within the first 50 nm of the a-Si film. Such strong

absorption effectively converts and concentrates the optical energy contained in

the UV pulse to heat, locally heating up the thin film without heating the sub-

strate. In addition to this spatial localization of heat generation, excimer laser

sources produce pulses that are 10’s of nanoseconds in duration. The source we

used was a xenon chloride (XeCl) excimer laser from Lambda Physik that pro-

duced 35 ns pulses at λ= 308 nm. This duration is orders of magnitude shorter

than the thermal time constant of the thin film of a-Si on silicon dioxide with
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much lower thermal conductivity. Therefore, the a-Si layer can reach tempera-

ture exceeding the melting temperatures of silicon (1414◦C) for 10’s of nanosec-

onds while the substrate stays relatively cool.

The molten a-Si layer dissipates its heat primarily through thermal conduc-

tion into the substrate. However, the substrate does not heat up appreciably

because the thermal mass of the substrate is much larger than that of the a-Si

layer. To put this into perspective, the a-Si layer will typically be 100∼200 nm,

while the silicon dioxide that separates the a-Si layer from the underlying sub-

strate will be at least 1000 nm. Therefore, a first order approximation states that

the substrate will reach temperature 5∼10 times less than the temperature of

the a-Si. Therefore, it is possible to keep the underlying substrate, the CMOS

circuits in the case of BDSP, below the 400◦C thermal limit that we established

earlier. In fact, Han et al. and Smith et al. were able to perform ELA on a plastic

substrate that deforms at 200◦C and 120◦C [65, 66], respectively, without dam-

aging the substrate, which demonstrates that substrate heating is a negligible

component in our thermal budget.

The dynamics following the absorption of the excimer pulse is critical in

determining the resulting polycrystalline structure of the silicon layer. Due to

lower thermal resistance towards the substrate through conduction than to air

through convection, the bottom of the molten silicon cools first. As the bottom

layer of silicon cools below its melting point, small fraction of silicon nucleates

into crystalline seeds. These nucleation sites act as a template for the rest of the

molten silicon to crystallize, and crystalline grains form when the outward crys-

tal growths from these nucleation sites collide with each other, forming grain

boundaries. The resulting grain size is strongly affected by the energy of the
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excimer pulse, the details of which has been investigated by Im et al. [67].

Figure 4.1: Schematic of the excimer laser setup.

Figure 4.1 shows the schematic view of the excimer laser setup we used in

annealing the polysilicon samples. It consists of the xenon chloride excimer

laser source, which is attenuated to achieve desired energy fluence by computer

controlled variable optical attenuator. Following the attenuator, the pulse goes

through a rod homogenizer that creates a flat-top beam with less than ±5% in-

tensity variation. A small fraction of this beam is diverted to laser energy de-

tector by a partially transparent mirror to measure the fluence. The main beam

is focused onto a motorized sample stage, creating a 3.5 mm by 3.5 mm spot. In

order to calibrate the system and monitor ELA dynamics, a 790 nm CW diode

laser is reflected off the center of the spot to record transient reflectance that

measures the dynamics of surface melting. A typical transient reflectance is

shown in figure 4.2.

The traces in figure 4.2 were acquired from ELA of 150 nm PECVD a-Si on

3 µm of SiO2 on a 100 mm silicon substrate at a measured fluence of 340 mJ / cm2.
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Figure 4.2: A typical transient reflectance trace from ELA of a-Si.

The excimer laser trace shows the signal from the laser energy detector, with

a full width half maximum pulse width of 35 ns. Immediately following the

excimer pulse, the reflectance signal sharply ramps up indicating melting of the

surface. The reflectance trace begins to fall off after ∼90 ns, indicating that the

surface has re-solidified. This reflectance trace is used to gauge the success and

characteristics of the anneal from ELA.

Plasma enhanced chemical vapor deposition is the preferred way of a-Si

preparation due to its uniformity and purity. However, PECVD a-Si films suf-

fer from relatively high residual hydrogen content, which is detrimental to ELA

process. The thin film of a-Si experiences an extremely rapid increase in temper-

ature during ELA, and any residual gas trapped or otherwise incorporated in

the film during deposition rapidly expands in volume. Beyond a critical resid-
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ual gas content level, the outgassing becomes violent enough to cause ablation

of the film during ELA, destroying the sample. Ablation during ELA can be de-

tected by an audible ’pop’ resulting from the explosive outgassing as well as by

visual inspection. These gases are incorporated into the film during preparation

because of their presence in the deposition chamber during process. Hydrogen

in particular is unavoidable during PECVD of a-Si because hydrogen is a natural

byproduct of decomposition of SiH4, a critical precursor to silicon deposition.

The hydrogen content of PECVD a-Si film must be minimized for successful

ELA, which can be achieved by tweaking of PECVD process, progressive ELA,

or dehydrogenation anneals. The amount of hydrogen incorporation can tech-

nically be controlled by a combination of deposition pressure, temperature, and

gas flow. However, such process development is beyond the scope of this work.

Progressive ELA is a technique for decreasing hydrogen content of the film by

successive applications of increasing excimer laser fluences [68]. We attempted

to replicate this method on our samples, but only had limited success for some

low fluence ELA and it did not work for fluences high enough for optimal ELA

of our samples. Therefore, we employed a dehydrogenation anneal step prior

to ELA. The anneal was performed in an atmospheric furnace at an empirically

determined parameter of 450◦C in argon ambient for 1 hour, which allowed

ELA fluence of up to 450 mJ / cm2. A 500◦C anneal for 1 hour allowed higher

fluence ELA beyond 500 mJ / cm2, but such high fluences were not necessary

for optimal ELA of our sample. It should be noted that a 400◦C anneal for 1

hour did not result in an appreciable increase in ablation threshold. This empir-

ically determined 450◦C anneal for 1 hour slightly exceeds the experimentally

determined thermal budget discussed in chapter 3. However this anneal is not

fundamental to ELA, and its thermal budget can be further reduced by a com-
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bination of PECVD process optimization, progressive ELA, or use of physical

vapor deposition.

4.2 Characterization of ELA polysilicon

The resulting polysilicon from ELA process can be characterized by its optical

loss, roughness, crystallinity / grain size, dopant activation, and carrier lifetime.

We address each one of these characteristic in this section except carrier lifetime,

which will be addressed separately in subsection 5.3.2.

4.2.1 Passive optical loss

Although polysilicon is not used for optical signal routing, sufficiently low op-

tical propagation loss is important for optimum performance of the resulting

active devices. Because we use polysilicon in building ring resonator-based

modulators and detectors, we measured the quality factor of ELA polysilicon

ring resonators. This method measures the effective optical propagation loss of

polysilicon in the same context as how it will be employed, providing the most

relevant measurement.

Figure 4.3 shows multiple resonances of a typical passive ELA polysilicon

ring resonators. We measured a quality factor of 12,000 from the resonance plot-

ted in figure 4.4, which translates to 28 dB / cm of loss. This quality factor corre-

sponds to optical 3dB bandwidth of 15 GHz. Therefore, this loss in combination

with additional loss from waveguide doping results in a resonator with band-

width greater than 20 GHz, making it well-suited for high speed modulators

47



Figure 4.3: Spectrum of an ELA polysilicon resonator.

Figure 4.4: Lorentzian fit of a resonance from an ELA polysilicon res-
onator.
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and detectors. Our loss is orders of magnitude better than the 65 dB / cm loss

reported by Preston et al. [69] in their ELA polysilicon ring resonators. Their

relatively high loss is likely due to metallic impurity contamination in start-

ing material from multi-material evaporator. In contrast, we used electronic

grade, contamination-free a-Si deposited using PECVD, which helped improve

the propagation loss by more than 30 dB / cm.

4.2.2 Surface roughness

During ELA, crystalline grains grow outward from nucleation sites at the bot-

tom of the molten silicon layer. Surface topologies form as it recrystallizes, es-

pecially along the grain boundaries where the grains meet. For optimal opti-

cal characteristics, surface roughness from such topologies must be minimized,

as optical mode propagation is affected by surface roughness as small as a few

nanometers peak to peak. Figure 4.5 shows the Atomic Force Microscope (AFM)

image of the polysilicon surface following the ELA. The white areas enclosing

the dark patches are the peaks formed by grains colliding with each other. Typ-

ical surface roughness is on the order of ∼6 nm RMS, or ∼35 nm peak to peak,

which is far too large for fabricating high performance waveguides.

To mitigate this surface roughness, we performed Chemical Mechanical Pol-

ish (CMP), a standard CMOS process that uses chemical slurries along with

the mechanical polishing action of a rotating pad and wafer to achieve sub-

nanometer planarization. We used model 6EC CMP tool from Strasbaugh along

with SS12 slurry from Cabot Microelectronics, and IC 1000 polishing pad from

Rodel. SS12 slurry in combination with the IC 1000 pad provided adequate
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Figure 4.5: AFM plot of polysilicon surface after ELA.

Figure 4.6: AFM plot of ELA polysilicon surface after CMP.
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planarization performance that was repeatable across multiple runs. Figure 4.6

shows the AFM image of the ELA polysilicon after the CMP process. We ob-

serve that the roughness has been dramatically reduced, down to 0.55 nm RMS,

and 4.1 nm peak to peak.

A striking feature as a result of the CMP is the clear delineation of the grain

boundaries. These boundaries, although very clearly visible in the image, are

made visible only by the angstrom-scale resolution of the AFM, as the step

heights across the boundaries are less than 2 nm. Analysis of the image shows

that the resulting grains range from 100∼250 nm in radius. Step heights of less

than 2 nm across grain boundaries are small in an absolute measure, but not

negligible with respect to the waveguide height of 110 nm. This small pertur-

bation in the waveguide every 200 nm or so results in scattering that can lead

to radiation loss or coupling into the counter-propagating mode within the ring

resonator. The former reduces the quality factor of the ring, but the latter causes

the resonance of the ring to split in proportion to the back scattering strength.

Example of such splitting is shown in figure 4.7.

This splitting can be mitigated by improvement in CMP process, grain size,

and waveguide geometry. Our in-house CMP process is not fully optimized,

and there are substantial local and global variations in the quality of polished

surface that contributes to resonance splitting. Better CMP process optimization

and control will significantly reduce residual roughness throughout the device.

Grain size for this work is not at the full potential of ELA polysilicon, as com-

plicated processing beyond the scope of our work is required to reach the larger

grain sizes. However, optimized ELA produces controlled grain growth as large

as 7 µm in length [70], providing grains large enough to realize the promise of
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Figure 4.7: Resonance splitting from residual roughness in ELA polysili-
con.

quasi single crystalline photonic devices on ELA polysilicon. Such large grains

reduce optical interaction with grain boundary by more than a factor of 10 from

the current devices, which in combination with improved roughness would ren-

der splitting negligible. Furthermore, the waveguide height can be increased to

decreases the interaction of the mode with the surface roughness.

4.2.3 TEM grain imaging

AFM imaging delineates the grain structures of the top surface, but it is Trans-

mission Electron Microscope (TEM) imaging that allows us to directly view the

crystalline structure in the cross-sections of waveguides. We prepared the TEM

sample by Focused Ion Beam (FIB), which allowed us to precisely carve out the

coupling region of a ring resonator. The bright field TEM image of the waveg-
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uide is shown in figure 4.8.

Figure 4.8: Cross-sectional TEM of ELA polysilicon waveguides.

The cross section contains two parallel waveguides that are 700 nm wide by

110 nm tall, with a coupling gap of 300 nm connected by 40 nm of slab. Individ-

ual grains can be identified by different shades of gray, which result from dif-

ferent crystal orientations of the grains. Upon observation, the columnar struc-

ture of the grains is immediately evident, resulting from the outward growth

of grains from nucleation sites at the bottom. Also note the higher density of

grains at the bottom of the waveguide, growing into larger grains towards the

top. This is due to complete melting of the film during ELA, which results in

formation of dense and uniform layer of nucleation sites at the bottom. Focus-

ing at the top interface of the waveguide, we see that the distance between the

grain boundaries are approximately 100∼200 nm, which is in agreement with

the grain sizes from AFM image analysis.

4.2.4 Dopant activation and silicide formation

Dopant activation and silicide formation are another high thermal budget pro-

cesses in active device fabrication that can be achieved using ELA. The activa-

tion step is critical for enabling dopant atoms to find their substitutional sites

within the silicon lattice so that they can contribute electrically in forms of
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donors or acceptors. Traditional process uses furnace annealing or Rapid Ther-

mal Anneal (RTA) to provide the necessary activation energy, but they are very

high thermal budget processes, incompatible with CMOS backend integration.

Instead, ELA can be used to activate dopants as demonstrated in [71], as well

as forming silicides [72] with low thermal budget. We use this property of ELA

to fabricate low thermal budget active devices in chapter 5.
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CHAPTER 5

DEPOSITED LOW TEMPERATURE HIGH SPEED SILICON

MODULATOR

In this chapter, we demonstrate high performance deposited silicon modula-

tor on a thin film of low temperature polysilicon by tailoring the dimensions

of the grain boundaries to be similar to the dimensions of the cross-sections of

nanophotonic devices. By ensuring that the number of grain boundaries across

the cross-section of the waveguide is small, the electrical properties of the device

are expected to be comparable to its single crystalline counterpart, and the op-

tical properties to be sufficient for high quality factor resonators. The tailoring

of the grain sizes is done by using excimer laser anneal described in chapter 4.

ELA enables fabrication of this modulator on the CMOS backend without af-

fecting the electronics underneath as illustrated in figure 5.11, decoupling the

CMOS frontend from photonics.2

5.1 Design

The waveguide for the ring modulator was designed to be 700 nm wide by

110 nm high with a slab thickness of 40 nm for single mode transverse electric

(TE) polarization operation. The mode profile is plotted in figure 5.2. This de-

sign has a high effective confinement factor of 0.78, which allows for efficient

modulation due to high modal overlap with the carriers. In addition, the slab

thickness of 40 nm enables low series resistance for efficient modulation, while

enabling high quality factor rings with 20µm ring radius.
1The figure is adopted with permission from [9].
2Portions of this chapter are reproduced with permission from [7, 9].
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Figure 5.1: Rendered image of polysilicon modulator integrated on CMOS
BEOL. For clarity, we show only a part of the metal contacts.
One can see that the grain boundaries and the dimensions of
the cross-section of the device are comparable.

Figure 5.2: Optical mode profile of a 700 nm by 110 nm polysilicon waveg-
uide.

Our polysilicon modulator is based on the same principle of plasma disper-

sion used in single crystalline silicon modulator, but we must take into account

polysilicon and ELA-specific effects that have critical performance implications.

Polysilicon has grain boundaries, which is populated with traps that capture

free carriers. The grain boundaries also segregate dopants, specifically N-type

dopants [73], making them inactive. Sufficient doping is necessary to overcome
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such effects, which are proportional to grain sizes and trap densities as they only

occur at the interfaces. Karnik et al. reported that polysilicon with average grain

size of 250 nm and phosphorous concentration of 4x1017 cm−3 behaved similarly

to undoped polysilicon, while increasing dopant concentration to 1x1018 cm−3

resulted in 4 orders of magnitude reduction in resistance [74]. Therefore, it is

important to adjust dopant concentration to get desired active carrier concen-

tration.

ELA-specific design issues also include dopant specie dependent activation

and diffusion profile. While BF2 is commonly used in standard CMOS process

to achieve shallow implants and mitigate channeling effects, it is not well suited

for ELA due to its activation efficiency of 20∼50% by ELA, whereas that of B is

essentially 100% [75]. Another difference of ELA is in the resulting diffusion

profile. Conventional RTA or furnace annealing process is readily modeled by

commercial process simulation softwares such as ATHENA from Silvaco, while

no such simulator exists for ELA to our knowledge. Therefore, we relied on

SIMS profiles reported in the literature [75–77]. We concluded from literature

that ELA on thin film of a-Si results in an even redistribution of dopant in the

film normal direction, especially in the full-melt regime of ELA in which we

operate.

Lateral diffusion from ELA is also significant, and needs be taken into ac-

count when junction profile and placement is important, as in depletion mode

modulators. Simple approximation from constant source solution to Fick’s sec-

ond law with 100 ns melt duration and diffusion coefficient of 5.1x10−4 cm2 / s

[78] estimates 10% diffusion length of 166 nm for phosphorous. While this so-

lution is an overestimate, we can expect lateral diffusion to be close to 100 nm.
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Lee et al. reported that lateral diffusion can be larger than 600 nm for 10 shot

ELA before decaying to 0.1% of source level [79]. Therefore, while additional

ELA shots improve resistivity to some degree, it is important to minimize the

number of ELA shots to limit diffusion.

Taking into account all the considerations above, we designed a P++ P− N++

modulator with doping concentration of 1x1020 cm−3, 2x1018 cm−3, 1x1020 cm−3,

respectively. The P− region is doped relatively high due to sharing of this im-

plantation with a depletion mode modulator on the same wafer, and underesti-

mation of ELA doping efficiency at the time of design.

5.2 Fabrication

We began with a 100 mm silicon wafer with 4 µm of thermal oxide. Deposition

of 150 nm of undoped PECVD a-Si under 400◦C was performed by a commer-

cial deposition service. A series of electron beam lithography and ion implan-

tation was used to form N, N++, P, and P++ regions using phosphorous and

boron, respectively. The wafer was furnace annealed at 450◦C for 1 hour in an

argon ambient to dehydrogenate the PECVD a-Si film, then excimer laser an-

nealed as discussed in detail in chapter 4. This step crystallizes the initial layer

of deposited a-Si into polysilicon and makes the dopants electrically active. Fol-

lowing ELA, surface roughness created by ELA was removed using CMP. The

waveguide and slab were defined by electron beam lithography and etched us-

ing reactive ion etching. The wafer was then clad with 1 µm of SiO2 by PECVD

deposition at 400◦C for 10 minutes. Vias were patterned and etched through the

oxide, followed by electrical contact and pad formation. To ensure good elec-
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trical contact, the wafer was dipped in 6:1 buffered oxide etch for 15 seconds

to remove any residual cladding oxide or native oxide, which was then imme-

diately loaded into a sputtering system. An in situ argon ion beam clean was

performed for 5 minutes to further clean the contact region, then a thin layer of

molybdenum disilicide was sputtered from a MoSi2 target. Sputtering of MoSi2

simplifies fabrication by eliminating the silicide forming anneal. Following sili-

cide deposition, aluminum with a thin layer of titanium adhesion layer was

sputtered and patterned to complete the fabrication process.

Figure 5.3: Optical micrograph of the fabricated ELA polysilicon modula-
tor.

The completed device is shown in figure 5.3. The blurred edge on the outer

perimeter of the ring is due to overexposure of the slab region, but it does not

affect the performance of the device. We used a Focused Ion Beam (FIB) to

image the cross-section of the completed device to characterize the fabrication

process. The cross-sectional SEM images are presented in figure 5.4. We see that

the waveguide, slab, and the coupling region are well defined as designed, and
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the electrical contact region consisting of Si-MoSi2- Al is well defined and free

of contamination, allowing high quality contact.

Figure 5.4: FIB cross-section of the fabricated ELA polysilicon modulator.

5.3 Experimental results

5.3.1 DC and high speed characterization

We characterized the electrical properties of the modulators and show that ELA

polysilicon has good dopant activation characteristics and c-Si-like behavior.

We measured the IV characteristics of polysilicon PN diode ring modulators

with 20 µm radius and observed a total series resistance of 25Ω and low reverse

leakage current of -62 nA at -5V. The diode IV curve plotted in figure 5.5 clearly

shows exponential behavior in the low current regime below 0.8V with a diode

ideality factor of 1.35±0.1, followed by high injection and series resistance lim-
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ited behavior. The ideality factor of 1.35 along with low normalized leakage

current of -490 pA / µm confirm that ELA polysilicon has great dopant activa-

tion characteristics and crystalline silicon-like behavior, and that this diode is

well suited for sensitive forward bias modulation.

Figure 5.5: IV curve of the fabricated polysilicon ring modulator device.

We compared the IV characteristics of this device with PN waveguide diodes

fabricated by conventional RTA process in c-Si to evaluate the efficiency of ELA

dopant activation. Expected dopant activation efficiency from ELA is very close

to 100% [76], while that of RTA / furnace anneal processes achieve ∼90% for

boron [80]. We normalized the currents to account for the difference in size of

the two diodes and different dopant concentration. The overlay of the two nor-

malized IV curves is presented in figure 5.6. We see that the normalized current

drive of the ELA device is in fact higher than that of the RTA device. While this

is not a conclusive comparison of between the two fabrication methods due to
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non-identical device design, it demonstrates the strength of ELA as a method

for fabrication of active silicon photonic devices.

Figure 5.6: Comparison of waveguide PN diodes formed by ELA and
RTA.

We observed an open eye diagram up to 3 Gbps using pseudo random bit

sequence (PRBS) 27-1 pattern with pre-emphasis. In carrier injection mode, we

measured electro-optic (EO) 10% - 90 % rise time of ∼500 ps and 90% - 10% fall

time of ∼400 ps using 2Vp−p square wave input signal with DC bias of 1.8V, as

shown in panel (a) of figure 5.73. The rise and fall time values limit intrinsic

EO bandwidth of the modulator to below 1 GHz, as expected with silicon car-

rier injection modulators. In order to increase the bandwidth of the modula-

tor, we applied 2Vp−p PRBS 27-1 pattern with ±1.5V pre-emphasis and 1.2V DC

bias to the modulator (similar to what is done in the case of single crystalline

silicon modulator [81]) and measured open eye diagram at 3 Gbps at an oper-

3The figure is adopted with permission from [9].
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Figure 5.7: Electro-optic modulation using polysilicon modulator. (a)
Modulator output with square wave input signal. (b) Optical
eye diagram of polysilicon ring modulator at 1598.9 nm (PRBS
27-1 pattern with pre-emphasis at 3 Gbps)

ating wavelength of 1598.9 nm, as shown in panel (b) of figure 5.7. Under pre-

emphasis condition, the modulator had an insertion loss of ∼0.2 dB, dynamic

extinction ratio of ∼0.3 dB, and an estimated power consumption of 1.2 pJ / bit.

The extinction ratio was limited due to lithographic misalignment between the

heavily doped regions and the waveguides leading to undercoupled operation.

Figure 5.8 shows the effect of the misalignment on modulator Q by comparing

its resonance to that of a passive ring from the same die.

5.3.2 Carrier lifetime

To further characterize the electrical characteristics of ELA polysilicon and its

implication on modulator performance, we measured the carrier lifetime of

ELA polysilicon waveguides. The carrier lifetime was measured using a pulsed

pump with counter-propagating CW probe beam in the C-band. Using a circu-

lator at the pump side of the device, we isolated the probe beam and routed it

to a high speed photodetector connected to a sampling oscilloscope triggered
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Figure 5.8: Overlay of transmission spectrum of passive ring and ring
modulator.

by the pulse source. We recorded the oscilloscope traces containing the time-

domain decay response of the carriers that are generated by the pulsed pump,

one of which is shown in figure 5.9.

We fitted these time-domain traces to an exponential decay model and ob-

served that the decay can only be fully modeled by two exponential decay com-

ponents of similar magnitude, τ1 with mean of 122 ps and σ=37 ps, τ2 with mean

of 542 ps and σ=161 ps. A total of 56 measurements were taken from 22 distinct

waveguides fabricated using ELA fluences of 300, 350, 400, and 450 mJ / cm2.

No statistically significant difference was found between samples of different

fluences. The presence of the two decay constants is in agreement with the op-

tical fall time plotted in figure 5.10, as we observed a distinct transition from a

steep initial fall to a slower settling, as marked by the two red vertical cursors.
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Figure 5.9: Time-domain measurement of the CW probe, showing strong
absorption caused by the pump-generated carriers followed by
decay through recombination. Note the distinct double expo-
nential component in the decay.

The crossover point was approximately 128 ps, which is in good agreement with

τ1.

In order to shed more light to the measured lifetimes, we fabricated a ref-

erence c-Si waveguide of identical dimension by thinning down an SOI wafer

by CMP to 110 nm, then fabricating the waveguide using identical fabrication

process. Identical measurement was performed on the reference c-Si waveg-

uides. The measurements were well explained by a single exponential decay

component with mean lifetime of 1151 ps and σ= 268 ps. To qualitatively evalu-

ate the contribution of the surface, we also measured the lifetime of an etchless

waveguide [82] that minimizes both the surface defects and the interaction of
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Figure 5.10: Oscilloscope trace displaying double exponential decay be-
havior.

the mode with the surface to be 5230 ps with σ= 834 ps.

Therefore, we can conclude that enhanced surface interaction of the mode

and carriers due to reduced waveguide height is responsible for great reduction

is carrier lifetime. Factor of ten reduction in lifetime from reference waveguides

to τ1 of ELA polysilicon waveguides is likely the result of higher defect den-

sity inherent in polysilicon and excess surface roughness which increases the

surface area for surface recombination. Similar effective lifetime of 135 ps has

been observed by Preston et al. [83] in furnace annealed polysilicon. However,

τ2 is unique to our ELA polysilicon. One possible explanation of this behavior

is the initial trapping of generated carriers at the grain boundary traps, which

are then released with a characteristic time of τ2. The released carriers can then
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recombine by various recombination mechanisms with effective lifetime of τ1.

Further investigation regarding temperature dependence of the two lifetimes is

needed to elucidate the precise mechanism behind τ2.

5.4 Photodetector operation

The crystalline defects at the grain boundaries and surfaces of polysilicon

waveguide lead to sub-bandgap absorption of photons. This absorption enables

detection of telecom wavelength using polysilicon. Preston et al. demonstrated

furnace annealed polysilicon PIN photodetector, and we here demonstrate an

ELA polysilicon photodetector.

Figure 5.11 plots the optical transmission and photocurrent of the PIN ring

modulator device tested above, but now in -6V reverse bias to extract the gen-

erated carriers. Due to resonant enhancement of light, we see an increase in

photocurrent that is aligned with the resonances of the ELA polysilicon de-

tector. The measured responsivity is 0.096 A / W at -6V, which increases up to

0.21 A / W at -10V due to enhanced extraction efficiency and slight impact ion-

ization at the expense of more than 20 times increase in dark current.

Using this detector, we successfully measured large signal sinusoids up to 15

GHz, as shown in figure 5.12. The 3 dB bandwidth extracted from series of large

signal traces is less than 1 GHz. The design of this PIN device is not optimized

for detector operation as it is highly doped to operate as a modulator. However,

the device has the potential to be a high speed detector with optimized doping

design and grain engineering, as its RC limited bandwidth is estimated to be

around 30 GHz.
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Figure 5.11: Plot of optical transmission and photocurrent of PIN detector
as a function of wavelength.

Figure 5.12: Oscilloscope traces showing photodetector operation at 1GHz
and 15GHz.
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CHAPTER 6

POLYSILICON-SILICON NITRIDE 3D INTEGRATION

Multiple optical waveguide layers are an integral part of the backend deposited

silicon photonics platform. BDSP is inherently a three dimensional platform,

which has the potential to scale to any number of passive and active optical

layers as needed. We established the need for multi-layer optical routing in

section 2.2, and we discuss the challenges of 3D integration and present experi-

mental results of such integration in this chapter.1

6.1 Interlayer coupling

A means for efficiently transferring light between two adjacent optical layers is

critical in enabling multi-layer optical routing. Such function is achieved by vias

in backend of CMOS, which are metal plugs that connect two adjacent metal

layers by means of electrical conduction. Such direct connection is typically

not possible for integrated optical waveguides, as sharp 90 degree bends will

result in radiation of the optical modes. There have been attempts to emulate 90

degree bends by using a pair of 45 degree mirror surfaces similar to a periscope

[84]. However, such scheme is bulky and not compatible with planar multi-

layer processing.

Another structure that allows vertical redirection of light is a grating coupler.

Grating couplers have been extensively studied as a fiber to waveguide interface

[32,85,86], and by replacing the fiber with a second grating coupler, near vertical

1Portions of this chapter are reproduced with permission from [8].
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optical coupling is possible. However, fully etched grating coupler results in

50% leakage due to radiation in both up and down direction, necessitating a

partially etched grating and / or back reflectors that add fabrication complexity.

In addition, grating couplers are inherently limited in bandwidth and typically

have relatively large insertion loss of more than 1 dB, which limits their use as

an optical via. Preliminary demonstration of such scheme was demonstrated by

Sodagar et al. [87].

Evanescent coupling allows for nearly lossless coupling from one waveg-

uide to another by use of phase matching. It is typically used for power transfer

across adjacent waveguides in the same layer, but it can just as easily be applied

to vertical coupling. Several works use this approach in vertically coupling

waveguides [20,88]. Evanescent coupling is compact and relatively broadband,

but requires phase matching and tight control of the vertical coupling gap and

lateral alignment to ensure complete power transfer. We chose evanescent cou-

pling over other methods for its bandwidth and low insertion loss, the design

of which we discuss later in this chapter.

6.2 Fabrication challenges

There are several challenges in fabricating a robust multi-layer optical platform,

including the control of the vertical gap and film stress engineering. Vertical

gap is defined by the thickness of SiO2 between two waveguide layers. Control-

ling film thickness to ∼1% with similar uniformity across the wafer is readily

achieved by PECVD deposition tools. However, the vertical gap is determined

not by film deposition, but by the CMP step that removes the topology on SiO2
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created by the buried waveguide. This challenge can be largely mitigated by

use of CMP fills in waveguide layer and use of CMP slurries like Celexis CX94S

and Ultra-Sol C11 that enable selective polishing of oxide to nitride and oxide to

polysilicon, respectively. Furthermore, recent advances in CMP enable less than

2% uniformity across the wafer and in-process monitoring of film thickness to

1% accuracy [89]. With the ability to stop CMP on SiN or polysilicon with great

control and uniformity, one can then precisely define the vertical gap by PECVD

SiO2 deposition.

Managing stress of a thin film stack becomes increasingly important as the

number of optical layers increases. Excessive stress buildup results in severe

bowing of wafers that prevents reliable planar processing, and can result in

film cracking and peeling if taken to the extremes. Even mild wafer bowing

can already be a problem with DUV photolithography, as the depth of focus is

less than 500 nm in such systems due to short exposure wavelength and high

numerical aperture. PECVD deposition parameters, including RF power, fre-

quency, and gas flow, have a great impact on the stress of the resulting film [90],

which must be engineered to meet both film quality and stress requirements.

The thickness of a 3 optical layer stack comprising SiN-SiO2-polysilicon-SiO2-

SiN is 400 nm-300 nm-110 nm-300 nm-400 nm for a total of 1510 nm. This is only

a fraction of the combined under and upper cladding thickness of 6 µm, so more

optical layers can be accommodated with small increases in stress.
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6.3 Integration of SiN waveguides on CMOS BEOL

We have demonstrated CMOS compatibility of our optical fabrication process

flow in chapter 3, and we demonstrate high quality SiN waveguides on the

backend of CMOS in this section. The top surface of CMOS backend is very

non-planar because top metal layer thickness is typically on the order of 1 µm to

reduce IR drop across the die, and CMP is not performed after this final layer.

As a result, top surface of CMOS has topologies of same scale as the metal lines,

which makes fabrication of submicron waveguide impossible from both litho-

graphic and optical standpoint. Therefore, we must planarize the top surface by

depositing a sacrificial layer to fill the gap between the metal wire topologies,

which can then be planarized by CMP to prepare a sufficiently smooth surface

for optical waveguide fabrication.

Another practical challenge in demonstrating integration of SiN on backend

CMOS is performing planar processing on a CMOS die that is a few millimeters

wide on each side. In an industrial application of BDSP, one would perform the

optical fabrication process on a whole wafer as just another step in the overall

process flow. However, we only had access to singulated dies, the size of which

makes it impossible to perform conventional planar processing. Therefore, we

devised a way to enable planar processing on individual dies by embedding the

die in a carrier wafer such that the top of the die is flush with the surface of the

carrier wafer, as well as the four sides. We describe the process in the following

subsection.
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Figure 6.1: Process flow for fabricating photonic devices on the backend of
a singulated CMOS die.

6.3.1 Fabrication

We monolithically fabricated a photonic layer on the CMOS microelectronic die

fabricated by the IBM foundry services. The fabrication process relies on form-

ing a silicon carrier substrate for a singulated die, as illustrated in figure 6.1.

Using contact photolithography, we defined openings with precise dimensions

and relative die placement within a few um tolerance. We then used a deep

silicon etcher to etch down to required depth to match the thickness of dies, fol-

lowed by application of flowable oxide as an adhesive for placement of die in

the trench. The carrier is then baked at 400◦C for 1 hour to bake solvents out

and form oxide bonding of the dies to the substrate. We then deposited sev-

eral microns of PECVD silicon oxynitride as a sacrificial layer, followed by CMP
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step to planarize the deposited surface down to below 10 nm RMS roughness.

We deposited 3 µm of PECVD silicon oxide as an under cladding, followed by

400 nm of low stress PECVD silicon nitride. Waveguides were lithographically

defined by an i-line stepper, followed by inductively coupled plasma reactive

ion etching (ICP-RIE) of the silicon nitride. The wafer was then clad with 3 µm

of PECVD silicon oxide, completing the process.

6.3.2 Experimental results

Figure 6.2: (a) Monolithically integrated passive waveguide and rings on
CMOS die. (b) Transmission spectrum of a ring resonator with
Qloaded = 40,000.

The completed die looks as micrographed in panel (a) of figure 6.22, with

waveguide and rings slightly defocused to allow simultaneous view of the

CMOS die in the background. We measured ring resonators and found them

to have a high loaded quality factor of ∼40,000, making them suitable for low

loss bus waveguides for optical interconnects. This shows that building high

performance optical waveguides on top of CMOS backend is feasible. Next, we

2The figure is adopted with permission from [8].
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tackled the challenge of realizing a robust multi-layer waveguide system com-

prising different materials.

6.4 3D integration of ELA polysilicon and SiN waveguides

A good design for multi-layer optical stack must allow for efficient coupling

between the adjacent layers, while minimizing crossing losses and crosstalk be-

tween the layers. We determine critical parameters including the layer thick-

nesses and separations for optimum stack performance for BDSP, and experi-

mentally demonstrate a SiN-polysilicon waveguide system.

6.4.1 Design

In BDSP, SiN waveguides are used for complex routing of networks that in-

volves crossings, while ELA polysilicon and germanium enable active function-

alities such as modulation, detection, and tunable filters. To ensure low crossing

penalties, we must ensure adequate separation between the two SiN layers. We

assume no polysilicon-SiN crossings, which is easy to achieve with the flexi-

bility of multiple SiN layers. Sherwood-Droz et al. demonstrated a low cross-

ing loss of -0.04 dB / crossing using 800 nm vertical separation [20], which is

sufficiently low to serve as a starting point for BDSP. However, another factor

to consider is the efficiency and compactness of coupling between SiN to ELA

polysilicon.

Phase matching condition for efficient coupling is automatically satisfied in

the case of coupling between two identical SiN waveguides, but careful design
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Figure 6.3: Optical mode profiles and effective indices of SiN waveguide,
polysilicon waveguide, and phase matched polysilicon waveg-
uide for directional coupler.

is needed to enable efficient coupling between polysilicon and silicon nitride

waveguides in BDSP. Polysilicon waveguides with 700 nm by 110 nm cross-

section, optimized for polysilicon modulator in chapter 5, have an effective in-

dex of 2.03 for the fundamental TE mode at λ= 1550 nm. In contrast, a SiN

waveguide with 1000 nm by 400 nm cross-section, optimized for low loss sin-

gle mode operation, has an effective index of 1.64 for its fundamental TE mode.

This drastic mismatch is due to polysilicon’s very high material index of 3.48 at

λ= 1550 nm, while that of SiN is 2.01. Such high mismatch in effective indices

prevents efficient coupling between the two waveguides by means of evanes-

cent coupling due to phase velocity mismatch of the modes in the two waveg-

uides. Effective index of a mode is bounded by the index of the guiding ma-

terial, which prevents SiN waveguide of any geometry to match the index of

our polysilicon waveguide. Therefore, we adjusted the width of the polysilicon

waveguide to 385 nm, which decreased the effective index of its mode to 1.64,

matching that of the SiN waveguide. We show the resulting mode profiles in

figure 6.3.

This phase matched polysilicon and SiN waveguide pair enables high ef-

ficiency coupling between the two layers. However, vertical separation of
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Figure 6.4: FIMMPROP simulation showing the evolution of optical mode
from SiN waveguide on layer 2 to phase matched polysilicon
waveguide on layer 1 with 98% coupling efficiency.

the two waveguides dictates the required coupling length, necessitating a

compromise between crossing penalties and compact couplers. We chose

300 nm vertical separation, which separates two adjacent SiN waveguide by

300 nm+110 nm+300 nm = 710 nm, which still allows for low loss crossings while

enabling 98% coupling efficiency between SiN and polysilicon waveguide in

just 4.8 µm, as shown in figure 6.4. However, the vertical separation can easily be

fine-tuned at design time in favor of achieving better crossing loss or coupling

length. In addition to waveguide to waveguide coupling, it is also possible to

directly drop a wavelength from SiN ring resonator in one layer to polysilicon

waveguide in another for applications such as WDM detection in Ge on Si de-

tector or WDM modulation without being limited by the FSR of the polysilicon

ring modulator.

Taking into account all the considerations above, we designed a proto-

77



Figure 6.5: CAD design of SiN resonators coupled to polysilicon drop
waveguides.

type 2 layer system comprising 110 nm thick ELA polysilicon layer and 400 nm

thick SiN layer vertically separated by 300 nm. Test structures including daisy-

chained SiN-polysilicon evanescent couplers and SiN ring resonators with

polysilicon drop waveguides have been designed. Lateral offset of the polysili-

con drop waveguide was swept to tune the coupling strength to achieve critical

coupling. In order to mitigate sensitivity of the phase-matched evanescent cou-

pler to dimensional variation, the coupling structure was designed as an overlap

of two linearly tapered waveguides. The overlap lengths of the two tapers were

varied as the SiN waveguide tapered in from 1000 nm to 300 nm while polysil-

icon waveguide tapered out from 300 nm to 700 nm over 70 µm. While this ap-

proach cannot reach the ultimate coupling efficiency, it ensures that there is an

approximately 5 µm region along the overlapping region over which the two

waveguides are approximately phase matched. Such compromise was made to

mitigate inherent fabrication variation in our in-house photolithography pro-

cess, and is not needed for commercial CMOS foundry processes in which ab-

solute dimensions of the waveguides can be guaranteed within 10∼20 nm. A
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CAD diagram of the SiN resonator and polysilicon drop waveguide structure is

shown in figure 6.5 for illustration.

6.4.2 Fabrication

We started fabrication on a 100 mm silicon wafer with 4 µm of thermal oxide,

and prepared ELA polysilicon film according to the process described in sec-

tion 4.1. We defined alignment marks for the ASML 300C, a 248 nm DUV step-

per, in polysilicon layer, and then patterned and etched the polysilicon waveg-

uides. We deposited 520 nm of PECVD oxide on top of the polysilicon waveg-

uides, the thickness determined by the sum of desired vertical gap of 300 nm

and twice the step height of the feature to be planarized, feature being the

polysilicon waveguide with height of 110 nm. We then planarized the surface

by CMP as described in subsection 4.2.2 and left 300 nm of oxide on polysili-

con as the vertical separation. The conservative polish back depth of twice the

topology height ensured complete planarization of the topology resulting from

the polysilicon waveguide. We then deposited 400 nm of low stress PECVD

SiN, followed by aligned photolithography and etching of SiN waveguides by

ICP-RIE. We clad the SiN waveguides with 3 µm of PECVD oxide, then litho-

graphically defined the coupling facets by a process similar to that of Cardenas

et al. [31] to ensure uniform coupling efficiency across the waveguides and low

insertion loss.
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Figure 6.6: Micrograph of polysilicon-SiN dual layer system with SiN
rings coupled to polysilicon drop ports.

6.4.3 Experimental results

A micrograph of the completed die is shown in figure 6.6. The lighter and

thinner waveguides are the ELA polysilicon waveguides in layer 1, and the

darker and wider waveguides are the SiN waveguide in layer 2. We first deter-

mined the optical transmission characteristics of the daisy-chained polysilicon-

SiN evanescent couplers. The measurements were calibrated by optimizing

fiber coupling and measuring reference waveguides in SiN. We then measured

daisy chained couplers with comparable propagation length and identical fiber

interfaces. We subtracted the reference waveguide transmission spectrum from

the coupler measurements, then divided by the number of transitions to arrive

at the insertion loss per transition over wavelength, as shown in 6.7. The aver-

age insertion loss was 0.6 dB / transition, and fiber to waveguide coupling loss

was less than 1.5 dB / facet. A cutback measurement was also performed for 4

to 16 transitions, which was in good agreement with the number above.

We then characterized the SiN ring resonator coupled to a polysilicon drop
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Figure 6.7: Plot of insertion loss per interlayer transition over wavelength.

Figure 6.8: Overlay plot of transmission spectrums from different ports of
the 3D coupled SiN ring resonator.

port with the spectrum shown in figure 6.8. The ring had a loaded quality fac-

tor of 4350 with extinction ratio of 6.5 dB, limited by strong coupling strengths

of the add-drop configuration. Material limited quality factor is more than an

order of magnitude higher as shown in the previous section. We see that the re-
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sponse of the polysilicon drop port is a faithful reciprocal image of the through

port response, demonstrating that it is possible to implement high performance

add-drop ring resonator filters in two different materials. Due to the uncertainty

of the polysilicon waveguide’s fiber coupling loss and potential scattering loss

of the polysilicon tap waveguide, insertion loss of the drop port could not be

precisely extracted. However, this insertion loss is typically below 1 dB [20] and

is determined primarily by loss mechanisms within the ring, which can be min-

imized with careful design. Therefore, we demonstrated that the ring resonator

add-drop architecture can serve as an efficient way to couple light between SiN

and polysilicon waveguides in a wavelength-sensitive manner.
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CHAPTER 7

LINEAR SILICON PN JUNCTION PHASE MODULATOR

In this chapter, we propose and experimentally demonstrate a method for lin-

earizing the response of depletion-mode silicon waveguide modulator based on

the engineering of the modal overlap with the depletion region. Experimental

results show linearization of the index-voltage transfer function.1

7.1 Introduction

Optical modulation based on plasma dispersion in silicon is fundamentally

nonlinear, severely limiting the use of silicon devices in analog optical links.

Linearity is of paramount importance in analog optical links, as it determines

the spurious free dynamic range (SFDR), a key performance metric in such

systems [92]. Phase shifters with high linearity are currently implemented in

lithium niobate (LiNbO) utilizing its linear electro-optic effect, but LiNbO can-

not be natively integrated onto a CMOS platform. In contrast, optical phase

shifters are implemented by utilizing plasma dispersion effect in the silicon pho-

tonics platform. Plasma dispersion-based phase shifters can be implemented in

either carrier injection or depletion mode, where injection or depletion of the

free carriers changes the refractive index of silicon.

Conventional PN junction-based depletion mode modulators [94–96] ex-

hibit a highly nonlinear, square root of voltage to phase transfer function. This

nonlinearity originates from the square root dependence of the depletion width

1Portions of this chapter are reproduced with permission from [91].
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of the PN junction with respect to the applied reverse bias [97]. A conven-

tional modulator places the depletion region where the optical field intensity

is the highest to maximize the overlap integral between the depletion region

and the optical mode (Figure 7.1(a), green curve). This happens near the cen-

ter of a typical single mode waveguide. While this conventional approach may

be good for maximizing the voltage to phase modulation efficiency, it results

in a highly nonlinear transfer function. This nonlinearity of the phase shifters

in silicon severely limits the linearity of the resulting modulator [98], posing a

major roadblock in implementing high performance analog optical links using

the silicon photonics platform.

7.2 Linear PN junction

We propose and demonstrate a method of linearizing the phase response of a de-

pletion mode silicon waveguide modulator based on the engineering of the op-

tical modal overlap of a higher order mode with the depletion region to achieve

a linear voltage to effective index transfer function. The linear PN junction’s

principle of operation is illustrated in figure 7.1. The conventional junction is

illustrated in green, and the linear junction in blue. Figure 7.1(a) shows the plot

of the optical field profile within a waveguide. The black line marks the extent

of the depletion region without any applied voltage, and the green region is the

incremental increase in the depletion width when a reverse bias voltage of V1

is applied to the junction, and the same applies to the green and blue regions

for V2 and V3, respectively. For this illustration, V2=2V1 and V3=3V1, so that the

intervals between the three voltages are equal. Given the general doping pro-

file of a PN junction, the function D(Vb) that describes the depletion width as
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Figure 7.1: Principle of operation of the proposed linear PN junction. (a)
Optical modes in a waveguide, where TE0 mode is plotted in
green and TE1 mode in blue. The colored regions correspond to
incremental depletion regions at three different voltages V1, V2,
and V3. (b) Operation of a conventional junction. PN junction
is placed near the peak of the optical field intensity, which leads
to the decrease of the area under the curve, shaded in green,
from one voltage interval to the next. This leads to a nonlinear
index-voltage transfer function. (c) Linear Junction engineers
an increase in optical field to keep area under the curve con-
stant, achieving linear index-voltage transfer function.

a function of voltage has a square to cube root dependence with respect to the

reverse bias voltage Vb. It follows that the resulting first derivative of D(Vb) is

always negative. Therefore, we see that the incremental change in the depletion

width decreases substantially from green (V1) to red (V2) to blue (V3). Note that

this function G(Vb) is identical between the two approaches.

The key difference of the linear junction is in the interaction of the optical
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field with the depletion region. We first focus our attention on the conventional

junction in figure 7.1(b), in which we see that the PN junction is placed at the

peak of the optical field. We plot F(x), the function that describes optical field

intensity as a function of distance from the center of the junction, and show

that the intensity is monotonically decreasing. The change in the effective index

of a optical mode is proportional to the overlap integral between the optical

field and the depletion region. The depletion region is uniformly devoid of

free carriers, which leads to a uniform region of higher refractive index than

the non-depleted region [93]. Therefore, the overlap integral of the optical field

intensity and the depletion region simplifies and the resulting change in the

effective index versus voltage is proportional to simply the area under the curve

between D(0V) and D(Vb). The change in depletion width decreases from V1 to

V2 as marked in green and red, respectively, in combination with the decreasing

optical field intensity results in a clear reduction of the area under the curve

between the two intervals. This translates to a highly nonlinear change in the

effective index as seen on the right.

Linear junction compensates for the negative derivative of the change in de-

pletion width by engineering a positive derivative in the optical field profile as

illustrated in figure 7.1(c). In contrast to the conventional junction, linear junc-

tion places the PN junction where the optical field intensity F(x) increases as

distance from the junction increases. This increase in the field intensity com-

pensates the decrease in the incremental change of depletion width and keeps

the area under the curve constant, which results in a linear index versus voltage

curve on the right.

Our approach linearizes the effective index versus voltage response, while
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retaining the CMOS compatibility, power efficiency, low swing voltage, and

high optical confinement of a standard silicon-based depletion-mode optical

modulator. The necessary optical field profile can be engineered by using a

node of a higher order mode. We chose the second order mode in this design,

which can be precisely excited with ease using phase-matched directional cou-

pler [99, 100], and also in-line by using a combination of a TE0 to TM0 polar-

ization rotator [101] followed by a TM0 to TE1 converter [102]. However, it is

possible to apply this linearizing principle to any mode, including the funda-

mental mode with appropriate junction design and placement.

7.3 Design and simulation

We rigorously simulated the electro-optic transfer function using SILVACO for

modeling fabrication and depletion width profile, coupled with COMSOL for

optical eigenmode simulations. We started by simulating the dopant distri-

bution in the waveguide cross-section using SILVACO, implanting boron and

phosphorous into a 250 nm thick silicon on oxide as p-type and n-type dopants,

respectively, and diffusing them. We then simulate the spatial distribution of

free carriers within the waveguide over a range of applied voltages from 0 V

to -10 V using SILVACO. The resulting distribution of carriers are converted to

distribution of complex refractive indices using Soref’s equation [93], then im-

ported into COMSOL to solve for the eigenmodes and determine their complex

effective indices over the voltage sweep, generating the change in effective in-

dex versus voltage plot. The effect of implantation dose, energy, width of the

waveguide, and placement of junction within the waveguide is studied to opti-

mize the linearity.
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The resulting optimized design utilizes the TE1 mode of a 1000 nm wide

waveguide with the junction placed at the center of the waveguide at doping

concentrations of 4E17 and 6E17 cm−3 for phosphorous and boron, respectively.

We implemented the linear junction in a ring modulator configuration to fa-

cilitate accurate measurement of small changes in the effective index. To mit-

igate potential mode coupling between TE0 and TE1 mode within the curved

portions of a racetrack resonator with 80 µm radius, we chose to implement a

1200 nm wide waveguide and the junction was shifted 50 nm towards the out-

side of the bend to account for the shifting of the mode in a bend. To facilitate

evaluation of the improvement of our junction with respect to a conventional

junction, we also designed a conventional PN junction in a 450 nm wide waveg-

uide with 50 nm junction offset and identical doping concentrations.

7.4 Fabrication and experimental results

We began fabrication with a 100 mm SOI wafer with 250 nm silicon device layer

and 3000 nm buried oxide layer. Waveguides were patterned with electron

beam lithography and etched using ICP-RIE. All lithography steps following

the waveguide definition were performed using a 248 nm DUV stepper. We de-

posited 15 nm of ALD oxide to mitigate implant channeling, then performed a

series of lithography and ion implantation steps to define P++, N++, P, and N

regions. Waveguide P and N regions were formed using Boron and Phospho-

rous, respectively. Following the implants, dopants were activated by RTA for

15 seconds at 1050◦C, then clad with 1 µm of PECVD oxide. Pt heaters were

formed by liftoff, followed by via and contact formation using sputtered MoSi2.

Metal wires were defined using sputtered Al and RIE etching and fiber coupling
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facets were finally formed using the etched facet process as described in [103].

The fabricated device is shown in figure 7.2(a).

Figure 7.2: (a) Die micrograph of the fabricated linear modulator. (b)
Transmission spectrum of the TE1 resonances of the fabricated
ring modulator. Note lack of spurious resonances from other
modes.

We measured the transmission spectrum of the multimode ring resonator

with 80 µm radius to have a quality factor comparable to that of a single mode

ring resonator. The TE1 mode has an effective index of 2.67, and measured

group index of 4.22. The resonances had an average loaded quality factor of

∼20,000 and extinction ratio greater than 18 dB. The spectrum in figure 7.2(b)

shows clean resonances of the TE1 modes without spectral corruptions from

1545 nm to 1555 nm. We also observed clean TE1 resonances in 40 µm radius

rings, but TE0 resonances were also visible, likely due to mode conversion re-

sulting from abrupt straight waveguide to curved waveguide transition. In

comparison, single mode rings with width of 450 nm showed a loaded qual-

ity factor of ∼24,000 with 15 dB extinction ratio and a group index of 4.02, which

shows that the TE1 resonance of the 1200 nm wide ring resonator is comparable

to the TE0 resonance of the 450 nm wide resonator.

We applied different reverse biases to the linear ring modulator and ob-
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Figure 7.3: Spectrum of ring resonances as a function of voltage for (a)
Conventional modulator, and (b) Linear modulator.

served uniform resonance shifts across the voltage range. Ring resonators were

used as a vehicle for accurately extracting small changes in the effective index,

as change in resonant wavelength is directly proportional to change in effective

index through the formula ∆λ/λ0 = ∆Ne f f /Ng. We also measured the resonance

shifts of a conventional depletion modulator as a function of voltage as a com-

parison and observed a monotonic decrease in resonance shift. We plot the two

sets of measurements in figure 7.3.

We plot the normalized change in effective index as a function of voltage

in figure 7.4 and show significant improvement in linearity. We performed

Lorentzian fitting to the resonances and extracted the resonant wavelengths,

which were used in the formula above to calculate the change in effective index

as a function of voltage. The data from both devices are normalized to facilitate

comparison. The normalization factor was 1.59E-4 and 9.94E-5 for conventional

and linear junction, respectively. We also observed a good qualitative agreement

between the simulation and experimental data in both devices. The simulated

responses show an order of magnitude reduction in both the second and the

third order Taylor expansion coefficients.
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Figure 7.4: Normalized change in effective index as a function of voltage.

7.5 Discussion

The demonstrated phase modulator traded off modulation efficiency to enable

relatively tight bending radius of 80 µm for use in a racetrack resonator. The op-

timum linear junction design for a straight waveguide can be achieved by sim-

ply decreasing the waveguide width to 1000 nm while maintaining the same

doping profile, which increases the mode overlap with the depletion region.

This optimum design increases the simulated modulation efficiency by more

than 80% from the fabricated design. This design has a maximum index modu-

lation of 1.46E-4, which is competitive at 92% of the experimental efficiency of

the conventional modulator. The optimum 1000 nm wide linear PN junction can

be implemented in any straight sections, including in a Mach-Zehnder modula-

tor.

The linear PN junction is significantly more tolerant to fabrication variation

and misalignment than a conventional PN junction. We performed misalign-
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ment sensitivity analysis of the linear PN junction, simulating the junction per-

formances for different misalignment scenarios of ±50 nm with respect to the

design point. Different scenarios resulted in variations between -1.6∼+10.7%,

skewed towards the positive range, resulting in slight increase of the mod-

ulation efficiency while retaining the linear characteristics. In comparison,

conventional junction subject to the same variation resulted in variations of -

27.1∼+3.7%, heavily skewed towards the negative range. This shows that the

sensitivity to misalignment of the linear PN junction is almost 3 times less than

that of the conventional junction. This different behavior under misalignment

conditions is due to the relative placement of the junction, where conventional

junction is very sensitive to accurate placement of the junction at the narrow

peak of the optical field. In contrast, linear PN junction is self-compensating

to a degree due to the two lobes of TE1 mode, because shift in the junction lo-

cation increases the mode field intensity on one edge of the depletion region,

counteracting the decrease in mode field intensity of the other edge.

Experimental misalignment tolerance of our linear junction is even better

than predicted by our simulation. While qualitative shape of the curves are in

excellent agreement, the maximum experimental modulation efficiency of the

linear junction was 22.6% higher than simulated, while that of the conventional

junction was 52.2% lower than simulated, which shows the robustness of the

linear junction against fabrication imperfections. The root cause of this discrep-

ancy is not clear, but it is likely due to imperfect lithography and the difference

between the simulated junction profile and the realized junction profile. Devia-

tion larger than 20% was observed even in foundry fabricated conventional PN

junctions [104].
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CHAPTER 8

SUMMARY AND FUTURE WORK

In this dissertation, we proposed and demonstrated a novel platform for

integrating silicon photonics with CMOS microelectronics. The Backend De-

posited Silicon Photonics (BDSP) platform is proposed to alleviate the issues of

process compatibility, scalability, manufacturability, cost, and performance of

silicon photonics integration that no preexisting approach was able to simulta-

neously address.

We established the limit of thermal budget for a 90 nm bulk CMOS process

by fabricating a bulk CMOS test vehicle and investigating its behavior before

and after various thermal processes. This work is a significant update from a

previous study on limits of thermal budget in a 0.25µm CMOS process node

[36]. The established limit of 90min at 400◦C is widely applicable to any post

processing a CMOS die, including MEMS and CMOS sensors.

We demonstrated high performance, optical quality polysilicon fabricated

by excimer laser annealing, enabling radically low thermal budget integration

of active photonic devices. This capability is the foundation on which we built

the BDSP platform. Our ELA polysilicon modulator is the first demonstration

of gigahertz speed silicon photonic device that can be deposited and fabricated

within CMOS backend compatible thermal budget. We also demonstrated that

the same device can function as a photodetector, which enables end-to-end op-

tical links.

We applied the experimentally established thermal budget limit and demon-

strated integration of low loss silicon nitride waveguide and ring resonators
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with quality factor of 40,000 on top of the backend of a CMOS die. In addi-

tion, we integrated our ELA polysilicon process with silicon nitride process and

showed that a multi-layer system of waveguides comprising polysilicon and

silicon nitride can be realized. These proof of concept demonstrations show the

feasibility of full BDSP integration on backend of a CMOS process.

We also proposed and demonstrated linear voltage to phase modulation in

silicon waveguide modulators. This work enables high performance modula-

tors for analog photonics applications that can be integrated in a silicon plat-

form, paving way for integration of high performance analog photonic devices

with the electronic frontend.

While we have demonstrated feasibility of the BDSP platform, there remains

works to be done. One such work is to integrate germanium-based photode-

tector to further improve responsivity beyond that of current defect-assisted

polysilicon detector. Integration of Ge detectors should be possible with min-

imal process complexity by leveraging the ELA technique used for polysili-

con [48]. Another area that can benefit from further work is a faster polysil-

icon modulator. We demonstrated 3 Gbps modulation, limited by the carrier

lifetime of the material. The logical next step is to leverage the same process-

ing technique and material to demonstrate a 10+ Gbps polysilicon modulator

that would make it competitive with its c-Si counterpart. This should be pos-

sible using carrier depletion modulation technique, which is not limited by the

carrier lifetime [105, 106]. With regards to our study of thermal budget limit

of a CMOS process, we note that we did not investigate potential impacts on

long term reliability due to electromigration lifetime, which would be a topic

worthy of a follow up investigation. Finally, complete 3D integration of active
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devices and waveguides on CMOS backend with electrical connections from

CMOS backend to BDSP remains to be done. Such integration requires access

to full CMOS wafers and advanced process engineering capability, a challenge

which we believe can best be taken on by an industrial player with process yield

and expertise, and substantial resources.

BDSP has a multitude of benefits including reduced constraint in photonic

footprint, multi-level optical routing, and fabrication cost reduction. Most im-

portantly, it decouples CMOS frontend from photonics and frees silicon pho-

tonics from its dependence on SOI substrate and foundry-specific fabrication

process. This decoupling lowers the barrier to true monolithic integration of sil-

icon photonics with bulk CMOS. However, applications do not stop here. Our

platform’s only requirement on the underlying substrate is that the substrate be

able to withstand the thermal budget of PECVD processes. Therefore, while our

investigation focused on CMOS backend integration, we note that it may be pos-

sible to integrate BDSP on a DRAM process, which can benefit greatly from pho-

tonic interconnections to CMOS processors [61]. Taking one step further, one

can in principle integrate BDSP on any substrate that can benefit from integrat-

ing active photonic functionality. Integration on flexible substrate by trading off

optical loss and material quality for lower thermal budget appears promising

for flexible photonic sensors [17] among many potential applications.

Silicon photonics device research is starting to reach maturity, but complete

integration of silicon photonics with CMOS has been slower than the commu-

nity hoped for. It is my hope that this work will pave way to greatly lowering

the barrier of silicon photonics integration with CMOS microelectronics, accel-

erating the arrival of silicon photonics for real world applications.
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and R. J. Ram, “Nanophotonic integration in state-of-the-art CMOS
foundries,” Optics Express, vol. 19, no. 3, pp. 2335–2346, 2011.

[14] L. Alloatti, D. Korn, R. Palmer, D. Hillerkuss, J. Li, A. Barklund, R. Dinu,
J. Wieland, M. Fournier, J. Fedeli, H. Yu, W. Bogaerts, P. Dumon, R. Baets,
C. Koos, W. Freude, and J. Leuthold, “42.7 Gbit/s electro-optic modulator
in silicon technology,” Opt. Express, vol. 19, no. 12, pp. 11 841–11 851,
2011.

[15] A. E. J. Lim, L. Tsung-Yang, D. Ning, D. Liang, Y. Mingbin, G. Q. Lo, and
D. L. Kwong, “Germanium electro-absorption modulator for power effi-
cient optical links,” in Microwave Photonics, 2011 International Topical Meet-
ing on & Microwave Photonics Conference, 2011 Asia-Pacific, MWP/APMP,
2011, pp. 105–108.

[16] A. Hosseini, B. Fallahazad, D. N. Kwong, Z. Yang, E. Tutuc, and R. T.
Chen, “A platform for three-dimensional on-chip photonics: Multi-
bonded Silicon-on-insulator wafers,” in Lasers and Electro-Optics (CLEO),
2011 Conference on, 2011, pp. 1–2.

[17] Y. Chen, H. Li, and M. Li, “Flexible and tunable silicon photonic circuits
on plastic substrates,” Sci. Rep., vol. 2, 2012.

[18] A. V. Rylyakov, C. L. Schow, B. G. Lee, W. M. J. Green, S. Assefa, F. E.
Doany, M. Yang, J. Van Campenhout, C. V. Jahnes, J. A. Kash, and
Y. A. Vlasov, “Silicon Photonic Switches Hybrid-Integrated With CMOS
Drivers,” IEEE Journal of Solid-State Circuits, vol. 47, no. 1, pp. 345–354,
Jan. 2012.

97



[19] H. D. Thacker, I. Shubin, Y. Luo, J. Costa, J. Lexau, X. Zheng, G. Li,
J. Yao, D. Patil, F. Liu, R. Ho, T. Pinguet, P. Dong, D. Feng, M. Asghari,
K. Raj, J. G. Mitchell, A. V. Krishnamoorthy, and J. E. Cunningham,
“Hybrid-integrated silicon photonic bridge chips for ultralow-energy
inter-chip communications,” in SPIE OPTO, A. L. Glebov and R. T. Chen,
Eds., vol. 7944. International Society for Optics and Photonics, Feb.
2011, pp. 79 440B–79 440B–11.

[20] N. Sherwood-Droz and M. Lipson, “Scalable 3D dense integration
of photonics on bulk silicon,” Optics Express, vol. 19, no. 18, pp.
17 758–17 765, 2011.

[21] K. Preston, S. Manipatruni, A. Gondarenko, C. B. Poitras, and M. Lipson,
“Deposited silicon high-speed integrated electro-optic modulator.” Optics
express, vol. 17, no. 7, pp. 5118–24, Mar. 2009.

[22] I. a. Young, E. Mohammed, J. T. S. Liao, A. M. Kern, S. Palermo, B. a.
Block, M. R. Reshotko, and P. L. Chang, “Optical I/O Technology for
Tera-Scale Computing,” IEEE Journal of Solid-State Circuits, vol. 45, no. 1,
pp. 235–248, Jan. 2010.

[23] J. M. Fedeli, “Integration issues of a photonic layer on top of a CMOS
circuit,” Proceedings of SPIE, vol. 6125, pp. 61 250H–61 250H–15, 2006.

[24] ASML, “TWINSCAN XT : 450G,” p. 2012, 2012.

[25] U. Behringer, “Foreword,” in Proceedings of the European Mask Conference,
2003, p. 1.

[26] P. Seidel, “EUV Lithography Cost of Ownership Considerations,” in
International EUVL Symposium, no. 512, 2007.

[27] C. N. Berglund, “A Unified Yield Model Incorporating both defect and
parametric effects,” IEEE Transactions on semiconductor manufacturing,
vol. 9, no. 3, 1996.

[28] J. Feng, Q. Li, and S. Fan, “Compact and low cross-talk silicon-on-
insulator crossing using a periodic dielectric waveguide,” Optics Letters,
vol. 35, no. 23, pp. 3904–3906, 2010.

[29] D. Nikolova, S. Rumley, D. Calhoun, Q. Li, R. Hendry, P. Samadi, and
K. Bergman, “Scaling silicon photonic switch fabrics for data center

98



interconnection networks,” Optics Express, vol. 23, no. 2, p. 1159, Jan.
2015.

[30] Y. Liu, J. M. Shainline, X. Zeng, and M. A. Popović, “Ultra-low-loss
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