

THE APPSMITHS: COMMUNITY, IDENTITY, AFFECT AND IDEOLOGY AMONG

COCOA DEVELOPERS FROM NEXT TO IPHONE

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

In Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy|

by

Hansen Hsu

May 2015

© 2015 Hansen Hsu

THE APPSMITHS: COMMUNITY, IDENTITY, AFFECT AND IDEOLOGY AMONG

COCOA DEVELOPERS FROM NEXT TO IPHONE

Hansen Hsu, Ph.D.

Cornell University 2015

This dissertation is an ethnographic study, accomplished through semi-structured

interviews and participant observation, of the cultural world of third party Apple

software developers who use Apple’s Cocoa libraries to create apps. It answers the

questions: what motivates Apple developers’ devotion to Cocoa technology, and why do

they believe it is a superior programming environment? What does it mean to be a “good”

Cocoa programmer, technically and morally, in the Cocoa community of practice, and

how do people become one? I argue that in this culture, ideologies, normative values,

identities, affects, and practices interact with each other and with Cocoa technology in a

seamless web, which I call a “techno-cultural frame.” This frame includes the

construction of a developer’s identity as a vocational craftsman, and a utopian vision of

software being developed by millions of small-scale freelance developers, or “indies,”

rather than corporations. This artisanal production is made possible by the productivity

gains of Cocoa technology, which ironically makes indies dependent on Apple for tools.

This contradiction is reconciled through quasi-religious narratives about Apple and Steve

Jobs, which enrolls developers into seeing themselves as partners in a shared mission

with Apple to empower users with technology. Although Cocoa helps make software

production easier, it is not a deskilling technology but requires extensive learning,

because its design heavily incorporates patterns unfamiliar to many programmers. These

concepts can only be understood holistically after learning has been achieved, which

means that learners must undergo a process of conversion in their mindset. This involves

learning to trust that Cocoa will benefit developers before they fully understand it. Such

technical and normative lessons occur at sites where Cocoa is taught, such as the training

company Big Nerd Ranch. Sharing of technical knowledge and normative practices also

occurs in the Cocoa community, online through blog posts, at local club meetings, and at

conferences such as Apple’s WWDC, which help to enroll developers into the Cocoa

techno-cultural frame. Apple’s relationship with developers is symbiotic, but

asymmetrical, yet despite Apple’s coercive power, members of the Cocoa community can

influence Apple’s policies.

iii

BIOGRAPHICAL SKETCH

Hansen Hsu received a B.S. in Electrical Engineering and Computer Science from

the University of California, Berkeley in 1999. That year, he joined Apple, Inc. as a

software engineer in the Mac OS 9 group. In 2000 he transferred to the Cocoa framework

group within the Mac OS X division to work as a Quality Assurance Engineer,

contributing to the releases of OS X 10.0 through 10.4 over the next five years. He left

Apple in 2005 to study History at the State University of New York, Stony Brook, where

he received an M.A. in 2007. With this doctoral dissertation he completes his Ph.D. in

Science and Technology Studies at Cornell University.

iv

I dedicate this dissertation to my late mother, Wen Chen Hsu, who always believed in me.

v

ACKNOWLEDGEMENTS

There are many people without whom I could not have finished this dissertation. I

must first thank the members of my special committee, especially my chair, Trevor Pinch,

who has been an enthusiastic supporter of me and my work from the moment I arrived at

Cornell, provided a positive framework and environment that allowed me to succeed, and

who I feel honored to have been taken under his guidance. Likewise, I thank Ronald

Kline for being an interlocutor helping me to formulate a larger argument and reminding

me to connect my work with key historical literatures, and for providing me with a

teaching assistantship for his course, Inventing an Information Society, which provided

new insights into my project. I thank Rachel Prentice for pushing me hard to think in new,

difficult directions, which has greatly improved my work. Last but not least, special

thanks must go to Phoebe Sengers, whose generous mentorship, encouragement, and

support came at a critical juncture during the writing of the dissertation, and has always

made herself available to me no matter how busy her schedule is. Phoebe is also

responsible for getting me connected to the network of scholars in Culturally Embedded

Computing (CemCom) and the Intel Science and Technology Center (ISTC) for Social

Computing, for providing me with funding through her ISTC grant, and for letting me

work in the Goldman Social Computing Lab in Gates Hall. Each of my advisors has

helped me in innumerous ways, intellectually and personally, and I could not have

imagined a more perfect committee to work with. It has been a blessing to work with

each and every one of them.

I also wish to thank the many faculty of the Departments of Science &

Technology Studies, Communication, Information Science, and Engineering who have

provided help and support over the years. I especially thank Bruce Lewenstein, who

despite his duties as Chair of the Department of Science & Technology Studies took the

time to be the field appointed reader for my dissertation defense. I must also thank Steve

Jackson, Tarleton Gillespie, Michael Lynch, Malte Ziewitz, Rebecca Slayton, Park Doing,

Suman Seth, Stephen Hilgartner, Sara Pritchard, Peter Dear, Christine Leuenberger,

Rachel Maines, and Judith Reppy, whose help and feedback have guided me throughout

vi

my time at Cornell. I also thank the postdoctoral researchers and visiting scholars in

S&TS with whom I have had the pleasure of interacting with, including Johanna Crane,

Vivian Choi, Jenni Lieberman, and Annalisa Salonius.

I thank the community of Cornell graduate students in Science & Technology

Studies with whom I have had the privilege of being part of. My cohort, Tyson Vaughn,

Anto Mohsin, and Ilil Naveh-Benjamin, has been with me from the beginning, and we

have traveled this journey together. I must also thank the members of our dissertation

support group, which has included Angie Boyce, Megan Halpern, and Hrönn Holmer.

They have provided key emotional and intellectual support through the early stage of the

dissertation writing process. I must credit Hrönn for coming up with the term

“Appsmiths,” which I have used as the title of my dissertation. Other colleagues in

Science & Technology Studies have been important friends over the years: Benjamin

Wang, Kasia Tolwinski, Emma Zuroski, Ling-Fei Lin, Honghong Tinn, Nicole Nelson,

Harald Kliems, Alexis Walker, Carmen Krol, Bahar Akyurtlu, Darla Thompson, Rob

Schombs, Victor Marquez, Janet Vertesi, Lisa Onaga, Anna Geltzer, Hannah Rogers,

Kathryn de Ridder-Vignone, Katie Proctor, Owen Marshall, Shoan Yin Cheung, Enongo

Lumumba-Kasongo, Christopher Hesselbein, Danya Glabau, Jessy Price, Lisa Avron,

Mehmet Ekinci, Jess Polk, and Ranjit Singh. I also thank my fellow Goldman labmates

for their conversation and companionship, including Samir Passi, Stephanie Steinhardt,

Laewoo (Leo) Kang, and Ishtiaque Ahmed, and the extended Cornell ISTC and CemCom

family, including Kaiton Williams, Caroline Jack, Stephanie Santoso, Andreas Kuehn,

Vera Khovanskya, Maggie Jack, Nick Knouf, Lucian Leahu, and Jofish Kaye. I also

thank additional graduate student colleagues I have had the pleasure to work with at

Cornell over the years, including Tony Liao, Matt Bernius, Stephen Purpura, Josh Braun,

Dima Epstein, and Ellan Fei-Spero.

I thank the Intel Science and Technology Center for Social Computing, for

providing funding through a research assistantship, and additional funding for travel and

audio transcription. I especially want to thank Mel Gregg at Intel, with whom I had key

conversations that shaped my dissertation in the final stages. I also need to thank the

vii

Charles Babbage Institute, Thomas Misa and Jeffrey Yost for providing the Arthur L.

Norberg Travel Fund Award in 2011, which allowed me to pursue archival research at

the Institute. I thank as well the Special Interest Group, Computing, Information, and

Society (SIGCIS) of the Society for the History of Technology (SHOT), for awarding me

the MIT Press Travel Award in 2009 and the UW-Milwaukee School of Information

Studies Information History Travel Award in 2010 to attend the SIGCIS session of SHOT,

and I thank Thomas Haigh especially for working with me on my paper submissions to

SIGCIS and being a generous and effective organizer of the group and the history of

computing community. I also thank Atsushi Akera, Nathan Ensmenger, and Alex

Bochannek for welcoming me into this community.

I thank my advisors Wolf Schäfer, Iona Man-Cheong, and Don Ihde at Stony

Brook University for teaching me how to be a scholar, and Cynthia Kauffman at De Anza

College for providing me with the encouragement to pursue academia and leave my

industry job.

Without the generous time donated by the many Cocoa and iOS developers

participating in my study, this project could not have been possible. I must thank most of

all Aaron Hillegass, who gave me unfettered access to his company, the Big Nerd Ranch,

where a significant proportion of the fieldwork for this dissertation was done. I also

thank the many Big Nerd Ranch employees with whom I worked or interviewed for

welcoming me into their lives, including Mikey Ward, Step Christopher, Emily Herman,

Nate Chandler, Adam Preble, Joe Conway, Jeremy Sherman, Mark Dalrymple, Christian

Keur, Brian Turner, Brian Hardy, Bill Phillips, Eric Jeffers, Owen Mathews, Steve

Sparks, Bolot Kerimbaev, Jason Russell, Jami Siedler, Jaye Liptak, Stacy Moore, Agnes

Mackintosh, Charles Brian Quinn, Mark Fenoglio, Chris Stewart, Andrew Lunsford, Alex

Silverman, Brian Harper, Brandy Porter, James Majors, as well as Mark Sanchez and

Michael Ledford of topsOrtho. In addition, I must thank all of my participants who

agreed to set aside time in their busy days to conduct interviews with me, including the

following Atlanta CocoaHeads and iOS Developer Meetup members, including Robert

Walker, Rusty Zarse, Brandon Alexander, Jonathan Freeman, Joe DeCarlo, Mark Rhodes,

viii

Michael Ayers, and R.D. Willhoite. Critical to my study was the participation of the

Seattle Xcoders, NSCoder night attendees, and other Seattle-area Cocoa and iOS

developers, including Ken Case, Tim Wood, Curt Clifton, Jake Carter, Luke Adamson,

Brent Simmons, Gus Mueller, Chris Parrish, Hal Mueller, Daniel Pasco, Bill Moorhead,

Michael Burford, Pam DeBriere, Michael Swanson, Michael Eisses, Joe Heck, Jason Lust,

Chris Livdahl, Hasan Edain, and many others. I must also thank important developers

who I interviewed in the Bay Area, or remotely over iChat, or elsewhere, including Wil

Shipley, Dan Wood, Michael B. Johnson, Mike Lee, Tristan O’Tierney, Chris Clark,

Sean Heber, Kevin Avila, Layton Duncan, Jonathan “Wolf” Rentzsch, Jonathan Saggau,

Craig Hockenberry, Gedeon Maheux, Tim Novikoff, and Ge Wang. I especially want to

thank the former Apple employees who participated in my project, including Becky

Willrich, John Randolph, Steve Naroff, Blaine Garst, James Dempsey, and Julie Zelinski.

Lastly, I must thank Andrew Stone for his enthusiasm, kindness, and hospitality in letting

me stay at his home in Albuquerque. I thank my former coworkers at Apple, including

Ali Ozer, Mike Engber, Chris Parker, Kristin Forster, Chris Kane, Aki Inoue, Doug

Davidson, Mark Piccerelli, Scott Herz, Vince DeMarco, Amul Goswamy, and many

others, for introducing me to the Cocoa community in the first place.

I thank Meg Gourley for her hard work helping me transcribe my interviews.

Finally, I must thank my family, including my sister Hana and especially my

father, Po Choo Hsu. My father has always been supportive of my decision to leave the

technology industry and pursue humanistic scholarship, and without his moral and

financial support during these difficult past two years, this dissertation would not have

been possible.

ix

TABLE OF CONTENTS

	

BIOGRAPHICAL	 SKETCH	 III	

ACKNOWLEDGEMENTS	 V	

TABLE	 OF	 CONTENTS	 IX	

LIST	 OF	 FIGURES	 XII	

INTRODUCTION	 1	

WHAT’S	 NEW	 ABOUT	 APPS?	 6	
A	 BRIEF	 HISTORY	 OF	 COCOA	 9	
WHY	 COCOA	 DEVELOPERS?	 12	
TECHNOLOGY,	 CULTURE,	 AND	 IDEOLOGY	 15	
SOFTWARE	 ENGINEERING,	 MAINTENANCE,	 AND	 OBJECT-ORIENTED	 PROGRAMMING	 35	
METHODOLOGY	 42	
SUMMARY	 OF	 THE	 DISSERTATION	 51	

CHAPTER	 1:	 “INDIE”	 COCOA	 DEVELOPERS:	 PLEASURE,	 VOCATION,	 AND	 IDEOLOGY	 54	

PLEASURE	 IN	 COCOA	 PROGRAMMING	 57	
COMMITMENT	 TO	 AESTHETICS	 AND	 USABILITY	 62	
CRAFT	 AND	 VOCATION	 70	
INDIES	 AND	 TECHNOLIBERTARIANISM	 77	
THE	 IDEOLOGY	 OF	 APPLE	 AND	 THE	 MYTHOLOGY	 OF	 STEVE	 JOBS	 91	

CHAPTER	 2:	 REVENGE	 OF	 THE	 NEXT	 NERDS:	 OBJECT-ORIENTED	 PROGRAMMING,	 THE	

QUEST	 FOR	 PRODUCTIVITY,	 AND	 THE	 VINDICATION	 OF	 THE	 NEXT	 COMMUNITY	 98	

NEXTSTEP	 AND	 OBJECT-ORIENTED	 PROGRAMMING	 98	
THE	 SOFTWARE	 CRISIS	 AND	 OBJECT-ORIENTED	 PROGRAMMING	 110	
DEVELOPERS	 TAKE	 UP	 NEXTSTEP	 125	

x

NEXT	 AND	 WALL	 STREET	 131	
THE	 VINDICATION	 OF	 THE	 NEXT	 COMMUNITY	 140	

CHAPTER	 3:	 WHY	 IS	 COCOA	 BETTER?	 TECHNICAL	 DESIGN,	 NORMATIVE	 PRACTICE,	

AND	 TRUST	 IN	 APPLE	 AMONG	 COCOA	 DEVELOPERS	 150	

CONSISTENCY	 151	
FLEXIBILITY	 157	
LESS	 CODE	 166	
LEARNING	 AS	 A	 PREREQUISITE	 FOR	 PRODUCTIVITY	 176	
TRUST	 IN	 APPLE	 180	
DESIGN	 PATTERNS	 AND	 THE	 LEARNING	 CURVE	 183	
DESIGN	 PATTERNS—MODEL-‐VIEW-‐CONTROLLER	 188	
DESIGN	 PATTERNS—DELEGATION	 VS	 SUBCLASSING	 194	
DESIGN	 PATTERNS	 AND	 CONVERSION	 TO	 COCOA	 206	
CONCLUSION	 213	

CHAPTER	 4:	 THE	 PEDAGOGY	 OF	 COCOA:	 DESIGN	 PATTERNS,	 AND	 CODING	 STYLE	 AT	

BIG	 NERD	 RANCH	 214	

PEDAGOGY	 AT	 THE	 BIG	 NERD	 RANCH	 219	
SYNERGISTIC	 BUSINESSES	 225	
THE	 BIG	 NERD	 RANCH	 BOOTCAMP	 230	
LEARNING	 THROUGH	 TYPING	 244	
PACING	 245	
DOCUMENTATION	 250	
DEBUGGING	 251	
PRACTICAL	 TO	 ABSTRACT,	 SPECIFIC	 TO	 GENERAL	 267	
HUMOR	 269	
STYLE	 AND	 “STYLISHNESS”	 273	
STUDENT	 RESISTANCE	 288	
CONVERSIONS	 292	
CONCLUSION	 295	

CHAPTER	 5:	 THE	 COCOA	 COMMUNITY	 298	

xi

THEORIES	 OF	 COLLECTIVE	 PRACTICE	 298	
THE	 DEVELOPER	 COMMUNITY	 FROM	 NEXT	 TO	 COCOA	 311	
THE	 IPHONE	 GOLD	 RUSH:	 A	 COMMUNITY	 IN	 TRANSITION	 316	
BOUNDARY	 WORK	 DURING	 THE	 IPHONE	 GOLD	 RUSH	 323	
CORE	 AND	 PERIPHERY	 IN	 THE	 COCOA	 COMMUNITY	 333	
THE	 COCOA	 ONLINE	 PUBLIC	 340	
LOCAL	 COCOA	 DEVELOPER	 CLUBS	 349	
APPLE	 WORLDWIDE	 DEVELOPER	 CONFERENCE	 (WWDC)	 361	
COMMUNITY-RUN	 CONFERENCES	 370	
TENSIONS	 BETWEEN	 ELITISM	 AND	 POPULISM	 IN	 KNOWLEDGE	 SHARING	 IN	 THE	 COCOA	 COMMUNITY

	 375	
THE	 COCOA	 COMMUNITY’S	 RELATIONSHIP	 TO	 APPLE	 389	

CHAPTER	 6:	 THE	 DOT	 NOTATION	 CONTROVERSY	 404	

THE	 STAKES	 OF	 THE	 DOT	 NOTATION	 CONTROVERSY	 405	
DOT	 NOTATION	 EXPLAINED	 410	
BOUNDARY	 WORK,	 PEDAGOGY,	 AND	 AESTHETICS	 IN	 THE	 DOT	 NOTATION	 CONTROVERSY	 440	
READABILITY,	 MAINTAINABILITY	 AND	 SOFTWARE	 ENGINEERING	 450	
VERBOSITY	 AS	 A	 VIRTUE	 IN	 OBJECTIVE-C	 CODE	 456	
CLOSURE	 OF	 THE	 DOT	 NOTATION	 CONTROVERSY,	 AND	 SWIFT	 468	
CONCLUSION	 472	

CONCLUSION	 474	

FUTURE	 DIRECTIONS	 485	

BIBLIOGRAPHY	 492	

xii

LIST OF FIGURES

Figure 1: NeXTSTEP 486 advertisement .. 105	

Figure 2: Model-View-Controller ... 190	

Figure 3: Wiring up in Interface Builder 1. ... 259	

Figure 4: Wiring up in Interface Builder 2. ... 260	

Figure 5: Wiring up in Interface Builder 3. ... 262	

Figure 6: Wiring up in Interface Builder 4. ... 263	

Figure 7: Blog denouncing dot notation. ... 412	

Figure 8: Message “fetch” sent to “Dog” object. .. 416	

1

INTRODUCTION

A June 15, 2014, article in the New York Times covered Apple’s latest Worldwide

Developer Conference (WWDC) and the eager anticipation surrounding possible iPhone

announcements by Apple CEO, Tim Cook. At the conference, Cook announced the latest

version of the iPhone and iPad operating system, iOS 8, calling it “the biggest release since

the launch of the App Store.” (Richtel and Chen 2014) The mainstream press, and the

general public, hoping for news about the rumored Apple smartwatch, was disappointed.

However, the Times noted that the big announcement at WWDC 2014 was “not a consumer

product, but a set of software tools called a developer’s kit, which would help developers

build better apps. If the rest of the world yawned, the developers stood, and whooped.” To

the primary audience of the conference, third party software developers who write

applications for the iPhone, iPad, and the Macintosh, WWDC 2014 appeared to be one of

the most important in years. Apple was finally going to allow iOS developers a way to

create application “extensions,” allowing them to customize the behavior of other apps or

parts of the system, a capability that Google’s competing mobile operating system, Android,

had had for years. In addition, Apple announced two new toolkits, HeathKit and HomeKit,

to provide centralized, coordinated ways for apps to securely track a user’s health and

fitness data, or to automate the home. What energized the audience of developers most,

however, was Apple’s release of a new programming language that it had developed, called

Swift, to replace the venerable Objective-C language, which it had relied on for over a

decade.

The third party developers of software for particular computer operating systems and

platforms, such as Apple’s iOS and Mac OS X, are strategically important to their

usefulness to users and their success in the market competition between computing

platforms When Apple opened up the iPhone in 2008 to third party application development,

it catalyzed a frenzy of interest in developing mobile applications, not just on its own

platform, but also on the rival Android platform as well. The number of apps available on

the App Store grew from about 10,000 in fall of 2008 to well over a million today, as of

June 17, 2014 (Steel Media Ventures 2014). By making available a software development

2

kit, Apple has tapped into the ingenuity of third party developers, who have created apps

extending the iPhone and iPad with functions far beyond Apple’s original designs. For this

reason, the additional capabilities Apple provides for its third party developers can have

more significant long-term impact on users’ experiences and the technology industry than

the features it develops itself. The stakes of developer support are enormous—Microsoft,

which has depended on strong developer support of its desktop Windows platform, has

struggled with its mobile Windows OS due to a dearth of applications. And despite

Android’s lead in smartphone marketshare, many mobile developers still prefer to target

iOS first, because of the difficulty of targeting the many different versions of the Android

OS in the user base (a problem known as “fragmentation”), fears over piracy, (Dredge 2013)

and because it has been much easier to generate revenue on iOS than Android. “Benedict

Evans, an analyst with Andreesen Horowitz… [noted] that despite there being more than 1

billion Android users worldwide, developers make less on Android than they do on iOS…

Evans concludes, ‘Google Android users in total are spending around half as much on apps

on more than twice the user base, and hence app ARPU (Average Revenue Per User) on

Android is roughly a quarter of iOS.’” (Krakow 2014) Arguably, Apple’s success in mobile

is in no small part due to the millions of apps available for its App Store. Just as Microsoft’s

dominance in PC operating systems created a cycle in which more applications were

available for Windows, locking in more users, and thus creating increased incentives for

developers to make software for it first, the same is now true for Apple’s iOS, to

Microsoft’s dismay. This has played a role in the explosive growth of Apple’s iPhone and

iPad hardware sales, sending its stock into the stratosphere and turning Apple into the

largest company in the world, in terms of market capitalization.1

1 The number of available apps on Apple’s App Store rose from 35,000 in April 2009

to 1.3 million and counting by September 2014 (Statista 2015b). By October 2014, 85

billion apps had been downloaded from the App Store (Statista 2015c). This contributed to

fourth quarter revenue of $4.6 billion in a category that included content sales of music,

movies, TV shows, and books from the iTunes media store, as well as sales from AppleCare

service warranties, licenses, and other services, and Apple did not break down how much of

3

Apple’s third party developers are an important site of entrepreneurial technological

activity, quintessential members of what Richard Florida calls the “creative class” in the

knowledge economy, (Florida 2002) who have not only weathered, but actually prospered,

in the wake of the 2008 financial crisis. Through Apple’s iOS App Store, the apps they

create are available to a global user base.2 Media stories of lone programmers who made

overnight riches in the initial years of the App Store generated a new gold rush of

entrepreneurial activity in IT rivaling that of the dot.com era, making it a mainstream

platform for software development for the first time since the days of the Apple II

(Wortham 2009). App development has become a big business.3 Yet despite all the

newcomers looking to strike it rich, the iOS developer community did not spring out of

this revenue came from the iOS App Store or the Mac App Store. (Statista 2015a) This

represented 11% of Apple’s total revenue of $42 billion for the fourth quarter. However, the

largest portion of Apple’s revenue was iPhone sales, accounting for $23 billion in revenue,

with iPad sales at $5.3 billion, trailing Mac computer sales at $6.6 billion. (Apple Inc. 2014)

Software sales, while profitable on their own, more importantly increase the value of the

iOS platform by maintaining and growing hardware sales, which constitute the majority of

Apple’s revenue. Driven by strong sales of the iPhone 6, Apple’s stock most recently

peaked at $119, putting its market capitalization at $700 billion for the first time

(Huddleston 2014).
2 Apple says that 1.4 million apps on the iOS App Store are available in 155

countries (Apple Inc. 2015b).
3 On January 8, 2015, Apple announced that “customers around the world” had spent

“nearly half a billion dollars on apps and in-app purchases” in the first week of January

2015, following a “record breaking 2014” in which “billings rose 50 percent and apps

generated over $10 billion in revenue for developers.” This $10 billion meant that

cumulatively, third party developers have earned over $25 billion from sales on the App

Store since it opened in 2008, after Apple’s 30% cut. Apple further boasts that “the iOS

ecosystem has helped create 627,000 jobs in the US alone,” (Apple Inc. 2015b) citing two

studies on the “app economy.” (Mandel and Scherer 2012; VisionMobile Ltd 2014)

4

nowhere. These newcomers learned how to write apps for Apple devices from an already

existing community of developers that write apps for Apple’s desktop operating system,

Mac OS X, using the Apple software development kit known as “Cocoa.” iOS development

uses a technology called “Cocoa Touch,” which was developed along the same principles as

its desktop Cocoa cousin. Software development using Cocoa, whether its desktop or mobile

variants, involves learning a programming language unique to Apple’s platforms

(Objective-C and now Swift) as well as idioms, design patterns, and ways of thinking about

software architecture that are particular to it. The existing developer community’s expertise

in Cocoa is also bound up with a set of norms, values, and practices about how a developer

should write code and design apps. Unlike newcomers to iOS, many of these earlier Mac

developers came to the Mac OS X platform at a time when it had less than 10% PC

marketshare, and developing software for exclusively for it instead of Windows or the Web

seemed like a terrible business decision. For these developers, something more than

maximizing profit motivated them to devote their careers to Apple’s platform: a pleasurable,

affective experience writing software using Cocoa technology that they believed was better

than that of any other software development environment. Coupled to an ideology of

empowering users through software tools, and a romantic individualist identity4 as an anti-

corporate programmer-entrepreneur as hero-rebel-crusader, these independent or “indie”

Mac developers formed a close-knit community in the early 2000s, defining themselves

against the corporate programmers of the Microsofts and Adobes of the world.

It was this indie Cocoa/Mac community that transmitted its knowledge, practices,

and values to newcomers to iOS, through blogs, tweets, mailing lists, books, classes,

podcasts, and conference talks. One expert, Aaron Hillegass, whose Cocoa programming

books and courses have trained a generation of Cocoa programmers, has had an enormous

influence on prevailing norms and practices. The kinds of apps Cocoa programmers write,

4 Thomas Streeter has written about the influence of romanticism and constructions

of the romantic individual (as opposed to a rational utilitarian self) in the culture of

computing and the internet, and the role it has played in both the revival of neoliberalism

and the development of the open source movement (Streeter 2011).

5

and how they write them, are powerfully shaped by the culture, values, and practices of the

developer community with which they interact and learn their craft, as well as by the

capabilities of the Cocoa toolkit itself, and the abstract principles that guide Apple’s design

of them. These two factors are not independent, but linked—third party Cocoa developers

and Apple engineers alike exist in a community of practice that transcends the boundary of

Apple the corporation; shared ideas that motivate how developers write apps likewise shape

how engineers at Apple write the toolkits developers use to write those apps.

This dissertation is an ethnographic and sociological study of this technological

subculture: namely the Cocoa developers, third party software programmers who use

Apple’s Cocoa technology to make apps. The economic boom in computing technologies

since the 1980s has drawn many people to become software developers as a way to make a

comfortable living, and others hope to found startups and become fabulously wealthy. Yet,

prior to the iPhone, Apple’s platform was the minority, and developing for it was not seen in

the industry as a clear path to such prosperity. What then motivated developers to hitch their

wagons to Apple? The answer, as we shall see, is both affective and ideological. Affectively,

Cocoa developers wish to maintain the pleasurable experience of programming with Cocoa

technology. Ideologically, Cocoa developers came to believe that their life’s vocation was to

improve society by making software, and that this is best done independently of corporate or

managerial control. This project is about the complex interplay between 1) developers’

affective experience with Cocoa, 2) a sense of self as a creative, artistic individual and a

productive maker empowered by that experience, 3) the moral and ideological commitments

tied to those experiences and subjectivities, 4) the technical practices entailed by these

commitments, and 5) the sharing of both these practices and the commitments behind them

among a community of like-minded individuals, who wish to preserve and spread the

technology, the experience of using it, and the identity, values, and practices associated with

6

it. Each of these aspects interacts with and constitutes the others, in a “seamless web” in

which culture and technology are tightly bound.5

What’s new about apps?

For all the hype about the mobile app revolution, “apps” themselves are not really all

that new. Prior to smartphones, “app” was simply an abbreviation for “application

program,”6 a program that is “applied” to a specific use task, or “application” that a

computer user is trying to accomplish. According to PC Magazine, an “application program”

is “Software that processes data for the user” (“Application Program” 2015) and can refer to

any software that is not “system software,” which is “Software used to control the computer

and develop and run applications” (“System Software” 2015), and which Martin Campbell-

Kelly explains, “included the operating systems and programming aids that all users needed

to run their computer installations efficiently and to create their own programs.” (Campbell-

Kelly 2003, 97) According to Campbell-Kelly, the term “applications” was already in use

by IBM as early as 1959 with the Program Applications Library for the IBM 1401, though

the library actually included systems programs as well as applications programs. Campbell-

Kelly notes that this classification scheme became more formalized in 1964 with the

announcement of IBM’s System/360: “The distinction between systems software and

5 In the introduction of the “schoolbus book,” the seminal The Social Construction of

Technological Systems (Bijker, Hughes, and Pinch 1987, 9–15), editors Wiebe Bijker,

Thomas Hughes, and Trevor Pinch use the metaphor of the “seamless web,” derived from

Thomas Edison’s notebooks, to describe the way society and technology mutually construct

each other such that the technical and the social are thoroughly intertwined.
6 Blogger Thom Holwerda claims that the earliest use of the abbreviation “app” that

he could find using Google books dates from the June 8, 1981 issue of Computerworld, in

which it can be found in numerous job postings, which were written in the style of telegrams,

which abbreviated to save on per-character costs. Later uses include 1985’s MacApp, Larry

Tessler’s object-oriented application development framework for the original Macintosh,

among others. (Holwerda 2011)

7

application programs was a natural division that was used in all subsequent software

classification schemes.” (Campbell-Kelly 2003, 96–97) Since in some respects the category

of “applications” is widely used to designate any software that is not systems software,

applications programs have been around since digital electronic stored program computers

have been available. In another sense, applications are really what computers and software

are all about—the hardware and systems software exist only to provide the medium, the

infrastructure, for the computer to run the application programs for which it was constructed

or acquired. In this sense, applications are, and have always been, central to computing

since before there were computers. Michael Mahoney has argued that the multiple histories

of computing are really about the multiple histories of the communities of practice that

needed computing for particular end-uses, or in other words, applications—business data

processing, numerical calculation, military command and control, industrial automation, etc.

(Mahoney 2008, 9)

The selling of software to computer users, both systems software as well as

applications, has come in different forms, historically. Originally, all software, applications

especially, had to be written by users themselves, often with heavy support and training

from computer manufacturers such as IBM, though in the 1950s, IBM and other

manufacturers began providing some software tools and utilities. (Campbell-Kelly 2003,

29–31) Also in the 1950s, user groups such as SHARE began to cooperatively develop and

share programs. (Campbell-Kelly 2003, 31–34) To protect the proprietary interests of

member firms, however, SHARE focused on systems software, especially operating systems,

rather than application programs, because applications “could contain important hints about

a firm’s engineering activities.” (Akera 2007, 262) The software industry began with the

first software contracting companies (then known as “programming services companies,”

the first one started in 1955), which developed custom software solutions for clients,

generally corporate firms or government bureaus that could afford computers. (Campbell-

Kelly 2003, 50–51) Pre-packaged software products, which could be purchased or leased as

“a discrete software artifact that required little or no customization” (Campbell-Kelly 2003,

99) appeared in 1964, though the industry really got going when IBM was prompted by

antitrust investigations to unbundle its software packages from its hardware, selling it

8

separately as a product, allowing third party software firms to compete with IBM on a more

even footing. (Campbell-Kelly 2003, 109–118) These software products targeted primarily

corporate or institutional customers, a market known as “enterprise software,” and are

marketed and sold directly to organizations like capital goods, because of their high costs in

marketing and pre- and after-sale support. (Campbell-Kelly 2003, 6) The ability to buy an

application as a commodity by consumers has really only existed since the personal

computer created a market for mass-market, shrink-wrapped software products that could be

purchased literally “off-the-shelf” at retail stores. This PC software industry developed

almost completely independently of the corporate enterprise software industry. (Campbell-

Kelly 2003, 208) VisiCalc, the first interactive spreadsheet application, became famous as

the personal computer’s first “killer app,” an application so useful that it singlehandedly

drove personal computer adoption (Campbell-Kelly 2003, 212–213).7

Are mobile apps really that different from personal computer applications? It can be

argued that on smartphones and tablets like the iPhone, the experience confronting a user is

different—typically, mobile apps are focused to perform only a limited function, such as

show the weather, look up restaurants in the area, or check up on stocks, rather than be the

kind of kitchen-sink programs with thousands of functions that desktop applications often

are. In this sense, mobile apps are more akin to the little “widgets” available on the Mac OS

X dashboard (which perform simple functions like stock checker and calculator), or the

small “desk accessory” programs on the classic Macintosh (which also contained a

calculator). Certainly, the way an app appears on either iOS or Android, as a singular icon

and thus implying a single function, lends to the perception of a different ontology than

programs on PC platforms, which may have one primary application but come packaged

with many auxiliary helper applications or come in a suite in which multiple applications

are designed to interact with each other, as in Microsoft Office. However, from the

perspective of a software developer, an app is just another piece of software, albeit maybe

7 Campbell-Kelly contends that VisiCalc’s role as a “killer app” has been over-

exaggerated, as he argues that word processing and databases combined with falling

hardware costs would eventually have introduced microcomputers into businesses.

9

less complex because of its more focused purpose. In particular, on Apple’s iOS platform,

which is derivative of its Mac OS X desktop platform, writing an iOS app is remarkably

similar to writing a Mac OS X application, and when the iPhone software development kit

was first made available, those programmers with years of experience on Mac OS X had a

huge advantage in expertise over newcomers, allowing them to maintain intellectual

authority among the Apple developer community. I argue, then, that despite the enormous

expansion and change in the makeup of the third party Apple developer community in the

wake of the iPhone, there is a significant continuity with the much smaller, prior existing

culture of Apple developers who programmed using Cocoa technology on the Mac. This

dissertation is in part the story of the continuity of the community and its culture over three

decades, through two major transitions, the iPhone being only the latest.

A Brief History of Cocoa

Cocoa was not always the dominant technology for third party Apple developers, or

even at Apple itself. Cocoa and its developer community have a long history, which I will

only sketch briefly here. Cocoa is a set of software libraries (or frameworks, in Apple’s

parlance) that make up a software development kit (SDK), made up of interfaces into the

operating system that allows developers to build applications. The toolkits that make up

Cocoa originated on NeXTSTEP, a Unix based operating system created by NeXT, Steve

Jobs’ second company, founded after his ouster from Apple in 1985. According to former

NeXT employees, Jobs had originally intended NeXT to be a better Apple, but NeXT had

never lived up to these expectations, and had shut down its hardware business by 1993.

However, NeXTSTEP had acquired a reputation among software developers for

dramatically enhancing programmer productivity, and had acquired a loyal following. Apple

acquired NeXT in 1997, gaining not only Jobs, but NeXT’s operating system and

development environment, which eventually became Mac OS X and Cocoa, respectively.

This allowed NeXT developers such as Andrew Stone and Wil Shipley, who remained loyal

to the NeXT platform despite a diminished market for shrink-wrapped software products

post-1993, to begin selling applications to Apple’s large installed base of consumers after

2001.

10

The transition to NeXT-based Cocoa technology, however, was not made without

difficulty at Apple. For Mac OS X to succeed, it needed to maintain compatibility with

existing Macintosh software, written using a developer kit, known as the Macintosh

Toolbox, that had been the way developers programmed for Macs since the original 1984

Macintosh. Existing developers with large codebases, such as Microsoft and Adobe, pushed

back against Apple’s initial plan to replace the Mac Toolbox with Cocoa,8 which would

require them to learn Objective-C, a programming language no other company used, and

throw out years of existing code. In response, Apple created “Carbon,” an updated variant of

the Mac Toolbox that allowed developers to continue using the tools they were familiar with,

without requiring that their applications run in a virtual environment that emulated the

original Mac. Carbon was a compromise to appease large corporate software firms, without

whose support Apple’s operating system transition from the original Mac OS to the NeXT-

based Mac OS X would not have succeeded. For five years after the initial release of Mac

OS X in 2001, Apple supported both the Carbon and Cocoa toolkits for developing

applications, and claimed that they were equals.

Within the third party developer community, old NeXT developers embraced Cocoa

and very publicly touted its superiority over Carbon, antagonizing many old-time Mac

developers, as we will see later. A few Mac developers, mostly small independent shops

whose apps were small and thus without large code-bases, were willing to try Cocoa and

were converted. Large corporations had a much harder time. Thus, for first half of the 2000s,

the Apple Mac developer community was split between two competing technical cultures:

Carbon, which represented the old Macintosh way of doing things, and Cocoa, the hot, new,

NeXT-based way of doing things. It was clear among many Apple observers that, given how

former NeXT engineers were in charge of all the major engineering organizations at Apple,

that eventually Carbon would go away and Cocoa would replace it. Former NeXT

8 The frameworks that were later renamed “Cocoa” were referred to by Apple as the

“Yellow Box” in 1997, to differentiate them from the “Blue Box,” which ran classic Mac

OS inside a virtual machine on the NeXT-based operating system, which went by the code

name “Rhapsody” at the time.

11

developers and Cocoa enthusiasts were egging on Apple to do this sooner, rather than later.

(Wil Shipley Interview, April 18, 2012) In 2006, Apple announced at WWDC that in its

next version of Mac OS X, it would be updating the Cocoa toolkits to run in the new 64-bit

mode, but Carbon would remain in the old 32-bit mode. This was a clear signal that the

years of Carbon/Cocoa parity were soon to be over. Carbon developers, who had bought

into Apple’s older message that Carbon would continue for the foreseeable future, were

outraged, a few threatening to abandon the platform for Windows. The remaining holdouts,

Microsoft and Adobe, were now forced to adopt Cocoa and Objective-C in future versions

of their applications.

Two years later, the question became moot, as the release of the iPhone SDK, based

explicitly on Cocoa and Objective-C, created an entirely new market for applications with

enormous potential. In 2008, Cocoa and Objective-C knowledge suddenly became lucrative

and in-demand. The small community of NeXT/Cocoa experts, who had remained devoted

to the platform throughout the 1990s despite having almost no market, was now at the center

of a gold rush not seen since the dot.com era, when they had only been peripheral players

writing web applications using NeXT’s WebObjects toolkit. NeXT/Cocoa developers had

originally been a minority even among Macintosh developers, but by 2006, when Apple

effectively closed the controversy by fiat, they had become the dominant voices among the

Mac developer community. In 2008, their longtime expertise with Objective-C and Cocoa

put them at the center of the entire mobile app universe.

The history of the Cocoa developer community can thus be separated into three

periods. The first is the period of NeXT, from the initial beta releases of NeXTSTEP in the

late 1980s, till Apple’s acquisition of the company in December of 1996. This initial period

can itself be broken up into two periods, with the first lasting till about 1992 or 1993, when

NeXT still had a hardware market and its developers were still trying to make

shrinkwrapped consumer applications, and the period from about 1993 through 1997, when

most NeXT developers became contractors writing custom software for enterprise customers.

The years from 1997 through 2001 were a period of transition, as Apple was working on

Mac OS X and periodically released developer preview versions, and NeXT developers got

used to being hitched to Apple’s wagon. However, the second period did not formally begin

12

until Mac OS X finally shipped in March 2001. This second period was one of gradual

integration, and occasional tension, between the NeXT/Cocoa community and the old Mac

developer community, when Carbon was still a viable alternative development environment

for the Mac with its own devoted community. This was also the period when independent

Mac developers began to call themselves “indies.” The third and current period starts

roughly between 2007 and 2008 with the release of the iPhone, and the announcement and

opening of the App Store, which attracts waves of new developers to Cocoa.

Why Cocoa developers?

So, why study Cocoa developers? As this brief history shows, the technological

subculture of Cocoa development began as a very marginal one within the computer

industry, at NeXT, a tiny company whose ambitions had never matched up to its reality. A

very small but devoted user and developer base existed, but NeXT’s niche status made many

of them fear that this technology that they loved and believed would be the future might

eventually die out in the face of competition from Microsoft. But for an accident of history,

this might indeed have been NeXT’s fate—Apple was originally considering purchasing the

BeOS operating system from another company founded by a former Apple executive, Jean-

Louis Gassée. According to Issacson, Gassée “overplayed his hand” by asking for too much

money, while Jobs “dazzled” the Apple executives with his presentation of NeXT’s

technology, and did not overreach in the negotiations. (Isaacson 2011, 297–301) Even after

the NeXT acquisition, Cocoa developers might simply have remained developers of Apple’s

Macintosh platform, which still has only a fraction of the marketshare of Microsoft

Windows on personal computers. Apple’s transformative entry into mobile computing with

the iPhone and iPad, however, has put Cocoa programmers front and center in the new

mobile app revolution. What was originally a marginal technological subculture is now

extremely powerful, serving as the socio-technical basis for Apple’s dominance in mobile

computing. This has catapulted many small third party companies that were dependent on

the Apple ecosystem, which had formerly been a tiny niche, into new growth and prosperity.

These include Aaron Hillegass’s Big Nerd Ranch, which had been a virtual obligatory

passage point for learning Cocoa programming. Though still a small but growing company,

its role and influence in training mobile programmers has been enormous. For example, it

13

was hired to train Facebook’s entire mobile division (both iOS and Android) in 2012, in a

move critical for Facebook’s successful transition from the web to mobile (Big Nerd Ranch

2014a; Isaac 2013; Schramm 2013).

As a company so much in the public spotlight, Apple, along with its founders Steve

Jobs and Stephen Wozniak, has been the subject of many popular books and biographies.

(Amelio 1998; Blumenthal 2012; Butcher 1988; Carlton 1997; Cringely 1996a; Deutschman

2000; Esslinger 2014; Freiberger and Swaine 2000; Hertzfeld 2005; Isaacson 2011; Jobs and

Beahm 2011; Kahney 2004; Kahney 2009; Kahney 2013; Kane 2014; Kawasaki 1990; Levy

1984; Levy 1994; Linzmayer 2004; Malone 1999; Markoff 2005; Moritz 2009; Sander 2012;

Sculley and Byrne 1987; Segall 2013; Stross 1993; Wozniak 2006; Young 1988; Young and

Simon 2005) Academic work has included business and management literature treating

Apple as a case study, alternately a model for success or a cautionary tale, depending upon

the date of publication (Castrogiovanni, Baliga, and Jr. 1992; Crossan, Lane, and White

1999; Gordon 1991; Holder and McKinney 1992; G. D. Hughes 1990; Nonala and Kenney

1991; Richardson and Arthur 2013; Rotemberg and Saloner 2000; Schoemaker 1997;

Sullivan 1991; Van Horn 1996). Three works analyze Apple as a cultural phenomenon

through a literary perspective (Belk and Tumbat 2005; Campbell and La Pastina 2010;

Robinson 2013). This literary analysis of Apple’s marketing, press pieces, and online blogs

about Apple shows how Apple’s discourse uses religious and mythological tropes. La

Pastina and Robinson in particular connect this to a historical American discourse that links

technological progress to religious transcendence (Noble 1999; Nye 1994; Nye 2003). Belk

and Tumbat categorize various narratives about Apple into mythological archetypes:

creation, hero, Manichean, and resurrection myths. A fourth work, while not dealing with

Apple as a religion, nonetheless also analyzes the autobiography of former Apple CEO John

Sculley (and two others, CEOs of IBM and Xerox) as works of a literary genre. The

relationship between Sculley and Jobs, involving initial seduction by Jobs and infatuation

on Sculley’s part, and ending in a betrayal leading to Jobs’ ouster, fits the trope of a failed

romance (Schoenberger 2001).

None of these works discuss Apple developers or software engineers, however.

Gideon Kunda’s ethnography of an unnamed computer company (most likely DEC) is

14

illuminating for discussing the various ways engineering employees buy into or resist

corporate ideology, which is inculcated through a combination of persuasive and coercive

means (Kunda 1992). While I will draw on Kunda’s work in more detail later, in regards to

how ideology is disseminated in organizational practice, Kunda’sbook, although quite

illuminating for analyzing the ideological commitments of Apple employees, does not fully

explain why software developers who do not work for Apple, but who work independently

are nevertheless committed to writing software for Apple platforms. Although their

livelihoods are deeply tied to Apple, many of them chose to attach themselves to Apple at a

time when they could have chosen to write software for more lucrative or marketable

platforms. While Apple can and does use a combination of persuasive and coercive means to

domesticate its developers, because they are third parties who can leave the platform for

greener pastures, as well as publicly criticize Apple when it does something they dislike,

Apple must rely much more on persuasive means, and use different channels than it would

with its own employees. The work of Robinson, Belk and Tumbat, and Campbell and La

Pastina on the “religion” of Apple is useful in this regard, as the commitment of both Apple

users and developers to Apple can be seen as a kind of search for transcendence and

affective connection through consumption of a cult brand. Apple developers certainly are

among Apple’s most committed users, and many become developers due to their love of

using Apple products. However, developers not only consume technology, they also produce

it. Because their technological production is explicitly targeted at Apple’s platforms, it is

highly dependent on it. Apple’s technology, then, matters for what its developers can make,

and how. Recent ethnographies of software developers, particularly free software, (Coleman

2013; Kelty 2008; Takhteyev 2012) fit into a growing literature on democratized,

participatory, commons-based peer-production and Do-It-Yourself making, of which open

source software production has become an exemplar. (Benkler and Nissenbaum 2006;

Buechley et al. 2009; “DIY Hardware: Reinventing Hardware for the Digital Do-It-Yourself

Revolution” 2009; Lindtner, Bogost, and Bleeker 2014; Tanenbaum et al. 2013) Thomas

Streeter has connected this concern of computer enthusiasts with transcendence and creation

to a Romantic notion of individual selfhood that sometimes support markets and property

rights, and at other times opposes them, but always involves a self motivated more by affect,

15

feeling, and acts of expression rather than rational calculations of utility. (Streeter 2003;

Streeter 2011)

As far as I know, only two other academic works have examined third party Apple

software developers. The first is Michiel Van Meeteren’s self-published thesis, “Indie

Fever.” (van Meeteren 2008) This work was first pointed out to me by one of my actors in

my first preliminary field study, and many of its findings prefigure my own. Van Meeteren

studied the independent (or “indie”) Macintosh developer community just prior to the

introduction of the iPhone, and describes many of its cultural values (what he calls,

“sensibilities”), the structure of the community, and its complicated relationship with, and

dependence on, Apple. More recently, Qiu, Bopal, and Il Horn have published a study of

iOS developers. (Qiu, Gopal, and Hann 2011) Qiu et. al. find a difference between those

developers who follow a “professional logic” aligned with the “sensibilities” of the indie

community discussed by Van Meeteren, relying on quality and reputation among their peer

developers for marketing, and a “market logic” followed by many developers new to the

Apple platform, who pursue a strategy of developing as many low quality, low priced apps

as possible to see what hits. They have also observed a gradual synthesis of the two logics,

with older developers thinking more about explicit marketing, and newer developers

beginning to improve the quality of their apps. Qiu et. al. draw their theoretical frameworks

primarily from the institutional logic and professional identity literature, but also speak to

literatures on information systems and entrepreneurship. Van Meeteren, while drawing on

literatures on communities and networks of practice (Brown and Duguid 2000), is embedded

in the field of human and economic geography, and he is concerned theoretically with how

the indie community is socially coherent, its agency versus the structure imposed on it by

Apple, and what this might say about larger questions on information economies and

globalization. Neither Van Meeteren nor Qiu et. al. engage with Science and Technology

Studies.

Technology, Culture, and Ideology

What is missing in both Van Meeteren and Qiu et. al.’s work is the role of Apple

software technology itself. All of Van Meeteren’s interviewees are experienced, committed

16

Mac OS X developers who use Apple’s Cocoa toolkit, not its Carbon toolkit or cross-

platform technologies, to write software. Do the properties of Cocoa technology matter to

these developers? Indeed, Van Meeteren’s informants strongly believe it does, indicating

that “they’d rather be sheep farmers than step over to another technology…” (van Meeteren

2008, 22) Likewise, Qiu et. al. discuss iOS developers’ values as a “professional logic”

opposed to pure “market logic.” This professional logic can be mapped onto the kinds of

cultural “sensibilities” expressed by the indie developers in Van Meeteren’s study. But is

there a relationship between these cultural “sensibilities” and the technology of Cocoa

itself? Both these works treat Cocoa as a black box because neither of them have the

analytical tools to examine the role of the technology. Science and Technology Studies, in

particular, the Social Construction of Technology (SCOT) (Bijker, Hughes, and Pinch 1987;

Bijker 1995; Collins and Pinch 1998a; Pinch and Trocco 2002; Kline and Pinch 1996;

Bijker and Law 1992; MacKenzie 1996; Mackenzie 1990; MacKenzie 2001; Kline 2000;

Oudshoorn and Pinch 2003), provides the tools allowing us to open the black box of Cocoa,

and take the role of the technology seriously.

I stated earlier that this dissertation is about the seamless web of technological

subculture, selfhood, practices, moral ethic and ideology among the Cocoa developer

community. A central element of this subculture is the role technology plays for the social

group. I describe this role using the concept of “technological frame.” (Bijker 1995) Wiebe

Bijker defines a technological frame as that which “comprises all elements that influence

the interactions within relevant social groups and lead to the attribution of meanings to

technological artifacts—and thus to constituting technology… these elements include…

goals, key problems, problem-solving strategies (heuristics), requirements to be met by

problem solutions, current theories, tacit knowledge, testing procedures, and design methods

and criteria.” (Bijker 1995, 123) This notion of “technological frame” is useful for

connecting the cultural and normative aspect of Cocoa developers with the content of the

technology into a single socio-technical value system. The technological frame is not purely

semiotic but also material, incorporating software artifacts and the larger technological

system/infrastructure they are embedded in, as well as the design philosophies behind them.

17

A useful corollary to the notion of “technological frame” is Bijker’s concept of

“inclusion,” which can be high or low, associated with the relative insider/outsider status of

group members and with intellectual/moral commitment to the frame. Members with high

inclusion see the technology as unambiguous but differentiated, while those with low

inclusion confront a technology as a “take it or leave it” whole, accepted as a given to them

or not at all. For those with low inclusion, a technology appears obdurate because it appears

to them as monolithic, with no opportunities for their intervention. For those with high

inclusion, however, the technology is open to intervention, but it is obdurate in a different

way: its meaning is unambiguous (Bijker 1995, 283–5). As we will see, this notion of high

and low inclusion can be used to explain the differences between experienced Cocoa Mac

developers and recent iOS newcomers.

One problem with the concept of technological frame is that is has a static

connotation. The metaphor of “frame” does not easily lend itself to seeing the web of

technical-social-cultural relations as evolving. Bijker’s original notion of technological

frame is of an intellectual understanding that is negotiated between groups in an early stage

but then becomes “black boxed” and is likely to remain unchanged over time. I wish to

convey the sense that the technological subculture of Cocoa, like subcultures elsewhere,

shifts and morphs over time, despite having significant continuity as well. Moreover, I wish

to bring in more than just meanings and interpretations of technologies that come from the

purely technical, instrumental, problem-solving criteria that “technological frame” seems to

encompass. Affective experience, notions of the self, moral commitments, and material,

embodied practices are all equally important components of what I will call a “techno-

cultural frame.”

An alternative theoretical term that could be used to describe the techno-cultural

frame of Cocoa is Thomas Kuhn’s notion of “paradigm.” (Kuhn 1996) A “paradigm” is a

coherent set of material practices and conceptual theories held by subgroups of practitioners

in a scientific field. Kuhn described science as alternating between long periods of gradual

progress following a single paradigm, which he called “normal science,” with moments in

which the buildup of anomalies within a field become so unsolvable as to constitute a crisis,

which can only be resolved through scientific revolutions, when adherents to a radically

18

new paradigm take over the field. This revolutionary process is inherently social, involving

persuasion, conversion, or the dying out of adherents to the older paradigm and their

replacement with a new generation. A key claim of Kuhn is that different paradigms

constitute incommensurable, or radically incompatible, understandings of the world. He

describes a paradigm shift as akin to a Gestalt switch, in which suddenly a person perceives

something in a radically different way. While this aspect of paradigms can be useful to

explain the conversion experiences programmers go through when learning Cocoa and

becoming highly included in its technological frame, if Cocoa programming truly were

incommensurable with programming in other environments, it would be almost impossible

to learn. While two programming environments may be different, there are often sufficient

shared concepts, what Star and Griesemer call “boundary objects,” which can be used to

translate between the epistemic/social worlds. (Star and Griesemer 1989) Rather, learning

Cocoa programming is more a process of being enrolled into a particular epistemic,

technical, and moral order.9 More interesting is the fact that the term “paradigm” and

concepts associated with it, such as the “paradigm shift,” are in use by the actors themselves.

In computer science, programming languages are classified into different families, or

“paradigms,” in which the style and way of thinking and problem solving afforded by the

use of languages in one family is radically different than the others. (Nørmark 2014)

Examples of such programming language “paradigms” include procedural programming,

object-oriented programming, and functional programming. Arguments over practices and

pedagogy, including stakes involving the boundaries of community membership, as we will

see in Chapters 4 and 6, often use the language of “paradigms” or of “progress” as rhetorical

tools.

Peter Galison has pointed out that Kuhn’s radical incommensurability between

paradigms leaves no basis for communication or collaboration between different camps of

scientists (Galison 1999). And by asserting the primacy of theory, Kuhn’s paradigm shift

model posits that when theory undergoes a revolution, so too does observation. Galison

points out that in physics, the subcultural communities of theorists, experimentalists, and

9 I derive the phrase, “moral and technical order from Chris Kelty (Kelty 2008, 43)

19

instrumentalists each practice independently of each other, and that breaks in theory do not

coincide with breaks in experiment or instrumentation; rather, experimentalists continue to

use trusted practices and instruments in order to test the new theory. The concept of mass

may indeed mean different things to different theorists; Einstein and Lorentz did not rapidly

translate between their own and rival views of mass. Rather, in a localized space, the

“trading zone,” theorists and experimentalists alike come together to agree on a local

working definition in order to communicate across their own subcultures. Although outside

the trading zone, the object “mass” may have different meanings to the different parties,

inside it the object is stripped of these additional entailments, becoming a kind of simplified

“pidgin” language. This is similar to Star and Griesemer’s concept of “boundary objects.”

(Star and Griesemer 1989) Galison draws on the analogy to anthropological studies of

traders which converse in a lowest-common-denominator pidgin language that allows two

different cultures to coordinate their exchange. Galison’s model improves on Kuhn’s in that

it acknowledges that while there is significant disunity in a scientific discipline, which is

composed of many subcultures, these subcultures are able to coordinate and collaborate

through pidgin languages and trading zone objects “that carry radically different

significance” for each side (Galison 1999, 146). This description can usefully be applied to

software programmers who use different programming languages. Programming languages

do share many similar features, which in academic computer science may go by

standardized names. However, on the level of practice, each language may give a particular

concept its own terminology, and moreover each language may implement the concept in a

unique way so that it is not an exact equivalent of a similar concept in another language.

How then, do programmers who are used to programming with a language in the procedural

“paradigm” communicate with those used to the object-oriented “paradigm”? The answer is

through boundary objects that, in the domain of trading zones such as classrooms and other

pedagogical spaces, have simplified, pidginized meanings, but which, to their own

constituencies, have much fuller elaborations that can incorporate incompatible worldviews.

If neither the concepts of “technological frame” nor “paradigm” fully captures the

seamless web of technology, affect, identity, and ethics, what can? As I have said already,

the “techno-cultural frame” of Cocoa programming practice involves moral and ethical

20

commitments. Van Meeteren described these as “sensibilities,” implying a moral and

normative order. This order encompasses identity and modes of being, both individual and

communitarian, that are deeply rooted in affect, feeling, commitment, and aesthetic and

creative expression, appreciation, and motivation that go beyond rational economic

calculation or interest. As a cultural system of values, norms, and beliefs, this is perhaps

best described by the term “ideology.”

Ideology is a fraught and often imprecise term with a long history in various strands

of scholarship, particularly Marxist thought. One of its advantages is its conceptual kinship

with religion, (Geertz 1973, 199–200) which it occasionally subsumes. Marx, in The

German Ideology, located religion, philosophy (both morality and metaphysics), politics and

law, and indeed all abstract thought together as “consciousness,” which he considered an

epiphenomenon (“phantoms” or “echoes”) of “real” material-economic processes and

interests (Marx 1947). This unfortunately leads to a pejorative definition of ideology as

“false consciousness,” illusory beliefs as opposed to “science.” Raymond Williams

characterizes three meanings of ideology in Marxist writing: 1) a system of beliefs

characteristic of a social group or class; 2) a system of false or illusory beliefs; 3) the

(cultural or symbolic) process of production of meaning and values. Williams notes that

often, the first two definitions become conflated—false consciousness is associated with the

beliefs of, or promoted by, particular classes to justify existing or revolutionary orders

(Williams 1977).

I am not interested in a pejorative concept of ideology as “false consciousness” or

“illusion.” Without a non-pejorative definition of ideology, it would be impossible to “write

works on the ideologies of American businessmen, New York ‘literary’ intellectuals,

members of the British Medical Association, industrial labor-union leaders, or famous

economists and expect either the subjects or interested bystanders to credit them as neutral.”

(Geertz 1973, 200) Rather, I am interested in Williams’ third meaning, which is in line with

Clifford Geertz’s notion of ideology as a cultural system, in which symbolic action works to

create meanings that stabilize social order or motivate social action (Geertz 1973). Geertz

considers ideologies “systems of interacting symbols… patterns of interworking

meanings… [that] transform sentiment into significance and so make it socially available…”

21

(Geertz 1973, 207) Ideology is more than just an expression of economic interests, it is also

a way of repairing or reconciling psychological, social, and cultural “strain.” Ideology, like

religion, thus draws frequently on metaphor to “symbolically coerce” “discordant meanings”

“into a unitary conceptual framework…” (Geertz 1973, 211) Consciousness is itself defined

by the construction and manipulation of symbol systems, which pattern and guide human

behavior, whether religious, aesthetic, or philosophical (Geertz 1973, 215–7). Whereas

science seeks disinterestedness, ideology “names the structure of situations in such a way

that the attitude contained toward them is one of commitment. Its style is ornate, vivid,

deliberately suggestive: by objectifying moral sentiment through the same devices that

science shuns, it seeks to motivate action.” (Geertz 1973, 231) Ideology motivates social

action by formulating, objectifying, and mobilizing previously private emotions,

transforming individual moods into a social force (Geertz 1973, 232).

Hugh Gusterson’s work on nuclear weapons scientists uses a non-pejorative notion

of ideology in the way I seek to. Drawing on Michelle Rosaldo, he argues that affects are

components of the cultural system. Citing Raymond Williams, he says that “we must think

of ideologies not only in terms of discourses and ideas but also as ‘structures of feeling’—

ways of experiencing and living in the world that profoundly reshape our emotions, bodily

reflexes, and fantasies as well as our ideas and beliefs.” (Gusterson 2008, 42) With this

perspective, Gusterson explains the processes and rituals by which people become nuclear

weapons scientists. This is not merely a process of learning technical knowledge but a

process of ethical reorientation, in which scientists come to accept the central axiom of

nuclear weapons, the idea that nuclear weapons are more ethical than conventional weapons

because they will never be used except as deterrents. Gusterson’s work shows that

ideologies are not just systems of belief, but involve moral economies, affects, and identity.

The notion of a “moral economy” is related to, and in a way, a subset of, ideology.

The term was first used by E.P. Thompson to describe the traditional morality governing

what constituted a fair price for bread among eighteenth century English commoners that

came into conflict with laisser-faire capitalism (Thompson 1971). As used in Science and

Technology Studies by Lorraine Daston and Robert Kohler, “moral economy” refers to the

system of values and affects that guide work practices among a group. Daston defines a

22

moral economy as “a web of affect-saturated values that stand and function in well-defined

relationship to one another… an organized system that displays certain regularities… a

balanced system of emotional forces, with equilibrium points and constraints.” (Daston

1995, 4) Kohler’s work notes that moral economies are mutually constitutive with material

instruments, tools, and practices (Kohler 1994). Gusterson’s “central axiom” of nuclear

weapons can be described as much as a core part of nuclear weapons’ “moral economy” as

its “ideology.” Inasmuch as the technical culture of Cocoa involves such a “web of affect-

saturated values,” I will occasionally use the term “moral economy” in this STS-inflected,

Dastonian sense, in order to connote how values within the Cocoa culture are arranged in an

ordered relation to each other, while I use “ideology” to refer to the larger, overall ethical

and affective system, which may be more amorphous, less organized, and contain tensions

and contradictions.

Gideon Kunda examines how corporate ideologies function to motivate and

sometimes control members of a technical community of practice within a single

organization, namely, the corporate firm, based on an ethnography of a large computer

company, “Tech,” in the 1980s. Kunda also draws on Geertz’s definition of ideology as a

cultural system of symbols that serve to make sense of the social order. “In corporate

contexts such as Tech, [organizational] ideology consists of images of organizational social

reality—publicly articulated and logically integrated ‘reality claims’ concerning the

company’s social nature and the nature of its members, formulated and disseminated by

those who claim to speak for ‘the company perspective.’” (Kunda 1992, 52) At Tech,

engineers are motivated through the organizational ideology via presentation rituals—

meetings and presentations, whether given by top management, in training workshops, or

even everyday work group meetings. The official ideology is that the company is like family,

with a mission: “its unique blend of business and technological principles provides… a

moral purpose; and its economic success and unique social contribution are consistent with

the ideological principles of the larger environment—profit, progress, and individualism.”

(Kunda 1992, 89) The ideology allows control to work as much through normative means

via symbolic power rather than coercive means. Engineers are expected to be self-starters,

“take initiative” and “do what’s right,” and discipline is based on peer pressure and

23

“internalized standards of performance.” (Kunda 1992, 90) At presentation rituals,

employees shift between role embracement and, during more liminal times of casual

conversation prior to, after, or in-between meetings, role distancing (Goffman 1961), which

involves taking an “ironic” or “cynical” stance and a self-conscious awareness of the

theatricality of the ritual and the undercurrents of tension and power on display. Rather than

undermine commitment, however, such role distancing, if properly defined as humor or

commonsense, serves to control and preempt dissent, and further serves to support the

official ideology of openness and bottom-up decision-making (Kunda 1992, 107–8, 158).

While Kunda focuses on ideology within a single firm or organization, John Seely

Brown and Paul Duguid note that knowledge and practices often travel more easily between

firms than between departments within firms, and moreover, explain that knowledge travels

along networks built by material practice (Brown and Duguid 2001, 204). To explain this,

they build on Jean Lave and Etienne Wenger’s notion of communities of practice (Lave and

Wenger 1991). A community of practice is a community whose membership is based on

“participation in an activity system about which participants share understandings

concerning what they are doing and what that means for their lives and for their

communities.” It does not “imply necessarily co-presence, a well-defined identifiable group

or social visible boundaries.” (Lave and Wenger 1991, 98) For Lave and Wenger,

communities of practice are centrally about learning and knowledge sharing of work

practices, which simultaneously involves the construction of the identity of the worker as a

skilled practitioner. Learning is situated and informal, much of it learned face-to-face from

interaction with a master. Thus a major component of learning is how novices or apprentices

are socialized into the community through peripheral participation. It is not surprising,

given the master/apprentice model, that the examples Lave and Wenger use to illustrate the

concept are primarily crafts such as tailoring and butchery. Brown and Duguid expand this

notion into the concept of “networks of practice,” which “suggest that relations among

network members are significantly looser,” where members may never know or meet one

another (Brown and Duguid 2001, 205). These networks of practice cut across the

boundaries of firms, and explain, for instance, how knowledge and acceptance of graphical

user interfaces traveled more freely from Xerox PARC to other computer scientists before it

24

did to other divisions of Xerox. “Common underlying practice… creates social epistemic

bonds… If knowledge leaks in the direction of shared practice, it sticks where practice is

not shared. People with different practices have different assumptions, different outlooks,

different interpretations of the world around them.” (Brown and Duguid 2001, 207) As we

will see, the Cocoa community, while amorphous and loosely structured, exhibits aspects of

both a network of practice online, in blogs, mailing lists, and Twitter, as well as a

community (or perhaps, a network of communities) of practice, composed of local clubs

where members are friends, and international conferences where members who otherwise

know each other only virtually meet in the flesh. All of the forums that constitute the Cocoa

community of practice highlight knowledge sharing as a central activity, knowledge that is

both technical and normative: the practices that make a “good” Cocoa developer, and

distinguish core, expert members from novices and outsiders.

Ideology has been important to understanding communities of software programmers,

particularly those self-styled “hackers” committed to free and open source software (F/OSS).

Gabriella Coleman’s ethnography of F/OSS hackers, Coding Freedom: The Ethics and

Aesthetics of Hacking, is a critical resource in showing how such developers build

community, share knowledge, and promote values simultaneously (Coleman 2013). Like

Cocoa developers, open source hackers undergo an experience in which they are enrolled

into a particular ideology relating programming practices to ethical values (in their case,

that code should be “free” as in “speech”), a process central to building their identities as

hackers. Also like Cocoa developers, while their day-to-day relations are networked online,

they also meet periodically at conferences, whose ritualistic aspect heightens the emotional

experience of practicing with likeminded people. Linux hackers similarly to Apple

programmers derive affective pleasure from the activity of programming, overcoming the

frustration of computers’ obduracy while crafting something useful, often in a blissful,

transcendent state of flow. It is the promotion and maintenance of this affective experience,

to protect the means of this pleasurable labor from corporate control, that motivates hackers

to participate in communitarian governance and legal work. At the same time, hackers also

must navigate a tension between elitism, which comes from their ideal of individual

meritocracy and ingenuity, (a virtue which is often expressed aesthetically through clever

25

humor) with the ideal of populism, which causes them to be particularly vigilant over their

leaders’ perceived abuses of power. Although the ideology of Cocoa programmers is, on

first blush, the polar opposite of free software, their similar aesthetic and affective

experiences with code shape their identities as heroic, rebellious, meritocratic craftspeople,

predicated upon romantic individualism (Streeter 2011), which motivates in both

communities a skepticism of large corporations as well as government bureaucracy. Where

they differ is on intellectual property, with Cocoa programmers being ambivalent,

apologetic, or pragmatic about it (especially with regard to Apple’s claims to it), while free

software hackers are strongly opposed to it. Cocoa programmers, though they frequently

share and make use of open source code, largely create proprietary software for sale,

making or hoping to make their primary incomes from it.

Yuri Takhteyev’s Coding Places: Software Practice in a South American City,

(Takhteyev 2012), a recent ethnography of Brazilian software developers, also provides

theoretical contributions to understanding programming communities. By examining Rio de

Janeiro, a site outside the Euro-American center of programming practice, Takhteyev

illuminates how both center and periphery are implicated in constituting a global “world of

practice,” which he defines as a system of practice in which people, material resources, and

symbolic meanings must be “disembedded” (a concept derived from Giddens) from the local

circumstances of the center and “re-embedded” in the new locality of the periphery to

succeed. From the peripheral vantage point of Brazil, practices and knowledge from Silicon

Valley must be reconfigured to fit a Brazilian context, but in order for it to remain “global”

and not become provincial, it must still orient towards the center rather than its own locality.

For this reason, most code written in Brazil is in English, and the global success of the

Brazilian programming language Lua is predicated upon dissemination in English and its

orientation towards the needs of Silicon Valley, not Brazilian developers. Thus, in the

asymmetric power relations between central localities and peripheral ones, globalization

increases the power of the center, often due to the agency of peripheral actors themselves.

Globality increases, not decreases, the salience of place. Takhteyev’s notion of “worlds of

practice,” combining material and semiotic elements, encompasses a much more global,

interconnected set of communities and networks with a center and peripheries than Lave and

26

Wenger’s more local “communities of practice” or Brown and Duguid’s placeless “networks

of practice.” For my purposes, I take Takhteyev’s “world of practice” to describe that shared

experiential and epistemic world of all programmers, while I prefer “community of practice”

over “networks of practice” to describe the Cocoa community in order to highlight the much

deeper social bonds, formed intimately in physical forums, between Cocoa developers.

Sharon Traweek defines a community as “a group of people who have a shared past, hope to

have a shared future, have some means of acquiring new members, and have some means of

recognizing and maintaining differences between themselves and other communities.”

(Traweek 1988, 6) Cocoa developers, despite their geographic distribution, do indeed fit this

definition.

Chris Kelty, who also wrote an ethnography of free software/open source

programmers, Two Bits: The Cultural Significance of Free Software (Kelty 2008) also offers

some useful theoretical insights. It is from Kelty that I derive the term “moral and technical

order.” (Kelty 2008, 43) Kelty avoids embracing the term “ideology,” noting its often

pejorative meaning, and that its claim to objectivity can be easily turned upon itself. Kelty

prefers Charles Taylor’s notion of “social imaginaries,” which captures how people imagine

moral and social order (Kelty 2008, 40–41). I like how Kelty adds the technical to the mix,

but his sense of “moral and technical order” is still based on the Taylorian social imaginary.

I prefer ideology to social imaginary because in its non-pejorative formulations, it can

accommodate not just the imaginary (in the form of “ideas” or “phantasms”) but also

affective “structures of feeling” (Williams 1977) and material practices (Althusser 1999).

One way that Kelty notes how the moral/technical order of free software is expressed

is through the religious metaphor in programmer discourse. Developers’ descriptions of

arguments between partisans of rival technologies as “religious” or “holy” wars, are

rhetorical moves, according to Kelty. What this metaphor accomplishes is to frame devotion

to either side “as a kind of arbitrary theological commitment, at once reliant on a pure

rationality and requiring aesthetic or political judgment. Such stories imply that two

technologies are equally good and equally bad and that one’s choice of sect is thus an

entirely nonrational one based on the vicissitudes of background and belief… played out in

27

dramatic and broad strokes that imply fundamental differences,” the exemplar being the

platform wars between Apple and Microsoft (Kelty 2008, 67–68).

Kelty’s quintessential moral and technical social imaginary is the free software

community, which, drawing on Michael Warner’s notion of publics and counterpublics,

Kelty describes as a “recursive public,” a “public that is constituted by a shared concern for

maintaining the means of association through which they come together as a public.” (Kelty

2008, 28) The public of free software programmers is made possible by and through the

technological infrastructure of the Internet and Unix; at the same time, the material and

discursive production of the free software community is directed specifically at producing,

maintaining, and improving this very same infrastructure that is the condition of its

existence. In this way, the free software community is “recursive.” This definition of

“recursive publics,” however, is dependent on a social configuration that is unique to the

phenomenon (free software) that Kelty is studying, and limits its usefulness. Developers

who do not participate in the production of their own tools and the tools necessary for their

communication make up publics, but cannot be said to be recursive. Likewise, other

commons-based peer production, such as literary production under the Creative Commons

license, is not recursive either—the digital infrastructure is produced by software developers,

not the authors who use it. For these reasons, Cocoa developers do not constitute a recursive

public.

A different strand of literature dealing with ideology, culture, and computing is that

which links computing with the 1960s counterculture and the ideology known alternately as

“technoliberalism,” “techno-libertarianism,” and “cyber-libertarianism.” Popular accounts

of Steve Jobs’ life, Apple, and the personal computer revolution are rife with references to

countercultural influences (Freiberger and Swaine 2000; Isaacson 2011; Levy 1984;

Markoff 2005; Moritz 2009) Jobs was well known for his love of Bob Dylan and ended his

2005 Stanford commencement speech with a quote from Stewart Brand’s Whole Earth

Catalog: “Stay Hungry, Stay Foolish.” (Jobs 2005) Markoff’s What the Dormouse Said, in

particular, traces the interconnected web of relationships between computer engineers,

microcomputer hobbyists, free speech activists, and psychedelic experimenters in the San

Francisco Bay Area of the 1960s and ‘70s (Markoff 2005). Adherents of the New Age

28

philosophy of Werner Erhard, est, appear both at Douglas Engelbart’s Augmentation

Research Center, where many advances that later influenced personal computing interfaces

and networked collaboration were developed, (Bardini 2000, 201–208) as well as at IMSAI,

an early microcomputer maker of Altair clones (Freiberger and Swaine 2000, 84, 100–102,

108). Stewart Brand and Ted Nelson were both important figures in making the connection

between computing and liberation, in the process changing the meaning of computers from

instruments of military and bureaucratic control, to tools capable of liberating and

empowering individuals.

In From Counterculture to Cyberculture (Turner 2006) Fred Turner locates Steward

Brand as the central node in a network that connected engineers with hippies and artists.

Turner calls Brand’s Whole Earth Catalog a “network forum,” a space in which people from

both the countercultural and computer communities could participate, network, and trade

ideas and values. In the pages of the Whole Earth Catalog, Brand introduced the cybernetic

theories of Marshall McLuhan, Buckminster Fuller, and Gregory Bateson to the

counterculture. Fuller’s vision of the Comprehensive Designer allowed Brand to imagine

individuals solving all the world’s problems through the cybernetic mastery of information,

becoming “gods.” Brand also drew on Bateson’s notion of “co-evolution.” Brand became

heavily involved in what Turner calls, the “New Communalists,” the wing of the

counterculture that rejected political activism in favor of retreat to rural communes, and an

escape into transcendent spiritual experiences. Brand reconfigured the New Communalist

figures of the “Cowboy Nomad” and the Native American “Long Hunter” into cybernetic

Comprehensive Designers. The key to this reconfiguration was the use of small-scale tools.

For Brand, tools created by the military-industrial complex, such as LSD, geodesic domes,

and pocket calculators could be appropriated for the goal of liberation and enlightenment.

The Whole Earth Catalog was created as a bricolage of small-scale tools for would be New

Communalists, in which deerskin, calculators, and books by McLuhan stood side-by-side.

Turner notes, however, that in turning away from politics into escapism on the communes,

the New Communalist movement inadvertently reinforced traditional mores: division of

labor took place on traditional gendered lines; rejection of formal governance led to

29

despotism by charismatic leaders; communes which were composed of fleeing white

suburbanites came into conflict with local Latino communities.

By the early 1970s, with the failure of the communes, Brand was looking for a

successor to the liberatory dreams of the counterculture. In 1972, he proclaimed computing

to be this liberator, the “best [thing] since psychedelics,” in his article for Rolling Stone,

“Spacewar,” (Brand 1972) in which he reinterprets the work and play going on at Xerox

PARC, which had tight connections to the ARPA-funded computer science community, as a

project about bringing computers to the people, in line with the more explicitly political

People’s Computer Company, which provided access to a time-shared minicomputer for free.

In 1974, Ted Nelson self-published Computer Lib/Dream Machines, a manifesto patterning

itself explicitly after the Whole Earth Catalog, which asserted that ordinary people can and

must understand computers in order to be democratically empowered, and that moreover,

computing could be creative and fun. Computers must belong to the people, lest they be

disenfranchised by the computer elite (Nelson 1974). Thomas Streeter argues that, by

emphasizing fun and creativity, and the exhilarating use of computers for its own sake,

Brand and Nelson severed computing from its rationalist and utilitarian association with

command and control, and reinterpreted it as a heroic, romantic individualist, artistic pursuit,

associated with imagination, creation, and transcendence (Streeter 2011, 44–68).

By focusing on the power of tools, Brand helped to sow the seeds of libertarianism in

computing, Turner argues. Brand’s Fulleresque cybernetic (male) master of all he surveys

was an individual empowered by tools to become “as gods.” The New Communalist dream

of achieving transcendent, spiritual liberation through psychedelics was similarly

individualist. The focus on the heroic individual in Brand’s ideology created a blindness

when confronted with problems that would be better solved with social cooperation and

institutions. In the 1980s and 1990s, Brand created a succession of network forums, physical,

textual, social, and for the first time, virtual, on computer networks. These forums, starting

with a 1984 Hacker’s Conference (attended by both Stephen Wozniak and Richard Stallman,

where tensions surrounding intellectual property in software began to surface), on to the

online service, the Whole Earth ‘Lectronic Link, the Global Business Network (GBN), and

culminating in Wired magazine, continued to equate computing and freedom, but took on

30

increasingly libertarian overtones. In each of these forums, Brand drew together new

networks of people, including EFF founders John Perry Barlow, John Gilmore, and Mitch

Kapor, and Wired founders Kevin Kelly and Louis Rossetto. WELL members such as Brand,

Barlow, and Howard Rheingold become Wired contributors. GBN and Wired transformed

and reconfigured New Communalism to be in line with the pro-business, conservative

politics of Newt Gingrich and George Gilder. Corporate IT CEOs were splashed on Wired’s

cover as “infobahn road warriors,” celebrated as the newest incarnation of Brand’s Cowboy

Nomad/Comprehensive Designer/god.

Thomas Streeter argues that the easy association between the free market and

computing and the Internet is a historically contingent construction of the 1980s and 1990s.

In the 1980’s, the ascendance of neoliberalism during Reagan’s presidency and the

increasing enclosure of digital information as intellectual property coincided with the

introduction of personal computers into peoples’ lives. Microcomputers appeared as

consumer artifacts for personal use, that individuals could master and conquer. These

objects were brought to users by much-celebrated rebel-entrepreneur technologists,

legitimating the neoliberal belief that the free market was the source of all technological

innovation (Streeter 2011, 69–92). In the mid-1990s, Wired’s celebration of Netscape

sparked the dot.com boom and reframed the meaning of the Internet and the Web in

libertarian terms, despite its origins in a publicly funded research network (Streeter 2011,

127–137).

Former Wired contributor Paulina Borsook was probably the first to describe the

libertarian culture of Silicon Valley as “technolibertarian.” Borsook notes that being

technolibertarian does not necessarily imply classical libertarianism’s focus on individual

liberties and aversion to government, though that strain may dominate. Rather, she argues

that technolibertarianism is broad enough to encompass a number of worldviews, including

“all different colors of free-market/antiregulation/social Darwinist/aphilanthropic/guerilla/

neo-pseudo-biological/atomistic threads.” (Borsook 2000, 8) It comes in two forms, a

political form, and a philosophical one. Political technolibertarians can easily be registered

Democrats or Greens as much as Republicans or Libertarians. Rather, political

technolibertarianism can manifest as much as an indifference to government as much as

31

active hostility to it, in part because technologists see technology development as a much

more effective way to effect social change than politics. “Because of their conceptual

dismissal of government, technolibertarians typically can’t be bothered to engage in

conventional political maneuvers—and so as political entities are largely rendered invisible.

And because they are invisible, they know little about affecting government.” (Borsook

2000, 11) Until the Microsoft anti-trust trial, Bill Gates himself “couldn’t be bothered

interacting with Congress…”10 Borsook notes that this dismissal of government is especially

egregious in regards to local government, with almost no lobbying or donations to

politicians in Santa Clara County up to 2000 (Borsook 2000, 12). She suggests that this

disdain of locality is a result of escape into cyberspace: “The desire to slip the surly bonds

of earth [virtuality]… means using computers to overcome boundaries of time and space and

physical limitations… with the blinding consequences of ingoring the ways, good and real,

that we are all grounded in time and space and the realm of the senses. Local politics is all

about really being there.” (Borsook 2000, 14) On the other hand, Borsook describes

philosophical libertarianism as a worldview that in its most “virulent form” is “a kind of

scary, psychologically brittle, prepolitical autism. It bespeaks a lack of human connection

and a discomfort with the core of what many of us consider it means to be human. It’s an

inability to reconcile the demands of being individual with the demands of participating in

society, which coincides beautifully with a preference for, and glorification of, being the

solo commander of one’s computer in lieu of any other economically viable behavior.”

(Borsook 2000, 15) Philosophical technolibertarianism has two wings, the “Gilders,” more

connected to classical free-market libertarianism and traditional political conservatism, such

as founding Wired executive editor and evangelical Christian Kevin Kelly, and the “Ravers,”

neo-hippies like Grateful Dead lyricist and EFF founder John Perry Barlow, whose

“antigovernment stance is more hedonic than moral, more lifestyle choice than policy

10 “Bill Gates did not make a good impression the first time he testified on Capitol

Hill [in 1998 in front of the Senate Judiciary Committee]… He made sure everyone knew he

was not interested in playing the political game.” (Simon and Mershon 2014)

32

position.” (Borsook 2000, 14–17) Ravers are the romantic, countercultural wing, searching

for freedom, community, and transcendence in utopias from cyberspace to Burning Man.

It is this kind of technolibertarianism, which combines market-based technological

production with countercultural artistic creation, that Fred Turner has examined more

recently, by studying the prevalence of Google employees (including founders Sergei Brin

and Larry Page) at Burning Man (Turner 2009). Turner argues that the commons-based peer

production celebrated at the bohemian Burning Man festival, done for the sake of art, not

money, creates a “cultural infrastructure” to support similar commons-based peer

production at Google, where employees are encouraged to work on their own creative

projects in an effort to spur bottom-up innovation. Such production is celebrated at both

places as spiritual and transcendent, a “vocational ecstasy” in the form of “Silicon

Pentacostalism.” The difference, however, is that creative production and innovation at

Google is monetized for profit.

Another more recent account of technolibertarianism is Thomas Malaby’s

ethnography of Linden Lab, the company that created the online world Second Life (Malaby

2009). Malaby draws extensively on Turner and shows how technolibertarian ideology

undergirds both Second Life and Linden Lab itself. Second Life, unlike most other online

worlds, is designed so that users create content for themselves, using tools provided to them

in the virtual world by Linden Lab. Linden advertises the participatory nature of Second

Life. Malaby notes, however, that there is still a hierarchy—not all tools available to Linden

Lab are available to the users, and Linden Lab reserves the right to make world-changing

decisions. Similarly, Linden Lab prides itself as a relatively “flat” organization, with all

employees able to contribute to decisions, and company philosophy emphasizing openness

and collaboration. However, the reality is that CEO Philip Rosedale has final authority.

Malaby thus notes a symmetry between the social organization of Second Life with Linden

Lab itself. Malaby’s account has certain parallels with my work on Cocoa developers.

Firstly, both Second Life users and Cocoa developers use tools provided by a proprietary

platform vendor (Linden Lab and Apple) in their own creative production. Both app

development and the culture of Second Life celebrate democratized creation through giving

people access to tools, that quintessentially Brandian conceit. Nevertheless, because both

33

platforms are proprietary, the rhetoric of democratization and participation goes only so

far—both platforms are, in reality, highly controlled. Yet, both platform vendors need their

users/developers in order to make their platform more attractive, and this means that they

need to make certain accommodations. Both Second Life users and Cocoa developers exist

in a symbiotic, mutually dependent, though highly asymmetric relationship with their

platform vendor. The technolibertarian ideology of personal empowerment through access

to tools runs strong in both communities and helps maintain cohesion between users and the

platform vendor, as both sides see themselves working towards shared goals.

In this dissertation, I use “technolibertarianism” to refer to an ideology that does not

necessarily imply free-market fiscal conservatism and a preference for smaller government,

though many of my actors are indeed classically political libertarians in that sense. Rather, I

use it to mean this larger belief that technological innovation is a superior means to enact

social change than traditional politics or activism, through the empowerment of individuals

through “access to tools,” the subtitle of Stewart Brand’s Whole Earth Catalog. Drawing on

Thomas Streeter (2011), I argue that this is an ideology based on the construction of a

romantic individual identity, a heroic, creative, expressive, artistic, and often rebellious

individual who makes and plays with technologies not for purely rational, utilitarian reasons

(including making money) but for its own sake, for the affective pleasure of tinkering, the

joy of making, or the spiritual experience of transcendence it may bring. It is this individual

at the center of this ideology, who must be free from the shackles of institutional

bureaucracies, be they government or corporations. Yet, at the same time, it celebrates this

individual if he (usually a he), in the process of pursuing his own edification through

technological making, happens to create a corporation as a by-product, as long as this

corporation is seen as empowering other individuals by giving them tools, rather than

controlling them.11 This is one of the governing ideologies of Silicon Valley startups from

the PC revolution to the dot.com boom on to today’s mobile gold rush. Moreover, it is the

11 In practice, this tension between empowerment by a corporation and control by it

may be difficult to navigate, but at least in its purest imagined form, this is the way

technolibertarians think it “ought to be.”

34

central ideological axiom of Apple itself, present especially in its marketing slogans

throughout the years: “The Power to Be Your Best,” “Think Different,” and “Changing the

World, One Person at a Time.”12

Before concluding this section, I must turn back to the question with which I began it.

What term best describes the seamless web of affect, identity, normative values, practices,

and technology? Ideology seems to be the most useful term, simply because it is broad

enough to encompass all of these aspects. My use of ideology is not primarily about Politics

in the geopolitical or partisan sense (though it sometimes can be), but more about the moral

logic that drives a culture and community. In this sense, moral economy might be a better

term, as it well describes the intricate web of a relational ethical system, and I see moral

economy as an important component of ideology, though it does not necessarily get at

affective, aesthetic, or material aspects. Neither term incorporates the technological

component of what I am describing, which is crucial to the affective experience of those

using Cocoa, which constitutes the material basis for the ideology. In a sense, this is a

strength, for ideology and moral economy can be in play when technology is not integrally

involved. However, some ideologies, such as technolibertarianism, do indeed entail

particular ethical and political orientations to technology as well as society. The concept of

technological frame can add technology back in, but at the cost of losing other aspects that

can be incorporated into ideology, such as affect, ethics, and identity. The concept of

paradigms, with its association with epistemic worldviews as well as material practices,

might also be useful, particularly in discussing pedagogy, but its assertion of radical

incommensurability between paradigms is a problem, leaving no room for communication

between boundaries. Galison’s notion of the trading zone helps resolve this issue of

communication across subcultures. While Galison speaks of trading between subcultures,

Star and Griesmer talk of translation across social worlds. Similarly, Takhteyev uses the

12 As a child, I had an Apple bumper sticker, probably from my family’s 1988

purchase of a Macintosh Plus, that read “Changing the world, one person at a time,” which

our family pasted on top of the computer desk. A picture of this bumper sticker can be

found at (King 2012).

35

term “world of practice” to denote a complex of material and discursive practice and

experience. Certainly, what I am describing in the social experience Cocoa programmers is

indeed a cultural, social, technical, and emotional world. However, I need a term that

somehow connotes “worldview,” structures of belief and values that encompass the sense of

both “ideology,” and “paradigm.” For lack of a better term, I will describe the seamless web

of Cocoa community, identity, and practice as a “techno-cultural” frame, which incorporates

elements of ideology, moral economy, and technological frame. I will use each of these

subordinate concepts where appropriate—I will use technological frame when discussing

Cocoa developers’ relative inclusion or exclusion in the community, its practice, way of

thinking, and orientation to Cocoa technology; I will use moral economy to describe its

interrelated system of ethics, and ideology to discuss incorporation of this normative system

with affect and subjectivities into a larger socio-political worldview.

Software Engineering, Maintenance, and Object-Oriented
Programming

According to Borsook, the technolibertarian ideology of high tech pervades Silicon

Valley, and indeed, Takhteyev might argue, the global “world of practice” of programmers

everywhere. Yet here I return to a question I posed earlier—what is the role of Cocoa

technology itself? For Cocoa developers, it not only matters that they have “access to tools,”

but also what those tools are—Cocoa itself. To them, the properties of Cocoa and the

practices associated with using it make a difference, both on an affective basis, in which

they claim it is more enjoyable to work with than other development tools, as well as on a

rational or utilitarian basis, in which they claim it is technically superior to other tools.

The basis for this claim lies in Cocoa’s object-oriented nature. Object-oriented

programming is a methodology for programming and programming language design that

emerged in the late 1960s and early 1970s. Unlike traditional procedural programming, in

which a programmer envisions a program as a set of processes and procedures through

which program execution flows, in object-oriented programming a program is envisioned as

a configuration of black-boxed objects, which have often hierarchical relations to each other,

and cause things to happen by sending messages to each other. The term was coined by Alan

36

Kay at Xerox PARC to describe his Smalltalk programming language and user environment,

and although Smalltalk was not the first object-oriented language,13 concepts it pioneered

have been exceedingly influential in the development of later languages, such as Java,

Python, Ruby, as well as Objective-C, the language at the heart of Cocoa. In fact, Objective-

C was originally developed to add a simple Smalltalk-like layer on top of the industry-

leading C programming language, which is not object-oriented. Steve Job’s NeXT chose

Objective-C to be the foundation for its operating system’s software libraries, which later

developed into Cocoa at Apple.

That a technology originating at Xerox PARC became the centerpiece of yet another

of Jobs’ ventures is no accident. In an interview for the PBS documentary, “Triumph of the

Nerds,” Jobs acknowledged that he had seen both object-oriented programming and

networking at PARC during his famous visit in the late 1970s, but had failed to see its

importance at the time: “One of the things they [PARC] showed me was object orienting

[sic] programming… The other one they showed me was a networked computer system...

[but] I didn’t even see that… I was so blinded by the first thing they showed me which was

the graphical user interface.” (Cringely 1996b)14 Jobs had not realized that PARC’s

Smalltalk System was an integrated whole—its graphical user interface was built with

object-oriented libraries and techniques, and the entire system, not just the programming

language or the user interface, was what Smalltalk was. Jobs had only grasped the

technology at the superficial level, and at Apple, his engineers replicated the look and feel

of the graphical user interface on the Lisa and Macintosh but did it with radically different,

non-object-oriented technologies. This was largely a necessity, however, as the Macintosh

was supposed to be a mass-market consumer device, its hardware was considerably less

13 Joline Zepcevski argues that Simula-67 was the first language to contain the

necessary features to today be classified as “object-oriented.” (Zepcevski 2012, 226–227)
14 Michael Hiltzik’s book on Xerox PARC says much the same thing: “As for Jobs,

he was so ‘saturated’ by the power of the user interface he had seen that he ignored the

other two phenomena he was being shown: object-oriented programming, which was the

essence of Smalltalk, and networking.” (Hiltzik 1999, 343)

37

powerful than the Alto’s (originally shipping with only 128K of memory) and Smalltalk’s

object-oriented environment was resource intensive and inefficient and would not have run

on the original Mac. This strategy worked successfully in the short run to ship the Mac, but

the limitations of the Mac’s programming environment, the Macintosh Toolbox, would

come to haunt Apple in the 1990s as it tried to modernize its operating system. After Jobs

left Apple to form NeXT, he hired top computer science researchers such as Avie Tevanian

from Carnegie Mellon. By the late 1980s, object-oriented programming had become the next

big thing in computer science, with its own conferences, and NeXT made it a centerpiece of

its new platform. In a way, Jobs may have been trying to recreate a PARC-like environment

at NeXT, by hiring, in his opinion, the best and brightest and let them decide what

technologies should go into a bleeding edge computer. NeXT’s focus on networking, which

it marketed as the new paradigm of “interpersonal computing,” was really a take on Xerox’s

“personal distributed computing.” (Lampson 1986; Thacker 1986) Similarly, NeXT’s

graphical user interface was built using object-oriented libraries, just as Smalltalk was, and

it was written with a language, Objective-C, that was explicitly modeled after Smalltalk.

Why is object-oriented programming, and Smalltalk-based technology in particular,

so important to Cocoa programmers? To answer this question, we must look at the context

in which object-oriented programming came about, during the so-called “software crisis” of

the 1960s,15 alongside the emergence of “software engineering.” As we will see in chapters

2, 3, and 6, Cocoa developers claim that because Cocoa is object-oriented, it can improve

programmer productivity by an order of magnitude, through reducing complexity and

15 Thomas Haigh argues that the software crisis was in reality more a discursive

construction by Dijkstra to overstate crisis language in the 1968 NATO Conference

proceedings during his 1972 Turing Award acceptance speech. Dijkstra did this to criticize

the “failure of computer companies to recognize the mathematical nature of software

development and their insistence on hiring insufficiently intelligent people to do it.” (Haigh

2010) Talk of the crisis is later seized upon by historians of computing in connection with

software engineering, but Haigh argues that this is overblown with regard to the concerns of

actual software practitioners.

38

increasing the maintainability of programs. Historian Michael Mahoney understood object-

oriented programming to be a particular response to the software crisis. “One only has to

read Doug McIlroy’s ‘On Mass-Produced Software Components,’ presented to the first

NATO Software Engineering Conference in 1968, to see where the conceptual roots of

object-oriented programming lie.” (Mahoney 1993, 778) A recent dissertation by Joline

Zepcevski argues that both structured programming and object-oriented programming

methodologies developed concurrently in the 1970s to tackle the software crisis, Smalltalk

especially. Both of these methodologies sought to address the issues of the complexity of

software, and its successful verification. Both approaches encouraged increasing

modularization and reuse of code, and while these principles were previously voluntary

practices to be encouraged, new languages designed specifically to support the new

methodologies (such as Pascal and Ada for structured programming, Smalltalk and C++ for

object-oriented programming) began to enforce them more rigidly. Nevertheless, Zepcevski

argues that only object-oriented programming represented a change in worldview from the

earlier procedural programming paradigm: instead of viewing a program as a flow of

processes, it transforms programs into systems of dynamically interacting, communicating

objects (Zepcevski 2012).

Zepcevski’s work draws on a growing literature on the software crisis and software

engineering in the history of computing. (Abbate 2012; Ensmenger 2010; Ensmenger and

Aspray 2002; MacKenzie 2001; Mahoney 1990; Mahoney 2002; Mahoney 2004; Slayton

2013a) In the late 1960s, the computer industry began to note that software development

costs were outpacing hardware costs, there seemed to be a perennial shortage of skilled

programmers, and several large, highly complex software projects failed spectacularly,

including OS/360, IBM’s operating system for its next generation System/360 series of

computers. What she identifies as the problem of managing overwhelming complexity in

programming was a central concern for figures influential in the development of software

engineering, especially Fred Brooks, the IBM software manager who oversaw OS/360 and

wrote the influential The Mythical Man-Month (F. P. Brooks 1995) as a post-mortem of the

project, which became a canonical text in software engineering. Brooks wrote in 1987 that

complexity was one of the “essential” traits of programming that meant that no technology

39

or technique, “No Silver Bullet,” could ultimately solve the software crisis. (F. P. Brooks

1987)

Brad Cox, the creator of the Objective-C programming language, disagreed. Cox

claimed that object-oriented programming (combined with a market of off-the-shelf

software object components that programmers could buy) was not only a silver bullet, but

would usher in a “software industrial revolution,” taking programming out of the realm of

craft and into the era of manufacturing (Cox 1990b; Cox 1990a). Historian Michael

Mahoney has pointed out how the dream of “automatic programming” and the “software

factory” has a long history, which became especially pronounced with the software crisis

(Mahoney 2002). Nathan Ensmenger has cited Brad Cox as an example of the emphasis in

software engineering towards the development of technologies and methodologies to aid in

the management of unruly programmers, as programmer unmanageability was one of the

key perceived sources of the software crisis (Ensmenger and Aspray 2002, 15–16). Indeed,

the metaphor of “engineering” itself, chosen in part to give programming an air of

quantification, rigor, discipline, professionalization, masculinization, and thus status, lent

itself easily to discourse involving the industrial revolution, manufacturing, interchangeable

parts, and automation. Sociologist Phillip Kraft warned in the 1970s that many of the

techniques proposed by software engineering advocates, such as structured programming, a

set of formalized, disciplinary programming practices advocated by computer scientist

Edsgar Dijkstra, would increasingly routinize and deskill programmers (Ensmenger 2010,

231–2). Ensmenger, examining the managerial rhetoric of such efforts, largely agrees that

control over labor was a primary motivation of software engineering, and that in corporate

settings, managers did indeed increase a measure of control, but feels that ultimately, the

rhetoric was overblown, as programming continues to require craft skill (Ensmenger 2010,

47–49, 243). For Ensmenger, programming simply proved intractable to managerial

attempts to discipline it.

Donald Mackenzie and Janet Abbate, however, interpret the discourse of software

engineering differently. Both note that “Software engineering advocates such as Dijkstra

and Brooks identified as programmers themselves and had no desire to downgrade their

peers.” (Abbate 2012, 107) Mackenzie points out that “Dijkstra recoiled at the analogy of

40

the factory. When asked his profession, he was proud to declare himself simply a

‘programmer’: for him, programming was intrinsically a demanding activity… The

discipline needed for successful programming was not organizational and managerial, in

Dijkstra’s opinion, but intellectual.” (MacKenzie 2001, 40) Mackenzie further notes that

Harlan Mills’ adoption of structured programming at IBM resulted in the opposite of

deskilling: “The tasks that programmers were left with, however, after the discipline of

structured programming had been imposed, were far from routine. Mills’s [sic] cleanroom

demanded more, not less, from its programmers…” (MacKenzie 2001, 57) Similarly,

Abbate states, “Unlike most industrial or office automation, software innovations were

created and adopted by programmers themselves, not managers… Rather than a serious goal,

deskilling functioned more as a handy cultural trope that marketers could use to appeal to

potential customers.” (Abbate 2012, 85) “Many programmers actively took up techniques

such as structured programming as a way of easing their work and enhancing their own

value in the job market. Rather than making programmers obsolete, software engineering

methods became simply another skill that programmers could claim.” (Abbate 2012, 107–

108) As we will see in chapter 3, my own interviews with Cocoa programmers, who have

embraced a cultural-technological frame that deeply embeds many software engineering

principles, corroborates Abbate’s argument. Software engineering techniques, despite

deskilling or routinizing rhetoric, discipline the programmer in the name of building

professional skill more than managerial docility. Both structured programming and object-

oriented programming methods are standard curricula in computer science, part of the trade

knowledge of the profession, and have increased, rather than decreased, the skill involved in

programming. Experienced programmers today largely see the acceptance of these

methodologies as evidence of progress in the field, not as the triumph of managerial

interests.

Why have such methods been so widely accepted in programming? Another essential

characteristic of software that made it difficult to write, Brooks asserted in “No Silver

Bullet,” was its changeability, in order to respond to new feature requests from users, and

new hardware that it must support. This need to change is rooted in software’s inseparability

from its larger social context: “In short, the software product is embedded in a cultural

41

matrix of applications, users, laws, and machine vehicles [hardware]. These all change

continually, and their changes inexorably force change upon the software product.” (F. P.

Brooks 1987, 12) Although software is more easily changed than hardware, in practice it is

not “infinitely malleable” as Brooks would have it. It is in fact because, as Nathan

Ensmenger puts it, “Software is history, organization, and social relationships make

tangible,” (Ensmenger 2010, 227) that software is obdurate, constrained by design decisions

made in the social, institutional, and material context in which it was first written. Because

of the long lifecycles of many programs, choices made today that limit future flexibility and

malleability in the name of expedience or efficiency have deleterious effects decades into

the future. It was this problem of “legacy software” that caused the panic over the Y2K bug:

the COBOL programs that ran much of the nation’s financial infrastructure had been written

in the 1960s, when it was necessary to save memory by omitting the first two digits of a

year, but these programs’ lifecycles lasted into the 1990s and past the year 2000, requiring

expensive rewriting of all of this stable, working, infrastructural code. Ensmenger calls this

the problem of software maintenance, and argues that “the software crisis of the late 1960s

was essentially a maintenance problem.” (Ensmenger 2010, 224–225) Although

maintenance is low-status and boring, as programmers would rather be makers of the new

rather than repairers of the old, because even new programs take a long time to write while

goals are constantly changing, the line between creation and repair can become blurry in

software, as bug fixing is always the final step towards releasing a “new” software product.

And as we will see in chapter 6, experienced software developers argue that adopting

disciplined practices up front to make software more “maintainable” will not only pay off in

the long run, but is seen as taking a step towards increasing one’s professional skill and

standing in the community of practice. This, in turn, can make the difference between being

accepted or excluded as a member of the professional community. Such “best practices” can

exist independently of particular technologies, but sometimes are strongly associated with

particular programming languages, development environments, and conventional coding

idioms. Such is the case with certain software design practices and Cocoa technology.

Cocoa programmers assert that the reason Cocoa is a superior tool for writing software is

because of Cocoa’s dynamic and flexible object-oriented design, and the conventional

practices and idioms associated with its use, which they claim help make their software

42

more maintainable. Practices that emphasize the virtue of maintainability are part and parcel

of the techno-cultural frame associated with Cocoa programming.

Methodology

I came to science and technology studies out of a program in history, and I began my

studies with a much stronger sense of the disciplinary ways of thinking of historians.

However, when I began this project, being in science and technology studies allowed me to

ask contemporary questions and to study contemporary phenomena. I intended for the

project to be equal parts historical and equal parts contemporary. I attempted to find sources

on NeXT at the Charles Babbage Institute and Stanford Library’s Special Collections, but

beyond a few NeXT brochures in the Michael Mahoney papers and a draft of a proposed

paper to the third History of Programming Languages conference on Objective-C, and a

cache of NeXTWORLD magazines that I later also found online, I found little of direct

relevance to my dissertation, although I did find a lot of materials on object-oriented

programming. I did eventually find a few sources to conduct oral histories of NeXT

developers and a few NeXT employees. (I will discuss my interview methods below.) Given

only a handful (less than ten) oral history interviews pertaining to NeXT, and the dearth of

written sources, I felt that I could not accomplish a sufficiently robust history of NeXT or

the NeXT developer community in the current project, other than the rough outline given in

chapter 2, which is drawn largely from the NeXTWORLD magazines, the NeXT brochure,

and excerpts from my interviews. I thus decided to focus more on the contemporary

ethnographic and interview-based portion of the project. The result is that I see this work as

more a work of sociology of technology with ethnographic and historical components.

Chapter 2 is the most historical chapter, being based as much on documents (magazine

articles and marketing materials from the 1990s) as on oral history interviews, and is closest

to telling a chronological narrative, for the purposes of providing necessary historical

context for the rest of the dissertation. Other chapters, especially chapter 6, draw on

secondary historical literature as well as on interviews. Despite my extensive use of

historical (both primary and secondary) sources, this dissertation is not primarily a work of

history. It does not directly address many questions of central concern to historians of

computing and software raised by Michael Mahoney, such as the social or institutional

43

context of hardware or software, communities of computer users in the professions, or the

history of software engineering or computer science as a discipline or programming as a

profession (Mahoney 1993, 779–80). Rather, I have used my oral histories to provide

context on the life and career trajectories of my participants. Nevertheless, this dissertation

does touch on some themes outlined by Mahoney: it documents the practice of a specific

community of programmers, in particular, the tacit knowledge, the tricks of the trade, the

“body of techniques, and the habits of thought” of Cocoa programmers (Mahoney 1993,

774). It does this by opening the black box of Cocoa software, by reading the software

artifact that is Cocoa, through engagement in the practice of Cocoa programming itself.

Moreover, Mahoney argues that all software is legacy software, which bears the traces of its

history.16 On one level, the development of Cocoa and Objective-C, and associated

disciplinary practices, were an attempt to address the problem of maintenance of legacy

software, to improve its reliability and flexibility. On another level, Cocoa itself is legacy,

in the sense that its design bears the mark of its origins at NeXT and its passage through a

period where it was applied primarily to the problems of large enterprises and institutions,

not consumers with smartphones. Cocoa must also be understood in the ideological context

of the computer counterculture and utopian digital technolibertarianism.

This dissertation draws primarily on semi-structured interviews and ethnographic

participant observation. As I had been an Apple employee myself till 2005, I began

recruiting participants for my project through my network of social contacts that I had

formed at Apple. After being turned down for permission to interview Apple employees

(and thus my former coworkers still working at Apple) by vice presidents Scott Forstall and

Bertrand Serlet because of Apple’s secrecy policies, I refocused my project on third party

developers who did not work for Apple. My network of contacts at Apple, and my own

former membership in the Cocoa team, was still very useful in helping me to find and gain

access to third party developers. As a person formerly from the Apple engineering culture, I

16 “Legacy software is not just old code, but rather a continuing enactment, an

operative representation, of the domain knowledge and practice embodied in it. (Mahoney

2008, 15)

44

already knew who the big names in the community were, and who wrote the important indie

apps, as I had been responsible for testing these apps at Apple. One Apple friend invited me

to a lunch at a restaurant near Apple’s campus, where I met the employees of a new iOS

startup. I went to conferences such as MacWorld Expo and Apple WWDC and made

connections with developers face-to-face. In the case of Aaron Hillegass, I connected with

him through the social media site LinkedIn, as we had other connections in common through

mutual friends at Apple. In other cases, I cold e-mailed prominent developers such as Wil

Shipley and Ken Case, to try to set up interviews. While in Seattle, I attended local Cocoa

developer clubs to meet people. Having obtained these initial connections, I acquired other

participants through snowball sampling.

My interviews began with a standard informed consent process that allowed me to

record the audio interview. In many cases, the participants are well-known members of the

community who write public blogs, and I requested the ability to use their real names if they

allowed, otherwise I could grant them confidentiality. The interview then proceeded in a

semi-structured manner—I had a rough outline of the types of questions I wanted to ask, but

was not rigid, allowing the conversation to proceed organically based on the participant’s

responses. Given that I was interested in both historical and contemporary issues, I began

every interview by asking about their biography and career trajectory: how did they first

learn programming? How did they first get into the Macintosh, iPhone, or other Apple

products? When did they first learn to program for Apple? What was that process like? That

naturally proceeded to more sociological questions: what do they like or dislike about

programming for Apple? What do they think of their relationship with Apple? How do they

participate in the life of the community? If they teach, what methods do they use? Many of

these interviews were conducted concurrently with my participant observation (described

below), and thus my questions gradually changed over time to encompass issues that I

observed in the field. The interviews were later transcribed and coded using Atlas.ti

software with grounded theory methodology.

My interviews are thus a combination of sociological/ethnographic interviews, and

oral history interviews. Interviews, of course, cannot be taken to be objective accounts, but

are subject to not only the participant’s bias but also lapses in memory. With oral history

45

accounts, I have tried to corroborate factual assertions with the few written sources

available to me, which included an archive of NeXTWORLD magazines at Charles Babbage

Institute (and found online), popular journalistic accounts of Apple and NeXT, as well as

my own memories from my time at Apple.

My ethnographic work began with the developers I had met at the lunch near Apple.

One of them invited me to come over to his workplace the next week, and I spent the next

two weeks hanging out there, observing and listening to what was going on, sometimes

interviewing them, taking field notes, sometimes recording their conversations (with

permission). The following summer, I obtained permission to do the same at another iPhone

startup in Palo Alto, and spent more than two weeks observing the office, taking field notes,

and observing and recording meetings, which I had obtained permission to do. Given the

relatively short span of my time in these initial studies, and my computer’s inability to run

the necessary software so I could engage in programming work at the time, I could only

observe but not directly participate in the work of these developers. I found this to be

extremely limiting—most of the time, I just saw people staring at computer screens, and

without writing code myself, I could not get a deep understanding of what they were

actually doing. In my subsequent study of the Big Nerd Ranch, which was accomplished in

two separate trips, the first of four months, the second, seven, I resolved to become

personally engaged in the work of the company, which I did after some effort. This meant

that after a period of time, I became a full employee of Big Nerd Ranch, doing equivalent

work to many of its other employees, and eventually even (albeit briefly) attaining the same

pay. While working, I would try to take field notes during moments of transition—such as

right after lunch, or at the end of the work day, or possibly after an interesting conversation.

Fortunately, I was relatively free to do so, although I did gradually come to have significant

coding work. I would also write field notes every night after returning to my apartment to

summarize what I thought of the day.

To a significant extent, the seeds of my interest in this study originated in my first

year as software engineer at Apple, fresh out of college. From the time my family had

purchased a Macintosh Plus when I was in fifth grade, I had been an Apple fan, a zealot,

even, especially during my undergraduate years when it seemed as if Apple might go out of

46

business and the Macintosh platform would disappear. It had been a goal of mine as an

electrical engineering and computer science undergraduate to get my dream job, to work at

Apple, at the height of the dot.com boom, when Apple’s future was still uncertain and was

not, as it is today, a hot place for young engineers to go. After a long search, I was finally

hired at Apple on October 4, 1999, by the Macintosh engineering group, to work on the next

version of the classic Mac OS, 9.1. My experience in the team immediately disabused me of

any notion that Apple was a land of unicorns and rainbows, milk and honey. Morale was

low, as the engineers who had worked on OS 9 felt continually slighted by upper

management, who favored the up-and-coming next-generation operating system, the NeXT-

based Mac OS X. Within six months, my manager would leave and most of my group would

disband, as management would decide that it was now time to shift resources to OS X. Yet

despite the clear message that OS X represented “progress” and “the future” for the Mac,

the engineers in the OS 9 group made coherent, rational arguments for why certain aspects

of OS X actually represented, to them, a step backwards, as well as why OS 9 could be

retrofitted with the “modern” features that motivated why it was being replaced, and thus,

should continue to be worked on in parallel to OS X in the short term. After my group

disbanded, I found a new position as the Quality Assurance engineer (the software tester)

for the Cocoa framework group, at the heart of the OS X division. Joining this group was

almost like joining a different company, as the cultures were so different. If my former

group represented the old, pre-Jobs 1990s Apple, the Cocoa division maintained practices

and a culture going back to NeXT. The engineers in the Cocoa group had their own

technical arguments over why their technology, and hence, OS X, was superior to classic

OS 9 and thus why it should replace it. It was this experience of witnessing two competing

technological visions within the company, one ascendant, the other, receding, that I began to

understand that autonomous technological progress in the absence of social conflict and

struggles for power was a myth. OS X was winning out at Apple because those who

controlled Apple actively pursued policies that favored it. Did this mean that it really wasn’t

a better operating system than OS 9? I wasn’t ready to go that far. My own experiences

developing an application using Cocoa versus with the classic Mac Toolbox showed me that

Cocoa was a way better way to write a program with a graphical user interface. On a

technical level, I believed OS X certainly was better than OS 9 in most ways, yet it did not

47

give me the same warm, pleasurable feeling as my childhood Mac. This raised questions in

my mind about the nature of technological development, technical cultures, and power. And

it made me question my own beliefs and about, and attachment to, Apple and its technology.

To an extent, then, this project has been auto-ethnographic—in explaining the motivations

of the Cocoa community, I am by proxy trying to explain and analyze my own attitudes.

Given my own former employment at Apple, and my close proximity to the social

world of Apple development, a challenge in my work is the problem of acquiring the

“strangeness” necessary to question what is taken as common sense in the community.

Because I sometimes share this “common sense,” it can be tempting to present the views of

my informants at face value without sociological analysis. Have I “gone native”? In my case,

I was never not a native, as the culture I was studying was my own original culture. The

academic field of Science and Technology Studies is in fact a second (or possibly third)

culture I have been initiated and acculturated into, through which I now approach my former

one. Nevertheless, I have still encountered plenty of strangeness as I traveled to Seattle and

Atlanta, places where I was unfamiliar, and got used to the rhythms of working at the Big

Nerd Ranch. Nonetheless, my primary objective is precisely to present and explain the

techno-cultural frame of Cocoa developers on their own terms, in the way they understand it

and themselves, why they love Cocoa technology and how their work with it gives meaning

to their lives. To understand their relationship to Cocoa technology, I had to become (or

rather, become again) a Cocoa developer myself, in order to fully engage in their

experiential world. It is because of my experience as a Cocoa programmer that I am able to

tease out the socio-cultural stakes at play in technical arguments over programming

language syntax or choices in design patterns.

John Tresch has argued, using Kuhn, that “going native” is in fact necessary in

anthropology in order to fully understand a (especially non-Western) culture’s phenomenal

world without imposition on the phenomena of analytical categories (Tresch 2001). Harry

Collins has similarly argued for the necessity of going native in science studies: “In this

kind of research it is necessary to be sucked into the science. First, to elicit revealing

reactions one has to be caught up… Respondents must become something closer to

colleagues—people who are happy to argue physics, not just react as though filling out a

48

questionnaire. Second, if one adopts the approach known as ‘participant comprehension,’

…the object will be to become as like the actors one is studying as possible; the idea is to

come to understand the society under investigation from the inside. The aim is to come to

see the world through the same sets of categories as the actors one is investigating.” (Collins

2011, 319–20) Similarly, my own nativeness was a benefit in the field. Entering the field

after a time spent in academia, there was still a brief period of adjustment and strangeness to

some extent, but the process was significantly truncated. Relying on my previous knowledge,

I began with at least a level of expertise Collins calls, “interactional expertise,” in which I

could fully engage in the discourse of actors using native terms. This level helped me easily

gain rapport, as I already understood the vocabulary and the categories of the actors without

too much explanation. Additionally, it took very little for me to acquire “participant

comprehension.” When my fieldwork was restricted to strict observation instead of

participation, however, I could only remain at this interactional level. However, once I

began to engage more fully in their work as a full participant, I began to acquire what

Collins calls “contributory expertise” and “experience-based expertise.”

Nativeness presents its own problems, of course. Collins notes that although the

social analyst must go native in the field, she must also achieve distance upon returning out

of it. “The social analyst has to analyze sociologically, and this sometimes means analyzing

in ways that are not natural to the members of the society being analyzed. Sometimes the

social analyst has to disagree with the native members.” (Collins 2011, 320) Lacking

strangeness, it can be easy to take the actors’ categories as natural. I have attempted, to

analyze phenomena in the field using analytical concepts drawn from STS and elsewhere.

Such categories as “technological frame,” “communities of practice,” and “techno-

libertarianism” are analyst’s categories, though drawn from my interpretation of actors’

categories. “Paradigm” presents a challenge as it is both an actor’s and analyst’s category;

as an actor’s category, it draws on its Kuhnian meaning as an analytical category, but it is

not precisely the same. I try to avoid using paradigm as an analytical category, but in cases

where I find it unavoidable, I will endeavor to clarify when I use “paradigm” as an actor’s

versus an analyst’s category. In the paragraphs that follow, I will lay out some of the

strategies I have used to acquire some analytical distance from my actors.

49

This dissertation focuses on an in-depth analysis of the Cocoa developer community,

rather than comparing it on an equal basis with other communities, say, Windows or

Android programmers. In doing this, I try to avoid, as much as I am able, in taking the

views of Cocoa programmers, especially about the technology of Cocoa, as “objective”

truths. As an example, one of my central concerns is the claim that Cocoa makes software

developers more productive, relative to other development environments. My own prior

programming experiences at Apple have led me to believe that there is something to this

claim. However, it is fully possible that programmers with high inclusion in alternative

technological frames might be just as productive as any Cocoa programmer. I believe it is

likely that Cocoa has productivity advantages in comparison with most procedural

environments, and possibly even in comparison with some object-oriented environments

such as C++ or Java, but in comparison with newer or similarly flexible languages and

toolkits such as C#, Python, or Ruby, Cocoa may not have any advantage. Regardless, the

truth value of any of these claims is irrelevant; my purpose in this dissertation is not to

establish whether Cocoa is actually better or more productive, but to ascertain the reasons

why Cocoa developers believe it to be so.

Because my primary aim is to explain the central normative and affective logic of the

Cocoa community, I have focused my recruiting of participants on the core of the Apple

developer community, especially independent developers located in the Seattle area, which

Van Meeteren (2008) has already highlighted in his work. (Given the small size of the core

of this community, we share a number of the same participants, and it was one of those

participants that I recruited who alerted me to his participation in Van Meeteren’s previous

study.) Being located in Seattle did allow me, however, to include a small handful of less-

highly included participants, newer iOS developers who had converted from Windows or

other platforms. Again, given the focus of the dissertation on explaining the worldview of

the highly included core of the community, and the limited amount of time I had to

transcribe and code over 50 interviews, almost all of which were over two hours long (the

longest reaching nine hours), I necessarily had to focus on certain perspectives over others.

One way to avoid certain blindnesses associated with getting too close to my

participants is to look for areas of disagreement among them. One way I do this is by

50

studying a technical controversy in the community, the topic of chapter 6. Another way I do

this is by looking for areas where developers are critical of Apple. In interviews, I asked

both core and peripherally located participants about their disagreements with Apple. With

few exceptions, my participants voiced little criticism of Apple’s Cocoa frameworks; rather,

various critiques were made of the Objective-C language, of Apple’s Xcode development

tool compared to Microsoft Visual Studio, or of various Apple policies pertaining to their

control of the platform. These are all interesting and worthwhile critiques, but aside from

the critiques of the language, which I address somewhat in chapter 6 from the perspective of

aesthetics and boundary work, these other issues are full topics in their own right that

deserve their own treatment, which I plan to return to later. Of special interest to me is

criticism of Apple from highly-included Apple developers themselves. I had intended the

relationship between the developer community and Apple to be a more prominent theme in

the dissertation, but I made an editorial decision to keep the dissertation’s core topic and

focus manageable and have cut the intended full chapter, reintegrating the material in

abridged form into chapter 5.

Another way to address the problem with being too close to my participants is to

juxtapose their views with those marginal, outside, or new to the community. Given time,

resource, and access constraints, it was not possible do an equivalent treatment of the

Windows, Android, or Ruby communities; nor is this dissertation designed to be

comparative to that extent. It would have been beneficial, however, to try to obtain some

access to Macintosh developers who programed using the alternative, classic Mac OS 9

based-Carbon toolkit, who would undoubtedly have offered a useful counterpoint.

Unfortunately, by the time I conducted my fieldwork, most of this community had either

converted to other platforms (including Cocoa) or retired, as this technology is no longer

supported by Apple, and I did not readily find any developers from my network of contacts

who not only had formerly used Carbon but had refused to switch to Cocoa. I was

successful, however, in gaining access to some developers who had experience with

Windows, Android, or Ruby development, although these developers were all also iOS or

Cocoa developers. In the case of Windows, I have three interviews of former Windows

programmers who were highly included in that sphere before converting to iOS, including

51

one former Microsoft employee. One of them informed me that the Windows community

does not really exist in the same way as the Cocoa community, with little actual social

interaction outside of professional conferences. These informants provided useful points of

comparison between Cocoa and other programming communities. Given my time

constraints, I have only begun to analyze this material, however, and not all of the questions

raised by this data were relevant to the central themes of this dissertation. I anticipate that

this material will yield more insights in the future.

Another difficulty for maintaining analytical distance is the sheer technical depth of

some of the actors’ concepts, which are difficult to explain to persons without a computer

science background. I have attempted to explain in detail a few concepts that are relevant to

the analytical points I want to make. Inevitably, though, with some less central concepts, I

may keep them black-boxed and not subject them to sociological analysis nor explain them

in deep technical detail, as they are not of primary importance to the analysis.

Summary of the Dissertation

Anthropologist Sharon Traweek wrote that ethnographies usually describe “four

domains of community life.” (Traweek 1988, 7) These include ecology, or “the group’s

means of subsistence, the environment that supports it, the tools and other artifacts used in

getting a living from the environment;” social organization, or “how the group structures

itself;” the developmental cycle, or “how the group transmits to novices the skills, values,

and knowledge that constitute a sensible, competent person;” and cosmology, the “group’s

system of knowledge, skills, and beliefs, what is valued and what is denigrated.” Each

chapter of this dissertation focuses on one or more of these anthropological categories of

analysis. No single chapter is devoted to Cocoa programmers’ ecology, but because Cocoa

technology itself is part of Cocoa programmers’ means of subsistence, descriptions of their

ecology is present throughout the dissertation.

Chapters 1 through 3 focus primarily on the cosmology of Cocoa programmers, and

in particular, why they are committed to developing software for Apple platforms in general,

and with Cocoa technology, in particular. Chapter 1 focuses on the affective, normative, and

ideological aspects of this cosmology, especially the construction of the vocational “indie”

52

developer identity, its connection to Silicon Valley technolibertarianism and its doctrine of

social change through individual empowerment by tools, and the particular role Steve Jobs

and Apple play in this cosmology, as exemplar and mythic hero. Apple also plays an

integral role in Cocoa developers’ ecology, however, providing them with the tools and

infrastructure to make their livings as indie developers, and this ecological dependence on

the Apple corporation is ideologically reconciled through Apple’s exceptional status in their

cosmology, which differentiates it from all other corporations.

Chapters 2 and 3 look at the technical aspect of Cocoa developers’ cosmology, in

particular, the rational, instrumental, or utilitarian arguments Cocoa developers use to

explain why they believe Cocoa is a better programming environment than others. Chapter 2

provides the historical background for these arguments, rooted in the discourse of software

engineering and maintenance that came out of the so-called “software crisis” from the late

1960s through the 1970s, elaborating how NeXT created the technologies that became

Cocoa in the late 1980s and early 1990s and marketed it based on the advantages of object-

oriented programming, drawing on the earlier software engineering discourse. Chapter 2

also discusses the early formation of the NeXT developer community, its transformation

into the Cocoa community and its sense of vindication that the technology they loved not

only survived but has become the dominant technology in mobile development. Chapter 3

examines the particular technical characteristics of Cocoa, how these characteristics make

programmers more productive, but also counter-intuitively, how they also require not only

significant learning, but to a large extent, a kind of mental conversion or transformation in

the way a programmer thinks. This is illustrated by explaining the importance, and the

difficulty, of what are called “design patterns” in Cocoa programming.

Chapter 3 thus touches on the developmental cycle of Cocoa programmers, which is

more fully the topic of chapter 4. In chapter 4, I look at how new Cocoa programmers are

taught by a company that specializes in programmer training called the “Big Nerd Ranch.”

This chapter is an ethnographic and auto-ethnographic look at the Big Nerd Ranch’s

signature iOS Programming Bootcamp, revealing how students are trained, and how the

norms and values of Cocoa developers are transmitted to them in the classroom.

53

Chapter 5 focuses on the social organization of the Cocoa community. Here I look at

both its organization as a networked public online, and as a loose network of local

communities in physical space, focusing special attention on the Seattle Cocoa community. I

argue that despite the ideological emphasis of Cocoa developers on independence and

individual production of apps and participation in the market, this is made possible by close

collegial relationships among indie developers in Seattle, which facilitates sharing of

knowledge, practices, and code, as well as occasional business partnerships, governed by a

moral economy that transcends market competition. Chapter 5 also looks at the close

symbiotic, but sometimes fraught, relationship that the Cocoa community has with Apple,

which provides the ecological supports for its existence but also wields the power to put

them out of business. Despite the extreme asymmetry of this power relationship, the

symbolic discursive power of some influential members of the community can influence

decisions at Apple, in part because the Cocoa community itself includes Apple employees

who have social relationships with developers outside the company.

Chapter 6, the final chapter, examines cosmology, developmental cycle, and social

organization simultaneously through a case study of a technical controversy in the Cocoa

community over Apple’s introduction of a new syntactic innovation in Objective-C, known

as “dot notation,” that older Cocoa programmers resisted partly because it was considered a

foreign element associated with what they considered “inferior” languages such as C++ and

Java. This was felt to be a concession to make Objective-C more palatable to newcomers,

and resistance or acceptance of dot notation became a form of boundary work against such

newcomers. To some extent, the controversy also represented a struggle between prominent

members of the community with Apple itself over social reproduction of Cocoa developers.

54

Chapter 1: “Indie” Cocoa Developers: Pleasure,
Vocation, and Ideology

In 2008, Apple opened up the iPhone to third party application development,

sparking a “gold rush” of entrepreneurial activity in mobile software applications.

“The rush to stake a claim on the iPhone is a lot like what happened in Silicon Valley

in the early dot-com era,” claimed a partner with the venture capital firm Kleiner

Perkins, which started a $100 million “iFund” for iPhone applications. (Wortham

2009) Programmers flocked to Apple’s platform in droves. Nevertheless, these latter-

day forty-niners did not find Appleland completely unoccupied. Developers for

Apple’s Mac OS X personal computer operating system were among the first to

explore making apps for the iPhone. Because iPhone and OS X development both use

variants of Apple’s Cocoa technology, these existing Cocoa experts tried to ensure,

through their blogs and Twitter posts, that their community’s values, practices, and

ideology, in other words, their techno-cultural frame, would continue to be the

dominant moral and technical order for the much expanded iPhone developer

community.

This chapter explores this techno-cultural frame, especially its ideology, the

affective pleasure that binds Cocoa developers to use of Cocoa technology, and the

construction of the subjective identity of a Cocoa programmer. These are all

components of what Sharon Traweek calls the “cosmological” component of a

group’s culture, in this case, the culture of the Cocoa community of practice.

 The Cocoa developer community has a long history, which I will only sketch

briefly here. Cocoa is a set of software libraries (or frameworks, in Apple’s parlance)

that make up a software development kit (SDK), interfaces into the operating system

that allows developers to build applications. The toolkits that make up Cocoa

originated on NeXTSTEP, the Unix based operating system created by NeXT for its

black-colored computers. However, NeXTSTEP had acquired a loyal following

among a small niche of software developers, who praised it for dramatically

enhancing their productivity as programmers. Apple acquired NeXT in 1997, gaining

55

not only Jobs, but NeXT’s operating system and development environment, which

eventually became Mac OS X and Cocoa, respectively. This allowed the devoted

cadre of NeXT developers to begin selling applications to Apple’s large installed

base of consumers. Most of these developers worked individually or in small-

companies independent of large corporate software firms, and they began to call

themselves “indie Cocoa developers.” It was this indie Cocoa community that served

as the core of the burgeoning new iPhone developer community in 2008, now known

as the “iOS” developer community. (After Apple released the iPad in 2010, which

runs the same operating system as the iPhone, it now refers to the OS for both

devices as “iOS.”)

What is particularly striking about NeXT developers is how fervently

committed they were to using NeXT’s toolkits to write software, considering that

NeXT had almost no marketshare, and developers had to survive by taking contracts

for large financial firms, where NeXT had discovered a market for its software.

NeXT developers were known to be fanatical about NeXTSTEP:

People who write software on NeXT… would rather be sheep farmers
than have to program in some other environment.” (Dan Wood,
Interview, April 9, 2012).

As we saw in the introduction, Michiel van Meeteren also quoted a Cocoa

programmer saying this, and apparently it had become something of popular saying

amongst them (van Meeteren 2008, 22). This statement is performative, and the

playful reference to sheep farming is deliberately outlandish. By focusing on the

irrationality of NeXT programmers’ stubbornness, it emphasizes their deep

conviction to peers in order to enact an identity of moral superiority and separateness

from other programmers who deign to use lesser environments. As we will see, until

the iPhone, NeXT and Cocoa developers’ commitment was proven greater the more a

developer gave up the higher earnings they might obtain in greener pastures. During

the height of the dot.com era, NeXT programmers could have joined Internet startups

(and undoubtedly, many did), but those who remained on the tiny NeXT platform

had to find a way to justify their decision. This justification was not based on

56

rational market choice, but was articulated affectively, involving a calling to a higher

purpose:

In 2000—you had to be in it because you loved what you were doing,
because there was no other reason to be there! (Ken Case, Interview
March 23, 2012)

It is not strictly true that NeXT developers largely sat on the sidelines of the

dot.com boom. NeXT had come out with one of the first object-oriented backend

web development environments, WebObjects, in the mid-1990s, built upon the same

design principles as the desktop application frameworks that would later become

Cocoa. Some significant corporations relied on WebObjects-based solutions for their

e-commerce, including Dell until the Apple purchase of NeXT made it a conflict of

interest. WebObjects was a much-needed success for NeXT, and if the acquisition

had not happened, it is likely that NeXT would have survived into the 2000s relying

on it as its primary product. NeXT developers would have been able to continue

developing using NeXT-based technologies, and would probably have made good

money doing it, but this would have been for corporate enterprise software.

Moreover, WebObjects competed in a crowded field with a host of other web

environments, especially those based on Java, Microsoft ASP, and PHP, which most

of the dot.com startups were using. NeXT would have continued to be seen as a

marginal technology in the industry. NeXT developers worked on contracts for

already large enterprises, while the startups stuck to industry-standard solutions like

Java. Thus, while many programmers joining startups during the dot.com bubble had

hoped to become overnight millionaires, NeXT programmers largely worked on

steady, but profitable contracts from existing large institutions, forgoing much of the

dot.com hype and benefiting from the Internet boom less directly. This is very

different from the experience of Cocoa programmers during the iPhone gold rush of

2008-10, where they were now at the center of tech startup activity and investor

speculation.

My point is that NeXT and later Cocoa programming until 2008 was largely

articulated as a labor of love and devotion for what was a marginal, even obscure

57

software technology, despite the fact that it was possible to make a comfortable

living doing it. Programmers who wanted to strike it rich in 2000 joined Internet

startups programming in Java, rather than work as contractors writing web backends

in WebObjects. In 2002, they would be even less likely to consider writing consumer

applications for Mac OS X, a platform dwarfed in marketshare by Windows, as a

sure way to retire early, especially by taking risk onto themselves without investors.

While issues of money were not unimportant to NeXT and Cocoa developers before

2008, it certainly was not the only or even primary motivation, as it would have been

much easier to make money doing traditional Web or Windows development. This

equation certainly changed after 2008, especially among most of the newcomers

hoping to get in on the ground floor of the “mobile revolution.” Nevertheless, my

focus in this chapter is not primarily on these newcomers, but on the old guard of the

Cocoa community, the true believers that had stuck with NeXT and Apple through

tough times and were developing exclusively with NeXT/Cocoa long before iPhone

apps were seen as the surest way to get rich quick. Where did this devotion to Cocoa

come from? What sorts of affective pleasures, normative values, and ideological

commitments motivate indie Cocoa developers? These are the questions I will

examine.

Pleasure in Cocoa Programming

AppKit [the user interface component of Cocoa on Mac] [is] a joy to
use versus other things.” (Chris Parrish, Interview March 2, 2012)

In Gabriella Coleman’s study of free software hackers, she quotes a Python

programmer, Espe, who describes the purity of coding in Python (a high-level object-

oriented programming language) as reaching a transcendental state: “I… felt the pure

abstract joy of programming in a powerful way—the ability to conjure these giant

structures, manipulate them at will, have them contain and be contained by one

another.” (Coleman, 2013, 95) This programmer wrote Python code for the “joy of

programming,” “rooted in deep pleasure” of “unencumbered exercise of ample

creativity.” His reverence for Python was that it enabled him to “reach the elusive

quality of perfection.” (Coleman 2013, 97) Elsewhere, Coleman describes this

58

transcendental pleasure in programming as an experience of “flow”

(Csikszentmihalyi 1994), a blissful “deep hack mode” where self-awareness is

obliterated (Coleman 2013, 13).

Espe contrasted this experience of pleasure, order, and productive creativity

in programming in Python with the frustration and chaos of programming in another

language, Perl. Python programming was a “high tower of control and purity”

compared to Perl’s “bubbling pool of vagary and confusion” that was the “big ball of

mud.” (Coleman 2013, 95–96) Another programmer explained that Perl’s critics

deride it as “ugly, difficult to learn” and enforcing “bad habits.” (Coleman 2013, 96)

Coleman has noted that the pleasure of programming depends in large part on the

tension between pleasure and frustration, and that overcoming frustration is part of

the pleasure of programming itself. This frustration frequently stems from the

material agency of the computer hardware, but also the constraints imposed by

existing, “legacy” software infrastructures upon which higher level software,

including applications, are built. Such software is obdurate in a different way—

frequently encoding the social and institutional relationships that existed among the

software’s users and programmers at the time of its creation into a durable and

agential form that frequently outlasts its original social context. This, in a nutshell, is

the problem of software maintenance (Ensmenger 2010). Programming languages

and APIs also exhibit their own form of constraints and affordances—they make

possible or easy the ability to express certain ideas quickly in code what is

impossible or difficult to express otherwise. Languages express different ways of

approaching problem solving, and different programmers express strong preferences

for particular languages because these best match how the programmer has become

accustomed to thinking, reducing frustration and increasing pleasure.

Programmers who use the Cocoa APIs have until recently predominantly used

a language called Objective-C to write their code. Because Objective-C, Python, and

Ruby were all influenced by the Smalltalk object-oriented programming language,

they all exhibit similar traits. All of these languages are classified as “dynamic,”

roughly meaning that they allow the objects that make up programs to alter their

59

properties, behaviors, or relationships dynamically while a program is running,

which increases the expressivity and flexibility of certain kinds of code, increasing

developer productivity. Moreover, Apple has designed the Cocoa APIs to be ordered

and coherent. As a result, Cocoa programmers have commonly expressed a similar

pleasure in Cocoa programming (and its precursor, NeXT programming) as Espe did

of Python. This pleasure has been experienced so strongly that many Cocoa

programmers have decided to avoid programming in other environments where

possible, resulting in many of them releasing software exclusively for Apple’s

platforms. Many of them also have exhibited a strong tendency to try to “evangelize,”

in other words, convince others to write software for Apple so that they too, can

experience the same pleasure. Indeed, Apple encourages this attitude by releasing

new frameworks and APIs that offer developers powerful new capabilities or more

convenient ways to do things they were already doing, reducing everyday

frustrations and increasing their pleasure. Mark Dalrymple is an instructor at the

Cocoa training company, Big Nerd Ranch, who wrote its Advanced Mac OS X

Programming guide. For Dalrymple, Cocoa’s conveniences allow him to achieve his

aims with minimal effort:

“What makes a programming language fun, or what makes a toolkit
fun? And for me it’s a combination of mastery… how well do I know
the tools? It’s like a musical instrument… Same with Objective-C. So
I’ve achieved mastery in the language, …so… going from, here is
what I want to do thought-wise, to the code that does it, is a very direct
process. It’s not error-prone… the results are fairly fast to get. I can go
from idea to something running… fairly quickly…” because the
surface area of the language is very small…” (Mark Dalrymple,
Interview, April 11, 2012)

Dalrymple’s proficiency with Cocoa allows him to get to the result quickly.

The Cocoa toolkit has become an extension of his mind, like a musical instrument.

When Cocoa developers contend that Cocoa is easier to use than other programming

toolkits, they do not mean that it has completely deskilled programming into a

turnkey activity; they mean that Cocoa has been honed to keep frustrating

distractions at a minimum, allowing them to get on with their work. For Cocoa

programmers, then, less frustration means more productivity, and more mastery, and

60

therefore, more fun. The Cocoa programmer is more like the Python programmer,

who revels in the elegance and abstract purity of his programming environment,

rather than the Perl programmer, who value the ability to express algorithms in

cleverly terse ways. These are two contrasting sources of pleasure in programming.

Cocoa and Python programmers see the freedom of Perl as debilitating, because by

offering too many ways to do the same thing, it introduces unnecessary complexity

and confusion. While Dalrymple is partly saying that his mastery and proficiency are

the source of his pleasure (which a programmer expert in any language could say), he

is also claiming that Cocoa/Objective-C has properties that allows him to get his

results, meaning a completed application, not just one algorithm or code module,

quickly. While Coleman points out that overcoming frustration is a necessary

component of the pleasure of programming, Dalrymple’s quote shows that not all

frustration is equal. Unnecessary frustration caused by arbitrary complexity in one’s

programming tools or environment is seen as inefficient, getting in the way of the act

of creation, and thus inhibits pleasure.

The idea that Cocoa/Objective-C, at least for a proficient programmer, is

pleasurable precisely because it is less frustrating appears often when Cocoa

programmers compare it to their experiences with other programming tools,

environments, or platforms. Chris Parrish is an independent Cocoa developer living

in the Seattle area who used to work on InDesign at Adobe, writing code in C++.

Parrish described his experience with C++ as frustrating and complicated, which

made him feel unintelligent:

It was like the overhead of becoming competent enough to produce
stuff in Objective-C was so low—it was like, this isn’t a big deal. I
was picturing the nightmare that is C++. [I thought] I’m just not as
smart as these [C++] guys. …So I was picturing Objective-C would be
another whole huge complicated mess, and then when I realized how it
was just super simple… it’s all straightforward, no big surprises.
(Chris Parrish, Interview, March 2, 2012)

What differentiated his attitude from that of his fellow programmers who

seemed to love C++ was that code was just a means to an end—the application itself,

61

whereas the C++ lovers seemed to attain pleasure in the writing of the code itself,

and the pleasure in the mastery of C++’s arcane complexity:

I just like to actually do stuff, like, I like to produce the result, rather
than just the process of making stuff… I don’t need to write code, if I
could still make cool stuff without ever writing code, I’m cool with
that… (Chris Parrish, Interview, March 2, 2012)

What Parrish reveals here is that, like other Cocoa developers, his priority is

making an application that can be used by end-users. Although it is probably an

exaggeration that he would prefer not to write code, for Parrish, the pleasure exists

not primarily in the technical mastery of the clever hack, but the beauty of the

finished product.

Other Cocoa programmers have expressed similar sentiments as Parrish and

Dalrymple that Cocoa’s efficacy at helping them achieve their ends is a source of

their pleasure in it. Brent Simmons, the Seattle-area indie developer who originally

wrote NetNewsWire, a newsreader app, sums this up: he likes Cocoa “because I can

get my work done.” (Brent Simmons, Interview, February 17, 2012)

This concern for the end product (the app) and not the code itself, makes

Cocoa developers pragmatists when it comes to proprietary versus open source code.

Tristan O’Tierney is a former Apple engineer and a co-founder and former CTO of

Square. His view is that he will use whatever tool, open source or proprietary, which

best helps him get the job done. Like Dalrymple, Parrish, and Simmons, O’Tierney

feels that most of the time, Apple’s frameworks and APIs help him write apps more

quickly and conveniently. However, occasionally, Apple’s solutions are not the best

ones, and when he sees this is the case, O’Tierney has no problem writing his own

frameworks and sharing them with others:

You can also find open license code that does almost what you want.
Maybe you just have to tweak it. […] The code is not what matters.
Especially the reusable stuff. Because what matters is the user
experience.

62

[…] in the end, what matters is that you deliver the final experience.
And that is unrelated to the code. If you have code that helps you draw
a button, there's no reason to do that a million times over.

[…]Just give out the code that is really unrelated to our secret sauce.
The secret sauce was […] just our drive for [user] experience, for
making good quality stuff.

(Tristan O’Tierney, Interview, January 7, 2009)

O’Tierney’s attitude towards the purpose of open-source is one I often heard

myself when I was an Apple employee, which is not surprising given O’Tierney’s

own experience there. This view of the role of open source separates out

infrastructural software code from application code, which interacts with the user. In

this view, software infrastructures, such as low-level operating systems, are the

expert domain not of Apple, but the open source community. Apple’s expertise is

instead in user interfaces. Lower-level functionality is merely the means to the larger

ends of an artistic vision of a user experience. This means that Apple can leverage

the work of the open source community for the infrastructure in order to focus its

own talent on the user interfaces of its operating system and applications. This

creates a hierarchy in which infrastructural software is seen as less interesting than

applications that interact with users. For O’Tierney, this value system translates to

third party development as well. If possible, a Cocoa developer should spend as little

time as possible getting basic functionality to work and more time on getting the user

experience “right.” This means that if the developer can delegate this responsibility

to code he does not have to write, whether it be an open source library, or a new

framework from Apple, he should. “Less interesting” work should be delegated to

someone else, which in practice means code that has no user-interfacing component,

and thus does not express an application’s overall vision. The focus on the user

makes Cocoa developers app-centric; all other software layers exist only to serve the

application, which ultimately serves the user. In the next section, we will look more

closely at Cocoa developers’ emphasis on the usability and aesthetic look and feel of

their applications, which often differentiates them from other programmer cultures.

Commitment to Aesthetics and Usability

63

Cocoa developers, like open source hackers, may work on software to

“scratch their own itch” and fulfill their own needs, and both derive pleasure from

the writing of code. However, Cocoa developers are first and foremost Apple users,

and have self-selected Apple because they believe in the values that ostensibly guide

Apple’s product design: that technology should be easy to use, not frustrating or

overly complex, and that when designed correctly, can even be a source of pleasure

or “delight.” Thus, they seek not only to experience pleasure in the act of creating an

application, but also to create a pleasurable experience in the act of using it. Cocoa

developers recognize that they take cues from Apple on the value of the quality and

usability of software:

I think we do share at least a few values with Apple and Apple
employees. Most developers I know are hugely committed to quality.
The most important thing is to make what you make really, really good.
And we define good in much the same way that Apple does. …User
experience is paramount.

[…] We choose to adopt those ideals, we probably had them in the
first place anyway, which is why we’re attracted to [the Mac]. (Brent
Simmons, Interview, February 17, 2012)

Others note that Apple has been a trend setter for aesthetics and design that

has often been missing from other technology companies:

[Apple’s] focus on aesthetics and usability… I think they've been
purveyors of good design. …Back in the day… when you turn on a
Mac it smiles at you… it had a lot of personality to it. (Chris Livdahl,
Interview, March 28, 2012)

For this developer, good design does not create merely an aesthetic response,

but humanizes the computer, generating a personal connection to it that is missing

from the experience of using other computers. The machine is no longer seen as a

cold, unfeeling thing, but acquires a “personality” associated with the Macintosh’s

graphical user interface. A common trope associated with the Macintosh is that its

users have grown sentimental attachments to the machines in ways that Windows PC

users, who treat their computers as instrumental work machines and cheap

64

commodities, do not. The humanizing quality of Apple’s interfaces attracted like-

minded developers:

For me, it’s about being humane… the devices, the Mac, and the
general approach of most developers in this platform, is to recognize
our users as human beings, worthy of respect, and to build things that
treat them that way. (Curt Clifton, Interview, March 23, 2012)

Thus, for many Apple developers, the Macintosh was the only computer

platform that they experienced pleasure using, and this motivated them to develop

exclusively for it.

We were all on the Mac already, because it worked, and felt better. If
we didn't care about that, we'd be on Windows… The [Macintosh]
attracted a certain type of developer, and we all loved working on the
Mac for that reason. (Gus Mueller Interview, February 21, 2012)

NeXT developers felt similarly about their platform, and when Apple bought

NeXT, these sensibilities merged. Because both NeXT and the Macintosh had low

marketshare, programming exclusively for either platform was a risky business

decision, and for a developer to go Mac-only meant that they put their love of

Apple’s platform above the greener pastures of the Windows or Web development

markets.

Going back a ways… you had to be a person who was willing to try to
make a living, or wanted to develop software for this minority
platform, that many people would go, ‘Why are you doing this?’ It’s
not only Apple’s image [as a beleaguered company]… but just the
realities of the size of the market, really. There’s only so many people
with Macs. There’s all these other people [on Windows]—why are you
choosing to do that? Isn’t that a bad business decision? There’s lots of
ways you can argue around that, but certainly I think it takes a certain
type of person who’s interested in going down that road.

(Chris Parrish Interview, March 2, 2012)

If, for many free software hackers cleverness or efficiency matter most, for

Cocoa programmers, providing a pleasurable experience to their applications’ users

is paramount. Although ingenuity in coding itself is still valued, for Cocoa

programmers, an application’s design, in terms of visuals, how a user uses the app,

65

and how the application’s architecture is planned, all matter more than the raw

efficiency of algorithms. Cocoa developers explicitly model their efforts to create

elegantly designed software on Apple’s:

The reason we’re probably attracted to this platform, has to do with
things there might be about elegance and aesthetic and design sense,
and usability, like those certain features that make a good Mac app a
good Mac app, a good iOS app… Some people are drawn to that
sensibility. (Chris Parrish, Interview, March 2, 2012)

This motivated many to see themselves as artists:

I get along with [our designer] so well because we’re both trying to
express our vision. He’s trying to express it in Photoshop, and I’m
trying to express it in Objective-C…

My vision is not threatened by your vision… the existence of Cezanne
and the existence of Monet does not lessen the impact of Van Gogh.
An individual artist and an individual vision stands on its own merits.

(Mike Lee, Interview, July 23, 2008)

In order to put this quote in context, at the time of this statement, Lee, who

had made his name in the Cocoa community working with indie Seattle developer

Wil Shipley, was now CTO of a Palo Alto startup that made a Twitter client for

iPhone. An executive at this startup had made public statements disparaging

Twitterific, a competing application written by the developer Craig Hockenberry that

was considered by many Cocoa developers to be one of the best on Apple’s

platforms. Lee’s statement about artistic vision was an attempt to distance himself

from his executive’s remarks, which he considered to be counter to the norms of

collegiality among indie Cocoa developers. Cocoa developers, according to Lee,

should be neighborly and supportive of each other’s work, even if their apps compete

directly with each other in the marketplace. His executive, who had been a merger

and acquisitions lawyer prior to co-founding the company, was playing by the

cutthroat rules of the market and violated this collegial norm of the community. By

proclaiming his identity as an artist, Mike Lee was asserting that despite two

products actually competing in the rational marketplace, on a somewhat higher,

artistic plane, they are not competing at all, allowing developers to freely coexist

66

with each other. As “artists,” their visions singularly stand on their own, despite the

fact that only one of them might get a customer’s money. Lee even claimed that if

one of his customers was unsatisfied with his product, he would be happy to point

them to a competing one. Moreover, Lee argues that his creative work as a

programmer is not dissimilar from the work of his fellow employee, a graphic

designer who creates user interface elements in Photoshop. This is explicit identity

work. Both Objective-C and Photoshop, in Lee’s eyes, are artist’s tools, like a brush

or pen, and both exist to help artists express their creative visions. For Lee, making

an app, though it has an instrumental purpose, is still an aesthetic act of design. In

fact, an app’s instrumental purpose is part of this design—the way each different app

helps users accomplish their tasks is part and parcel of the app’s overall “vision.”

Lee, coming out of the tight-knit, collegial indie Cocoa community was running into

conflicts with the more cutthroat Silicon Valley culture that was driven much more

explicitly by market and money concerns.

Lee’s erstwhile competitor, Craig Hockenberry, was well respected in the

Cocoa community in part because his app’s user interface was carefully considered.

Twitterific represented what made Cocoa developers different from developers on

other platforms: their perfectionist concern with the aesthetics of their apps.

There’s another thing that differentiates Mac and Windows developers,
I think there’s more attention to detail, in general, with Mac
applications. Just because the customers are more accustomed to
having them. The Apple apps are all finely tuned and they spend a lot
of time thinking about UI [user interface]. Your competition in the
Mac space… you’re not going to come out with something that, yeah,
OK it’s functional, but it doesn’t look good! (Craig Hockenberry,
Interview, January 7, 2009)

Hockenberry notes that this concern with aesthetics is derivative of Apple

itself. Apple sets the standard with is own applications, which become exemplars for

design in the Apple software market. In large part, third party developers like

Hockenberry self-select to write apps for Apple platforms because they are attracted

to Apple’s design aesthetics and seek to emulate Apple and achieve the same high

standards. Furthermore, Apple’s users, and thus developers’ customers, similarly

67

expect that apps on Apple platforms aim for high standards of usability and aesthetic

beauty, and spend their money accordingly. Furthermore, Apple itself pushes these

aesthetic standards by rewarding select applications with the annual Apple Design

Award. For Apple developers and users, design, aesthetics, and usability are a

primary reason they use and develop for Apple platforms. This concern has become a

key boundary marker versus developers for competing platforms, with Microsoft

often the key foil:

I think there were some rare Windows developers who wanted their
stuff to look good, but they were pretty rare. And just, they didn’t
seem to get that aesthetics helps usability, or can if done well, and
with keeping usability a priority, aesthetics can help… in a good
design, it’s not just a gimmick.

(Brent Simmons Interview, February 17, 2012)

This kind of boundary work against “those Windows developers” who are

purported to not care about aesthetics or usability in their products is fairly common

among Cocoa developers. However, sometimes Cocoa developers can take aesthetics

too far, to the point where some apps are marketed on useless aesthetic flourishes, or

“eye candy” that does not contribute to usability or function. Simmons and others

noted the example of a disk burning application whose main selling point was the

cute animation it made while burning. This was gimmickry, and aesthetic fetishism

gone amok. Simmons here is referencing that infamous app, and rhetorically linking

its overemphasis on aesthetics with Windows developers’ under-emphasis, making

them two sides of the same coin. The properly balanced Cocoa developer, Simmons

is implying, does not need to resort to gimmicky animations to sell her app, but uses

them judiciously, intelligently, and tastefully to make her app easier, and more

pleasurable, to use.

Because usability is of such extreme importance for Cocoa apps, Cocoa

developers expect each other to take responsibility for their applications’ user

interfaces, and this is enforced through peer pressure. This is particularly true

because many Cocoa developers are indies who work alone, and thus cannot rely on

a design or UX (user experience) department to handle art duties. Even for Cocoa

68

developers that work with designers, however, they are still expected by peers to

have a sense of what good user interface (UI) might look like. According to Rusty

Zarse, who runs the Atlanta iOS Developer Meetup, in other developer communities,

developers are more likely to see a division of labor between programmers and

designers, and thus disavow responsibility for UI:

So in the Microsoft community, I would say half of the developers I
worked with, at least, would say I’m not a UI guy… They just
wouldn’t take responsibility for it… and didn’t feel competent…
didn’t show an interest. And I don’t think I’ve ever had an iPhone
developer ever say that same statement. Or a Cocoa developer say, I’m
not responsible for the usability or the aesthetic of this app. They’re
responsible for the behavior as well as the aesthetic and so I think it
definitely permeates in. Because when someone builds an iPhone app
and its clunky looking… when they show the app, the first thing that
their peers in the group are going to say is, ‘hey did you think about
doing this, and changing those things around, and polishing up those
edges, it looks kind of clunky.’ And then there’s always the UI people
that will say you need a designer. You need to find a graphic designer
to help you out.”

(Rusty Zarse Interview, September 25, 2012)

For Zarse, taking responsibility for an app’s aesthetics and UI clearly

differentiates Cocoa developers from Windows developers. This trait has almost

become a stereotype. Cocoa developers are often seen as spending inordinate

amounts of time trying to adjust the pixels in a button to get it just right.

Although up to this point, we have discussed aesthetics and usability of the

end product of Cocoa developers’ work, their apps, these values also apply to the

tools Cocoa developers use to make these apps. In this way, Cocoa developers are

themselves users of Apple programming tools. In the same way that they experience

pleasure using Apple hardware and applications, they say they experience a parallel

pleasure using Apple’s tools to create apps, a pleasure connected to the usability of

those tools. Cocoa developers thus understood themselves as users as well as

producers, and in this sense, they appreciated Apple’s own attention to detail with

designing its frameworks and developer tools. Curt Clifton, a programmer at

Seattle’s OmniGroup, noted this parallel explicitly:

69

The ease of development…these are, for the most part… humane tools
to develop with… And so [Apple] tend[s] to treat the developer with
respect… the frameworks really are kind to us.” (Curt Clifton,
Interview, March 23, 2012)

Clifton’s use of the word “humane” is a direct reference to the book, The

Humane Interface, by Jef Raskin, the HCI researcher who was the original leader of

the Macintosh team before it was taken over by Steve Jobs. The “respect” he referred

to is from the perspective of the “interface” that Cocoa tools present to developers.

In other words, Clifton is saying that Apple tries to make an effort to ensure Cocoa

developers’ interactions with Apple’s programming tools (which include the Cocoa

frameworks and APIs themselves) work in a way that could be called “easy to use.”

By qualifying this with, “for the most part,” however, Clifton hints that the reality

may not live up to this ideal. During 2011, many developers I spoke with complained

about the buggy state of Apple’s primary development tool, Xcode. Nevertheless,

these developers still felt that the Cocoa frameworks themselves were excellent tools.

Clifton’s “respect” is also not referring to the way Apple as a corporation treats its

third party developers. Many iPhone developers have complained, often publicly, of

Apple’s draconian and sometimes arbitrary App Store approval process, and other

woes. Nevertheless, what Clifton is referring to here is how Apple’s own software

engineers have designed the Cocoa frameworks to interact with its users, which are

Cocoa developers themselves. It is Apple’s engineers, who try to treat their users

(third party developers) with respect, via the tools they make for them.

The usability of Cocoa itself, like the idealized usability of apps written with

it, is often rhetorically conflated with aesthetics. Brent Simmons described Cocoa in

terms that evoked a feeling of technological sublime (Nye 1994):

“You… can’t help but just marvel at the elegance of it. …Cocoa
certainly does [have a great elegant design]; and understanding that
design and… its beauty… is a really, really good feeling. And that
goes beyond just knowing how to get something done… that’s an
actual… aesthetic response.” (Brent Simmons, Interview, February 17,
2012)

70

Brent Simmons has thus articulated a similar transcendent appreciation for

what the hacker in Coleman’s study described for Python programming. Unlike open

source hackers, however, the motivation is not to participate in the construction of

the tools, but to use them to make pleasurable experiences for everyday people, like

Apple does. And as Steve Jobs was known to drive engineers at Apple to strive for

perfection, if one wanted to emulate Apple, one had to become perfectionist as well:

[You] produce the best of the best and settle for nothing less and
you’re passionate about what you do.

(Rusty Zarse, Interview, September 25, 2012)

Zarse thus summarizes the moral attitude expected of Cocoa developers.

Proper Cocoa developers ought to care deeply about “getting it right,” making the

highest quality applications that are not only easy to use, but evoke feelings of

pleasure and comfort in their use. A 2014 ad that Apple showed to its developers at

its developer conference proclaimed that Apple’s goal was to “delight” its users with

its products, and exhorted developers to do the same with theirs. For developers like

Zarse, this striving for perfection also requires that developers carry within

themselves a deep affective commitment to their work. It requires “passion.” For

many Cocoa developers, this means that software development cannot be approached

as a simple nine-to-five job. One’s work and one’s career as a software developer

must become part of one’s very identity. As we see in the following section, Cocoa

developers consider app development to be both a craft and a vocation.

Craft and Vocation

In The Craftsman, Richard Sennett defines craftsmanship as “the skill of

making things well” and the human desire “to do a job well for its own sake.” One

story told about Steve Jobs by original Macintosh engineer Andy Hertzfeld was that

Jobs wanted the team to rewire the Mac’s original circuit board to make it look

prettier, even though no user would ever see it. Jobs justified this on the principle of

craftsmanship, noting “I want it to be as beautiful as possible, even if it’s inside the

box. A great carpenter isn’t going to use lousy wood for the back of a cabinet, even

71

though nobody is going to see it.” (Hertzfeld 2013a) Craftsmanship is not limited to

manual labor but accompanies all forms of skilled labor that unify mental head work

and embodied hand work, including programming, medicine, art, parenting, and

diplomacy (Sennett 2008, 8–9). Craftsmanship is concerned with pride in the quality

and excellence of one’s work, a tendency that can lead towards obsession towards

correctness, but is tempered with pragmatic concern towards functionality, the need

to actually finish a product so it can be used for the purpose it was made. (Sennett

2008, 45–46) Steve Jobs, despite his famous perfectionism, encapsulated this tension

with an aphorism, “real artists ship” (as in, “ship” their products”) (Hertzfeld 2013b;

Hertzfeld 2013c). Craftsmanship, as learned skill, is learned from others, thus

requiring a community to transmit them to the next generation (Sennett 2008, 21–22,

51). Sennett described Linux programming as a craft due to the way that

programming practice is continually opening up; even as problems are solved, new

ones are being discovered, so that the skill of programming never atrophies or

routinizes but must constantly evolve (Sennett 2008, 26). Sennett notes within both

the Linux programming and Wikipedia communities a tension between a concern for

quality, with its tendency towards elitism, and its democratic commitment to

openness and knowledge sharing, a tension also noted by Gabriella Coleman in her

study of Linux programmers (Coleman 2013, 120–122; Sennett 2008, 25–26).

As we have seen, Cocoa programmers are also extremely concerned about

producing quality work in their apps, and thus see programming itself as an edifying,

pleasurable activity of self-actualization. As Coleman has pointed out, learning and

self-cultivation of skill is heavily valued in the open source programmer community.

“Free software developers have come to treat the pursuit of knowledge and learning

with inestimable high regard—as an almost sacred activity, vital for technical

progress and essential for improving individual talents.” (Coleman 2013, 119) It is

likewise in the Cocoa programming community. An Atlanta area Cocoa programmer

explicitly spoke of programming in the language of craft and apprenticeship:

…Like other crafts of days of old, blacksmithing, or whatever, where
there is some sense of respect for… the masters of the craft. …The
apprentice wants to always strive to become that master, so that he can

72

be the master for another apprentice coming along… For any craft
you’ve got to spend time outside of [work]—you always want to
improve your craft and you always have that kind of respect for other
people that have built something really successful.

(Robert Walker Interview, May 19, 2012)

Note that for Walker, craftsmanship implies a moral exhortation to perfect

one’s skill that normatively suggests that the craftsman spend time outside of normal

working ours on self-cultivation of this skill. As we will see in a moment, this

insistence that one’s own leisure time be spent improving the craft is a key to the

idea of one’s craft as one’s vocational calling. If one is not interested in spending

time outside paid work hours doing the work, then the work is just a job, not a

vocation.

Others explicitly posed the craft model of programming against what they

considered to be the industrial model, which they associated with large corporate

software firms: “We don’t want the automobile industry to be the software industry.

We want it to be the individual artisan.” (Wil Shipley Interview, April 18, 2012) Wil

Shipley is a developer who co-founded the company OmniGroup in Seattle and later

set out on his own to make the digital bookshelf app, Delicious Library. For

developers like Shipley, the ideal economic form for a creative programmer is to

write software on one’s own or in small-groups with like-minded friends,

independent of corporate employers. Within the Cocoa community, such developers

are called “indies,” and we will examine this group in more detail in the next section.

For Shipley, indie developers are not routinized or deskilled laborers on an assembly

line, but craftsmen and artisans who go where their passions take them. OmniGroup

began in just this way when Shipley and his friends Ken Case and Tim Wood from

the University of Washington got together to write NeXT software together in the

1990s, and Shipley had the freedom to take on whatever projects he thought were fun.

Over time, Ken Case and Tim Wood decided to focus on responsibly building a

stable company with a structure and organization, rather than as simply a place to

have fun coding with friends, and Shipley left to pursue his own projects. Although

OmniGroup is still considered an “indie” company by most of the Cocoa community,

73

it probably has close to a hundred employees today, and Shipley left because he felt

that it had gotten too rigid and bureaucratic for his tastes.

“Indie” Cocoa programmers consider their work to be a vocation. Because it

can be highly pleasurable, app development blurs the line between labor and leisure,

work and play, in a way that exemplifies the kind of intellectual work central to the

knowledge-based “New Economy” driving the rise of what Richard Florida calls the

“creative class.” (Florida 2002) “It doesn’t feel like work. You’re playing all day

long.” (Robert Walker Interview, May 19, 2012) To an extent, programming

languages, tools, and environments can be thought of as “hedonizing technologies”

(Maines 2009), although the products of this labor are not inconsequential to

developers. Indeed, not all Cocoa programmers are professionals; many pursue it as a

hobby; some have corporate jobs writing code in other environments but work on

iOS app projects in their spare time. Many spoke of having become a professional

Cocoa developer only first by exploring and playing around with Cocoa on the side.

Mike Lee, who apprenticed himself to Wil Shipley at his post-Omni company

Delicious Monster, noted:

 “What I really wanted to do was be a programmer. And I had been
doing web stuff for quite a while. But I really wanted to get into
application development. And so I studied programming, …during my
down time.” (Mike Lee, Interview, July 15, 2008)

In this way, what started out as a hobby becomes a vocation. If work is play,

the money one receives from performing it becomes almost incidental. “I do

programming a lot for fun… I’m enjoying this, the fact that I’m getting paid for this

is amazing.” (Mark Dalrymple, Interview, April 11, 2012) Dalrymple called people

like him who program for pleasure, “recreational programmers.” This differentiated

them from purely professional programmers who treated it merely as a nine-to-five

job. “I’m a programmer, my nine-to-five is to execute code for this particular

purpose; once that’s done the computer is hung up… and when I go home I have no

interest in the technology outside of my job. …[But] those folks tend not to be

community leaders, because they have other interests outside of this community.”

(Mark Dalrymple, Interview, April 11, 2012) Robert Walker noted his opinion that

74

programming was a career that chooses you, not the other way around, (Robert

Walker, Interview, May 19, 2012) explicitly invoking the language of vocation

(Shapin 2008; Weber 1946). Another programmer I interviewed had the opinion that

if one did not love programming, one should not do it as a job. Andrew Stone, a

veteran Cocoa developer and neo-hippie counterculturalist, stated transcendent

reasons for being a programmer: “My resonance with the Apple came from this

psychedelic wisdom that this actually was the future. […] I came in for spiritual

reasons… The financial success, that’s awesome… But that’s not what hippie-kids

care about. For me, and our generation, it’s more about this sense that my life

actually mattered.” (Andrew Stone, Interview June 7, 2011) For such developers,

Cocoa programming allows them to pursue careers doing what they love. Daniel

Pasco, founder of the indie development company Black Pixel, asserts, “We’re here

to make stuff. And… to make a living doing it… The goal is to actually have a

rewarding life doing what we do…” (Daniel Pasco, Interview, March 28, 2012)

The word “vocation” implies religious overtones. To claim that one’s job is a

vocation is an ideological act that frames work, and thus profit-making, as a way to

achieve a higher, transcendent purpose for one’s life beyond mere worldly material

accumulation. Max Weber explained in The Protestant Ethic and the Spirit of

Capitalism that earthly success for the Puritan founders of America was not an end in

itself, but a sign that a person was of the Elect, in a Calvinist religion in which one

was constantly anxious about one’s Predestined salvific status (Weber 1958).

Although capitalism itself moved beyond this Calvinist way of thinking, hard work

in one’s God-given vocation continued to be equated with virtue in American

capitalist ideology, and in this ideology, the wealth that inevitably resulted from hard

work was merely the signifier of this virtue. In this way, although wealth is not itself

the end, it is also not incompatible with one’s vocation, but is a necessary by-product.

Nevertheless, ideologically one cannot claim that wealth is actually the ends that

work is intended to achieve; rather, the process of work itself is what is virtuous.

This is what makes it a vocation, that the worker is called to do this, having been

blessed with the talent and the passion to do so. Once wealth becomes the goal, the

75

work is no longer vocation but mere wage labor. This is why it is so important to

programmers’ sense of self and their purpose in the world to assert the vocational

aspect of their work; they need to believe that there is a greater meaning to their

labor beyond mere capital accumulation.

“Play” and “tinkering” with technology is one form of masculinity in Western

culture, one that may offer pleasure through dominance over machines and technical

competence (Wajcman 1991). An alternate form of technological masculinity might

be one focusing on logic and analytical thinking. In the 20th Century, amateur ham-

radio was a distinctly masculine hobby (Haring 2003), and there was considerably

continuity between radio hobbyists and the first personal computer hobbyists. One

psychoanalytic analysis suggests that men’s fascination with creating technology

derives from “womb envy.” (Kleif and Faulkner 2003, 213) Sherry Turkle argued

that men’s fascination with computers represented a “flight from relationships with

people” into an intimate one with the machine (Turkle 1984, 216), and also showed

that boys enjoyed the feeling of mastery and power over the virtual world inside the

computer. Wendy Faulkner argues that the power men feel when working with

technology compensates for lack of power, and anxiety over uncertainty, experienced

in dealings with people (Faulkner 2000b; Faulkner 2000b; Kleif and Faulkner 2003).

Technology is much more predictable and controllable than human relationships.

Since the 1980s, the “nerd” or “geek” has emerged as a cultural stereotype of an anti-

social young man who spends all of his time with computers, electronic games, or

genre-based media. Data reveals that the 1980s were a high-water mark for women’s

participation in computing (Hayes 2009), while Hilde Corneliussen shows how

media portrayals of computing overestimated men’s participation while

underestimating women’s (Corneliussen 2009).

Reinterpreting programming as vocational craft also genders this work in

additional ways. The normative view that ideal programmers should be consumed by

passion to code even outside of their job suggests that coding work has higher value

than human relationships, including family. Mike Lee revealed this attitude during

one of my interviews with him, in which he criticized a former female coworker who

76

he felt was not dedicated enough to programming because her first priority was her

children. While Lee acknowledged this was her free choice, in his eyes, this made

her a bad software engineer, and in his then current position where he made hiring

decisions for his startup, prioritizing family would count against a candidate. Lee felt

that software engineering made “a more valuable contribution to society than having

children.” (Mike Lee, Interview, July 23, 2008) Lee claimed that this attitude was not

sexist, but applied equally to male or female candidates, and he felt that one of his

male college interns similarly was not being a good programmer because he made no

effort to socialize with Lee and the startup’s other employees after hours.

Nevertheless, he might overlook dedication to family if the developer in question had

sufficient experience and reputation. Lee sought to hire a former Apple employee

who insisted on working normal hours. This engineer’s ex-Apple status and his

expertise with Cocoa gave him a pass on the required performance of dedication to

code, where Lee was concerned. The view that Cocoa programmers are craftsmen

with complete dedication to their craft, requiring constant labor outside of normal

hours, implies a traditionally gendered division of labor in which social and domestic

work within the family is taken up by the programmer’s spouse, allowing the

craftsman to pursue his programming, which is seen as the more valuable

contribution to society.

At the time I interviewed him, Lee was the CTO of a Palo Alto iPhone app

startup with only a dozen employees, all male except for an administrative assistant,

with a number of them in their early twenties. This gave the startup a distinct frat-

house atmosphere. Some employees favored a highly-caffeinated soft drink called

“Bawls,” and jokes centering on the double-entendre were frequent. In this

environment where boys could be boys, women employees, if there had been any,

could have easily felt excluded. The atmosphere I witnessed at the startup could be

described along the same lines as the sexist “brogrammer” culture of Silicon Valley

startups that has been publicized recently (Hicks 2012; Parish 2014; Raja 2012).

Things were not always this way. Programming had originally been considered

feminized work (Light 1999), but efforts to raise its professional status in the 1970s

77

ended up excluding women (Ensmenger 2009). Today, the cultural association of

programming with men is firmly entrenched. This state of affairs has not gone

unnoticed among progressive male programmers, who lament it but often feel

helpless to fix it. A 2014 podcast produced by a Cocoa developer focused on the

problem of sexism in tech (Ritchie 2014). Christina Dunbar-Hester’s study of a low-

power FM radio activist group shows how deep-seated gender identities can hamper

inclusion even among activists committed to equality. Technical experts in the “Geek

Group” were mostly men, and performance of technical competence was experienced

as performance of masculine identity, even among the few experts who were women,

who had to negotiate a delicate balance between their feminine identity and their

technical masculine one. This had the effect of dissuading women novices from

wanting to acquire technical competence if it meant having to compromise on their

femininity. Dunbar-Hester concludes that “In spite of the intentions of this small

group of activists, the gendered technical experiences and skills that they bring to

their site of work tend to overwhelm the ideal of equality, and even to reinforce the

gendered divisions between them…” (Dunbar-Hester 2008, 223)

As we will see in the next section, the gendered view of independent

programmers as lone individuals who contribute to society through making

technology is associated with the ideology of technolibertarianism, which sees social

change as being better effected through technology rather than bureaucratic politics

or social activism. It also elevates the figure of the entrepreneur over the large

monopolistic corporations that are seen as in cahoots with government. In the indie

worldview, the action of thousands of independent entrepreneur-programmers,

working through the market, will usher in a new utopia in which innovation thrives

and society benefits.

Indies and Technolibertarianism

“Indie” developers like Pasco, Stone, Walker, and Dalrymple program for its

own sake, for the pleasure of making apps for users. The money is supposedly

incidental, except for the fact that it supports their livelihoods doing what they love,

78

as they claim that they would do it for free as a hobby anyway. These programmers

might all make considerably more money if they joined a startup in traditional

Silicon Valley fashion, but instead, forgoing potential earnings by rejecting corporate

control is what gives them the prestige amongst their peers in the Cocoa developer

community. It shows that they are more devoted to their art than becoming instant

millionaires through a sudden acquisition or IPO. Their social capital in the Cocoa

community derives from the more edifying purpose of their creative labor.

 “Indie” developers are programmer-entrepreneurs who are independent of

corporate software firms and work on their own self-directed software projects as

they please. Because going into business alone is risky, it typically requires some

saved up capital accumulated from a prior job, as well as already developed

programming skills and the computer hardware to program on. All the indie

developers I have spoken with come from middle to upper-middle class backgrounds.

Most spoke of childhoods or adolescence tinkering with and possibly programming

personal computers, which means that at early ages, they already had begun to

acquire both the skills and access to the material artifacts, the capital goods,

necessary for a life of programming computers. Overwhelmingly, indie developers

are Caucasian, with a few exceptions, such as Mike Lee, who is half-Asian and

originally from Hawaii. The vast majority are men, especially the older generation of

Cocoa Mac OS X developers. These Mac Cocoa developers also tend to be of middle

age or older, in their upper forties or late fifties. A few independent iPhone

developers I encountered have been women, but these women are not well known in

the community for famous applications, nor do they have must-read blogs or wide

Twitter followings. The famous names in the Cocoa indie community are almost all

men, with the exception of Erica Sadun who not only writes a personal blog but also

was editor and senior writer of the Apple fansite, The Unofficial Apple Weblog or

TUAW, at http://www.tuaw.com/editor/erica-sadun/, accessed February 7, 2012.

Sadun is probably better known for her blog posts than for her apps, however.

The term “indie” is an actor’s category, used to describe artists and smaller

companies in the film, music, and video game industries, which are “independent” of

79

the dominant corporate firms. The term connotes an artistic and cultural authenticity

that comes from creative autonomy from the profit-maximizing interests of corporate

content producers, who are concerned with a lowest common denominator mass-

market blockbuster or chart-topper. Similar logic applies to “indie” software

developers.

According to indie developer Brent Simmons, the term “indie” came into use

in the Mac developer community around 2002 or 2003, only a year or two after the

release of Mac OS X, when development of consumer applications using NeXT-

derived Cocoa technology became possible. As is common in the community, this

first occurred on blogs, an Internet medium that was also gaining widespread traction

in that same era. “We didn’t call them Indie developers in those days, I think that

started in 2002 or 2003, I think it was a blog post by Buzz Anderson, actually, that it

got us to stop using the word ‘shareware’ and move to the word ‘Indie.’ Because the

term ‘Shareware developer’ was [used] throughout the ‘90s...” (Brent Simmons,

Interview, February 17, 2012)

The term indie replaced the term “shareware.” In the 1980s and 1990s,

avocational programmers often wrote software and freely distributed it over BBS or

commercial online services, or at local user groups such as the Berkeley Mac User’s

Group, by passing out floppies. Users were encouraged to donate $5 or $15 to the

author by mailing in a check, if they found the software useful to them. Shareware

was a 1980s-era compromise in the emerging dispute among hackers over

intellectual property. As discussed by Fred Turner (2006), and shown in the

documentary, Hackers: Wizards of the Electronic Age (Florin 1985), the 1984

Hacker Conference convened by Stewart Brand included commercial PC game

developers, Apple engineers such as Steve Wozniak, as well as free software pioneer

Richard Stallman. At the conference, the idea that information (software) should be

free (both to acquire and to further modify) seemed to conflict with the notion of the

programmer as creative auteur, whose creative work should be protected as well as

compensated. Shareware was a middle ground: software, produced by individuals,

was distributed for free (though not its source code); users who felt that its author

80

should be compensated for their work would voluntarily give them a donation to

keep working on it. For a lucky few whose applications became widely used, the

authors were able to make a commercial business out of shareware; but this very

success stretched the economic model of gifting rather than payment. The more

successful shareware packages began to require registration keys to unlock full

functionality, or timers that would shut down full functionality after a trial period.

Nevertheless, for a shareware author looking to commercialize and compete on a

level field with corporate firms, the barriers were significant. Corporate firms sold

software in shrink-wrapped packages and dominated expensive retail shelf space in

brick and mortar stores. Van Meeteren’s work on Cocoa indies argues that it was the

advent of the commercial internet, and the dot.com boom which created the

infrastructure of e-commerce and electronic payment and distribution of software,

that made the indie possible as an economic entity. (van Meeteren 2008) Freed from

the burdens of either competing for retail space, and relying on mail-in donations for

payment, small operation programmers could become a more stable business. It was

in this new economic environment that the term “indie” began to replace “shareware”

to describe small operation Mac programmers.

Indies are the logical endpoint of the vocational drive among Cocoa

programmers—making apps of one’s own creation. Its ideology disavows money as

an indie’s primary motivation. Rather, pursuing one’s passion for programming as a

way to make manifest one’s creative vision is seen as the ultimate raison d’être of the

indie. This is coupled to a belief that making software will help people become more

productive or enrich their lives, and thus improve society. In this way, a lone

individual writing code, working through the mechanisms of the market as a small

businessman, makes a contribution to society without recourse to politics.

“Indie is to me, it’s just an ethos. …you’re part of a culture of… I’m
not in this for the money, I’m in it to make something cool, and to
make the whole environment better for everyone…

(Wil Shipley Interview, April 18, 2012)

81

Independence from corporate control is required for the creative autonomy

necessary to be an indie:

 “What is Indie?” …If your agenda is… to have complete creative
control, and that takes precedence over what will make us the most
money—and you have the freedom to make those choices—that is the
definition of Indie. It doesn't mean broke or small. It means that you're
actually calling your own shots, and not beholden to someone else.
(Daniel Pasco Interview, June 12, 2009)

The “indie ethos” also encapsulates all of the previous values Cocoa

programmers profess: vocational and craftsperson identity, which focuses on the

pleasure of making and on quality, self-cultivation of skills and knowledge, and a

commitment to a community of practice in which this knowledge is shared. Indies

also share a belief in the empowering (and democratizing) effect of technology on

individuals, and seek to participate in that empowerment through making apps for

themselves and others. This latter value, we will see, is one heavily promoted by

Apple and is central to Apple’s own corporate identity.

Being “indie” connotes small-scale, though not necessarily individual,

production of apps. Indies, from the perspective of the Cocoa community, can be

companies started by a two or three like-minded developers, such as OmniGroup or

Black Pixel, that later grew to about a hundred employees. At this size, it can be

difficult to articulate why a company of OmniGroup’s size is an indie while smaller

ones might not be. For one, the company must be founded and controlled by

developers (and sometimes user experience designers), not by a “business person.”

Thus, unlike many other technology startups, those who hold the “indie” identity

reject funding from angel investors or venture capitalists, seeing such money as

coming with strings attached, giving away creative control to the money people.

Indies are about making whatever apps the employees themselves want to make—

they are not founded for growth, to attain an IPO or become an acquisition target, but

simply to make enough profit to be self-sustaining. The goal is to be a small business,

like a country store, or in the case of OmniGroup or Black Pixel, a medium-sized,

privately-owned business, in perpetuity. This is markedly different from the mindset

82

of most Silicon Valley entrepreneurs, whose goal is to found and grow the next

Facebook or Instagram and make a billion dollars; either result would be seen by

indies as “selling out.” This category is somewhat fluid—Instagram may have been

considered an indie until it was acquired. For Cocoa developers, what constitutes

being or remaining “indie” is continuing to retain creative control over one’s

business and products.

Of course, this does not mean that money does not matter to an indie. Despite

common assertions that “we’re not out to make money,” many of the well-known

indie developers easily make hundreds of thousands of dollars a year, enough to

afford expensive toys like Tesla electric sports cars. Each of these indies, however,

would claim that they might have made much more money working for a company

like Microsoft, joining a VC-funded startup, or selling their company off. “We

actually tell people we’re not interested in being acquired; we’re not interested in

being invested in,” proclaims Daniel Pasco of Black Pixel. (Daniel Pasco Interview,

March 28, 2012) What matters to developers who call themselves “indies” is that

they reject the potentially higher earnings they could achieve by selling to a larger

company or accepting investment capital in order to maintain control over their own

work.

Indies must care about profits to sustain their small businesses. Indies worry

about cash-flows a great deal, which means that practically speaking, most indies are

not completely self-sufficient through sales of their own apps, but supplement their

income with corporate contracts. Even OmniGroup and Black Pixel, companies well

known in the Cocoa community for original applications, have relied on contracts for

a significant portion of operating income. The iPhone boom has resulted in enormous

demand for skilled Cocoa developers from corporations which want a “mobile app”

presence in the same way they all suddenly needed a website during the dot.com

boom. For many indies, contracting is a lot more secure and lucrative than trying to

make one’s own app, as an expert iOS programmer can command a rate anywhere

from $100 to $150 an hour (Patel 2010). Because indies have rejected investment

capital, they are self-funded, and this involves considerable financial risk. Most

83

would-be indies start by writing an app in their free time off work, and only those

lucky enough for their apps to succeed are able to quit their day jobs. Others decide

that they want to go indie ahead of time, and save up money from either a day job or

contracting to build a reserve of capital on which to sustain themselves while they

work on their app full-time. However, the days of the iPhone App Store gold rush,

when stories abounded of programmers making thousands of dollars selling apps

written in a weekend, are long over. The App Store is crowded with apps that do

similar things, and unless one is featured prominently by Apple, or cracks one of the

top 25 lists in iTunes, it is difficult to rise above a handful of downloads a day.

Would-be app developers can easily spend months slaving away, only to find, once

their app is on the store, that they are making only a few hundred dollars a month,

and have to go back to a regular job or take a contract. Says one successful developer,

“It’s either feast or famine. It’s hard to go indie on iOS. …I mean that’s like winning

the lottery, right?” (Gus Mueller, Interview, Feburary 1, 2012) The only true indies

are those who have managed to make their app work self-sustaining. For every indie

who has made it, there may be ten more programmers working on apps on their free

time, eking out a few hundred downloads a day. Despite this risk, however, indies

are constantly striving to shake off their corporate clients and become fully

independent and self-sustaining. While the actual number of successful indies is

dwarfed by the majority of those trying to make it, their influence on the Cocoa

community is magnified through their blogs, Twitter feeds, and conference

presentations, and it is the voices of these prominent indie Cocoa developers that set

the agendas of the community’s discourse.

For a number of indie Cocoa developers, Apple’s opening of the iPhone to

third party development through the App Store has unleashed a wave of

entrepreneurship that they see as an indie revolution. Before the iPhone, being a

Cocoa indie developer meant catering to the Macintosh’s relatively small

marketshare, and releasing Mac-only software meant dedication and devotion to the

platform. Apple’s iPhone App Store, which takes care of digital distribution of

software for the developer, has significantly reduced the barriers to entry for

84

independent software entrepreneurship. Many Cocoa developers saw this as a boon, a

way to democratize programming for the masses: “This is like my wildest dreams

come true. Millions and millions of indies!” (Andrew Stone, Interview, June 7, 2011)

This has convinced some that the future belongs to such individual, decentralized

production of software, replacing large corporate production of software: “It’s not

driven by [the large software firms] anymore. It’s, what is the next Tiny Wings going

to be?” (Wil Shipley, Interview, April 18, 2012) It is particularly striking how much

the iOS “revolution” sparked these utopian visions among the core Cocoa developers

despite the subsequent sobering realization that the vast majority of independent iOS

developers with their own apps could not sustain themselves. Longtime indie Cocoa

developer Brent Simmons noted by 2014 “almost all the iOS developers [in the

Seattle area] are making money either via a paycheck (they have a job) or through

contracting… Some money for iOS development is coming from companies like

Omni that do create products—but most of it appears to be coming from corporations

that need apps (or think they do). Places like Starbucks and Target. The dream of

making a living as an indie iOS developer isn’t dead… but, if I’m right, hardly

anyone believes in it any more. [sic]” (Simmons 2014) What is important is how

committed the core members of the Cocoa community, who saw themselves as a

revolutionary vanguard, were to this vision of utopia, even in its failure to

materialize.

Many Cocoa developers see the iPhone App Store as Apple’s response to a

huge demand among iPhone users to extend and customize the iPhone’s functionality.

When the original iPhone was released in 2007, Apple’s policy was that developers

would not be allowed to develop apps that ran “natively” on the device, but rather

could only write web applications that were tweaked to run well in the iPhone’s web

browser. Much of Apple’s developer community understood the iPhone to be not just

a cell phone, an iPod, or a web browser, but a fully-fledged mobile Macintosh

computer. Once hackers discovered how to “jailbreak” the iPhone, effectively

circumventing Apple’s security protections and allowing programmers to write

software for it, an underground market of apps written for jailbroken iPhones

85

sprouted. Responding to this user appropriation, in 2008 Apple announced that it

would provide an officially sanctioned Software Development Kit (SDK) for third

party developers to use, and an App Store that would allow developers to sell their

apps to users who did not jailbreak their phones, legitimizing the app market but also

putting it fully under Apple’s control. This “curated” app market has turned out to be

hugely profitable for both third party developers and Apple itself (as Apple takes

30% of app sales revenues.) By opening up the iPhone with an SDK, Apple allowed

developers to extend the iPhone to do things Apple never originally intended.

This view of the App Store as empowering and democratizing small-scale

technology creators has a lot in common with the DIY Maker and Hackerspace

movement. The emergence of indie mobile app development has largely coincided

with the emergence of the Maker movement, and there are Hackathons centering on

iOS app production (“iOSDevCamp” 2014). I do not claim that indie iOS or Mac

development is a subset or extension of the Maker movement, as there are some

notable differences. Much of the Maker movement is aligned ideologically with the

open source software movement, as the recent controversy over DARPA funding of

hackerspaces shows (Savage 2013). Cocoa developers’ reliance on Apple for

proprietary tools and hardware thus contradicts the value of open participation in

production and repair of both hardware and software. Despite this, much of the

rhetorics and ideologies informing Makers and indie Cocoa developers are similar.

The DIY Maker movement has been hailed as democratizing production and

transforming passive consumers into participatory producers, with a particular focus

on technical education and pedagogy (Ames et al. 2014; Tanenbaum et al. 2013).

DIY makers see their work as self-actualizing craft (Sivek 2011). Made possible by

the availability of open and affordable technologies such as 3D printing and Arduino

circuit boards, DIY making started out as a hobbyist practice, but has now generated

VC funded startups hoping to sell products to consumers. Indeed, much of Maker

culture seems to harken back explicitly to the 1970s counterculturally-inflected

personal computer hacker/hobbyist culture, where open sharing of computer

hardware knowledge produced Apple Computer. Nostalgia for that time is prevalent

86

among the promoters of DIY Making. “…if you look back into time, you see what's

happening in the 60s. The 60s brought advances in computing. Its pioneers were

people like Wozniak and Steve Jobs. They were makers, hackers, academics, and

entrepreneurs. But this time around it’s different. You have Kickstarter and VCs...

Hardware startups today can really make anything possible. Today, DIY means that

anyone can take a product to the market, with the support from the crowd.” (quoted

in Lindtner, Hertz, and Dourish 2014, 441) Nor do Makers necessarily see business

as incompatible with openness: “That the commitment to countercultural ethics was

not perceived as antithetical to structures of the market economy is what we would

like to emphasize here. Many… considered such alignments essential in order to

move DIY making beyond a hobbyist practice.” (Lindtner, Hertz, and Dourish 2014,

442) Nevertheless, the Maker movement’s emphasis on pleasure and self-

actualization, originating in a privileged class in the West, sits uneasily with a

burgeoning field of Makers in the developing world. Silvia Lindtner has pointed out

that among Chinese makers, an explicit focus on business was nothing to be ashamed

of, and disagreed with Mitch Altman’s exhortation that DIY making had to be about

doing what you love. (Lindtner, Bogost, and Bleeker 2014)

Like the mobile app craze, the hype surrounding DIY making for solving

society’s problems taps into technological utopianism (Sivek 2011). Making and

apps both focus on self-actualization and the empowerment of the individual, and

both fit into a discourse about decentralized production in the Knowledge Economy.

Among technologists, technological utopianism has combined with neoliberalism

into what critics have variously called cyber/techno-liberalism/libertarianism

(Borsook 2000; Turner 2006; Malaby 2009). Borsook has documented Silicon

Valley’s disengagement and distrust of government, favoring technological

innovation as the proper way to intervene in, and improve, society. The emergent and

self-organizing properties of technology are seen as similar to the (ostensibly

natural) workings of the market, and technolibertarians see both as superior means to

enact change over what they see as the corrupt give and take of Beltway politics.

Indeed, in an interview with Steven Levy in 1983, Steve Jobs remarked, “I’m one of

87

those people that think Thomas Edison and the light bulb changed the world more

than Karl Marx ever did.” (Bilton 2014) Borsook notes that technolibertarianism

animates both free software hackers and Microsoft employees, (Borsook 2000, 24–

26) and its primary ideological proponent has been Wired magazine, particularly in

its early years. Paulina Borsook, a former contributor to Wired, has also grouped

technolibertarians roughly into two categories: gilders (cultural conservatives like

George Gilder and Wired co-founder Kevin Kelly) and ravers (counterculturalists

like EFF co-founder and Grateful Dead lyricist John Perry Barlow, also a former

Wired contributor). New York Times columnist David Brooks has argued that

bohemian counterculture has merged with bourgeois capitalism to produce the new

Information Age ruling class (D. Brooks 2000). John Markoff noted the

countercultural connections with the early personal computer industry. (Markoff

2005) Indeed, Apple is the poster child of counterculturally inflected corporations,

celebrating in its famous Think Different ad campaign, “The crazy ones. The misfits.

The rebels. The troublemakers.” In the 1990s, NeXT and its developer community

continued to have ties both to the counterculture and to technolibertarianism. NeXT

stayed afloat financially due to an investment from Ross Perot, earning him an

endorsement for President from Steve Jobs in the 1992 election. (Ruby and Jobs

1992, 33) John Perry Barlow was a contributor to NeXTWorld magazine, itself a

precursor to Wired (its first issue ran a cover story on futurist Alvin Toffler).

Independent NeXT developer Andrew Stone, a neo-hippie himself, became a

personal friend to Barlow and EFF co-founder John Gilmore. In 1992, he threw a

rave party after the NeXTWorld Expo conference. Like Stewart Brand and Timothy

Leary, Stone has connected computer use to psychedelic and transcendent

experience:

…A transformation that occurs…by the Will of God… at times in our
life when we work on software for four days and don’t sleep… these
states of consciousness… they call it flow… when you get that passion
that drives you crazy, you do awesome work…

Everybody who’s creative knows what I’m talking about… To find
meaning in being a tech… that’s our identity… doing this project…
it’s about liberation… we’re after the magic!

88

(Andrew Stone Interview, June 7, 2011)

For Andrew Stone, Jewish, Hindu, and Zen Buddhist mysticism mixed freely

with cybernetic and psychedelic modes of expanding human consciousness,

explicitly evoking the experience of flow, (Csikszentmihalyi 1994) shared also by

free software hackers (Coleman 2013, 11–13) and machine gamblers (Schüll 2012).

Fred Turner’s From Counterculture to Cyberculture explains the connections

between countercultural and technolibertarian ideals during the emergence of the

personal computer and Internet industries. Values traveled and transformed along

networks of people, with Stewart Brand and his Whole Earth Catalog crossing the

boundaries between different communities. Turner argues that the Catalog served as

a network forum, a “place where members of these communities came together,

exchanged ideas and legitimacy, and in the process synthesized new intellectual

frameworks and new social networks.” (Turner 2006, 72) Turner contends that

network forums have properties of both Susan Leigh Star and James Griesemer’s

notion of “boundary objects,” which “can be a media formation such as a catalog or

online discussion system around or within which individuals can gather and

collaborate without relinquishing their attachment to their home networks” and Peter

Galison’s notion of a “trading zone,” which is a site “where representatives of

multiple disciplines come together to work and, as they do, establish contact

languages for purposes of collaboration.” (Turner 2006, 72) Within Brand’s network

forums, cybernetic ideas and technologies from the military-industrial complex

mixed with the drugs and buckskins of the New Communalist hippies, the non-

activist, utopian branch of the counterculture. From this juxtaposition, Brand

proclaimed that the use of tools would empower humans to master their environment,

liberate them from their bureaucratic oppressors, and elevate them into latter day

gods. This empowered human merged the notion of a “Comprehensive Designer”

who surveyed the world through information with the frontier image of the lone

Cowboy Nomad. The bricolage of the Catalog served to legitimize cybernetics

among the counterculture and bohemian art worlds. After the breakup of the

commune movement, Brand began to travel in new networks with the hackers of the

89

computer liberation movement, and into research labs like Xerox PARC. This second

legitimacy exchange transformed the PC nerds into the cool inheritors of the

countercultural radicals. In 1984 Brand hosted a hacker conference, attended both by

Richard Stallman, as well as Apple co-founder Steve Wozniak. After this, Brand

extended the Whole Earth Catalog into cyberspace with the Whole Earth ‘Lectronic

Link (WELL), which brought together a network of countercultural technology

enthusiasts, including Barlow and Kevin Kelly. By the 1990s, Brand had embraced

entrepreneurialism and created the Global Business Network. Both the Electronic

Frontier Foundation and Wired grew out of these networks. Each of these network

forums, from the Whole Earth Catalog, the Hacker Conference, the WELL, the GBN,

and Wired, brought together disparate communities into a shared sense of purpose

involving tools and technologies, creating a new community. The communities

created by each previous network forum would help constitute the next. (Turner

2006)

Turner shows how the blindnesses of Wired technolibertarianism can be

located in Brand’s version of countercultural New Communalism. For one, by

rejecting politics and governance, the communes ended up falling back on

charismatic leadership, producing autocratic systems and falling apart once the

leaders departed. Traditional gender norms were reinforced. Most communards were

middle class white escapees from the suburbs, and the communes often ran into

conflict with local communities of blacks and Latinos. Moreover, Brand envisioned

power as held by individuals, and amplified by tools: “personal power is

developing—power of the individual to conduct his own education, find his own

inspiration, shape his own environment, and share his adventure with whoever is

interested. Tools that aid this process are sought and promoted by the WHOLE

EARTH CATALOG.” (Brand 1968) Tools would enable a cybernetic mastery over

one’s environment, conceived of as an information system. Thus empowered, the

“Cowboy Nomad” would “consume knowledge and information and carry it with

him on his migrations” and “become a member of an information-oriented,

entrepreneurial elite.” (Turner 2006, 88) This has become clear in the information-

90

based New Economy, in which employment is increasingly insecure and based on

networks. “However, to the degree that the libertarian rhetoric of self-reliance

embraces a New Communalist vision of a consciousness-centered, information

oriented elite, it can also permit a deep denial of the moral and material costs of the

long-term shift toward network modes of production and ubiquitous computing. For

Stewart Brand and, later, for the writers and editors of Wired, the mirror logic of

cybernetics provided substantial support for this denial… As taken up by the New

Communalists, this vision produced two contradictory claims, one egalitarian and the

other elitist… those who could most successfully depict themselves as aligned with

the forces of information could also claim… to have a ‘natural’ right to power, even

as they disguised their leadership with a rhetoric of systems, communities, and

information flow.” (Turner 2006, 260) Thus, a central contradiction in techno-

libertarianism is the duality of control and empowerment: an empowered individual

can use his mastery to control others. Steve Jobs’ quest for perfection has justified

Apple’s draconian levels of control over its technology.

Indeed, this tension between elitism and egalitarianism is a central one in

Apple’s corporate message, and it reflects in the indie Cocoa developer community

as well. As we have seen, indie Cocoa developers celebrate independence from

control by corporations, and yet, unlike the open source and maker movements, is

relatively content with consuming tools provided by Apple, a critical dependency on

the largest corporate IT company. In his ethnography of Linden Labs, the company

behind the online world Second Life, Thomas Malaby describes a similar

dependence on proprietary tools, despite an ideology of access to tools and open

participation in creation. Unlike other massively multiplayer online games, Second

Life is based explicitly around users creating their own worlds, tying into a similar

discourse of participatory peer production that motivates DIY making and open

source. However, access to tools is controlled by Linden Labs, which

paternalistically decides what tools users ought to have access to, for their own

protection: “ ‘Most game developers don’t release all of their tools because so many

of them are just one-offs that they do really quickly… and therefore have a lot of

91

holes in them in terms of the user perspective [and] can be dangerous.’ …An

emerging tension appeared around Linden Lab between tool users and the tool

creators…” (Malaby 2009, 60) This same dichotomy exists in the Cocoa app

development world, where Cocoa developers are mostly tool users, consuming what

is provided by Apple.

The Ideology of Apple and the Mythology of Steve
Jobs

How, then, do Cocoa developers justify this dependency? Indeed, Cocoa

developers have frequently griped about the state of the Xcode IDE or other tools

that Apple provides. Yet, on the whole, they claim that the Cocoa frameworks

provide the best, and most enjoyable, tools for programming on any platform.

Richard Sennett, in The Craftsman, noted that the Wikipedia community must deal

with the tension between maintaining the quality of the content presented and the

egalitarianism of participatory production (Sennett 2008, 25–26). Within the Cocoa

community, the elitism of craftsmanship wins out. Cocoa developers have

deliberately chosen to use Macs and iPhones because they believe that Apple has

designed them better than anyone else could. This concern for quality also animates

their own desire to be independent and have complete creative control of their own

products, but it does not mean participatory design. “So in the end, you need some

sort of benevolent dictator, because design by committee does not work.” (Tristan

O’Tierney, Interview, January 7, 2009) “I joke that Apple is like the Soviet Union

but with way better products.” (Brent Simmons, Interview, February 17, 2012)

Cocoa developers tend to see Apple as an enlightened philosopher-king, whose

mandate is maintained as long as Apple continues to give them high-quality tools and

products, and addresses their concerns. Moreover, Cocoa developers are not

primarily concerned with participating in the development of their tools—they are

concerned with making their own apps, crafting pleasurable user experiences. Lower

level details should be delegated to Apple: “I would say that there’s lots of

advantages to letting developers worry a lot more about what matters, like… the

experience, and cleaning up all the… UI issues… than having to worry about how

92

am I going to make this fast, or… run on multiple platforms.” (Tristan O’Tierney,

Interview, January 7, 2009)

Indie Cocoa developers acquiesce in Apple’s control as long as they trust that

Apple is benevolent, has their best interests at heart, and shares their values. How is

this trust created and maintained? Certainly, listening to developers’ feedback and

improving their tools to make them more powerful or convenient is one way.

Longtime Apple developers have learned that, over time, their concerns will

eventually be addressed, though maybe not immediately. However, they also

understand that at other times Apple pursues its own interests, which sometimes runs

counter to their own. In these cases, developers must trust that in the big picture,

Apple shares their values and that they have the same goal: to empower users by

creating easy to use, and experientially pleasing technologies.

Earlier, we saw that some developers defined “indie” to mean whether a

developer had complete creative control, and that the size of a company did not

matter. If this is the case, by extension, Apple, despite its status as a billion-dollar

corporation, is actually the quintessential indie company—after Jobs’ return to the

company, he had essentially complete creative control. In this way, in developers’

minds, Apple is transformed into an indie like them.

 For this to be effective, Apple’s developers must be convinced that

ideologically, they and Apple have the same basic mission. This is not that difficult

to do, because most indie Cocoa developers are Apple users first, and they are self-

selected. In this way, the quasi-religious devotion Apple engenders among its users

is also true of its developers.

Much has been written about Apple users as a “cult-like,” a metaphorical

religion (Belk and Tumbat 2005; Campbell and La Pastina 2010; Kahney 2004;

Robinson 2013). Robinson has examined Apple’s use of religious tropes in its

marketing, drawing on a long American historical tradition in locating transcendence

in technological progress (Noble 1999; Nye 1994; Nye 2003). This “religion of

technology” is not merely a cynical ploy to sell more products to consumers, but

93

constitutes an emotionally persuasive ideological system that gives Apple’s leaders,

users, and third party developers a sense of identity, belonging, and purpose. The

“religion of technology” has motivated a whole generation of Silicon Valley

technologists to devote their lives to making individually empowering tools, which

they see as their contribution to social change, giving their lives higher meaning.

Technology is their way of, in Steve Jobs’ words, putting “a dent in the universe.”

(Sutter 2011) This kind of technology worship constitutes a form of technolibertarian

ideology. It posits that the best way to enact social change is not through the

messiness of political engagement or social activism, but to work on technologies

that are seen as the solutions to every problem. This view justifies a retreat into

individual engagement with machines or virtual worlds rather than people or

institutions. If political libertarians put their faith for social good in the efficiency of

the self-organizing market, technolibertarians put their faith into technology, which,

if seen through the technologically deterministic lens of such commenters as Kevin

Kelly and Ray Kurzweil, takes on a self-organizing, even natural inevitability.

In life, Jobs enacted this ideology through his own charismatic leadership,

drawing in both his employees and the wider public. Former NeXT and Apple

employees spoke of Jobs’ powerful effect on them: “

I really believed in what we did… Steve [Jobs] had a way of… making
you feel like you were doing something… important… worthwhile
…noble. […] The technology was really great, but… Steve… infused
that company with a sense of purpose. (Julie Zelinski, Interview, April
24, 2012)

 Third party developers felt this too:

I think the campfire around the NeXT is a campfire around Steve. How
can you be more of a fanboy than, “you’re right! The Mac does suck!
Let’s design something better!” (Andrew Stone, Interview, June 7,
2011)

Jobs famously developed this cult of personality in his famous Keynote

speeches at conferences, especially MacWorld Expo and Apple’s own Worldwide

Developer Conference (WWDC), which became legendary for his big reveal of

94

revolutionary new products. While Jobs was undoubtedly a master showman, these

Keynotes had the ritual quality of a church revival meeting, in which the audience’s

reaction was carefully manipulated by the presentation, scripted to feel unscripted,

casual, and intimate.

For people who did not know Jobs personally, including most Apple

developers and users, Jobs’ charismatic authority is supplemented by his status as an

exemplar of the virtuous technological life, especially since his death. Accounts of

Jobs’ life have been extremely popular, and these cannot be easily separated from the

story of Apple itself (Deutschman 2000; Isaacson 2011; Moritz 2009; Young and

Simon 2005). These accounts fit rather neatly into established mythological and

religious tropes (Belk and Tumbat 2005). Jobs begins as a troubled youth, searching

for meaning in countercultural pilgrimages to India and an Oregon commune.

Apple’s founding is a typical creation myth, birthed in the proverbial garage.

Manichean battles with corporate bureaucracies ensue, some external (IBM,

Microsoft, Google and Samsung), some internal (board members, Apple CEO John

Sculley). After losing one internal battle, Jobs is exiled from Apple from 1985-1997,

where he is a voice in the wilderness, crying out against the sins of Microsoft-

dominated mediocrity. Then, as Apple itself falls from grace, Jobs triumphantly

returns as its savior, ushering in a second golden age.

The story of Steve Jobs and Apple has become the new myth of our

information age, speaking to technologists of many stripes. Silicon Valley

entrepreneurs hoping to become the next Facebook see Apple as the progenitor of the

technological rags-to-riches story. DIY Makers see themselves in the early Apple,

with its origins in the hobbyist culture, although they identify more with Wozniak,

the quintessential hacker/trickster figure. And indie developers see in Jobs’ attention

to aesthetics, commitment to quality, and his remaking of Apple in his own image,

their own aspirations to vocational craftsmanship and creative autonomy.

Commitment to the highest standards of quality brooks no compromise, which is

equated with mediocrity.

95

In the wake of Jobs’ death, many Apple developers noted that Jobs’ greatest

legacy may not have been the technologies he shepherded into the world, but Apple

itself. Jobs, an admirer of the counterculture, Bob Dylan, Zen Buddhism, and

Autobiography of a Yogi, infused his values into his company and his successors.

Most Apple developers remain confident that Apple will continue to innovate as long

as it remains true to these values. Their trust in Apple is also faith. Umberto Eco

once compared the Macintosh to Catholicism, and MS-DOS to Protestantism or

Calvinism (Eco 1994). As a Catholic myself, my own interpretation of Eco’s

statement filters through my experiences as both a Catholic and an Apple fan. Eco

was referring to the differences between the user’s interaction with the two

respective platforms’ interfaces, the graphical user interface (GUI) of the Mac versus

the command-line interface (CLI) of DOS. Eco asserted that the Mac’s GUI was

“cheerful, friendly, conciliatory; it tells the faithful how they must proceed step by

step to reach—if not the kingdom of Heaven—the moment in which their document

is printed. It is catechistic: The essence of revelation is dealt with via simple

formulae and sumptuous icons. Everyone has a right to salvation.” The GUI, like

Catholicism, carefully lays out instructions for laypeople without requiring them to

understand deeply, and in this fashion, promises to make salvation (or computing)

accessible to all. DOS, however, “allows free interpretation of scripture, demands

difficult personal decisions, imposes a subtle hermeneutics upon the user, and takes

for granted the idea that not all can achieve salvation. To make the system work you

need to interpret the program yourself: Far away from the baroque community of

revelers, the user is closed within the loneliness of his own inner torment.” (Eco

1994) The command-line may allow for more freedom, but it requires considerably

more effort, and indeed struggle and study, on the part of the user. This means that

not all users can necessarily achieve their goal; it is not universally accessible as is

the “Catholic” GUI. Eco remarks that Windows represents a kind of Anglican-like

schism from the Mac, allowing the possibility of return to direct interaction with the

Word (the command-line).

96

While Eco was making a statement about user interactions, from my

perspective, the Catholic metaphor could apply as well to Apple’s social organization

and its relationship to its users and developers. As noted earlier, even among their

fans, Apple and Steve Jobs were understood to act in autocratic, though in their eyes,

mostly benevolent, fashion, as a Platonic philosopher king. Certainly, the

hierarchical Catholic Church fits the benevolent monarch trope. As an Apple user, I

myself do not always agree with Apple’s decisions, but I have faith that overall

Apple will remain true to the values that drew me to its products; I recognize that in

order to have the user experience I prefer, I have to sacrifice some flexibility.

Similarly as a Catholic, I may not always agree with the doctrines of the Church

hierarchy, but I prefer to remain in the fold, in part because being Catholic is part of

my identity, but more so because I have faith that the Church as a whole, despite the

temporal shortcomings of its administrators, has holy intentions.

Indie Cocoa developers, with their devotion to Apple tools but their insistence

on independent creation of apps, reconcile this tension ideologically—they have

already chosen Apple because they share its mission of empowering and delighting

users with easy to use technology, and they agree that this democratizing mission

must to some extent be top-down, to ensure the highest levels of quality. Yet, it is

not completely top down, for developers have asserted their prerogatives to extend

the iPhone and iPad with their own apps, albeit within Apple’s control. Practically,

developers reconcile this tension by maintaining that their job (indeed their vocation)

is to create the overall vision of their apps, and craft the user experience, and as

many tasks unrelated to this ought to be delegated to Apple—whether lower level

engineering, which Apple’s Cocoa frameworks handle, or business tasks like

distribution and payment, which Apple’s App Store takes care of.

As we have seen, indie app development is just one kind of technological

production in a continuum from open source peer production to VC-backed

entrepreneurship, all of which are aspects of today’s techno-utopian countercultural

capitalism, with its focus on creativity, pleasure, and higher purpose in work. This

ideology has helped propel Apple’s profits to become the largest technology

97

company in the world. Apple’s indie app developers share in this ideology, and

despite their small size, can have outsize leverage on the user experiences of iPhone

customers who download their apps. What users experience as the iPhone is not

made solely by Apple, but is co-produced alongside millions of third party app

developers.

98

Chapter 2: Revenge of the NeXT Nerds: Object-
Oriented Programming, the Quest for Productivity,

and the Vindication of the NeXT Community

In the previous chapter, we examined the affective, normative, and

ideological components of the techno-cultural frame of Cocoa programming. We

have not yet looked at the technological component of this frame, Cocoa itself. The

next chapter (Chapter 3) will discuss this, focusing on the technical arguments for

why Cocoa programmers believe that Cocoa technology provides a superior way to

write applications software. We will see that much of that discourse focuses on the

productivity of the programmer. Cocoa is better because it makes programmers more

productive, Cocoa adherents argue. In this chapter I provide some historical context

for understanding this discourse. The chapter follows several interweaving

narratives: a business history of Steve Jobs’ NeXT and its creation of the technology

that later became Cocoa, and a story of the early third party NeXT developer

community, which formed the core of the later Cocoa community. Interleaved

through these narratives is an analysis of the productivity discourse that NeXT used

to market its proto-Cocoa software platform, and that third party developers used to

justify their devoted commitment to it, despite a danger that NeXT might fail and

their livelihoods might be on the line. This productivity discourse stemmed from

NeXT’s embrace of object-oriented programming as the basis of its operating system.

I argue that NeXT software’s promise of order of magnitude improvements in

programmer productivity can be located in widespread 1980s-era hype over object-

oriented programming’s potential to solve the so-called “software crisis” that had

been first articulated in the late 1960s. I end this chapter with the recollections of

Cocoa developers who began programming on the NeXT and stayed loyal to the

platform till the present. In their eyes, the success of Cocoa today, which powers the

iPhone and its App Store, proves that NeXT software’s advantages for productivity

were ahead of its time, vindicating their devotion to it through difficult times.

NeXTSTEP and Object-oriented programming

99

The history of Cocoa as a cult technology seems to have created a community

in which the oldest members are also its most die-hard adherents. Before it was ever

known as Cocoa or was the developer kit for the iPhone or the Mac, the technologies

were part of NeXTSTEP, the operating system developed by NeXT. Much less has

been written about NeXT than about Apple. According to biographies and other

accounts of Job’s ouster at Apple, (Deutschman 2000; Isaacson 2011; Stross 1993;

Young 1988), Jobs founded NeXT both to redeem himself and to one-up the Apple

executives who had kicked him out. After poaching key members of the Macintosh

team to help start NeXT, Jobs attracted many of the best and brightest of the

computer industry and academic research to his new company, among them Avie

Tevanian, a Carnegie Mellon computer science Ph.D. who created the Mach kernel

that would become the basis of NeXT’s operating system, and Bertrand Serlet, a

researcher at Xerox PARC. NeXT was supposed to be a better Apple, and Jobs

wanted to make bleeding-edge computers that would be light-years ahead of the

Macintosh which only a few years before, Jobs had shepherded into the world.

Blaine Garst, a former NeXT and Apple engineer, noted that Jobs’ motivation to beat

Apple was part of NeXT’s mission statement: “When he formed NeXT he wanted to

build a better Apple, and that was actually in the… one-paragraph mission statement

and it was basically ‘Here at NeXT we’re trying to build a machine that is better, the

better machine. A better version of Apple for you and your friends and colleagues’

use.’” (Blaine Garst Interview, April 13, 2012)

In pursuit of this goal, NeXT’s hardware, the NeXT Cube, would be state of

the art, including a Digital Signal Processor (DSP) chip that would give the computer

advanced sound and graphics capabilities for a desktop machine. Jobs also insisted,

in a move that proved to be too forward thinking, to not include a floppy drive but

use instead a magneto-optical drive, which turned out to be too slow and expensive

to be feasible. All of these capabilities would be housed in a sleek, black metal cube,

manufactured in a state-of-the-art automated factory in California.

The NeXT computer’s software would be based on the Unix operating system,

an operating system first created at AT&T in the 1970s for minicomputers, that had,

100

by the 1980s, become popular for desktop scientific workstations such as those sold

by Sun Microsystems. Because Apple had previously achieved significant success in

education, and Jobs believed that NeXT’s best shot would be to initially target

American higher education as its key market, Unix’s heavy use in academic

computer science likely played a role in this decision. Because Unix had run on

larger computers from the beginning, it was technically more sophisticated than the

disk operating systems that ran on early microcomputers, including that of the

Macintosh. However, in the 1980s, Unix was still primarily a command-line based

operating system, lacking the Macintosh’s friendly graphical user interface. NeXT’s

version of Unix would build a graphical user interface on top of BSD, the open

source Berkeley Standard Distribution of Unix popular in academia, along with

Tevanian’s Mach kernel, making it the best of both worlds. The new operating

system would be called NeXTSTEP.

There was one other key piece of NeXT’s technology: object-oriented

programming. Like Unix, by the mid-1980s, object-oriented programming was a

bleeding edge topic that was in vogue in academic computer science, and beginning

to make in-roads into industry. Object-oriented programming is a methodology

whereby programs are conceived of as arrangements of objects which communicate

with each other. Programmers could better model real-world systems by modeling

them as objects in code and combining them together in a complex, dynamically

interacting system. In this way, object-oriented programming differs from procedural

programming, the way all programs had been conceptualized before. Procedural

programs are conceived of as processes, flows of operations between loops and

branches, not as arrangements of abstract things. (Hence, procedural programs are

depicted graphically using flow charts, while object-oriented programs are depicted

using object diagrams.) What computer scientists consider to be the first object-

oriented programming language, Simula-67, was created in 1967 for simulation. In

the 1970s, Alan Kay at Xerox PARC coined the term “object-oriented” to describe

his own language, Smalltalk, that he hoped would be a learning tool for children.

Smalltalk, which ran on the Xerox Alto, was more than just a language, it also

101

incorporated a development environment and the first graphical user interface (GUI),

which, famously, was copied by Steve Jobs’ team at Apple for the Lisa and later the

Macintosh. In those visits to Xerox PARC, Jobs and Apple had focused on the GUI,

but had ignored object-oriented programming, as the technology was based on

adding levels of abstraction that would have required significantly more powerful

hardware than the personal computers Apple would be selling. However, by the late

1980s, at NeXT, the academic computer scientists Jobs was hiring had convinced

him that object-oriented programming was the wave of the future, and that it had to

be the basis for NeXT’s development environment.

NeXT eventually adopted Objective-C, a language developed by Brad Cox, an

outspoken advocate of object-oriented programming. One of its advantages over

Smalltalk was compatibility with C, the procedural language developed at AT&T in

conjunction with Unix, and which by the 1980s had become the dominant language

in the computer industry. C++, also developed at AT&T as an object-oriented

superset of C, would become the most popular object-oriented language by the 1990s

because of its compatibility with C. Why did Objective-C, which also was an object-

oriented superset of C, not become popular? One reason was that Objective-C’s

object-oriented half was based on Smalltalk, a language radically different from C.

The resulting “bracket” syntax looked nothing like the procedural C half of the

language, and many C programmers had difficulty getting used to it. C++, on the

other hand, became popular in part because it did not force object-oriented concepts

wholesale on C programmers, but allowed them to adopt it piecemeal, and its object-

oriented dot syntax seemed to be a natural extension of C’s (Zepcevski 2012).

Using the Objective-C language, NeXT created a number of object libraries

that developers could use themselves to help them build programs without having to

rewrite a lot of basic functionality for themselves. For example, to facilitate usage of

the NeXT’s DSP and sound capabilities, NeXTSTEP provided the SoundKit. An

early DBKit provided rudimentary database capabilities. The FoundationKit, later

known simply as Foundation, contained the fundamental objects which all Objective-

C programs needed to run. Most importantly, for building applications with graphical

102

user interfaces, NeXT provided the Application Kit, known more commonly as the

AppKit. Influenced by the GUI object libraries of Smalltalk, the AppKit provided a

higher level, more abstract, and much faster way to create graphical applications than

the low-level, procedural Pascal and C-based Macintosh Toolbox interfaces on the

Apple Macintosh. A major contributor was that NeXT made programming itself

partly graphical. Its development environment included Interface Builder, an

application that a developer could use to graphically “wire up” interface objects,

such as buttons or menus, to the actions or commands they were intended to execute.

This graphical method, while not removing the need to write code completely,

seemed to many NeXT programmers to be a revolution in the way they designed

programs—they could now prototype a user interface using Interface Builder,

allowing them to change and iterate over the design quickly, and then turn the

prototype into the real application itself by writing the code the user interface linked

to, rather than being forced to rewrite the actual application from scratch.

NeXT’s marketing made a big deal of these capabilities, pointing out how the

AppKit libraries and Interface Builder could improve programmer productivity by an

order of magnitude. For example, a brochure advertising the advantages of NeXTstep

software (the capitalization of operating system’s name changed a few times) had an

entire spread devoted to Improv, an innovative new spreadsheet from Lotus, which

was written using NeXT’s object kits from the ground up. Improv was widely praised

and fondly remembered by former NeXT users for its innovation. Subsequent pages

of the brochure focus on NeXTstep’s development advantages, and how it allowed

such innovative software to be produced so quickly:

“On one level, NeXTstep is the user interface that makes all NeXT
computers so very intuitive and visually interesting. On another, it’s a
development environment that revolutionizes the way software is
conceived and created. In fact, it’s the entire reason why the
companies we just mentioned [Lotus, Ashton-Tate, WordPerfect,
Adobe] could create such extraordinary software in a fraction of the
time it would have taken with other computer systems.

But even more revolutionary is the fact that NeXTstep is just as
accessible to you. So, for example, if you’re creating customized

103

software for people who take care of personnel, customer service or
payroll, you can use the same tools Lotus used to create Improv…

The NeXTstep environment is an object-oriented world. It’s purely
graphical, making Unix® easier to work with than DOS, OS/2,®
Macintosh® or Windows™ environments. And it runs on every NeXT
computer.®

One of the most extraordinary parts of NeXTstep is Interface
Builder,™ which lets you create an elegant application interface using
little more than the mouse. You can choose from a palette of interface
objects (such as menus, buttons and sliders) provided by the
Application Kit. ™ Then edit, link and arrange them the way you want
them to appear in your finished application. In addition, you can easily
build new palettes of objects that you design yourself. Or add your
own customized objects to the NeXT Application Kit.

So with Interface Builder, you can rapidly generate a graphical front-
end to a corporate database. You can also do some fast prototyping of
new applications—which makes it that much easier to test your
software with the people who will ultimately use it.

And the interface you create, which may have taken 90% of your time
previously, now takes less than 5%…

Most important, the programs you create are… real, industrial-strength
applications—every bit as fast as the applications you buy off the shelf,
and every bit as complete.

Applications you develop with NeXTstep are modular, too, so you can
reuse portions whenever you see fit. And they’re extremely easy to
maintain. Now, when you update, there’s no need to rewrite your
whole application—you simply update the parts you want to change.

In the words of the NeXT Development Team at Lotus, ‘NeXTstep is
the best development environment available on any personal computer
today.’ There really has never been an environment anything like
NeXTstep. And no machine is built to support it like a NeXT computer.

(NeXT Brochure, NeXT Computer, Inc. 1990, Box 26. Software and
Peripherals, Mahoney Papers, Charles Babbage Institute.)

A few things stand out in this ad. Most striking is that the ad emphasizes how

easy, and how simple, it is for the user to create his or her own custom software.

There are a number of reasons for this. Firstly, despite the few large applications

from corporate firms touted by the ad, NeXT had a very small marketshare and very

few applications, and a lot of the time, users had to create their own. Secondly,

104

however, the emphasis given to Interface Builder and its graphical way to build

programs was in part the logical extension of the graphical dream: to democratize the

next hurdle in computing, programming. This would be how Steve Jobs could one up

his previous creation, the Macintosh. While the Mac had democratized computer use

through the graphical user interface, NeXTstep, through the combination of object-

oriented programming kits and the graphical programming tool Interface Builder,

would bring programming to the masses. This was not too far from Alan Kay’s

dream of making programming accessible to children with Smalltalk, or Seymour

Papert’s vision of using programming as an educational children’s tool with Logo.

And indeed, Brad Cox, who created Objective-C, had also hoped that, in conjunction

with a market of off-the-shelf, reusable software object modules, users could easily

write their own programs: “The programmer shortage can be solved as the telephone-

operator shortage was solved: by making every computer user a programmer.” (Cox

1990b, 30) NeXT, and Steve Jobs, was only the latest in a line of those who

envisioned a future where users were empowered because they could write their own

computer programs. Nevermind that this utopia was overblown—NeXTstep

programming then, and Cocoa programming now, is not easy, Interface Builder not

withstanding. Indeed, Interface Builder did not remove the need to write code

completely. As we will explore later, the effect of Interface Builder, AppKit, and

other technologies which make certain tasks more convenient (and thus more

productive) for the programmer was not to deskill those tasks, but rather, to increase

the amount of knowledge and understanding necessary. Because the AppKit and

Interface Builder hide a lot of things from the programmer, in order for the

programmer to know what to do when he or she actually needs to write code, the

programmer actually needs to understand what the AppKit is doing on a much deeper

level than if the programmer wrote everything him or herself.

Secondly, a conclusion that can be reached by the end of the ad is that NeXT

is selling object-oriented programming itself—or at least, the advantages of

NeXTstep as an object-oriented environment. It touts the modularity, reusability, and

maintainability of applications written with NeXTstep—all advantages associated

105

with object-oriented programming. The fact that object-oriented programming is

itself the product is made a lot more clear by the following ad from NeXTWorld

magazine.

Figure 1: NeXTSTEP 486 advertisement

(NeXTWORLD Magazine, October 1993, p. 24)

106

The ad makes clear that NeXTSTEP is the world’s “only object-oriented

system software.” At this time, rivals Apple and IBM were teaming up to create their

own object-oriented operating system, Taligent, while Microsoft attempted its own

project, Cairo, neither of which shipped to the public. The small letters on the box

box above the cubic building blocks, which represent objects, say “The premiere

object-oriented software that dramatically simplifies developing and deploying

client/server business applications.”

This ad must be put into context with the state of NeXT’s business at this

time. The ad is for NeXTSTEP 486, a version of the operating system that ran on the

Intel processors used in IBM compatible PCs. By 1992, it was clear that NeXT’s

hardware business was a failure. Less than 50 thousand machines were ever shipped.

(Wil Shipley Interview, April 18, 2012) NeXT had made significant mistakes.

According to Randall Stross, Steve Jobs, having made his millions at Apple so

quickly, had not been running NeXT in a frugal fashion, and had burned through

much of its funding (and a considerable amount of his own fortune) pursuing

perfection (Stross 1993). In order to settle a lawsuit with Apple, NeXT had signed a

non-compete agreement, which meant that it could not sell machines in the same

price range as Apple. Nevertheless, NeXT tried to make a general-purpose computer

with a graphical user interface, but much more advanced, and more expensive than

the Macintosh. NeXT initially targeted universities, but its machines were too

expensive to compete with Macs and IBM PCs, yet slower than the Sun and HP

workstations at a similar price. It tried to target desktop publishing, a market already

cornered by the Macintosh, and networked office computing with a buzzword that

failed to catch on, “interpersonal computing.” However, because of their price

premium, it was not clear why customers should choose NeXT machines over Macs

or IBM compatibles. Unsure if they were PCs or workstations, NeXT computers

were solutions looking for a problem. These problems were only exacerbated by a

disastrous deal with computer retailer Businessland.

While NeXT was still trying to sell hardware, it needed third parties to write

desktop productivity applications to become a viable consumer platform, and Steve

107

Jobs had used his industry fame and his considerable charisma to convince some

large software publishers, such as Adobe and Lotus, to make applications for the

end-user, including Lotus’s innovative NeXT-only spreadsheet, Improv. However, it

was NeXT users at many of NeXT’s academic installations who needed no

convincing to tinker with NeXT’s included developer tools to write apps. These users

became some of the first independent NeXT developers. One of the first was Andrew

Stone of Albuquerque, NM, the counterculturalist and friend of EFF founders John

Perry Barlow and John Gilmore who we met in chapter 1. Stone was a former

architect who had been introduced to NeXT at a Macintosh User’s Group, attended a

NeXT Developer Training camp, and by 1992 had decided to try his hand at selling

his apps over the nascent Internet, distributing software packages for free but selling

license codes over e-mail. Stone became well known in the NeXT developer

community for his drawing application, Stone Design, and for a database, Dataphile.

(Andrew Stone, Interview, June 7, 2011.) Other small-scale operations included

Glenn Reid’s RightBrain, which offered a desktop publishing alternative to Aldus

Pagemaker, and Lighthouse Design. Co-founded by Jonathan Schwartz, Roger

Rosner (now at Apple), and Kevin Steele, among others, Lighthouse produced an

office suite of applications, which included a spreadsheet and a presentation tool, as

well as an innovative program called Diagram! which could be used to quickly draw

graphs and flow-charts.

Although NeXT made its money from selling boxes, NeXT developers argued

that, the sleekness of the hardware notwithstanding, NeXT’s biggest competitive

advantage was its object-oriented development environment. Eventually, NeXT,

decided to hone its marketing to focus on this message, arguing that the productivity

advantages of NeXTSTEP’s development environment were ideal for rapid

application prototyping, and “custom mission critical applications.” This term

referred to the kinds of problems that were critical to the core business or mission of

large Fortune 500 corporations or government institutions, so important to their

existence that the cost of a solution was not a primary factor. NeXT would close

down its money-losing hardware business, which included selling its state of the art,

108

automated but mostly idle California factory to Canon. Instead, it would sell licenses

to its software and development environment as a custom, Do-It-Yourself solution

for tens of thousands of dollars each, allowing the company to remake itself and

survive. The downside was that, with no hardware, and marketshare continuing to

slide, the packaged, “shrink-wrapped” NeXT software market contracted

considerably. Most of the corporate firms such as Lotus, Wordperfect, and Adobe,

exited the market. Many smaller, independent firms, like Glenn Reid’s RightBrain,

which had focused on desktop publishing, folded. Lighthouse Design sold itself to

Sun.17 Stone Design, which produced a drawing program and a database, contracted

to a one-man operation. However, the corporate market for custom software was

considerable. The reality was that Fortune 500 companies, and especially Wall Street

banks, could not simply pick up NeXTSTEP 486 and sit down any old programmer

to create a custom application for them. They needed developers experienced with

NeXTSTEP, and contracted out to existing NeXTSTEP developers, which were few

in number. The ad, which sells the NeXTSTEP operating system and development to

be run on generic PC hardware, instead of proprietary NeXT machines, is targeted

precisely at this small, high profit, low-volume market of large institutions.

Going back to the brochure, another feature marketed is the notion that

applications, particularly ones with graphical user interfaces, can be written in a

“fraction of the time.” “And the interface you create, which may have taken 90% of

your time previously, now takes less than 5%—a streamlining that could put a

serious dent in your backlog of projects.” An article in NeXTWorld Magazine,

touting the advantages of small, independent, and fanatically devoted NeXT

developers, note that “they’re bringing out new applications five to ten times faster

than they would be able to on any other platform.” (Garfinkel 1992a, 86) Another

17 Sun acquired Lighthouse to provide office applications for Sun’s Java

platform, but these never saw the light of day. However, Jonathan Schwartz

eventually rose to the position of Sun CEO before overseeing its acquisition by

Oracle.

109

article states, “Steve Jobs often says that NeXT can’t just be better than a

competitive platform; it has to be five to ten times better… Happily for NeXT…

[for] large companies in a few big vertical markets [that NeXT targets with its

custom-apps message]… NeXT does offer order-of-magnitude advantages…

customization… The software needs to be modular and extensible.” (Ruby 1992) In

an interview by NeXTWorld editor Dan Ruby, in explaining his company’s new

marketing strategy focusing on mission critical custom application development,

Steve Jobs responds:

Getting applications written is the number one problem in corporate
American information technology. …the bottleneck is still getting
them written.

This is even more true when customers want to use computers for
operational productivity as opposed to management productivity. You
can’t buy shrinkwrapped software to do stock trading or run your
hospital or do order processing. You’ve got to write custom apps. Now,
in the past, these operational applications were written in COBOL…
on a mainframe or minicomputer. Starting in the very late ‘80s, some
companies started downsizing to client-server computing. They could
buy a Sun and spend two years writing a good app, or as good as you
could write on a Sun. Now, we roll in and say, look, you can write that
custom app five to ten times faster on a NeXT. (Ruby and Jobs 1992,
30)

This metric, “five to ten times faster” long predates NeXT. The language of

an “order of magnitude” increase in programmer productivity is one that goes back to

the late 1960s, when software professionals first began to talk about a “software

crisis” and began to propose solutions to it. Object-oriented programming gained

steam in the 1970s and 1980s as one proposed solution to this crisis, culminating in

the claim of Brad Cox, creator of Objective-C, that it was a “silver bullet” that would

help usher in a “software industrial revolution.” NeXT’s operating system and

development environment was created in the late 1980s in this context, and in the

1990s it would be marketed as another “silver bullet” with the language of “five to

ten times” better programmer productivity.

110

The Software Crisis and Object-oriented
programming

Recently, historians of computing have written a lot about the so-called

“software crisis,” first articulated in the 1960s, and the emergence of software

engineering, structured programming, and formal verification of program correctness

as possible solutions to the crisis (Abbate 2012; Ensmenger and Aspray 2002;

Ensmenger 2010; Mahoney 2004; Slayton 2013a; Tomayko 2002). By 1968, a

number of different problems seemed to converge, creating a sense in the computer

industry that software was becoming a problem. For one, software costs were

outstripping hardware costs; a widely plagiarized graph projected software to make

up 80% of computer costs by 1978 (Slayton 2013a, 155–7). Moore’s Law would

seem to exacerbate this, with hardware improving by orders of magnitude over

software. Secondly, a number of large, complex software projects had failed, most

famously that of IBM’s OS/360 effort, but also software on NASA’s Mariner I

spacecraft (Abbate 2012, 92) and MIT’s timesharing MULTICS operating system,

which inspired Unix at Bell Labs. (Slayton 2013a, 111–2) Thirdly, demand seemed

to be causing a shortage of programmers and fourth, the programmers that were

available seemed to be unmanageable, as programming had the reputation of a “black

art” and a craft skill, rather than a quantifiable, scientific or engineering discipline

(Abbate 2012; Ensmenger 2010).

These latter two were related. As Ensmenger notes, the labor shortage was not

“an absolute shortage of programmers but rather a shortage of a particular kind of

programmer. [emphasis in original]” (Ensmenger 2010, 18) “An early study at IBM

suggested that exceptional programmers were ten times more efficient than their

merely average colleagues. The alleged 10:1 performance ratio quickly became

firmly embedded in the cultural wisdom of the industry.” (Ensmenger and Aspray

2002, 6) Another IBM study declared “that a good programmer was at least twenty-

five times more efficient than his or her merely average colleague. Whether the exact

ratio of performance was precisely twenty-five to one (or a hundred to one—another

commonly quoted figure) did not much matter. What did matter is that whatever its

111

deficiencies, this study and others seemed to confirm plentiful anecdotal evidence

that good programmers appeared to have been ‘born, not made.’” (Ensmenger 2010,

19) Fred Brooks, who had led the failed OS/360 effort and famously wrote The

Mythical Man-Month to examine the software crisis and catalog possible solutions,

cited a similar study: “Within just this group [of experienced programmers] the ratios

between best and worst performances averaged about 10:1 on productivity

measurements and an amazing 5:1 on program speed and space measurements! In

short the $20,000/year programmer may well be 10 times as productive as the

$10,000/year one.” (F. P. Brooks 1995, 30) Clearly, there appeared to be an order of

magnitude difference in programmer skill and productivity.

A number of different solutions were proposed over the years to address the

software crisis. Some were explicitly managerial solutions. Brooks expanded on a

top-down proposal by IBM’s Harlan Mills, known variously as the Chief

Programmer Team, Surgical Team, or Superprogrammer approach. As the title of

Brooks’ book indicates, Brooks argued that throwing more manpower onto a

software project did not speed it up but rather slowed it down, as the organization got

more complex. Programmer teams should be kept small, with 10 people or less.

Moreover, because of the order of magnitude difference in programmer productivity,

all of the high level design decisions should be done by the chief programmer a.k.a.

head surgeon, with subordinate implementation tasks delegated to the supporting

programming staff. Brooks argued that this top-down “aristocratic” division was

necessary to maintain the conceptual integrity of the program’s architecture. It did

not deskill the work of the supporting staff, as implementation still required

creativity and skill, though not as much as architecture. “The opportunity to be

creative and inventive in implementation is not significantly diminished by working

within a given external specification, and the order of creativity may even be

enhanced by that discipline.” (F. P. Brooks 1995, 48)

Another proposed solution, which came to be known as “structured

programming” came from Dutch computer scientist Edsgar Dijkstra. “The main tools

of structured programming were abstraction, modularity, and the use of conditional

112

loops (rather than “go to” statements) to model the logical structure of the process

that was being automated.” (Abbate 2012, 99) Dijkstra published a letter to the editor

of Communications of the ACM in 1968 proclaiming “Go To Statement Considered

Harmful.” (Dijkstra 1968) Dijkstra’s point was that the Go To statement, a command

that allowed a program to arbitrarily jump around to any line of code, created a

spaghetti-like maze that would be impossible for other programmers to follow. By

restricting programmers to using only conditional branches, loops, and subroutine

calls, programs would be much easier for human readers to follow. Structured

programming also incorporated programming practices that called for making

software more abstract (less machine-dependent), modular and reusable. More

importantly for Dijkstra, however, is that these techniques would also make

programs more amenable to formal, mathematical proof of correctness. Dijkstra

promoted the formal verification of program correctness as one way to combat the

reliability problems of software that had led to the sense of crisis (MacKenzie 2001,

37–61).

Both the chief programmer team approach and structured programming came

to be seen under the larger umbrella of “software engineering,” a term that began to

pick up steam for its association with “systematic, disciplined, quantifiable”

techniques. (Institute of Electrical and Electronics Engineers (IEEE), IEEE Standard

Glossary of Software Engineering Terminology: IEEE Standard 610.12-1990 (New

York: IEEE, 1990), 67, quoted in Abbate, 2012, 99). 1968 saw the first NATO

Conference on Software Engineering at Garmisch, Switzerland. Douglas Mclroy, a

member of Bell Labs’ Multics team at the NATO conference explicitly linked

software engineering to mechanical engineering and the industrial revolution:

We undoubtedly produce software by backward techniques. We
undoubtedly get the short end of the stick in confrontations with
hardware people because they are the industrialists and we are the
crofters. Software production today appears in the scale of
industrialization somewhere below the more backward construction
industries. I think its proper place is considerably higher, and would
like to investigate the prospects for mass-production techniques in
software. (M.D. McIlroy, “Mass Produced Software Components,” in
Naur and Randell, pp. 138-150. Quoted in (Mahoney 2004, 11))

113

Much recent discussion of software engineering by historians sees in this

industrial rhetoric a managerial drive to discipline and deskill unruly programmers.

For example, Rebecca Slayton cites Department of Defense managers as having

significant influence on driving the development and adoption of software

engineering techniques. “While anticipating the rising costs of software, [DoD

managers] also confronted shrinking budgets, perpetual scrutiny, and growing

demands for flexibility, interoperability, and security. In this environment, defense

department managers began to embrace a particular vision of software engineering, a

means of quantifying software development and ensuring accountability.” (Slayton

2013a, 160) Under this influence, software engineering reemerged in the 1970s under

a new community focused on the reduction of complexity through programming and

design methodologies (Slayton 2013a, 162–4). Nathan Ensmenger, likewise, saw in

much of the manufacturing rhetoric a call for Taylorist scientific management of

programmers:

The solutions to the “software crisis” that [are] most frequently

recommended… are not fundamentally different from the four principles of scientific

management espoused by Frederick Taylor in an earlier era.” (Ensmenger and

Aspray, 2002, 15-16)

Other historians, however, see software engineering as a rhetorical strategy

used by programmers themselves to increase their status as a profession. “For the

major organizations that were trying to define computing as a profession, embracing

the term software engineering [emphasis in original] could signal a claim to

professional turf rather than any commitment to engineering as such.” (Abbate 2012,

102) Abbate agrees with Ensmenger that this process of professionalization involved

defining it as masculine, and relabeling programming as “software engineering” did

precisely this. Nevertheless, Abbate notes that most of the proposed “engineering”

solutions came from those who had deep knowledge of programming themselves,

trying to improve programming practice from within. “But not everyone had aimed

to deskill programmers in the first place. Software engineering advocates such as

Dijkstra and Brooks identified as programmers themselves and had no desire to

114

downgrade their peers. Many programmers actively took up techniques such as

structured programming as a way of easing their work and enhancing their own value

in the job market. Rather than making programmers obsolete, software engineering

methods became simply another skill that programmers could claim.” (Abbate 2012,

108) Thomas Haigh goes further, making the case that the circle of people who

directed the software engineering agenda at the NATO Conferences were not

managers but the pillars of academic computer science, especially Edsgar Dijkstra.

Dijkstra thought that the software crisis was really the fault of managers who thought

programming was easy and hired hordes of programmers with low skill. Dijkstra

sought to elevate programming as a formal, mathematical discipline that required

intelligence (Haigh 2010).

Within this environment, programming languages emerged as one possible

solution to the software crisis. Dijkstra’s structured programming methodology

promoted a number of techniques that could be applied, with self-discipline, to

existing programming languages. Such practices included maintaining modularity of

code. “Essentially, Dijkstra wanted programs to be made up of blocks of code, where

each block did only one task.” (Zepcevski 2012, 185) Nevertheless, soon afterwards,

computer researchers began to devise programming languages that would enforce

structured programming principles, by, for example, omitting the “Go To” statement.

According to Thomas Haigh, the same circle of computer scientists who had

participated in the NATO Conferences had previously been working on ALGOL, a

language that many had hoped to promote good programming practice. This circle

had dissented from the ultimate direction ALGOL had taken, but one among them,

Niklaus Wirth, turned his passed-over ALGOL proposal into Pascal (Haigh 2010).

Pascal was a language that would help produce programs amenable to formal proof

(Zepcevski 2012, 261–2). The Department of Defense sponsored the development of

Ada in order to standardize on a single language throughout the military (Slayton

2013a, 164–5; Zepcevski 2012, 262–3). Both Pascal and Ada were procedural

languages developed to foster structured programming practices.

115

Object-oriented programming languages likewise enforced some of these

same practices. Joline Zepcevski, in her recent dissertation, argues that object-

oriented programming and structured programming arose in parallel. Modularity had

long been practiced before either structured or object-oriented programming.

“Segmentation, or creating modules of code, is one of the most frequently cited

solutions to the problem of complexity. When working in teams, if programs are

segmented or modularized, programmers can work on individual segments, with little

interaction between segments. Modularity has long been perceived as a method of

decreasing complexity and improving programming as an industrial activity. As early

as the work being conducted on the SAGE project, techniques were being used to

create modular code.” (Zepcevski 2012, 199) Nevertheless, object-oriented

programming made modularization of code mandatory for all programs. Objects are

essentially modules of code that are completely separate from other objects. They

can only exchange data with other objects by sending messages to them. Otherwise,

the data contained in an individual object is hidden, black-boxed, or “encapsulated,”

in a way that prevents other code from accidentally or maliciously changing them,

which enhances the reliability and security of programs. Zepcevski argues that

object-oriented programming languages such as Smalltalk and C++ developed as a

confluence of ideas from various sources; ideas pervasive in computer science

became incorporated into these languages and eventually became part of the

definition of object-orientation itself (Zepcevski 2012, 137–141). Alan Kay himself

recounted that Smalltalk was influenced not only by Simula-67, the only previous

object-oriented language, but also the functional language LISP, and ideas from Ivan

Sutherland and Seymour Papert (Kay 1993; Zepcevski 2012, 237).

As a result, looking at such languages only as agglomerations of their

components, structured programming advocates could claim that object-oriented

programming was nothing new, just another language enforcing structured

programming methodologies. “Donald Knuth, author of The Art of Computer

Programming, has insisted that he has always thought of programming using the

techniques that have been subsumed into the object oriented paradigm… ‘but I

116

haven’t used the languages that help enforce the discipline; I’ve always enforced the

discipline myself in other languages.’” (Dan Doernberg, Interview with Donald

Knuth for the Computer Literacy Bookshop, December 1993,

http://tex.loria.fr/litte/knuth-interview, quoted in Zepcevski, 2012, p. 272) Zepcevski

argues that, for older computer scientists as Niklaus Wirth and Donald Knuth, object-

orientation did not add any new concepts but merely combined existing concepts and

techniques into a single language that enforced those practices. However, other

computer scientists such as Antony Hoare saw, correctly in Zepcevski’s view, that

object-orientation was in fact a paradigm shift in seeing programs not as processes

but as collections of objects (Zepcevski 2012, 274–5).

Nevertheless, Zepcevski notes that Alan Kay created Smalltalk to directly

address the issue of software complexity, which, along with the problem of program

verification, was the key issue in the software crisis. This occurred in parallel with,

and despite, advances made by structured programming.

[The examples of the structured programming languages Pascal and
Ada] illustrate that, while language designers enforced structured
programming techniques in their languages, the problems of
complexity and verification were still an important part of the
discourse on programming theory… Constant discussion of the
software crisis abounded… The object-oriented methodology was
created in response to problems of complexity… Alan Kay often talks
of a bet where he argued he could create “the most powerful
programming language in the world” in a single page of code. The
outcome of this bet was the creation of Smalltalk. The inference here
is that other languages may have also been powerful, but the
complexity of their long definitions was detrimental. (Zepcevski 2012,
263–5)

The enforcement of programmer discipline mechanically through language

design was thus one solution to the software crisis that promised order of magnitude

gains in programmer productivity. Fred Brooks notes at one point in The Mythical

Man-Month, “Programming productivity may be increased as much as five times

when a suitable high-level language is used.” (F. P. Brooks 1995, 94) What Brooks

meant, however, was that high-level languages could produce this gain when

compared to programming in assembly languages, as it frees the programmer from

117

having to deal with the complexity of the low-level hardware, which is hidden by

higher level abstractions. “To the extent that the high-level language embodies the

constructs wanted in the abstract program and avoids all lower ones, it eliminates a

whole level of complexity that was never inherent in the program at all.” (F. P.

Brooks 1995, 186) This argument is commonly extended to object-oriented

languages, which states that because object-oriented languages work at a higher level

of abstraction than procedural languages, they will inevitably reduce complexity and

improve productivity. This is often connected to a narrative of linear progress—the

more abstract and higher-level a language is, the more advanced it is. Computer

scientist Tony Hoare apparently thought of object-orientation in this way: “Hoare

sees the change in programming methodologies as paralleling his own scientific

progress moving from sequential code with hierarchical construction towards an

object oriented worldview…” (Zepcevski 2012, 275)

By the 1980s, Brooks himself, however, was skeptical that object-oriented

programming, or indeed anything, was truly a silver bullet that could solve the

software crisis. In “No Silver Bullet—Essence and Accident in Software

Engineering,” first published in 1987, he argued that software development was

inherently hard because it had certain essential characteristics: complexity,

conformity, changeability, and invisibility or unvisualizability (because it involves

abstract concepts which are difficult to visualize). Following Aristotle, he

categorized all other programming difficulties as “accidental,” or “those difficulties

that today attend its production but that are not inherent.” (F. P. Brooks 1995, 182)

Addressing both structured languages like Ada and object-oriented languages, he

notes that, like all other high-level languages, they have produced incremental

improvements through removing one or more of the accidental difficulties of

programming, but that continuing advances in high-level languages will only

produce diminishing returns, as the largest win had been gained from the initial move

away from assembly in the first place (F. P. Brooks 1995, 188–9). He is also

skeptical of attempts to realize graphical programming, of which NeXT’s Interface

118

Builder is an early example that came out after Brooks’ article (F. P. Brooks 1995,

194).

Brad Cox disagreed. In a direct rejoinder to Brooks, Cox wrote an article in

BYTE magazine in 1990 claiming that a silver bullet indeed existed, and further

insisted that this solution could bring about a Software Industrial Revolution,

echoing McIlroy’s comment over twenty years prior (Cox 1990a). There were two

components to this solution. The first was object-oriented programming, which

required programs to be written in modular, even piece-meal fashion. Second was an

economic arrangement that this technology would make possible: an open market of

software objects that could be bought and sold off-the-shelf, and used by developers

to build their own software without rewriting everything from scratch. Reusable

objects would be like interchangeable parts, which made possible the first Industrial

Revolution.

I use a separate term—software industrial revolution—to mean what
“object-oriented” has always meant to me: transforming programming
from a solitary cut-to-fit craft into an organizational enterprise like
manufacturing. This means letting consumers at every level of an
organization solve their own software problems just as home owners
solve plumbing problems: by assembling their own solutions from a
robust commercial market in off-the-shelf subcomponents, which are
in turn supplied by multiple lower level echelons of producers.” (Cox
1990a, 212)

Indeed, Brooks had envisioned a similar economic arrangement where coding

could be outsourced to the market, although he did not couple it with the

technological solution of object-oriented programming:

Buy versus build. The most radical possible solution for constructing
software is not to construct it at all… While we software engineers
have labored on production methodology, the personal computer
revolution has created not one, but many, mass markets for software…
Even software tools and environments can be bought off-the-shelf. I
have elsewhere proposed a marketplace for individual modules.

Any such product is cheaper to buy than to build afresh… The
development of the mass market is, I believe, the most profound long-
run trend in software engineering… The cost of software has always

119

been development cost, not replication cost… (F. P. Brooks 1995,
197–199)

Why was object-oriented programming necessary to create this market? Cox

argued such software components needed to be produced at a much higher level of

abstraction than previously. Here Cox shifted from the metaphor of 18th century

firearms production to modern computer hardware production. Computer hardware

was made up of different levels of components, with each level made up of smaller

components from the level just underneath it. Thus, a computer might be made up of

several racks of printed circuit boards, or cards. Each card contained multiple

integrated circuits, or chips. Each chip was designed modularly, as distinct

combinations of logical “blocks.” Each block was made up of even more

fundamental building blocks, logic “gates” that represented AND, OR, and NOT.

And these gates themselves were made up of individual transistors. A computer

hardware manufacturer need not produce its own chips, but merely needed to buy the

chips it needed from other companies. This, in fact, had made the personal computer

revolution possible, when microprocessors from Intel, Motorola, and others had

provided the conditions for people to make and sell computer boards using these

chips. Assembly-level programming was like working at the gate level. Procedural

programming using languages like C, while a dramatic improvement over assembly,

was like working at the block or chip level. Working at these low levels still required

the programmer to worry about hardware-level details, designing programs in terms

of how the computer or operating system worked, rather than the abstract question of

how best to represent a user’s problem. What was necessary to increase programmer

productivity was to increase the level of abstraction, and thus the level of code

modularization and reuse, up to the “card” level or higher.

Alan Kay’s object-oriented language Smalltalk had taken a huge step in this

direction. For example, researchers using Smalltalk had created a graphical

programming environment called “Fabrik” that seemed like it might bring

programming to non-programmers (Cox 1990b, 29–30). However, Smalltalk was not

widely used outside of the computer science research community. Most code in the

industry was being written in the procedural language C, which Cox considered too

120

low-level. Cox created Objective-C to bridge this gap, to allow for “Programming

Smalltalk 80 methods in a C Language.” (Cox 1983) Objective-C would allow

programmers to leverage the vast amount of existing C code, encapsulating it into

higher level, Smalltalk-style objects. Chip-level code could thus be packaged into

card-level objects that could then be sold to others. This would maximize code reuse,

and help solve the software crisis: “By adding these, and probably other,

architectural levels, each level can cater to the needs, skills, and interests of a

particular constituency of the software-components market. The programmer

shortage can be solved as the telephone-operator shortage was solved: by making

every computer user a programmer.” (Cox 1990b, 30)

Such talk of making everyone a programmer, and of making programming

more like manufacturing, sounds like an argument for deskilling programming labor.

Ensmenger has noted this, quoting Cox:

When a prominent adherent of object-oriented programming [Cox]
spoke of “transforming programming from a solitary cut-to-fit craft,
like the cottage industries of colonial America, into an organizational
enterprise like manufacturing is today,” he was referring not so much
to the adoption of a specific technology, but rather to the imposition of
established and traditional forms of labor organization and workplace
relationships. (Ensmenger and Aspray, 2002, 15-16)

Ensmenger takes this as evidence that Cox’s vision was a managerial one,

fitting into the Philip Kraft thesis that such advances as high-level languages and

structured programming deskill and routinize workers for managerial benefit. Cox,

however, was a computer scientist who created the Objective-C language and

published in academic journals, despite starting his own company to pursue his

vision. Like Dijkstra and Brooks, he identified as a programmer, not a manager, and

sought to improve programming practice from within. Moreover, Cox insisted that

building programs from off-the-shelf components, while easier than writing one from

the ground up, was a skilled, build-to-order task like plumbing, not assembly-line

manufacturing:

[Software industrial revolution] means enabling software consumers,
making it possible to solve your own specialized software problems

121

the same way that homeowners solve plumbing problems: by
assembling solutions from a robust market in off-the-shelf, reusable
subcomponents, which are in turn supplied by multiple lower-level
echelons of producers. (Cox 1990a, 3)

But the principles of standardization and interchangeability pioneered
for standard products apply directly to build- to-order industries like
plumbing. They enabled the markets of today where all manner of
specialized problems can be solved by binding standardized
components into new and larger assemblies… The plumbing supply
market lets plumbers solve only the complexities of a single level of
the producer/consumer hierarchy without having to think about lower
levels, for example, by reinventing pipes, faucets, thermostats, and
water pumps from first principles. (Cox 1990b, 28–29)

The model for Cox is not Frederick Taylor, but Adam Smith. Software should

be separated into layers of abstraction, with each layer corresponding to a division of

labor governed by the market, not by managerial control. Cox’s invocation of

colonial gun manufacturing elsewhere in both these articles, reinforces this

connection (Cox 1990b, 25–26; Cox 1990a, 5–7).

Connecting object-oriented programming to the Industrial Revolution allows

Cox to marshal another historical argument to his side. Cox claims that the software

industrial revolution is a Kuhnian paradigm shift. He reinterprets the software crisis

within Kuhn’s framework, seeing it as a scientific crisis produced through normal

science:

According to historian Thomas Kuhn, science… proceeds as a series of
revolutionary upheavals. The discovery of unreconcilable
shortcomings in an established paradigm produces a crisis that may
lead to a revolution in which the established paradigm is overthrown
and replaced.

The software crisis is such a crisis, and the software industrial
revolution is such a revolution. The familiar process-centric paradigm
of software engineering, where progress is measured by advancement
of the software-development process, entered the crisis stage 23 years
ago when the term “software crisis” was first coined. (Cox 1990b, 25)

Having made this connection, Cox goes on to assert that his proclaimed

software industrial revolution is as much a cultural, social, and economic paradigm

shift as it is technological.

122

The silver bullet is a cultural change rather than a technological
change. It is a paradigm shift—a software industrial revolution based
on reusable and interchangeable parts that will alter the software
universe as surely as the industrial revolution changed manufacturing.
(Cox 1990a, 2)

The software industrial revolution involves a similar paradigm shift,
with a similar assault on entrenched value systems, power structures,
and sacred beliefs about the role of programmers in relation to
consumers. It is also motivated by practical needs that an older
paradigm has been unable to meet, resulting in a desperate feeling of
crisis. (Cox 1990a, 5)

In citing changes in culture, value systems, and power structures, Cox is

arguing that technological change cannot occur without corresponding changes to

norms, institutions, and the identity of programmers. Kuhn has made Cox something

of a social constructivist. Nevertheless, in Cox’s worldview, he privileges the

economic relationship between producers and consumers, and it is this relationship

that object-oriented technology is disrupting.

To get a grip on object-oriented means coming to the realization that it
is an end, not a means—an objective rather than the technologies for
achieving it. It means changing how we view software, shifting our
emphasis to the objects we build rather than the processes we use to
build them. It means using all available tools, from COBOL to
Smalltalk and beyond, to make software as tangible—and as amenable
to common-sense manipulation—as are the everyday objects in a
department store. Object-oriented means abandoning the process-
centric view of the software universe where the programmer-machine
interaction is paramount in favor of a product-centered paradigm
driven by the producer-consumer relationship. (Cox 1990a, 3)

Cox thus saw the term “object-oriented” as meaning much more than just a

programming methodology, but a revolution in the social relations involved between

the producers and consumers of software. In vogue with the neoliberalism of the

1980s, Cox felt that the old way of producing software, monolithically by a large

bureaucratic organization, harkening back to the mainframe model of the 1960s,

should be supplanted by a new model in which production was distributed to the

market, and software consumers would be able to influence quality through their

purchasing power. He seemed to be unique in this, however. Although later, some

123

NeXT programmers did try to sell collections of objects to other programmers, Cox’s

Objective-C language was taken up by NeXT largely divorced of the social

philosophy behind it.

How did Objective-C come to be used by NeXT? In the 1980s and 1990s,

object-oriented programming did come to be seen by programmers as a new

paradigm, though for far more narrow technical reasons than Cox’s. As discussed

earlier, Joline Zepcevski argues that object-oriented programming did indeed involve

a shift in worldview, from process-centered to object-centered. Such revolutionary

language no doubt caught the attention of Steve Jobs after leaving Apple in 1985,

already having presided over both the initial personal computer revolution and its

graphical second wave. Always on the lookout for the next big thing, and having

hired computer researchers such as Bertrand Serlet from Xerox PARC, Jobs directed

his new company, NeXT, to make object-oriented programming central to its

software technology. By bringing object-oriented software to consumers, and making

it easier for them to program with graphical tools such as Interface Builder,

NeXTSTEP would bring about an order of magnitude increase in programmer

productivity, solve the software crisis, and usher in the next computing revolution,

all courtesy of Steve Jobs.

Of course, Jobs’ vision was not quite the same as Brad Cox’s, although both

imagined a future where everyday people might write their own programs. Both

visions shared one thing in common: programmers’ work building software was

made easier because they could make use of reusable object modules that others had

already written. A division of labor was implied: less skilled programmers, or even

users, would use pre-built objects and arrange them together like building blocks,

while more skilled programmers would write the code for these blocks. Cox felt that

this division of labor was most naturally expressed in the market: coders would sell

objects to the consumers who would use them to build their own custom software.

Jobs, however, was not interested in selling software, at least not initially. Jobs

wanted to sell a complete, vertically integrated computer system. NeXT was forced

to become a software company only after its hardware business failed. Even

124

afterwards, NeXT would not sell individual objects or classes of objects, but its

entire operating system and development environment together, later decoupling the

development environment from the OS and selling it standalone, for competing Unix

platforms such as Sun and HP. The point, however, was to sell an integrated system,

whereby the objectware came for free, either with the hardware, or the operating

system. Rather than an open market of objects, Jobs envisioned only one supplier:

NeXT itself. As Jobs felt he had attracted the best and brightest computer researchers

and engineers to work for him, he undoubtedly felt that no other vendor would be

able to supply better objects.

This is borne out by the fact that NeXT licensed only the Objective-C

language from Cox’s company, Stepstone, but not its object libraries. Cox saw

Objective-C as a means to an end: allowing him to sell libraries of objects to other

developers. Drawing on Cox’s computer hardware metaphor, Stepstone called its

libraries “ICPaks,” with the “IC” standing for “integrated circuit.” According to

Steve Naroff, the Stepstone employee who enhanced Objective-C to allow NeXT to

create Interface Builder, and later went to NeXT, Jobs felt Stepstone’s ICPaks were

not very good. Steve Jobs personally took part in hiring, putting new engineers

through a grueling process, and only hiring those whom he considered the best. Jobs

thus trusted his staff to write much better object libraries than Stepstone could, and

using Objective-C, they wrote their own low-level object library, Foundation, and a

graphical user interface object library, AppKit, that was tailored to work with the

graphical programming tool, Interface Builder.

So, as far as the ICPaks go, I knew that the productivity of the library
was huge. I also knew that the people working on it at Stepstone were
not world-class; I knew that it would be really hard for world class
companies like NeXT to buy into someone else’s ICPaks; I also knew
that, without a great IDE [Integrated Development Environment], the
ICPak leaves you sort of empty. So, Stepstone did not have that person
with the holistic vision of what it is they should do…

One of the things… Steve [Jobs] is… good at, is, he knows it when he
sees it… when he sees something good…

125

He was very crafty. He really knew how to save a buck. He could’ve
very easily bought Stepstone at the blink of an eye. And he said, “you
know, I don’t believe in 80 percent of what they’re doing—yeah, I
believe in ICPaks, but I don’t believe in their ICPaks. And that’s
where our competitive edge is, so I like their language, I like this guy
who seems to have a clue, let’s get the language, let’s get the guy with
the clue and marry him with open source and see what happens. (Steve
Naroff, Interview, December 22, 2012)

Despite NeXT’s trouble finding a market for its hardware or its software, a

few users-turned developers bought into Jobs’ vision. In the experience of these

developers, NeXT’s object-oriented development environment really did deliver on

its promise to make them five to ten times more productive, if coupled with a change

in the way they approached programming.

Developers take up NeXTSTEP

NeXT may not have been successful selling its computers or software to the

mass market, but by seeding universities with its systems, it managed to expose a

number of computer science students and computer enthusiasts to its technology.

These users began to play with the NeXT’s development tools that came with its

computers, and began to write their own programs. Many of these advanced users

became fanatically devoted to the NeXT platform and would try to find ways to

become NeXT developers. Those that did would form small, independent software

companies of a handful of developers, who would go into business developing

exclusively for NeXTSTEP, the platform that they enjoyed so much. These

independents would make up the core of the NeXT developer community as the

market contracted. “It was a really close-knit community and… there’s a tiny group

of engineers that had done the NeXTSTEP and there’s a tiny group of engineers

outside of [NeXT] who is [the] Indie community who had contributed to [the

platform].” (Wil Shipley Interview, April 18, 2012)

Experienced developers interested in the latest developments in object-

oriented programming were attracted to NeXT as well. One such developer was

Bruce Webster, who wrote a Byte Magazine article in 1996 arguing that the “real

126

software crisis” was that “individual and team productivity to be the leading

predictor in estimating software costs; it’s twice as significant as product complexity”

and that this productivity could only be achieved with virtuoso programmers, who

“like excellent musicians and artists, are born, not made.” Like Brooks, he was

skeptical of a silver bullet, but he did acknowledge that “better tools, better on-the-

job training, better methodologies” were essential “because they raise the quality of

most developers.” (Webster 1996, 218) This was because by 1996, Webster had

become an expert in object-oriented design. If used correctly, he believed, it could

improve productivity, but only if developers followed certain principles and practices

and thought about object-oriented design completely differently from procedural

programming. Such issues he had discussed in his book, Pitfalls of Object-Oriented

Development (Webster 1995).

Webster had acquired this expertise as a NeXT user and developer, writing

The NeXT Book, a description and catalog of NeXT hardware and software, in 1989.

(Webster 1989) In the early 1990s, while Chief Technical Officer of a company

called Pages Software, Webster was a contributer to NeXTWORLD Magazine and the

president of the NeXT developer’s group, the Association of NeXTSTEP Developers

International (ANDI). (Webster 1992) In a 1992 NeXTWORLD editorial, Webster

voiced a concern many NeXT developers were facing. There was widespread

agreement that NeXT provided the best development environment, but the platform’s

small marketshare and proprietary nature, and the uniqueness of the programming

language and tools it used, made it difficult for developers to see a reason to write

for it.

“Sitting somewhere on the sidelines is NeXT, offering one of the best
development environments around—but on proprietary hardware
running proprietary software and using development tools not readily
available elsewhere…

The irony is that one of NeXTSTEP’s biggest advantages—use of
Objective-C and supporting tools—also serves as a major roadblock.
The rest of the world has gone chasing after C++ and has only slowly
discovered its limitations for object-oriented design, particularly with
regards to dynamic binding [a feature of Objective-C and Smalltalk

127

that allows for more flexible design]. On the other hand, developers
using Objective-C on the NeXT run into problems when they want to
move to other environments. These barriers, real and perceived, have
caused many developers to avoid NeXTSTEP development in the first
place. (Webster 1992)

Webster, noting that the software world was moving to a heterogeneous one,

in which developers needed to deploy “cross-platform” to multiple platforms,

advocated that NeXT port some of its development tools, such as the Objective-C

compiler, as well as a subset of its object libraries (the basic Foundation classes, but

not the AppKit user interface classes) to other platforms, such as Windows NT.

Despite NeXT’s fears that this would cannibalize its own platform, Webster argued

that this would attract and retain NeXTSTEP developers and users, as well as

showcase the platform’s advantages. Of this latter point, Webster noted:

Even with these tools available, NeXTSTEP would still retain its key
advantages for shrinkwrapped and mission-critical-application
development. Thus, as developers and customers adopt or experiment
with NeXTSTEP because of the cross-platform potential, it will
quickly become the preferred development and deployment
environment, subverting from within. (Webster 1992)

Whatever the disagreements with NeXT’s marketing or business strategies,

there was no disagreement about NeXT’s advantages for developing software.

Unfortunately, the business realities of NeXT’s tiny market, and its proprietary

strategy, was keeping these advantages hidden from the majority of developers.

Those few who did develop for NeXT felt that it represented the way all

development should be done in the future. That the best technology does not always

win is no surprise to historians of technology, who have shown how technologies do

not emerge in a vacuum, but are connected in complex socio-technical systems that

affect the choices of which technological direction is taken (T. P. Hughes 1987).

Ruth Schwartz Cowan has shown, for example, how quiet, gas absorption

refrigerators might have been “better” than electric ones from a consumer’s point of

view, but lost to electric ones because the development of the latter was encouraged

and financed by the powerful electric utilities (Cowan 1985).

128

Indeed, while large corporations were exiting the NeXT market, small,

independent software developers were becoming NeXTSTEP fanatics. In an article

titled “Getting Religion,” Simson Garfinkel, frequent NeXTWORLD contributor and

co-author of NeXTSTEP Programming: Step One, Object-Oriented Applications,

which became the canonical NeXTSTEP programming book of the 1990s, writes:

These days, there are two kinds of companies developing third-party
programs for NeXTstep: small, energetic companies, and the big guys.

The small companies are usually hungry start-ups.

They’re totally committed to the platform. They’ve gone bananas over
Interface Builder and Objective-C. They worship the Application Kit
and recite NeXT’s technical documentation in their sleep. They’re the
lean-and-mean companies like Adamation, Stone Design, and
Lighthouse Design, and they’re bringing out new applications five to
ten times faster than they would be able to on any other platform.

What differentiated these developers from most of the big corporate players is

that they completely embraced the NeXTSTEP platform; instead of writing ports

using cross-platform languages and libraries, which resulted in applications that

looked no different on a NeXT than on a Mac or Windows PC, these small

independents took full advantage of Objective-C, Interface Builder, and the AppKit

object libraries to produce applications many times faster than the large firms.

According to Garfinkel, corporate firms trying to cut corners were merely making

their lives more difficult, and producing applications that were not as good.

Developer Tip #1: Don’t reinvent the wheel. Rather than trying to
emulate the AppKit and make your program look like it was written
using Interface Builder, take the time to learn Interface Builder and do
it right. Send two people from your company to NeXT’s Developer
Camp… In the end you’ll get a faster, easier-to-use, and simply better
program.

Developer Tip #2: Follow the interface guidelines. If you’re porting an
existing program to NeXTstep, keep the program’s back end… but
throw away the user interface and start over. NeXTstep makes user
interfaces so easy that, even if it took you three years to develop your
X Window [a UI library for Unix systems] interface, you’ll be able to
develop a better NeXTstep one from scratch in a few months…

129

Developer Tip #3: If people can run the same program on their NeXT
as they can on their Mac or PC, what’s the point in buying a NeXT in
the first place?

Developer Tip #4: Dare to be different. Embrace NeXTstep—Use it all.
A lot of programmers moving to NeXTstep are hesistant to use things
like… [the] rich set of functions in the NeXTstep library. After all, a
program that uses these functions is harder to port to another platform.
NeXTstep works together as a reliable, integrated whole. Use it all and
you’ll bring your program to market that much faster.

Developer Tip #5: Use Objective-C. Many NeXTstep programmers are
afraid to use Objective-C for anything but the user interface. Some
want to use C++ for their back ends; others are scared of object-
oriented languages in general and want to use ANSI C. Don’t be afraid.
Objective-C is one of the reasons that NeXTstep’s Application Kit is
so good. Object-oriented programming is easy, once you get the hang
of it, and, as an object-oriented language, Objective-C leaves C++ in
the dust.

C++ may be the “industry-standard object-oriented language” these
days, but remember: Microsoft Windows is quickly becoming the
industry “standard window system.” If you want to use standards, get a
PC.

If you still need convincing, just look at Lotus. Rather than bringing
out 1-2-3 for the NeXT, they went back to the drawing board and
created Improv.

‘Nuf said. (Garfinkel 1992a)

While Webster argued that NeXT port some of its development environment

to other platforms to help committed NeXTSTEP developers deploy cross-platform,

Garfinkel was addressing the other side of the equation, exhorting corporate

developers, who had no love for the platform, to take the time to properly learn

NeXTSTEP and write “native” applications for it, in other words, use the libraries

(AppKit), developer tools (Interface Builder), and language (Objective-C) that were

“native” to the platform, instead of “reinventing the wheel” with foreign libraries and

languages. Not only would this kind of shortcut not realize the productivity

advantages of developing in NeXTSTEP, but the result would be inferior; because all

of NeXTSTEP “works together as a reliable, integrated whole,” using foreign tools

and code libraries would stick out like a sore thumb, creating mismatches in the

130

interface visible to the user, but also causing mismatches with the underlying system,

which was a recipe for bugs.

In contrast, the small, “lean-and-mean” independent companies Garfinkel

praised totally “got” the NeXT “religion.” They “worshipped” the AppKit and went

“bananas” over Interface Builder and Objective-C. For these developers, the

NeXTSTEP development environment was the best programming environment they

had ever experienced, and they believed that this was the future of programming.

Despite NeXT’s tiny marketshare, and maybe because of it, these developers felt like

a special, chosen few. Precisely because the rest of the developer world seemed to be

choosing C++, which they considered an inferior object-oriented language, they saw

it as their mission to spread the gospel of NeXTSTEP and Objective-C. If only

NeXT’s own short-sighted business strategies had not gotten in the way, everyone

might have seen the light. But as long as the platform was kept alive, there was still

hope that some day, this evangelical vision would come pass.

In the midst of Microsoft’s dominance over platforms, and C++, and later,

Java’s dominance in programming languages, only the die-hard fans of NeXT’s

development environment remained on the platform. The productivity advantages

and consistency of the system made NeXTSTEP less frustrating and more

pleasurable an environment to program in, and it was difficult to go back to

Windows or C++ once having tasted the nectar of AppKit and Objective-C. But, as

Webster noted, the economic reality was that making NeXTSTEP-only development,

especially of shrink-wrapped applications, increasingly difficult.

Imagine being in this industry for 24 years and for 12 of it, people are
just like, you know your technology is on 50,000 [computers]
worldwide. Who do you think you’re fooling, do you think you’re
going to be Microsoft with your 50,000 computers? …It was hilarious,
for the first 12 years of my career, everyone was like, ‘what are you
doing, why don’t you work for Microsoft? I don’t understand, you
have no chance.’ (Wil Shipley Interview, April 18, 2012)

Fortunately for NeXT and its developer community, NeXT’s development

advantages did make it attractive to certain niche markets for which speed of

131

development of custom solutions took precedence over platform compatibility or cost.

NeXT’s turn in 1992 to the “enterprise” market and to “mission critical custom

applications” development, and its shift from a hardware company to a software and

services company allowed it to survive, albeit a pale shadow of its former, world

changing ambitions. Most of the customers that would pay any cost for rapid custom

application development were Wall Street financial firms, and to a lesser extent, the

federal government, in particular, the intelligence and security apparatus.

NeXT and Wall Street

As described by Randall Stross, NeXT in 1993 was a company struggling to

survive. It had burned through millions of investor dollars, built a state of the art

factory that ran idle, and eventually closed down its hardware business. NeXT’s

computers had been too expensive compared to Macintosh and IBM-compatible PCs,

and its hardware was too slow compared to workstations from Sun Microsystems.

NeXT computers had an identity crisis—they were trying to be personal computers,

while competing in the higher end market for workstations. NeXT also had

significant trouble deciding what its core market should be. Initially it targeted

higher education, but this was not a large enough mass market, and the average

college student simply could not afford a NeXT. NeXT then tried to market a vision

of “interpersonal computing,” a term that connoted networking PCs to create a

collaborative working environment, but it was difficult to convey to potential

customers NeXT’s advantages compared to other PCs.18 It appeared that NeXT

would try any market it could sell to, without any coherent marketing strategy. Its

18 In an interview with NeXTWORLD, Steve Jobs remarked, “You could call

it groupware. You could call it interpersonal computing. You could call it

collaborative computing… The problem is that people are not running around

thinking they have a problem. In other words, I don’t run into customers who are

pulling their hair out saying my collaborative computing environment isn’t good

enough…” (Ruby and Jobs 1992)

132

first non-academic customer installations were eclectic, including the William Morris

Agency, a Hollywood talent agency, Alain Pinel, a Bay Area realty, and the L.A.

County Sheriff’s department. (Karon 1992a; Stross 1993) “The interest of the

William Morris Agency, Jobs told his staff, was validation of his laissez-faire

marketing strategy, firing buckshot indiscriminately at the entire business world and

seeing what customers stepped forward.” (Stross 1993, 223) Jobs’s attitude to

marketing was that if he simply built the hottest, most state of the art personal

computer, customers would automatically come to NeXT. “‘If we build it, they will

come.’ This is, succinctly stated, the Steve Jobs Philosophy of Marketing.” (Barlow

1992) This turned out to be a failed strategy for creating a new platform competing

against established players in the market. A 1992 survey of the NeXT market by

NeXTWORLD Magazine attempted to catalog who NeXT’s customers were, and the

results seemed to be all over the map. NeXT computers were being sold to the health

care industry, the Department of Defense and the nation’s intelligence apparatus,19

desktop publishing, and office automation (DiNucci 1992; Karon 1992b;

NeXTWORLD 1992a; NeXTWORLD 1992b).

Nevertheless, by 1992, a new picture was emerging, and NeXT’s shift in

strategy to pursue the “mission-critical custom applications” market by emphasizing

the advantages of its object-oriented development environment was catching on in a

few key markets where price was not a primary concern. National intelligence, for

19 “Like shadows… government agencies have quietly become some of the

largest NeXT installations, with up to 300 workstations. But for security reasons they

hesitate to publicize their use of the platform.

Nevertheless it is known that NeXT has found a ready customer in the

Department of Defense and its related intelligence agencies. A thriving industry of

NeXT systems integrators and consultants has grown up in the suburbs around

Washington D.C. to support this growth market.

…And several NeXT software suppliers have reported sales to ‘secret

customers.’” (Silverstone 1992)

133

one, found this to be useful. “‘Intelligence and defense have a strong need for

sophisticated software solutions that they cannot buy off the shelf,’ says Gary Fuller,

president of GWF Sierra Concepts, a Sonoma, California, consulting firm working

with NeXT in the intelligence community. ‘The NeXT facilitates the development of

custom software on a quicker turnaround, resulting in higher productivity.’”

(Silverstone 1992) However, a much larger market, and one that could be openly

publicized, could be found on Wall Street. For financial companies, hardware and

software costs were miniscule compared to the potential profits that technological

advantages over competitors could bring.

In the world of commodities trading, a few seconds can mean the
difference between profitability and bankruptcy. For traders and
Philbro Energy, the world’s largest crude-oil trading company… to
better compete in the 24-hour-a-day commodities trading arena of the
1990s, they’ve come up with a solution as black20 as the product they
sell… The solution they came up with—NeXTstations running custom
in-house applications—has even allowed the energy giant to form a
second company to resell the software to other players in the world of
commodities trading. (Borsook 1992)

A similar logic was driving the use of NeXT at securities firms Lehman

Brothers, UBS, and O’Connor and Associates, particularly in the emerging equity

derivatives market.

The margin for error on trades that typically reach hundreds of
millions of dollars is nil. With many trades, decisions have to be made
in seconds. And since competitors are watching similar screens, ‘if
they decide before you,’ says [Hadar] Pedhazur [UBS vice president of
Equities Technology], ‘you lose.’

…For UBS, it wasn’t a question of choosing NeXT over another
machine…

NeXT’s proven speedy development cycle was the main reason they
felt the job couldn’t be done on another workstation. ‘You get a
machine whose heart and soul is object oriented,’ says Pedhazur. ‘The

20 NeXT computers were painted jet black and affectionately known as “black

hardware.”

134

tools that come out of other companies don’t stand up.’ Companies
that choose another hardware environment, says Pedhazur, are having
to start from the ground up. ‘Every single one is building their tools in-
house,’ he says. ‘That’s a risk that isn’t worth it to me.’ [emphasis in
original]

…custom applications are driving the use of NeXT at UBS
Securities…” (Littman 1991, 38)

For such firms, the technological risk of using a non-standard, niche platform

with an uncertain future was vastly outweighed by the financial risk of losing out to

competitors.

“It’s a major political battle to buy NeXT,” says Hadar Pedhazur…
“People are asking, ‘What if NeXT goes out of business?’

 …We don’t believe NeXT is going out of business, but it’s a risk
we’re willing to underwrite for the benefit of using NeXT computers…
We’re in a business where responding in days or weeks [with a new
custom derivatives trading program] instead of months is the
difference between profit and loss,” says Pedhazur.

Besides, says Pedhazur, the machines will earn their keep quickly. “If
NeXT allows the bank to play in a new financial arena, we might make
all the money to justify the risk within a one- or two-month period.”
(Littman 1991, 38)

For Wall Street securities firms, NeXT’s object-oriented productivity

advantage for rapid development of custom software was not just a marketing slogan,

or the blind faith of a Steve Jobs acolyte. It was real enough to put millions of dollars

on the line, as the industry’s newest instrument, derivatives, demanded the best

technology available in order to maximize its profit potential.

Indeed, Wall Street would keep the NeXT development community alive, by

providing developers with lucrative contracts to develop custom software. By the

mid-1990s, packaged, “shrink-wrapped” software was a dying market for NeXT

developers. In an article titled “Who Needs Shrink Wrap,” NeXTWORLD editor Dan

Ruby comments:

Once in the vanguard of the crusade for the personal workstation,
commercial NEXTSTEP [sic] developers now seem like an
afterthought in a market focused on specialized custom applications.

135

On Wall Street, it turns out, there isn’t much call for great publishing
software. Even when custom apps are deployed, it’s not a sure thing
that users will want general-purpose productivity applications… It’s a
pretty dreary picture for today’s suffering NEXTSTEP developer.
(Ruby 1993a)

Such companies such as AppSoft and Glenn Reid’s Rightbrain had gone out

of business (Ruby 1993b). Instead, contracting for custom in-house software made

up the bulk of the available work. OmniGroup, now an independent Cocoa

applications company in Seattle, got its start doing contracting development for

Lighthouse Design, helping it with its desktop applications. For most of the 1990s,

however, it maintained its income by contracting for firms like McCaw Cellular,

(which later became AT&T Wireless) writing enterprise software. Wall Street banks,

driven by the profit potential of the derivatives market, were exploring all manner of

bleeding edge software technologies, including object-oriented technologies. “Banks

have advanced technology groups that are into all kinds of things. You can find

pockets of Lispers and Smalltalkers on Wall Street, too. Back before the

Apple/NeXT merger, financial companies were where the bulk of the work was.”

(John C. Randolph, Personal communication with the author, instant message

conversation, August 3, 2011) Indie Cocoa developer Bill Moorhead of Black Pixel

was a Smalltalk developer in the 1990s, and had worked for a bank. “It may not be

known, but banks [had] a lot of Smalltalk… For some reason it was part of the

culture.” (Interview with Daniel Pasco, Bill Moorhead, Chris Clark, George Dick,

June 12, 2009)

Similarly, Aaron Hillegass, founder of Big Nerd Ranch in 2001 and had been

a NeXT and later Apple employee in the 1990s, had one of his first jobs at a

company selling technology based on the object-oriented language Eiffel. One of its

customers was a Wall Street bank, and Hillegass, who was deep in debt, eventually

took a contracting job with the bank in order to repay his debt. Although hired for his

Eiffel experience, at the bank, he quickly shifted to writing Objective-C code for

NeXT machines. The NeXT-based system he worked on was being used for

mortgage-backed securities. (Aaron Hillegass Interviews, June 6, 2011, and July 7,

2011) John C. Randolph, a Cocoa Evangelist at Apple in the early 2000s, had also

136

contracted for Wall Street in the 1990s. This shift to enterprise consulting was so

successful that the market eventually perceived a shortage of experienced NeXT

programmers. “There ought to be a flyer in the NEXTSTEP [sic] Developer box that

reads like this: ‘Some Assembly Required. Skilled NEXTSTEP contractors not

available for purchase, but may be rented for upwards of $100/hour—if you can find

them.’ The ever-increasing price of NEXTSTEP programmers is a symptom of a real

problem: demand is outstripping supply.” (Lavin 1993)

Steve Jobs had poured a considerable amount of his own personal fortune into

keeping NeXT alive when other startup founders might have decided to fold and start

over. Randall Stross’s account of NeXT’s early years (Stross 1993) suggests that

Jobs had founded NeXT to redeem himself from his fall from Apple, and with his

ego bound to NeXT’s fate, he would do anything to avert its failure. This might

suggest a reason why a self-proclaimed counterculturalist like Jobs might make the

Faustian bargain of working with Wall Street.21 Jobs had already become bedfellows

with rich tycoons to finance NeXT. H. Ross Perot had been NeXT’s largest investor,

and Jobs, who later hosted the Clintons at his home, even endorsed Perot’s

presidential candidacy (Ruby and Jobs 1992). For some countercultural Jobs

admirers, however, cozying up to Wall Street felt like a betrayal of the anti-corporate

stance of his youth. John Perry Barlow, Grateful Dead lyricist and Electronic

Frontier Foundation founder, wrote an article in NeXTWORLD worrying that NeXT

might lose its soul.

Well, now it appears [NeXT] knew how to sell itself after all. The
Mystery Market is revealed at last and turns out to be none other than

21 Another explanation is possible, however. Jobs’s later deals with the music

industry, Disney, and even Microsoft shows that he was not above working with

large corporations if it suited him. He may have been an opportunist who would

work with anyone if it furthered his own interests, and his binary tendency to label

others “heroes” or “shitheads” could turn on a dime, differing from one day to the

next. (The Economist 2007)

137

MIS [Management Information Systems]! Corporations are suddenly
using NeXTs to write custom applications they once wrote on
mainframes and PCs… I have to admit that if my sole objective were
to move black boxes [NeXT computers], this is probably the best way
to do it. My optimism is restored. NeXT is going to make it.
Nevertheless, I have several remaining concerns…

I suppose, though, my greatest concern is for the soul of NeXT. It is
invariably true, as Mitch Kapor learned at Lotus, that companies come
to resemble their markets more than their makers.

I can think of no exceptions to this rule. Consider the cultural
transformation of Apple after it pegged its sights on corporate sales.
Or the staid flavor of DEC. Or the tight resemblance between hackers
and UNIX-weenies inside or outside Sun. Given that this rule exists,
one should choose his markets with a measure of personal aspiration.

I was already somewhat concerned on this account over large NeXT
purchases by the Royal Canadian Mounted Police and the Los Angeles
County Sheriff’s Department. And I would have been alarmed to learn
the CIA has sent over 40 employees to NeXT Developer Camp if I
hadn’t figured the cultural resemblance between The Company and
NeXT to be striking enough already.

But MIS?! Steve may find his company going down IBM’s path in
more ways than one. After so many years of corporate rejection, he
may have acquired sufficient VP-ness Envy to welcome this
prospect—but it’s a grim realization for an unreconstructed hippie like
myself.

(Barlow 1992)

Barlow’s jeremiad seemed to be one of the few that actively worried about

this. Indeed, NeXTWORLD published enthusiastic articles celebrating the use of

NeXT by any customer, whether it be law enforcement, the CIA, or Wall Street.

NeXT’s users believed that NeXT was the future of computing, and its disappointing

sales were like the end of the world not arriving for an apocalyptic cult. “The Wave

of the Future, the object-oriented operating system that both Microsoft and Big Pink

[the Apple/IBM joint venture, Taligent] are millennia away from delivering, has been

available for some time, already debugged and running like God’s wristwatch—and

it has not sold. Indeed, the world’s most elegant computer, just about the greatest

thing since group-sex, has only shipped 36,000 units since 1988.” (Barlow 1992) In

such a dismal environment, NeXT users might celebrate the use of NeXT computers

138

by anyone as justification that their preferred platform truly was the best. Wall Street

and the CIA needed the best technology, and they gave NeXT their endorsement.

Moreover, NeXTWORLD, and possibly the NeXT community itself, seemed to

be increasingly technolibertarian in ideology, which could support the idea of

corporate use of NeXT. Jobs had already cozied up to Ross Perot. NeXTWORLD

Magazine itself seemed to be a trial run for what would eventually become Wired

Magazine. Its first few issues, though nominally about the NeXT platform, was

actually advancing a technologically utopian view of society, featuring an editorial

by Nicholas Negroponte, and an interview with futurists Alvin and Heidi Toffler.

NeXT computers, which were supposed to be the most advanced, were a synecdoche

for this vision of the future. Indeed, in this light, the presence of John Perry Barlow,

who was a frequent NeXTWORLD contributor, is not that surprising. According to

Paulina Borsook, Barlow himself represented one wing, the countercultural one, of

the technolibertarianism that became fully articulated later by Wired (Borsook 2000).

Borsook had become acquainted to this ideology from the inside; she herself had

been a contributor not only to Wired, but also to NeXTWORLD before it, penning the

article, “Striking it Rich: Oil trader leverages the future on NeXT.” (Borsook 1992)

Nevertheless, NeXT users and developers who had experienced the NeXT did

feel that it was the “world’s most elegant computer” and “the Wave of the Future” as

Barlow put it. However, the rest of the world did not seem to understand what they

were missing. In this situation, NeXT and developers would take whatever validation

they could, even if it came from Wall Street. The platform was in survival mode.

However, ultimately, they were not satisfied with survival. They wanted to see NeXT

and its superior technology make its way to the wider world, and empower individual

consumers, not just Wall Street bankers and CIA spies. NeXT developers felt a sense

of mission to not only keep the platform alive, but to ultimately evangelize it to the

rest of the programmer world.

I think a lot of us were, like, we need to keep NeXT alive until the
world notices it. (Wil Shipley Interview, April, 18, 2012)

139

Third party developers such as Shipley, felt that NeXTSTEP represented the

way all programming ought to be done in the future. Technological progress,

however, was being inhibited by the monopoly power of Microsoft. But for true

believers such as Wil Shipley, the time for NeXT’s technology would come, if only

the developer community could keep it alive.

NeXT’s employees felt a similar sense of mission. Julie Zelinski, a former

software engineer at NeXT, expressed the feeling that NeXT was special and

exceptional, ignored and unappreciated by the mainstream of the computer industry.

This was driven by their belief that they were creating the best the technology in

itself, but also by the sense of purpose instilled in them by Steve Jobs’ charismatic

leadership.

NeXT was really just toiling away in obscurity, I mean we were
crusaders, I loved what I did… back in ’92, ’93, ’94 we were selling
like 1000 machines a year… no one cares, we get all this great press
that says it’s beautiful, it’s awesome, it’s well-designed, [but] no one
buys it, right? And the thing is, it didn’t bother us. We just kept doing
it. We just kept going to work and we’re excited and we’d talk
ourselves into, like, well it doesn’t matter whether we’re getting
appreciated by the world, we’re doing what’s right, our technology
makes sense and it’s worthwhile… We were oddballs. We weren’t a
mainstream company, we didn’t have apps, you know. …It’s
unrequited. We work really hard to build these awesome things but
they’re not getting traction. […]

I really believed in what we did… Steve [Jobs] had a way of… making
you feel like you were doing something… important… worthwhile…
You actually felt like it was kind of noble… I mean the technology
was really great, but… Steve… he just really just infused that
company with a sense of purpose. (Julie Zelinski Interview, April 24,
2012)

To NeXT employees, developers, and users, NeXTSTEP was another superior

technology that, like Apple before it, had lost the marketshare battle to Microsoft.

There was a feeling that NeXT technology, which supporters had once hoped would

lead the way into the future for computing, might be lost to history if the company

went out of business. Its use by Wall Street and a few other specialized markets

vindicated their sense that NeXT technology was superior, and this use kept NeXT

140

alive, but only as a shadow of its former self, its world-changing ambitions reduced

to scraping by as a forgotten, marginal player in the industry. NeXT developers like

the independent startup OmniGroup, founded by Ken Case, Wil Shipley, and Tim

Wood, kept the faith, believing that NeXT’s advantages were self-evident, and

hoping that someday, someone would notice, and give it its time in the sun.

OmniGroup had coalesced as a group of friends who wanted to write NeXT software

for fun and make a living out of it. While Tim Wood kept the company afloat

working on the McCaw Cellular contract, Ken Case and Wil Shipley often worked on

end-user oriented applications like OmniWeb (a web browser) that were often

released for free. (Ken Case Interview, February 10, 2012) These were more

fulfilling projects but were not a significant source of the company’s revenue;

somebody like Wood still had to take on the boring business contracts to keep them

fed. Developers like Shipley longed for a day when they could make a sustainable

living producing consumer software. But having experienced the advantages of

NeXT’s object-oriented development environment, they also refused to write

software for any other platform. If NeXTSTEP would never reach the masses, they

would have to live with being contractors in the enterprise market. Few would

anticipate that NeXT technology would find its way to a consumer market sooner

than they had anticipated. This would come from a most unlikely savior—the

company that had scorned Steve Jobs before, Apple. Jobs had started NeXT to

replace Apple in the marketplace. Now NeXT technology, its people, and its culture

would remake Apple from within.

The Vindication of the NeXT community

When the news arrived that Apple was in talks to acquire NeXT, NeXT users

and developers, having experienced a ghettoization of their platform, were extremely

excited. Their stubbornness had paid off. In late 1996, then Apple CEO Gil Amelio

and VP of software, Ellen Hancock, had concluded that Apple’s project to modernize

its venerable Macintosh operating system in-house had gone off the rails, and the

company needed to acquire one externally to replace it. Initial talks had been

conducted to acquire BeOS, created by Be, the company founded by Jean-Louis

141

Gassée, another former Apple executive. However, Gassée, sensing desperation,

overplayed his hand, and soon Amelio was in talks with Steve Jobs. Apple’s $429

million acquisition of NeXT in December of 1996 changed the fortunes of both

NeXT and Apple. By 1997 Amelio and Hancock were out, Jobs had installed his

lieutenants in positions of power in the company and assumed control as interim

CEO (Deutschman 2000; Isaacson 2011).

With former NeXT executives fully in charge at Apple, work on replacing the

classic Macintosh operating system with one based on NeXTSTEP could begin. In

early 1997, Apple announced that its future NeXTSTEP-based Mac operating system,

code-named “Rhapsody,” would require developers to rewrite their applications

using NeXTSTEP’s Objective-C based AppKit and Foundation frameworks. This

native Rhapsody development environment was called the “Yellow Box,” to

distinguish it from the “Blue Box,” a compatibility environment that would run

unmodified existing Macintosh applications in a virtual machine. This created a two-

tier system in which existing Mac apps were now second class citizens, and sent a

message to third party developers that if they wanted to write native apps, their

existing C and C++ code bases that had been built up over a decade would have to be

thrown out; moreover, they would all be forced to learn Objective-C, which was an

obscure language that no other company in the industry used. Third party Mac

developers revolted, including industry giants Microsoft and Adobe. Apple could not

afford the loss of these two third party developers: Microsoft Office’s dominance

meant that any viable home or business personal computer had to be able to run it or

risk irrelevance; most of Apple’s profits in the late 1990s came from high-end Macs

sold to content creators and publishers who used Adobe Photoshop or applications

that Adobe had acquired, like Pagemaker or Dreamweaver. To lose the support of

either Microsoft or Adobe at a time when Apple was at risk of going out of business

would have been fatal. In response to this misstep, Apple came up with a

compromise. In 1998, Apple announced Carbon, an updated, modernized but still

procedural-C based version of the original Macintosh Toolbox APIs that would be

fully native on the new NeXTSTEP-based operating system, which would itself

142

eventually be renamed “Mac OS X,” with the “X” being the roman numeral for ten,

to differentiate it from the classic Mac OS, which had version numbers with Arabic

numerals. The Objective-C based “Yellow Box,” composed of the AppKit and

Foundation, was renamed “Cocoa” under this new scheme, and would co-exist in

parallel with Carbon on Mac OS X. Development of Mac OS X would take close to

five years, with its first full release in March of 2001. Until then, frequent updates of

the classic Mac OS, versions 8.0 through 9.1, were released as stopgaps.

The announcement of NeXT’s acquisition by Apple had immediately

reenergized the long-suffering NeXT developer community. Says Wil Shipley, “The

day Apple bought NeXT, it was our Christmas… We were like, ‘Oh, my God, this is

it.’ Like, we finally have our shot.” (Wil Shipley Interview, April 18, 2012) Another

former OmniGroup employee recalled, “The sun [was] getting dimmer and dimmer

and dimmer, and people are starting to figure out, are we going to have to become

cannibals or what? And then all of a sudden it’s light again, it’s amazing! We had,

like, customers with an actual opportunity for the technology to survive.” (Luke

Adamson, Interview, February 22, 2012)

The merger of NeXT and Apple was the first major environmental shift for

NeXT-turned Cocoa developers. NeXT developers had not had a viable market for

end-user desktop applications since NeXT had closed its hardware business, and

even before then, that market had never approached the numbers of the Apple

Macintosh. Apple provided an already existing base of consumers who were

staunchly loyal to its platform, and were willing to spend money on quality software.

Moreover, the economics of independent software development were changing. In

the days of physical floppy disk or CD-ROM software distribution, developers were

separated into the large corporate firms that could afford to pay for expensive retail

shelf space and independent shareware developers who distributed their wares for

free at local user-groups, on BBS’s, or through the mail, and relied on users to send

them money after the fact, often on the honor system with no guarantee of actual

payment. The dot.com boom of the late 1990s, which created the e-commerce

infrastructure for electronic distribution and payment over the Internet, allowed

143

independents to achieve distribution on the same scale as corporate firms without the

risk or expense of physical inventories. Mac OS X and the Internet allowed a number

of former NeXT developers to become “indies,” which many Apple developers

started to call themselves in the early 2000s.

One of the most prominent former NeXT developers to make the transition to

indie consumer Mac application development was the OmniGroup. Omni released

consumer apps such as OmniOutliner, an outlining tool, and OmniGraffle, a graphing

tool written by Kevin Steele (formerly of Lighthouse) that was a ground-up rewrite

of Lighthouse’s “Diagram!” application. These apps enabled Omni to become

independent of contracting by the mid-2000s and grow into a company of almost a

hundred employees by 2012. Wil Shipley, who preferred working on his own

projects rather than managing a company, eventually left OmniGroup to form his

own company, producing a visually stunning book and media cataloging application,

Delicious Library, which won Apple Design Awards in 2005 and 2007.

The Cocoa community did not remain solely composed of former NeXT

developers, however. It expanded as a number of shareware Macintosh developers,

seeing Cocoa as the future of Apple’s platform, switched over to using Cocoa from

Carbon. These included Brent Simmons, who wrote the popular NetNewsWire

Usenet newsgroup and RSS feed reader, and Panic, which started with the MP3

player Audion on classic Mac OS, but shifted to making the Cocoa-based FTP client

Transmit. Although such Carbon to Cocoa conversions were few compared to the

large numbers of corporate Carbon developers who worked for Adobe or Microsoft,

because of the small existing size of the old NeXT community, they made for a

significant expansion of the Cocoa community. As OS X matured and its use spread,

new programmers who wanted to write Mac software, such as Mike Lee, often

decided to start with Cocoa. Mike Lee had been working for Alaska Airlines when he

decided to apprentice himself to Wil Shipley for a year, ultimately joining Shipley’s

company, Delicious Monster.

144

For five years, Cocoa and Carbon were both officially supported by Apple,

which told developers that both were equal peers that would continue to be

developed in parallel for the foreseeable future. Apple’s third party developer

community, however, was initially divided between Carbon and Cocoa developers.

Former NeXT developers, such as Shipley, did not hesitate to proclaim the

superiority of object-oriented Cocoa over procedural Carbon. Although most third

party Carbon apps were written in C++, an object-oriented language, NeXT devotees

considered C++ an inferior language to Objective-C because it did not force

developers to think in object-oriented ways. Carbon developers resented what they

felt was arrogance on the part of the NeXT people, who they felt came into the Mac

world and took over. Moreover, the NeXT executives in charge of Apple had initially

sent them a similar message with the Rhapsody strategy. Despite retreating from this,

Carbon developers continued to see slights every time Apple moved to favor a

NeXT-based technology in OS X over a Mac-based one. A suspicious Carbon

developer could reasonably think that Apple’s long-term plan was to get rid of

Carbon and eventually focus on Cocoa as the sole native OS X development

environment, despite Apple’s continued messages to the contrary. In 2006, their fears

were finally realized. Apple was undergoing a major transition in its operating

system from 32-bit to 64-bit, which required that application frameworks needed to

be updated for applications to take advantage of 64-bit capabilities.22 Apple

announced that in the next version of Mac OS X, 10.5, Cocoa would be updated for

64-bit operation but not Carbon. This clearly signaled to developers that Carbon no

longer be in active development in future versions of OS X, effectively relegating it

to the dustbin.

22 Such capabilities include being able to handle large contiguous chunks of

memory. Applications such as Photoshop work more efficiently if they can map a

large 2GB file directly into memory as a single unit, which requires 64-bits. 32-bit

applications must rely on tricks to break up the memory into small chunks that have

to be linked to each other, which requires additional overhead.

145

The second major environmental shift for Cocoa developers was the release of

the iPhone in 2007 and the opening up of the iPhone App Store in 2008 to third party

development. While some developers retrospectively believe that Apple intended to

open up the iPhone for development all along, my assessment of Steve Jobs’

orientation towards maintaining control, supported by evidence from Isaacson’s

biography of Jobs, suggests that it was third party Cocoa developers and iPhone

users-turned-hackers that created the market for apps on the iPhone, forcing Apple to

reverse its stance on sanctioned third party app development. On its release in 2007,

the Cocoa developer community immediately understood the iPhone to be essentially

a scaled down Macintosh, running a version of OS X. “[My coworker] Tristan calls

his iPhone his trouser Mac. That’s really, that’s what it is. It is a Mac, in your pocket,

that also makes phone calls and takes pictures. Which a lot of Macs do anyway.”

(Mike Lee, Interview, July 23, 2008.) The potential was obvious—one should be able

to write fully native applications for the iPhone, that could be as functional and

sophisticated as anything on the Macintosh, rather than the limited programs one

could find on the cellular phones of that era. However, Steve Jobs announced

initially that developers would not have access to an SDK to write native apps for the

iPhone. They would have to make due by tailoring web applications for the iPhone

instead. Walter Isaacson’s biography reveals that Jobs was concerned with

maintaining control over the quality of a user’s experience with the iPhone,

something that third party developers might mar with badly written, even malicious,

programs, though some executives were actively lobbying to change his mind

(Isaacson 2011). Hackers quickly discovered how to “jailbreak” the iPhone to allow

customization. Developers such as Lucas Newman, at the time an employee of Wil

Shipley at Delicious Monster, tinkered with jailbroken iPhones and discovered how

to write programs for the Unix-based devices. Less than a year after the iPhone’s

release, an underground market of native applications written for jailbroken iPhones

had exploded. The users had spoken. Apple could either try to stamp out this market

against the enthusiasm of its users, or legitimize it and get ahead of it, providing

their own app market under their control. They chose the latter, announcing the App

146

Store and the iPhone SDK in March of 2008, with the App Store scheduled to go live

in July.

While creating apps for the underground jailbreak market had primarily been

the work of hackers who searched through header source files to find hooks into the

iPhone’s functions, the iPhone SDK, which is based on the Cocoa toolkit on Mac OS

X, immediately made existing Cocoa developers instant experts on iPhone

development at a time when no other programmers had any comparable expertise.

Apple signaled this by branding the iPhone SDK, “Cocoa Touch” to signal that it

was simply the touch-input version of Cocoa on the desktop. Development for both

platforms takes place in Apple’s Integrated Development Environment (IDE), called

Xcode, and use the same compiler and same programming language, Objective-C.

Cocoa on Mac OS X is roughly divided into a lower level layer, Foundation, and a

higher-level one, AppKit, which provides graphics routines and user interface

controls. (Foundation and AppKit have retained their names from NeXT. The names

of most object classes in these libraries start with prefix “NS,” signaling their origin

on NeXTSTEP.) On iOS, a new framework called UIKit, designed from the ground

up for touchscreen interaction, replaced the AppKit, which had been tailored to

mouse-based input. Although new, UIKit’s design was based on similar principles as

AppKit, but allowed the team to discard unneeded legacies and learn from its

mistakes.

As noted in the previous chapter, the iPhone App Store made developing for

an Apple platform attractive for the first time to thousands of developers who

previously would have avoided it. Apple made efforts to make iPhone development

more accessible to individuals. Unlike Microsoft, Apple distributed its developer

tools for free on Mac OS X, and distribution on the App Store required only a $99

annual Apple Developer membership. For a 30% cut of revenue, Apple would

provide a distribution platform free from having to host one’s own website or sell

expensive retail boxes. Developers of all sizes could compete with each other on a

more level playing field. In this new environment, it seemed that anyone could write

an app and sell it on the App Store. Apple seemed to be democratizing app

147

development. The press was awash with stories of programmers who quit their day

jobs after making a fortune on the App Store. Other stories stressed the ease with

which one could write an iPhone app—one story featured a Chinese boy. (Smykil

2009) To the indie Cocoa community, this was the culmination of the dream, and the

fact that iPhone development used NeXT technology vindicated their faith all along

that NeXT’s object-oriented development kit was the future. Indeed, for some

developers like Wil Shipley, Cocoa’s triumph with the iPhone now allowed one to

rewrite NeXT’s history as not one of failure, but one of success, a tale of stymied

technological progress that finally got to see its vindication. Likewise, for the

formerly beleaguered NeXT developer community, the success of Cocoa Touch

proved that they were right all along in their devotion to Cocoa. “Now we’ve crushed

them. I install [on] like 125 million devices worldwide, or something. We’ve actually

crushed everything else. Ha ha ha ha.” (Wil Shipley April 18, 2012)

The market for small-scale iOS apps, which are smaller and quicker to write

than large, feature-bloated desktop applications, also encouraged small-scale

development by hobbyists and entrepreneurs. For the Cocoa community, this also

validated the chosen economic and labor model, the model of the independent

artisan-programmer, which had been the form of organization for them as NeXT

developers during the 1990s. Looking back, Cocoa developers who had started on

NeXT now tell a triumphalist narrative, in which their struggles in the wilderness

during the 1990s would lead to NeXT technology powering Apple and iOS, and its

loyal developers, to take over the world, creating in the process a technolibertarian

utopia for independent, entrepreneurial software development of consumer

applications.23 They trace a straight line between their independent development on

NeXT to their status as indies on OS X and now iOS.

23 This sense of utopia may have been just an initial overreaction. In 2014,

there has been much discussion on the Cocoa blogosphere that indie iOS

development simply is not sustainable anymore. (Simmons 2014) In the iOS game

148

“Yeah, so we instantly saw [NeXTSTEP in the 1990s] and we said…
it’s us versus [the hundreds of programmers writing Microsoft
Word]… [That] is not the future we see, we don’t want the automobile
industry to be the software industry. We want it to be the individual
artisan, and we won. We fucking won. There are still big software
companies, but I don’t think there’s anyone that’s going to sit here and
tell you that innovation is coming out of Adobe. …Now, no one gives
a shit. No one cares. It’s not driven by them anymore. It’s, what is the
next Tiny Wings going to be.”

[…]

One guy is making Tiny Wings and making ten million dollars, I don’t
know, so much money, right? One guy. One guy makes this damn
thing in fucking Newfoundland… over the ocean, and he’s a dude.
Remember the story of one guy making a car? No… One guy make a
drug? No… It doesn’t fucking happen. This is it! This is the industry,
the only thing in the entire world, where one guy can [have] a hundred
million customers. (Wil Shipley, Interview, April 18, 2012)

 “This is like my wildest dreams come true. Millions and millions of
indies! And we’re all working together in this way…”

(Andrew Stone, Interview, June 7, 2011)

Longtime NeXT/Cocoa developers see Apple’s iPhone and its app market as

allowing individual developers to compete head-to-head with giant corporate

software firms, dramatically democratizing software production, liberating it from

corporate oligopoly control, and empowering millions of users by transforming them

into app makers, free to customize their iPhones by making apps for their own use.

Part of this they credit to the App Store itself, which removes the need for setting up

one’s own distribution and payment infrastructure. However, for veterans of the

NeXT era, who have waited so long for the rest of the programming world to

development space, there has been increasing market consolidation, and

independents have a difficult time competing with big name companies. It appears

that the mobile market is no different from other markets—an initial period of

entrepreneurial activity is followed by consolidation and eventually oligopoly of the

big corporate players.

149

experience the pleasures and advantages of programming with Cocoa, it is also due

to the qualities of Cocoa itself. As Brent Simmons, creator of NetNewsWire, remarks,

A lot of the work that we had done for the past ten years [from roughly
1998 to 2008] at that point, was about trying to see this platform that
we felt made us five to ten times more productive, succeed. So we
could continue using this productive platform instead of having to go
off into Windows programming or Java programming or whatever the
alternatives were…

[Cocoa gave us] power. The ability to do more with less code. (Brent
Simmons Interview, February 17, 2012)

As developers like Brent Simmons see it, Cocoa’s ability to magnify their

power, to help them do more with less code, is a direct consequence of its design as

an object-oriented development environment. As we have seen in this chapter, this

rhetoric of magnifying productivity, repeated by NeXT itself and its developer

community in the 1990s, was echoing arguments by Brad Cox and others that object-

oriented programming could be the silver bullet to solve the software crisis. However,

even in the late 1980s, when NeXTSTEP was first shipped with NeXT hardware, it

was not the dominant object-oriented development environment. C++ was, and

would continue to be until it was supplanted by Java. NeXT developers then, and

Cocoa developers now, continue to argue that Cocoa is superior to both C++ and

Java for making programmers more productive (though they might acknowledge that

some newer environments, such as Python and Ruby, are equal to or better than

Cocoa). Clearly, then, not all object-oriented development environments are equal in

the eyes of Cocoa developers. In the next chapter, we will explore more fully the

specifics of Cocoa technology and why Cocoa developers believe it is better than

other object-oriented platforms.

150

Chapter 3: Why is Cocoa Better? Technical Design,
Normative Practice, and Trust in Apple among

Cocoa Developers

In chapter 1, we discussed the ideological, normative, and affective aspects of

the cosmology of the Cocoa developer community, in particular, its celebration of

the “indie.” Cocoa developers spoke in particular of the pleasure they experienced

working with Cocoa technology. However, this story might have been told about a

number of programming subcultures and their affective commitments to particular

tools and platforms. Do the specific qualities of Cocoa technology itself matter? If so,

why and how do they matter to Cocoa devotees? In this chapter, we will examine the

technical arguments Cocoa developers use to articulate why they believe Cocoa is a

superior technology for their needs, and possibly for programmers in general.

In chapter 2, we looked at the historical origins of the discourses we will be

examining here. Much of this argument for object-oriented programming in general,

and NeXT specifically, focused on improving programmer “productivity.” As we

saw, NeXT marketed its object-oriented development environment as a way to

magnify the productivity of programmers by 5 to 10 times. These productivity claims

were realized in the experiences of many NeXT developers. After NeXT was

acquired by Apple, this technology was renamed “Cocoa,” but it was still composed

of the same basic elements: two primary object-oriented code libraries, Foundation,

which provided basic, general-purpose functionality necessary for all programs, and

AppKit, which provided user interface objects for applications. In addition, these

were tightly integrated with Interface Builder, a graphical tool for building an

application’s graphical user interface. What about Cocoa technology supported this

increase in productivity? First, we will examine the three key elements of Cocoa that

developers argue make them more productive. First, it is consistent. Second, it

allows for flexibility. Third, less code needs to be written to perform the same tasks

than with other development environments. Because Apple’s Cocoa tools make them

more productive, allowing them to write by themselves applications that can compete

151

with the products of corporations with hundreds of programmers, Cocoa developers

credit Cocoa with giving them the ability to be indies, independent craftmen-

entrepreneurs.

By examining these features of Cocoa, I will argue that Cocoa works for and

is embraced by developers not because it deskills the tasks of programming, but

because, while making many programming tasks easier by automating or black-

boxing them, it raises the skill required to program in Cocoa because it focuses

programming on the more abstract, conceptual level of design and architecture,

rather than the low-level task of implementation and tinkering, although work at both

levels is still required. This higher level of understanding is often a barrier for

programmers new to Cocoa, responsible for what is often called, Cocoa’s high

“learning curve.” In the latter half of this chapter, I will explain two of these

concepts at the center of Cocoa that new developers have difficulty with, “model-

view-controller,” and “delegation.” One of the reasons for this difficulty is that such

concepts can only be grasped holistically, rather than piecemeal. The result is that

until the whole is grasped, learners may be skeptical of Cocoa’s purported benefits.

Once this learning curve is surmounted, however, programmers report having

experienced a “conversion,” whereupon they can see the forest for the trees.

Consistency

The Cocoa developers I have interviewed have repeatedly expressed how

consistency is a central design value at Apple. Cocoa developers say that Apple

designs its graphical user interfaces with an element of consistency, so that a user

who becomes used to using the mouse to drag and drop a file to move it from one

place on a disk to another, later can expect to be able to drag and drop text in a

document to move it as well. Certain gestures, idioms, or metaphors used in one

place do something similar in another, and after the user becomes accustomed to this,

he or she begins to be able to predict that the same gesture may work similarly for

completely unknown tasks. Programmers using Apple’s Cocoa libraries (which are

often called “frameworks”) also make use of interfaces in order to use them.

152

Programmers call “functions” that are defined in these libraries, which perform

complex tasks for them, alleviating them of the need to write code to do these things

themselves. The names of these functions are defined in textual code files known as

“header files,” which define the publicly available Application Programmer

Interfaces (APIs) of the library. Just as with user interfaces, consistent programmer

interfaces allow an experienced programmer to predict that a familiar idiom (such as

how functions are named, or how certain problems are solved with particular

patterns) will apply in similar future situations, and be correct that it does.

“It became really obvious that there was no other framework I’d ever
worked with that was that consistent… Now, when I approach a new
problem… in the Cocoa space, it’s very easy for me to anticipate how
Apple is going to have thought about this problem. And so it makes
the next thing much easier for me to deal with. And I can anticipate
how they’re going to handle errors, I can anticipate, oh, hey, they’re
probably going to [this] pattern [to solve this problem]… I come in
with all of this… pre-knowledge without ever having seen whatever
the new class is. And that’s really powerful for me.”

(Hasan Edain, Interview, March 12, 2012)

One developer said Apple is driven to design both its user interfaces and its

programmer interfaces to be consistent in order to make both simpler and easier to

use, and thus, more “humane,” a term which has been used in the title of a book on

Human Computer Interaction, “The Humane Interface,” by Jef Raskin, the original

leader of the Macintosh team.

“For me, it’s about being humane… the general approach of most
developers in this platform, is to recognize our users as human beings,
worthy of respect, and to build things that treat them that way. On the
other side of it, and this… gets at the ease of development [aspect],
these are… humane frameworks and humane tools to develop with…
And so they tend to treat the developer with respect …For the most
part, the frameworks really are kind to us.”

(Curt Clifton, Interview, March 23, 2012)

Consistency can even help programmers predict what code to type. For

programming, Apple provides what is called an Integrated Development

Environment (IDE), a programming environment that integrates most of the tools one

153

needs for writing an application in a single program: a text editor, compiler (which

translates human readable, high-level source code into the binary machine code to be

run by the computer), and debugger. Apple’s IDE is called Xcode, and by integrating

a real-time compiler with the text editor, as the programmer types, Xcode can

compare the first few characters being typed to its database of APIs in the Cocoa

libraries, and suggest a list of possible APIs that it thinks the programmer is typing.

Thus, by typing only one or two characters, and then selecting from a drop-down list,

a Cocoa programmer can input a long function name, such as

“NSAccessibilityPostNotificationWithUserInfo.” This convenience is called “code

completion.” Because Apple has followed consistent rules with naming its APIs, an

experienced Cocoa developer can often, without looking up the name of an API in

Apple’s documentation, simply begin to type what he or she thinks is the name of a

function, and Xcode’s code completion will bring up exactly what he or she is

looking for. (Mark Dalrymple, Interview, April 11, 2012)

Such predictability was key to why one developer considered Cocoa the best

of all development environments: “Well, at least it’s predictable, right? You don’t

get that with the web… As far as I’m concerned, [Cocoa is] the best framework out

there.” (Gus Mueller, Interview, February 21, 2012)

NeXT and Apple software engineers spent considerable effort making sure

consistency was a top priority. Becky Willrich, a former NeXT and Apple engineer

who was on the Cocoa framework team in the early 2000s,24 had this to say about

how important consistency was. “I think the thing that gets lost by a lot of people is

that when you think of the UI or the API, there’s this enormous win from

consistency.” (Becky Willrich, Interview, April 15, 2012)

Another value that drives the design of APIs at Apple is simplicity. R.D

Wilhoite, also a former NeXT and Apple engineer, noted:

24 This author was a software quality assurance engineer on the Cocoa

framework team in the 2000s, and was a colleague of Willrich at this time.

154

“I think of what the NeXT folks are about, which is simplicity for
simplicity’s sake… I’m not saying every ex-NeXTer or Apple person
is like this, but it’s prevalent there in terms of the culture that there’s
almost an allergy [to things] that are unnecessarily complicated. It’s
like, you want to make it as simple as possible.”

(R.D. Willhoite, Interview, September 11, 2011)

Apple engineers pursued simplicity and convenience in order to make things

easier for the majority of users, including users of its programmer interfaces, but

achieving this could be difficult. Often, this meant that user or programmer choice

needed to sacrificed, for the greater good:

I certainly think that’s true in the UI [of] iOS and Mac OS X… there
are some configurations you don’t get, period. Because it damages
[consistency]… the only way to achieve consistency is to be absolutely
draconic [sic] about options, and cutting them off, and refusing to
allow things. …Steve [Jobs] has a very famous quote… about… the
importance of saying no to most things. And the same notion has been
applied to the APIs. (Becky Willrich, Interview, April 15, 2012)

Because any time you added developer convenience to these simple
APIs, they become less simple… You really… want kind of one-stop
shopping in that simple API. You don’t want them wondering which of
three different flavors is going to best suit their needs. There should
only be one choice. If they don’t care, there should be one choice.
(Becky Willrich, Interview, April 15, 2012)

Willrich pointed out that the lack of options in the simple API, which most

developers would likely use, did not mean that a minority of developers who wanted

to do something more sophisticated were left out in the cold. There were often two

layers of APIs, a simple, high-level, object-oriented one, and a lower-level,

procedural, C-language based API, which allowed for a lot more freedom and power

but was significantly more complicated to understand and use. With the lower level

interface, developers are given free reign, but with added responsibility. They must

know what they are doing. “And then you provide them will a full toolkit, a full tool

chest, if they want to look under the hood, it’s all there, they can tinker with

whatever they want, but now it’s their responsibility.” (Becky Willrich, Interview,

April 15, 2012) The availability of the complex, knowledge intensive low-level API

freed Apple’s designers to strip out options in the higher-level interface. This

155

allowed it to be as simple as possible, in order to not unduly burden a developer who

did not need all of the options with what Willrich called “cognitive load.” As a result,

the simpler, higher level APIs in Cocoa are significantly easier and more convenient

to use. With one line of code, using a single call, one can accomplish what would

take many lines of lower-level code to do.

Cocoa developers appreciated this level of consistency in the Cocoa APIs,

especially compared to other platforms. Seattle developer Hasan Edain has written an

app for Google’s Android mobile operating system, and said of the experience:

I had two different objects that I had to rotate on the screen… one of
them took its rotation in radians and the other one in degrees. And it’s
like, wait a minute. You’re Google. You can’t even get it together to,
like, coordinate on what your units of measurements are for your API?
Seriously? …You [should] make that decision at a high level [in the
company], you communicate it… and if it happened once and only
once, it would have been, OK fine, here’s this thing and somebody will
sand off the rough edges at some point… And then there were like
three or four other things, where I was like, wait a sec, here are two
different APIs and they used two different design patterns to approach
the same basic problems… oh, no. There’s just not the level of quality
in this API that makes me want to go and deliver lots of stuff in it.
(Hasan Edain, Interview, March 12, 2012)

Willrich speculated that such inconsistencies in design mapped onto a lack of

social coordination among teams.

I think the people who were involved [with Cocoa] simply cared. … I
wonder if at the other place there is simply a lack of this kind of core
oversight or core vision to hold it all unified. Like, I suspect that other
APIs are kind of developed with, one team develops this piece and
then another team develops that piece, and then you take seven or eight
of these and then mash them together and there isn’t anyone who owns
the—or who has a sense of ownership over the APIs as a whole set, to
say look, no, it doesn’t matter if these two ways are just as good as one
another, we have to choose one. And that means there has to be one
winner and one loser, and I’m sorry, you’re going to be the loser.
Nobody cared to apply that level of oversight.

(Becky Willrich, Interview, April 15, 2012)

156

At NeXT and later Apple, a small team of people had a singular vision for

how things should be designed, and the longevity of these people, who rose or

remained in key positions at the company, made sure that such consistency was

maintained over time:

You will see that kind of consistency inside groups of five to eight
engineers where it’s small enough that it’s easy to hash these issues
out and to share the ownership. As what you’re seeing is the
incredible longevity of those people, right? So if you take those four
core people who worked on the AppKit and then in the fullness of time,
they each went on to their own piece of the Apple pie… Bertrand
[Serlet] of course rose to VP, Senior VP [of Software at Apple]. Ali
Ozer [manager of the Cocoa group] held the AppKit, which is sort of
the core API piece… But if you think about Ali, he’s been doing
essentially the same job for twenty years? You don’t see that at other
companies. That’s what’s providing the longevity and singularity of
vision. (Becky Willrich, Interview, April 15, 2012)

Cocoa developers mostly appreciated this singularity of vision and the

simplicity and consistency it created, even if they occasionally chafed under their

limitations. Apple’s top-down level of control was necessary for the coherency of the

Cocoa interfaces that they enjoyed, and showed a directed intentionality to the way

Apple designed APIs and how it gradually introduced them over time.

To me it’s very natural… From the design of the APIs to the
leadership that Apple shows in driving those APIs… This is a pleasant
environment to program in, you don’t feel like you’re fighting it.
(Adam Preble, Interview, August 8, 2011)

Why were they willing to live with this control by Apple? Many Cocoa

developers mentioned that Cocoa’s consistency, by reducing frustration, created in

them an aesthetic, pleasurable response to its design, and to the experience of using

it:

NeXT technology was just so much—it was beautiful by comparison…
I don’t know, it is sort of an ephemeral quality. I mean… it’s just
consistent. (Luke Adamson, Interview, February 22, 2012)

Cocoa developers receive an affective, pleasurable response to using Cocoa

APIs due to its consistency, simplicity, and intentionality, which they understand

157

comes from Apple’s tight control over its design. They are willing to let Apple have

this control because in return, they not only become significantly more productive,

but they also get so much more enjoyment from programming in this environment,

that they would rather not go back to coding for other platforms.

Flexibility

Cocoa developers have also spoken of the flexibility afforded to them by the

technology. Depending on the context, they may mean two different things.

Sometimes, they refer to Cocoa and Objective-C, the language it is written in, as

“dynamic.” Glossing over the details, this computer science term roughly refers to a

category of object-oriented languages in which the types of objects and the kinds of

operations they can perform are left undetermined until “runtime”—that is, until the

program is actually run. Smalltalk was the first dynamic object-oriented language,

and subsequent languages such as Objective-C, Python, and Ruby were patterned

after Smalltalk, and are likewise classified as “dynamic.” These are distinguished

from “static” object-oriented languages, the exemplar being C++. In C++, object

types and their operations are locked down when a program is compiled from high-

level source code into binary machine code.

The debate between which approach was better has been going on since the

1980s, when C++ and Smalltalk were the two primary object-oriented languages in

use in industry, each representing a different approach. C++’s main advantage over

Smalltalk was its compatibility with C, the procedural language which was the

industry standard. This meant that C code could be directly mixed in with C++ code,

allowing existing C code bases to be reused in C++ programs. Bjarne Stroustrup at

Bell Labs created the language for maximum compatibility with C, and for maximum

performance. (Stroustrup 1993) The decision to make it “static,” in other words, to

make decisions about objects when the program is compiled, enabled C++ programs

to run almost as fast as C programs. Smalltalk, on the other hand, relied on an

interpreter, an interactive program that translated source code into machine code in

real time. This made it significantly slower. Yet, because the interpreter worked

158

interactively, programs could be modified while they were still running, adding

significant flexibility. Objective-C was created by Brad Cox as a compromise

between these two approaches. Like C++, it would be compiled, and be fully

compatible with C code. However, Cox wanted Objective-C to bring Smalltalk-style

object-orientation to C, and thus made it more “dynamic,” deferring key decisions

until runtime.

This difference was touted by NeXT developers as a key advantage of

NeXTSTEP and Objective-C over C++. For example, a sidebar in a NeXTWORLD

article on NeXT’s object-oriented advantages explained to readers the benefits of

Objective-C’s “runtime binding,” also referred to as “dynamic binding,” while taking

a swipe at C++ through a quote from independent developer Andrew Stone.

The most important feature of Objective-C, supporters say, is run-time
binding. You don’t need to know what an object is before you send it a
message. Run-time binding different objects respond to the same
message in different, but functionally similar, ways. More importantly,
it frees the programmer from having to know all the details about the
application program’s run-time environment at the time the application
is being written.

For example, a headline and a photograph on the NeXT’s screen are
represented by different objects inside the computer’s memory. Both
of these objects, however, respond to the drawSelf: method [a function
that only objects of a certain type can run] to make themselves appear.
A drawing program doesn’t need special-case code to handle all the
different kinds of objects that a user can draw on the screen—it just
sends every object a drawSelf: message, and the objects do the rest of
the work for themselves.

Closely coupled with run-time binding is NeXT’s dynamic loading of
run-time libraries. Instead of linking libraries into each application
program, they are kept in a “shared library” on the disk that is loaded
when an application program is run. This saves space on the disk.
More importantly, it lets NeXT upgrade the shared library and have
that change reflected automatically in existing application programs.

[…] What about C++, the object-oriented language that’s become an
industry standard outside the NeXT community? “There’s nothing
about C++ that invites you to write good object-oriented programs,”
says [Andrew] Stone [of Stone Design]. (Garfinkel 1992c)

159

A subsequent sidebar on NeXT’s Interface Builder noted that Objective-C’s

run-time binding was the critical piece that made it possible:

Interface Builder lets a programmer literally draw the interface that
they want a program to have. Windows, text fields, sliders, buttons,
and more are all on palettes ready to be dragged off and resized like
some kind of high-tech drafting program… But Interface Builder
doesn’t just draw the interface—it actually constructs the Objective C
[sic] objects that the application program will use and saves them into
a NIB (NeXT Interface Builder) file. When the program runs, it loads
those same objects out of the file and into the computer’s memory.

“You’re not just prototyping,” says [developer William] Adams.
“You’re actually developing what you need to develop…

But the real boon of Interface Builder comes when changes have to be
made. It’s easy to add more buttons, move fields around, or even add
whole new windows and panels to existing applications. That’s
something that no mere prototyping tool can do.

The reason? Interface Builder works intimately with both Objective C
and the App Kit [sic]. Without Objective C’s run-time binding, it
wouldn’t be possible to simply draw an application’s interface and
have it work, because the application program would have to be
compiled with the location and type of every widget in the program’s
windows. (Garfinkel 1992b)

Indeed, Steve Naroff, the Stepstone engineer who modified Objective-C for

NeXT and later joined NeXT, said that key features were added to Objective-C for

the express purpose of making Interface Builder, and its ability to make live changes

to an already compiled application, possible. (Steve Naroff, Interview, December 22,

2011)

Cocoa developers today likewise express similar advantages of dynamic

languages such as Objective-C and Ruby over static languages like C++. One

developer said that the flexibility of being able to make changes to a program at

runtime greatly improved his ability to adapt a program.

And so in traditional, either C, or C++… I would spend a lot of time
prior to implementing a class [of objects], really trying to understand,
“OK, what happens if I have this change in the application”… really
having to understand very, very deeply what the use cases on this were.

160

And that hems you in a lot, right? Because then all of a sudden if one
of your pieces of understanding gets shifted, which inevitably happens,
then oh, crud, now I have to reexamine this. Whereas… having a
higher level of flexibility, a lot of times it just means I take something
from column A and I move it over to column B. And that kind of
flexibility and/or change is really, really important, especially in an
environment [like] the iPhone…You have the flexibility to handle
design changes much more simply…

(Hasan Edain Interview, March 12, 2012)

Another developer, who has written programs both with Cocoa, and with

Rails, a popular object-oriented library for programs running on web servers, written

in the dynamic language Ruby, implied that the order-of-magnitude improvement in

productivity gained with dynamic languages allowed a small team of independent

developers to write software with equivalent functionality as large teams of

developers working for corporate firms such as Microsoft:

We had huge armies of Microsoft developers [on the one hand] and
[on the other hand, we] had all these little Rails guys who were all by
themselves, two people at a time, just blowing out software. …Rails is
a dynamic language, it’s designed to take some of the best aspects of
other things like SmallTalk, Python and Perl and make a language that
is more expressive to the developer, and easier to manipulate…

With Microsoft, it is a language and a platform that’s designed to…
put the proper restrictions around so people won’t hurt themselves.
…with Microsoft there’s always a perspective or a mentality of
wanting to give you the clear and safe path and keep you from doing
things you shouldn’t be doing. So… making the framework more
static, and static typing and things that are really protective devices.
They give you tremendous performance in the end, so you get this
amazing performance out of the framework, so you can really leverage
hardware, but what you get is you get a lack of productivity in your
team. [Emphasis mine]

And so the compensating fact for that is to scale out your team and
have more developers and just bring down the level of expertise and
have a larger team who can just pump out more code. The bottom line
is you just need to pump out more code to make the same thing happen.
[emphasis mine] You find yourself reaching an obstacle more
frequently in a static language such as .Net… When you reach an
obstacle you have to work around it or you have to work harder to
overcome it, whereas with a dynamic language, you’re basically given

161

a gun and said, “Go hunt and make things happen. If you shoot
yourself, it’s your own fault.

And there is definitely some risk… implicit in that… Certainly there’s
bugs and things like that in all software, but the nature of dynamic
languages is you can insert and replace anything you want, change
behavior.

And the Microsoft framework, you can’t do that. So that single piece
of functionality, that single capability, it makes all the difference in the
world in being productive.

(Rusty Zarse Interview, September 25, 2012)

Zarse is thus associating several things together. The technical properties of

languages and the library/frameworks based on those languages (dynamic versus

static) maps onto programmer ability and skill. Static languages are designed for

lower skill programmers, who need guard rails to prevent them from doing

dangerous things. However, these protections also hamper more skilled programmers

from being able to change things around at will, resulting in decreased productivity

per programmer. Thus, technical properties of languages had organizational

consequences. Static languages produce large, bloated armies of low-skilled

programmers, the very kind that Fred Brooks argued in The Mythical Man-Month

would cause a software project to become more complex and thus more likely to slip

in its schedule. Dynamic languages, on the other hand, would facilitate small teams

of highly skilled programmers—surgical strike teams, rather than massed hordes.

This notion of small, two-person teams of highly skilled developers

competing against low-skilled armies of Microsoft developers fits directly into the

utopian vision of indie Cocoa developers, who believe that all software should be

developed by small teams of artisanal programmers. Recall Wil Shipley’s quote:

“Yeah, so we instantly saw [NeXTSTEP in the 1990s] and we said…
it’s us versus [the hundreds of programmers writing Microsoft
Word]… [That] is not the future we see, we don’t want the automobile
industry to be the software industry. We want it to be the individual
artisan, and we won. We fucking won. There are still big software
companies, but …It’s not driven by them anymore. (Wil Shipley
Interview, April 18, 2012)

162

Dynamic languages such as Smalltalk, Python, and Ruby are also seen as

significantly more abstract, that is, have significantly more layers between them and

a computer’s hardware, than static languages such as C++. Some programmers, such

as the computer scientist Antony Hoare, “argued that object oriented programming

was the natural scientific progression of the programming discipline.” (Zepcevski

2012, 266)25 Such a view is based on a teleological understanding of the history of

programming languages, in which languages began very close to the hardware, and

gradually rose up in levels of abstraction from machine language to assembly,

through procedural languages, all the way up to object-oriented languages and

functional languages such as LISP. In this teleology, procedural languages are more

primitive than object-oriented languages, because their modeling of programs as

processes is much closer to how the computer hardware sees them, whereas viewing

programs as collections of objects is a conceptual abstraction that is layered on top of

this process-oriented model. The logic then follows, if higher abstraction represents

“progress” in the programming discipline, then more abstract object-oriented

languages, i.e. dynamic ones, are thus more advanced than static ones.

Some Cocoa developers articulated a different reason that Cocoa makes them

more flexible, one that is in some ways contradictory, in others complementary, to

Zarse’s argument that programming in higher-levels of abstraction makes developers

more productive. That argument is that Cocoa and Objective-C allows both high and

low-level programming, thus giving them the flexibility to choose the appropriate

level at which to work to solve problems. Robert Walker, an Atlanta-area Cocoa

developer, felt that Objective-C’s ability to allow a programmer to write code at two

levels, a high-level, abstract, object-oriented one, and a low-level, optimized,

procedural one, made it more flexible than pure dynamic object-oriented languages

25 Zepcevski’s source is Charles Antony Richard Hoare, Oral history

interview by Philip L. Frana, July 17, 2002, OH 357. Cambridge, England, U.K.

Charles Babbage Institute, University of Minnesota, Minneapolis.

163

such as Ruby or Python, which could not produce code that rivaled C or C++ in

performance. In addition, without a compiler making sure a programmer did not

make type mistakes, such languages are more error-prone:

The thing that I like about Objective-C is flexibility, from a
programmer’s perspective. …It’s a compiled language, which when
you go [to] fully dynamic, interpreted languages like Ruby or
Python… you lose a lot of the… help from the compiler…

An Objective-C application gives you most of the benefits of the fully
dynamic language like Ruby, without the compromise in
performance… Objective-C… sort of does fit in that middle
[ground]—it’s sort of a compiled language, but it feels very dynamic.”

(Robert Walker Interview, May 19, 2012)

Walker located object-oriented languages along a continuum from static to

dynamic, with C++ on one end, Ruby on the other. Java, although dynamic in some

ways, was static in others, and Walker considered it closer to C++. Objective-C lay

somewhere between Java and Ruby. Walker described writing Java code like

building Lego blocks, while writing Ruby code was like playing with Play-Doh. He

characterized Objective-C as being more like clay, less malleable than Ruby but still

significantly more pliable than Java.

If higher abstraction was better for programmer productivity, why work at a

lower level of abstraction? The common answer to this is that working “closer to the

machine” allows programmers to fine tune a program for performance and efficiency.

This is a key engineering value for programmers in general. C++ programmers, in

particular, argue that performance (as well as the added safety from added compiler

checks) is the primary advantage of C++’s static style of object-oriented

programming—the dynamic method dispatch of Objective-C and Ruby is an order of

magnitude slower than C++’s. For Cocoa programmers specifically, performance is

only one value among many, including usability. Nevertheless, Objective-C’s

compatibility with C gives them a way to have their cake and eat it too. Because

Objective-C is a full superset of C, Cocoa programmers often argue that for key code

that needs to be high performance, they can simply “drop down to C,” write highly

164

optimized, low-level procedural code, circumventing Objective-C’s normally slower

dynamic method dispatch. This allows the programmer to design the program in

high-level, object-oriented fashion, which is much more productive. Get the program

working first. Once this is accomplished, measure the program’s performance

characteristics using tools provided by Apple’s development environment to find

where the program runs slowly or uses too many resources and optimize those later.

Developer Wil Shipley summarizes this attitude:

… People go, Objective-C is too slow… and I’m like really, I can
prove you’re wrong… What we’ll do is we’ll write a program in
Objective-C and then we’ll write one in C, and then you can say, well,
this one is slower and I’ll go, OK, I’ll look at where it’s slow here, Oh,
it’s slow in this part, I’m going to write that part in C and do a really
good, tight job in that, and now mine is faster and I wrote it in
Objective-C and it’s six times shorter. So I win. And I can do this
again, and again and again and again, all day.

…Only the parts that need to be fast should be fast. And the parts that
don’t need to be fast shouldn’t be fast.

(Wil Shipley, Interview, April 18, 2012)

In this way, the programmer optimizes only the portions of the code that are

performance sensitive. This attitude is summarized by an aphorism popular among

Cocoa programmers: “Don’t pre-optimize,” which means that programmers should

not try to anticipate performance issues and write all code in a highly optimized way,

but rather should try to make a program fully functional first, then measure where

performance bottlenecks actually exist, and then optimize those. Why not optimize

everything first, according to Cocoa developers like Shipley? Why, as Shipley says,

are there parts of the code that don’t need to be fast? Partly this is because in

applications that interact with users, most of the computer’s time is actually idle,

waiting many milliseconds between user input, which can represent thousands of the

CPU’s clock cycles. But more importantly, not wasting time optimizing code which

does not need to be fast optimizes the programmer’s own time, which could be spent

fixing bugs, implementing additional features, working on other programs, etc. This

is particularly important for independent developers like Shipley who may be

165

working alone, and thus may also need to spend time running their business,

marketing their application, and interacting with customers.

In making this statement, Shipley and others are drawing on a normative

programming discourse that has existed for some time. It is not clear who first

articulated it, but the computer scientist Donald Knuth spoke of this pitfall in his

1974 Turing Award acceptance speech:

…programmers in the past have tended to be so preoccupied with
efficiency that they have produced needlessly complicated code; the
result of this unnecessary complexity has been that net efficiency has
gone down, due to difficulties of debugging and maintenance.

The real problem is that programmers have spent far too much time
worrying about efficiency in the wrong places and at the wrong times;
premature optimization is the root of all evil (or at least most of it) in
programming.

We shouldn’t be penny wise and pound foolish…

(Knuth 1974, 671)

Shipley’s former partner, OmniGroup co-founder Ken Case, similarly

expressed his opinion that Objective-C’s ability to let a programmer mix low and

high level code in a single language makes it the most flexible and productive

language for writing applications. “In my opinion, Objective-C is the language that

makes us the most productive for the widest number of tasks, or at least for the type

of software that we’re developing… desktop application development.” (Ken Case

Interview, February 10, 2012) Case argues that working at the highest, most abstract

level possible when designing a program’s architecture increases a programmer’s

productivity because it is these abstractions that help the programmer manage

complexity:

One of the things I like about Objective-C is that you can dive down to
straight C when you need, or even do some embedded assembly… But
that didn’t mean we had to give up the abstractions of Objective-C at
the higher level. So you can tune the performance and you could write
the overall conceptual framework in this nice object-oriented
environment, which helps you manage the complexity. [Emphasis
mine]

166

And complexity is really one of the biggest barriers in programming.
The more complex the system gets, the harder it is for any developer to
wrap their head around the whole system, so that’s often where you
start to run into a wall in developing.

And so Objective-C really does help you manage that complexity a lot.
…Your abstractions didn’t have to change, and all the other higher
levels could still see it as an object the way they’d always seen it, but
the parts that needed to go faster, you just started writing faster at a
lower level, without ever having to leave the language. The language
has a lot of scalability from the lowest level assembly to the highest-
level abstractions. (Ken Case Interview, February 10, 2012)

As we saw earlier, Fred Brooks, in his article, “No Silver Bullet” (F. P.

Brooks 1987) argued that complexity was one of the essential difficulties that makes

software inherently difficult. Joline Zepcevski argues that the management of

complexity was one of the primary drives behind the development of object-oriented

programming itself, and especially of Smalltalk, which influenced all the dynamic

object-oriented languages, Objective-C, Python, and Ruby, which followed it.

(Zepcevski 2012, 263–5) Similarly, we saw that Knuth in 1974 railed against

premature optimization because it created unnecessarily complicated code that was

difficult to debug and maintain. Thus, Case’s argument is that Objective-C’s hybrid

nature allows a programmer to have the best of both worlds. It allows the

programmer to decide the proper tradeoff between optimizing his or her code (which

optimizes the computer’s time) and optimizing his or her own time, by allowing the

programmer to switch between high and low-levels of abstraction. The more time

spent at the higher levels, the more the programmer is able to manage the inherent

complexity of the program, thus increasing his or her productivity by an order of

magnitude.

Less code

Writing high-level, object-oriented code also has an additional benefit. It

allows a programmer to use less code to express the same amount of functionality—

in fact, often an order of magnitude less code. Calling certain Cocoa APIs often

allow a programmer to trigger complex events with only a single line of code. As we

167

saw in Wil Shipley’s earlier quote, compared to a programmer who writes

completely in C, “I wrote it in Objective-C and it’s six times shorter.” (Wil Shipley

April 18, 2012) Thus, a key reason using Cocoa makes a programmer an order of

magnitude more productive is because she needs to do an order of magnitude less

work for the same result. We also saw earlier that Brent Simmons equated this with

power: “The ability to do more with less code.” (Brent Simmons Interview, February

17, 2012)

Being able to “do more with less code” magnifies the capabilities of

individual programmers, but at the same time, reduces the need for large teams to

produce the same level of functionality. In this way, Cocoa levels the playing field

for individual developers against large corporate software firms. The productivity

benefits from being able to “do more with less code” makes the “indie” developer

possible—it allows developers to retreat from corporately managed software

organizations. For this reason, “less code” has become something of a virtue within

the Cocoa community.

Within the Cocoa community, “more code” is a vice associated with corporate

software practices that are the result of perverse incentives counterproductive to

producing good programs. Developers sometimes spoke of older corporate

compensation policies that paid by lines of code written, equating quantity of code

with functionality produced. For Cocoa developers, however, more code does not

mean better quality—it adds complexity, increasing the probability for errors, and

thus decreasing software’s maintainability over time. Cocoa developers feel that the

perverse incentive to generate more code has contributed to the intractability of large,

complex, buggy legacy software systems that programmers are afraid to touch for

fear of breaking them. Developer Wil Shipley felt that the corporate software

industry simply did not understand that less code translated directly to higher

programmer productivity.

The preponderance of evidence is, we’ve got all these [Cocoa]
programmers who are making these programs in record time that don’t
seem very buggy and seem very performant… we’ve got all these

168

things that we’ve made with tiny teams that are beautiful and they’re
using Cocoa and I think we’ve proven that having less code in an app
is just better…

As late as the ‘90’s people were still saying… I want a language that
lets me [run programs] really fast, I want a language that lets me get to
the hardware—the goal wasn’t see how little code you can write. And I
think it’s only in the last ten years that we started understanding… the
only method that really matters is less code.

It’s very rare, it’s the exception, do you say, ‘Oh, no, this is too slow,
so I’m going to make it a little more code,’ but that’s an exception.
The only method that matters is how little code did you use, overall.
That’s the only thing. There’s no other metric, because they all fall out
of that. Is it fast? Well, generally less code is going to be faster. Not
always, but generally. And also, if you use less code, you’re [more
likely to be] reusing things and you can optimize things that you’re
reusing and someday you’ll think it’s faster and magical, right? It falls
out. (Wil Shipley, Interview, April 18, 2012)

Becky Willrich, a former software engineer on the Cocoa team, explained

how, at Apple, Mac OS X’s designers created two levels of APIs: Cocoa was the

high-level, object-oriented Objective-C layer, which was built on top of a low-level,

procedural, C-based layer. According to Willrich, Apple’s engineers tried to make

the Cocoa APIs as simple and convenient as possible, for the vast majority of the

interface’s users (who are programmers). However, if they needed access to

functionality that the Cocoa APIs did not provide, they could drop down to the

lower-level C layer, with access to the complete toolchest. This, however, meant

having to manage considerably more complexity that the Cocoa APIs hid from the

user, a complexity Willrich called “cognitive load.”

“Most developers may want to do this—what if they want to configure
just one [thing]… Why don’t we just add [this one option]? Well no.
That adds to the cognitive load of the simple API. Right? Because now
you have to learn a little more. …It was just a very high bar for adding
essentially, developer convenience… Because any time you added
developer convenience to these simple APIs, they become less
simple…

And then you provide them will a full toolkit, a full tool chest, if they
want to look under the hood, it’s all there, they can tinker with
whatever they want, but now it’s their responsibility…Once you reach

169

that low level, you really have to… trust that the developer knows
what they’re doing…” (Becky Willrich Interview, April 15, 2012)

Willrich saw that precluding options in the high-level API was justifiable

because if the programmer really needed those options, they could go to the lower-

level API. This would keep the high-level API simple, to maximize simplicity and

thus ease of use for the largest number of programming users. The unlucky few

would have to take the extra time to learn the low-level API instead, but because

they were few in number, this was a valid tradeoff:

If we have satisfied 95+ percent of the developers we do not mind that
the remaining three, four or five percent are going to have to work a
lot harder. It is worth giving the 95% a simple one-line API at the
expense of requiring substantial work on the part of this, three, four,
five. Because… if you look at those 5% of developers for whom the
simple API is not complex enough, [for] at least half of them, no API
would have been sufficient shy of the full toolkit. …You’re going to
end up wanting all the bells, knobs and whistles anyway. So it’s not
like I could have provided a slightly more complex but still basically
simple API and still satisfied you. So they don’t count anymore. They
were satisfied when I exposed the full toolkit, OK? So now you’re
only talking about 2% or so of people who might have genuinely been
helped by a slightly more complex but still simple API. And the cost
of telling them, “look, we’re sorry but you’re going to have to become
at least passingly familiar with this bigger, fuller toolkit,” that’s fine. I
have no problem with that. [Rather than burden the rest of the 95%]
with even a slightly higher cognitive load…

(Becky Willrich, Interview, April 15, 2012)

Thus, Apple’s designs for Cocoa emphasize giving developers convenience

functions to allow them to do common things simply and easily, with as little code as

possible. Simultaneously, it also provides more specialized capabilities that would

take developers hundreds of lines of code to implement for themselves, a task that

likely would require collaboration with additional programmers to accomplish.

Developers noted that Cocoa gave them capabilities they wouldn’t have had

otherwise:

As somebody who is a creative person… tools like [the]
CoreAnimation [framework] make it extremely easy to do things that

170

on Windows, I would be like, I don’t even know how to begin doing
this. That’s just an example of… just great APIs.

(Adam Preble, Interview, August 8, 2011)

Prior to 2006, fancy animation effects had to be made using lower level, C-

based graphics APIs such as OpenGL, taking a lot of extra work. In 2006, Apple

introduced CoreAnimation, a framework exposing a set of Objective-C APIs that

made doing animations relatively simple. CoreAnimation was layered on top of

OpenGL, and provided a simple, abstract interface for developers that still allowed

animations to be hardware accelerated. This is a good example of the kind of two-

tiered API design Willrich discussed. Advanced programmers, who want

significantly more options, control, and performance, will still want to use OpenGL,

especially for games. However, for the kinds of simple, elegant, and common

animations in the user interface, such as the smooth swiping effect that a user sees on

an iPhone, CoreAnimation provides, in a few lines of code, what would take

hundreds of lines to accomplish in the OpenGL APIs.

Cocoa code libraries such as CoreAnimation encapsulate complex

functionality in simple interfaces. With only a few simple calls to these interfaces, a

Cocoa programmer can implement what would take programmers using less

functionally rich libraries hundreds or thousands of lines more code. In essence, by

building more and more functionality into the high-level Cocoa libraries, Apple

removes the need for developers to write such functionality themselves, using the

low-level interfaces.

There is a division of labor implied in this. Remember Fred Brooks and

Harlan Mills’ chief programmer or “super-programmer” model of organizing

software work, which Brooks discussed in The Mythical Man Month (F. P. Brooks

1995). Instead of throwing armies of programmers at a project, and understanding

the vast skill difference between the best programmers and average ones, in Brooks’

model, the chief programmer was responsible for the architecture and design, the big

picture, while the lesser skilled staff merely implemented the components, conceived

of as a more routinized job. The chief programmer, the architect, is thus “freed” from

171

the drudgery of routine programming tasks that need to be repeated. Brad Cox,

creator of Objective-C, advocated a different division of labor. Object-oriented

programming, in Cox’s view, encouraged code reuse. Routine code could, and should,

be encapsulated in objects and reused, reducing the need for such work to be

performed repeatedly in the future. This was key to how object-oriented

programming would improve productivity. The other piece of the puzzle was that

such routinized labor could be outsourced not to one’s team of subordinates, but to

the market. Cox thought that software objects should be bought and sold “off the

shelf.” While some NeXT developers did indeed sell objects for other programmers

to buy, this never really caught on, partly because there was a wide range in the

quality of “objectware” in the market, and partly because such objects sometimes

came with restrictive licensing agreements (Garfinkel 1993a; Garfinkel 1993b). It

was not clear to programmers whether they should trust the objects that they bought

from others.

NeXT, and subsequently Apple, offered a slightly different division of labor.

Like Cox’s solution, and using the language he created, in NeXT’s model, routine

code would also be encapsulated in reusable objects. In a way, they would also be

purchased in the market. But rather than acquire them piecemeal from heterogeneous

sources, NeXT bundled entire libraries of objects along with the operating system

and development environment, and earlier in its lifetime, with the computer hardware

as well. These objects thus were built into the system that the user received, and were

part and parcel of that system; the system itself was built using these objects. The

issue of trust is much ameliorated, because the customer was already buying NeXT’s

system, and thus was already putting a degree of trust in NeXT by doing so. And

largely, NeXT, and later Apple, kept this trust. Because all of the objects were

designed to fit together in a coherent, consistent system, with built-in support by all

of NeXT’s developer tools, in particular, Interface Builder, and these objects were

used by NeXT itself to make its own applications, developers could trust that these

were world-class libraries, because the system itself was built on it.

172

The division of labor promised by Cocoa is thus, from the point of view of the

Cocoa developer, a democratizing one, but not a deskilling one. “Routine” tasks are

automated by the Cocoa libraries, leaving to developers the creative, intellective

work of solving their users’ problems with their applications, work that cannot be

automated. Says a former NeXT and Apple engineer, “There’s just this beauty in

mechanizing these things that don’t need to be the programmer’s job.” (Julie Zelinski

April 24, 2012) Routinized work is thus delegated to Apple, reducing the amount of

manpower necessary for programming. The result is that small teams, or even a

single programmer, can write highly complex applications, which would require

masses of routinized, less-skilled programmers in traditional corporate organizations.

Because of the empowering effects of Cocoa, all Cocoa programmers are freed to do

creative, rather than routine, work—in essence, everyone can be a “super-

programmer.” And because it allows individuals or small groups to be as productive

as corporate armies, Cocoa also has the potential to make all programmers “indies.”

This is not to imply that the work of the Apple engineers in creating the

Cocoa libraries themselves is actually routine and unskilled. In fact, it is highly

skilled, perhaps more so than application programming using Cocoa. As the variance

in quality of the third party NeXT objectware market showed, writing objects to be

reused by others is not an easy task, as a programmer may not anticipate all the ways

that object will be used. Indeed, as Steve Naroff indicated in my interview with him,

Steve Jobs did not buy Brad Cox’s object libraries because he felt that Cox’s

employees were not “world class” but the engineers Jobs had hired at NeXT were. “I

also knew that the people working on it at Stepstone were not world-class; I knew

that it would be really hard for world class companies like NeXT to buy into

someone else’s ICPaks.” (Steve Naroff, Interview, December 22, 2012) As Willrich

mentioned, a lot of care at Apple went into designing object interfaces that were as

simple as possible for the largest number of users. This involved some guessing, but

with “world class” engineers, more often than not, they guessed correctly. When they

didn’t, this could be corrected in subsequent releases by changing the API, but this

was not to be done lightly, as such changes could make earlier software incompatible.

173

Moreover, designing the libraries to be consistent throughout took a significant

amount of vision, intentionality, coordination, and the control of key managers in

NeXT’s, and later Apple’s, software team. This meant that the work of crafting an

object library to be reused long into the future, and anticipating all the use cases

correctly so that the library would not have to change significantly over time, takes a

lot of knowledge and experience in good object-oriented design, which is anything

but routine work. A bad job can result in software that does not match most users’

needs, or does not adapt to changing circumstances, thus needing to be thrown out

and rewritten in only a few years. However, the AppKit’s core architecture has

remained largely unchanged for over twenty years, and decisions made in the late

1980s and early 1990s have “stood the test of time.” Blaine Garst, a retired NeXT

and Apple engineer, noted:

“It’s fascinating… looking back on design decisions you made 20
years ago, 18 years ago, 15 years ago that are still in play…

And you look at the technologies and the deployment environments
and all these other environmental things that change around it, and you
say, well, good core architecture can go a long ways. And that’s
effectively what we did. We took the existing AppKit, we reworked
it… and made a good foundation for a lot of other things.

…Those names were still there last time I looked. You know? Stuff I
did twenty years ago. So the naming conventions are still in place…

[Those decisions] have stood the test of some time.

(Blaine Garst April 13, 2012)

Another way that Apple makes it possible to write less code is that, using

Interface Builder, it is sometimes possible to accomplish functionality without

writing code at all. Over the years, Interface Builder has increasingly built in more

ways to construct user interface components by manipulating them graphically using

the mouse, and toggling a few options. The same thing can almost always be done

“programmatically,” by writing code, but this can often take substantial work,

compared to the mere minutes involved in dragging a user interface object from a

palette and configuring its options and connections. This convenience involves

certain trade-offs, however. Not everything that can be done with the user interface

174

object is exposed in Interface Builder. A programmer may want to customize the way

a button draws itself, for example. For these cases, a programmer has to write code;

writing the code not only gives the programmer a lot more power and control, it also

helps the programmer understand in a lot more depth what the AppKit framework is

doing behind the scenes.

More recently, for iOS development, Apple has introduced a feature in

Interface Builder that allows a developer to graphically design not just a single

screen of a user interface, but to graphically lay out how all the screens in an iOS

application are connected, such as how tapping a button on one screen transitions, or

“segues,” to another screen. Drawing on a familiar design practice in the film

industry, Apple calls this feature, “Storyboards.” This technology allows the user

interface designers in a company, who may not have any coding experience, to

participate much more closely in the development of an application, as the laying out

of a storyboard does not simply build a mockup that needs to be coded later, but is

actually creating the connections of the program’s code itself.

Step Christopher, an iOS instructor at the training company, Big Nerd Ranch,

said that Storyboards exemplified Apple’s approach to technology: convenience, at a

price:

Storyboards is a very Apple technology. It’s very powerful and simple
to use, but you have to use it in the Apple way… you have to forget
the rest of the world, and live in an Apple way, and then you can do
powerful things easily, but easy in the Apple sense. (Step Christopher,
Interview, May 22, 2014)

Christopher’s explanation of Storyboards reveals the flip side to the draconian

control and limiting of options that Willrich said was justified in Apple in the name

of simplicity. Convenience is obtained at a price. While most of Cocoa is less

limiting than Storyboards, Storyboards represents this impulse at Apple taken to its

logical conclusion. We can make designing an application so simple that a developer

almost does not need to write any code at all. The trade-off is that a developer must

do it in the specific way prescribed by Apple. Part of learning to be a Cocoa

developer, then, is in part learning to make this trade-off at some level, and learning

175

not only to accept it, but to love it, as the developer will gain productivity and

pleasure in return. It is a bit like following a well-groomed ski slope—such

predetermined paths make skiing easier, but are simultaneously constraining.

There is another side to Storyboards that is also revealing. While it is possible

to build a simple application using no code with Storyboards, to construct anything

remotely interesting, that a customer might pay money for, requires a developer to

add custom functionality. Thus, developers do still need to write some code.

However, because Storyboards hide from the programmer a lot of what is happening,

understanding exactly where a programmer needs to plug code takes a deep

understanding of how Storyboards work on an abstract level. This understanding is

difficult to gain because so much of Storyboards is black boxed. In this sense, for a

programmer, it may actually be easier to implement user interface screen transitions

for an iOS program in the more traditional way, in code. By writing code, the

programmer can see exactly where the transition occurs, and has direct control over

the process. With Storyboards, Apple’s code has control over the process, but

provides certain hooks, known as “callbacks,” that call a programmer’s own code

when certain events occur. iOS trainers such as Christopher recommend that novices

learn how to construct an interface using code, not using Storyboards, because only

by writing this code can the novice gain the mental model for how iOS programs are

structured.

In other programming environments, programmers typically learn first to

write a program that runs from start to finish, with loops and branches and subroutine

calls. However, Cocoa programs start running in code owned by objects in the Cocoa

libraries, and only call out to a developer’s own custom code at specific times, in

response to specific events. Only when built-in Cocoa objects need to “delegate”

custom functionality will they call a programmer’s own code, again, using specific

interfaces known as “callbacks.” A Cocoa developer thus needs to read Apple’s

documentation extensively to learn what callbacks to write code for and when, even

to create simple programs. This involves learning extensively a mental model for the

lifecycle that a Cocoa program goes through, what events various Cocoa objects

176

respond to, and when it is appropriate to customize those events by implementing a

callback.

The result is that, by automating a lot of tasks for the programmer, Cocoa

takes care of routine tasks and makes a lot of things more convenient, and thus,

easier, for a programmer familiar with the environment. However, this benefit only

comes after a programmer has spent considerable time learning how Cocoa works on

a higher, more abstract level than he or she can see directly in code, because much of

the code is hidden in objects written by Apple. Far from deskilling the work of the

programmer, Cocoa actually requires the programmer to acquire significantly more

knowledge and understanding of how Cocoa object libraries work in Apple’s system,

because it requires the programmer to work in a specific way in order to match the

way Apple has designed its system. Although a Cocoa programmer writes less code,

she must understand more. As we will see in the next section, this also means that a

Cocoa programmer must trust that Apple’s libraries will do what she wants better

than code she could write herself.

Learning as a prerequisite for productivity

Aaron Hillegass, a former instructor at NeXT and Apple, founded his own

company, the Big Nerd Ranch, in 2001, to train programmers how to write Cocoa,

and now, iOS, applications. For Hillegass, a developer’s willingness to learn Cocoa’s

APIs is directly related to how much Cocoa will be able to empower the developer.

Like other former NeXT programmers, he asserts that it is true that “there is an order

of magnitude higher productivity for a NeXT programmer,” particularly because “it

was big on Wall Street,” as he himself, knew, having written NeXT programs for an

investment bank. (Aaron Hillegass Interview, July 7, 2011) This promised

productivity is partly a result of achieving more functionality with less code, because

more functionality (and complexity) is handled by code in the Cocoa libraries

themselves. This can only be achieved, however, if a programmer fully follows and

embraces the design patterns the Cocoa libraries require, something that comes with

significant learning. This changes the task from one of writing to one of learning.

177

There’s this trade-off between learning and coding. You learn more,
but you code less. It’s choosing to learn, rather than write…

You have to choose to spend more time learning and experimenting
and reading the documentation, and in return, you’re writing fewer
lines of code.

It’s not a platform for dummies… that’s really what Cocoa is… it’s a
framework for smart people.

(Aaron Hillegass Interview, July 7, 2011)

What does Hillegass mean, “Cocoa is a framework for smart people?” By

“smart,” Hillegass means a combination of humility and a willingness to learn, the

opposite of the “Not Invented Here” syndrome that many programmers have, who

are suspicious of other peoples’ solutions and prefer to rewrite everything themselves.

For Hillegass, a “smart” programmer is the one who is willing to trade off having

full control over her code (by writing it herself), versus learning how to utilize what

objects Cocoa’s built-in libraries provide, thus reusing code Apple has already

written. Cocoa requires more learning because it is more abstract, incorporating

higher-level concepts and design patterns that help tame complexity. With these

abstractions, accomplishing a task could be expressed in simpler, more elegant form.

This is “smart” because the investment in learning now will greatly economize on the

programmer’s time in the long run, because she will be able to more easily leverage

code written by Apple. As an example, Hillegass compared the way scrolling is

implemented in Cocoa versus the way it was done on the original Macintosh

operating system. This is done using a user interface object called a “ScrollView.”

That’s always the trade-off with these object-oriented systems, is that
you get the ScrollView for free, and the ScrollView will do anything
that you need it to do, but you really have to understand it. Whereas
back in the… [original] Mac… you had to write incredible amounts of
code to make a ScrollView work. But since you had written all the
code, you were in total control, so you didn’t have to have a deep
understanding of ScrollView because there weren’t that many smarts
there. (Aaron Hillegass Interview, July 7, 2011)

The return for getting a “deep understanding” of the ScrollView object, is that

developers get scrolling “for free.” The implication is that the more “smarts” that are

178

built into object-oriented code libraries, the more skilled and knowledgeable

programmers need to be in order to fully utilize their functions. This runs counter to

the traditional account of automation: that the smarter a piece of technology is, the

more it deskills its user.

To illustrate the productivity difference this could make, Hillegass provided

the example of Lighthouse Design’s “Diagram!”, a graphing application on

NeXTSTEP. A competing company replicated the innovative user interface of

Diagram!, but deployed their app on Windows, calling their competing product,

Visio. Visio for Windows took twenty programmers to create an equivalent to

Diagram! According to Hillegass, Diagram! was written by a single developer at

Lighthouse, Kevin Steele, who, years later, rewrote the program from scratch for

Mac OS X, now called OmniGraffle and sold by OmniGroup. Hillegass explains that,

although the two applications look similar on the surface, they were not built in the

same way.

They are not the same sort of program. The guy who wrote Diagram!
had a very deep knowledge of what was going on with the operating
system… of everything that was happening in the standard classes of
OpenStep,26 and he leveraged those. So he wrote significantly less
code, but in his mind he had a much deeper context that he had to
understand. So the programmers [who] worked on Visio, wrote a lot
more lines of code, [and it] took a lot more of them, but each one of
them didn’t have to understand how the operating system worked.
Because they were writing the whole thing. (Aaron Hillegass Interview,
July 7, 2011)

Hillegass’s definition of “smart” is not universal among programmers. For

others, a “smart” programmer might be one who writes everything from scratch,

simply because one has the expertise and arcane knowledge—it is a proof of one’s

skill. Among Cocoa programmers, however, this is seen as a vice, not a virtue. It is

26 OpenStep was a rebranding of the NeXTSTEP frameworks after they were

ported to run on top of other Unix-based operating systems, as well as Windows, in

the 1990s.

179

considered a waste of a programmer’s time to “reinvent the wheel,” spending time on

problems that Apple has already solved, writing code Apple has already written, and

in way that works consistently with the rest of the system. According to Hillegass,

Cocoa programmers are smart in part because they are humble enough to be willing

to learn, rather than assume that they can, and have to, do everything themselves.

“Reinventing the wheel” is an aspect of “Not Invented Here” syndrome, a disdain of

outside technologies that one did not personally invent, which Hillegass considers an

indicator of hubris and thus stupidity, not intelligence.27 By not falling prey to this

hubris, Cocoa programmers are smart because they economize on their own time,

and leverage the work of others. Smart developers spend time on what’s important,

solving the problems unique to their own application, which, after all, is what the

user is paying for.

Hillegass thus contrasts these two social models of software production,

implicitly connecting the design of software toolkits and how much “intelligence”

they expect from their users, with the social organization of programmers. This

27 Ironically, as a company that pushes its own proprietary standards, Apple

itself has been frequently accused of “Not Invented Here” syndrome, especially prior

to the NeXT acquisition. NeXTSTEP was based on Unix, an industry standard, and

used the open-source GNU C compiler GCC, and use of open standards increased

dramatically in the initial years of Steve Jobs’ return. However, despite a nominal

embrace of open-source, Apple maintains is own forks of these projects under its

control, and in the years since, has gone back in the direction of inventing its own

technologies rather than embracing outside ones. Apple has since moved off of GCC

to a different open-source compiler, LLVM, whose less stringent license allows

Apple to more easily modify it for its needs. Apple actively supported Java in the

early 2000s, even creating a Java-bridge to allow developers to write Cocoa

applications using it, but ran into conflicts with Sun’s control over the language. In

2014, Apple created its own language, Swift (though using open-source tools like

LLVM) to serve as a replacement for Objective-C.

180

social model matches rather neatly with that of indie developers like Wil Shipley,

who argue that the future of the software industry lies with millions of small

developer-entrepreneurs, not the large corporations with their armies of programmer-

laborers. Indeed, Thomas Haigh argues that much of the discourse of “software

engineering” arose from academic computer scientists like Edsgar Dijkstra, who felt

that programming should be highly mathematical and thus reserved for the intelligent,

and resented the corporations that seemed to hire hordes of unskilled programmers

(Haigh 2010). In Hillegass’s social model, Cocoa programmers, like Brooks’ “super-

programmer,” are programmers of high skill, the one excellent programmer among

the ten mediocre ones cited in early IBM studies during the software crisis. “An early

study at IBM suggested that exceptional programmers were ten times more efficient

than their merely average colleagues. The alleged 10:1 performance ratio quickly

became firmly embedded in the cultural wisdom of the industry.” (Ensmenger and

Aspray 2002, 6) The 10:1 performance ratio understood in the 1960s as the ratio of

average to elite programmers is the same 10:1 productivity improvement that NeXT

claimed in the 1990s that its object-oriented environment could produce. It could be

said that NeXT’s alternative solution to the software crisis, then, is to remove the

need for average programmers completely, by automating all tasks that their elite

team leaders would have delegated to them. One way to interpret this is that, rather

than being a deskilling technology, by automating routine work, Cocoa puts average

programmers out of a job. Given the rapid boom in the population of Cocoa

programmers writing iPhone apps, however, this is clearly not the case. Average

programmers can write Cocoa apps, though not necessarily well. Rather, another way

of looking at this, is that Cocoa requires even average programmers to improve their

knowledge and skill in order to be competent at writing Cocoa programs. By

requiring a higher level of knowledge, Cocoa enskills programmers, rather than

deskills them.

Trust in Apple

Hillegass also notes, however, that being the “smart programmer” by

delegating as much work to built-in code libraries as possible, requires a good deal of

181

trust in the provider of those libraries, which are often black-boxed and cannot be

modified by the developer on closed-source, proprietary platforms. One of the

benefits to “reinventing the wheel” is that the programmer has complete control over

his code; he does not have to learn how it works because he wrote it himself, and can

trust that it does exactly what he needs. As a result, novice Cocoa developers have to

undergo a period of learning to trust that Apple’s libraries (and thus, its engineers)

have indeed provided the optimal solution to a problem. Of course, Apple’s libraries

do not provide the optimal solution all of the time, but it takes a fully knowledgeable

expert to discern the exceptions to the rule.

It involves a trust on Apple’s part, which they’re not always good
about actually fulfilling. And the trust is, we are going to make stuff
that you can leverage, and you have to be smart, and really understand
it. (Aaron Hillegass, Interview, July 7, 2011)

Being “smart,” then, is not simply a matter of intelligence, but also a matter

of normative virtues: humility, and trust in Apple. The message is simple: sacrifice

your control over your code by delegating much of your work to Apple’s object

libraries, trusting that Apple has hired the best and brightest software engineers to

come up with the right solution. Learn how Apple’s code and system works, and

learn to leverage it. By letting Apple do most of the work, your application becomes

faster, more stable across future operating system updates, and you spend less time

on writing routine code to solve problems Apple has already solved for you. If you

make this sacrifice, you will be rewarded with a ten-fold increase in productivity,

allowing you to become a super-programmer who can compete against legions of

lesser skilled corporate coders.

What happens when this trust breaks down? Hillegass, despite having once

worked for Apple, and likely because of it, feels that he has the expertise to criticize

when Apple makes mistakes in its designs. He gives the example of a feature called

“Cocoa Bindings,” introduced on Mac OS X in the mid-2000s, as such a misstep.

Cocoa Bindings provided a way to synchronize the communications between objects

automatically by configuring options in Interface Builder rather than writing such

“glue code” by hand.

182

“I think [Cocoa] Bindings are absolutely mis-designed because they
hide too much away. And there’s very little of it’s public about how
things are working and if you’ve ever tried to create a view that has
Bindings, it’s really, really hard. And they did all sorts of things to
make it harder… it’s a pain in the ass to do it right.

So, when Apple screws up, it’s often because they thought, “well we
can give this crappy solution to programmers who are dumb,” is what I
really believe. They wanted to make it more accessible. And in making
it more accessible they made it bad.

…They said people found [an older technology which automated this
same process] too confusing, we’re going to go for a lower-grade
programmer.

But it was just bad—it’s not good. And we have proof that it’s bad
because they didn’t do it on the [i]Phone. (Aaron Hillegass Interview,
July 7, 2011)

According to Hillegass, when Apple goes wrong is when it does not respect

developers’ intelligence and tries to make a programming task too easy, thereby

deskilling it. Although Cocoa Bindings made it theoretically possible for a simple

Cocoa application to be constructed without writing a single line of code, but rather

“wired up” graphically in Interface Builder, by going too far in automating

programming, it made the resulting app an opaque black-box. This, counter-

intuitively, made programming more difficult for everyone, because even for skilled

programmers, the program was harder to predict, debug, and fix. Although removing

the need to code is seen as a good thing by Cocoa developers in general, doing so at

the expense of understanding what the underlying system is doing is not. A Cocoa

developer need not necessarily see the code that makes something work, but she does

need to understand it in order to properly use it. For this reason, the introduction of

the similar feature, Storyboards, has been rather poorly received by the instructors at

the Big Nerd Ranch, who feel that it hides away too much and is not conducive to

learning how iOS apps work. Hillegass’s iOS book, which serves as his course’s

textbook, teaches programming iOS apps the traditional way through writing code,

and in its fourth edition, only includes a short, inessential chapter on Storyboards

towards the end (Keur, Hillegass, and Conway 2014).

183

Design Patterns and the Learning Curve

Hillegass is not the only Cocoa developer, or even Cocoa instructor, to argue

that Cocoa requires significant learning. Julie Zelinski, a former NeXT and Apple

employee who has taught Cocoa programming at Stanford, notes that the Cocoa

frameworks, not the Objective-C language, have a high learning curve that a student

must get over in order to become proficient:

 [The] Objective-C [language] takes like a week to learn. What takes
you months to learn is the AppKit, the Foundation… the whole
[Cocoa] toolkit. […] There’s a huge learning curve and you have to get
people to invest in the learning curve to get to the other side. (Julie
Zelinski, Interview, April 24, 2012)

Moreover, developers will not initially be able to trust that Cocoa’s way of

doing things works better until they have gotten over this hump. Thus, not all

programmers who try to learn Cocoa make it to the other side; until they do, it is not

obvious to them how doing things the Cocoa way will benefit them. In order to

explain how this is so, it is necessary to understand an important aspect of both the

way Cocoa is designed and its implications for Cocoa programming practice.

One of the primary obstacles for students’ learning is that Cocoa has been

designed around a consistent set of “design patterns,” recurring pattern-solutions for

solving common programming problems in object-oriented environments. These run

throughout the Cocoa frameworks, and extend far beyond any particular function or

API. The benefit of these patterns can only be understood holistically, making Cocoa

difficult to approach in piecemeal fashion:

Just in the sheer depth of all the frameworks that are available to you,
it’s kind of like you’re moving through this fog of war and you’re
seeing things appearing as you’re discovering new things. But, because
you didn’t know about them before… you are… in the dark as to…
how to approach a solution or… understand… the bigger picture.
Because the bigger picture is so huge. (Chris Livdahl March 28, 2012)

For those who do manage to make it to the other side of the learning curve,

however, a whole new world awaits, as if the developer has reached a moment of

184

understanding. Craig Hockenberry, the developer of the popular Twitter client,

Twitterific, likened this to acquiring a new “mindset.”

There’s a pretty steep learning curve for people coming from Windows
and Java. I did Windows programming for a while, we still have a
product that we sell that’s for Windows and Photoshop, and it’s a
totally different mindset, it’s a totally different set of tools, different—
and I don’t want to say one is better than the other, but if you’re going
to develop iPhone applications, you gotta get the right mind-set.
That’s a hard thing to do… there’s some very [sophisticated] design
patterns in the Cocoa framework. And part of the hard part of the
learning curve is figuring out what those design patterns are.
[emphasis mine]

(Craig Hockenberry, Interview, January 7, 2009)

This discussion of “mindset” seems to subtly invoke Thomas Kuhn’s notion

of “paradigm shift.” The term “paradigm” has moved from philosophy and history of

science into common usage among computer scientists and practitioners, and indeed

is used to describe different familial classifications of programming languages,

including object-oriented programming. It is not clear how much of Kuhn’s theory

has moved along with the term. In common programmer discussions of the

differences between procedural and object-oriented programming, or imperative and

functional programming, the sense that one’s “worldview” or “mindset” needs to be

shifted when moving from one of these “paradigms” to another is implied. However,

to what extent are these different language families seen as “incommensurable” with

each other, a key entailment of Kuhn’s theory? This is not clear, as elements of

object-oriented programming, such as modularity, can be found in procedural

languages that follow a structured programming methodology. Smalltalk, one of the

earliest object-oriented languages, took significant inspiration from Lisp, a

functional language, and indeed, more and more object-oriented languages today

have been incorporating functional features. The fact that languages such as C++ and

Objective-C, which are “hybrid” languages that straddle or incorporate multiple

programming “paradigms” indicates that the component concepts of these languages

are not incommensurable at all, but travel rather easily in academic computer science.

Nevertheless, purist proponents of one or another of these approaches argue that such

185

hybridity dilutes and in fact destroys what makes working in these “paradigms” both

pleasurable and productive. C++ programmers, they say, are not truly learning

object-oriented programming, but a reduced, impoverished version of this. Object-

oriented programming in C++, as opposed to the more pure Smalltalk, has been

reduced to a kind of “pidgin” that lacks the full richness and meaning of its original.

Similarly, despite the incorporation of functional features into newer languages such

as Apple’s Swift, some argue that these are not “true” functional languages like

Haskell or Clojure. Clearly, the language of “paradigm” is fraught, and here I treat it

as an actor’s category which does discursive work for the actors, rather than an

analytical category.

Nevertheless, Hockenberry notes that the key to understanding and learning

the Cocoa frameworks lies in learning the design patterns built into them. What are

design patterns? The canonical text on design patterns in computer science is Erich

Gamma, et. al.’s Design Patterns: Elements of Reusable Object-Oriented Software,

otherwise known as the “Gang of Four book for its four co-authors. The book is a

catalog of “simple and elegant solutions to specific problems in object-oriented

software design. Design patterns capture solutions that have developed over time…

They reflect untold redesign and recoding as developers have struggled for greater

reuse and flexibility in their software. Design patterns capture these solutions in a

succinct and easily applied form.” (Gamma et al. 1995, 9) The intention of design

patterns are to “make your designs more flexible, modular, reusable, and

understandable—which is why you’re interested in object-oriented technology in the

first place, right?” (Gamma et al. 1995, 9) Making a catalog of known solutions to

common problems is necessary because simply using an object-oriented language

does not automatically generate the benefits promised by the methodology; one must

learn how to think and design in object-oriented ways. The authors explain:

Designing object-oriented software is hard, and designing reusable
[emphasis in original] object-oriented software is even harder… Your
design should be specific to the problem at hand but also general
enough to address future problems and requirements… Experienced
object-oriented designers will tell you that a reusable and flexible
design is difficult if not impossible to get “right” the first time…

186

…expert designers… reuse solutions that have worked for them in the
past. When they find a good solution, they use it again and again. Such
experience is part of what makes them experts. Consequently, you’ll
find recurring patterns of classes and communicating objects in many
object-oriented systems. These patterns solve specific design problems
and make object-oriented designs more flexible, elegant, and
ultimately reusable. They help designers reuse successful designs by
basing new designs on prior experience…

The purpose of this book is to record experience in designing object-
oriented software as design patterns. Each design pattern
systematically names, explains, and evaluates an important and
recurring design in object-oriented systems. Our goal is the capture
design experience in a form that people can use effectively. To this
end we have documented some of the most important design patterns
and present them as a catalog. […] Once you know a pattern, a lot of
design decisions follow automatically.

Design patterns make it easier to reuse successful designs and
architectures. Expressing proven techniques as design patterns makes
them more accessible to developers of new systems. Design patterns
help you choose design alternatives that make a system reuseable and
avoid alternatives that compromise reusability… Put simply, design
patterns help a designer get a design “right” faster. (Gamma et al. 1995,
14–15)

As Gamma et. al. state, design patterns help make object-oriented programs

more modular, flexible, and reusable—qualities that help make software more

maintainable, and help improve a programmer’s long-term productivity. Reusability

in particular is difficult to achieve. Object-oriented languages by themselves are no

silver bullet, and do not mechanically produce reusable code. Rather, only thinking

conceptually about object-oriented design in a systematic way will lead to

architectures that are flexible, general, and reusable, and thus maintainable. In other

words, design patterns are one of a number of tools and techniques to address

software engineering concerns. The accumulated knowledge of expert object-

oriented designers has been, until now, relatively tacit, but in creating a catalog of

design patterns, Gamma et. al. are putting it in an explicit form from which future

programmers can draw.

The patterns described by Gamma et. al. have been widely adopted in object-

oriented design, including at NeXT, although the names used to describe them may

187

differ from those used by the Gang of Four. NeXT made extensive, consistent, and

recurring use of design patterns throughout what became the Cocoa frameworks.

Today, these patterns remain deeply embedded in all of Apple’s frameworks written

in Objective-C, including the Cocoa Touch frameworks used to develop apps for iOS.

(Apple Inc. 2013b) These patterns structure how programmers must think in order to

write programs using Cocoa—both constraining them and channeling their problem

solving into established directions. This has two consequences for learning. First, the

deep integration of these abstract patterns in the frameworks means that learning

Cocoa is not simply a matter of learning the Objective-C language and how to call

the proper APIs to do what one needs. It also means learning abstract concepts that

go by unfamiliar names: “delegation,” “model-view-controller,” “target-action,”

“key-value-coding/observing,” “responder chain.” These patterns are not generally

taught in university programming courses, and sometimes the names they go by in

Cocoa may differ from other programming environments or from their names in

Gamma et. al. Cocoa developers recognize this as probably the predominant reason

for Cocoa’s high learning curve.

You actually go into Cocoa proper and it’s like, OK, you need to learn
KVC [key-value coding], you need to learn KVO [key-value
observing], you need to learn MVC [model-view-controller], you need
to learn the patterns, you need to learn the Cocoa style guide for how
code should be written. And writing an application in Cocoa is just
like, having been a journalism major [myself], like writing an article
for submission to the New York Times. There’s a very specific style
that you must follow to make sure you are compliant with the way it is
done. (Mike Lee, Interview, July 15, 2008)

However, the second consequence is that once this initial investment has been

made, subsequent learning becomes significantly easier. The recurrence of these

patterns throughout the Cocoa frameworks creates a consistency that allows an

experienced Cocoa developer to expect that an unfamiliar framework will work in

the same manner as those she is already used to. This is the basis of the consistency

that Cocoa developers praise.

188

This tracts with Edain’s experience of learning Cocoa as a conversion: a

period of confusion and struggle, following by a gradual awakening upon grasping

the entire whole, accompanied by appreciation of the elegance of Cocoa’s consistent

design. This experience of holistic consistency is one of the key sources of the

affective pleasure Cocoa developers’ experience. Yet, this experience can only be

attained after the high investment has been made in learning. This cognitive

investment thus creates a barrier for outsiders and newcomers—without sufficient

motivation or commitment, it is not obvious to an outsider why the experience of

Cocoa development is supposed to be “better.” While NeXT and the Macintosh were

minority platforms, most programmers had no incentive to make this investment, but

the lucrative allure of iOS mobile apps has pushed many newcomers over this hump.

Design patterns are thus not only important in improving programmer

productivity and software maintainability, but are part and parcel of the techno-

cultural frame of Cocoa development, the understanding of which marks insider

versus outsider, expert versus novice, high versus low inclusion. Moreover, using the

correct patterns, the ones preferred by Cocoa developers, is a vital aspect of learning

normative “best practices.”

In the next two sections, I will explain two such patterns, why Cocoa

developers encourage their use, and why these make up elements of best practice in

the community.

Design Patterns—Model-View-Controller

One major design pattern used in Cocoa applications is Model-View-

Controller (MVC). Model-View-Controller is an architectural pattern for organizing

the design of applications with graphical user interfaces that originated with

Smalltalk at Xerox PARC. It is not only used throughout Cocoa, but has become

prevalent in most object-oriented graphical frameworks, including many web

frameworks. The pattern is a way of enforcing the principle of “separation of

concerns” between different classes of objects in an application, to prevent objects

from having too many dependencies on other objects, thus preserving both their

189

flexibility and their reusability. Both the AppKit and UIKit frameworks make such

extensive use of this pattern that it is impossible to discuss specific object classes

and APIs without implicit reference to it, as their names frequently bear their

categorization into “view” or “controller” roles.

For example, desktop applications with graphical user interfaces contain

windows, which contain sub-elements that are drawn on the screen. These are called

“views.” Anything that is displayed in a graphical user interface is in the form of a

view. Some different types of views can include table views, which display data in

tabular form, outline views, which display data in outline form, or text views that

allow the display and editing of text. Some views can be used to trigger actions, such

as buttons or sliders. These views are called “controls.”

Applications also contain data that the user is interested in displaying,

manipulating, or modifying. This data often models some quantity in the real world,

and can be represented by characters, integers, real numbers, strings of text, or

combinations or collections of these primitive elements. If the data is sufficiently

complex it may be in the form of a database. This data is often stored on disk or

retrieved from the network. Such data make up what is known as the “model” of the

application.

Views often display data coming from the model. For example, a table view

might display the contents of a database, and a text view might display the contents

of a text file. The user may wish to alter this data in the model, by manipulating the

view—say, typing into a text field to change some value. A naïve way to write a

program would be to store the model data directly inside the view itself. However,

this tight coupling creates problems if later on, either the model or the view needs to

change, or, for example, two different views need to display the same model data—

say, in outline form and in browser form. To reduce the tight coupling and

dependencies that such view and model objects would have to have with each other,

an object is introduced in between them, that handles the task of synchronizing the

view with the model. This is known as the “controller.” Having a controller allows

190

both the model objects and the view objects to be reusable—in simple iOS apps, for

instance, a developer may not even need to define her own custom views, but rather

just use view objects provided by the UIKit framework. The controller is often the

only custom object that cannot be easily reused, as it must contain the “glue code”

that holds the application together.

Figure 2: Model-View-Controller

The UIKit framework contains a kind of object known as a UIViewController,

which is a controller for handling synchronization between a UIView object and

whatever model data it represents on screen. It also manages screen updates and what

BrowserView OutlineView

Controller

Model

Update
User Action

UpdateNotify

User Action
Update

191

happens when it needs to transition to a different view. View controller objects are

one of the primary objects that developers write code for in iOS applications.

Like other object-oriented design patterns, MVC is intended to increase

maintainability and flexibility by keeping objects loosely coupled, and by

maintaining clear divisions of labor, or “separations of concern” between different

objects. Separating concerns among different objects increases usability because it

allows the programmer to easily swap out one object for another when things change

while keeping other objects the same. Edain explains how novices typically do not

understand the reason to add this extra separation:

So, if you don't think that model view controller is a good pattern,
which a lot of people [in the online forum, Stack Overflow] [don’t]…
you’re going to find a lot of people [are] like “hey, I do all of my UI in
code. And like I think that’s easier, I get more control.” Well… what
happens is… most of the people who do that confuse their view and
controller objects and end up with a lot less maintainable code. That is
a lot less… flexible under change. Because they didn’t take the time to
separate. (Hasan Edain, Interview, March 12, 2012)

What Edain hints at here is that although Cocoa requires the use of MVC due

to the design of its object classes, it is still possible for developers to subvert this

pattern, either deliberately, or through careless design. Creating clear MVC

separation requires some degree of discipline and commitment that involves trusting

that the pattern will yield long-term benefits despite extra short-term work,

something novices tend to ignore. Edain explains that Apple has tried to encourage

the practice of separating these concerns:

Now, there are people who do in fact separate very well… but in
general… when the whole system was being thought of, they [Apple]
sat there and said, OK, how can we encourage people to do this? …We
have this database abstraction layer, which is going to be our model.
And we have this visual representation, which is going to be our view.
And if you stick in those worlds, then your model and your rear end
controller are going to be really well separated.

(Hasan Edain, Interview, March 12, 2012)

192

Edain notes that Apple can go a long way towards encouraging the use of the

pattern by building it into its system, requiring everything to conform to it and

understand it. Programmers can still get away with doing the bare minimum, but at

the very least, they must have this minimum separation if they are writing a Cocoa

program. Novices may not understand the reason for the enforcement of such

separation. For experienced web developers, this could a difficult thing to learn,

because the most widely used web framework, PHP, did not have MVC separation:

…I think within Cocoa there’s even more of an emphasis on MVC.
And it’s a lot different than what you might see out of [a] PHP
framework. So I’ve had to get used to a lot of that.

(Chris Livdahl, Interview, March 28, 2012)

Of course, the pervasiveness of MVC in Cocoa has pedagogical consequences.

A programmer cannot understand Cocoa without learning MVC. Thus, teaching

Cocoa requires teaching MVC. Julie Zelinski, a Stanford lecturer who has taught the

Cocoa class there, speaks to this:

You can only operate in the Cocoa space with knowing some of these
patterns, right? Learning MVC, it’s just going to happen… you know
you have to kind of get that… I don’t think [the Stanford Cocoa
course] stands up and says, “Now we’re going to talk about
[INAUDIBLE] design pattern,” but it is going to say “this is what
you’re going to be seeing here and this is how this pattern operates and
this is what you need to know about where your interactions are with
this.” (Julie Zelinski, Interview, April 24, 2012)

Similarly, Hal Mueller, who teaches an introductory Cocoa class at University

of Washington’s Professional Continuing Education program, emphasizes MVC

separation in his course.

Hal: I’m trying to tie concepts together more, so I really push the
MVC separation. I talk about how you would move a project from the
Mac to the [i]Phone. …So the graphics exercise we’re going to do is
more involved and again is going to reinforce MVC separation, so this
project, I’m going to give them a skeleton project which has, it
generates an array of random data that they have to plot and so now
you've got the tableView of the data, you’ve got the graphical view of
the data—

193

Hansen: OK, right and so that is a very good example of why you’d
need MVC separation, because you have two different views on the
same data. So it’s a very good way of getting across the need for this
kind of thing.

Hal: Yes.

Hansen: Right. Whereas otherwise, they would go, why should I
bother to set up this whole structure, I should just be able to access this
data directly.

Hal: Mmmhmm

(Hal Mueller Interview, February 15, 2012)

My exchange with Hal here indicates that it can be temptingly easy to cut

corners and create direct connections between objects in a program, even one written

in Cocoa. My response to Hal implied that I had done this very thing for expediency.

So teaching MVC in Cocoa had two purposes. Firstly, it was necessary simply to use

Cocoa to know MVC, so teaching MVC is simply fundamental technical knowledge

one needs to master. Secondly, however, MVC is also a normative practice that will

improve a programmer’s software the more she uses it in her designs, going above

and beyond the minimum use of it enforced by Cocoa. By building MVC so heavily

into Cocoa’s design and making it a mandatory concept to learn, Apple conflates the

“is” and the “ought” of learning MVC—conceptual knowledge and normative

practice are learned simultaneously.

In summary, Model-View-Controller is built into the Cocoa frameworks and

Apple and the community heavily encourage developers to maintain clean

separations of concern between model, controller, and view objects when they write

their applications. Learning this practice is critical to learning Cocoa, but following

it in a disciplined and thoughtful manner still takes some effort. Conceptual

knowledge and normative practice are thus conveyed together in the learning of this

pattern. This duality is exhibited even more strongly by another design pattern

heavily used in Cocoa and promoted by Apple and the community: “delegation.”

Even more so than MVC, delegation takes effort to learn, is necessary to fully grasp

the way Cocoa works, and is a pattern Apple promotes over alternatives. This

194

difficulty is exhibited by the fact that delegation represents a very different solution

to the common problem of customizing code provided by libraries such as Apple’s

Cocoa than the one most commonly employed in other object-oriented environments,

as we will see in the next section. Getting over resistance to this new way of thinking

requires even more trust than learning MVC.

Design Patterns—Delegation vs Subclassing

Mark, an instructor at Big Nerd Ranch, explained on the first day of his class,

“delegation is one of the huge things in object-oriented programming that Apple does

a lot.” In my own experience, and in the experience of many Cocoa developers I

interviewed, delegation was one of the concepts I found most difficult to understand

when learning Cocoa. Delegation is second only to Model-View-Controller as a

pattern central to the design of the Cocoa frameworks, and thus a critical concept to

understand. Unlike MVC, which has become more prevalent recently in web

frameworks, delegation is not commonly familiar to programmers with experience in

other object-oriented languages, which means that learners do not have analogous

concepts to mentally translate. Nevertheless, its pervasiveness within Cocoa makes it

unavoidable. Mark told his class, “Even if you don’t completely understand the idea,

you will be using it.” (Field notes, July 10, 2011)

In Cocoa, delegation is frequently used to solve problems that in other object-

oriented environments are commonly solved using a different solution, subclassing,

which is also available in Objective-C but whose overuse is discouraged by Apple

and the Cocoa community. The use of delegation instead of subclassing is a central

practice learners of Cocoa find difficult and must change their way of thinking to

embrace. In learning to employ delegation as a design pattern, Cocoa programmers

unlearn the familiar exemplar solutions of their original technical subculture and

convert to a new normative order, in which more flexible solutions, which include

delegation, should be used when possible.

To understand the techno-cultural difference between object-oriented

programmers who favor delegation versus subclassing as a common design solution,

195

we need to understand what these concepts mean. I will explain subclassing first, as

it is a standard technique available to the majority of object-oriented languages.

Object-oriented programming languages are supposed to promote code reuse. One of

the ways they do this is by providing mechanisms for programmers to extend and

customize the functionality of code modules provided by others in libraries or

frameworks, for which they do not necessarily have the source code. The standard

way to do this in most object-oriented languages is through “subclassing,” also

known as “inheritance.” Code modules in object-oriented languages are known as

“objects.” Objects have a type, known as its “class.” The class definition defines

what data or attributes (known as instance variables) these objects have, and what

operations (known as methods) these objects can perform, or in other words, what

messages they respond to.28 Objects are particular “instances” of the class. For

example, the objects “Fido” and “Spot” are both instances of the class “Dog.” The

class definition for Dog says that Dogs have certain instance variables that other

objects may not have: color, breed, name, etc., and can perform actions only Dogs

can do, such as “Bark,” “Fetch,” “RollOver,” “PlayDead,” etc.

Most object-oriented languages allow programmers to define new classes as

subtypes, or subclasses, of another class, including those provided by the language or

operating system’s built-in library. Subclasses are usually more specific than their

superclass. For example, a class “Cat” can have the subclasses “Lion,” “Tiger,”

“Leopard,” and “Cheetah.” The subclass is said to inherit all of the instance variables

and methods defined in its superclass (sometimes called its parent class). Subclasses

28 Determining whether an object can respond to a particular message, and

selecting and binding the proper code to run, can be determined either “statically,”

when the program is compiled, or “dynamically,” when the user is running it live.

“Static binding” creates faster code while “dynamic dispatch” allows for more

flexibility; for instance, it might be desirable to switch out a completely different

method implementation at runtime in a dynamic system, which would be impossible

if it was statically compiled.

196

can define additional variables or methods beyond what its superclass defined,

extending it. For example, while “Cat” may not have an instance variable defining a

“Pattern,” Tiger may have a “Pattern” instance variable set to “Stripes” and Leopard

and Cheetah’s Pattern may be “Spots.” Subclasses can also override the definitions

of methods defined in their superclasses, changing or customizing their behavior. For

example, Cat may respond to a message telling it to “Talk” by playing a “Meow”

sound. Lion and Tiger may override this behavior by playing a “Roar” sound instead.

In the UIKit, UIView has many subclasses: UITableView, UITextView, etc.

UIControl, which is itself a subclass of UIView, has its own subclasses: UIButton,

UISlider, etc.

Subclassing is one of the standard techniques taught to undergraduates

learning object-oriented programming in college, and in such languages as Java and

C++, most programming tasks begin by making a custom subclass of something else.

However, as a design technique, subclassing can have disadvantages. The

relationships between classes are defined by the tree-like structure of inheritance,

and classes can only customize the behavior of classes that they inherit from, higher

up the tree. Some languages, such as C++, support multiple inheritance, allowing a

subclass to have more than one superclass; this solution, however, often results in

certain complications, because if both superclasses define the same instance variable

or method, which one wins? Objective-C gets around this using a feature known as a

protocol. Subclasses in Objective-C can inherit from only one superclass but can

conform to one or more protocols. (Java has this same concept but calls it an

“interface.”) A protocol is like an abstract class definition except that it cannot

define any instance variables (which implies memory storage), only methods. All

classes that conform to the protocol must implement the methods defined in the

protocol. For example, many different kinds of objects that are not directly related to

each other may need a way to encode their data in a way that can be written to a file

on disk. In Cocoa, this is handled by the NSCoding protocol, part of the Foundation

framework. Objective-C also contains a feature uncommon in other object-oriented

languages: a developer can add methods to existing classes without having to create

197

a subclass. This is known as a category or a class extension. This is done without the

developer having any access to the original class’s source code, thus allowing

developers to add methods to Apple’s own classes. The advantage of this is that the

extension is now available to all other developers on the same team automatically

without them having to use a custom subclass. Any other subclasses written by other

vendors will also get these extensions automatically. This gets around the restrictions

of the inheritance hierarchy.

Subclassing, protocols, and class extensions are all techniques that are

facilitated by direct support in programming languages. That is, Objective-C

supports these practices natively by providing direct syntax for them. Similarly, Java

provides direct syntax for subclassing and its version of protocols (Java’s interfaces).

Protocols and class extensions provide two different ways of designing a flexible

object-oriented system without constraining it with the rigidity of an inheritance

hierarchy. The delegation design pattern is another way to customize behavior

outside of inheritance, which is not directly supported by the syntax of any particular

object-oriented language, but is a higher level concept that exists independently of

them.

Mark, the instructor at the Big Nerd Ranch, described delegation by saying,

“I’m an object, I do a thing a lot, but I ask a helper to do this [instead of doing it

myself].” In delegation, one object assigns certain tasks to another object, its “helper”

or “delegate.” This is often used to update some state in one or more objects in an

application, such as whether a text field is editable, or whether a table should refresh

its data. This helper object can be of any arbitrary class, not related to the delegating

object’s class in any way.29 The delegate can also take on the tasks of not just one,

29 In practice, this is done through the use of Objective-C’s protocols feature.

The delegating object merely needs to declare a protocol that the delegate must

conform to. If the delegate implements the methods declared in the protocol, it can

receive the proper messages from the delegating object and thus handle the tasks that

198

but multiple objects, allowing a single object to customize the behavior of any

number of others. Apple’s official documentation explains delegation thus:

Delegation is a simple and powerful pattern in which one object in a
program acts on behalf of, or in coordination with, another object…
The main value of delegation is that it allows you to easily customize
the behavior of several objects in one central object. (Apple Inc.
2013a)

Delegation also works well in conjunction with the Model-View-Controller

pattern. As is often the case in Cocoa applications, controller objects frequently serve

as the delegate of view objects. This is especially the case when a developer does not

need to subclass any of the AppKit or UIKit framework’s built-in view objects, but

simply uses them as is. In this case, all custom behavior is delegated to the controller

object, while the developer simply reuses a stock view from the library. In this way,

we see that delegation allows the developer to avoid subclassing while still enabling

customization of standard behavior; it also promotes code reuse, as the library view

classes are being reused, avoiding the use of a custom subclass which is less likely to

be reused by other developers. Again, we see that in the MVC pattern, controller

classes are less likely to be reused—but the separation of concerns that delegates all

of the views’ custom behaviors to the controllers allows the views to remain as

general as possible, promoting their reuse. An example of this pattern can be seen in

TableView objects, a type of view that displays tables of data like a spreadsheet.

have been delegated to it. This use of protocols to create a delegate relationship

requires the protocol methods to be optional, a feature that did not have direct

support in Objective-C until Objective 2.0 was released in 2007. Prior to this, this

relationship was created using an “informal protocol,” which was actually a clever

hack—a category on NSObject was created to extend the root object of the entire

Cocoa inheritance hierarchy with the necessary methods. Thus, the delegation pattern

was implemented using two different Objective-C features before and after 2007,

both alternatives to subclassing.

199

TableViews usually delegate to their controllers the tasks of customizing their view

display, as well as synchronization of the display with the data.30

Like class extensions, delegation also allows a programmer to customize the

behavior of objects that the programmer may not have the source code to, such as

objects provided by Apple’s closed-source Cocoa libraries, which circumvents the

fact that these are black boxes to third party developers. Thus, along with subclassing

and class extensions, delegation is one of many ways that built-in Cocoa objects can

be customized. Because these alternatives are available, Apple and the Cocoa

community heavily discourage subclassing unless there is no other way to

accomplish something. This leads to a crucial cultural and normative difference in

technical practice between Cocoa and other object-oriented development

environments.

This was revealed by a conversation I had one day with two developers at the

Big Nerd Ranch, Andrew and Brian, who had experience with Android programming

(which is done in Java) in addition to iOS (which uses Objective-C and Cocoa

patterns), about the different ways the two platforms train people to think. Brian said

that the biggest difference is that on iOS, Apple’s online documentation discourages

you from subclassing as much as possible, because they want you to use the available

alternative design patterns, like delegation. Andrew said that on Android, subclassing

is the only way to do most things. That meant that for him, the first thing he did

when he got to work every morning was to write three different subclasses. Brian

said that Apple and the Cocoa culture had discouraged him from subclassing to such

an extent that when he had been working on iOS, he tried to avoid subclassing a

30 Officially, in both AppKit and UIKit these two tasks are conceptually

separated into two different delegate objects. One, which customizes display, is

officially designated as the “delegate,” while the other, which synchronizes display

with data, is called the “datasource.” In practice, these two are usually the same

object, being the TableView’s controller.

200

button even when it was actually correct solution to his problem. He read Apple’s

documentation that said that in order to customize a button to do the specific thing he

wanted, he had to subclass it, and he said that he thought, “that can’t be true! There

has to be a way to customize this without subclassing!” While that is often true in

Cocoa because Apple does provide various ways to customize classes without

subclassing, in this case it was not true. This happened to Brian more than once.

Whereas, after he spent some time on Android, he immediately would have hit upon

subclassing as the solution to this particular problem. This little exchange shows how

this cultural norm of avoiding subclassing in Cocoa programming had been so deeply

internalized by Brian that he did not recognize when it was actually good for him to

subclass. These different norms between Android and Cocoa deeply affect the kinds

of solutions they typically reach for in their everyday practice.

Other Cocoa developers I have interviewed have also noted this fundamental

difference in practice between Cocoa and other object-oriented environments, which

rely almost exclusively on subclassing as a customization solution. Many noted how

culturally difficult it was to learn delegation for programmers used to environments

where subclassing was prevalent. Adam Preble, a Cocoa instructor at Big Nerd

Ranch, said that he himself had trouble with this when he first learned Cocoa.

For a long time my stumbling block with Cocoa was, just how on earth
do I organize this application? Because it just doesn’t really match up
with the way that you do it with WXWidgets [a cross platform UI
framework he used previously]. You know, with those kinds of
frameworks it’s all about the subclassing. And in Cocoa we try to keep
that to an absolute minimum.

(Adam Preble Interview, August 8, 2011)

The message that the use of subclassing should be minimized was reiterated

by many Cocoa developers I interviewed. They all noted that this normative

exhortation came primarily from Apple:

Apple has come out and said, you know, try and not to subclass as
much as possible. Try and use other mechanisms…

(Robert Walker May 19, 2012)

201

And [as Apple] we’re going to attempt to encourage delegation over
subclasses. Right?

(Hasan Edain March 12, 2012)

Nevertheless, what is striking about this norm is that there is little dissension

among Cocoa developers about the value of delegation. Their attitudes show that

understanding and appreciating delegation as a superior practice over subclassing

clearly marks their high inclusion in the techno-cultural frame of the community. For

example, Brian and Andrew believed that the different design philosophies between

Apple’s iOS and Google’s Android provided evidence for why iOS was superior to

Android as a development platform. According to Andrew, because Android gives a

programmer so little beyond the operating system, to create any user interface of

decent aesthetic quality, the programmer had to “roll his own” functionality by

subclassing. With iOS, the Cocoa Touch frameworks provided so much more from

the start, with view objects that looked so much better in their default configurations,

that customization was not often required. Another issue was that iOS had a well-

designed class inheritance hierarchy with a tree structure. For example, Andrew

explained that all drawing is done by UIViews and its subclasses. In Android, by

contrast, the inheritance hierarchy is shallow, leaving few meaningful relationships

between objects—almost everything is a direct subclass of the root Object class at

the top of the tree. As an example, Andrew said that in Android, the Animator class

and the Animation class are completely unrelated. All sorts of different, unrelated

types of objects draw to the screen. Unlike iOS, Android had no consistency or

higher organizing principle, making it difficult to apply patterns learned in one area

to another. Brian intuited that this chaos and confusion was probably reflected in

Google’s internal organization—he said he felt like Android was written by five

different teams that didn’t talk to one another, which was why things didn’t work

consistently across the whole platform. Despite two things sharing similar names

(like Animator and Animation), they could be completely unrelated.

Other Cocoa developers similarly spoke of the superiority of the Cocoa

frameworks, in large part because the prevalent use of delegation in its design.

202

Delegation, they claimed, was a superior technique to subclassing for many problems

because it allowed for more flexible, malleable code, which would help keep it

maintainable over time:

The objects there [in Objective-C] are just softer, you could add stuff
to them very easily. You’re not stuck with this, OK, here’s how that
class works and the only way I’m going to change this behavior is to
make another object that might borrow from it, as a subclass. But you
can’t really change what that original object was. It’s sort of set in its
block and that’s what it does. And you can use that block and extend,
you know make another one that’s similar to it that may be more
refined, but you’re always dealing with a separate object, whereas with
Ruby or a dynamic language or Objective-C, you can start adding stuff
onto that… original construct…

(Robert Walker May 19, 2012)

Walker here speaks to Objective-C’s ability to allow objects to be extended

easily. Subclassing’s primary disadvantage is that, by creating relationships between

objects that are rigid, it locks in those decisions and make it difficult to modify in

response to change. Similarly, in the following quote, Edain notes that being locked

into using objects of a certain type creates structural constraints on one’s code, which

is a drawback of C++’s use of multiple inheritance:

You have the flexibility to handle design changes much more simply
without incurring the wrath of circular reference or other problems that
get introduced in multiple inheritance [a pattern used in C++].

So the real problem with multiple inheritance is, “oh wait a minute, I
have car and truck and they both have tire.” Right? Oh, whose tire
wins?

Well in the case of having [categories], or using a delegate, it’s not
actually important [which one wins]. OK, well, I’ll just put the kind of
tire I want on it, right? And then my ambiguity is resolved and I'm
really flexible. I put whatever kind of tire I need on this vehicle.
Right? And so that kind of solves a lot of structural problems very
easily.

(Hasan Edain March 12, 2012)

Edain then explicitly compares the design patterns used in C++ (multiple

inheritance) and the ones used in Cocoa (delegation, categories):

203

So in contrasting the two design patterns, like the design pattern that
Apple encourages on its platform, versus the design patterns that you
used on C++, is that deep inheritance pattern than you would use [in
C++], because there was less flexibility meant that there was a lot
more complexity and a lot more working out ahead of time what all of
the issues might be, you know, are there multiple inheritance conflicts,
etc., that with more flexible design patterns of delegation and
categories, etc., you don’t have to deal with those things.

(Hasan Edain March 12, 2012)

Edain notes here that the more rigid designs created by C++’s multiple

inheritance pattern means that to create software with equivalent longevity, a

programmer would have to be able to predict and anticipate all the potential use

cases of her code. Edain understands that in practice, this is impossible. No

programmer can predict ahead of time what her code might be used for years into the

future. Given this pragmatic software engineering reality, flexibility has become a

much-pursued virtue in object-oriented programming practice more generally. The

value of flexibility in the pursuit of making software more maintainable is not

disputed among programmers. However, among other object-oriented programming

communities, this has not led to a widespread discouragement of subclassing as a

design pattern. Edain is implying that the Cocoa community, as opposed to others,

has seen the light by heavily discouraging subclassing in favor of the more flexible

patterns of delegation and class extension.

How does this affect Edain’s experience of programming practice in Apple’s

Cocoa environment compared to other object-oriented environments? Edain finds the

experience much improved, and would rather not go back.

You look back and you go, I don’t miss it [not subclassing]. That’s
fantastic. If I want to grab some piece of functionality, I just slap a
category on something or I make myself a delegate of this other thing.
And yeah, if you look at my code now, I mean of course there’s some
subclasses of things, I mean all my view controllers are in fact
subclasses of UIViewController [a class from the UIKit framework]…
But for the most part I don’t have deep hierarchies. I don’t subclass my
view controller subclasses… I might subclass UITableViewCell to do
something, but then it doesn’t have a tree underneath it.

204

…Before, I mean in [Java or C++], I clearly would have had some five
or six class deep nesting pattern, and I would have had to think… or
done a whiteboard to someone and talk about like, OK, well, where are
we going to run into multiple inheritance problems and where do we
need to split the class and where do we need not to split the class…
And now I don’t have nearly any of those troubles.

(Hasan Edain March 12, 2012)

Again, Edain reiterates that in object-oriented environments that rely on

subclassing, the rigidity of the designs made possible by that pattern meant that to be

effective, he had to spend considerable time up front thinking very hard about design

decisions, because once made, they would be difficult to change. This puts undue

burden on the programmer to make good decisions up front, before any code has

been written, and it also means that if requirements change midway through the

development cycle, the developers are stuck with designs that might no longer be

appropriate. Edain’s embrace of the flexible patterns of delegation and extension

(“categories”) means that he has more agility in his everyday practice, allowing him

to focus on the task at hand without having to think through every possible longterm

consequence and pivot easily when requirements change.

This does not mean that subclassing should never be used, however.

“Subclasses still make sense in some contexts. They just don’t make sense in every

context…” says Walker. He explains that a smart programmer should understand

subclassing’s strengths and limits and use it when appropriate, like any other

technique. What he and others in the Cocoa community object to is the

indiscriminate use of subclassing to solve problems that are better solved with

different techniques. Subclassing should be reserved for the specific circumstance

when one wants to make a class more specific than its parent class, rather than

simply extend it in an arbitrary way:

…It has a lot to do with responsibility, whether this object is really
responsible for doing that, or not. Subclassing should always be taking
something and making it more specific. If you start with a Shape
object, the subclass should [be]… a Rectangle, or a Triangle. It’s…
extending some abstract object to make it more [concrete]. But a lot of

205

times, we subclass just to be able to do more stuff to that original,
[which we shouldn’t]…

[As an example of what not to do]: if you have a Shape object, but it
doesn’t have a fill color or something, you subclass it, and you make a
Fillable Shape. But you don’t really need to do that if you can just
attach that behavior to the original object.

…With a fully static type language [like C++], you get what you get
and then the only way you can really extend it is to subclass it.

So you end up with these crazy [designs] like… you’ve got three
different objects where you really only needed one… [Instead of
creating a] separate object that takes one of these [objects] and makes
another one and sends it back to you… you can just add that behavior
to the original.

So if it makes sense to do that, [for example] if you want a UIImage
[object] that’s resizable… just add it to the original object, instead of
creating a second object [that] is only subclassed just to do that one
additional feature. [That’s] not making it more specific, it’s just
extending its behavior.

(Robert Walker May 19, 2012)

In this extended quote, Walker explains precisely the restricted use case he

believes subclassing is for, and what common usage of it is inappropriate. What is

the consequence of using subclassing for mere behavior extension that is not about

increasing the specificity of the object’s type? Walker lays it out clearly: increased

complexity, the evil to be avoided. As we saw earlier, software engineering discourse

lays out unnecessary complexity as the primary cause of missed schedules, higher

costs, and unreliable, risky software. More complex software is inherently more

difficult to understand and thus more difficult to maintain. Given two solutions to the

same problem, software engineers should prefer the less complex one.

In addition to reducing complexity and increasing flexibility, patterns such as

delegation and extension increase code reuse:

And the design patterns where people started using that ability [to
extend an existing class], really changed how you approach delivering
a brand new product, from the most part, I mean, reusability has kind
of been this mirage for a very long time. It keeps saying oh, we're
going to make these reusable libraries, but inevitably it does 80% of

206

what you need and you can’t figure out how to tack on the last 20%.
(Hasan Edain Interview, March 12, 2012)

Like flexibility, code reuse is one of the central goals that object-oriented

languages are supposed to promote. Creating too many custom subclasses

proliferates the number of object classes, which by itself reduces the likelihood that

any one class will be reused. Moreover, libraries that provide no easy way to extend

classes for which a programmer does not control the source code also reduce code

reuse because programmers cannot simply use the stock class without subclassing it

to do what they want. In Cocoa, this is kept to a minimum, as for most purposes,

programmers can simply use stock Cocoa objects, and use delegation or extension to

customize their behavior. In this case, programmers simply reuse code that Apple has

already written. Here we see how code reuse directly magnifies a programmer’s

productivity. Every object class that is general enough and flexible enough to be

repurposed is one less class that the programmer needs to write herself. Why write

three slightly different classes if one will suffice? Better yet, why write any class at

all if Apple has already provided one that works?

Design Patterns and Conversion to Cocoa

Design patterns like delegation are highly abstract and are not learned

overnight. Nevertheless, because of how deeply embedded they are in the Cocoa

frameworks, the frameworks themselves cannot be understood without grasping

these patterns. And as we saw in many of the earlier quotations, learning these

patterns is not just a cognitive exercise but a transformation in norms; it involves

learning to love them, to believe that they are better than the alternative. Herein lies

one of the great difficulties of learning Cocoa, a difficulty that is simultaneously

conceptual, affective, and normative. Those unable to make the transition come away

feeling that Cocoa is weird, ugly, unintuitive, and frustrating.

Partly this is because delegation feels inverted or backwards.

Sometimes the code, the concepts can get inverted because the Cocoa
frameworks themselves when you first get into it, feel like they're
backwards.

207

Because rather than an object taking care of some concern itself, it’s
delegating out to other objects all the time. And so that’s not really
that common of a technique, especially in the Java world… where it’s
much more difficult to delegate things out.

(Robert Walker May 19, 2012)

With traditional programs, a programmer sees where code execution starts

and can trace its flow. Delegates, however, reverse this, because they are a form of

“callback,” which we discussed earlier. Remember that with callbacks, developers

write the code inside functions (or methods in this case) that get called by the

application when an event occurs that is triggered by the system or the user.

Programmers have no direct control over when these methods get called, and only

when some event outside their control occurs, does control pass to their own code,

making it difficult for them to follow their program’s execution. Often these trigger

points happen inside blacked-boxed Cocoa library objects that delegate to one of the

programmer’s own objects some action that she is able to customize. The

programmer must read Apple’s documentation to understand the proper points to

“hook” into, and trust that Apple’s objects will call her code at the appointed time.

This feels foreign to many programmers initially.

Another developer experienced his own difficulty learning delegation as a

process of assimilation into what had been a foreign culture:

…It wasn’t so much, oh, here is a language feature and I need to learn
the language feature, it was more, you know, I step through a door and
all of a sudden everyone’s speaking Korean. It’s not even the language,
it’s like they’re speaking English but with Korean idioms. So it’s
just—I’m not in Kansas anymore… All of a sudden I’ve really had to
just stop and back up and really go, “OK, let me assimilate culturally,”
what the expectations of this culture are.

So early on, it’s like, OK, model view controller, great, I understand,
that’s a good design pattern, I can cope with that. But it took me
probably nine months to get what people were saying about “delegate”
and why “delegate” was important…

It should have been simple and it should have been easy, but… there
wasn’t a place that I had found that just talked to me culturally about
design patterns, and hey, here is how this—I mean it’s an ecosystem.

208

It’s not just a language; it’s not just a framework. It is a language and
a framework in this context of an approach to writing programs. And
unless you sort of encompass all of those, you end up fighting some
element of it.

…My problem wasn’t that I didn’t understand the words, my problem
was that once again I was in this room of people speaking English with
Korean idioms. And I just didn’t understand the culture, right? Oh,
why is delegation important? When would I reach for it? Where does it
fit in my tool chest? How does it change how I approach applications?

(Hasan Edain Interview, March 12, 2012)

Edain sensed that Cocoa “culture” was like a foreign language, with its own

“idioms,” one that he felt was impenetrable at first because he could only grasp small

pieces of it, not the entire system. This “culture” was fundamentally about technical

practice. What was delegation and what was it useful for? What kind of tool was it,

and would it fundamentally change his design practice?

Those who make it through the transition, however, come to feel that Cocoa is

the most elegantly designed and pleasurable programming environment they have

ever worked with. Brent Simmons, a well-known indie Cocoa developer, describes it

as a kind of transcendent epiphany, a feeling of aesthetic sublimity:

When you’re still learning… every time you understand better… why
they work the way they do… there’s like a little flash of light in your
head, and you go, ‘Oh! That’s totally fucking brilliant! Now I get it!
Oh, God.’ And you just can’t help but just marvel at the elegance of it.
…Cocoa certainly does [have a great elegant design]; and
understanding that design and understanding its beauty at the same
time is a really, really good feeling. And that goes beyond just
knowing how to get something done, right? That’s an actual…
aesthetic response.

(Brent Simmons Interview, February 17, 2012)

Similarly, Hasan Edain describes a kind of quasi-religious conversion

experience, For him, this conversion was gradual, a process that took months, yet it

was clear to him once it was complete that he was changed, because he could now

see the whole whereas initially he could only grasp at parts.

209

There is a day when you look back and realize that for the last month
you’ve been reaching for this design pattern, as opposed to that design
pattern… And it took all of these bits and pieces being in place.

So it’s not the one thing; it’s the thing in its ecosystem… Fantastic.
That makes sense now… It’s like a religious conversion, right?

(Hasan Edain Interview, March 12, 2012)

Edain made it clear that learning delegation was a central component of this

process of conversion:

The delegate pattern—I said it took me a long time to really internalize.
But once I understood it, I mean it’s kind of amazing, right? Because
there’s this consistent thing where we’re like, oh, we want to be able to
graft one of these on one of these. And they’re dissimilar kinds of
objects…

Once you have the basics, it’s easy enough to learn what it does, but
understanding how that really comes to life in design patterns, that was
sort of the moment of revelation. …The moment when I said, wow,
this is where I want to be for a while, is when I realized how strongly
the entire Cocoa framework had a design point of view… As that
picture starts coming in your view, it became really obvious that there
was no other framework I’d ever worked with that was that
consistent…

 (Hasan Edain Interview, March 12, 2012)

However, because it took him so long to reach this holistic understanding and

appreciation of Cocoa, it required a significant amount of commitment on his part

while he was learning that everything would eventually make sense. Initially, it

would have been easy for him to stick with what he knew and resist.

Well, at some level, you have to have used the pattern to see that it’s
successful, right? But that means that you need to know the pattern.
Well to know the pattern, means you need to have used the pattern…
(Hasan Edain Interview, March 12, 2012)

Edain speaks to a Catch-22 for developers. The value of design patterns is not

known in advance before it is used. But if its value is not known, how will the

developer trust it enough to use it? According to Edain, this takes a leap of faith:

210

Yeah, so it ends up taking a little while to build up the history of—I’m
just going to step off the cliff, I’m going to trust that there’s a reason
for this pattern. Now I’m going to go do it and then I’m going to come
back and I’m going to see if it worked…

Yeah, it takes a little while to build that trust. I mean you’ve got a lot
of experience with other languages and you know having completed
lots of projects… you’re good at this stuff… Why change it, right?

And so that process… that’s why I keep talking about culture and
conversion… is because you don’t step in with the knowledge that the
experiment is going to be successful. You step in while trying to
participate in something cool, right? And then there’s all this crap in
the way of the doing something cool.

[But then,] Ooh, wow, it all makes sense… all of a sudden—and this is
what I’m talking about, you sort of look back over nine months and
you’re like, oh, wow. OK, yeah! Now I really get it! And it all fits
together and I can see the whole forest and I can look at individual
trees and not get all distracted.

(Hasan Edain Interview, March 12, 2012)

Edain’s experience documents the Janus-face on either end of his conversion

to Cocoa. Before the shift, he was resistant to changing practices that worked well

for him in the past, not knowing how things could be improved. He felt lost,

frustrated, experiencing “crap” that got in the way of him “doing something cool,”

making an app for the iPhone. It took a leap of faith for him to soldier on. Once

through the other side, however, he now saw the forest for the trees, and a whole new

world had opened up to him. He began to see his new self as different, enlightened,

from his past self, who didn’t know any better. He not only understood new concepts,

but had acquired a completely new approach to solving problems.

Because delegation is among the most difficult concepts for newcomers to

learn, it sometimes stands in for the entire way of thinking that they must acquire as

they learn Cocoa programming. Edain saw delegation as a proxy for what he called

the entire Cocoa ecosystem. Fully grasping this ecosystem was a gradual process that

took him months, one which involved an enormous amount of trust on his part, trust

that was ultimately rewarded with an experience of enlightenment at the end. What

we can see in his example is that the process of learning Cocoa, while it involves the

211

learning of significant technical and conceptual knowledge, it also involves affective

and normative commitments. It is not clear what motivated Edain to put his trust in

Apple’s libraries. Maybe, as he says, he “wanted to do something cool,” to tinker

with and create something on his consumer device of choice. Maybe he already liked

Apple products. Or maybe he was motivated economically, to try to get in on the

mobile app craze. Whatever motivated him to get over his initial frustration, he

needed to suspend his resistance to how strange and foreign everything seemed to

him at first, and trust that eventually he would see the light. This must have taken

some determination. Gradually, as his hard work was rewarded, at some point,

everything became clear and he was able to understand the entire picture. In

hindsight, everything now made sense, as if it all had fitted together and had been

working in conjunction all along. Moreover, he now saw the design of Cocoa and the

normative practices it encouraged as connected. Not only was Cocoa designed with

patterns such as Model-View-Controller and delegation built into them, thus

requiring knowledge of them to program using Cocoa, but the Cocoa mentality also

urged programmers to use these patterns in the design of their own applications and

frameworks, even if it did not require them to. It was not enough to simply use them

when required. One ought to use them because in the right circumstances, they

provided for better designs, better solutions, because they increased the flexibility,

reusability, and maintainability of code. Cocoa developers see the proper deployment

of design patterns as a “best practice” in programming.

Delegation is interesting in another way. The design pattern of delegation, in

microcosm, stands in for the general attitude a Cocoa programmer must have in

relation to the code objects provided by Apple’s Cocoa libraries. In the delegation

pattern, a programmer asks a built-in Cocoa object to delegate certain responsibilities

to one of her own objects whose code she writes herself. In order to work this way,

however, she must already have mentally delegated many basic functions of her

program to Cocoa library objects to handle for her. As we discussed earlier in the

chapter, Cocoa programmers are taught to see mundane tasks that must be repeated

for each and every application as tasks that should be delegated to Cocoa, while

212

custom tasks that are unique to an individual’s application are the important ones that

a programmer should write herself. This division of labor reinforces the notion that

higher-level, more abstract, design-oriented tasks remain with the human while

repetitive tasks should be machine automated. This requires a degree of trust in the

provider of that machinery, Apple. Delegation cannot be understood without thinking

about division of labor and trust. Object-oriented programs model, reflect, and

reproduce these human social relationships in a programmer’s mind and in running

code.

213

Conclusion

If learning Cocoa is so difficult, involving learning new ways of thinking and

solving problems, how is it that people manage to do it? Certainly, if the Cocoa

community is to reproduce itself, it must acquire converts and train novices in the

idioms, practices, and culture of Cocoa programming. How does this take place?

How might one teach Cocoa?

Big Nerd Ranch, Aaron Hillegass’s training company for iOS and Mac OS X

programming, has become the leader in teaching Cocoa through its own particular

pedagogical method. Like a religious monastery, the Big Nerd Ranch trains novices

in a sequestered environment where expert instructors lead students in highly

disciplinary exercises. These exercises do not explain concepts such as delegation up

front, but ask students to practice writing and fixing code and trust that eventually,

things will be made clear. Understanding gradually emerges through practice. The

presence of experts who can answer questions or rescue students who are stuck

creates a safe space for them, lessening the burden of having to trust that things will

work out. Moreover, like a monastery, the Big Nerd Ranch provides normative

lessons on proper practice. Adam, an instructor there, notes:

I think that a lot of the advantage of what we do [at Big Nerd Ranch
courses] is the experience and showing you the right way to do it. And
then kind of trying to impart those design principles.

(Adam Preble Interview, August 8, 2011)

Through disciplinary pedagogical techniques in an environment of intensive

practice, the Big Nerd Ranch can jump start the process of learning Cocoa to help get

students through at least a portion of the initial learning curve. In the next chapter,

we take an in-depth look at one instance of this first stage of becoming a Cocoa

programmer.

214

Chapter 4: The Pedagogy of Cocoa: Design Patterns,
and Coding Style at Big Nerd Ranch

In the previous chapter, we saw that Cocoa developers sometimes described

their experiences learning Cocoa as a “conversion,” as a process where they

gradually begin to see the forest for the trees and understand Cocoa programming

holistically. Once this conversion has taken place, a Cocoa programmer becomes

committed to the idioms, stylistic conventions, and norms of Cocoa programming

practice. Having now experienced the conveniences and the pleasures brought by the

Apple toolkits, a novice Cocoa developer is now more willing to trust in unfamiliar

Apple tools to do the same. The developer becomes highly included in the techno-

cultural frame of Cocoa development. In this chapter, we will see the beginnings of

this process, the first stage of what anthropologist Sharon Traweek calls a

community’s “developmental cycle,” or “how the group transmits to novices the

skills, values, and knowledge that constitute a sensible, competent person…”

(Traweek 1988, 7) For a generation of Cocoa developers, this first stage involved

taking a class at the Big Nerd Ranch, a training company started by Aaron Hillegass,

a former NeXT and Apple instructor. This chapter is an ethnographic study of how

people learn to become Cocoa programmers at the Big Nerd Ranch. We will look at

how instructors teach both technical knowledge and normative values in practice,

and how one ought to think like a Cocoa programmer. We will examine how the

affective experience of the Big Nerd Ranch course creates emotions of frustration,

catharsis, and gradual awakening, through embodied learning-by-doing in a

disciplinary pedagogical setting. The emotion of attaining new mastery and

appreciation for elegant design becomes a powerful motivational force for

developers’ further commitment to the techno-cultural frame of Cocoa development.

Andrew Warwick and David Kaiser have put forward a theory of the

pedagogy of techno-scientific disciplines synthesizing the work of Thomas Kuhn and

Michel Foucault. Kuhn claimed that, rather than a disciplinary field’s theories and

concepts merely being illustrated by exemplary exercises, it is the repeated practice

215

of those exercises that generates in the student the meaning of those theories and

concepts themselves. In this way, science is learned more as an embodied craft skill,

rather than abstract propositions, and what constitutes what Kuhn calls a “paradigm”

is rather not a theoretical worldview but shared experience in seeing new problems

as variants of existing canonical ones with known solutions (Warwick and Kaiser

2005, 394–398).

Kuhn, however, does not say much about how such training occurs. Warwick

and Kaiser use Foucault to fill in the blanks. In Discipline and Punish, Foucault

outlined the numerous means that workers, students, inmates, patients, soldiers, and

other objects of modern disciplinary apparatuses are cataloged, arranged, and

subjected to subtle forms of micro-coercion to make them docile and productive.

This was done through partitioning of their time and space and most importantly,

pervasive surveillance. For students, not only were they themselves arranged into

classes and ranks, but also the disciplinary field itself was similarly partitioned into

gradations and levels. The ultimate surveillance tool of the school is the examination,

which simultaneously punishes as it classifies the student under the teacher’s gaze.

This view fits well with Kuhn’s observation that physicists’ training is “regimented

and authoritarian.” (Warwick and Kaiser 2005, 398–400)

Taken together, this “Foukuhnian” perspective provides “a framework in

which training is constitutive of professional practice” (Warwick and Kaiser 2005,

401), which explains “agreement within the scientific community in terms of shared

skills, commitments, and value judgments,” (402) “posits training as a general

mechanism for the active production of knowing individuals that recognizes no

natural distinction between the mind and the body, nor by implication, between

theory and practice” and historicizes “the processes by which specialized technical

competencies became the common preserve of widely extended communities of

practitioners.” (403)

The problem with Foucault’s work is that his notion of discipline makes

people into docile objects of study, rather than creative producers of knowledge, and

216

it places all agency on the teaching apparatus, not the students themselves. Warwick

and Kaiser note that, even in a creative activity as jazz, improvisation is

“pedagogically conditioned,” depending on years of practicing basic elements which

become available techniques ready at hand to draw on. Yet they also note that “the

purpose of technical training is not just to manipulate the student’s behavior for the

purposes of the master, but to reproduce the master’s skills in the student. For this

process to work effectively the student must want to acquire the master’s knowledge

and be a willing and active participant in his or her own education.” (404) Foucault’s

disciplinary model does not easily describe a student’s own motivation and self-

discipline. Suman Seth raises a similar critique: disciplinary mechanisms work well

in producing obedient students, but not creative, innovative researchers. Yet in his

examination of the Sommerfeld school of physics in Munich, Seth notes that

disciplined creativity and training for original research was carefully fostered. To

help explain this, Seth drawns on another Foucaudian notion, the distinction between

“initiatory time” which is focused on individual apprenticeship, and “disciplinary

time” with all of its rigorous exercises, grading, examinations. Unlike Foucault, who

relegates “initiatory time” to a pre-modern era, Seth finds that a hybrid initiatory-

disciplinary “pedagogical economy” was crucial to the production of innovative

physics researchers at Sommerfeld’s school. (Seth 2010, 64–70) The implication is

that, in many modern disciplines involving creativity and craft skill, both initiatory

and disciplinary techniques occur in their training methods.

As we have seen in previous chapters, software programmers are similarly

engaged in creative and innovative tasks, often describing it in terms of “art” or

“poetry.” And despite attempts to routinize their work, it remains very much a craft

skill. Yet, like jazz improvisation, it is a disciplined creativity. In order to produce

working, maintainable code, developers have the motivation to self-discipline

themselves, adhering to, and even advocating, “best practices,” and admonish their

peers who do not. Unlike a strict Foucauldian system, however, programmers have

varying degrees of freedom in ignoring or flouting best practices, especially if they

work individually or their clients never see the code, only the end product. The

217

problem of disciplining programmer practices is not purely a managerial problem,

but also a problem for the community of practitioners, who often read each others’

code; the community itself does a lot of self-disciplinary work, through pedagogy as

well as advocacy on blogs and other forums.

Warwick and Kaiser’s “Foukuhnian” perspective is useful in another way, as

well. They locate Kuhn’s often controversial notion of the “incommensurability” of

paradigms, or more specifically, “disciplinary matrices,” not in the incompatibility in

the meanings of scientific terms or worldviews but in different interpretations of

canonical texts and exemplar problem solutions at specific sites. Such differences in

meaning are produced through different practices, which are themselves a product of

different training regimes. “What is incommensurable on this showing is not the

essential meaning of scientific theories themselves, but the particular skills,

techniques, and assumptions that go into generation a working interpretation of them

at different sites.” (Warwick and Kaiser 2005, 405) The local training regimes are

necessarily associated with the “shared skills, commitments, and value judgments”

(402) of the particular communities of practice which constitute the disciplinary field.

Incommensurability, however, may be too strong a claim to make for how different

Cocoa programming is, or even how different object-oriented programming is from

other methods, despite the computer science usage of the term “paradigm” to

describe it, given the fact that many object-oriented practices, such as the use of

modularity, are present in structured programming methodologies as well. It is not

clear that even at training sites such as the Big Nerd Ranch, the skills, techniques and

assumptions that generate a working interpretation of object-oriented concepts are at

all incommensurable; in fact, such training often relies on shared understandings

between Cocoa and other languages, such as Java or Python. It is more likely that the

Big Nerd Ranch serves as a kind of “trading zone” in which concepts that straddle

the boundary between different practices are translated or reduced into a simplified

“pidgin” vocabulary, with their richer native meanings circumscribed for the

purposes of communication. (Galison 1999) This pidgin suffices in the beginning,

218

but gradually, through practice, the student acquires enough experience to be able to

understand the concepts natively, on a visceral level.

This perspective can help to explain the “conversion” experience associated

with Cocoa’s “learning curve.” Most newcomers to Cocoa today do so out of

economic or professional interest, because iOS is a prominent, lucrative mobile

platform that has become a focus of high-technology investment and

entrepreneurship. They start out with no particular loyalty to Apple or its way of

doing things. Newcomers almost universally find Objective-C’s syntax to be odd,

and this syntax often, as we will see, becomes a site of affective resistance. Yet the

syntax of the language itself is not the most difficult thing to learn. What is difficult

are the ways that Cocoa programs are put together, the ways that Cocoa developers

approach solving common programming problems. Like physics, programming is

fundamentally a problem solving exercise, and what Kuhn calls different

“disciplinary matrices” produce different canonical solutions to common problems.

As we saw in the previous chapter, in object-oriented design such canonical solutions

are known as “design patterns” from Gamma et. al.’s catalog of them. (Gamma et al.

1995) NeXT made extensive, consistent, and recurring use of design patterns in what

became the Cocoa frameworks, and these patterns structure how programmers must

think in order to write programs using Cocoa—it constrains them but also makes

possible, by channeling their work through acknowledged patterns, disciplined

creative production and problem solving. It is learning the design patterns that are

pervasive throughout Cocoa that newcomers typically have the most trouble with.

Despite this, once these design patterns are mastered, students often experience an

epiphany in which everything suddenly makes sense. The productivity benefits of

these patterns are felt emotionally, as a feeling that “now I am able to accomplish

way more than I ever could before,” because Apple’s design makes it possible. At

this stage of experience, developers acquire a new aesthetic appreciation for the way

Apple has designed the Cocoa frameworks. This creates a sense of trust, in which

developers, having seen the good technical decisions Apple has made in the past,

begin to acquire faith that Apple will continue to make the right technical decisions

219

in the future, justifying Apple’s technical control over their platforms. What may

have begun as mere economic interest becomes a much deeper, affective

commitment to Apple and its platforms. As we have seen in earlier chapters, it is this

pleasurable, aesthetic experience of using Cocoa that third party developers, and in

particular, indies, are tied to, not Apple as a corporate entity. In this way, they

become ideologically bound to Apple’s own interests.

Pedagogy at the Big Nerd Ranch

This chapter takes an in-depth look at how such learning occurs at a central

site for Cocoa pedagogy. Over the course of my interviews, I found that a large

number of the more experienced Cocoa developers, especially those that first learned

Cocoa in the early 2000s, did so by taking classes at a place called the Big Nerd

Ranch. Of the rest, almost universally, they had learned in whole or in part from a

book on Cocoa or iOS programming released by the Big Nerd Ranch. What is this

strangely named place, and why does it appear as an almost obligatory passage point

for the learning of Cocoa programming?

The Big Nerd Ranch is privately held Atlanta-based company whose primary

business is the teaching of Cocoa and iOS programming. It was founded in 2001 by

Aaron Hillegass and Emily Herman, and until 2008 held steady at less than ten

employees, but by 2013, had grown to between fifty and a hundred. It continues to be

a privately held company, with Hillegass in majority ownership. Hillegass started the

company the same year as the release of the first version of Mac OS X (10.0) in

March 2001, anticipating a pool of Macintosh programmers wanting to switch from

Carbon to Cocoa, as he saw Cocoa as the future for the platform. Today, the business

has become enormously profitable, thanks to high demand for mobile programmers

from companies including Facebook. However, the iPhone could not have been

anticipated in 2001 when Hillegass started the Big Nerd Ranch, and until 2008 it

remained a tiny operation centered around Hillegass’s teaching, with some

consulting work on the side to pay the bills. Besides his business partner, Herman,

there were a few support staff, and two other permanent instructors who also did

220

contract programming, but many other courses taught under the Big Nerd Ranch

name were taught by people Hillegass contracted with on an as-needed basis. Most of

Big Nerd Ranch’s business during this period came from desktop Mac OS X Cocoa

classes and consulting, which provided Hillegass with steady income to keep the

operation running. Hillegass was not going to get rich from teaching classes on

programming for a PC platform with less than 10% marketshare, and during this time

he could have made considerably more money doing web development, but chose not

to. Nevertheless, Hillegass happened to be in the right place at the right time to

capitalize on the enormous demand for Cocoa and Objective-C programmers after

the iPhone App Store was announced in 2008, rapidly growing both the training and

consulting side of his business. After this success, Hillegass has had the foresight to

diversify and expand both his course offerings and his consulting services into

development for the competing Android and Windows mobile platforms, front-end

web development, as well as the backend web services that both mobile apps and

web clients depend on. The Big Nerd Ranch is like a homestead started by humble

farmers that happened to strike oil.

I had first heard of Aaron Hillegass when I was an employee of Apple in the

early 2000s, who had joined the Cocoa framework group in the Mac OS X division at

Apple as their Quality Assurance, or software testing, engineer. I had joined the team

just in time to help test the first public release of Mac OS X, which, after four years

of development, had finally brought the operating system and object-oriented

development environment acquired from NeXT to Apple Macintosh personal

computers. NeXT-based Cocoa technology was new, and there were almost no books

on Cocoa programming. Ali Ozer, my boss and longtime manager of the

Cocoa/AppKit group at Apple, suggested I purchase a new book by Aaron Hillegass,

who had worked previously at NeXT and Apple teaching NeXT and Cocoa

programming to employees and third party developers. Hillegass’s Cocoa

Programming for Mac OS X soon became the canonical text for learning Cocoa

programming. In 2003, Ali introduced me to Hillegass at Apple’s Worldwide

Developer Conference, where I got my copy of his book signed. I remember at the

221

conference that Hillegass, a tall man over six feet in height, went everywhere

wearing his trademark cowboy hat, which made him instantly stand out in the crowd.

Another Apple coworker of mine explained to me that Hillegass ran a kind of dude

ranch for programmers—you would travel to his facility, live on the ranch for a week,

but instead of learning to ride horses or lasso cattle, you would learn to write Cocoa

software.

Given this prior experience, when it came time to conduct my field research

in 2011, knowing I wanted to study how people came to learn Cocoa, Hillegass’s Big

Nerd Ranch seemed to be the perfect place. Through my network of former co-

workers at Apple, I was connected to Hillegass through the employment social

networking site LinkedIn, and sent him a message expressing interest in volunteering

to work for him as an intern in exchange for ethnographic access, and he was not

only gracious, but welcomed me. Given that I had previous been an Apple employee,

however, he offered to compensate me as well, at a modest intern’s salary, which I

accepted as I had not found any other sources of funding.

Upon my first meeting with Hillegass in the field, I was surprised to see him

not wearing his cowboy hat. Hillegass explained that he only wore the hat as a

marketing stunt. He wasn’t actually a cowboy or a southerner, in actuality he had

grown up in the Washington D.C. suburbs. A few days later, he agreed to tell me the

story of the hat, and his company’s unique name, over lunch. After leaving Apple,

Hillegass wanted to continue teaching NeXT-style programming, and when Apple

released Mac OS X, he decided to take a risk and start a business teaching Cocoa.

Hillegass envisioned his Cocoa programming course as a monastic retreat for

programmers. However, he realized that the image of a programming cloister would

not be an effective marketing strategy to Americans, so he came up with an alternate

metaphor—a dude ranch. It would be a dude ranch for nerds. Surprisingly enough,

another company already had claims to the name “Nerd Ranch,” so he named his

company “The Big Nerd Ranch.” Being a two-person operation in the beginning,

with co-founder Emily Herman handling much of the business side of the company,

Hillegass had little budget for marketing. He decided that he would personally brand

222

himself by attending Apple’s WWDC and other Apple-oriented conferences always

wearing a cowboy hat, which became his signature. This tactic was wildly successful.

The cowboy hat was incorporated into the company’s logo, adding a beanie’s

propeller spinning on top, combining “rancher” and “nerd” elements together.

When I arrived at the Big Nerd Ranch corporate headquarters, I was surprised

to find that it was housed in an office park in a gentrifying neighborhood of Atlanta.

Having heard stories of the “dude ranch for nerds,” I had been expecting to go out

into the countryside to some farm. Like Hillegass himself, the company’s frontier

identity was just marketing. It was only later that I discovered that the site where Big

Nerd Ranch holds its classes, which is out in the countryside, is separate from its

corporate headquarters, which gave me the impression of being a typical, hip, post-

dot.com technology startup, like the kind I might find in Palo Alto.

The headquarters itself has moved four times between 2010 and 2013, in

response to the exponential growth of the company. In 2010, they operated out of

condo that Hillegass personally owned, which was sufficient as they had only a

dozen or so employees. On my first visit in June 2011, they had just moved into an

office complex in the Inman Park neighborhood of Atlanta, with up to 30 employees.

By June of 2012, they had over 50 employees, and they were running out of space at

the Krog Street complex. That August, they moved into a renovated ironworks

building in the Kirkwood neighborhood of Atlanta that the company had purchased

in cash with the previous year’s profits. Plans were made for an expansion of this

building in the years to come. However, by the time I left in December 2012, the

company had just completed a merger with Highgroove, a company specializing in

web server contract programming using the Ruby on Rails development environment.

This necessitated yet another move to a larger office complex by 2013. The merger

was also partly the result of Hillegass’s duties as CEO growing to such an extent that

he had to spend all his time managing the business instead of teaching or developing

course materials. After the merger, he stepped down as CEO but took a role as head

of instruction, allowing him to return to what he preferred to do.

223

On my initial arrival at Big Nerd Ranch in 2011, I was introduced to the

management team. Aaron was still CEO at this time, but rounding out the

management team were Jami and Jenn, who managed the courses, Jason, who

handled the consulting side of the business, Stacey, who handled finances and human

resources, and co-founder Emily, who had returned after several years away to run

the company’s efforts at developing apps under its own brand. Members of this

executive team were middle-aged professionals, many with families, and four of

them were women. By contrast, the rest of the company, which comprised the

technical staff, almost all of whom did consulting work, with a few also taking on

instructor duties, were male, except for a young intern who was just starting her

freshman year at Georgia Tech. Despite the gender imbalance and her youth, she

seemed to be enjoying her time at the company, got along well with her young team,

and appreciated being given real programming responsibilities, as well as being well-

mentored, on a large Android consulting job. Many of the men who were technical

leads were in their 30s, but many of the recent hires were in their early twenties, with

some hired straight out of college. Racially, the majority was Caucasian. Besides

myself, there were a few other Asian-American men, including Brian, a graphic

designer, and Bolot, a software engineer from Kazakhstan. Another intern was a

young African American man, the only one in the company at the time.

As the company grew, it became more diverse as well. The graphic and user

interface design group, initially composed of just Brian, added an African American

man, and a Caucasian woman who became the group’s manager. A newly created

web team hired a female developer and was led by a Filipino. Another African

American was hired as a Windows software developer. After I left the company,

another African American joined the iOS developer team and became an instructor.

The Highgroove merger, which occurred just as I was leaving the field, diversified

the company even more, as it had a higher proportion of young female developers on

its team, who even ran their own women Ruby developer’s club. However,

Highgroove’s management team was predominantly male, and appeared a decade

younger than Big Nerd Ranch’s. As the merger involved much of Highgroove’s

224

management team taking over operations of Big Nerd Ranch, some of the existing

female managers unfortunately had their roles reduced.

The Krog Street office space, where Big Nerd Ranch had its headquarters for

all of my first visit in 2011 and half of my second visit in 2012, was mostly

composed of a large room with a high ceiling with skylights. It was surrounded on

two sides by giant windows which looked out onto the parking lot and street. Aaron’s

office was on one side, looking out on the street, while the rest of the executive staff

had offices against the opposite wall, with only Jason having a window. A large

conference room was located at the main entrance, containing a large, rustic wooden

table that evoked the company’s ranch theme. The opposite corner contained a small

kitchen with a nook for lunch. The rest of the main room was split up into numerous

little cubicles, which comfortably sat two, but could seat three if necessary, after the

company grew and space was at a premium. The cubicles were separated by wooden

dividers that came up to only four feet or so on one side, allowing people to easily

talk and socialize. Many employees used the tops of these dividers as display areas

for little toys and knick-knacks. As a running joke, a life size cardboard cutout of

Robert Pattinson’s vampire character from Twilight was placed somewhere around

the room, with people moving it around at random to scare their friends. A metal

ladder in the kitchen led upstairs to a dark area that housed the company’s server,

and also contained some makeshift desks that were initially used by the instructors of

the company’s Android class to work on their course materials and book. By 2012,

the growth of the company had forced newly hired employees to work up here full

time, but being up here felt as if one had been exiled.

I was told that employees at the company were known as “Nerds,” which was

considered a badge of honor. In some sense, the term was just a way to identify as a

member of the company, the Big Nerd Ranch. It was not something that one had to

earn (unless one was an intern working on a trial basis) as the term could refer to any

employee, though in practice it tended to mean the technically oriented people, the

engineering staff, who wrote code or taught classes, and who were mostly men and

could fit into the popular conception of nerds and geeks. A poster on one employee’s

225

wall tried to differentiate between the terms “geek” and “nerd,” but this came from

outside the company, as it gave “nerd” a negative connotation. In some sense, it felt

as if the employees of Big Nerd Ranch were trying to reclaim the term “nerd” as a

positive identity. Anybody who was passionate about technology could thus be a

nerd, regardless of gender, race, or level of social ability. In fact, some of the young

men who worked at the Ranch were rather hip, and seemed to have extensive social

lives. Joe Conway, instructor and book author, was a track-and-field athlete who I

considered more of a jock than a nerd. The notion of “nerd” as an inclusive and

positive company identity was exemplified by the company employee of the month

award, which was called the “Nerd of the Month” award. Typically this was given to

an employee who had worked above and beyond the call of duty, impressed with

their technical skill, or contributed in a particularly valuable or pivotal way to the

business. Men in the engineering department usually won it, but in August 2012,

Stacy, the CFO and HR executive, took the prize for managing the company’s move

into its new headquarters.

Synergistic businesses

On my first full day, I went through an orientation, which involved a meeting

with the three “Js,” Jami, Jenn, and Jason. I went through this with another new hire,

Owen, who had recently been a high school computer science teacher, and a personal

acquaintance of Aaron Hillegass through a book club. It turned out that Hillegass

often found new employees through personal acquaintances, and Jami and Jenn were

both family friends. The J’s explained that the Big Nerd Ranch had three different

businesses. Teaching, of course, was the primary business. Jenn managed the

bookings and scheduling for the weeklong bootcamp training courses, which she

called “open enrollment” to signify that these courses were ones in which individuals

enrolled themselves on the company’s website. These were for developers who either

paid their own way (about $3500 for the weeklong experience), or got their employer

to pay to send them to Big Nerd Ranch’s training center. Despite being at an

information technology company, she used physical tools to do scheduling—a

whiteboard was used to mark down tentative schedules, not only for which class was

226

being held during which week, but also which instructor was assigned to it. This was

done in erasable marker, or with post-it notes, which gave her flexibility if an

instructor’s availability changed. This was highly important, as most of the

instructors came from the company’s own developers who, most of the time, were

working on other projects. Her whiteboard gave her an overview of the entire year’s

bookings at a glance. Only when a schedule was more or less locked down did she

enter a course into the computerized system on the web, which contained the

“official” record.

My preconception upon arriving at the company was that the “real” Ranch

was where the classes were held out in the countryside, the retreat where students

stayed, not where the company was administered from or where its contract

programming business was centered. The classes were what it was known for.

Curious to find this “real” Ranch, I asked where the company’s training facility was.

Jenn explained that the “ranch” was at a place called Historic Banning Mills (which

she and others referred to as “HBM” for short), which was a country resort about an

hour and a half outside of Atlanta that the company rented out, though not

exclusively—others could book the place for weddings, company meetings, or

vacations. Thus, I discovered that no actual “Ranch” existed—the training facility

was not owned by the company known as Big Nerd Ranch, whose headquarters

seemed to be like that of any other technology startup. However, Jenn did mention

that the company had plans to build its own training center, also out in the woods, to

avoid having to rent HBM. Land had been already acquired, and architectural and

landscaping plans were being drawn up, though no ground had been broken yet, due

to other expenses taking priority. (As of 2014, work on this facility still had not

started.)

Jami handled another type of training course, the “onsite” or “corporate

training” course, which she also scheduled using a whiteboard. Jami explained to me

the difference. Some companies want to train larger teams of developers, and paying

$3500 a seat for more than three is not economical. Instead, Big Nerd Ranch flew

one of its instructors to the client to run a weeklong course “onsite.” This was an

227

extremely lucrative business, and allowed Big Nerd Ranch to have more than one

course offered simultaneously, as Historic Banning Mills only held one course at a

time. Many high profile companies have had their own mobile development teams

trained in this manner, including Facebook, which in 2012 was reorienting its

software engineering focus away from web apps towards native mobile development,

(Chen 2012) and hired Big Nerd Ranch to train its developers in iOS and Android.

Facebook’s success since then has largely hinged on the success of this mobile

transition.

 A second business was its book publishing. Hillegass had published his first

book, on Cocoa programming, before founding the company, so its first edition did

not bear the company name or logo, but all of his subsequent books and later editions

of the Cocoa book were published under the Big Nerd Ranch name.

The third business was contract software development. Thus, Big Nerd Ranch

was in the business of actually writing applications, not under their own name, but

for other companies and organizations, which included AT&T, Google, Spotify, GE,

Coca-Cola, Whirlpool, Honeywell, and NASA.31 The majority of the software

developers in the building, therefore, worked on such consulting contracts. The

majority of the company’s instructors came from this pool of developers, and when

they were not teaching, they were typically working on a project for a client. (The

rest of the instructors, who taught courses held infrequently, were contracted on a

per-course basis.) However, not all developers were instructors, or were interested in

teaching. The company also had one full time user interface and graphic designer at

this time, and would gradually hire more. Jason was the manager in charge of the

consulting business, and he managed the contracts, the relationship with clients, as

well as the business development of new clients. Most of the day-to-day work I

31 “Our Work,” Big Nerd Ranch LLC, accessed July 24, 2014,

http://www.bignerdranch.com/we-develop/our-work.html

228

would witness and personally participate in at the corporate headquarters was related

to contracting work, rather than the teaching side.

Aaron Hillegass saw all three of the company’s primary businesses as tightly

intertwined, and by the end of my first full week at Big Nerd Ranch, I began to

understand that what these three businesses had in common was that they were all

about selling expertise. Although consulting made up a significant chunk of the

company’s revenue, was its fastest growing business, and made up most of the

company’s new hires, Hillegass said he saw it as a critical component of the

company’s educational mission. Although Big Nerd Ranch contracted with a few

instructors who were not permanent employees to teach a couple of its less popular

classes, its primary classes in iOS, Android, and Mac OS X programming were all

taught by full time employees who, when they were not teaching, worked on contract

development. Because of the rapid pace of change in information technology and in

Apple’s platform in particular, programming knowledge and skill must be constantly

updated to stay current. I experienced this myself—I had not used Apple’s Integrated

Development Environment (IDE), called Xcode, since version 2.0 in 2005, when I

was an Apple employee. In 2011, I needed to learn Xcode 4.0, which presented a

radically different interface than earlier versions, and took a while to get used to.

While this constant change in the industry provides Big Nerd Ranch with continuing

business, it also presents it with a dilemma—if it is in the business of selling its

expertise, how does it keep its own expertise current? This is maintained in large part

through continuing to practice software development in real world contexts, through

contract development. Thus, expertise is sold in two different ways—to clients, who

want the most skilled consultants to write their apps, and to students, who want the

most knowledgeable instructors to teach them skills that come from experience

writing real, shipping applications. I began to visualize programming expertise

flowing from the consulting side of the business to the training side.

In turn, Hillegass told me that the courses explicitly inform the books.

Although the book serves as the course text, it must be constantly in revision if it is

to keep up with updates in Apple’s operating systems. Over the next few months, I

229

got to know some of the instructors, who, besides their teaching and contracting

work, would also spend time honing the course materials in response to feedback and

experience from the courses. Most work occurred right after Apple’s WWDC, which

announced new versions of Apple’s platforms, which inevitably meant new APIs to

cover, changes to existing APIs, and sometimes, entirely new frameworks or Kits

that provided new functionality or a new simplified layer over existing functionality.

Other times, extensive changes in the design of Apple’s operating systems, either

architecturally or visually, required significant changes to code. These all meant that

the Big Nerd Ranch’s existing books were now obsolete and had to be updated.

Students, of course, wanted to take a class that took such changes into account as

soon as possible, but it would take several months to modify the materials

comprehensively.32 Instructors told me that questions asked in class to clarify lessons

alerted them to things that were not clear in the course materials, and after the course

ended, they would revise the book in response. Thus, every course taught constituted

a chance to revise the book, and the course materials were treated as a beta version of

the book, which after much refinement would become the next edition to be

published, often six months or later after WWDC. According to the company, this

approach gives its books a unique effectiveness most other programming books

cannot match: they have been tested and iterated over constantly in actual classrooms

before they ever make it into print. The Cocoa community seems to agree with this

assessment, as the books are widely considered essential for learning Cocoa. The

company’s iOS, Objective-C, and Android books are all rated 4.5 stars on

Amazon.com. Even other courses, such as those being taught by members of the

Seattle Cocoa developer community through the University of Washington’s

Continuing Education program, use Big Nerd Ranch instruction manuals.

32 Due to Apple’s NDA restrictions on information presented at WWDC in

June, the Big Nerd Ranch also could not actually teach any new material until the

new version of the operating system was released to the public, usually around

September.

230

In this way, the intertwining of the Big Nerd Ranch’s three businesses,

teaching, writing, and developing, contribute to what Hillegass informed me was the

core mission of the company, learning. He said that he tried to create an environment

in which his employees were encouraged, in their everyday work, to be constantly

learning. As I see it, the interconnections between the three businesses generate

expertise that can then be transmitted to others, through a recursive process.

Contracting generates and maintains expertise, which then becomes the product sold

to students in teaching. Teaching itself generates a different kind of expertise: that of

pedagogy, which is then recycled into the company’s books. Thus, learning by doing

helps generate both programming and teaching expertise. The books make up only a

fraction of the revenue of the training and contracting businesses, but they serve as a

marketing tool, to spread the reputation and brand-name of the company and Aaron

Hillegass himself, as the founder of the company. And though the consulting

business contains far more employees than the training business, the company’s

primary reason for existence is the latter. Both consulting and books are intertwined

with training, but are also in some way subordinate to this primary mission.

The Big Nerd Ranch Bootcamp

Since the Big Nerd Ranch’s primary existence is its training business, upon

my arrival I wanted to be able to observe the Big Nerd Ranch’s courses at Historic

Banning Mills. However, because of the limited availability of lodging at HBM,

which the company would book for me, I could not go immediately. I signed up with

Jenn to be a teaching assistant at the next available iOS programming bootcamp,

justifying her booking me a room there. I did this partially because, with some

previous Cocoa experience, I might be too knowledgeable to take the course, and in

addition, being a TA would allow me to work and provide value for the Big Nerd

Ranch, which was part of the terms of my access. Moreover, being a TA and not a

student would provide me with time to observe and converse with the other students

in the class. However, since I had never done iOS programming itself, in order to be

a TA, I needed to be at least somewhat more knowledgeable than the students. In

preparation for this, during my first month working at the Big Nerd Ranch’s

231

corporate headquarters, I worked through the company’s iOS programming book on

my own. Although the book had been sent to the printers, the first run had significant

misprints, and I was asked to help revise as I worked through it. I also helped revise

the code solutions that would be passed out to students in class, which meant that

many of the solutions used in my first iOS class contained my own code. Working at

my own pace, I needed an entire two weeks to fully complete everything in the book.

This is notable because the course is taught in only one week, so most of this

material is covered in half the time it took me to do it on my own.

On July 8, 2011, it was time for me to go to Historic Banning Mills for my

first iOS bootcamp. The iOS course ran in two versions. The seven-day version ran

from Saturday through Friday, and included a two-day primer over the initial

weekend on the C and Objective-C programming languages, which was necessary for

many students because Objective-C is not used widely in the software industry

outside of Apple. The five-day version simply ran from Monday through Friday and

omitted the Objective-C language primer. Between 2011 and 2012, I would attend

three different Big Nerd iOS Developer Bootcamps at Historic Banning Mills (all

seven-day versions), the first time the whole way through, the second time, only

through the weekend Objective-C primer, and the third time, only from Saturday

through Tuesday, which allowed me to at least see how the students transitioned into

iOS.33 I volunteered to be a teacher’s assistant in all three of these classes, which

consisted largely of helping students debug their programs during the lab times, and

helping to set up and tear down the classroom before and after. During my first time

there, the instructor asked if I was willing to try taking over lecturing on one of the

lessons, which I accepted, and during my subsequent trips I continued to expand on

this, taking on a few additional lectures. Also on my first trip, I was joined by

another TA who was in training to become a fully-fledged instructor. Giving TAs

33 My engineering responsibilities at Big Nerd Ranch had increased enough

by August 2012 that I could no longer afford to be gone an entire week at Historic

Banning Mills.

232

portions of lectures to try, with the main instructor in the room to answer students’

questions, was one of the ways that Big Nerd Ranch groomed new instructors. In

addition to attending the iOS courses, I also attended two of the Big Nerd Ranch’s

other courses: OpenGL, the low-level industry standard 3D programming language,

which I took because I thought it might help with the contracting work I was doing

for Big Nerd Ranch, and the Android course, which I took in order to get a

comparison between iOS and Android. In both of these courses, I met students who

were already experienced iOS developers, having either taken Big Nerd Ranch’s iOS

course or one from another training company. While the following account of the Big

Nerd Ranch courses draws primarily from the iOS Bootcamp, especially the first one

where I attended it in its entirety, it is actually an amalgam of all of my trips, and is

not intended to be a completely accurate description of any one single experience at

the Ranch, but to portray an overall sense of the typical experience there. My

attendance at the OpenGL and Android courses allowed me to experience the Big

Nerd Ranch bootcamp as a student on the same level as the others, whereas in the

iOS courses I had a very different role as an assistant to the instructor, which meant

that I was somewhat of an expert, at least in comparison to the students in the course.

The result is that my participant observation at Big Nerd Ranch came with a

unique vantage point. Although I had been working as an intern at the Ranch

headquarters, because of my previous experience at Apple, Hillegass trusted me to be

able to TA the course. Hillegass hired all of his employees himself, and trusted them

to take on new challenges, and frequently encouraged members of his engineering

staff who were interested in teaching to deliver guest lectures in preparation for

becoming fully-fledged instructors. Hillegass extended this opportunity to me as well.

I had enough expertise to help out novice students, yet not quite so much of an expert

as to be the instructor myself. I was thus able to observe what techniques and

concepts students had trouble with and how they felt, and my interaction with them

caused me to be one of the people they relied on to get through the class. This meant

that a number of the novices became very attached to me as I spent significant time

helping them, and had a very positive opinion of my expertise. However, because I

233

was still not as knowledgeable as the instructor, there were things that I needed help

with myself, and was learning as I went. Being a student in the Android and OpenGL

bootcamp courses provided me with a different perspective and additional insights,

especially into the emotional experience of the course.

On every trip to Historic Banning Mills, I would leave the Big Nerd Ranch’s

offices by car late Friday afternoon, and drive east outside of Atlanta for an hour on

Interstate 20, exit, and drive for 30 minutes along a small, two-lane highway, through

densely wooded countryside. Eventually I would arrive at HBM, a beautiful, and

rustic, retreat and conservation center which preserved the site of a historic 19th

Century mill. As I drove in towards the main lodge building, I would pass by small

wooden bungalows, a swimming pool, and a couple of wooden towers and platforms

for ziplining, which was the major attraction at Banning Mills.

Entering the lodge to register, I passed by a rustic-looking hallway with

captioned photographs, as if the place were a kind of museum crossed with a hunting

lodge. After emerging through the initial entryway, I found myself in the main room

of the lodge, with a small waiting area to my left, where the registration desk was. I

felt that the entire room, which included a gift shop on the left, had a kind of kitchy

Western feel to it. What gave me this impression most were the stuffed small game

decorating the lodge around the fireplace and chimney, and the mountain lion

hanging prominently from one of the rafters. This was further accentuated by a

horse-drawn carriage past the dining area on my right. Aaron Hillegass had definitely

chosen a place that evoked the American West to host his Big Nerd Ranch courses. I

was later told that this lodge was not the original building, but had been rebuilt after

a 2006 fire burned down the original lodge. Thus, although the ruins of the historic

mill elsewhere on the property were real, the lodge itself was a simulacrum of the

19th century American frontier experience.

This experience was reinforced after I registered with the young woman at the

desk, who gave me my key and a map of the grounds allowing me to find my cabin

in the woods. There was still enough daylight that I did not have to go fumbling

234

around in the dark (which I would have to do later that night on my way back). The

standalone wood cabin had all the standard amenities—bathroom, kitchen, running

water, bed, and an air conditioner, but everything had a very rustic feel, and the

entire structure, and most of the furniture, was made of wood. I turned on the TV,

and noted that it only showed a channel cycling through the resort’s available

activities, which included not only ziplining, but hiking and horseback riding. I

checked my cellphone reception, which was not very good. I would essentially have

no Internet or broadcast television, which successfully cut me off from the outside

world and brought home the feeling that I was attending a retreat. This sense of

seclusion was an intentional part of the design of the Big Nerd Ranch bootcamps.

Aaron Hillegass felt that what made his courses work was the fact that students, like

religious people on retreat, left their daily lives (including, for most, their families

and significant others, though occasionally one showed up with a partner) with their

attendant distractions, in order to focus all of their attention on learning

programming in a kind of deep immersion program, like learning a natural language.

The intensity of the courses, betrayed by the military allusion to “bootcamp,” was hit

home by the regimented nature of the week’s schedule. However, as there was also a

“dude ranch” and vacation element to the class, there were times allowed for hiking,

ziplining, and other recreation on the grounds. The fact that all of the students

experienced this together, both the intense classes and the occasional recreation,

created a bond of camaraderie between them that often lasted after the course was

over.

After locating my cabin, I went back to the main lodge for dinner. When I got

back, the shuttle from the airport had arrived with the majority of the students.

Dinner was being served at the long table, and plates of salad had already been

placed at each seat. Dinner came later, in large, extremely hearty plates of rich

southern food. For drinks, there were ample pitchers of lemonade and sweet tea, and

a table nearby had bottles of wine that a few would try. People were trickling in and

taking their places, and as we ate, we would strike up conversations and introduce

ourselves to the people seated immediately near us.

235

It was at dinner that I would have my first opportunity to meet the students

who I would be spending the rest of the week with. The demographic makeup of the

classes usually corresponded with the general makeup of programmers in general,

though with a small sample of size of about 30 per class, these must be taken to be

more my impressions than reliable statistics. Most of the students were white men,

who were professional software developers, ranging in ages from early thirties to late

forties. About ten percent of the iOS and Android classes were women, and this was

fairly consistent across all the classes I attended, which I feel means that there is a

significant level of interest in mobile development among women programmers.

While Asians (primarily South Asian and East Asian) made up probably a third of

the men, they often made up half or more of the women; in one class, the only

woman was Indian. Latinos seemed to be present more often than African Americans,

but both groups were very underrepresented. Students came from all over the United

States, though because of Big Nerd Ranch’s Atlanta location, a substantially higher

proportion of students than one might expect from a technology class were

southerners from Georgia, Tennessee or Alabama. Sometimes there would be

international students—in the first iOS course, a group of three came from

Amsterdam, where interest in mobile development and technology entrepreneurship

was being stirred by a non-profit called “Appsterdam” started by Mike Lee, an

American Cocoa developer and transplant to the Netherlands. One student later

turned out to be Argentinian.

Historians, sociologists, and anthropologists of computing have written much

about the gender disparity in computing and especially software programming. It is

now well known that women were the first programmers of the ENIAC, (Light 1999)

many having switched over from the Moore School’s human computing department.

Both Ada Lovelace and Grace Hopper are justly celebrated as pioneers of software.

“Coding” was initially seen as lesser skilled than working on hardware, and working

the card punch, like typing, was a feminized profession. Historian Nathan Ensmenger

shows that in the 1960s, women were recruited to programming jobs through ads in

Cosmopolitan Magazine (Ensmenger 2009). Gradually, however, as programmers

236

began to professionalize, computer science became an academic, mathematically-

oriented discipline, and the masculine discourse of “software engineering” became

mainstream with its male, manufacturing associations, the proportion of women in

programming dropped sharply (Ensmenger 2010). Thomas Misa finds that the

percentage of women graduating with bachelor’s degrees in computer science

dropped from a peak of 37% in the mid-1980s to between 11% and 15% around 2007

(Misa 2009, 6). Masculine association with technology, particularly the affective

pleasures of tinkering, and the achievement of mastery, both at work and at play, is

not new in Western culture, especially when it comes to electronics and radio

(Haring 2003; Faulkner 2000a; Kleif and Faulkner 2003; Dunbar-Hester 2008). The

rise of “nerd,” “geek” and “hacker” identities, culturally stereotyped as a lonely,

anti-social young male, however, have exacerbated these trends. More recently, a

different kind of masculinity, the competition and crass-ness associated with the

college-age young men filling the startups of Silicon Valley, the “brogrammer,” has

been highlighted for creating hostile work environments for women in the tech

industry (Hicks 2012; Parish 2014). Given this enormous gender imbalance, it is not

surprising to find that the proportion of women in the Cocoa community is low, and

the qualitative impressions of some of my actors and myself suggest that the ratio of

men to women in the Cocoa community might be worse than average in the industry.

Nevertheless, the consistency of the fact that all three of the iOS classes I attended

averaged 10% female students might indicate an upswing in women’s participation

in Apple development. The more advanced OpenGL class (a technology not specific

to Apple) contained only 15 students, none of whom were women. The boom in

mobile app development could be diversifying the population of Cocoa developers.

In my first iOS class, I got to know three students especially well, Walt,

Victoria, and Anna, in part because I spent more time helping them than the other

students. Walt was a half Scottish, half Jewish retiree from East Hampton, Long

Island, who had paid for the class out of his own pocket, and looking to write an app

during his retirement. He had been an engineer, but had not written programs since

the 1970s or 1980s. Victoria was a Chinese-American woman in her late 50s, who

237

reminded me of the aunties at my Chinese church back home. Victoria worked for

Smith College, doing SQL database work on their backend servers. Anna was one of

the three from the Netherlands, two out of three of whom were women (the other

Dutch woman also happened to be of East Asian descent.) Anna and her husband

were running and independent app business, with her husband doing most of the

coding, and she handling the user support. While she does have a programming

background, she took time off to have a child, and was unsatisfied with not being

involved in the technical work, so she decided to take this class. She has also been

very active in trying to build relationships, both with the other Dutch developers

sponsored by Mike Lee’s Appsterdam, but also with the people she met at Big Nerd

Ranch, not just her fellow students, but also Aaron Hillegass, who she met when he

traveled to support Mike Lee’s initiative and recruit him to teach a Big Nerd Ranch

bootcamp in Amsterdam. These three students needed the most help in the class

because they were all new to object-oriented programming, having only previously

written procedural programs. This meant that they had a lot of difficulty matching

the way they thought about programs (as processes) with the way that Cocoa was

designed, which treated programs as collections of objects sending messages to each

other. Victoria also had never used a Mac before, and was having trouble simply

getting used to the user interface. Another relative novice was Nathan, a businessman

who was trying to create a new social networking app for inviting friends (real

friends, not social media “friends”) to parties. He was taking the class not so he

could write the code himself, but so that he could better evaluate the work of people

he was hiring to write the code. He asked a lot of questions during lectures, but did

not ask for as much help during lab times, probably because he was not as invested

in actually getting his apps working or learning everything. In a later class, one of

the novices was Lincoln, a young Caucasian who had been in finance but wanted to

do something different after the financial crisis.

I got to know a few of the more advanced students in conversations over

meals or during breaks in instruction, when we took hikes out on the trails behind the

lodge. Also, on Thursday, about half of the class took several hours off to take the

238

zipline tour, which became a big team-building experience for those of us on it. One

of these was Chris, an Asian-American in his late 30s or early 40s who worked for

the FBI. He and Andrew, a Caucasian developer, were both used to using Java and a

development environment called Flex, while another, Sean, was used to Microsoft’s

C# language. These were both object-oriented languages, which meant that for these

three developers, learning Objective-C and Cocoa was more a matter of translating

similar concepts that they were already familiar with. Another was Sunil, an Indian

who had written COBOL for mainframes for the Indian agriculture department, and

worked to develop local villages, sometimes working with cows. Tomas, the

Argentinian, wore a T-shirt with a giant robot from Japanese cartoons on it. Both

Sunil and Tomas used and were familiar with Macs. In a different class, one of the

most advanced students was Parvati, an Indian woman who worked for Microsoft but

wanted to learn something new and move back to India. There was also a Southern

woman, Julie, who was a web developer and knew all the markup languages, and

said she was used to “memorizing languages.” She called herself a rabble-rouser, and

liked to ask the instructor trick questions. Another notable student was John, a

Caucasian contractor for the Air Force, who proudly displayed a sniper rifle as his

desktop picture.

As I attended the iOS bootcamp multiple times, I also got to experience the

course being taught by different instructors. Every time, there would be a different

instructor for the weekend portion of the class, the Objective-C primer, from the

main 5-day iOS bootcamp. The first time I attended the class, the Objective-C

instructor was Mark, a freelance web developer who ran his own web design

consulting business and helped write the Big Nerd Ranch’s website backend. He was

not a permanent Big Nerd Ranch employee but was contracted to teach as needed.

Mark had a wry and edgy sense of humor, and because he was not a full-time

employee, often proclaimed opinions different from the other instructors. The main

part of the course was taught by Joe, the co-author of the Big Nerd Ranch iOS book

and course materials, who had been the original designer of the course. Joe was

atypical for a programmer. He was an athlete who took several months off in the

239

beginning of each year to train track and field for the Olympics. He had been hired

straight out of college by Aaron Hillegass, and with a hypercompetitive and

masculine personality, fit more of a jock archetype than a geek. He was very

opinionated and did not hide his disdain for what he considered to be stupid practices.

Aside from myself, there was also another TA, Brian, a recent hire who was in

training to become a full instructor himself. Brian had been a religious studies major

in college, an Apple fanboy, and had worked at the Apple Retail store before being

hired at BNR. The second and third times I attended the course, the weekend primer

was taught by Step, an employee who had joined the company between my 2011 and

2012 field visits. In 2012, I worked very closely with Step on Big Nerd Ranch

internal app projects. Step was an older, more experienced engineer than Joe or Brian,

a family man and a devout Christian. Step had spent a significant portion of his

engineering career in quality assurance (testing) and thus was especially interested in

promoting and using disciplined software engineering practices and methodologies to

help improve software quality. The main instructor for the course that week was

Christian, a young Georgia Tech graduate who was also a former Apple Retail store

employee and Apple fan. After Joe left Big Nerd Ranch in 2013, Christian would

take over the job of revising the iOS book and became the third co-author.

Classes took place downstairs. At the foot of the stairs were located two

restrooms, as well as doors to two bedrooms. Typically, the instructor stayed in one

of these two rooms, though occasionally a student would be booked there. To the

right of these rooms, two more doors opened up onto the main classroom. This was a

large, wide presentation room. On Friday evening, I helped the instructor set up the

classroom. In the middle, on the far wall of the room, we set up a projection screen,

which would be used for slides or live demonstrations on the computer. Large

windows on either side looked out into a small grassy slope, which led down to a

forested stream. During the next few days, we would be able to see, and to hear,

zipliners through these windows. To the left of the screen was a small desk for the

instructor to sit and place the laptop that he was projecting from. To the right we set

up a small whiteboard on a stand for drawing diagrams.

240

Facing the projector were three rows of long tables, which we covered with a

green tablecloth. The projector itself we placed between the two front-most tables. In

the middle, the rows were parallel with the wall, but on the sides, past the support

pillars holding up the ceiling, the tables angled towards the wall, so that overall, each

row had a trapezoidal shape. Each individual table would seat two. From a closet

near the door, we retrieved the items we would need to set up the classroom. On the

floor in front of the tables we placed power strips and extension cords that we taped

down with duct tape to prevent the students from tripping. Most students would

come with their laptops. However, a few needed a computer set up for them, so I

helped set up three all-in-one flat-panel iMac desktop computers. The closet also

contained extra course materials and T-shirts for students.

As with the room upstairs, displays and decorations around this classroom

added to the frontier ambiance. At the back of the room, just next to the door, was a

stone mantle. Below the mantle, at the lip of the fireplace, was a rug made from the

skin of a big cat, and two softly cushioned lounge chairs sat on either side. At some

point during the week, this cat rug would become host to Big Nerd Ranch branded

goodie bags, consisting of a coffee mug, T-shirt, a pen, and bumper sticker.

Atop the mantle was a portrait of Chief McIntosh, a local half-white Cherokee

chief who was killed by his fellows after selling their land to his white relatives. The

room was named the McIntosh room in commemoration of him, a striking

coincidence to me, as this was an Apple programming class. One afternoon I found

myself reading the chief’s story, or rather, two slightly differing accounts of it, one

portraying him as a traitor to his people, and another more nuanced, on two historical

wall displays. Two other displays around the room told the story of the Trail of Tears

of the Cherokee and other Native American tribes of this part of Georgia. Upon

reading these, I felt a sense of irony; here we were at a place where mostly white

American knowledge workers, privileged members of the ruling class, were

perpetuating themselves, and the violence of the triumph of whites over the

indigenous population was commemorated on its walls, with the natives mostly

241

invisible and relegated to history, aside from a chief who sold them out, for which he

was remembered by whites. I never did meet a Native American student in the class.

At 10 pm, the instructor and I closed up and headed back to our cabins. The

next morning, a hearty breakfast was served, buffet style, in the dining room. This

consisted usually of scrambled eggs and bacon or sausage, but sometimes, chicken

and waffles. There was also cereal, yogurt, orange and apple juice, and lots of fresh

fruit, which I took advantage of. I was not able to finish my fruit before class was

supposed to start at 9 am, so I took my plate downstairs.

Students had chosen their places for the week, and had hooked up their

laptops to the power strips, and placed their nametags, which they had received, on

the table in front of them. I choose an empty seat on the right side.

Mark, the instructor, began his lesson with an introduction, saying that he was

going to teach the class the idioms of programming in the Objective-C language. He

was going to teach them what they needed to know, but more than that, he was going

to teach them the jargon on the first day, and then the foundations on the second.

This language of “idiom” reflected language in Aaron Hillegass’s books and course

materials, and seemed to indicate a particular style or way of thinking with Cocoa

that differed from other programming environments.

Because the course was hands on, the first thing to do was to get all of the

students familiar with Apple’s programming environment. This meant that they

needed to launch a program called Xcode, provided free by Apple, in which they

would do all of their programming and debugging. It was important to make sure that

everyone was running the latest version of Xcode, however, so that everybody could

follow the precise instructions in the course materials. Because most people brought

their own Mac laptops, and did not necessarily have the latest version, as the

teaching assistant, I went around sharing a copy of Xcode on a thumb drive. The

WiFi network was slow and unreliable, and we did not want 30 students to be

downloading 5 GB from Apple all at the same time, which would take hours. This

was important because as we will see, time was precious and could not be wasted.

242

Xcode is Apple’s “Integrated Development Environment” or IDE, an industry

term that denotes a program that collects a code editor, compiler, debugger, and

other programming tools together into a single, integrated application, so that the

programmer rarely has to switch to another program to accomplish a task. IDEs such

as Microsoft’s Visual Studio, and Eclipse for the Java platform, have become the

dominant method of programming on graphical operating systems. This is in contrast

to the practices of Unix programmers, who typically use dedicated programs for each

purpose: text editing, compiling, and debugging on Unix are all separate programs

invoked from the command line.

Each day’s class was typically divided up into approximately 6-8 lessons,

each lesson lasting anywhere from two to three hours. The first twenty to forty

minutes of each lesson was usually a lecture. In the main iOS course, the lecture was

usually given on slides. However in the Objective-C primer, the lecture usually

involved a live demonstration in Xcode. In the demo, instead of presenting an

abstract idea, the instructor typed in some code in the IDE, and clicked a button

called “Build and Run” which compiled the program and ran it. At the bottom of the

Xcode window was a console that would output the result of the program, typically

some text. For the Objective-C primer, which was the topic for the weekend, all of

the programs we would be writing would be the simplest kind possible—text-only

programs, often only a few lines of code, that ran on the command line, in Mac OS X

itself. After this lecture period came the hands-on lab time, in which students were

asked to try out an exercise from the course materials, either the official book, or if

the materials incorporated new or revised content, were printed booklets in spiral

plastic binding. (Unsatisfied with the Objective-C books on the market, which were

more reference manuals than tutorials, Hillegass wrote his own Objective-C book to

serve as course materials, which was not ready for 2011 but was in use in 2012.) The

first thing students did was to create a new project in Xcode, using a blank template.

In some later lessons, which built on finished work from a previous lesson, they

could continue from their existing project. Then they could start typing in code that

was printed in the course packet, build it, and run the program for themselves, and

243

see the results. If they typed in something incorrectly, the compiler would give them

an error, with a cryptic message, and highlight which line of code was the source of

the error. During this lab period, the instructor and teaching assistants, myself

included, roamed around the room looking for people with their hands up, indicating

that they had run into such an error. I spent most of these lab times helping students

debug and fix their programs and answering other questions. Most of my interactions

with students were either in these lab times or in conversations during meals.

The instructor kept track of time, and around the two hour mark would call

for an end to the lab time, whether the students had finished their exercises or not, in

order to begin the next lesson. As the schedule called for the course to get through a

certain number of lessons every day, the instructor could not afford to give the

students too much time, and had to keep things moving. This created a relentless

pace in the course, felt especially during the main iOS portion of the course, which, I

will discuss later, is a central part of the Big Nerd Ranch bootcamp experience.

Dinner was scheduled at 6 pm, though sometimes we ran late and started at

6:30. After dinner, additional lab time was scheduled in the classroom for students

who needed more time to get their programs working. These after-dinner lab times

were purely optional, and students often took this time to go hiking or simply rest

back at their cabins. However, given the pace of the course, generally at least half of

the class, sometimes more, would come in to work after dinner. During these times,

more advanced students could also use this time to complete special “Challenge”

exercises at the end of each chapter. The instructor also encouraged advanced

students to work on their own iOS projects, for either work or their own hobby, in

order to apply what they had learned to something they really cared about. All of the

instructors made it a point to say that it was this application of learning from the

course to a student’s own project that really cemented the learning. The weeklong

bootcamp by itself went by very quickly and if a student did not quickly apply it to

his or her own work soon, in the weeks after the class, the hard-won knowledge

might not fully sink in. This exhortation had the additional effect of reinforcing the

moral message that good programmers should want to spend their free time

244

constantly programming and learning, that programming is not just a profession but

ought to be a vocation and a passion.

Learning through Typing

Instructors at the Big Nerd Ranch bootcamps used a number of pedagogical

techniques for teaching programming. The most important was to have students

manually type in code out of the book into their own programs. During lab times,

students worked on exercises specified in the book, which asked them to implement

some new functionality for the program they were constructing. Rather than ask them

to figure out for themselves how to express an algorithm in Objective-C, the book

simply provided them with the answer. The code to do what they needed was printed

right in the book. The intention of the class was not to teach people how to program,

but mainly get students familiar with the feel of programming in Objective-C using

the Cocoa APIs. What the instructor asked them to do was to type this code into their

program manually, rather than copy and paste it out of the solutions we provided on

a flash drive. This was crucial because the repeated typing of certain codes, such as

the names of objects, functions, and APIs from the Cocoa frameworks, such as

“NSArray,” “NSString,” “NSDictionary,” “alloc,” “init,” “retain,” “release,” built up

a vocabulary that could eventually be immediately recalled, and the meaning of

which, understood. Because many Cocoa APIs follow consistent, grammatically-

based naming conventions, such as “objectAtIndex,” “valueForKey,”

“setNeedsDisplay” or “selectionShouldChangeInTableView,” repeated typing of

such code also familiarized students with these conventions, which meant that using

previously unknown APIs gradually became more familiar and less foreign. I began

to understand that it was partly in this sense that Aaron Hillegass described Cocoa to

me as an “idiom,” with its own “style.” We will discuss the importance of coding

style later.

What happens if a student tries to take a shortcut through typing and cut and

paste instead? At one point, Sunil attempted to do this, which I discovered when I

helped him find a bug in his code. He had taken a bit of code he had previously

245

written for an earlier lesson, copied it into the current program and modified it to

make it work. Unfortunately, he had not caught every detail that needed to be

modified. One of the objects he was using was the wrong type, something that he

might have caught if he had retyped all the code out from scratch. The result was that

the object did not respond to the message he was sending it. This was a “view”

object. In Cocoa applications, windows contain a hierarchy of “views” which display

their contents to the screen. A window can be thought of as a collection of these

views, which can contain other views. The result of Sunil’s mistake was that his view

was not getting added as a subview of another view, but was being added directly as

a subordinate of the window itself, causing it to not be able to scroll.

Manual typing is a highly disciplinary pedagogical method. The repetition of

manual typing builds not only a visual, conceptual, and linguistic familiarity with the

code, but also a material one, of muscle memory, through typing the same code over

and over again. A repertoire of codes is built up, not only in the programmer’s mind,

but also in his or her body, in the muscles of the fingers. Later on, the programmer is

then able to draw on this “vocabulary,” supplemented by documentation, to more

quickly write code for an original program. This recalls Warwick and Kaiser’s

example of jazz improvisation in their “Foukuhnian” model of pedagogy. Jazz

improvisation, a creative activity, is “pedagogically conditioned” by a repertoire of

embodied skills produced by disciplined, repetitive practice, which the musician

draws on during improvisation. What is similar about both programming and jazz

improvisation is that both are creative activities conditioned by embodied practice, in

accordance with Kuhn’s view that conceptual knowledge arises materially through

practice (Warwick and Kaiser 2005, 401). Rachel Prentice’s work has similarly

shown the interconnection of embodied practice with knowledge acquisition in the

training of surgeons (Prentice 2013).

Pacing

Another aspect of the course that tied together with manual typing was the

relentless pace of the lessons. While the two days of the Objective-C primer had

246

been at a relatively leisurely pace, to introduce students to the language gradually,

the iOS course intended to cover almost the entire 300+ page book in five days,

which required each day to cover six to eight lessons. This was a grueling pace. The

course began at 9 am, right after breakfast, and covered at least two lessons in the

morning, with lunch starting at 12:30. Class recommenced at 1:30. After two more

lessons, in the mid-afternoon around 3:30, the instructor usually led everyone outside

into the hot, humid Atlanta summer for a 30 minute break, to go hiking on the trail

down to the stream, through the woods, to see the historic mill. At 4 we resumed for

another two lessons, until 6, when dinner was served. After dinner, from 8-10, the

instructor and the teaching assistants went back downstairs to help students who

wanted to continue working during the free lab time. Many did, because they were

not able to get their programs running correctly during the day.

Although he first lesson was standalone, in most subsequent lessons, the

program written in each exercise would be continued in the following lesson, so that

over the course of four or five lessons, what had begun as a relatively simple

program had acquired a large and sophisticated set of features. This helped to build

confidence in the students, teaching them that they too could build sophisticated apps

in gradual, piecemeal fashion. This also resembled real-world practice, as an existing

program is gradually added to over time. The drawback, however, was that students

who could not complete an earlier lesson, usually due to not being able to find and

fix all of the bugs in time before the next lesson had to begin, would be left behind.

And indeed, most students did eventually fall behind; the novices would be

struggling by Tuesday, while the advanced students would gradually be

overwhelmed by Thursday. During my first time at the bootcamp, most students on

Thursday were still working a chapter behind, trying to fix their programs from the

previous lesson despite the instructor having moved on. I was helping one novice

student, who was lagging back three chapters behind. The instructor and I did

provide solutions for each chapter, distributed on a flash drive on Monday at the

beginning of the week, and also available on the company website, that contained

snapshots of the program at each stage. Students who fell behind could begin the

247

next exercise from a completed and working version of the previous exercise. The

students thus had all the “answers” available to them right from the start. The point

was not getting the right answer, but going through the process, and learning from

the experience.

Victoria, one of the novice students, remarked at one point to Joe, the

instructor and co-author of the book, that she was happy to get to the Challenge at

the end of each lesson, because that meant that she was done, not that she wanted to

tackle the challenge. Some lessons also contained additional technical or historical

information on older practices that had been made obsolete by new changes made by

Apple to the Cocoa frameworks. These went under the heading, “For the Curious,” to

signal that they were not necessary. Another student, Phil, piped in, “same with the

‘For the Curious section!’ I’m not that curious, I’ll just skip that!” Joe protested,

“That’s some of my best work!” We all laughed.

Challenge exercises, which came in three grades of Bronze, Silver, and Gold

in progressively higher difficulty, allowed for the course to address the wide range of

skill and experience of students taking the course, offering more advanced students a

chance to exercise some creativity beyond copying code out of a book. These asked

students to implement or extend a feature in the program they were working on for

the regular exercise, but this time without providing them the code to do so. As we

saw in the previous example, these were purely supplements, with no requirement or

pressure to do them. However, I noticed that for many of the more advanced students,

it was a point of pride for them to do as many Challenge exercises as possible, at

least on the first few days when they could still keep up. Some of them might

compare with each other, in the spirit of friendly competition, how many they had

managed to accomplish. All of these advanced students were men.

More than one student remarked that the class felt like “drinking from a

firehose.” I got to experience this “firehose” myself when I took the Android

programming five-day bootcamp, which I attended along with another Big Nerd

Ranch employee, Mikey, who was an iOS instructor. Like many of the novices in the

248

iOS class, I felt as if my brain could not keep up with all the information, and I was

simply typing in code that I could barely understand. The other students I spoke with

at dinner said they were in a similar state. One student next to me said he was just

typing and couldn’t tell what was stuff he needed to understand and what he could

safely ignore. Another student similarly noted that he would need to reread the book

after the class was over. Mikey said that actually, we should all do that. Drawing

from his own experience as the iOS instructor, he said that “the first time is more

about learning the vocabulary, while the second time is when you start to make

connections.”

In my field notes from Tuesday night of the class, I wrote:

I think that a lot of the bootcamp is simply learning through immersion.
By forcing us to type so much code in ourselves, and just keep the
information coming, eventually the material from previous days, even
if we didn’t fully understand it then, begins to look familiar by day 3
and 4, just from familiarity, even if we aren’t completely sure what it
means, we no longer feel lost reading the syntax.

I definitely feel as if I’m learning a new foreign language, or at least a
new “idiom” if that is the correct word.

My own attempt to catch up after dinner Tuesday night failed, when a woman

working for the resort came at 11:40 pm to close the room up. I had been typing non-

stop for the last two hours, and I was not alone. Even though I had, unlike the

previous day, gotten enough sleep and had been alert most of the day, the concepts

still went by too fast to sink in. I had been treading water but could not keep it up, as

the sheer volume of code I had to type was enormous. I wasn’t even bothering to

understand what I was typing, I was just typing as fast as I could, and my wrists were

getting sore. I felt bad, wondering if I was the only one who was so behind, but at

dinner in conversation with the other students, we all commiserated over being in the

same situation. Later, the Android instructor, Brian, reassured me that I was actually

still ahead of some other people. It seemed as if one of the effects of the course was

to make everybody feel dumb, inadequate, and behind. Only one student, I learned

the next day, was actually ahead—he had gotten up to code at 5 am. It was in this

relentless pace that the course lived up to its name as a “bootcamp.” This shared

249

experience also had the effect of bonding all the students in it, who felt as if they had

survived something tough. Indeed, at the end of the week, the instructors handed out

T-shirts and bumper stickers and mugs, some of which proclaimed, “I survived!” Big

Nerd Ranch swag was much prized among many Cocoa developers as proof that one

had gone through this rite of passage.

And indeed, I observed that the students in the iOS bootcamp went through

much the same experience I did in the Android class. Phil remarked Wednesday

evening that so much material was getting crammed in his head so fast, that he

probably wouldn’t remember half of it after the class was over. Jenn, the Big Nerd

Ranch course manager who had come in to visit the class, remarked that that was OK,

that was what the Big Nerd Ranch alumni forum on its website was for. This allowed

students who had gone through the bootcamp to keep in touch with each other

afterwards, continue to ask each other and the instructors questions, including

answers to the Challenge exercises. Phil then said that he probably wouldn’t have

any feedback on the course until three weeks after the class, after it all sank in.

Anything he said before that would just be gibberish, as if he was speaking in

tongues.

Thursday morning Phil and Nathan were joking with each other over

breakfast about how behind they all were. Phil had finally had to throw in the towel

and resort to starting chapter 11’s exercise from the chapter 10 solution, something

that he had resisted doing for as long as possible, probably out of pride. By Thursday,

most students were no longer attempting to do Challenge exercises; it was enough to

simply to be caught up and not have to use the solutions. A student named Mark had

been managing to finish every lesson on time through Wednesday, but gave up on

Thursday. Nathan and Phil were talking about all the parts in the book that they

would have to go back to and reread after the week was over. Phil said he wished he

had color-coded bookmarks—he would put green for stuff he knows he will use

immediately, red for things he knows he will need to review. Nathan was also

writing lots of little notes in his book, often adding extra annotations in separate

250

places to point back to the book. Phil said he wished he’d taken a picture of the book

before the class started, when it was clean, because his copy was now all marked up.

In summary, no matter the level of the student, novice or relatively advanced,

the relentless pace eventually caught up to them. This had a number of emotional

effects. Students felt as if they were constantly behind or struggling to keep up,

generating feelings of inadequacy in many. For the most advanced students, it hit

home the message that Cocoa programming was hard, and that there was a more to

learn than they could possibly do in a week. This difficulty also motivated students

to help each other, even though their exercises were individual, highlighting the

communal aspect of learning. Moreover, the shared experience of going through this

difficult class together, in this remote place, created communal bonds between the

students in the course, and their dependence on instructors for help created bonds

with them as well. Additionally, in the iOS class, Aaron Hillegass himself often

visited sometime during the week to chat with students, hear their concerns, and sign

their books. Although the Big Nerd Ranch did not provide certification recognized

by any professional body, “alumni” still felt proud to receive their little printed

certificate from instructors at the end of the week. Students came away from the

class feeling a sense of community with both each other and with the people of the

Big Nerd Ranch.

Documentation

The classroom environment, with the instructor and teaching assistants,

provided a safe environment for students to fail gracefully, as experts were available

to answer questions and help them when they got stuck. However, they would not

have this resource forever. With thousands of APIs, how was a student to discover

them all? Even the instructors did not have this encyclopedia of knowledge

memorized. Therefore, another crucial skill that the instructors wanted to teach was

how to look up information on your own, in Apple’s documentation. These could be

accessed directly in Xcode itself, or accessed free on the Web. Both Mark and Step

spent a section of a lesson early on the first day explicitly showing the students how

251

to get to Apple’s documentation, and how to navigate it to find information about the

object classes and interfaces that a student might want to use in their programs.

Looking for documentation to find an API was necessary, but if a student had

already used an API previously but simply did not remember the exact code to type,

looking it up in the documentation could be tedious. For this purpose, the instructors

also showed students how to use Xcode’s “autocomplete” feature. Because the

Xcode environment is integrated, its compiler can search through the Cocoa libraries

that a programmer links to in his or her program in real time. The result is that, to

type “NSString,” a programmer only needs to type the first three letters, “NSS” and a

list pops up of all the object classes that begin with those three letters, and the

programmer can then select NSString from the list with the mouse or arrow keys.

This facility is always on while a programmer is typing code. Thus, another benefit

of the exercise of repeatedly typing in code is that programmers begin to learn how

to use autocomplete as a shortcut to typing in long codes.

Debugging

Both typing out code, and the relentless pace of the course, contributed to the

experience of debugging and fixing their programs, where students actually learned

why it was important to follow the practices and conventions they were being told to

use, and where the abstract concepts of the course became transformed into practical

knowledge. Theoretically, because students were merely copying code out of the

book into their programs, the lab exercises ought to be trivial. Practically speaking

however, students would mistype something, and the program would either not

compile, or worse, it would compile, but would crash into the debugger. Typing out

code was not itself the primary vehicle through which learning was to take place;

rather it was a means to create situations that would develop the critical skill of

diagnosing and fixing errors. After making the same mistake repeatedly and seeing

the same error messages printed out, students gradually began to learn what the

errors meant. Of course, upon seeing an error for the first time, how would they

know what to do? In that situation, novice programmers often feel completely

252

helpless. The novices in the class frequently asked me for help in the first three days,

as if they felt that they could not make any progress without aid. Some students in

the class mentioned that they had bought Hillegass’s book and tried to work through

it previously on their own, but had struggled. For some, it was a constraint of time

and priorities—with other obligations to attend to, they simply could not focus on

working through the book. Others, however, became frustrated because they ran into

difficulties and did not know how to get past them without help. The classroom

setting of the iOS bootcamp addressed both of these problems. First, being

sequestered for a week out in the woods with spotty internet access took students

outside of their regular lives and allowed them to focus their entire time on learning

Cocoa. Secondly, because we had an experienced instructor and teaching assistant

around who could help them identify and fix their bugs, we provided them a safe

place to fail. This safety net allowed them to feel that bugs were not scary but fixable,

because we could explain why a bug happened and how to fix it again the next time.

Mark, the instructor, noted “That’s the advantage of a class—if you’re on your own,

you stare at something for days, can’t figure it out, and say, ‘Apple sucks, I hate

them!’” (Field note, July 9, 2011) This quote reveals that Mark understood the

crucial affective work that the Big Nerd Ranch course provided, which was that by

helping students get over the difficult learning curve of Cocoa, it would also help

transform them from frustrated Apple haters to Apple lovers. And indeed, this also

explains why the Big Nerd Ranch does not see its books, which cost between forty to

sixty dollars, as cannibalizing sales of the courses, which cost around $3500.

Hillegass understood that the books, as good as they are, are simply not a substitute

for the kind of intensive, immersive, communal, and affective learning that the

course provides. He saw the books, which were not a large share of the company’s

revenue, as more of a marketing tool to spread the word about Big Nerd Ranch,

increase his reputation and that of his company in the community, and create

awareness of the value of his courses. The availability of instructors (as well as other

students) to help students debug their programs and overcome frustration is a key

component of the class that a person working through the book alone is missing. In

253

what follows, I will present a few of examples of such instances in which I helped

(or failed to help) a student debug a problem in their program.

During one lab session, I spent twenty minutes trying to help Tomas figure

out why his application was crashing. In this application, we had a tableView, which

if you remember, is a view that displays a table of data, like an Excel spreadsheet.

Recall from the previous chapter that tableViews follow the Model-View-Controller

design pattern, in which programs are split into model objects that represent the data,

view objects which display this data to the user or provide ways for users to modify

the data, and controller objects which coordinate user actions and data updates

between views and models. In this particular application, the tableView displayed a

table of “Possessions,” which was represented in the model by a linear array of

Possession objects. The Possession class of objects was defined by Tomas as a

custom class, but rather than write his own tableView class, he simply used the stock

UITableView class provided by the built-in UIKit framework in Cocoa Touch.

UITableView provided a way for users to easily add a new item to the table. Tomas

connected this mechanism to his own method in his custom controller class,

“addPossessions:” which would add a new Possession to his array of model

Possession objects.

The trouble Tomas ran into was that the name of his method,

“addPossessions:” wasn’t being recognized as a valid method name.34 In the

debugger, I typed a command, “bt” that printed out the “backtrace” or “stack trace,”

which was the chain of method or function calls that had led to where the program

currently was executing, in order to figure out in what code the crash was occurring.

Unfortunately, I did not have the experience to read the results. I had to wait until the

34 In Objective-C terminology, the “selector,” a text string representing the

name of the method, was not being recognized as valid. This check is made

dynamically at runtime.

254

instructor, Joe, was free to ask him to take a look. Joe immediately saw what was

wrong, and pinpointed the problem as a memory management issue.

To understand the bug, I need to explain Objective-C’s method of memory

management, which involves a concept known as “reference counting.” Objects that

need to remain in the computer’s memory are ones that are referenced, or “owned”

by another object. When object A wants to make such a reference to keep another

object B in memory, it sends object B the “retain” message, thereby incrementing

B’s reference count by one. Once A no longer needs B, it sends it the “release”

message, decrementing B’s reference count by one. Objects with a reference count of

one or higher are kept in memory, but once their reference count drops to zero, the

system frees up the memory to be used by other objects. This system of “retains” and

“releases” made up the manual memory management scheme that NeXT had created

for Objective-C in the early 1990s, and had continued in Cocoa at Apple until 2011,

when Apple introduced an “Automatic Reference Counting” scheme that made much

of this work unnecessary.

Manual reference counting was not only tedious, but error-prone, as the

students in the class discovered. The trick was that retains and releases needed to be

balanced. If there were more releases than retains, the program would crash, the

program would be trying to access an object that no longer existed. If there were

more releases than retains, nothing catastrophic would occur, but there would be a

“leak,” an object that sat around in memory that did not need to be there, causing

excess memory usage. (The latter was something that students did not need to fix

immediately.) In Tomas’s program, one of his objects was somehow being over-

released. Joe told us to use the debugger to step through the code, which meant using

the debugger to execute one line of code at a time, while counting the exact number

of retains and releases to make sure that they matched up. It turned out that Tomas

had left an extra release in his code from the previous version of his project from the

last lesson. I learned along with Tomas that if a program crashed and the message

EXC_BAD_ACCESS was printed by the debugger, this signaled that the program

had tried to access a deallocated object, which almost always was the result of the

255

object being released more times than it was retained. The next time I saw this same

crash with another student, Eric, I immediately suspected an over-release. I placed a

breakpoint in the method “dealloc:” that gets called when an object is deallocated. A

breakpoint causes the program to stop running at specific line of code. If Eric was

not over-releasing his object, this method wouldn’t get called, and the program

would simply continue running. Eric then ran his program again, and lo and behold,

the program broke in dealloc. Eric then examined his code and found that he was

releasing one of his instance variables twice when he only needed to do it once. Soon

afterwards, Walt had a similar problem as Tomas, except that he wasn’t even getting

to the crash. His navigation bar wasn’t showing up, because he had also left in too

much code from a previous exercise. A different object needed to be released in the

new version, but the old code still released the old one, causing it to be released

twice. After seeing this message repeatedly, I would become adept at identifying it

almost immediately the same way Joe did. Similarly, the students would also begin

to pick up the same patterns I was learning myself. This repetition was crucial to my

own learning as well as that of the students, but interestingly, there was no need for

the instructors to design exercises to produce this explicitly. They understood that

the normal practice of programming and debugging itself generated such repetition,

and thus, asking them to debug their programs would suffice.

Another bug that students frequently ran into was often the result of a

misspelling. On another day, I spent more than half an hour helping Tomas figure out

the source of another crash. Again, a tableView was involved. Remember that in

Cocoa, tableViews follow not only the Model-View-Controller design pattern, but

also the delegation pattern. Because the UITableView class is provided by Apple’s

UIKit framework, it cannot be directly modified to customize its functionality, and is

used unchanged. However, it contains an instance variable that can be set to point to

a helper object, or a “delegate.” It then relies on this delegate to handle custom tasks

that often depend on state that the program can only know when it is running, for

instance, user input. UITableViews have two such helpers, one officially named the

“delegate” to handle user interface behaviors, and a second one, the “datasource,” to

256

handle data model coordination. In practice, many Cocoa programmers often

designate the tableView’s controller object to be both its delegate and datasource.

In Tomas’s program, his datasource was not returning the tableView cell he

had asked for, even though he had correctly implemented the

cellForRowAtIndex:Path: method. We both scanned every line of his code but could

not see what the problem was. Again, I had to call in Joe for help, and he managed to

pinpoint that Tomas had miscapitalized the ‘v’ in tableView, spelling it “tableview,”

which meant that his variable names did not match. I was so close to catching it, but

neither I nor Tomas had seen it. Tomas said, “I knew it had to be some obvious

thing.” Later Eric would run into a similar problem. He had missed the capitalization

of a single letter in a tableView datasource method as well. The program had

compiled correctly and run, but instead of crashing, it simply did not work as

intended—one of his views just did not appear. Because the method was misspelled,

it was never getting called, and nothing was happening.

One of the reasons such errors could be tricky to find was because in Cocoa, a

lot of things happen dynamically, that is at runtime. In some other object-oriented

languages, like C++, things like whether variable names match are locked down

when the program is compiled, which allows the compiler to check if they match.

This means that such simple errors are caught early in the development process. A

dynamic system like Cocoa defers many such things to runtime, because this allows

the program to be significantly more flexible. However, it also means that bugs like

this can slip through. Programs can compile and even appear to run perfectly fine for

a while, until suddenly, one tries to send a message to an object, and the debugger

crashes the program with a message saying that the receiving object does not respond

to that “selector,” in other words, the name of the message. This is often an indicator

that the selector, the method name, was misspelled. Selectors can be any arbitrary

text string that the programmer has chosen, and thus the compiler will not check to

make sure if the selector names used in different places in the source code are

consistent. If they do not match, the program will still compile and the programmer

will run into the mysterious “does not respond to selector” errors. Such crashes are

257

actually a good thing, because they signal immediately to the programmer that

something wrong is occurring. It is much more difficult when a message is simply

sent to “nil,” which represents the idea of “no object.” It is perfectly valid to send a

message to nil in Objective-C; the result is simply that nothing will happen. This

allows for some interesting designs, but it can be frustrating to debug. Once again,

this was an error that took me, and the students, many painful experiences to

recognize. Such knowledge, even if explicitly stated in the course book, had to be

personally experienced to be fully understood. Dynamic systems like Cocoa allow

for more freedom and flexibility for programmers, both to do powerful things but

also to make mistakes, manifesting in weird, difficult to trace bugs that might be the

result of a mere typo. Rather than make such errors impossible mechanically through

the compiler, the response by Apple and the Cocoa community was to codify

conventional naming practices to make such errors less likely, and for Apple to

regularly use such conventions in its own APIs so that programmers got used to them

in an idiomatic way.

Misspellings were just as likely to occur to the more advanced students, as

Tomas and Eric were, as to the novices, like Walt and Victoria, because the advanced

students typed so much faster and were less meticulous, so typos often slipped

through. Similarly, advanced students were often more likely to take the shortcut of

copying and pasting code from a previous lesson than retype everything. This, as we

have seen, was a frequent source of bugs, as mismatches between what objects the

old code referenced and what the new code needed would remain even if the code

successfully compiled, leading to many instances where an object of the wrong type

was being messaged.

Sometimes students had problems not with the code that they typed, but with

the graphical elements of Cocoa programming. One of the features of constructing

applications with Cocoa is that the relationships between user interface objects

(views) and other objects, such as their controllers and delegates, can be made

graphically in the Interface Builder program (which used to be a separate program

but is now built into the Xcode IDE). When viewing the app’s user interface in

258

Xcode, the programmer can make a connection between objects by dragging with the

mouse from one object to another while holding down the Control key. In this way,

the programmer can relate what the user sees (the interface) with their

representations in code. To be more specific, view objects in the interface, such as

tableViews or buttons, are represented in code as instance variables owned by a

controller object. These variables are given a special meaning to Interface Builder,

called an “Outlet,” and are tagged in the code with a special label, “IBOutlet” that

signals to Interface Builder that they are special. This allows Interface Builder to

allow the programmer to shift-drag from a controller object to the view object they

wish, and select from a menu of outlets that have been defined in the code to

associate with that view. (See Figures 3 and 4.) Developers can also create the view

objects completely visually in Interface Builder and ask it to generate the correct

code for them.

259

Figure 3: Wiring up in Interface Builder 1.

Control-dragging from a placeholder object named “File’s Owner,” representing the
programmer’s custom controller object, to a text field to in order to “wire up” the text field
so that it responds to user actions, such as typing in it. This will result in the popup menu
seen in Figure 4.

260

Figure 4: Wiring up in Interface Builder 2.

What the programmer sees on releasing the Control-drag. This gesture designates the text
field next to the label “Value” in the graphical display to correspond to the valueField
variable, or “Outlet,” in the code of her controller object, represented by the “File’s Owner”
placeholder. The valueField Outlet in code is now wired up to the text field shown in the
graphical display.

261

It matters what direction the developer drags. If dragging from a controller

object to a view object, the drag means that the developer wants to associate that

view with an outlet defined in the controller’s code. What does dragging in the

opposite direction mean? This is how developers define what happens when a user

manipulates a view object in the interface, such as clicking a button, or entering text

into a text field or table. When, say, a user clicks a button, the button signals to the

controller object that it wants to run an “Action” associated with the button. An

“Action” is just a special kind of method defined in the controller object; the code in

it will run when the button is pressed. In the Model-View-Controller pattern, views

are not supposed do anything on their own aside from displaying themselves or

responding to user input; all behavior triggered by views should actually be

implemented in “Action” methods in controller objects. “Action” methods must be

labeled with the “IBAction” label, signaling to Interface Builder that they allow

graphical connections to be made to them. Thus, when the developer drags from a

view object to a controller object, he or she can select from a list of possible

“Actions” for the view object to trigger. (See Figures 5 and 6.) However, dragging in

this direction could also mean something else, if the view object itself contains

“Outlet” variables. The developer could want to designate the view’s delegate Outlet

to be the controller object dragged to, by selecting the controller’s delegate Outlet in

the popup menu. Because both of these are possible, both “Outlets” and “Actions”

will appear in the popup menu when the drag is released on the controller. (See

Figure 6. The “Actions” appear under the label, “Sent Events,” and one can tell that

they are names of methods because their names all end in colons.)

262

Figure 5: Wiring up in Interface Builder 3.

Control-dragging in the opposite direction, from the text field to the “File’s Owner”
placeholder, which is the proxy for the programmer’s controller object. This will result in
the popup menu seen in Figure 6.

263

Figure 6: Wiring up in Interface Builder 4.

What the programmer sees on releasing the reverse Control-drag. The programmer has two
options. First, the programmer can designate the “File’s Owner,” which is a proxy for the
controller, to be the text field’s delegate outlet. “Delegate” is the only Outlet available.
Alternately, the programmer can select an Action method from the list of Actions in the
“Sent Events” section of the menu to trigger when the user types the Return or Tab keys into
the text field. Note that all the Actions have names ending in a colon, signaling that they are
method names.

264

This was a problem that Anna ran into. She needed to designate that a text

field in her application had a delegate, which was her controller object. Text fields

conform to a protocol defined in the UIKit framework, that allows them to

automatically handle user input, such as what happens when a return key is pressed,

that require developers to implement specifically named methods specified by the

protocol. If the correct methods were coded in the controller object, and that object

was hooked up as the text field’s delegate, then the user input would be

automatically handled. Anna was finding that her text field was not doing anything

when she hit return. It turned out that she had not correctly made the connection

between the text field’s delegate outlet and her controller object. The instructions in

the book for doing this were not clear; it told students to hook up the delegate outlets

significantly before the students actually wrote the protocol method code to

implement what happens when the return key is pressed. It took me a while to find

the text in the book that said, “That’s why we told you to hook up those delegate

outlets earlier.” The actual instruction to do that was even more difficult to find. It

turned out that Anna had dragged from her controller to the text field, associating the

text field object with the Outlet variable specified in the controller, but not the other

way around, which was necessary to associate the controller with the delegate Outlet

variable of the text field. The graphic in the book further confused her, which

showed only the Outlet connections between the text field and what they were in the

controller’s code, but not the connection for setting the delegate outlet. Further

confusing the issue, the text field outlet connection had actually been made

automatically earlier.

I became frustrated attempting to explain to Anna why it was necessary to

drag from one direction but not the other, because I felt that the lab time was running

out, and Anna seemed to be more intent on explaining to me her misinterpretation, or

going on tangents in conversation, rather than fixing the problem and moving

forward. In writing my field notes later that night, reflecting on this, I wondered if

my own gender role had played a part in this. Because Anna had been the most

behind in the class, my concern had been to help her catch up, on improving her

265

efficiency, but her conversation seemed to be interfering in achieving this goal.

Possibly, she had been embarrassed at the mistake and wanted me to understand why

she had made it, but I felt that I already understood, and there was no need to

explain; she was only wasting precious time that she couldn’t get back. Her concern

may have been that building our social relationship, and improving my opinion of

her skills, was more important than catching up in the class, which she may have

decided was not going to happen.

It is extremely difficult to explain this process of dragging in prose without

actually showing what to do on a computer screen. The Big Nerd Ranch can show

this process of dragging in their demos during the lecture, but during the lab

exercises, students are still expected to follow textual instructions, or even static

graphics, in the book. This means that the dynamic nature of graphical programming

can be lost in a text-based tutorial. Like you, the reader, students in the class such as

Anna often find the process of “wiring up” connections in Interface Builder to be

easy to do once shown, but find the meaning of what exactly they are doing hard to

understand. Code can be read and parsed, but discerning the difference in meaning

between dragging in one direction versus its opposite requires significantly deeper

knowledge of two different design patterns (delegate, and target/action), knowledge

which takes time to seep in. Students are simply told, do it this way, trust us, you

will understand later.

What is important to recognize about this example is that students in the class

are told what to do first, without being told the reasons why. The philosophy of

asking them to type in code without asking exactly what it does fits into this. They

are told not to question it at first, to just do it and make it work, because that is the

way Apple has designed it. This is because a full conceptual understanding of what

makes all of this work would be too overwhelming at the beginning. We will see in

the next section that such fuller understanding comes over time, after the repetition

of many of these concrete examples. Through debugging a program, students get a

feel for what a working program, versus a non-working program, looks like, and

what it takes to convert one into the other.

266

My experiences helping the students debug such issues began with me

struggling along with them to read their code, trying to figure out what was wrong.

At first, I was only marginally better than them at diagnosing the source of errors,

and as we have seen, I often had to ask Joe for help. I wrote about my feelings of

inadequacy as a TA in a fieldnote during Thursday night of my first bootcamp:

I wonder if the students are better served when Joe helps them (he can
find a problem usually almost instantly, or at least very quickly) or
when I do. Because I’m only just slightly more experienced with this
stuff than them, I’m going through all the steps of debugging it too.
Sometimes this means I don’t actually figure out the problem—but
more than half the time, I do, but with much effort, after a long time
and lots of searching. I wonder if it is more useful for them to be
working with me to figure it out, so we work through the process
together, and then they learn more about how to debug and track down
such problems. Certainly, it is helpful for me to learn what issues to
take note of.

A number of things I’ve already seen recur—over release errors, how
to debug those. Objects that are uninitialized and pointing to nil—that
should be very easy to fix, you just didn’t set the object somewhere.

I got much better towards the end of the week, but even on Thursday, there

were still instances where I was stumped. Given the pace of the course, with lab time

restricted to around 30 minutes, this often was not enough time to fully diagnose a

problem, and with around 30 students in the class, I might have more than one person

to help. Nevertheless, I could see myself getting better as the week went along. By

the time I returned as a TA to the iOS course in 2012, I had significantly fewer

problems helping students find their bugs, although in my subsequent trips, I left the

class after Sunday and Tuesday, respectively.

Debugging and fixing programs is central to learning how to program. This is

true everywhere, not just at the Big Nerd Ranch. However, at the Ranch, instructors

recognize how important this is by devoting at least two-thirds of the day’s class

time to lab time. They understand that it is in learning by doing, not passively

listening to lectures or even watching demos, that programmers build up their skills.

Repetition is key. Many of the bugs students run into come up repeatedly, and it is

through this repetition that they learn how to recognize them in the future.

267

Significantly, this also helps the instructors learn what pitfalls students run into and

find difficult, which helps them call out such pitfalls in subsequent classes, and even

modify the course materials to better explain them in later editions of the book.

Students are not given specifically designed bug exercises to figure out, but are

simply asked to debug code that they copied out of the course materials. Inevitably,

someone makes a typo or copy-paste error that results in a common bug, so specific

exercises are not needed—students will inevitably run into bugs as they go. While

repetition is not built into individual exercises, we will see in the next section, over

the course of the entire class, concepts such as design patterns are repeated over

multiple exercises. This means that students gradually develop a sense that problems

are solved in a consistent way. It is only after they have experienced this a number of

times that students are then introduced to the abstract concept behind what they had

been experiencing viscerally.

Practical to Abstract, Specific to General

Another pedagogical element in Big Nerd Ranch lessons was the illustration

of course concepts with practical examples, often from actual jobs. For example,

Mark presented a rock collecting application that he had written, showing his actual

code to the students on the projector, to hit home the idea that what they were

learning was not academic, but was used for real shipping code. Similarly, Joe

showed the students who had stayed after dinner a trick he used, using actual code he

was writing for a client. This illustrated the difference between Big Nerd Ranch’s

approach to teaching programming compared to academic computer science courses;

it was fundamentally practical, applied knowledge. Students were paying Big Nerd

Ranch a lot of money to teach them skills directly applicable to the programs they

wanted to write, for either their jobs or their hobby. Given the high learning curve of

Cocoa and the unfamiliar concepts they were being exposed to, students needed to be

able to trust that the frustration and strangeness they felt while wrestling with

Objective-C would be worth it. Consistently showing them real-world examples let

students know that what might seem like esoteric knowledge would be of immediate

practical use.

268

As we have seen from my examples helping students with debugging, Cocoa

programming involves learning highly abstract concepts such as the delegate design

pattern. While this pattern is powerful, it is not easy to grasp or visualize. Mark

mentioned that it had been a difficult concept for him: “I didn’t understand

delegation for a long time until I wrote my own framework.” However, he

acknowledged that a full understanding of this concept was not necessary, that it

could be acquired over time by simply using it. “Even if you don’t completely

understand the idea, you will be using it.” The Big Nerd Ranch approach to teaching

such concepts was based on this notion that complete abstract understanding was not

necessary to begin using it in practice. Students merely needed to be shown examples

of how such concepts could be used in solving particular programming problems,

and then exposed to numerous such examples repeatedly to hit home the general

usefulness of the concept.

For example, the first time the delegation pattern was used in the course was

fairly early on, in Lesson 4 (out of 29) on the afternoon of the first day. In designing

the course, Joe had front-loaded it with a key piece of functionality that mobile

developers were interested in using—the GPS sensor for determining a phone’s

location. In Lesson 4, Joe introduced Apple’s CoreLocation framework, a set of

Objective-C APIs that provided developers with access to the device’s location,

which the hardware determined using a combination of GPS signals, and

triangulating cell phone towers and WiFi hotspots. Not only was this of enormous

practical interest to developers, but because CoreLocation also used the delegation

pattern, it also served to introduce the concept through the practical example of a

feature that developers were highly motivated to learn. Students were told to use a

stock “CLLocationManager” object from the CoreLocation framework. How does

the student customize what happens when the phone’s location changes? This is done

by designating another object to be the location manager’s helper, which receives

location updates from it. When these updates occur, custom code in the helper object,

which the student will write, executes. The delegation pattern thus allows the student

to customize the behavior of a black-boxed CLLocationManager object whose code

269

he or she cannot modify. As we have seen, this pattern is later applied to several

other types of object interactions. TableViews delegate to their helpers tasks related

to updating themselves when their underlying data changes, or mirroring changes

made by users to the data. Similarly, text fields also use delegation to allow helper

objects to cause user input in a text field to commit those changes when the user hits

return, tab, or simply clicks outside of the text field. These actions can even trigger

additional code to be run. The common pattern between all of these situations is that

developers use stock versions of the objects provided by the Cocoa libraries.

CLLocationManager, UITableView, and UITextField are not customized or

subclassed in any way. These are used as provided by Apple, and although their

functionality is fully documented, their code is not available for modification. All

custom behavior is delegated to a helper object that is under the programmer’s

complete control. This allows Apple’s stock objects to be reused as much as possible

in a general way, while still allowing for customization to the particular

circumstances the programmer needs. Customizing the stock objects directly would

reduce their generality and thus reduce their reusability, which would make programs

much less flexible and maintainable in the future.

The effect of this approach of introducing abstract concepts through the

repetition of specific examples is that students are much more likely to understand

the concept and agree with the need for it, because they have already seen it applied

successfully to a number of general problems. The abstract concept already has a

referent to a pattern they have experienced—it now simply has a convenient name

they can refer to. Moreover, repetition not only reinforces the concept in their minds,

but also hits home how consistent Cocoa is in utilizing the same solutions throughout

its design. This also cuts down on resistance to the use of the pattern.

Humor

Part of the presentation style of the instructors at Big Nerd Ranch is

approachability and casualness. Instructors make a point of portraying a persona that

is not very different from the students. We are programmers, just like you, working

270

on real-world projects, they seem to say. One of the ways they create this rapport

with students is through the use of humor, not only lectures in but also in answering

student questions. Additionally, humor is useful for defusing possible tensions

around students being hostile or resistant to Cocoa or Objective-C idioms and

practices. It is also used when the instructor is presenting an opinion about a practice

that could be construed as controversial, in order to qualify it.

The use of humor by instructors was not one-size fits all, but was something

each individual instructor developed as part of his particular persona. This often took

on gendered forms. For instance, Joe used masculine geek humor in some of his

presentations. For example, he created a class and gave it the name “Megaman” after

the Nintendo video game character. In the Megaman class, he created an instance

variable named “girlfriend.” He then presented a command that will return how

much space a variable takes in memory, the “sizeof” command. Using this command,

he said, you could get the “sizeof Megaman’s girlfriend.” Joe chose to name the class

after a male video game character, not a female one, and made the character’s

girlfriend a property of that character, not the other way around. The audience did

not seem much bothered by the gendered nature of the joke, treating it as typical

geek humor.

In a subsequent lesson on the accelerometer, Joe’s irreverence was

highlighted in another joke. He was discussing the use of high and low pass filter

algorithms to smooth out the signals coming from the accelerometer. The low pass

filter highlighted large changes to how gravity affected the sensor, making it useful

for detecting changes in the phone’s orientation. This detected changes in the 10-20

Hz range. The high-pass filter was useful for detecting a user shaking the phone as a

means of input, with oscillations in the 70-100 Hz range. Joe now used humor to

signal that he was not an expert in signal processing. “For those of you in EE

[Electrical Engineering] who do this stuff, I apologize for butchering your craft.”

However, just afterwards, having qualified this, he signaled how he really felt about

the authority of Electrical Engineering. “Otherwise, who cares about that stuff

anyway?” Later, in describing one possible use for the high pass filter, he said,

271

“maybe it’s a game—you shake it for 10 seconds, you get a prize… that’s not good.”

It appeared as if he had unconsciously made a joke about masturbation, and only

realized it after the fact. It is possible that the joke may have been deliberate,

however, and used the qualification at the end to apologize for the frat boy humor.

Another time, Joe warned students that the Big Nerd Ranch forums had spam

on it, and thus they might see some unsavory images. He joked that he put those

there especially for them.

In other cases, Joe used humor to highlight practices that he wanted students

to avoid or pitfalls he wanted them to watch out for, but knew full well from

experience that they would run into. Sometimes he would violate these practices in

his demonstrations for expediency due to lack of time, but make sure to tell the

students not to do what he was doing. For example, in one lesson, he said, “you’ll

write three lines of code… I’ll just copy and paste and forget that [the variable]

valueInDollars is an integer, and it WILL crash. I’m looking forward to seeing you

make this mistake!” This got a big laugh from the class. Joe used this tactic more

than once to highlight potential errors he knew students would make.

Other times, Joe used humor to defuse potential dissent over his

recommendations for avoiding a controversial Objective-C coding practice, known as

“dot notation.” We will discuss this controversy in more detail in chapter 6. Suffice

to say that Joe first made technical arguments against using it, particularly

pedagogical arguments, which justified why he insisted that no one use dot notation

in the class. However, he said that ultimately it was up to each student to decide for

him or herself. He also called the practice, “an abomination,” and joked “you can use

dot notation after this week, but if you do, you can’t come to my parties.”

In any case, despite Joe’s cantankerous, often cynical and opinionated

persona, the mostly male students seemed to appreciate Joe more for his authenticity

and candor. This made him seem more personable, as someone the students would

like to hang out with after the class was over.

272

This kind of relatability for Big Nerd Ranch instructors is notably different

than university courses where the professor takes on an aura of authority. Big Nerd

Ranch instructors derive their authority in part from the Big Nerd Ranch name and

from Aaron Hillegass’s own authority as a famous instructor and quasi-celebrity, but

also from their real-world expertise in programming, acquired from daily work on

actual client contracts. Thus, their authority depends in large part from being just like

the students, except that they have real-world experience in what the students are

learning. Big Nerd Ranch instructors, while insisting on the disciplinary practice of

typing out all the code in the exercises, and setting the pace of the course through the

sheer quantity of material needed to cover, do not otherwise use surveillance to make

sure students remain on task. They did not take on the persona of taskmasters. There

are no exams or any mechanisms for assessing students’ mastery of the concepts.

Students are expected to be self-motivated in wanting to learn iOS, Cocoa, or

Android programming and get as much out of the course as possible; after all, either

they or their employer paid $3500 for them to be here, and it is their decision if they

want to make the most of it. The after dinner lab hours are treated more like office

hours, for students to catch up and finish their programs because there was not

sufficient time during the day. Although the instructors encourage advanced students

to work on their own projects during these hours, only a few actually do this. What is

important, however, is that this exhortation signaled to students the moral quality

expected of would-be professional developers—a willingness to learn, and a passion

for writing code, whether on the job or in one’s off time, in order to continue to

improve one’s craft. Developers are seen as independent, entrepreneurial self-starters

and self-learners, who need little disciplinary prodding to work, and rather view

arbitrary authority, bureaucracy, and surveillance with suspicion and hostility.

However, with a hint towards fostering a more healthy work-life balance,

instructors also encourage students to go out and enjoy the grounds, whether after

hours, or during the official breaks when the instructors lead them out on hikes, in

order to get exercise and refresh both their bodies and their minds. (Despite this,

some students chose to stay in the class, either to try to catch up, or simply to avoid

273

the summer heat and humidity.) Despite the relentless pace, the instructors also

encourage students to take the zipline tour, even though it takes at least two hours

out of the day, in part because of the benefits of building a team spirit among the

attendees, and probably also because it strengthens the Big Nerd Ranch’s

relationship with Historic Banning Mills, which is a separate business. They are,

after all, at a beautiful country resort.

Humor is also important because it helps keep the class light, enjoyable and

fun, when it might otherwise be experienced as painful and stressful. This is crucial

because the instructors want students to enjoy the experience of the class, despite the

hard work they are doing, reinforcing the message that Cocoa programming itself

should be pleasurable and fun. And by eschewing a persona of authority in favor of

that of a male colleague, instructors reinforce the notion that programmers are an

egalitarian, meritocratic, and primarily masculine brotherhood.

Style and “Stylishness”

Big Nerd Ranch instructors do not only teach the technical aspects of Cocoa

programming, but also what the Cocoa community considers proper coding style, an

aspect of normative practice that has concerned programmers generally, not just

Cocoa programmers. Coding style often involves choices that do not make any

difference to the compiler; the resulting code is functionally the same no matter what

choice is made. Rather, such choices often reflect idiomatic conventions built up

over time among a community of programmers. Although they may not have

meaning to the computer, meaning is ascribed to such choices by the human

programmers who read and write the code.

In his 1974 Turing Award acceptance lecture, Donald Knuth, author of The

Art of Computer Programming series, pointed out that programming style was then

becoming a topic of interest among computer scientists (Kernighan and Plauger

1974; Dijkstra 1971), and this was a component of being able to treat programs as

aesthetic works of art, and programming as a pleasurable activity (Knuth 1974, 670).

Knuth argued both that style was in part personal preference (“there is no one ‘best’

274

style”) and thus people should not force their own styles on others, and yet style

could still be judged “good” or “bad.” Utility and efficiency were important, but an

excessive focus on efficiency might be counterproductive. Other measures of

“quality” were important too, including correctness, flexibility, and usability. “In the

first place, it’s especially good to have a program that works correctly. Secondly, it

is often good to have a program that won’t be hard to change, when the time for

adaptation arises. Both of these goals are achieved when the program is easily

readable and understandable to a person who knows the appropriate language.

Another important way for a production program to be good is for it to interact

gracefully with its users… It’s a real art to compose meaningful error messages or to

design flexible input formats which are not error-prone.” (Knuth 1974, 670)

Readability is a key to the maintainability of code, in terms of both getting it to work

in the first place and modifying it in the future. In corporate organizations, the

engineering concerns for quality seem to have outweighed laissez-faire personal

preferences, however, as places such as Google have standardized on common styles

and have even made them public for contributors to their open source projects

(Google Inc. 2015; Seibel 2009, 72). As we will see, in practice, the idea that style is

purely an individual preference runs into conflict with communal and organizational

pressures to conform, highlighting the social nature of programming work.

Mateas and Montfort have noted that in some cases, programmers deliberately

subvert clarity and beauty in the creation of code, adhering to an alternative aesthetic

of obfuscation to create unnecessarily complex and tortured Rube Goldberg-type

code. Although such code must work (it is crucial to the aesthetic that it does, often

cleverly), the creation of such code is made primarily for the literary purpose of

parody or ironic commentary, in circumstances in which the code is not intended for

production use, such as during the International Obfuscated C Code Contest, or

academic research into “weird” languages. The target of this commentary is to focus

attention on the fact that code needs to be read by humans as well as machines.

“Obfuscated code and weird languages highlight the importance of the human

reading of code in software development. If some code is only to be read by a

275

machine, it can be neither obfuscated nor clear: it can only function properly or not.”

(Mateas and Montfort 2005, 1) By explicitly creating “bad” code, hackers point out

what is “good” code, code readable by humans. This is often accomplished through

“double-coding,” the creation of code that has meaning in two different registers,

such as the sentence “Jean put dire comment on tape” which has meaning in both

French and English (Mateas and Montfort 2005, 5). Mateas and Montfort point out

that because code has meaning to both humans and machines, all source code is

double-coded. Perl poetry, and the programming language Shakespeare, in which all

programs are written in the form of a Shakespearean play, highlight this duality.

Case and Piñeiro’s study of attitudes on code aesthetics on Slashdot find that

debates over code aesthetics explicitly involve performance of identity (as “artist,”

“hacker,” or “geek”), espousal of values (the “hacker ethic,” especially disdain of

monetary motives) and group membership: boundary work over who is ‘in’ and ‘out.’

Frequently, the ‘out’ group consists of managers whose impositions programmers are

explicitly resisting. Style mandates are thus seen as authoritarian encroachments on

programmers’ professional expertise and autonomy (Case and Piñeiro 2006). This

aspect of coding style is explicit in the Cocoa community.

As we saw earlier in chapter 1, Cocoa programmers care deeply about

aesthetics, not only the visual look of their applications but also to the code itself.

Cocoa coding style generally follows conventional programmer conceptions of good

style, emphasizing readability and clarity, though the practical details may be

interpreted differently. The most notable difference in comparison with other

programming aesthetics is that “good” Cocoa code tends to be verbose, rather than

terse or brief, in order to emphasize clarity of the programmer’s intention rather than

“cleverness,” or mathematical elegance. This aesthetic difference is stark, giving

many newcomers a sense of distaste upon their first exposure to Objective-C code.

Attitude towards verbosity versus brevity is a clear marker of inclusion or exclusion

in the Cocoa community. For this reason, instructors at the Big Nerd Ranch make

significant effort to teach “good” Cocoa coding style, in order to show students how

to be a “proper” Cocoa programmer. Normative pressure is brought to bear on this

276

message. Big Nerd Ranch founder Aaron Hillegass explicitly connected coding style

to social acceptance:

The Objective-C compiler… would let you do any sort of stupid thing
you wanted to. And so to create good designs, we as a community
developed a set of idioms that everybody would follow… there is
nothing in the compiler that enforced that, it’s just something that as a
member of the community you were expected to follow.

(Aaron Hillegass Interview, July 7, 2011)

In the following quote, Hillegass highlights the social nature of coding

through normative entreaty while simultaneously highlighting practical, utilitarian

reasons to conform.

A lot of what I have to do is teach these idioms that have been handed
down basically by word of mouth from the very first Cocoa
programmers, the first Objective-C programmers. And so when I teach,
I don’t just talk about, “you have to do this,” I say, “all stylish Cocoa
programmers do this.” And that idea that you would be too
embarrassed not to follow this idiom.

…The next person who’s going to take over ownership of your code, is
going to… look down upon you if your code doesn’t follow these
stylish conventions…

If someone came in and saw your code did not follow those things it
would be embarrassing to you…

(Aaron Hillegass Interview, July 7, 2011)

Hillegass makes several points. First, is the idea that style is a sort of tacit

knowledge, handed down by “word of mouth.” Hillegass referred to this as a kind of

“folklore,” as if it were part of some oral tradition among the tribe of Cocoa

programmers. Secondly, Hillegass insists that he does not teach style dogmatically,

relying on his authority as an expert. Such a tactic would simply not work, as

programmers, valuing independence, tend to chafe at arbitrary authority and reserve

the right to make such decisions for themselves. He must still acknowledge the view

that style choices are personal preferences, but provide a compelling reason why

someone should choose to follow his style recommendations. Rather, Hillegass tries

to persuade students to accept these choices as necessary for their social integration

277

into the community. Part of this social argument is instrumental and pragmatic—

existing Cocoa programmers follow such conventions, and because it is rare for

successful software to remain under the authorship of a single programmer over the

course of its lifetime, for maintenance reasons one should expect that one’s code will

be read by others and thus write code with this in mind. However, a significant

component of the argument is emotional—you will be “embarrassed” if others look

at your code and it does not follow the proper conventions. Worse, people will “look

down upon you.” Thus, maintaining proper style conventions is important to

maintain and improve one’s status in the community of practice. Improper style is

the first sign of peripheral membership. Hillegass signals the importance of being

accepted by the community with the specific turn of phrase he uses. Instead of “style,”

he talks about being “stylish.” By alluding to an alternate meaning of “style,” as in

“fashion” and “trendiness,” Hillegass implies that to be one of the cool kids, to be

accepted by the popular crowd, a programmer ought to follow “stylish” coding

practices. Being “stylish” conveys social status, and is a marker of inclusion and

group membership.

This meaning of “stylish” relies on feminine gender connotations. This can

cause some pedagogical problems. Hillegass acknowledges that among his audience,

who are mostly men, talk of “stylishness” often causes a deal of scoffing at first:

“it’s funny, because I often talk about stylish code for programmers in the class, and

people giggle the first time.” In one sense, the term works precisely because it is

unexpected from a man, and thus somewhat humorous as well as memorable.

However, in order to counter this tension, Hillegass goes to some lengths to explain

the technical basis for coding style choices in the class and in the text of the book.

He insists, “by the end of the week, it becomes clear [to students in the class] how

important in the community it is to be stylish.” Such technical arguments for

following proper style choices are gendered masculine, while social reasons are

gendered feminine.

We can see how Hillegass qualifies his talk of “stylishness” with a technical

argument using an example in the introduction of the third edition of iOS

278

Programming: The Big Nerd Ranch Guide, in a short section on the “Style Choices”

that were made in the book’s code. Conway and Hillegass explain:

We have attempted to make that code and the designs behind it
exemplary. We have done our best to follow the idioms of the
community, but at times we have wandered from what you might see
in Apple’s sample code or code you might find in other books. You
may not understand these points now, but it is best that we spell them
out before you commit to reading this book… We believe that
following these rules makes our code easier to understand and easier to
maintain. After you have worked through this book (where you will do
it our way), you should try breaking the rules to see if we’re wrong.”
(Conway and Hillegass 2012, xvii)

Conway and Hillegass repeat that the primary reason for their

recommendation of a particular coding style in the class is pedagogical. Once the

class is over, such style issues are now a matter of personal preference, so that

independent-minded programmers can make their own choices. In the class itself,

one instructor, Step, explained to students that “Objective-C is a language that has a

lot of patterns and conventions that are not necessarily enforced [by the compiler].

The style I am using… is frequently used by Objective-C programmers, but you can

use what you want.” The message was that this and other style issues were a personal

preference, and that the book was not in the business of dictating a particular practice

to people who had different preferences. Nevertheless, the book still exhorts them to

make the “right” decision, by giving rational reasons for why such issues of style are

not inconsequential or trivial. It encourages readers, once they have worked through

the book, to “break the rules” later and evaluate for themselves, assuming that all

rational readers will come to the same conclusion. The text implies that despite the

seeming arbitrariness of style, objectivity will lead people to the “right” practice.

How does this manifest itself in the class? Instructors, following the

pedagogical strategy laid down by Hillegass, did refer to coding conventions and

other practices as “stylish.” For example, at one point, Joe explained to a student the

reason for a coding convention in Cocoa. Before I recount this interaction, however,

I need to explain the technical underpinnings of their conversation.

279

 In Objective-C code, objects are declared like this:

UITableView *tableView;

The first term, UITableView, is the class (or type) of the object. The second

term, tableView, is the name of the variable being declared, or in other words, the

name of the object itself. What is the ‘*’ character? That refers to the fact that the

variable tableView is in actuality not the object itself, but a reference, or “pointer,”

to that object in memory. This is unlike most other object-oriented languages, and

has to do with the implementation detail that Objective-C is fully compatible with,

and largely implemented using the constructs of, the low-level procedural language

C.

When I first took C programming in the 1990s, I was taught to write variables

that were pointers like this:

int* aNumber;

The ‘*’ character is written flush against the type on the left, not the variable

name on the right. This emphasizes the concept that pointers to specific types of data

are themselves a type. Int and int* are not the same type, and the compiler enforces

this difference. Int* is a type that is a pointer to an integer, not an integer itself. The

compiler, however, does not care whether there are any spaces between the ‘*’

character and the type preceding it or the variable name after it. C programmer

convention, however, is to write the ‘*’ next to the type on the left.

One student in the course, who had a C background, asked why Cocoa

programmers write the ‘*’ flush against the variable name on the right, in contrast to

C convention. The student said that he puts it next to the type because he sees the

pointer as a type, which makes sense in the procedural C context. Joe responded by

saying that in the case of Objective-C code, the variable is a pointer to an object, so

the ‘*’ should go with the variable. The book written by Aaron Hillegass as course

materials for the Objective-C primer provides additional reasons for why a Cocoa

programmer should follow this practice, which it labels as “stylish.” On page 59 of

the first edition, in a section titled “Stylish pointer declarations,” the text explains:

280

Because the type is a pointer to a float [floating point (real) number],
you may be tempted to write it like this:

float* powerPtr;

This is fine, and the compiler will let you do it. However, stylish
programmers don’t.

Why? You can declare multiple variables in a single line. For example,
if I wanted to declare variables x, y, and z, I could do it like this:

float* x, y, z;

Each one is a float.

What do you think these are?

float* b, c;

Surprise! B is a pointer to a float, but c is just a float. If you want
them both to be pointers, you must put a * in front of each one:

float *b, *c;

Putting the * directly next to the variable makes this clearer.

(Hillegass 2011, 59)

This text presents a technical, instrumental, and practical reason for this

choice of coding style: to make the meaning of the code more easily legible and

readable to human readers who will be responsible for maintaining the code in the

future. Thus, community norms and conventions are presented as not purely arbitrary

and an outcome of social pressure, but as “rational” choices which benefit

practitioners in writing more maintainable code. Nevertheless, although the

reasoning is supposedly objective, the exhortation is moral and social: “stylish

programmers don’t.”

 “Stylishness” was brought up in the course again when a student asked why,

on page 178 of the iOS programming book,35 the example code used “NULL” instead

of “nil.” Both symbols represent the concept of “nothing,” which is not the same as a

35 The student was referring to the second edition of iOS Programming: The

Big Nerd Ranch Guide. (Conway and Hillegass 2011, 178)

281

numerical value of zero. Joe replied that it didn’t matter which one was used, they’re

the same—but NULL is not as stylish. In this instance, he did not explain further,

and it was not clear why. Possibly, there was not enough time in the class and he

needed to move on, and simply replying that one was the preferred, more “stylish”

choice sufficed for the moment. However, Hillegass’s Objective-C book, the text for

the primer, does give an explanation. On page 58 of the first edition, it explains that

“NULL” represents a pointer, or a reference, to nothing. This is implemented as a

memory address with a zero value. Remember we discussed earlier that in Objective-

C, objects are referenced by pointers also. Thus, “nil” means a pointer to no object,

or in Hillegass’s words, “the address where no object lives.” (Hillegass 2011, 58)

The book does not explain that “NULL” is a keyword in the procedural C language,

while nil is a keyword in Objective-C, which includes everything in C, including the

“NULL” keyword. Therefore, use of “NULL” indicates that one is programming in

procedural C, using that language’s procedural idioms. “Nil” is used only in

Objective-C to refer to objects, or rather, the lack thereof. The reason that Joe said

that “nil” is more stylish is because to write idiomatic Objective-C code, it is more

proper to use “nil.” Although to the compiler, “NULL” and “nil” are interchangeable,

they have slightly different meanings to the programmer. What the student caught on

page 178 of the iOS book, the use of NULL, works correctly, but may have been a

stylistic mistake on the part of Conway and Hillegass, because “nil” is used properly

later on the same page to refer to the same bit of code. This mistake was corrected on

page 193 of the third edition of the iOS book. (Conway and Hillegass 2012, 193)

Discussions about style can also involve a test and display of membership in

the community. For example, this occurred between Aaron Hillegass and myself

during an interview, when he asked me about my own Objective-C coding practices.

Aaron: Did anybody teach you that when you were learning this?

Hansen: I don’t know if I was ever taught it explicitly, I just sort of
learned that these were the ways that it was done, but never exactly
why, or why those decisions had been made…

Aaron:A lot of it has to do with internal consistency, right? Is that you
start with—OK we’re just going to accept that A and D—we’re going

282

to do that. And then B, C, F and Q all fall out of that… To be
consistent with what decisions you’ve made early on.

Hansen: Right. I mean, even little things like, you know, whether or
not the spacing between the minus and the parenthesis, you know, and
where—

Aaron: I put a space in there, do you put a space there?

Hansen: I think I do. I think I do.

Aaron: All the Cocoa [headers have them] so I would imagine that you
would have to.

Hansen: I think I do. I just kind of do what the code I see does.

Aaron: Yeah. What about after colons? […] Usually they have a
method name that has three parts for each colon.

Hansen: Right, OK. I usually put—no, I don’t put a space after the
colon.

Aaron: I didn’t think you would. Some people do.

(Aaron Hillegass Interview, July 7, 2011)

In this exchange, Aaron Hillegass was asking me about my preferences for

adding spaces between syntactic elements in code. For example, an Objective-C

method from one of my own programs is written like this:

- (void)moveItemAtIndex:(int)from toIndex:(int)to
{
 [Contents omitted for clarity…]
}

Following the convention, I have added a space after the initial ‘-’, but no

spaces after the colons, as I described to Hillegass. However, the code could have

been written like this with no change in functionality:

 -(void) moveItemAtIndex: (int) from toIndex: (int) to {
 […]
}

None of these choices have any functional impact; Apple’s Objective-C

compiler ignores differences in what is known as “whitespace,” which means spaces,

tabs, and carriage returns. The language parser of the compiler uses the other

characters (the minus sign, the parentheses, colons, and braces) to determine where

283

some elements begin and others end, without needing to separate all of them with

spaces. However, the code written by the Cocoa community and Apple’s own code

follow the conventions used in the first example. The reasoning behind such choices

is that the lack of spaces between certain elements groups them together more

logically so that the reader can more easily understand that they go together. This

improves the readability and understandability of the code. Moreover, it is important

that even if the programmer chose to write the second, that she remain consistent

with her choices—mixing the first and second styles arbitrarily would be considered

even worse, as a sign of sloppiness or lack of care.

Another element of my exchange with Hillegass was that he was inquiring

whether the stylistic elements that he was promoting in his classes were widely

followed by other programmers. In this way, he was respecting me as a fellow Cocoa

programmer. However, my response, that I did indeed follow the prevailing practice,

by maintaining consistency with Apple’s own code, also signaled to Hillegass that I,

like him, followed the proper style conventions, which meant that I was somehow

part of the in-crowd. By giving the “right” answer, I gained credibility in his eyes as

an oldtimer, which established a trust that I “got it,” I understood—I was a highly

included member of the Cocoa community.

To a large extent, writing code using Apple’s Xcode IDE greatly helps

developers follow conventions. When hitting return to break up the line, as long as

labels are not too long (as in my latter example) Xcode’s text editor will

automatically indent the line to line up colons in the names of methods so that they

are easier to read. However, a programmer could still change the indentation if he so

preferred, although if he does, Xcode’s automatic indentation behavior will get in his

way. In this way, Apple’s own tools go a long way towards fostering these

conventions; although the compiler does not force developers to follow them, the

text editor makes many of them the default. Code inserted by Xcode’s autocomplete

feature also follows the conventions for whitespace. These can be completely

avoided, however, if the developer prefers to use a different text editor for writing

code.

284

Thomas Hughes’ notion of “technological style” offers a way to understand

how choices made in the design of technologies are shaped by particular cultures and

histories. “There is no one best way to paint the Virgin; nor is there one best way to

build a dynamo.” (T. P. Hughes 1987, 68) “The concept of style applied to

technology counters the false notion that technology is simply applied science and

economics” and that the shape of technology follows logically from them. Hughes

illustrates this using the contrasting styles of British and German electric grids of the

1920s, and the values motivating each. “Berlin possessed about a half dozen large

power plants, whereas London had more than fifty small ones… In the London and

Berlin regulatory legislation that expressed fundamental political values rests the

principal explanation for the contrasting styles. The Londoners were protecting the

traditional power of local government… and the Berliners were enhancing

centralized authority…” (T. P. Hughes 1987, 69–70) Other technological style

differences include that between American and European automobiles, and American

and Soviet spacecraft (T. P. Hughes 1987, 70); each presented different ways of

solving similar problems motivated by different contextual factors. What the notion

of technological style illuminates is that technological choices are not always

constrained by material, economic, scientific, or mechanistic factors deriving from

the internal logic of the technology itself—there are many choices that are open and

are shaped by social, cultural, political, or aesthetic influences.

Style in programming can be seen as one particular version of this. On a

macro-level, the different choices made by the designers of different platforms,

operating systems, programming languages, and even text editors shapes the styles of

the way people work with these technologies in such a way that engenders strong

affective responses, either positive or negative (whether it be Mac versus PC, iPhone

versus Android, emacs versus vi, Objective-C versus C++). In this sense, Hughes’

notion of technological style shares much in common with Bijker’s notion of

technological frame. Within a particular style, choices made by designers can

constrain users from working in a way contrary to that style. Nevertheless, not all

elements of the style are governed mechanistically or technologically; some are

285

governed normatively. The actors understand that programming style is, by

definition, not constrained by the machine, but possible only because there is choice.

Given the libertine and meritocratic elements of programmer identity, this choice is

often interpreted as “freedom” and “preference,” and thus impositions of style are

often resented as authoritarian dogma. Good, intelligent programmers ought to be

able to figure out the best practices for themselves, not be disciplined or chastised by

others. Despite this, programmers frequently do normatively advocate for what they

consider to be correct or at least “better” choices. Yet this advocacy is controversial

precisely because norms are seen as “soft” and thus open to renegotiation, and in the

absence of a disciplinary practice such as code review, the norms of “good” style are

often broken in practice.

For the actors, the term “style” has as much a literary connotation as

technological. Programmers understand that source code is a text, which, although

constrained by their programming language’s compiler, nonetheless allows for a

wide range of choices in the naming of entities such as objects and functions defined

by the programmer. Such choices are not governed mechanistically by software but

normatively by the community, outlined in “conventions,” informal guidelines that

most programmers who are highly included in the community follow. As we saw

earlier, Hillegass in his book explicitly calls Cocoa an “idiom,” which encompasses

both ways of thinking as well as specific coding practices, which includes style

choices for code. For example, in criticizing the code examples in an Objective-C

book written by Stephen Kochan (Kochan 2012), Hillegass said, “If you look at the

Kochan book, it’s actually not very stylish. The spacing is not consistent with the

Apple standards and that’s big. It’s because he’s new. He’s been living in his own

bubble too long. Really. I’ve been doing it for 17 years now.” (Aaron Hillegass

Interview, July 7, 2011) Certainly, this comment is in some ways self-interested, as

Kochan’s book could be seen as a competitor to Hillegass’s. However, Hillegass’s

criticism is motivated by the fact that he had tried to use Kochan’s book for his

Objective-C primer course, but found it unsuitable for his purposes, as it was more of

a reference than a tutorial. Hillegass wrote his book because he needed a text tailored

286

to the way his Objective-C primer was taught; this included promoting the stylistic

practices he felt students needed to at least be aware of. In his comment, Hillegass

implies that his own years of experience, many of them at NeXT and Apple where

the stylistic conventions were established, and his continued engagement with Apple

and the Cocoa developer community, gives him the authority to recommend coding

styles that Kochan does not. Kochan’s isolation from the community means that he

has not properly internalized its norms, which is reflected in his non-standard style.

This remark was made right after the exchange in which Hillegass had asked me

about my own style preferences. I understood this as an instance of boundary work:

Hillegass was including me as an insider, but excluding Kochan, due to his non-

conformity to convention.

More recently, however, some style elements in Cocoa code that were

previously social convention have become to be relied on by newer versions of

Apple’s compiler. Over time, Apple’s engineers have begun to depend on the fact

that a majority of the community follows these coding conventions, and will do

special tricks taking advantage of them, offering conveniences to programmers who

do so. Thus, not following such conventions will put programmers at a disadvantage

because Apple’s libraries have now begun to count on them. For example, prior to

Apple’s creation of its Automatic Reference Counting (ARC) scheme, there was a lot

more freedom in stylistic choices:

The Objective-C compiler, at least until ARC came along, would let
you do any sort of stupid thing you wanted to…

But… a lot of things that were social conventions in terms of memory
management are now codified in there. So you can’t name any
property starting with the word “New” [any longer]. Because we [the
community] always said, well, “New” returns objects that were not
retained. So ARC just said, nope you’re not allowed to do it.

(Aaron Hillegass, Interview, July 7, 2011)

Apple’s Automatic Reference Counting scheme could only make memory

management automatic if it made certain assumptions about programmers’ code, and

disallowed certain practices that used to be possible. Because most programmers in

287

the Cocoa community did follow convention, Apple could safely assume that the new

technology would not put a huge burden on them to make their code compatible with

it; only a few would be affected. In implementing ARC, Apple made a deliberate

tradeoff that is emblematic of their approach to improving their tools. It provided

developers with a tool that, by automating a previously repetitive, error-prone, and

burdensome task, made their lives significantly easier while black-boxing a process

that previously they had direct control over. It was enabled in this task by the Cocoa

community’s adherence to convention, which allowed Apple to build the idiom

directly into the compiler itself without breaking the majority of people’s code. What

was previously social fashion is now a material part of the technology itself. One

might think that Cocoa programmers might react harshly to having direct control

over memory management taken away from them. However, the reaction to ARC has

been overwhelmingly positive, as the community is mostly grateful for not having to

perform this mundane task that other object-oriented languages got rid of using a

different technology, garbage collection. Thus, ARC is seen as a sign of progress

towards a more “modern” programming language that keeps Objective-C on par with

the competition. For example, the iOS developer who I met in the Android class,

Charlotte, told me a friend of hers called tedious coding tasks such as manual

retain/release memory management, “donkey work,” and was glad that she no longer

had to do this.

A slightly different use of “stylish” appears in Chapter 12 of iOS

Programming: The Big Nerd Ranch Guide. Here, it is used to signal that

implementing an additional bit of functionality would be better for the user interface,

as it would make things more convenient for users. “It would be stylish [emphasis

mine] to also dismiss the keyboard if the user taps anywhere else…” (Conway and

Hillegass 2012, 256) The programmer does not need to do this, and will have a

perfectly functioning app, but without this bit of behavior, the interface will be

annoying for users. To improve the interface, the programmer needs to do a little bit

more work. The use of “style” here retreats from a purely textual or idiomatic

meaning pertaining to the code, and refers to larger issues of the application’s design,

288

including that of the functionality of its user interface, which here is understood not

purely as an aesthetic issue but one of added function and convenience, which

requires extra programming work. Here, Conway and Hillegass are saying that in the

Apple developer world, it is “cooler” to take the extra effort to make the user

interface more convenient for users. It is a social norm among Apple developers that

user interface is highly important, and not paying sufficient attention to this will earn

disapproval among one’s peers in the community.

Student Resistance

As we have seen, many of the more advanced students in the iOS class came

in with knowledge and experience with other object-oriented languages and

environments. This gave them a significant leg up on students such as Victoria, Walt,

and Anna who had only procedural programming experience, as they did not need to

learn the fundamental concepts involved in object-oriented programming. However,

although Objective-C shares many concepts and features with other languages,

sometimes it uses different words for the same concepts.36 Students often find

themselves translating the relevant term from the language they are familiar with into

the Objective-C equivalent. Some concepts are analogous, but not exactly equivalent,

and a simple translation then may cause confusion. Such students also often have

very ingrained preferences for how they write code, based on the prevailing practices

and conventions of their native programming environment. This can cause some

resistance to the way things are done in Cocoa and Objective-C.

Some of these advanced students came in with a hostile attitude towards

Objective-C, treating it as something of a necessary evil, because at first Apple

would not let other languages be used for iPhone programming. One student in one

36 For example, the feature called “interfaces” in Java, which allows multiple

inheritance of methods but not instance variables, is known as “protocols” in

Objective-C. Similarly, methods and instance variables in Objective-C are called

“member functions” and “data members” in C++.

289

of the Objective-C primers was John, was familiar with Python, a popular object-

oriented language used for web servers. Step identified him jokingly as a potential

“rabble-rouser” and “troublemaker” in the class, somebody who would ask tough

questions and give him a hard time. John quickly lived up to this. He announced on

the first day of class that he hated Objective-C syntax. As Step began to explain the

benefit of argument labels in Objective-C with an example, John loudly announced

that he “threw up a bit in [his] mouth.” Other students also said that they found the

syntax confusing. Step reassured them that when he first learned Objective-C, he

found it confusing too, but that now he sees the benefit in it.

Novices and outsiders with significant experience in other programming

environments often have a visceral negative aesthetic reaction to Objective-C,

especially its “weird” bracket syntax. This initial feeling begins to stand in for a

whole host of other things that are unfamiliar to them. They start out unwilling to see

the benefit of this foreign way of thinking. However, because they want to write apps

for iOS, and Apple has provided them with little alternative, and because the

instructors at the Big Nerd Ranch insist that learning Objective-C, because of its

tight conceptual coupling with the Cocoa frameworks, is the best way to learn Cocoa

itself, the students in the class have little choice but to accept it.

Later during the week, Chris remarked explicitly that he felt that coming into

this new Apple environment was like learning a whole different culture, which

included different ways of doing things from what he was used to. Chris was used to

a Java development environment called Flex, which he said had amenities that Cocoa

and the Xcode environment lacked, although Cocoa provided new conveniences that

he was beginning to learn. Flex had easy and extensible ways to bundle up and

package custom controls (such as buttons) for other people to use, and he did not

know if Cocoa had similar functionality, which was important to him. He asked me

during one of the lab periods if there was any way in Interface Builder to create your

own control classes and reuse them. I told him that in earlier versions of Interface

Builder, Apple’s graphical user interface development program, it supported the

creation of something called an IBPalette, which allowed this kind of reusability. An

290

IBPalette, once made, could be shared with others (or even sold for money), and

could then be dropped in and treated like any built-in Apple control. Nowadays, this

functionality was slightly different, called an IBPlugin, but people did not seem to

use it much anymore. The student next to Chris, Andrew, asked me if there was a

way to create “application modules” using Cocoa. They explained to me that in Flex,

a module was a full blown application that could be plugged into another program,

swapped in or out, and interface with other modules according to a predetermined

protocol, and all sharing the same front end interface. I remarked that Cocoa did not

have this kind of functionality for large-scale code reuse. Chris remarked that in his

area of work, enterprise software development, packaging up code for reuse or resale

was frequently done, so those development environments contained facilities to

support this.

Chris asked if I had ever programmed Java, Flex, or C# professionally, to

which I responded that I hadn’t. He said that because I had never worked in

enterprise software, I had no concept of these facilities of other environments, and

never knew what I was missing. He was implicitly critiquing the insularity of the

Apple developer culture, and the tendency of many of them to assert the superiority

of their technology without having any experience of other environments to compare

to. In a later conversation over lunch, Chris told me he felt that the Cocoa

community was very narrow. They never did anything else, outside of Cocoa, they

stayed inside the nice little garden Apple provided them “where everything is

beautiful.” He felt that people ought to have a range of exposure to different

programming languages and environments, in order to more objectively see their

pros and cons. He held up the example of Rob Williams, a luminary in the Java

world, who had learned Apple’s iOS and Xcode and thus used that experience to

criticize the experience of developing with the Eclipse IDE for Java. Chris was

probably implying that there needed to be this kind of critique and cross-pollination

inside the Cocoa community as well, that it could only benefit from exposure to the

outside world. Chris felt capable of making this critique because he had been using

Macs since a Mac Plus back in the 1980s, which he still owned, and also had first

291

learned to program for the Apple Newton handheld. This meant he was a bonafide

Apple fan, and not some outsider taking shots because he hated Apple.

Another philosophical difference between Cocoa and Java/Flex that Chris

expressed was in their respective memory management strategies. Java used an

automatic scheme known as garbage collection, which removed completely from the

programmer the need to worry about freeing up the memory for objects they had

created. A program called the garbage collector would run periodically to look for

unused objects and free them up. Objective-C, being based on the low-level C

language, had used a manual memory management scheme called reference counting

up to 2006, when Apple introduced garbage collection. However, this never took off

on Mac OS X for compatibility reasons, and was never used on the iPhone, because

garbage collectors run at unpredictable times. On phones which used Java and thus

garbage collection (which included all Android phones), when the collector decided

to run, the whole phone would freeze up for a second, and this could happen at

random. Apple decided this was an unacceptable user experience, and thus to keep

the iPhone’s performance characteristics predictable, all iOS programming up till the

release of iOS 5 in 2011 used the older manual reference counting scheme. During

the first iOS bootcamp I visited, iOS 5 had been announced but had not yet been

released, so the Ranch instructors were still teaching the old method, which, as we

will see, was a prime source of trouble for many of the students. This had been a case

in which Apple had prioritized the end-user experience over programmers’

convenience, something that it often did. However, this did not mean Apple did not

care about working to improve the programmer’s experience. iOS 5 introduced the

new Automatic Reference Counting (ARC) method of memory management. It

largely (though not completely) removed much of the hassle of the old manual

scheme, without incurring the indeterminate overhead of Java’s garbage collection

scheme. Chris said that Apple’s use of ARC represented a completely different

approach to memory management compared to most of the industry. Because

garbage collection was slow, and because Apple owned its entire stack of software

and hardware, it could attack the problem at the level of the compiler, which it had

292

control over, something Google, which does not control the Java language, can do. I

seemed as if Chris, in a technical sense, admired that Apple, by controlling its

platform vertically, could then solve a problem at the correct level it ought to be

solved, rather than be constrained by the artificial boundaries of firms and markets,

even if he did not necessarily like the fact that Apple had this kind of control.

Learning this new language made a lot of the students explicitly compare the

merits of the various programming languages and environments that they knew. A

number of developers in both iOS and Android classes had web experience, and

compared Perl, PHP, Python, and Ruby on Rails. Others had enterprise software

experience, and compared Objective-C with Java and C#. In the OpenGL class,

which is a low-level technology and thus taught in C, one of the students was critical

of contemporary computer science education being completely in Java. He said that

the real world, most real code was still in C, but he told a story about a networking

class he had taken in which the only person in it who knew C had a master’s degree.

If he were hiring for CIS (Computer Information Systems), not knowing C might be

fine, but for a Computer Engineer, he needed people who knew C. It was because so

many people only knew Java that there were simply not enough engineers who were

experienced at manual memory management. If you knew C, then Objective-C’s

manual reference counting scheme was actually pretty simple in comparison.

Conversions

Although many students expressed resistance and hostility to the way things

are done in Objective-C and Cocoa initially, over the course of the week, once they

began to build working applications through the exercises, some began to see the

merit behind the way Cocoa works.

A student named Mike, for example, said he was “blown away” by how little

work he had to do to get his iPhone app’s user interface to switch between portrait

and landscape orientations when the phone is rotated. He noted that he didn’t have to

write any annoying code to get the views in his user interface to automatically lay

themselves out again.

293

Victoria, who was struggling in the class initially, was by Wednesday starting

to understand core concepts in the course through sheer immersion. She was no

longer making basic mistakes and did not constantly need my help anymore. She was

asking intelligent, probing questions in her quest to understand more, signaling that

she knew enough to ask the right questions. Victoria, echoing others, told me that she

felt like she had been drinking from a firehose. Despite feeling like she had been

drowning and struggling to stay afloat, by now, things that she didn’t understand

from earlier chapters were finally starting to sink in. She was finally starting to “get

it,” to acquire a feel for Cocoa programming. Through typing out code and fixing her

programs, she acquired concepts by experiencing them viscerally as almost

infrastructural to the way she had to interact with the Cocoa libraries.

Later, when I returned to Historic Banning Mills as a student to take the

OpenGL and Android classes, I met some iOS developers who had previously gone

through either the Big Nerd Ranch bootcamp or an iOS class from some other

training company. These developers exhibited more complete signs that they had

fully converted to the way things are done in Cocoa and agreed with the merits of its

approach. One notable developer in the Android class was Charlotte, a woman from

Chattanooga, who ran her own company doing mobile development. She and another

independent had considered forming a Limited Liability Company (LLC) to work

together, and possibly hire additional contractors if business picked up further. She

also writes applications for her husband’s business, doing internal enterprise apps.

Originally a PHP web developer, she had learned iOS the previous year, in 2010. She

had wanted to take a Big Nerd Ranch course but her schedule precluded it, so she

had taken a class from a company called Practical Development in Chicago.

Charlotte said that it had taken a while to wrap her head around the syntax of

Objective-C, but now she’s gotten used to it, to the point that she now feels it is

“intuitive.” She also noted that she really liked how Objective-C method names have

labels for arguments so that they are self-documenting. Charlotte said that since she

started programming iOS, her life had gotten easier. When she first learned iOS, she

had felt that the Interface Builder program black-boxed the process of designing the

294

user interface too much. In iOS, designing the user interface is done largely

graphically, using Interface Builder, in contrast to Android’s development tool,

which generates XML code for the interface, which is made available for developers

to hand-tweak, and which, in practice, requires them to hand-tweak, in order to get

their interface to look correctly. Interface Builder also generates output in XML

format, but access to this is restricted and developers are warned not to touch it,

because the system is fully automated, and their tweaks could cause problems.

Charlotte said that most developers she knew wished they could go in and “futz”

with the XML, partly because they didn’t trust “the machine” to do the right thing, as

they were used to having to go in and fix things on their own platforms. This,

however, was the wrong thing to do on Apple’s platform, as Apple’s tools go to great

lengths to generate good looking interfaces, and prevent developers from tinkering

with it beyond laying it out graphically. Charlotte noted that this was one of the

cultural things to learn about “doing Apple,” the importance of trusting Apple’s tools

to “do the right thing.” However, Charlotte noted that she may be biased in this

assessment, as she confessed to being something of an Apple fangirl.

This attitude contrasted sharply with Damian, another student in the Android

class, who had never taken iOS and did not plan to. Damian was openly hostile to

Apple, and said that his instinct was to never trust Apple to do anything. He

especially hated Apple fanboys. He worked for a company that needed corporate

applications to talk to each other and integrate together. Apple’s vertically integrated

platform made it difficult to flexibly deal with the heterogeneous systems that

needed to work together in the enterprise. Damian wrote mostly Java code for

backend servers, though he had started out using Microsoft Visual Basic, also a

black-boxed user interface editor. Damian was taking the Android class because he

was bored with his job and was learning to program for it on the side. I felt that

Damian was equally partisan as Charlotte was about his choice of platform. Damian

argued that it no longer made sense (in 2011 when the class took place) to do only an

iOS product and not Android, because over half the market was using it, and he did

not think it should be ignored. While this argument has merit, statistics show that

295

even today, iOS applications make significantly more revenue than Android

applications (Krakow 2014), so from my biased perspective this sounded like a

rationalization for his predetermined preference; Damian certainly never intended to

learn iOS and thus he himself would be ignoring the more profitable half of the

market. However, he justified this by saying that he wasn’t interested in consumer

facing apps, for which it makes sense to learn iOS, he is only interested in corporate

software. Android was a no brainer to him because he already knows Java, the

language Android is programmed in, and he prefers its flexibility, as he hates Apple

and its closed system. The corporate world needs flexibility, he argued. Damian

noted that some of his friends had tried programming iOS but didn’t like it, simply

because it wasn’t like Java, which was what he was used to. It seemed to be purely a

matter of preference.

Charlotte and Damian thus represented two very different poles. Charlotte

was a fully converted iOS developer, had bought into Apple’s programming

environment and approach, trusted that Apple’s tools did the right things to help her

develop, and felt that it had some real advantages for her, which more than justified

giving up some flexibility and tying herself to its closed platform. Being an Apple

partisan myself, I felt that she was “one of us.” In contrast, my reaction to Damian

was that he was an Apple hater and thus would be considered by the Cocoa

community as an outsider, somebody who “didn’t get it,” who was hung up on the

wrong thing. Since he was primarily interested in enterprise and not consumer

software development, there was no practical reason for him to be interested in

Apple at all. Yet to me his hostility and his preference for Java and Android felt

equally as dogmatic as that of the most rabid Apple fan. Damian would be the kind

of programmer Cocoa developers define themselves against. At least the students in

the iOS class, having self-selected to take it, were at least open to learning it, as even

those who might be initially hostile to its culture and ways of doing had an economic

or professional incentive to learn.

Conclusion

296

This chapter examines the beginning stage of the social reproduction of

Cocoa programmers, which for many is a class at the Big Nerd Ranch. Instructors

there use a number of pedagogical techniques. Students copying existing code out of

a book and typing it in builds up embodied muscle memory and familiarity with a

repertoire of Objective-C idioms and Cocoa APIs. Subsequently debugging their

program and trying to make it work is where students acquire much of the tacit

knowledge of how and why Cocoa programs are constructed the way they are. This

knowledge is simultaneously conceptual as well as material—it is through practical

real-world examples, doing specific, concrete exercises that such abstract concepts as

design patterns are presented to students. Their benefits are not initially explained,

but through repetition over many chapters, learned tacitly as a sense of, “this is how

and why I want to use delegation.” The intense pacing of the course adds to this.

Students feel as if they are constantly behind and inadequate, and learn to rely on

each other to keep up. As the students feel as if they are drowning in a firehose of

information, gradually the immersion results in concepts seeping in through osmosis.

Eventually, once they get their programs working, the initial feelings of despair turn

to elation as they realize they really can master what appeared so difficult and

foreign at the beginning. These positive emotions motivate the student to forge ahead,

opening them up to accepting both more knowledge and more of the cultural and

normative attitudes that go with these ways of doing. Conversely, students

attempting to learn Cocoa on their own, even with a Big Nerd Ranch book, often

give up due to the initial frustration. This is mitigated in the context of the Big Nerd

Ranch class, where the ever-present instructor provides answers to difficult questions

and help when a student can’t fix a bug. Use of humor, and the cultivation of a

friendly, accessible and “I’m just like you” persona contribute to this. This is crucial

to get students over the initial hump of Cocoa’s steep learning curve. Once over the

hump, students have felt the exhilaration of getting a Cocoa program working, and

moreover, experienced how little code it took for them to get it working. The amount

of code they had to write (or rather, copy) obscures the real work that went into what

they accomplished, which was acquiring the tacit knowledge to understand what that

code does, how it works, and why Apple designed it to work that way. Being able to

297

write a little code to accomplish a lot gives students a feeling of power, as well as

aesthetic appreciation for Apple’s designs. This leads to a greater feeling of trust in

Apple’s tools—since Apple has empowered me in this instance, I am more open to

seeing what else Apple’s tools can offer me. The result is a progressive buy-in to

Apple’s ecosystem and way of doing things. The work that is done in the Big Nerd

Ranch class is as much emotional as cognitive. This affective work is probably the

real reason for the Big Nerd Ranch’s success in training Cocoa developers: it

converts feelings of hostility, apathy, or frustration with Apple software into feelings

of accomplishment, mastery, pleasure, aesthetic appreciation, and trust.

This affective work comes with powerful normative messages for how one

ought to practice Cocoa programming, and thus be a proper Cocoa programmer. The

message is reinforced that Cocoa programmers do not exist in a vacuum, but live in a

community with established norms and conventions for practice that one should

respect. At the Big Nerd Ranch, this comes in the form of the exhortation to “be

stylish” and write “stylish” code. Write code this way, and you will be accepted into

the community as one of us; you’re cool. Do your own thing, and we’ll look at you

funny, criticize your code, or simply treat you as a newbie or outsider. You should

do it this way, because everybody who’s anybody in the community does it this way,

including Apple, who’s the coolest around. This has some practical benefits, because

now everybody will be on the same page, understand the meaning of each other’s

code, which will make for more readable and maintainable software. Moreover, since

everybody does it this way, Apple can make some assumptions and adjust its tools to

take advantage of these conventions to better support what we do. This means that

the more you conform to convention, the more likely it will be that you’ll get

benefits for free from Apple over time.

Thus, despite the discursive focus on the “independent” individual in the

ideology of Cocoa, a significant amount of its moral order is based around the notion

that programmers exist in a community of practice, which regulates such practice and

normative behavior surrounding it. It is this social organization of the Cocoa

community that we turn to in the next chapter.

298

Chapter 5: The Cocoa Community

Theories of collective practice

As we saw in chapter 1, the ideology of Apple and of indie Cocoa developers

emphasizes the empowerment and pleasure in the creative making of individuals.

However, indie developers are not merely a collection of atomistic entrepreneurs,

each doing their own thing in isolation. Rather, such ideology is collective; it is

because third party Cocoa developers, most particularly the indies, share a coherent

body of knowledge, practices, skills, values, and identity—in short, a techno-cultural

frame surrounding Cocoa technology—as members of a larger Cocoa developer

community. This community is maintained through both face-to-face meetings and

online discourse, through which knowledge, practices, and values are shared and

spread. This chapter is concerned with describing the structure of the Cocoa

community, what Sharon Traweek calls its “social organization.” (Traweek 1988, 7)

The “Cocoa developer community,” as I use it, is an actor’s category, the way

Cocoa developers themselves describe their collectivity. A number of different

analytical categories can be mapped onto it, with various degrees of success. For one,

the “Cocoa community” can be called a “community of practice,” in the sense of

Jean Lave and Etienne Wenger (1991): it is a community of practitioners of a craft

skill, powerfully concerned with transmitting knowledge and normative practices to

new generations of practitioners. Central to Lave and Wenger’s articulation of a

community of practice is that it is a community whose membership is based on

“participation in an activity system about which participants share understandings

concerning what they are doing and what that means for their lives and for their

communities.” (Lave and Wenger 1991, 98) This concept comes from their attempt

to theorize learning as an activity situated in practice and in social relations with

other practitioners, rather than simply a cognitive transfer of information. Learning is

described as “legitimate peripheral participation” in practice with other newcomers,

under the supervision of old-timers. In participating in practice, newcomers

gradually become fuller members, and acquire the identity of a practitioner. The

299

movement from peripheral to full membership is learning, which is not simply about

the acquisition of knowledge or skills but of identity. “…learning and a sense of

identity are inseparable: They are aspects of the same phenomenon.” (Lave and

Wenger 1991, 115) This theory of learning is modeled to a large extent on

ethnographic studies of apprenticeship, enlarged to encompass not only midwifery,

butchery, tailoring, spirit mediation, but also Navy quartermastering and becoming a

member of Alcoholics Anonymous. Because socialization and enculturation in a

community of practice is central to Lave and Wenger’s theory of learning,

apprenticeship is seen to be the model for all learning, and formal classroom

instruction becomes rather a deformation of this, focusing more on talk about

practice rather than talk within practice (109), sometimes restricting access to actual

participation where learning actually takes place (104), and in some cases producing

not future practitioners but simply informed adults (100). For communities of

practice, however, learning must on some level be about the social reproduction of

the community itself, of training apprentices to be future masters. This reveals an

inherent tension, in that as newcomers become full participants they necessarily

change the community and knowledge of practice through their own ideas; this is the

mechanism for generational shifts in knowledge and practice.

Brown and Duguid (1991, 2001) have expanded on this notion of

communities of practice. In Lave and Wenger, learning is simultaneously learning to

be as learning to do, and to know. Brown and Duguid point out that the reason

learning is communal is because knowledge acquisition occurs only with the transfer

of practice, which depends significantly on tacit knowledge, such as that held by

Xerox repair technicians (Orr 1990). “…tacit knowledge is required to make explicit

knowledge usefully tradable or mobile. Only by first spreading the practice in

relation to which the explicit makes sense is the circulation of explicit knowledge

worthwhile… Knowledge, in short, runs on rails laid by practice.” (Brown and

Duguid 2001, 204) They also point out the consequence of the fact that communities

of practice transcend the boundaries of individual firms or organizations. Knowledge

which might be “sticky,” in other words, have a hard time traveling between parts of

300

an organization, may simultaneously be “leaky,” easily traveling outside it to other

members of the community of practice. Brown and Duguid cite the example of the

Graphical User Interface, which, although created at Xerox PARC, found an easier

time traveling to other practitioners at Apple and Microsoft than to the rest of Xerox.

The word “community” can imply locality, as well as constant face-to-face

interaction. Brown and Duguid note that such communities as professions and

academic disciplines are more like communities of communities, where sub-

communities of tightly bound practitioners interact on a constant basis, but meet up

with the larger global community only periodically at conferences, or over print or

online media. Such larger “communities” are more akin to Knorr-Cetina’s notion of

“epistemic cultures,” Strauss’s notion of “social worlds, or Ziman’s notion of a

“public.” (Knorr-Cetina 1999; Strauss 1978; Strauss 1982; Strauss 1984; Ziman

1968) Brown and Duguid, however, prefer the term, “network of practice.”

“Reflecting what binds these networks together and enables knowledge to flow

within them, we call these extended epistemic networks ‘networks of practice.’

Practice creates the common substrate. With the term network, we also want to

suggest that relations among network members are significantly looser than those

within a community of practice. …unlike in communities of practice, most of the

people within such a network will never know, know of, or come across one another.

And yet they are capable of sharing a great deal of knowledge.” (Brown and Duguid

2001, 205)

Yuri Takhteyev has noted that for Brown and Duguid, local communities of

practice thus serve as nodes in a wider network of practice, through which

individuals (and thus knowledge) may freely travel. However, he notes that this

language of network places the focus back on the individuals traveling the network,

downplaying the collective nature of shared practices, norms, and meanings. Instead,

Takhteyev prefers Strauss’s language of “social worlds.” “This term has often been

used to denote loose collections of people united by interests, outlook, or activities.

Social worlds can be quite large in their spatial dispersion and (unlike most notions

of ‘community’) do not carry the implication that the members know each other or

301

interact on a regular basis.” (Takhteyev 2012, 26) Instead, Takhteyev describes the

global collective of software developers as a “world of practice.” Takhteyev uses the

term “to refer to systems of activities comprised of people, ideas, and material

objects, linked (and defined) simultaneously by shared meanings and joint actions,”

both material practices and discursive values. Such worlds can be global, but are

simultaneously rooted in local contexts. Takhteyev uses Giddens’ notion of

disembedding and reembedding (Giddens 1991) to describe how practices rooted in

local context are made to travel to other local contexts: they must be disembedded

from particular local elements to become mobile, then re-assembled, in combination

with elements from the new local context, in order to successfully move.

Takhteyev’s use of the term “world” may also evoke Gabriella Coleman’s use

of the term “lifeworld,” drawn from the phenomenology of Merleau-Ponty and

Alfred Schutz. Coleman uses “lifeworld” to denote intersubjective experience, which

involves “sites, practices, events, and technical architectures” as well as affective

senses of “excitement, humor, and sensuality.” (Coleman 2013, 28)

Is the global collective of Cocoa developers a “community,” a “network,” or a

“world” of practice? All three terms have advantages and disadvantages. Takhteyev

largely uses the term “world of practice” to refer to the global world of software

developers, writ large. Going with that usage, then, is the subculture of Cocoa

developers its own sub-world? Brown and Duguid’s term, “network of practice,” can

be used to describe this meso-level of organization, with “community of practice”

referring specifically to tight local communities with frequent face-to-face

interaction. However, Lave and Wenger’s original definition of communities of

practice did not limit it to small, purely local communities, but referred to whole

crafts and professions as well. Moreover, restricting the term “community” to local,

physical communities excludes communities that interact virtually, online. In

addition, like Takhteyev, I feel that the term “network” takes focus away from the

collective nature of what these groups share, and places focus back on the

individuals who travel between the network’s nodes. My actors, Cocoa developers

themselves, refer to having a “community,” because they feel a sense of collectivity,

302

a sense that they are a group different from other groups of programmers. As a group,

Cocoa developers have “a shared past, hope to have a shared future, have some

means of acquiring new members, and have some means of recognizing and

maintaining differences between themselves and other communities,” which is for

Sharon Traweek, a sufficient definition of what constitutes a community (Traweek

1988, 6). I wish to highlight this sense of “groupness” that Cocoa developers feel,

rather than their distributedness. Certainly, they have social connections to each

other in the form of a network, but what matters is whether or not these connections

are felt to belong inside the boundaries of the group or fall outside of it. For these

reasons, I refer to the collectivity of Cocoa developers as a community of practice,

although I take Brown and Duguid’s notion of knowledge traveling along paths laid

by material practice.

Another term that could be used to describe the Cocoa community is as a

“public.” Much of the community’s interactions are mediated through the online

discourse of web sites, blogs, mailing lists, IRC, Twitter, and podcasts. A “public”

better describes a collectivity mediated through discourse. Michael Warner defines a

public as “the social space created by the reflexive circulation of discourse” among

strangers37 (Warner 2002, 90). This definition is circular: the space of discourse that

is a public exists only because it is being addressed by discourse, and is thus to some

37 Although many Cocoa developers are not strangers to each other, I would

argue that a “public” does not necessarily have to be composed strictly of strangers,

only that it may consist of a continuum in which some are strangers to each other at

one end, while others are not. Publics formed through broadcast media are more

likely to be composed exclusively of strangers, but online networked publics,

because members have the ability to speak directly to each other, can create

relationships between members, so gradually they no longer remain complete

strangers. Certainly many Cocoa developers who follow or read the blogs of the big

names remain strangers from them, but sometimes they attend conferences and meet

them in person.

303

extent “virtual” or “imagined” (much like Benedict Anderson’s notion of “imagined

communities,” in which a public reading the national newspaper imagines their

nation as a single community despite not having personal contact with the rest of the

polity) (Anderson 1991), but also real, in that members of the discursive public are

actual persons who actively participate or at least are attentive to the discourse.

Attention to the discourse is all that is necessary to become part of the public; no

other institutional requirements exist. Although publics are composed of strangers,

each member reads the discourse as being at once personal and intimate, and yet

simultaneously addressed to myriad other strangers. The texts that address a public

are not isolated texts but must circulate through time, and exist in social relation to

other circulating texts through dialogue and inter-textual citation. Publics create a

world of understanding for its members, and can have agency (Warner 2002).

Publics constituted by online discourse have been called “networked publics”

or a “networked public sphere.” (Benkler 2006; Tierney 2013) Thérèse Tierney

defines a “networked public” as “a community that forms among some set of

members of a social media site. They are defined as publics that are restructured by

networked technologies as spaces and audiences bound together through

technological networks.” (Tierney 2013, 32) For Tierney, networked publics are to

be differentiated from both “spatial” publics that gather in physical spaces and

broadcast media publics. Yochai Benkler similarly differentiates the networked

public sphere from the public sphere as constituted by mass media. Mass media is

broadcast one-to-many, and the public sphere constituted by it, the “audience,” does

not easily communicate back to the broadcaster. Because the technologies involved

in mass media are capital intensive, mass media follows an industrial model that

easily leads to monopoly, and the concentrations of wealth required for mass media

create a passive public that can be easily manipulated by money. According to

Benkler, the networked public sphere, on the other hand, is many-to-many, and

fundamentally participatory in nature, because the means of production and

communication are cheap and available to individuals. Networked publics, unlike

undifferentiated mass mediated publics, tend to be self-organized affinity or interest

304

groups that are deeply engaged in shared concerns (Benkler 2006, 242). Benkler says

that “The networked public sphere is not made of tools, but of social production

practices that these tools enable.” (Benkler 2006, 219) By these practices, Benkler

means the user-driven peer production of content that often comes under the rubric

of “Web 2.0,” in which information and content are produced as much as consumed

by users. Benkler considers networked publics to be much more conducive to

participatory and democratic governance than mass media publics, because they are

harder, though not impossible, to control, with many fewer single points of control,

without giving up on their economic advantages (Benkler 2006, 271).

Chris Kelty uses the term “recursive public” to refer to the community of free

software and open source hackers and programmers who have developed much of the

infrastructure of the Internet. For Kelty, this public is “recursive” in a further way:

this public’s discourse is made possible by infrastructures, such as the Internet,

whose development is the very topic of the discourse itself. In other words, this

public is “recursive” because their very ends are also the very means, the conditions

of possibility, of their own existence. “A recursive public is a public that is vitally

concerned with the material and practical maintenance and modification of the

technical, legal, practical, and conceptual means of its own existence as a public; it

is a collective independent of other forms of constituted power and is capable of

speaking to existing forms of power through the production of actually existing

alternatives.” (Kelty 2008, 3) “Recursive publics are publics concerned with the

ability to build, control, modify, and maintain the infrastructure that allows them to

come into being in the first place and which, in turn, constitutes their everyday

practical commitments and the identities of the participants as creative and

autonomous individuals.” (Kelty 2008, 7)

The Cocoa community is not a recursive public in Kelty’s sense, although it is

a public constituted through the circulation of discourse, much of it online. It is not

recursive because Cocoa developers are not primarily interested in producing the

infrastructural technologies that make their own production and their own discourse

possible. These technologies are either produced by other developer communities

305

(such as open source hackers), or by corporations such as Apple, which places

restrictions on the ability of outsiders to contribute to the technologies; Cocoa

developers remain mere users, not producers, of these technologies, and are in most

cases content to remain users. Cocoa developers, while involved in sharing

knowledge and even code, are also more interested in making a profit from their

work, and are not generally ideologically committed to the project of free software.

Rather, as we explored in chapter 1, they are committed to a different moral order,

that of the “indie” developer: a social vision in which software is developed, and

useful tools produced, by millions of independent developer-entrepreneurs.

Nevertheless, these indies are members of a collective, a public whose discussion of

shared concerns, values, and practices serves to unify otherwise isolated individuals.

The “Cocoa public” is not only a space of strangers brought into being by

online discourse, however. Although in some sense it is true that, like a profession or

academic discipline, not all of its members will ever meet all the others, a surprising

amount of them actually do have face-to-face contact. Conferences and conventions

are one space where this occurs, transforming the nature of relationships from

reputational and textual to fully embodied. Of free software hackers, Coleman says

that although “Public discourse is a vehicle through which hackers’ immediate

experiences with technology along with their virtual and nonvirtual interactions with

one another are culturally generalized… In-person interaction is also a pervasive

feature of their lifeworld, working to confirm the validity of circulating discourse.”

(Coleman 2013, 45) Hacker conferences or “cons” “reconfigure the relationship

between time, space, and persons, allow for a series of personal transformations; and

perhaps most significantly, reinforce group solidarity. All of these aspects of

conferences make them ritual-like affairs.” (Coleman 2013, 47) “As if making up for

the normal lack of collective copresence, physical contiguity reaches a high-pitched

point. For a brief moment in time, the ordinary character of the hackers’ social world

is ritually encased, engendering a profound appreciation as well as awareness of their

labor, friendships, events, and objects that often go unnoticed due to their piecemeal,

quotidian nature.” (Coleman 2013, 47) As we will see, Cocoa developer conferences

306

are not dissimilar from hacker conferences, although more focus is spent on

presentations rather than hacking. However, like hacker cons, Cocoa conferences

provide a place where older generations of developers share stories with younger

ones, providing a sense of being involved in a shared, collective enterprise. Similarly,

at conferences, Cocoa developers, like hackers, can take on “the awareness of a

shared social commonwealth” with a “decidedly moral character…” (Coleman 2013,

53) At hacker conferences, Coleman also notes that the semiotic signs of sameness

are pervasive: “Most people are attached to their computers, and share a common

language of code, servers, protocols, computer languages, architectures… wear

geeky T-shirts. With each passing day, the semiotics of sameness are enlivened,

brought to a boiling point, as participants increasingly become aware of the

importance of these personal relations, this form of labor, and F/OSS [Free/Open

Source Software]—in short, the totality of this technical lifeworld.” (Coleman 2013,

55) Described thus, the experiential social world of the conference creates, maintains

and strengthens, in a ritualized and affectively heightened situation, identity and

collective belonging. Coleman explains that theorists of publics such as Michael

Warner, Charles Taylor and Jurgen Habermas have not paid sufficient attention to

the “ways that physical copresence might sustain and expand discursive forms of

mediation. Perhaps the circulation of discourse captivates people so strongly, and

across time and space, in part because of rare but socially profound and ritualistic

occasions, such as conferences, when members of some publics meet and interact”

and highlight the importance of “social enchantment and moral solidarity” generated

by the ritualized characteristics of conferences to modern publics (Coleman 2013,

59). “The cultural ethos and class of a group is inscribed in where they are willing to

meet, what they are willing to do with their bodies, what they are willing to do with

each other, and what they are willing to express during and after these conferences.

Despite the differences in their moral economy, conferences tend to be the basis for

intense social solidarity that sustain relationships among people who are otherwise

scattered across vast distances.” (Coleman 2013, 60)

307

As we will see soon, Cocoa developers also meet face-to-face more frequently

with their fellows at local clubs and meetups, in addition to meeting occasionally at

conferences. These local communities are at once tied in to others through online

discourse on the Internet. It is because of the prevalence of these physical, local

relationships, and as we will explore, the exportation of the norms of some of these

local communities to the larger online public, that I prefer the term “community”

over “public” in describing the collectivity of Cocoa developers. And although the

larger “community” is really a “community of communities” or maybe even a

“network of communities,” it is still a group that relies powerfully on the strength of

affective relationships built face-to-face, collectively, rather than solely on the

networking between individuals traveling between localities, though the latter does

play a role. For this reason, I prefer the term “community” over “network.”

This Cocoa developer community is tied together by core values that

delineate identity, group membership, common practices, a sense of collective

mission, and a particular understanding of the world, the role of technology in it, and

their role in developing that technology. Like free software hackers, Cocoa

developers have a sense of a particular moral, social, and technical order in mind, an

“ideology,” in Geertz’s non-pejorative sense of a system of cultural and symbolic

values that structures the way members interpret their world (Geertz 1973). Chris

Kelty prefers Charles Taylor’s notion of “social imaginaries” to describe “ideas of

order that are both moral and technical—ideas of order that do indeed mix up

‘operating systems and social systems’” (Kelty 2008, 43), tying together ideas and

material practices. But what is the analytical place of the technologies that software

developers are interested in developing and using? Sociologists of technology

associated with the Social Construction of Technology (SCOT) method have

proposed an analytical concept that highlights the interplay between technology and

society. This is Wiebe Bijker’s notion of “technological frame.” (Bijker 1995)

As I discussed in the introduction, technological frames encompass the

commitments of technology makers to their ideas about the meaning of a technology

(theorized as a “sociotechnical ensemble”), its purpose, and direction for future

308

development. What I find useful in Bijker’s concept is his corollary that social

groups involved in the use or development of a technology have varying degrees of

“inclusion” in the frame (Bijker 1995, 283–5). Remember that for actors with high

inclusion, the key meanings of a technology are taken as fundamental assumptions.

For example, for longtime Cocoa Mac developers, the benefits of Cocoa’s design for

programmer productivity and software maintainability are unquestioned. At the same

time, however, these expert insiders are able to develop and modify the technology

and thus see it in its full differentiated and malleable complexity. For example,

Cocoa may debate the relative merits of various components of Cocoa and whether

or not they live up to the intended ideal that Cocoa’s design strives for as a whole.

For actors with low inclusion, technologies appear as a monolithic black box, and

their acceptance or rejection of it must be total. Because they are peripheral to the

frame, they are able to question its fundamental precepts. For example, relative

newcomers to iOS are frequently skeptical or critical of the way Cocoa as a whole

operates because they are less familiar with it.

This notion of social groups with high and low inclusion in a technological

frame is useful particularly because it can be mapped onto the division between

“oldtimers” versus the “newcomers” in Lave and Wenger’s notion of a community of

practice (Lave and Wenger 1991). Of course, community involves what Traweek

calls “cosmology,” which includes a group’s knowledge, skills, beliefs, and values

(Traweek 1988, 7). This is “ideology” in Geertz’s non-pejorative sense, a system of

meanings that constitutes a group’s culture. Culture also incorporates identity and

feeling, which are largely missing from Bijker’s notion of technological frame,

which tends to deal with utilitarian or instrumental orientations to technology. I need

a term that incorporates aspects of all of these analytical concepts, ideology, culture,

and technological frame, in which material practice, material artifacts, technological

meanings, community membership, professional identity, affect, learning, and

worldviews are all encapsulated together. I call this a “techno-cultural frame,”

extending Bijker’s term to incorporate these additional aspects.

309

The concepts of communities of practice and inclusion resonate with an

ethnographic study of Washington D.C. area iOS developers by Qiu, Gopal, and

Horn (2011). Qiu et. al. do not draw on STS scholarship but on the literatures on

professional identity and institutional logics. Their analysis of different motivations

of iOS developers groups them into two categories: those who follow the

“professional logic” of indie app developers, and those who follow “market logic.”

They note that among those developers who follow the professional logic, an identity

of being a “builder,” someone who reflexively wishes to make an app for one’s own

use, is central, as is a “craftsman” identity, a concern with software quality and

following professional norms and practices associated with good software

engineering, as well as concerns with aesthetic beauty. Drawing on Van Meeteren

(2008), Qiu et. al. show that these developers also follow a marketing strategy

relying on an app’s quality and on peer recognition among the community.

Developers who follow “market logic” take a different approach to coming up

with app ideas, and implementing and marketing those apps. Because for many new

iPhone developers, it was not clear what would make a successful app, the strategy

was to try a lot of different things, implement them as quickly as possible without

regard to quality, and essentially throwing them at the wall to see what would stick.

The initial gold rush of the App Store and its rather lax policies encouraged such a

market approach, as a key worry during this period was that the first app to do

something would capture the market and make subsequent competition difficult. As

the mobile app market matured, this was shown to be a fallacy, as apps that had

previously been at the top of the charts could easily fall off—nothing had a

permanent lock on the market.

Qiu et. al. describe a process of synthesis of the professional and market

logics among iOS indie entrepreneurs, whereby some who follow professional logics

have to, by virtue of the economics of the App Store, incorporate some market

strategies for boosting their sales. On the other hand, developers who followed the

market logic of writing a bunch of low-quality apps, as they became more involved

310

in the community, gradually moved more towards the professional logic of focusing

on one app and making it high quality.

While Qiu, et. al. capture the difference between developers who follow

“professional logic” versus “market logic,” but by attributing these to the “logics” of

markets and professions, they miss the cultural and technological commitments of

the community of practice being studied. The “professional logic” that they describe

is in fact very specific to third party developers of Apple software. While sharing

some elements with software developers in general, other aspects of it are specific to

the technological frame of programming with Cocoa for Apple devices. Moreover,

the followers of “professional logic” are more centrally located within the Cocoa

community, dominate the online discourse, and are recognized as knowledgeable

experts, while those following “market logic” tend to be newcomers. Those who

follow “professional logic” are highly included in the Cocoa technological frame,

oldtimers within the Cocoa community of practice. Those following “market logic”

have low inclusion in the technological frame, and are peripheral in the community

of practice. The extent to which these newcomers begin to incorporate more of the

“professional logic,” i.e. the norms and values associated with the identity of a

Cocoa developer, marks the extent to which they are moving from lower to higher

inclusion and to which they become less peripheral members of the community of

practice. How then to explain why those who began by following “professional logic”

began to incorporate elements of “market logic?” I would contend that the oldtimers’

rejection of market logic came out of the period when they were primarily indie Mac

developers, knew their competitors by name and considered them friends. The

market for indie Mac apps was small and collegial. The iPhone App Store, however,

drastically expanded the competitive environment, and relying purely on word of

mouth simply no longer sufficed. At least some effort needed to be expended on

more traditional marketing in the crowded App Store. The synthesis of the two logics

thus represents both gradual assimilation of newcomers to the norms of the existing

professional community, but also a more pragmatic attitude towards the market from

oldtimers in a highly competitive new environment.

311

For Cocoa developers, their technological frame encompasses user interfaces,

aesthetic design, and a coherent vision for a singular end product of their labor, the

“app,” which ought to be both useful and pleasurable to use. At the same time, the

frame also emphasizes both pleasure and productivity in the process of making the

app itself, as well as coding practices that promote sharing of knowledge and

collaboration and the quality of an app as an end in itself, as a work of a master

craftsperson. We will now take a closer look at some moments of crisis and

transition in the Cocoa community, and what this reveals about the technological

frame.

The Developer Community from NeXT to Cocoa

What came to be called the “Cocoa community” in the early to mid-2000s

was in fact a mixture of two previously separate groups, the NeXT developer

community, and converts from the original Macintosh developer community. As we

saw in chapters 1 and 2, because of of NeXT’s limited marketshare, it never had a

large developer community in the first place, and when the company changed

strategies away from hardware, many of those developing end-user applications went

out of business, while the rest turned to contracting. This limited market had several

consequences. First, developers who exclusively programmed for NeXT, such as Wil

Shipley, claim they did so out of their pleasure in programming with NeXTSTEP and

a belief that it was a better way to program, and stuck with NeXT during the dot.com

boom, a time when they might have been able to make millions more at a startup. As

we saw in chapter 1, being loyal to a platform that might go out of business was a

self-conscious decision made not for rational reasons of income, but because it was

part of their identity and because of their affective pleasure using NeXT. Second,

such self-selected people were few in number, and everybody seemed to know

everybody else. The entirety of the community was on the NeXT developer mailing

list.

The NeXT community, by that point, was probably pretty small… the
community as it existed probably consisted of people who were on the
NeXT programmer’s mailing list. And I can’t imagine it being more

312

than a few hundred. And most of that community was consulting, and
so on.

(Ken Case Interview, March 23, 2012)

Third, in part because of this mailing list, which was maintained by NeXT

and frequented by NeXT employees, relationships formed between third party

developers and NeXT engineers. These were strengthened considerably at NeXT

conferences and user groups, where developers and users were able to meet NeXT

engineers, because both the community and NeXT itself were small enough that one-

on-one, personal connections were possible. Developers already knew who the

engineers were because their names were included in the source code header files of

APIs that they were using, and at conferences they were finally able to meet with

those very engineers. The reason that NeXT engineers were so accessible to third

party developers was partly because NeXT itself was a relative startup, and thus was

informal, but also because its developer community was so small that NeXT had to

cherish every single developer. The small size and importance of individual

developers meant that personal relationships could be formed between them and

NeXT engineers. The intimacy of the NeXT developer community had the feel of a

small town, where everyone was on a first name basis, even with key engineers and

managers at NeXT.

Like, we used to be the platform. The NeXT community—that was this
one little insular group in a way.

(Luke Adamson Interview, February 22, 2012)

Apple’s purchase of NeXT in 1997 did not significantly change this among

those NeXT developers who had already formed these relationships. With the

rebranding of NeXTSTEP’s AppKit and Foundation libraries together as “Cocoa,”

the NeXT developer community simply renamed itself the “Cocoa” developer

community. However, Cocoa technology and its developer community faced

resistance from the existing community of Macintosh developers. Recall that initially,

Apple’s plan for Mac OS X was for Cocoa (or “Yellow Box” as it was then called) to

be the only native API, but this met with resistance from corporate Mac developers

313

with legacy code bases. Apple created the Carbon APIs, based on the original Mac

Toolbox APIs but fully OS X native, to appease these developers.

During this transition, the former NeXT community, now calling itself the

Cocoa community, was uneasily becoming integrated into the larger Mac developer

community. Within Apple itself, NeXT technologies and managers were ascendant,

and engineers working on old Mac and Carbon technologies felt that they were being

shunted aside, something I personally witnessed as an engineer at Apple. This

tension spilled out into the developer community, as existing Carbon developers

began to feel slighted by Apple’s decisions, while Cocoa developers, who long felt

beleaguered during the NeXT era, were feeling newly invigorated and empowered.

Partisan rhetoric in the blogosphere enflamed passions on both sides.

I’m willing to just be arrogant about it—I’m willing to just say, if you
program in Carbon you should be fired from Apple. Which I said a
little while ago and, you know, some Apple engineers wrote me and
they were really mad. “Fuck you, I’m a great engineer, I wrote this,
you don’t know me, I shouldn’t be fired.” I’m like, “Whoa, whoa,
whoa. I’m just saying Carbon sucks. I’m not saying you personally,
Bob Smith, should be fired.” I’m sure you’re great, I’m sorry. So I’m a
little bit of a firebrand.

(Wil Shipley Interview, April 18, 2012)

Nonetheless, from 2001 through 2006, among small Mac shops composed of

less than a handful of developers, the new Cocoa technology began to be embraced,

and such independents saw much in common with their peers who had been using

NeXT technology prior to NeXT’s acquisition by Apple. A new generation of Mac

programmers began to learn Cocoa as Apple’s preferred method to write Mac

applications. More importantly, small Mac developers and small NeXT developers

began to see themselves as engaging in a common enterprise: “indie” development,

independent of large corporate firms, where developers who considered

programming their vocation would maintain creative control over their work. As we

discussed in chapter 1, the attitude of such indies as Wil Shipley and Brent Simmons

was to try to achieve the standards of quality, usability, and aesthetics of Apple’s

own applications, and by winning Apple Design Awards, they were showing that it

314

was not only possible, but good for business. Among the Cocoa community,

Shipley’s Delicious Library became an exemplar for the heights an indie application

could achieve, and Shipley motivated many young programmers, such as Mike Lee,

to become Cocoa developers.

With apps that are well respected… I was shocked when I saw how
well Wil did with Delicious Library. It blew my mind, it changed my
whole perception of, Wow, really, a little Mac program, you can make
that much money doing this? …Rogue Amoeba is another example, I
always saw Rogue Amoeba’s stuff and I’d be, wow I wonder if it’s just
two guys and this is what they do in their spare time—Rogue Amoeba,
what have they got, like, ten people? Twelve people? …They are
really charging ahead, showing the way for independent Mac software.

(Chris Parrish Interview, March 2, 2012)

In the period from Mac OS X’s release through 2006, the year before the

iPhone’s release, the Cocoa community, especially as it was constituted online

through blogs, was dominated by the indies, a great many of whom were

concentrated in the Seattle area. The Macintosh remained a minority platform, and

and thus the community remained relatively small and tight knit:

I feel like in the PC community there really aren’t that many, maybe
that’s just because the Mac community is smaller and closer-knit.
That you tend to get more of the community feel.

(Adam Preble Interview, August 8, 2011)

When your programming community is not that big to start out with,
then you tend to encounter more individuals. And for the longest time,
the community has kind of been in underdog mode, so there is no the
whole Microsoft and Windows thing, the Mac has infinitesimal market
share, but we’re still working on our apps and still having fun
programming, so there’s kind of like yeah, we’re sticking it to the man,
or we’re unique little sunflowers because we’re using this technology
that not everybody else is doing.

(Mark Dalrymple Interview, April 11, 2012)

Dalrymple and Preble both point to the fact that the Mac was a minority

platform for its coherency. Since the 1980s, Steve Jobs and Apple marketing

cultivated a rebel image for the Mac and its users, and feeling different,

315

misunderstood, superior to others, militantly fanatical, and perennial underdogs

became part of many Mac users’ identities (Kahney 2004). This became more

pronounced as Windows eroded the Mac’s marketshare and threatened to put Apple

out of business in the 1990s. Jobs’ return revitalized the company with the Think

Different marketing campaign, which further elaborated on the idea that Mac users

were iconoclastic. If Mac users thought of themselves as a marginalized but special

elite, then Mac programmers and former NeXT programmers must have felt that they

were part of an even more select group. Even including Carbon converts, the Cocoa

community was still small enough that members felt they could still name every one

of them personally.

I joke with people, I’m like, five years ago I think I knew every
Objective-C programmer. Of course I didn’t but it feels that way. Felt
like you knew everybody.

(Chris Parrish Interview, March 2, 2012)

In 2005, I think it was still a small town, basically. It was distributed, I
would call it one large community, but with a number of hot spots,
obviously Seattle, San Francisco, Boston.

… If you did something good, if you had an app out there that was
pretty good, people are going to know who you are.

If you had a blog, obviously that would help a ton too. Yeah, it was a
piece of cake. Well, not that writing a good app is easy, but still. If
you just did that—step one.

Yeah, all twenty people knew all twenty people.

(Brent Simmons Interview, February 17, 2012)

This small-town feeling, where everyone knew everyone else, was facilitated

by physical meetings such as conferences, especially conferences organized by the

community itself, such as C4, where indies were often among the featured speakers.

What was great about C4 was, it was a small group of the people that
were probably your role models, right? That was who was at that
conference. People who were brilliant, or people who you really
respected, [or] brilliant that you hadn’t known… and so it’s full of all
of the superstars of the Indie, Mac at the time, community, at C4.

316

Yeah, so Shipley and Brent, and Gus, and all the Rogue Amoeba guys,
and you know, Rich Siegel from BBEdit, and BareBones and from
Tidbits, just people in the community, developers or not… All those
people, at that time you could count all of them, you could keep track
of all of the well-known Indie Mac developers.

(Chris Parrish Interview, March 2, 2012)

The prevalence of indie speakers at conferences, the dominance of their apps

at the Apple Design Awards, their frequent appearances in Mac podcasts and press

articles, and their social ties with Apple employees, has made indie Cocoa

developers quasi-celebrities in the Mac world. The fact that the community was so

small meant that everybody was on a first name basis. Online, it also meant that most

developers followed each others’ blogs, generating conversations and debates with

each other.

…back a long time ago before iOS, the development community was
so small that even if you were a nobody you were still a somebody.

And your name meant something, right? And you were attached to
your name so I found a lot of helpful people along the way.

(Joe Conway Interview, July 15, 2011)

However, as Conway notes, the release of the iPhone in 2007, and the App

Store in 2008, changed the makeup of the community. Existing Cocoa developers on

the Mac now faced an influx of newcomers. As I will show in the next section,

although the Cocoa Mac developers became the core of this enlarged community,

many felt that it was losing its earlier small-town feel. Worse, they worried that the

community would lose its values.

The iPhone Gold Rush: A Community in Transition

As discussed in earlier chapters, the opening up of the iPhone to third party

software development through the App Store sparked a new “gold rush” amongst

both software developers and investors to cash in on the mobile “revolution.”

(Wortham 2009) Soon, large corporations began to see the need for their own iPhone

apps, just as they had seen a need for a website during the dot.com boom. Developers

317

who had previously written software for Windows or the web now flocked to Apple’s

platform, eager to learn Objective-C and Cocoa so that they could “get in on the

ground floor” of mobile and possibly get rich.

When the iPhone was first released in 2007, Apple had not initially allowed

third parties to develop applications software for the device. Only Apple could write

true “native” software for the iPhone, that is, software written using the platform’s

native programmer interfaces (APIs), rather than with a translation layer on top,

which not only would make programs slower but would likely make its user interface

look different from that of native apps. In the original iPhone, third party developers

were relegated to writing web applications that would run in iPhone’s Safari web

browser, which not only made them slower than Apple’s built-in apps, but also

precluded them from taking advantage of many of the iPhone’s hardware capabilities,

such as its GPS and sensors. Soon after the announcement, the Cocoa developer

community on the Macintosh began to clamor for this policy to be changed. They

understood that the technical underpinnings of the iPhone were based on Mac OS X,

with a Unix operating system layer underneath, and Objective-C based, Cocoa-like

APIs on top. This meant that, even though Apple had put in place security measures

preventing users from programming and installing their own software on the iPhone,

in theory, this was perfectly possible, since they understood the iPhone to be not

really a phone, but a pocket-sized Macintosh computer. Technically proficient early

users of the iPhone discovered that they could hack the phone to get around Apple’s

security measures, opening up the phone for third party applications, customizations

of the iPhone’s user interface, and allowing the phone to be used with carriers other

than AT&T, Apple’s initial exclusive partner. This process became known as

“jailbreaking.” Soon, an underground market of applications written by hackers for

jailbroken phones had sprung up, including games and Twitter clients written by

prominent Cocoa developers such as Craig Hockenberry. Clearly, Apple’s users were

telling the company that there was an enormous interest and potential in allowing

legitimate third party development for the iPhone.

318

In March of 2008, Apple did an about-face and announced an official,

legitimate App Store for the iPhone, which would go live in July of the same year.

Many developers today suspect that this was Apple’s plan all along, but Walter

Isaacson’s biography of Steve Jobs suggests that Jobs’ penchant for absolute control

over the platform and users’ experience of it overruled the opinions of voices at

Apple who clamored for a more open platform (Isaacson 2011). It is possible that

after the iPhone’s successful initial launch, the spontaneous appearance of an

underground jailbreak app market proved there was enormous demand for third party

apps, convincing Jobs to change his mind and open up the iPhone as long as

measures could be put in place for Apple to retain control over the market. This

decision turned out to be extremely beneficial for Apple, as the creation of this

ecosystem of third party apps would help lock in users to the platform, generate

additional revenue for the company, and over time, become one of iOS’s primary

advantages over later challengers such as WebOS and Windows Phone, which,

despite having excellent technologies and user interfaces, languished from lack of

apps. Moreover, it allowed iOS to benefit from the creative energies of third parties,

rather than relying on its own employees to determine, and thus limit, what functions

the iPhone should have.

To facilitate third party software development, Apple created a Software

Development Kit (SDK) for the iPhone, a set of APIs and libraries that developers

could use to build their applications. This SDK, named “Cocoa Touch” by Apple,

was based on similar design principles as the Cocoa libraries on Mac OS X, and used

the same Objective-C programming language. This made app development much

easier for developers than was possible in “jailbreak” app development. Jailbreak

programming consisted of hacking, using unauthorized tools to discover the function

calls Apple’s own apps were using and writing code that called those functions. This

meant that the process was much like fumbling in the dark, without an overall picture

of how the iPhone’s system was designed. The benefit of jailbreak, however, was

that with the iPhone hacked open, all of the iPhone’s native functionality was

available. With officially sanctioned app development through the SDK, app

319

functionality was limited to only that which Apple exposed via its interfaces. For

example, third parties are still not allowed to write software that customizes the

iPhone user interface’s entire look and feel (known as “skinning”), a facility

available on Android and on iPhone only through jailbreaking. Cocoa developers

argue, however, that going through Apple’s official Cocoa Touch SDK has a

significant benefit. Cocoa Touch provides a high-level, object-oriented way to write

applications that is consistent and conceptually coherent. Individual APIs undergo

rigorous consideration at Apple for inclusion or exclusion in the SDK. Cocoa

developers such as Mike Lee argue that such thoughtful design put into the APIs

helps developers write in a more disciplined fashion to consistently produce higher

quality, less buggy, apps.38

38 “There are a couple of differences [between programming in jailbreak and

using the official SDK]. One is that, when you’re working in jailbreak, you’re

working in, basically whatever the phone can do, you can do. So you’re limited by

the phone itself and your imagination. Obviously with the SDK what you can do is

dictated by what Apple is willing to make public. And because of the App Store

model, you don’t even have the option of using private frameworks and cheating a

little bit like you do on the Mac side… [To figure out what you could do on the

iPhone, people were] Decompiling [Apple libraries], dumping, and writing headers.

And a lot of that work originated actually at Delicious Monster. Because obviously

Lucas was really interested in the phone… Yeah, so a lot of hacking, and so that’s

kind of the major difference, is that ultimately anybody, any sort of programming in

jailbreak is at best [a] hack. So that reflects itself not only in terms of the quality of

apps, the stability of apps, but also just in terms of the type of programming that you

do, you don’t really have the same sort of discipline that you do when you’re

approaching the [official] frameworks and the language… It’s whatever’s there…

When you’re programming in jailbreak, it’s just you and a bunch of headers.” (Mike

Lee, Interview, July 15, 2008)

320

A legitimate App Store would also let third parties create businesses around

their applications without the threat of legal action from Apple. The App Store

provided a central digital distribution point for iPhone software, so that developers

would not have to set up their own websites, servers, and digital payment systems. It

also provided a central place for consumers to find applications, making it possible

for an individual developer with no marketing budget to theoretically compete

against corporate offerings. In return for this legitimacy and distribution mechanism,

Apple instituted policies whereby it would review and approve all applications to be

sold on the Store, and also take a 30% cut of earnings from the App Store. While

some large software firms balked at these terms, for many small-scale developers,

including many hobbyists, the App Store infrastructure and the SDK made it possible

for them to become entrepreneurs for the first time, as they no longer needed the

capital and the knowledge to create online distribution and payment mechanisms.

Apple had dramatically lowered the barriers to entry for software development with

the iPhone App Store, and for the first two years of the Store, media stories

abounded of iPhone users trying their hand at becoming app developers and striking

it rich (Smykil 2009; Wortham 2009). Apple’s developer base had suddenly

expanded by several orders of magnitude. Apple claims that over 380,000 developers

have joined its paid developer program, and that its “app economy” has created over

627,000 American jobs (Apple Inc. 2015a). In a January 8, 2015 release, Apple

boasts that it offers 1.4 million iOS apps in the App Store, and that its app developers

have earned $25 billion cumulatively since the App Store opened in 2008, with $10

billion of that in 2014 alone. A new report on mobile development states that iOS

remains the primary platform of 37% of mobile developers, and this is skewed

strongly towards “the West,” with 42% of developers prioritizing it in North America

and Europe compared to the rest of the world (VisionMobile Ltd 2015). Another

indication of the explosive increase in Apple’s developers has the attendance at

Apple’s Worldwide Developer Conference (WWDC). Prior to 2008, it was not

difficult to get a ticket to WWDC, and a developer could count on being able to see

the same community faces at the conference year in and year out, helping to foster

that sense of community. Since then, because the venue, Moscone West convention

321

center, has not changed despite increased demand, WWDC has sold out in ever

decreasing amounts of time, from a week in 2009, to less than twelve hours in 2010,

under two hours in 2011, and under two minutes in 2012.

Existing Cocoa Mac developers, some of whom had been involved in the

initial wave of apps on the App Store, were worried, however. The quality of a vast

majority of the applications on the store did not meet their standards for what good

apps should be. Some applications seemed to be barely more than modified versions

of Apple’s own sample code. Others were gimmicks, such as applications that made

flatulence sounds. Some were bald-faced attempts to cheat customers of their money,

such as one application priced at $1000 that did absolutely nothing. Despite

widespread developer discontent at Apple’s review policies for approval of apps on

the Store, some Cocoa developers wished that Apple actually rejected more, that it

should be an arbiter of taste. “They [Apple] have complete control over the market,

but they don’t want to exercise that control in a really bad way. They have control

over it, but they don’t want to take control over it… It’s like, we don’t want them to

be arbiters of taste, but they pretty much are. They’re one of the most tasteful

companies in our industry, maybe they should be holding third party developers to

their standards? And [then] everything on the App Store would be wonderful!” (Chris

Clark, Interview, June 12, 2009)

At this juncture, some Cocoa developers, such as Mike Lee, felt that their

community and its values were under siege by “unwashed masses” of newcomers

whose only concern was not making quality products that users would love and enjoy,

but only for making a quick buck:

So, I think that there’s a cultural battle for the soul of the iPhone. Are
iPhone developers and iPhone customers ultimately going to be Mac
developers and Mac customers? Or are they going to be Windows
developers and Windows customers? Or are they going to be
something else entirely? And I am very, very vocal and very involved
with saying, it should be, must be, as it is on the Mac. Not just because
that’s kind of like what I’m used to, but… I mean the reason I’m a
Mac developer is because it’s a wonderful place to be, you know? It’s
a wonderful world, where we make wonderful things, and that’s where

322

I want to be. I don’t want to see it to be turned into this sort of crappy
environment. …To work in some kind of a crap farm where people
make crap all the time.

(Mike Lee Interview, July 15, 2008)

At stake, as Lee mentioned, was nothing other than “the soul of the iPhone.”

Lee believes that not only is Apple’s Mac platform superior to Microsoft Windows,

but that the third party applications made for the Mac are higher quality compared to

most Windows applications, because Apple’s users expect and demand such quality.

This also means that Mac developers aspire to produce apps of a higher level of

quality than Windows developers, and that the culture of the Mac developer

community promotes and rewards excellence, while in Lee’s view, the culture of the

Windows developer community is to simply put out something profitable. Herein lies

the danger in rapidly expanding the Apple developer community. Would new iPhone

developers be assimilated into the existing cultural norms of the Mac development

world? In other words, would they learn that quality engineering, careful

craftsmanship, and tasteful, aesthetically pleasing user interfaces were the standards

they should be striving for? Or, in Lee’s words, would they be like developers for

Microsoft Windows, relying on mass markets and cutthroat pricing to make as much

profit as possible? Already, the signs were not encouraging. Apps on the App Store

overwhelmingly priced themselves at the minimum price, 99 cents, or were free and

relied on ads or in-app purchases. This created a race-to-the-bottom whereby apps

competed not on quality but on price.

Gabriella Coleman has noted that moments of crisis in a collective group

offer opportunities to examine when the ethical norms of the group are made visible

because the stakes of the crisis are the possibility that these norms may change. A

moment of rapid expansion, with the possibility of the loss or dilution of the existing

group’s values, can be such a moment of crisis. Coleman relates a similar instance in

the community of open source developers of the Linux distribution, Debian: “As

Debian grew quickly, the project found itself in the midst of a crisis that peaked

beteween 1998 and 1999. New members were being admitted at rates faster than the

project’s ad hoc social systems could integrate them. Some longtime developers grew

323

skeptical of the quality of incoming developers… The populism of open membership

began to come under attack… the ‘growing pains’ Debian had been experiencing

were not merely technical but also ethical. A small group of developers had ben

clamoring to loosen the commitment to free software… the spirit of free software

was seemingly losing its potency with the addition of each new wave of developers.”

(Coleman 2013, 141–142) At such moments, oldtimers may engage in boundary

work (Gieryn 1983) to separate out those who “don’t belong” to the community

because they violate its norms.

As the community grew, this original core came to be regarded by newer

developers as “superstars” of the Mac development world. Once the iPhone gold rush

hit, this original core remained intact, leading the way as the established experts in

Cocoa technology, which translated directly to iPhone development. However, it was

also this group that began to worry about the newcomers. Despite their relatively

small numbers, this core of older Cocoa Mac developers continues to be among the

most vocal in the community, trying to maintain norms and values that predate the

iPhone and the App Store. As we will see, they form the core of a community that is

growing like an onion, with each successive outer layer less connected to the core.

Boundary work during the iPhone gold rush

With the rapid expansion of the Apple developer base with the iPhone, the

existing community was worried that the normative commitments that had obtained

before would be lost. As Lave and Wenger noted about communities of practice, a

central concern among oldtimers is the social reproduction of the community, and the

transmission of values and practices to the next generation. This transmission to a

new generation is a critical component of what Traweek calls a community’s

“developmental cycle” (Traweek 1988, 7). The concern for the reproduction of the

Cocoa community can be located in the form of statements by oldtimers that

constitute “boundary work,” explicit drawing of the boundaries of community

membership (Gieryn 1983). Brent Simmons, a Cocoa convert from classic Mac

development who we’ve encountered before, understood that reproducing the values

324

of the pre-iPhone Cocoa community was important, and advocated preaching by

example:

So we had a structure and a set of values that pre-dates all the people
coming in, right? And I remember discussing that early on, how to
retransmit those values to the future. And my attitude was, well we’ll
just keep doing what we’re doing; it’ll work or it won’t.

(Brent Simmons Interview, February 17, 2012)

Cocoa developers on the Mac repeatedly expressed concern that newcomers

did not care about the craft and quality of the applications they released on the App

Store. As we discussed earlier, Qiu, Gopal, and Horn (2011) found many iOS

developers following a “market logic” for app development and marketing, in

contrast to developers who followed “professional logic” focusing on quality and

peer recognition. “Market logic” driven developers chose a strategy of quantity over

quality, putting as many apps into the store as possible in the hope that one might

catch on. These two groups can be mapped onto newcomers and oldtimers in the

Cocoa community, with oldtimers feeling that this new “market” driven mentality

was causing a precipitous decline in the quality of apps on the App Store. Many cited

the fact that the App Store in its first few years became littered with gimmicks, joke

apps, and tasteless quasi-pornography, until Apple changed its review policies to

emphasize apps with actual utility, as well as controversially banning quasi-porn, but

making an exception for Playboy (Foresman 2010a; Foresman 2010b). While much

criticism was directed at Apple’s inconsistent and seemingly arbitrary review

policies, others directed their ire at the low morals of newcomers, who seemed only

concerned with making profit through low quality, low-cost apps.

I feel like there’s a part of the community that feels like it’s been
overrun by all these newcomers. With no morals.

…[Somebody tweeted to the effect that] this newcomer to our
community has no taste and no decorum and how dare they.

(Adam Preble Interview, August 8, 2011)

…So I definitely, things like that give me a hint that there are these
sort of unwashed masses of programmers out there who are out there

325

to make a quick buck on an iOS app or something like that. And even
just the sheer number of iOS apps out there…

all these people out there who are just out to make a quick buck,
they’re probably not going to go to WWDC or the big companies are
like, maybe we’ll send someone, send us a requisition and in three
weeks we’ll approve it. And it’s like, too late.…

And the people out there who are writing $0.99 iOS apps that are
barely functional, they’re not part of that same community

(Dan Wood Interview, April 9, 2012)

Again, this ran against the prevailing norm in the Cocoa community, that

developers were vocational craftspeople who cared about quality workmanship first,

instead of profit at all costs. Mercenaries and “carpetbaggers” were abhorred.

So it’ll be interesting to see what happens to the community over the
long haul now that its The Big and The Popular platform, at least for
devices. So, because we have seen more kind of like, trash apps in the
store, things that are just thrown together or, you know that the
programmer who did this really did not care about the user, the
platform, or the program. Whether that’s just like we’ve got the carpet
baggers in with everybody else, or if that’s a fundamental shift in the
community because we are larger, more distributed, fewer people can
go to the same conferences, [I don’t know].

(Mark Dalrymple Interview, April 11, 2012)

Much of the feeling that the oldtimers were losing their community came

from the change in the population attending Apple’s Worldwide Developer

Conference (WWDC). In the Ante-iPhone era, WWDC had been a place where the

Cocoa community could count on seeing each other, strengthening social bonds that,

during the year, were maintained purely online. With the rapid influx of new

developers, not only did oldtimers feel that they couldn’t recognize most of the new

people, but because the conference was selling out in minutes, they could no longer

even guarantee a ticket.

Well, I think that yeah, the community is so big, that WWDC is—it’s
hard. It used to be, I would go and could count on seeing certain
people and see them. Now, there’s so many people doing so many
things and so many groups that I could spend the whole week there
and at the end run into someone who I feel like I know pretty well, and

326

be, like, ‘Ah! I haven’t seen you all week!’ And that never used to
happen. Like, it’s so big and there’s so many people now.

(Chris Parrish Interview, March 2, 2012)

This engenders a sense of loss of the community’s feeling that it was tightly

knit and built on personal relationships:

I guess if you just want to say the demographics of an Apple developer
has to be radically different from what it was. Like … five years ago…
feel like you knew everybody. And now it’s like I can’t run [without
running into an iPhone developer]… just telling people I write iPhone
apps, and it’s like “And who doesn’t?” They’re all, “yes, yes, and
you’re an actor too, right?”

(Chris Parrish Interview, March 2, 2012)

Related to this was the feeling these newcomers were not really part of the

community because they did not take the time to get to know the Who’s Who, the

Important People, in the community.

For one thing, it’s so large, unfathomably large now, compared to what
it was ten or even five years ago. The introduction of iPhone has
changed things dramatically…

Nowadays, I’m not sure, because there are people out there who’ve
been writing Cocoa code now for years who have no idea who the hell
I am, or may not know who Wil Shipley is, may never have heard of
Omni and are still Cocoa community members in some way. It’s
harder to know, now, it’s so damn big.

(Brent Simmons Interview, February 17, 2012)

Part of the reason for this was simply that the newcomers, ironically, were

independent of the Indie community. They were off on their own, writing their own

code, without participating in any of the community’s local events, traveling

conferences, or online discourse.

[These are people] working at companies funded by ex-Microsoft
managers. Not universally, but I mean there are some of those. And
they don’t reach out. I think part of it is they may not be aware of it.
The other part is, they may feel like they’ve got it figured out.
Whereas… you will find companies in Seattle that, more commonly
than not, are like started by some ex-Microsoft person. And they’re

327

doing iOS stuff. And they talk to the press, they do stuff, but they
don’t talk to anybody else. And they don’t go to any of the other things,
in my experience.

Yeah. And they don’t function in our ecosystem. They just do stuff.
And so it’s not necessarily—some of it’s OK, some of it’s just kind of
like, wow, you should interact with the group more.

(Daniel Pasco Interview, March 28, 2012)

Lack of participation in the community, whether in-person or online, meant

that these newcomers were not being exposed to the community’s norms, nor could

they contribute back to the community anything of their own.

But I think most of those kind of developers, I don’t think they’re
necessarily transmitting any values to anybody; I don’t think they’re
taking part in the community in any big way, they aren’t necessarily
blogging or tweeting or going to Xcoders [the local Seattle Cocoa
developer club] or the conferences or anything. They’re not active;
it’s a day job. When they’re not coding, they’re not thinking about it,
probably…

The only barrier to participation is deciding you want to. Pretty simple,
I think.

(Brent Simmons Interview, February 17, 2012)

Similarly, others drew boundaries against developers for whom programming

was not a vocation, but just a job. This, they correlated with lack of participation in

the community:

And then there’s the other group, which comprises probably just about
everyone else that I work with in my, at my actual job. And those are
the people who don’t take the time to go out to the community groups,
or spend extra time on their own outside of work programming, or
coming up with ideas of start-ups or whatever, the people that just go
to work and they do their job and they go home and I think you can
really tell the difference in just attitude. It’s like, at least when you go
to one of these communities, you’re with people who are willing to
take your own personal time to build their craft.

(Robert Walker Interview, May 19, 2012)

For others, participation itself defined community membership:

328

This guy isn’t one of us. Nobody’s ever heard of him, he doesn’t
participate in the community

There are a lot more people who can code Obj-C [Objective-C] and
write for the Mac and now iPhone than are in the club of indie Mac
developers.

There’s more to being a Mac developer than simply writing the code.

(Mike Lee Interview, July 15, 2008)

What makes for a “true” Mac, iPhone, or Cocoa developer, according to the

community? A commitment to bettering the Mac and/or iOS platforms by

contributing useful, easy and fun-to-use, aesthetically pleasing, well-crafted,

designed, and engineered apps, over pure profiteering. In other words, love—of the

app, and of the Apple platform.

I think where I have trouble relating is when they’re in it, and they
don’t love it. I mean that was sort of what the Windows community
was about, from my perspective. [Laughing] And I feel like, now that
we have gone mainstream, there’s probably more of that happening
here as well, maybe the publishing community is like that, I don’t have
contact with how they’re doing, I’m not clear whether they love the
iPad or they just think they have to be on the iPad to keep their
magazines going, or something. There’s now a lot of people who might
just be in it because they think it’s going to be a good place to make
money. It’s business area.

And so that, it doesn’t mean that I dislike them, but I have to worry,
like in 2000 you had to be in it because you loved what you were
doing, because there was no other reason to be there! [Laughing]

(Ken Case, Omni Group Interview, March 23, 2012)

Another community norm that was violated was that of collegiality among

members. When the NeXT community and later the Cocoa community had seemed to

be a small town where people knew each other personally, there was a sense of

collegiality and camaraderie between them. The metaphor of the small town used by

many NeXT and Cocoa developers explicitly evokes the Main Street U.S.A. image of

the white American country town, in which everyone is a neighbor with everyone

else and knows them by name. Community members are conceived of as small

business owners, who wouldn’t hesitate to point a stranger in the direction of a

329

competing store because the storeowner is a friend. Indie developers who

congregated in the Seattle area, in particular, saw their local community in this way.

Seattle indie developers had developed close friendships with each other, and

followed an honor code whereby they voluntarily did not compete with each other:

In the NeXTSTEP world, it was so small, we had this very strong
sense that if you’re doing an app, I’m not going to do that app. There
is no point is us both doing it, because we’re going to split the market,
we’re both going to suffer, it’s a classic loser’s dilemma. So if
someone is like, “I’m making a word processor,” it’s like, “OK… I’ll
come up with a different idea.”

And that was a very strong thing in that whole community. I mean it
was good for all of us, and we’re so small, and we had a much larger
goal.

(Wil Shipley Interview, April 18, 2012)

Part of this, especially during the NeXT era, when NeXT developers were so

scarce, and the platform itself might have died out, was that everyone was in it

because they loved NeXT technology and was developing for it in order to help the

platform succeed against its competition. Even after NeXT was acquired by Apple,

the Cocoa indie community, though bolstered by converts from the classic Mac OS,

was still very tight knit. The Mac was still a minority platform for desktop computers,

with Windows still dominant. Cocoa developers felt that as a collective, they were

fighting the good fight against Microsoft to make the Mac platform a better place for

users. If by doing good quality work, they would help Apple and the Mac, and

inspire other Cocoa developers, and a rising tide would raise all boats. There was no

need to succeed at each other’s expense. Seattle-area Cocoa developers, working in

the shadow of Microsoft, probably felt this most keenly.

We’re not trying to cutthroat each other, we’re all in this together.
which maybe comes from that same sort of, like, “Hey we’re the crazy
[ones]”—Maybe it is that pirate mentality.

(Chris Parrish Interview, March 2, 2012)

In this statement, Parrish explicitly makes two references instantly

recognizable to Apple fans. “We’re the crazy ones” is explicit reference to Apple’s

330

Think Different advertisement, which begins, “Here’s to the crazy ones, the misfits,

the rebels, the troublemakers, the square pegs in the round holes.” The text praises

iconoclasts for being the “geniuses” that invent new things, shake up the status quo,

and change the world. The ad campaign singled out historical individuals who defied

the status quo as heroes to be emulated. For many Cocoa developers, it stands as an

ideological statement for how they can make a contribution to society through

technological development. The “pirate” mentality refers to a pirate flag that Steve

Jobs had raised over the building where the original Macintosh development team

worked (Hertzfeld 2013b). It signified that the Mac team, led by Jobs, was a rogue

group within the rapidly corporatizing Apple of the early 1980s, and embodied the

mentality that by bucking the trend of the rest of the company and doing something

new and revolutionary, they would change the world again. By evoking both of these

cultural touchstones in Apple lore, Parrish is saying that what brings Apple

developers together is a shared sense that they are all iconoclasts, who share a

unified mission to improve the world through their work as technologists. Their goal

is to overthrow the bureaucratic and corporate world of Microsoft with their art.

Beating each other in the market with cutthroat tactics is not consistent with this

ideological vision.

Cocoa developers saw themselves in opposition not only to corporate

Windows developers, but also to corporate Carbon developers on the Mac platform

itself. Although Apple was sending signals that it favored Cocoa over Carbon for

future development, a large contingent of classic Mac developers, especially those

that worked for Adobe, one of Apple’s most critical corporate third party developers,

continued to be committed to Carbon. Chris Parrish, who was a Cocoa indie convert

in the 2000s, had originally worked on Adobe InDesign in the Seattle area. Carbon

seemed to be the tool of these corporate firms; Cocoa, on the other hand, was

embraced by the indies, in part because its productivity advantages over Carbon

allowed indies to compete feature for feature with corporate software offerings.

There was an association of Cocoa with indie development against the corporate use

331

of Carbon. Thus, Cocoa indies, especially in Seattle, needed to stick together and

help each other out against the corporate behemoths in their backyard.

I like developers that help other developers. You know, I think we’re
all in the same boat in a lot of ways, and the person who is your
competitor today may be your ally tomorrow. So it’s a good idea to
treat everybody well, and I like to see… developers like that. I can
name only a very few that I don’t think quite share that same outlook.

(Brent Simmons Interview, February 17, 2012)

There was a distinct concern that this attitude was being lost with the influx

of many corporations as well as venture capital or angel investor-funded startups.

Recall Mike Lee, the former Seattle indie who was working for such a startup in

2008. Lee was upset with his COO for publicly denigrating a Twitter client made by

a well-regarded indie developer simply because it competed with their own. Lee felt

that this was in bad taste, as it violated the norm of collegiality that Cocoa

developers, so far, had lived by. Lee felt that Cocoa developers were artists, and

artists did not need to tear each other down, but simply represented different visions,

which could coexist in the world:

You may have a successful product, from a company that’s following a
vision, and are dedicated to the platform, you may have two successful
products that are following separate visions, that are solving the same
problem, that are respectful of the platform, and vice versa.

…This is one of the things that makes the Mac a different platform to
develop for than Windows, or even Linux. Is that, we’re engineers, but
we’re also artists, in a certain way. …We’re solving problems, but the
reason why we’re solving these problems is to express a vision.

 […]

I like being able to recommend my competitors to people, and I’ve
done so… being able to recommend other visions on the same thing,
when somebody is obviously not getting along with my product and I
want them to be happy, I want to be able to tell them to go where
they’re going to be happy.

(Mike Lee, Interview, July 23, 2008)

Lee’s statement about “vision” is also an ideological pronouncement that he

has a higher, more transcendent sense of purpose for himself, his work, and his

332

company than his COO, whose only concern is base and material, for money and

market power. Lee’s concern was to build a company rooted in the indie Cocoa

community and its values and which could make a contribution to that community.

This put him at considerable odds with the other two founders and the company’s

board.

Many of these boundary work statements were made in the first few years of

the App Store, during the initial “gold rush” period. Some have been made slightly

later. However, in the meantime, some developers have begun to participate in the

community and have acquired its values, and there has been significant new

membership in local-area Cocoa developer clubs. Gus Mueller is one of the Seattle

old guard, who released his first Cocoa Mac app in 2003 and went fully independent

around 2005. Mueller feels that Windows programmers who only joined to write iOS

apps, not Mac apps, still managed to absorb the right values.

No, they [the former Windows guys] assimilated. Yeah, there’s
definitely iOS-only guys that show up [people who don’t write for the
Mac]. You know, they’re good guys. And a lot of them are good guys.

(Gus Mueller Interview, February 21, 2012)

What is interesting is that many of the more recent developers who have since

assimilated into the Cocoa culture have begun to do boundary work of their own,

against developers who have not assimilated. Nevertheless, these developers are also

more likely to be open to new ideas and contributions of others:

It’s a good thing to have all these new people coming into the
community and it’s good to have this focus all on building a Cocoa
community.

(Robert Walker Interview, May 19, 2012)

This new reality, where the Cocoa developer world has greatly expanded

beyond its previous “small town” status, has diluted, but not eliminated, the

influence of the indie Mac developers. Indeed, given the continued influence of the

oldtimers on the Cocoa developer blogosphere and Twitterverse, they have now

become the core of the wider community.

333

Core and Periphery in the Cocoa community

With the iPhone App Store’s expansion of the Cocoa community post-2008, a

number of developers have begun to describe the community as no longer a small

town but a layered onion, in which the previous “small town” grew to become the

center of a larger metropolis. For example, Chris Parrish felt that the core of the

Cocoa community is the Mac developer community that predated the iPhone: “I

think the core is the Mac developers. I think that really is where it started.” (Chris

Parrish Interview, March 2, 2012)

Mark Dalrymple described the Cocoa community like an onion, with an inner

core of old hands and experts, and an outer periphery of newcomers. The inner core

is characterized by participation in the community, and this participation involves

active sharing of their knowledge about practice to others. A key marker of core

membership is that, because they are constantly sharing and communicating to the

community on the Internet, through blogs, Twitter, or podcasts, everyone who’s “in”

knows who they are. Moreover, a key marker of non-membership is not knowing

who the “big names” are. Adherence to the “indie” ethos, of not being in app

development as a “get-rich-quick scheme” is another key marker.

It’s in layers. So you have kind of the core that everybody knows
about. Everybody knows Wil Shipley and Delicious Monster.
Everybody knows Mike Ashe. And I think that those individuals, the
Jalkuts and the Atomic Birds and those folks—as well as the folks who
write the books—so Dave Marks, Jeff LaMarche, Jack Nutting… so
it’s folks who are fairly well known, [these people who have] a core of
deep knowledge, and the willingness to share it.

…

And then you have kind of the immediate hangers-on; I want to better
myself, I’ll be like you; I will emulate you and then kind of, on out to
the, yeah, I do .Net for my day job but Cocoa is kind of fun at night, so
there may be then, an outer shell. Those are the folks who come to
CocoaHeads [a local developer club] to meet once or twice and then
don’t come back for seven or eight months and then come back again.
It’s like oh, yeah, I have some free time again—I’m going to go back
to work on my Cocoa app and do stuff.

334

And then of course, as you get farther and farther out from the core,
you know, kind of the colder and colder the temperature gets, that’s
kind of where the carpet baggers and whatnot, on the out ends of the
scale.

(Mark Dalrymple Interview, April 11, 2012)

Dalrymple’s onion-like model of the Cocoa community is not static, but in

transition and flux:

So it will be interesting to see kind of over the long haul if the
community changes, because there are a lot of folks who are… kind of
the core community, who share a lot. The Wil Shipleys, the Mike Lees,
Tom Harringtons, Dan Jalkuts, Mike Ashe. Those folks who are very
knowledgeable, and they share deeply their information. If that kind
of ethos, can withstand the get-rich-quick onslaught, then it will
continue to be a very, very nice, very friendly community…

(Mark Dalrymple Interview, April 11, 2012)

Dalrymple is thus showing his concern with how the community is

transmitting its values and reproducing itself. Will the values of the core expand to

include the outer layers of the onion? Or will the outer layers gradually overwhelm

the core?

Another feature of the core members is that they are very interested in

community building and knowledge sharing activities, such as podcasts and

organizing conferences. They also have to be good developers, working hard to put

apps out there. These core members, however, are more interested in the community

than in apps as a means to build an acquisition target:

And so far it seems that that kind of inner core has been sticking
around and has been prospering, so that Scott… I always forget his
first name—originally started out with the late-night Cocoa podcast,
which I had done a couple of. And it was just a podcast, an hour
interview, with somebody who’s done stuff in Cocoa or to explain
some technology and through an amazing amount of hard work and
charisma has built it into the I-Developer Network. Now [he] puts on
conferences and does video stuff.

But fundamentally, it is because he is an awesome individual, doing
awesome stuff. So it’s nice seeing folks like Aaron [Hillegass], being
able to build larger company. So it’s nice seeing that same core in

335

there, sharing and getting rewarded for that sharing. And people can
see, oh, they’re sharing, they’re awesome people, and they’re getting
rewarded. They have jobs; they’re selling apps. Unfortunately they’re
not the folks who get a billion dollars from Facebook for Instagram, or
Angry Birds or something like that…

(Mark Dalrymple Interview, April 11, 2012)

For core members, participation in the public discourse of the community,

especially knowledge sharing, either online or physically, is what signals

membership. This has allowed a significant number of young newcomers to partake

in what Lave and Wenger call “legitimate peripheral participation,” a key feature of

communities of practice. The oldtimers serve as exemplars of full community

membership to the newcomers through their knowledge sharing and participation.

But for the most part, it’s like, those people make good livings, and
they have impact from the community and they’re fun to hang out with.
And so I think that’s… inspiring the next shell of people around it. So
if you can kind of keep that strong core and make that core bigger,
because more and more people are writing books these days, which I
love—I’m a bookworm … So as this core of people who are
fundamentally sharing stuff, I think that will be good for the
community overall. If the platform collapses, then that’s a different
story… But I think as long as the platform can at least maintain its
popularity, then it will be good for us in the long run.

(Mark Dalrymple Interview, April 11, 2012)

Thus, full membership is based on community participation (which means

knowledge sharing, for the most part), not merely on intelligence or even making a

good app.

I’m trying to think of, like, I do know some big huge brain
programmers, that they are very concentrated on their jobs and they
don’t blog or anything like that. So I don’t consider them to be kind of
like, the core of the community because as much as I love them, if they
were run under a bus then… it’s like their immediate family and work
folks will be very sad, but the rest of the community won’t know about
it… If you don’t have some way to get in front of the community,
whether it’s through sharing…

(Mark Dalrymple Interview, April 11, 2012)

336

Dalrymple implies that if a developer is not communicating, participating, or

sharing with the community, they are not really members at all.

Another marker of increasingly central membership is knowing the who’s

who in the community, having a dense Twitter network of them, or following their

blogs. Dan Wood notes that there is a relationship between participation in the public

discourse and the relative “fame” and thus relative centrality of a Cocoa developer,

noting that there are many Cocoa developers who do not participate and thus remain

peripheral:

But, you know, there’s a lot of people out there that are developers and
they probably are writing Cocoa all day long and yet, nobody knows
them…

But I bet if someone wanted to, they could probably get themselves
into the circle, if they just wanted to participate and they got to know
these people, and… then just some of the developers have been around
for a long time and some people are just getting started. But generally,
if I meet someone in person at a conference and I think they’re cool
and I like them, or whatever, then I’ll end up following them. Whereas,
I’m not likely to follow someone that I’ve never met. Personally I
don’t follow very many celebrities.

(Dan Wood Interview, April 9, 2012)

Even in local communities such as Atlanta, participation in club meetings,

sociality, and the knowledge sharing that goes on there has become a key measure of

centrality in the local community, even if those individuals do not have a large

national presence online. For example, Robert Walker sees a hierarchical tier of

membership even among the local Atlanta members. The core members are those

who participate fully, give talks, and share their knowledge and experience with the

others. According to Walker, the peripheral members are simply people who program

for their jobs, but aren’t committed to developing their programming skills as a craft

and a vocation, and who only come to the meetings to find information useful for

their profession, not to make friends.

And it’s usually the same people, that same core group there, so you
sort of meet in with that core group and you have these—like there’s
two tiers. That core group, and I think that’s probably common

337

throughout these communities. There's a core group that—even going
back to, here’s the core experts, these are the guys you really go to,
and there’s a lot of people that are at that second or third tier.

And then there’s the other group, which comprises probably just about
everyone else that I work with in my, at my actual job. And those are
the people who don’t take the time to go out to the community groups,
or spend extra time on their own outside of work programming, or
coming up with ideas of start-ups or whatever, the people that just go
to work and they do their job and they go home and I think you can
really tell the difference in just attitude. It’s like at least when you go
to one of these communities, you’re with people who are willing to
take your own personal time to build their craft.

(Robert Walker Interview, May 19, 2012)

These descriptions of other Cocoa developers as central versus peripheral

members of the community and their varying commitment to the core values of the

community fits well with Wiebe Bijker’s notion of “technological frames,” which I

have expanded to include affect, ideology, identity, and normative values into a

concept of “techno-cultural frames.” Walker’s statement that the core group

comprises those experts who participate in local community meetings, and spends

their free time programming because it is a passion and a calling for them to work on

their craft skill is one of the central normative and ideological components of the

“techno-cultural frame” that Cocoa developers ascribe to. We can see that in their

view, a developer’s social distance from the core is related to their normative

difference from its values. The social centrality or periphery of various Cocoa

developers is related to their levels of inclusion in the techno-cultural frame (Bijker

1995). Although this does not mean that peripheral members have less agency over

the technology that they produce, it can mean that they have less power to control the

dominant ideological and normative discourse because they are not participating in

the public discourse. The famous names in the old Mac Cocoa developer community

continues to dominate much of the online public discourse about Cocoa

programming. These oldtimers disapprove of newcomers with low inclusion in the

Cocoa techno-cultural frame, especially those from either the giant corporate

developer world or venture-funded startup world, whose focus is less on app quality,

user experience and craft and more on profit, revenue, or growth. A key marker of

338

this was how much resistance or criticism the newcomer had to the Objective-C

language, and more specifically to certain syntactic peculiarities of the language

(which we will examine in more detail in the next chapter.) Acceptance, and even

enjoyment, of Objective-C and its syntax marked the transition of a developer to high

inclusion and to full membership within the community, whereas continued hostility

marked low inclusion and outsider status. Such differences in inclusion between

members are revealed much more starkly in moments of great change in the

community, such as following the iOS gold rush of 2008-9, and similarly following

the integration of the NeXT developer community into the Mac developer

community post-2001.

One striking, and disconcerting, fact about the core of the Cocoa community,

however, is that it is almost exclusively male. As discussed in earlier chapters,

female participation in software programming in general has steadily declined since

the 1980s (Misa 2009), resulting in masculine “geek” or “brogrammer” cultures at

tech companies that women often find hostile or exclusionary. (Hicks 2012; Parish

2014; Raja 2012) Nevertheless, the Apple developer community may be even less

diverse than the rest of the industry. Ge Wang, a Stanford professor who co-founded

the music app company Smule, said to me in 2009 that his qualitative impression

from Apple’s developer conference (WWDC) was that male to female ratio was less

than 30 to 1. I do not have any statistics to back up this claim. However, my

impressions from my own visits to WWDC are similar—the lines waiting for the

men’s restroom are actually longer than the women’s. Having worked at Apple, I

know that the gender balance among software engineers there is significantly better

than that of its developer community, as my group in the AppKit had three women

out of 13 engineers total (though they were not there all at the same time), and I met

many women engineers from other departments. I can only speculate as to the reason

why the core of the third party Apple developer community includes so few women,

or at least well known ones. For one thing, the minority status of the Mac platform

made it a highly risky venture to program for it, especially as an independent. Since

much of the core of the community is dominated by indies, who started their own

339

small businesses, such programmers also have to be entrepreneurs. A recent report

on entrepreneurship among women by the Ewing Marion Kauffman Foundation

reveals that among employer firms, women-owned businesses account for only 16%,

and among high growth-firms, less than 10%. The survey highlights three challenges

for women entrepreneurs: lack of mentors, a view that emphasizes past failures

compared to men, and lack of access to financing (Alicia Robb, Susan Coleman, and

Dane Stangler 2014, 3–4). This means that women tech entrepreneurs are doubly

disadvantaged compared to men, as significant barriers to their participation exist in

both technology and entrepreneurship. This means that the ideological focus of the

Cocoa community on indie development, which places working for oneself on a

higher plane than working for a paycheck, overwhelmingly favors men. Women

programmers may be more likely to take the stability and the regular hours of a

corporate job. As Christina Dunbar-Hester has shown, even when technology people

hold progressive values and strive to work towards inclusion, existing cultural biases

with regard to gender and technology can be difficult to overcome in practice, and

women in technology may find themselves forced to downplay their feminine

identity in favor of masculine-associated technology identity. This in turn turns off

other women who might otherwise be inclined to take up technology, because they

are not willing to make such compromises. This leads to a situation in which even

when one is seeking to recruit women with “good tech skills,” one keeps finding

“kick-ass men.” (Dunbar-Hester 2008, 218)

Since the iPhone gold rush, however, I have noticed that this gender balance

is improving somewhat. As I discussed in chapter 4, Big Nerd Ranch courses

frequently had women students, and at another course, I met Charlotte, a woman

indie iPhone app developer from Chattanooga. In Seattle, I attended a weekly

“NSCoder Night” meetup of Cocoa programmers seeking to help each other with

code at a local coffee shop. At least a good one fourth to one third of the attendees

were women who were taking the University of Seattle’s extension course on Cocoa

programming, and one attendee was an indie developer who had released her own

app on the App Store. Similarly, I saw many women in the line to get into Apple’s

340

WWDC Keynote in 2011, and interviewed a few of them, finding that most of them

worked for the mobile divisions of large corporations. However, few of these women

are core members of the Cocoa community with high inclusion in the Cocoa techno-

cultural frame. Most of them have only recently begun to program for iOS, and

almost none of them program for the Mac. As we have seen in this chapter, most of

the core of the Cocoa community programmed for the Mac before the iPhone was

ever released. The minority status of the platform meant that only the most die-hard

fanatics stuck with it and refused to program for other platforms, with the result that

most of these were men. Another factor in the movement of peripheral members to

the core, as we will see in the next few sections, is participation, both online, and

offline. Core Cocoa members have large Twitter followings and frequently write

blogs about programming, and often write controversial opinions that engender

acrimonious debate. Women programmers may be much less inclined to present

themselves as experts on technology publicly on blogs lest they receive online

harassment or dismissal of their expertise or views.

The Cocoa Online Public

Coleman notes that “Public discourse is a vehicle through which hackers’

immediate experiences with technology along with their virtual and nonvirtual

interactions with one another are culturally generalized.” (Coleman 2013, 45) This

“growing unification of technical experience and its representation became notable

on project news Web sites, mailing lists, blogs, books, and articles; these texts

provided developers with a rich set of ideas about creativity, expression, and

individuality.” (Coleman 2013, 44) Coleman, quoting journalist Scott Rosenberg,

notes that programmers have begun to write “personally, intently, voluminously […]

pouring out their inspirations and frustrations, their insights and tips and fears and

dreams on Web sites and in blogs. It has been the basis of… an informal literature

around the day-to-day practice of programming.” (Scott Rosenberg 2007, 301,

quoted in Coleman 2013, 41) This fits Michael Warner’s definition of a “public,” as

a group of strangers organized into a social group by the circulating discourse which

addresses it and in which it participates (Warner 2002). Blogospheres are a form of

341

networked public (Benkler 2006; boyd 2006; Bruns and Jacobs 2006; Notaro 2006;

Schmidt 2007). Yochai Benkler notes that the affordances of blog technologies

“made the Web writable,” facilitating the writing of pages in periodic, journal form,

in “journalistic” time of days, weeks, or months, with older posts chronologically

archived. Secondly, blogs also are often open to comments from readers, generating

forums for conversations rather than simply being one-way communication (Benkler

2006, 216–217). Indeed, many programmers since the 2000s, both those devoted to

open source as well as to proprietary platforms, have used the affordances of blogs to

publish their thoughts and opinions to like-minded peers, constructing dense

networked publics on the blogosphere.

Cocoa developers were no exception when it came to blogging. One factor in

the increased activity of Cocoa developers on blogs was a Newsgroup and RSS Feed

reader application, NetNewsWire, written by indie Cocoa developer Brent Simmons

for Mac OS X. NetNewsWire included by default a number of Simmons’ personal

favorite developer blogs, including John Gruber’s Daring Fireball, which has since

become the opinion-leader for Apple developers and power users. Blogs allowed

indie developers to get their applications, expertise, and opinions on technical

matters known to peers. A few bloggers, such as Wil Shipley and Marcus Zarra

became infamous for outspoken or controversial opinions among the community.

There are definitely better programmers than me, I think I lucked out
because I have a reputation for not giving a shit what people care
about me which is not at all true, but it can seem that way because I
just say whatever I think… And I’m willing to just be arrogant about
it… So I’m a little bit of a firebrand.

…You have to be very careful about it, because it becomes addictive
to be known and then you realize you could be one of these people
who just pushes buttons and continues to get more and more
[followers?] but you know, those people always turn into jokes. For a
little while they’re like, oh, rally the community, and then after a while
people are like, God, it’s him again with another stupid article just
poking people’s buttons.

I don’t want to turn into that. I really want to not be famous for
famous sakes [sic], to the extent that I am famous.

342

(Wil Shipley Interview, April 18, 2012)

Yochai Benkler, citing studies of Internet topology, finds that on the Web, the

distribution links to sites follows a “power law distribution” with a very long tail—

meaning that certain sites have significantly more connections and thus more visits

than the vast majority of websites. At “a macrolevel, the Web and blogosphere have

giant, strongly connected cores—‘areas’ where 20-30 percent of all sites are highly

and redundantly interlinked… That pattern repeats itself in smaller subclusters as

well.” (Benkler 2006, 247–8) This means that certain websites tend to become

central nodes to which others link. When such sites are blogs, the bloggers have a

tendency to become “superstars” among their community of readers. In the Cocoa

world, John Gruber’s blog, Daring Fireball, has become one such central node.

Gruber’s blog, which provides commentary on both technical topics (often linking to

other developers’ blogs) and Apple news from the perspective of an experienced Mac

developer, has become a must-read among Apple developers and well-informed users

for speaking from a point of view that developers recognize as their own. Some

developers who frequently blog, such as Shipley and Zarra, generate views and

traffic due to opinionated posts, and not only become “famous” in the blogosphere

but can seem to dominate the discourse. This notoriety on the blogosphere

complements and magnifies community reputations achieved through other means,

such as developing apps respected by peer developers, or publishing educational

books. As we will see, blogging and other social media activities are important for

indie developers, who have limited marketing resources, to get their names, and their

work, known.

Blogs provide a means for a developer, who may be working in isolation, to

share one’s knowledge and expertise with others. Although a few experts such as

Zarra and Jeff Lamarche have managed to publish programming books, which may

reach a much broader audience of newcomers, blogs allow developers to self-publish

their writing, and discuss more in-depth topics and practical experiences that may not

easily fit into a pedagogical book, and do so much more rapidly than in print. In one

case, a subset of Mike Ash’s blog has actually been self-published as a print book

343

that a reader can order. Some developers have taken to podcasts, another means of

self-publishing one’s knowledge or opinion, usually centering around discussion

between two or more developers or an interview with a developer. Developer-centric

podcasts with names such as iDeveloperLive, OnMacDevelopment, cocoaFusion:,

CoreIntuition, NSBrief, Edge Cases, Build and Analyze, focus on topics of concern

specifically to developers, which can include Apple’s App Store policies, the merits

of various frameworks, APIs, and tools, life as an indie entrepreneur, and sometimes

pedagogical pieces on using a particular Apple framework. In some cases, because

they often take the form of discussions about happenings in the Apple technology

world, developer blogs and podcasts take a turn away from pedagogy and towards

punditry about Apple and the computer technology industry in general. John

Gruber’s Daring Fireball has shifted in this direction over the years. Developers who

appear on user-oriented podcasts such as MacBreak Weekly or ArsTechnica’s

Hypercritical often fit this role of pundit as well; their identity as a Cocoa developer,

usually of a popular app among users, affords them the status of an expert in all

things Apple amongst the Apple users who listen to such podcasts. Podcasts

involving Apple-centric media, such as Macworld, often involve roundtables with

members of both the press and prominent members of the developer community as

peer experts on Apple’s platform, and can significantly raise the profile of the

developers who appear on them among the wider public of Apple users.

Developer blogs and podcasts are often intended to be educational—the

developer is frequently teaching the tips and tricks of the trade. However, as we will

see in the next chapter, this information is laden with normative import—developers

are constantly advocating particular coding and/or design practices, often practices

which are not universally agreed upon and which, for some, seem to be purely

personal preferences. This is the reason why some developers come across as

opinionated and controversial—they advocate for the objective benefit of practices

that others see as merely personal preference, and often take a dogmatic tone when

doing so.

344

Blogs have since become supplemented by Twitter as a central medium for

online sociality. There has been an explosion of academic literature on Twitter

recently, with various takes on Twitter as an imagined community (Gruzd, Wellman,

and Takhteyev 2011), its facility for self-branding and the creation of micro-

celebrities (Page 2012), and the role of opinion leaders on Twitter (Xu et al. 2014).

Twitter is not really a replacement for blogs—the character limit prevents the kind of

long form, in-depth writing that typically occurs on blogs. However, for Cocoa

developers, Twitter allows conversations between developers to form that are

simultaneously broadcast to the developers’ network of followers. Twitter also

allows developers who write blogs to broadcast links to their latest posts, generating

a larger audience. Twitter, a short-form medium, can thus actually increase

engagement with the long-form literature of blogs (McNely 2011). Once again, the

adoption of Twitter among Cocoa developers was facilitated by a Macintosh

application written in Cocoa by an indie developer: Craig Hockenberry of the

Iconfactory wrote one of the first desktop Twitter clients with a much more refined

and aesthetically pleasing interface than Twitter’s web portal, driving up Twitter

adoption among fellow indie Cocoa developers eager to support Hockenberry’s

quality work. The early days of the iPhone App Store became awash in Twitter

clients, competing on features, usability, and aesthetics. As a result, Twitter

interconnection among indie Cocoa developers is very dense.

The prolific output of discourse about Cocoa programming through media

such as blogs, Twitter, podcasts, and print books has broadcast the expertise and

opinions of a relatively small cadre of individual developers to a larger audience of

users and new iOS developers, extending far beyond the initially tight-knit

community of Cocoa developers on the Mac. This is supplemented by the frequent

conference talks that Cocoa developers give at community-run conferences, which

we will discuss later. For these reasons, many Cocoa developers have become

famous micro-celebrities, with large Twitter followings. Recent work on social

media, which include blogs, podcasts, wikis, YouTube, and social networking

platforms such as Twitter, Facebook, and MySpace, has highlighted how these

345

technologies are allowing their users to engage in literary production, blurring

consumer and producer dichotomies. In this socio-technical environment, such

‘produsers’ (Bruns and Jacobs 2006) must compete with others for readers.

Affordances built into social media platforms facilitate self-branding and self-

promotion in what Page calls an “attention economy” (Page 2012). Successful self-

branders are able to generate significant online followings, making them “micro-

celebrities” (Marwick 2013; Senft 2008). Similar phenomena on Amazon user

reviews have been described by David and Pinch as a “reputation economy” (David

and Pinch 2005). The prolific, and intertwining, use of Twitter, blogs, and podcasts

has made many Cocoa developers into such micro-celebrities, at least within the

social network of Cocoa developers.

That’s kind of another cool effect of the community is that, it’s not
really well defined. I mean there’s probably—you could probably
name like twenty people that everybody in the Mac community
eventually follows on Twitter. And you know then there’s probably
another fifty or so people that some of the people follow, and then
there’s another couple hundred, or couple thousand or whatever, that
not very many people follow at all, except for that maybe they just
have some sort of connection. I wouldn’t put myself in that core group,
I’m guessing. I may be in the second group out.

(Dan Wood Interview, April 9, 2012)

Wood here sees the Cocoa community similarly as Dalrymple expressed

earlier: like an onion, with a core. Wood however, sees the community explicitly

structured according to networked online connections and communications. It is the

density of Twitter connections, according to Wood, that connotes whether someone

is in the core or periphery. This could mean that the Twitter network simply reflects

some other offline social reality, or it could mean that the Twitter network itself is

instrumental in constituting the community. It is not clear which Wood really means.

Being a central node in the Twitter network of Cocoa developers could also take on a

different meaning, that of “celebrity,” or “superstardom.”

It is interesting just to notice how certain people are superstars, like
Wil Shipley or Cabel Sasser, they’re like the superstars in the Mac
community… or John Gruber or whatever. If you get followed by any

346

of these guys, it’s like oh, consider yourself lucky, it’s like getting to
meet a famous person or something like that.

(Dan Wood Interview, April 9, 2012)

For Brent Simmons, reputation or “fame” equated to having a large audience

for one’s blog or Twitter account. For indie developers, such fame is vitally

important because they do not have large budgets for marketing or advertising; as

noted by Qiu, Gopal, and Hann (2011), many of them rely on the quality of their

apps and word of mouth among peer developers. In other words, they rely on the

reputation economy (David and Pinch 2005) within their community of practice for

marketing. Blogs and Twitter are a low-cost means of advertising—readers are also

potential users and customers:

[Fame,] that’s the shorthand for you want a big audience, right? You
hope you have thousands of users and thousands of people listening to
you, right?…

It does for anybody, I mean, any—just think of any bigger company;
they want to be well-known. They want to have influence, they want
big audience and a lot of users, and just because we’re smaller shops,
we’re no different. We want the same things.

(Brent Simmons Interview, February 17, 2012)

To a large extent, for indies, because the individuals themselves are their

companies (and to a large extent, their brands), their products are intimately

associated with them, and the more popular an app becomes, the more famous its

developer becomes. Conversely, becoming more well-known through blogs and

social media can result in higher name and brand recognition and thus higher sales.

This is particularly true in the case of Aaron Hillegass, who does not sell apps,

but the knowledge for making apps. As the founder of Big Nerd Ranch, Hillegass

created a company expressly devoted to teaching developers Cocoa programming on

the Mac, and later on the iPhone and iPad. Taking on the persona of a cowboy at a

dude ranch, Hillegass came up with an inexpensive marketing idea to don a cowboy

hat whenever he appeared in public at developer conferences; he understood that he

was the company brand, and as his own celebrity grew, his company’s reputation and

347

business would grow. Hillegass makes frequent appearances at Cocoa conferences

and on podcasts such as MacBreak Weekly, in addition to writing on the Big Nerd

Ranch’s blog and Twitter account.

For others, participation in the reputation economy is critical for employment:

As a professional, you have to go on your reputation. And your
reputation is very important… the only thing that decides whether I get
a job or a project that I’m interest in, what decides how much money
I’m able to charge, what decides so many things about my career, is
entirely on my reputation.

(Mike Lee Interview, July 23, 2008)

Pinch and David note that in the reputation economy of Amazon user reviews,

“notions of quality, reputation, and expertise are tightly bound and… often conflated.”

(David and Pinch 2005, 8) In the Cocoa community, increased sharing of knowledge

by publishing blogs and podcasts and broadcasting links to them through Twitter

helps build their reputations in the reputation economy. Page notes that “The

discourse contexts used for self-branding in social media genres are aptly described

by Bourdieu’s (1977) metaphor of the linguistic marketplace… where linguistic

competence (in Bourdieu’s terms (1977: 648), using language appropriately in order

to command a listener) results in linguistic capital, which can, in some contexts, be

converted into actual economic value.” (Page 2012, 182–8) Page notes that “celebrity”

or reputation can be converted into monetary capital, making it a form of cultural

capital. (Bourdieu 1986). Thus, the reputation economy creates an economic

incentive to share knowledge with others in the community in order to bolster one’s

reputation for expertise. For example, Luke Adamson, who left the NeXT/Cocoa

community for a number of years to work on financial enterprise software and

recently returned to do iOS work as well as teach iOS programming for a certificate

program at the University of Washington, felt this incentive keenly as a way to

revive his presence within the community:

I keep thinking that I really need to do some blogging. If for no other
reason, to increase my business’s profile.

348

I mean, I have a lot of experience in the technology, but I don’t have
any sort of presence on the ‘net…

I think it would be—I mean certainly it would be good to have more of
a presence from a business perspective.

I mean my little business hind-brain knows that. I think to the extent
that I like—as an instructor, like teaching people—I think that it’d be
sort of fun to share some of what I know. Through, like, a blogging
format.

(Luke Adamson Interview, February 22, 2012)

Adamson clearly understands that his social standing in the community, his

professional reputation, and his business success are all connected, and these would

all benefit if he increased his online networked presence. The virtual existence of the

Cocoa community as a networked public greatly facilitates the reputation economy

that indie Cocoa developers in particular must depend on for their livelihood.

Without corporate or institutional resources, reputation becomes a much more

important form of capital for indies. Indeed, Fred Turner has argued that the

individualizing focus of technolibertarianism coincides with the movement towards a

networked economy, in which individuals become disconnected from social

institutions and instead become network nodes (Turner 2006). The emergence of

famous Cocoa “superstars” can be seen as a symptom of this move toward a more

individualized but networked form.

What we have seen, then, is that the Cocoa community’s sense of who is in

the “core” is highly correlated with high participation in networked public discourse

over blogs, Twitter, and podcasts, and that a significant amount of this discourse

involves knowledge sharing. Those in the “core” are densely connected through these

online networks, and have become “famous.”

Nevertheless, the Cocoa community is not only a networked public or virtual

community. It has significant roots in relationships built offline, in the physical

world. Cocoa developers have cited the need for face-to-face interaction as the

source for, or supplement to, online relationships:

349

Twitter for me works when you actually have some personal
connection with the people involved.

(Dan Wood Interview, April 9, 2012)

For Wood, online and offline interactions critically feed back and supplement

each other, but the two groups are not necessarily co-extensive. It is possible to know

of, follow, and even communicate with someone online but not have an offline

relationship with the person. Wood, however, feels that something is missing without

“personal connection.”

I think that there’s probably some overlap [between the online
community and offline], but there’s some disconnect. Like for instance,
there’s someone like Matt Gemell… But I’ve never met him in person,
and yet he’s definitely, I would call him a ‘core’ member of the Mac
development community, he’s a prolific blogger, and he’s opinionated,
and that probably kind of helps, it generates interesting content and it
generates interesting opinions, and I’m guessing he’s probably been to
a lot of the UK conferences, I’ve just never met him in person, but I
still totally feel like he’s part of the community, even though I’ve
never met him in person and I’m trying to think if there’s the opposite
where there’s someone I see at WWDC all the time but I don’t see
them on Twitter. There are some developers and they just don’t do
Twitter…

(Dan Wood Interview, April 9, 2012)

The networked Cocoa public that exists online interacts with, supplements,

and magnifies relationships offline, even though the online and offline relations exist

somewhat orthogonally to each other. We will see in the next section that offline

connections foster deep social bonds, even friendships, among members of the

community.

Local Cocoa Developer Clubs

Virtual, online, textual interactions between relative strangers can foster the

development of a networked public, but the Cocoa community is not just a

networked public of strangers. Especially among core members, much of their sense

of community is based on bonds of friendship that require significant and prolonged

physical interaction. Coleman notes that for hacker communities, “In-person

350

interaction is also a pervasive feature of their lifeworld, working to confirm the

validity of circulating discourse.” (Coleman 2013, 45) This face-to-face interaction

takes place at two kinds of sites, according to Coleman—local, quotidian interactions,

and conferences. As we will see, the kinds of face-to-face interactions favored by

Cocoa developers are geared toward male bonding, reinforcing the Cocoa

community’s gendered nature.

Among Cocoa developers, local interactions, the “ordinary stuff of work and

friendships” (Coleman 2013, 45) are particularly important. Coleman points out that

hackers often “live in a location with a high density of geeks, generally big cities

with a thriving technology sector” (Coleman 2013, 46). Cocoa developers, and in

particular, indies, similarly congregate in large numbers in these urban areas: Seattle,

Portland, Boston, Denver, Amsterdam, Washington DC, Pittsburgh, Atlanta, Raleigh,

Salt Lake City. It is in these cities where Cocoa developer clubs form. CocoaHeads is

the umbrella organization of a loose confederation of local Cocoa developer clubs,

co-founded in Pittsburgh by Mark Dalrymple, with additional chapters in Atlanta,

Salt Lake City, Australia, and even Dubai. No less important is Xcoders, the Cocoa

developer club of Seattle, home to many of the most prominent indies and indie

companies in the community, including OmniGroup, Black Pixel, and the original

base of Wil Shipley’s Delicious Monster (himself a co-founder of OmniGroup).

Atlanta has three Apple developer clubs. Besides the Atlanta chapter of CocoaHeads,

founded by Big Nerd Ranch instructor Mikey Ward, there are two separate iOS

Developer Meetups, one meeting outside the Atlanta beltway perimeter, in the

suburbs, and the other meeting in the city. (The suburban meetup is also more

peripheral to the community socially.) The downtown iOS Developer Meetup and

CocoaHeads have some overlapping membership, but the iOS Meetup has much

larger meetings, though the vast majority of members only listen to presentations,

never participate in giving presentations, and rarely go to the social afterparty.

CocoaHeads is a much smaller, more tightly knit-group, almost the entire group

attends the social afterparty, and friendships have formed among members. The

group is also much harder to join, as the website has not been updated to allow

351

people to easily find the group, which is partly due to lack of time but also partly due

to the preferences of core members who prefer a more exclusive club. Keeping

“newbies” out allows them to focus on more advanced topics, but it also has the

unintended side-effect of keeping women out. The iOS Developer Meetup,

meanwhile, attempts to be more open: each meeting, it contains two presentations,

with both a beginner and an advanced topic. This group is also more diverse in

gender and ethnicity, although most of this diversity is located in peripheral members

who never give talks or go to the afterparty. The iOS Meetup also welcomes

recruiters, although the organizer, Rusty, is careful not to let them take up too much

time pitching at the meeting; although this necessary nod is made to the reality of

business considerations, especially for independent iOS contractors, Rusty is careful

to make sure that the heart of the club remains technical. CocoaHeads, which is

explicitly a club for lovers of programming using Apple’s Cocoa frameworks, does

not welcome recruiters, and members prefer to keep it that way.

Local club meetings like CocoaHeads usually involve a presentation on a

technical topic given by one of the members. For presenters, it is an opportunity to

share their knowledge and perform their expertise. Sometimes presenters will have

slides, but more often the presentation is a live demo, where the presenter shows his

project source code, possibly making changes and adding new code live, and then

compiling it and running the app to show the results. This type of presentation has

similarities and differences from the kinds of presentations given by Apple engineers

at Apple’s official Worldwide Developer Conference (WWDC). Like Apple’s

presentations, they are often meant to teach the audience some concept or technique

in Cocoa programming. Apple presentations, however, often provide information

about new functionality available to developers in the next version of the operating

system to be released, and how to use this new functionality. Apple’s presentations

also often explicitly contain official normative messages about what practices Apple

recommends to its developers, especially in light of changes Apple has made to the

OS, which often require change in practice. For example, Apple may need to update

certain APIs and thus signal to developers to cease using the older interfaces. It

352

marks these APIs with the label, “deprecated,” to signal that they will go away in a

future release, so developers need to stop using them. Unlike Apple’s presentations,

which have an aura of officiality and authority about them, local demos are given by

peers to peers, often with a touch of humility as presenters are showing their own

code, which may not be polished, to others. Local presentations are much more about

people sharing their own knowledge, practices, methods, code, and opinions with

each other. For audience members, it is an opportunity to learn from the actual

practice and experience of peers, which in some ways is more valuable as peers,

unlike Apple’s engineers, are trusted to present both their frustrations and their

pleasures with Apple’s tools or APIs unfiltered and unbiased. The normative content

of Apple presentations is sometimes viewed with a grain of salt, as developers

understand that Apple will tell them what is in Apple’s interest, not necessarily what

is in developers’ interest.

In the STS literature on demonstrations, demonstrations differ from

experiments in that while the outcome of experiments is uncertain, and can only be

interpreted by experts, demonstrations are carefully rehearsed and intended to have

certain outcomes, because their purpose is not to produce new knowledge but simply

to communicate to or persuade new audiences (often students, but also laypeople in

the general public) of knowledge that has already achieved closure among experts. A

successful demonstration is a bad experiment, and a failed demonstration can

sometimes become a good experiment, if it leads to new insights (Collins and Pinch

1998a, 62–65). The presentations at both local clubs and at Apple’s official

conference are intended to be demonstrations; they are rehearsed affairs that

communicate settled knowledge. However, local club presentations are much less

polished and rehearsed than Apple ones. Both presentations can contain live code

demonstrations, which contain the possibility that something could go awry. In

Apple presentations, when things go awry, because of limited time the presenter

often has no choice but to move on. In local club meetings, there is often more time

for the presenter to try to debug the program live, and more direct interaction with

353

the audience can allow the exercise to become an interactive group activity. In this

way, such demonstrations can shade somewhat into experiment.

It is at these local clubs that the closest bonds between Cocoa developers are

formed. Although the official monthly Seattle Xcoders meetings involve a formal

technical presentation, for many of the oldtimers, the “real” meeting is the afterparty

that takes place at a local downtown Seattle bar, currently the Cyclops (though in

years past it was held at the Luau). The afterparty is primarily a social event, where

fellow nerds can get together over beer and talk about coding topics, debate best

practices, and discuss the latest news about Apple, its products, the merits of its

newest frameworks and initiatives, and policies that directly affect the work and

livelihoods of developers. This afterparty culture is predominantly masculine.

Almost all of the fully independent entrepreneurs I met at these afterparties were

male, as were most of the senior engineers of the two larger indies that frequented

Xcoders, OmniGroup and Black Pixel, although occasionally a few female

employees of OmniGroup would show up. A typical Xcoders afterparty consisted of

roughly twenty people, less than a fourth of whom were women. It is possible that

the social bonding over beer created a feeling of an old-boy’s club that, while not

explicitly exclusive, tended to welcome sociable men while unintentionally

discouraging women and men who preferred to go home to their families after hours.

What is clear is that, more so even than the regular meeting, the afterparty

was a chance for the men who were the core of the club to hang out with their

buddies once or twice a month. Some core members, especially of Seattle Xcoders,

did not even bother to attend the regular meeting, but only went to the afterparty for

social purposes, in part because, as experts, they felt no need to attend the regular

meeting:

We would always go drinking after Xcoders and that’s really where
the fun part happened. Eventually we stopped going to the meetings
and just [went] drinking. The meetings still happened, but the Omni
guys and Brent, Brent will sometimes go to the meetings, and Joe will
go to the meetings, but I would skip the meetings, just because
parking’s hell downtown, and then it’s just much easier to directly go

354

to the part where, you know… so, we usually go there first, and that’s
where the meetings happen now. And we do talk about technical stuff.

(Gus Mueller Interview, February 21, 2012)

Mueller credits going drinking after the formal meeting as the primary reason

the Seattle community is so close, socially:

When he was an [Apple] evangelist, they came up to Seattle, to talk
with us, and he went to a CocoaHeads meeting and then he gave a little
presentation and we’re like, let’s go afterwards, and they came along
and they were kind of amazed at what we had and how tight it was.
And he asked us the exact question you just did, “How did this
happen?” And our response was, “beer.” And that’s what he did; he
laughed! And we were dead serious. It’s just what it is. It’s just like,
going out and drinking together.

[…] As long as you’re not an asshole, you can come out and have fun,
and we’ll get to know you. We’ve had people drive up from Portland
to come up and hang out with us, for this. But I think it’s just, you
show up and 99% of the time you’re gonna have a good time. But yeah,
it’s… beer.

(Gus Mueller Interview, February 21, 2012)

Mueller describes getting together for beer as the primary reason that the

Seattle developers have bonded. What I observed of the Xcoders afterparty was that

it was more or less a group of guys hanging out at a pub with their friends, a typical

male bonding activity, except that they talked about technology rather than sports.

Moreover, it was at this afterparty that I was introduced to most of the big names in

the Seattle developer community, who were regulars. Indies such as Gus Mueller,

Hal Mueller (no relation to Gus), Brent Simmons, and Chris Parrish were mainstays,

as well as many of the leaders and senior engineers of the larger indie Cocoa

companies, Black Pixel and OmniGroup. I discovered that Wil Shipley, who has

since moved from Seattle to San Francisco to be closer to the center of the tech

world in Silicon Valley, had been a kind of ringleader for this afterparty group in

terms of leading the charge to go drinking and partying. Shipley felt that the group

provided him with a safe place where he not only felt like he belonged, but where

everyone was united in a sense of cause and mission about making great apps for the

Mac.

355

I really miss it; I miss drinking with those guys and you know there
was a closeness and a camaraderie that—it’s an incredibly powerful
thing. Everyone needs a tribe… And yeah, I very much felt like they
were my tribe and it was really hard to leave them.

(Wil Shipley Interview, April 18, 2012)

Since Shipley’s departure, the party ringleader position seems to have been

filled by Brent Simmons, who, at the end of the afterparty, led a subset of people to

an after-after party at another bar after the Cyclops closed, lasting far past midnight.

Thus, there was a successive winnowing from the club to the afterparty to the after-

afterparty, where the inner core members of Xcoders formed the closest friendships

with each other. Needless to say, very few of the women who attended the afterparty

attended the after-afterparty. The men who attended were either single, or had wives

who understood that this was their male-bonding time. Also, fewer of the men who

worked for the larger companies, Black Pixel and OmniGroup, attended the after-

afterparty, which consisted mostly of indies who kept their own schedules.

The friendships that developed between these men have done so largely

outside of work, especially as many of them work alone. For indies who are social

isolated, the Xcoders group presented them with a place to hang out with the like-

minded and share knowledge. Chris Parrish, for instance, felt grateful that he had

found in the Mac developer community a group of buddies to which he could belong:

I can’t remember how many times I’ve sat down with Brent Simmons
and our toast has been, “Here’s to Mac Developers!” Because it’s like
there’s this group of people that we are all so lucky to have met and
found each other. And I would never have guessed that this is what it
was like, that the typical Mac developer was this person that I can
become really good friends with and rely on and enjoy so much…
Across the board, [I] just keep meeting more and more people over the
years now, as I started ramping up, like starting here in Seattle and
meeting more and more people around other conferences… MacWorld
and… C4 [an independent Mac developer conference]… just
consistently awesome people, one after another.

(Chris Parrish Interview, March 2, 2012)

356

Xcoder attendees felt that this social closeness in the community was rather

unique, especially compared to Windows developers, who only attended Microsoft

sponsored events for professional learning and networking, and seldom formed

lasting bonds with other attendees. Gus Mueller mentioned how newcomers to iOS

from Windows were surprised at the level of friendship and sociality among the

Apple oldtimers:

Windows programmers… I’m sure those are button-down guys, and
these guys are now sort of refugees from… wanting to go indie with
their iOS apps… and I think [our friendly beer culture was] just not
what they were expecting, and as far as I could tell, they were happy
with it.

(Gus Mueller Interview, February 21, 2012)

Nevertheless, Xcoders’ beer-drinking, pub-hopping culture could exclude as

much as it could include. Despite the claims by the Xcoders that newcomers are

welcome, the afterparty culture could reinforce the feeling that the social core of the

group was a clique. Gus Muller admitted that some newcomers expressed feeling

excluded because of the focus on alcohol.

…Some people would get pissed and would be like, some of us don’t
drink, you know. And it’s like, well you don’t have to drink there, but
it just seemed like so much of the community revolved around just,
you know, hanging out at a bar, well, restaurant. Some people got kind
of upset about that, but I never really saw those people. I would see
them on the mailing lists, but they wouldn’t show up to the after-
meetings… It wasn’t a whole lot of complaints, but I do remember
some complaints.

(Gus Mueller Interview, February 21, 2012)

This beer pub culture and the inner clique of male friends it fosters is

probably a key reason why the culture of Xcoders as a whole is masculine. It is not

that the club explicitly excludes women; far from it, most of the men express hope

that more women become Mac developers. However, the core of the Xcoders culture

is a homosocial world, a fraternity of like-minded men who are bonded through

drinking together, and through the shared experience of being indie developers. The

identity of the Xcoder is imagined as male, like Dunbar-Hester’s radio activist geeks

357

(Dunbar-Hester 2008). What is striking to me is that many members of this inner

clique within Xcoders are also the Cocoa developers who also have the largest online

presence, who consistently blog, have large Twitter followings, and are frequent

guests on podcasts. This means that the masculine identity of the Xcoder gets

presented to the much larger community of Cocoa developers who follow them

online.

The social bonds formed at Xcoders is the primary reason for the collegiality

and camaraderie among the indies of the Seattle community, who frequently help

each other out in a sentiment of “I scratch your back, you scratch mine.” For

example, Chris Parrish, a co-founder of the now-defunct indie Rogue Sheep and a

former engineer on Adobe’s InDesign team, had written an image filtering plug-in

that he could not find a way to commercialize and make money from. Gus Mueller

had an image editing application called Acorn, and Parrish thought Mueller might

have a use for some of the code, so he gave it to him for free. Acorn now ships with

Parrish’s image filtering code. Informal social interactions at Xcoders also provide

opportunities for indies to form formal or informal business collaborations. Brent

Simmons, the original developer of NetNewsWire (a Usenet newsgroup and RSS

feed reader) decided he wanted to devote his time to a new project, and needed to

find a likeminded developer to take over his old app, give it a home, and continue to

further develop it. The personal relationships Simmons had formed at Xcoders with

Black Pixel engineers, including co-founder Daniel Pasco, led to the sale of

NetNewsWire to the latter company. Indeed, in interviews with me, Brent felt that

the Black Pixel company itself could not have existed without the Xcoders group, as

it formed as a collection of local friends who wanted to go into business together

developing Mac OS X applications.

I think for one thing, Black Pixel might not even exist as a company
without the social aspect…

Without Daniel—you know he had a very small company quite some
time ago, and it was not doing very well in the early days, that’s
common for companies. But he went to Xcoders religiously, he met
people, he learned a lot of stuff, and since then has been able to build

358

up a really fantastic company. …It’s hard to say how things would
have turned out differently without that social aspect. He might not
have found those employees, might not have learned the key things he
needed to learn… A lot of other developers have been helped by that,
me certainly. People like Gus and Chris have been helped a ton.

(Brent Simmons Interview, February 17, 2012)

Undoubtedly, countless other technical exchanges and formal or informal

business collaborations among indies may have occurred during the monthly Xcoders

afterparty. What Xcoders shows us is that, despite the indie ideology holding up the

lone indie developer as the ideal model for what a programmer should be, implying a

either an atomized individual working through the market or a mere node in a

network, the most successful indies in actuality depend on a local community with

deep social ties, formed over consistent face-to-face interaction. Although these

indies do not have any formal institutional or corporate ties to each other, their bonds

go much further and deeper, and these social relations form crucial resources.

Members of the Seattle community share knowledge and code, and transact business

deals with each other that would be highly asymmetric if the two parties were not

friends. The Seattle Cocoa community likely functions more as a gift economy than a

market-based one when it comes to intellectual property.

While Xcoders might be one of the most close-knit local Cocoa clubs, its

afterparty model of sociality appears elsewhere. Both CocoaHeads Atlanta and the

downtown Atlanta iOS Developer’s Meetup have afterparties at local bars and

restaurants. CocoaHeads, given its smaller, more exclusive membership, generally

has almost the entire group go to the afterparty at a local brew pub, while in the iOS

Meetup, only a small group of core members (some of whom also attend

CocoaHeads) consistently attends the afterparty at a Mexican restaurant, although at

any one afterparty, maybe a third to half are members who are new or only sporadic

attendees. Alcohol is imbibed at both afterparties, although it does not seem to be

quite as central to them as it is to the Xcoders crowd in Seattle. Organizer of the iOS

Meetup, Rusty Zarse, has made encouraging socialization an important part of the

group:

359

I’ve tried very hard to maintain that dynamic, that sort of social aspect
of our groups. For a little while it was getting much more
presentation-centric…

So I’ve really tried to encourage, and I think the beginner topics have
helped, I try to encourage dialogue and we make sure to have our
social afterwards and go have drinks and make sure it’s not just a
presentation. You’re not just going there to hear someone talk about a
technology topic that’s going to make your job better.

(Rusty Zarse Interview, September 25, 2012)

The Atlanta iOS Developer’s Meetup is a significantly larger group than

Atlanta CocoaHeads, and because many attendees are relative newcomers who are

only interested in iOS because they want to make a mobile app, and are only

interested in information, professional development, and possibly business

opportunities. (Recruiters often attend the meeting.) Rusty tries to maintain a

welcoming atmosphere, but also wants to foster the sense of community, friendship,

passion and commitment that is the feature of other Cocoa clubs:

You’re going there because you love what you’re doing and you’re
passionate. There are people out there that want to learn, there are
people there that want to share, so I think the difference, R. D. [A
former Apple engineer] said it once, when he started joining our
group… “I was really looking for my tribe. And people that I really
have an affinity with, and share a passion with as well as my interests
and what I like to do and what I like to talk about.”

Apple, it’s a social community, you’re going to learn, you want to
learn something, but I think the goal—the goal is to learn a little bit at
the meeting, if there’s a good presentation that’s interesting, but really
you’re also trying to meet the people who know about that stuff, so
you can then network with them, so that when you have a problem you
can work with them, and likewise if they have a problem they might
rely on you, but also just to extend your network of friends, but I think
just beyond just professional.

(Rusty Zarse Interview, September 25, 2012)

Rusty, as the organizer of the group, is trying to appeal to two different

audiences. Every meeting has two presentations, and one of them is always on a

beginner topic. When I attended, I observed that the vast majority of attendees are

there for purely professional purposes, and don’t interact with anybody.

360

Unfortunately, this includes most of the women and minorities (which includes

mostly South Asians and East Asians, but also African Americans and Latinos in

smaller numbers) who attend. These people are the likely target of the beginner

presentation. The more core members, who often also attend Atlanta CocoaHeads,

are interested in much more than learning about iOS. Like at Seattle Xcoders, they

are there to hang out and geek out with like-minded people and form social bonds.

These members are the relative experts who participate, volunteer to give

presentations, actively post on the group’s mailing list, and more often than not, are

white men. Because of its relative inclusiveness compared to CocoaHeads, the group

uneasily straddles the line between a professional organization (the Microsoft model)

and a hobbyist club/community of interest (the Xcoders model). The afterparty

winnows out those who only attend to passively receive information.

It’s like an open club. There are groups that go biking together…
Everybody shares an interest and a passion for biking and they get
together and go on bike rides, and then afterwards, typically… if it’s
an established group, they’re going to follow up with an after-party of
some sort, at a restaurant or coffee house or whatever. So that same
sort of mentality is definitely a part of our Cocoa group, is we
socialize as well, and when there’s something interesting we try and—
when we go to WWDC [Worldwide Developer Conference]… people
coordinate, say, let’s go together, let’s get together there, so we tend to
like each other and we tend to be friends as well.

(Rusty Zarse Interview, September 25, 2012)

Like at Xcoders, the social makeup of the afterparty reveals the level of social

centrality of the attendees. Only those who want to form social bonds and friendships

with each other attend the afterparty, typically between six to a dozen, compared to

the thirty or forty in the regular meeting. Also like Xcoders, additional socializing

occurs even after the afterparty is over. A small group of the more committed

members often hangs out and continues the conversation in the parking lot of the

restaurant, sometimes until quite late.

I can’t get people to leave. I’ve cleaned up the whole place and I’ve
got the chairs reset and I’ve still got twenty people standing around
talking. And we had one night at La Fonda [Restaurant] where there
were six of us who stood around outside after the La Fonda closed and

361

we were still there at three in the morning. And I left; I was like, guys
I gotta go home. And we were standing in the parking lot, in Howell
Mill [Road]. Probably not the smartest thing in the world. And it turns
out like three of them stayed until four in the morning talking.
Standing outside their car. They just couldn’t let it go.

(Rusty Zarse Interview, September 25, 2012)

For those members who stuck around to talk late into the night, the iOS

Developer Club was where they could hang out and discuss their favorite topic,

Apple technology, with their buddies, just like at Seattle Xcoders. I myself

participated in a number of these late night conversations.

As we have seen, Cocoa developer clubs are sites where people with a

common interest in developing software for Apple platforms congregate and share

knowledge, but it is also a place where sociality transcends mere professional

association and becomes genuine friendship. Of course, if Cocoa developers only

met in local groups, it would be more accurate to say that there is not one Cocoa

community, but many local Cocoa communities. And in a sense this is true. However,

these local groups are linked together through the online discourse of blogs and

Twitter feeds, and more powerfully through conferences.

Apple Worldwide Developer Conference (WWDC)

In Coleman’s examination of the sociality of free software hackers, the “Con”

(short for conference) emerges as the “single most important site of in person

sociality.” (Coleman 2013, 45) Unlike the free software world, however, the

lifeworld of the Cocoa developer exists in relation to the proprietor of the platform

they have devoted their lives and allegiance to: Apple. In the Apple developer world,

the most important conference is Apple’s official Worldwide Developer Conference

(WWDC, verbally abbreviated affectionately as “Dub-dub,” short for “WW”) and

there are numerous community-run conferences. WWDC itself is a tech industry

developer conference hosted by a platform proprietor whose purpose is to announce

and “evangelize” to developers new software features (often in the form of APIs) in

its platform that it wants developers to use in order to show off the competitive

362

advantage of apps on the platform over others. Most software platforms dominated

by a single company have run such conferences now or in the past to promote their

platform, such as Sun (Java), Palm, Microsoft, and Google (Android).

Because these platforms typically are proprietary, the developer conference is

usually the first place third party developers can learn about the latest APIs, and for

many professionals it is a must. For longtime attendees of Apple’s WWDC, it serves

three purposes (Dempsey 2014). First, the talks and sessions given in the main venue

of the conference itself provide vital information for developers, and for Apple it is

also a way to shape developer norms by discouraging certain practices and

encouraging others—in part because Apple reserves the right to unilaterally change

implementations or deprecate APIs and recommending to developers to be good

citizens and follow best practices (especially not using private APIs) will best

prepare developers for such changes in the future. Secondly, Apple provides labs

where third party developers can ask Apple engineers, often the very engineers who

wrote the framework code and APIs that developers are using, for help in solving

problems. Coleman notes that at hacker cons, developers working face-to-face often

“overcome some particularly stubborn technical hurdle, thus accomplishing more in

two days than they had during the previous two months.” (Coleman 2013, 53) This is

even more true for WWDC Lab sessions, where because of the closed nature of

Apple’s code, getting face-to-face interaction with the engineer who wrote the code

is often vital to fixing a difficult bug—this alone can often justify the $1699 cost of a

ticket to WWDC, not to mention plane tickets and a week of hotel accommodations

in downtown San Francisco. Thirdly, WWDC, as the most important conference in

the Apple developer world, provides networking, socializing, and community

building opportunities that are unmatched by any other conference.

Coleman notes the ritualized nature of conferences for reinforcing group

solidarity (Coleman 2013, 47), and WWDC is no exception. The most talked about

event at WWDC, of course, is the Keynote speech by the Apple CEO. For one, since

Apple stopped participating in the consumer tradeshow MacWorld Expo, WWDC

has become the only public venue for the Keynote speech, and especially when Steve

363

Jobs was alive and actively running the company, his Keynote presentation, with its

legendary product revelations, was a hot ticket in the information technology

industry—people regularly camped out overnight to get into the Keynote. Given

Apple’s continued influence in IT and mobile computing, Tim Cook’s Keynotes

continue to be major draws for both developers and the technology media alike.

Keynote speeches are part technology demonstration, part marketing, and part church

revival meeting. As we discussed earlier, Apple’s presentations at WWDC are

supposed to communicate new technologies and developments to its third party

developers so that they can update their apps to take advantage of the latest

capabilities Apple is providing them. The Keynote, however, has a slightly different

purpose than the presentations during the rest of the conference. It is open to the

press, and is live streamed, so its audience is not just the developers sitting in the

room, but includes the general public. This means that it sometimes contains eagerly

anticipated product announcements, in addition to PR material about Apple’s

business, material that is not strictly technical. The Keynote also often serves to

present Apple’s official philosophy (its ideology) to its developers, users, and the

general public, and to enroll them into this ideology. In Steve Jobs’ heyday, the

Keynote speech was the site where even the most jaded observer sitting in the

audience might become taken in by his famous “reality distortion field,” generated in

large part through the infectious atmosphere of the audience itself, whipped up to a

frenzy through Jobs’ masterful manipulation. Like a Catholic Mass or the President’s

State of the Union Address, the Keynote is very carefully choreographed to elicit

responses from the audience (applause and even cheers) at particularly dramatic

moments when a new product, its features, or its price, are revealed. The Keynote

speech was where Jobs’ charismatic authority waxed highest. In a Durkheimian sense,

the emotional euphoria experienced by the audience, which becomes a kind of “laity”

in their unified response to Jobs’ ritual unveiling, regenerates and reinvigorates the

collective “mana” or spiritual energy, reinforces the feeling of sacrality of Apple

products over profane alternatives (Windows, Android, etc.), and reaffirms, for indie

Cocoa developers, the passion and commitment to continue to devote their lives to

writing apps exclusively for Apple’s platforms (Durkheim 1965).

364

As we saw earlier, STS literature on demonstration can illuminate the role of

the Apple Keynote. Demonstrations of are often key to selling a new technology, as

often users may not know what to do with it; the demos help create the use and thus

the demand for the product, as Pinch and Trucco’s study of Van Koevering’s

demonstrations of the Moog synthesizer show (Pinch and Trocco 2002). Apple has

managed to successfully create or vastly increase demand for new computing

products that a consumers never thought they needed before, including PCs, MP3

players, smartphones, and tablets. Successful product launches like the iPhone’s

depend critically on a successful Keynote presentation, for which Steve Jobs was

legendary. It is in large part for this reason that Apple follows a strict policy of

secrecy about products in development, in order to make the biggest splash possible

during its Keynotes. The product demonstrations themselves are carefully rehearsed,

as their purpose is to dazzle the audience with the capabilities of Apple’s new

technology to make them believe that they can do things no other company’s

technology can. Because these technologies are often still works in progress,

however, there is the possibility that things may go wrong. Multiple backup

machines are usually made available in case this happens so that the presenter can

smoothly go on; the demos are never supposed to turn into experiments. For this

reason, there is an element of stage magic to the demonstration; elements might be

canned, and engineers usually brief the presenter to make sure that they don’t deviate

from the script, risking the demo not working. And like magic, these demos are

intended to produce in the audience a similar affective response, of being utterly

amazed by what they are seeing. The difference with stage magic, and like scientific

demonstration, the audience is being persuaded to believe that what they are seeing

is not illusion, but reality.

Other events at WWDC are also important. The rest of the conference is

composed of talks that go into successively more technical detail, and the audience is

restricted to conference attendees who are usually programmers, although managers

sometimes attend. The first afternoon after the Keynote is filled with “State of the

Union” talks (sometimes called “Kickoff” talks in recent years), where an vice

365

president or other upper-level executive usually presents an overview of a subset of

particular developments in the platform of interest to developers: Developer Tools,

Frameworks, Graphics and Media, the Operating System, and in the past, Enterprise

or Server technologies. The sessions that begin Tuesday and run through Friday are

usually specific to particular new APIs, frameworks, or developer tools, and they are

organized into “tracks” that follow the theme laid down by one of the “Kickoff” talks.

There are a couple of events that fall outside of the main sessions. Usually,

during lunch, there is a lunchtime session that is often presented by an outside (non-

Apple) speaker. In the past couple of years, one of these sessions has included a

presentation from a major media personality of interest to geeks, such as the Star

Trek actor and Reading Rainbow host Levar Burton, or J.J. Abrams, director of the

recent Star Trek films. In both cases, the celebrity was there to talk about how

Apple’s platforms have aided them in their current creative endeavor—Burton, for

example, discussed his Reading Rainbow app that he was promoting to encourage

child literacy. In WWDCs of the 2000s, one of the most popular sessions was given

by an employee of Pixar, Dr. Michael B. Johnson, known in the Cocoa community

by his nickname “Dr. Wave,” who demonstrated how he used Cocoa to build in-

house applications to support its production pipeline for animated films. Another

popular event has been the Beer Bash, a giant party/concert held generally Thursday,

in the late afternoon to early evening. The Bash used to be held in the quad on

Apple’s corporate campus in Cupertino, and after the Conference was moved to San

Francisco from San Jose in 2001, attendees had to be bused down and back up. This

continued to be extremely popular because it allowed attendees to pay a pilgrimage

to the corporate “Mothership” and was an opportunity to meet Apple engineers who

were not attending the conference, as well as pick up souvenirs from the Apple

corporate gift shop. However, in recent years, the Beer Bash has been thrown at

Yerba Buena Gardens in San Francisco instead, probably to avoid the cost and time

of busing people to Cupertino.

Two additional events stand out. One is the Apple Design Awards, an event

where Apple awards certain third party apps for being the best example of good

366

design (both aesthetically and in terms of usability) and for use of new Apple APIs.

Winning an Apple Design Award is considered to be extremely prestigious,

especially among the indie community; on the other hand, the Design Award is also

treated with some cynicism, as it is understood to be part of Apple’s technical

marketing machine, a way of promoting both the adoption of new technologies to

differentiate Apple’s platform and a way of promoting particular aesthetic values

among third party apps that fit in with Apple’s own. The second event, usually taking

place immediately after the Design Awards, is a game show called “Stump the

Experts” which celebrates hacker culture among Apple developers. At “Stump,”

members of the audience (third party developers) compete to ask a panel of current

and former Apple engineers arcane technical questions and hope to stump them.

Apple engineers can ask tricky questions of the audience. The audience members

who are able to stump the Apple experts receive a prize, ranging from a T-shirt to a

free copy of a software package. The game show host is snarky and humorous, takes

special joy in making fun of audience contestants, and makes no pretense of being

fair in judging answers. The audience understands that the game, while not being

explicitly rigged, is biased against them, and that it is not usually possible to actually

“win” the game by outscoring the Experts, but that is all part of the fun.

In addition to these official events, there are a significant number of

afterparties, often sponsored by a smaller technology company (like Testflight, a

company which offered solutions for deploying mobile apps for user testing, since

acquired by Apple) or sometimes a technology media company such as ArsTechnica,

and held inside a major San Francisco hotel. These are usually loud, crowded, glitzy

affairs, with lots of alcohol and finger foods. There seem to be a lot more women at

these parties than at the conference itself, most of them fashionably dressed. Since

one party I attended was put on by the media site ArsTechnica, some of them could

have been press, such as ArsTechnica writer Jacqui Cheng, while others may have

helped organize the party. Nevertheless, one Asian woman I interviewed at a party

was a mobile developer for a large company. A lot of the after-hours activity

involves hopping from one party to another. Some oldtimers, however, favor lower-

367

key venues, where networking and socialization are easier, such as hanging out at the

Chieftain, an Irish pub in the SOMA district of San Francisco. Some indie companies,

such as OmniGroup, sponsor their own smaller parties. In recent years, a couple of

more notable parties, especially from the point of view of the oldtimers, have

emerged. Dr. Michael B. Johnson of Pixar has for the past few years organized a

charity event at the Cartoon History Museum in San Francisco as an opportunity for

ex-NeXT engineers and developers attending WWDC to congregate and reminisce

about the history of their platform. James Dempsey, who became famous at WWDC

as an Apple employee for performing songs he wrote about Cocoa and other

programming topics, has with his band, The Breakpoints, been performing sets of his

songs at a local bar. Apple engineer Bill Bumgarner, meanwhile, has for years hosted

a gathering at Tommy’s Mexican restaurant and tequila bar in the Richmond district

of San Francisco. This gathering is rather exclusive and is dominated mainly by

Apple engineers, but one can get invited if one happens to personally know an Apple

engineer headed there, as it is a considerable taxi-ride away from the SOMA and

Yerba Buena districts where the conference takes place and where most of the other

action is occurring. Indies who are socially well-connected to Apple personnel are

also in heavy attendance, especially a significant portion of Black Pixel.

At WWDC, members of local Cocoa communities tend to travel as a group, as

their frequent face-to-face connections have formed stronger personal bonds. “When

we go to WWDC, the Seattle guys usually stick together too. It’s kinda funny.” (Gus

Mueller Interview, February 21, 2012) However, online social connections formed

on Twitter and blogs help to arrange physical meetings at WWDC that strengthen

these connections and create new ties between members of the various local

communities. Often younger community members will meet in the flesh for the first

time a famous developer who they follow on Twitter or whose blog they read.

Coleman notes the importance of such physical interaction for reinforcing

relationships that are otherwise wholly digital: “The prospect of finally meeting

(actually in person) people you often interact with, although typically only through

the two-dimensional medium of text, is thrilling.” (Coleman 2013, 49) A number of

368

developers commented on the importance of face-to-face interaction for maintaining

the sense of community:

Like this week [at WWDC], I met a bunch of people who I’ve been
following a long time, or who’s work I’ve been interested in for a long
time, but me being me, I don’t feel comfortable talking to someone
that I haven’t been introduced to, so… So it wasn’t until this week that
I actually, pumping flesh and whatever. And now I feel completely
comfortable, I consider them my peers rather than some guys over
there whose work I like.

(Chris Clark Interview, June 12, 2009

On-line is great and wonderful, but there is no replacement for kind of
this one-on-one meatspace kind of thing.

…Blogs and that kind of stuff… are great, because I learn a lot of stuff,
but the meatspace stuff, you know, you hang out and have a beer or
two with somebody. Quite a different tangent. So most of the people I
consider more than just acquaintances, kind of up to friends and
beyond are all people I’ve met in meatspace.

Started off as friendship or something on line, but eventually we’ve
hooked up in meatspace and “you look nothing like I imagined you
would look like.”

…And once you kind of know that there is a human being behind that
IRC nick[name], or that email address, then [it’s harder to say or do
mean things to them], those are harder to do when you’re dealing with
somebody that you have met; they know you, you have shared
experiences together, so generally the level of discourse becomes
friendlier. Because you still agree to disagree on stuff and have
different technological or political beliefs. But there is that
commonality of mutual respect, mutual understanding, mutual
affection, in cases that kind of transcends that which you don’t get
from a purely online experience.

(Mark Dalrymple Interview, April 11, 2012)

Thus, social bonding and conversation in person, often over alcohol, plays a

significant role in the construction and maintenance of personal friendships and

professional relationships among indie developers. At WWDC, it also fosters such

relationships between third party developers and Apple employees, creating a sense

of shared community between them. Like the afterparties of local club meetings, for

quite a few of the oldtimers, the social scene of WWDC is almost more important to

369

them than actually attending the conference itself, as it is the one time a year they

reconnect in person with friends from around the country. Oldtimers are much less

interested in the technical content of the talks given by Apple at WWDC, especially

as Apple now puts videos of the talks up online soon after the conference. There

seems to be an inverse relationship between relative inclusion and centrality in the

community and how much emphasis attendees place on the formal sessions at

WWDC.

WWDC most certainly is a venue where Apple actively courts and enrolls

developers in its ideology, that they are improving society by making their apps more

useful, pleasurable, and usable to everyday people, and where it advocates normative

practices, such as encouraging certain design patterns such as delegation, or avoiding

the use of private APIs Apple has not published, because these practices are more in

line with the Cocoa idiom, because they will help make apps more maintainable or

usable, and because they will help developers more easily adapt to changes Apple is

making to its system over time. Because Apple’s platforms are proprietary, it

reserves the right to change things, and the Apple developer community has largely

accepted that it is better to conform to the way Apple does things than to try to fight

it. The attitude is, if you want to program for Apple, you have to play by their rules,

because it is their platform. Apple, like other companies, also hands out gift items

that come with the purchase of a WWDC ticket. In the past, this has included laptop

bags or backpacks and jackets, all emblazoned with the WWDC logo and the year of

the conference. Developers who attend WWDC wear their jackets with pride, as a

marker of special access and a sign that one has joined the community. Former Apple

engineers who have participated in the annual Stump the Experts game show

sometimes wear commemorative T-shirts that display their membership in an elite

group.

It is clear, however, that the more experienced Apple developers, which

include most of the Cocoa indies, see the conference in a slightly different light than

most of the attendees who are relatively new to WWDC. Oldtimers have attended

many past WWDCs and can easily parse Apple corporate marketing and public

370

relations messages, and often take a snarky, cynical, ironic stance to such messages.

Being relative experts, they are less interested in the technical content of WWDC

sessions and are more interested in parsing the meta-message of what directions

Apple and its technology and platforms are headed, and more specifically, how it

impacts their interests as third party developers. This plays into the relative

disinterest of many oldtimers in continuing to attend WWDC at a time when it has

become more difficult for them to get a ticket. As the social and networking aspect

of the conference is, on a whole, more important to them, they are able to satisfy this

need by being in San Francisco during the conference to meet people and hang out,

but not necessary attend WWDC proper. What is important, however, is that this

ironic stance does not mean that these oldtimers are opposed to Apple’s agenda.

Some of these oldtimers are former Apple engineers themselves, or have social

connections to Apple engineers, and can thus separate Apple’s official corporate

message from the intentions of the well-meaning individuals who actually work there.

Oldtimers, being highly included in the Apple techno-cultural frame, including its

ideology, largely agree that what is good for Apple and its platforms is good for

them; the difference is that they reserve the right to criticize Apple for pursuing

policies or releasing technologies that hurt developers, which not only hurts their

interests but, they argue, harms Apple’s platforms. This may be very different from

many of the newcomers who are attending WWDC for the first time. These

newcomers may be more suspicious of Apple as a whole and are less able to

differentiate between Apple policies or technologies that are “good” or “bad” in the

opinions of more experienced Apple developers, instead seeing Apple as more acting

in more monolithic fashion that it actually does. Alternately, newcomers may simply

take in all of Apple’s messages from its sessions uncritically. For less highly

included newcomers, Apple’s messaging is more all-or-nothing, take-it-or-leave-it.

Community-run conferences

WWDC is not the only game in town, however. Since the 1980s, Apple

developers have organized their own independent conferences, and these are much

closer in flavor to free software hacker cons—one of the early ones was, in fact,

371

called “MacHack.” There have been a number of various community-run conferences

over the years related to Apple, the Macintosh, NeXTSTEP, Cocoa, and/or iOS, and

as some have gone away, others have taken their place: C4, 360|iDev, Voices that

Matter, NSConference, CocoaConf. In the mid-2000s, C4, meeting in Chicago, was

the central locus of the indie Mac developer community, but fell by the wayside after

organizer Jonathan “Wolf” Rentzsch moved on. NSConference, one of the few non-

North American conferences, meets in London. 360|iDev, which usually meets in

Denver, is one of the newcomers, being exclusively devoted to mobile iOS

development, whereas many of the other conferences include both Mac desktop and

iOS and are often dominated by speakers who are indie developers of desktop Cocoa

Mac apps. While most of these conferences meet once a year, CocoaConf is a smaller

event that holds multiple meetings a year (as often as once a month), and travels to

various cities: San Jose, Columbus, Las Vegas, Seattle, Boston, Atlanta. Community-

run conferences have become increasingly important to indies in recent years as the

interest in iOS has resulted in explosive demand for tickets to WWDC, making it

difficult for small shops and individuals, even those with name recognition and/or

close ties to Apple employees, to acquire tickets. As mentioned earlier, demand for

WWDC tickets has increased so dramatically that it now sells out within minutes of

availability. Longtime members of the community, who in past years could count on

getting a ticket and relied on WWDC to make face-to-face contact with friends they

see once a year, have been increasingly shut out in the cold, as Apple tries not to

play favorites. These developers have needed a physical site of their own to

congregate. As a result, since at least 2012, the community has organized its own

AltConf (originally known as AltWWDC with its own Twitter hashtag), also taking

place in San Francisco during the same week as WWDC, to facilitate developers who

come to town for the socializing and networking aspect of “Dub Dub.” Because of

AltConf, and because Apple now puts WWDC session videos online shortly after the

conference, two out of the three functions of WWDC for many oldtimer Cocoa

developers can be sufficiently met without attending WWDC at all. Unfortunately,

the Lab sessions, which grant developers exclusive access to help from Apple

engineers, cannot be replicated by the community.

372

At CocoaConf and similar community-run conferences, the keynote speeches

are given by well-known and respected members of the community, often by a local

luminary. At CocoaConf Atlanta in 2013, Aaron Hillegass gave the keynote speech.

Many of the other talks are technical talks, similar to the talks given at local club

meetings, while other talks are normative talks about best practices in coding and

designing apps. However, occasionally at these conferences one finds talks where a

prominent luminary (often an indie developer) either gives a testimonial about his

experience as an indie, or more vision-type speeches on Apple’s direction or mobile

technology in general.

Such speeches at community-run conferences also help create solidarity

among developers, but because they are given by one of their own, they have a

different effect. If the Apple Keynote is a like an evangelical pastor giving a sermon,

the keynote speech by an indie developer is more like a testimonial from a member

of the laity. These accounts derive much of their impact through their personal nature,

and speak to the moral import of the indie developer identity. Aaron Hillegass spoke

about how, despite how grateful he was that he had managed to carve a career out of

doing what he loved, teaching Cocoa programming, he could not help feeling as if he

should do more to help the “next 5 billion people” on the planet—those in the

developing world without access to information technology. His talk spoke to the

limits of the moral project of the indie developer world—that somehow, making an

app will improve the lives of everyone on earth. His dissatisfaction with not being

able to do something about the world’s larger problems motivated a talk in which he

tried to get developers to think on a grander, more socially conscious scale.

Nevertheless, because of his audience of indie technology entrepreneurs, Hillegass,

though acknowledging the important role of government in innovation (something he

thought might be controversial with his audience), his proposed solutions for such

problems as clean water and sanitation necessarily had to be not only technological,

but market-based products.

The closing speech of Atlanta CocoaConf 2013, was in some ways the exact

opposite. The central argument of this talk, given by “Stan,” was inspired in part by

373

Apple’s own marketing, and premised upon the idea that not trying to solve the

world’s big problems, but by focusing only on the needs of a single imagined user

(often one’s self) was the proper normative stance for the indie developer. By fixing

a single user’s problem, a developer will create an app that has an intimate feel, as if

the app spoke directly to the user, similarly to how a radio DJ (which Stan had been)

speaks directly to a mass audience as if it were an individual, creating a sense of

intimacy. This attitude spoke very well to the realities and pragmatics of indie app

development, in which individuals and small teams simply do not have the resources

to try to fix every problem or address mass markets and thus tend to focus on narrow

market niches of users.

This “build it and they will come” mentality was very powerfully reiterated

by replaying two Apple advertisements. The first was the famous “Think Different”

campaign, written by Steve Jobs upon his return to Apple in 1997, which exhorted

listeners to be iconoclasts in order to change the world, but was also a mission

statement, a manifesto for what Jobs saw Apple’s role was to be in the coming

decade. The second was an Apple ad first shown to developers at WWDC in 2013,

but later replayed to the public at the beginning of one of Tim Cook’s product

announcement events. This ad reiterated the central importance of focus in Apple’s

approach to products—doing one thing as best as it can for a particular purpose,

honing a design to perfection, and saying no to everything else.

Stan, who is not an Apple employee, then reiterated how important this

message was for developers like himself, as this virtue of focus is one that

developers must emulate in order to make products as elegant and transformative as

Apple. Succumbing to market pressure to include too many features in one’s app

does not benefit the user—it makes a product incoherent and difficult to use, like

Microsoft Windows. Tailoring one’s app to a narrow subset of users but making that

experience the best it can be will not only make for a better app, but will create a

loyal, passionate following of users, just like Apple has done with its own products.

374

To strike home his point, Stan told a story about how Apple’s focus on

creating the best user experience had powerfully affected his life. Throughout the

talk, he carefully sprinkled photographs of his daughters in the slides. At the end, he

revealed that one of his daughters had passed away before her eighteenth birthday,

and that he and his wife had lamented that they had no pictures of her with her baby

teeth missing. But because Apple had designed its iMac computers with built-in

cameras and software easy enough to use that his children could pick it up

themselves, his other daughter revealed that they had taken photos of themselves

with it, and these irreplaceable memories could be found on their iMac. Thus,

Apple’s focus on the user, its perfectionism for design, had not only empowered his

children, but intervened in his life in a powerfully meaningful way. For Stan, this

was how Apple’s products changed people’s lives, not just in a utilitarian sense, but

also in an affective sense, and this was what every app developer should aspire to.

The moral and normative aim of every app developer should be to improve the lives

of their users in both utilitarian and affective ways, thereby improving the world an

individual at a time. This is the reason why aesthetics and usability is all important to

Apple developers—their moral imperative, indeed their existential purpose as

developers, is to affect their users on an emotional level. This ideologically frames

their work and their identities—they need to believe that their labor constitutes a

higher contribution to society.

Conferences and local developer clubs, by facilitating physical interactions

between Cocoa developers in “meatspace,” make the Cocoa community more than a

networked public that exists only through its interaction with online discourse.

Conferences, as ritualized occurrences, in which a heightened affective experience is

shared with likeminded others, powerfully bonds developers into a sense that they

are not alone, but working in a social, moral, and technical world where others share

their values and commitments. Relationships that began purely as disembodied,

textual conversations are made flesh. Local club meetings, by virtue of taking place

more frequently, and drawing together developers who live in close proximity, have

a more quotidian quality. Yet, such interactions are also powerful, as they engender

375

friendships that go beyond purely professional associations. This can go both ways,

as friendships can also lead to business partnerships and startups. In all of these ways,

physical meetings and interactions are as important as online interactions for creating

a sense that a community of Cocoa developers really exists. Physical and virtual

interactions reinforce each other and strengthen what neither can create alone.

Tensions between Elitism and Populism in Knowledge
Sharing in the Cocoa community

Coleman has noted that the free software hacker community contains a

tension between meritocratic elitism and populism, manifested particularly in its

attitude towards newcomers who ask what they consider stupid questions and do not

take the time to learn the basis for themselves, summarized by the joking but biting

epithet, “Read the Fucking Manual” (RTFM) (Coleman 2013, 107-111). Some of this

tension can be found among Cocoa developers as well, although there may be a

higher tolerance for asking questions among the community simply due to the fact

that the Cocoa frameworks are closed source. Despite Apple’s documentation of its

APIs, many developers continue to feel that it is inadequate, and this has fostered

vibrant knowledge sharing within the community. Core members, while experts, are

still constantly learning from their peers and from Apple, as every year at WWDC,

Apple releases new software capabilities and new APIs that developers are

encouraged to use. Official WWDC sessions present both this new information and

also enroll their audience in the normative practices for how to best use these new

technologies in a way that plays well with the rest of Apple’s platform. Material

from Apple is always the first source of the knowledge necessary for taking

advantage of new APIs, but this knowledge alone is not enough. Apple can not

anticipate how its technologies will interact with the legacy code and the real-world

needs developers actually have, and developers’ real-world experience is in many

respects more valuable to other developers. If knowledge from Apple is top-down,

this kind of knowledge, from other developers, can be thought of as “lateral.” There

are multiple sources of this lateral knowledge. One important source is a website

called Stack Overflow, which is a kind of crowd-sourced online knowledge

376

repository for programming for any number of platforms. The reliability of answers

to questions posted on Stack Overflow is managed through user voting that in some

ways has become gameified: readers of the website vote for the best answers, and

contributors compete to see who can, in aggregate, achieve the highest reputations

for reliability of their answers. Stack Overflow thus constructs the same kind of

reputation economy of its contributors as that of Amazon reviewers (David and Pinch

2005). Oldtimers in the community have contributed significantly to Stack Overflow.

This includes key Apple engineers such as Bill Bumgarner, whose answers are

generally taken as reliable and definitive.

The kinds of questions one asks, however, can mark one as a newcomer who

doesn’t get it. Robert Walker noted asking elementary questions that could simply be

answered from reading Apple’s documentation or a book on Cocoa programming

(say, Aaron Hillegass’s) clearly signals that the poster did not do their homework.

Knowing what to ask shows that one has actually done some research on their own,

tried out various solutions, done some hard thinking on a problem, and has an actual,

legitimate problem with how to do something using Apple’s frameworks. Thus,

according to Walker, there are two tiers of people on Stack Overflow—the experts,

who are trying to find answers to really difficult questions, or providing those

answers, and “newbies” who are asking general questions and are looking for “the

right answer,” for someone to tell them exactly what to do, rather than do their

homework and research to find the solution on their own. This speaks to the same

“RTFM” attitude among hackers that Coleman examined. It may very well be that

the finding out answers on one’s own is a virtue upheld by programmers in general.

Walker himself is in some respects relatively new to the Cocoa community compared

to most Mac indie developers, but because of his earlier WebObjects experience, was

already highly included in the Cocoa techno-cultural frame before the iPhone. He is a

frequent participant in the local Atlanta clubs, has social connections to employees of

the Big Nerd Ranch, and has done extensive work in iOS and Cocoa in his free time.

For Walker, who has been accepted into the community through his hard work,

377

participation, and passion for Apple’s platforms, not doing one’s homework is a clear

marker of peripheral status.

Walker, like many of the hackers in Coleman’s study, had little patience for

developers who asked stupid questions and did not take the time to find answers for

themselves. Similarly, Dan Wood also denigrated programmers who wanted to be

told how to solve simple problems. He noted that when he asks Apple’s Developer

Technical Support (DTS) for help, he has a real difficult question that he has thought

about and is stuck on, but when newcomers ask DTS for help, they are asking basic

questions, according to his friend who worked for Apple DTS:

 …I remember him saying …that most of the things that they get are
from people who don’t know what they’re doing at all. And their code
is just junk and just horrible and they don’t really know what they’re
doing. And they are the ones who are going through DTS incidents to
get help on stuff that is just really basic, and so you know, when I have
a DTS incident, it’s usually something that I have just sweated over
and I’ve had multiple looks at it, and we’ve looked on Twitter, or a lot
of times I’ll even talk to an Apple engineer who said, “Oh yeah, you
need to file a DTS engineer report so we can actually deal with this.”
As opposed to, just you know, why does this program crash?

(Dan Wood Interview, April 9, 2012)

This led Wood to do boundary work, placing these programmers outside of

the community. He immediately followed this statement with his comment on the

“unwashed masses” of iOS programmers only “out to make a quick buck,” explicitly

connecting a lack of knowledge of Cocoa to the profit motivations that marked such

developers as peripheral or even non-members.

These sorts of attitudes had led in the past to accusations of elitism in the

Apple developer community. In 2007, a developer ranted on his blog that “we also

had our first encounter with the curmudgeons we otherwise refer to as… the ‘landed

gentry of Mac OS X development’. They’re a very unpleasant rude lot.” Ironically,

this developer appears to have been a NeXT fan who was using the label of “landed

gentry” to accuse old classic Mac OS/Carbon era developers of being hostile and

elitist: “We were attacked left and right by some of the most incompetent—and

378

simultaneously ‘acknowledged’—developers on the platform. Most of these were not

legacy NeXT people—they were people who’d stuck to Apple through thick, thin,

and the Redwood City years [the NeXT years, when it was headquartered in

Redwood City], only nodding occasionally to Chesapeake Drive [location of NeXT’s

headquarters].”39 By labeling Mac developers “landed gentry,” this developer is

trying to say that these developers are an exclusive elite group who are not interested

in welcoming anyone into their club, and are interested only in perpetuating their

elitist culture. Aristocracy is counter to meritocracy and open participation, which

ought to be how programmers are accepted into communities. This bears not a little

resemblance to the “cabal” that Coleman found many hackers accused the

gatekeepers of the Debian project of having formed when they made decisions that

appeared to abuse their power.

The specific context of this developer’s comment has since gotten lost. The

Cocoa developers who brought this to my attention thought that this accusation was

hurled at the big names in Cocoa development, which included former NeXT

developers, who presumably were not among those the original writer was attacking.

Nevertheless, because populism and meritocracy are so ingrained as virtues among

programmers, this accusation apparently created significant controversy, precisely

because it went against the view that much of the Cocoa community had for itself.

Mike Lee, for instance, vehemently denied that his community was exclusive, despite

the fact that a who’s who seemed to populate the community’s inner core, asserting

that in his experience, he had been welcomed into the community as a newcomer.

He coined the phrase, the landed gentry of Mac development. Which
referred to exactly this phenomenon of the exclusivity of the names in
Mac development. Where it’s like, if it is the case that there is a group
in development who you know by name, where this is a Wil Shipley
project, or this is a Daniel Jalkut product, or this is a Mike Lee product,

39 Rick, “The Longest Screed,” January 3, 2010, Rixstep Developer’s

Workshop, Accessed June 8, 2014, http://rixstep.com/2/2/20100103,00.shtml

379

sort of name developers, it only stands to reason that there would be
this kind of exclusivity. Yet, my own experience says otherwise. And
is in fact why I’m so bullish on the community. Is because when I was
doing corporate Java programming, it was extremely insular… And
when I switched over to Mac application development, I feared a lot of
the exact same thing. And I specifically avoided the community and
avoided talking to people because I didn’t have to run into these
problems where people were constantly trying to get in my way for
whatever reason of insularity or whatever. And it was Lucas who
disabused me of that. “These guys are actually really cool, you know
they’re just like you, they’re just a bunch of nerds who look to get
around, drink beer and talk about programming and all of this stuff and
you would really do well to meet these guys. And so I did. If I had to
put a date on my formal introduction to the community, would have
been at last C4 [conference]. So you know, about a year ago.

(Mike Lee Interview, July 23, 2008)

Other Cocoa developers, however, acknowledged that there was some truth to

the accusation of exclusivity or cliquishness.

It’s true, and I think that… some of it is really well earned…

…There are some people that are very outspoken, but haven’t really
been producers. And so it’s kind of, it’s—at some point, I’m like, dude,
well, have you actually done something?

(Daniel Pasco Interview, June 12, 2009)

Some years ago, somebody referred to us as the ‘landed gentry’ of
Mac developers. It must have been like 2006 or something, probably
even before iOS.

And I forget who it was that came up with that; I knew it was meant to
be insulting, but you know, yeah I see the point. It is, people who’ve
been around for a while, who are well known, and I don’t think it’s
ever been an exclusive club, or a non-welcoming club, you know. I
think that’s an important distinction, right? Anybody who cares about
the same things, it’s like, hey, great, join us.

(Brent Simmons Interview, February 17, 2012)

Despite this elitism among some members of the community, others feel that

the community has been relatively welcoming to newcomers, as long as the

newcomers share similar values about making apps for the love of the platform rather

than money:

380

…We are open to new people, and whenever someone new shows up,
you know, like occasionally we’ll be sitting at the bar, and people
would hear about the after meetings on Twitter, thanks to Brent, and
we’ll see someone in the corner with a MacBook or whatever, and
we’re like, do you think that guy’s with us or looking for us? And I’ve
gotten up and been like, hey, are you looking for us? And the guy’s
like, No. [laughs] and it just happens to be a guy at a bar with
MacBook… But definitely we’re open to new people. We like new
people.

(Gus Mueller Interview, February 21, 2012)

A year ago, I didn’t exist in the community! Nobody knew who I was!
I could tell them the products I was working on and they would
recognize it, but I was not a part of the community, definitely. You
know, I didn’t have fuckin’ Jalkut and Hockenberry and Shipley in my
speed dial… And that is because, when I decided I wanted to be part of
the community, the community embraced me. They welcomed me…
And so I think really what it is, is I think that the community is
basically, we don’t—when somebody kind of pops into the scene,
there’s a certain amount of worry. There’s a certain amount of “who
are these guys.” And a lot of that is because we’ve built ourselves a
really pleasant little city here, and we don’t want people coming in and
fucking it up. Now you come in and you’ve brought cookies and you
say hi to everybody, and you say, I really love what you guys are
doing and I really want to be a part of this, everybody is just more than
happy to have you.

(Mike Lee Interview, July 23, 2008)

As long as they love what they’re doing, I think they can be part of the
community. We can relate to that. Doesn’t necessarily matter whether
they love it because they love the device, or they love it because they
love the industry, or whatever. I think where I have trouble relating is
when they’re it, and they don’t love it. I mean that was sort of what the
Windows community was about, from my perspective.

(Ken Case Interview, March 23, 2012)

Elitism in the community exists in tension with openness to newcomers,

partly because the community is interested in “evangelizing” the Cocoa way of

development to others. While Cocoa developers believe that everyone ought to

experience the same pleasure they do when programming Cocoa (all programmers

ought to experience “grace,” as it were) they are also concerned with reproducing

their community membership, and care deeply that their values are sustained and

381

transmitted to the next generation. This also means that, despite much of the

boundary work that goes on online, at clubs and conferences Cocoa developers are

concerned with helping newcomers learn, as their activities are centered around

technical presentations where speakers share their knowledge and practices with

others. Knowledge sharing among the community does not take place only among

experienced developers but is intended to help grow the community.

Because Robert Walker is himself a relative newcomer compared to longtime

Mac Cocoa developers, he feels that introducing new people to the platform is

beneficial, as it is a source of new ideas. However, having been acculturated himself,

he tempers this by noting that it is important to make sure that the newcomers learn

the “right way” to do things on the platform, respecting established coding idioms

and conventions. This elevates the importance of knowledge sharing in the

community as a way to make sure newcomers learn the correct values, attitudes, and

practices, and to give them a sense of being able to discern expertise and right

practices from wrong ones.

It’s just I think that now that this growth is sort of plateauing
somewhat, finally, I think it’s time to go back and refocus on, OK,
here’s really the right way to do this task, or the right way to do [that]
task.

So I think in a way it could use some additional, sort of, start focusing
more on maybe building a community repository that is vetted by the
experts.

More likely third parties [rather than Apple], but people that you can
trust to know the right way of doing things. And it’s just a matter of
just knowing who those people are.

That’s what we hope it to be, for sure. [The programming community
to be a repository of knowledge]. That’s what we hope it to be.

(Robert Walker Interview, May 19, 2012)

Clearly, if the community is to grow in the right way with the right values and

practices, then its members need to know who the masters are that they ought to

emulate. It is these masters that can be trusted to provide newcomers with the right

382

guidance. This is doubly important because of all of the noise and incorrect

information on the Internet.

…We have the web [to find programming information] now, but… it’s
very easy… since there’s so much on the web, to come across
something that isn’t quite right. So you end up incorporating code that
actually has got problems. And you run into those problems and so
that’s where I think that community building can really help out…
And I think that it probably stems from just the immediate explosion
of the iOS platform itself. It went from nobody knowing much about
Objective-C Cocoa programming to a whole new community of people
that have never been Apple programmers in their life before.

(Robert Walker Interview, May 19, 2012)

Because of the noise on the Internet, according to Walker, it is doubly

important for programmers to have a local community of people to interact with and

learn from. Social interaction in physical co-presence with others is key to improving

one’s technical skills.

I spent several years kind of away from programming communities—
you know in college it was a tight-knit programming community, there
was four or five of us that would constantly be working on projects
together in college and after a few years out and away from college, I
started missing that connection with other programmers outside of the
work context…

Where I think these community meetings really come in handy, is
building that community, that spirit, and… just being able to sit down
with another programmer and say, yeah, I’ve been through that pain
myself, and here’s how I got through it… Because sometimes when
you’re stuck on a problem, and you’re not in a community like that,
you feel like you’re on your own.

(Robert Walker Interview, May 19, 2012)

Moreover, participating in the community by sharing one’s knowledge with

others doubly improve’s one’s own knowledge. So having a community is beneficial

for improving one’s programming skill in this way also.

I’ll try to focus on giving a talk on something that I’m interested in
myself in learning. So I think it’s very important if you’re in a
community, to participate. Because you can really learn a lot by just

383

going through the process of figuring out how to show someone else
how the concept works…

(Robert Walker Interview, May 19, 2012)

For Walker then, knowledge sharing is the central activity around which a

programming community is organized. Through knowledge sharing, newcomers are

enrolled and socialized into the norms of the community, and taught what it means to

be a proper member. This also means that newcomers ought to participate, defined as

volunteering to present at a club meeting or conference, writing blogs, posting to

Twitter, or answering questions on Stack Overflow. Proper community members

participate in knowledge sharing because the social work of the community occurs

through knowledge sharing activities. Moreover, because good programmers are

supposed to be constantly improving their skill, and participation helps the sharer do

this, it is also considered an act of self-cultivation. It is because the Cocoa

community is a “community of practice” in Lave and Wenger’s sense (1991) that

sharing and transmitting its knowledge and practice to new generations is so central

to its activity.

Knowledge sharing in the Cocoa community is not only about transmitting

expert knowledge to new generations, however. It is also concerned significantly

with the continual upkeep of knowledge among experts themselves. Programmers in

general understand that their skills must be constantly updated because the pace of

change in the technology industry is so fast. This is as true of Apple’s platform as

any other, but because of the particular nature of Cocoa development, with its tie to

Apple, this means that in the Cocoa community, developers are constantly

responding to technological change originating from Apple itself in a top-down

fashion. Every year at WWDC, when Apple announces new APIs for developers to

take advantage of, a whole new round of learning must take place within the

community, as the experts try out the new functionality made available to them.

Because of the proprietary nature of Apple’s technologies, the actual bugs and kinks

of working with the bleeding edge are worked out in the initial weeks and months

after WWDC, and pitfalls and workarounds are valuable information that experts

384

need to share with each other. When the Cocoa community was small, they only had

each other to share this knowledge with, and although most of their information

came from Apple, frank, unbiased discussion of the pros and cons of Apple’s new

changes required community input, prompting the kind of tight social network we’ve

seen. Despite the authoritative nature of Apple’s official documentation and WWDC

talks, developers understood that Apple had a vested interest in pushing them to

adopt new technologies in order to show off what they could do with it. In practice,

not all of Apple’s new features work as well as they ought to—in 2012, Apple’s

iCloud APIs had been considered notoriously problematic and faced significant

rejection among developers (Cheng 2013). Developers are thus not uncritical

consumers of Apple’s latest software technologies—their own experiences of how

useful versus how difficult and frustrating Apple’s software is for their apps shapes

their views of whether a particular Apple technology is actually any good. These

actual experiences are critically important to share among other developers who may

be contemplating the decision to adopt new APIs. Because Apple’s Cocoa

frameworks are closed source, and documentation on new APIs may not yet be

completed, it becomes even more important for the community to share knowledge

among its members, especially considering Apple is constantly introducing changes

that developers need to react to. Sharing of knowledge among experts is crucial to

the maintenance of the existing community in an environment of constant change,

and is separate from the reproduction of the community through enrolling new

members.

The small, tightly knit, collegial nature of the Cocoa community prior to the

iPhone and the centrality of knowledge sharing to the activity of the Cocoa

community fostered a culture of openness of information that one might normally

associate with open source programmer communities. Many Cocoa developers, in

comparing their experiences in the Mac community with the Windows community,

feel that the Mac community is much more open. This is ironically in direct contrast

to the highly secretive policies of Apple itself, which is known for being draconian

about leaks of future product announcements and technologies. Within the developer

385

community, however, open sharing of information, when not restricted by Apple

NDAs, rivals that of free software hackers.

Yeah, well, the interesting thing about it was the Mac community not
being as large as the Microsoft [or] Unix community, tended to share.
In a very large way.

(Bill Moorhead, Black Pixel Interview, June 12, 2009)

It was very open. More than I found elsewhere. And the people, there
was a huge weeding out of that. So the people that were doing it were
doing it and solving the problems. If you were coming to find a
problem you very—you would find a lot of voices, a lot of the same
voices. And answers to your questions. That was my experience, was
trying to oh, how do you do this, there's somebody there.

(Daniel Pasco, Black Pixel Interview, March 28, 2012)

Mark Dalrymple explicitly felt that Apple’s secretive nature actually

encouraged openness in the community as a reaction:

Maybe it’s in reaction to Apple being so kind of tight-lipped that our
to kind of get our, you know, our interaction—to get more knowledge
about the platform—we’re not getting it from Apple, as good as their
Tech Pubs department is, they can only do so much. They keep on
moving the docs around so they keep on breaking the link, so
sometimes it’s hard to find chapter and verse on some stuff. Where if
you go to Wil Shipley’s blog there’s nice—the Pimp My Code thing—
where he takes somebody’s code and he says, “here’s what they did
right, here’s what they did wrong, and here’s why I believe it.” And
that kind of stuff you don’t get from Apple.

(Mark Dalrymple Interview, April 11, 2012)

Dalrymple analogizes the sharing culture in Cocoa to a sharing culture among

skilled Photoshop users, a culture that changed from one of secrecy and hoarding to

one of openness and sharing.

[Cocoa], It’s not an information hoarding culture. …Actually it’s kind
of like [how] the Photoshop culture was before and after Scott Kelby
formed the National Association of Photoshop Professionals… Before
he did all that stuff… a select group of folks used [Photoshop], they
had all these techniques but they wouldn’t tell you about it. Maybe
they’d sell it to you for $500… And then Scott Kelby came on the
scene and then all of a sudden, very free sharing of techniques and

386

ideas, a lot of it is so he can sell the books, but also… I want to show
off because, hey, this is cool… So he and his crew pretty much
revolutionized the Photoshop world into being a very open and sharing
kind of thing.

And I consider that the core of the Cocoa world is the same kind of
thing… Scott Stevenson, he was another big name [in the community]
before he went to Apple. The Cocoa Dev Central [website]. …This one
site of this guy who wrote all this amazing introductory material just
because he loved the platform and he loved the people and he’s an
awesome person. So it’s like the nucleus of everything.

(Mark Dalrymple Interview, April 11, 2012)

Dalrymple explains the Cocoa culture of openness and sharing in terms of

another community of practice he is familiar with, Photoshop users, and drawing a

direct analogy to it. He hints that this culture is not totally un-self-interested—open

sharing sells books. Moreover, the desire and ability to “show off” something “cool”

builds up the reputation and credibility of the sharer. Reputation economies and

knowledge economies have been shown to go hand in hand in the sociology of

science. Bourdieu has noted that authority, prestige, reputation, and competence are

forms of social capital that are the true stakes of scientific fields, (Bourdieu 1975)

and similarly Latour and Woolgar have observed that credibility, not money, is the

currency that circulates in science (Latour and Woolgar 1986). Similarly, Coleman’s

work shows that open source hackers also work for prestige and reputation, often

showing off through the cleverness of their code (Coleman 2013). The move in the

Photoshop community from more closed, proprietary knowledge to open sharing of

knowledge Dalrymple describes might have been a move from a view of knowledge

as a form of economic capital to a view of it as social capital (a source of reputation

and authority), which, if given away, could be converted into far greater economic

capital than if it had been hoarded.

The culture of openness and sharing in the Cocoa community has thus helped

to foster the rise of some of the famous names in it. Men like Scott Stevenson, who

created websites and online repositories of knowledge, became central nodes in the

social network of the Cocoa community. Similarly, Aaron Hillegass, whose books

and training courses taught almost the entire generation of new Cocoa programmers

387

between OS X’s release in 2001 and the opening of the iPhone App Store in 2008, is

a central figure in the community, whom everyone knows. Hillegass’s books and

courses were almost an obligatory passage point for entry into the community during

these years, and his opinions as to what practices were good and bad have almost as

much weight as official pronouncements from Apple. It did not hurt that Hillegass

himself was a former Cocoa instructor at Apple and NeXT.

Why is openness and knowledge sharing so important to the Cocoa

community? Recall that communities of practice according to Lave and Wenger are

centrally concerned with their social reproduction through the transmission of

knowledge and practice to new generations of practitioners. To this end, knowledge

must be openly shared within the community. However, because newer practitioners

also necessarily change the existing practice through either innovation or the

importation of foreign ideas, this can create conflicts with the old guard, which may

wish to maintain the existing practice.

Nevertheless, valuing openness serves an important moral purpose for Cocoa

developers, especially for indies, whose identity sits uneasily between that of open

source hackers and corporate programmers. On the one hand, indies sell their work

for a profit, but on the other, make a living off of their own ingenuity and creative

production, in which personal reputation is as important, if not more, to making a

sale than money spent on marketing. As we have seen, indies also regularly share

code with each other or make code libraries open source for other indies to use. It is

possible that when the Cocoa community and the Mac market for indie applications

was relatively small, the social capital of reputation was worth far more

economically than the raw economic value of any knowledge that could have been

hoarded, and contributed to the open and collegial culture of the Cocoa indies. This

has since run up against a more traditional view of programming knowledge after the

iPhone gold rush, as large corporations and a lot more money has entered the field.

Knowledge sharing for indies is not just important for social capital, however.

Indies, by definition, are not embedded in institutions or bureaucracies. Lacking, and

388

even disavowing, such resources, indies turn to their social community instead.

Knowledge sharing is crucial in the Cocoa community because the community

provides intellectual resources and social support for indies who otherwise would be

completely isolated. As discussed earlier, the deep social connections among Seattle

Cocoa indies, which provides the context for collegial gifting of intellectual property

amongst friends, is likely a crucial reason for the success of so many Seattle Mac

developers. Despite the indie rhetoric of “independence,” which stresses the idea that

every developer makes it on his (and the indie identity is largely masculine, as we

have seen) own merit, indies rely on the resources of their community and its central

knowledge sharing activity.

Openness serves ideological purposes as well. Aligning themselves more

closely to the openness of the hacker ethic over corporate proprietary values may

also allow indies to proclaim that their identities are programmers first,

entrepreneurs/businesspeople second. It allows them to maintain their stance that

they are in it for the pleasure of programming, rather than pure profit. “Giving back”

to the community via sharing their knowledge allows them to participate in

community and identity building—while simultaneously building up reputation,

which itself has economic rewards, in terms of greater opportunities for employment,

or the selling of books or training courses, or at the very least, increasing the

likelihood of someone else sharing their own knowledge with them, thus improving

their own skills. It also serves to help differentiate themselves from the enemy,

Microsoft. Joseph DeCarlo, a former Windows and now iOS programmer, explained

that Microsoft Windows programmers typically hoard information or sell code

libraries for a price, rather than freely sharing it, and attend conferences sponsored

by Microsoft purely for professional gain, not to make friends or build community.

(Joseph DeCarlo Interview, May 27, 2012) Ironically, this openness puts the Cocoa

community at odds not only with the norms of Windows programmers, but with

Apple itself.

Returning to Lave and Wenger’s notion of communities of practice helps

explain the tensions between elitism and populism in the attitudes of Cocoa oldtimers

389

in regard to newcomers. On the one hand, the survival and growth of the community

and its knowledge of practice depends on sharing this knowledge with newcomers

and welcoming them as legitimately participating peripheral members. However, to

the extent that these newcomers bring with them different or new practices that may

challenge the old orthodoxy, this causes conflicts with oldtimers who conservatively

wish to preserve their existing practices as is. In the language of Bijker’s

technological frames, as newcomers move more centrally into the technological

frame, from low to high inclusion, they subtly shift the frame, something which

oldtimers try to guard against. We will see an example of this in the next chapter

with the debate over dot notation in Objective-C. Experts in the Cocoa community

try to maintain and reproduce among newcomers a techno-cultural frame involving

not only knowledge about technical practice but normative values about that practice.

This involves not just practice but issues of identity as well. In the following chapter,

we will look in depth at the kinds of normative “best practices” advocated by Cocoa

developers, and the reasons for their extremely strong opinions regarding them.

The Cocoa Community’s relationship to Apple

This chapter up till this point has been focused on describing the social

organization of the Cocoa developer community. However, we have not focused

much on the role of Apple in relation to this community, except where WWDC was

discussed. We have seen how Apple uses WWDC to enroll third party developers in

its ideology and to proselytize the normative practices it wants developers to use.

Core members of the Cocoa developer community tend value the social aspect of

WWDC much more than learning technical material from its talks, and are more

cynical of Apple’s corporate messages. Nevertheless, these core members, while

often critical of Apple, are also the most highly included in the techno-cultural frame

of Cocoa development, which is significantly shared between Apple and the third

party Cocoa developer community. We saw in chapter 1 that the most committed

Apple developers, those indies who form the core of the Cocoa community, have

bought into an ideology in which they see themselves as engaged in the same

mission as Apple, and see the company as a partner. Unlike most of the johnny-

390

come-lately iPhone developers who may be more motivated economically, indie Mac

developers are motivated ideologically. They do not need to be proselytized to at

WWDC because they are already die-hard fanatics. They agree with Apple that

usability and aesthetics of applications are important priorities, and they have the

Apple Design Awards to prove it. These developers are not only dependent on Apple

for their livelihoods but chose to become so dependent because they are Apple fans,

and share similar values with what Apple stands for. Mike Lee put it plainly:

The culture of the users and the aesthetic… comes from Apple. If there
was no Apple, there would be no Apple fanboys. Certainly, there’s
kind of a culture and whatnot that have evolved separate from Apple,
but ultimately that’s where we take our cues.

(Mike Lee, Interview, June 23, 2008)

Certainly, most of these men self-selected to become Apple developers, and

understand that the ultimate source of the technology they love comes from Apple

the company. However, there is more to tie these developers to Apple than

fanboyism, shared values or shared economic interest in the success of the platform.

Just as the community itself coheres because of the real social relationships that have

formed amongst its members, the community remains close to Apple because it has

social ties to individuals at the company, formed over many years.

For some Cocoa developers, these ties go back to the NeXT era. After

NeXT’s closure of its hardware business caused an exodus of developers from its

platform, NeXT went out of its way to cultivate relationships with the loyalists who

remained. The NeXT developer mailing list allowed the small population of NeXT

developers direct access to the very NeXT engineers who wrote the frameworks they

were using, and provided a way for them to understand how NeXT APIs worked

despite them being closed source. NeXT developer conferences provided a way for

developers to personally meet with NeXT engineers and form personal bonds.

NeXT was so tiny, the engineers knew us. So we went to NeXT
conferences… all the engineers were on the floor. You could walk up
to them, “Hey AppKit guy tell me about this—” [and] they would
come and they’d talk at the local user group meeting. William

391

Parkhurst [one of the early AppKit managers] would come and talk
about what’s coming on the next version of NeXTSTEP. He was like,
next up for us is going to be this and this. Can you imagine this today?
Like the guy who is running the whole group, coming to a user group
and saying here’s what we’re doing for 4.0, blah, blah, blah. You know,
it was a really close-knit community and we knew, like there’s a tiny
group of engineers that had done NeXTSTEP and there’s a tiny group
of engineers outside of it who is [the] indie community who had
contributed to it, and we were all doing these professional apps that
looked better than anything else on the market, [written by] one or
two… guys.

(Wil Shipley Interview, April 18, 2012)

Similarly, like Wil Shipley, Andrew Stone was able to cultivate a personal

relationship with the original AppKit engineers at NeXT conferences:

So it’s really cool from a sort of NeXT fanboy thing, is that you know
who these people are personally [because you see their names in the
source code header files], and then you want to meet ‘em! And then
you do meet ‘em! And then you see ‘em once or twice a year and it’s
just a great thing because when you have a problem, you can go to
these guys, kind of not necessarily through official channels, because
you’re not big enough. You’re an indie.

(Andrew Stone, Interview, June 7, 2011)

As we discussed earlier, independent developers rely much more on personal

social relationships than on institutional or bureaucratic resources, and this pattern

also applies when it comes to Apple. As we see from Andrew Stone, because he had

a personal relationship with NeXT personnel, he was able to circumvent official

corporate bureaucracy. Because NeXT was a fairly small company, and because it

was so important not to lose developers, it was quite easy for third party NeXT

developers to form such relationships in the mid-1990s.

For men like Shipley and Stone, these bonds continued on to a certain extent

after the Apple acquisition, and they were rewarded for their loyalty. For example, at

Macworld Expo 1997, the first conference where the new acquisition and Apple’s

new operating systems strategy was announced, Steve Jobs invited Andrew Stone up

on stage to demonstrate how quickly he was able to modify his NeXT-based graphics

application, Create, to run on “Rhapsody,” the code name for the NeXTSTEP-based

392

operating system that would eventually become Mac OS X. Another example of the

special status of these small NeXT developers comes from my personal experience as

the Quality Assurance (Test) Engineer for the Cocoa Framework Group (which was

responsible for the AppKit and Foundation frameworks) at Apple from 2000-2005.

At the time of the initial release of Mac OS X in March of 2001, there were very few

third party Cocoa applications to test, and the two applications that I was told to

include in my test suite were Andrew Stone’s Create and OmniGroup’s OmniWeb

web browser. In addition, one day, my manager, Ali Ozer, had a special task for me.

Andrew Stone was running into a bug in Create that he needed some help to

reproduce and track down. I was assigned to personally help him discover the

circumstances for the bug, a task Stone was so grateful for that he gave me an

acknowledgement in the application’s credits. I was never asked to do this for any

other third party developer. That a third party developer would be given such

exclusive, direct access to Apple personnel speaks to the status that Stone’s loyalty

to NeXT over the years had earned the influential former NeXT managers who ran

Apple.

Without such special access, developers must go through the “official”

bureaucratic channels for help, which means dealing with Apple’s Developer

Technical Support group (DTS). DTS is dedicated to helping third party developers

resolve issues with their applications. This support costs money, but can be critical to

helping developers fix bugs, support new features, or avoid App Store rejection.

Getting help involves opening up a “DTS Incident,” which is like a technical support

incident for programmer issues. Developers who pay the $99 a year for membership

in Apple’s developer program get at least one incident for free, with additional

incidents costing extra. DTS support staff are knowledgeable engineers, but are not

the original authors of the code; as such, with more advanced or arcane questions,

they may query the engineer who wrote the code for a more in-depth answer. Thus

normally, third party developers are not given direct access to the engineers actually

writing the code in OS X or iOS, because these engineers are too busy developing

393

the next version of the OS to help answer every developer’s questions. That is what

DTS engineers are for.

Some developers, such as OmniGroup, become important enough that DTS

assigns a support engineer specifically to handle the relationship with that company.

Daniel Pasco and Bill Moorhead of Black Pixel spoke of this process as “getting an

angel.” Not only does this help out significantly with technical support issues, but it

can lead to Apple directing business towards the indie company.

There’s a point at which you get significant enough that somebody at
Apple is kind of informally assigned to… reach out to you once in a
while and tell you about developer kitchens or something like that.

And also to tell you if you’re screwing up, or… just to be there for
help. But we work with a lot of partnership managers at Apple.
Frequently, because for one thing, we keep running into them when
we’re seeing different customers, so we’re, like, doing a project and
there’s the same partnership manager again. It’s the Black Pixel guys
again. And so then they start saying, wow, we see you guys all the
time and we know what you’ve shipped and even if you can’t talk
about it—

So when somebody else comes to them and says we're looking for a
team, they’ll say, well, check out Black Pixel.

That’s an angel at Apple. And… you reach a point where you’re kind
of getting established enough that somebody at Apple at some point,
makes a point of getting to know you, like whether it’s at Dub-Dub
[WWDC] or something like that.

(Daniel Pasco Interview, March 28, 2012)

As Pasco notes, not all of the “angel” relationship is formal. What begins as a

purely bureaucratic relationship can, over time, grow into an informal social

relationship. This social relationship can yield advantages for longtime developers

that newcomers simply do not have.

Another way that indie developers can become known to Apple is by writing

an exemplary application that Apple may decide to feature with a Design Award in

other to encourage others to emulate them. Dan Wood’s Watson, an application that

aggregated multiple web services into a single interface, was one of these. When I

394

was part of the Cocoa framework team, my manager Ali and my colleagues pointed

out Watson to me as an example of an innovative Cocoa app that I should make sure

to test.

When the Cocoa world was still small, it was relatively easy for up and

coming indies to make personal connections with Apple personnel simply by

attending conferences and workshops. Dan Wood says that this was how he became

personally acquainted with the AppKit team:

I actually think there’s an advantage to WWDC being small… the
chance to talk to Apple engineers and I’ve had other opportunities to
go to other small Apple events where there are engineers there, they
call them workshops or they used to call them “kitchens” or stuff like
that. I mean, just having a personal correspondence with members of
the AppKit… or WebKit team, or whatever. Like, I know half the
people on the WebKit team, just because we’ve kind of gotten to know
each other over the years and they know we’re a big user of their
technology, and I go to their parties every year and so it’s fun to see
them.

…Sometimes I’ll go down to Cupertino and have lunch with the
WebKit team… and just kind of see what comes up and meet people
I’ve never met before and talk about something… And all the
engineers are really good at knowing what they’re not supposed to talk
about and it’s not like you’re getting anything—there’s no real
advantage, except just getting a little help and time and perspective on
things and stuff like that.

…If they think you’re going to be spamming them, they’re not going
to be making their contact information available to you in the first
place, so there still has to be some kind of personal connection I think.
Which again, if you have millions of iOS developers out there, there’s
too many out there to make that small personal connection. So it is
nice to have—it’s nice to be part of that inner, sort of inner community
where there’s developers and Apple employees and we’re all just
people. The Apple employees, there’s the official corporate wall, but
there’s just people in there, so.

(Dan Wood Interview, April 9, 2012)

As Wood notes, personal relationships with Apple engineers gain special

access to third party developers who make sure they do not abuse their special

privileges. This applies to not asking for or expecting to receive secret information

395

about upcoming products or technologies, which Apple engineers are constantly

reminded not to divulge, even to fellow Apple employees who have no need to know,

in order to prevent leaks. By not spamming these engineers with questions or

expecting secret information, third party developers build trust with Apple engineers.

Although Wood says that there’s no real advantage, the social relationship itself

creates opportunities for informal interaction, such as over lunch, through which

information of a less classified, but still important, nature, might be passed on—say,

a workaround for a tricky bug that might be difficult to discover on one’s own.

Moreover, informal interactions allow third party developers to find out Apple

engineers’ individual opinions about various issues separately from Apple’s official

stance.

Daniel Pasco of Black Pixel believes that all of the “superstars” in the Cocoa

community have constant communication with Apple personnel that has led to

building direct, personal relationships:

 [Apple], as an entity that you would interact with, maybe, directly,
multiple times a month. Whether you are filing Radars [bug reports] or
talking to people that actually work at Apple and that sort of thing.
But, one thing I would say is that almost everybody in that Who’s Who
routinely has one-on-one conversations with people at Apple. I would
almost bet my life on it.

(Daniel Pasco Interview, March 28, 2012)

This constant communication with Apple, building up a positive relationship

with specific Apple personnel, differentiates the indie developers who are central to

the community from the majority of those at the periphery.

And a lot of these other people don’t. They don’t have tight
connections at Apple. …There’s a lot of the people that we would kind
of self-select for saying that person’s part of our group [Xcoders], are
people that have established tight contacts with people at Apple. Like
they have a good working relationship with them.

(Daniel Pasco Interview, March 28, 2012)

These sorts of personal connections also lead to a phenomenon that ties the

third party community and Apple even tighter together. Just as there exists a

396

revolving door between the Federal government and the industries it regulates, there

is a revolving door between Apple and the indie developer community. In the mid-

2000s, a number of employees of Wil Shipley’s Delicious Monster were poached by

Apple. On the flip side, Mike Jurewitz, a longtime “evangelist” in Apple’s

Worldwide Developer Relations (WWDR) department who had devoted a significant

portion of his career to building connections with the developer community, left

Apple to join the indie company Black Pixel in Seattle. Other prominent indies who

were once Apple engineers include Daniel Jalkut, Matt Drance, and James Dempsey.

The tight social connections between indies and Apple is one reason for the close

identification that indies have with Apple and their sense of a shared, collective

mission with the company, as the social boundaries between the company and the

indie community are somewhat porous. These connections also mean that, for indies,

Apple is not just a faceless corporation but a place where likeminded individuals,

even friends, can serve as advocates for them and their concerns within the company.

In a sense, the Cocoa community exists both inside and outside Apple. This makes

perfect sense if we remember that Cocoa community is a community of practice.

According to Brown and Duguid, technical knowledge travels easily between firms

precisely because the community of practice is composed of social networks that

transcend organizational boundaries (Brown and Duguid 2001, 206). In the case of

Apple, not only technical knowledge but also ideological, normative, and affective

commitments also travel into and out of Apple itself. This explains why core Cocoa

developers are so committed to the same ideology as Apple itself—some of the

Cocoa community is in some sense an Apple diaspora, and continue to spread its

values even without being employed by the company.

This does not mean that the relationship between Apple and its developers is

free of tension or conflict, however. Although Apple and its developers depend on

each other in a symbiotic relationship, this relationship is nonetheless highly

asymmetric, which is inevitable when one party happens to be the largest company in

the world. As the vastly more powerful actor, Apple is not only able to unilaterally

make changes to its technologies, it is also able to make changes to its policies in

397

dealing with third party developers. Occasionally such moves are seen by developers

to be harmful enough to engender significant resistance. For example, when the

iPhone SDK was first made available in a prerelease version for third parties to write

apps in March 2008, Apple required developers to sign a restrictive NDA that

prohibited them from discussing any details of the SDK in public media such as

blogs. This made it very difficult for developers to share knowledge about how to

make iPhone apps at a time where very little was known and no one outside Apple

had any experience. Developers wanted to be able to help each other work out the

difficulties of writing apps using a version of Apple’s iOS libraries that still had

considerable bugs. The NDA prevented authors like Aaron Hillegass from writing

books teaching iPhone development, and even placed a gag order on discussion of

iPhone SDK details at Cocoa conferences not sponsored by Apple. (Foresman 2008a;

Foresman 2008b) Moreover, Apple’s policy violated the norms of the Cocoa

community, which valued the open sharing of knowledge. A Twitter meme,

FuckingNDA, was started by Craig Hockenberry, developer of the Twitter client

Twitterific (Hockenberry 2008). Even when the App Store went live in July of 2008,

allowing developers to sell their apps on the App Store, the NDA stayed in place,

which prevented developers from comparing notes on why their apps were being

rejected. After significant outcry, the NDA was finally lifted in October. Given

Apple’s corporate opacity, it is difficult to discern if plans to lift the NDA had been

in place from the beginning, or if the developer resistance and its discussion in the

tech media played a role in getting Apple to change its policy.

Another area of tension surrounded the decision by Apple in 2011 and 2012 to

require Mac OS X applications sold on the Mac App Store to submit to a new

security policy called “sandboxing,” which restricted applications’ access to files on

the user’s hard drive, as well as other systemwide access. Apps under this scheme

can only read and write files into a “sandbox” area within the application itself. For

example, on the iPhone, all documents created by an app, say, notes taken by the

Notes app, are sequestered inside the Notes app itself. This makes it difficult or

impossible for different apps to modify the same document, and files cannot be

398

easily transferred by the user. This policy had been in place on the iPhone App Store

when it launched, as Apple could reasonably argue that on a mobile phone, security

needed to be heightened by preventing third party apps from writing files across the

file system, a typical attack vector of viruses and malware. However, on the

Macintosh desktop platform, applications had always been able to freely write to

locations on the user’s hard drive outside of the application. Imagine if, for example,

you could not save a Word document to any folder you wanted, but instead Word

documents were saved to an opaque location inside the Word application itself,

preventing you from moving it or copying it. In such an environment, the only way

for the user to back up the file would be for the application to provide built-in

synchronization over the Internet, using cloud-based services such as Apple’s iCloud.

Sandboxing on the Mac platform became extremely controversial because

some kinds of applications, such as utilities, which customized behavior across the

operating system, or needed certain access to hardware, could no longer function

under the security restrictions of the sandboxing regime. Developers who sold apps

through their own channels, rather than on the App Store, were not subject to the

restriction, but some features, such as Apple’s iCloud internet synchronization, could

only be used with apps sold on the App Store, leading many developers to fear that

apps not sold on the App Store would become second-class citizens, or that at some

point, Apple might even disallow them. One longtime Apple journalist, Andy

Ihnatko, argued that sandboxing’s restrictions would disempower users and erode the

Macintosh’s identity as the premier platform for creative content producers. (Ihnatko

2011) Moreover, technical difficulties with Apple’s sandboxing APIs made it

difficult for developers who tried to comply to actually do so by the deadline Apple

imposed. Apple ended up postponing the deadline multiple times, from November

2011 to March 2012, and again to June 2012 (Caldwell 2012). Things got so bad that

some developers publicly announced that they were no longer going to be

distributing their apps through the App Store, as sandboxing would cripple their apps

(Postbox 2012; Atlassian Blogs 2012).

399

Outspoken indie Cocoa developer Wil Shipley suggested that sandboxing was

not only draconian, but the wrong solution to the problem of security on the Mac

desktop platform. On his blog, he suggested an alternate solution: require all Mac

developers to obtain from Apple a security certificate, a file that could prove that

they were who they said they were, and that the software they were distributing came

from them and was not modified by another party along the way. As long as Apple

was the gate keeper for developer security certificates, if any developer created

malware, Apple could revoke their certificate and alter the Mac OS X operating

system to refuse to run software without certificates (Shipley 2011). By the next

February, Apple announced that the next version of Mac OS X, which was 10.8

Mountain Lion, would introduce just such a feature, to be called Gatekeeper. Again,

while it is possible that Apple came up with the feature independently, it is also

possible that Shipley’s blog post suggested to engineers at Apple that such a solution

was the right one. Certainly, the controversy over sandboxing in the Mac App Store

was alienating prominent Mac developers, and whether or not Shipley’s blog was the

source of the Gatekeeper idea, nevertheless it was still most likely a response by

Apple to mollify developers.

Another tension in the relationship between developers and Apple was

described by Michiel Van Meeteren: the phenomenon known as “Sherlocking” (van

Meeteren 2008, 60). Sherlocking is a verb that refers to what happens when a third

party developer’s application is made obsolete when Apple releases an application of

its own, often bundled with the OS X or iOS operating system, that does the same

thing. The third party application is at a competitive disadvantage because Apple can

tightly couple its version to its operating system, and additionally, if it bundles it, it

is free, while the third party app is not. While Microsoft got into trouble with the

Justice Department for similar bundling practices with the Internet Explorer web

browser, Apple’s low PC marketshare keeps it off the anti-trust radar, and it engages

in this kind of anticompetitive, eat-its-own-children behavior frequently. The term

“to Sherlock” specifically refers to an Apple application named Sherlock that was

bundled with both Mac OS 9 and Mac OS X. Originally, Sherlock had been an

400

application that performed Internet searches on multiple search engines at once, at a

time before Google became the dominant player in web search. It also performed

local file system searches based on indexing of files’ contents, before such

functionality was subsumed by the Spotlight feature in Mac OS X 10.4 Tiger. Indie

developer Dan Wood created an application that hosted, in a single place, a

collection of widgets or modules that interfaced with web services, such as movie

times, flights, and recipes. (Today, such functions might be provided on the iPhone

by an app specialized for each purpose.) Playing off the name of Sherlock, Wood

named his application “Watson.” Wood provided an API that allowed other

developers or sophisticated users to create their own widgets, opening Watson up to

user-created modules. Watson was so innovative and well designed that Apple gave

Wood an Apple Design Award for it in 2002. As we discussed earlier, it was highly

regarded by my group, the Cocoa framework group, within Apple. However, in that

same year, Apple released Sherlock 3, bundled with Mac OS X 10.2 Jaguar. Sherlock

3 eliminated the web and file content search functionality of the original Sherlock,

instead becoming a virtual clone of Wood’s Watson application. Wood, unable to

compete, eventually sold the technology behind Watson to Sun Microsystems

(Karelia Software 2005).

This incident caused wide sympathy for Wood in the indie developer

community, and the term “Sherlock” became a verb referencing this episode. Since

then, a number of other third party applications have been copied and put out of

business by Apple, including an application that provided similar web-service

widgets on the user’s desktop, Konfabulator (Gruber 2004). Even in 2014, new

features of iOS have made numerous third party apps obsolete (Tabini 2014). The ire

that Apple provoked among indies was its blatant copying of their ideas. Cocoa

developers took to their blogs to excoriate Apple’s actions, but to no avail. Because

the indie developers who were harmed were single individuals, they would not be

able to afford an expensive lawsuit against Apple, which they would have to face

alone. The indie community is not a labor union with collective bargaining power.

Apple’s power over indies is so asymmetric in this regard that it can run completely

401

roughshod over its biggest supporters and still mostly get away with it, because as

devoted as they are, these indies are likely to still continue developing for Apple’s

platform. Even if they don’t, Apple doesn’t seem to care about one or two

individuals who leave for more equitable pastures: Konfabulator’s developer

abandoned the Mac and ported the software to Windows. Dan Wood sold Watson to

Sun and worked there for a time. However, eventually Wood left Sun and returned to

Mac development with a new application, the graphical website tool Sandvox. Those

developers who loudly proclaim that they would rather be sheep farmers than

develop for any platform other than Apple’s do not really have a choice to move on,

even if they get Sherlocked. Many Cocoa developers like Gus Mueller simply

acknowledge that Sherlocking is simply an acknowledged risk and a fact of life if

one wants to hitch their wagon to Apple. Mueller feels that the proper way to

respond to Sherlocking is not to get angry, but to simply be prepared; developers

should diversify into more than one application, like he has, so that if one of them is

Sherlocked by Apple, he can still make a living off the other. Another way is to be

strategic and try to avoid making apps that are likely to get Sherlocked—applications

like Mueller’s Acorn, which is a graphic editor, are unlikely to be targets of

Sherlocking, while utilities or system enhancements to the operating system, which

could easily be functionality incorporated or bundled into the OS, are simply asking

for it. For his part, Dan Wood, although initially upset over the Watson affair, has

since made peace with what happened. His story provides the example for the right

course of action: if Apple steals your app’s idea, be creative enough to make another

one.

Apple’s actions are not always harmful to developers, however. In some

controversies, third party developers actively seek to enroll Apple’s support on their

side. In 2011, the iOS developer community was concerned over legal action by

Lodasys, which was suing indie developers, who could not afford to fight expensive

legal battles, for infringing on its patent for purchases made from inside an

application (In-App Purchase), a facility made available by Apple that Apple had

already paid to license. (Such companies, which make their money mostly from

402

suing other companies for infringing on the patents they hold, have become known as

“patent trolls.”) In the face of this, developer Mike Lee organized a defense fund for

indies (Cheng 2011; Lee 2011). Initially, it seemed that Apple would stand on the

sidelines leaving its own developers to fend for themselves, which would only hurt

Apple as it would prevent those developers from contributing to Apple’s App Store.

Developers called for Apple to intervene legally on their behalf, and eventually

Apple stepped up (Foresman 2011).

To conclude, Apple’s relationship with its developer community is complex.

Developers and Apple need each other in this symbiotic relationship. Developers are

highly completely dependent on Apple, which provides them with a platform, the

primary development tools they use, a large potential user base, and now with the

App Store, their electronic distribution and payment infrastructure to reach those

users. Apple clearly benefits from having a lot of third party developers; both the

NeXT and the Mac platforms’ relative marginality compared to Windows is

associated with a dearth of available software, while iOS’s dominance over Windows

Mobile is largely due to its command over mobile developers. The network effect

applies: lack of software creates a vicious cycle where users decide to go where there

is more software, leading developers to go where there are more users. Nonetheless,

the more developers Apple has, the less power any individual developer has vis-à-vis

Apple. Many Cocoa developers have complained that after the expansion of the

community post-iPhone, Apple no longer cares about them. The fact that many of

them can no longer get tickets to WWDC anymore might be indicative of this—or

rather, they are no longer special, with Apple now trying to cater to the masses of

new developers flocking to the iOS platform. Indies do understand that, Apple being

a mega-corporation, it pursues what is in its interest first, and sometimes this means

that it pursues short-sighted policies that hurts developers. Nevertheless, indies feel

that Apple would be smarter to keep its developers happy for its platform to thrive.

This is certainly self-interested, but it does not negate the fact that Apple benefits if

its developers do well, and developers do not hesitate to point this out.

403

The Apple developer community, of course, is not monolithic, as we have

seen. The inner core, consisting of indie Mac developers who were devoted to Apple

long before the iPhone, experienced the Apple world in which they could not, and

did not, hope to sell out for billions of dollars. Although they still control the

discourse through their blogs, may have special access to Apple personnel, and thus

can have considerably more leverage over Apple’s actions than any random

individual, Apple cannot ignore the masses of new developers. This can lead to

policies or technological developments that existing Cocoa developers, including

many who were former Apple employees, feel is contrary to the spirit of how things

on the platform should be done. In the next chapter, we will examine a technical

controversy over a change that Apple made to the syntax of its Objective-C language

in 2007. This controversy pitted oldtimers in the Cocoa community against both

newcomers and Apple itself, and due to Apple’s power and the much greater masses

of newcomers, it is a debate that the oldtimers have largely lost.

404

Chapter 6: The Dot Notation Controversy

As discussed in previous chapters, the Cocoa developer community is a

community of practice committed to the self-cultivation of their craft, and to the

techno-cultural frame associated with writing software using Cocoa technology. Part

of this frame involves norms of practice for being a “good” Cocoa programmer.

Within the community, the actors’ term for this is “best practices.”

The proper use of “best practices” mark a Cocoa programmer as an

experienced member of the community, with high inclusion in the techno-cultural

frame surrounding Cocoa. Because best practices are normative, they also figure

strongly in the boundary work that demarcates Cocoa insiders from novices and

outsiders. Such practices, however, are not static, but change over time, often due to

changes Apple makes in the tools and technologies Cocoa programmers use. Such

moments of change can cause controversies in the community, as older members

may variously welcome or resist Apple’s purported “innovations” to the way they do

things. Such controversies take place in the various physical and online forums of the

community: blog posts, conference talks, and debates at local club after-parties.

These discussions can become highly emotionally charged, and reveal what is at

stake in the maintenance of normative best practices. In this chapter, I will examine a

particular controversy that took place from 2009 to 2011 over a feature Apple

introduced into the Objective-C programming language, called “dot notation,” which

was a new way of writing Objective-C code that looked more like code written in

other C-based languages like Java or C++.

How does the community encourage the use of best practices? Some Cocoa

developers work for larger companies such as Google, which can enforce particular

practices. However, many Cocoa developers are indies, who work for themselves.

Moreover, Cocoa developers advocate best practices to others regardless of company

affiliation. The means by which Cocoa developers enforce the use of best practices is

not primarily coercive but normative. Cocoa developers follow best practices not

merely because they are following managerial or institutional directives (although

405

some may be), but also because they face moral disapproval from their peers in the

community. The proper use of best practices in the community is thus seen not as a

discipline enforced upon them by management or even by Apple, but as a form of

self or peer discipline for the purposes of improvement in one’s craft. Moral policing

of best practices by the community can be especially keenly felt by newcomers, who

often commit transgressions of the norms during the learning process. Over time,

such norms become internalized as the newcomer assimilates and moves from low to

high inclusion.

The stakes of the Dot notation controversy

To illustrate the importance best practices have for Cocoa developers, and the

normative and social stakes involved, I will turn to a controversy that occurred in the

community from 2007 through about 2012. Studies of controversies and contestation

have been a central methodological tool in Science and Technology Studies for

examining moments in which scientific or technological consensus has not yet been

achieved, when the role of social, cultural, and political factors, normally hidden or

“black boxed,” can be openly observed shaping the interpretations of scientists over

what “counts” as a discovery. A period of open “interpretive flexibility” is followed

by a process of “closure” in which consensus forms around a particular interpretation

of data; such processes are shown to be social in nature. This was a fundamental tool

of the Sociology of Scientific Knowledge (SSK), especially that of Harry Collins and

Trevor Pinch of the Bath school (Collins and Pinch 1998b; Collins 1981a; Collins

1981b; Collins 1985; Pinch 1986), and was extended to technology by Trevor Pinch

and Wiebe Bijker with the Social Construction of Technology (SCOT) heuristic

(Bijker 1995; Pinch and Bijker 1984), and by Bruno Latour and Michel Callon with

Actor-Network Theory (ANT) (Callon 1986; Latour 1987). Donna Haraway has

separately made contestation an important method in feminist science studies

(Haraway 1989). Scientific or technical controversies are often resolved through

demarcating who gets to decide; thus controversies often involve “boundary work”

around who is, or is not, a valid member of the expert community (Gieryn 1983).

406

In the dot notation controversy we will explore in a moment, the normative

commitments of the Cocoa community are in flux and open to debate, and serve to

bring into relief the ethical stakes of otherwise mundane practice. This controversy

occurred during the iPhone gold rush, a period of enormous expansion in the

community of Cocoa programmers. Existing members of the Cocoa community were

decrying the decreased quality of applications available through Apple’s App Store,

attributing this to the influx of programmers from other platforms who did not share

their values in making “quality” software. With the older core of the community

feeling under siege by a group one informant called “carpetbaggers,” at stake was the

future character of the community: could the newcomers be taught the right values

and practices and be properly acculturated into the existing community, or would

they take over? Pedagogical questions arose. What constituted the “right values” and

“right practices”? For Cocoa developers, these came to be articulated in terms that

would facilitate the making of “quality” software for users. As a result, the debate

over dot notation became conflated with concerns over the boundaries of the

community and the identity of its members. The older practice marked practitioners

as old timers, who attempted to mark the new practice as illegitimate,

correspondingly marking its adherents as outsiders or newcomers.

As we saw in chapter 1, “quality” can mean several things for Cocoa

developers. For some longtime developers, it means “usability,” or “user-

friendliness,” having a well-designed, easy to use human interface. Sometimes

conflated with this is “aesthetics” or “design”—having beautiful graphics, pleasant

or friendly-looking animations, which give the user pleasurable feelings when using

the app. For others, “quality” can mean attention to what the app does—its

functionality, which for many means its utility, how useful it is. This can also

become conflated with “usability” as the design of the user interface can directly

affect its functionality. These definitions of quality all have to do with aspects of the

application at the level of the idea, the design, the business plan, or marketing—

which could be separate from the actual implementation of the app in code, although

for indie entrepreneurs, who must be jacks of all trades, all of these tasks are part of

407

the job description of an independent app developer. On a technical level, however,

software quality often takes on the meaning of whether the software works as

advertised, whether it is stable, and does not have too many bugs. In the software

industry, the job description “quality assurance” usually refers to a software tester,

whose job it is to find bugs and describe under what circumstances the bug occurs so

that software developers can fix them. “Quality” from a software engineering

perspective, then, often comes to refer to the “reliability” of software.

As we saw in chapter 2, concerns over software reliability and risk created the

impression by the late 1960s of a “software crisis.” Increasing reliance on software

infrastructures, coupled with widely publicized failures of large software systems

such as IBM’s OS/360, generated fears that existing programming techniques or

skills were inadequate. Even today, big failures such as the problems with the rollout

of the HealthCare.gov website in 2013 generate concern. To combat the purported

crisis, “software engineering” techniques and methodologies were created as a

response, to discipline programming practice to improve its reliability. Janet Abbate

argues that “software engineering” never became much more than a slogan, an

umbrella term for a smorgasbord of different (sometimes conflicting) techniques, and

primarily a metaphor to boost the professional and social status of programmers

(masculinizing it in the process) by subjecting it to quantitative and systematic rigor.

Ensmenger, Mahoney, and Slayton show that software engineering took on

managerial overtones, and many techniques that fell under the umbrella were

appropriated for managerial (which were proxies for corporate, government, or

military) interests. (Ensmenger 2010; Mahoney 1990; Mahoney 2002; Slayton

2013b) Sociologist Philip Kraft warned about the deskilling of programming by

software engineering techniques. (Kraft 1977) Despite this warning, software

engineering techniques were advocated by and taken up by programmers. “Software

engineering advocates like [Edsgar] Dijkstra and [Fred] Brooks identified as

programmers themselves.” (Abbate 2012, 107) “Rather than resisting structured

methods, some programmers adopted them without any management pressure to do

so, because they saw them as skill-enhancing, not skill-reducing.” (MacKenzie 2001,

408

40) For this reason, “Rather than making programmers obsolete, software

engineering methods became simply another skill that programmers could claim,”

increasing their value as professionals in the job market (Abbate 2012, 108).

Disciplinary practices enhanced rather than eroded programmers’ capabilities, and

became part of the professional identity of programmers.

Crucial to making software more reliable, Ensmenger argues, is making it

easier to maintain. The issue is that software is a socio-technical system in which

social and organizational relations become objectified in the materiality of code,

which becomes obdurate and acquires its own technological momentum, according to

Ensmenger. “Software is history, organization, and social relationships made

tangible.” (Ensmenger 2010, 227) Yet the social and technological environment in

which software is embedded is constantly changing, and software must change with

it, but the facility of making these changes is constrained by the existing software’s

design. Moreover, because even in its initial construction, software projects are often

moving targets, in which specifications are changing, the line between maintenance

and production of software is rather blurry.

New techniques for disciplinary software practices became embroiled in

controversy at the very beginning of software engineering. As recounted by Donald

MacKenzie, computer scientist Edsgar Dijkstra’s 1968 article, “Go To Statement

Considered Harmful,” (Dijkstra 1968) was a polemic that generated a firestorm

among computer programmers of the time. Many procedural programming languages

in the 1960s included an instruction named “go to” (or “goto”) that allowed a

program to arbitrarily jump from one line of code to another. In practice, use of

goto often resulted in confusing, tangled “spaghetti code” that was difficult to read

and understand, making it error-prone, hard to modify and fix, and thus less

maintainable. (In fact, even as recently as February 2014, a security bug in iOS and

Mac OS X was caused in part by the use of a goto statement in C code.) (Poulsen

2014) Dijsktra was the leading exponent of a methodology called “structured

programming” that quickly became associated with software engineering. Structured

programming banned the use of goto, in favor of controlling program flow with

409

“structured” jump mechanisms, using conditional branches, loops, and procedure

calls. Similar to the dot notation controversy, arguments about goto were not only

normative, but came to be expressed as issues of code style and aesthetics. “To

[Peter] Naur [a leading developer of the ALGOL language], excessive use of go to

was inconsistent with the ideals of rigor and careful structuring that inspired the

language: it was not ‘good ALGOL style’; it was ‘ugly… inelegant and

uneconomical.’” [bold in original, emphasis mine] (MacKenzie 2001, 38) The

response from opponents similarly complained that Dijkstra was being dogmatic in

the face of pragmatic reality: “John R. Rice of Purdue University wrote… that he

was ‘taken aback’ by Dijkstra’s ‘emotional’ attack on ‘an obviously useful and

desirable statement.…How many poor, innocent, novice programmers will feel guilty

when their sinful use of go to is flailed in this letter?’” [bold in original, emphasis

mine] (MacKenzie 2001, 38–39) While the controversy over goto is possibly the

most famous controversy over a programming practice, debates over such practices

and “styles” are commonplace among programmers, who are often described as

“religious” about their particular favorite language or platform. (Examples include

Coleman’s description of a Python hacker’s animosity towards Perl (Coleman 2013,

95–98), or the animosity between users of the vi and emacs text editors). Their

emotional responses to what seems like technical minutiae to outsiders matter

because for programmers, such practices structure how they think, and consequently,

what they can make their code do. Disciplinary, normative “best practices” become

associated with an “idiom,” with the ways of thinking and doing of a community of

practitioners, and adherence or rejection of such practices become crucial to their

sense of identity and membership in the community.

For Cocoa developers, an aspect of a skilled, experienced, professional

software engineer is how well he or she designs and implements software so that it is

flexible and easy to change and fix in the future; in other words, “maintainable.” On

a technical level, and on the level of the programmer’s skill, software “quality” thus

comes to mean “maintainability.” Technical debates over particular norms and

practices purported to promote “maintainability” take on larger stakes—whether one

410

is or is not a skilled, professional software developer. Those who did not follow the

“right” practice were implied to not care about following professional standards of

software engineering, making them subject to moral disapproval. Because in the

Cocoa community, “maintainability” is part of a constellation of meanings under the

larger rubric of “quality,” not following practices promoting maintainable software

can become conflated with other values marking a developer as “other”—such as

prioritizing revenue generation over usability, aesthetics, utility, or reliability.

Dot notation explained

At WWDC 2006, Apple announced that it would update its Objective-C

programming language to version 2.0, with several new features. One of these

features introduced a new notation for writing code, known as “dot notation,” that

departed from traditional Objective-C notation while making the code look more like

well-known languages such as Java.

For example, in the new dot notation, to access the visibility status of a button

on the screen, and store the resulting value in a variable named myVar, a programmer

would write:

myVar = button.isVisible;

In the older notation, known as “bracket notation,” the code would be written

in this way:

myVar = [button isVisible];

These two statements make use of different syntax within the Objective-C

language. However, to the Objective-C compiler, the program that translates such

high-level language statements into the ones and zeros of machine code that the

computer natively executes, both statements instruct the computer to do the same

thing—access an attribute of the button object and store the value of that attribute

into the variable myVar. To the compiler, the two statements mean the same thing.

So what is the problem? The reaction to this new feature among oldtimers in

the Cocoa community, the primary users of the Objective-C language, was mixed.

411

While some embraced the change, others reacted with hostility. Over the next few

years, as newcomers flocked to Apple’s iOS platform and learned Objective-C for

the first time using the new notation, people such as Aaron Hillegass, who taught

Objective-C and Cocoa to these newcomers, began to discover common sources of

errors among novices who used dot notation. Things came to a head in 2009, when

Joe Conway, a fellow instructor at Big Nerd Ranch and Hillegass’ co-author on iOS

Programming: The Big Nerd Ranch Guide, wrote in a blog post, “When I teach… I

make sure to tell students never to use it ever, ever, ever again.” Conway was using

his position as a public authority on iOS programming to call for a ban on the use of

dot notation, in contradiction to official Apple policy. One commenter to Conway’s

post agreed, calling dot notation an “abomination,” language which Conway

subsequently took up (Conway 2009). Across the Cocoa blogosphere, other blog

posts emerged, both pro and con. The negative opinions became increasingly

polarized, such as one example proclaiming dot notation to be “100% Pure Evil”

(Reid 2012).

412

Figure 7: Blog denouncing dot notation.

“Dot Notation in Objective-C: 100% Pure Evil,” John Reid, June 3, 2012, Quality Coding,
accessed September 13, 2013, http://qualitycoding.org/dot-notation/.

To understand the reactions, we must return to the code. Code in a high level

language (in other words, source code) is a text that always has at least two

audiences—the computer (more specifically, the compiler), but also, the human

413

programmers who read and write the text. Human programmers are constrained by

the syntax of the language the compiler accepts, which must be formal and

unambiguous so that the compiler can straightforwardly translate the high-level

source code into machine code.40 Although, in the above example, the two statements

are formally equivalent to the compiler, and thus generate the same machine code for

the computer to run, to human readers of the code, they can mean different things. In

other words, although to the computer, the two different syntaxes have the same

semantic meaning, to many human readers, the two syntaxes can represent different

semantic meanings, depending on the human’s previous experience with various

other programming languages. The code, which is unambiguous to the compiler, can

be interpretively flexible to human readers.

Because the normative stakes of the dot notation controversy are rooted in its

technical details, before going deeper, I need to first provide some technical

background on Objective-C and object-oriented programming more generally.

Objective-C is an object-oriented programming language, like Java, Python,

Ruby, Smalltalk, C++, and others. Programs in these languages are constructed by

modeling things (called “objects” in these languages) and their relationships to each

other. Most programming languages prior to this, called “procedural” languages,

constructed programs as groups of processes or “procedures” that the computer runs.

(Depending on the language, these might also be called either “functions” or

“subroutines.”) A grammatical metaphor sometimes used by programmers to

describe this distinction is that object-oriented languages create programs in which

“nouns” are primary, whereas in procedural languages, it is “verbs” which are

primary (Yegge 2006). Procedural programs are often diagramed using flow charts,

which depict the flow of execution of the program as it traverses conditional

40 This is why it is called “source” code—it is the source of what the compiler

uses to create “object” or “machine” code, or in other words, the low-level

instructions handled directly by the hardware, encoded in ones and zeroes.

414

branches, loops, and subroutine calls. Object-oriented programs, instead, are

diagramed by modeling objects, their relationships and communications with each

other.

At the level of machine code, all programs are procedural—low-level

assembly language programs (which are made up of human readable mnemonics that

represent, in one to one correspondence, binary machine code instructions) that tell

the computer to execute one instruction at a time, generally taking one or more data

inputs and returning an output, such as adding two numbers. High level programming

languages, of which all object-oriented languages are a subset, were devised

beginning in the 1950s to allow programmers to express their intentions in ways

more familiar to them, with syntax that either emulated mathematical notation

(FORTRAN) or natural human languages, almost always English (COBOL). High-

level languages also “shield the machine from the programmer” (Mahoney 2002, 96),

providing a layer of abstraction between a programmer and the specifics of the

particular machine (central processing unit or CPU) the program needs to run on. As

long as compilers exist for various processors, a program written in a high level

language is portable, meaning it can be quickly recompiled to run on different

processor architectures. The first object-oriented language, Simula-67, arose from

attempts to create a language for simulation, in which expressing a program by

modeling objects which represented things in the real world was a more natural way

to organize a program than as a collection of procedures for a computer to execute

(Zepcevski 2012). At Xerox PARC in the 1970s, Alan Kay combined ideas from

Simula with ideas from LISP, a very abstract language used in artificial intelligence,

to create Smalltalk, initially intended to be a language and programming

environment simple enough for children (Kay 1993). Kay coined the term “object-

oriented programming,” and the highly abstract and dynamic design of Smalltalk

would influence a number of subsequent object-oriented languages, including

Objective-C, Python, and Ruby.

415

Objective-C largely follows the Smalltalk model for thinking about programs.

Here’s an example. Let’s say I want to model a dog. I have a particular dog ‘object’,

which I can assign a name, “Fido.”

Most object-oriented languages have separate concepts for the general

category of things to which an object belongs (in other words, the general category

of “Dogs”) versus a particular instance of that category (“Fido”). Abstract categories

of things are called “classes” while particular instances of that class are called

“objects.”

Dogs (or, rather, objects belonging to the class, “Dog”) can have a number of

attributes, such as its color, size, and whether he is awake or asleep. These attributes,

called “instance variables” in Objective-C, are defined in the code for the Dog class.

If I want to know if Fido is awake, in Objective-C, I write this code:

[Fido isAwake];

to ask him if he is awake.

Dogs also can respond to commands such as “fetch,” “roll over,” or “play

dead.” These commands, called “methods” in Objective-C, are similarly defined in

the code for the Dog class, and are analogous to “functions” or “procedures” in

purely procedural languages. They represent the “verbs” that the “noun” “Dog”

knows how to “do.”

Thus, if I want to tell Fido to do something, I write the code:

[Fido fetch];

416

Figure 8: Message “fetch” sent to “Dog” object.

Both of these statements are written using “bracket notation” in Objective-C.

Between the two square brackets, the first term is an object and the second term is a

“message” being passed to it. The programmer tells the object inside the brackets to

do the action corresponding to the message sent to it.

Note that asking Fido if he is awake and asking him to fetch look the same.

This is because the mechanism to do so is the same.

In the second instance, I send Fido the message “fetch” and Fido looks

inside his code, and because he is a Dog, finds that a method has been written that

tells all Dogs how to fetch, and runs that code.

Similarly, if I want to know if Fido is awake, I send him the “isAwake”

message, and he looks up the command telling him to reveal to me his state of

awakeness.

This concept is called “message passing” and it is fundamental to how

Objective-C programs are conceptualized. Message passing was also the central

premise in Smalltalk, and Alan Kay argued that in his mind, it was the central

premise of all object-oriented programming (Kay 1998; Stefan L. Ram 2003), in

contradistinction to some popular object-oriented languages (C++, Java), where

telling an object to invoke an action was understood as a variant of a function call.

“Functions,” also known as “procedures” or “subroutines,” are the way procedural

languages, that is, languages organized around processes rather than objects, break

up code into modular sections. This allows functions to be called by other processes

417

(or even by the function itself) over and over again, allowing their code to be more

easily reused and generalized. Because procedural programs are organized around

processes, functions in such languages exist independently from the data that they

manipulate. Thus, the language of “calling” a “method,” like “calling” a “function,”

is based on a procedural, not object-oriented, model of programming, and has bled

into Objective-C discourse in recent years, diluting the notion of message passing

that Objective-C’s bracket syntax reinforces. For example, the same code in Java

would be written like this:

Fido.fetch();

In Java, all method calls are written using a period, or “dot” separating the

object from the method’s name. Java, Python, and many other languages use similar

dot syntax for method calls. Writing method calls like this reinforces the notion that

methods are simply functions attached to objects, and are called just like functions

are. This way of thinking eliminates a key distinction (message passing) between

procedural and object-oriented languages that Alan Kay believes is fundamental,

because Kay’s model of object-oriented programming was based on a metaphor of

biological cells or individual computers on a network that could only communicate

with each other via messages (Stefan L. Ram 2003).

Now, in the above example, I have actually glossed over a detail. I mentioned

that I could access one of Fido’s attributes, his state of awakeness, by sending him

the message, “isAwake.” Fido actually has an internal setting, an “instance

variable,” to store this value. However, like other objects in Objective-C, Fido is a

black-boxed, opaque object. This means that any data stored within Fido in its

instance variables can only be accessed directly by code inside Fido. Other objects,

including other Dogs, cannot see or poke around and change Fido’s attributes

without politely asking Fido by sending him a message first. This principle of

“encapsulation” or “data-hiding” is also commonly understood to be a fundamental

feature of object-oriented languages. Why is this important? Such black-boxing of

code keeps different code components modular, preventing them from accidentally

changing each others’ data, which is a common source of bugs. Moreover,

418

preventing objects from seeing into each other’s attributes keeps them more loosely

coupled, which allows for a program to be more flexible and thus more easily

changed. It also helps to prevent client objects from depending on a particular class’s

implementation details, which can change over time. All of these practices help

produce code that is not only more stable, but more easily maintained.

However, in many cases, such as in our case, we do want other objects to

know Fido’s awake state. To do this, Dogs provide an interface to allow other

objects to access and modify this setting.

This is the “isAwake” command that I send to Fido:

awakeStatus = [Fido isAwake];

“isAwake” is a very simple type of command that just returns the value of

some internal piece of data. In Objective-C terminology, it is a method that returns

the value of an instance variable (in this case, the variable named awake, which is a

Boolean type value, meaning that it can only store YES or NO values). This kind of

method is called a “getter.”

Here is what the code implementing isAwake looks like:

- (BOOL) isAwake {
  return awake;
}

What if I want to tell Fido to go to sleep? I need a way to modify the value of

Fido’s awake setting. Luckily, dogs have another command, which I can use to

change Fido’s awake setting to NO. This type of command is called a setter.

[Fido setAwake:NO];

The code implementing this setter looks like this:

- (void) setAwake:(BOOL)newAwakeValue {  
 awake = newAwakeValue;  
}

Getter and setter commands are very simple, but with every setting inside a

Dog that I want to be accessible and modifiable by other objects, let’s say, the Dog’s

419

owner, I need a corresponding getter and setter. Writing “boilerplate” code like this

over and over again gets tedious.

So in 2007, Apple added a way to automatically generate these getter and

setter commands automatically. It called this feature, “properties” to signal to

programmers that these values can be thought of as properties (or, in other words,

attributes) of the object, and that there should be a standard way of accessing them

and changing their values. It also creates a layer of abstraction between the idea of

the object’s “properties” from how such attributes are actually implemented—the

fact that the object stores these values in its memory as instance variables. Now,

instead of thinking of whether or not Fido has a variable that stores the awake

setting, I think of whether or not Fido has the awake property, and whether or not

that property is readonly, meaning that it cannot be changed (in other words,

immutable), and thus only has a getter, or whether it is read-write, meaning that it

can be assigned a new value (in other words, mutable).

With the properties feature in Objective-C, one can simply write this code to

declare that awake is a property of dogs that can be read or written to, and the

appropriate getter/setter methods, and the instance variable storing the actual value,

are all automatically synthesized by the compiler. Declaring a property is now just a

simple one-liner:

@property BOOL awake;

A programmer no longer needs to create an instance variable inside Dog

objects called awake, nor manually write getter and setter methods. While these

tasks are not difficult, if a class has many of such properties, it can become quite

repetitive. And until 2011, when Apple added a way to automatically manage

memory in Objective-C, setter methods could be tricky to write correctly without

causing memory bugs.

Note that there are other ways I could have written code for Fido to wake up

or go to sleep. I could have written methods that look like this, which internally just

set the awake instance variable to YES or NO.

420

[Fido wakeUp];

  [Fido goToSleep];

These methods are implemented like this:

- (void) wakeUp {
 awake = YES;  
}

- (void) goToSleep {  
 awake = NO;  
}  

These are just regular methods, not getters and setters, because the name of

the message I send to Fido isn’t a one-to-one mapping with Fido’s internal awake

setting.41 Although these methods do the same thing internally as standard setters, to

human programmers, they mean semantically different things. For example, let’s

examine the following two lines of code again:

(1) [Fido isAwake];

(2) [Fido wakeUp];

41 The reader might have noticed that isAwake is not necessarily a one-to-one

match with the awake instance variable either. In Objective-C, a convention for

writing getters and setters for a variable named awake normally is to write a getter

named awake and a setter named setAwake. Such conventions originate as social

practices and are usually enforced normatively. These conventions are followed by

the compiler when automatically synthesizing getters and setters for a property

declared awake. (This convention differs from Java, where a getter would be named

getAwake.) However, in this case, awake sounds like a verb, not a noun, and

leaving it like this would be confusing. Another convention in Objective-C states that

Boolean (or On/Off) values should have a getter starting with the word, “is,” as in,

isAwake. However, the compiler must be told explicitly to allow for a custom getter

name in this case, as this is not the default. To get the compiler to automatically

synthesize a getter called isAwake, the property can be declared like this:
@property (getter=isAwake) BOOL awake;

421

Line 1 is like an adjective. I ask Fido if he is awake or not. Line 2 is more

like a verb, a command. I tell Fido to wakeUp.

Now, I could have written Line 1 like this:

(3) [Fido awake];

The normal convention for getter methods in Objective-C states that a getter

method should have the same name as the instance variable it is retrieving. Thus, the

getter accessing the awake instance variable should also be named awake. This

differs from the Java convention, which would prefix the getter with the word “get,”

so that it would be named getAwake. Such rules are known as “conventions” among

programmers because they are social practices enforced normatively, not

mechanically by the compiler.42 The compiler will allow a programmer to manually

write a getter called getAwake, but the programmer will be looked at askance by the

Cocoa community. All of Apple’s APIs follow these conventions, and thus if one

does not follow them, there will be inconsistencies of style between one’s own code

and when one needs to call code in the Cocoa frameworks.

Note, however, that Line 3 is semantically confusing, because it is not clear if

awake is a verb or an adjective—am I telling Fido to awake, or asking him if he is

awake? This is also considered bad style by the Cocoa community, because of the

ambiguity in meaning. There is another convention that addresses this. Because

awake is actually a Boolean value, which models On/Off state, the convention states

that Boolean properties should have a getter prefixed with “is,” and then the name of

the instance variable the getter is accessing, so we have the resulting getter,

“isAwake.”43

42 The compiler will, however, generate getters and setters following the

standard Cocoa naming conventions when declaring properties.
43 This is all well and good when writing getters manually, but the compiler

follows the normal convention when automatically synthesizing getters. To tell the

422

Whether the method is named awake, getAwake, or isAwake, however,

does not matter at all to the compiler. It understands that in all three of these cases, a

message is being sent to Fido, telling it to run a command, and it looks up the

method implementation corresponding to the name of the message, awake,

getAwake, or isAwake. It will then translate this into equivalent machine code. The

name and its meaning matter only to human programmers.

All Dog objects (objects belonging to the class Dog) would know how to run

these commands, but only Dogs. A Car object wouldn’t know how to wake up if the

wakeUp message were sent to it, because no method named wakeUp has been

implemented in the code for the Car class, and this would trigger an error at runtime.

So far, all of these examples have been written in the traditional Objective-C

bracket notation. Recall line 3:

(3) [Fido awake];

With dot notation, we can rewrite line 3 like this:

(4) Fido.awake;

Again, to the compiler, this is equivalent to line 3, and translates to the same

machine code.

According to Apple engineer Chris Hanson, dot notation was introduced to

reduce the confusion between something that looks like a “verb” (what he calls,

“behavior”) and something that looks like an “adjective” (what he calls, “state”)

(Hanson 2009). Apple introduced dot notation alongside the property feature in

Objective-C, and intended that it only be used to access the property-like attributes

of an object, aspects of the object’s current state stored internally in variables. Dot

compiler to synthesize a getter with a custom name when declaring a property, one

would write this code:
@property (getter=isAwake) BOOL awake;

423

notation was not supposed to be used to send objects commands, even though

properties are implemented by the compiler as calls to getter and setter methods. The

reason that human programmers are used to seeing dot notation used for accessing

state is because in languages whose syntax is derived from the programming

language C, this looks like it is reading Fido’s awake variable directly. C has been

one of the most popular languages in the industry, and newer languages, such as Java,

have tended to use modifications of C’s syntax because it is familiar to most

programmers.44

Note that line 2,

(2) [Fido wakeUp];

can also be written in dot notation like this:

44 In Java, the same line of code (both 3 and 4) would be written:
Fido.awake();

In keeping with Java conventions, however, it would most likely be rewritten

as:

Fido.getAwake();

The parentheses mean that awake() and getAwake() are method calls—

parentheses hold inputs, and an empty pair of them means the method takes no inputs.

It is possible, in Java, to declare instance variables in a class to be “public,” meaning

that those variables are now accessible to other objects without requiring getters and

setters. If the awake variable was declared public, we could access it directly using

dot notation like this:

Fido.awake;

Note the similarity with the getter of the same name, the only difference

between going through the getter and direct access being the presence of parentheses.

Perhaps this is the reason for Java’s convention of prefixing getters with “get,” so

that there is more visible difference between the two.

424

(5) Fido.wakeUp;

There is nothing preventing a programmer from doing this. Apple’s

Objective-C compiler will happily accept this code, as line 5 is equivalent to line 2.

However, Cocoa programmers frown upon this and consider it bad style. Why?

Because wakeUp is supposed to be something that a Dog does, part of its behavior,

not something that represents an attribute, or the state, of a Dog. The community’s

opinion here is in line with Apple’s intentions—Apple discourages programmers

from writing code in this way in its style guidelines. However, its compiler will not

mechanistically enforce this convention. Apple, and the community, both rely on

persuasion to spread the acceptance of this convention.

Our original getter, isAwake, written in bracket notation looks like this.

(1) [Fido isAwake];

In dot notation, this is now rewritten like this:

(6) Fido.isAwake;

From Apple’s perspective, Line 6 now maximally expresses a programmer’s

intention that awake is a property of Fido and that we are accessing it. It does this

both through the naming of the getter (isAwake) and through the use of dot notation.

There is now a clear difference from Line 2:

(2) [Fido wakeUp];

In using a verb as the name of the message, and in using bracket notation, the

programmer signals that this is telling Fido to do this behavior, meaning, we are

telling Fido to wakeUp.

Thus, Apple’s official stance, explained in detail in a blog post by Chris

Hanson, is that bracket notation should be used to trigger an object to perform

behavior and dot notation should used for accessing an object’s state (Hanson 2009).

Herein lies the controversy, however. Opponents of dot notation, such as Big

Nerd Ranch’s Joe Conway, argue that even Apple-sanctioned, “proper” use of it,

such as in line 6, is bad. Conway makes the argument that no Objective-C

425

programmer should ever use dot notation. Why? Conway and others claim that it is

actually more confusing than the problem that it is intended to solve. Conway argues

that rather than making code less confusing to read, dot notation makes it more

confusing, because the meaning of the code now becomes ambiguous.

Here I must take an aside to explain that Objective-C is actually a hybrid of

two different languages. Firstly, it is fully compatible with C, the most popular

procedural language in use by the software industry, meaning that existing C source

code can be mixed into an Objective-C program without alteration. For a high level

language, C is actually very low-level, with features that allow access to hardware

that most other languages prevent. For many programmers, C is the closest one can

get to assembly language programming without paying the complexity and

portability costs of actually programming in assembly, and because it allows such

low-level manipulations, programs in C, like in assembly, can be tuned for maximum

performance, making C attractive for coding infrastructural software such as

operating systems. C was created at Bell Labs in the 1970s in conjunction with the

Unix operating system and was used to program Unix, and its popularity spread

alongside that of Unix. As mentioned earlier, its dominance in the industry by the

1980s led many subsequent programming languages to adopt C-like syntax for its

familiarity.

Because C is a procedural language, it is organized not around objects but

around processes (which are broken up into functions in C). Unlike Objective-C

methods, C functions are not tied to objects, but exist autonomously in the code.

However, procedural languages like C still need a way to collect heterogeneous types

of data together and pass them around as a group. In C, this is called a structure, or

struct, for short. Think of it like a box into which you can throw a bunch of

different things. Unlike Objective-C objects, structures are not black-boxed, but

transparent. The data stored inside can be freely accessed by functions with no

restrictions.

426

Objective-C was created by Brad Cox in the 1980s. Cox was an admirer of

Alan Kay and Xerox PARC’s Smalltalk language, but noted that Smalltalk had

limited commercial success because it was not compatible with the large corpus of

programs being written in C. In order to bridge the gap, Cox added a small set of

extensions to C to add objects and message passing, thus creating a language that

was a superset of C. Cox introduced bracket notation to clearly delineate when a

programmer was writing Objective-C code in the message passing style, and when

one was writing standard C code. This allowed Smalltalk-styled object-oriented code

to coexist simultaneously with procedural C code that could be taken from existing

legacy code bases, giving Objective-C flexibility and compatibility. The object-

oriented style allowed a programmer to design the program at a highly abstract level,

but when the program needed to be optimized for performance, he could drop down

to the C level to get at the bits.

In C, to access a piece of data inside a structure, a programmer uses the dot

operator. Let’s say we have a structure which represents a window on the screen,

which as a height and a width. We would access its height like this:

x = window.height;

Thus, structure access in C uses a form of dot notation. Because Objective-C

is fully compatible with C, this is also true in Objective-C. This code is unambiguous

in C, and also in Objective-C before the introduction of dot notation for properties.

However, in Objective-C, I can also have an object that represents a window.

Before the introduction of dot notation, if I wanted to access the window object’s

height, I would call its height getter method using bracket notation:

x = [window height];

But now with dot notation for properties in Objective-C, it is possible to write

this to access the window object’s height:

x = window.height;

Now, there is no way to tell if window is an object or a structure!

427

This is the heart of Conway's argument. A programmer, reading this code, can

no longer tell, at a glance, which of the two possibilities she is seeing. One of the

norms within the Apple programming community is that code should be readable,

clearly understandable with a minimum of effort. One should not have to write extra

comments in the margins to explain what a piece of code does; in other words, it

should be “self-documenting.” Code readability is a normative virtue held by many

programming communities, though not necessarily all—as Coleman has shown, Perl

hackers show considerable pride at writing purposefully obfuscating code in order to

demonstrate their own cleverness (Coleman 2013, 93). Even among programmers

who value readability, however, different groups have different criteria for what they

consider “readable.” As we will see later, Objective-C programmers consider

expressive, verbose code to be readable, a preference that distinguishes them from

programmers who prefer other languages.

Another opponent of dot notation, Marcus Zarra, wrote on his blog: “[Dot

notation] makes the meaning of your code unclear. Objective-C is known for its self

documenting nature.” Because of its ambiguity, “Dot Syntax removes that.” (Zarra

2008)

Similarly, Conway argues:

The naming conventions used in Cocoa and Cocoa Touch are clear and
straightforward. When we look at well written Mac or iPhone code, we
can tell exactly what is going on by glancing at it. That’s the power
that Objective-C gives us. If I want an object to take a drink of water
while doing a cartwheel, I send it the message:

[obj takeDrinkOfLiquid:water
 whileDoingCartwheel:YES];

We know exactly what that means. There is no room for interpretation.
(Conway 2009)

Note, the “we” Conway is referring to is an experienced Objective-C

programmer. Obviously, an average person off the street would have no clue what

this code means. Additionally, an experienced Java programmer might also have

trouble parsing this statement.

428

Jeff Lamarche, a dot notation proponent, however, disagrees that the meaning

of any line of code is immediately obvious without putting it into the context of other

code.

But, when do you ever look at a line of code in a vacuum? You don't.
Code has no meaning taken out of context…

You can’t obscure something that you don’t have a reason to know.
The amount of information that bracket notation gives us over dot
notation is trivial and not enough to make an informed decision about
what the code is doing anyway, so you have to consider its context. If
it’s not your code, you have to look at the preceding code to
understand it anyway. [emphasis in original] (Lamarche 2009)

Lamarche makes another argument as well. It is not the job of the language to

discipline programmers from doing bad things, but rather to give them tools to solve

problems. Tools can be abused, but it is part of being a good programmer to use them

wisely. All programming languages give programmers the ability to do bad things

(programmers commonly call this, “giving them the rope to hang themselves”), but

some languages are designed to be more permissive, and thus more powerful, than

others. Objective-C is such a language. To prevent abuse of these features, Lamarche

argues, it is up to the community to inculcate proper norms of use, and individual

programmers to learn good judgment.

Any programming language, to be useful, has to allow some kinds of
bad code. I doubt it’s possible to create a programming language that
doesn’t “allow” an inexperienced programmer to do all sorts of
completely horrible things. I could come up with dozens of examples
of ways that Objective-C 1.0 [before dot notation] “allows” you to do
bad things. (Lamarche 2009)

Lamarche contends that bad code is bad code, regardless of whether dot

notation or bracket notation was used to write it. The problem lies not with the

language or the syntax itself, but with the practices of the programmer. This

argument is “predicated on a programmer doing something wrong and can both be

demonstrated just as easily without using dot notation.” (Lamarche 2009)

Furthermore, Lamarche argues that permissiveness, rather than safety, is one

of the fundamental elements of the Objective-C language, as designed by Apple.

429

“I actually find it hard to believe that an experienced Objective-C
programmer would even attempt this argument because, frankly, it
sounds like an argument you’d get from a C++ programmer.
Objective-C is a permissive language. It’s in Objective-C’s DNA to let
you do things. […]

These are intentional design decisions. This language is designed to
give you a lot of flexibility and puts trust in the developer that you’ll
use its features appropriately. Objective-C’s dot notation doesn’t run
contrary to that in the slightest. In fact, it’s a logical extension of that
underlying philosophy. They’re faulting dot notation for something
that’s inherent in Objective-C. (Lamarche 2009)

Lamarche is implying that one of the values driving Apple’s design of

Objective-C is that it allows developers to “do bad things” because by doing so, it

also gives them the power and flexibility that they would not have if the language

was designed to prevent them from making mistakes or writing malicious code. This

involves Apple putting “trust” in its developers to use this power “appropriately.”

Because the language does not enforce certain practices but is permissive, it is up to

the community of programmers to develop the norms of practice to guide them in

writing code that does not “do bad things.”

The specific target of Lamarche’s critique is a coding style guideline

(Pinkerton, Miller, and MacLachlan 2014) written by Google to establish standards

of practice by Google employees writing Objective-C code for OS X or iOS

programs, as well as contributors to Google open source projects for these platforms.

Google’s arguments for banning dot notation follow the same lines of logic as

Conway and Zarra. Google as a corporation did not really have a large stake in the

debate, given that Objective-C likely makes up only a tiny fraction of the all of

Google’s code. Dave MacLachlan, one of the authors of the Google style guideline,

writes in the comments to Lamarche’s post that the decision was the result of internal

Google discussion and voting (with those on both sides in the discussion), and that

the result was not meant to be “used by someone as a definitive statement on the

correctness of using dot-notation in Objective-C.” He also notes that another reason

for the ban, which was never mentioned in the guideline itself, was that at the time of

the writing of the guideline, Google had to support older code that would run on Mac

430

OS X 10.4, which did not support dot notation. He also acknowledges that the style

guideline is a living document and that it is open to change, and that practices within

the company, including his own, were also starting to change. As of today, the

universal ban has been removed from the guideline, although it still recommends that

dot notation only be used for properties (Pinkerton, Miller, and MacLachlan 2014).

What is interesting, however, is that though it was the result of internal

discussion and debate at Google itself, in 2009 Google’s public style guideline lent

institutional legitimacy to the proponents of a dot notation ban, who were otherwise

drawing on their own authority as experts in the Cocoa community of practice. This

made the style guideline an important target to debunk for dot notation’s supporters,

like Lamarche:

Google makes the case that dot notation is bad because it can result in
confusing code when a developer pays no attention to established
naming conventions or makes really poor design choices. But these
problems have nothing to do with dot notation. Poorly written code is
poorly written code. The simple fact of the matter is, if you’re trying
to read code like that, nothing is going to help. With, or without dot
notation, the code will be hard to read because it’s bad. The correct
solution in that situation is to fire or train the developer who wrote the
offending code. (Lamarche 2009)

Note that Lamarche argues here that it is not the use of dot notation per se,

but the improper use of it by an unskilled developer that is the problem. Lamarche is

claiming that skilled developers can agree that objectively, there is such as thing as

“poorly written code,” and that they can all recognize it when they see it. His larger

point is that the problems people are blaming on dot notation are not technical or

formal problems with the language itself, which can be solved simply by banning the

use of dot notation. For Lamarche, the real problem is the low level of skill of the

many programmers (likely newcomers) who are writing this code, who have an

inadequate understanding of Cocoa and are insufficiently trained in its normative

practices. A strict language cannot by itself force an unskilled programmer to write

better code. The solution cannot be dogmatic or mechanical—as a social problem, it

must be solved managerially or pedagogically. These programmers need to be better

431

trained to follow proper naming conventions or make better design choices—the

community must do more to integrate them into their practices.

When it introduced dot notation and properties in Objective-C 2.0, Apple

likewise decided against mechanistically enforcing correct practices. It could have,

for example, written the compiler to emit errors if a programmer tried to use dot

notation for normal method calls rather than property access. However, it did not do

this. It is possible that Apple developers are used to a certain degree of freedom in

their coding practices and the community might have interpreted such a move as

overly draconian. Instead, Apple relied on persuasion to encourage the adoption of

best practices. Apple has a number of ways to persuade developers—its online

documentation and learning materials can clearly state guidelines, and sample code

can give examples of proper use. Apple also has a bully pulpit at its developer

conference, WWDC, where it often explicitly recommends practices in presentations.

Apple is not unique here. Companies that provide toolkits and platforms for

developers rely on varying combinations of technological enforcement versus

normative persuasion to exhort their developers to follow certain practices, and the

particular mixture can change over time. Microsoft, similarly to Apple, has

technology “Evangelists” who promote the adoption of new APIs and ways of

writing code. Apple itself has gradually tilted towards increasingly mechanized

enforcement of practices, as changes to the Objective-C compiler have increasingly

begun to count on code following established conventions. Beyond the official

corporate line, individual Apple engineers like Chris Hanson can also give their

opinions on their own, though it is likely that they self-censor opinions they know to

be contrary to company policy, and thus the ones you see are probably in-line with

mainstream thinking at the company. Because such individuals appear to represent

themselves, rather than the official line, however, this can actually lend their

comments greater weight as coming from the horse’s mouth, rather than through a

PR filter.

One crucial difference between Hanson’s position and Conway’s is that for

Hanson, dot notation is useful because it allows programmers to see the conceptual

432

difference between the properties of an object (its state) and the actions it can run (its

behavior) instantly, at a glance. This allows programmers to think at a higher, more

abstract level. Hanson is privileging higher level understanding.

For Conway, however, the syntax masks the fact that when dot notation is

used, an action has to take place (a ‘getter’ method is run) to return the property that

is being asked for. Depending on how the action is implemented, additional things

could be happening that are now hidden from the programmer, making bugs hard to

track down. What looks like simply reading a piece of data is actually running some

more complicated code. This obfuscation decreases transparency and thus

understandability. Conway is arguing that understanding what the code is actually

doing, meaning its lower-level implementation, is important for practical reasons.

Conway is privileging lower level understanding.

Both sides are arguing that the use or non-use of dot notation makes code

more readable. It is a struggle between two different idiomatic conventions. Hanson

is arguing for a new idiomatic practice whereby the use of the new dot notation

syntax clearly signals state versus behavior, thus making a programmer’s intention

more clear.

Conway and others, on the other hand, claim that dot notation confuses the

idiomatic convention that has been in Objective-C from the beginning: message

passing.

Again, from our example above:

x = [window height];

Bracket notation indicates that the first term in the bracket, window, is being

sent the message height. The window object then runs a method that returns the

value of the height instance variable stored within window. It makes clear that an

action is occurring.

x = window.height;

433

However, when one uses dot notation, like the above, it doesn’t look like an

action is occurring. It looks like the height variable is simply being read directly,

as if window were simply a transparent structure and not an object with access

restrictions. The ambiguity arises because of Objective-C’s hybrid nature, being

compatible with C. With dot notation, it is impossible to tell whether window is a C

structure or an Objective-C object; bracket notation, on the other hand, is exclusive

to Objective-C objects and message passing.

Why is this important to Conway? Being involved in training new Objective-

C programmers at Big Nerd Ranch, the primary reason for him and his boss and co-

author, Aaron Hillegass, is pedagogical. Due to the mobile app market explosion,

hordes of new programmers now want to learn iOS, and the Cocoa Touch SDK that

Apple provides for writing iOS apps are all written in the Objective-C language,

previously ghettoized into the NeXTSTEP and Mac OS X minority platforms. Thus,

a majority of programmers new to iOS have experience in more widely used

languages as C++, Python, PHP, and Java. Java is heavily used in university

computer science courses, and thus one can expect most recent computer science

graduates to be familiar with its syntax. C++ was dominant for applications

programming in the 1990s, Java became dominant for enterprise server software, and

PHP and Python for web servers.

All of these languages have syntax derived from C, and thus use dot notation.

However, they use it for both accessing attributes (instance variables) and running

actions (methods). Methods, however, would be indicated by a pair of parentheses, to

allow for inputs. In Java, the same line of code to call window’s height getter might

look like this:

x = window.height();

However, in Java, instance variables can be configured with different read

and write permissions to allow “public” access to them directly, without having to go

through getter methods. To access the height variable directly, the code would be

written like this.

434

x = window.height;

Now, say our Java programmer is now learning Objective-C. This code could

appear in either language, but they mean different things. While a human

programmer might write this code to express the same intention at a highly abstract

level (accessing some attribute of this window), to the Java and Objective-C

compilers, they mean different things, and they will implement different code paths.

Our Java programmer may assume that this code works the same way that it does in

Java, which does not call the getter for the height, but is simply reading it directly.

However, this same code in Objective-C hides the fact that a getter is being

automatically generated for the programmer by the compiler. Dot notation is simply

a convenience, but it hides operations that Apple’s tools are doing for the

programmer behind the scenes: automatically synthesizing getter and setter methods

so that the programmer doesn’t have to spend time on these repetitive tasks.

Understanding what Apple’s tools are doing is critical to learning how Objective-C

and Cocoa works, and to build up knowledge and skill. This also reveals a persistent

trait of Apple’s tools and frameworks—while they often make things more

convenient, they also hide and obfuscate what’s really going on, making them more

difficult to understand. It can be very simple to do simple things, but more

complicated and advanced functionality requires a deep understanding of what

Apple’s tools or code libraries are doing behind the scenes in order to know the right

places or times to “hook” into them in order to inject custom behavior. Thus, Apple’s

tools paradoxically make programming both easier and more difficult—they do a lot

of things for the programmer, freeing her to focus on more abstract design tasks, but

require substantial time in learning what they are actually doing. Cocoa is an

enskilling, rather than a deskilling, technology.

This highlights the importance of pedagogy in the Cocoa community. Because,

as Aaron Hillegass argues, the full power and productivity benefits of Cocoa

technology can only be unleashed after deep understanding of how Cocoa works is

obtained, learning is vital. Thus, it is primarily for pedagogical reasons that Hillegass

and Conway insisted on avoiding dot notation.

435

Dot notation, because it mimicks the syntax of other languages, does not force

learners to radically reconceptualize how objects are told to run commands. In Java,

C++ and other object-oriented languages, methods are simply functions to be called,

and dot notation reinforces this conceptualization. Bracket notation, following

Smalltalk-style syntax, emphasizes the conceptual notion of messaging passing.

Proponents of bracket notation argue that understanding message passing is akin to a

Kuhnian paradigm shift (Kuhn 1996). The roots of this thinking lies in the

appropriation of Kuhn’s term “paradigm” into computer science to describe different

categories of programming languages, such as procedural, object-oriented,

imperative, or functional, that are so different from each other that they require

completely different ways of thinking in their use. Part of the reason for this

appropriation is that the originators of these programming “paradigms” found it

discursively useful to argue that their new method represented a fundamental break

from the past, which required programmers to upend or invert their previous ways of

thinking, despite the fact that the new languages borrow or build on concepts in

earlier ones. For example, Zepcevski comments on differences of opinion between

computer scientists Niklaus Wirth and Tony Hoare as to whether object-oriented

programming merely aggregated and emphasized concepts such as modularization

that were already known, as Wirth argued, or whether it represented a fundamentally

new way of thinking about how programs are organized, as Hoare argued (Zepcevski

2012, 275). This bears similarity to the oxygen/phlogiston debate in chemistry

described by Kuhn. The existence of hybrid-paradigm languages, such as C++,

would seem to disprove the idea that object-oriented programming is a different

paradigm from procedural programming. After all, to be a paradigm in Kuhnian

terms, the two sides must be incommensurable, and how can they be

incommensurable if it is possible to blend the two paradigms together in a single

language? Nevertheless, proponents of “pure” paradigm languages, such as Smalltalk,

argue that hybrid languages, by providing training wheels for programmers new to

the paradigm, do not force them to make the requisite mental shift necessary to see

things in a completely different way, resulting in them never truly understanding the

436

language properly. It is as if a physicist continued to think in classical Newtonian

terms despite working in a relativistic system.

Although Objective-C is also a procedural/object-oriented hybrid language,

its partisans have argued since the NeXT era that programming in it forces

programmers to shift into a more object-oriented way of thinking, because of its

emphasis on message passing, a concept derived from Smalltalk, which Objective-C

borrowed from liberally. Alan Kay, who developed Smalltalk and coined “object-

oriented” to describe it, considered message passing fundamental to object-oriented

languages, and for this reason, would probably not consider C++ a true object-

oriented language (Stefan L. Ram 2003). Although Objective-C mixes procedural

and object-oriented code together in the same language, it features completely

different syntax for each, so that even when working in the same language, a

programmer is forced to visually shift between procedural and object-oriented code,

reinforcing the mental shift between procedural and object-oriented problem-solving.

C++, with its unified syntax, does not force this mental shift, as it was designed by

Bjarne Stroustrup to be an evolutionary step from procedural C, gradually adding in

object-oriented features, rather than a revolutionary break (Stroustrup 1993).

Similarly, Objective-C uses terminology that would be completely foreign in

a procedural language. For example, in Objective-C, the object receiving the

message is still called the “receiver.” C++’s terminology of “member functions” and

“data members,” by contrast, refers back to more procedural concepts. Objective-C

purists try to ensure terminological purity in not referring to terms that imply

procedural concepts. For example, when I was at Apple between 2000 and 2005,

John C. Randolph, at the time a Cocoa Evangelist for Apple, frequently reiterated to

me that it was incorrect in Objective-C to “call a method,” and that the proper term

was to “send a message” to an object (the “receiver”), the message containing a

“selector” which would tell the object which “method” to dynamically “invoke.”

Because “methods” are known as “member functions” in C++, the procedural notion

of “calling” a function naturally transfers over. Although Java refers to “member

functions” as “methods,” like Smalltalk and Objective-C, it uses C++ style dot

437

syntax to invoke them, with the result that the term “to call a method” is widely used

in Java. Objective-C’s bracket-notation, on the other hand, is derived from

Smalltalk’s prefix notation for message passing.

Thus, part of the stakes of the dot notation controversy itself is whether or not

object-oriented programming, and in particular, Objective-C’s message passing

version of it, constitutes a different paradigm from procedural programming or more

static object-oriented languages like C++ which contain procedural vestiges or

compromises. To the old guard, the proponents of bracket notation, syntax clearly

matters for signaling to programmers learning Objective-C that they need to be

making a mental shift and not hold onto procedural mental analogues that will just

hold them back. They argue that thinking of method invocations as simply function

calls, as C++ style dot syntax encourages them to do, obscures the way things really

work in Cocoa. It keeps newcomers thinking in a paradigm they are familiar with,

without allowing them to move into the new way of thinking emphasized by message

passing. Remaining in the old paradigm maintains practices that are foreign to the

way Cocoa works, and leads to mismatches in code, and thus bugs. Thus, the

dogmatic purists argue, it is crucial in Objective-C to maintain the visual distinction

between message passing code and procedural code.

This rehashes older debates between Smalltalk and C++ adherents over the

conceptual purity of object-oriented languages. C++ deliberately blurred procedural

and object-oriented concepts together in order to remove the need for procedural C

programmers to have to learn a radical new paradigm, translating such concepts as

“methods” into procedural terms like “member functions,” making for a gradual,

evolutionary learning process. This hybridization with procedural programming was

in fact, as Zepcevski argues, one of the reasons for C++’s very success in

popularizing object-oriented programming in industry where Smalltalk had largely

failed (Zepcevski 2012). However, for adherents of Smalltalk, this miscegenation

destroyed the distinctiveness and advantage of object-orientation altogether, and for

them, it was debatable whether a C++ programmer really understood, or was even

doing, object-oriented programming at all. Objective-C’s own hybridity is not a

438

problem because the clear separation of its object-oriented and procedural halves are

visually delineated by Smalltalk-like bracket syntax versus ordinary C syntax. This

separation keeps the object-oriented half pure; the introduction of dot notation into

the object-oriented side of Objective-C desecrates this purity. Back in the 1980s and

1990s, NeXT programmers were already arguing that Objective-C, being closer to

Smalltalk conceptually, was a vastly superior language to C++. “The rest of the

world has gone chasing after C++ and has only slowly discovered its limitations for

object-oriented design…” (Webster 1992) “as an object-oriented language,

Objective-C leaves C++ in the dust.” (Garfinkel 1992a) “‘There’s nothing about C++

that invites you to write good object-oriented programs,’ says [Andrew] Stone [of

Stone Design].” (Garfinkel 1992c) By mixing the paradigms and muddying the

concepts, dot notation threatens to bring with it the mediocrity Objective-C

programmers associate with C++ and the rest of the software industry.

Purists, however, have lost ground to pragmatists in recent years. Message

passing has lost some of its conceptual dominance in the Cocoa community, so much

so that the language of “method calls” has even become common within Apple itself.

Newcomers, and increasingly, converts from the old guard, don’t think dot notation

is really that big of a deal. For the proponents of dot notation, the notion of message

passing as expressed in bracket notation is not incommensurable with the notion of

function calling, as expressed in dot notation. In this new view, the two notations,

and hence the two ideas, are not only compatible with each other, but one can simply

be thought of in terms of the other. The recession of message passing language goes

hand in hand with the recession of the notion of object-oriented programming as an

incommensurable paradigm from procedural programming.

For example, comments in both Conway’s and Lamarche’s blog posts refer to

particular language features in Objective-C being “incompatible” with the principles

behind object-oriented programming. A reader named “Izidor” commented:

“State” and “behavior” are concepts from procedural programming -
you have inert “data” (structs,records,etc.) and active “functions”,
operating on data.

439

Object-oriented programming is *exactly* about removing this split
and hiding everything inside object, which handles every request
appropriately, without outside world knowing what needs to be done.

[…] So dot notation is introducing inferior concepts into OO…

Lamarche responded to this by arguing:

It is true that OO programming hasn’t traditionally recognized or
utilized the split between state and behavior. That doesn’t mean it
can’t be a valuable addition to the language. Paradigms evolve as we
use them and gain experience with them.

(Lamarche 2009)

Similarly, one Donald, responding to another commenter who argued that for

his taste, Objective-C was insufficiently like Smalltalk, posted in Conway’s blog, “I

also totally agree that the procedural control flow in objective-c [sic] breaks with

object orientation.” (Conway 2009)

Because so much of the dot notation controversy involves judgments about

the practices and skill of newcomers in the community, a critical issue at stake in the

dot notation debate is the pedagogy of practice. Does it matter, pedagogically

speaking, to teach message passing as a wholly different, incommensurable paradigm

from function calling? Because much of the rancor against bad code written in dot

notation is about novices who have imported foreign models of programming from

previous experiences, which cause translational mismatches, the argument for

incommensurability is for throwing out what they think they know and starting over,

to learn the native model of Cocoa and Objective-C from scratch.

To emphasize the pedagogical rationale against dot notation, I wish to point

out that although Hillegass will not teach its use in books or courses, and prefers to

avoid it himself, he does not object to its use by his own employees. In his eyes, if an

experienced developer understands that dot notation in Objective-C really means

message passing and not Java-style direct access of data, he has no problem with it.

A personal experience I had with him illustrates this point. During my first field trip

to Big Nerd Ranch in July of 2011, I was assigned to add new features to an

440

application for a local orthodontic practice, and ran into a coding question. Despite

being the CEO of the company, Hillegass had made himself available for answering

questions, and on this day he happened to be in the office for me to ask for his help.

Knowing his opinion on dot notation, I typed out all my code in bracket notation,

which takes slightly longer. He told me I could use dot notation if I wished, as he

trusted that I understood what the code really meant. Although pedantic for training

purposes, in practice, Hillegass’s attitude was pragmatic. Other instructors of Cocoa

at other institutions had similar attitudes. Hal Mueller, the instructor of the

introductory Cocoa programming class at the University of Washington’s extension

program, similarly does not object to the personal use of dot notation. He does not

teach its use for the first three weeks of his course, however, noting the confusion of

his students. However, after that period, he allows them to use whatever notation

they prefer. It is possible that this laissez-faire attitude could be related to virtue of

individual autonomy that software programmers hold in common, a value that

reasserts itself once teachers are assured that their students have the proper

conceptual understanding. Of course, “correct” practice and autonomy continue to

exist in tension even among experts, as the dot notation controversy demonstrates.

As we will see in the next section, such questions are really about group

membership—what practices draw the boundaries of who is in or out? Prior to the

iPhone gold rush, assimilating community members performed their membership

through using bracket notation or by proclaiming a disdain for dot notation.

Increasingly, this is becoming unimportant.

Boundary work, pedagogy, and aesthetics in the Dot
notation controversy

While a few notable experts in the Cocoa blogosphere such as Jeff Lamarche

and Chris Hanson argued in support of dot notation, including influential voices at

Apple itself, much of the online backlash against dot notation took on the cast of

boundary work against novices and outsiders, programmers who had low inclusion in

the techno-cultural frame of Cocoa programming. As we have seen, dot notation

looks much more like Java syntax, and developers such as Marcus Zarra and Joe

441

Conway felt that its introduction by Apple was a move to pander to newcomers. Thus,

while the debate, in one sense, could be seen as one between prominent and

established community experts such as Hillegass against Apple, it could also be seen

as an effort by a conservative group of oldtimers to stem the practices of a new

generation of immigrants, with Apple in support of the latter. The oldtimers had

reason to be concerned. In the late 1990s, a few years after Apple’s acquisition of

NeXT, the compiler group at Apple had contemplated updating Objective-C to use

Java-style dot syntax for all method calls, calling it “modern syntax.” Before the

NeXT acquisition at Apple, the exclusive use of Objective-C and its non-standard

bracket syntax had been discussed as a possible reason for NeXT’s lack of popularity

and applications:

The irony is that one of NeXTSTEP’s biggest advantages—use of
Objective-C and supporting tools—also serves as a major roadblock.
The rest of the world has gone chasing after C++ and has only slowly
discovered its limitations for object-oriented design… On the other
hand, developers using Objective-C on the NeXT run into problems
when they want to move to other environments. These barriers, real
and perceived, have caused many developers to avoid NeXTSTEP
development in the first place. (Webster 1992)

According to a former NeXT engineer, Steve Jobs dismissed this reason,

citing NeXT’s low sales and user base as the real problem:

That’s one of the things that I think is most fascinating about
Objective-C’s journey is the fact that Steve Jobs stood behind it the
whole time. […] Because when I was at NeXT, I remember when we
were having problems as a company not thriving as much as we all
wanted—I remember saying to Steve when we were sitting down
having coffee or something, you know, listen, is Objective-C part of
the problem, Steve? Is the reason developers don’t want to program to
our platform Objective-C’s fault, because if it is, I could give a crap,
let's try something else, I’m fine, we could [write] translators. He said,
“Steve, Objective-C isn’t our problem, the problem is, I’m not selling
enough boxes. When I sell enough boxes, people will program in
Objective-C. It’s a fine language, you guys are doing good work.
(Steve Naroff Interview, December 22, 2012)

As we saw in chapter 2, NeXT’s struggling business meant that it had a small

installed base of users, which made it difficult for developers to sustain a business

442

making software for it. This was a bit of a catch-22, as having less software itself

may have further contributed to a small installed base. Was NeXT’s use of

Objective-C was one of its advantages, or one of its drawbacks? Was the obscurity of

the language dissuading people from developing for the platform? For many of

NeXT’s most loyal engineers and developers, Objective-C was a key to NeXT’s

competitive advantage over other platforms. For them, C++ was like Microsoft

Windows—the more popular, but inferior solution. Jobs seemed to agree. According

to Steve Naroff, the engineer Jobs hired away from Stepstone to NeXT to work on

the Objective-C compiler, Jobs felt that it was NeXT’s struggling hardware business

and marketing strategy that was the real problem, and not the technology choices

made by NeXT’s engineers, which Jobs felt were sound.

This would not be the first time that being tied to an obscure programming

language was linked to the problem of being a minority platform, for the company

that made the technology. After Apple’s acquisition of NeXT in 1997, it faced a

critical transition—to move its installed base of users and developers from the classic

Mac OS to its new NeXT-based OS X. It was in the years during which OS X was in

development, soon after the acquisition, that Apple considered adopting a “modern

syntax” for Objective that used Java-style dot notation for all method invocation.

Naroff feels that Apple’s “modern Objective-C” effort might have been aimed at

encouraging the adoption of the Cocoa frameworks among existing Mac Carbon

developers who were used to C++. This effort encountered significant resistance

among the Cocoa frameworks division at Apple, and was ultimately scuttled, much

to the relief of the NeXT-turned Cocoa community.

Smalltalk is this whole environment that frankly doesn’t fit well with
most C people’s view of life. So [because Objective-C was a hybrid of
Smalltalk and C] it was always this weird balancing act of bringing
these features to the C world without pissing the C people off.
Complicated. And to this day, a lot of the C people hate the syntax,
right?

A lot of people coming from C++ really moan about brackets and the
colons. And there was an effort, I forget what year it was, but I was
at—I was working for Avie [Tevanian, Apple VP of Software] at the

443

time at Apple and I had written this paper about doing this modern
version of Objective-C…

We had all the [API] interfaces translated… the compiler was modified,
we really were ready to release it, and there was a lot of soul-searching
in Apple, and I think Ali’s [Cocoa frameworks] team, who typically I
looked to as—okay guys, should we do this? Right? It’s not a big deal
from a compiler perspective. Your interfaces are the face of our
platform. Is this really what you want? And they couldn't pull the
switch. And Ali [Ozer, manager of the Cocoa frameworks team]
wasn’t really that happy a camper; Avie was fairly convinced we
should do it… the frameworks guys were fairly against it. My only
technical argument for not doing it, was I felt strongly that… keeping
the Objective-C syntax looking distinct from C++ is goodness…
modern Objective-C looks so much like C++ that it’s going to be a lot
harder to mix the languages. The compiler was able to tell, just to be
clear. But humans might have a harder time with it.

(Steve Naroff, Interview, December 22, 2012)

However, as most large Mac applications in the early 2000s continued to be

written in Carbon, Apple tried another approach to encourage Cocoa use. Java had

significant support inside Apple in the early 2000s, and a “Java-bridge” was created

to allow Cocoa developers to write applications using the Cocoa frameworks in the

Java language instead of Objective-C. It was hoped that, because Java was in

widespread use in enterprise software and computer science pedagogy, this would

remove Objective-C as a barrier to Cocoa adoption. It turned out, however, that

complaints about Objective-C among newcomers and Carbon developers were

merely complaints. According to Cocoa developers, the Objective-C language itself

was never the real problem—they claim that the language is simple and enough

rudiments to be useful can be picked up in a few days. “…the surface area of the

language is very small… it is such a small, simple language, that I don’t have to

spend a lot of [mental CPU] cycles dealing with the sharp corners.” (Mark Dalrymple

Interview, April 11, 2012) “I grabbed [Aaron] Hillegass’s [Cocoa] book and I was

like, all right, I’m going to learn Objective-C. And two days later… I think I know

Objective-C! This is great! It was like the overhead of becoming competent enough

to produce stuff in Objective-C was so low—it was like, this isn’t a big deal. I was

picturing the nightmare that is C++.” (Chris Parrish Interview, March 2, 2012)

444

According to Cocoa developers and Apple engineers, the real challenge of

learning Cocoa is actually learning the Cocoa frameworks themselves—how they

work, the design patterns they use, the sheer number of APIs available. Java

developers were not only used to using the Java language, but also the user interface

libraries that came with Java. Cocoa essentially replaced these libraries. Julie

Zelinski, a former NeXT and Apple engineer who became adjunct faculty at Stanford,

and helped develop its unique Cocoa programming course, explains:

The [Java] bridge did not really pan out. […] I mean, what are you
doing, you want to use dot syntax instead of brackets? OK, whatever.
But I can remember… at the time of the bridge, I think that the
motivation for that [was because] Objective-C was still seen as
something that made us an oddball and people saying, “I don’t want to
learn Objective-C.” You know what? Objective-C takes like a week to
learn, right? What takes you months to learn is the AppKit, the
Foundation, sort of the whole [Cocoa] toolkit. And people balking at,
“I can’t learn Objective-C,” are like, “I can’t learn your stuff, I can’t
learn to put it on Cocoa,” like when we had the old-style Mac
programmers trying to move them forward with us and they’d be like,
“I can’t learn Objective-C.”

And so that’s why the bridge came out. What if we made it so you
could talk to it all in Java? Would that help? It turns out that wasn’t
the problem. It wasn’t the syntax of how you address the AppKit that
made your learning curve, right, it was the AppKit, right? So I think
that’s how the bridge was kind of a false endeavor, right? Because it
was never really the problem and in the end you can change the syntax
out but still there’s a huge learning curve and you have to get people to
invest in the learning curve to get to the other side. And that side will
want to just do it in Objective-C, [so] who cares, right? Take a week
and learn that too. (Julie Zelinski, Interview, April 24, 2012)

As we saw in chapters 3 and 4, learning the Objective-C language is only the

tip of the iceberg to learning Cocoa. The learning curve of Cocoa is due to the

conceptual understanding of design patterns that must first be experienced in use

before they are truly internalized. Peter Galison used the metaphor of pidgin

languages in describing his notion of “trading zones,” where different scientific

subcultures meet and converse. A pidgin contains simplified elements of the two

languages spoken natively by the groups involved in exchange, but is not itself the

native language of either group and exists only for the purpose of facilitating contact

445

between them (Galison 1999, 153–4). People from one group learning words in the

pidgin that originate in the other group’s language do not acquire the full meaning of

those words in their original language, but only a surface meaning. Galison sees this

as similar to the ideas that are exchanged between groups in a trading zone. These

“trading zone objects” “carry radically different significance for the donor and

recipient” and may mean different things to each side (Galison 1999, 146). For

example, “mass” had different meanings for Einstein, Lorentz, and Abraham, but

within the trading zone between theoretical and experimental physics, a simplified

notion of mass allowed the results of experiment to arbitrate between the different

theories, despite what might appear to be Kuhnian incommensurability between them.

This is useful in considering our earlier discussion of the term “method call,” which

Objective-C purists say is a misnomer because it treats methods like functions when

in actuality messages are being passed. “Method call” can be seen as a kind of pidgin

term that is useful for Java programmers learning Objective-C. The Objective-C

language itself can be learned in a shallow fashion using a pidgin of concepts that

can be borrowed from programmers’ familiarity with their native languages, such as

Java or C++, but to become a full “native speaker” of Cocoa requires considerably

deeper understanding. Similarly, although Java could be used to program Cocoa

applications, because Cocoa was written natively in Objective-C, Cocoa-Java was a

kind of idiomatic mismatch. If Objective-C is shallow to learn, why bother dealing

with the weird pidgin of Cocoa-Java?

For this reason, Cocoa-Java use never accounted for a significant share of

commercially available Cocoa applications, and it was largely ignored by the

existing NeXT/Cocoa community, which continued to advocate the use of Objective-

C as the platform’s true “native” language. No self-respecting Cocoa developer

would use Cocoa-Java if they wanted to be taken seriously. Thus, Cocoa-Java was a

kind of no-man’s land—pure Java developers who did not want to spend time

learning anything new stuck to using Java’s Swing libraries for developing cross-

platform applications, while Cocoa developers continued to use Objective-C to

develop native Mac OS X applications tailored to take advantage of its capabilities.

446

By 2006, Apple had decided that the Java-bridge was not worth continuing to

maintain.

The introduction of dot notation with properties in Objective-C 2.0, which

took place between 2006 and 2007, took on a similar cast when it dovetailed with the

explosion in Objective-C use with the iPhone SDK. Unlike with Mac OS X, Apple

had not allowed iOS programmers to use any language other than Objective-C for the

first few years of the App Store, and it could use the App Store approval process to

enforce this. This forced a whole new generation of newcomers, who had economic

incentive to write iPhone apps, to learn Objective-C. As we saw in the previous

chapter, existing Cocoa Mac OS X developers were already wary of the influx of

newcomers possibly destroying the values of the community. Their use of dot

notation in Objective-C only seemed to reinforce their status as outsiders, despite

official support from Apple. At stake was whether these barbarians at the gates could

be taught the “right” values and practices and assimilated into the community, or

whether they would end up having the run of the place.

A number of Cocoa developers noted their initial reactions to dot notation in

terms of outsiders versus insiders in the community:

…when I first saw it, I was like, come on, really? The Java
programmers can’t figure out brackets? Is it so hard? That was my
initial reaction, no lie. I’m just like, come on, that’s just absurd…

(Luke Adamson, Interview, February 22, 2012)

Adamson himself has since been converted to using dot notation, but in

examining his own initial hostility, he reveals that some developers considered dot

notation a foreign incursion into the purity and coherency of the Cocoa idiom:

Change is uncomfortable. Especially when you’ve been working in a
system that’s so internally consistent. And then to introduce this
change that’s so representative of an outside force, like this other. I
don’t know, I think it’s uncomfortable for that reason alone.

I think it’s just a foreign element, and whether people are willing to
admit it or not—I mean, I certainly do not like someone coming along
and introducing a foreign element into my nicely cohesive thing that I

447

understand. All of a sudden there’s a kidney bean in my pudding. It’s
confusing. (Luke Adamson, Interview, February 22, 2012)

Here, Adamson gives voice to what he believes the uproar over dot notation is

really about. Oldtimers felt that Objective-C, as they had been using it since the early

1990s, had been coherent and relatively pure, keeping its Smalltalk-inspired object-

oriented additions cleanly separated from its procedural C elements through syntax.

This syntax had stabilized by the mid-1990s and had not undergone significant

change until 2006. While developers from other platforms, and even some engineers

within Apple itself, saw this lack of change in the language as a sign of stagnation,

for longtime developers, its unchanging features may have taken on an air of

tradition and sacrality. Change, as Adamson noted, felt uncomfortable. This was

doubly so if the change meant incorporating elements that the community felt were

“foreign” or not “native” to the platform and its established idioms, which would

ruin its conceptual consistency and purity. Dot notation was seen as coming from

Java or C++, while bracket notation was fully “native.” “Foreign elements” might be

seen as a kind of pollution that would desecrate the language and make it profane.

Anthropologist Mary Douglas has discussed how cultures define what is “dirty” or

“dangerous” to be “matter out of place,” that which, according to a culture’s

categories of classification, does not belong (Douglas 1966). A “kidney bean in my

pudding” would certainly fit this description.

Nevermind that Objective-C had been, from the beginning, a hybrid language,

a pragmatic compromise. Steve Naroff, who had been with Objective-C since the

beginning and helped develop it in the direction it took at NeXT, never did feel that

Objective-C was pure or elegant. “If you talk to [Apple’s Cocoa framework

engineers] they’d say ‘I think [Objective-C is] a really pretty language.’ Because

they were the people that evolved it with me. But as a language [designer]… trying

to be nonreligious about what I do, I frankly never thought it was a pretty language,

but pretty—pretty wasn’t the goal, pragmatic was.” (Steve Naroff Interview,

December 22, 2011)

448

By introducing “matter out of place,” dot notation seemed to destroy one of

Objective-C’s most sacred qualities, its consistency. Previously, in Chapter 3, we

discussed how coherency and consistency is one of the primary virtues Cocoa

developers ascribe to how the Cocoa frameworks work, an important factor in

Cocoa’s ability to amplify a developer’s productivity. This coherency is also

important for learning Cocoa—although an initial investment must be made up front

to learn Cocoa’s idioms and design patterns, those patterns are applied throughout

Apple’s frameworks on both iOS and Mac OS X. Thus, once a developer learns how

to use a few of the Cocoa APIs, she can expect that others, including new APIs

Apple has yet to release, will work similarly, amortizing her learning. Brian Turner,

a former instructor at Big Nerd Ranch, explained this in his words:

…even though iOS is only five years old, Cocoa isn’t. So Cocoa
Touch is also not really that old. So the libraries are refined and
they’re clean and they’re intuitive. And they follow similar
standards… Once you’re kind of familiar with how the accelerometer
works, then interacting with—you know, they [Apple] will stick with
one general category [of ways to do things]. They’ll say, we’re always
going to [use this design pattern] for these types of things, and for
these types of things we’re always going to [use this other pattern]…
blah, blah, blah.

And it gets to the point where I can literally just kind of guess, like
you know, when somebody says, hey, do you know how to use this,
like no, but let’s see what we can do. And with quickly glancing at
Xcode’s autocomplete, most of the time I don’t even have to bring up
documentation, you can just—so that’s how Apple is good. (Brian
Turner, Interview, October 4, 2011)

Here, Turner is referring to “autocomplete” in Xcode. Xcode is Apple’s

integrated development environment (IDE), which is a unified environment

providing the majority of tools that a programmer needs to write software—including

a text editor for code, the compiler, a debugger, and other tools. When a developer

uses Xcode to write code, when she needs to make use of an API defined in Apple’s

libraries, she only needs to type in the first few characters, and Xcode will

automatically suggest the possible API code that she might want. In this way, an

experienced Cocoa developer may not need to even consult Apple’s documentation

449

for the API. Because Cocoa follows a unified set of conventions for naming its APIs,

once learned, a developer can often just guess at the name and it will often be correct,

and if not, autocomplete will fill it in correctly. This greatly improves the speed and

productivity of writing a Cocoa program.

Among existing Cocoa developers, these feelings of purity and consistency

are articulated as aesthetic arguments. In regard to dot notation, a developer who

Tweets about the elegance of bracket notation is performing his membership as an

insider in the community. Bracket notation is unique to Objective-C, while dot

notation is common in the industry, and every conversation I have had with a

developer familiar with another language who has tried iOS development has

included a statement about the “ugliness” or “weirdness” of brackets. Many

experienced Cocoa developers I interviewed noted that they too found bracket

notation difficult to adjust too when they were novices, but they all described a

conversion experience upon which they began to appreciate bracket notation. Ken

Case, co-founder of OmniGroup, noted, “My first reaction to Objective-C was,

what’s with all of these brackets? They just seemed really foreign to me… as a C

programmer… But, it only took a week or two to get over that.” (Ken Case Interview,

February 10, 2012) For these developers, a switch occurred whereupon Objective-C

transformed from an “ugly” language to a “clean” or “elegant” language:

In Objective-C, like just everything is so clean. So I really like how
method-sending looks, like, I really like brackets, you know? Which I
know is completely unique to Objective-C and nobody else likes it but
us, but [I] love the bracket and nested message sending…

(Brian Turner Interview, October 4, 2011)

This aesthetic appreciation is a deeply affective experience that connects

writing Objective-C code with using the Cocoa Touch APIs to write iOS apps. Note

how Turner used the same adjective, “clean” to describe both Objective-C, and the

Cocoa Touch APIs in the earlier quote.

Other developers similarly described the exclusive use of bracket notation as

aesthetically pleasing. Marcus Zarra noted in a blog post that, because bracket

450

notation is still necessary for sending most kinds of messages to objects, using dot

notation for properties results in an ugly mixture:

Dot syntax breaks up the flow of the code. Code should be elegant. It
should be graceful and beautiful to look at. This is ugly, nasty code
that you want to [hide] as fast as possible so that you can stop looking
at it. The message passing lines are completely at odds with the dot
syntax lines. The difference is striking and distracting.

When we write code, we care about its formatting. We care that the
code is properly indented and that the indentation is consistent. We
should care equally as much about its consistency of style and design.
Switching from message passing over to dot syntax and back is not
consistent. (Zarra 2008)

Code aesthetics is related to consistency of idiom, for Zarra. Two different

conceptual and linguistic idioms should not mix, but be kept separate and pure. For

Zarra, this is more than just an issue of personal preference, or a feeling of violation

of purity by unseemly mixing, though Zarra is relying on this for persuasive effect.

For many programmers, “elegance” means conceptual purity and simplicity, in an

almost mathematical sense, in the way that physicists describe Maxwell’s equations

as elegant. Simple solutions to complex problems require cleverness and ingenuity,

and are considered elegant in part because they are so difficult to construct. It is in

this sense of elegance that Coleman’s Python hacker Espe described his “high tower

of control and purity.” (Coleman 2013, 95) Moreover, elegant and consistent code

has a pragmatic advantage—it is easier to read. And for Zarra, readable, consistent

code is maintainable code.

Readability, Maintainability and Software
Engineering

 “Maintainability” is a trait of concern to software engineering organizations,

where code readability is critical for collaboration. This concern with maintainability

among software developers has a long history, going back at least to the 1960s, the

perception of the “software crisis” and the emergence of software engineering, if not

earlier. Nathan Ensmenger has noted that software maintenance is a crucial, if

451

somewhat low-status, task in the production of software. Fixing bugs, or software

“repair” is endemic to what a programmer does. “In theory, software should never

need maintenance because software does not break down or wear out, at least in the

conventional sense… Except that software does break—all the time, at great expense

and inconvenience to its users… There is a strong argument to be made that the

software crisis of the late 1960s was essentially a maintenance problem…”

[emphasis mine] (Ensmenger 2010, 224–225)

More importantly, however, software maintenance cannot be easily separated

from the process of producing software from scratch. Ensmenger notes that a lot of

“maintenance” work in software is actually adding new features in order to adapt an

existing piece of software to changing needs and environments. Fred Brooks noted in

The Mythical Man-Month:

All successful software gets changed… As a software product is found
to be useful, people try it in new cases at the edge of, or beyond, the
original domain. The pressures for extended function come chiefly
from users who like the basic function and invent new users for it.

Second, successful software also survives beyond the normal life of
the [hardware] machine vehicle for which it is first written… and the
software must be conformed to its new vehicles of opportunity.

In short, the software product is embedded in a cultural matrix of
applications, users, laws, and machine vehicles. These all change
continually, and their changes inexorably force change upon the
software product. (F. P. Brooks 1987, 12)

Ensmenger similarly argues, “The majority of software maintenance involves

what are euphemistically referred to in the literature as “enhancements,” “new

functionality, as dictated by market, organizational, or legislative [developments]

and changes in the larger technological or organizational system in which the

software is inextricably bound.” (Ensmenger 2010, 226) The reason for this is

because software is only one part of a socio-technical system—although seemingly

intangible and changeable, “legacy” software, such as the COBOL programs running

on banks’ mainframes that needed to be updated for Y2K, has high longevity and

durability due to the fact that they are deeply embedded in working organizations,

452

institutions, and practices. Moreover, software itself is a materialization of such

social relations and structures. “Because software is a tangible record, not only of the

intentions of the original designer but of the social, technological, and

organization[al] context in which it was developed, it cannot be easily modified…

Software is history, organization, and social relationships make tangible.” [emphasis

mine] (Ensmenger 2010, 226–227)

Software almost never is created de novo. “…the degree to which software is

embedded in larger, heterogenous systems makes starting from scratch almost

impossible… ‘We [programmers] never have a clean slate,’ argued Bjarne Stroustrup,

the creator of the widely used C++ programming language…” (Ensmenger 2010,

226–227)

Thus, much of the work software developers do is modifying existing code

already written, either by someone else, or by themselves at previous moments in

time. This is necessary because the process of writing software is iterative, starting

out with a bare-bones skeleton that gradually accumulates additional functionality.

New code should work seamlessly with old code, and thus be conceptually on the

same page, even if written by different authors. Conceptual mismatches, or worse,

misunderstandings of the original programmer’s intent, result in new features being

clumsily tacked onto the old code rather than working in the same spirit. Such

mismatches are a large source of bugs in software, making such code a maintenance

nightmare. Even in brand new software, many programmers begin by laying down a

basic architecture, and gradually adding features incrementally. The process does not

stop once all the features are complete—the features must also work correctly. The

focus then shifts to testing and fixing as many bugs as possible until the software

seems stable enough to ship to users. Thus, making a code-base “maintainable” is a

benefit not just in subsequent releases, but also in the initial production of a piece of

software, particularly in complex, large-scale software systems. The production of

the “new” is not easily separated from maintenance and repair.

453

Nonetheless, when writing new software from scratch, less experienced

programmers may not be adequately thinking about future maintenance issues in the

initial stages, when decisions made have ramifications down the line. Ensmenger

notes “…software systems are often coded before they are completely specified.

Many programmers find it easier to ‘just start coding’ than the develop design

documents. Most programs are poorly documented (if at all), and so most

maintenance works involves intensive on-the-job learning.” (Ensmenger 2010, 227)

Many inexperienced programmers do not follow rigorous, disciplined practices to

make future maintenance tasks easier—in other words, they do not see coding as a

continuing maintenance activity but as a task of creation happening only once. This

means that they do not design before they begin to code, which often leads to poorly

thought-out designs that are difficult to modify without breaking. Poor

documentation makes it difficult for future maintainers to understand the code in

order to fix or enhance it. These are pervasive problems in software, and Ensmenger

argues they are part of the reason for the persistence of continued software “crises.”

Almost all of the Cocoa developers I spoke with have had some experience

dealing with code that was difficult to maintain in some way or another. I myself

have had many such experiences from my earliest days as an intern at Hewlett

Packard in 1998. When Lamarche speaks of “bad, poorly written code,” or another

developer mentions “spaghetti code,” these experiences of frustrating late nights

trying to untangle the complex interdependencies inside existing code immediately

come to mind. There is a point at which the hacks and kludges to add new features to

old software make the whole edifice so fragile and precarious that the whole

structure threatens to crumble. “It starts becoming a pile of cards which eventually

collapses under its own weight.” (Mark Dalrymple, Interview, April 11, 2012) Past

this point, it is more productive to simply throw the whole thing away and start over.

In between, there may be intermediate points where the software needs to be partially

rewritten and redesigned because the old architecture does not adequately model the

new situation that the software must address in the present. In the software industry

today, this process is called “refactoring.” Although refactoring does not add new

454

functionality and thus new features, and can be a substantial undertaking, it may be

necessary to do this to shore up the foundations in order to allow for future

enhancements to be made. As an example, Mac OS X 10.6 Snow Leopard was a

software release from Apple that added few features that benefited users, but

provided new foundations for the operating system that allowed Apple’s engineers to

significantly advance the software in subsequent releases.

Having faced such experiences, expert Cocoa developers have learned the

hard way that following disciplined practices to make code more maintainable will

pay off in the future. Thus, among experienced Cocoa developers, maintainability

has become a professional virtue—it is simply what professional software engineers

ought to strive for in their code. Code reusability, modularity, and the separation of

concerns among different components, principles and practices promoted by

structured and object-oriented programming methodologies are now seen as integral

to what a good programmer should do to produce reliable, quality software because it

makes it easier to maintain.

Community norms may be insufficient against managerial or market pressures,

however. Cocoa developers such as Marcus Zarra understand that developers under

tight deadlines may have reasons to cut corners. Software projects are constantly

under short-term time pressures, militating against long-term planning for

maintainability. Given the constraints of managerial or client deadlines, the

temptation to cut corners, be sloppy, or simply take clever shortcuts can be justified

in the name of expediency. For contractors (which many iPhone developers are),

once a contract is fulfilled and accepted by the client, the project ends and the

developer never works on the code again. It may not be necessary to follow best

practices to write software in a maintainable fashion on every project.

Thus, Zarra argues not only from normative reasons, but instrumental,

practical ones: making code more readable, and thus more maintainable, may take

more time in the short term, but will greatly pay off in the long run—even if the

developer is an indie and has no manager to enforce such discipline. (In fact, in some

455

situations, programmers are actually under pressure from managers or clients not to

follow disciplined practices to make code maintainable, but simply implement

features as quickly as possible in order to hit overly aggressive deadlines.) Even for

such indies, software should be written in collaboration in mind, because for Zarra, a

programmer is always collaborating at minimum with one’s past or future self.

We often forget about this aspect [maintainability] when we are
working by ourselves. However, maintainability is not just a factor
when we hand off code to another developer, it is also a factor when
we have to come back to our own code 6 months from now! I don’t
know about you, but when I look at code I wrote a year ago, all I can
think is: “That moron! What the HELL was he thinking!” (Zarra 2008)

Zarra thinks that a good programmer should treat his future self as essentially

a different person than his present self, and thus communicate in code his current

intentions and other contextual details that may fade with time. This is because,

when writing code, a programmer is deeply embedded in the mental context of that

moment, a context that becomes lost in the future.

Likewise, Conway, in his own blog post, asserts that maintainability, not

personal preference for style, is the main reason for his call to ban dot notation:

Why this seemingly irrational hatred of dot-notation? Is this a style
choice and [are we] being hard-headed? The answer is no, we are not
being hard-headed, we are keeping our code consistent and
maintaining readability… the main goal of software development [is]
writing, maintainable, effective, efficient, easy to read and bug-free
code. (Conway 2009)

A commenter in his post vehemently disagrees, asserting that Conway has

confused the means of software development with its ends. “Well, no, I don’t think

so. The main goal of software development is solving someones [sic] requirement. If

you code looks dirty or [whether] you use the dot syntax is not *that* important, as

long as it [sic] the software helps the people who will be using it.” (Conway 2009)

Both are right. What Conway and Zarra mean is that software that solves

someone’s requirement not just in the immediate present, but over the long-haul,

must be maintainable. This is because they both recognize that software, if it is

456

successful, must change over time in response to its users. Inevitably, design

decisions made in the context of the original target use/user and hardware have

constraining effects on the ease of making future changes. Extending an inflexible

design to do new things increases its complexity, creating more opportunities for

bugs. Eventually, this can become so difficult that the entire design may need to be

“refactored,” restructured, or rewritten from scratch for further progress to proceed.

This can happen even in the lifetime of a single project, as client or employer

requirements change, and initial design assumptions no longer hold. Thus, planning

for the long-term changeability (or maintainability) of software means following

practices that encourage flexible designs.

Despite constant pressures to cut corners, Cocoa developers have learned

from experience that taking the extra time to make the proper architectural decisions

now will pay off later. Thus, they advocate getting into the habit of making

maintainable code, because not doing so will inevitably haunt them in the future.

Rather than a managerial imposition, maintainability is a professional and vocational

norm among Cocoa developers, who advocate best practices for maintainability in

public forums. For Cocoa developers, “maintainable” signals that code is “high

quality,” relatively “bug-free,” “flexible” and “future-proof”: virtues of the

programmer’s craft. For developers like Zarra and Conway, readability is one key

aspect of maintainability. Among Cocoa developers, unlike programmers of other

platforms, this manifests uniquely in a preference for less terse, more verbose and

expressive code.

Verbosity as a Virtue in Objective-C code

This concern with maintenance in the Cocoa community can be seen in the

community’s preferences with regard to coding style. While maintainability itself is

not exclusive to Cocoa developers, and is a trait sought for by many professional

software developers, the association of verbosity (or expressiveness) in Objective-C

code with readability and thus maintainability is rather unique. We can contrast this

with the virtue of cleverness that Gabriella Coleman describes as primary in much of

457

the free software community. Coleman illustrates the virtue of cleverness by

illustrating a single line of Perl code that expresses the functionality of what

normally would take six lines. “Perl is a computer language in which terse but

technically powerful expressions can be formed (in comparison to other

programming languages). Many Perl coders take pride in condensing long segments

of code into short and sometimes intentionally confusing (what coders often call

‘obfuscated’) one-liners.” (Coleman 2013, 93) Such code performs technical mastery,

genius, and playfulness, virtues valued among hackers that highlight their individual

autonomy despite being involved in the communal activity of programming open

source software. Clever, obfuscated code is a form of boasting in a meritocratic and

competitive (and masculinized) community in which intelligence is particularly

celebrated. It is also a celebration of creativity, as such “hacks” are seen as akin to

“poetry.” (Coleman 2013, 94) Free software programmers know that their peers in

the community will read their code, and such code is as much a way of asserting

their abilities among those peers, as it is about functionality. And because of the

elitism in the community, people are less likely to complain about hard to read code,

because they will not wish to be seen as less intelligent. This dovetails with hackers’

propensity for jokes and wordplay, which Coleman notes are alternate expressions of

cleverness for hackers, being “hacks” of natural language. No one would want to

admit that they didn’t “get” the joke.

Cocoa developers are programmers, and do enjoy similar expressions of

cleverness and ingenuity, jokes included. However, for Cocoa developers, cleverness

is not a virtue that trumps all others; it must be subordinated to disciplined

professional software engineering concerns for maintainability. Clever code,

particularly if it is terse, is considered by Cocoa developers to be bad if it is

unreadable. In chapter 3, we saw how some Cocoa developers seemed to uphold

writing less code as a virtue. Wil Shipley claimed, for example, that “The only

method that matters is how little code did you use, overall. That’s the only thing.”

(Wil Shipley, Interview, April 18, 2012) While this statement might seem to prefer

condensing code into as few lines as possible, what Shipley meant was that, overall,

458

the Cocoa frameworks, by providing rich functionality and powerful design patterns,

allowed a programmer to express the same functionality with less effort. Overly terse

code, however, can actually increase the effort for a programmer in understanding

what he (or someone else) previously did. It can also complicate the task of

debugging. In Objective-C, for example, it is possible to chain a succession of

method calls by nesting bracketed message passing expressions inside each other.

For example, the following contrived code is a single expression that could be

written on a single line:

return [[[NSDateFormatter alloc] init] stringFromDate:[NSDate date]];

The problem with this code is that it combines too many calls together, and

this becomes extremely cumbersome to debug. Cocoa developers recommend that

programmers break this expression up into separate components:

 NSDate *date = [NSDate date]; // gets current date

 NSDateFormatter *formatter = [[NSDateFormatter alloc] init];

 NSString *myString = [formatter stringFromDate:date];

 return myString;

This now allows a programmer using the debugger to set breakpoints on each

separate line, allowing him to verify that each of the objects, the date object, the date

formatter object, and the string object, are all being returned with the desired values,

before returning the string expression at the end. The one-line expression could be

said to be more “elegant” in a mathematical sense, because it encapsulates all of the

functionality together, and moreover, does not need to allocate local variables to

store all the intermediate values, which could be seen as wasteful of memory.

However, today, programmers feel that such memory usage is trivial compared to the

vast amounts of memory available in modern computers, and such memory will be

quickly recycled anyway. To them, it is more important to optimize for the

readability of programmers, now and in the future.

Cocoa developers like Objective-C syntax because they feel it is expressive.

Cocoa APIs are carefully named by Apple to have an English-like grammatical flow,

459

and names of things are usually written out in full rather than abbreviated as they

often are in the conventions of other programming communities. For example,

instead of naming a method setBkgrdClr, for instance, Apple recommends

instead the more explicit setBackgroundColor. Programmers in other

environments have acquired the habit of naming variables or functions with very

terse names in order to save having to type them over and over again. In Cocoa, the

text editor in Apple’s Xcode IDE, the suite of tools Apple provides free for Cocoa

developers, will autocomplete such long expressions for the programmer after typing

in only one or two characters, eliminating extraneous typing. This means that Cocoa

developers are free to use fully descriptive names in their code (Parker 2014). In fact,

Apple actively encourages using longer, more descriptive names, because, as a

popular saying in the community goes, code is written once, but read many times.

When code becomes easier to read, its intention becomes clearer, lessening the need

to document what it does separately in a comment to the side. (In the above code, the

descriptive text following the ‘//’ characters is a comment. This text is ignored by

the compiler and allows programmers to write natural language descriptions of what

their code does to document it for others and the future.) Code can become clear

enough to an experienced practitioner that comments may become redundant,

because the code itself clearly expresses what it does. Cocoa developers say that

such code is “self-documenting” and strive to achieve this quality whenever possible.

Objective-C is a little more formal. But it also informs the developers
a lot more. The language itself, once you understand the syntax of the
language, you’re doing a lot less looking things up.

So like in Java, a lot of times you’ll see even in the Java doc they tell
you here’s the input parameters and what they mean, and so it’s in the
actual comments, which then get generated into documentation.

Whereas in Objective-C that same information is right there in the
method. So, Objective-C is not designed to be easy to write; it’s
designed to be easy to read. Which I think is much more important
when you’re reading through code.

…And like I said, the tools—Xcode gives you a lot of help in typing it
in, but I’m a lot less interested in making it terse and easy to type,
than I am having it explicit and tell me what’s actually going on here.

460

(Robert Walker, Interview, May 19, 2012)

Indeed, having too many comments can be a bad thing, because, when

programmers change code, they may not always change the comments documenting

the code, which become stale as they no longer accurately describe what the code is

now doing.

Actually, I used to be a real big code commenter… but I did start to
learn quickly that the likelihood of that comment getting out of sync
with the code is high, so it’s far better for the code to just explain it. I
try to just reserve my comments these days for something that seems
unusual… “Here’s why I’m doing it this way instead of the way you
probably thought you wanted to do it.” […] So I will write those
comments first, implement them, erase the comments as I go. …more
as a blueprint kind of thing… I’ve got to lay down the breadcrumbs…
And then I try to delete all the evidence of that… so it doesn’t become
a burden later, documentation or cruftiness, you know, right? (Chris
Parrish Interview, March 2, 2012)

Again, the reason such readability is important is to signal to one’s future self

the purpose of code, which one will inevitably forget:

You come back to something after a period of time and you want to get
the gist of it really, really quickly. You don’t want to have to spend
time doing research over something you wrote six months or six years
ago, you just need to understand it fast. And with Cocoa, that’s always,
always so easy. I hardly ever have to comment anything. It’s just like
the code is the comment. (Brent Simmons Interview, February 17,
2012)

It is also is one of the reasons why both Apple and third party Cocoa

developers spend considerable effort on what to name the entities they create in their

code. For example:

I’ve become a brutal revisioner of my own code… It’s really to me
more about the expression of the simplicity of the code and
maintainability that I’m willing to go back and revisit… I’m adamant
about changing the name of stuff. Like, if this thing used to mean this,
but now it means this, I must rename it to mean what it means [now].
Because otherwise when I come back through, I’ll be like, what? Why
is it called that, that doesn’t make sense, that’s not what it’s doing.
(Chris Parrish Interview, March 2, 2012)

461

In addition to naming practices, certain features of the Objective-C language

used extensively by Apple in the Cocoa APIs also help to make code more

expressive and self-documenting. One of these is named parameters, also sometimes

referred to as keyword arguments or labeled arguments. To understand what these

are, let’s go back to Conway’s example from his blog post:

[obj takeDrinkOfLiquid:water whileDoingCartwheel:YES];

In this statement, the obj object is being sent the message

takeDrinkOfLiquid:whileDoingCartwheel:. This result is obj’s

takeDrinkOfLiquid:whileDoingCartwheel: method being invoked and run. The

method requires two inputs (also called parameters or arguments), which are placed

right after each colon character ‘:’. In this example, water is the first argument, and

YES is the second. The text right before each colon is part of the name of the method,

but is also a keyword name labeling the purpose of each argument. It is also Cocoa

convention to name these keywords in a way such that the entire method name has an

English grammatical sentence structure to it. The programmer writing this code

wants to tell the object receiving the message, obj, to take a drink of water while

doing a cartwheel, and thus this code makes her intention clear to the reader without

needing any additional comments written in plain English.

How would this code work in a language like Java without named

parameters? Calling a similar Java method would look like this:

obj.takeDrinkOfLiquidWhileDoingCartwheel(water, YES);

The labels of intention are in the name of the method,

takeDrinkOfLiquidWhileDoingCartwheel, but they are not tied together with the

arguments. This means that a programmer could accidentally switch the order of the

arguments, resulting in an error which would most likely be caught by the compiler:

obj.takeDrinkOfLiquidWhileDoingCartwheel(YES, water);

Because this method only has two parameters, it is not terribly confusing. But

some methods can have 5 or more, and it such cases, it can be difficult to remember

what all of them are, and in which order they are supposed to be. What is worse is

462

that some languages like Java and C++ allow two different methods with different

numbers and/or types of parameters to share the same method name. It can thus be

confusing as to which method a programmer actually wants to call. The following

example is modified from code from a publicly available Apple 2014 WWDC

presentation given by a former Apple colleague of mine (Parker 2014):

controller.presentPopover(aRect, aView, AnyDirection, TRUE);

controller.presentPopover(aBarButtonItem, AnyDirection, TRUE);

Although both of these methods have the same name, they take different

numbers of inputs, and it is not clear what types of inputs I should pass to them, nor

exactly what they mean. For example, what is the purpose of the Boolean true/false

flag at the end? What it is signaling to the method?

Objective-C’s keyword argument labels allow Apple to name these two

methods more descriptively. Thus the above two calls would look something like

this:

[controller presentPopoverFromRect:aRect
 inView:view
 arrowDirections:AnyDirection
 animated:TRUE];

[controller presentPopoverFromBarButtonItem:aBarButtonItem
 arrowDirections:AnyDirection
 animated:TRUE];

Now with labeled arguments, it is not only much more clear what the purpose

of each argument is (we now understand that the flag is telling the method to animate

or not), it is also much more difficult to accidentally put them in the wrong order.

Again, this is not actually required by the compiler, but is a convention

followed not only by Apple but also by the majority of the Cocoa developer

community. For example, a programmer could write these two methods without

argument labels, which would result in code looking like this:

[controller presentPopoverFromRect:aRect :view :AnyDirection :TRUE];

[controller presentPopoverFromBarButtonItem:aBarButtonItem
 :AnyDirection :TRUE];

463

This code is perfectly acceptable to the compiler. While much shorter, it is no

longer as explicit as to its intention. Though perfectly permissible, I have never seen

Objective-C code written this way. Apple’s Coding Guidelines document actively

discourages this practice. The following example comes directly from this document

(Apple Inc. 2013d):

- (void)sendAction:(SEL)aSelector
 toObject:(id)anObject
 forAllCells:(BOOL)flag;

- (void)sendAction:(SEL)aSelector :(id)anObject :(BOOL)flag;

The first is clearly labeled “Right,” the second, “Wrong.” Another example

promotes clarity of naming. For example:

insertObject:atIndex:

is labeled, “Good.”

insert:at:

has the comment, “Not clear; what is being inserted? what does ‘at’ signify?”

Just before the examples, the document states, “It is good to be both clear and brief

as possible, but clarity shouldn’t suffer because of brevity.” (Apple Inc. 2013c) The

authors of this document at Apple understand that programmers have a tendency to

want to be brief, and that this is a good quality in code, but that it must be

subordinated to clarity. Again, this does not matter to the functionality of the code

itself, as both are equally acceptable to the compiler and will generate the same code.

The self-documenting benefits of having named parameters was one of the

reasons the Cocoa frameworks group at Apple rejected the compiler group’s attempt

to adopt industry-standard dot syntax of method calls in Objective-C in 1998. It was

also one of the reasons why programming Cocoa using the Java bridge never became

very popular.

You get so used to the keyword argument, it’s a huge part of how the
API is designed, is to leverage that keyword argument, which I still
miss when I don’t get—I don’t have a lot of reason to code in
Objective-C for anything anymore than fun… whenever I’m looking at
any kind of C++ interface I’m always, like, what the hell, is which

464

argument where? So, I mean I think again both those efforts [modern
Objective-C and the Java bridge] just show that… it wasn’t a syntax
problem, although that is the first thing that people notice and can kind
of balk at, it turns out there are much deeper things that you need to
address beyond that, and so it was spending all your time to work on
this shallow thing, I think is not going to pay off and is only going to
frustrate you, because in reality there is this deeper issue, which is, OK
how can we deal with this, the sense that people don’t want to learn
another toolkit that’s different than [Java’s] Swing [toolkit] or looks
different than Windows or whatever they have been doing.

(Julie Zelinski, Interview, April 24, 2012)

Clearly, Apple follows these guidelines in its naming conventions for its own

Cocoa APIs, and recommends to developers, in documentation such as this, and in

presentations at WWDC, that they follow similar practices. The remarkable thing is

that the community largely does follow these practices, and considers it a good thing

to do so. The community itself normatively enforces these guidelines, which it has

internalized as elements of good Objective-C coding style. Good Cocoa programmers

want to write code with this expressive style, and encourage others to do so as well,

in order to keep their code readable and maintainable:

There is no requirement in Objective-C that your statements must be
expressive. That, I mean there’s a syntax, and you need to follow the
syntax, but syntax supports very, very brief words that will compile
exactly the same way as non-brief words… And yet, I mean if you
look at Objective-C, 80-plus percent of Objective-C is expressive
syntax, right? Because that’s the culture…

…I mean, reading other people’s code has always been a pain in the
ass. All of a sudden, it’s like, wait a second, reading other people’s
code is less of a pain in the ass. Fantastic! I want to read some more of
that. (Hasan Edain, Interview, March 12, 2012)

This developer is clear that he is following Apple’s example in its APIs, but

notes that he does so not because Apple is telling him to, but because it has clear

readability benefits:

… if you think of the API as sort of the first set of example code… this
method name is sixty characters [but…] it’s really precise… And you
look at that and you go, fantastic, I know what you’re going to do and
I’m going to use you in a way that makes sense… And so that’s self-

465

reinforcing. That now you’re like, oh, does my method look like their
[Apple’s] method, why doesn’t my method look like their method? OK,
I’ll promptly try and make things that are more like their methods…

Yeah, it wouldn’t have worked had there been no actual benefit, then
typing the characters is a pain in the ass because you would have said,
oh, I’m going to go back to my very truncated style variable naming
and… functions that are three characters because that’s easier to type,
right? But all of a sudden people started realizing that I am getting
tangible benefits from someone else having done this. Oh, I will
probably get tangible benefits from me having done it. (Hasan Edain,
Interview, March 12, 2012)

For Cocoa developers, the readability and maintainability of the code

sometimes even trumps not only brevity and terseness, but traditional engineering

values such as performance and optimization. Mark Dalrymple explains, while

simultaneously admiring the ingenuity required to optimize the original Macintosh

Toolbox API machine code to fit into a 64 kilobyte ROM chip, that such highly

clever code is unmaintainable:

The original Mac…] They did so much with so little. Like 64K ROM.
Not megabytes. K. That was the entire toolkit. Versus today, you can’t
even get an icon that’s 64K.

So they did amazing stuff of packing a lot of features into a tight
compartment, but if you’ve ever optimized code… the more highly
optimized something is, the harder it is to maintain and extend. So you
start out with those highly-optimized nuggets of awesomeness, and
then we put more awesomeness on top of it, and then it starts
becoming a pile of cards which eventually collapses under its own
weight. (Mark Dalrymple, Interview, April 11, 2012)

This is one of the reasons for a slogan among Cocoa developers—don’t pre-

optimize. What this means is that a developer should not be thinking about making

performance optimizations while writing code, but should use measuring tools after

the program is finished and running to discover where the bottlenecks are, and then

speed those up. Making optimizations prematurely ends up wasting time on

optimizing code that only runs occasionally and may make no actual difference to the

user, and instead can slow down the developer’s productivity and make their code

harder to read. The developer’s time, not the computer’s time, is the most valuable:

466

This is one of the things that I teach all my young programmers…

What did you just do? And they’re like, “See it’s more efficient.” And
I’m like, “It’s less readable, you have saved maybe one [machine]
instruction. This microprocessor can handle about 8 billion of those
per second, and this is in a keystroke processor—what’s the fastest
typist in the world? Let’s say 20 keystrokes per second. So 20 times
per second, you saved less than a nanosecond, let’s generously say
you’ve saved one nanosecond per second to make it less readable and
you spent your time. No. No…

Readability is the most important thing. Which is why small code is
the most important thing… The smallest is the most readable. So it
turns out that the smallest code is usually—it sort of defaults to fastest,
[but] not always. So you do need to optimize. But you only optimize at
the end, and that’s another rule, it’s the hard factor, optimize at the end,
you don’t optimize [as] you write code, you’re not that fast, just write
the smallest code. Because the smallest code is going to be the most
readable, and, it’s often going to be the fastest anyway. And where it’s
not you just go in and optimize it and make it slightly less readable.
[emphasis mine] (Wil Shipley, April 18, 2012)

Shipley then connects this explicitly to Moore’s Law and uses language that

implicitly evokes the software crisis:

In two years, computers are two times faster, but humans aren’t. So the
future of your code is, your code is suddenly running way faster. But
you’ve got people who are looking at it who didn’t write it. So they’re
more confused, but the code itself has gotten faster over time, not
clearer, but faster… It gets less clear, because you forget it and the
other people who come in never saw it. So it’s much more important to
[emphasize] the readability than the speed. Speed solves itself,
readability gets worse. And especially as the size of the product gets
bigger, too, it gets less and less readable naturally, right? But it’s still
getting faster! [emphasis mine]

And because everything is object-oriented, …the frameworks just get
faster. So even if machines [don’t] work any faster all the stuff we’re
calling is just getting faster. I’m calling [some Apple API which
Apple’s engineers have optimized with a new technique.] All righty,
my program just got twice as fast. La la la. But it didn’t get twice as
readable. Magically. So it’s the only thing that matters. And also we
have a global shortage of good programmers. There are so many
things that it would be great to have automated, and we just don’t have
the programmers to automate them. (Wil Shipley, April 18, 2012)

467

According to Shipley, because of Moore’s Law, hardware will continue to get

faster but human programmers won’t. And the larger a software project becomes, the

more complex it becomes, and the more problematic the collaboration and

management of its developers. Mirroring rhetoric from the software crisis, Shipley

says that because there is a shortage of good programmers, making sure that

programmers of all abilities can come in and understand code and thus collaborate on

it is the most important priority for the software’s maintainability, and thus its long-

term quality.

Ken Case of OmniGroup summarizes Cocoa developers’ general attitude

towards the importance of readability, collaboration, and thus maintainability and

code quality, supported by particular features of the Objective-C language and the

practices of expressive naming that have evolved around it:

…The results are much more readable code… I quickly fell in love
with Objective-C as a language where you could have all the
expressiveness of Smalltalk at higher levels… and those levels of
abstraction…

So a lot of it is really is not just what the language does, but the
practices around the language. How do you write some code that is
really readable? I mean the readability, I think, is a big piece of it
because it makes it self-documenting and it makes it easier to work
with a team. I can look at somebody else’s code—if they know the best
practices and use it—I can read their code pretty quickly and easily
and understand what they’re trying to do. (Ken Case, Interview,
February 10, 2012)

Such concern over readability and maintainability can go too far, however.

Even for indie developers, the desire for perfectionism and craft of one’s app

sometimes runs into the hard reality that a developer has limited time and must

occasionally prioritize shorter-term goals, such as actually shipping an app in order

to generate revenue. If the app doesn’t ship, it cannot become successful enough to

need a version 2.0, and thus putting too much effort into making it maintainable over

the long run could hurt it in the short run. Chris Parrish spoke about balancing these

conflicting tensions:

468

I used to be a programmer who would just keep… futzing with it until
it worked and you can do that, but then in the end you’re like, “God,
look at this thing I created, how will we ever change it the next time?”
The next person who comes along and has to add the new sharing
method that changes one more thing will be like, “Oh, my God! None
of this makes any sense, why is this happening this way?” Yeah, so, I
try really hard [to make my software maintainable], which may not be
the smartest thing for [an] independent software developer, I don’t
know. The business reality is, maybe it’s better just to get your stuff
done and ship it. I don’t strive for perfection—I know many people
who write much more perfect and beautiful code that is so much more
succinct than mine, but I try to at least be organized, like, I try really
really hard to be organized. (Chris Parrish, Interview, March 2, 2012)

Another developer who was a contractor similarly mentioned to me that on

one-off contracts, where he knows the project won’t continue on afterwards, he often

relaxes on some practices in order to get the app out the door as quickly as possible,

even though it pains him to write less elegantly architected code. The short-term time

pressures of hitting the schedule negotiated with the client can override longer term

considerations, especially if the developer knows there won’t be a subsequent

version. These tensions speak somewhat to the competing “professional” and

“market” logics at work among Cocoa developers (Qiu, Gopal, and Hann 2011).

Closure of the Dot notation controversy, and Swift

To a large extent, the dot notation controversy has achieved closure. The

newcomers, and Apple, have won. Partly, this is because of Apple’s asymmetric

power vis-à-vis the community—its sample code uses dot notation, and most

newcomers have readily taken it up. Partly, this is also due to the rapid expansion of

the community in the wake of the iPhone App Store. The vast majority of newcomers

are already used to dot notation from other languages, and have no accumulated

years of experience to prejudice them against its use. Lastly, from a purely pragmatic

point of view, even programmers who publicly have been against it in the past have

begun to convert to its use—some purely because it can be more convenient to type

long chains of method calls using successive dot operators rather than nesting

bracketed expressions inside each other.

469

foo.bar.baz.qux = 10;

[[[foo bar] baz] setQux:10];

This code comes from the blog post by Jon Reid, hyperbolically titled, “Dot

Notation in Objective-C: 100% Pure Evil,” written June 3, 2012. (Reid 2012) The

terms foo, bar, baz and qux are meaningless expressions used by programmers as

placeholders in examples in which their meaning is not necessary. Again, these two

lines of code, the first in dot notation and the second in bracket notation, are

equivalent. The first is easier to read than the second, which non-Objective-C

programmers find ugly. The second, however, is explicit about what the code is

doing—sending messages. The object returned by each nested expression is then sent

the next message. The dot notation expression also makes it difficult to differentiate

if any of the items inside are method names, objects, or C structures. However, it is

also much easier to type, even though the Xcode IDE helps with bracket notation by

automatically inserting the ending bracket when the opening one is typed.

Reid has subsequently come around to dot notation. In a later post from

September 17, 2013, “In Which I Embrace Dot Notation,” he writes, “Dot notation is

easier on the eyes. I’ve always admitted that. What I failed to realize before is that it

isn’t just a matter of “aesthetics.” It’s more readable. And readability is super-

important.” He also notes another reason, however: “Somewhat related to this: dot

notation is mainstream. By opposing it, I was going against the flow… So by

adopting dot notation, I hope my code will be less distracting, so that you can focus

on the principles I’m trying to show and not go all SQUIRREL! [making a reference

to the Pixar film Up, in which a talking dog constantly gets distracted by squirrels]”

He concludes: “What about you: have you ever switched sides in a coding holy war?”

(Reid 2013)

While there may still be holdouts among the oldtimers, Reid’s comment

shows that the vast majority of Cocoa and iOS programmers use dot notation

pragmatically, and are not overly concerned about it. Only a few stalwarts, seen as

opinionated outliers, still hold out. Aaron Hillegass himself has deemphasized his

earlier stance, noting his objections were primarily pedagogical. At a talk he gave in

470

June, 2012 at an Apple Store during WWDC, Hillegass explained that when dot

notation was first introduced, he had tried to replace all of his property accesses with

dot notation, keeping method calls that indicated behavior in bracket notation. The

problem was that not all of Apple’s Cocoa APIs had been consistently updated in

way such that attributes that ought to be implemented as Objective-C properties

actually were. An example he gave was that of an NSArray. An NSArray is an

Objective-C data structure (defined in Apple’s Foundation library—the NS prefix is

a reference to NextStep where the library originated) that holds any number of items,

which can be accessed with an index. For example, to access the first object in the

array, a programmer would could either use the older, more explicit message

[array objectAtIndex:0] or the newer, terser syntax, array[0]. (Most

programming languages count starting with 0, not 1). To get how many items are

actually in the array, a programmer just needs to send it the count message. An

NSArray’s count is an aspect of state that somebody might want to know, not a

behavior that the array can do. It ought to be exposed through Objective-C’s

properties feature, but it isn’t. Objective-C still allows a programmer to use dot

notation for regular message sending if the method to be invoked has no parameter

inputs. However, this introduces an inconsistency in usage. Apple recommends that

developers use dot notation only with properties (in other words, things declared

explicitly using the @property declaration in code), and not to call methods that

perform actions. But it also recommends that developers use it to access aspects of

an object’s state. However, here is a case in which its interface to NSArray’s count

has a state-like “property” that is not formally declared using @property syntax. So

one has a dilemma, if one tries to maintain consistency. Does one follow the letter of

Apple’s rules, or the conceptual spirit? Following the conceptual spirit would require

a breaking of the formal rule—accessing count, a state-like property, using dot

notation. Some developers, notably Luke Adamson, have taken this more liberal

stance towards dot notation, while others, such as Brent Simmons, have taken the

more literal approach. Aaron Hillegass, finding neither option fully consistent,

abandoned dot notation entirely in his own code. For Cocoa developers who value

471

consistency, Apple’s own inconsistency in this regard, due to the historical legacies

of its older interfaces, has left them with a difficult quandary.

Recent developments have rendered the debate even more irrelevant. At

WWDC 2014, Apple introduced a new programming language, called Swift, that

would be interoperable with Objective-C, incorporate many features of recent, more

“modern” programming languages, and use a syntax more like the most popular

languages in the industry, but would support the same idioms, expressive naming

practices, and design patterns of the Cocoa frameworks and the Cocoa community.

Swift has dropped interoperability with C, and opted for a uniform syntax for both

object-oriented method calls and procedural function calls. Method calls and

property access both now use dot syntax and look like Java syntax, with one

exception: methods support named parameters. Thus, unlike the previous attempts to

convert method calls to dot syntax, which failed because they did not support the

expressiveness of named parameters, Swift, as a new language, has been designed

from the ground up to support this. Because Swift no longer has to be backwards

compatible with C, it has been able to update its notion of “structure” to be much

more object-oriented—structures can have methods attached to them just like objects,

and both can have properties, which are no longer abstractions over method call

implementations. Thus, the problems that objectors had to the ambiguities of dot

notation in Objective-C are no longer applicable in Swift.

The reaction to Swift from Cocoa and iOS developers has been ecstatic. Some

quarters of the Apple community had been vocal that Objective-C, as a language

built in the 1980s, has been getting long in the tooth and, despite several feature

updates in recent years by Apple, would eventually hit a wall in terms of its ability to

keep up with more “modern” programming languages (Bruchez 2014; Siracusa

2005a; Siracusa 2005b; Siracusa 2005c; Siracusa 2010). These voices have been

vindicated, as Swift has seemed to be a grab bag of language features from

seemingly every innovative language in current widespread use in industry. However,

there has been trepidation among some that, because Swift, like some of these more

popular languages, supports much more terse code, it will undermine the values of

472

expressiveness and explicitness in the Cocoa community. In addition, message

passing as a concept is deemphasized. Not only does Swift use dot notation, but

methods as well as procedural functions are labeled by a common keyword, “func,”

which emphasizes that the two are analogous rather than completely different

concepts. In a number of ways, Swift takes several steps away from Objective-C and

towards C++.

In addition, because the Swift language is new, and only a few hundred

developers inside Apple have had significant experience using it, standard idioms in

its usage have not yet developed, and there will be a shakeout period when

conflicting practices contend with each other in the community. A developer in one

podcast mentioned that there is no Aaron Hillegass for Swift, to recommend proper

Swift coding style (Gruber et al. 2014; Ritchie et al. 2014)—there is no recognized

expert authority on Swift that the community can turn to for advice outside of Apple

itself. It remains to be seen how coding practices will change in the Cocoa

community with the advent of Swift.

Conclusion

 As we have seen, Cocoa programmers care a lot about coding practices, and

actively debate, advocate, or denounce them, for multiple reasons. Cocoa

programmers care about the maintainability of code, a concern arising out of

software engineering and the response to the perceived persistent “software crisis.”

This is a concern with professionalism in software practice: a professional developer

needs to become disciplined and internalize such practices in order to be able to

collaborate with others at work or participate in the code sharing of community

forums. And to the extent that it helps make software easier to fix and extend with

new features, it will, in the long run, save time and effort for the programmer (which

means saving time or money for one’s employer, or oneself, if one is an indie

developer.) Software that works with less bugs is also, to a large extent, a vital

component of “quality,” and incorporating practices to improve software “quality”

will also be of benefit to one’s users. Thus, a professional Cocoa developer is seen to

473

be one that strives for quality in one’s work. In this way, software engineering

practices are not seen as antithetical but as vital to the development of programming

skill—discipline is necessary for such cultivation. Moreover, we can see that the

embodiment of such practices is thus crucial for a Cocoa developer’s identity—

which is why boundary work inevitably becomes involved in arguments about

practice. Professional and community identity are at stake in the minutiae of coding

style.

474

CONCLUSION

Friday, November 15, 2013. I am sitting in a large conference room in a hotel

near the Atlanta airport. I am surrounded by programmers for Apple iPhones and

Macs, as I am attending CocoaConf, a traveling conference devoted to Apple’s

Cocoa development technology. In the front of the room, on a makeshift stage, sits a

portly man with a ukelele at a microphone. He is backed by two younger men on

electric guitars. The man at the microphone is singing a song, which he wrote

himself, called “The Liki song” which is in Hawaiian style. The chorus goes like

this: “Oooh, oooo-ooooh, oooh-oooh. Minawana meika la’a likiko…” The refrain is

actually a pun—faux Hawaiian, which when sung or spoken, sounds like the English

phrase “Me no wanna make a lotta leaky code.” The song is actually about memory

management practices in Objective-C programming on the Mac and iPhone. The

deep technical content of the song is married to witty turns of phrase and

observations about programming practices, and the bugs that can occur if one does

not follow those practices, eliciting knowing laughter from the audience of

programmers. Like the audience of any song, this song speaks to its experience—in

this case, the experience of doing memory management while programming using

Cocoa. And in speaking to that experience, deeply immersed in the technical practice

of programming, members of the audience come to feel as if they are part of a

special, insider group—a culture for which knowledge of, and appreciation for,

Apple’s Cocoa technologies and the practices of using them, binds them together in

solidarity with the others in the room.

The performer is James Dempsey, and his backup band, the Breakpoints.

James Dempsey is a former Apple employee, once an engineer on the Cocoa

framework team (the same team I was a member of, although our tenures did not

overlap). In 2003, Dempsey gave a talk at Apple’s Worldwide Developer Conference

(WWDC) to explain the concepts behind Apple’s Enterprise Object Frameworks

(EOF), a precursor to the CoreData framework on OS X and iOS. Apple’s WWDC is

an opportunity for Apple to teach developers about new technologies and APIs in the

475

latest versions of its operating systems, but some talks are about already established

technologies, and are more explicitly conceptual and pedagogical, intended for

newcomers to the platform. As a part of his 2003 talk, Dempsey decided to end with

a little song about EOF that he wrote himself, and performed it live with his guitar. I

recall being in the audience for this performance, and remember the enormously

positive reception Dempsey received upon finishing the song. Needless to say, in

every subsequent WWDC in which Dempsey gave a talk, he would always perform a

song, and word soon traveled that his songs about Cocoa programming were a

highlight of the show, a break in the usual dry technical presentations.

Dempsey left Apple in 2011 to “go indie,” writing an app named WALT that

allows fans of Disney movies to check off the films they’ve seen. Despite becoming

an independent freelancer, Dempsey has maintained involvement with the Cocoa

developer community. He has become a regular speaker at CocoaConf, a traveling

community-organized conference run by and for Cocoa developers. He also

continues to perform at WWDC, though no longer part of the official Apple-

sponsored proceedings, but in 2012 at a special venue at a local San Francisco bar

after hours, aided or backed by many former colleagues and friends from Apple

(including his and my former manager, Ali Ozer.) Members of his backing band, the

Breakpoints, are basically anybody with musical talents who wants to come join him

on stage, and among their ranks include both Apple engineers as well as frequent

CocoaConf speakers and participants. In Atlanta, Dempsey was joined by the iOS

Developer Meetup organizer Rusty Zarse, and Black Pixel employee, book author,

and Atlanta CocoaHeads member Brandon Alexander, on electric guitar, as well as

Jonathan Penn, a CocoaConf speaker, and Dan Steinberg, the organizer of

CocoaConf. James Dempsey and the Breakpoints performances have become a staple

of the CocoaConf convention, and the band even sells a T-shirt. An album of

Dempsey’s songs, including “The Liki Song” and the mournful lament, “Almost

Dropped My” [iPhone 5], is available on iTunes.

James Dempsey’s songs can be thought of in a similar genre as “filk,” folk

songs written by science fiction and/or fantasy fans about their favorite fictional

476

settings and characters, and because they work only in reference to these original

texts, speak to an already acculturated, “in the know” audience (“Filk Music” 2014).

Like filk, Dempsey’s music speaks to a very narrow geek subculture, but in his case,

his songs are about programming for Cocoa and require at least a rudimentary level

of experience programming in Cocoa to fully appreciate.

To not only attend but appreciate a performance by James Dempsey and the

Breakpoints requires an engagement and participation in the knowing experience of

its insider puns, jokes, and references, which depend on the technical knowledge of

Cocoa. At the same time, it involves a deep understanding of the shared, collective

and affective appreciation the audience has for the subject of Dempsey’s songs,

which is the experience and practice of Cocoa programming. Dempsey’s songs are

often pedagogical, sometimes quasi-historical, and often carry a normative message

about best practices in Cocoa programming. Yet their packaging in an entertaining,

humorous, and insider-specific artistic format softens the message, and helps bind

together the community of listeners to whom his songs speak. Dempsey’s songs are

not just a collection of notes and lyrics about an arcane technical topic. To fully

understand them requires an understanding of the technical practices of the Cocoa

community that it speaks to, the norms and values that drive it, and the affective

connection to Cocoa among the developer community that is powerfully enacted in

Dempsey’s performances and his audiences’ reactions.

This dissertation is a thick description of the cultural world that produces the

artifact and experience that is a song and performance by James Dempsey and the

Breakpoints. It tries to answer the following questions: what motivates Cocoa

developers’ deep devotion and commitment to Apple and to Cocoa technology? Why

do they believe Cocoa is a superior programming environment? What does it mean to

be a proper member of the community, a “good” Cocoa programmer, both

technically and in a moral sense? How do people become Cocoa programmers and

join this technical subculture? How did this community get this way historically?

477

In answering these questions, I have shown that the culture of the Cocoa

community can only be explained by simultaneously examining the values, norms,

ideology, identity, affects, and practices, of the community and the way each of these

interacts with each other and with Cocoa technology, in what I call a “techno-

cultural frame,” a concept which draws on but also extends Wiebe Bijker’s notion of

“technological frame,” discussed in the introduction and chapter 5 (Bijker 1995). I

extend Bijker’s term to include ideology, moral order, and affective experience. The

constellation of interacting elements that make up the “techno-cultural frame” of

Cocoa programming impacts users through their experiences with the apps they buy

and the app market itself, and the rest of the software industry through the interaction

of the discourses and practices of Cocoa developers with other programming

platforms.

My decision to combine the concepts of “technological frame” and “ideology”

is related to the Science and Technology Studies literature this dissertation is in

conversation with. This dissertation follows the classic Sociology of Scientific

Knowledge (SSK) and Social Construction of Technology (SCOT) tradition, in

getting “Inside Technology” and opening up technology’s black box in order to show

the deep intertwining of the social, cultural, and technical. I am purposely invoking

this literature when I refer to the relationship of culture and technology as a

“seamless web” (Bijker, Hughes, and Pinch 1987). Nevertheless, the SCOT literature

does not address the role that ideology can play in shaping technological cultures.

More recent STS literature does address ideology, however, from Gusterson’s study

of nuclear weapons scientists, to Kunda’s study of a computer company, to Fred

Turner’s work on the counterculture in computing, Stewart Brand, and Burning Man,

Malaby’s ethnography of Linden Lab, and Coleman and Kelty’s work on open source

(Gusterson 2008; Kunda 1992; Turner 2006; Turner 2009; Malaby 2009; Coleman

2013; Kelty 2008). Other STS literature has focused on the affective experience

people have in relation to technology, including Coleman, Sherry Turkle, Natasha

Dow Schüll, and others (Coleman 2013; Turkle 1984; Turkle 1995; Turkle 2011;

Schüll 2012). Rarely, however, do these works get inside the technology at a deep

478

level of technical detail in the way the SCOT literature does (with the exception,

perhaps, of Schüll). My contribution is to bring these two approaches together, to

show how a deep technical understanding of technology can reveal how deeply

ideology and culture are embedded in it, and how it animates the way people interact

with it in their practice.

The relationship of third party Apple developers to Cocoa technology is an

excellent case study for this, because of the intense affective connections developers

have to Cocoa. Moreover, it is important to understand this culture in its own right,

as the committed core of the third party Cocoa developer community acts as an

ideological extension of Apple itself, evangelizing for Apple technologies and

practices among users, the public, and the programming world at large. Apple is

among the most ideological of all information technology companies. Even prior to

its current success, its influence far exceeded its actual market position, and its

contemporary dominance has been largely predicated on its focus and rigid

adherence to its sense of mission and values and its ability to enroll its users and

developers in its way of seeing the world. By participating in technological

production using Apple’s tools to make technologies of their own, third party

developers take part in the same techno-cultural world that engineers at Apple itself

engage in, and magnify the influence of the Apple way many times more than Apple

could do on its own.

Explaining this system of beliefs and values, the cosmological component of

the techno-cultural frame of Cocoa programming, is the aim of chapters 1, 2, and 3.

Chapter 1 focused on the affective and ideological aspects of this cosmology. In

chapter 1, I showed how Cocoa programmers experience a deep pleasure in making

software using Cocoa technologies. Chapter 3 showed how this pleasure is rooted in

the way Cocoa is designed by engineers at Apple: it is created to be consistent, yet

flexible, and provide more utility for less effort, allowing developers to achieve their

goals more quickly and with less frustration. Chapter 1 also showed that Cocoa

programmers share with Apple the goal of providing users with user friendly and

aesthetically pleasing experiences with their software. Their pursuit of this goal is

479

considered to be their passion and vocation, not simply a job; their identity is that of

artisans who are making fine pieces for their customers. It is in order to maintain

control over their creative production that Cocoa programmers consider the highest,

purest expression of their identity to be that of the indie developer, who works only

on what software they want to create, according to their own visions. To do this, they

must be in charge of their own businesses, not be the employee of a larger

corporation, nor do they take funding from investors or venture capitalists, as their

goal is not to create a powerful technology company but simply to sustain a small

business that will allow them to continue doing what they love for a living. Chapter 3

showed how the increased productivity Cocoa provides to developers allows them to

be indies. Cocoa provides significant built-in functionality and conveniences to

developers, allowing them to delegate routine functions to Cocoa libraries and

concentrate on their applications’ unique and original contributions. Apple’s libraries

do half the work for them, allowing them to compete with the offerings of corporate

software companies like Microsoft with hundreds of times the manpower. Being an

independent developer is made possible by this division of labor. Indies’ ecological

dependence on Apple is not seen as a contradiction because Apple is not a direct

employer, and does not directly control the kinds of apps that indies make, although

its history of appropriation from the community means that developers must be

careful. Nevertheless, ideologically indies see Apple as engaging in the same project

as themselves—making useful, usable, and pleasurable technologies to empower

users, enrich their lives, and improve society. In their eyes, Apple, with its tight

control over its own artistic creations, is like a very large indie company. The

mythology of the company and of Steve Jobs, its legendary founder, serves to cement

this connection; in Jobs, perennially struggling against the mediocrity of the wider

industry to realize his true radical and spiritual vision of computing, they see

themselves or what they long to be. Chapter 2 showed the extent to which NeXT and

later Cocoa developers, motivated by this vision and devotion to NeXT/Cocoa

technology, struggled through the 1990s to keep making NeXT/Cocoa software in

order to keep the dream alive, even if they had to take contracts from Wall Street or

the FBI to do it. NeXT’s acquisition by Apple, and the technology’s subsequent use

480

as the basis for not only Mac OS X but iOS, was viewed as the arrival of the true

believers to the promised land after a decade in the wilderness.

To attain the purity and consistency of artistic vision and design, however,

requires control, according to the Cocoa cosmology. In chapter 3, I described how

Cocoa developers understand that they live in a beautiful, curated, but walled, garden,

and that they have chosen to give up certain freedoms in return for this experience.

They have learned to trust in Apple’s technology to give them this experience. This

attitude is not acquired overnight, however. Because of Cocoa’s high learning curve,

novices do not experience these pleasures initially, but must struggle through

learning unfamiliar new concepts and practices (such as design patterns) that do not

make sense at first while they are learning them piecemeal. Only after the entire

system has been learned and experienced holistically do the benefits of Cocoa

emerge. Cocoa developers have described this experience as a conversion, and what

is apt about the metaphor is that it is not only an intellectual transformation but also

deeply affective and aesthetic. Developers are left feeling as if this is the way

programming should always be done, and are eager to proselytize to others in order

to share this experience. This deep quasi-religious feeling is the root of the devotion

Cocoa programmers have for Cocoa technology, and why they place their trust in

Apple, the creators of Cocoa.

Chapter 4 showed how novices are trained to begin seeing Cocoa in this way

as they learn how to program iOS apps at the training company, Big Nerd Ranch.

Through the disciplinary mechanism of manually typing in code, diagnosing and

fixing those problems, all while under a relentless pace in the face of a daunting

volume of Cocoa APIs to learn, novices work through frustration and helplessness,

and as they get their programs working, begin to understand the reason for the

normative practices they are learning: these practices are necessary in order to help

them get their programs to work. Big Nerd Ranch instructors seek to teach such

technical-normative lessons by calling preferred practices “stylish,” which reinforces

the social nature of these practices. Students are exhorted to follow “stylish”

481

practices as much for the importance of conformity to community standards as for

their technical, instrumental benefits.

Chapter 5 explored the organization of this community and how such

normative technical practices are spread and maintained. The community is

organized both as an online networked public, through the blogosphere and

Twitterverse, and physically as a collection of local developer clubs centered in

cities like Seattle, which convene periodically at conferences, including Apple’s

WWDC. Most of the community’s activities involve the sharing of the technical

knowledge of Cocoa practice, which includes normative prescriptions. This certainly

happens at WWDC, where Apple actively enrolls participants in its normative and

ideological messages, but it also occurs in community-run gatherings as well, where

community norms are enacted in sharing. Although at the highest level, the Cocoa

community is large and expanding tremendously in the wake of the iOS App Store,

the inner core of the community is rooted in the personal, intimate friendships

formed over beer at local club afterparties. This personal connection is responsible

for the moral economy of collegiality among indies that militates against cutthroat

market competition between them, and facilitates sharing of knowledge and

resources. The collegial sharing among the community, in particular the Seattle

Cocoa community, is responsible as much for the success of the indies as Cocoa

technology itself, despite the rhetoric of independence and individuality. Personal

connections to engineers within Apple also help to sustain the sense of shared

mission with the company, resolve tensions caused by misguided Apple corporate

policies, and serve as a conduit for influential third party developers to make their

concerns known to the company and possibly influence Apple’s actions.

Chapter 6, which dealt with the controversy over Apple’s introduction of dot

notation syntax into Objective-C, illustrates the normative and technical tension

between the practices held by the core of the indie Cocoa community and Apple, as

well as the much larger population of new iOS programmers whose practices the

older community felt a need to guard against. Chapter 6 and chapter 2 draw on and

respond to the literature in the history of computing and software, particularly that

482

which focuses on the software crisis, software engineering, and the

professionalization of programming (Mahoney 2002; Mahoney 1990; Mahoney 2004;

Mahoney 2008; Ensmenger 2009; Ensmenger and Aspray 2002; Ensmenger 2010;

MacKenzie 2001; Abbate 2012; Slayton 2013a; Zepcevski 2012; Haigh 2010). In

chapter 6, I showed how arguments for and against certain practices were rooted in

the concerns over software maintainability and programmer productivity that have

been an ongoing concern in software engineering since the first perception of a

software crisis in the late 1960s. Chapter 2 showed how such concerns motivated the

creation and design of the Objective-C language and NeXT’s object-oriented

frameworks. Object-oriented frameworks, in conjunction with object-oriented design

and coding practices, improved programmers’ productivity by helping them make

their software more maintainable. These productivity benefits made the NeXT/Cocoa

frameworks advantageous for creating a wide range of applications, from financial

services to mobile games, and was why Cocoa’s adherents considered it to be

technically superior to alternative programming environments. Although the purpose

of chapter 2 is to provide the historical context for chapter 3, as a whole this

dissertation is not primarily a work of history, and does not directly address

questions central to the history of computing. Nevertheless, I am responding to the

debate raised in this literature over the extent of managerial deskilling, disciplining,

or routinization of programming practice through the methodologies and

technologies of software engineering, structured programming, and object-oriented

programming. I hope to dispel the specter of Philip Kraft’s deskilling thesis (Kraft

1977). While use of these object-oriented environments disciplined programmers to

think and solve problems in specific ways, by encouraging or requiring techniques

such as modularization, loose coupling, and code reuse that could help manage

complexity and improve maintainability, the incorporation of these methods into

programming practice and object-oriented technologies did not deskill but became a

new set of skills to master, part and parcel of the new professional programming

worldview.

483

Nathan Ensmenger has shown how software engineering discourses and

methodologies became part of the professional practice of programmers (Ensmenger

2010), and my exploration of the norms of practice of Cocoa developers in chapter 6

shows how deeply these discourses have become embedded. Experienced

professional iOS developers seek to create quality, maintainable software because

that is what good developers do, often in spite of managerial pressures to do cut

corners and rush an app to market. Nevertheless, Ensmenger has pointed out that

programming has never fully professionalized to the same extent as mechanical, civil,

or electrical engineering (Ensmenger 2010). There is no requirement to be a formal

member of a professional society such as the Association of Computing Machinery,

nor are formal certifications required for the vast majority of programming jobs. The

fact that many programmers are self-taught or dropped out of college and yet still

find gainful employment speaks to programming’s lack of status as a true profession.

To an extent, this is something that programmers actually celebrate, as part of a

vision of democratization of and participation in technological production in the DIY

Maker/hackerspace movement. This popularist rhetoric underlies the utopian view of

many indies that millions of small developers will overthrow the corporate software

monopolies. Nevertheless, it is precisely because the formal boundaries of the

profession are so fuzzy, that more professional developers feel the need to do verbal

boundary work against those who they see as amateurs dragging down the reputation

of their profession and the quality of their work. The fear that the Cocoa community

will lose its values and its identity underlies the vitriolic rhetoric against dot notation

in Objective-C. As Coleman pointed out, the hacker ethic has both popularist and

meritocratic/elitist components existing constantly in tension (Coleman 2013), and

this is precisely because the programming profession has been more inclusive than

exclusive in comparison to traditional engineering.

Michael Mahoney exhorted computer historians to connect the history of

computing more closely to the questions being asked by the history of technology,

especially by looking at the context of practice in shaping the construction of

computing technologies. He particularly wanted historians to examine software,

484

because it was in legacy software that older practices and social organization could

be excavated (Mahoney 1988; Mahoney 2008). In this dissertation I reflect on the

materiality of software and its relationship to the normative practice of its use,

especially if that use is the further creation of software, and I show that, contrary to

the deterministic impact model of technology, software technology and the practices

of its users co-produce each other, a key insight of the technology studies literature

and especially the Social Construction of Technology (SCOT) (Bijker, Hughes, and

Pinch 1987; Bijker 1995; Collins and Pinch 1998a; Pinch and Trocco 2002; Kline

and Pinch 1996; Bijker and Law 1992; MacKenzie 1996; Mackenzie 1990;

MacKenzie 2001; Kline 2000; Oudshoorn and Pinch 2003). As explored in chapter 2,

object-oriented languages and tools were created in order to encourage or enforce

structured practices that would manage complexity and improve stability and

maintainability. Nevertheless, object-oriented technologies by themselves are not a

panacea, and programmers that simply adopt object-oriented languages without

altering their design practices do not reap the promised productivity gains. This was

the warning given by Bruce Webster in his book, Pitfalls of Object-Oriented

Development (Webster 1995). Proper, disciplined use of object-oriented technologies,

involving new ways of thinking about software design and implementation, must be

acquired. This learning occurs socially and normatively through socialization into the

norms of practice of the programming community, and because much of this

knowledge is tacit, it must be learned through doing, rather than read from a book, as

we saw in chapter 4.

Nonetheless, disciplined practices can be facilitated by object-oriented

technologies such as languages and libraries, although such technologies cannot fully

control what programmers do with them. Libraries such as the Cocoa frameworks are

not designed in a vacuum but with an eye to encouraging best practices. Design

patterns such as Model-View-Controller and delegation were built into the Cocoa

frameworks. Thus, programmers who wish to learn Cocoa must learn to work in the

way Cocoa demands, which includes learning these design patterns, as we saw in

chapter 3. This is why Cocoa takes more effort to learn, because it is not merely

485

syntax or APIs but a different way of thinking and doing, involving concepts and

practices that take time and experience to internalize. Over time, as practices

continue to develop, the designers of the technology continue to react to such

changes as they modify the technologies to better suit their users’ practices. As

discussed in chapter 4, the Cocoa engineers at Apple gradually began to assume that

the majority of its developers followed conventional practices and modified the

Cocoa frameworks to take advantage of these conventions, allowing them to

introduce innovations such as Automatic Reference Counting. Changes in the

technology respond to changes in practice, and vice versa. On the flip side, chapter 6

showed that the introduction of dot notation into Objective-C changed idiomatic

practice in the developer community, though not without considerable cultural

resistance from older Cocoa developers. In this way, Cocoa technology and the

practices of Cocoa developers mutually shape each other.

I said in the introduction that the techno-cultural frame of Cocoa software

development involves affect, ideology, identity, community, practices, and

technology together in a seamless web of mutually shaping influences. Each of these

aspects involves the others and cuts across the individual chapters of this dissertation,

which illustrates how deeply culture and technology are intertwined, the key insight

that the field of Science & Technology Studies has contributed to our understanding

of technological development. This analysis of the Cocoa developer community

makes it impossible to see technology as a force developing autonomously from

society and impacting it in a straightforward, billiard-ball fashion. The values and

practices that shaped the design of Cocoa technology by NeXT and Apple engineers

are shared by the third party developers that use it to make their own software,

because the extent of the Cocoa community crosses the boundaries of Apple itself.

Cocoa software is what it is because of the values of the people that make it.

Future Directions

This dissertation has touched on a number of themes relevant to the culture

and values of Cocoa development, but more work needs to be done. Although

486

chapter 5 discussed briefly the relationship between the Cocoa community and Apple,

a deeper study of this relationship is necessary. To what extent does the community

have influence on Apple? How are tensions between Apple and the community

worked out? What happens to developers who are permanently alienated by Apple’s

actions? The answers to some of these questions may require not only additional

research, but access to people at Apple itself, which is difficult to acquire.

This dissertation has focused mainly on the Cocoa developer community. As

such, it heavily privileges the views and opinions of self-identified Cocoa developers,

particularly those in the core of the Cocoa community, the indie Mac developers who

dominate its online discourse. This project could benefit by getting a wider breadth

of voices, however, especially from the many newer, and more peripheral iOS

programmers that have come into the community since the iPhone, many of whom

may work for larger corporations or venture-funded startups. This might alter the

view of the ideology of the Cocoa community, by examining those who might hold

more traditional programming jobs or subscribe to the Silicon Valley growth

narrative. I did interview a few of these developers but did not have enough time to

fully analyze their data or draw any significant conclusions about them in

comparison to the more highly-included core Cocoa developers.

Insight could also be gained from comparing Cocoa developers to developers

who share in Apple fandom but do not share in its love for Cocoa technology itself,

in other words, Carbon or classic Macintosh developers. In the period from 2001-

2008, for example, there still existed a sizeable group of developers who used the

alternate Carbon toolkits to program applications for Mac OS X. By 2012, with the

iPhone and its Cocoa-based API ascendant, and support for Carbon dropped for

several years by Apple, it had become difficult to locate former Carbon developers

for this study. Moreover, to keep the scope of this project manageable, I decided to

focus recruitment efforts primarily on Cocoa and iOS developers, especially as I had

easy access to them. Additional future work is required to find former Carbon

developers to participate in interviews.

487

This project could also benefit from comparison to other developer

communities, to compare and contrast their values, norms, ideologies, and practices,

in order to locate what is singular and unique about the Cocoa community. This

could include programmers for Windows, Android, Java, Ruby, Python, and other

platforms or programming environments. My interviews did include three current

iOS developers who had previously been Windows developers, including one former

Microsoft employee. More work needs to be done to sift through this material for

areas of congruence with themes that appear in this dissertation. I also took a course

on Android programming at the Big Nerd Ranch, and spoke to a few of the Android

developers there. However, the majority of the Android programmers at Big Nerd

Ranch at the time were also iOS programmers, and favored iOS. This has likely

changed as the company has grown, and additional research with Android

programmers who acknowledge hostility to Apple and iOS would be interesting to

compare their ideological commitments. As my interviews with Cocoa developers

who have had extensive experience with other programming languages and

communities suggest, there are many shared values between programmers in general,

and many of the norms I have described in this dissertation could apply to other

programmers. Nevertheless, there are some cultural specificities among Cocoa

developers, in particular, their attachment to Apple, its technology, and its

mythology, that sets them apart. Comparative work could help illuminate more

precisely what these specificities are.

At the end of 2012, Big Nerd Ranch merged with Highgroove, a company

focused on developing web services using the Ruby programming language. Some of

my participants, notably Robert Walker, noted that Ruby and Objective-C shared

many similarities, for example, devotees of both languages consider them elegant.

However, another participant, Rusty Zarse, who was both a Ruby and iOS

programmer alerted me to key cultural differences in the communities. The Ruby

community is committed to open source participation, for one. Additionally, it

adheres rigorously to a technique of component-based testing known as “unit testing.”

Zarse informed me that use of unit testing, as a best practice, was not only expected,

488

but normatively enforced in the Ruby community—one would not be able to ask for

help from someone without first writing a unit test. This is made easy because

sophisticated tools and software infrastructures for unit testing are built into the

Ruby libraries and well supported by the community. On the Apple side, however,

unit testing has only recently acquired built-in support in Apple’s Xcode

development tools at the level of sophistication found in Ruby. Moreover, unit

testing is not regarded as a universally required practice by the majority of the Cocoa

community; while many advocate for it, some leading developers, like Wil Shipley,

have opined that it is a waste of time (Shipley 2005). Future work will compare the

different norms for best practices between the Ruby and Cocoa communities,

especially with regard to the importance of unit testing for developing quality

software.

Gender has not been a central analytic framework of this dissertation, though

it has arisen as a minor theme in the cosmology and social organization of the Cocoa

community, specifically in chapters 1, 4, and 5. Ideologically, the figure of the indie

is gendered masculine, and almost all of the famous and influential Cocoa indies are

male, as is the vast majority of the rest of the Cocoa community. The gender

imbalance at WWDC was estimated by one of my participants as 30 to 1, and the

WWDC afterparty culture caters to male developers. In my research at an iPhone

startup in 2008, I witnessed a fraternity atmosphere, in which there were no women

programmers. Even at Big Nerd Ranch in 2011, there was only one woman

programmer, an intern, though by the end of 2012, with the company’s expansion

and then merger with Highgroove, there were significantly more, though still vastly

outnumbered by men. Nevertheless, with the expansion in the community, the

situation is improving. I did notice that in Big Nerd Ranch’s classes, there sometimes

were a number of women, including one indie developer. I also met women who

attended Seattle’s NSCoder night, a night when local developers met at a

coffeehouse to help each other code; these also included at least one indie.

Highgroove hosted a women’s Ruby developer group. The Atlanta iOS Developer

meetups included women, and in early 2013, I discovered through a mailing list that

489

the Atlanta iOS Developer Meetup had also started a separate women’s group,

although the decision to do so had created some tensions within the overall group.

While women’s participation in Cocoa programming is improving, there is still much

to be done. In a future project, I would like to study more closely women Cocoa

developers, such as those who have formed their own group in Atlanta, to examine

the challenges they face in a masculine dominated culture, and illuminate both their

contributions and the ways those contributions are marginalized in the rest of the

community.

Although this dissertation has touched on the history of NeXT the company,

NeXTSTEP the operating system and development environment, and the third party

developer community of NeXT, the number of interviews I have been able to gather

from former NeXT developers and employees remains small. Writing a history of

NeXTSTEP is difficult at this time, due to most internal documents belonging to

Apple. However, more former NeXT employees are retiring or leaving Apple. One

long term project of mine is to compile an archive of oral histories of former NeXT

employees and developers, in order to make such a history possible. NeXT is

important for understanding more than just Apple and its later development. Certain

NeXT technologies influenced the development of the Java programming language,

which became an industry standard in web programming. NeXT software

technologies could be precursors to various ideas taken up by later web programming

technologies, including Ruby. Additionally, as we saw, NeXT was used extensively

by Wall Street, and following the use of software technologies in the finance

industry could be a very revealing future project.

Finally, developments in the Apple technology world, and in the Cocoa

community, have continued in the three years that it took to complete this

dissertation, and these developments could change the norms and practices of Cocoa

developers. As this dissertation is being completed, Apple will have shipped its new

wearable computer, the Apple Watch, which contains its own SDK for app

development. In addition, the iOS SDK has been expanded with new frameworks,

HomeKit, HealthKit, and ResearchKit, that provide new APIs for developing apps

490

that track personal information in conjunction with other devices. These frameworks

show that Apple is heavily invested in the recent technology trend known as the

“Internet of Things” (IoT). The “Internet of Things” refers to how computers and

sensors are increasingly being embedded into everyday objects, in the home, in

automobiles, and worn on the body. These “smart” appliances record data constantly

and usually send that data to a remote server to be aggregated with data from

millions of other devices, giving institutions the ability to mine this “Big Data” to

discover patterns that could not have been otherwise achieved. For individual

consumers, the constant monitoring of data allows them to optimize their own

lives—say, their home energy usage, or their exercise regimen. This trend towards

self-surveillance has acquired its own term, the “Quantified Self.” A recent survey of

mobile developers shows that more than half of app developers are working on IoT-

related projects (VisionMobile Ltd 2015). Many such apps were released prior to

Apple providing any special support, but with the HomeKit, HealthKit, and

ResearchKit libraries, Apple is now providing direct system-level support for these

kinds of applications, making it easier than ever to develop them, while also using

them to enforce privacy protections to prevent third party developers from misusing

users’ data. HomeKit is being built for home automation devices, such as smart

thermostats and remote lighting controls. HealthKit supports Quantified Self

applications such as measuring how many steps a person has taken in a day.

ResearchKit allows users to opt-in to studies that use data collected on iPhones for

medical research that involves massive data sets. All of these frameworks come with

Objective-C APIs and are built in the Cocoa idiom, using design patterns such as

delegation. It will be interesting to track how the techno-cultural frame of the Cocoa

community intersects with the Internet of Things among developers working on apps

with these new frameworks.

As was discussed in chapter 6, Apple introduced Swift, a new programming

language for use with Cocoa, in 2014. In a significant way, changes made to

Objective-C from 2007 to 2014, including the introduction of dot notation, paved the

way for its eventual replacement by Swift. Swift syntax reverses some of the

491

normative preferences of Objective-C code: verbosity is out, terseness is in, dynamic

typing is out, static typing is in. Many of the accumulated idioms of the existing

Objective-C culture no longer apply, though some may have been incorporated into

Swift itself. Nevertheless, the community is presented with a new slate in which to

develop a new set of norms and idiomatic practices for Swift code that take some

cues from Objective-C but may also branch out into completely new directions.

Moreover, Swift itself is still a work in progress at Apple, responding to feedback

from the developer community on what aspects of its current design work and what

do not. Nevertheless, Swift adoption has been very rapid considering how new it is

and the fact that it is only available on Apple platforms. A recent survey has shown

that as many as 20% of mobile developers are already using Swift. Although Google

and Facebook have introduced their own proprietary languages Go and Hack, both

primarily for server-side programs, neither language has seen the kind of adoption

that Swift has had in less than a year of availability. Moreover, the survey also shows

that the majority of Swift adopters are newer iOS developers, whereas older iOS

developers with extensive Objective-C experience and existing code bases have been

slower to adopt the language (VisionMobile Ltd 2015). This suggests that Apple is

very much interested in Swift’s appeal to the recent wave of new programmers in the

iOS community, similar to its support of dot notation in Objective-C. Will this

engender significant resistance to Swift among the Cocoa oldtimers? It will be very

interesting to study how the community and its culture will develop in response to

Swift.

492

BIBLIOGRAPHY

Abbate, Janet. 2012. “Software Crisis or Identity Crisis? Gender, Labor, and
Programming Methods.” In Recoding Gender: Women’s Changing
Participation in Computing, 73–111. Cambridge, Mass.: MIT Press.

Akera, Atsushi. 2007. “Voluntarism and Occupational Identity: The IBM Users’
Group, Share.” In Calculating a Natural World: Scientists, Engineers, and
Computers During the Rise of U.S. Cold War Research, 249–74. Inside
Technology. Cambridge, Mass: MIT Press.

Alicia Robb, Susan Coleman, and Dane Stangler. 2014. SOURCES OF ECONOMIC
HOPE: WOMEN’S ENTREPRENEURSHIP. Ewing Marion Kauffman
Foundation.

Althusser, Louis. 1999. Ideology and Ideological State Apparatuses (Notes towards
an Investigation). Alexandria, VA, USA  ;;Cambridge, UK  : Chadwydk-
Healey,.

Amelio, Gil. 1998. On the Firing Line: My 500 Days at Apple. 1st ed. New York:
HarperBusiness.

Ames, Morgan G., Jeffrey Bardzell, Shaowen Bardzell, Silvia Lindtner, David A.
Mellis, and Daniela K. Rosner. 2014. “Making Cultures: Empowerment,
Participation, and Democracy - or Not?” In Proceedings of the Extended
Abstracts of the 32Nd Annual ACM Conference on Human Factors in
Computing Systems, 1087–92. CHI EA ’14. New York, NY, USA: ACM.
doi:10.1145/2559206.2579405.

Anderson, Benedict R. O’G. 1991. Imagined Communities: Reflections on the Origin
and Spread of Nationalism. Vol. Rev. and extended. London: New York.

Apple Inc. 2013a. “Cocoa Core Competencies: Delegation.” iOS Developer Library.
https://developer.apple.com/library/ios/documentation/General/Conceptual/De
vPedia-CocoaCore/Delegation.html.

———. 2013b. “Start Developing Mac Apps Today: Design Patterns.” April 23.
https://developer.apple.com/library/mac/referencelibrary/GettingStarted/Road
MapOSX/chapters/08_DesignPatterns.html.

———. 2013c. “Coding Guidelines for Cocoa: Code Naming Basics.” October 22.
https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/Co
dingGuidelines/Articles/NamingBasics.html#//apple_ref/doc/uid/20001281-
BBCHBFAH.

———. 2013d. “Coding Guidelines for Cocoa: Naming Methods.” October 22.
https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/Co
dingGuidelines/Articles/NamingMethods.html#//apple_ref/doc/uid/20001282-
BCIGIJJF.

———. 2014. “Apple - Press Info - Apple Reports Fourth Quarter Results.” October
20. http://www.apple.com/pr/library/2014/10/20Apple-Reports-Fourth-
Quarter-Results.html.

———. 2015a. “Apple - About - Job Creation.” Apple.
http://www.apple.com/about/job-creation/.

493

———. 2015b. “Apple - Press Info - App Store Rings in 2015 with New Records.”
January 8. http://www.apple.com/pr/library/2015/01/08App-Store-Rings-in-
2015-with-New-Records.html.

“Application Program.” 2015. PC Magazine Encyclopedia.
http://www.pcmag.com/encyclopedia/term/37919/application-program.

Atlassian Blogs. 2012. “Between a Rock and a Hard Place – Our Decision to
Abandon the Mac App Store.” Atlassian Blogs. February 16.
http://blogs.atlassian.com/2012/02/between-a-rock-and-a-hard-place-our-
decision-to-abandon-the-mac-app-store/.

Bardini, Thierry. 2000. Bootstrapping: Douglas Engelbart, Coevolution, and the
Origins of Personal Computing. Stanford, CA: Stanford University Press.

Barlow, John Perry. 1992. “Will They Ever Come? Sales and Marketing at NeXT.”
NeXTWORLD EXTRA, February.

Belk, Russell W., and Gülnur Tumbat. 2005. “The Cult of Macintosh.” Consumption,
Markets & Culture 8 (3): 205–17.

Benkler, Yochai. 2006. The Wealth of Networks: How Social Production Transforms
Markets and Freedom. New Haven [Conn.]: Yale University Press.

Benkler, Yochai, and Helen Nissenbaum. 2006. “Commons-Based Peer Production
and Virtue.” Journal of Political Philosophy 14 (4): 394–419.
doi:10.1111/j.1467-9760.2006.00235.x.

Big Nerd Ranch. 2014a. “Corporate Training.” Big Nerd Ranch. Accessed November
12. http://www.bignerdranch.com/we-teach/corporate-training.html.

———. 2014b. “Our Work.” Big Nerd Ranch. Accessed July 24.
http://www.bignerdranch.com/we-develop/our-work.html.

Bijker, Wiebe E. 1995. Of Bicycles, Bakelites, and Bulbs: Toward a Theory of
Sociotechnical Change. Cambridge MA: MIT Press.

Bijker, Wiebe E., Thomas P. Hughes, and Trevor J. Pinch. 1987. The Social
Construction of Technological Systems: New Directions in the Sociology and
History of Technology. Cambridge Mass.: MIT Press.

Bijker, Wiebe E., and John Law. 1992. Shaping Technology/Building Society:
Studies in Sociotechnical Change. Inside Technology. Cambridge, MA: MIT
Press.

Bilton, Nick. 2014. “The 30-Year-Old Macintosh and a Lost Conversation With
Steve Jobs.” Bits Blog. January 24.
http://bits.blogs.nytimes.com/2014/01/24/the-30-year-old-macintosh-and-a-
lost-conversation-with-steve-jobs/.

Blumenthal, Karen. 2012. Steve Jobs: The Man Who Thought Different. 1 edition.
New York: Square Fish.

Borsook, Paulina. 1992. “Striking It Rich: Oil Trader Leverages the Future on NeXT.”
NeXTWORLD.

———. 2000. Cyberselfish: A Critical Romp Through the Terribly Libertarian
Culture of High Tech. 1st ed. New York: PublicAffairs.

Bourdieu, Pierre. 1975. “The Specificity of the Scientific Field and the Social
Conditions of the Progress of Reason.” Social Science Information 14 (6): 19–
47. doi:10.1177/053901847501400602.

494

———. 1977. Outline of a Theory of Practice. Cambridge; New York: Cambridge
University Press.

———. 1986. “The Forms of Capital.” In Handbook of Theory and Research for the
Sociology of Education, edited by J. Richardson, 241–58. New York:
Greenwood Press.

boyd, danah. 2006. “A Blogger’s Blog: Exploring the Definition of a Medium.”
Reconstruction 6 (4).
http://reconstruction.eserver.org.proxy.library.cornell.edu/Issues/064/boyd.sht
ml.

Brand, Stewart. 1968. “Whole Earth Catalog.” Whole Earth Catalog.
———. 1972. “Spacewar: Fanatic Life and Symbolic Death Among the Computer

Bums.” Rolling Stone, December 7.
http://www.wheels.org/spacewar/stone/rolling_stone.html.

Brooks, David. 2000. Bobos in Paradise: The New Upper Class and How They Got
There. New York: Simon & Schuster.

Brooks, Frederick P. 1987. “No Silver Bullet Essence and Accidents of Software
Engineering.” Computer 20 (4): 10–19. doi:10.1109/MC.1987.1663532.

———. 1995. The Mythical Man-Month: Essays on Software Engineering.
Anniversary ed. Reading, MA: Addison-Wesley Pub. Co.

Brown, John Seely, and Paul Duguid. 1991. “Organizational Learning and
Communities-of-Practice: Toward a Unified View of Working, Learning, and
Innovation.” Organization Science 2 (1): 40–57. doi:10.1287/orsc.2.1.40.

———. 2000. The Social Life of Information. Boston: Harvard Business School
Press.

———. 2001. “Knowledge and Organization: A Social-Practice Perspective.”
Organization Science 12 (2): 198–213. doi:10.1287/orsc.12.2.198.10116.

Bruchez, Erik. 2014. “Erik’s Ponderings: Thoughts on the Swift Language.” June 3.
http://blog.bruchez.name/2014/06/thoughts-on-swift-language.html.

Bruns, Axel, and Joanne Jacobs. 2006. Uses of Blogs. New York: Peter Lang.
Buechley, Leah, Daniela K. Rosner, Eric Paulos, and Amanda Williams. 2009. “DIY

for CHI: Methods, Communities, and Values of Reuse and Customization.” In
CHI ’09 Extended Abstracts on Human Factors in Computing Systems, 4823–
26. CHI EA ’09. New York, NY, USA: ACM. doi:10.1145/1520340.1520750.

Butcher, Lee. 1988. Accidental Millionaire: The Rise and Fall of Steve Jobs at Apple
Computer. New York: Paragon House.

Caldwell, Serenity. 2012. “Sandbox Deadline Delayed yet Again to June 1.”
Macworld. February 21.
http://www.macworld.com/article/165502/2012/02/sandbox_deadline_delayed
_yet_again_to_june_1.html.

Callon, Michel. 1986. “Some Elements of a Sociology of Translation: Domestication
of the Scallops and the Fishermen of St Brieux Bay.” In Power, Action, and
Belief: A New Sociology of Knowledge?, 196–229. Sociological Review
Monograph 32. London  ; Boston: Routledge & Kegan Paul.

Campbell, H. A., and A. C. La Pastina. 2010. “How the iPhone Became Divine: New
Media, Religion and the Intertextual Circulation of Meaning.” New Media &
Society XX (X): 1–17.

495

Campbell-Kelly, Martin. 2003. From Airline Reservations to Sonic the Hedgehog: A
History of the Software Industry. Cambridge, MA: MIT Press.

Carlton, Jim. 1997. Apple: The inside Story of Intrigue, Egomania, and Business
Blunders. New York: Time Business/Random House.

Case, Peter, and Erik Piñeiro. 2006. “Aesthetics, Performativity and Resistance in
the Narratives of a Computer Programming Community.” Human Relations
59 (6): 753–82.

Castrogiovanni, Gary J., B. R. Baliga, and Roland E. Kidwell Jr. 1992. “Curing Sick
Businesses: Changing CEOs in Turnaround Efforts.” The Executive 6 (3): 26–
41.

Chen, Brian X. 2012. “Facebook’s Challenge: Making Money in Mobile World.” The
New York Times, August 23, sec. Technology.
http://www.nytimes.com/2012/08/24/technology/facebook-rewrites-its-code-
for-a-small-screen-world.html.

Cheng, Jacqui. 2011. “iOS Devs Put out a Call to Unite against Lodsys, Other Patent
Trolls.” Ars Technica. August 1.
http://arstechnica.com/apple/news/2011/08/ios-devs-put-out-a-call-to-unite-
against-lodsys-other-patent-trolls.ars.

———. 2013. “Frustrated with iCloud, Apple’s Developer Community Speaks up En
Masse.” Ars Technica. March 28.
http://arstechnica.com/apple/2013/03/frustrated-with-icloud-apples-
developer-community-speaks-up-en-masse/.

Coleman, E. Gabriella. 2013. Coding Freedom: The Ethics and Aesthetics of Hacking.
Princeton: Princeton University Press.

Collins, Harry M. 1981a. “Introduction: Stages in the Empirical Programme of
Relativism.” Social Studies of Science 11 (1): 3–10.

———. 1981b. “Son of Seven Sexes: The Social Destruction of a Physical
Phenomenon.” Social Studies of Science 11 (1): 33–62.
doi:10.1177/030631278101100103.

———. 1985. Changing Order: Replication and Induction in Scientific Practice.
London  ; Beverly Hills: Sage Publications.

———. 2011. Gravity’s Ghost: Scientific Discovery in the Twenty-First Century.
Chicago: University of Chicago Press.

Collins, Harry M., and Trevor J. Pinch. 1998a. The Golem at Large: What You
Should Know about Technology. Cambridge UK  ; New York: Cambridge
University Press.

———. 1998b. The Golem: What Everyone Should Know about Science. 2nd ed.
Cambridge [England]  ; New York: Cambridge University Press.
http://encompass.library.cornell.edu/cgi-
bin/checkIP.cgi?access=gateway_standard%26url=http://encompass.library.co
rnell.edu/cgi-bin/scripts/ebooks.cgi?bookid=53593.

Conway, Joe. 2009. “Dot-Notation Syntax.” Blog. Big Nerd Ranch Weblog. August 6.
http://weblog.bignerdranch.com/83-83/.

Conway, Joe, and Aaron Hillegass. 2011. iOS Programming: The Big Nerd Ranch
Guide. 2nd ed. Atlanta, GA  : Indianapolis: Big Nerd Ranch; Exclusive

496

worldwide distribution of the English edition of this book by Pearson
Technology Group.

———. 2012. iOS Programming: The Big Nerd Ranch Guide. 3rd ed. Atlanta, GA  :
Indianapolis: Big Nerd Ranch; Exclusive worldwide distribution of the
English edition of this book by Pearson Technology Group.

Corneliussen, Hilde. 2009. “Cultural Perceptions of Computers in Norway 1980-
2007: From ‘Anybody’ Via ‘Male Experts’ to ‘Everybody.’” In Gender
Codes: Women and Men in the Computing Professions, edited by Thomas
Misa, 165–85. Hoboken, NJ: Wiley.

Cowan, Ruth Schwartz. 1985. “How the Refrigerator Got Its Hum.” In The Social
Shaping of Technology: How the Refrigerator Got Its Hum, 202–18. Milton
Keynes  ; Philadelphia: Open University Press.

Cox, Brad J. 1983. “The Object Oriented Pre-Compiler: Programming Smalltalk 80
Methods in C Language.” SIGPLAN Not. 18 (1): 15–22.
doi:10.1145/948093.948095.

———. 1990a. “There Is a Silver Bullet: A Software Industrial Revolution Based on
Reusable and Interchangeable Parts Will Alter the Software Universe.” BYTE,
October 1.

———. 1990b. “Planning the Software Industrial Revolution.” IEEE Software 7 (6):
25.

Cringely, Robert X. 1996a. Accidental Empires: How the Boys of Silicon Valley
Make Their Millions, Battle Foreign Competition, and Still Can’t Get a Date.
New York: HarperBusiness.

———. 1996b. “Triumph of the Nerds: The Transcripts, Part III.” PBS.org. July.
http://www.pbs.org/nerds/part3.html.

Crossan, Mary M., Henry W. Lane, and Roderick E. White. 1999. “An
Organizational Learning Framework: From Intuition to Institution.” The
Academy of Management Review 24 (3): 522–37. doi:10.2307/259140.

Csikszentmihalyi, Mihaly. 1994. Flow: The Psychology of Optimal Experience. New
York: HarperCollins.

Daston, Lorraine. 1995. “The Moral Economy of Science.” Osiris, 2nd Series, 10: 3–
24.

David, Shay, and Trevor J. Pinch. 2005. “Six Degrees of Reputation: The Use and
Abuse of Online Review and Recommendation Systems.”
http://ssrn.com/abstract=857505.

Dempsey, James. 2014. “Life Without WWDC.” James Dempsey. April 18.
http://jamesdempsey.net/2014/04/18/life-without-wwdc/.

Deutschman, Alan. 2000. The Second Coming of Steve Jobs. 1st ed. New York:
Broadway Books.

Dijkstra, Edsger W. 1968. “Letters to the Editor: Go to Statement Considered
Harmful.” Commun. ACM 11 (3): 147–48. doi:10.1145/362929.362947.

———. 1971. A Short Introduction to the Art of Programming. [Eindhoven,
Netherlands]: [Technische Hogeschool Eindhoven].

DiNucci, Darcy. 1992. “Once More, with Feeling.” NeXTWORLD.
“DIY Hardware: Reinventing Hardware for the Digital Do-It-Yourself Revolution.”

2009. In ACM SIGGRAPH ASIA 2009 Art Gallery & Emerging Technologies:

497

Adaptation, 66–67. SIGGRAPH ASIA ’09. New York, NY, USA: ACM.
doi:10.1145/1665137.1665186.

Douglas, Mary. 1966. Purity and Danger; an Analysis of Concepts of Pollution and
Taboo. New York: Praeger.

Dredge, Stuart. 2013. “If Android Is so Popular, Why Are Many Apps Still Released
for iOS First?” The Guardian. August 15.
http://www.theguardian.com/technology/appsblog/2013/aug/15/android-v-ios-
apps-apple-google.

Dunbar-Hester, Christina. 2008. “Geeks, Meta-Geeks, and Gender Trouble: Activism,
Identity, and Low-Power FM Radio.” Social Studies of Science 38 (2): 201–
32.

Durkheim, Émile. 1965. The Elementary Forms of the Religious Life. Translated by
Joseph Ward Swain. New York: Free Press.

Eco, Umberto. 1994. “The Holy War: Mac vs. DOS.” Porta Ludovica. September 30.
http://www.themodernword.com/eco/eco_mac_vs_pc.html.

Ensmenger, Nathan L. 2009. “Making Programming Masculine.” In Gender Codes:
Women and Men in the Computing Professions, edited by Thomas Misa.
Hoboken, NJ: Wiley.

———. 2010. The “Computer Boys” Take Over: Computers, Programmers, and the
Politics of Technical Expertise. Cambridge, MA: MIT Press.

Ensmenger, Nathan L., and William Aspray. 2002. “Software as Labor Process.” In
History of Computing: Software Issues, edited by Ulf Hashagen, Reinhard
Keil-Slawik, and Arthur L Norberg, 139–65. Berlin: Springer.

Esslinger, Hartmut. 2014. Keep It Simple: The Early Design Years of Apple.
Stuttgart: Arnoldsche Verlagsanstalt.

Faulkner, Wendy. 2000a. “The Power and the Pleasure? A Research Agenda for
‘Making Gender Stick’ to Engineers.” Science, Technology, & Human Values
25 (1): 87–119.

———. 2000b. “Dualisms, Hierarchies and Gender in Engineering.” Social Studies
of Science 30 (5): 759–92.

“Filk Music.” 2014. Wikipedia, the Free Encyclopedia.
http://en.wikipedia.org/w/index.php?title=Filk_music&oldid=631867060.

Florida, Richard L. 2002. The Rise of the Creative Class: And How It’s Transforming
Work, Leisure, Community and Everyday Life. New York, NY: Basic Books.

Florin, Fabrice. 1985. Hackers: Wizards of the Electronic Age. VHS. Eugene, Or:
New Dimension Films.

Foresman, Chris. 2008a. “iPhone NDA: Doing More Harm than Good.” Ars Technica.
July 28. http://arstechnica.com/apple/news/2008/07/iphone-nda-doing-more-
harm-than-good.ars.

———. 2008b. “Pragmatic Programmers iPhone SDK Book Latest Casualty of
NDA.” Ars Technica. September 25.
http://arstechnica.com/apple/news/2008/09/pragmatic-programmers-iphone-
sdk-book-latest-casualty-of-nda.ars.

———. 2010a. “Apple Putting the Kibosh on Soft-Core Porn App Screenshots.” Ars
Technica. February 12. http://arstechnica.com/apple/news/2010/02/apple-
putting-the-kibosh-on-soft-core-porn-app-screenshots.ars.

498

———. 2010b. “Apple VP Attempts to Explain Double Standard for Risqué Apps.”
Ars Technica. February 23. http://arstechnica.com/apple/news/2010/02/apple-
vp-attempts-to-explain-double-standard-for-risque-apps.ars.

———. 2011. “Apple to Lodsys: You’ll Have to Go through Us to Sue iOS Devs.”
Ars Technica. August 9. http://arstechnica.com/apple/news/2011/08/apple-
tells-judge-intervention-against-lodsys-should-be-granted.ars.

Freiberger, Paul, and Michael Swaine. 2000. Fire in the Valley: The Making of the
Personal Computer. 2nd ed. New York: McGraw-Hill.

Galison, Peter. 1999. “Trading Zone: Coordinating Action and Belief.” In The
Science Studies Reader, edited by Mario Biagioli, 137–60. New York:
Routledge.

Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. 1995. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley
Professional Computing Series. Reading, Mass: Addison-Wesley.

Garfinkel, Simson L. 1992a. “Getting Religion.” NeXTWORLD.
———. 1992b. “Object Lessons Sidebar: Interface Builder: Icing on the Cake.”

NeXTWORLD.
———. 1992c. “Object Lessons Sidebar: Objective-C: Seeing Is Believing.”

NeXTWORLD.
———. 1993a. “Objects for Sale: A New Class of Software Comes of Age.”

NeXTWORLD, July.
———. 1993b. “Make or Buy?” NeXTWORLD, November.
Geertz, Clifford. 1973. “Ideology As a Cultural System.” In The Interpretation of

Cultures: Selected Essays, 193–233. New York: Basic Books.
Giddens, Anthony. 1991. The Consequences of Modernity. 1st paperback ed.

Cambridge, [U.K.]: Polity Press. http://encompass.library.cornell.edu/cgi-
bin/checkIP.cgi?access=gateway_standard%26url=http://www.aspresolver.co
m/aspresolver.asp?SOTH;S10023877.

Gieryn, Thomas F. 1983. “Boundary-Work and the Demarcation of Science from
Non-Science: Strains and Interests in Professional Ideologies of Scientists.”
American Sociological Review 48 (6): 781–95.

Goffman, Erving. 1961. Encounters; Two Studies in the Sociology of Interaction.
Indianapolis: Bobbs-Merrill.

Google Inc. 2015. “Google-Styleguide - Style Guides for Google-Originated Open-
Source Projects - Google Project Hosting.” Accessed February 24.
https://code.google.com/p/google-styleguide/.

Gordon, George G. 1991. “Industry Determinants of Organizational Culture.” The
Academy of Management Review 16 (2): 396–415. doi:10.2307/258868.

Gruber, John. 2004. “Daring Fireball: Dashboard vs. Konfabulator.” June 30.
http://daringfireball.net/2004/06/dashboard_vs_konfabulator.

Gruber, John, Marco Arment, Casey Liss, John Siracusa, and Scott Simpson. 2014.
Live From WWDC 2014, With Marco Arment, Casey Liss, John Siracusa, and
Scott Simpson. The Talk Show. Accessed July 1.
http://daringfireball.net/thetalkshow/2014/06/06/ep-083.

499

Gruzd, Anatoliy, Barry Wellman, and Yuri Takhteyev. 2011. “Imagining Twitter as
an Imagined Community.” American Behavioral Scientist 55 (10): 1294–1318.
doi:10.1177/0002764211409378.

Gusterson, H. 2008. “Nuclear Futures: Anticipatory Knowledge, Expert Judgment,
and the Lack That Cannot Be Filled.” Science & Public Policy. 35 (8): 551–
60.

Haigh, Thomas. 2010. “Dijkstra’s Crisis: The End of Algol and the Beginning of
Software Engineering:1968-1972.” In Soft-EU Project Meeting. Leiden.
http://www.tomandmaria.com/tom/Writing/DijkstrasCrisis_LeidenDRAFT.pd
f.

Hanson, Chris. 2009. “When to Use Properties & Dot Notation.” Eschatology. May 7.
http://eschatologist.net/blog/?p=160.

Haraway, Donna. 1989. Primate Visions: Gender, Race, and Nature in the World of
Modern Science. New York: Routledge.

Haring, Kristen. 2003. “The ‘Freer Men’ of Ham Radio: How a Technical Hobby
Provided Social and Spatial Distance.” Technology and Culture 44 (4): 734–
61.

Hayes, Caroline Clarke. 2009. “Computer Science: The Incredible Shrinking
Woman.” In Gender Codes: Women and Men in the Computing Professions,
edited by Thomas Misa, 25–49. Hoboken, NJ: Wiley.

Hertzfeld, Andy. 2005. Revolution in the Valley. 1st ed. Sebastopol, CA: O’Reilly.
———. 2013a. “PC Board Esthetics.” Folklore.org:. December 31.

http://www.folklore.org/StoryView.py?project=Macintosh&story=PC_Board_
Esthetics.txt.

———. 2013b. “Pirate Flag.” Folklore. December 31.
http://www.folklore.org/StoryView.py?project=Macintosh&story=Pirate_Flag
.txt.

———. 2013c. “Real Artists Ship.” Folklore. December 31.
http://www.folklore.org/StoryView.py?project=Macintosh&story=Real_Artist
s_Ship.txt.

Hicks, Marie. 2012. “From Antisocial to Alphasocial: Exclusionary Nerd Cultures
and the Rise of the Brogrammer.” May 1. http://www.sigcis.org/node/335.

Hillegass, Aaron. 2011. Objective-C Programming: The Big Nerd Ranch Guide. 1st
ed. The Big Nerd Ranch Guide. Atlanta, GA  : Indianapolis, IN: Big Nerd
Ranch  ; Pearson Technology Group (distributor).

Hiltzik, Michael A. 1999. Dealers of Lightning  : Xerox PARC and the Dawn of the
Computer Age. 1st ed. New York: HarperBusiness.

Hockenberry, Craig. 2008. “Twitter / ʎɹɹəәquəәʞɔoɥ Ƃıɐɹɔ: There Is a Huge Shortage
O ...” July 23. http://twitter.com/chockenberry/statuses/866468107.

Holder, Robert J., and Richard McKinney. 1992. “Corporate Change and the Hero’s
Quest.” The Journal for Quality and Participation 15 (4): 34.

Holwerda, Thom. 2011. “The History of ‘App’ and the Demise of the Programmer.”
OSnews. June 24.
http://www.osnews.com/story/24882/The_History_of_App_and_the_Demise_
of_the_Programmer.

500

Huddleston, Tom. 2014. “Apple’s Market Cap Just Hit $700 Billion for the First
Time - Fortune.” November 25. http://fortune.com/2014/11/25/apple-700-
billion/.

Hughes, G. David. 1990. “Managing High-Tech Product Cycles.” The Executive 4
(2): 44–55.

Hughes, Thomas P. 1987. “The Evolution of Large Technological Systems.” In The
Social Construction of Technological Systems: New Directions in the
Sociology and History of Technology, edited by Wiebe E. Bijker, Thomas P.
Hughes, and Trevor J. Pinch, 449–82. Cambridge Mass.: MIT Press.

Ihnatko, Andy. 2011. “App Sandboxing Risks Eroding the Mac’s Identity.”
Macworld. October 2.
http://www.macworld.com/article/162504/2011/10/app_sandboxing_risks_ero
ding_the_macs_identity.html.

“iOSDevCamp.” 2014. Accessed June 13. http://www.iosdevcamp.org/.
Isaac, Mike. 2013. “Why Facebook Is Sending Its People to Mobile Coding Camp

(And Not Just Engineers).” AllThingsD. March 4.
http://allthingsd.com/20130304/why-facebook-is-sending-its-people-to-
mobile-coding-camp-and-not-just-engineers/.

Isaacson, Walter. 2011. Steve Jobs. New York: Simon & Schuster.
Jobs, Steve. 2005. “Text of Steve Jobs’ Commencement Address (2005).” June 14.

http://news-service.stanford.edu/news/2005/june15/jobs-061505.html.
Jobs, Steve, and George W Beahm. 2011. I, Steve: Steve Jobs, in His Own Words.

Chicago, Ill.: B2 Books. http://www.books24x7.com/marc.asp?bookid=43924.
Kahney, Leander. 2004. The Cult of Mac. San Francisco, CA: No Starch Press.
———. 2009. Inside Steve’s Brain, Expanded Edition. Expanded edition. New York:

Portfolio Hardcover.
———. 2013. Jony Ive: The Genius Behind Apple’s Greatest Products. New York:

Portfolio Hardcover.
Kane, Yukari Iwatani. 2014. Haunted Empire: Apple after Steve Jobs. First edition.

New York: HarperBusiness, an imprint of HarperCollins Publishers.
Karelia Software. 2005. “Watson Product FAQ.”

http://www.karelia.com/watson/watsonFAQ.html.
Karon, Paul. 1992a. “Digital Deputy: How NeXT Won the Shootout at the L.A.

Corral.” NeXTWORLD.
———. 1992b. “Healthy Surprise.” NeXTWORLD.
Kawasaki, Guy. 1990. The Macintosh Way. Glenview, Ill: Scott, Foresman.
Kay, Alan C. 1993. “The Early History of Smalltalk.” In The Second ACM SIGPLAN

Conference on History of Programming Languages, 69–95. HOPL-II.
Cambridge, MA: ACM. doi:10.1145/154766.155364.

———. 1998. “Alan Kay On Messaging,” October 10.
http://c2.com/cgi/wiki?AlanKayOnMessaging.

Kelty, Christopher. 2008. Two Bits: The Cultural Significance of Free Software.
Durham, NC: Duke University Press.

Kernighan, Brian W., and P. J. Plauger. 1974. The Elements of Programming Style.
New York: McGraw-Hill.

501

Keur, Christian, Aaron Hillegass, and Joe Conway. 2014. iOS Programming: The Big
Nerd Ranch Guide. 4th ed. Atlanta, GA: Big Nerd Ranch.

King, Scott. 2012. “Changing the World.” My Favorite Apple. January 11.
http://www.myfavoriteapple.com/changing-the-world/.

Kleif, Tine, and Wendy Faulkner. 2003. “‘I’m No Athlete [but] I Can Make This
Thing Dance!’–Men’s Pleasures in Technology.” Science, Technology &
Human Values 28 (2): 296–325.

Kline, Ronald. 2000. Consumers in the Country  : Technology and Social Change in
Rural America. Baltimore MD: Johns Hopkins University Press.

Kline, Ronald, and Trevor J. Pinch. 1996. “Users as Agents of Technological
Change: The Social Construction of the Automobile in the Rural United
States.” Technology and Culture 37 (4): 763–95.

Knorr-Cetina, Karin. 1999. Epistemic Cultures: How the Sciences Make Knowledge.
Cambridge, Mass: Harvard University Press.

Knuth, Donald E. 1974. “Computer Programming As an Art.” Commun. ACM 17
(12): 667–73. doi:10.1145/361604.361612.

Kochan, Stephen G. 2012. Programming in Objective-C. 5th ed. Developer’s Library.
Upper Saddle River, NJ: Addison-Wesley.

Kohler, Robert. 1994. Lords of the Fly: Drosophila Genetics and the Experimental
Life. William B. Provine Collection on Evolution and Genetics. Chicago:
University of Chicago Press.

Kraft, Philip. 1977. Programmers and Managers  : The Routinization of Computer
Programming in the United States. New York: Springer-Verlag.

Krakow, Gary. 2014. “Why Developers Prefer Apple Over Google.” TheStreet. June
27. http://www.thestreet.com/story/12759340/1/why-developers-prefer-apple-
over-google.html.

Kuhn, Thomas S. 1996. The Structure of Scientific Revolutions. 3rd ed. Chicago, IL:
University of Chicago Press.

Kunda, Gideon. 1992. Engineering Culture: Control and Commitment in a High-
Tech Corporation. Philadelphia: Temple University Press.

Lamarche, Jeff. 2009. “Dot Notation Redux: Google’s Style Guide.” Blog. iPhone &
Mac Development. August 9.
http://iphonedevelopment.blogspot.com/2009/08/dot-notation-redux-google-
style-guide.html.

Lampson, Butler. 1986. “Personal Distributed Computing: The Alto and Ethernet
Software.” In Proceedings of the ACM Conference on The History of
Personal Workstations, 101–31. HPW ’86. New York, NY, USA: ACM.
doi:10.1145/12178.12186.

Latour, Bruno. 1987. Science in Action: How to Follow Scientists and Engineers
Through Society. Cambridge, Mass.: Harvard University Press.
https://catalog.library.cornell.edu.proxy.library.cornell.edu/cgi-
bin/Pwebrecon.cgi?BBID=1259185&DB=local.

Latour, Bruno, and Steve Woolgar. 1986. Laboratory Life: The Construction of
Scientific Facts. Princeton, N.J.: Princeton University Press.

Lave, Jean, and Etienne Wenger. 1991. Situated Learning: Legitimate Peripheral
Participation. Cambridge [England]; New York: Cambridge University Press.

502

Lavin, Dan. 1993. “Some Assembly Required.” NeXTWORLD, November.
Lee, Mike. 2011. “Appsterdam Legal Fund.” August.

http://appsterdamlegalfoundation.org/.
Levy, Steven. 1984. Hackers: Heroes of the Computer Revolution. 1st ed. New York:

Penguin Books.
———. 1994. Insanely Great  : The Life and Times of Macintosh, the Computer That

Changed Everything. New York: Viking.
Light, Jennifer S. 1999. “When Computers Were Women.” Technology and Culture

40 (3): 455–83.
Lindtner, Silvia, Ian Bogost, and Julian Bleeker. 2014. “The End Game for Maker

Culture.” presented at the Intel Science & Technology Center for Social
Computing All Hands Retreat, Atlanta, May 19.

Lindtner, Silvia, Garnet D. Hertz, and Paul Dourish. 2014. “Emerging Sites of HCI
Innovation: Hackerspaces, Hardware Startups & Incubators.” In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems, 439–48.
CHI ’14. New York, NY, USA: ACM. doi:10.1145/2556288.2557132.

Linzmayer, Owen. 2004. Apple Confidential 2.0: The Definitive History of the
World’s Most Colorful Company. Rev. 2nd ed. San Francisco, CA: No Starch
Press.

Littman, Jonathan. 1991. “Bull Market: Three Securities Firms Turned to NeXT for a
Competitive Advantage.” NeXTWORLD.

Mackenzie, Donald. 1990. Inventing Accuracy: A Historical Sociology of Nuclear
Missile Guidance. Cambridge Mass.: MIT Press.

MacKenzie, Donald. 1996. Knowing Machines: Essays on Technical Change.
Cambridge Mass.: MIT Press.

———. 2001. Mechanizing Proof: Computing, Risk, and Trust. Cambridge Mass.:
MIT Press.

Mahoney, Michael S. 1988. “The History of Computing in the History of
Technology.” Annals of the History of Computing, IEEE 10 (2): 113–25.
doi:10.1109/MAHC.1988.10011.

———. 1990. “The Roots of Software Engineering.” CWI Quarterly 3 (4): 325–34.
———. 1993. “Issues in the History of Computing.” In Forum on History of

Computing. Cambridge, MA: Association for Computing Machinery.
http://www.princeton.edu/~hos/Mahoney//articles/issues/issuesfr.htm.

———. 2002. “Software: The Self-Programming Machine.” In From 0 to 1: An
Authoritative History of Modern Computing, edited by Atsushi Akera and
Frederik Nebeker, 91–100. New York: Oxford University Press.

———. 2004. “Finding a History for Software Engineering.” Annals of the History
of Computing, IEEE 26 (1): 8–19.

———. 2008. “What Makes the History of Software Hard.” Annals of the History of
Computing, IEEE 30 (3): 8–18.

Maines, Rachel. 2009. Hedonizing Technologies: Paths to Pleasure in Hobbies and
Leisure. Baltimore: Johns Hopkins University Press.

Malaby, Thomas. 2009. Making Virtual Worlds: Linden Lab and Second Life. Ithaca:
Cornell University Press.

Malone, Michael. 1999. Infinite Loop. 1 edition. New York: Doubleday Business.

503

Mandel, Michael, and Judith Scherer. 2012. Geography of the App Economy. South
Mountain Economics LLC.
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad
=rja&uact=8&ved=0CCAQFjAA&url=http%3A%2F%2Ffiles.ctia.org%2Fpdf
%2FThe_Geography_of_the_App_Economy.pdf&ei=WjTAVOPsBYemgwSe
r4T4Bg&usg=AFQjCNGAlVmZTKs_gHbeZ4Hgi2-E-djArg&sig2=JHW0Dq-
jNH0ZHBGcvgSY0A&bvm=bv.83829542,d.eXY.

Markoff, John. 2005. What the Dormouse Said: How the Sixties Counterculture
Shaped the Personal Computer Industry. New York: Viking.

Marwick, Alice Emily. 2013. Status Update: Celebrity, Publicity, and Branding in
the Social Media Age. New Haven: Yale University Press.

Marx, Karl. 1947. The German Ideology, Parts I & III. International Publishers.
Mateas, Michael, and Nick Montfort. 2005. “A Box, Darkly: Obfuscation, Weird

Languages, and Code Aesthetics.” In Proceedings of the 6th Digital Arts and
Culture Conference, 144–53. IT University of Copenhagen.

McNely, Brian J. 2011. “Sociotechnical Notemaking: Short-Form to Long-Form
Writing Practices.” Present Tense: A Journal of Rhetoric in Society 2 (1).
http://www.presenttensejournal.org/volume-2/sociotechnical-notemaking-
short-form-to-long-form-writing-practices/.

Misa, Thomas. 2009. Gender Codes: Women and Men in the Computing Professions.
Hoboken, NJ: Wiley.

Moritz, Michael. 2009. Return to the Little Kingdom: Steve Jobs, the Creation of
Apple, and How It Changed the World. New York: Overlook Press.

Nelson, Theodor H. 1974. Computer Lib: You Can and Must Understand Computers
Now. 1st ed. Chicago: Nelson  : [available] from Hugo’s Book Service.

NeXTWORLD. 1992a. “Special Report: NeXT Market Mosaic.”
———. 1992b. “Top 40 North American NeXT Sites.”
Noble, David. 1999. The Religion of Technology: The Divinity of Man and the Spirit

of Invention. New York: Penguin Books.
Nonala, Ikujiro, and Martin Kenney. 1991. “Towards a New Theory of Innovation

Management: A Case Study Comparing Canon, Inc. and Apple Computer,
Inc.” Journal of Engineering and Technology Management 8 (1): 67–83.
doi:10.1016/0923-4748(91)90005-C.

Nørmark, Kurt. 2014. “Programming Paradigms.” Functional Programming in
Scheme With Web Programming Examples. January 3.
http://people.cs.aau.dk/~normark/prog3-03/html/notes/paradigms_themes-
paradigms.html.

Notaro, Anna. 2006. “The Lo(n)g Revolution: The Blogosphere as an Alternative
Public Sphere?” Reconstruction 6 (4).
http://reconstruction.eserver.org.proxy.library.cornell.edu/Issues/064/notaro.s
html.

Nye, David. 1994. American Technological Sublime. Cambridge, MA: MIT Press.
———. 2003. America as Second Creation: Technology and Narratives of New

Beginnings. Cambridge, MA: MIT Press.
Orr, Julian E. 1990. Talking about Machines: An Ethnography of a Modern Job.

504

Oudshoorn, Nelly, and Trevor J. Pinch. 2003. How Users Matter: The Co-
Construction of Users and Technologies. Cambridge, MA: MIT Press.

Page, Ruth. 2012. “The Linguistics of Self-Branding and Micro-Celebrity in Twitter:
The Role of Hashtags.” Discourse & Communication 6 (2): 181–201.
doi:10.1177/1750481312437441.

Parish, Nick. 2014. Cool Code, Bro: Brogrammers, Geek Anxiety and the New Tech
Elite. Robot, Robot & Hwang.

Parker, Chris. 2014. “Building Modern Frameworks.” presented at the Apple
Worldwide Developer Conference, Presidio, Moscone West, San Francisco,
June 5. https://developer.apple.com/videos/wwdc/2014/.

Patel, Manish. 2010. “iPhone Development Costs.” OSXDaily. September 7.
http://osxdaily.com/2010/09/07/iphone-development-costs/.

Pinch, Trevor J. 1986. Confronting Nature: The Sociology of Solar-Neutrino
Detection. Dordrecht, Holland  ; Boston  ; Higham, MA, U.S.A.: D. Reidel Pub.
Co; Kluwer Academic Publishers. https://catalog.library.cornell.edu/cgi-
bin/Pwebrecon.cgi?BBID=1549692&DB=local.

Pinch, Trevor J., and Wiebe E. Bijker. 1984. “The Social Construction of Facts and
Artefacts: Or How the Sociology of Science and the Sociology of Technology
Might Benefit Each Other.” Social Studies of Science 14 (3): 399–441.

Pinch, Trevor J., and Frank Trocco. 2002. Analog Days: The Invention and Impact of
the Moog Synthesizer. Cambridge MA: Harvard University Press.

Pinkerton, Mike, Greg Miller, and Dave MacLachlan. 2014. “Google Objective-C
Style Guide.” http://google-
styleguide.googlecode.com/svn/trunk/objcguide.xml.

Postbox. 2012. “Postbox and the Mac App Store.” July 25. http://www3.postbox-
inc.com/?/blog/entry/postbox_and_the_mac_app_store/.

Poulsen, Kevin. 2014. “Behind iPhone’s Critical Security Bug, a Single Bad ‘Goto.’”
WIRED. February 22. http://www.wired.com/2014/02/gotofail/.

Prentice, Rachel. 2013. Bodies in Formation: An Ethnography of Anatomy and
Surgery Education. Experimental Futures. Durham, NC: Duke University
Press.

Qiu, Yixin, Anandasivam Gopal, and Il-Horn Hann. 2011. “Synthesizing
Professional And Market Logics: A Study Of Independent iOS App
Entrepreneurs.” In Proceedings of the Thirty Second International Conference
on Information Systems. Shanghai.

Raja, Tasneem. 2012. “‘Gangbang Interviews’ and ‘Bikini Shots’: Silicon Valley’s
Brogrammer Problem.” April 26. http://www.motherjones.com/print/172791.

Randolph, John. 2009, May 5.
Reid, Jon. 2012. “Dot Notation in Objective-C: 100% Pure Evil.” Quality Coding.

June 3. http://qualitycoding.org/dot-notation/.
———. 2013. “In Which I Embrace Dot Notation ….” Quality Coding. September

17. http://qualitycoding.org/dot-notation-wins/.
Richardson, Julia, and Michael B. Arthur. 2013. “‘Just Three Stories’: The Career

Lessons Behind Steve Jobs’ Stanford University Commencement Address.”
Journal of Business and Management 19 (1): 45–57.

505

Richtel, Matt, and Brian X. Chen. 2014. “Tim Cook, Making Apple His Own.” The
New York Times, June 15.
http://www.nytimes.com/2014/06/15/technology/tim-cook-making-apple-his-
own.html.

Rick. 2007. “CTGradient and the Landed Gentry of Mac DevelopmentTM.” Rixstep’s
Red Hat Diaries. November 21. http://rixstep.com/2/1/20071121,00.shtml.

———. 2010. “The Longest Screed.” Rixstep Developers Workshop. January 3.
http://rixstep.com/2/2/20100103,00.shtml.

Ritchie, Rene. 2014. “Debug 34: Sexism in Tech.” iMore. April 24.
http://www.imore.com/debug-34-sexism-tech.

Ritchie, Rene, Matt Drance, Ryan Nielsen, Daniel Jalkut, and Jason Snell. 2014.
Debug 38: WWDC 2014 Developer Roundtable. Debug. Accessed July 1.
http://www.imore.com/debug-38-wwdc-2014-developer-roundtable.

Robinson, Brett T. 2013. Appletopia: Media Technology and the Religious
Imagination of Steve Jobs.

Rotemberg, Julio J., and Garth Saloner. 2000. “Visionaries, Managers, and Strategic
Direction.” The RAND Journal of Economics 31 (4): 693–716.
doi:10.2307/2696355.

Ruby, Dan. 1992. “Dry Bones.” NeXTWORLD.
———. 1993a. “Who Needs Shrink Wrap?” NeXTWORLD, October.
———. 1993b. “The Shirts Off Their Backs.” NeXTWORLD, December.
Ruby, Dan, and Steve Jobs. 1992. “Reinventing NeXT: Steve Jobs Goes on the

Record about Technology, Marketing, and Ross Perot: Interview.”
NeXTWORLD.

Sadun, Erica. 2012. “TUAW - The Unofficial Apple Weblog.” Accessed February 8.
http://www.tuaw.com/editor/erica-sadun/.

Sander, Peter J. 2012. What Would Steve Jobs Do? How the Steve Jobs Way Can
Inspire Anyone to Think Differently and Win. New York: McGraw-Hill.
http://www.myilibrary.com?id=332629.

Savage, Neil. 2013. “Backing Creativity.” Commun. ACM 56 (7): 20–21.
doi:10.1145/2483852.2483860.

Schmidt, Jan. 2007. “Blogging Practices: An Analytical Framework.” Journal of
Computer-Mediated Communication 12 (4): 1409–27. doi:10.1111/j.1083-
6101.2007.00379.x.

Schoemaker, Paul J. H. 1997. “Disciplined Imagination: From Scenarios to Strategic
Options.” International Studies of Management & Organization 27 (2): 43–70.

Schoenberger, Erica. 2001. “Corporate Autobiographies: The Narrative Strategies of
Corporate Strategists.” Journal of Economic Geography 1 (3): 277–98.
doi:10.1093/jeg/1.3.277.

Schramm, Mike. 2013. “Why Is Facebook’s App so Much Better Lately? Ask Big
Nerd Ranch.” TUAW: Apple News, Reviews and How-Tos since 2004. March
5. http://www.tuaw.com/2013/03/05/whys-facebooks-app-so-much-better-
lately-ask-big-nerd-ranch/.

Schüll, Natasha Dow. 2012. Addiction by Design: Machine Gambling in Las Vegas.
Princeton, NJ: Princeton University Press.

506

Sculley, John, and John A. Byrne. 1987. Odyssey: Pepsi to Apple ... a Journey of
Adventure, Ideas, and the Future. 1st ed. New York: Harper & Row.

Segall, Ken. 2013. Insanely Simple: The Obsession That Drives Apple’s Success.
Reprint edition. Portfolio Trade.

Seibel, Peter. 2009. Coders at Work: Reflections on the Craft of Programming. New
York: Apress.

Senft, Theresa M. 2008. Camgirls: Celebrity and Community in the Age of Social
Networks. Digital Formations, v. 4. New York: Lang.

Sennett, Richard. 2008. The Craftsman. New Haven: Yale University Press.
Seth, Suman. 2010. “Pedagogical Economies: The ‘Sommerfeld School’ and the

Problems of Teaching.” In Crafting the Quantum: Arnold Sommerfeld and the
Practice of Theory, 1890-1926, 47–70. Cambridge, Mass.: MIT Press.

Shapin, Steven. 2008. The Scientific Life: A Moral History of A Late Modern
Vocation. Chicago: University of Chicago Press.

Shipley, Wil. 2005. “Unit Testing Is Teh Suck, Urr.” Call Me Fishmeal. September
22. http://blog.wilshipley.com/2005/09/unit-testing-is-teh-suck-urr.html.

———. 2011. “Call Me Fishmeal.: Real Security in Mac OS X Requires Apple-
Signed Certificates.” November 3. http://blog.wilshipley.com/2011/11/real-
security-in-mac-os-x-requires.html.

Silverstone, Stuart. 1992. “Black Market.” NeXTWORLD.
Simmons, Brent. 2014. “Inessential: Who at the Table Is an Indie iOS Developer?”

July 25.
http://inessential.com/2014/07/25/who_at_the_table_is_an_indie_ios_develop.

Simon, Stephanie, and Erin Mershon. 2014. “Bill Gates Masters D.C. — and the
World.” POLITICO. February 4. http://www.politico.com/story/2014/02/bill-
gates-microsoft-policy-washington-103136.html.

Siracusa, John. 2005a. “Avoiding Copland 2010.” Ars Technica. September 28.
http://arstechnica.com/staff/fatbits/2005/09/1372.ars.

———. 2005b. “Avoiding Copland 2010: Part 2.” Ars Technica. September 30.
http://arstechnica.com/staff/2005/09/1393/.

———. 2005c. “Avoiding Copland 2010: Part 3.” Ars Technica. October 4.
http://arstechnica.com/staff/fatbits/2005/10/1412.ars.

———. 2010. “Copland 2010 Revisited: Apple’s Language and API Future.” Ars
Technica. June 16. http://arstechnica.com/apple/news/2010/06/copland-2010-
revisited.ars.

Sivek, Susan Currie. 2011. “‘We Need a Showing of All Hands’ Technological
Utopianism in MAKE Magazine.” Journal of Communication Inquiry 35 (3):
187–209. doi:10.1177/0196859911410317.

Slayton, Rebecca. 2013a. Arguments That Count: Physics, Computing, and Missile
Defense, 1949-2012. Cambridge, Massachusetts: The MIT Press.

———. 2013b. “The Political Economy of Software Engineering.” In Arguments
That Count: Physics, Computing, and Missile Defense, 1949-2012, 151–71.
Cambridge, Massachusetts: The MIT Press.

Smykil, Jeff. 2009. “Nine-Year-Old Makes Waves with iPhone Programming Skillz.”
Ars Technica. February 6. http://arstechnica.com/apple/news/2009/02/nine-
year-old-makes-waves-with-iphone-programming-skillz.ars.

507

Star, Susan Leigh, and James R. Griesemer. 1989. “Institutional Ecology,
‘Translations’ and Boundary Objects: Amateurs and Professionals in
Berkeley’s Museum of Vertebrate Zoology, 1907-39.” Social Studies of
Science 19 (3): 387–420.

Statista. 2015a. “Apple Revenue - iTunes, Software & Services 2013-2014, by
Quarter | Statistic.” Statista. January.
http://www.statista.com/statistics/250918/apples-revenue-from-itunes-
software-and-services/.

———. 2015b. “Apple App Store: Number of Available Apps 2008-2014 | Statistic.”
Statista. January 21. http://www.statista.com/statistics/263795/number-of-
available-apps-in-the-apple-app-store/.

———. 2015c. “Apple App Store: Number of Downloads 2008-2014 | Statistic.”
Statista. January 21. http://www.statista.com/statistics/263794/number-of-
downloads-from-the-apple-app-store/.

Steel Media Ventures. 2014. “App Store Metrics.” 148Apps.biz. June 16.
http://148apps.biz/app-store-metrics/.

Stefan L. Ram, Berlin. 2003. “Dr. Alan Kay on the Meaning of ‘Object-Oriented
Programming,’” July 23. http://userpage.fu-
berlin.de/~ram/pub/pub_jf47ht81Ht/doc_kay_oop_en.

Strauss, Anselm L. 1978. “A Social World Perspective.” Studies in Symbolic
Interaction 1 (1): 119–28.

———. 1982. “Social Worlds and Legitimation Processes.” Studies in Symbolic
Interaction 4: 171–90.

———. 1984. “Social Worlds and Their Segmentation Processes.” Studies in
Symbolic Interaction 5: 123–39.

Streeter, Thomas. 2003. “The Romantic Self and the Politics of Internet
Commercialization.” Cultural Studies 17 (5): 648–68.
doi:10.1080/0950238032000126865.

———. 2011. The Net Effect: Romanticism, Capitalism, and the Internet. Critical
Cultural Communication. New York: New York University Press.

Stross, Randall. 1993. Steve Jobs and the NeXT Big Thing. New York   ; Toronto   ;
New York: Atheneum  ; Maxwell Macmillan Canada  ; Maxwell Macmillan
International.

Stroustrup, Bjarne. 1993. “A History of C++.” In The Second ACM SIGPLAN
Conference on History of Programming Languages, 271–97. Cambridge, MA:
ACM. http://portal.acm.org/citation.cfm?id=155375.

Sullivan, Kevin. 1991. “Inventing the Future: New Approaches to Management,
Compensation, and Learning at Apple Computer.” Employment Relations
Today 18 (4): 417.

Sutter, John D. 2011. “5 Memorable Quotes from Steve Jobs - CNN.com.” CNN.
October 6. http://www.cnn.com/2011/10/05/tech/innovation/steve-jobs-
quotes/index.html?hpt=hp_t1.

“System Software.” 2015. PC Magazine Encyclopedia.
http://www.pcmag.com/encyclopedia/term/52419/system-software.

508

Tabini, Marco. 2014. “Sherlocked! Nine Technologies Apple Disrupted at WWDC.”
Macworld. June 4. http://www.macworld.com/article/2359422/sherlocked-
nine-technologies-apple-disrupted-at-wwdc.html.

Takhteyev, Yuri. 2012. Coding Places: Software Practice in a South American City.
Acting with Technology. Cambridge, Mass: MIT Press.

Tanenbaum, Joshua G., Amanda M. Williams, Audrey Desjardins, and Karen
Tanenbaum. 2013. “Democratizing Technology: Pleasure, Utility and
Expressiveness in DIY and Maker Practice.” In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, 2603–12. CHI ’13.
New York, NY, USA: ACM. doi:10.1145/2470654.2481360.

Thacker, Chuck. 1986. “Personal Distributed Computing: The Alto and Ethernet
Hardware.” In Proceedings of the ACM Conference on The History of
Personal Workstations, 87–100. HPW ’86. New York, NY, USA: ACM.
doi:10.1145/12178.12185.

The Economist. 2007. “The Third Act,” June 7.
http://www.economist.com/node/9298983.

Thompson, E. P. 1971. “The Moral Economy of the English Crowd in the Eighteenth
Century.” Past & Present, no. 50 (February): 76–136.

Tierney, Therese. 2013. The Public Space of Social Media: Connected Cultures of
the Network Society. Routledge Studies in New Media and Cyberculture 13.
New York: Routledge.

Tomayko, James E. 2002. “Software as Engineering.” In History of Computing:
Software Issues, edited by Ulf Hashagen, Reinhard Keil-Slawik, and Arthur L
Norberg, 139–65. Berlin: Springer.

Traweek, Sharon. 1988. Beamtimes and Lifetimes: The World of High Energy
Physicists. Cambridge Mass.: Harvard University Press.

Tresch, John. 2001. “On Going Native Thomas Kuhn and Anthropological Method.”
Philosophy of the Social Sciences 31 (3): 302–22.
doi:10.1177/004839310103100302.

Turkle, Sherry. 1984. The Second Self: Computers and the Human Spirit. New York:
Simon and Schuster.

———. 1995. Life on the Screen: Identity in the Age of the Internet. New York:
Simon & Schuster.

———. 2011. Alone Together: Why We Expect More from Technology and Less
from Each Other. New York: Basic Books.

Turner, Fred. 2006. From Counterculture to Cyberculture: Stewart Brand, the Whole
Earth Network, and the Rise of Digital Utopianism. Chicago, IL: University
of Chicago Press.

———. 2009. “Burning Man at Google: A Cultural Infrastructure for New Media
Production.” New Media & Society 11 (1-2): 73–94.
doi:10.1177/1461444808099575.

Van Horn, Royal. 1996. “The Journey Ahead.” Phi Delta Kappan 77 (6): 454.
Van Meeteren, Michiel. 2008. “Indie Fever: The Genesis, Culture and Economy of a

Community of Independent Software Developers on the Macintosh OS X
Platform.” Bachelor thesis, Human Geography, University of Amsterdam.
http://www.madebysofa.com/indiefever.

509

VisionMobile Ltd. 2014. European App Economy 2014. London.
http://www.visionmobile.com/product/european-app-economy-2014/.

———. 2015. “Developer Economics Q1 2015: State of the Developer Nation.”
Developer Economics. February 17.
https://www.developereconomics.com/reports/developer-economics-q1-2015/.

Wajcman, Judy. 1991. Feminism Confronts Technology. University Park Pa.:
Pennsylvania State University Press.

Warner, Michael. 2002. Publics and Counterpublics. New York; Cambridge, Mass.:
Zone Books  ; Distributed by MIT Press.

Warwick, Andrew, and David Kaiser. 2005. “Kuhn, Foucault, and the Power of
Pedagogy.” In Pedagogy and the Practice of Science: Historical and
Contemporary Perspectives, 393–409. Inside Technology. Cambridge, Mass:
MIT Press.

Weber, Max. 1946. From Max Weber: Essays in Sociology. New York: Oxford
University Press.

———. 1958. The Protestant Ethic and the Spirit of Capitalism. Translated by
Talcott Parsons. New York: Scribner.

Webster, Bruce F. 1989. The NeXT Book. Reading Mass.: Addison-Wesley.
———. 1992. “Open Horizons.” NeXTWORLD.
———. 1995. Pitfalls of Object-Oriented Development. New York: M&T Books.
———. 1996. “The Real Software Crisis: The Shortage of Top-Notch Programmers

Threatens to Become the Limiting Factor in Software Development.” BYTE,
January 1.

Williams, Raymond. 1977. “Ideology.” In Marxism and Literature, edited by Steven
Lukes, 55–71. United Kingdom: Oxford University Press.

Wortham, Jenna. 2009. “The iPhone Gold Rush.” The New York Times, April 5, sec.
Fashion & Style. http://www.nytimes.com/2009/04/05/fashion/05iphone.html.

Wozniak, Steve. 2006. IWoz: Computer Geek to Cult Icon: How I Invented the
Personal Computer, Co-Founded Apple, and Had Fun Doing It. 1st ed. New
York: W.W. Norton & Co.

Xu, Weiai Wayne, Yoonmo Sang, Stacy Blasiola, and Han Woo Park. 2014.
“Predicting Opinion Leaders in Twitter Activism Networks The Case of the
Wisconsin Recall Election.” American Behavioral Scientist 58 (10): 1278–93.
doi:10.1177/0002764214527091.

Yegge, Steve. 2006. “Stevey’s Blog Rants: Execution in the Kingdom of Nouns.”
March 30. http://steve-yegge.blogspot.com/2006/03/execution-in-kingdom-of-
nouns.html.

Young, Jeffrey S. 1988. Steve Jobs: The Journey Is the Reward. Glenview, Ill.: Scott,
Foresman.

Young, Jeffrey S, and William L. Simon. 2005. ICon  : Steve Jobs, the Greatest
Second Act in the History of Business. Hoboken NJ: Wiley.

Zarra, Marcus. 2008. “A Case Against Dot Syntax.” Cocoa Is My Girlfriend. July 8.
http://www.cimgf.com/2008/07/08/a-case-against-dot-syntax/.

Zepcevski, Joline. 2012. “Complexity & Verification: The History of Programming
as Problem Solving.” Ph.D., United States -- Minnesota: University of
Minnesota.

510

http://search.proquest.com/pqdtft/docview/926961600/abstract/140E50ED87C
2CD7DFC3/1?accountid=10267.

Ziman, J. M. 1968. Public Knowledge: An Essay Concerning the Social Dimension of
Science. London: Cambridge U.P.

