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Cornell University 2015

This thesis derives natural and efficient solutions of three high-dimensional statis-

tical problems by exploiting unbiased risk estimation. They exemplify a general

methodology that provides attractive estimators in situations where classical the-

ory is unsuccessful, and that could be exploited in many other problems.

First, we extend the classical James-Stein shrinkage estimator to the context

where the number of covariates is larger than the sample size and the covariance

matrix is unknown. The construction is obtained by manipulating an unbiased risk

estimator and shown to dominate in invariant squared loss the maximum likelihood

estimator. The estimator is interpreted as performing shrinkage only the random

subspace spanned by the sample covariance matrix.

Second, we investigate the estimation of a covariance and precision matrix,

and discriminant coefficients, of linearly dependent data in a normal framework.

By bounding the difference in risk over classes of interest using unbiased risk

estimation, we construct interesting estimators and show domination over naive

solutions.

Finally, we explore the problem of estimating the noise coefficient in the spiked

covariance model. By decomposing an unbiased risk estimator and minimizing its

dominant part using calculus of variations, we obtain an estimator in closed form

that approximates the optimal solution. Several attractive properties are proven

about the proposed construction. We conclude by showing that the associated

spiked covariance estimators possess excellent behavior under the Frobenius loss.
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CHAPTER 1

INTRODUCTION

The past two decades have seen a phenomenal rise in very large datasets and

have brought much attention to challenges specific to high-dimensional statistics.

In this framework, traditionally successful methodologies to derive estimators, such

as the method of maximum likelihood and the method of moments, often lead to

inadequate solutions. For example, the resulting constructions may fail to reach the

optimal mimimax rate, be inconsistent or, in “p greater than n” settings, simply

fail to exist.

As a consequence, high-dimensional statistical estimation problems have mostly

been dealt with on a case to case basis. Over time, a general methodology devel-

oped around the concept of regularized optimization, which relies on finding a

plausible goodness of fit criterion and minimizing some regularized version. De-

spite its generality, this approach suffers from a few pitfalls. Problematically,

regularization introduces tuning parameters that must be calibrated. In addition,

the estimators rarely possess closed forms, and this can make the study of their

theoretical properties difficult.

A popular but computationally expensive approach to the calibration problem

is cross-validation. In its simplest form, the training set is divided into folds. For

each fold, the model is trained on the complement and evaluated on the fold. The

tuning parameter is chosen as the one that best performed on average.

Recently, there has been a revival of interest in alternative approaches based

on minimizing an unbiased risk estimator (URE). These methods usually require

strong parametric assumptions and are limited to predictive tasks. However, within

these restrictions, these methods usually offer superior performance for tuning pa-

rameter calibration compared to cross-validation, and are computationally light.
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Moreover, the selected tuning parameters are more amenable to theoretical anal-

ysis.

This dissertation consists of three chapters that, in different ways, exploits this

idea further. The usual approach is to derive in some way a parametrized esti-

mator and calibrate it using unbiased risk estimation. The three chapters cut the

middle step: in every project we derive estimators by manipulating the unbiased

risk estimator itself. The last chapter is the most sophisticated example, in which

an estimator is obtained by calculus of variations on an appropriate unbiased risk

estimator. But in every case, the resulting estimators turn out to yield big gains

in performance and possess closed forms, which makes them computationally triv-

ial and amenable to theoretical analysis. These three chapters exemplify how,

in our opinion, the unbiased risk minimization approach could succeed as a gen-

eral methodology for deriving high-dimensional estimators, in the same way that

regularization has become.

The second chapter concerns the extension of the James-Stein phenomenon to

the high-dimensional setting where the number of covariates exceed the sample

size. In James and Stein [1961], the natural solution to arguably the simplest

problem in multivariate statistics, the estimation of the mean of a p-dimensional

normal distribution, was shown inadmissible when p > 3. The authors derived

an estimator by an empirical Bayes argument and showed that it dominated the

maximum likelihood estimator. The key to the argument was to express the risk

of the James-Stein estimator using an unbiased risk estimator, and show that its

difference with the risk of the naive estimator had to be negative.

Using a similar manipulation of an unbiased risk estimator, we derive a proper

large-scale analogue of this estimator. Our construction can be thought of as per-

forming shrinkage only on the random subspace spanned by the sample covariance
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matrix, which is n-dimensional. In this way, second-moment information is used

to bring the p > n setting down to a classical first-moment problem, in a novel

way. This suggests that novel gains in performance in regularized methods could

be realized through a similar projection.

The third chapter concerns the estimation of covariance matrices, precision

matrices and discriminant coefficients in a singular multivariate normal model.

Using recent results of Tsukuma and Kubokawa [2014], we construct an unbiased

risk estimator for a loss for each problem. We then show how to improve over

naive estimators over different classes by bounding the difference in risk between

the estimators and minimizing this bound to obtain a positive gain.

The fourth chapter concerns covariance matrix estimation. A common theo-

retical setting to study high-dimensional principal components analysis (PCA) is

the spiked model of Johnstone [2001]. An important quantity that must be esti-

mated is the smallest eigenvalue of the covariance matrix, also known as the noise.

A closely related problem is the estimation of the spiked covariance matrix itself

under Frobenius loss, which heavily relies on the estimation of its noise.

An interesting aspect of the second problem is that it admits an unbiased

risk estimator for a large class of interesting estimators. We propose to minimize

this URE with respect to the noise using calculus of variations. Neglecting the

asymptotically negligible part of the optimum that depends on the truth, we obtain

a closed form estimator that performs well in practice. Moreover, we prove that it

is consistent, essentially achieves the minimax rate and is almost asymptotically

normal.

The remainder of this introduction will elaborate on the generic problem of

model calibration that underlies each chapter. We hope these sections can provide

the reader a better understanding of the wider context of this work.
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1.1 Framework

A statistical model is some collection of probability measures Pθ with parameters

θ ∈ Θ. One has usually at disposal independent and identically distributed data

X1, ..., Xn ∼ Pθ for some θ. Estimation consists in recovering the true parameter θ

that generated our sample. The problem is high-dimensional when the probability

measures Pθ live on Rp for p of the same order, or larger than, the sample size n.

By high-dimensional asymptotics we mean behavior of some underlying statistical

object as both p and n tend to the limit to infinity.

An estimator is some function of the sample θ̂(X1, ..., Xn) that is functionally

independent of θ, but is used to approximate it. As there are many possible esti-

mators, one must choose some criterion L(θ̂, θ) : Θ×Θ 7→ (0,∞) to measure per-

formance, called a loss function. The loss of an estimator is a random quantity, so

it is common to focus on the risk of an estimator, defined as R(θ̂, θ) = Eθ

[
L(θ̂, θ)

]
.

An estimator θ̂1 is said to dominate some other estimator θ̂2 if R(θ̂1, θ) ≤ R(θ̂2, θ)

for all θ, with this inequality strict for some θ.

Instead of a single estimator, it is common to consider a family of estimators

θ̂λ, where λ ∈ Λ is called a tuning parameter. The tuning space Λ is often finite or

countable. Once the family is chosen to estimate θ, it is common to choose λ in a

data-dependent way λ̂ to minimize the risk, a step called calibration or selection.

The final estimator is θ̂λ̂.

The oracle tuning parameter is the data- and truth-dependent value that min-

imizes the loss,

λ∗ = λ∗(X1, ..., Xn, θ) = arg min
λ

L(θ̂λ, θ),

and the oracle of the family is the truth-dependent estimator that minimizes the

loss, θ̂∗ = θ̂λ∗(θ). The risk of the oracle puts a lower bound on the quality of the
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estimation within the family, called the approximation error,

Approximation error at θ = R(θ̂∗, θ) ≤ R(θ̂λ̂, θ).

Since it is usually impossible for a data-dependent scheme λ̂ to achieve the oracle

risk, there is additional estimation error

Estimation error at θ = R(θ̂λ̂, θ)−R(θ̂∗, θ) ≥ 0,

so that R(θ̂λ̂, θ) = Approximation error + Estimation error. Good calibration

schemes minimize the estimation error.

1.2 Calibration as risk estimation

There are many approaches to parameter calibration, but two are particularly

popular: unbiased risk estimator minimization and cross-validation. In both cases,

the scheme selects the tuning parameter by minimizing an estimator of the risk.

The first scheme relies on the existence of an unbiased risk estimator for the

family θ̂λ, that is, a functional U(θ̂λ) independent of θ such that

R(θ̂λ, θ) = Eθ

[
U(θ̂λ)

]
∀θ ∈ Θ.

Examples include Mallow’s Cp and Akaike’s Information Criterion. Since U(θ̂λ)

does not depend on θ, the scheme suggests to take

λ̂U = arg min
λ

U(θ̂λ).

The heuristic argument that underlies this choice is that

R(θ̂λ̂U , θ) ≈ Eθ

[
U(θ̂λ̂U)

]
= Eθ

[
min
λ
U(θ̂λ)

]
≈ Eθ

[
min
λ

L(θ̂λ, θ)
]

= R(θ̂∗, θ).

Therefore, minimizing the unbiased risk estimator should yield performance com-

parable to the oracle as long as the approximations are accurate.
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In contrast, the second scheme relies on the existence of a contrast function,

that is, a function γ such that

L
(
θ̂, θ
)

= EX

[
γ(θ̂, X)

]
for X ∼ Pθ, X ⊥⊥ X1, ..., Xn. Cross-validation proposes to estimate the risk by

repeatedly dividing the data into training and validation sets, namely, by dividing

the n-sample into k folds of size n/k. Popular choices include ten-fold (k = 10),

five-fold (k = 5) and leave-one-out (k = 1). If I1, ..., Ik ⊂ [n] represent the k folds

that partition the sample, i.e. so that Ii ∩ Ij = ∅ for i 6= j and
k⋃
i=1

Ui = [n], the

cross-validative risk estimator is

CV (θ̂λ) =
1

n

k∑
i=1

∑
j∈Ii

γ
(
θ̂λ
(
Xl | l ∈ ICi

)
, Xj

)
.

Now, quite often E
[
CV (θ̂λ)

]
→ R(θ̂λ, θ) as n and k jointly tend to infinity in some

way. Since CV (θ̂λ) does not depend on θ, this suggests to take

λ̂CV = arg min
λ

CV (θ̂λ)

which is the cross-validated tuning parameter. Similarly to the previous scheme,

the heuristic argument that underlies this choice is that

R(θ̂λ̂CV , θ) ≈ Eθ

[
CV (θ̂λ̂CV)

]
= Eθ

[
min
λ
CV (θ̂λ)

]
≈ Eθ

[
min
λ

L(θ̂λ, θ)
]

= R(θ̂∗, θ).

Therefore, minimizing the cross-validation risk estimator should yield performance

comparable to the oracle as long as the approximation is accurate.

In both cases, we choose the tuning parameter by minimizing an estimator of

the risk R(θ̂λ, θ). In the first scheme, the estimator U(θ̂λ) is unbiased, in the sense

that E
[
U(θ̂λ)

]
= R(θ̂λ, θ). In contrast, the cross-validation risk estimator CV (θ̂λ)

is generally biased, E
[
CV (θ̂λ)

]
6= R(θ̂λ, θ). This leads to some kind of second-order

estimation theory: if the performance of risk estimators is measured in terms of
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the mean-squared error
[
R̂(θ̂λ)−R(θ̂λ, θ)

]2
, then whether cross-validation is more

effective at measuring the risk than URE minimization depends on whether the

variance of CV (θ̂λ) is small enough to compensate its bias. This varies according

to the problem at hand.

In practice, the functions λ→ U(θ̂λ) and λ→ CV (θ̂λ) can be very difficult to

minimize. They are often non-convex, and even if they are differentiable it might

be very difficult to compute their gradient. Consequently, tuning parameter spaces

are usually kept finite or one-dimensional, and multiple tuning parameters are best

avoided.

In this regard, expressions that minimize risk estimators in closed form are

especially valuable, since they automatically approximate the oracle yet are easy

to compute. This is especially the case in contexts where little methodology to

derive estimators exists, such as in high-dimensional statistics.
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CHAPTER 2

IMPROVED MULTIVARIATE NORMAL MEAN ESTIMATION

WITH UNKNOWN COVARIANCE WHEN

P IS GREATER THAN N

2.1 Introduction

Suppose a p-dimensional random vector X is observed which is normally dis-

tributed, with mean vector θ and unknown positive definite covariance matrix

Σ, and we wish to estimate θ under the invariant quadratic loss

L(θ, δ) = (δ − θ)′Σ−1(δ − θ). (2.1)

Since the covariance matrix Σ is unknown, a random matrix S is observed along

with X, which is assumed to be independent of X, and has a Wishart distribution

with n degrees of freedom, where p > n. In high-dimensional estimation problems,

where p, the number of features, is nearly as large as, or larger than, n, the number

of observations, the ordinary least squares estimator does not typically provide a

satisfactory estimate of θ.

Modern data sets are increasingly becoming characterized by a number of fea-

tures that is much larger than the number of sample units (large-p, small-n) in

contrast to classical data sets where the number of sample units is often much larger

than the number of random variables (small-p, large-n). Modern applications in

the p > n setting include examples from microarrays, association mapping, pro-

teomics, radiology, biomedical imaging, signal processing, climate modeling, and

finance. For instance, in the case of microarray data, the dimensionality is fre-

quently in thousands or beyond, while the sample size is typically in the order of

tens. The large-p, small-n scenario poses challenges in most inferential settings.

We are considering a canonical setting. For the usual multivariate location-scale
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estimation problem let W = (W1, ...,Wp) denote an N×p matrix of data (N is the

number of observations and p the number of features) where Wi are taken from a

p-dimensional normal distribution with mean vector θ and covariance matrix Ξ. In

this article we let the X and S be the sample mean and covariance of the features,

respectively. In the context of this notation, Σ = N−1Ξ and n = N − 1.

The usual estimator under invariant quadratic loss is δ0(X) = X. It is minimax

and admissible when p ≤ 2 and p ≤ n. However, when p ≥ 3 and p ≤ n, δ0(X)

remains minimax but is no longer admissible. Explicit improvements are known

in the multivariate normal case [James and Stein [1961], Berger and Bock [1976],

Berger et al. [1977], Gleser [1979], Berger and Haff [1983], Gleser [1986]] and in

the case of elliptically symmetric distribution [Srivastava [1989], Fourdrinier et al.

[2003]].

In this article we primarily concentrate on the case p > n and construct a class

of estimators, depending on the sufficient statistics (X,S), of the form

δ(X,S) = X + g(X,S) (2.2)

which dominate δ0(X) under invariant quadratic loss. Note that, although the loss

in (2.1) is invariant, the estimate in (2.2) may not be (except for δ0(X)). This

class generalizes several estimators studied previously for the multivariate normal

distribution to the p ≤ n setting [James and Stein [1961], Berger and Bock [1976],

Berger et al. [1977], Gleser [1979], Berger and Haff [1983], Gleser [1986]]. Examples

of estimators we study here in this setting extend the class of so-called Baranchik

estimators and includes a new high dimensional James-Stein estimator

δJSa (X,S) =

(
I − aSS+

X ′S+X

)
X

where 0 ≤ a ≤ 2(n−2)
p−n+3

and S+ is the Moore-Penrose inverse of S.

The estimation of the inverse covariance matrix, namely the precision ma-

trix Σ−1, of a multivariate normal distribution has been an important problem in
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practical situations as well as from a theoretical perspective. But, when p > n,

the Wishart-distributed sample covariance matrix is singular; in this case, one is

tempted to construct estimators using the Moore-Penrose generalized inverse S+.

Recently there has been an increased interest in the problem of estimating the

covariance matrix of large dimension given variables of dimension larger than the

number of observations [Bickel and Levina [2008a], Aspremont et al. [2008], Konno

[2009], Ledoit and Wolf [2004], Levina et al. [2008], Rothman et al. [2008]].

Our method of proof relies on an unbiased estimator of risk difference, say

ρ(X,S). Specifically, we show that, for g(X,S) of the form − r(X′S+X)SS+

X′S+X
X, the

estimator δ(X,S) = X + g(X,S) dominates X provided ρ(X,S) ≤ 0. In the next

section we present the main results and their proofs are given in Section 2.3. We

need Stein’s integration-by-parts identity [Stein [1981]] and the so-called Stein-Haff

identity for the singular Wishart distribution. The Stein-Haff identity was derived

by Haff [1979a] and Stein [1977] for the full rank Wishart distribution. A similar

identity for the elliptically contoured model has been given by Fourdrinier et al.

[2003]. We make some concluding comments in Section 2.4.

2.2 Main results

Let X be a random vector distributed as Np(θ,Σ) with unknown θ and Σ. Suppose

an estimator of Σ is available, say S ∼Wishartp(n,Σ), with S independent of X.

By definition of the Wishart distribution, we can write S = Y ′Y for some matrix

normal Y ∼ Nn×p(0, I ⊗ Σ). An elementary property of this distribution is that

S is (almost surely) invertible if p ≤ n, and (almost surely) singular if p > n [cf.

Srivastava and Khatri [1979]].

An usual estimator of θ is δ0(X,S) = X; however, it turns out that this estima-

tor is inadmissible under quadratic loss. If some estimator S ∼ Wishartp(n,Σ) is

10



available, with n ≥ p ≥ 3, δ0 is dominated by the so-called James-Stein estimator

δJS(X,S) =

(
1− (p− 2)/(n− p+ 3)

X ′S−1X

)
X.

The main contribution of this article is to extend this type of result to a more

general class of estimators in the p > n setting.

For some positive, bounded, and differentiable function r : R → R, define the

Baranchik-type estimator

δr(X,S) =

(
I − r(X ′S+X)SS+

X ′S+X

)
X (2.3)

= X + g(X,S)

where I is the identity matrix and S+ denotes the Moore-Penrose inverse of S.

This estimator generalizes the usual Baranchik [1970] estimator to the unknown

covariance setting for p > n.

Theorem 1. Let min(p, n) ≥ 3. Suppose that:

(i) r satisfies 0 ≤ r ≤ 2 (min(n,p)−2)
n+p−2 min(n,p)+3

;

(ii) r is nondecreasing; and

(iii) r′ is bounded.

Then under invariant quadratic loss, δr dominates δ0.

Throughout the article we will use the expression tr(SS+), which of course

equals min(n, p). This notation allows us to simultaneously handle both the p > n

and n ≥ p cases. The condition min(p, n) ≥ 3 merely guarantees that condition

(i) of Theorem 1 holds for some r and is reminiscent of the dimension cut-off in

classical Stein estimation.
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Proof. The hypotheses of the theorem imply that r is differentiable almost every-

where. Under invariant quadratic loss, the difference in risk between δr and δ0 is

given by

∆θ =Eθ
[
(X + g(X,S)− θ)′Σ−1(X + g(X,S)− θ)

]
− Eθ

[
(X − θ)′Σ−1(X − θ)

]
=2Eθ

[
g(X,S)′Σ−1(X − θ)

]
+ Eθ

[
g(X,S)′Σ−1g(X,S)

]
. (2.4)

In order to show the domination result we need to show that under the sufficient

conditions on r, (2.4) is nonpositive for all θ. First, for the left most term of (2.4)

it can be shown that

2Eθ
[
g(X,S)′Σ−1(X − θ)

]
= 2Eθ [divXg(X,S)] .

Fourdrinier et al. [2003] give a more general form of this result in their Lemma

1(i); it is essentially an extension of Stein’s classical integration by parts identity.

By using Lemma 2 in Section 3, we have that

2Eθ [divXg(X,S)] = −2Eθ

[
divX

r(X ′S+X)SS+X

X ′S+X

]
= −2Eθ

[
2r′(X ′S+X) + r(X ′S+X)

tr(SS+)− 2

X ′S+X

]
. (2.5)

For the right term of (2.4), we have

Eθ
[
g(X,S)′Σ−1g(X,S)

]
= tr(Eθ

[
g(X,S)′Σ−1g(X,S)

]
)

= Eθ
[
tr
(
g(X,S)′Σ−1g(X,S)

)]
= Eθ

[
tr
(
Σ−1g(X,S)g(X,S)′

)]
= Eθ

[
tr

(
Σ−1Sr2(X ′S+X)

S+XX ′S+S

(X ′S+X)2

)]
.

12



Through Lemma 3 in Section 3, we will find

Eθ

[
tr

(
Σ−1Sr2(X ′S+X)

S+XX ′S+S

(X ′S+X)2

)]
=Eθ

[
n tr

(
r2(X ′S+X)

S+XX ′S+S

(X ′S+X)2

)
+ tr

(
Y ′∇Y

{
r2(X ′S+X)

SS+XX ′S+

(X ′S+X)2

})]
.

The finiteness of the risk of δr is guaranteed to hold by Theorem 2 in Section 3 for

all p and n.

Now applying Lemma 1 in Section 3, we find

Eθ

[
n tr

(
r2(X ′S+X)

S+XX ′S+S

(X ′S+X)2

)
+tr

(
Y ′∇Y

{
r2(X ′S+X)

SS+XX ′S+

(X ′S+X)2

})]
=Eθ

[
n
r2(X ′S+X)

X ′S+X
− 4r(X ′S+X)r′(X ′S+X)

+r2(X ′S+X)
p− 2 tr(SS+) + 3

X ′S+X

]
=Eθ

[
r2(X ′S+X)

n+ p− 2 tr(SS+) + 3

X ′S+X
− 4r(X ′S+X)r′(X ′S+X)

]
. (2.6)

Replacing (2.5) and (2.6) back into (2.4), we obtain

∆θ =− 2Eθ

[
2r′(X ′S+X) + r(X ′S+X)

tr(SS+)− 2

X ′S+X

]
+ Eθ

[
r2(X ′S+X)

n+ p− 2 tr(SS+) + 3

X ′S+X

− 4r(X ′S+X)r′(X ′S+X)

]
=Eθ

[
r2(X ′S+X)

n+ p− 2 tr(SS+) + 3

X ′S+X

− 2r(X ′S+X)
tr(SS+)− 2

X ′S+X

− 4r′(X ′S+X)
{

1 + r(X ′S+X)
}]

.

Since r is nonnegative and nondecreasing, −4r′(X ′S+X){1 + r(X ′S+X)} ≤ 0

13



follows. Finally, for the X and S such that r(X ′S+X) 6= 0,

r2(X ′S+X)
n+ p− 2 tr(SS+) + 3

X ′S+X
− 2r(X ′S+X)

tr(SS+)− 2

X ′S+X
≤ 0

⇔ r(X ′S+X) ≤ 2 (tr(SS+)− 2)

n+ p− 2 tr(SS+) + 3
=

2 (min(n, p)− 2)

n+ p− 2 min(n, p) + 3
.

Therefore, under the three sufficient conditions on r, it follows that ∆θ ≤ 0 for

any θ, that is, the domination result holds.

In the p > n setting, we obtain the following two corollaries.

Corollary 1. For p > n ≥ 3, δr dominates δ0 under invariant quadratic loss for

all r nondecreasing, differentiable and satisfying

0 ≤ r ≤ 2(n− 2)

p− n+ 3
. (2.7)

Corollary 2 (James-Stein estimator with large p and small n). For p > n ≥ 3

and a ∈ R, the James-Stein-like estimator

δJSa (X,S) =

(
I − aSS+

X ′S+X

)
X (2.8)

dominates δ0 under invariant quadratic loss for all

0 ≤ a ≤ 2(n− 2)

p− n+ 3
.

Note that if p is only moderately larger than n, Corollary 1 implies that one

can construct an estimator with substantial improvement over δ0. However, in

the ultra-high dimensional setting the denominator in (2.7) could be quite large

and consequently the amount of improvement over δ0 could be quite small. The

estimator in (2.8) generalizes the classical James-Stein with unknown covariance

matrix,

δJSa (X,S) =
(

1− a

X ′S−1X

)
X

which is restricted to the case p ≤ n, for a ∈ R+. In this setting, this result is

consistent with previously bounds in Fourdrinier et al. [2003] (where n− 1 is used

instead of our n.)
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2.3 Technical results and proofs

It remains to clarify several of the somewhat technical computations used in the

proof of Theorem 1. We provide them in this section; these computations are likely

to be of independent interest and showcase several technical maneuvers that the

reader could find useful in dealing with singular Wishart matrices.

Proposition 1. Let Y be an n × p matrix, S = Y ′Y , S+ be its Moore-Penrose

pseudo-inverse, X a p-vector, and F = X ′S+X. It then follows that

(i)

{
∂S

∂Yαβ

}
kl

= δβkYαl + δβlYαk;

(ii)
∂F

∂Yαβ
= −2(X ′S+Y ′)α(S+X)β + 2(X ′S+S+Y ′)α((I − SS+)X)β;

(iii)
∂ {S+XX ′SS+}kl

∂Yαβ
=

(S+S+Y ′)kα((I − SS+)XX ′SS+)βl

− S+
kβ(Y S+XX ′SS+)αl − (S+Y ′)kα(S+XX ′SS+)βl

+ (I − SS+)kβ(Y S+S+XX ′SS+)αl

+ (S+XX ′)kβ(Y S+)αl + (S+XX ′Y ′)kα(S+)βl

+ (S+XX ′S+Y ′)kα(I − SS+)βl

− (S+XX ′SS+)kβ(Y S+)αl − (S+XX ′SS+Y ′)kα(S+)βl.

Proof. First, notice that from the usual chain-rule that{
∂S

∂Yαβ

}
kl

=
∂

∂Yαβ
Skl =

∂

∂Yαβ

∑
q

YqkYql = δβkYαl + δβlYαk.

This shows (i).

Let A be a symmetric matrix and t ∈ R, then

∂A+

∂t
= −A+∂A

∂t
A+ + (I − AA+)

∂A

∂t
A+A+ + A+A+∂A

∂t
(I − AA+).
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This result was, it seems, first proved in Golub and Pereyra [1973], as their The-

orem 4.3, but can be found in standard textbooks on elementary linear alge-

bra. Also, again for A symmetric, we have AA+ = A+A and A(I − AA+) =

(I − AA+)A = A+(I − AA+) = (I − AA+)A+ = 0. This easily follows from

elementary properties of the Moore-Penrose pseudoinverse.

Since S = Y ′Y , notice through a singular value decomposition argument that

SS+Y ′ = Y ′ and thus (I − SS+)Y ′ = 0. Using (i) we find that

∂F

∂Yαβ
=X ′

∂S+

∂Yαβ
X

=−
∑
k,l

(X ′S+)k {δβkYαl + δβlYαk} (S+X)l

+
∑
k,l

(X ′S+S+)k {δβkYαl + δβlYαk} ((I − SS+)X)l

+
∑
k,l

(X ′(I − SS+))k {δβkYαl + δβlYαk} (S+S+X)l

=−
∑
l

(X ′S+)βYαl(S
+X)l −

∑
k

(X ′S+)kYαk(S
+X)β

+
∑
l

(X ′S+S+)βYαl((I − SS+)X)l

+
∑
k

(X ′S+S+)kYαk((I − SS+)X)β

+
∑
l

(X ′(I − SS+))βYαl(S
+S+X)l

+
∑
k

(X ′(I − SS+))kYαk(S
+S+X)β

=− 2(X ′S+Y ′)α(S+X)β + 2(X ′S+S+Y ′)α((I − SS+)X)β

which gives (ii).

Using (i) we have that for any conformable matrices A and B(
A
∂S

∂Yαβ
B

)
kl

=
∑
i,j

Aki
∂S

∂Yαβ ij
Bjl
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=
∑
i,j

Aki {δβiYαj + δβiYαj}Bjl

=
∑
j

AkβYαjBjl +
∑
i

AkiYαiBβl

=Akβ(Y B)αl + (AY ′)kαBβl.

Therefore, using again (I − SS+)Y ′ = 0:

∂{S+XX ′SS+}kl
∂Yαβ

=

{
S+S+ ∂S

∂Yαβ
(I − SS+)XX ′SS+

− S+ ∂S

∂Yαβ
S+XX ′SS+ + (I − SS+)

∂S

∂Yαβ
S+S+XX ′SS+

+ S+XX ′
∂S

∂Yαβ
S+ + S+XX ′SS+S+ ∂S

∂Yαβ
(I − SS+)

−S+XX ′SS+ ∂S

∂Yαβ
S+ + S+XX ′S(I − SS+)

∂S

∂Yαβ
S+S+

}
kl

= (S+S+Y ′)kα((I − SS+)XX ′SS+)βl

− S+
kβ(Y S+XX ′SS+)αl − (S+Y ′)kα(S+XX ′SS+)βl

+ (I − SS+)kβ(Y S+S+XX ′SS+)αl

+ (S+XX ′)kβ(Y S+)αl + (S+XX ′Y ′)kα(S+)βl

+ (S+XX ′S+Y ′)kα(I − SS+)βl

− (S+XX ′SS+)kβ(Y S+)αl − (S+XX ′SS+Y ′)kα(S+)βl

which gives (iii).

Lemma 1. Under the hypotheses of Theorem 1 we have

tr

(
Y ′∇Y

{
r2(X ′S+X)

SS+XX ′S+

(X ′S+X)2

})
= −4r(X ′S+X)r′(X ′S+X) + r2(X ′S+X)

p− 2tr(SS+) + 3

X ′S+X

where ∇Y is interpreted as the matrix with components (∇Y )ij = ∂
∂Yij

.
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Proof. To simplify computations in what will follows, we let F ≡ X ′S+X. We

then have [
Y ′∇Y

{
r2(F )

SS+XX ′S+

F 2

}]
ij

=
∑
α,β

(Y ′)iα
∂

∂Yαβ

{
r2(F )

(SS+XX ′S+)βj
F 2

}
=2
∑
α,β

(Y ′)iαr(F )r′(F )
∂F

∂Yαβ
· (SS+XX ′S+)βj

F 2
(2.12)

+
∑
α,β

(Y ′)iαr
2(F )

∂
∂Yαβ
{(SS+XX ′S+)βj}

F 2
(2.13)

+
∑
α,β

(Y ′)iαr
2(F )

−2 ∂F
∂Yαβ

(SS+XX ′S+)βj

F 3
. (2.14)

To simplify (2.12) and (2.14) we apply Proposition 1 (ii) to get

∑
α,β

(Y ′)iα

{
∂F

∂Yαβ

}
(SS+XX ′S+)βj

=− 2
∑
α,β

(Y ′)iα(X ′S+Y ′)α(S+X)β(SS+XX ′S+)βj

+ 2
∑
α,β

(X ′S+S+Y ′)α(Y )αi(S
+XX ′SS+)jβ((I − SS+)X)β

=− 2X ′S+X(SS+XX ′S+)ij.

Using this, we get for (2.12)

2
∑
α,β

(Y ′)iαr(F )r′(F )
∂F

∂Yαβ
· (SS+XX ′S+)βj

F 2

=− 4r(F )r′(F )
(SS+XX ′S+)ij

F
(2.15)

and (2.14) becomes

∑
α,β

(Y ′)iαr
2(F )

−2 ∂F
∂Yαβ
· (SS+XX ′S+)βj

F 3

= 4r2(F )
(SS+XX ′S+)ij

F 2
. (2.16)
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This leaves the term (2.13) to analyze. Using Proposition 1 (iii):

∑
α,β

(Y ′)iα
∂

∂Yαβ

{
(SS+XX ′S+)βj

}
=
∑
α,β

(Y ′)iα
∂{S+XX ′SS+}jβ

∂Yαβ

=
∑
α,β

{
(S+S+Y ′)jαYαi((I − SS+)XX ′SS+)ββ

− S+
jβ(Y ′)iα(Y S+XX ′SS+)αβ

− (S+Y ′)jαYαi(S
+XX ′SS+)ββ

+ (I − SS+)jβ(Y ′)iα(Y S+S+XX ′SS+)αβ

+ (S+XX ′)jβ(Y ′)iα(Y S+)αβ

+ (S+XX ′Y ′)jαYαi(S
+)ββ

+ (S+XX ′S+Y ′)jαYαi(I − SS+)ββ

− (S+XX ′SS+)jβ(Y ′)iα(Y S+)αβ

− (S+XX ′SS+Y ′)jαYαi(S
+)ββ

}
= (S+XX ′SS+(I − SS+))ij

− (SS+XX ′S+)ij

− tr(S+XX ′SS+)(SS+)ij

+ tr((I − SS+)XX ′SS+)(S+)ij

+ (SS+XX ′S+)ij

+ tr(S+)(SXX ′S+)ij

+ tr(I − SS+)(SS+XX ′S+)ij

− (SS+XX ′S+)ij

− tr(S+)(SXX ′S+)ij

= (p− tr(SS+)− 1)
{
SS+XX ′S+

}
ij
− (X ′S+X)

{
SS+

}
ij
.
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Next applying this computation in (2.13), we obtain

∑
α,β

(Y ′)iαr
2(F )

∂
∂Yαβ
{(SS+XX ′S+)βj}

F 2

= (p− tr(SS+)− 1)r2(F )
(SS+XX ′S+)ij

F 2

− r2(F )
(SS+)ij
F

. (2.17)

Now we can combine (2.15), (2.17) and (2.16) together to complete the proof.

That is, we have

tr

(
Y ′∇Y

{
r2(F )

SS+XX ′S+

F 2

})
=
∑
i

{
− 4r(F )r′(F )

(SS+XX ′S+)ii
F

+ 4r2(F )
(SS+XX ′S+)ii

F 2

+ (p− tr(SS+)− 1)r2(F )
(SS+XX ′S+)ii

F 2

− r2(F )
(SS+)ii
F

}
=− 4r(F )r′(F ) + r2(F )

p− 2 tr(SS+) + 3

F

as desired.

Lemma 2. Under the hypotheses of Theorem 1 we have

divX
r(X ′S+X)SS+X

X ′S+X
= 2r′(X ′S+X) + r(X ′S+X)

tr(SS+)− 2

X ′S+X
.

Proof. Again, to simplify computations, let us denote X ′S+X by F . We find

divX

{
r(F )

SS+X

F

}
=
∑
i

∂

∂Xi

{
r(F )

(SS+X)i
F

}
=
∑
i

r′(F )
∂F

∂Xi

(SS+X)i
F

+ r(F )
∂
∂Xi
{(SS+X)i}
F

− r(F )
∂F
∂Xi

(SS+X)i

F 2
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=
∑
i

r′(F )

{
∂

∂Xi

∑
k,l

XkXlS
+
kl

}
(SS+X)i

F

+ r(F )
∂
∂Xi

∑
k(SS

+)ikXk

F

− r(F )

{
∂
∂Xi

∑
k,lXkXlS

+
kl

}
(SS+X)i

F 2

=
∑
i

r′(F )
{

(X ′S+)i + (X ′S+)i
} (SS+X)i

F

+ r(F )
(SS+)ii
F

− r(F )
{(X ′S+)i + (X ′S+)i} · (SS+X)i

F 2

= 2r′(F ) + r(F )
tr(SS+)− 2

F

as desired.

The following result is an extension of a result in Konno [2009]. This type

of result was first obtained by Kubokawa and Srivastava [2008] and then was

extended by Konno [2009]. In our generalization we make use of a divergence

version of Stein’s lemma that comes with somewhat weaker moment conditions,

rather than the element-by-element assumptions in Konno [2009]. These weaker

moment conditions allow us to cover the p equals n and n+ 1 cases.

Lemma 3. Let Y ∼ Nn×p(0, In ⊗ Σ), let S = Y ′Y which has, by definition, a

Wishartp(n,Σ) distribution, and let G(S) be a p × p random matrix that depends

on S. Let ∇Y be interpreted as the matrix with components (∇Y )ij = ∂
∂Yij

, and

for A the symmetric positive definite square root of Σ, define Ỹ = Y A−1 and

H = AGA−1. Then

E
[
tr
(
Σ−1SG

) ]
= E

[
ntr (G) + tr (Y ′∇YG

′)
]

under the conditions

E
[∣∣∣divvec(Ỹ ) · vec

(
Ỹ H

)∣∣∣] <∞ (2.18)

where vec(M) denotes the vectorization of a matrix M .
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Proof. Define S̃ = Ỹ ′Ỹ = A−1SA−1. Notice that, by construction,

Ỹ ∼ Nn×p(0, In⊗Ip) which means, by definition of the matrix normal distribution,

that vec(Ỹ ) ∼ Nnp(0, Inp). We can write

E
[
tr
(
S̃H
)]

= E

[∑
α,i,j

ỸαiỸαjHji

]
= E

[
vec(Ỹ ) · vec

(
Ỹ H

)]
.

Using the divergence form of Stein’s lemma, which can be found in Lemma A.1

in Fourdrinier and Strawderman [2003], we obtain, under the moment conditions

outlined in (2.18)

E
[
vec(Ỹ ) · vec

(
Ỹ H

)]
= E

[
divvec(Ỹ ) vec

(
Ỹ H

)]
= E

[∑
α,i,j

∂

∂Ỹαi
ỸαjHji

]

= E

[∑
α,i,j

δijHji + Ỹαj
∂Hji

∂Ỹαi

]

= E

[
n
∑
i

Hii +
∑
α,i,j

Ỹαj
∂

∂Ỹαi
Hji

]
.

This last expression can be expressed in a compact matrix form as

E
[
tr
(
S̃H
)]

= E
[
ntr(H) + tr

(
(Ỹ ′∇Ỹ )′H

)]
.

Finally, we notice

E [tr (H)] = E
[
tr
(
AGA−1

)]
E
[
tr
(
S̃H
)]

= E
[
tr
(
A−1SGA−1

)]
E
[
tr
(

(Ỹ ′∇Ỹ )′H
)]

= E
[
tr
(
A(Y ′∇Y )′GA−1

)]
,

which concludes the proof.

Theorem 2. Let Y ∼ Nn×p(0, In ⊗ Σ) and for A the symmetric positive definite

square root of Σ, let Ỹ = Y A−1. Let r be any bounded differentiable nonnegative
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function r : R→ [0, C1] with bounded derivative |r′| ≤ C2. Define

G = r2(X ′S+X)
S+XX ′S+S

(X ′S+X)2

and H = AGA−1. Then for all p and n

E
[∣∣∣divvec(Ỹ ) vec

(
Ỹ H

)∣∣∣] <∞. (2.19)

Proof. We first compute divvec(Ỹ ) vec
(
Ỹ H

)
. As always, to ease notation we shall

write F = X ′S+X. We have

divvec(Ỹ ) vec
(
Ỹ H

)
=
∑
α,i,j

∂

∂Ỹαi

{
ỸαjHji

}
=n
∑
i

Hii +
∑
α,j

Ỹαj
∂Hji

∂Ỹαi

=n
∑
i

Hii +
∑
α,β,i,j

ỸαjAβi
∂

∂Yαβ

{
r2(F )

{AS+XX ′SS+A−1}ji
F 2

}

=n
∑
i

Hii +
∑
α,β,i,j

ỸαjAβi ·{
2r(F )r′(F )

∂F

∂Yαβ

{AS+XX ′SS+A−1}ji
F 2

(2.20)

+
r2(F )

F 2

∑
k,l

Ajk
∂ {S+XX ′SS+}kl

∂Yαβ
A−1
li (2.21)

−r2(F )
{
AS+XX ′SS+A−1

}
ji

2 ∂F
∂Yαβ

F 3

}
. (2.22)

We simplify each part of the expression. For (2.20), using Proposition 1 (ii), we

find

2
∑
α,β,i,j

ỸαjAβir(F )r′(F )
∂F

∂Yαβ

{AS+XX ′SS+A−1}ji
F 2

= 4
r(F )r′(F )

F 2

∑
α,β,i,j

{
− (X ′S+Y ′)αỸαj

{
AS+XX ′SS+A−1

}
ji
Aiβ(S+X)β

+ (X ′S+S+Y ′)αỸαj
{
AS+XX ′SS+A−1

}
ji
Aiβ((I − SS+)X)β

}
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=− 4
r(F )r′(F )

F 2

(
X ′S+Y ′Y A−1AS+XX ′SS+A−1AS+X

)
+ 4

r(F )r′(F )

F 2

(
X ′S+S+Y ′Y A−1AS+XX ′SS+A−1A(I − SS+)X

)
=− 4r(F )r′(F ). (2.23)

Similarly, for (2.22)∑
α,β,i,j

ỸαjAβir
2(F )

{
AS+XX ′SS+A−1

}
ji

2 ∂F
∂Yαβ

F 3

= 4
r2(F )

F 3

∑
α,β,i,j

(X ′S+Y ′)αỸαj
{
AS+XX ′SS+A−1

}
ji
Aiβ(S+X)β

= 4
r2(F )

F 3

(
X ′S+Y ′Y A−1AS+XX ′SS+A−1AS+X

)
= 4

r2(F )

F
. (2.24)

This leaves us with (2.21). Using Proposition 1 (iii) we obtain∑
α,β,i,j

ỸαjAβi
r2(F )

F 2

∑
k,l

Ajk
∂ {S+XX ′SS+}kl

∂Yαβ
A−1
li

=
r2(F )

F 2

∑
α,β,i,j,k,l

ỸαjAβiAjkA
−1
li

·
{

(S+S+Y )kα((I − SS+)XX ′SS+)βl

− S+
kβ(Y S+XX ′SS+)αl

− (S+Y )kα(S+XX ′SS+)βl

+ (I − SS+)kβ(Y S+S+XX ′SS+)αl

+ (S+XX ′)kβ(Y S+)αl

+ (S+XX ′Y ′)kα(S+)βl

+ (S+XX ′S+Y ′)kα(I − SS+)βl

− (S+XX ′SS+)kβ(Y S+)αl

−(S+XX ′SS+Y ′)kα(S+)βl
}

=
r2(F )

F 2

∑
α,β,i,j,k,l

{
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Ajk(S
+S+Y )kαỸαjAiβ((I − SS+)XX ′SS+)βlA

−1
li

− Ỹ ′jα(Y S+XX ′SS+)αlA
−1
li AiβS

+
βkAkj

− Ajk(S+Y )kαỸαjAiβ(S+XX ′SS+)βlA
−1
li

+ Ỹ ′jα(Y S+S+XX ′SS+)αlA
−1
li Aiβ(I − SS+)βkAkj

+ Ỹ ′jα(Y S+)αlA
−1
li Aiβ(XX ′S+)βkAkj

+ Ajk(S
+XX ′Y ′)kαỸαjAiβ(S+)βlA

−1
li

+ Ajk(S
+XX ′S+Y ′)kαỸαjAiβ(I − SS+)βlA

−1
li

− Ỹ ′jα(Y S+)αlA
−1
li Aiβ(SS+XX ′S+)βkAkj

− Ajk(S+XX ′SS+Y ′)kαỸαjAiβ(S+)βlA
−1
li

}
=
r2(F )

F 2

{
tr(AS+S+Y ′Y A−1) · tr(A(I − SS+)XX ′SS+A−1)

− tr(A−1Y ′Y S+XX ′SS+A−1AS+A)

− tr(AS+Y ′Y A−1)tr(AS+XX ′SS+A−1)

+ tr(A−1Y ′Y S+S+XX ′SS+A−1A(I − SS+)A)

+ tr(A−1Y ′Y S+A−1AXX ′S+A)

+ tr(AS+XX ′Y ′Y A−1) · tr(AS+A−1)

+ tr(AS+XX ′S+Y ′Y A−1)tr(A(I − SS+)A−1)

− tr(A−1Y ′Y S+A−1ASS+XX ′S+A)

−tr(AS+XX ′SS+Y ′Y A−1)tr(AS+A−1)
}

=
r2(F )

F 2
·
{
−X ′S+X − tr(SS+) ·X ′S+X

+X ′S+X +X ′SS+X · tr(S+)

−X ′S+X −X ′SS+X · tr(S+)
}

=− r2(F )

F

(
1 + tr(SS+)

)
. (2.25)

Having reexpressed divvec(Ỹ ) vec
(
Ỹ H

)
, we now need to bound it above. By virtue
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of (2.23), (2.24) and (2.25), we have

E
[∣∣∣divvec(Ỹ ) vec

(
Ỹ H

)∣∣∣]
= E

[∣∣∣∣ntr(H) + 4
r2(F )

F

+
(

1 + tr(SS+)
)r2(F )

F
− 4r(F )r′(F )

∣∣∣∣]
≤ C2

1

∣∣3− tr(SS+) + n
∣∣E [ 1

F

]
+ 4C1C2. (2.26)

It only remains to show that E
[

1
F

]
is finite. By definition of the Wishart ma-

trix distribution we can define a T ∼ Wishartp(n, In) such that S = ATA. Let

T = H ′DH be the spectral decomposition of T , with D = diag(λi). Write the

eigenvalues of T+ as λ+
i , so that D−1 = diag(λ+

i ), and let λ+
min be the small-

est nonzero eigenvalue of T+. The following two identities follow from Tian and

Cheng [2004] [Theorem 1.1, equations (1.2) and (1.4)] and symmetry of T :

(ATA)+ =(T+TA)+T+(AT+T )+

(T+TA)+(T+T ) =(T+TA)+.

Using these identities we have

X ′S+X =X ′(ATA)+X = X ′(T+TA)+T+(AT+T )+X

=
∑
k

{
X ′(T+TA)+H ′

}2

k
λ+
k

≥ λ+
min ·X ′(T+TA)+H ′H(AT+T )+X

= λ+
min ·X ′(T+TA)+(T+T )(AT+T )+X

= λ+
min ·X ′(T+TA)+(AT+T )+X.

Applying Cauchy-Schwartz provides us the bound

X ′(T+TA)+(T+TA)X ≤ X ′(T+TA)+(AT+T )+XX ′(AT+T )(T+TA)X
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so that we then have

1

F
=

1

X ′S+X
≤ 1

λ+
min

1

X ′(T+TA)+(AT+T )+X

≤ 1

λ+
min

X ′AT+TAX

X ′(T+TA)+(T+TA)X
.

To ease notation let us write Q = AT+TA and R = (T+TA)+(T+TA). Collecting

the results together we bound (2.26) by

≤ C2
1

∣∣3− tr(SS+) + n
∣∣E [ 1

λ+
min

X ′QX

X ′RX

]
+ 4C1C2. (2.27)

We now use some independence results. We can write the singular value decom-

position of T as T = H ′DH, but we can also write it as T = H ′1D1H1, where H1

is semi-orthogonal (H1H
′
1 = I), and D1 is the matrix of the positive eigenvalues

of T . If T has full rank (i.e., n ≥ p) then this coincide with the singular value de-

composition of T . In the full rank case, Srivastava and Khatri [1979] [Section 3.4,

equation (3.4.3)] provides the joint density of H and D = diag(di) in the standard

Wishart case (which applies to T ) as

fH,D(H,D)

= C(p, n)|D|
1
2

(n−p−1)

[
etr

(
−1

2
D

)][∏
i<j

(di − dj)

]
gp(H) (2.28)

for constants C(p, n) and functions gp. Therefore, H and D are independent. In

the rank-deficient case (p > n), Srivastava [2003] [Section 3] provides an equivalent

expression which, in the singular Wishart case gives

fH1,D1(H1, D1)

= K(p, n)|D1|
1
2

(p−n−1)

[
etr

(
−1

2
D1

)][∏
i<j

(di − dj)

]
gn,p(H1) (2.29)

for constants K(p, n) and functions gn,p so again, we find H1 and D1 indepen-

dent by factorization. Now, λ+
min is a function, in the full rank case (resp. rank-

deficient case), of only D−1 (resp. D−1
1 ), and we can write T+T = H ′H (resp.
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T+T = H ′1H1), so λ+
min and T+T are independent. Being functions of S, they are

also both independent of X. Now, the nonzero eigenvalues of T+ are the inverses of

the nonzero eigenvalues of T , a general fact about Moore-Penrose pseudo-inverses.

Therefore, denoting the largest eigenvalue of T as λmax, we can split up the expec-

tations in (2.27) and get the bound

≤ C2
1

∣∣3− tr(SS+) + n
∣∣E [λmax]E

[
X ′QX

X ′RX

]
+ 4C1C2. (2.30)

Now, it follows from positive semi-definiteness of T that E [λmax] ≤ E [tr(T )] . If

n ≥ p, tr(T ) ∼ χ2
pn (cf. Muirhead [1982], Theorem 3.2.20) and so E [tr(T )] = pn <

∞. If p > n, recall we can write T = Z ′Z for Z ∼ Nn×p(0, In ⊗ Ip) by definition

of the Wishart distribution; and ZZ ′ ∼Wishartn(p, In) so that tr(T ) = tr(ZZ ′) ∼

χ2
pn; so again, E [tr(T )] = pn <∞. Therefore, in either case,E [λmax] ≤ pn <∞.

We still have to check that the expectation involving X, Q and R in (2.30) is

finite. Let r = rk(R) = rk(Q) = rk(S) and write the spectral decomposition of

(T+TA) as UΛU ′, with Λ = diag(L, 0(p−r)) where L is the vector of the r nonzero

eigenvalues of (T+TA). Then R = (T+TA)+(T+TA) = Udiag(Ir, 0(p−r))U
′; let us

define the p × (p − r) matrix E = U [0(p−r)×r I(p−r)]
′ i.e. so that RE = 0 and

E has full column rank p − r. Notice that QE = AT+TAU [0(p−r)×r I(p−r)]
′ =

AUΛU ′U [0(p−r)×r I(p−r)]
′ = 0. Since Q and R are symmetric positive semidefinite,

we can use results in Magnus [1990] [Theorem 1(i) with A = Q and B = R] to

conclude that

E

[
X ′QX

X ′RX

]
<∞.

This concludes the proof of the theorem.
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2.4 Numerical study

This section provides some numerical results to showcase the improvement in risk

of the minimax estimator over the usual estimator. More precisely, we compared

the James-Stein estimator in (2.8) given by

δJS =

(
I − (n− 2)SS+

(p− n+ 3)X ′S+X

)
X

and the usual estimator δ0 = X under invariant loss. (In addition, we consid-

ered the positive James-Stein estimator to be discussed in Section 2.5.) The em-

pirical approximations of the invariant risk of these estimators were plotted for

p = 10, 20, 50 and n = p
2
, p − 1. Three covariance matrix structures were consid-

ered:

Spiked A diagonal matrix with the first p/2 diagonal elements equal to 1, and

the last p/2 equal to 10.

Autoregressive Autoregressive covariance matrices of the form

Σ =



1 ρ ρ2

ρ 1 ρ

ρ2 ρ 1

. . .


for ρ = 0.5.

Block diagonal Block diagonal matrices with p/2 blocks of the form 1 ρ

ρ 1

 for ρ = 0.5.

In all cases, the true mean was chosen as θ ∝ (1, ..., 1).

29



We remind the reader that the risk of the trivial estimator is always p, regardless

of θ or Σ. With this in mind, we see from Figure 2.1 that in all six scenarios

the pattern of domination of the new estimator is similar to one of the usual

James-Stein estimator. Also note that, as predicted by the theoretical results, the

domination decreases as the smaller n tends to p.

2.5 Comments

An interesting property of the Moore-Penrose inverse is that for any A, AA+ is

the matrix that projects onto the subspace spanned by A (its column space.) It

follows that the proposed generalized Baranchik estimator can be expressed as

δr(X,S) = (I − SS+)X +

(
1− r(X ′S+X)

X ′S+X

)
SS+X

= PS⊥X +

(
1− r(X ′S+X)

X ′S+X

)
PSX (2.31)

where PS = SS+ and PS⊥ = I −SS+ are the projection matrices onto the column

space of S and its orthogonal complement, respectively. In terms of the kernel and

image of the symmetric matrix S, Ker(PS⊥) = Im(S) and Im(PS⊥) = Ker(S+).

When p > n, this means we can interpret our estimator as applying shrinkage only

on the component of X in the subspace spanned by our covariance matrix estima-

tor S. In particular, note that the estimator PSδr(X,S) =
(

1− r(X′S+X)
X′S+X

)
PSX

dominates PSX under invariant loss function (1.1), since R(PSδr, θ)−R(PSX, θ) =

R(δr, θ) − R(X, θ) ≥ 0 if r satisfies the conditions of Theorem 1. This suggests

there might be an easier, more abstract proof of Theorem 1, one not relying on

brute computations but on the already known full rank S case, although we have

not been able to obtain such a result.

A natural extension of the James-Stein estimator, δJSa in (2.8), is a positive-
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Figure 2.1: The risk function plots of δJS
a and δJS+

a for a = (n− 2)/(p− n+ 3) are
in the left and right columns, respectively. The lines, from thinnest to thickest,
are for p = 10, 20 and 50. The solid and dashed lines are respectively for n = p/2
and n = p− 1.
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part-type James-Stein estimator. The form of the estimator in (2.31) suggests

δJS+
a =

(
I − SS+

)
X +

(
1− a

X ′S+X

)
+

SS+X, (2.32)

where b+ = max(b, 0). Simulation evidence from Figure 2.1 suggests that for a =

(n− 2)/(p− n+ 3), δJS+
a dominates δJSa under invariant loss.

One of the interesting differences between the n > p and p > n cases is the

reversal of the roles of p and n. This is essentially due to the distribution of the

singular values of S. Recall that for S = ATA, T ∼ Wp(n, In). We can write

the singular value decomposition of T as T = H ′DH, but we can also write it as

T = H ′1D1H1, where H1 is semi-orthogonal (H1H
′
1 = I), and D1 is the matrix of

the positive eigenvalues of T . If T has full rank (i.e., n ≥ p) this coincides with

the singular value decomposition of T . In the full rank case the joint density of H

and D is given in (2.28), whereas in the rank-deficient case (p > n) joint density

is given by (2.29), from which stems the reversal of the roles of p and n.

In the heteroscedastic normal mean estimation problem, James and Stein [1961]

used the loss function that was weighted by the inverse of the variances, and con-

sequently the problem is essentially transformed to the homoscedastic case under

ordinary squared error loss. Similarly in this article, we used the invariant loss

function in (2.1), therefore skirting a somewhat subtle issue. In the heteroscedas-

tic setting where there are differing coordinate variances, minimax estimation and

Bayes (or empirical Bayes) estimates can be qualitatively different. It turns out

that minimax estimators in general shrink most on the coordinates with smaller

variances, while Bayes estimators shrink most on large variance coordinates. Brown

[1975] shows that the James-Stein shrinkage estimator does not dominate X when

the largest variance is larger than the sum of the rest. Moreover, Casella [1980]

points out that the James-Stein shrinkage estimator may not be a desirable shrink-

age estimator under heteroscedasticity even when it is minimax. Morris and Lysy
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[2009] and Brown et al. [2012] give an excellent perspective on minimaxity of

shrinkage estimator from Bayes and empirical Bayes points of view. Consequently,

it would be of interest to examine the shrinkage patterns of the proposed estimates

in the case of a non-invariant loss function and assess how well the invariant loss

works for p > n applications.

One can imagine an extension of the results of this chapter beyond the normal

distribution setting. Consider a model with the joint density for (X,S) having the

form

f
(

tr Σ−1[(X − θ)(X − θ)′ + S]
)

(2.33)

where the p × 1 location vector θ and the p × p scale matrix Σ are unknown.

In the setting of p ≤ n, Fourdrinier et al. [2003] and Kubokawa and Srivastava

[2001] give some results on improved location estimation for elliptically symmetric

distributions. For more on elliptical symmetry and the various choices of f(·)

in (2.33), see Fang et al. [1990]; the class in (2.33) contains models such as the

multivariate normal, t−, and Kotz-type distributions.

Finally, simulation study reveals that, when p is much larger than n, the esti-

mate of Σ and Σ−1 are quite poor. This observation agrees with Kubokawa and

Srivastava [2008], where Haff [1979a]-type improved estimates of Σ are proposed.

It would be of interest to use an improved estimator of Σ in δr(X,S) in (2.3). As

pointed out in the testing context by Srivastava and Fujikoshi [2006] and Srivastava

[2007], a shortcoming of S+ is that the associated estimator is only orthogonally

invariant, while the sample mean vector is invariant.
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CHAPTER 3

SECOND ORDER ESTIMATION IN THE SINGULAR

MULTIVARIATE NORMAL MODEL

3.1 Introduction

Classical statistics is often confined to the setting where the sample size of the

data is greater than the number of covariates under consideration. With the recent

explosion of available data, much interest has arisen in degenerate situations where

the number of covariates is greater than the sample size. In this situation, it is

typically assumed that, despite their number, the underlying covariates are linearly

independent, or in other words that their covariance matrix has full rank. However,

little attention has been shown to the situation where linear dependence would hold

between the covariates, that is, where the covariance matrix would be singular.

Recently, Tsukuma and Kubokawa [2014] investigated the problem of estimat-

ing the mean vector of a multivariate normal distribution when the unknown covari-

ance matrix is singular. By deriving an unbiased risk estimator for the quadratic

loss, they were able to express sufficient conditions for an estimator to dominate

the maximum likelihood estimator.

This article is concerned with the same model but three different tasks. Unlike

the mean estimation problem of Tsukuma and Kubokawa [2014], all three concern

second order moments of the distribution. In each case we aim to provide decision-

theoretic results that lead to improved inference. The first task is the estimation of

the singular covariance matrix itself, under an invariant squared loss. This problem

was first considered in the full rank case by Haff [1980], and in the high-dimensional

setting by Konno [2009]. The second task is the estimation of the Moore-Penrose

pseudo-inverse of the covariance matrix, also known as the precision matrix, under
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the Frobenius loss. This problem was first considered in the full rank case by Haff

[1977, 1979b] and in the high-dimensional setting by Kubokawa and Srivastava

[2008]. Finally, we consider the task of estimating the discriminant coefficients

that arise in Linear Discriminant Analysis (LDA), a popular linear classifier, under

the squared loss. This problem was first considered in the full rank case by Haff

[1986] and Dey and Srinivasan [1991]. As far as we know, no work has been done

on discriminant coefficients in a high-dimensional context where the number of

covariates is greater than the sample size.

The presentation of our approach to these problems is divided as follows. The

decision-theoretic results are described in Section 3.2. For each of the three prob-

lems, we construct an appropriate unbiased estimator of the risk (URE) using

Stein’s and Haff’s lemmas [Stein, 1986, Haff, 1979a], and the approach of [Tsukuma

and Kubokawa, 2014]. We then consider the class of estimator given by constant

multiples of a naive estimator, and minimize an upper bound on the difference in

risk to obtain estimators that dominate the naive estimator. Finally, we consider

a larger class given by the sum of this estimator and an appropriate trace, and

again minimize an upper bound on the risk to obtain a dominating estimator.

In Section 3.3, we investigate the amount of improvement provided by the pro-

posed estimators through Monte Carlo simulations. Finally, proofs of the state-

ments of Section 3.2 are provided in Section 3.5.

3.2 Estimation

3.2.1 Model

Our setting is almost identical to the one of Tsukuma and Kubokawa [2014]. We

observe an n-sample X1, ..., Xn identically and independently distributed from a
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p-dimensional multivariate normal distribution Np(µ,Σ), where µ and Σ are un-

known. However, the p-dimensional covariance matrix Σ is rank-deficient with

respect to the dimension and the sample size, in the sense that

r = rk(Σ) < min(n, p). (3.1)

The resulting singular multivariate normal distribution does not have a density

with respect to the Lebesgue measure on Rp, but lives in the r-dimensional linear

subspace spanned by the columns of Σ. More details can be found, for example,

in Srivastava and Khatri [1979, Section 2.1].

Define the n× p data matrix X = (X1, ..., Xp)
t. The sample covariance matrix

S = (X−1nX̄
t)t(X−1nX̄

t)/n then follows a Wishart distribution Wp(n−1,Σ/n)

with n − 1 degrees of freedom. Since Σ is rank-deficient, it is singular in the

terminology of Srivastava and Khatri [1979, Section 3.1]. We warn the reader that

the expression “singular Wishart” has also been used in the literature to describe

the different situation where the covariance is positive-definite and the dimension

exceeds the degrees of freedom, as in Srivastava [2003]. Let S = O1LO
t
1 denote

the reduced spectral decomposition of S, where L = diag(l1, ..., lr) denote the r

non-zero eigenvalues and O1 is p× r semi-orthogonal.

In this situation, neither S nor Σ are invertible. Since inverses of covariance

matrix are of considerable interest in multivariate statistical analysis, some gener-

alized inverse of these quantities is desirable. In this article, we will focus on the

Moore-Penrose pseudoinverse, which will be denoted A+ for a matrix A. Defini-

tions and theoretical properties can be found in Harville [1997, Chapter 20].

The singular multivariate normal model is amenable to decision-theoretic anal-

ysis through a key insight of Tsukuma and Kubokawa [2014, Section 2.2]. The

authors proved that when (3.1) holds, the subspace spanned by the sample covari-

ance matrix is almost surely constant and matches the subspace spanned the true
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covariance matrix, in the sense that

SS+ = ΣΣ+. (3.2)

This fact will be repeatedly used in Section 3.5, and is essential to our derivations.

Let us now turn our attention to the three problems we wish to solve. In terms

of the notation introduced above, these are:

Covariance matrix estimation. The estimation of Σ under the invariant squared

loss L(Σ̂,Σ) = tr[(Σ̂Σ+ − Ip)2].

Precision matrix estimation. The estimation of Σ+ under the Frobenius loss

L(Σ̂+,Σ+) = ‖Σ̂+ − Σ+‖2
F .

Discriminant coefficient estimation. The estimation of η = Σ+µ under the square

loss L(η̂, η) = ‖η̂ − η‖2
2.

Traditional estimators for µ and Σ are the empirical mean X̄ and the sample

covariance matrix S, which suggests the naive estimators S, S+ and S+X̄ for each

respective problem. We will see they are not admissible.

3.2.2 Covariance matrix estimation

The standard estimator for a covariance matrix is the sample covariance matrix

S. An alternative is the unbiased estimator n
n−1

S, which corrects for the loss in

degrees of freedom from not knowing µ. We will look for estimators that improve

over these benchmarks and study their performance.

We first show that an unbiased estimator of the risk holds for orthogonally

invariant estimators, that is, estimators of the form Σ̂ = O1ΨOt
1 with Ψ =

diag(ψ1, ..., ψr) twice-differentiable functions of L = diag(l1, ..., lr).
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Theorem 3 (Unbiased risk estimation for singular covariance matrices). Let 1 ≤

r ≤ n− 1 and define

ψ∗k =

[
n− r − 2

n

ψk
lk

+
4

n

∂ψk
∂lk

+
2

n

r∑
b 6=k

ψk − ψb
lk − lb

− 2

]
ψk.

Assume the regularity conditions

E

[∣∣∣∣∣p+
r∑

k=1

n− r − 2

n

ψ∗k
lk

+
2

n

r∑
k=1

∂ψ∗k
∂lk

+
1

n

r∑
k 6=b

ψ∗k − ψ∗b
lk − lb

∣∣∣∣∣
]
<∞,

E

[∣∣∣∣∣p+
r∑

k=1

n− r − 2

n

ψk
lk

+
2

n

r∑
k=1

∂ψk
∂lk

+
1

n

r∑
k 6=b

ψk − ψb
lk − lb

∣∣∣∣∣
]
<∞,

E

[
r∑

k=1

∣∣∣∣ψ∗klk
∣∣∣∣2
]
<∞ and E

[
r∑

k=1

∣∣∣∣ψklk
∣∣∣∣2
]
<∞. (3.3)

We then have

E
[
tr
([

Σ̂Σ+ − Ip
]2)]

= E

[
p+

n− r − 2

n

r∑
k=1

ψ∗k
lk

+
2

n

r∑
k=1

∂ψ∗k
∂lk

+
1

n

r∑
k 6=b

ψ∗k − ψ∗b
lk − lb

]
. (3.4)

Let us now consider estimators that are proportional to the sample covariance

matrix, that is, of the form aS for a constant. The following result provides the

optimal proportionality factor.

Proposition 2. Let 1 ≤ r ≤ n − 1. The optimal estimator of Σ of the form aS

for a ∈ R a deterministic constant is Σ̂HF1 = n
n+r

S, with risk

E
[
tr
([

Σ̂HF1Σ
+ − Ip

]2)]
= p− (n− 1)r

n+ r
.

In particular Σ̂HF1 dominates S, which itself dominates n
n−1

S.

Thus n
n−1

S and S are inadmissible. We can further extend this result by consid-

ering a larger class of estimators of the form n
n+r

[S + tSS+ tr−1(S+)] for t constant.

Estimators of this shape were first considered by Haff [1980]. Although computing

the exact risk of these estimators is difficult, it is possible to bound the difference

in risk with the one of Σ̂HF1 as follows.
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Proposition 3. Let 1 ≤ r ≤ n − 4. Then the risk of estimators of the form

Σ̂t = n
n+r

[S + tSS+ tr−1(S+)] for t ∈ R can be bounded by

E
[
tr
([

Σ̂tΣ
+ − Ip

]2)] ≤ E
[
tr
([

Σ̂HF1Σ
+ − Ip

]2)]
+

[
(n− r)(n− r + 2)

(n+ r)2
t2 − 2

(n− r)(r − 1)

(n+ r)2
t

]
E

[
tr(S+2)

tr2(S+)

]
. (3.5)

The constant that minimizes this upper bound is t = r−1
n−r+2

. When r = 1, the

corresponding estimator Σ̂HF2 = n
n+r

[
S + r−1

n−r+2
SS+tr−1(S+)

]
equals Σ̂HF1, while

for r ≥ 2 it dominates Σ̂HF1.

Thus Σ̂HF1 is itself inadmissible for r > 1. Although this result does not show

Σ̂HF2 optimal within the class, it might be a good approximation.

3.2.3 Precision matrix estimation

A standard estimator for a singular precision matrix is the Moore-Penrose pseu-

doinverse of the sample covariance matrix S+. Note that by Muirhead [1982, Page

97, Equation (12)] we have

E
[
S+
]

=
n

n− r − 2
Σ+.

for n− r− 2 > 0. Thus in this case an alternative could be the unbiased estimator

n−r−2
n

S+. We will look for estimators that improve over these benchmarks and

study their performance.

We first show that an unbiased estimator of the risk holds for orthogonally

invariant estimators, that is, estimators of the form Σ̂+ = O1ΨOt
1 with Ψ =

diag(ψ1, ..., ψr) twice-differentiable functions of L = diag(l1, ..., lr).

Theorem 4 (Unbiased risk estimation for singular precision matrices). Let 1 ≤

r ≤ n− 1. Assume the regularity condition

E

[∣∣∣∣n− r − 2

n

p∑
k=1

ψk
lk

+
2

n

r∑
k=1

∂ψk
∂lk

+
1

n

∑
k 6=b

ψk − ψb
lk − lb

∣∣∣∣
]
<∞.
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Then

E
[
‖Σ̂+ − Σ+‖2

F

]
= E

[
r∑

k=1

ψ2
k − 2

n− r − 2

n

r∑
k=1

ψk
lk
− 4

n

r∑
k=1

∂ψk
∂lk
− 2

n

r∑
k 6=b

ψk − ψb
lk − lb

]
+ tr

(
Σ−2

)
.

Let us now consider estimators that are proportional to the Moore-Penrose

inverse of the sample covariance matrix, that is, of the form aS+ for a constant.

The following optimality result holds over this class.

Proposition 4. Let 1 ≤ r ≤ n − 5. The risk of estimators of the form aS+ for

a ≤ n−r−2
n

can be bounded in terms of the risk of n−r−2
n

S+ by

E
[
‖aS+ − Σ+‖2

F

]
≤ E

[∥∥∥n− r − 2

n
S+ − Σ+

∥∥∥2

F

]
+

(
a− n− r − 2

n

)(
a− n− r − 6

n

)
E
[
tr(S+2)

]
. (3.6)

The constant that minimizes this upper bound is a = n−r−4
n

, and the corresponding

estimator Σ̂+
EM1 = n−r−4

n
S+ dominates n−r−2

n
S+, which itself dominates S+.

Thus n−r−2
n

S+ and S+ are inadmissible. Note that our bound on the risk only

holds for a ≤ n−r−2
n

: presumably, estimators aS+ with a > n−r−2
n

do not dominate

n−r−2
n

S+, but we have not been able to prove this hypothesis.

In any case, we can further extend this result by considering a larger class of

estimators of the form n−r−4
n

[S+ + t SS+tr−1(S)] for t constant. Estimators of this

shape were first considered by Efron and Morris [1976]. It is possible to bound the

difference in risk with the one of Σ̂+
EM1 as follows.

Proposition 5. Let 1 ≤ r ≤ n − 5. The risk of estimators of the form Σ̂+
t =

n−r−4
n

[S+ + t SS+tr−1(S)] for t ∈ R can be bounded in terms of the risk of Σ̂+
EM1 =
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n−r−4
n

S+ through

E
[
‖Σ̂+

t − Σ+‖2
F

]
≤ E

[∥∥∥Σ̂+
EM1 − Σ+

∥∥∥2

F

]
+

(n− r − 4)r

n2

[
(n− r − 4)t2 − 4(r − 1)t

]
E

[
1

tr2(S)

]
. (3.7)

The constant that minimizes this upper bound is t = 2 r−1
n−r−4

, and the corresponding

estimator Σ̂+
EM2 = n−r−4

n

[
S+ + 2 r−1

n−r−4
SS+tr−1(S)

]
dominates Σ̂+

EM1.

Thus Σ̂+
EM1 is itself inadmissible. Although these results does not show Σ̂+

EM1

and Σ̂+
EM2 optimal within their classes, they might be good approximations.

3.2.4 Discriminant coefficients estimation

A standard estimator for a singular discriminant coefficient is S+X̄. Note that

since X̄ and S are independent, we have

E
[
S+X̄

]
=

n

n− r − 2
Σ+µ

for n−r−2 > 0. Thus in this case an alternative could be the unbiased estimator

n−r−2
n

S+X̄. We will look for estimators that improve over these benchmarks and

study their performance.

We first show that an unbiased estimator of the risk holds for estimators of

the form η̂ = O1ΨOt
1X̄ with Ψ = diag(ψ1, ..., ψr) twice-differentiable functions of

L = diag(l1, ..., lr).

Theorem 5 (Unbiased risk estimation for singular discriminant coefficients). Let

Ψ∗ = diag(ψ∗1, ..., ψ
∗
r) with

ψ∗k =
n− r − 2

n

ψk
lk

+
2

n

∂ψk
∂lk

+
1

n

r∑
b6=k

ψk − ψb
lk − lb

.

41



Assume the regularity conditions

E

[∣∣∣∣∣
r∑

k=1

ψk

∣∣∣∣∣
]
<∞ and E

[
r∑

k=1

∣∣∣ψ∗k∣∣∣
]
<∞.

Then

E

[∥∥∥η̂ − η∥∥∥2

2

]
= E

[
2

n
tr Σ̂+ + X̄ tO1(Ψ2 − 2Ψ∗)Ot

1X̄

]
− E

[
(X̄ − µ)tΣ+2(X̄ + µ)

]
.

Let us now consider estimators that are proportional to the naive estimator,

that is, of the form aS+X̄ for a constant. The following optimality result holds

over this class.

Proposition 6. Let 1 ≤ r ≤ n− 5. The risk of estimators of the form aS+X̄ for

a ≤ n−r−2
n

can be bounded in terms of the risk of n−r−2
n

S+X̄ by

E

[∥∥∥aS+X̄ − η
∥∥∥2

2

]
≤ E

[∥∥∥n− r − 2

n
S+X̄ − η

∥∥∥2

2

]
+

(
a− n− r − 2

n

)(
a− n− r − 4

n

)
E
(
X̄ tS+2X̄

)
. (3.8)

The constant that minimizes this upper bound is a = n−r−3
n

, and the corresponding

estimator η̂TK1 = n−r−3
n

S+X̄ dominates n−r−2
n

S+X̄, which itself dominates S+X̄.

Thus n−r−2
n

S+ and S+ are inadmissible. Again, note that our bound on the risk

only holds on the subset a ≤ n−r−2
n

. Presumably, estimators aS+ with a > n−r−2
n

do not dominate n−r−2
n

S+X̄, but we have not been able to prove this result.

We can further extend this result by considering a larger class of estimators

of the form n−r−3
n

[S+ + t SS+tr−1(S)] X̄ for t constant. Estimators of this shape

were first considered by Dey and Srinivasan [1991]. It is possible to bound the

difference in risk with the one of η̂TK1 as follows.
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Proposition 7. Let 1 ≤ r ≤ n − 5. The risk of estimators of the form η̂t =

n−r−3
n

[S+ + t SS+tr−1(S)] X̄ for t ∈ R can be bounded in terms of the risk of

ηTK1 = n−r−3
n

S+X̄ through

E
[
‖η̂t − η‖2

2

]
≤ E

[∥∥∥η̂TK1 − η‖2
2

]
+

(n− r − 3)

n2

[
2(r + 1)t+ (n− r − 3)t2

]
E

[
1

tr(S)

]
. (3.9)

The constant that minimizes this upper bound is t = − r+1
n−r−3

, and the correspond-

ing estimator η̂TK2 = n−r−3
n

[
S+ − r+1

n−r−3
SS+tr−1(S)

]
X̄ dominates η̂TK1.

Thus η̂TK1 is itself inadmissible. Although these results does not show η̂TK1

and η̂TK2 optimal within their classes, they are hopefully good approximations.

3.3 Numerical study

We investigated the risk performance of the proposed estimator for covariance,

precision and discriminant coefficient estimation through two Monte Carlo simu-

lations.

3.3.1 Autoregressive simulation

We let (n, p) be (150, 100), (200, 100), (200, 150) and (250, 150). For each r from 1

to (n− 4)∧ p, we constructed the true covariance matrix Σ from an autoregressive

structure with coefficient 0.9 and set its p−r smallest eigenvalues to zero to create

a rank r matrix, as described in Algorithm 1. We then randomly generated 1, 000

replications from a multivariate normal distribution with mean µ = (1, . . . , 1)

and singularized autoregressive covariance Σ, and computed the resulting sample

covariance matrix S = X tX/n.
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Algorithm 1: Algorithm for generating Σ

Data: p, r
Result: Σ
for i, j ∈ {1, ..., p} do

Σij = 0.5|i−j|

end
for k ∈ {r + 1, ..., p} do

λk(Σ) = 0
end

For the covariance matrix estimation problem, we computed the Percentage

Reduction In Average Loss (PRIAL) with respect to n
n−1

S in invariant squared loss

L(Σ̂,Σ) = tr[(Σ̂Σ+−Ip)2] for four estimators. The first three are the estimators S,

Σ̂HF1 = n
n+r

S and Σ̂HF2 = n
n+r

[
S + r−1

n−r+2
SS+tr−1(S+)

]
considered in Subsection

3.2.2. We also included as fourth estimator the diagonal of the sample covariance

matrix diag(S). The simulation results are given in Figure 3.1. We notice that

Σ̂HF1 and Σ̂HF2 behave similarly, and both improve substantially on S, while the

diagonal estimator does much worse.

Similarly, for the precision matrix estimation problem, we estimated the PRIAL

with respect to S+ in the Frobenius loss L(Σ̂+,Σ+) = ‖Σ̂+ − Σ+‖2
F for four

estimators. The first three are the estimators n−r−2
n

S+, Σ̂EM1 = n−r−4
n

S+ and

Σ̂EM2 = n−r−4
n

[
S+ + 2 r−1

n−r−4
SS+tr−1(S)

]
from Subsection 3.2.3. The fourth one is

the inverse of the diagonal of the sample covariance matrix, diag(S)−1. The sim-

ulation results are given in Figure 3.2. We can see that all first three estimators

improve substantially over S+, but do not differ significantly in risk. In contrast,

the diagonal estimator performs well when the true matrix is almost full rank, but

becomes worse and worse for smaller covariance ranks.

Finally, for the discriminant coefficient estimation problem, we estimated the

PRIAL with respect to S+X̄ in the square loss L(η̂, η) = ‖η̂ − η‖2
2 for four

estimators. The first three estimators are n−r−2
n

S+X̄, η̂TK1 = n−r−3
n

S+X̄ and
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Figure 3.1: PRIAL of S, Σ̂HF1, Σ̂HF2 and diag(S) with respect to n−1
n
S for esti-

mating Σ in invariant squared loss.

η̂TK2 = n−r−3
n

[
S+ − r+1

n−r−3
tr−1(S)

]
X̄, which were considered in Subsection 3.2.4.

The fourth one is the estimator diag(S)−1X̄, which has been considered in linear

discriminant analysis when p > n. The simulation results are given in Figure 3.3.

In this case again, all first three estimators have similar risk and substantially

improve on the naive estimator, S+X̄, while the diagonal estimator is acceptable

only when the true covariance matrix is almost full rank and quite bad otherwise.
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Figure 3.2: PRIAL of n−r−2
n

S+, Σ̂+
EM1, Σ̂+

EM2 and diag(S)−1 with respect to S+ for
estimating Σ+ in Frobenius loss.

3.3.2 NASDAQ-100 simulation

To explore more realistic designs than an autoregressive covariance matrix, we also

considered a setting where the true covariance matrix was constructed from real

data.

The NASDAQ-100 is a stock market index composed of the hundred largest

non-financial companies on the NASDAQ. As of 2015, this is composed of 107

securities, since some companies offer several classes of stock. We computed the

net daily returns of these assets up to March 6, 2015. The newest security is Liberty
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Figure 3.3: PRIAL of n−r−2
n

S+X̄, η̂+
TK1, η̂+

TK2 and diag(S)−1X̄ with respect to S+X̄
for estimating η = Σ+µ in squared loss.

Media Corp Series C (LMCK), which was issued to series A and B shareholders as

dividend on July 7, 2014. To avoid missing data issues, we took this date as the

initial time point. This yielded a sample size of 167 trading days. From this data

we computed a 107× 107 sample covariance matrix of the NASDAQ-100 returns.

We then proceeded with the risk simulation as follows. For every r from 1

to (n − 4) ∧ p, the true covariance matrix Σ was defined as the NASDAQ-100

sample covariance matrix with its p− r smallest eigenvalues set to zero. We then

randomly generated 1, 000 replications from a multivariate normal distribution
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with mean µ = (1, . . . , 1) and singular covariance Σ, and computed the resulting

sample covariance matrix S = X tX/n.

For each of the three estimation problems, we computed the PRIAL as in

Subsection 3.3.1. The simulation results are given in Figure 3.4. The results

appear similar to the singularized autoregressive setting.
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Figure 3.4: PRIAL for the singularized NASDAQ-100 covariance matrix in the
three estimation tasks.
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3.4 Discussion

The Tsukuma and Kubokawa technique exposed in Subsection 3.2.1 allows in

essence to change the dimension from p to r. Since r < min(n, p), this in ef-

fect turns the problem into a classical setting where the sample size is greater than

the dimension, and allows the usual theory to be applied.

An interesting extension is the setting where n ≤ r < p. In that case, an

adaptation of the method would yield a high-dimensional context where the true

covariance matrix is full rank, but the sample size n is still smaller than the dimen-

sion p. Recent work, for example by Konno [2009], could allow the construction of

improved estimators analogous to the ones presented in this article.

Recent attention has been given to the notion of the effective rank of a matrix

r(A) = tr(S)/‖A‖2, first suggested by Vershynin [2010], in the study of spiked

covariance matrices [Bunea and Xiao, 2012]. Singular covariance matrices can be

regarded as a boundary case of spiked matrices where the noise equals zero. In that

regard, it is interesting to notice that the quantity tr(S+2)/tr2(S+) that appear in

Inequality (3.5) is related to the effective rank of S+ through the inequality

tr(S+2)

tr2(S+)
≤ r(S+) ≤ r2 tr(S+2)

tr2(S+)
.

The presence of this quantity is likely connected to the orthogonal invariance of

the loss function.

Finally, in applications where a singular covariance matrix is unlikely but a

low-dimensional approximation is desired, it might be beneficial to use one of the

estimators proposed in this article and cross-validate the rank r on the task to ac-

complish. For example, a mean-variance portfolio optimization problem could use

Σ̂+
EM2 as precision matrix estimate, with rank r cross-validated on some validation

set. To the best of our knowledge, this methodology has no theoretical grounding

but might nevertheless prove useful in some high-dimensional problems.
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3.5 Proofs

3.5.1 Preliminaries

Before presenting the proofs of the statements from Section 3.2, we explain the

techniques employed by Tsukuma and Kubokawa [2014] to work around the sin-

gularity of the covariates in the model. Define the sample mean and covariance

matrix to be

X̄ = X ′1n/n ∼ Np(µ,Σ/n),

S = [X − 1nX̄
′]′[X − 1nX̄

′]/n ∼Wp(n− 1,Σ/n).

Since Σ has rank r, we can factorize it as Σ = BBt for some full rank p × r

matrix B. Let H = B(BtB)−1/2 and Ω = BtB - then H is p× r semi-orthogonal

H tH = Ir and HH t = ΣΣ+, Ω is r× r invertible, Σ = HΩH t and Σ+ = HΩ−1H t.

Since Σ is rank deficient, there must be a Z ∼ Nn,r(0, Ir) such that X = 1nµ
t+ZBt,

and therefore we can write X = 1nµ
t + Z(BtB)1/2(BtB)−1/2Bt = 1nµ

t + Y H t for

Y = ZΩ−1/2 ∼ Nn,r(0,Ω). Define then

Ȳ = Y t1n/n ∼ Nr(0,Ω/n),

T = [Y − 1nȲ
t]′[Y − 1nȲ

t]/n ∼Wr(n− 1,Ω/n).

Notice how T is full rank, since r ≤ n − 1, in contrast with S. Using X =

1nµ
t + Y H t, we can see that these constructions are related to X̄ and S through

X̄ = µ+HȲ , S = HTH t.

Recall that SS+ = ΣΣ+ almost surely, from Equation (3.2). Since S has rank

r < p, there must be a p × r semi-orthogonal matrix O1 such that Ot
1O1 = Ir,

O1O
t
1 = ΣΣ+ almost surely and S = O1LO

t
1 for L = diag(λ1(S), ..., λr(S)). The

r × r matrix U = H tO1 is easily seen to be orthogonal, and so by T = H tSH =
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H tO1LO1H
t = ULU t, we see that T and S must share the same r non-zero

eigenvalues, i.e. λi(S) = λi(T ).

These constructions and facts form the basis of our risk estimation procedures

and the notation will be repeatedly used in the following subsections.

3.5.2 Proofs of Subsection 3.2.2

Proof of Theorem 3. Since T and S share the same non-zero eigenvalues, we can

regard Ψ as a function of T ∼Wr(n− 1,Ω/n) only. Since r ≤ n− 1 and Ω is full

rank, we can apply Lemma 1 and 2 of Chételat and Wells [2014] to H tΣ̂H = UΨU t.

On that result, one can also consult Sheena [1995, Theorem 4.1], and in the singular

case Kubokawa and Srivastava [2008, Proposition 2.1] and Konno [2009, Theorem

2.4]. In any case, we get
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But these are satisfied by Inequalities (3.3). This concludes the proof.
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Proof of Proposition 2. Let us apply the results of Theorem 3. We have ψk = alk,

so
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But this is minimized when a = n
n+r

. In particular, notice that since n ≥ r+1 = 2,
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so Σ̂HF1 dominates S, which dominates n
n−1

S, as desired.

Proof of Proposition 3. Again, let us apply the results of Theorem 3. Here ψk =

n
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[lk + t/tr(S+)], so using that ∂
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Let us now compute the terms in the URE. We find for the first term:
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and by (3.10)
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Thus all the regularity conditions of Theorem 3 are satisfied, and we find
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Thus in this case Σ̂HF2 dominates Σ̂HF1, as desired.

3.5.3 Proofs of Subsection 3.2.3

Proof of Theorem 4. Since T and S share the same non-zero eigenvalues, we can

regard Ψ as a function of T ∼Wr(n− 1,Ω/n) only. Since r ≤ n− 1 and Ω is full

rank we can apply Lemma 2.1 from Dey [1987]. However, the proposition is given

without proof and, more importantly, without the implied regularity conditions

that inevitably come from using Stein’s and Haff’s lemmas. For completeness, we

therefore derive again this result in our context. First, we can write
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By Lemma 3 of Chételat and Wells [2014], this equals
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The result follows from the fact that tr(Ω−2) = tr(H tHΩ−1H tHΩ−1) = tr(Σ−2).
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Since T ∼ Wr(n − 1,Ω/n), by Theorem 2.4.14 (viii) from Kollo and von Rosen

[2006] we have the bound
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hold and we can apply Theorem 4 to conclude that

E
[
‖aS+ − Σ+‖2

F

]
= E[U ]

=
2

n
aE
[
tr2(S+)

]
+

(
a2 − 2

n− r − 3

n
a

)
E
[
tr(S+2)

]
for any a ∈ R. Thus, in particular, the risk of the unbiased estimator n−r−2

n
S

must equal 2(n−r−2)
n2 E[tr2(S+)]− (n−r−2)(n−r−4)

n2 E[tr(S+2)]. When a ≤ n−r−2
n

we can

bound

E
[
‖aS+ − Σ+‖2

F

]
− E

[∥∥∥n− r − 2

n
S+ − Σ+

∥∥∥2

F

]
=

2

n

(
a− n− r − 2

n

)
E
[
tr2(S+)

]
+

(
a2 − 2

n− r − 3

n
a+

(n− r − 2)(n− r − 4)

n2

)
E
[
tr(S+2)

]
=

2

n

(
a− n− r − 2

n

)
E
[
tr2(S+)

]
+

(
a− n− r − 2

n

)(
a− n− r − 4

n

)
E
[
tr(S+2)

]
≤
(
a− n− r − 2

n

)(
a− n− r − 6

n

)
E
[
tr(S+2)

]
,

which shows inequality 3.6. This upper bound has a minimum at a = n−r−4
n

,

which yields

E
[∥∥aS+ − Σ+

∥∥2

F

]
− E

[∥∥∥n− r − 2

n
S+ − Σ+

∥∥∥2

F

]
≤ − 4

n2
E
[
tr(S+2)

]
< 0.

Thus n−r−4
n

S+ dominates n−r−2
n

S+, as desired. Moreover, the URE of S+ is
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2
n
tr2(S+)− n−2r−6

n
tr(S+2) and so

E

[
‖n− r − 2

n
S+ − Σ+‖2

F

]
− E

[∥∥∥S+ − Σ+
∥∥∥2

F

]
= E

[
−2

r + 2

n2
tr2(S+)− (r + 2)(r + 4)

n2
tr(S+2)

]
≤ 0,

so n−r−2
n

S+ dominates S+, as claimed.

Proof of Proposition 5. We have ψk = a[1/lk + ttr−1(S)], so

r∑
k=1

ψ2
k =

(n− r − 4)2

n2

r∑
k=1

[
1

l2k
+

2t

lktr(S)
+

t2

tr(S)

]
=

(n− r − 4)2

n2
tr(S+2) + 2

(n− r − 4)2

n2
t
tr(S+)

tr(S)
+

(n− r − 4)2r

n2
t2

1

tr2(S)

− 2
n− r − 2

n

r∑
k=1

ψk
lk

= −2
(n− r − 2)(n− r − 4)

n2

r∑
k=1

[
1

l2k
+

t

lktr(S)

]
= −2

(n− r − 2)(n− r − 4)

n2
tr(S+2)− 2

(n− r − 2)(n− r − 4)

n2
t
tr(S+)

tr(S)

− 4

n

r∑
k=1

∂ψk
∂lk

= −4
n− r − 4

n2

r∑
k=1

[
− 1

l2k
− t

tr2(S)

]
= 4

n− r − 4

n2
tr(S+2) + 4

(n− r − 4)r

n2
t

1

tr2(S)

− 2

n

r∑
k 6=b

ψk − ψb
lk − lb

= −2
n− r − 4

n2

r∑
k 6=b

l−1
k − l

−1
b

lk − lb

= 2
n− r − 4

n2
tr2(S+)− 2

n− r − 4

n2
tr(S+2).

Summing everything, we get the URE

U = 2
n− r − 4

n2
tr2(S+)− (n− r − 4)(n− r − 2)

n2
tr(S+2)

+ 4
n− r − 4

n2

[
r

1

tr2(S)
− tr(S+)

tr(S)

]
t+

(n− r − 4)2r

n2
t2

1

tr2(S)
.
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Now note, using tr−1(S) ≤ tr(S+)/r2 and tr(S+2) ≤ tr2(S+) that

E

[∣∣∣∣n− r − 2

n

p∑
k=1

ψk
lk

+
2

n

r∑
k=1

∂ψk
∂lk

+
1

n

∑
k 6=b

ψk − ψb
lk − lb

∣∣∣∣
]

=
(n− r − 3)(n− r − 4)

n2
E
[
tr(S+2)

]
+
n− r − 4

n2
E
[
tr2(S+)

]
+

(n− r − 2)(n− r − 4)

n2
tE

[
tr(S+)

tr(S)

]
− 2

(n− r − 4)r

n2
tE

[
1

tr2(S)

]
≤
((n− r − 1)(n− r − 4)

n2
+

(n− r − 2)(n− r − 4)

r2n2
|t|

+ 2
n− r − 4

r3n2
|t|
)

E
[
tr2(S+)

]
<∞,

since E[tr2(S+)] <∞ by equation (3.11). Therefore, we can apply Theorem 4 to

obtain

E

[∥∥∥Σ̂+
t − Σ+

∥∥∥2

F

]
= E[U ]

= 2
n− r − 4

n2
E
[
tr2(S+)

]
− (n− r − 4)(n− r − 2)

n2
E
[
tr(S+2)

]
+ 4

n− r − 4

n2
tE

[
r

1

tr2(S)
− tr(S+)

tr(S)

]
+

(n− r − 4)2r

n2
t2 E

[
1

tr2(S)

]
for all t ∈ R. Using that n − r − 4 > 0 and r2tr−1(S) ≤ tr(S+) again, we can

bound the difference in risk as

E

[∥∥∥Σ̂+
t − Σ+

∥∥∥2

F

]
− E

[∥∥∥Σ̂+
EM1 − Σ+

∥∥∥2

F

]
≤ (n− r − 4)r

n2

[
(n− r − 4)t2 − 4(r − 1)t

]
E

[
1

tr2(S)

]
which proves inequality (3.7). There is a minimum in t since n − r − 4 >

0, which is t = 2 r−1
n−r−4

. In this case the quadratic coefficient and thus the

difference in risk is strictly negative, so the corresponding estimator Σ̂EM2 =

n−r−4
n

[
S+ + 2 r−1

n−r−4
tr−1(S)

]
dominates Σ̂+

EM1, as desired.

60



3.5.4 Proofs of Subsection 3.2.4

Proof of Theorem 5. Since T and S share the same non-zero eigenvalues, we can

regard Ψ as a function of T ∼ Wr(n − 1,Ω/n) only. Moreover, X̄ = µ + HȲ .

Using that O1O
t
1 = HH t almost surely, we find

E

[∥∥∥Σ̂+X̄ − Σ+µ
∥∥∥2

2

]
= E

[∥∥∥O1O
t
1O1ΨOt

1O1O
t
1[µ+HȲ ]−HΩ−1H tµ

∥∥∥2

2

]
= E

[∥∥∥UΨU t[H tµ+ Ȳ ]− Ω−1H tµ
∥∥∥2

2

]
Define G = H tµ+ Ȳ ∼ Nr(H

tµ,Ω/n) and notice it is independent of UΨU t since

X̄ and S are independent. Then

= E

[∥∥∥UΨU tW − Ω−1H tµ
∥∥∥2

2

]
= 2 E

[
(G−H tµ)tΩ−1UΨU tG

]
− 2 E

[
tr
(
Ω−1UΨU tGGt

)]
+ E

[
GtUΨ2U tG

]
− E

[
(G−H tµ)tΩ−2(G+H tµ)

]
.

The first term can be handled as follows. By independence of G and UΨU t, and

Stein’s lemma [Fourdrinier and Strawderman, 2003, Lemma A.1], we get

2 E
[
(G−H tµ)tΩ−1UΨU tG

]
=

2

n
EG

[
(G−H tµ)t

[
Ω

n

]−1

ET

[
UΨU t

]
G

]

=
2

n
EG

[
∇GG

′ET

[
UΨU t

]]
=

2

n
Etr [Ψ]

under the condition

EG

[∣∣∣∇GG
′ET

[
UΨU t

] ∣∣∣] = EG

[∣∣∣ tr(Ψ)
∣∣∣] = E

[∣∣∣∣∣
r∑

k=1

ψk

∣∣∣∣∣
]
<∞.

For the second term, we will make use of the fact that

ET

[
Ω−1UΨU t

]
= ET

[
UΨ∗U t

]
, (3.12)

where Ψ∗ is defined as the statement. This is the result of a non-singular analogue

of Theorem 2.2 from Konno [2009], or alternatively of a matrix analogue of Lemma
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3 from Chételat and Wells [2014]. By appropriate modifications to the latter result

and the underlying Lemma 3 from Chételat and Wells [2012] on which it depends,

it can be seen that sufficient conditions for equation 3.12 to hold are

ET

[∣∣UΨ∗U t
∣∣
ij

]
<∞ ∀1 ≤ i, j ≤ r.

A sufficient condition for this to happen is

max
1≤i,j≤r

ET

[∣∣UΨ∗U t
∣∣
ij

]
≤ E

[
r∑

k=1

∣∣∣ψ∗k∣∣∣
]
<∞.

Then, using the independence of G and T , we can conclude

− 2 E
[
tr
(
Ω−1UΨU tGGt

)]
= −2 tr

(
ET

[
Ω−1UΨU t

]
EG

[
GGt

])
= −2 tr

(
ET

[
UΨ∗U t

]
EG

[
GGt

])
= −2 E

[
GtUΨ∗U tG

]
.

Thus

E

[∥∥∥Σ̂+X̄ − Σ+µ
∥∥∥2

F

]
=

2

n
E[tr(Ψ)]− 2 E

[
GtUΨ∗U tG

]
+ E

[
GtUΨ2U tG

]
− E

[
(G−H tµ)tΩ−2(G+H tµ)

]
.

But U tG = Ot
1H[H tµ + Ȳ ] = Ot

1X̄ and (G − H tµ)tΩ−2(G + H tµ) = (G −

H tµ)tH tΣ+2H(G+H tµ) = (X̄ − µ)tΣ+2(X̄ + µ). Hence

E

[∥∥∥Σ̂+X̄ − Σ+µ
∥∥∥2

2

]
= E

[
2

n
tr Σ̂+ + X̄ tO1(Ψ2 − 2Ψ∗)Ot

1X̄

]
− E

[
(X̄ − µ)tΣ+2(X̄ + µ)

]
.

This proves the result.

Proof of Proposition 6. We have ψk = a/lk, so

ψ∗k =
n− r − 2

n

ψk
lk

+
2

n

∂ψk
∂lk

+
1

n

r∑
b6=k

ψk − ψb
lk − lb

=
n− r − 2

n

1

l2k
a− 2

n

1

l2k
a− 1

n

tr(S+)

lk
a+

1

n

1

l2k
a

=
n− r − 3

n

1

l2k
a− 1

n

tr(S+)

lk
a.
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We can bound

E

[∣∣∣∣∣
r∑

k=1

ψk

∣∣∣∣∣
]

= |a|E
[
tr(S+)

]
≤ |a|E

[
tr2(S+)

] 1
2 ,

E

[
r∑

k=1

∣∣∣ψ∗k∣∣∣
]
≤ n− r − 3

n
|a|E

[
tr(S+2)

]
+

1

n
|a|E

[
tr2(S+)

]
,

so by inequality (3.11) and the fact that n − r − 4 > 0 these two expressions are

finite. Therefore, we can apply the results of Theorem 5 to obtain

E

[∥∥∥aS+X̄ − Σ+µ
∥∥∥2

2

]
=

2

n
aE
[
tr(S+)

]
+ E

[
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(
a

l2k
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n

1

l2k
+

2

n

tr(S+)
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)
a
(
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)
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]

− E

[
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]
=

2
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aE
[
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]
+
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a
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E
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+

2

n
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[
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]
− E

[
(X̄ − µ)tΣ+2(X̄ + µ)

]
for any a ∈ R. Therefore, for a ≤ n−r−2

n
we can bound the difference in risk by

E

[∥∥∥aS+X̄ − Σ+µ
∥∥∥2

2

]
− E

[∥∥∥n− r − 2

n
S+X̄ − Σ+µ

∥∥∥2

2

]
=

2

n

(
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n

)
E
[
tr(S+)

]
+

(
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n
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E
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+

2
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(
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≤
(
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n

)(
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n

)
E
[
X̄ tS+2X̄

]
,

which proves inequality (3.8). The quadratic coefficient is minimized at a = n−r−3
n

,

at which point we have

E

[∥∥∥n− r − 3

n
S+X̄ − Σ+µ

∥∥∥2

2

]
− E

[∥∥∥n− r − 2
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∥∥∥2

2
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≤ − 1
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E
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Thus n−r−3
n

S+X̄ dominates n−r−2
n

S+X̄, as desired. Moreover,

E
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‖n− r − 2
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2
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− E
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E
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]
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so n−r−2
n

S+ dominates S+, as claimed.

Proof of Proposition 7. We will apply 4, and we have here ψk = n−r−3
n

[1/lk +

ttr−1(S)] for 1 ≤ k ≤ r, so

n− r − 2

n

ψk
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=
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=
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Therefore,
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,
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so by tr−1 ≤ tr(S+)/r2, inequality (3.11) and the fact that n−r−4 > 0 these two

expressions are finite. Therefore, we can apply the results of Theorem 5 to obtain

E

[∥∥∥η̂t − η∥∥∥2
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[
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]
+ 4

n− r − 3

n2
E

[
X̄ tX̄

tr2(S)

])
t

+
(n− r − 3)2

n2
t2 E

[
X̄ tX̄

tr2(S)
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for any t ∈ R. Therefore, the difference in risk can be written

E
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+ 4
n− r − 3

n2
E

[
X̄ tX̄

tr2(S)

])
t+

(n− r − 3)2

n2
t2 E

[
X̄ tX̄

tr2(S)

]
.

Note that tr(X̄X̄ t) = tr(SS+X̄X̄ t) ≤ tr
1
2 (S2)tr

1
2 ([S+X̄X̄ t]2) ≤ tr(S)tr(S+X̄X̄ t),

so we can bound

≤ 2
(n− r − 3)r

n2
tE
[
tr−1(S)

]
+ 2
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n2
tE

[
X̄ tX̄

tr2(S)

]
+
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n2
t2 E

[
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]
.

Next, write the reduced singular value decomposition of X as X =
√
nV1L

1/2O1

with V1 n× r semi-orthogonal, V t
1V1 = Ir. Then

X̄ tX̄ = tr
(
X t1n1tn

n2
X
)

= tr
(
LV t

1

1n1tn
n

V1

)
≤ tr(L)σmax

(
V t

1

1n1tn
n

V1

)
≤ tr(S)σmax

(
1n1tn
n

)
= tr(S).

Therefore, we can bound by

≤ (n− r − 3)

n2

[
2(r + 1)t+ (n− r − 3)t2

]
E

[
1

tr(S)

]
,

which proves (3.9). Since n− r− 3 > 0, the quadratic coefficient has a minimum,

at t = − r+1
n−r−3

. In this case we have

E

[∥∥∥n− r − 3

n

[
S+−(r + 1)tr−1(S)

n− r − 3

]
X̄ − η

∥∥∥2

2

]
− E

[∥∥∥n− r − 3

n
S+X̄ − η

∥∥∥2

2

]
≤ −(r + 1)2

n2
E

[
1

tr(S)

]
< 0.

Thus η̂TK2 = n−r−3
n

[
S+ − r+1

n−r−3
tr−1(S)

]
dominates η̂TK1, as desired.
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CHAPTER 4

NOISE ESTIMATION IN THE SPIKED COVARIANCE MODEL

4.1 Introduction

The estimation of covariance matrices in a high dimensional framework has seen a

surge of interest in the past years. The natural estimator, the sample covariance

matrix, is well known to be inadequate in this context. The problem has been well

studied under many sparsity scenarios: for example, zeros in the coordinates of

the matrix [Bickel and Levina, 2008b, El Karoui, 2008b, Rothman et al., 2009, Cai

and Liu, 2011] or its inverse [Meinshausen and Bühlmann, 2006, Friedman et al.,

2008, Cai et al., 2011, Ravikumar et al., 2011, Rothman et al., 2008], bandedness

[Bickel and Levina, 2008a, Bien et al., 2014] and many others. This paper will

focus on the spiked model, first introducted by Johnstone [2001].

In the spiked model, the p × p covariance matrix Σ has distinct eigenvalues

γ1 + σ2 > ... > γρ + σ2, and a smallest eigenvalue σ2 of multiplicity p− ρ. It often

provides good approximations in low and high dimensional settings, with small ρ

being seen as a form of low rank sparsity in the data. It is also of substantial

theoretical interest, being one of the few non-trivial settings in which random

matrix theory has been extensively studied.

A related problem is principal components analysis. In PCA, one estimates

eigenvectors associated with large eigenvalues of Σ, and perform dimension reduc-

tion using a truncated spectral decomposition. A traditional problem with the

technique is that the number of eigenvectors to retain is not clear. However, if the

true covariance matrix Σ is spiked, it is natural to associate its spiked rank ρ with

the ideal number of eigenvectors to select, recasting the selection of the number of

components as a rigorous statistical estimation problem.
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Successful high-dimensional PCA usually requires good estimation of σ2 (see

e.g. Johnstone and Lu [2009]), a problem we will refer to as noise estimation.

Although distinct from estimation of the covariance matrix itself, there is a context

in which these two problems, estimation of Σ and σ2, are analogous.

This context is as follows. Asymptotics are high-dimensional in the sense that

p tends to infinity with the sample size n; for mathematical convenience we focus

on the regime where the ratio p/n tends to a strictly positive constant as n→∞.

The noise estimation problem is to estimate σ2 under, say, absolute error loss

L(σ̂2, σ2) = |σ̂2 − σ2|, while the covariance problem is to estimate the spiked Σ

under the Frobenius loss LF (Σ̂,Σ) = ‖Σ̂ − Σ‖2
F/p using a spiked estimator. This

normalization is natural in this setting, since under normality the risk E[LF (S,Σ)]

of the sample covariance matrix S tends to a strictly positive constant.

Then, in essence, all that really matters in the covariance estimation problem is

estimation of the noise level. Indeed, consider two spiked estimators Σ̂i = Γ̂i+ σ̂2I,

i = 1, 2 with asymptotically finite spiked parts Γ̂i, which we take to mean that

their ranks ρ̂i = rk(Γ̂i) and largest eigenvalues λ1(Γ̂i) are asymptotically finite.

Then

‖Σ̂1 − Σ̂2‖2
F

p
≤ ρ̂1 + ρ̂2

p

[
λ1(Γ̂1) + λ1(Γ̂2)

]2

−→
n→∞

0 a.s. (4.1)

This means we can interpret the two problems as asymptotically analogous in

practice. This reasoning is short of being a formal result of equivalence, but will

serve as a guiding principle.

We propose a solution to these parallel problems as follows. We first restrict

ourselves to orthogonally invariant estimators of the spiked form; this large class

can be thought as performing spiked corrections of the eigenvalues of the sample

covariance matrix. For this class, there exists an unbiased risk estimator (URE)

in the closely related invariant loss LH(Σ̂,Σ) = tr
[
(Σ̂Σ−1 − I)2

]
/p, which we will
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refer to as the Haff loss. We propose to find an optimal choice of noise estimator

by minimizing this URE using calculus of variations. This approach is close in

spirit to the work of Stein [1975, 1986], where he considers a loss based on a

normal log-likelihood, although it is not specifically high-dimensional. It is also

close to the Bayesian approach of Haff [1991]. More generally, the idea to correct

the eigenvalues of the sample covariance matrix is also found in previous work by

Ledoit and Wolf [2004], El Karoui [2008a], Ledoit and Wolf [2012] and Donoho

et al. [2014].

The URE of the covariance estimator depends on first and second derivatives

of the noise estimator, so directly minimizing the risk would yield an estimator

that depends on the truth. It however happily turns out that the “dominant” part

of this URE does not depend on the derivatives. It is therefore possible to obtain,

in closed form, an estimator optimal for the dominant part of the URE.

We prove that our proposed estimator is well-behaved; for example, it is strongly

consistent for σ2, even if the chosen estimators of γk and ρ are not. It is moreover

essentially asymptotically normal of rate n, and we prove that this is the optimal

minimax rate for the noise estimation problem. To illustrate concretely why this

approach is interesting, we use it to construct a robust spiked covariance estimator.

It seems to never perform worse than S in general, even in worst-case scenarios;

while it performs remarkably well in spiked settings, and we show its eigenvalues

are consistent.

We reiterate that in contrast with much work in high dimensional covariance

estimation, we do not work with a sparsity assumption that many components

of Σ or Σ−1 are zero. However, one can perfectly think of a spiked structure

as a form of sparsity in itself, with ρ as sparsity parameter, which fits within

the generally accepted principle that improved estimation in high dimensions is
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difficult unless some form of sparsity holds with the truth. The fact that we can

construct an estimator that can exploit that structure when present, yet be robust

to the assumption is encouraging.

The chapter is divided as follows. The regularity conditions, construction of

the unbiased risk estimator and construction of the noise estimator is in Section

4.2. Investigations of properties of the noise estimator is done in Section 4.3. The

example construction and simulations are in Section 4.4. After some comments in

Section 4.5, we cover the proofs of the claims in Section 4.6.

Notation The following notation will be used throughout. We write Hp(R)

for the simplex
{
x ∈ Rp

∣∣x1 > ... > xp > 0
}

. The real p-dimensional orthogonal

group is denoted Op(R). The Frobenius norm of a matrix A is the sum of its

squared eigenvalues, denoted ‖A‖F = tr(A2)
1/2

, while the spectral norm is its

largest singular value, denoted ‖A‖2 = σmax(A). The notation dTV(µ1, µ2) stands

for the total variation distance between two probability measures µ1, µ2 on an

underlying measurable space (Ω,B), which equals supA∈B |µ1(A)− µ2(A)|. The p-

dimensional Wishart distribution with n degrees of freedom and covariance matrix

Σ is written Wp(n,Σ).

4.2 Construction

We work in the following setting. Assume the data is an i.i.d. sample X1, ..., Xn ∼

Np(0,Σp), with n ≥ p and Σp > 0. For such a sample, one can stack the data

into a matrix X = (X ′1, ..., X
′
n) and let S = X ′X/n = OLO′, L = diag(l1, ..., lp)

be the decreasing spectral decomposition of the sample covariance matrix, with

l1 > ... > lp > 0 its ordered eigenvalues. The random matrix S, which is distributed

as a scaled Wishart n−1Wp(n,Σp), serves as a naive estimator of Σ upon which
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we wish to improve. The normality and restriction to n ≥ p are necessary for

the construction of the unbiased risk estimator that will follow; extensions will be

discussed in Section 4.5.

As mentioned in the introduction, to adequately discuss high-dimensional be-

havior, we will also let this setting grow in complexity. We focus our attention on

full-rank linear regimes, where a sequence of positive-definite covariance matrices

of growing dimension Σ1,Σ2,Σ3, ... is fixed; and p = pn, as a function of the sample

size, grows in the sense that pn/n→ c for some c ∈ (0, 1). It will then be assumed

that for every (n, pn), some i.i.d. sample X1, ..., Xn ∼ Npn(0,Σpn) will be available

and a corresponding sample covariance matrix S constructed.

For such settings, the sequence {Σp} is completely arbitrary beyond the re-

quirement that each member be positive-definite. Of particular interest to us is

the case where the covariance matrices form a spiked sequence, which we define as

follows.

Definition 1. A sequence of covariance matrices {Σp} is spiked if there exists a

collection γ1 > ... > γρ > 0 of size ρ ≥ 0 and a σ2 > 0 such that for any p,

Σp = diag(γ, 0, ..., 0) + σ2Ip, where γ = (γ1, ..., γρ).

When discussing asymptotics, we will sometimes need that the spiked eigenval-

ues γ1, ..., γρ be sufficiently large with respect to the noise for efficient estimation

to be possible. In practice, this will mean requiring that γρ/σ
2 >
√
c, for c the

asymptotic pn/n ratio. The importance of this supercriticality condition for spiked

eigenvalue estimation was first remarked by Baik et al. [2005] before being extended

to the setting we are considering by Baik and Silverstein [2006], Paul [2007] and

Nadler [2008]. They showed that for 1 ≤ k ≤ ρ, the eigenvalues of the sample
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covariance matrix satisfy

lk
a.s.−−−→
n→∞


(

1 + cσ2 γk+σ2

γk

)
[γk + σ2] if γk >

√
cσ2

(1 +
√
c)2σ2 if γk ≤

√
cσ2

, (4.2)

with the lρ+1, ..., lp asymptotically distributed like a scaled Marchenko-Pastur

σ2MP(c) distribution. Therefore, the asymptotic spectrum of S do not contain

any information about those γk below the critical threshold
√
cσ2. But since their

estimation is mostly tangential to our goals, supercriticality will not always be

necessary, and we will make it clear when it will be.

Let us now turn our attention to the task at hand. The parallel problems we

wish to solve are

(i) the estimation of σ2 under the absolute error loss L(σ̂2, σ2) = |σ̂2 − σ2|;

(ii) the estimation of Σ under the Frobenius loss LF (Σ̂,Σ) = ‖Σ̂− Σ‖2
F/p using

spiked estimators.

Under spikedness, these two problems are parallel to each other in the sense of

(4.1). The approach we take begins with aspect (ii) - we seek a good covariance

estimator Σ̂ in spiked form Γ̂ + σ̂2I, with ρ̂ = rk(Γ̂) small with respect to p, which

we interpret as ρ̂ a.s. tending to a finite constant. By appealing again to (4.1), it

is clear that for the Frobenius loss, the spiked part Γ̂ is asymptotically dominated

by noise estimation. We therefore might as well choose Γ̂ based on convenience:

for example, we can pick one with consistent eigenvalue estimators, or some other

property. A specific choice will be considered in Section 4.4. Alternatively, the

recent results of Donoho et al. [2014] could provide an attractive choice based on

consideration of single eigenvalue corrections, and we comment on this further in

Section 4.5. Once a choice of Γ̂ is made, we can then look for an optimal σ̂2, which

would simultaneously solve aspects ((i)) and ((ii)) of the problem, while being

asymptotically independent of our choice of Γ̂.
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Being quite free in selecting the spiked part, let us focus on mathematically

convenient possibilities. A first restriction is to take Γ̂ orthogonally invariant – that

is, of the form Γ̂ = Odiag(γ̂, 0)O′ for some estimators γ̂1 > ... > γ̂ρ̂ > 0 and O ∈

Op(R) the matrix of ordered eigenvectors of S. With this choice, our estimators Σ̂

can be thought as performing spiked corrections on the sample covariance matrix

S.

A second restriction will be necessary. At this point in our discussion the

spiked, rank and noise estimators γ̂, ρ̂, σ̂2 have been essentially arbitrary. This is

too general for the construction of the URE that will follow, so we must to restrict

ourselves to sufficiently regular estimators. The regularity conditions come in two

flavors, weak and strong, and are statements of integrability; these conditions

simply guarantee that expected values appearing in the construction of the URE

are convergent. Combining the invariance and regularity restrictions, we define

the following.

Definition 2. A spiked eigenvalue estimator Γ̂ satisfies the weak regularity condi-

tions if it is of the form Γ̂ = Odiag(γ̂)O′ for S = OLO′ and satisfies the following.

Let ρ̂ = rk(Γ̂). For each 1 ≤ k ≤ p, γ̂k are a.s. C2(Hp(R);R) functions of l1, ..., lp

with boundary cases 1[ρ̂ < k] γ̂k = 0 and 1[ρ̂ = p] γ̂k = 1[ρ̂ = p] lk for which both

expectations

E

[∣∣∣∣ γ̂klk
∣∣∣∣9(1+ε)

]
and E

[∣∣∣∣∂γ̂k∂lk

∣∣∣∣4.5
]

are finite for some ε > 0. Similarly, a noise estimator σ̂2 satisfies the weak regularity

conditions for a weak spiked eigenvalue estimator Γ̂ if it is a C2(Hp(R);R) function

based on l1, ..., lp such that for each 1 ≤ k ≤ p,

E

[∣∣∣∣ σ̂2

lk

∣∣∣∣9(1+ε)
]
, E

[∣∣∣∣∂σ̂2

∂lk

∣∣∣∣4.5
]

and E

[ ∣∣γ̂k + σ̂2
∣∣ ∣∣∣∣∂2γ̂k
∂l2k

+
∂2σ̂2

∂l2k

∣∣∣∣
]

are all finite for some ε > 0.
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The previous conditions assert integrability of quantities associated with the

estimators for a given p, and are dimension dependent. In contrast, the following

conditions assert similar integrability as p grows. To make the dependence explicit,

we superscript the dimension.

Definition 3. A spiked eigenvalue estimator Γ̂p satisfies the strong regularity

conditions if it satisfies the weak regularity conditions for each p > 0, and moreover

E

[
sup
p>0

max
1≤k≤p

∣∣∣∣ γ̂pklpk
∣∣∣∣9(1+ε)

]
, E

[
sup
p>0

max
1≤k≤p

∣∣∣∣∂γ̂pk∂lpk

∣∣∣∣4.5
]
, E

[
sup
p>0

max
1≤k≤p

∣∣∣∣∣γ̂pk ∂2γ̂pk
∂lpk

2

∣∣∣∣∣
]
,

E

[
sup
p>0

max
1≤k 6=b≤ρ̂

∣∣∣∣ γ̂pk − γ̂pblpk − l
p
b

∣∣∣∣2
]
, E

sup
p>0

max
1≤k 6=b
6=e≤ρ̂

∣∣∣∣ lpk
lpk − l

p
b

∣∣∣∣2 ∣∣∣∣ γ̂pk − γ̂pelpk − l
p
e
− γ̂pr − γ̂pe

lpb − l
p
e

∣∣∣∣2


and E

[
sup
p>0

max
1≤k 6=b≤ρ̂<e≤p

∣∣∣∣ lpk
lpk − l

p
b

∣∣∣∣2 ∣∣∣∣ γ̂pk
lpk − l

p
e
− γ̂pb
lpb − l

p
e

∣∣∣∣2
]

are all finite for some ε > 0. Similarly, a noise estimator σ̂2 satisfies the strong

regularity conditions for a strong spiked eigenvalue estimator Γ̂ if it satisfies the

weak, and the following holds:

E

[
sup
p>0

max
0≤k≤p

∣∣∣∣ σ̂2p

lpk

∣∣∣∣9(1+ε)
]
, E

[
sup
p>0

max
0≤k≤p

∣∣∣∣∂σ̂2p

∂lpk

∣∣∣∣4.5
]

and E

[
sup
p>0

max
1≤k≤p

∣∣γ̂pk + σ̂2p
∣∣ ∣∣∣∣∂2γ̂pk
∂lp2k

+
∂2σ̂2p

∂lp2k

∣∣∣∣
]

are all finite for some ε > 0.

Careful inspection of the proofs reveal that regularity conditions in this spirit

are inevitable; however, we emphasize that by no means we believe those precise

conditions to be necessary, merely sufficient. In any case, with these conditions

in hand we can formally define the classes of estimators in which we look for an

optimal σ̂2.

Definition 4. For Γ̂ a weak (strong) spiked eigenvalue estimator, the associated
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weak (strong) class of spiked corrections to the sample covariance matrix is

Vp(Γ̂)=

{
Γ̂+σ̂2Ip

∣∣∣∣ σ̂2 is Γ̂-weak

}
and V̄p(Γ̂)=

{
Γ̂+σ̂2Ip

∣∣∣∣ σ̂2 is Γ̂-strong

}
.

We would like to find an optimal estimator over these two classes. Recall we

are evaluating performance in Frobenius loss LF (Σ̂,Σ) = ‖Σ̂ − Σ‖2
F/p. Although

natural and common within the literature, we find it more convenient to move to

the closely related “invariant” loss

LH(Σ̂,Σ) =
tr
[
(Σ̂Σ−1 − I)2

]
p

.

This loss was, up to the high-dimensional p−1 normalization, mentioned by James

and Stein [1961] early but first thoroughly investigated by Haff [1977], and we

will refer to it as Haff’s loss. A modification of the argument behind (4.1) shows

that estimation of a spiked covariance matrix under this loss can also be thought

as a noise estimation problem, just like for the Frobenius case. In this sense the

problem stays similar.

A great advantage of the Haff loss is that it is one of the few for which an

unbiased estimator of the risk is known, at least in the orthogonally invariant case.

There is a rich body of literature behind that construction [Haff, 1977, 1979a,

1980], in different shapes and under different conditions. A remarkable feature is

that if we collect and split the terms of the URE between the terms of leading

and smaller order, the dominant part does not depend on the derivatives of the

eigenvalue estimators. More precisely, we have this construction.

Theorem 6. Let n ≥ p+ 1. Then for any weak spiked estimator Σ̂ ∈ Vp(Γ̂) whose

spiked rank ρ̂ is independent of S, we find its Haff risk to satisfy E
[
LH(Σ̂,Σ)

]
=

E
[
F +G

]
with E

[
|F +G|

]
<∞, where

F = F
(
l, ρ̂, γ̂, σ̂2

)
and G = G

(
l, ρ̂, γ̂, σ̂2,

∂γ̂

∂l
,
∂σ̂2

∂l
,
∂2γ̂

∂l2
,
∂2σ̂2

∂l2

)
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are functionals that do not depend on Σ. In addition, if the estimator is strong in

the sense that Σ̂ ∈ V̄p(Γ̂), then asymptotically F is the dominant term and G the

dominated term, respectively, in the sense that

lim
n→∞

E
[
|F |
]
<∞ and lim

n→∞
pE
[
|G|
]
<∞.

Explicit expressions for F and G are given in (4.12)–(4.13).

In practice, we found the decomposition most useful for a deterministic spiked

rank ρ̂ = r, in which case we might consider estimates of the form Γ̂r + σ2
rI; this

is the approach we take in Section 4.4 when constructing a specific estimator. But

it is reasonable to think of a context in which some estimate of the true rank ρ

based on prior independent data is available, in which case the construction applies

equally.

Now fix a weak spiked eigenvalue estimator Γ̂, and consider the task of finding

a σ̂2 that minimizes the Haff risk: minimizing the construction from Theorem

6 makes the task plausible. Since G depends on the derivatives of σ̂2, formally

proceeding with calculus of variations would yield a minimizer that depends on

the unknown density of the eigenvalues which is, of course, unavailable. However

since the dominant part only depends on σ̂2 itself, one can obtain a minimizer of

E[F ] whose expression is independent of Σ.

Proposition 8. Let n ≥ p. If Σ̂ 7→ E[F ] has a minimum over Vp(Γ̂), it is given

by Σ̃ = Γ̂ + σ̃2I, where σ̃2 = A/B where

A =
n− p− 1

np

p∑
c=1

1

lc
− (n− p− 1)(n− p− 2)

n2p

ρ̂∑
k=1

γ̂k
l2k

+
n− p− 1

n2p

ρ̂∑
k=1

p∑
c=1

γ̂k
lk

1

lc
− 2

n− p− 1

n2p

ρ̂∑
k=1

p∑
c=ρ̂+1

1

lc

γ̂k
lk − lc

+
3

n2p

ρ̂∑
k 6=b

p∑
c=ρ̂+1

1

lk − lc
γ̂b

lb − lc
− 3

n2p

ρ̂∑
k=1

p∑
c 6=d=ρ̂+1

1

lk − lc
γ̂k

lk − ld
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− 3

n2p

ρ̂∑
k 6=b

p∑
c=ρ̂+1

γ̂k − γ̂b
lk − lb

1

lk − lc
,

B =
(n− p− 1)(n− p− 2)

n2p

p∑
c=1

1

l2c
− n− p− 1

n2p

p∑
c=1

1

lc

p∑
c=1

1

lc
.

In addition, if n ≥ 2p+ 2, a minimum must exist (and therefore at Σ̃).

The matter of whether a minimizer should exist at all in a given context is

delicate. A proof of existence for some large class of covariance matrices would

be quite interesting. In the spiked case, the remarks following Lemma 4 hint at a

plausible approach.

4.3 Properties

The previous chapter was concerned with the construction of a good estimator

σ̃2 that satisfies some optimality property, namely minimizing the dominant part

of the Haff URE over Vp(Γ̂). Let us now turn our attention to its performance

in estimating σ2 under spikedness. We will make repeated use of the following

lemma, which extends the results of Nadler [2008].

Lemma 4. Suppose the underlying sequence of covariance matrices {Σp} is spiked

and pn/n→ c ∈ (0, 1).

(i) If γρ/σ
2 >
√
c, then for any 1 ≤ k ≤ ρ,

1

p− ρ

p∑
d=ρ+1

ld
lk − ld

a.s.−−−→
n→∞

σ2

γk
;

(ii) For any m > 1,

1

p− ρ

p∑
d=ρ+1

1

lmd

a.s.−−−→
n→∞

1

(1− c)2m−1

1

σ2m
.
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The supercriticality assumption γρ/σ
2 >
√
c in (i) is necessary for the expres-

sion to converge. Two remarks are in order. First, as a consequence of this result,

it is easy to show that

1

p− ρ

p∑
d=ρ+1

1

lk − ld
a.s.−−−→
n→∞

1

γk + cσ2
,

1

p− ρ

p∑
d=ρ+1

1

ld(lk − ld)
a.s.−−−→
n→∞

1

1− c
γk

σ2(γk + cσ2)2
,

a result we will use later in Section 4.4. Second, in connection with the proof of

Proposition 8, we see that when the underlying sequence of covariance matrices

{Σp} is spiked

1

n2

(n− p− 2)

p∑
d=1

1

l2d
−

(
p∑
d=1

1

ld

)2
 a.s.−−−→

n→∞

c

(1− c)σ4
> 0,

by Lemma 4. From (4.15), one would therefore expect the estimator also to be a

minimizer under spikedness. Although we haven’t been successful in formalizing

this intuition, this could be a plausible approach towards proving existence of

minimizers for spiked covariance matrices.

Let us now turn our attention to the behavior of σ̃2. The following theorem

summarizes important aspects of its asymptotic behavior.

Theorem 7. Suppose the underlying sequence of covariance matrices {Σp} is

spiked and pn/n → c ∈ (0, 1) with γρ/σ
2 >

√
c. For a given weak Γ̂, let σ̃2 be

the associated minimizer of Proposition 8. Then

(i) If ρ̂ a.s. converges to a finite constant, then σ̃2 a.s.−−−→
n→∞

σ2.

(ii) If ρ̂ is strongly consistent and for all 1 ≤ k ≤ ρ, γ̂k a.s. converges to some

finite constant, then we have bounds X−n ≤ n(σ̃2 − σ2) ≤ X+
n with

X−n
D−−−→

n→∞
N

(
µ−,

2c(1 + c)2

(1− c)4
σ4

)
, X+

n
D−−−→

n→∞
N

(
µ+,

2c(1 + c)2

(1− c)4
σ4

)
,

where µ− and µ+ have explicit expressions given in (4.27)–(4.28).
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An immediate consequence of this result is that σ̃2 estimates σ2 with rate n in

our absolute error loss L(σ̂2, σ2) = |σ̂2 − σ2|. We should mention that, given good

estimators of ρ and γk, one could perhaps build approximate high-dimensional

confidence intervals for σ2 with part (ii) of Theorem 7. We will not investigate this

further, but rather turn our attention to minimax rates for the noise estimation

problem. For any spiked sequence {Σp}, define a δ-ball of order r as

Br(Σ, δ) =

{
{Σ′p} spiked

∣∣∣∣ ∣∣λi(Σp)− λi(Σ′p)
∣∣ < δ

λi(Σp)

nr
∀p > 0

}
.

We start with a lemma. Recall that dTV stands for the total variation distance

between two probability measures.

Lemma 5. Let {Σp} be a spiked sequence of covariance matrices and M > 0.

Then, as pn/n→ c ∈ (0, 1),

lim
n→∞

sup
Σ′∈Br(Σ,2M)

dTV

(
N(0,Σp)

n,N(0,Σ′p)
n

)
≤

√
1− exp

(
−cM

2

2

)
when r = 1, while this limit is zero when r > 1.

Using this result, we now proceed to show a lower bound on the local minimax

rate of convergence for estimating σ2, using the classic two-point test argument of

Le Cam [1973].

Theorem 8. Say the underlying sequence of covariance matrices {Σp} is spiked

and pn/n→ c ∈ (0, 1). Let ε > 0 and define

Mε =

√
−2

c
log
(

1− (1− 4ε)2
)
.

Then no estimator can estimate σ2 with speed σ2Mε/n over the shrinking neigh-

borhoods B(Σp, 2Mε), in the sense that

lim inf
n→∞

inf
σ̂2

sup
Σ′∈B1(Σ,2Mε)

PΣ′p

[
|σ̂2 − σ2′| > σ2Mε

n

]
≥ ε.
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Thus, the minimax rate of estimation of σ2 over n-shrinking neighborhoods

cannot be faster than OP (1/n) (so in particular over, say, fixed neighborhoods.)

Using Theorem 7, we can show our noise estimator σ̃2 essentially achieves this rate,

in the sense that it is oP (1/nr) over nr-shrinking neighborhoods for any r > 1.

Proposition 9. Let the underlying sequence of covariance matrices {Σp} be spiked

and pn/n→ c ∈ (0, 1) with γρ/σ
2 >
√
c. For a given weak Γ̂, let σ̃2 be the associated

extremizer of proposition 8. If ρ̂ is strongly consistent and for all 1 ≤ k ≤ ρ, γ̂k

a.s. converges to some finite constant, then for any r > 1 and M > 0, σ̃2 estimates

σ2 with rate at least σ2M/nr over the shrinking neighborhoods Br(Σ, 2M), in the

sense that

lim
n→∞

sup
Σ′∈Br(Σ,2M)

PΣ′p

[
|σ̃2 − σ2′| > σ2M

nr

]
= 0.

Thus we can conclude that, despite choosing our noise estimator to minimize

a covariance problem, good behavior has been transferred to the noise estimation

problem, which is not surprising in light of (4.1). In particular, we see that by

Theorem 7 (i), strong consistency of the noise estimator follows even when the

eigenvalues of Γ̂ itself are not consistent – a robustness which is certainly welcome.

4.4 Application

Having built and analyzed our noise estimator, we now proceed to illustrate our

construction by building a specific covariance estimator. We hope this concrete

example will help clarify the approach taken and its behavior in the covariance

problem.
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4.4.1 Example

We build a spiked covariance estimator as follows. The first step is to specify

an asymptotically negligible spiked component Γ̂. For r some fixed rank strictly

smaller than p, we take Γ̃r = Odiag(γ̃)O′ with

γ̃k =

p∑
c=r+1

lc

(
p∑

c=r+1

lc
lk − lc

)−1

for 1 ≤ k ≤ r, and 0 otherwise. These estimators are strongly consistent when

r = ρ, as we will soon show using Lemma 4; this is the main motivation for our

choice. Note that this choice does not quite fit within the framework considered

by Donoho et al. [2014], since it is not a function of lk only. With this choice of

spiked part, let σ̃2
r be the minimizer of Proposition 8 associated with our spiked

component. We then have a family r → Σ̃r = Γ̃r + σ̃2
rI for all 0≤r<p, which we

naturally extend to the r=p case through Σ̃p = Γ̃p = S.

Next, we select the rank r based on the data. Motivated again by the results

of Lemma 4, we define the rank estimator

ρ̃ = arg min
0≤r≤p

{
1[r < p]

lr+1

(1 +
√
p/n)2

p− r

p∑
c=r+1

lc ≥ 1,
∣∣Fr +Gr

∣∣ ≤ p+ 1

n

}
,

with Fr, Gr the F , G of Theorem 6 applied to Γ̃r and σ̃2
r . This choice aims

to select the smallest rank that lies both above the critical threshold and yields

improvement in Haff risk over S. Since r = p satisfies both criteria, the set is never

empty and in the worst case we simply do not correct the eigenvalues of S. This

will happen when there is strong departure from spikedness, which means that the

construction is in some sense robust to this situation: it exploits it when present

and reverts to S when not.

Finally, we simply set Σ̃ = Σ̃ρ̃ as our estimator. In practice, the computation

is straightforward, since everything is in closed-form, with polynomial complexity.
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An implementation in R is available at http://stat.cornell.edu/~chetelat.

At the same time, as previously hinted, the estimator has strongly consistent

eigenvalues under spikedness. The proof is a simple application of results from

Section 4.3.

Proposition 10. If the underlying sequence of covariance matrices {Σp} is spiked

and pn/n → c ∈ (0, 1) with γρ/σ
2 >
√
c, then ρ̃, σ̃2 and γ̃k for 1 ≤ k ≤ ρ are all

strongly consistent.

This stands, of course, in contrast with the eigenvalues of the sample covariance

matrix S, which converge to the wrong values (4.2) in spiked settings.

4.4.2 Numerical comparisons

We display the performance of the constructed estimator through simulations. The

setting is as follows. We fix the dimension to sample ratio c at 0.5 and vary n, p.

For each n, p, we simulate data from a normal N(0,Σ) and approximate its Haff

and Frobenius risk using a law of large numbers approximation with 100 iterations.

Four true covariance matrices Σ are considered. The first is a spiked setting Σ =

diag(5, 4, 3, 2, 1, ..., 1), while the other three correspond to autoregressive settings

Σij = κ|i−j| for κ = 0.05, 0.5 and 0.95. The case κ = 0.95 is particularly difficult

for the constructed estimator as it is very far from spikedness.

The risks are computed for S, our estimator Σ̃ and three benchmark competi-

tors. The first is Stein’s isotonized covariance estimator, with well regarded over-

all performance. We follow the implementation of Lin and Perlman [1985]. The

second is the popular linear shrinkage covariance estimator of Ledoit and Wolf

[2004], specifically designed for high-dimensional settings. The third is a naive

spiked estimator, given by the same estimators of spikes as Σ̃, the noise estimator
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Figure 4.1: Spiked covariance setting.
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σ̂2 = 1
n−r

p∑
c=ρ̂+1

lc and ρ̂ chosen by cross-validation on the Frobenius loss. We plot

the risks and the gain in risk with respect to S, defined as Risk(S)/Risk(Σ̂) − 1.

The computations were performed using the R package, and the results are given

as Figures 4.1-4.4. Blue corresponds to S, red to Σ̃, green to Stein’s isotonized

estimator, yellow to the Ledoit-Wolf estimator and purple to the naive spiked

estimator.

We can see from the results of the simulations that the expected good perfor-

mance in Haff loss of our estimator seems to translate well into the more standard

Frobenius loss. The estimator performs particularly well in supercritical spiked set-
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Figure 4.2: AR(0.05) setting. The sample covariance matrix is omitted.
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tings, with a 23-times improvement over S in Frobenius risk for p = 500, n = 1000

in our setting. In particular, in this setting it outperforms the naive spiked esti-

mator. In addition, the estimator is quite robust to deviations from spikedness,

as even in worst-case scenarios such as an AR(0.95) setting, we do not do worse

than S in Haff or Frobenius risk. There is therefore little to lose by using it rather

than the sample covariance matrix, and as far as such a thing can exist, it could

be advocated as some kind of generic high-dimensional covariance estimator.
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Figure 4.3: AR(0.50) setting.
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4.5 Comments

In this work we considered two parallel high-dimensional problems, the estimation

of noise in principal components analysis under absolute error loss and the estima-

tion of a spiked covariance matrix under Frobenius loss. We proposed a variational

solution, by restricting ourselves to regular estimators and minimizing an unbiased

covariance risk estimator in the invariant analogue of the loss. The resulting noise

estimator was shown to be strongly consistent and almost asymptotically normal

and minimax for the noise problem, and we used the construction to build a ro-

bust spiked covariance estimator with good simulation performance. Beyond this,
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Figure 4.4: AR(0.95) setting.
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however, there are several aspects of our solution that warrant further discussion.

First, we assumed throughout this work that the underlying data was normal,

and the construction and proofs depend quite heavily on it. This could be a point

of discord between practice and the theory outlined here. However, we feel that,

unlike many statistical problems where normality is convenient but unrealistic, it

is quite natural here. Indeed, the construction and its properties only depends

on the data through the eigenstructure of S, unlike other estimators such as the

one of Ledoit and Wolf [2004]. The sample covariance matrix being an empirical

average, one can expect it to behave asymptotically like a Wishart, and in that

sense the assumption does not appear particularly restrictive.
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Another assumption running through the work is that although we are in high-

dimensions, we keep p ≤ n. The extension to a p > n setting is attractive,

as in addition to the properties described above, a corresponding robust spiked

covariance estimator would be automatically invertible, in contrast with S. The

single obstacle appears to be the absence of an appropriate unbiased risk estimator

for the Haff loss when p > n. This is therefore more an obstruction by knowledge

than mathematics, as if such a construction would be found, the method outlined

in this work could easily be applied.

As we considered minimization of a covariance loss, it might be surprising that

we did not present any results on the behavior of the estimator in the covariance

problem. We strongly believe that the Haff risk must tend to zero under spikedness

since, as some algebra shows, the unbiased risk estimator of our estimate tends

a.s. to zero. This is quite interesting since the Haff risk of S equals, in contrast,

(p + 1)/n → c > 0. Unfortunately, we haven’t been able to prove this statement.

Although the literature on the probabilistic behavior of Wishart eigenvalues is

extensive, it is more scant on their L1 behavior, and this limits what can be proven

as of now.

In Section 4.2, we considered an invariant analogue of the Frobenius loss ‖Σ̂−

Σ‖2
F/p, the Haff loss ‖Σ̂Σ−1 − I‖2

F/p which allowed for the existence of an unbi-

ased risk estimator. Since our estimator is particularly adapted to this invariant

covariance loss, it might also be of interest to study an invariant noise loss such as

|σ̂2/σ2 − 1|.

We did not tackle the problem of selecting the spiked eigenvalue estimators

γ̂k in an optimal way, beyond the suggestion in Section 4.4. The recent work

of Donoho et al. [2014] could offer a solution. The authors consider the spiked

covariance estimation problem where the noise is known and fixed at σ2 = 1, and
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look for optimal shrinking of the spiked eigenvalues lk, 1 ≤ k ≤ ρ. In the Frobenius

and Haff losses, their optimal estimators coincide and equal

γ̂k =

[
lk − 1 +

clk
lk − 1

]
1− c/(lk − 1)2

1 + c/(lk − 1)

for lk > (1 +
√
c)2. An appealing feature of this estimate is that it accounts for

the deterministic angles between the top sample and population eigenvectors. It

would be interesting to study the behavior of the noise estimator σ̃2 from Theorem

8 applied to these spiked estimators, with perhaps adjustments for not knowing

σ2.

Finally, we should remark that our construction automatically provides well-

conditioned covariance estimators, which is quite important for applications. There-

fore, when the parameter of interest is the precision rather than the covariance

matrix, using Σ̃−1 as estimator appears reasonable, although we currently do not

have any formal results on its behavior for this problem.

4.6 Technical results and proofs

4.6.1 Proofs for Section 4.2

The following Stein-Haff identity is used to compute an unbiased estimator of risk

for orthogonally invariant estimators in proposition 6. The general identity dates

back to Haff [1979a] and its specialization to orthogonally invariant estimators for

n ≥ p first implicitly used by Sheena [1995]. Unfortunately, the approach taken

by the author requires regularity conditions that are difficult to verify in practice

(conditions 1–3 in his Section 1 and 2). The following lemma follows the approach

of Konno [2009] and Kubokawa and Srivastava [2008] to obtain the same n ≥ p

result, but under weaker, simpler conditions.
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Lemma 6. Let W ∼ Wp(n,Σ) with n ≥ p, and let W/n = OLO′ be the spectral

decomposition of the associated sample covariance matrix. Let ψ1(L), ..., ψp(L) be

differentiable functions of the eigenvalues of W/n satisfying:

E

[∣∣∣∣∣
p∑

k=1

n− p− 1

n

ψk
lk

+
2

n

p∑
k=1

∂ψk
∂lk

+
1

n

p∑
k 6=b

ψk − ψb
lk − lb

∣∣∣∣∣
]
<∞. (4.3)

Define Ψ = diag(ψ1, ..., ψp). Then

E
[
tr
(
Σ−1OΨO′

)]
= E

[
p∑

k=1

n− p− 1

n

ψk
lk

+
2

n

p∑
k=1

∂ψk
∂lk

+
1

n

p∑
k 6=b

ψk − ψb
lk − lb

]
.

Proof. We use Lemma 3 in Chételat and Wells [2012]. Decompose W = X ′X for

some X ∼ Nn×p(0, In ⊗ Σ). In the spirit of Lemma 4.1 in Konno [2009], we find

(dX ′)X +X ′dX = d(X ′X) = n(dO)LO′ + nOdLO′ + nOLdO′

⇒ O′ [(dX ′)X +X ′dX]O = nO′dOL+ nL(dO′)O + ndL.

Since O′dO + (dO′)O = 0, we get

O′ [(dX ′)X +X ′dX]O = nO′dOL− nLO′dO + ndL,

so that for k 6= l,

O′dOkl =
1

n

1

ll − lk
O′ [(dX ′)X +X ′dX]Okl,

dLkk =
1

n
O′ [(dX ′)X +X ′dX]Okk

and O′dOkk = 0. Then

∂lk
∂Xij

=
1

n

∑
α,β,γ

O′kα
X ′αβ
dXij

XβγOγk +
1

n

∑
α,β,γ

O′kαX
′
αβ

Xβγ

dXij

Oγk

=
2

n

∑
γ

O′kjXiγOγk (4.4)

and

∂Okl

∂Xij

=
1

n

∑
α 6=l,β,γ,ε

Okα
1

ll − lα
O′αβ

[
∂X ′βγ
∂Xij

Xγε +X ′βγ
∂X ′γε
∂Xij

]
Oεl

=
1

n

∑
α 6=l,β

Okα

O′αjOβl +O′αβOjl

ll − lα
Xiβ. (4.5)
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Now define X̃ = XΣ−1/2 and H = 1
n
Σ1/2OL−1ΨO′Σ−1/2 – we need to compute

divvec(X̃) vec
(
X̃H

)
. We find

divvec(X̃) vec
(
X̃H

)
=
∑
α,i,j

∂

∂X̃αi

{
X̃αjHji

}
= n

∑
i

Hii +
∑
α,j

X̃αj
∂Hji

∂X̃αi

=
∑
γ

ψγ
lγ

+
1

n

∑
α,β,i,j,k,l

X̃αjΣ
1/2
βi Σ

1/2
jk

∂

∂Xαβ

{
OL−1ΨO′kl

}
Σ
−1/2
li

=
∑
γ

ψγ
lγ

+
1

n

∑
α,k,l

Xαk
∂

∂Xαl

{
OL−1ΨO′kl

}
(4.6)

=
∑
γ

ψγ
lγ

+
1

n

∑
α,k,l,β

Xαk
∂Okβ

∂Xαl

[
L−1Ψ

]
ββ
O′βl

+
1

n

∑
α,k,l,β

XαkOkβ

∂ [L−1Ψ]ββ
∂Xαl

O′βl +
1

n

∑
α,k,l,β

XαkOkβ

[
L−1Ψ

]
ββ

∂O′βl
∂Xαl

.

Using (4.4) and (4.5), we obtain

=
∑
γ

ψγ
lγ

+
1

n2

∑
α,k,l,β,γ 6=β,ε

XαkOkγ

O′γlOεβ +O′γεOlβ

lβ − lγ
Xαε

[
L−1Ψ

]
ββ
O′βl

+
2

n2

∑
α,k,l,β,γ,ε

XαkOkβO
′
γlXαεOεγ

∂ [ψβ/lβ]

∂lγ
O′βl

+
1

n2

∑
α,k,l,β,γ 6=β,ε

XαkOkβ

[
L−1Ψ

]
ββ
Olγ

O′γlOεβ +O′γεOlβ

lβ − lγ
Xαε

=
∑
γ

ψγ
lγ

+
1

n

∑
γ 6=β

lγψβ
(lβ − lγ)lβ

+
2

n

∑
γ

lγ
∂ [ψγ/lγ]

∂lγ
+

1

n

∑
γ 6=β

ψβ
lβ − lγ

=
n− p− 1

n

∑
γ

ψγ
lγ

+
2

n

∑
γ

∂ψγ
∂lγ

+
1

n

∑
γ 6=β

ψβ − ψγ
lβ − lγ

.

By (4.3), we conclude

E
[∣∣∣divvec(X̃) vec

(
X̃H

)∣∣∣]
= E

[∣∣∣∣∣
p∑

k=1

n− p− 1

n

ψk
lk

+
2

n

p∑
k=1

∂ψk
∂lk

+
1

n

p∑
k 6=b

ψk − ψb
lk − lb

∣∣∣∣∣
]
<∞.

Therefore, we can apply Lemma 3 in Chételat and Wells [2012] to G = 1
n
OL−1ΨO′,
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which holds for any (p, n). We obtain that

E
[
tr
(
Σ−1OΨO′

)]
= E

[
tr
(
L−1Ψ

)
+ tr(X ′∇XG

′)
]

= E

[∑
γ

ψγ
lγ

+
1

n

∑
k,l,α

X ′kα
∂

∂Xαl

OL−1ΨO′kl

]
.

But the expression inside the expected value is precisely eq. (4.6), so

= E

[
p∑

k=1

n− p− 1

n

ψk
lk

+
2

n

p∑
k=1

∂ψk
∂lk

+
1

n

p∑
k 6=b

ψk − ψb
lk − lb

]

as desired.

Lemma 7. Let W ∼ Wp(n,Σ) with n ≥ p, and let W/n = OLO′ be the spectral

decomposition of the associated sample covariance matrix. Let ψ1(L), ..., ψp(L) be

twice-differentiable functions of the eigenvalues of W/n, and define the associated

quantities

ψ∗k =
n− p− 1

n

ψ2
k

lk
+

4

n
ψk
∂ψk
∂lk

+
2

n
ψk

p∑
b6=k

ψk − ψb
lk − lb

for k = 1, ..., p

with Ψ∗ = diag(ψ1, ..., ψp). Assume

E

[
p∑

k=1

∣∣∣∣ψ∗klk
∣∣∣∣1+ε
]
<∞ and

E

[∣∣∣∣∣
p∑

k=1

n− p− 1

n

ψ∗k
lk

+
2

n

p∑
k=1

∂ψ∗k
∂lk

+
1

n

p∑
k 6=b

ψ∗k − ψ∗b
lk − lb

∣∣∣∣∣
]
<∞.

for some ε > 0. Then

E

[
tr
([

Σ−1OΨO′
]2)]

= E

[
p∑

k=1

n− p− 1

n

ψ∗k
lk

+
2

n

p∑
k=1

∂ψ∗k
∂lk

+
1

n

p∑
k 6=b

ψ∗k − ψ∗b
lk − lb

]
.

Proof. We use Lemma 3 in Chételat and Wells [2012] again. Decompose W =

X ′X for some X ∼ Nn×p(0, In ⊗ Σ), and define X̃ = XΣ−1/2 and
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H = 1
n
Σ1/2OL−1ΨO′Σ−1OΨO′Σ−1/2. Then

divvec(X̃) vec
(
X̃H

)
=
∑
α,i,j

∂

∂X̃αi

{
X̃αjHji

}
= n

∑
i

Hii +
∑
α,j

X̃αj
∂Hji

∂X̃αi

=
∑
i,j,γ

Σ−1
ij Ojγ

ψ2
γ

lγ
O′γi (4.7)

+
1

n

∑
α,β,i,j,k,l

X̃αjΣ
1/2
βi Σ

1/2
jk

∂

∂Xαβ

{
OL−1ΨO′Σ−1OΨO′

}
kl

Σ
−1/2
li

=
∑
i,j,γ

Σ−1
ij Ojγ

ψ2
γ

lγ
O′γi +

1

n

∑
α,k,l

Xαk
∂

∂Xαl

OL−1ΨO′kiΣ
−1
ij OΨO′jl (4.8)

=
∑
i,j,γ

Σ−1
ij Ojγ

ψ2
γ

lγ
O′γi +

1

n

∑
i,j,α,k,l,β

Σ−1
ij OΨO′jlXαk

∂Okβ

∂Xαl

[
L−1Ψ

]
ββ
O′βi

+
1

n

∑
i,j,α,k,l,β

Σ−1
ij OΨO′jlXαkOkβ

∂ [L−1Ψ]ββ
∂Xαl

O′βi

+
1

n

∑
i,j,α,k,l,β

Σ−1
ij OΨO′jlXαkOkβ

[
L−1Ψ

]
ββ

∂Oiβ

∂Xαl

+
1

n

∑
i,j,α,k,l

XαkOL
−1ΨO′kiΣ

−1
ij

∂Ojβ

∂Xαl

ΨββO
′
βl

+
1

n

∑
i,j,α,k,l

XαkOL
−1ΨO′kiΣ

−1
ij Ojβ

∂Ψββ

∂Xαl

O′βl

+
1

n

∑
i,j,α,k,l

XαkOL
−1ΨO′kiΣ

−1
ij OjβΨββ

∂Olβ

∂Xαl

=
∑
i,j,γ

Σ−1
ij Ojγ

ψ2
γ

lγ
O′γi

+
1

n2

∑
i,j,k,l,α,β,γ 6=β,ε

Σ−1
ij OΨO′jlXαkOkγ

O′γlOεβ +O′γεOlβ

lβ − lγ
Xαε

[
L−1Ψ

]
ββ
O′βi

+
2

n2

∑
i,j,α,β,γ,ε

Σ−1
ij OΨO′jlXαkOkβO

′
γlXαεOεγ

∂ [ψβ/lβ]

∂lγ
O′βi

+
1

n2

∑
i,j,k,l,α,β,γ 6=β,ε

Σ−1
ij OΨO′jlXαkOkβ

[
L−1Ψ

]
ββ
Oiγ

O′γlOεβ +O′γεOlβ

lβ − lγ
Xαε

+
1

n2

∑
i,j,α,β,γ 6=β,ε

XαkOL
−1ΨO′kiΣ

−1
ij Ojγ

O′γlOεβ +O′γεOlβ

lβ − lγ
XαεΨββO

′
βl

+
2

n2

∑
i,j,α,β,γ,ε

XαkOL
−1ΨO′kiΣ

−1
ij OjβO

′
γlXαεOεγ

∂ψβ
∂lγ

O′βl

92



+
1

n2

∑
i,j,k,l,α,β,γ 6=β,ε

XαkOL
−1ΨO′kiΣ

−1
ij OjβΨββOlγ

O′γlOεβ +O′γεOlβ

lβ − lγ
Xαε

=
∑
i,j,γ

Σ−1
ij Ojγ

ψ2
γ

lγ
O′γi

+
1

n

∑
i,j,l,β,γ 6=β

Σ−1
ij Ojβ

lγψ
2
β

(lβ − lγ)lβ
O′βi +

2

n

∑
i,j,γ

Σ−1
ij Ojγψγlγ

∂ [ψγ/lγ]

∂lγ
O′γi

+
1

n

∑
i,j,β,γ 6=β

Σ−1
ij Ojγ

ψβψγ
lβ − lγ

O′γi +
1

n

∑
i,j,β,γ 6=β

Σ−1
ij Ojγ

ψγψβ
lβ − lγ

O′γi

+
2

n

∑
i,j,γ

Σ−1
ij Ojγψγ

∂ψγ
∂lγ

O′γi +
1

n

∑
i,j,β,γ 6=β,ε

Σ−1
ij Ojβ

ψ2
β

lβ − lγ
O′βi

=
n− p− 1

n

∑
i,j,γ

Σ−1
ij Ojγ

ψ2
γ

lγ
O′γi +

4

n

∑
i,j,γ

Σ−1
ij Ojγψγ

∂ψγ
∂lγ

O′γi

+
2

n

∑
i,j,l,β,γ 6=β

Σ−1
ij Ojγψγ

(ψγ − ψβ)

(lγ − lβ)
O′γi (4.9)

Thus

E
[∣∣∣divvec(X̃) vec

(
X̃H

)∣∣∣] =
1

n
E

[∣∣∣∣∣
p∑

i,j=1

Σ−1
ij OΨ∗O′ji

∣∣∣∣∣
]

≤ 1

n
E

[
p∑

k=1

∣∣∣∣ [L1/2O′Σ−1OL1/2
]
kk

∣∣∣∣ ∣∣∣∣ψ∗klk
∣∣∣∣
]

≤ 1

n

p∑
k=1

E
[[
L1/2O′Σ−1OL1/2

]1+ 1
ε

kk

] ε
1+ε

E

[∣∣∣∣ψ∗klk
∣∣∣∣1+ε
] 1

1+ε

≤ 1

n

(
E

[
p∑

k=1

[
L1/2O′Σ−1OL1/2

]1+ 1
ε

kk

]) ε
1+ε
(

E

[
p∑

k=1

∣∣∣∣ψ∗klk
∣∣∣∣1+ε
]) 1

1+ε

Since

p∑
k=1

[
L1/2O′Σ−1OL1/2

]1+ 1
ε

kk
≤

(
p∑

k=1

∣∣L1/2O′Σ−1OL1/2
∣∣
kk

)1+ 1
ε

= tr
(
L1/2O′Σ−1OL1/2

)1+ 1
ε = tr

(
Σ−1S

)1+ 1
ε ∼ (χ2

pn)1+ 1
ε

we get

E
[∣∣∣divvec(X̃) vec

(
X̃H

)∣∣∣]
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≤
2Γ
(
1 + 1

ε
+ np

2

) ε
1+ε

nΓ
(
np
2

) ε
1+ε

(
E

[
p∑

k=1

∣∣∣∣ψ∗klk
∣∣∣∣1+ε
]) 1

1+ε

<∞

by assumption of the lemma. Therefore by Lemma 3 in Chételat and Wells [2012],

E
[
tr
([

Σ−1OΨO′
]2)]

= E
[
tr
(
L−1Ψ

)
+ tr(X ′∇XG

′)
]

= E

[
p∑

i,j,k=1

Σ−1
ij Ojk

ψ2
k

lk
O′ki

+
1

n

n∑
α=1

p∑
k,l=1

Xαk
∂

∂Xαl

OL−1ΨO′kiΣ
−1
ij OΨO′jl

]

= E

[
p∑

i,j,k=1

Σ−1
ij Ojkψ

∗
kO
′
ki

] (
by (4.8)

)
.

Finally, by Lemma 6, we conclude

= E

[
p∑

k=1

n− p− 1

n

ψ∗k
lk

+
2

n

p∑
k=1

∂ψ∗k
∂lk

+
1

n

p∑
k 6=b

ψ∗k − ψ∗b
lk − lb

]

as desired.

Lemma 8. Let l1 > ... > lp > 0 be the eigenvalues of a Wp(n,Σ)-distributed matrix

,for some Σ > 0. If n ≥ p+ 1, then

(i) for any 1 ≤ k ≤ p and 0 ≤ m < n−p−1
2

, E
[

1
|lk|m

]
<∞;

(ii) for any 1 ≤ k 6= b ≤ p and 1 ≤ m < 2, E
[

1
|lk−lb|m

]
<∞;

(iii) for any 1 ≤ k 6= b 6= e ≤ p and 1 ≤ m < 2, E
[

1
|lk−lb|m|lk−le|m

]
<∞.

Proof. First, notice that in (ii), we can take k < b without loss of generality.

Then

E

[
1

|lk − lb|m

]
≤ E

[
1

|lk − lk+1|m

]
,

and it would be enough to show the r.h.s. finite for all 1 ≤ k < p to show (ii).
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Similarly, in (iii), we can take b < e without loss of generality, and there are

then three possibilities. Either k < b < e, in which case

E

[
1

|lk − lb|m|lk − le|m

]
≤ E

[
1

|lk − lk+1|m|le−1 − le|m

]
,

or b < k < e in which case

E

[
1

|lk − lb|m|lk − le|m

]
≤ E

[
1

|lb − lb+1|m|le−1 − le|m

]
or b < e < k in which case

E

[
1

|lk − lb|m|lk − le|m

]
≤ E

[
1

|lb − lb+1|m|le − le+1|m

]
Thus in any case it is enough to show that

E

[
1

|lk − lk+1|m|lb − lb+1|m

]
<∞

for all 1 ≤ k < b < p to show (iii).

By Muirhead [1982], Theorem 3.2.18, the joint density of l1 > ... > lp is given

by

fl1,...,lp(l1, ..., lp) =
πp

2/22−pn|Σ|−n/2

Γp(p/2)Γp(n/2)

p∏
i=1

l
n−p−1

2
i

∏
1≤i<j≤p

(li − lj) (4.10)∫
O(p)

etr

(
−1

2
Σ−1HLH ′

)
dH 1[l1 > ... > lp > 0] (4.11)

for L = diag(l1, ..., lp). Define I2 = {(i, j) | i < j ∧ (i, j) 6= (k, k + 1)} and I3 =

{(i, j) | i < j ∧ (i, j) 6= (k, k + 1), (b, b+ 1)}. The expressions

P1(l1, ..., lp) =

p∏
i 6=k

ln−p−1
i

p∏
i<j

(li − lj)2

P2(l1, ..., lp) =

p∏
i=1

ln−p−1
i

∏
(i,j)∈I2

(li − lj)2

P3(l1, ..., lp) =

p∏
i=1

ln−p−1
i

∏
(i,j)∈I3

(li − lj)2
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and K = πp
2/22−pn|Σ|−n/2

Γp(p/2)Γp(n/2)
can then be defined to write

fl1,...,lp(l1, ..., lp) = Kl
n−p−1

2
k P

1/2
1 (l1, ..., lp)∫

O(p)

etr

(
−1

2
Σ−1HLH ′

)
dH 1[l1 > ... > lp > 0]

= K|lk − lk+1|P 1/2
2 (l1, ..., lp)∫

O(p)

etr

(
−1

2
Σ−1HLH ′

)
dH 1[l1 > ... > lp > 0]

= K|lk − lk+1||lb − lb+1|P 1/2
3 (l1, ..., lp)∫

O(p)

etr

(
−1

2
Σ−1HLH ′

)
dH 1[l1 > ... > lp > 0] .

The important point is that since n − p − 1 ≥ 0, P1, P2 and P3 are polynomials

in l1, ..., lp. Define x = lk+1 − lk, y = lk+1 − lb and z = lb − lb+1, so that lk =

lb+1 +z+y+x, lk+1 = lb+1 +z+y and lb = lb+1 +z. (It might happen that k+1=b,

something which should be kept in mind.) Then

P2(l1, ..., lk+1 + x, ..., lk+1, ..., lp),

P3(l1, ..., lb+1 + z + x, ..., lb+1 + z, ..., lb) if k + 1 = b,

P3(l1, ..., lb+1 + z + y + x, ..., lb+1 + z + y, ..., lb+1 + z, ..., lb) if k + 1 6= b,

must still be polynomials, in {li}\{lk} ∪ {x}, {li}\{lk, lb} ∪ {x, z} and

{li}\{lk, lk+1, lb}∪{x, y, z} respectively. Therefore, for some finite degreesD1, ..., D4

one can write

P1(l1, ..., lp) =
∑

d1+...+dp
≤D1

A1
d1,...,dp

ld11 · · · ldpp ,

P2(l1, ..., lk+1 + x, ..., lk+1, ..., lp) =
∑

d1+...+dp
≤D2

A2
d1,...,dp

ld11 · · ·xdk · · · ldpp ,

P3(l1, ..., lb+1 + z + x, ..., lb+1 + z, ..., lb)

=
∑

d1+...+dp
≤D3

A3
d1,...,dp

ld11 · · ·xdk · · · zdb · · · ldpp , if k + 1 = b,
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P3(l1, ..., lb+1 + z + y + x, ..., lb+1 + z + y, ..., lb+1 + z, ..., lb)

=
∑

d1+...+dp
≤D4

A4
d1,...,dp

ld11 · · · xdk · · · ydk+1 · · · zdb · · · ldpp , if k + 1 6= b.

for coefficients A1
d1,...,dp

, ..., A4
d1,...,dp

∈ R.

If we denote the greatest eigenvalue of Σ by λmax, then Σ−1 ≥ λ−1
maxI so that∫

O(p)

etr

(
−1

2
Σ−1HLH ′

)
dH ≤ exp

(
− 1

2λmax

p∑
i=1

li

)
for any l1, ..., lp ≥ 0.

Now, for (i), we can use (4.11) and 1[l1 > ... > lp > 0] ≤
∏p

i=1 1[li > 0] to find

E

[
1

|lk|m

]
≤ K

∫
Rp

1

l
m−n−p−1

2
k

P
1/2
1 (l1, ..., lp) exp

(
− 1

2λmax

p∑
i=1

li

)

1[l1 > ... > lp > 0] dl1 · · · dlp

≤ K
∑

d1+...+dp
≤D1

√∣∣∣A1
d1,...,dp

∣∣∣ ∫ ∞
0

l
d1/2
1 e−l1/2λmax dl1 · · ·

∫ ∞
0

l
dk/2−m+n−p−1

2
k e−lk/2λmax dlk · · ·

∫ ∞
0

ldp/2p e−lp/2λmax dlp.

Notice that for i 6= k,
∫∞

0
l
di/2
i e−li/2λmax dli < ∞ for any di ≥ 0, and∫∞

0
l
dk/2−m+n−p−1

2
k e−lk/2λmax dlk < ∞ for all dk ≥ 0 iff 0 ≤ m < n−p−1

2
. Thus

E[1/|lk|m] <∞, as desired.

For (ii), we proceed similarly, but though a change of variables (lk, lk+1) →

(lk+1 + x, lk). Then, using

1

[
l1 > ... > lk+1 + x > ... > lk+1 > ... > lp > 0

]
≤ 1[x > 0]

p∏
i 6=k

1[li > 0] ,

we obtain

E

[
1

|lk − lk+1|m

]
≤ K

∫
Rp

1

|lk − lk+1|m−1
P

1/2
2 (l1, ..., lp)

exp

(
− 1

2λmax

p∑
i=1

li

)
1[l1 > ... > lp > 0] dl1 · · · dlp
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≤ K
∑

d1+...+dp
≤D2

√∣∣∣A2
d1,...,dp

∣∣∣ ∫ ∞
0

l
d1/2
1 e−l1/2λmax dl1 · · ·

∫ ∞
0

xdk/2−m+1e−x/2λmax dx · · ·
∫ ∞

0

l
dk+1/2
k+1 e−lk+1/λmax dlk+1 · · ·∫ ∞

0

ldp/2p e−lp/2λmax dlp.

Then again, for i 6= k and any di ≥ 0, the respective integrals are finite; and to

have
∫∞

0
xdk/2−m+1e−x/2λmax dx <∞ for all dk ≥ 0 requires m < 2. In such a case,

we end up with E[1/|lk − lk+1|m] <∞, as desired.

For (iii), we must consider separately the cases k+ 1 = b and k+ 1 6= b. In the

first case, one can take the change of variables (lk, lb, lb+1) −→ (lb+1 + x+ z, lb+1 +

z, lb+1). Using that

1

[
l1 > ... > lb+1 + x+ z > ... > lb+1 + z > ... > lb+1 > ... > lp > 0

]
≤ 1[x > 0]1[z > 0]

p∏
i 6=k,b

1[li > 0] ,

we then obtain

E

[
1

|lk − lb|m|lb − lb+1|m

]
≤ K

∫
Rp

1

|lk − lb|m−1|lb − lb+1|m−1

P
1/2
3 (l1, ..., lp) exp

(
− 1

2λmax

p∑
i=1

li

)
1[l1 > ... > lp > 0] dl1 · · · dlp

≤ K
∑

d1+...+dp
≤D3

√∣∣∣A3
d1,...,dp

∣∣∣ ∫ ∞
0

l
d1/2
1 e−l1/2λmax dl1 · · ·

∫ ∞
0

xdk/2−m+1e−x/2λmax dx · · ·
∫ ∞

0

zdb/2−m+1e−z/λmax dz · · ·∫ ∞
0

l
db+1/2
b+1 e−3lb+1/2λmax dlb+1 · · ·

∫ ∞
0

ldp/2p e−lp/2λmax dlp.

Again, all the integrals converge as long as m < 2, in which case we have

E[1/|lk − lb|m|lb − lb+1|m] <∞, as desired.

Finally, for (iii) with k + 1 6= b, one can take the change of variables

(lk, lk+1, lb, lb+1) −→ (lb+1 + x + y + z, lb+1 + y + z, lb+1 + z, lb+1). Then using
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that

1

[
l1 > ... > lb+1 + x+ y + z > ... > lb+1 + y + z > ... > lb+1 + z

> ... > lb+1 > ... > lp > 0

]
≤ 1[x > 0]1[y > 0]1[z > 0]

p∏
i 6=k,k+1,b

1[li > 0] ,

we obtain

E

[
1

|lk − lk+1|m|lb − lb+1|m

]
≤ K

∫
Rp

1

|lk − lk+1|m−1|lb − lb+1|m−1

P
1/2
4 (l1, ..., lp) exp

(
− 1

2λmax

p∑
i=1

li

)
1[l1 > ... > lp > 0] dl1 · · · dlp

≤ K
∑

d1+...+dp
≤D4

√∣∣∣A4
d1,...,dp

∣∣∣ ∫ ∞
0

l
d1/2
1 e−l1/2λmax dl1 · · ·

∫ ∞
0

xdk/2−m+1e−x/2λmax dx · · ·
∫ ∞

0

ydk/2−m+1e−y/λmax dy · · ·∫ ∞
0

zdb/2−m+1e−3z/2λmax dz · · ·
∫ ∞

0

l
db+1/2
b+1 e−2lb+1/λmax dlb+1 · · ·∫ ∞

0

ldp/2p e−lp/2λmax dlp.

All the integrals converge as long as m < 2, in which case we have

E[1/|lk − lb+1|m|lb − lb+1|m] <∞, as desired.

Proof of Theorem 6. By independence, it is clear that

E
[
LH(Σ̂,Σ)

]
= Eρ̂

[
ES

[
LH(Σ̂,Σ) | ρ̂

]]
= Eρ̂

[
ES

[
LH(Σ̂,Σ)

]]
,

so we can treat ρ̂ as a constant throughout the calculations, without loss of gener-

ality. Define the auxiliary terms ψk = γ̂k + σ̂2 and

ψ∗k =
n− p− 1

n

ψ2
k

lk
+ 4

ψk
n

∂ψk
∂lk

+ 2
ψk
n

p∑
b 6=k

ψk − ψb
lk − lb
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for all 1 ≤ k ≤ p, and consider:

R1 =

p∑
k=1

n− p− 1

n

ψ∗k
lk

+
2

n

p∑
k=1

∂ψ∗k
∂lk

+
1

n

p∑
k 6=b

ψ∗k − ψ∗b
lk − lb

=

{
(n− p− 1)2

n2

p∑
k=1

ψ2
k

l2k
+ 4

n− p− 1

n2

p∑
k=1

ψk
lk

∂ψk
∂lk

+2
n− p− 1

n2

p∑
k 6=b=1

ψk
lk

ψk − ψb
lk − lb

}
+

{
4
n− p− 1

n2

p∑
k=1

ψk
lk

∂ψk
∂lk

−2
n− p− 1

n2

p∑
k=1

ψ2
k

l2k
+

8

n2

p∑
k=1

(
∂ψk
∂lk

)2

+
8

n2

p∑
k=1

ψk
∂2ψk
∂l2k

+
4

n2

p∑
k 6=b=1

∂ψk
∂lk

ψk − ψb
lk − lb

+
4

n2

p∑
k 6=b=1

ψk

∂ψk
∂lk
− ∂ψb

∂lk

lk − lb

− 2

n2

p∑
k 6=b=1

(
ψk − ψb
lk − lb

)2
}

+

{(
2
n− p− 1

n2

p∑
k 6=b=1

ψk
lk

ψk − ψb
lk − lb

−n− p− 1

n2

p∑
k 6=b=1

ψk
lk

ψb
lb

)
+

(
4

n2

p∑
k 6=b=1

ψk

∂ψk
∂lk
− ∂ψb

∂lb

lk − lb

+
4

n2

p∑
k 6=b=1

∂ψk
∂lk

ψk − ψb
lk − lb

)
+

(
2

n2

p∑
k 6=b 6=e=1

ψk
lk − lb

(
ψk − ψe
lk − le

− ψb − ψe
lb − le

)

+
2

n2

p∑
k 6=b 6=e=1

ψk − ψb
lk − lb

ψk − ψe
lk − le

+
2

n2

p∑
k 6=b=1

(
ψk − ψb
lk − lb

)2
)}

=
(n− p− 1)(n− p− 2)

n2

p∑
k=1

ψ2
k

l2k
− (n− p− 1)

n2

(
p∑

k=1

ψk
lk

)2

+
8

n2

p∑
k=1

(
∂ψk
∂lk

)2

+
8

n2

p∑
k=1

ψk
∂2ψk
∂l2k

+ 8
n− p− 1

n2

p∑
k=1

ψk
lk

∂ψk
∂lk

+ 4
n− p− 1

n2

p∑
k 6=b=1

ψk
lk

ψk − ψb
lk − lb

+
8

n2

p∑
k 6=b=1

∂ψk
∂lk

ψk − ψb
lk − lb

+
4

n2

p∑
k 6=b=1

ψk

∂ψk
∂lk
− ∂ψb

∂lb

lk − lb
+

4

n2

p∑
k 6=b=1

ψk

∂ψk
∂lk
− ∂ψb

∂lk

lk − lb

+
2

n2

p∑
k 6=b 6=e=1

ψk
lk − lb

(
ψk − ψe
lk − le

− ψb − ψe
lb − le

)

+
2

n2

p∑
k 6=b 6=e=1

ψk − ψb
lk − lb

ψk − ψe
lk − le

.
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Now, by Hölder’s inequality, we find:

E

[
|R1|

]
≤ |n− p− 1||n− p− 2|

n2

p∑
k=1

E

[∣∣∣∣ψklk
∣∣∣∣2
]

+
|n− p− 1|

n2

 p∑
k=1

E

[∣∣∣∣ψklk
∣∣∣∣2
] 1

2

2

+
8

n2

p∑
k=1

E

[∣∣∣∣∂ψk∂lk

∣∣∣∣2
]

+
8

n2

p∑
k=1

E

[∣∣∣∣ψk ∂2ψk
∂l2k

∣∣∣∣]+ 8
|n− p− 1|

n2

p∑
k=1

E

[∣∣∣∣ψklk
∣∣∣∣2
] 1

2

E

[∣∣∣∣∂ψk∂lk

∣∣∣∣2
] 1

2

+ 4
|n− p− 1|

n2

p∑
k 6=b=1

E

[∣∣∣∣ψklk
∣∣∣∣4.5
] 1

4.5

(
E
[
|ψk|4.5

] 1
4.5 + E

[
|ψb|4.5

] 1
4.5

)
E

[
1

|lk − lb|1.8

] 1
1.8

+
8

n2

p∑
k 6=b=1

E

[∣∣∣∣∂ψk∂lk

∣∣∣∣4.5
] 1

4.5

E
[
|ψk|4.5

] 1
4.5

+ E

[∣∣∣∣∂ψk∂lk

∣∣∣∣4.5
] 1

4.5

E
[
|ψb|4.5

] 1
4.5

E

[
1

|lk − lb|1.8

] 1
1.8

+
4

n2

p∑
k 6=b=1

E
[
|ψk|4.5

] 1
4.5

E

[∣∣∣∣∂ψk∂lk

∣∣∣∣4.5
] 1

4.5

+ E

[∣∣∣∣∂ψb∂lb

∣∣∣∣4.5
] 1

4.5

E

[
1

|lk − lb|1.8

] 1
1.8

+
4

n2

p∑
k 6=b=1

E
[
|ψk|4.5

] 1
4.5

E

[∣∣∣∣∂ψk∂lk

∣∣∣∣4.5
] 1

4.5

+ E

[∣∣∣∣∂ψb∂lk

∣∣∣∣4.5
] 1

4.5

E

[
1

|lk − lb|1.8

] 1
1.8

+
2

n2

p∑
k 6=b 6=e=1

(
E
[
|ψk|4.5

] 1
4.5 + E

[
|ψb|4.5

] 1
4.5

)
(

E
[
|ψk|4.5

] 1
4.5 + E

[
|ψe|4.5

] 1
4.5

)
E

[∣∣∣∣ 1

(lk − lb)(lk − le)

∣∣∣∣1.8
] 1

1.8
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+
2

n2

p∑
k 6=b 6=e=1

(
E
[
|ψk|4.5

] 1
4.5 + E

[
|ψb|4.5

] 1
4.5

)
(

E
[
|ψk|4.5

] 1
4.5 + E

[
|ψe|4.5

] 1
4.5

)
E

[∣∣∣∣ 1

(lk − lb)(lk − le)

∣∣∣∣1.8
] 1

1.8

.

Similarly, consider

R2 =
n− p− 1

n

p∑
k=1

ψk
lk

+
2

n

p∑
k=1

∂ψk
∂lk

+
1

n

p∑
k 6=b=1

ψk − ψb
lk − lb

,

so that

E

[
|R2|

]
≤ |n− p− 1|

n

p∑
k=1

E

[∣∣∣∣ψklk
∣∣∣∣]+

2

n

p∑
k=1

E

[∣∣∣∣∂ψk∂lk

∣∣∣∣]

+
1

n

p∑
k 6=b=1

(
E
[
|ψk|2.25] 1

2.25 + E
[
|ψb|2.25] 1

2.25

)
E

[
1

|lk − lb|1.8

] 1
1.8

,

Moreover, for any ε > 0,

E

[
p∑

k=1

∣∣∣∣ψ∗klk
∣∣∣∣
]
≤ |n− p− 1|

n

p∑
k=1

E

[∣∣∣∣ψklk
∣∣∣∣2(1+ε)

] 1
1+ε

+
4

n

p∑
k=1

E

[∣∣∣∣ψklk
∣∣∣∣2(1+ε)

]

· E

[∣∣∣∣∂ψk∂lk

∣∣∣∣2(1+ε
] 1

2(1+ε)

+
2

n

p∑
k 6=b

E

[
1

|lk − lb|1.8(1+ε)

] 1
1.8(1+ε)

· E

[∣∣∣∣ψklk
∣∣∣∣4.5(1+ε)

] 1
4.5(1+ε)(

E
[
|ψk|4.5(1+ε)

] 1
4.5(1+ε)

+ E
[
|ψb|4.5(1+ε)

] 1
4.5(1+ε)

)
.

Note that for any 1 ≤ k ≤ p and ε > 0,

E
[
|ψk|4.5

] 1
4.5 ≤ E

[∣∣∣∣ψklk
∣∣∣∣9(1+ε)

] 1
9(1+ε)

E
[
|lk|

9ε
1+ε

] 1+ε
9ε
,

and for any m > 1, E[|lk|m]
2 ≤ E[tr(S2m)] ≤ tr(Σ)2m E

[
tr(SΣ−1)

2m
]

= tr(Σ)2m E
[
(χ2

np)
2m
]
<∞. Now consider that, for any m > 1,

|ψk|m ≤ 2m−1(|γ̂k|m +
∣∣σ̂2
∣∣m)∣∣∣∣∂ψk∂lk

∣∣∣∣m ≤ 2m−1(

∣∣∣∣∂γ̂k∂lk

∣∣∣∣m +

∣∣∣∣∂σ̂2

∂lk

∣∣∣∣m)∣∣∣∣ψk ∂2ψk
∂l2k

∣∣∣∣m =
∣∣γ̂k + σ̂2

∣∣ ∣∣∣∣∂2γ̂k
∂l2k

+
∂2σ̂2

∂l2k

∣∣∣∣m .
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Therefore, since Γ̂ satisfies the weak regularity conditions and Σ̂ ∈ Vp(Γ̂), we obtain

E[|R1|] <∞, E[|R2|] <∞ and E
[∑p

k=1

∣∣∣ψ∗klk ∣∣∣] <∞.

Therefore, all the regularity conditions of Lemmas 6 and 7 are satisfied, and

we have for Ψ = diag(ψ1, ..., ψp)

E
[
L
(

Σ̂,Σ
)]

=
1

p
E
[
tr
([

Σ−1OΨO′
]2)− 2 tr

(
Σ−1OΨO′

)
+ p
]

=
1

p
E[R1 − 2R2 + p]

= E

(n− p− 1)(n− p− 2)

n2p

p∑
k=1

ψ2
k

l2k
− (n− p− 1)

n2p

(
p∑

k=1

ψk
lk

)2

+
8

n2p

p∑
k=1

(
∂ψk
∂lk

)2

+
8

n2p

p∑
k=1

ψk
∂2ψk
∂l2k

+ 8
n− p− 1

n2p

p∑
k=1

ψk
lk

∂ψk
∂lk

+4
n− p− 1

n2p

p∑
k 6=b=1

ψk
lk

ψk − ψb
lk − lb

+
8

n2p

p∑
k 6=b=1

∂ψnk
∂lk

ψk − ψb
lk − lb

+
4

n2p

p∑
k 6=b=1

ψnk

∂ψk
∂lk
− ∂ψb

∂lb

lk − lb
+

4

n2p

p∑
k 6=b=1

ψnk

∂ψk
∂lk
− ∂ψb

∂lk

lk − lb

+
2

n2p

p∑
k 6=b 6=e=1

ψk
lk − lb

(
ψk − ψe
lk − le

− ψb − ψe
lb − le

)

+
2

n2p

p∑
k 6=b 6=e=1

ψk − ψb
lk − lb

ψk − ψe
lk − le

− 2
n− p− 1

np

p∑
k=1

ψk
lk

− 4

np

p∑
k=1

∂ψk
∂lk
− 2

np

p∑
k 6=b=1

ψk − ψb
lk − lb

+ 1

]
.

We can now collect the terms of order 1 and 1/p, defining

F (Σ̂) =
(n− p− 1)(n− p− 2)

n2p

p∑
k=1

ψ2
k

l2k
− n− p− 1

n2p

(
p∑

k=1

ψk
lk

)2

+ 4
n− p− 1

n2p

p∑
k 6=b=1

ψk
lk

ψk − ψb
lk − lb

+
2

n2p

p∑
k 6=b 6=e=1

ψk − ψb
lk − lb

ψk − ψe
lk − le

+
2

n2p

p∑
k 6=b 6=e=1

ψk
lk − lb

(
ψk − ψe
lk − le

− ψb − ψe
lb − le

)

− 2
n− p− 1

np

p∑
k=1

ψk
lk
− 2

np

p∑
k 6=b=1

ψk − ψb
lk − lb

+ 1
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and

G(Σ̂) =
8

n2p

p∑
k=1

(
∂ψk
∂lk

)2

+
8

n2p

p∑
k=1

ψk
∂2ψk
∂l2k

+ 8
n− p− 1

n2p

p∑
k=1

ψk
lk

∂ψk
∂lk

+
8

n2p

p∑
k 6=b=1

∂ψk
∂lk

ψk − ψb
lk − lb

+
4

n2p

p∑
k 6=b=1

ψk

∂ψk
∂lk
− ∂ψb

∂lb

lk − lb

+
4

n2p

p∑
k 6=b=1

ψk

∂ψk
∂lk
− ∂ψb

∂lk

lk − lb
− 4

np

p∑
k=1

∂ψk
∂lk

so that E
[
L(Σ̂,Σ)

]
= E

[
F (Σ̂) +G(Σ̂)

]
, with E

[∣∣∣F (Σ̂) +G(Σ̂)
∣∣∣] ≤ E[|R1|] +

2 E[|R2|] + p < ∞, as desired. Plugging in ψk = γ̂k + σ̂2 yields, after a bit of

algebra:

F (Γ̂ + σ̂2I) =
(n− p− 1)(n− p− 2)

n2p

ρ∑
k=1

γ̂2
k

l2k

+ 2
(n− p− 1)(n− p− 2)

n2p

ρ∑
k=1

γ̂kσ̂
2

l2k
+

(n− p− 1)(n− p− 2)

n2p

p∑
c=1

σ̂4
ρ

l2c

− n− p− 1

n2p

(
ρ∑

k=1

γ̂k
lk

)2

− 2
n− p− 1

n2p

p∑
c=1

σ̂2

lc

ρ∑
k=1

γ̂k
lk

− n− p− 1

n2p

(
p∑
c=1

σ̂2

lc

)2

+ 4
n− p− 1

n2p

ρ∑
k 6=b

γ̂k
lk

γ̂k − γ̂b
lk − lb

+ 4
n− p− 1

n2p

ρ∑
k=1

p∑
c=ρ+1

γ̂k
lk

γ̂k
lk − lc

+ 4
n− p− 1

n2p

ρ∑
k=1

p∑
c=ρ+1

σ̂2

lc

γ̂k
lk − lc

+
2

n2p

ρ∑
k 6=b6=e=1

γ̂k − γ̂b
lk − lb

γ̂k − γ̂e
lk − le

+
2

n2p

ρ∑
k 6=b=1

p∑
c=ρ+1

γ̂k
lk − lc

γ̂b
lb − lc

− 6

n2p

ρ∑
k 6=b

p∑
c=ρ+1

γ̂k + σ̂2

lk − lc
γ̂b

lb − lc
+

6

n2p

ρ∑
k=1

p∑
c 6=d

γ̂k + σ̂2

lk − lc
γ̂k

lk − ld

− 2

n2p

ρ∑
k=1

p∑
c 6=d

γ̂k
lk − lc

γ̂k
lk − ld

+
2

n2p

ρ∑
k 6=b 6=e=1

γ̂k
lk − lb

(
γ̂k − γ̂e
lk − le

− γ̂b − γ̂e
lb − le

)

+
4

n2p

p∑
k 6=b=1

p∑
c=ρ+1

γ̂k − γ̂b
lk − lb

γ̂k
lk − lc

+
6

n2p

ρ∑
k 6=b

p∑
c=ρ+1

γ̂k − γ̂b
lk − lb

γ̂k + σ̂2

lk − lc

− 2
n− p− 1

np

ρ∑
k=1

γ̂k
lk
− 2

n− p− 1

np

p∑
c=1

σ̂2

lc
− 2

np

ρ∑
k 6=b=1

γ̂k − γ̂k
lk − lb
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− 4

np

ρ∑
k=1

p∑
c=ρ+1

γ̂k
lk − lc

+ 1 (4.12)

and

G(Γ̂ + σ̂2I) =
8

n2p

ρ∑
k=1

(
∂γ̂k
∂lk

)2

+
16

n2p

ρ∑
k=1

∂γ̂k
∂lk

∂σ̂2

∂lk
+

8

n2p

p∑
k=1

(
∂σ̂2

∂lk

)2

+
8

n2p

ρ∑
k=1

γ̂k
∂2γ̂k
∂l2k

+
8

n2p

p∑
k=1

σ̂2∂
2σ̂2

∂l2k
+ 8

n− p− 1

n2p

ρ∑
k=1

γ̂k
lk

∂γ̂k
∂lk

+ 8
n− p− 1

n2p

ρ∑
k=1

γ̂k
lk

∂σ̂2

∂lk
+ 8

n− p− 1

n2p

ρ∑
k=1

σ̂2

lk

∂γ̂k
∂lk

+ 8
n− p− 1

n2p

p∑
k=1

σ̂2

lk

∂σ̂2

∂lk
+

8

n2p

ρ∑
k 6=b=1

∂γ̂k
∂lk

γ̂k − γ̂k
lk − lb

+
8

n2p

ρ∑
k=1

p∑
c=ρ+1

∂γ̂k
∂lk

γ̂k
lk − lc

+
8

n2p

ρ∑
k=1

p∑
c=ρ+1

∂σ̂2

∂lc

γ̂k
lk − lc

+
4

n2p

ρ∑
k 6=b=1

γ̂k

∂γ̂k
∂lk
− ∂γ̂b

∂lb

lk − lb
+

4

n2p

ρ∑
k=1

p∑
c=ρ+1

γ̂k

∂γ̂k
∂lk
− ∂σ̂2

∂lc

lk − lc

+
4

n2p

ρ∑
k=1

p∑
c=ρ+1

σ̂2

∂γ̂k
∂lk
− ∂σ̂2

∂lc

lk − lc
+

4

n2p

p∑
c 6=d=ρ+1

σ̂2
∂σ̂2

∂lc
− ∂σ̂2

∂ld

lc − ld

+
4

n2p

ρ∑
k 6=b=1

γ̂k

∂γ̂k
∂lk
− ∂γ̂b

∂lk

lk − lb
+

4

n2p

ρ∑
k=1

p∑
c=ρ+1

γ̂k

∂γ̂k
∂lk
− ∂σ̂2

∂lk

lk − lc

+
4

n2p

ρ∑
k=1

p∑
c=ρ+1

σ̂2

∂γ̂k
∂lc
− ∂σ̂2

∂lc

lk − lc
+

4

n2p

p∑
c 6=d=ρ+1

σ̂2
∂σ̂2

∂lc
− ∂σ̂2

∂lc

lc − ld

− 4

np

ρ∑
k=1

∂γ̂k
∂lk
− 4

np

p∑
k=1

∂σ̂2

∂lk
. (4.13)

For the second part of the theorem, we see that

E
[∣∣∣F (Σ̂)

∣∣∣] ≤ 1 +
|n− p− 1||n− p− 2|

n2
E

[
sup
p∈N∗

max
1≤k≤p

∣∣∣∣ψklk
∣∣∣∣2
]

+
|n− p− 1|p

n2
E

[
sup
p∈N∗

max
1≤k≤p

∣∣∣∣ψklk
∣∣∣∣2
]

+ 4
|n− p− 1|(p− 1)

n2
E

[
sup
p∈N∗

max
1≤k≤p

∣∣∣∣ψklk
∣∣∣∣2
] 1

2

E

[
sup
p∈N∗

max
1≤k 6=b≤p

∣∣∣∣ψk − ψblk − lb

∣∣∣∣2
] 1

2
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+
2(p− 1)(p− 2)

n2
E

[
sup
p∈N∗

max
1≤k 6=b≤p

∣∣∣∣ψk − ψblk − lb

∣∣∣∣2
]

+
2(p− 1)(p− 2)

n2
E

[
sup
p∈N∗

max
1≤k≤p

∣∣∣∣ψklk
∣∣∣∣2
] 1

2

· E

[
sup
p∈N∗

max
1≤k 6=b6=e≤p

∣∣∣∣ lk
lk − lb

(
ψk − ψe
lk − le

− ψb − ψe
lb − le

)∣∣∣∣2
] 1

2

− 2
|n− p− 1|

n
E

[
sup
p∈N∗

max
1≤k≤p

∣∣∣∣ψklk
∣∣∣∣]− 2(p− 1)

n
E

[
sup
p∈N∗

max
1≤k 6=b≤p

∣∣∣∣ψk − ψblk − lb

∣∣∣∣]
and

pE
[∣∣∣G(Σ̂)

∣∣∣] ≤ 8p

n2
E

[
sup
p∈N∗

max
1≤k≤p

∣∣∣∣∂ψk∂lk

∣∣∣∣2
]

+
8p

n2
E

[
sup
p∈N∗

max
1≤k≤p

∣∣∣∣ψk ∂2ψk
∂l2k

∣∣∣∣]

+ 8
|n− p− 1|p

n
E

[
sup
p∈N∗

max
1≤k≤p

∣∣∣∣ψklk
∣∣∣∣2
] 1

2

E

[
sup
p∈N∗

max
1≤k≤p

∣∣∣∣∂ψk∂lk

∣∣∣∣2
] 1

2

+
8(p− 1)p

n2
E

[
sup
p∈N∗

max
1≤k≤p

∣∣∣∣∂ψk∂lk

∣∣∣∣2
] 1

2

E

[
sup
p∈N∗

max
1≤k 6=b≤p

∣∣∣∣ψk − ψblk − lb

∣∣∣∣2
] 1

2

+
4(p− 1)p

n2
E

[
sup
p∈N∗

max
1≤k≤p

∣∣∣∣ψklk
∣∣∣∣2
] 1

2

E

sup
p∈N∗

max
1≤k
6=b≤p

∣∣∣∣ lk
lk − lb

(
∂ψk
∂lk
− ∂ψb
∂lb

)∣∣∣∣2
 1

2

+
4(p− 1)p

n2
E

[
sup
p∈N∗

max
1≤k≤p

∣∣∣∣ψklk
∣∣∣∣2
] 1

2

E

sup
p∈N∗

max
1≤k
6=b≤p

∣∣∣∣ lk
lk − lb

(
∂ψk
∂lk
− ∂ψb
∂lk

)∣∣∣∣2
 1

2

− 4p

n
E

[
sup
p∈N∗

max
1≤k≤p

∣∣∣∣∂ψk∂lk

∣∣∣∣] .
Again, one can proceed like in the weak case to see that if Γ̂ satisfies its strong

regularity conditions and Σ̂ ∈ Ṽp(Γ̂), we get lim
n→∞

E
[∣∣F (Σ̂)

∣∣] <∞ and

lim
n→∞

pE
[∣∣G(Σ̂)

∣∣] <∞ as lim
n→∞

pn
n
∈ (0, 1), as desired.

Proof of Proposition 8. First note any element of C∞c (Hp;R), the space of

smooth, compactly supported functions from Hp to R, satisfies the weak regu-

larity conditions of Definition 2 for any weak Γ̂. Now, if Σ̃ is a minimum over

Vp(Γ̂), then for any η ∈ C∞c (Hp
+;R) and any t ∈ R, σ̃2 + tη satisfies the Γ̂-weak
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regularity conditions too and ε → E
[
F (Γ̂ + [σ̃2 + tη]I)

]
is smooth over R with a

minimum at t = 0. But we find that the first variation satisfies

∂

∂t
E
[
F (Γ̂ + [σ̃2 + tη]I)

] ∣∣∣∣
t=0

= E

[
η ·

(
2

(n− p− 1)(n− p− 2)

n2p

ρ̂∑
k=1

γ̂k
l2k

+2
(n− p− 1)(n− p− 2)

n2p

p∑
c=1

σ̃2

l2c
− 2

n− p− 1

n2p

p∑
c=1

1

lc

ρ̂∑
k=1

γ̂k
lk

−2
n− p− 1

n2p

p∑
c=1

1

lc

p∑
c=1

σ̃2

lc
+ 4

n− p− 1

n2p

ρ̂∑
k=1

p∑
c=ρ̂+1

1

lc

γ̂k
lk − lc

− 6

n2p

ρ̂∑
k 6=b

p∑
c=ρ̂+1

1

lk − lc
γ̂b

lb − lc
+

6

n2p

ρ̂∑
k=1

p∑
c 6=d=ρ̂+1

1

lk − lc
γ̂k

lk − ld

+
6

n2p

ρ̂∑
k 6=b

p∑
c=ρ̂+1

γ̂k − γ̂b
lk − lb

1

lk − lc
− 2

n− p− 1

np

p∑
c=1

1

lk

)]

= E
[
η · F1

[
l, ρ̂, γ̂, σ̃2

]]
=

∫
Hp

η(l1, ..., lp)F1

[
l, ρ̂, γ̂, σ̃2

]
· fl1,...,lp(l1, ..., lp)

p∏
i=1

dli, (4.14)

where fl1,...,lp(l1, ..., lp) stands for the p.d.f. of l1 > ... > lp. Now, if this equals

zero for all η ∈ C∞c (Hp
+;R), by the fundamental lemma of calculus of variations

(see, say, Giaquinta and Hildebrandt [1996] ch. 2.2) we obtain F1

[
l, ρ̂, γ̂, σ̃2

]
·

fl1,...,lp(l1, ..., lp) ≡ 0, that is, F1

[
l, ρ̂, γ̂, σ̃2

]
≡ 0. This implies σ̃2 = A/B.

For the second statement, notice that by construction, the space of Γ̂-weak

noise estimators is convex; let σ̂2 be some arbitrary element. Define H : [0, 1]→ R

to be the smooth function

H(t) = E
[
F (Γ̂ + [σ̃2 + t(σ̂2 − σ̃2)]I)

]
.

Notice that, for F1 as in eq. (4.14),

H ′(0) = E
[
(σ̂2 − σ̃2) · F1

[
l, ρ̂, γ̂, σ̃2

]]
= 0,
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since σ̃2 = A/B. Moreover,

H ′′(t) =
∂2

∂t2
E
[
F (Γ̂r + [σ̃2 + t(σ̂2 − σ̃2)]I)

]
= 2

n− p− 1

n2p
E

(σ̂2 − σ̃2
)2

(n− p− 2)

p∑
c=1

1

l2c
−

(
p∑
c=1

1

lc

)2
 (4.15)

≥ 2
(n− p− 1)(n− 2p− 2)

n2p2
E

(σ̂2 − σ̃2
)2

(
p∑
c=1

1

lc

)2
 (

Jensen’s

inequality

)

≥ 0,

for n ≥ 2p+ 2. Therefore, by integration by parts

E
[
F (Γ̂ + σ̂2I)

]
− E

[
F (Γ̂ + σ̃2I)

]
= H(1)−H(0) =

∫ 1

0

(1− t)H ′′(t) dt ≥ 0.

Since this is true for any Γ̂-weak noise estimator σ̂2, we conclude that Σ̃ is a

minimum over Vp(Γ̂), as desired.

4.6.2 Proofs for Section 4.3

Proof of Lemma 4. To simplify notation in what follows, define c± = [1±
√
c]2.

In the proof of Theorem 2.3 in Nadler [2008], p. 2807, it is remarked that for σ2 = 1

and ρ = 1, the empirical distribution of l2, ..., lp converges a.s. to a Marčenko-

Pastur distribution with parameter c. That is, for the truncated empirical spectral

measure dµp = 1
p−ρ
∑p

c=ρ+1 dδli (where the δ are Dirac measures) we have weak

convergence dµp ⇒ dµMP(c) a.s. where

dµMP(c) =

√
(c+ − t)(t− c−)

2πct
1

[
c− ≤ t ≤ c+

]
dt.

As noted by the author, the argument carries on for ρ 6= 1, and if σ 6= 1 we can

apply the argument to lρ+1/σ
2, ..., lp/σ

2 to obtain dµp ⇒ dµσ2MP(c) a.s., where

dµσ2MP(c) =

√
(σ2c+ − t)(t− σ2c−)

2πcσ2t
1

[
σ2c− ≤ t ≤ σ2c+

]
dt.
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Part (i) Applying the results of Baik and Silverstein [2006], Theorem 1.1 to lk/σ
2

and lρ+1/σ
2 we obtain:

lk
a.s.−−−→
n→∞

(γk + σ2)(γk + cσ2)

γk
, lρ+1

a.s.−−−→
n→∞

c+σ
2.

We will write l̄k = (γk + σ2)(γk + cσ2)/γk to simplify notation. Let the underlying

sample space be denoted Ω. Since γρ >
√
cσ2, we have l̄k−c+σ

2 = M for some M >

0. Therefore, for almost all ω ∈ Ω, there exists an N1(ω) such that ∀n > N(ω),

lpk(ω)−lpp(ω) > ... > lpk(ω)−lpρ+1(ω) > M/2 and lpp(ω) < ... < lpρ+1(ω) < c+σ
2+M/2.

Moreover, for any ε > 0, there must be an N2(ω) such that for all n > N2(ω, ε),

|l̄k − lpk(ω)| < ε. Notice that we can write, for any n > N1(ω) ∨N2(ω, ε),

1

p− ρ

p∑
c=ρ+1

lpc(ω)

lpk(ω)− lpc(ω)
=

1

p− ρ

p∑
c=ρ+1

[l̄k − lpk(ω)]lpc(ω)

[lpk(ω)− lpc(ω)][l̄k − lpc(ω)]

+

∫
(0,c+σ2+M

2
)

t

l̄k − t
dµp(t, ω),

and ∣∣∣∣∣ 1

p− ρ

p∑
c=ρ+1

[l̄k − lpk(ω)]lpc(ω)

[lpk(ω)− lpc(ω)][l̄k − lpc(ω)]

∣∣∣∣∣ <
[

4

M2
c+σ

2 +
2

M

]
ε. (4.16)

But 0 < t/(l̄k − t) < 1 + 2c+σ
2/M on t ∈ (0, c+σ

2 + M
2

), and it is certainly contin-

uous. Therefore, by the portmanteau theorem of weak convergence of measures,

lim
n→∞

∫
(0,c+σ2+M

2
)

t

l̄k − t
dµp(t, ω) =

∫
(0,c+σ2+M

2
)

t

l̄k − t
dµσ2MP(c)(t)

=

∫ c+σ2

c−σ2

t

l̄k − t

√
(σ2c+ − t)(t− σ2c−)

2πcσ2t
dt

=
2σ2

l̄k − (c+ 1)σ2 +
√

[l̄k − (c+ 1)σ2]2 − 4cσ4

. (4.17)

But by definition, l̄k = (γk+σ2)(γk+cσ2)/γk which can be rewritten as a quadratic

equation in γk,

γ2
k − [(l̄k − (c+ 1)σ2]γk + cσ4 = 0.
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The roots are

1

2
[l̄k − (c+ 1)σ2]± 1

2

√
[l̄k − (c+ 1)σ2]2 − 4cσ4,

and notice that twice the negative root satisfies

[l̄k − (c+ 1)σ2]−
√

[l̄k − (c+ 1)σ2]2 − 4cσ4

= [l̄k − (c+ 1)σ2]

−
√(

[l̄k − (c+ 1)σ2]− 2
√
cσ2
) (

[l̄k − (c+ 1)σ2] + 2
√
cσ2
)

≤ [l̄k − (c+ 1)σ2]− [l̄k − (c+ 1)σ2] + 2
√
cσ2

= 2
√
cσ2.

Therefore, γk cannot equal the negative root, because it would imply γk ≤
√
cσ2,

a contradiction. So γk equals the positive root, which, plugged in eq. (4.17), yields

lim
n→∞

∫
(0,c+σ2+M

2
)

t

l̄k − t
dµp(t, ω) =

σ2

γk
.

Hence, for some N3(ω, ε), we have for all n > N3(ω, ε)∣∣∣∣∣
∫

(0,c+σ2+M
2

)

t

l̄k − t
dµp(t, ω)− σ2

γk

∣∣∣∣∣ < ε.

Therefore, from eq. (4.16), we obtain that for n > N1(ω) ∨N2(ω, ε) ∨N3(ω, ε)∣∣∣∣∣ 1

p− ρ

p∑
c=ρ+1

lpc(ω)

lpk(ω)− lpc(ω)
− σ2

γk

∣∣∣∣∣ <
[

4

M2
c+σ

2 +
2

M
+ 1

]
ε.

Since ε > 0 is arbitrary, we conclude that for almost all ω ∈ Ω,

lim
n→∞

1

p− ρ

p∑
c=ρ+1

lpc(ω)

lpk(ω)− lpc(ω)
=
σ2

γk
,

as desired.

Part (ii) The proof is similar in spirit to the previous one, but simpler. Applying

the results of Baik and Silverstein [2006], Theorem 1.1 to lp/σ
2 we obtain:

lp
a.s.−−−→
n→∞

c−σ
2.
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Therefore, for almost all ω ∈ Ω, there is a N(ω) such that ∀n > N(ω), lpρ+1(ω) >

... > lpp(ω) > c−σ
2/2. Hence, for n > N(ω),

1

p− ρ

p∑
c=ρ+1

1

lpmc (ω)
=

∫
(
c−σ2

2
,∞

) 1

tm
dµp(t, ω),

Certainly, 0 < 1/tm <
(

2
c−σ2

)m
for t ∈

(
c−σ2

2
,∞
)

, and 1/tm is continuous there.

Thus, by the portmanteau theorem of weak convergence of measures, we have for

almost all ω

lim
n→∞

1

p− ρ

p∑
c=ρ+1

1

lpmc (ω)
=

∫
(
c−σ2

2
,∞

) 1

tm
dµσ2MP(c)(t)

=

∫ c+σ2

c−σ2

1

tm

√
(σ2c+ − t)(t− σ2c−)

2πcσ2t
dt

=
1

(1− c)2m−1

1

σ2m
,

which concludes the proof.

Proof of Theorem 7. Recall the definition of σ̃2 as A/B from proposition 8.

Part (i) It follows easily from the Lemma 4 that

A
a.s.−−−→
n→∞

1

σ2
and B

a.s.−−−→
n→∞

1

σ4
. (4.18)

The result then follows immediately.

Part (ii) Denote by γ̄k the a.s. finite limit lim
n→∞

γ̂k. By writing A = n−p−1
np

p∑
c=1

1
lc

+En,
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we find

n(σ̃2 − σ2)

= nσ2


n−p−1
np

p∑
c=1

σ2

lc

(n−p−1)(n−p−2)
n2p

p∑
c=1

σ4

l2c
− (n−p−1)p

n2

(
1
p

p∑
c=1

σ2

lc

)2 − 1

+
nEn
B

=
σ2

σ4B

[
n

(
n− p− 1

np

p∑
c=1

σ2

lc
− 1

)

+n

(
1

1− p−ρ̂
n

− (n− p− 1)(n− p− 2)

n2p

p∑
c=1

σ4

l2c

)

+n

(n− p− 1)p

n2

(
1

p

p∑
c=1

σ2

lc

)2

−
p−ρ̂
n

1− p−ρ̂
n

+
nEn
B

. (4.19)

First consider nEn. We know the asymptotic behavior of all terms except

3
np

ρ̂∑
k=1

p∑
c 6=d=r+1

1
lk−lc

γ̂k
lk−ld

, which we can crudely bound as

0 <
3

np

ρ̂∑
k=1

p∑
c 6=d=ρ̂+1

1

lk − lc
γ̂k

lk − ld
<

3

np

ρ̂∑
k=1

γ̂k

(
p∑

c=ρ̂+1

1

lk − lc

)2

.

Therefore, we obtain that

(1− c)2

c

ρ̂∑
k=1

γ2
k γ̄k

(γk + σ2)2(γk + cσ2)2
+

1

σ2

ρ̂∑
k=1

γkγ̄k
(γk + σ2)(γk + cσ2)

− 2
1

σ2

ρ̂∑
k=1

γkγ̄k
(γk + cσ2)2

≥ lim
n→∞

nEn ≥

(1− c)2

c

ρ̂∑
k=1

γ2
k γ̄k

(γk + σ2)2(γk + cσ2)2
+

1

σ2

ρ̂∑
k=1

γkγ̄k
(γk + σ2)(γk + cσ2)

− 2
1

σ2

ρ̂∑
k=1

γkγ̄k
(γk + cσ2)2

− 3c

ρ̂∑
k=1

γ̄k
(γk + cσ2)2

(4.20)

almost surely, using the results of Lemma 4 and Baik and Silverstein [2006], The-
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orem 1.1. Now notice that

n

(
n− p− 1

np

p∑
c=1

σ2

lc
− 1

)

= n

[
n− p− 1

np

p∑
c=1

σ2

lc
− n− p− 1

n(1− p−ρ
n

)
+

n− p− 1

n(1− p−ρ
n

)
− 1

]

=

(
1− p

n
− 1

n

)
n

[
1

p

p∑
c=1

σ2

lc
− 1

1− p−ρ
n

]
− n(ρ+ 1)

n− p
(4.21)

and

n

(
1

1− p
n

− (n− p− 1)(n− p− 2)

n2p

p∑
c=1

σ4

l2c

)

= n

(
n

n− p
− (n− p− 1)(n− p− 2)

n2(1− p−ρ
n

)3

+
(n− p− 1)(n− p− 2)

n2(1− p−ρ
n

)3
− (n− p− 1)(n− p− 2)

n2p

p∑
c=1

σ4

l2c

)

=

(
1− p

n
− 1

n

)(
1− p

n
− 2

n

)
n

[
1

(1− p−ρ
n

)3
− 1

p

p∑
c=1

σ4

l2c

]

+
ρn2

(n− p)(n− p+ ρ)
+

(2r + 3)n2

(n− p+ ρ)2
− (ρ2 + 3r + 2)n2

(n− p+ ρ)3
. (4.22)

Moreover,

n

(n− p− 1)p

n2

(
1

p

p∑
c=1

σ2

lc

)2

−
p−ρ
n

1− p−ρ
n


= n

(
(n− p− 1)p

n2

(
1

p

p∑
c=1

σ2

lc

)2

− (n− p− 1)p

n2

1

(1− p−ρ
n

)2

+
(n− p− 1)p

n2

1

(1− p−ρ
n

)2
−

p−ρ
n

1− p−ρ
n

)

=

(
1− p

n
− 1

n

)
p

n
n

(1

p

p∑
c=1

σ2

lc

)2

− 1

(1− p−ρ
n

)2


+

ρn

n− p+ ρ
− (ρ+ 1)pn

(n− p+ ρ)2

=

(
1− p

n
− 1

n

)
p

n

[
1

p

p∑
c=1

σ2

lc
+

1

1− p−ρ
n

]
n

[
1

p

p∑
c=1

σ2

lc
− 1

1− p−ρ
n

]
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+
ρn

n− p+ ρ
− (ρ+ 1)pn

(n− p+ ρ)2
. (4.23)

Now, divide the sample covariance matrix as

Sn = σ2


S11
n S12

n

S21
n S22

n


with S11

n ρ× ρ. Then S22
n has a Wp−ρ(n, I) distribution – let µ1 > ... > µp−ρ be its

eigenvalues and notice that by Cauchy’s interlacing theorem, li > σ2µi > li+ρ for

all i = 1, ..., p− ρ. Therefore, we have

p− ρ
p

n

[
1

p− ρ

p−ρ∑
c=1

1

µc
− 1

1− p−ρ
n

]
+ ρ

n

p

σ2

lp
− ρn2

(n− p+ ρ)p

≥ n

[
1

p

p∑
c=1

σ2

lc
− 1

1− p−ρ
n

]
≥

p− ρ
p

n

[
1

p− ρ

p−ρ∑
c=1

1

µc
− 1

1− p−ρ
n

]
+
n

p

ρ∑
c=1

σ2

lc
− ρn2

(n− p+ ρ)p
(4.24)

and

p− ρ
p

n

[
1

p− ρ

p−ρ∑
c=1

1

µ2
c

− 1

(1− p−ρ
n

)3

]
+ ρ

n

p

σ4

l2p
− ρn4

(n− p+ ρ)3p

≥ n

[
1

p

p∑
c=1

σ4

l2c
− 1

(1− p−ρ
n

)3

]
≥

p− ρ
p

n

[
1

p− ρ

p−ρ∑
c=1

1

µ2
c

− 1

(1− p−ρ
n

)3

]
+
n

p

ρ∑
c=1

σ4

l2c
− ρn4

(n− p+ ρ)3p
. (4.25)

Consequently, let us study the quantities

n

[
1

p− ρ

p−ρ∑
c=1

1

µc
− 1

1− p−ρ
n

]
and n

[
1

p− ρ

p−ρ∑
c=1

1

µ2
c

− 1

(1− p−ρ
n

)3

]
.

We use Theorem 1.1 in Bai and Silverstein [2004]. First notice that, in our white

Wishart case, what they write F c,H is the c.d.f. of a Marčenko-Pastur distribution
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with parameter c. Let cn = (p− ρ)/n - then

∫
1

x
dGn(x) = n

[∫
1

x
dF S22

n (x)−
∫

1

x
dF cn,F I (x)

]

= n

 1

p− ρ

p−ρ∑
c=1

1

µc
−

∫
[1+
√
cn]2

[1−√cn]2

√
([1 +

√
cn]2 − t)(t− [1−√cn]2)

2πcnt2
dt



= n

[
1

p− ρ

p−ρ∑
c=1

1

µc
− 1

(1− p−ρ
n

)2

]

and

∫
1

x2
dGn(x) = n

[∫
1

x2
dF S22

(x)−
∫

1

x2
dF cn,F I (x)

]

= n

 1

p− ρ

p−ρ∑
c=1

1

µ2
c

−

∫
[1+
√
cn]2

[1−√cn]2

√
([1 +

√
cn]2 − t)(t− [1−√cn]2)

2πcnt3
dt



= n

[
1

p− ρ

p−ρ∑
c=1

1

µ2
c

− 1

(1− p−ρ
n

)3

]
.

But according to the theorem, as pn/n→ c ∈ (0, 1)(∫
1

x
dGn(x),

∫
1

x2
dGn(x)

)
D−−−→

n→∞
N2

(
µ̃, Σ̃

)
where the components of µ̃ and Σ̃ are given by eq. (1.6) and (1.7) in the theorem

statement (Bai and Silverstein [2004] p. 558). To compute these, we follow the

arguments of Section 5 from the same paper. According to eq. (5.13) from p. 598,
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we find

µ̃1 =
1

4

[
1

[1−
√
c]2

+
1

[1 +
√
c]2

]
− 1

2π

∫ [1+
√
c]2

[1−
√
c]2

dt

t
√

4c− (t− 1− c)2
,

µ̃2 =
1

4

[
1

[1−
√
c]4

+
1

[1 +
√
c]4

]
− 1

2π

∫ [1+
√
c]2

[1−
√
c]2

dt

t2
√

4c− (t− 1− c)2
,

and the integrals give, after a Poisson substitution t = 1 + c− 2
√
c cos θ,

1

2π

∫ [1+
√
c]2

[1−
√
c]2

dt

t
√

4c− (t− 1− c)2
=

1

2π

∫ π

0

dθ

1 + c− 2
√
c cos θ

=
1

2π

[
2

1− c
arctan

(
1 +
√
c

1−
√
c

tan(θ/2)

)]π
0

=
1

2π

[
2

1− c
π

2
− 0

]
=

1

2(1− c)
,

1

2π

∫ [1+
√
c]2

[1−
√
c]2

dt

t2
√

4c− (t− 1− c)2
=

1

2π

∫ π

0

dθ

(1 + c− 2
√
c cos θ)2

=
1

2π

[
2(1 + c)

(1− c)3
arctan

(
1 +
√
c

1−
√
c

tan(θ/2)

)
+

1

(1− c)2

2
√
c sin θ

1 + c− 2
√
c cos θ

]π
0

=
1

2π

[
2(1 + c)

(1− c)3

π

2
+ 0− 0− 0

]
=

1 + c

2(1− c)3
.

Therefore, we obtain

µ̃1 =
1 + c

2[1−
√
c]2[1 +

√
c]2
− 1

2(1− c)
=

c

(1− c)2
,

µ̃2 =
1 + 6c+ c2

2[1−
√
c]4[1 +

√
c]4
− 1 + c

2(1− c)3
=
c(c+ 3)

(1− c)4
.

For the variances, according to (1.16), p. 564, we can write

Σ̃11 = − 1

2π2

∮
C1

∮
C2

dm1dm2

z(m1)z(m2)(m1 −m2)2
,

Σ̃12 = − 1

2π2

∮
C1

∮
C2

dm1dm2

z(m1)2z(m2)(m1 −m2)2
,

Σ̃22 = − 1

2π2

∮
C1

∮
C2

dm1dm2

z(m1)2z(m2)2(m1 −m2)2
,

where C1, C2 are contours that can be chosen counterclockwise, nonintersecting

and enclosing 1/(c−1) (cf. p. 598), and where z(m) stands for the inverse Stieltjes
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transform of the complimentary Marčenko-Pastur distribution, which has closed

form

z(m) = − 1

m
+

c

1 +m
.

We first find:∮
C1

dm1

z(m1)(m1 −m2)2
= − 1

1− c

∮
C1

m1(m1 + 1)

(m1 −m2)2

dm1

m1 − 1/(c− 1)

= − 2πci

(1− c)3

1

[m2 − 1/(c− 1)]2
,∮

C1

dm1

z(m1)2(m1 −m2)2
=

1

(1− c)2

∮
C1

m2
1(m1 + 1)2

(m1 −m2)2

dm1

[m1 − 1/(c− 1)]2

= −4πi
c

(1− c)5

1

[m2 − 1/(c− 1)]2
.

But then, ∮
C2

dm2

z(m2)[m2 − 1/(c− 1)]2
= − 1

1− c

∮
C2

m2(m2 + 1)dm2

[m2 − 1/(c− 1)]3

= −2πi
2

2!(1− c)
= −2πi

1

1− c∮
C2

dm2

z(m2)2[m2 − 1/(c− 1)]2
=

1

(1− c)2

∮
C2

m2
2(m2 + 1)2dm2

[m2 − 1/(c− 1)]4

= 2πi
12(1− 2/(1− c))

3!(1− c)2
= −4πi

1 + c

(1− c)3
.

Therefore,

Σ̃11 =
2c

(1− c)4
, Σ̃12 =

4c

(1− c)6
and Σ̃22 =

8c(1 + c)

(1− c)8
.

In summary, (∫
1

x
dGn(x),

∫
1

x2
dGn(x)

)
D−−−→

n→∞
N2


 c

(1−c)2

c(c+3)
(1−c)4

 ,
 2c

(1−c)4
4c

(1−c)6

4c
(1−c)6

8c(1+c)
(1−c)8


 . (4.26)
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Therefore, going back to eq. (4.19) and ineq. (4.21), (4.22), (4.23), (4.24) and

(4.25), we have the upper bound

n(σ̃2 − σ2)

=
σ2

σ4B

[(
1− p

n
− 1

n

)
n

[
1

p

p∑
c=1

σ2

lc
− 1

1− p−ρ
n

]

−n(ρ+ 1)

n− p

−
(

1− p

n
− 1

n

)(
1− p

n
− 2

n

)
n

[
1

p

p∑
c=1

σ4

l2c
− 1

(1− p−ρ
n

)3

]

+
ρn2

(n− p)(n− p+ ρ)
+

(2ρ+ 3)n2

(n− p+ ρ)2
− (ρ2 + 3ρ+ 2)n2

(n− p+ ρ)3

+

(
1− p

n
− 1

n

)
p

n

[
1

p

p∑
c=1

σ2

lc
+

1

1− p−ρ
n

]
n

[
1

p

p∑
c=1

σ2

lc
− 1

1− p−ρ
n

]

+
rn

n− p+ ρ
− (ρ+ 1)pn

(n− p+ ρ)2

]
+
nEn
B

≤ σ2

σ4B

[(
1− p

n
− 1

n

)
p− ρ
p

n

[
1

p− ρ

p−ρ∑
c=1

1

µc
− 1

1− p−ρ
n

]
− n(ρ+ 1)

n− p

+

(
1− p

n
− 1

n

)
ρ
n

p

σ2

lp
−
(

1− p

n
− 1

n

)
ρn2

(n− p+ ρ)p

−
(

1− p

n
− 1

n

)(
1− p

n
− 2

n

)
p− ρ
p

n

[
1

p− ρ

p−ρ∑
c=1

1

µ2
c

− 1

(1− p−ρ
n

)3

]

−
(

1− p

n
− 1

n

)(
1− p

n
− 2

n

)
n

p

ρ∑
c=1

σ4

l2c

+

(
1− p

n
− 1

n

)(
1− p

n
− 2

n

)
ρn4

(n− p+ ρ)3p

+
ρn2

(n− p)(n− p+ ρ)
+

(2ρ+ 3)n2

(n− p+ ρ)2
− (ρ2 + 3ρ+ 2)n2

(n− p+ ρ)3

+

(
1− p

n
− 1

n

)
p

n

[
1

p

p∑
c=1

σ2

lc
+

1

1− p−ρ
n

]
·

p− ρ
p

n

[
1

p− ρ

p−ρ∑
c=1

1

µc
− 1

1− p−ρ
n

]

+

(
1− p

n
− 1

n

)
p

n

[
1

p

p∑
c=1

σ2

lc
+

1

1− p−ρ
n

]
ρ
n

p

σ2

lp
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−
(

1− p

n
− 1

n

)
p

n

[
1

p

p∑
c=1

σ2

lc
+

1

1− p−ρ
n

]
ρn2

(n− p+ ρ)p

+
ρn

n− p+ ρ
− (ρ+ 1)pn

(n− p+ ρ)2

]
+
nEn
B

=
σ2

σ4B

(
a

(n)
1 n

[
1

p− ρ

p−ρ∑
c=1

1

µc
− 1

1− c

]
+ a

(n)
2 n

[
1

p− ρ

p−ρ∑
c=1

1

µ2
c

− 1

(1− c)3

]

+b(n)
)

+
nEn
B

.

Now note that

a
(n)
1

a.s.→ 1 + c, a
(n)
2

a.s.→ −(1− c)2,

b(n) a.s.→ 2c(ρ+ 1)− 1

(1− c)2
+

(2− c)(1 + c)ρ

(1−
√
c)2

− (1− c)2

c

ρ∑
k=1

σ4γ2
k

(γk + σ2)2(γk + cσ2)2

using Lemma 4 and Baik and Silverstein [2006], Theorem 1.1. Therefore, using

Slutsky and eq. (4.26),

a
(n)
1 n

[
1

p− ρ

p−ρ∑
c=1

1

µc
− 1

1− c

]
+ a

(n)
2 n

[
1

p− ρ

p−ρ∑
c=1

1

µ2
c

− 1

(1− c)3

]
+ b(n)

D−→ N

(
µ,

2c(1 + c)2

(1− c)4

)
,

with

µ =
(2− c)(1 + c)ρ

(1−
√
c)2

+
2cρ− 1

(1− c)2
− (1− c)2

c

ρ∑
k=1

σ4γ2
k

(γk + σ2)2(γk + cσ2)2
.

Therefore, using eq. (4.18) and (4.20) we obtain n(σ̃2 − σ2) ≤ X+
n with X+

n
D−−−→

n→∞

N
(
µ+, 2c(1+c)2σ4

(1−c)4

)
, where

µ+ =
(2cρ− 1)σ2

(1− c)2
+

(2− c)(1 + c)ρσ2

(1−
√
c)2

− (1− c)2

c

ρ∑
k=1

σ6γ2
k

(γk + σ2)2(γk + cσ2)2

+
(1− c)2

c

ρ∑
k=1

γ2
k γ̄kσ

4

(γk + σ2)2(γk + cσ2)2
+

ρ∑
k=1

γkγ̄kσ
2

(γk + σ2)(γk + cσ2)

− 2

ρ∑
k=1

γkγ̄kσ
2

(γk + cσ2)2
. (4.27)
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The same argument can be done to obtain a lower bound. Using eq. (4.19), (4.21),

(4.22), (4.23), (4.24) and (4.25) again, we get

n(σ̃2 − σ2) ≤ σ2

σ4B

(
a

(n)
1 n

[
1

p− ρ

p−ρ∑
c=1

1

µc
− 1

1− c

]

+a
(n)
2 n

[
1

p− ρ

p−ρ∑
c=1

1

µ2
c

− 1

(1− c)3

]
+ b(n)

)
+
nEn
B

where

a
(n)
1

a.s.→ 1 + c, a
(n)
2

a.s.→ −(1− c)2,

b(n) a.s.→ 2c(ρ+ 1)− 1

(1− c)2
− (1− c)2ρ

c(1−
√
c)2

+
1 + c

c

ρ∑
k=1

σ2γk
(γk + σ2)(γk + cσ2)

Therefore, again using eq. (4.18) and (4.20) we obtain that n(σ̃2−σ2) ≥ X−n with

X−n
D−−−→

n→∞
N
(
µ−, 2c(1+c)2σ4

(1−c)4

)
, where

µ− =
(2cρ− 1)σ2

(1− c)2
− (1− c)2ρσ2

c(1−
√
c)2

+
1 + c

c

ρ∑
k=1

σ4γk
(γk + σ2)(γk + cσ2)

+
(1− c)2

c

ρ∑
k=1

γ2
k γ̄kσ

4

(γk + σ2)2(γk + cσ2)2
+

ρ∑
k=1

γkγ̄kσ
2

(γk + σ2)(γk + cσ2)

− 2

ρ∑
k=1

γkγ̄kσ
2

(γk + cσ2)2
− 3c

ρ∑
k=1

γ̄kσ
4

(γk + cσ2)2
. (4.28)

This concludes the proof.

Proof of Lemma 5. Let Σ′ ∈ Br(Σ, 2M), and write λi = λi(Σ), λ′i = λ′i(Σ
′
p) to

simplify notation. Since the sequences are spiked, there are a finite number of

different eigenvalues as n→∞. We can decompose

N(0,Σp)
n =

p⊗
i=1

N(0, λi)
n, N(0,Σ′p)

n =

p⊗
i=1

N(0, λ′i)
n.

Let λ be the Lebesgue measure on R. Writing the Hellinger affinity between two

densities f, g as α(f, g) =
∫ √

fgdλ, we have by Cauchy-Schwarz

δTV
(
f, g
)2

= 4(

∫
|f − g|dλ)2 ≤ 1

4

(
1− α(f, g)

)(
1 + α(f, g)

)
= (1− α(f, g)2)
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Now for two normals, we have

α
(
N(0, a2),N(0, b2)

)2
=

2ab

a2 + b2

and since Hellinger affinity distributes over a product of independent densities, we

get

δTV

(
N(0,Σp)

n,N(0,Σ′p)
n

)2

≤ 1−
p∏
i=1

(
2
√
λiλ′i

λi + λ′i

)n

Now note that
2
√
λiλ′i

λi+λ′i
>

√
1−2M/nr

1−M/nr
if and only if λi(1 − 2M

nr
) < x < λi(1 +

2M
nr(1−2M/nr)

). By definition, Σ′ ∈ Br(Σ, 2M) means |λi − λ′i| < 2Mλi
nr

for all i,

so we have the bound

< 1−

(√
1− 2M/nr

1−M/nr

)np

= 1−
(

1− M2

n2r(1−M/nr)2

)np/2
over all Σ′ ∈ Br(Σ, 2M). Taking a supremum and a limit yields

lim
n→∞

sup
Σ′∈B1(Σ,2M)

δTV

(
N(0,Σp)

n,N(0,Σ′p)
n

)2

≤ lim
n→∞

[
1−

(
1− M2

n2(1−M/n)2

)np/2]
= 1− e−cM2/2

and

lim
n→∞

sup
Σ′∈Br(Σ,2M)

δTV

(
N(0,Σp)

n,N(0,Σ′p)
n

)2

= 0,

as desired.

Proof of Theorem 8. Define Σ′p = (1− 2Mε

n
)Σp. We have

|σ2 − σ2′| = 2σ2Mε

n
. (4.29)

Moreover, according to Lemma 5, we have

lim
n→∞

δTV

(
N(0,Σp)

n,N(0,Σ′p,M)n
)
≤

√
1− exp

(
−cM

2
ε

2

)
= 1− 4ε,
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so for some Nε we have δTV < 1 − 2ε for all n ≥ Nε. Now note that Σ′p ∈

B1(Σp,
2Mε

n
‖Σp‖2). Say for some σ̂2 we have

sup
Σ′∈B1(Σ,2Mε)

PΣ′p

[
|σ̂2 − σ2′| ≥ σ2Mε

n

]
< ε. (4.30)

Define the event A =
[
|σ̂2 − σ2| ≤ σ2Mε

n

]
- then by (4.29) and (4.30) we find

PΣp [A] ≥ 1− ε and PΣ′p [A] < ε. Therefore,

δTV

(
N(0,Σp)

n,N(0,Σ′p,M)n
)
≥ PΣp [A]− PΣ′p [A] ≥ 1− 2ε

which contradicts δTV < 1− 2ε for all n ≥ Nε - therefore,

sup
Σ′∈B1(Σ,2Mε)

PΣ′p

[
|σ̂2 − σ2′| ≥ σ2Mε

nr

]
≥ ε

for all σ̂2 and n ≥ Nε, yielding the desired result.

Proof of Proposition 9. We have:

PΣ′p

[
|σ̃2 − σ2′| ≥ σ2M

nr

]
≤ PΣp

[
|σ̃2 − σ2′| ≥ σ2M

nr

]
+

∣∣∣∣PΣp

[
|σ̃2 − σ2′| ≥ σ2M

nr

]
− PΣ′p

[
|σ̃2 − σ2′| ≥ σ2M

nr

] ∣∣∣∣
= Ap +Bp.

Choose any Σ′ ∈ Br(Σ, 2M) and write λi = λi(Σ), λ′i = λ′i(Σ
′
p). Using Lemma 5,

we find for the second term

lim
n→∞

sup
Σ∈Br(Σ,2M)

Bp ≤ lim
n→∞

sup
Σ′∈Br(Σ,2M)

δTV

(
N(0,Σp)

n,N(0,Σ′p)
n

)
= 0.
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For the first term, let us use Theorem 7. Since |σ2′ − σ2| < σ2M/nr, we have

sup
Σ∈B(Σ,2M)

Ap ≤ PΣp

[
n
∣∣σ̃2 − σ2

∣∣ > σ2 M

nr−1

]
≤ PΣp

[
(1− c)2

√
2c(1 + c)σ2

(
X+
n − µ+

)
>

(1− c)2(−2σ2µ+ +M/nr−1)

2
√

2c(1 + c)

]
+ PΣp

[
(1− c)2

√
2c(1 + c)σ2

(
X−n − µ−

)
<

(1− c)2(−2σ2µ− −M/nr−1)

2
√

2c(1 + c)

]
n→∞−−−→ 1− Φ(∞) + Φ(−∞) = 0.

This concludes the proof.

4.6.3 Proofs for Section 4.4

Proof of proposition 10. We first notice that, from Lemma 4 and Theorem 7,

for any 1 ≤ k ≤ ρ we have

γ̂ρ,k
a.s.−−−→
n→∞

γk, σ̃2
ρ

a.s.−−−→
n→∞

σ2. (4.31)

Denote as usual the unbiased risk estimator of Theorem 6 at Γ̂r + σ̃2
rIp by Fr +Gr.

By their definitions and Lemma 4, we see that

Fρ +Gρ
a.s.−−−→
n→∞

0.

Thus there exists a N1 (random) such that ρ ∈
{
r | |Fr +Gr| ≤ p+1

n

}
for all

n ≥ N1. Now note that there is a N2 (also random) such that for all n ≥ N2,{
1[r<p]
lr+1

(1+
√
p/n)2

p−r

p∑
c=r+1

lc ≥ 1

}
= {ρ}. Thus for all n ≥ N1 ∨N2,

ρ̂ = min{ρ} = ρ,

so in particular ρ̂
a.s.−−−→
n→∞

ρ. Thus, by eq. (4.31) and any ε > 0 there exists a N3

random such that for all n ≥ N1 ∨N2 ∨N3, k < p and |γ̂ρ̂,k − γk| = |γ̂ρ,k − γk| < ε.

That is, γρ̂,k
a.s.−−−→
n→∞

γk. Finally, again by eq. (4.31) for all ε > 0, there exists a N3
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random such that for all n ≥ N1 ∨N2 ∨N3, |σ̃2 − σ2| = |σ̃2
ρ̂ − σ2| = |σ̃2

ρ − σ2| < ε,

i.e. σ̃2 a.s.−−−→
n→∞

σ2, as desired.
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