
Genus: Making Generics
Object-Oriented, Expressive, and Lightweight

Technical Report

Yizhou Zhang∗ Matthew C. Loring∗ Guido Salvaneschi†

Barbara Liskov‡ Andrew C. Myers∗

∗Cornell University †TU Darmstadt ‡MIT

June, 2015

Abstract

The support for generic programming in modern object-oriented programming languages is awk-
ward and lacks desirable expressive power. We introduce an expressive genericity mechanism that adds
expressive power and strengthens static checking, while remaining lightweight and simple in common
use cases. Like type classes and concepts, the mechanism allows existing types to model type constraints
retroactively. For expressive power, we expose models as named constructs that can be defined and se-
lected explicitly to witness constraints; in common uses of genericity, however, types implicitly witness
constraints without additional programmer effort. Models are integrated into the object-oriented style,
with features like model generics, model-dependent types, model enrichment, model multimethods, con-
straint entailment, model inheritance, and existential quantification further extending expressive power
in an object-oriented setting. We introduce the new genericity features and show that common generic
programming idioms, including current generic libraries, can be expressed more precisely and concisely.
The static semantics of the mechanism and a proof of a key decidability property are provided.

1 Introduction

Generic programming provides the means to express algorithms and data structures in an abstract, adaptable,
and interoperable form. Specifically, genericity mechanisms allow polymorphic code to apply to different
types, improving modularity and reuse. Despite decades of work on genericity mechanisms, current OO
languages still offer an unsatisfactory tradeoff between expressiveness and usability. These languages do
not provide a design that coherently integrates desirable features—particularly, retroactive extension and
dynamic dispatch. In practice, existing genericity mechanisms force developers to circumvent limitations in
expressivity by using awkward, heavyweight design patterns and idioms.

The key question is how to expose the operations of type parameters in a type-safe, intuitive, and
flexible manner within the OO paradigm. The following somewhat daunting Java signature for method
Collections::sort illustrates the problem:
<T extends Comparable<? super T>> void sort(List<T> l)

The subtyping constraint constrains a type parameter T using the Comparable interface, ensuring that type
T is comparable to itself or to one of its supertypes. However, sort can only be used on a type T if that
type argument is explicitly declared to implement the Comparable interface. This restriction of nominal
subtyping is alleviated by structural constraints as introduced by CLU [Liskov et al. 1977, 1984] and applied
elsewhere (e.g., [Day et al. 1995; Chambers 1992]), but a more fundamental limitation remains: items of

1

class AbstractVertex
<EdgeType extends

AbstractEdge<EdgeType, ActualVertexType>,
ActualVertexType extends

AbstractVertex<EdgeType, ActualVertexType>> {...}
class AbstractEdge

<ActualEdgeType extends
AbstractEdge<ActualEdgeType, VertexType>,

VertexType extends
AbstractVertex<ActualEdgeType, VertexType>> {...}

Figure 1: Parameter clutter in generic code.

type T cannot be sorted unless T has a compareTo operation to define the sort order. That limitation is
addressed by type classes in Haskell [Wadler and Blott 1989]. Inspired by Haskell, efforts have been made
to incorporate type classes into OO languages with language-level support [Siek and Lumsdaine 2011;
Wehr and Thiemann 2011; Rust; Swift] and the Concept design pattern [Oliveira et al. 2010]. However, as
we argue, these designs do not fully exploit what type classes and OO languages have to offer when united.

This paper introduces a new genericity mechanism, embodied in a new extension of Java called Genus.
The genericity mechanism enhances expressive power, code reuse, and static type safety, while remaining
lightweight and intuitive for the programmer in common use cases. Genus supports models as named con-
structs that can be defined and selected explicitly to witness constraints, even for primitive type arguments;
however, in common uses of genericity, types implicitly witness constraints without additional program-
mer effort. The key novelty of models in Genus is their deep integration into the OO style, with features
like model generics, model-dependent types, model enrichment, model multimethods, constraint entailment,
model inheritance, and existential quantification further extending expressive power in an OO setting.

The paper compares Genus to other language designs; describes its implementation; shows that Genus
enables safer, more concise code through experiments that use it to reimplement existing generic libraries;
and presents performance measurements that show that a naive translation from Genus to Java yields accept-
able performance and that with simple optimizations, Genus can offer very good performance. The paper
also gives a formal static semantics for a core version of Genus, and show that termination of subtyping and
default model resolution hold under reasonable syntactic restrictions.

2 The Need for Better Genericity

Prior work has explored various approaches to constrained genericity: subtyping constraints, structural
matching, type classes, and design patterns. Each of these approaches has significant weaknesses.

The trouble with subtyping. Subtyping constraints are used in Java [Bracha et al. 1998], C# [Kennedy and
Syme 2001; Emir et al. 2006], and other OO languages. In the presence of nominal subtyping, subtyping
constraints are too inflexible: they can only be satisfied by classes explicitly declared to implement the
constraint. Structural subtyping and matching mechanisms (e.g., [Liskov et al. 1984; Chambers 1992; Day
et al. 1995; Myers et al. 1997]) do not require an explicit declaration that a constraint is satisfied, but still
require that the relevant operations exist, with conformant signatures. Instead, we want retroactive modeling,
in which a model (such as a type class instance [Wadler and Blott 1989]) can define how an existing type
satisfies a constraint that it was not planned to satisfy ahead of time.

Subtyping constraints, especially when F-bounded [Canning et al. 1989], also tend to lead to complex
code when multiple type parameters are needed. For example, Figure 1 shows a simplification of the sig-
natures of the classes AbstractVertex and AbstractEdge in the FindBugs project [findbugs-release]. The
vertex and the edge types of a graph have a mutual dependency that is reflected in the signatures in an
unpleasantly complex way (See Figure 3 for our approach).

2

class TreeSet<T> implements Set<T> {
TreeSet(Comparator<? super T> comparator) {...} ...

}
interface Comparator<T> { int compare(T o1, T o2); }

Figure 2: Concept design pattern.

Concept design pattern. Presumably because of these limitations, the standard Java libraries mostly do
not use constraints on the parameters of generic classes in the manner originally envisioned [Bracha et al.
1998]. Instead, they use a version of the Concept design pattern [Myers 1995] in which operations needed
by parameter types are provided as arguments to constructors. For instance, a constructor of TreeSet, a
class in the Java collections framework, accepts an object of the Comparator class (Figure 2). The compare

operation is provided by this object rather than by T itself.
This design pattern provides missing flexibility, but adds new problems. First, a comparator object

must be created even when the underlying type has a comparison operation. Second, because the model for
Comparator is an ordinary (first-class) object, it is hard to specialize or optimize particular instantiations of
generic code. Third, there is no static checking that two TreeSets use the same ordering; if an algorithm
relies on the element ordering in two TreeSets being the same, the programmer may be in for a shock.

In another variant of the design pattern, used in the C++ STL [Musser et al. 2001], an extra parameter for
the class of the comparator distinguishes instantiations that use different models. However, this approach
is more awkward than the Comparator object approach. Even the common case, in which the parameter
type has exactly the needed operations, is just as heavyweight as when an arbitrary, different operation is
substituted.

Type classes and concepts. The limitations of subtyping constraints have led to recent research on adapting
type classes to OO languages to achieve retroactive modeling [Siek and Lumsdaine 2011]. However, type
classes have limitations: first, constraint satisfaction must be uniquely witnessed, and second, their models
define how to adapt a single type, whereas in a language with subtyping, each adapted type in general
represents all of its subtypes.

No existing approach addresses the first limitation, but an attempt is made by JavaGI [Wehr and Thie-
mann 2011] to fit subtyping polymorphism and dynamic dispatch into constrained genericity. As we will
argue (§5.1), JavaGI’s limited dynamic dispatch makes certain constraints hard to express, and interactions
between subtyping and constraint handling make type checking subject to nontermination.

Beyond dynamic dispatch, it is important for OO programming that extensibility applies to models as
well. The essence of OO programming is that new behavior can be added later in a modular way; we
consider this post-factum enrichment of models to be a requirement.

Goals. What is wanted is a genericity mechanism with multiple features: retroactive modeling, a lightweight
implicit approach for the common case, multiparameter type constraints, non-unique constraint satisfaction
with dynamic, extensible models, and model-dependent types. The mechanism should support modular
compilation. It should be possible to implement the mechanism efficiently; in particular, an efficient imple-
mentation should limit the use of wrapper objects and should be able to specialize generic code to particular
type arguments—especially, to primitive types. Genus meets all of these goals. We have tried not only to
address the immediate problems with generics seen in current OO languages, but also to take further steps,
adding features that support the style of programming that we expect will evolve when generics are easier
to use than they are now.

3

// A multiparameter constraint
constraint GraphLike[V,E] {
Iterable[E] V.outgoingEdges();
Iterable[E] V.incomingEdges();
V E.source();
V E.sink();

}

constraint OrdRing[T]
extends Comparable[T]

{
// static methods
static T T.zero();
static T T.one();
T T.plus(T that);
T T.times(T that);

}

Figure 3: Constraints GraphLike and OrdRing.

3 Type Constraints in Genus

3.1 Type Constraints as Predicates

Instead of constraining types with subtyping, Genus uses explicit type constraints similar to type classes.
For example, the constraint

constraint Eq[T] {
boolean equals(T other);

}

requires that type T have an equals method.1 Although this constraint looks like a Java interface, it is really
a predicate on types, like a (multiparameter) type class in Haskell [Peyton-Jones et al. 1997]. We do not call
constraints “type classes” because there are differences and because the name “class” is already taken in the
OO setting.

Generic code can require that actual type parameters satisfy constraints. For example, here is the Set

interface in Genus (simplified):

interface Set[T where Eq[T]] { ... }

The where clause “where Eq[T]” establishes the ability to test equality on type T within the scope of Set.
Consequently, an instantiation of Set needs a witness that Eq is satisfied by the type argument. In Genus,
such witnesses come in the form of models. Models are either implicitly chosen by the compiler or explicitly
supplied by the programmer.

Multiparameter constraints. A constraint may be a predicate over multiple types. Figure 3 contains an
example in which a constraint GraphLike[V,E] declares graph operations that should be satisfied by any
pair of types [V,E] representing vertices and edges of a graph. In a multiparameter constraint, methods must
explicitly declare receiver types (V or E in this case). Every operation in this constraint mentions both V and
E; none of the operations really belongs to any single type. The ability to group related types and operations
into a single constraint leads to code that is more modular and more readable than that in Figure 1.

Prerequisite constraints. A constraint can have other constraints as its prerequisites. For example, Eq[T]
is a prerequisite constraint of Comparable[T]:

constraint Comparable[T] extends Eq[T] {
int compareTo(T other);

}

To satisfy a constraint, its prerequisite constraints must also be satisfied. Therefore, the satisfaction of a
constraint entails the satisfaction of its prerequisites. For example, the Genus version of the TreeSet class
from Figure 2 looks as follows:

1We denote Genus type parameters using square brackets, to distinguish Genus examples from those written in other languages
(especially, Java).

4

Map[V,W] SSSP[V,E,W](V s)
where GraphLike[V,E], Weighted[E,W],

OrdRing[W], Hashable[V] {
TreeMap[W,V] frontier = new TreeMap[W,V]();
Map[V,W] distances = new HashMap[V,W]();
distances.put(s, W.one()); frontier.put(W.one(), s);
while (frontier.size() > 0) {

V v = frontier.pollFirstEntry().getValue();
for (E vu : v.outgoingEdges()) {
V u = vu.sink();
W weight = distances.get(v).times(vu.weight());
if (!distances.containsKey(u) ||

weight.compareTo(distance.get(u)) < 0) {
frontier.put(weight, u);
distances.put(u, weight);

}}} return distances; }

Figure 4: A highly generic method for Dijkstra’s single-source shortest-path algorithm. Definitions of Weighted and
Hashable are omitted. Ordering and composition of distances are generalized to an ordered ring. (A more robust
implementation might consider using a priority queue instead of TreeMap.)

class TreeSet[T where Comparable[T]] implements Set[T] {
TreeSet() { ... } ...

}

The type Set[T] in the definition of TreeSet is well-formed because its constraint Eq[T] is entailed by the
constraint Comparable[T].

Static constraint members. Constraints can require that a type provide static methods, indicated by using
the keyword static in the method declaration. In Figure 3, constraint OrdRing specifies a static method
(zero) that returns the identity of the operation plus.

All types T are also automatically equipped with a static method T.default() that produces the default
value for type T. This method is called, for instance, to initialize the elements of an array of type T[], as in
the following example:

class ArrayList[T] implements List[T] {
T[] arr;
ArrayList() {

arr = new T[INITIAL_SIZE]; // Calls T.default()
}
...

}

The ability to create an array of type T[] is often missed in Java.

3.2 Prescribing Constraints Using Where Clauses

Where-clause constraints enable generic algorithms, such as the version of Dijkstra’s shortest-path algorithm
in Figure 4, generalized to ordered rings.2 The where clause of SSSP requires only that the type arguments
satisfy their respective constraints—no subtype relationship is needed.

Where-clause constraints endow typing contexts with assumptions that the constraints are satisfied. So
the code of SSSP can make method calls like vu.sink() and W.one(). Note that the where clause may be
placed after the formal parameters as in CLU; this notation is just syntactic sugar for placing it between the
brackets.

2The usual behavior is achieved if plus is min, times is +, and one is 0.

5

Unlike Java extends clauses, a where clause is not attached to a particular parameter. It can include
multiple constraints, separated by commas. Each constraint requires a corresponding model to be provided
when the generic is instantiated. To allow models to be identified unambiguously in generic code, each such
constraint in the where clause may be explicitly named as a model variable.

Another difference from Java extends clauses is that a where clause may be used without introducing a
type parameter. For example, consider the remove method of List. Expressive power is gained if its caller
can specify the notion of equality to be used, rather than requiring List itself to have an intrinsic notion of
equality. Genus supports this genericity by allowing a constraint Eq[E] to be attached to remove:

interface List[E] {
boolean remove(E e) where Eq[E]; ...

}

We call this feature model genericity.

3.3 Witnessing Constraints Using Models

As mentioned, generic instantiations require witnesses that their constraints are satisfied. In Genus, wit-
nesses are provided by models. Models can be inferred—a process we call default model resolution—or
specified explicitly, offering both convenience in common cases and expressivity when needed. We start
with the use of models and leave the definition of models until §4.

Using default models. It is often clear from the context which models should be used to instantiate a
generic. For instance, the Set[T] interface in the TreeSet example (§3.1) requires no further annota-
tion to specify a model for Eq[T], because the model can be uniquely resolved to the one promised by
Comparable[T].

Another common case is that the underlying type already has the required operations. This case is
especially likely when classes are designed to support popular operations; having to supply models explicitly
in this case would be a nuisance. Therefore, Genus allows types to structurally conform to constraints.
When the methods of a type have the same names as the operations required by a constraint, and also have
conformant signatures, the type automatically generates a natural model that witnesses the constraint. For
example,3 the type Set[String] means a Set that distinguishes strings using String’s built-in equals

method. Thus, the common case in which types provide exactly the operations required by constraints is
simple and intuitive. In turn, programmers have an incentive to standardize the names and signatures of
popular operations.

Genus supports using primitive types as type arguments, and provides natural models for them that con-
tain common methods. For example, a natural model for Comparable[int] exists, so types like TreeSet[int]
that need that model can be used directly.

Default models can be used to instantiate any generic—not just generic classes. For example, consider
this sort method:

void sort[T](List[T] l) where Comparable[T] { ... }

The call sort(x), where x is a List[int], infers int both as the type argument and as the default model.
Default model resolution, and more generally, type and model inference, are discussed further in §4.4 and
§4.7.

Using named models. It is also possible to explicitly supply models to witness constraints. To do so,
programmers use the with keyword followed by models for each of the where-clause constraints in the
generic. These models can come from programmer-defined models (§4) or from model variables declared
in where clauses (§3.2). For example, suppose model CIEq tests String equality in a case-insensitive

3We assume throughout that the type String has methods “boolean equals(String)” and “int compareTo(String).”

6

manner. The type Set[String with CIEq] then describes a Set in which all strings are distinct without
case-sensitivity. In fact, the type Set[String] is syntactic sugar for Set[String with String], in which
the with clause is used to explicitly specify the natural model that String automatically generates for
Eq[String].

A differentiating feature of our mechanism is that different models for Eq[String] can coexist in the
same scope, allowing a generic class like Set, or a generic method, to be instantiated in more than one way
in a scope:

Set[String] s0 = ...;
Set[String with CIEq] s1 = ...;
s1 = s0; // illegal assignment: different types.

The ordering that an instantiation of Set uses for its elements is part of the type, rather than a purely dy-
namic argument passed to a constructor as in the Concept pattern. Therefore, the final assignment statement
is a static type error. The type checker catches the error because the different models used in the two Set

instantiations allow Sets using different notions of equality to be distinguished. The use of models in types
is discussed further in §4.5.

It is also possible to express types using wildcard models; the type Set[String with ?] is a super-
type of both Set[String] and Set[String with CIEq]. Wildcard models are actually syntactic sugar for
existential quantification (§6).

4 Models

Models can be defined explicitly to allow a type to satisfy a constraint when the natural model is nonexistent
or undesirable. For example, the case-insensitive string equality model CIEq can be defined concisely:

model CIEq for Eq[String] {
bool equals(String str) {

return equalsIgnoreCase(str);
}

}

Furthermore, a model for case-insensitive String ordering might be defined by reusing CIEq via model
inheritance, to witness the prerequisite constraint Eq[String]:

model CICmp for Comparable[String] extends CIEq {
int compareTo(String str) {

return compareToIgnoreCase(str);
}

}

It is also possible for CICmp to satisfy Eq by defining its own equals method. Model inheritance is revisited
in §5.3.

Models are immutable: they provide method implementations but do not have any instance variables.
Models need not have global scope; modularity is achieved through the Java namespace mechanism. Simi-
larly, models can be nested inside classes and are subject to the usual visibility rules.

4.1 Models as Expanders

Operations provided by models can be invoked directly, providing the functionality of expanders [Warth
et al. 2006]. For example, the call "x".(CIEq.equals)("X") uses CIEq as the expander to test equality of
two strings while ignoring case. Natural models can similarly be selected explicitly using the type name:
"x".(String.equals)("X").

7

constraint Cloneable[T] { T clone(); }
model ArrayListDeepCopy[E] for Cloneable[ArrayList[E]]

where Cloneable[E] {
ArrayList[E] clone() {

ArrayList[E] l = new ArrayList[E]();
for (E e : this) { l.add(e.clone()); }
return l;

}}

Figure 5: A parameterized model.

model DualGraph[V,E] for GraphLike[V,E]
where GraphLike[V,E] g {

V E.source() { return this.(g.sink)(); }
V E.sink() { return this.(g.source)(); }
Iterable[E] V.incomingEdges() {

return this.(g.outgoingEdges)(); }
Iterable[E] V.outgoingEdges() {

return this.(g.incomingEdges)(); }
}
void SCC[V,E](V[] vs) where GraphLike[V,E] g { ...

new DFIterator[V,E with g]() ...
new DFIterator[V,E with DualGraph[V,E with g]]() ...

}
class DFIterator[V,E] where GraphLike[V,E] {...}

Figure 6: Kosaraju’s algorithm. Highlighted code is inferred if omitted.

Using models as expanders is an integral part of our genericity mechanism: the operations promised by
where-clause constraints are invoked using expanders. In Figure 4, if we named the where-clause constraint
GraphLike[V,E] with model variable g, the call vu.sink() would be sugar for vu.(g.sink)() with g

being the expander. In this case, the expander can be elided because it can be inferred via default model
resolution (§4.4).

4.2 Parameterized Models

Model definitions can be generic: they can be parameterized with type parameters and where-clause con-
straints. For example, model ArrayListDeepCopy (Figure 5) gives a naive implementation of deep-copying
ArrayLists. It is generic with respect to the element type E, but requires E to be cloneable.

As another example, we can exploit model parameterization to implement the transpose of any graph. In
Figure 6, the DualGraph model is itself a model for GraphLike[V,E], and is parameterized by another model
for GraphLike[V,E] (named g). It represents the transpose of graph g by reversing its edge orientations.

4.3 Non-Uniquely Witnessing Constraints

Previous languages with flexible type constraints, such as Haskell, JavaGI, and G, require that witnesses
be unique at generic instantiations, whether witnesses are scoped globally or lexically. By contrast, Genus
allows multiple models witnessing a given constraint instantiation to coexist in the same context. This
flexibility increases expressive power.

For example, consider Kosaraju’s algorithm for finding strongly connected components in a directed
graph [Aho et al. 1983]. It performs two depth-first searches, one following edges forward, and the other on
the transposed graph, following edges backward. We would like to reuse the same generic depth-first-search
algorithm on the same graph data structure for both traversals.

8

In Figure 6, the where clause of SCC introduces into the context a model for GraphLike[V,E], denoted
by model variable g. Using the DualGraph model, the algorithm code can then perform both forward and
backward traversals. It instantiates DFIterator, an iterator class for depth-first traversal, twice, with the
original graph model g and with the transposed one. Being able to use two different models to witness the
same constraint instantiation in SCC enables more code reuse. The highlighted with clauses can be safely
elided, which brings us to default model resolution.

4.4 Resolving Default Models

In Genus, the omission of a with clause triggers default model resolution. Default model resolution is
based on the following four ways in which models are enabled as potential default choices. First, types
automatically generate natural models when they structurally conform to constraints. Natural models, when
they exist, are always enabled as default candidates. Second, a where-clause constraint enables a model
within the scope of the generic to which the where clause is attached. For example, in method SCC in
Figure 6 the where clause enables a model as a default candidate for GraphLike[V,E] within SCC. Third, a
use declaration, e.g.,

use ArrayListDeepCopy;

enables the specified model as a potential default way to clone ArrayLists in the compilation unit in which
the declaration resides. Fourth, a model itself is enabled as a potential default model within its definition.

Default model resolution works as follows:
1. If just one model for the constraint is enabled, it becomes the default model.
2. If more than one model is enabled, programmer intent is ambiguous. In this case, Genus requires that

programmers make their intent explicit using a with clause. Omitting the with clause is a static error in
this case.

3. If no model is explicitly enabled, but there is in scope a single model for the constraint, that model
becomes the default model for the constraint.

Resolution for an elided expander in a method call works similarly. The only difference is that instead of
searching for a model that witnesses a constraint, the compiler searches for a model that contains a method
applicable to the given call. In typical use, this would be the natural model.

These rules for default models make generics and expanders easy to use in the common cases; in the
less common cases where there is some ambiguity about which model to use, they force the programmer to
be explicit and thereby help prevent hard-to-debug selection of the wrong model.

Letting each compilation unit choose its own default models is more flexible and concise than using
Scala implicits, where a type-class instance can only be designated as implicit at the place where it is
defined, and implicit definitions are then imported into the scope, with a complex process used to find the
most specific implicit among those imported [Odersky 2014]. We aim for simpler rules.

Genus also achieves the conciseness of Haskell type classes because uniquely satisfying models are
allowed to witness constraints without being enabled, just as a unique type class instance in Haskell satisfies
its type class without further declarations. But natural models make the mechanism lighter-weight than in
Haskell, and the ability to have multiple models adds expressive power (as in the SCC example in Figure 6).

4.5 Models in Types

Section 3.3 introduced the ability to instantiate generic types with models, which become part of the type
(i.e., model-dependent types). Type safety benefits from being able to distinguish instantiations that use
different models.

9

class TreeSet[T] implements Set[T with c]
where Comparable[T] c {

TreeSet() {...}
void addAll(Collection[? extends T] src) {

if (src instanceof TreeSet[? extends T with c]) {
addFromSorted((TreeSet[? extends T with c])src);

} else {...}
}
void addFromSorted(TreeSet[? extends T with c] src) {

... // specialized code in virtue of the same
// ordering in src and this

}
...

}

Figure 7: TreeSet in Genus. Highlighted code is inferred if omitted.

The addFromSorted method in TreeSet (Figure 7) adds all elements in the source TreeSet to this one.
Its signature requires that the source TreeSet and this one use the same ordering. So a TreeSet with a
different ordering cannot be accidentally passed to this method, avoiding a run-time exception.

Including the choice of model as part of the type is unusual, perhaps because it could increase annotation
burden. Models are not part of types in the Concept design pattern (e.g., as realized in Scala [Oliveira et al.
2010]), because type class instances are not part of instantiated types. G [Siek and Lumsdaine 2011] allows
multiple models for the same constraint to be defined in one program (albeit only one in any lexical scope),
yet neither at compile time nor at run time does it distinguish generic instantiations with distinct models.
This raises potential safety issues when different modules interoperate.

In Genus, the concern about annotation burden is addressed by default models. For example, the type
TreeSet[? extends T] in Figure 7 is implicitly instantiated with the model introduced by the where clause
(via constraint entailment, §5.2). By contrast, Scala implicits work for method parameters, but not for type
parameters of generic classes.

4.6 Models at Run Time

Unlike Java, whose type system is designed to support implementing generics via erasure, Genus makes
models and type arguments available at run time. Genus allows testing the type of an object from a parame-
terized class at run time, like the instanceof test and the type cast in Figure 7.

Reifiability creates opportunities for optimization. For example, consider TreeSet’s implementation of
the addAll method required by the Collection interface. In general, an implementation cannot rely on
seeing the elements in the order expected by the destination collection, so for each element in the source
collection, it must traverse the destination TreeSet to find the correct position. However, if both collec-
tions use the same ordering, the merge can be done in a more asymptotically efficient way by calling the
specialized method addFromSorted.

4.7 Default Model Resolution: Algorithmic Issues

Recursive resolution of default models. Default model resolution is especially powerful because it sup-
ports recursive reasoning. For example, the use declaration in §4.4 is syntactic sugar for the following
parameterized declaration:

use [E where Cloneable[E] c] ArrayListDeepCopy[E with c]
for Cloneable[ArrayList[E]];

10

The default model candidacy of ArrayListDeepCopy is valid for cloning objects of any instantiated ArrayList

type, provided that the element type satisfies Cloneable too. Indeed, when the compiler investigates the use
of ArrayListDeepCopy to clone ArrayList[Foo], it creates a subgoal to resolve the default model for
Cloneable[Foo]. If this subgoal fails to be resolved, ArrayListDeepCopy is not considered as a candidate.

Recursive resolution may not terminate without additional restrictions. As an example, the declaration
“use DualGraph;” is illegal because its recursive quest for a model of the same constraint causes resolution
to cycle. The issue is addressed in §9 and the technical report [Zhang et al. 2015] by imposing syntactic
restrictions.

When a use declaration is rejected by the compiler for violating the restrictions, the programmer always
has the workaround of explicitly selecting the model. By contrast, the inability to do so in Haskell or JavaGI
makes it impossible to have a model like DualGraph in these languages.

Unification vs. default model resolution. Since Genus uses models in types, it is possible for models to be
inferred via unification when they are elided. This inference potentially raises confusion with default model
resolution.

Genus distinguishes between two kinds of where-clause constraints. Constraints for which the model is
required by a parameterized type, such as Eq[T] in the declaration void f[T where Eq[T]](Set[T] x),
are called intrinsic constraints, because the Set must itself hold the corresponding model. By contrast, a
constraint like Printable[T] in the declaration void g[T where Printable[T]](List[T] x) is extrinsic
because List[T] has no such constraint on T.

Inference in Genus works by first solving for type parameters and intrinsic constraints via unification,
and only then resolving default models for extrinsic constraints. To keep the semantics simple, Genus does
not use default model availability to guide unification, and it requires extrinsic where-clause constraints to
be written to the right of intrinsic ones. Nevertheless, it is always possible for programmers to explicitly
specify intent.

4.8 Constraints/Models vs. Interfaces/Objects

The relationship between models and constraints is similar to that between objects and interfaces. Indeed,
the Concept pattern can be viewed as using objects to implement models, and JavaGI extends interfaces to
encode constraints. In contrast, Genus draws a distinction between the two, treating models as second-class
values that cannot be stored in ordinary variables. This design choice has the following basis:
• Constraints are used in practice very differently from “ordinary” types, as evidenced by the nearly com-

plete separation between shapes and materials seen in an analysis of a very large software base [Green-
man et al. 2014]. In their parlance, interfaces or classes that encode multiparameter constraints (e.g.,
GraphLike) or constraints requiring binary operations (e.g., Comparable) are shapes, while ordinary types
(e.g., Set) are materials. Muddling the two may give rise to nontermination (§9).
• Because models are not full-fledged objects, generic code can easily be specialized to particular using

contexts.
• Because model expressions can be used in types, Genus has dependent types; however, making models

second-class and immutable simplifies the type system and avoids undecidability.

5 Making Models Object-Oriented

5.1 Dynamic Dispatching and Enrichment

In OO programs, subclasses are introduced to specialize the behavior offered by their superclasses. In
Genus, models define part of the behavior of objects, so models too should support specialization. There-
fore, a model in Genus may include not only method definitions for the base type, but also methods defining

11

constraint Intersectable[T] { T T.intersect(T that); }
model ShapeIntersect for Intersectable[Shape] {

Shape Shape.intersect(Shape s) {...}
// Rectangle and Circle are subclasses of Shape:
Rectangle Rectangle.intersect(Rectangle r) {...}
Shape Circle.intersect(Rectangle r) {...} ...

}
enrich ShapeIntersect {
Shape Triangle.intersect(Circle c) {...} ...

}

Figure 8: An extensible model with multiple dispatch.

more specific behavior for subtypes. These methods can be dispatched dynamically by code both inside
and outside model declarations. Dynamic dispatch takes place not only on the receiver, but also on method
arguments of the manipulated types. The expressive power of dynamic dispatch is key to OO program-
ming [Aldrich 2013], and multiple dispatch is particularly important for binary operations, which are typ-
ically encoded as constraints. Our approach differs in this way from G and Scala, which do not support
dynamic dispatch on model operations.

For example, model ShapeIntersect in Figure 8 gives multiple definitions of intersect, varying in
their expected argument types. In a context where the model is selected, a call to intersect on two objects
statically typed as Shape will resolve at run time to the most specific method definition in the model. In
JavaGI, multiple dispatch on intersect is impossible, because its dispatch is based on “self” types [Bruce
et al. 1998], while the argument types (including receiver) as well as the return type of an intersect

implementation do not necessarily have to be the same.
Existing OO type hierarchies are often extended with new subclasses in ways not predicted by their

designers. Genus provides model enrichment to allow models to be extended in a modular way, in sync with
how class hierarchies are extended; here we apply the idea of open classes [Clifton et al. 2000] to models.
For example, if Triangle is later introduced to the Shape hierarchy, the model can then be separately
enriched, as shown in the enrich declaration in Figure 8.

Model multimethods and model enrichment create the same challenge for modular type checking that is
seen with other extensible OO mechanisms. For instance, if two modules separately enrich ShapeIntersect,
these enrichments may conflict. Like Relaxed MultiJava [Millstein et al. 2003], Genus can prevent such
errors with a load-time check that there is a unique best method definition for every method invocation, ob-
taining mostly modular type checking and fully modular compilation. The check can be performed soundly,
assuming load-time access to the entire program. If a program loads new code dynamically, the check must
be performed at the time of dynamic loading.

5.2 Constraint Entailment

As seen earlier (§3.1), a constraint entails its prerequisite constraints. In general, a model may be used as
a witness not just for the constraint it is declared for, but also for any constraints entailed by the declared
constraint. For example, a model for Comparable[Shape] can be used to witness Eq[Shape].

A second way that one constraint can entail another is through variance on constraint parameters. For
example, since in constraint Eq the type parameter only occurs in contravariant positions, a model for
Eq[Shape] may also be soundly used as a model for Eq[Circle]. It is also possible, though less com-
mon, to use a model to witness constraints for supertypes, via covariance. Variance is inferred automatically
by the compiler, with bivariance downgraded to contravariance.

A model enabled for some constraint in one of the four ways discussed in §4.4 is also enabled for its
prerequisite constraints and constraints that can be entailed via contravariance. Accommodating subtyping
extends the expressivity of default model resolution, but poses new challenges for termination. In §9, we

12

show that encoding “shape” types (in the sense of Greenman et al. [2014]) as constraints helps ensure
termination.

5.3 Model Inheritance

Code reuse among models can be achieved through model inheritance, signified by an extends clause (e.g.,
model CICmp in §4). Unlike an extends clause in a class or constraint definition, which creates an is-a
relationship between a subclass and its superclass or a constraint and its prerequisite constraint, an extends

clause in a model definition is merely for code reuse. The inheriting model inherits all method definitions
with compatible signatures available in the inherited model. The inheriting model can also override these
inherited definitions.

Model inheritance provides a means to derive models that are otherwise rejected by constraint en-
tailment. For example, the model ShapeIntersect (Figure 8) soundly witnesses the same constraint for
Rectangle, because the selected method definitions have compatible signatures, even though Intersectable

is invariant with respect to its type parameter. The specialization to Rectangle can be performed succinctly
using model inheritance, with the benefit of a more precise result type when two rectangles are intersected:

model RectangleIntersect for Intersectable[Rectangle]
extends ShapeIntersect { }

6 Use-Site Genericity

Java’s wildcard mechanism [Torgersen et al. 2004] is in essence a limited form of existential quantification.
Existentials enable genericity at use sites. For example, a Java method with return type List<? extends

Printable> can be used by generic calling code that is able to print list elements even when the type of the
elements is unknown to the calling code. The use-site genericity mechanism of Genus generalizes this idea
while escaping some limitations of Java wildcards. Below we sketch the mechanism.

6.1 Existential Types

Using subtype-bounded existential quantification, the Java type List<? extends Printable> might be
written more type-theoretically as ∃U≤Printable.List[U]. Genus extends this idea to constraints. An
existential type in Genus is signified by prefixing a quantified type with type parameters and/or where-
clause constraints. For example, if Printable is a constraint, the Genus type corresponding to the Java type
above is [some U where Printable[U]]List[U]. The initial brackets introduce a use-site type parameter
U and a model for the given constraint, which are in scope in the quantified type; the syntax emphasizes the
connection between existential and universal quantification.

The presence of prefixed parameters in existential types gives the programmer control over the existential
binding point, in contrast to Java wildcard types where binding is always at the generic type in which the
wildcard is used as a type argument. For example, no Java type can express ∃U.List[List[U]], meaning a
homogeneous collection of lists in which each list is parameterized by the same unknown type. This type is
easily expressed in Genus as [some U]List[List[U]].

Genus also offers convenient syntactic sugar for common uses of existential types. A single-parameter
constraint can be used as sugar for an existential type: e.g., Printable, used as a type, is sugar for
[some U where Printable[U]]U, allowing a value of any printable type. The wildcard syntax List[?]

represents an existential type, with the binding point the same as in the Java equivalent. The type with a
wildcard model Set[String with ?] is sugar for [some Eq[String] m]Set[String with m].

13

[some T where Comparable[T]]List[T] f () {
return new ArrayList[String]();

}
1 sort(f());
2 [U] (List[U] l) where Comparable[U] = f(); // bind U
3 l.first().compareTo(l.last()); // U is comparable
4 U[] a = new U[64]; // use run-time info about U
5 l = new List[U](); // new list, same U

Figure 9: Working with existential quantification.

Subtyping and coercion. Genus draws a distinction between subtyping and coercion involving existential
types. Coercion may induce extra computation (i.e., existential packing) and can be context-dependent
(i.e., default model resolution), while subtyping cannot. For example, the return expression in Fig-
ure 9 type-checks not because ArrayList[String] is a subtype of the existential return type, but be-
cause of coercion, which works by packing together a value of type ArrayList[String] with a model
for Comparable[String] (in this case, the natural model) into a single value. The semantics of subtyping
involving where-clause-quantified existential types is designed in a way that makes it easy for programmers
to reason about subtyping and joining types.

Capture conversion. In Java, wildcards in the type of an expression are instantiated as fresh identifiers
when the expression is type-checked, a process called capture conversion [Gosling et al. 2005]. Genus
extends this idea to constraints: in addition to fresh type variables, capture conversion generates fresh models
for where-clause constraints, and enables them in the current scope.

For example, at line 1 in Figure 9, when the call to sort (defined in §3.3) is type-checked, the type of
the call f() is capture-converted to List[#T], where #T is the fresh type variable that capture conversion
generates for T, and a model for Comparable[#T] becomes enabled in the current context. Subsequently, the
type argument to sort is inferred as #T, and the default model for Comparable[#T] resolves to the freshly
generated model.

6.2 Explicit Local Binding

Capture conversion is convenient but not expressive enough. Consider a Java object typed as List<? extends

Comparable>. The programmer might intend the elements of this homogeneous list to be comparable to one
another, but comparisons to anything other than null do not type-check.

The awkwardness is addressed in Genus by explicit local binding of existentially quantified type vari-
ables and where-clause constraints, giving them names that can be used directly in the local context. An
example of this mechanism is found at line 2 in Figure 9. The type variable U can be used as a full-fledged
type in the remainder of the scope.

As its syntax suggests, explicit local binding can be viewed as introducing an inlined generic method
encompassing subsequent code. Indeed, it operates under the same rules as universally quantified code.
For example, the where clause at line 2 enables a new model so that values of type U can be compared at
line 3. Also, locally bound type variables are likewise reifiable (line 4). Moreover, the binding at line 2
is type-checked using the usual inference algorithm to solve for U and for the model for Comparable[U]:
per §4.7, the former is inferred via unification and the latter via default model resolution—it is an extrinsic
constraint. Soundness is maintained by ensuring that l is initialized upon declaration and that assignments
to the variable preserve the meaning of U.

14

/* Source code in Genus */
class ArrayList[T] implements List[T] {
T[] arr;
ArrayList() { arr = new T[INITIAL_SIZE]; } ... }

/* Target code in Java */
class ArrayList<T,A$T> implements List<T,A$T> {
A$T arr;
ObjectModel<T,A$T> T$model; // run-time info about T
ArrayList(ObjectModel<T,A$T> T$model) {

this.T$model = T$model;
arr = T$model.newArray(INITIAL_SIZE);

} ... }

Figure 10: Translating the Genus class ArrayList into Java.

7 Implementation

We have built a partial implementation of the Genus language in Java. The implementation consists of about
23,000 lines of code, extending version 2.6.1 of the Polyglot compiler framework [Nystrom et al. 2003]. We
have an essentially complete implementation of all type checking and inference features. Code generation
works by translating to Java 5 code, relying on a Java compiler as a back end. Code generation is less
complete than type checking but also less interesting; however, the compiler can compile the benchmarks
of §8, which use generics in nontrivial ways. The current compiler implementation type-checks but does
not generate code for multimethod dispatch or for existentials; it does not yet specialize instantiations to
particular type arguments.

7.1 Implementing Constraints and Models

Constraints and models in Genus code are translated to parameterized interfaces and classes in Java. For
example, the constraint Comparable[T] is translated to a parameterized Java interface Comparable<T,A$T>
providing a method compareTo with the appropriate signature: int compareTo(T,T). The extra type pa-
rameter A$T is explained in §7.3. Models are translated to Java classes that implement these constraint
interfaces.

7.2 Implementing Generics

Parameterized Genus classes are translated to correspondingly parameterized Java classes. However, type
arguments and models must be represented at run time. So extra arguments carrying this information are
required by class constructors, and constructor bodies are extended to store these arguments as fields. For
example, class ArrayList has a translated constructor with the signature shown in Figure 10. Parameterized
methods and models are translated in a similar way by adding extra arguments representing type and model
information.

7.3 Supporting Primitive Type Arguments

A challenge for efficient generics, especially with a JVM-based implementation, is how to avoid uniformly
wrapping all primitives inside objects when primitive types are used as type arguments. Some wrapping is
unavoidable, but from the standpoint of efficiency, the key is that when code parameterized on a type T is
instantiated on a primitive type (e.g., int), the array type T[] should be represented exactly as an array of
the primitive type (e.g., int[]), rather than a type like Integer[] in which every array element incurs the
overhead of individualized memory management.

15

Our current implementation uses a homogeneous translation to support this efficiency; the model object
(e.g., T$model in Figure 10) for a type parameter T provides all operations about T[]. The model object has
the interface type ObjectModel<T,A$T>, which specifies, via A$T, the operations for creating and access-
ing arrays of (unboxed) T. For example, the type of the model object used to create an ArrayList[double]

implements ObjectModel<Double,double[]>. All interfaces representing single-parameter constraints im-
plicitly extend ObjectModel<T,A$T>, so an ObjectModel argument is usually needed only on generics that
do not otherwise constrain their type parameters.

A more efficient approach to supporting primitive type arguments is to generate specialized code for
primitive instantiations, as is done in C#. The design of Genus makes it straightforward to implement
particular instantiations with specialized code.

8 Evaluation

8.1 Porting Java Collections Framework to Genus

To evaluate how well the language design works in practice, we ported all 10 general-purpose implementa-
tions in the Java collections framework (JCF) as well as relevant interfaces and abstract implementations, to
Genus. The result is a safer, more precise encoding and more code reuse with little extra programmer effort.

The single most interesting constrained generic in JCF is probably TreeSet (and TreeMap, which backs
it). In its Java implementation, elements are ordered using either the element type’s implementation of
Comparable or a comparator object passed as a constructor argument, depending on which constructor is
used to create the set. This ad hoc choice results in error-prone client code. In Genus, by contrast, the
ordering is part of the TreeSet type, eliminating 35 occurrences of ClassCastException in TreeSet’s and
TreeMap’s specs.

Genus collection classes are also more faithful to the semantics of the abstractions. Unlike a Set[E], a
List[E] should not necessarily be able to test the equality of its elements. In Genus, collection methods like
contains and remove are instead parameterized by the definition of equality (§3.2). These methods cannot
be called unless a model for Eq[E] is provided.

More powerful genericity also enables increased code reuse. For example, the NavigableMap interface
allows extracting a descending view of the original map. In JCF, TreeMap implements this view by defining
separate classes for each of the ascending and descending views. In contrast, Genus expresses both views
concisely in a single class parameterized by a model that defines how to navigate the tree, eliminating 160
lines of code. This change is made possible by retroactive, non-unique modeling of compareTo().

Thanks to default models—in particular, implicit natural models, for popular operations including toString,
equals, hashCode and compareTo—client and library code ordinarily type-check without using with clauses.
When with clauses are used, extra expressive power is obtained. In fact, the descending views are the only
place where with clauses are needed in the Genus collection classes.

8.2 Porting the Findbugs Graph Library to Genus

We ported to Genus the highly generic Findbugs [findbugs-release] graph library (∼1000 non-comment
LoC), which provides graph algorithms used for the intermediate representation of static analyses. In Find-
bugs, the entities associated with the graph (e.g., Graph, Vertex, Edge) are represented as Java interfaces;
F-bounded polymorphism is used to constrain parameters. As we saw earlier (§2), the resulting code is
typically more cumbersome than the Genus version.

We quantified this effect by counting the number of parameter types, concrete types and keywords
(extends, where) in each type declaration, ignoring modifiers and the name of the type. Across the library,
Genus reduces annotation burden by 32% yet increases expressive power. The key is that constraints can be

16

Table 1: Comparing performance of Java and Genus

data structure Java (s) Genus (s)
[spec.]

Non-generic sort

double[] 1.3
Double[] 3.8
ArrayList[double] — 5.4 [4.0]
ArrayList[Double] 9.6 14.5 [8.3]

Generic sort:
Comparable[T]

double[] — 19.3 [1.3]
Double[] 7.7 10.0 [3.8]
ArrayList[double] — 6.7 [4.0]
ArrayList[Double] 9.8 17.9 [8.3]

Generic sort:
ArrayLike[A,T],
Comparable[T]

double[] — 17.0 [1.3]
Double[] 12.8 12.4 [3.8]
ArrayList[double] — 24.6 [4.0]
ArrayList[Double] 12.8 24.8 [8.3]

expressed directly without encoding them into subtyping and parametric polymorphism; further, prerequisite
constraints avoid redundancy.

8.3 Performance

The current Genus implementation targets Java 5. To explore the overhead of this translation compared to
similar Java code, we implemented a small Genus benchmark whose performance depends heavily on the
efficiency of the underlying genericity mechanism, and hence probably exaggerates the performance impact
of generics. The benchmark performs insertion sort over a large array or other ordered collection; the actual
algorithm is the same in all cases, but different versions have different degrees of genericity with respect to
the element type and even to the collection being sorted. Element type T is required to satisfy a constraint
Comparable[T] and type A is required to satisfy a constraint ArrayLike[A,T], which requires A to act like
an array of T’s. Both primitive values (double) and ordinary object types (Double) are sorted.

The results from sorting collections of 100k elements are summarized in Table 1. Results were collected
using Java 7 on a MacBook Pro with a 2.6GHz Intel Core i7 processor. All measurements are the average
of 10 runs, with an estimated relative error always within 2%. For comparison, the same (non-generic)
algorithm takes 1.1s in C (with gcc -O3). The Java column leaves some entries blank because Java does not
allow primitive type arguments.

To understand the performance improvement that is possible by specializing individual instantiations of
generic code, we used hand translation; as mentioned above, the design of Genus makes such specialization
easy to do. The expected performance improvement is shown in the bracketed table entries. Specialization
to primitive types is particularly useful for avoiding the high cost of boxing and unboxing primitive val-
ues, but the measurements suggest use of primitive type arguments can improve performance even without
specialization (e.g., Genus ArrayList[double] is usually faster than Java ArrayList<Double>).

9 Formalization and Decidability

This section formalizes the key aspects of the Genus type system. Since Genus includes models as part
of types, the type checker would have trouble in interpreting types in signatures correctly when checking
program well-formedness, if the program were fed to the type checker without default models being resolved
in the first place. Therefore, we devote §9.2–9.4 to formalizing default model resolution, which works by
translating one calculus into another—the source calculus allows default models while the target does not.
§9.2 defines the semantic rules required by the translation, §9.3 specifies the translation procedure, and §9.4

17

programs prog ::= 〈use, ldecl , cdecl , odecl , ė〉
arguments to generic parameters [α] ::= [τ with µ]

generic parameters [β] ::= [X where C[τ] o]
use declarations use ::= [β] useM[α] for C[τ]

class declarations ldecl ::= class L1 [β] extends L2[α] {fdecl mdecl}
constraint declarations cdecl ::= constraint C1 [X1] extends C2[X2] {msig}
model declarations odecl ::= modelM [β] for C[τ] {mdecl}
field declarations fdecl ::= τ f
method declarations mdecl ::= msig {ė}
method signatures msig ::= τ̇1 τ2.m [β] (τ3)
method types τ ::= [β] (τ2, τ3)→ τ̇1
non-existential types τ ::= L[α] | X
types τ̇ ::= τ | [β]τ
models in λ∗Genus µ ::= M[α] | o | ∗
models in λGenus µ ::= M[α] | o
expressions of non-existential types e ::= x | this | e.f | new L[α] (f = ė)
expressions ė ::= e | e.(τ.m) [α] (ė) | e.(µ.m) [α] (ė) |
type environments Γ ::= ∅ | Γ, X
model environments ∆ ::= ∅ | ∆, o :: C[τ] | ∆, [β]M[α] :: C[τ]
value environments E ::= ∅ | E, x : τ | E, this : τ

class names L
constraint names C
model names M
field names f

method names m
variable names x
type variables X
model variables o

Figure 11: Syntax of λ∗Genus and λGenus

proves its termination. §9.5 then gives the semantic rules for checking well-formedness in the translated
calculus, and §9.6 defines the operational semantics. We are not aware of any unsoundness in the type
system, but leave proving soundness to future work. We first present the syntax and the notation we use.

9.1 Syntax and notation

Figure 11 presents the syntax of the two calculi, λ∗Genus and λGenus. Default models are signified by ∗ in
λ∗Genus, while λGenus programs are ∗-free.

Notation. An overline denotes a (possibly empty) sequence. For example, X denotes a sequence of type
variables, and Xi denotes the i-th element in that sequence. ∅ denotes an empty sequence, and #

(
X
)

gives
the size of X . We use the syntax where C1[τ1] o1; C2[τ2] o2 to distinguish between intrinsic constraints
C1[τ1] o1 and extrinsic constraints C2[τ2] o2 in a where clause when necessary. It is implicitly required
that the model variables of a where clause may not occur in the types of that where clause. To avoid
clutter, we write [β] to denote (optional) universally or existentially quantified parameters, and write [α] to
denote the arguments to these optional parameters. We use msig and m : τ interchangeably to represent
method signatures. A model environment ∆ consists of model variables and (possibly universally quantified)
models. It also records the constraint each model witnesses. We assume that class declarations, constraint
declarations, model declarations, fields of a class and its superclasses, methods of a class, methods of a
constraint and those of its prerequisite constraints, and variables of a method signature respectively have
distinct names. Type variable names and model variable names are unique in any context. It is also assumed
that class hierarchies and constraint hierarchies are well-founded—they do not contain cycles. The “=”

18

sign, when applied to two non-existential types, means syntactic equality. Functions FTV(·) and FMV(·)
respectively return free type variables and free model variables of a syntactic object.

Simplifications. The calculi are in the style of Featherweight Java (FJ) [Igarashi et al. 2001], and hence
those simplifications akin to FJ. To concentrate on formalizing Genus-style type constraints, we omit sub-
typing constraints. We also omit a few Genus-specific features that add to the convenience of the mechanism
but have little impact on expressivity: a where-clause constraint is always associated with a model variable;
method calls are always explicitly qualified with expanders, and method declarations are always explic-
itly qualified with receiver types; and reusing models via model inheritance or model projection are not
supported. Features requiring load-time checking are not captured. We consider that type arguments and
models for intrinsic constraints are given for method calls, as prior formalizations in the FJ family do. Nev-
ertheless, models for extrinsic constraints may be omitted (i.e., denoted as ∗), forcing the compiler to resolve
default models.

The formalization handles existentials differently from Genus. Receivers of field accesses and method
calls are restricted to expressions of non-existential types; existential types can only be used as method
return types. This treatment forces existentially quantified type parameters and where-clause constraints in
λGenus to always be explicitly captured by universally quantified ones. Meanwhile, because of existential
types, in method calls, elided type arguments and models for intrinsic constraints—if they can be inferred
via unification—cannot always be written in the calculi. We focus on the semantics of models in this work,
while leaving fully modeling existentials in Genus to future work. One possibility is to explore how previous
approaches to formalizing Java wildcards (e.g., Cameron et al. [2008]) fit in.

Substitution. Substitution takes the form ·{·/·}, and is defined in the usual way. It is required that the item
that is substituted into, and the item that is used to substitute, be ∗-free. Substitutions succeed only when
the size of the argument list and that of the formal parameter list match. For example, ·{τ/X} substitutes
τ i for Xi in the first argument, with # (τ) = #

(
X
)

assumed. We introduce an abbreviated notation for
substituting types and models at once: ·{α/β} is shorthand for ·{µ/o}{τ/X} where [α] is [τ with µ] and
[β] is [X where C[τ ′] o].

9.2 Static semantics (Part I)

This section defines the semantic rules required by the translation from λ∗Genus to λGenus (i.e., resolving
default models in λ∗Genus programs).

Variance. Figure 12 defines the varyρ(i, C) relation that says the i-th type parameter of constraint dec-
laration C is contravariant or covariant when ρ is − or + respectively. It is possible for vary−(i, C) and
vary+(i, C) to hold simultaneously, in which case C is bivariant with respect to the type parameter. The
relation is defined using three other relations, varyρ(X, C[τ]), varyρ(X, τ), and varyρ(X, τ̇). They respec-
tively describe the variance of a type variable in a constraint, a method signature, and a type. Notice that
these rules apply whether the constraint declaration contains default models or not, because ∗ can only occur
in invariant positions.

Subtyping and constraint entailment. Figure 13 defines the subtyping relation ≤ used by the translation.
They are used in checking constraint entailment relationships (Figure 14). Rules are only defined for non-
existential types because checking constraint entailment does not require checking subtyping relationships
that involve existential types. They are enriched by subtyping rules defined in Figure 23—those rules deal
with existential types—in order to be used for type-checking λGenus expressions.

Figure 14 defines the constraint-entailment relation�. Rule (E-PREREQ) shows that a constraint entails
its prerequisite constraints, while rules (E−) and (E+) show that given the variance of a type parameter,

19

varyρ(i, C)

constraint C1 [X1] extends C2[X2] {m : τ}
(∀j) varyρ(X1

i
, C2[X2]

j
) (∀j) varyρ(X1

i
, τj)

varyρ(i, C1)

varyρ(X, C[τ]) varyρ(X, i, C[τ])

(∀i) varyρ(X, i, C[τ])

varyρ(X, C[τ])

X /∈ FTV(τ)

varyρ(X, i, C[τ])

varyρ(i, C)
varyρ(X, τ i)

varyρ(X, i, C[τ])

vary−ρ(i, C)
vary−ρ(X, τ i)

varyρ(X, i, C[τ])

varyρ(X, τ)

vary−ρ(X1, X3) (∀i) vary−ρ(X1, τ2
i) (∀i) vary−ρ(X1, C[τ1]

i
) varyρ(X1, τ̇3)

varyρ(X1, [X2 where C[τ1] o](X3, τ2)→ τ̇3)

varyρ(X, τ̇)

(∀i) varyρ(X1, C[τ1]
i
) varyρ(X1, τ2)

varyρ(X1, [X2 where C[τ1] o] τ2)
vary+(X,X)

X /∈ FTV(τ)

varyρ(X, τ)

Figure 12: Variance relations. ρ ranges over {+,−}, and −ρ reverses the sign denoted by ρ.

Γ; ∆ ` τ1 ≤ τ2

Γ; ∆ ` τ ≤ τ (S-REFL)
Γ; ∆ ` τ1 ≤ τ2 Γ; ∆ ` τ2 ≤ τ3

Γ; ∆ ` τ1 ≤ τ3
(S-TRANS)

Γ; ∆ ` τ ≤ Object (S-OBJECT)
class L1 [β] extends L2[α2] {. . .}

Γ; ∆ ` L1[α1]≤ L2[α2]{α1/β}
(S-SUBCLASS)

Figure 13: Subtyping

` C[τ1] � C[τ2]

constraint C1 [X1] extends C2[X2] {...}

` C1[τ1] � C2[X2]
i
{τ1/X1}

(E-PREREQ)
` C1[τ1] � C2[τ2] ` C2[τ2] � C3[τ3]

` C1[τ1] � C3[τ3]
(E-TRANS)

` C[τ] � C[τ] (E-REFL)

vary−(i, C) ∅; ∅ ` τ2i ≤ τ1i
(∀j 6= i) τ1

j = τ2
j

` C[τ1] � C[τ2]
(E−)

vary+(i, C) ∅; ∅ ` τ1i ≤ τ2i
¬vary−(i, C) (∀j 6= i) τ1

j = τ2
j

` C[τ1] � C[τ2]
(E+)

Figure 14: Constraint entailment

20

constraint entailment reduces to subtyping. Invariance is covered by rule (E-REFL), and bivariance is down-
graded to contravariance.

A requirement established in §9.4 guarantees that either side of �—and hence ≤—does not contain
default models. In §9.3 and §9.4, constraint entailment relationships derived without using constraint co-
variance (i.e., rule (E+)) are denoted by ≤−.

9.3 Translating λ∗Genus to λGenus

The translation from λ∗Genus to λGenus is defined with the help of translation contexts. A translation context
takes the form

JPK∆
r [·]

in which P denotes a syntactic category in λ∗Genus, ∆ is the model environment consisting of enabled models,
r records additional information required to translate a term of P (r may or may not be present depending
on P), and [·] is the hole for which a subterm of P is to be substituted.

Figure 15 defines all translation contexts. Most of the translation contexts are mundane: they simply
propagate enabled models into model environments that are used to translate subterms. For example, in
translating a class declaration, the models enabled by the where clause of that class declaration are added
to the model environment when translating its superclass, field declarations, and method declarations, as
shown by the definition of JldeclK∆. The definition in Figure 15 uses the auxiliary function β(·) to access
the parameters of a generic, and the auxiliary function models (·) to obtain the models enabled by a where
clause or the use declarations of a program.

Some of the terms in Figure 15 are highlighted, indicating that they may contain default models. So they
are the places where translation is going to happen next. Also, the notation for sequences is abused so that
JPK∆
r means P, JPK∆

ri
, P . Notice that the types τ in a constraint C[τ] are never highlighted. The reason is

given in §9.4.
Figure 16 defines the relation P ∆;

r
P′, which reads “the λ∗Genus term P translates to the λGenus term

P′ under model environment ∆ with additional information r.” Every translation context (except [·]∆C[τ])
represents a context rule. Nevertheless, the goal of the translation is to replace ∗ with resolved models. So
J∗K∆
C[τ] is defined as a hole (i.e., [·]∆C[τ]), and the rewriting rule it corresponds to is where the actual translation

takes place. Translating ∗ needs additional information, namely the constraint for which the default model
is to be resolved, and hence the bottom-right corners of J[α]K∆

[β] and J∗K∆
C[τ].

The rewriting rule depends on the relation ∆ ` C[τ] # µ, defined in Figure 17 by rule (D), to obtain
the resolved model. Rule (D) states that if there is exactly one model that is enabled for constraint C[τ] in
the model environment ∆, the default model for that constraint is resolved to that unique witness. Function
enabled∆(C[τ]), defined extensionally, then tells if a model is enabled in the environment for the given
constraint. In order to focus on constraint variance and recursive resolution, which are more interesting
because of their implications for decidability, λ∗Genus does not enable natural models or uniquely satisfying
models. Apart from these simplifications, the formalization matches the description in §4.4, §4.7 and §5.2:
the model variable in (D-MVAR) comes from a where-clause constraint, the model in (D-MODEL) comes
from a use declaration or a model declaration, and (D-E) allows using constraint contravariance to derive
enabled models.

In rule (D-MODEL), τ4 and µ1 are considered to be inferred via unification. Their well-formedness is not
enforced at this stage, but is instead checked during type checking. Notice that the premise of (D-MODEL)
contains recursive applications of (D). It is for resolving default models for extrinsic constraints of use

declarations. The use of �− instead of � in rule (D-E) is justified in §9.4.

21

JprogK∅ ::= 〈JuseK∅, ldecl , cdecl , odecl , ė〉 |
〈use, JldeclKmodels(use)

, cdecl , odecl , ė〉 |
〈use, ldecl , JcdeclKmodels(use)

, odecl , ė〉 |
〈use, ldecl , cdecl , JodeclKmodels(use)

, ė〉 |
〈use, ldecl , cdecl , odecl , JėKmodels(use)〉

J[α]K∆

[X where C[τ ′] o]
::= [JτK∆

with µ] | [τ with JµK∆
C[τ ′]{τ/X}]

JuseK ::= [β] useMJ[α]Kmodels([β])
β(M) for C[τ]

JldeclK∆
::= class L1 [β] extends L2J[α]K∆,models([β])

β(L2) { fdecl mdecl } |

class L1 [β] extends L2[α] {JfdeclK∆,models([β])
mdecl } |

class L1 [β] extends L2[α] {fdecl JmdeclK∆,models([β])}

JcdeclK∆
::= constraint C1 [X1] extends C2[X2] {JmsigK∆}

JodeclK∆
::= modelM [X where C1[τ1] o] for C2[τ2] {JmdeclK∆,o::C1[τ1],M[X with o]::C2[τ2]}

JfdeclK∆
::= JτK∆

f

JmdeclK∆
::= JmsigK∆ { ė} | m : τ {JėK∆,models(β(m))}

JmsigK∆
::= Jτ̇K∆,models([β])

τ2 .m [β] (τ3 x) | τ̇1 JτK∆
.m [β] (τ3 x) | τ̇1 τ2.m [β] (JτK∆,models([β])

x)

JτK∆
::= LJ[α]K∆

β(L)

Jτ̇K∆
::= [β]JτK∆,models([β]) | JτK∆

JµK∆
C[τ] ::= MJ[α]K∆

β(M) | J∗K∆
C[τ]

J∗K∆
C[τ] ::= [·]∆C[τ]

JeK∆
::= JeK∆

.f | new LJ[α]K∆
β(L) (f = ė) | new L[α] (f = JėK∆

)

JėK∆
::= e.(JτK∆

.m) [α] (ė) | e.(τ.m) [α] (JėK∆
) | e.(τ.m) J[α]K∆

β(m) (ė) |
e.(JµK∆

.m) [α] (ė) | e.(µ.m) [α] (JėK∆
) | e.(µ.m) J[α]K∆

β(m) (ė) | JeK∆

models
(

[X where C[τ] o]
)

= o :: C[τ] models
(

[β] useM[α] for C[τ]
)

= [β]M[α] :: C[τ]

Figure 15: Translation contexts

JP1K
∆1

r1
::= · · · JP2K

∆2

r2
· · · (P1 6= ∗)

P2
∆2;
r2
P′2

JP1K[P2]
∆1;
r1

JP1K[P′2]
context rules

J∗K∆
C[τ] ::= [·]∆C[τ]

∆ ` C[τ] # µ

∗ ∆;
C[τ]

µ
rewriting rule

Figure 16: Translating λ∗Genus into λGenus

22

∆ ` C[τ] # µ

enabled∆(C[τ]) = {µ}
∆ ` C[τ] # µ

(D)

µ ∈ enabled∆(C[τ])

o :: C[τ] ∈ ∆

o ∈ enabled∆(C[τ])
(D-MVAR)

µ ∈ enabled∆(C1[τ1]) ` C1[τ1] �− C2[τ2]

µ ∈ enabled∆(C2[τ2])
(D-E)

[X where C1[τ1] o1; C2[τ2] o2]M[α] :: C3[τ3] ∈ ∆ (∀i) ∆ ` C2[τ2]
i
{τ4/X}# µ2

i

M[α]{µ1 µ2/o1 o2}{τ4/X} ∈ enabled∆(C3[τ3]{µ1/o1}{τ4/X})
(D-MODEL)

Figure 17: Resolving the default model for a give constraint

[X where C[X] o] useM[X with o] for C[L1[X]]

constraint C [X] {...} // Suppose C is contravariant with respect to X

class L1[X] {...}
class L2 extends L1[L2] {...}
modelM [X where C[X] o] for C[L1[X]] {...}
...

Figure 18: Recursive subclassing between L2 and L1[L2] causes resolution for constraint C[L2] to cycle.

9.4 Termination of default model resolution

We first illustrate the termination conditions for default model resolution. First, recursive resolution in the
presence of recursive subclassing may result in nontermination. Consider the λ∗Genus program in Figure 18,
in which L2 subclasses L1 in a recursive way. Suppose C is contravariant with respect to its type parameter.
To search for a model for constraint C[L2], rule (D-E) is applied since C[L1[L2]] �− C[L2]. Consequently,
a model for C[L1[L2]] is wanted. We are then directed to examine the default model candidacy of the use

declaration for C[L1[L2]]: the type parameter X is inferred as L2, and a model for the extrinsic constraint
C[X]{L2/X} becomes the new goal, causing the search to cycle.

Classes like L2 are called “shapes” in Greenman et al. [2014]. In practice, “shapes” encode methods
like compareTo and clone. Since these methods are effectively encoded by constraints in Genus, Genus
disallows recursive subclassing and F-bounds, effectively enforcing Material–Shape Separation to prevent
nontermination. The first termination condition follows:

Requirement 1. No recursive subclassing in λ∗Genus.

The premise of (D-E) contains a �− judgment (recall that �− means the constraint entailment rela-
tionship is derived without using constraint covariance). Similarly to how the coupling of constraint con-
travariance and recursive subclassing can cause default model resolution not to terminate, the coupling of
constraint covariance and recursive superclassing can too. We choose to simply refrain from using constraint
covariance in searching the model environment, because constraint covariance is much less common than
constraint contravariance, and because recursive superclassing cannot be avoided (consider the subtyping
relationship between List[Object] and Object).

Second, we adapt the “Paterson conditions” [Sulzmann et al. 2007] studied in the Haskell setting:

Requirement 2. Denote a “use” declaration by use [X where C1[τ1] o1; C2[τ2] o2]M[α] for C3[τ3].

23

‖τ‖ = min
i

∥∥τ i∥∥
‖X‖ = 1

‖L[α]‖ = 1 + LL[α]M
‖[τ with µ]‖ = ‖τ‖

LL[α]M = max

‖[α]‖ , max
L′[α′] such that

`L[α]≤L′[α′] and L6=L′

LL′[α′]M

 .

Figure 19: The ranking function ‖·‖ used in Requirement 2

...

constraint C [X] {...}
class L1 [X where C[L2[X with ∗]] o] {...}
class L2 [X where C[L1[X with ∗]] o] {...}
...

Figure 20: The presence of default models in constrained types leads to a scheduling deadlock.

• No type variable of a use declaration has more occurrences in any extrinsic constraint C2[τ2]
i

than
C3[τ3].

• For all i,
∥∥∥ τ2

i
∥∥∥ < ‖τ3‖, where ‖·‖ is the ranking function defined in Figure 19.

The requirement is motivated by reducing the rank of the constraint to resolve by at least one each time
rule (D-MODEL) is applied. The definition of ‖L[α]‖ takes subclassing into consideration, ensuring ‖L[α]‖ ≥
‖L′[α′]‖ if L[α] is a subclass of L′[α′]. It is implied that models have zero rank, so unlike the occurrence
of a class name in its superclasses’ type arguments being banned by Requirement 1, the occurrence of a
class name in its superclasses’ with clauses is not a concern. Requirement 2 prevents use declarations like
“use DualGraph;” from §4.7.

The third condition has to do with the scheduling of resolution. Consider the λ∗Genus program in Fig-
ure 20. Resolving the first occurrence of ∗ requires knowing the type L1[X with ∗] in L2’s where clause,
which contains the second occurrence of ∗. Resolving the second occurrence of ∗ then requires knowing
the type L2[X with ∗] in L1’s where clause, which contains the first occurrence of ∗, leading to circular
dependency. The issue is addressed by requiring constrained types (i.e., the types τ in a constraint C[τ]) be
free of default models:

Requirement 3. In λ∗Genus, symbol ∗ does not appear in constrained types.

In addition to ruling out a source of nontermination, the requirement saves programmers from the ar-
guably hazardous indirectness in reasoning about where-clause constraints, by forcing constrained types to
be expressed clearly.

Now we are ready to prove that default model resolution in λ∗Genus terminates. The termination of the
underlying unification algorithm is reasonably assumed. We sketch in Figure 21 the procedure that imple-
ments enabled∆(C[τ]) since the algorithm for deciding default model candidacy is not very straightforward
from the inference rules in Figure 17. Termination is proved with respect to the algorithm.

Lemma 1. All subtyping derivations are finite in λ∗Genus.

24

1: procedure findEnabled (∆, C, τ)
2: enabled = {}
3: for all o :: C′[τ ′] ∈ ∆ do . Apply (D-MVAR) and (D-E)
4: if C′[τ ′] �− C[τ] then
5: Add o to enabled
6: end if
7: end for
8: for all [X where C1[τ1] o1; C2[τ2] o2]M[α] :: C[τ3] ∈ ∆ do . Apply (D-MODEL) and (D-E)
9: 〈τ4, µ1〉 ← unify (X, o1, C, τ , C3, τ3)

10: if τ4 and µ1 exist then
11: for all C2[τ2] o2

i
do

12: enabled ′ ← findEnabled(∆, C2
i
, τ2

i{τ4/X}) . Recursive resolution
13: if enabled ′ = {µ2} then
14: AddM[α]{µ1 µ2/o1 o2}{τ4/X} to enabled
15: end if
16: end for
17: end if
18: end for
19: return enabled
20: end procedure
The call to unify at line 9 solves for X and o1 based on the unification constraint C3[τ3]{µ1/o1}{τ4/X} �− C[τ],
where X and o1 are free type variables and free model variables of τ3 .

Figure 21: Algorithm that searches the model environment ∆ for enabled models for constraint C[τ].

Proof. By the well-foundedness of class inheritance.

Corollary 1. All constraint entailment derivations are finite in λ∗Genus.

Proof. By Lemma 1.

Theorem 1. Default model resolution terminates in λ∗Genus.

Proof. By Corollary 1, the use of constraint entailment in the algorithm is not a concern. The algorithm
has two parts. The first part investigates the default model candidacy of model variables. This part, corre-
sponding to (D-MVAR) and (D-E), terminates trivially. The second part of the algorithm investigates the
default model candidacy of possibly universally quantified models. This part, corresponding to (D-MODEL)
and (D-E), obtains the substitutions (i.e., τ4 and µ1) for the quantified type parameters and intrinsic con-
straints through procedure unify , and triggers default model resolution recursively for extrinsic constraints
C2[τ2]{τ4/X}. Hence, the termination of this part depends on the well-foundedness of the recursion, given
the assumption that unification terminates. Define a ranking function |·| on sequences of types to represent
the depth of the recursion:

|τ | = 1 + max
[X where C1[τ1] o1;C2[τ2] o2] M[α]::C3[τ3]∈∆

such that C3[τ3]{µ1/o1}{τ4/X}�−C[τ]

max
i

∣∣∣ τ2
i{τ4/X}

∣∣∣ .
It remains to show that the ranking function is well-defined. In fact, using the termination conditions, we
can show

∥∥∥ τ2
i{τ4/X}

∥∥∥ < ‖τ‖ for all i, from which the well-definedness of |·| follows.
First of all, the ranking function ‖·‖ is well-defined by structural induction and by Requirement 1.
Now, by the second part of Requirement 2, we know

∥∥∥ τ2
i
∥∥∥ < ‖τ3‖. And by the first part of Require-

ment 2, we then have ∥∥∥ τ2
i{τ4/X}

∥∥∥ < ∥∥τ3{µ1/o1}{τ4/X}
∥∥ . (1)

25

fields (Object) = ∅

class L1 [β] extends L2[α2] {τ1 f1 mdecl}
fields (L2[α2]) = τ2 f2

fields (L1[α1]) = τ1{α1/β} f1, τ2{α1/β} f2

class L [β] ... {fdecl m : τ {ė}} m′ = mi

mtype (m′, L[α]) = τi{α/β}
class L1 [β] extends L2[α2] {fdecl m : τ {ė}} m′ /∈ m

mtype (m′, L1[α1]) = mtype (m′, L2[α2]{α1/β})

constraint C [X] ... {m : τ} m′ = mi

mtype (m′, C[τ]) = τi{τ/X}
constraint C1 [X1] extends C2[X2] {m : τ} m′ /∈ m

mtype (m′, C1[τ]) = mtype

(
m′, C2[X2]

i
{τ/X1}

)
Figure 22: Field and method lookup functions

Γ; ∆ ` τ̇1 ≤ τ̇2

∅; ∅ ` τ3 ≤ τ ′3{µ/o′1}{τ4/X ′1} for some µ and τ4

Γ, X1; ∆ ` τ4 ok (∀i) Γ, X1; ∆, o1 :: C1[τ1] ` µi :: C1[τ ′1]
i

{τ4/X ′1}

(o2) =
(
o′2

)
(∀i) ` C2[τ2]

i
� C′2[τ ′2]

i

{X1/X ′1}

Γ; ∆ ` [X1 where C1[τ1] o1; C2[τ2] o2] τ3 ≤ [X ′1 where C′1[τ ′1] o′1; C′2[τ ′2] o′2] τ ′3

(Ṡ)

Γ; ∆ ` τ̇1 ≤c τ̇2

Γ; ∆ ` τ̇1 ≤ τ̇2
Γ; ∆ ` τ̇1 ≤c τ̇2

(C-S)

Γ; ∆ ` [X1 where C1[τ1] o1; ∅] τ3 ≤ [X ′1 where C′1[τ ′1] o′1; ∅] τ ′3
(∀i) ∆, o2 :: C2[τ2] ` C′2[τ ′2]

i

{τ4/X ′1}# µi

(∀i) Γ, X1; ∆, o2 :: C2[τ2] ` µi :: C′2[τ ′2]
i

{τ4/X ′1}

Γ; ∆ ` [X1 where C1[τ1] o1; C2[τ2] o2] τ3 ≤c [X ′1 where C′1[τ ′1] o′1; C′2[τ ′2] o′2] τ ′3

(C-D)

Figure 23: Subtyping and coercion

Meanwhile, by the unification constraint C3[τ3]{µ1/o1}{τ4/X} �− C[τ], each τ j must be either identical
to or a subtype of τ3

k{µ1/o1}{τ4/X} for some k, which gives us∥∥τ j∥∥ ≥ ∥∥∥τ3
k{µ1/o1}{τ4/X}

∥∥∥ ≥ ∥∥τ3{µ1/o1}{τ4/X}
∥∥

by the definition of ‖·‖. Since the above inequality holds for all j,

‖τ‖ = min
j

∥∥τ j∥∥ ≥ ∥∥τ3{µ1/o1}{τ4/X}
∥∥ . (2)

The result follows from (1) and (2).

9.5 Static semantics (Part II)

This section defines the rest of the static semantics in terms of λGenus, in which all models are explicit.

Lookup functions. Figure 22 defines the auxiliary lookup functions. Function fields (L[α]) gives all the
field members defined in class L[α] and its superclasses. Function mtype (m,L[α]) returns the signa-
ture of the most specific method with name m defined in class L[α] or its superclasses, while function
mtype (m, C[τ]) returns the signature of a method with name m defined in constraint C[τ] or its prerequisite
constraints.

26

Γ; ∆ ` τ̇ ok

(∀i) Xi ∈ FTV(τ3) (∀i) o1
i ∈ FMV(τ3) (∀i) o2

i /∈ FMV(τ3)

(∀i) Γ, X; ∆ ` C1[τ1]
i

ok (∀i) Γ, X; ∆ ` C2[τ2]
i

ok Γ, X; ∆, o1 :: C1[τ1] ` τ3 ok

Γ; ∆ ` [X where C1[τ1] o1; C2[τ2] o2] τ3 ok
(W-EXT)

class L [X where C[τ2] o] ... {...}
(∀i) Γ; ∆ ` τ1i ok (∀i) Γ; ∆ ` µi :: C[τ2]

i
{τ1/X}

Γ; ∆ ` L[τ1 with µ] ok
(W-CT)

X ∈ Γ

Γ; ∆ ` X ok
(W-TVAR)

Γ; ∆ ` C[τ] ok

constraint C [X] ... {...} (∀i) Γ; ∆ ` τ i ok #
(
X
)

= # (τ)

Γ; ∆ ` C[τ] ok
(W-C)

Figure 24: Type well-formedness and constraint well-formedness

Γ; ∆ ` µ :: C[τ]

modelM [X where C1[τ1] o] for C2[τ2] {...}
(∀i) Γ; ∆ ` τ3i ok (∀i) Γ; ∆ ` µi :: C1[τ1]

i
{τ3/X}

Γ; ∆ ` M[τ3 with µ] :: C2[τ2]{µ/o}{τ3/X}
(W-M)

o :: C[τ] ∈ ∆

Γ; ∆ ` o :: C[τ]
(W-MVAR)

Γ; ∆ ` µ :: C1[τ1] ` C1[τ1] � C2[τ2]

Γ; ∆ ` µ :: C2[τ2]
(E-SUBSUME)

Figure 25: The witnessing relation

Subtyping. The subtyping rules defined in Figure 23 enriches those in Figure 13 to handle existential types.
In (Ṡ), µ and τ4 are considered to be generated via unification to replace X ′1 and o′1, with the unifica-

tion constraint being ∅; ∅ ` τ3 ≤ τ ′3{µ/o′1}{τ4/X ′1}. X ′1 and o′1 denote the existentially quantified type
parameters and intrinsic constraints of the supertype. We assume the unification algorithm to be complete
but not necessarily sound, meaning that it produces the correct solution whenever the unification constraints
are solvable, although it may produce a bogus one when the constraints are unsolvable. Invalid solutions are
rejected by well-formedness checks imposed on µ and τ4.

Rule (Ṡ) also requires that any extrinsic constraints of the supertype be entailed by its positionally cor-
responding extrinsic constraint in the subtype. Positional correspondence eases reasoning about subtyping
and joins of types, and agrees with the semantics of non-coercive subtyping—an existential value is not
repacked when assigned via subtyping to another existential type.

Subtyping transitivity and reflexivity in the presence of existential types are results of (Ṡ).

Coercion. Coercion admits subtyping. Coercion may also induce extra context-dependent computation
(i.e., default model resolution). Rule (C-D) shows that default models should be resolved for the extrinsic
constraints of the existential type on the right-hand side of ≤c, and that well-formedness of the resolved
models is required. Notice that well-formedness of unification results is already entailed by the subtyping
relationship in the premise.

Well-formedness. Well-formedness rules are decomposed into rules for type well-formedness, constraint
well-formedness (Figure 24), model well-formedness (Figure 25), expression well-formedness (Figure 26),
and program well-formedness (Figure 29).

27

Γ; ∆;E ` ė : τ̇

Γ; ∆ ` τ̇1 ≤ τ̇2
Γ; ∆;E ` ė : τ̇1

Γ; ∆;E ` ė : τ̇2
(S-SUBSUME) Γ; ∆;E ` x : E(x) (W-VAR)

class L [β] . . . {τ f mdecl}
Γ; ∆;E ` e : L[α]

Γ; ∆;E ` e.f i : τ i{α/β}
(W-FIELD)

Γ; ∆;E ` e : τ0 Γ; ∆ ` τ0 ≤ L[α] Γ; ∆ ` τ0 ok

mtype (m,L[α]) = [X where C1[τ1] o1; C2[τ2] o2](L[α], τ3)→ τ̇4

(∀i) Γ; ∆;E ` ėi : τ3
i{µ1/o1}{τ5/X} (∀i) Γ; ∆ ` τ5i ok

(∀i) Γ; ∆ ` µ1
i :: C1[τ1]

i
{τ5/X} (∀i) Γ; ∆ ` µ2

i :: C2[τ2]
i
{τ5/X}

Γ; ∆;E ` e.(τ0.m)[τ5 with µ1 µ2](ė) : τ̇4{µ1 µ2/o1 o2}{τ5/X}
(W-TCALL)

Γ; ∆ ` µ3 :: C3[τ3] (∃i) Γ; ∆;E ` e : τ3
i

mtype (m, C3[τ3]) = [X where C1[τ1] o1; C2[τ2] o2](τ3
i, τ4)→ τ̇5

(∀i) Γ; ∆;E ` ėi : τ4
i{µ1/o1}{τ6/X} (∀i) Γ; ∆ ` τ6i ok

(∀i) Γ; ∆ ` µ1
i :: C1[τ1]

i
{τ6/X} (∀i) Γ; ∆ ` µ2

i :: C2[τ2]
i
{τ6/X}

Γ; ∆;E ` e.(µ3.m)[τ6 with µ1 µ2](ė) : τ̇5{µ1 µ2/o1 o2}{τ6/X}
(W-MCALL)

class L [X where C[τ2] o] ... {...} fields (L[τ1 with µ]) = τ3 f

(∀i) Γ; ∆ ` τ1i ok (∀i) Γ; ∆ ` µi :: C[τ2]
i
{τ1/X} (∀i) Γ; ∆;E ` ėi : τ3

i

Γ; ∆;E ` new L[τ1 with µ](f = ė) : L[τ1 with µ]
(W-NEW)

Γ; ∆;E ` ė :c τ̇

Γ; ∆ ` τ̇1 ≤c τ̇2 Γ; ∆;E ` ė : τ̇1

Γ; ∆;E ` ė :c τ̇2
(C-SUBSUME)

Figure 26: Expression typing

receiver-ok (τ, L) receiver-ok (τ, C)

class L [X where C[τ] o] ... {...}
τ1 = L[X with o]

receiver-ok ([β] (τ1, τ2)→ τ̇3, L)
(W-RECV-L)

constraint C [X] ... {...}
(∃i) τ1 = X

i

receiver-ok ([β] (τ1, τ2)→ τ̇3, C)
(W-RECV-C)

Γ; ∆ ` tparam-ok (i, C)

constraint C [X] ... {[β2]τ3 m[β1](τ1, τ2)}
(∃j) Xi ∈ FTV(τ1

j) ∪ FTV(τ2
j
) ∪ FTV(τ3

j)

tparam-ok (i, C)
(W-PAR-A)

constraint C1 [X1] extends C2[X2] {...}

(∃j, k) X1
i

= X2
k
j

and tparam-ok
(
k, C2

j
)

tparam-ok (i, C)
(W-PAR-B)

Γ; ∆ ` override-ok (m,L[α], τ)

mtype (m,L0[α0]) = [X ′ where C1[τ ′1] o′1; C2[τ ′2] o′2] (L′[α′], τ ′3)→ τ̇ ′4
Γ, X; ∆, o1 :: C1[τ1], o2 :: C2[τ2] ` τ̇4 ≤ τ̇ ′4{X/X ′}{o1 o2/o′1 o

′
2}

(∀i) τ3i = τ ′3
i
{X/X ′}{o1/o′1} (∀i) τ1i = τ ′1

i
{X/X ′} (∀i) τ2i = τ ′2

i
{X/X ′}

Γ; ∆ ` override-ok
(
m,L0[α0], [X where C1[τ1] o1; C2[τ2] o2] (L[α], τ3)→ τ̇4

) (W-OVER)

mtype (m,L[α]) is undefined

Γ; ∆ ` override-ok (m,L[α], τ)
(W-OVER-UNDEF)

Figure 27: Helper relations for checking well-formedness of class and constraint declarations

28

Γ; ∆ ` specialize-ok (m, C[τ], τ)

constraint C [X] ... {...} mtype
(
m, C[X]

)
= [X ′1 where C1[τ ′1] o′1; C2[τ ′2] o′2] (τ ′3, τ

′
4)→ τ̇ ′5

Γ, X1; ∆, o1 :: C1[τ1], o2 :: C2[τ2] ` τ̇5 ≤ τ̇ ′5{τ/X}{X1/X ′1}{o1 o2/o′1 o
′
2} Γ; ∆ ` τ3 ≤ τ ′3{τ/X}

(∀i) τ ′4
i

is X
j

for some j ⇒ Γ, X1; ∆, o1 :: C1[τ1] ` τ4i ≤ τ ′4
i
{τ/X}{X1/X ′1}{o1/o′1}

(∀i) τ ′4
i

is not X
j

for any j ⇒ τ4
i = τ ′4

i
{τ/X}{X1/X ′1}{o1/o′1}

(∀i) τ1i = τ ′1
i
{τ/X}{X1/X ′1} (∀i) τ2i = τ ′2

i
{τ/X}{X1/X ′1}

Γ; ∆ ` specialize-ok
(
m, C[τ], [X1 where C1[τ1] o1; C2[τ2] o2] (τ3, τ4)→ τ̇5

) (W-SPEC)

Γ; ∆ ` model-ok
(
msig , C[τ]

)
constraint C [X] ... {m : τ} (∀i) mi : τi ,

{
m′ : τ′ ∈ msig

∣∣m′ = mi
}

(∀i,∀L1[α1],∀L2[α2])

applicableΓ;∆
(
τ
i{τ/X}, L1[α1], L2[α2]

)
⇒ Γ; ∆ ` mostSpecific

(
j, τi, L1[α1], L2[α2]

)
for some j

Γ; ∆ ` model-ok
(
msig , C[τ]

) (W-MODEL)

applicableΓ;∆
(
τ, L1[α1], L2[α2]

)
noLessSpecific (τ1, τ2)

Γ; ∆ ` L1[α1], L2[α2] ok
Γ; ∆ ` L1[α1]≤ τ1

(∀i) Γ; ∆ ` L2[α2]≤ τ2i{α/β} for some α

applicableΓ;∆
(

[β](τ1, τ2)→ τ̇3, L1[α1], L2[α2]
) (A)

τ = [X where C[τ1] o](τ2, τ3)→ τ̇4

τ′ = [X ′ where C[τ ′1] o′](τ ′2, τ
′
3)→ τ̇ ′4

∅; ∅ ` τ2 ≤ τ ′2{X/X ′}{o/o′}
(∀i) ∅; ∅ ` τ3i ≤ τ ′3

i
{X/X ′}{o/o′}

noLessSpecific (τ, τ′)
(NLS)

Γ; ∆ ` subordinate
(
τ1, τ2, L1[α1], L2[α2]

)

¬applicableΓ;∆
(
τ1, L1[α1], L2[α2]

)
Γ; ∆ ` subordinate

(
τ1, τ2, L1[α1], L2[α2]

) (SUB-NA)

applicableΓ;∆
(
τ1, L1[α1], L2[α2]

)
noLessSpecific (τ2, τ1)
¬noLessSpecific (τ1, τ2)

Γ; ∆ ` subordinate
(
τ1, τ2, L1[α1], L2[α2]

) (SUB-LS)

Γ; ∆ ` mostSpecific
(
j, τ, L1[α1], L2[α2]

)
applicableΓ;∆

(
τ
j , L1[α1], L2[α2]

)
(∀k 6= j) Γ; ∆ ` subordinate

(
τ
k, τj , L1[α1], L2[α2]

)
Γ; ∆ ` mostSpecific

(
j, τ, L1[α1], L2[α2]

) (MS)

Figure 28: Helper relations for checking well-formedness of model declarations

29

Γ; ∆ ` msig ok

(∀i) o1
i ∈ FMV(τ5) (∀i) o2

i /∈ FMV(τ5)

(∀i) Γ, X; ∆ ` C1[τ1]
i

ok (∀i) Γ, X; ∆ ` C2[τ2]
i

ok

Γ, X; ∆, o1 :: C1[τ1], o2 :: C2[τ2] ` τ̇3 ok Γ; ∆ ` τ4 ok Γ, X; ∆, o1 :: C1[τ1] ` τ5 ok

Γ; ∆ ` τ̇3 τ4.m[X where C1[τ1] o1; C2[τ2] o2](τ5 x) ok
(W-MSIG)

Γ; ∆ ` mdecl ok

Γ; ∆ ` τ̇1 τ2.m[X where C[τ3] o](τ4 x) ok

Γ, X; ∆, o :: C[τ3]; this : τ2, x : τ4 ` ė :c τ̇
′
1 Γ, X; ∆, o :: C[τ3] ` τ̇ ′1 ≤c τ̇1

Γ; ∆ ` τ̇1 τ2.m[X where C[τ3] o](τ4 x) {ė} ok
(W-MDECL)

∆ ` ldecl ok

(∀i) X; ∆ ` C[τ1]
i

ok ∆′ = ∆, o :: C[τ1]

X; ∆′ ` L2[α] ok (∀i) X; ∆′ ` τ2i ok (∀i) X; ∆′ ` m : τ {ė}
i

ok

(∀i) receiver-ok
(
τ
i, L1

)
(∀i) X; ∆′ ` override-ok

(
mi, L2[α], τi

)
∆ ` class L1 [X where C[τ1] o] extends L2[α] {τ2 f m : τ{ė}} ok

(W-LDECL)

∆ ` cdecl ok

(∀i) X1; ∆ ` m : τi ok (∀i) X1; ∆ ` C2[X2]
i

ok (∀i) receiver-ok
(
τ
i, C1

)
∆ ` constraint C1 [X1] extends C2[X2] {m : τ} ok

(W-CDECL)

∆ ` odecl ok

∆′ = ∆, o :: C1[τ1] X; ∆′,M[X with o] :: C2[τ2] ` m : τ {ė} ok

(∀i) X; ∆′ ` specialize-ok
(
mi, C2[τ2], τi

)
X; ∆′ ` model-ok (m : τ, C2[τ2])

(∀i) X; ∆ ` C1[τ1]
i

ok X; ∆′ ` C2[τ2] ok (∀i,∀j) τ2i is not X
j

∆ ` modelM [X where C1[τ1] o] for C2[τ2] {m : τ {ė}} ok
(W-ODECL)

` use ok

(∀i) Xi ∈ FTV(τ3) (∀i) o1
i ∈ FMV(τ3) (∀i) o2

i /∈ FMV(τ3)

(∀i) X; ∅ ` C1[τ1]
i

ok (∀i) X; ∅ ` C2[τ2]
i

ok X; o1 :: C1[τ1] ` C3[τ3] ok

X; o1 :: C1[τ1], o2 :: C2[τ2] ` M[α] :: C3[τ3]

` [X where C1[τ1] o1; C2[τ2] o2] useM[α] for C3[τ3] ok
(W-USE)

` prog ok

(∀i) ` [β] useM[α] for C[τ]
i

ok ∆ = [β]M[α] :: C[τ]

(∀i) ∆ ` ldecl
i

ok (∀i) ∆ ` cdecl
i

ok (∀i) ∆ ` odecl
i

ok
∅; ∆; ∅ ` ė : τ̇ for some τ̇

` 〈[β] useM[α] for C[τ], ldecl , cdecl , odecl , ė〉 ok
(W-PROG)

Figure 29: Program well-formedness

30

Similarly to expression well-formedness being formalized into the typing relation Γ; ∆;E ` e : τ , model
well-formedness is formalized using the witnessing relation Γ; ∆ ` µ :: C[τ] indicating that the model µwit-
nesses the constraint C[τ] in the given context.

Expression typing rules (Figure 26) are mostly standard except that expanders and with clauses play
a part in method calls. Rules (W-TCALL) and (W-MCALL) are for type-checking method calls whose ex-
panders are types and models respectively.

The helper relations in Figure 27 are for checking well-formedness of class declarations and constraint
declarations: relations receiver-ok (τ, L) and receiver-ok (τ, C) ensures that method receiver types in class
declarations and constraint declarations are as expected, and relation Γ; ∆ ` override-ok (m,L[α], τ) indi-
cates that class method m : τ has a signature that appropriately overrides the method with the same name
available in the superclass L[α].

Figure 28 defines the vocabulary to be used in checking model–constraint conformance. Relation Γ; ∆ `
specialize-ok (m, C[τ], τ) indicates that method m : τ (coming from some model) has a signature that ap-
propriately specializes the method with name m required by constraint C[τ]. The model method can only
specialize the receiver type and those argument types whose counterparts in the constraint method are a type
parameter of the constraint declaration. Relation Γ; ∆ ` model-ok

(
msig , C[τ]

)
indicates that msig , the

methods of some model, models constraint C[τ]. Specifically, it demands that for all methods required by
the constraint there be a unique most specific method in msig for every possible combination of dynamic
types of the method arguments and the receiver allowed by the required method. Therefore, four other
relations are needed:
• Relation applicableΓ;∆

(
τ, L1[α1], L2[α2]

)
indicates that L1[α1] and L2[α2], representing the types of

the receiver and the arguments at run time, are applicable to the method signature τ.
• Relation noLessSpecific (τ1, τ2) indicates that τ1 is a method signature that is at least as specific as τ2.
• Relation Γ; ∆ ` subordinate

(
τ1, τ2, L1[α1], L2[α2]

)
indicates that method signature τ1 is subordinate

to τ2 with respect to the set of dynamic types, meaning either τ1 is not applicable to the dynamic types,
or it is applicable but is less specific than τ2.
• Relation Γ; ∆ ` mostSpecific

(
j, τ, L1[α1], L2[α2]

)
indicates that τj is the most specific method signa-

ture among τ for the set of dynamic types.
Rule (W-ODECL) shows that checking well-formedness of model declarations uses both specialize-ok and
model-ok.

9.6 Operational semantics

Figure 30 presents the values and evaluation contexts in λGenus. The auxiliary lookup functions defined
in Figure 31 find the most specific method definition for method calls: function mdecl (m,L[α]) finds
the most specific method definition with name m defined by class L[α] and its superclasses, and func-
tion mdecl

(
m,M[α0], L1[α1], L2[α2]

)
finds for a receiver object of type L1[α1] and arguments of types

L2[α2] the most specific method definition with name m defined by modelM[α0]. Figure 32 presents the
reduction rules.

10 Related Work

Much prior work on parametric genericity mechanisms (e.g., [Liskov et al. 1984; Schaffert et al. 1986;
Chambers 1992; Myers et al. 1997; Agesen et al. 1997; Cartwright and Steele Jr. 1998; Bracha et al. 1998;
Kennedy and Syme 2001]) relies on constraint mechanisms that do not support retroactive modeling. We
focus here on more recent work that follows Haskell’s type classes in supporting retroactive modeling,
complementing the discussion in previous sections.

31

values v ::= new L[α] (f = v)

evaluation contexts E ::= [·] | new L[α] (f1 = v, f2 = E , f3 = ė) |
E .f | E .(τ.m) [α] (ė) | E .(µ.m) [α] (ė) |
v0.(τ.m) [α] (v1, E , ė) | v0.(µ.m) [α] (v1, E , ė)

context rule
ė1 −→ ė2

E [ė1] −→ E [ė2]

Figure 30: Values and evaluation contexts

class L [β] ... {fdecl m : τ {ė}}

mdecl
(
mi, L[α]

)
= m : τ {ė}

i
{α/β}

class L1 [β] extends L2[α′] {fdecl m : τ {ė}} m0 /∈ m
mdecl (m0, L1[α]) = mdecl (m0, L2[α′]{α/β})

modelM [β] for C2[τ] {m : τ {ė}} m′ : τ′ {ė′} ,
{
m : τ {ė}

i
∣∣∣mi = m0

}
∅; ∅ ` mostSpecific

(
j,m′ : τ′{α0/β}, L1[α1], L2[α2]

)
mdecl

(
m0,M[α0], L1[α1], L2[α2]

)
= m′ : τ′ {ė′}

j
{α0/β}

Figure 31: Dynamic method lookup

The C++ community developed the Concept design pattern, based on templates, as a way to achieve
retroactive modeling [Austern 1998]. This pattern is used extensively in the STL and Boost libraries. Tem-
plates are not checked until instantiation, so developers see confusing error messages, and the lack of sepa-
rate compilation makes compilation time depend on the amount of generic library code. The OO language
G [Siek and Lumsdaine 2011], based on System FG [Siek and Lumsdaine 2005], supports separate compi-
lation but limits the power of concept-based overloading. By contrast, C++ Concepts [Gregor et al. 2006]
abandon separate compilation to fully support concept-based overloading. It was not adopted by the C++11
standard [Siek 2011], however. Concept-based overloading is orthogonal to the other Genus features; it is
not currently implemented but could be fully supported by Genus along with separate compilation, because
models are chosen modularly at compile time.

In Scala, genericity is achieved with the Concept design pattern and implicits [Oliveira et al. 2010]. This
approach is expressive enough to encode advanced features including associated types [Chakravarty et al.
2005] and generalized constraints [Emir et al. 2006]. Implicits make using generics less heavyweight, but
add complexity. Importantly, Scala does not address the problems with the Concept pattern (§2). In particu-
lar, it lacks model-dependent types and also precludes the dynamic dispatch that contributes significantly to
the success of object-oriented programming [Aldrich 2013].

ė1 −→ ė2

new L[α](f = v).f
i −→ vi

v0 = new L[α′] (f = v2)
mdecl (m,L[α′]) = τ1 τ2.m [β] (τ3 x) {ė}

v0.(τ.m) [α] (v1) −→ ė{v0/this}{v1/x}{α/β}

v1 = new L1[α1] (f1 = v′1) v2 = new L2[α2] (f2 = v′2)

mdecl
(
m,M[α0], L1[α1], L2[α2]

)
= τ̇1 τ2.m [β] (τ3 x) {ė}

v1.(M[α0].m) [α3] (v2) −→ ė{v1/this}{v2/x}{α3/β}

Figure 32: Reduction rules

32

JavaGI [Wehr and Thiemann 2011] generalizes Java interfaces by reusing them as type classes. Like
a type class instance, a JavaGI implementation is globally scoped, must uniquely witness its interface,
and may only contain methods for the type(s) it is declared with. Unlike in Haskell, a call to an interface
method is dynamically dispatched across all implementations. Although dispatch is not based entirely on
the receiver type, within an implementation all occurrences of an implementing type for T must coincide,
preventing multiply dispatching intersect across the Shape class hierarchy (cf. §5.1).

Approaches to generic programming in recent languages including Rust [Rust] and Swift [Swift] are
also influenced by Haskell type classes, but do not escape their limitations.

Type classes call for a mechanism for implicitly and recursively resolving evidence of constraint sat-
isfaction. The implicit calculus [Oliveira et al. 2012] formalizes this idea and extends it to work for all
types. However, the calculus does not have subtyping. Factoring subtyping into resolution is not trivial, as
evidenced by the reported stack overflow of the JavaGI compiler [Greenman et al. 2014].

No prior work brings type constraints to use sites. The use of type constraints as types [Wehr and
Thiemann 2011; Swift] is realized as existentials in Genus. “Material–Shape Separation” [Greenman et al.
2014] prohibits types such as List<Comparable>, which do find some usage in practice. Existentials in
Genus help express such types in a type-safe way.

Associated types [Myers 1995; Chakravarty et al. 2005] are type definitions required by type constraints.
Encoding functionally dependent type parameters as associated types helps make certain type class headers
less verbose [Garcia et al. 2003]. Genus does not support associated types because they do not arise naturally
as in other languages with traits [Oliveira et al. 2010; Rust] or module systems [Dreyer et al. 2007] and
because Genus code does not tend to need as many type parameters as in generic C++ code.

Table 2: Comparing various generics approaches

C++11 SML/OCaml Haskell Java C# Cecil C++ Concepts Rust Swift Scala G JavaGI Genus

Multiparameter constraints (§3.1) # a # # G# # #

Multiple constraints (§3.2) # G#

Associated types access (§10) # # G# # #

Retroactive modeling (§4) # # #

Modular compilation (§5.1) # G# # #

Implicit argument deduction (§6.2) G#

Modular type checking (§5.1) # G# G# G# G#

Lexically scoped models (§4) # # # # # # # #

Concept-based overloading (§10) # # # # # # G# G# # #

Model generics (§3.2) # # # # # # # # # # #

Natural models (§3.3, §4.4) # # # # # G# # # G#

Non-unique modeling (§4.3) # # # # # # # # # # #

Model-dependent types (§3.3, §4.5) # # # # # # # # # # # #

Run-time type/model info (§4.6, §7) # # # G# #

Model enrichment (§5.1) # # # # # # # # # # #

Multiple dispatch (§5.1) # # # # # # # # # # G#

Constraint variance (§5.2) # # # # # # # # G# # G#

Model inheritance (§5.3) # # # # # # # # # # # #

Use-site generics (§6) # # G#b G# # # # # # G# # G#

aUsing MultiParamTypeClasses
bUsing ExistentialQuantification

33

Finally, in Table 2, we compare how Genus and other languages perform with respect to the desiderata
identified by prior work [Garcia et al. 2007; Siek and Lumsdaine 2011; Oliveira et al. 2010] and us. Not all
prior desiderata are reflected in the table. Since we consider support for associated types to be an orthogonal
issue, our desiderata do not include associated type access, constraints on associated types, and equality
constraints (of which the latter are primarily used to express constraints on associated types). Also due to
orthogonality, we omit type aliases and first-class functions.

11 Conclusion

The Genus design is a novel and harmonious combination of language ideas that achieves a high degree of
expressive power for generic programming while handling common usage patterns simply. Our experiments
with using Genus to reimplement real software suggests that it offers an effective way to integrate generics
into object-oriented languages, decreasing annotation burden while increasing type safety. Our benchmarks
suggest the mechanism can be implemented with good performance. Future work includes proving type
safety of Genus and exploring more efficient implementations.

Acknowledgments

We thank Owen Arden and Chinawat Isradisaikul for their help with implementation problems, Ross Tate,
Doug Lea, and Sophia Drossopolou for their suggestions about the design, and Tom Magrino for suggesting
the name Genus.

This work was supported by grant N00014-13-1-0089 from the Office of Naval Research, by MURI
grant FA9550-12-1-0400, by a grant from the National Science Foundation (CCF-0964409), by the German
Federal Ministry of Education and Research (BMBF), grant 01IC12S01V, by the European Research Coun-
cil, grant 321217, and by Quanta. The views and conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the official policies or endorsement, either expressed
or implied, of any sponsor.

References

O. Agesen, S. N. Freund, and J. C. Mitchell. Adding type parameterization to the Java language. In
Proc. 12th OOPSLA, pages 49–65, 1997.

A. V. Aho, J. E. Hopcroft, and J. Ullman. Data Structures and Algorithms. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1st edition, 1983.

J. Aldrich. The power of interoperability: Why objects are inevitable. In Proc. ACM Int’l Symp. on New
Ideas, New Paradigms, and Reflections on Programming & Software (Onward!), pages 101–116, 2013.

M. H. Austern. Generic Programming and the STL: Using and Extending the C++ Standard Template
Library. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1998.

G. Bracha, M. Odersky, D. Stoutamire, and P. Wadler. Making the future safe for the past: Adding genericity
to the Java programming language. In Proc. 13th OOPSLA, Oct. 1998.

K. B. Bruce, M. Odersky, and P. Wadler. A statically safe alternative to virtual types. In Proc. 12th European
Conf. on Object-Oriented Programming, number 1445 in Lecture Notes in Computer Science, pages 523–
549, July 1998.

34

N. Cameron, S. Drossopoulou, and E. Ernst. A model for Java with wildcards. In Proc. 22nd European
Conf. on Object-Oriented Programming, pages 2–26. Springer, 2008.

P. Canning, W. Cook, W. Hill, J. Mitchell, and W. Olthoff. F-bounded polymorphism for object-oriented
programming. In Proc. Conf. on Functional Programming Languages and Computer Architecture, pages
273–280, 1989.

R. Cartwright and G. L. Steele Jr. Compatible genericity with run-time types for the Java programming
language. In Proc. 13th OOPSLA, pages 201–215, Oct. 1998.

M. M. T. Chakravarty, G. Keller, S. Peyton-Jones, and S. Marlow. Associated types with class. In Proc. 32nd
POPL, pages 1–13, 2005.

C. Chambers. Object-oriented multi-methods in Cecil. In O. L. Madsen, editor, Proc. 20th European
Conf. on Object-Oriented Programming, volume 615, pages 33–56, 1992.

C. Clifton, G. T. Leavens, C. Chambers, and T. Millstein. MultiJava: Modular open classes and symmetric
multiple dispatch for Java. In Proc. 15th OOPSLA, pages 130–145, 2000.

M. Day, R. Gruber, B. Liskov, and A. C. Myers. Subtypes vs. where clauses: Constraining parametric
polymorphism. In Proc. 10th OOPSLA, pages 156–168, Oct. 1995. ACM SIGPLAN Notices 30(10).

D. Dreyer, R. Harper, M. M. T. Chakravarty, and G. Keller. Modular type classes. In Proc. 34th POPL,
pages 63–70, 2007.

B. Emir, A. Kennedy, C. Russo, and D. Yu. Variance and generalized constraints for C# generics. In
Proc. 20th European Conf. on Object-Oriented Programming, pages 279–303, 2006.

findbugs-release. Findbugs. http://findbugs.sourceforge.net/.

R. Garcia, J. Jarvi, A. Lumsdaine, J. G. Siek, and J. Willcock. A comparative study of language support for
generic programming. In Proc. 18th OOPSLA, pages 115–134, 2003.

R. Garcia, J. Jarvi, A. Lumsdaine, J. Siek, and J. Willcock. An extended comparative study of language
support for generic programming. J. Funct. Program., 17(2):145–205, Mar. 2007.

J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Language Specification. Addison Wesley, 3rd edition,
2005. ISBN 0321246780.

B. Greenman, F. Muehlboeck, and R. Tate. Getting F-bounded polymorphism into shape. In PLDI, pages
89–99, 2014.

D. Gregor, J. Järvi, J. Siek, B. Stroustrup, G. Dos Reis, and A. Lumsdaine. Concepts: Linguistic support for
generic programming in C++. In Proc. 21st OOPSLA, pages 291–310, 2006.

A. Igarashi, B. Pierce, and P. Wadler. Featherweight Java: A minimal core calculus for Java and GJ. ACM
Transactions on Programming Languages and Systems, 23(3):396–450, 2001.

A. Kennedy and D. Syme. Design and implementation of generics for the .NET Common Language Run-
time. In PLDI, pages 1–12, 2001.

B. Liskov, A. Snyder, R. Atkinson, and J. C. Schaffert. Abstraction mechanisms in CLU. Comm. of the
ACM, 20(8):564–576, Aug. 1977. Also in S. Zdonik and D. Maier, eds., Readings in Object-Oriented
Database Systems.

35

http://findbugs.sourceforge.net/

B. Liskov, R. Atkinson, T. Bloom, J. E. Moss, J. C. Schaffert, R. Scheifler, and A. Snyder. CLU Reference
Manual. Springer-Verlag, 1984. Also published as Lecture Notes in Computer Science 114, G. Goos and
J. Hartmanis, Eds., Springer-Verlag, 1981.

T. Millstein, M. Reay, and C. Chambers. Relaxed MultiJava: Balancing extensibility and modular type-
checking. In Proc. 18th OOPSLA, pages 224–240, 2003.

D. R. Musser, G. J. Derge, and A. Saini. The STL Tutorial and Reference Guide. Addison-Wesley, 2nd
edition, 2001. ISBN 0-201-37923-6.

A. C. Myers, J. A. Bank, and B. Liskov. Parameterized types for Java. In Proc. 24th POPL, pages 132–145,
Jan. 1997.

N. C. Myers. Traits: a new and useful template technique. C++ Report, 7(5), June 1995.

N. Nystrom, M. R. Clarkson, and A. C. Myers. Polyglot: an extensible compiler framework for Java. In
Proc. 12th Int’l Conf. on Compiler Construction (CC’03), volume 2622 of Lecture Notes in Computer
Science, pages 138–152, 2003.

M. Odersky. The Scala Language Specification. EPFL, 2014. Version 2.9.

B. C. Oliveira, A. Moors, and M. Odersky. Type classes as objects and implicits. In Proc. 25th OOPSLA,
pages 341–360, 2010.

B. C. Oliveira, T. Schrijvers, W. Choi, W. Lee, and K. Yi. The implicit calculus: A new foundation for
generic programming. In PLDI, pages 35–44, 2012.

S. Peyton-Jones, M. Jones, and E. Meijer. Type classes: an exploration of the design space. In Haskell
Workshop, 1997.

Rust. Rust programming language. http://doc.rust-lang.org/1.0.0-beta, 2015.

C. Schaffert, T. Cooper, B. Bullis, M. Kilian, and C. Wilpolt. An introduction to Trellis/Owl. In Proc. 1st
OOPSLA, Sept. 1986.

J. G. Siek. The C++0x concepts effort. Arxiv preprint arXiv:1201.0027, Dec. 2011.

J. G. Siek and A. Lumsdaine. Essential language support for generic programming. In PLDI, pages 73–84,
2005.

J. G. Siek and A. Lumsdaine. A language for generic programming in the large. Science of Computer
Programming, 76(5):423–465, 2011.

M. Sulzmann, G. J. Duck, S. Peyton-Jones, and P. J. Stuckey. Understanding functional dependencies via
constraint handling rules. J. Funct. Program., 17(1):83–129, Jan. 2007.

Swift. Swift programming language.
https://developer.apple.com/swift/resources/, 2014.

M. Torgersen, C. P. Hansen, E. Ernst, P. von der Ahé, G. Bracha, and N. Gafter. Adding wildcards to the
Java programming language. In Proc. 2004 ACM Symposium on Applied Computing, SAC ’04, pages
1289–1296, 2004.

P. Wadler and S. Blott. How to make ad-hoc polymorphism less ad hoc. In Proc. 16th POPL, pages 60–76,
1989.

36

A. Warth, M. Stanojević, and T. Millstein. Statically scoped object adaptation with expanders. In Proc. 21st
OOPSLA, Oct. 2006.

S. Wehr and P. Thiemann. JavaGI: The interaction of type classes with interfaces and inheritance. ACM
Trans. Prog. Lang. Syst., 33(4):12:1–12:83, July 2011.

Y. Zhang, M. C. Loring, G. Salvaneschi, B. Liskov, and A. C. Myers. Genus: Making generics object-
oriented, expressive, and lightweight. Technical Report http://hdl.handle.net/1813/39910, Cornell Uni-
versity, Apr. 2015.

37

	Introduction
	The Need for Better Genericity
	Type Constraints in Genus
	Type Constraints as Predicates
	Prescribing Constraints Using Where Clauses
	Witnessing Constraints Using Models

	Models
	Models as Expanders
	Parameterized Models
	Non-Uniquely Witnessing Constraints
	Resolving Default Models
	Models in Types
	Models at Run Time
	Default Model Resolution: Algorithmic Issues
	Constraints/Models vs. Interfaces/Objects

	Making Models Object-Oriented
	Dynamic Dispatching and Enrichment
	Constraint Entailment
	Model Inheritance

	Use-Site Genericity
	Existential Types
	Explicit Local Binding

	Implementation
	Implementing Constraints and Models
	Implementing Generics
	Supporting Primitive Type Arguments

	Evaluation
	Porting Java Collections Framework to Genus
	Porting the Findbugs Graph Library to Genus
	Performance

	Formalization and Decidability
	Syntax and notation
	Static semantics (Part I)
	Translating * Genus to Genus
	Termination of default model resolution
	Static semantics (Part II)
	Operational semantics

	Related Work
	Conclusion

