New Media Fellowships
2004 Project Cover Form

SCOTT SONA SNIBBE

Title: Christian Science Interactive Narratives

Genre: Interactive Video Installation

Applicant's Role in Production: Artist, Director, Software Engineer

Production Format: Installation comprising custom computer program, PC computer, video camera, and video projector

Brief Project Description (do not exceed space given below)

I will create two interactive narrative video works comprised of large projections that react to and interact with viewers. Each work presents a silhouette narrative of a prominent Christian Scientist. The first work concerns the events surrounding Mary Baker Eddy’s discovering and founding Christian Science in the 1860s. The second presents moments in the life of the American surrealist and Christian Science practitioner Joseph Cornell between 1930 and 1950. The Christian Science faith is best known for it’s belief in the power of the mind, and the mind’s ability to heal the body of illness – a belief that echoes the ideas of interdependence, emergence and emptiness, that inform my work.

Both pieces will be synthetically constructed narratives. The projected imagery will be silhouette performances in the tradition of 19th century magic lantern and shadow theatre. These performances, however, will be algorithmically generated, so that their specific actions and movements are always slightly different. These movements will be rooted in live recordings made on a soundstage and in animations, but will primarily exist as computer models.

Viewers will interact with a work when they walk between a projector and a projection on the screen. Viewers’ own shadows will instantly become an integral part of the projected scene. They will feel an immediate sense of presence at a phenomenal level, through the reaction of snow, rain, and scenery to their shadows. Their movements and actions will also have a narrative effect, advancing each work from scene-to-scene in ways that reflect viewers’ physical behavior.
Still image from first scene of Mary Baker Eddy work, Scott Snibbe
Title Deep Walls

Year 2003

Technical

<table>
<thead>
<tr>
<th>Original Format</th>
<th>Format Submitted for Viewing</th>
<th>Preferred OS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Software</td>
<td>Software</td>
<td>Windows</td>
</tr>
<tr>
<td>Web</td>
<td>Web</td>
<td>Mac</td>
</tr>
<tr>
<td>X Installation</td>
<td>X VHS</td>
<td>Unix</td>
</tr>
<tr>
<td>Other</td>
<td>Other</td>
<td>Other</td>
</tr>
</tbody>
</table>

Web Information (answer only if sample work is in Web format)

- URL

Browser requirement(s)

Plug-in requirement(s)

- This sample requires broadband connection (fast Internet connection)

- A local copy of the sample work has been included with the application

Special Information For Viewing:

Description of Work (use an additional sheet if necessary)

Deep Walls creates a projected cabinet of cinematic memories. Within each of 16 rectangles, the movements of different viewers within the space are projected, played back over-and-over, and reduced into the space of a small cupboard. Initially, when a viewer or viewers move into the larger rectangle of the entire projection, their shadows begin to be invisibly recorded, and one box within the projection (the eventual destination of the current movements) is cleared out. When all of these viewers leave the larger frame, their shadows are re-played within that smaller, single box, looping indefinitely. Thus the work presents records of the space, organized and collected into a flat cinematic projection. By collecting viewers' shadows, the piece destroys the fantasy and illusion of cinema, replacing these with a structured representation of an active audience.

Rhythmically, the work presents a complex temporal relationship between cinematic loops. Each smaller collected shadow-film has the precise duration of its recording. A single item in the collection might anywhere from a few seconds to several hours. The temporal, musical relationship between the sixteen frames becomes extremely complex, like Brian Eno's tape loop experiments, always looping individual recordings, yet presenting a unique whole — the repetition period for the entire work can be on the order of days or even months.

Deep Walls is particularly inspired by the surrealist films of Jan Svankmajer and the Quay Brothers and the sculpture of Joseph Cornell. In their films and sculptures, small bodies and obsessive organization of objects into drawers and cabinets symbolically represent interior, psychological and spiritual states. The rational process of organization only serves to bring out an unconscious irrationality. The name of the piece is a design pattern from architect Christopher Alexander's "Pattern Language". His admonition to architects is to build the walls of homes thick, so that cabinets, drawers and windows can perforate the interior space, providing areas to store, display, slice through and ultimately provide more meaning within the home. In the spirit of Alexander, this work gradually absorbs the contents of its environment onto its surface.
Title Compliant

Year 2002

Technical

<table>
<thead>
<tr>
<th>Original Format</th>
<th>Format Submitted for Viewing</th>
<th>Preferred OS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Software</td>
<td>Software</td>
<td>Windows</td>
</tr>
<tr>
<td>Web</td>
<td>Web</td>
<td>Mac</td>
</tr>
<tr>
<td>X_ Installation</td>
<td>X_ VHS</td>
<td>Unix</td>
</tr>
<tr>
<td>__ Other________________</td>
<td>__ Other________________</td>
<td>__ Other__________</td>
</tr>
</tbody>
</table>

Web Information (answer only if sample work is in Web format)

- _URL_ _________________________________ (if more than one please list them below)
- __ Browser requirement(s)__
- __ Plug-in requirement(s)__
- __ This sample requires broadband connection (fast Internet connection)__
- __ A local copy of the sample work has been included with the application__

Special Information For Viewing:

Description of Work (use an additional sheet if necessary)

The projected screen is historically the mechanism of one-way delivery of narrative information to a passive audience. *Compliant* creates a projected screen that is compliant and soft to the touch, equalizing the relationship between body and screen by allowing the audience to act upon the light projection itself. As visitors walk into the field of the projected screen, physically breaking the beam of projected light, their bodies cause the screen to be distorted and pushed away, off the axis of projection with a distinct posture. The screen becomes a body-sensitive sheet of projected light. This give-and-take relationship with the screen also evokes cinema more directly, by recalling the slapstick comedy of Charlie Chaplin endlessly chasing his hat in *The Tramp*.
Title **Boundary Functions**

Year **1998**

Technical

<table>
<thead>
<tr>
<th>Original Format</th>
<th>Format Submitted for Viewing</th>
<th>Preferred OS</th>
</tr>
</thead>
<tbody>
<tr>
<td>___ Software</td>
<td>___ Software</td>
<td>___ Windows</td>
</tr>
<tr>
<td>___ Web</td>
<td>___ Web</td>
<td>___ Mac</td>
</tr>
<tr>
<td>___ X_ Installation</td>
<td>___ X_ VHS</td>
<td>___ Unix</td>
</tr>
<tr>
<td>___ Other</td>
<td>___ Other</td>
<td>___ Other</td>
</tr>
</tbody>
</table>

Web Information (answer only if sample work is in Web format)

___ URL _____________________________ (if more than one please list them below)

___ Browser requirement(s)

___ Plug-in requirement(s)

___ This sample requires broadband connection (fast Internet connection)

___ A local copy of the sample work has been included with the application

Special Information For Viewing:

Description of Work (use an additional sheet if necessary)

Boundary Functions is realized as a set of lines projected from overhead onto a floor that divides each person from every other. As people move on the floor below, this diagram dynamically changes, always describing the personal space of each person. The experience of this personal space dynamically displayed, highlights that personal space is defined only by our relation to others, and chances without our control. Thus, we realize that, like many aspects of our supposed individuality, our personal space is entirely constructed by the social environment around us.
New Media Fellowships
2004 Sample Work Form

Check One: X Sample
___ Supplemental

SCOTT SONA SNIBBE

Title It's Out

Year 2001

Technical

<table>
<thead>
<tr>
<th>Original Format</th>
<th>Format Submitted for Viewing</th>
<th>Prefered OS</th>
</tr>
</thead>
<tbody>
<tr>
<td>___ Software</td>
<td>___ Software</td>
<td>___ Windows</td>
</tr>
<tr>
<td>X_ Web</td>
<td>X_ Web</td>
<td>___ Mac</td>
</tr>
<tr>
<td>___ Installation</td>
<td>X_ VHS</td>
<td>___ Unix</td>
</tr>
<tr>
<td>___ Other</td>
<td>___ Other</td>
<td>___ Other</td>
</tr>
</tbody>
</table>

Web Information (answer only if sample work is in Web format)

X_URL www.snibbe.com/scott/itsout

Browser requirement(s)

X Plug-in requirement(s): Java plug-in, linked from artwork page

This sample requires broadband connection (fast Internet connection)

X A local copy of the sample work has been included with the application (on VHS tape)

Special Information For Viewing:

Description of Work (use an additional sheet if necessary)

It's Out consists of a screen-based representation of a Zen koan that asks how to get a grown duck out of a bottle in which it had been raised since birth. In attempting to create an interactive representation of the koan in this story, I sought to portray the non-duality hinted at by the koan itself. In general, a koan is not answerable, but through contemplating the question, the meditator may clear away his or her own misunderstandings through a realization of the non-duality of all things and, ultimately, obtain enlightenment. To re-present this koan visually, I sought to create an illusion of duality that is shattered through interaction with the viewer.

The work begins with a representation of a white goose almost wholly contained in a black bottle. Viewers interact with the work by moving a mouse with their hand. When the viewer clicks and drags within the bottle, the bottle and the goose are revealed to exist only as the contours of a single black object—the outer contour is the bottle and the inner, the goose. This bottle-goose object distorts like soft rubber as the viewer manipulates its surface. The goose and the bottle are no longer distinguishable, nor is it possible to reconstruct their dual existence.

Each time someone runs the program, the work is different, but the overall quality is the same—that of simultaneous unification and disintegration of the form. In this process, some viewers also see a sense of the principle of entropy—the movement of all natural things towards disorder—just as some view Humpty-Dumpty as representing entropy in Lewis Carol's Alice In Wonderland.
Artist’s Statement, Scott Snibbe

The majority of my work explores how seemingly independent phenomena are, upon analysis, actually interdependent with their environments. Such interdependence may be understood in terms of the Buddhist notion of *emptiness*, which holds that no object, physical or mental, exists in isolation from the rest of reality. For example, humans often think of themselves as embodied individuals that act separately from their surroundings and other people. However, when people examine even the most basic unit of the individual self—the human body—they find it composed entirely of “non-self” physical elements (e.g., parents’ genetic material, food, and water that all, ultimately, originate from ancient stellar explosions), which are in continual exchange with the environment and with others (e.g., through genetic transmission, eating, respiration, immunological processes, etc.). Similarly, human mental structures and processes, including languages, ideas, memories, and preferences, all emerge from our interactions with other individuals and society. Even when alone, the imprints of these interactions drive our mental processes. Such a view of interdependence and emergence has gained widespread contemporary support in the fields of complexity theory, social psychology, and network theory.

In my artwork, I portray this interdependence of individuals with their environments and with each other through bodily interactions. Many of my works do not function unless viewers actively engage with them—by touching, breathing, moving, etc.—so that viewers are essential to the work’s existence as art. Furthermore, although the works involve significant technological infrastructure, viewers’ experiences more typically occur in the realm of human-to-human interactions. The pieces provoke communication among the viewers that, more than a mere reaction to the work, becomes the very essence of it.

Interaction is by nature time-based, and my artistic process is rooted in lessons I learned from the temporal media of experimental film and animation. The frame-by-frame creation of movement is based on an understanding that even a thirtieth of a second can change the
perceptual and emotional impact of a cinematic moment. I apply a similar methodology in creating time-based interactions among humans and technology. My artistic vocabulary is comprised of the subtle changes in timing that unfold as projections or mechanical objects react to viewers. These changes in timing are encoded not as frames of film, but as computer instructions that constantly reinterpret and update the temporal conditions of the work.

Although the ideas that my works attempt to convey are complex, I have adopted a minimalist artistic practice. My working process is subtractive, removing elements until only those necessary for conveying a work's meaning remain. I combine this approach with the principles of phenomenology – the philosophy of how the body “thinks” through unmediated perception, rather than through reason and language. Participants construct the meaning of my works through a process of physical awareness, which, in the words of the philosopher Merleau-Ponty, “gives us at every moment a global, practical, and implicit notion of the relation between our body and things, of our hold on them.” As applied to interactivity, my approach rewards viewers with an immediate, visceral sense of presence, while simultaneously inducing them to understand the conceptual motivation and deeper meaning behind the work.

My interests in phenomenology and minimalism reflect several of my artistic influences. First is the tradition of experimental and abstract film, especially the work of Len Lye, who created direct cinema by scratching and marking celluloid film directly with his body. Lye, along with other abstract film pioneers, including Oskar Fischinger, Hans Richter and Moholy-Nagy, revealed that it was possible to create sophisticated, time-based, emotion- and meaning-laden work without resorting to representation. A second direct influence on my work is the minimalist environmental art of the 60’s and 70’s, most notably that of Robert Irwin and James Turrell, who explored how subtle changes in an environment can make deep impressions on the viewer. My work continues in these traditions by constructing environments that directly and meaningfully react to viewers’ presence and engagement.
Scott Snibbe, Project Narrative

The works that I am proposing for the New Media Fellowship construct narrative, cinematic projections in which viewers' bodies become essential, integrated components. I will create two works, each presenting vignettes from the life of a significant Christian Scientist. Christian Scientists are best known for their belief in the individual's ability to heal his or her own body solely through mental processes. This belief is based on the tenet that the material world is a projection of the mental and spiritual ones, and is similar to the ideas of interdependence, emergence, and the Buddhist notion of emptiness—all of which are major themes in my artwork. I have a further personal interest in Christian Science, having been raised in that faith, though no longer a practitioner. The first proposed work depicts scenes from the life of Mary Baker Eddy, Christian Science's founder, and the second portrays moments in the life of the American surrealist Joseph Cornell. Both works will allow viewers to either disturb or catalyze the narrative, and will emphasize transformative moments in the subjects' lives. By allowing viewers to use their bodies to explore the immateriality of narrative and projection, the works echo the Christian Scientist belief in the connectedness of body to mind.

Over the past few years, I have already begun to examine the relationship between bodies and cinema. Through computer mediation, the projections in works such as the Screen Series react to the presence of viewers as soon as they step between screen and projector, thus putting the body and projection on equal footing, or even making the body dominant to the projected image. In so doing, they allow viewers to create cinema with their bodies, either through reactive projections that respond to viewers, or through porous projections that record viewers' movements. Although based in the contemporary technologies of computer vision, simulation, and digital projection, these works primarily refer back to the history of cinema and light projection, when silhouettes, rather than exact representations, graced animations, shadow theatre
performances, and magic lantern productions. My works likewise emphasize viewers' shadows, rather than their exact representations. My emphasis on shadows paradoxically creates a stronger integration of viewers' bodies with the projections, since a picture of a viewer's shadow is almost identical to the shadow itself, while a picture of a viewer's body is less similar to their actual three-dimensional form. With such an approach, these works have a similar agenda as structuralist film: the removal of layers of cinematic illusion to reveal the nature of the image itself.

Both of the proposed works entail the same apparatus: a projector, camera, and computer located at the same point in space. This apparatus will project an 8-16 foot high silhouette narrative on the opposite wall. In the absence of viewers, a single scene from the narrative loops, with small variations occurring at each repetition. The projected scene is not a recording, but rather is a computer-generated, self-contained silhouette reality. When a viewer walks between the projection apparatus and the projection itself, the viewer's shadow immediately becomes a character or a disturbance in the projected scene, and can advance the narrative to other scenes.

For example, consider the first scene from the Mary Baker Eddy piece, which depicts the moment when Christian Science began. In this scene, a Victorian woman's silhouetted figure ice-skates on a snowy New England afternoon. When viewers enter this scene, the snow falling upon their shadows immediately integrates their bodies into the narrative frame. As a consequence of the viewers' movements, Mrs. Eddy slips and falls upon the frozen surface of the lake and the scene advances to Mrs. Eddy convalescing in her bedroom.

Executing these works will involve the core methodologies that I have developed for my prior structural works – computer vision for the integration of human figures with the projections; and synthetic, reactive computer graphics. The narrative aspect of this project will require the creation of source material with actors and animators, marking my return to experimental film.
This source material will be algorithmically transformed into a dynamic representation of the scene. The quality of the characters’ movements will be rooted in the original recordings and animations, but the actual imagery will be uniquely different each time it is viewed, since the source movements will be transformed into a synthetic description of characters and scenery.

I will present the works primarily in museums and galleries, while also seeking out public installations where an unsuspecting audience would encounter the works by chance. Ideal locations would be relevant historical sites, such as the Mother Church in Boston, where Mary Baker Eddy established world headquarters, or specific locations in New York City, where Joseph Cornell lived and found his inspirations and obsessions.

Only a few artists, such as Graham Weinbren, have made successful interactive narratives. When such works fail, it is usually due to either too clear a coupling with the narrative, where viewers are simply starting and stopping a pre-recorded narrative; or too unclear a coupling, where viewers are unaware of how they affect the narrative. I believe these proposed works will strike a balance between these extremes, transforming the viewer from observer to actor in unanticipated ways. Furthermore, by having an instantaneous, phenomenal impact on the scene (through interactions with snow, rain, wind, etc.), viewers immediately feel their own narrative presence. Their subsequent effects on the narrative arises from the piece’s continuous, dynamic processing of their movements within the scene, rather than through obvious and disconnected jolts to the narrative. Finally, since the imagery is an algorithmically generated reality, rather than a series of recorded vignettes, the work presents a sense of the intimate and unrepeatable, more consistent with the experience of an actor than a viewer.

The total cost of the project is $35,000. The money will be applied to studio and equipment costs, living expenses during the research and development phase, and film/video pre-production expenses including acting, cinematography, and animation.
Project Budget, Scott Snibbe

Christian Science Interactive Narratives Budget
Prepared for 2004 New Media Fellowship
Scott Snibbe
10/6/03

I. Equipment for development and exhibition

<table>
<thead>
<tr>
<th>ITEM</th>
<th>NOTES</th>
<th>EST. COST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Video Projector with wide angle lens</td>
<td>2500 lumens or brighter data Projector with wide angle lens to project 13' x 10' image width at minimum 1024x768 resolution</td>
<td>$4,000</td>
</tr>
<tr>
<td>Video Camera with controllable iris, zoom, exposure</td>
<td>AFZ-220XC 1/4" auto-zoom color camera</td>
<td>$500</td>
</tr>
<tr>
<td>Camera Power supply</td>
<td></td>
<td>$20</td>
</tr>
<tr>
<td>Camera mounting bracket</td>
<td></td>
<td>$50</td>
</tr>
<tr>
<td>Video digitizing card</td>
<td>Pinnacle capture card or USB Videobus II</td>
<td>$250</td>
</tr>
<tr>
<td>VGA Splitter/amplifier box (VOPEX-2V-H)</td>
<td></td>
<td>$250</td>
</tr>
<tr>
<td>Video cables</td>
<td>Long VGA, or breakout to 4 BNC Coax, Long BNC to camera</td>
<td>$100</td>
</tr>
<tr>
<td>Control cable</td>
<td>Custom made 25-50" control cable for camera</td>
<td>$200</td>
</tr>
<tr>
<td>Retroreflective screen - frame & screen material</td>
<td>13.3'x10'</td>
<td>$400</td>
</tr>
<tr>
<td>PC computer</td>
<td>Running Windows 2000/XP, 2.5Ghz+ with high end graphics card</td>
<td>$2,000</td>
</tr>
<tr>
<td>Monitor</td>
<td>For development and maintenance</td>
<td>$800</td>
</tr>
<tr>
<td>Tax and Shipping</td>
<td></td>
<td>$400</td>
</tr>
<tr>
<td>Total development and exhibition equipment</td>
<td></td>
<td>$8,970</td>
</tr>
</tbody>
</table>

II. Non-equipment expenses

<table>
<thead>
<tr>
<th>ITEM</th>
<th>EST. COST</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 year studio space rental</td>
<td>$6,000</td>
</tr>
<tr>
<td>Living expenses to subsidize 1 year of research and development by the artist</td>
<td>$10,000</td>
</tr>
<tr>
<td>Actors and cinematography</td>
<td>$6,030</td>
</tr>
<tr>
<td>Animator</td>
<td>$2,000</td>
</tr>
<tr>
<td>Research travel to NYC, Boston and Washington, DC</td>
<td>$1,000</td>
</tr>
<tr>
<td>Production travel to NYC and Boston</td>
<td>$1,000</td>
</tr>
<tr>
<td>Total non-equipment expenses</td>
<td>$26,030</td>
</tr>
</tbody>
</table>

Total expenses

<table>
<thead>
<tr>
<th>EST. COST</th>
</tr>
</thead>
<tbody>
<tr>
<td>$35,000</td>
</tr>
</tbody>
</table>
SCOTT SNIBBE

ARTIST'S CURRICULUM VITAE
October, 2003

BORN: August 20, 1969

1989-1992 Experimental Animation, Rhode Island School of Design.

BRIEF BIOGRAPHY:

Scott Snibbe is an artist whose output consists primarily of electronic media installations that directly engage the body of the viewer in a reactive system. Snibbe's work has been shown internationally at venues including the Whitney Museum of American Art's Artport, Eyebeam, and The Kitchen, New York City; the InterCommunications Center, Tokyo; Ars Electronica, Austria; ICA, London; and New Langton Arts, San Francisco. His works have won a variety of international prizes, including the Prix Ars Electronica.

Snibbe was born in 1969 in New York City. He holds Bachelor's degrees in Computer Science and Fine Art, and a Master's in Computer Science from Brown University. Snibbe studied experimental animation at the Rhode Island School of Design and his films have been widely shown internationally. He has taught media art and experimental film at Brown University, The Rhode Island School of Design and UC Berkeley. Snibbe has held technological research positions at Adobe Systems and Interval Research. His research in computer graphics, computer vision and physical interfaces is documented in a number of academic papers, several patents, and in the special effects program Adobe After Effects. Snibbe lives and works in San Francisco.

SELECTED SOLO EXHIBITIONS:

SELECTED GROUP EXHIBITIONS:

 Art Rock 2004. Brittany, France. April, 2004
 Beursschouwburg. Brussels, Belgium. February, 2004

 Ars Electronica 2003. Linz, Austria. September, 2003
Dialogue with Light and Shadow. Toki Messe. Nigata, Japan. April 2003

Carnivore, Eyebeam, New York City. October, 2002

NewFangle, GenArtSF, San Francisco. October – December, 2002

Time Share, Art Interactive, Cambridge, Massachusetts. September, 2002

CODEDOC, Whitney Museum Artport. September, 2002

Inaugural Exhibition, Shizuoka Arts Center, Tokyo, Japan. March, 2002

New Frontiers. Art Association Gallery, Jackson Hole, WY. January, 2002

bienalle.net. Jeffrey Deitch Projects, Brooklyn, NY. November 5-7, 2001

Tirana Biennale. Tirana, Albania. September 1 - October 15, 2001

Only The Lonely. Foro Artistico, Hanover, Germany. August 31 - September 23, 2001

Adding Media / Subtracting Signs. NTT Intercommunications Center (ICC). Tokyo, Japan. 22 June - 20 July, 1999

Interaction '99. International Academy of Media Arts and Sciences (IAMAS). Ogaki City, Gifu, Japan. March 5-14, 1999

1998
Inaugural Exhibition. Center of the Edge Gallery. The Tech Museum. San Jose, California. October 98 - April 99

Ars Electronica 98. Cyberarts 98 exhibition. Linz, Austria. September, 1998

Motion Phone Urban Installation. Stuttgart Filmwinter 98. Germany. March, 1998

1997
WRO '97. Wroclaw, Poland. March, 1997

Vienna Global Village '97. Vienna, Austria. April, 1997

1996
Ars Electronica 96. Cyberarts 96 exhibition. Linz, Austria. September, 1996

1995
SIGGRAPH 95 Interactive Communities. Los Angeles, CA. August 1995

COMMISSIONS:

2005 “Blow Up”, for Yerba Buena Center for the Arts. San Francisco, CA

2002 “Shadow”, for Art Interactive. Boston, MA.

BOOKS:

The Computer In the Visual Arts. Anne Morgan-Spalter. Addison-Wesley, 1999

PRESS:

Technology Sparks Interactive Exhibit. Boston Herald, November 24, 2002

Artist’s Curriculum Vitae, Scott Snibbe
It's Out, *web art per la mente estetica*. Neural Online. June 2002
Better Living through Chemistry, San Francisco Examiner, November 8, 2001
Screen Savers as Artists' Medium, New York Times, November 23, 2000
Portrait of Artist as Businessman, Wired News, November 3, 2000
Ones to Watch, Interview Magazine, April 2000
Bored, Broken, and Beautiful. The Stranger. Seattle, WA. February 14, 1996

INVITED TALKS AND LECTURES:

Stanford University Art Department. April, 2002.
IDEO San Francisco. *Bodies Think with Light and Motors* July 2001.
Ars Electronica 96. *Motion Phone*. September 1996.

GRANTS AND AWARDS:

Golden Nica, *Prix Ars Electronica*, 2002. (As part of the Radical Software Group’s Carnivore)
Bronze Animation Award, *New York Expo of Short Film & Video*, 1995.
Director’s Citation, *Black Mariah Film Festival*, 1995.

FILMOGRAPHY:

- **Three Eyes** 35mm, Hand/Computer animation, narrative, in production.
- **Just Mom and Me** Video, 6 animated segments for a documentary on single mothers, 1998.
- **Lost Momentum** 35mm, 6:20, Hand-drawn, narrative. 1995.
- **Motion Sketch** Video, 7:00, Abstract improvised computer animation, 1994.
- **Brothers** 16mm, 3:30, Hand-drawn, narrative. 1990.
- **Milo’s Flight** 16mm, 2:00, Hand-drawn, narrative. 1988.

SELECTED SCREENINGS:

1995-2003
San Francisco Cameraworks; FANTOCHE (Switzerland); Oberhausen Festival of Short Film (Germany); Charlotte Film and Video Festival (North Carolina). Taos Talking Pictures (New Mexico); Seattle International Film Festival; Mill Valley Film Festival (California); International Trickfilm-Festival Stuttgart (Germany), Official Competition; Hiroshima International Animation Festival (Japan), Best of the World Program; Filmfest Dresden (Germany), Competition Program; Wellington Film Festival (New Zealand); Black Mariah Film Festival, Director's Citation.

1990-1995
New York Expo of Short Film & Video, Bronze Animation Award; Shanghai Animation Festival; Wellington Film Festival (New Zealand); Seattle International Film Festival; Holland Animation Festival; Stuttgart Trickfilm-Festival (Germany); Sinking Creek Film Festival (Tennessee); Athens Film Festival (Ohio); Big Muddy Film Festival (Illinois); San Francisco Golden Gate Awards; Student Academy Awards Finalist; Black Mariah Film Festival, Director's Choice.

PROFESSIONAL EXPERIENCE:

- **Lecturer**, Art Department, UC Berkeley. Summer 2002.
- **Teaching Assistant**, Rhode Island School of Design, 1990-94.

RESEARCH PUBLICATIONS:

PATENTS:

Scott Snibbe
Selected works
October, 2003

Installations

Shy, 2003
computer, projector, video camera, video capture card, retroreflective screen, custom software
Dimensions: 6' x 12' x 20' (variable)
Exhibition history: Beall Center (Los Angeles), 2003

Depletion, 2003
computer, projector, video camera, video capture card, retroreflective screen, custom software
Dimensions: 80' x 60' x 15' (variable)
Exhibition history: Beall Center (Los Angeles), 2003

Embracing, 2003
computer, projector, video camera, video capture card, retroreflective screen, custom software
Dimensions: 80' x 60' x 15' (variable)
Exhibition history: Beall Center (Los Angeles), 2003

Impression, 2003
computer, projector, video camera, video capture card, retroreflective screen, custom software
Dimensions: 12' x 6' x 20' (variable)
Exhibition history: Beall Center (Los Angeles), 2003

Deep Walls, 2003
computer, projector, video camera, video capture card, retroreflective screen, custom software
Dimensions: 80' x 60' x 15' (variable)
Exhibition history: San Francisco Museum of Modern Art, 2003; Ars Electronica (Austria), 2003
Awards: Prix Ars Electronica, Honorable Mention, 1998

Compliant, 2002
computer, projector, video camera, video capture card, retroreflective screen, custom software
Dimensions: 12' x 6' x 20' (variable)
Exhibition history: Gen Art's New Fangle (San Francisco), 2002; Toki Messe (Japan), 2003; Art Center Nabi (Korea), 2003; Beall Center (Los Angeles), 2003; Arizona State University (2004)
Shadow, 2002
computer, projector, video camera, video capture card, retroreflective screen, custom software
Dimensions: 80" x 60" x 15' (variable)
Exhibition history: Art Interactive (Boston), 2002; Beall Center (Los Angeles), 2003
Commissioned by: Chuck Lewin, Art Interactive

Boundary Functions, 1998
projector, video camera, pc computer, retro-reflective floor, custom software
Dimensions: 12' x 12' x 20' (variable)
Exhibition history: Ars Electronica (Austria), 1998; The Tech Museum (California), 1999; Interaction (Japan), 1999; NTT ICC (Japan), 1999; Transmediale (Germany), 2000; Foro Artistico (Germany), 2001; The Exploratorium (California), 2001; Shizuoka Arts Center (Japan), 2002; The Kitchen (New York), 2002; Toki Messe (Japan), 2003; Art Center Nabi (Korea), 2003
Awards: Prix Ars Electronica, Honorable Mention, 1998

Motion Phone, 1991-1996
Silicon Graphics workstations, video projector, custom software
Dimensions: 15' x 12' x 4' (variable)
Exhibition history: SIGGRAPH (Los Angeles), 1995; Ars Electronica (Austria), 1996; Vienna Global Village (Austria), 1997; WRO (Poland), 1997; Stuttgart Filmwinter (Germany), 1998
Awards: Prix Ars Electronica, Distinction, 1996

Works for the screen

Tripolar, 2002
Java Applet
Dimensions: variable
Commissioned by: The Whitney Museum of American Art

Fuel (part of RSG's Carnivore), 2002
Java Application
Dimensions: variable
Exhibition history: Eyebeam (New York), 2002; Ars Electronica (Austria), 2002; Watson Institute for International Studies (Rhode Island), 2002;
Awards: Golden Nica, Prix Ars Electronica
Commissioned by: Alex Galloway

It's Out, 2000
Java Web Applet
Dimensions: variable
Exhibition history: Tirana Biennial (Albania), 2001; Jeffrey Deitch Projects (New York), 2001; Arizona State University, 2004
Commissioned by: Milto Manetas, Flash Art

Myrmegraph, 2000
PC Screensaver, commission
Dimensions: variable
Exhibition history: Stanford University (California), 2000; ICA (London), 2002
Commissioned by: James Buckhouse, Stanford University
Myrmegraph, 1999
Custom PC software
Dimensions: variable
Exhibition history: NTT ICC (Tokyo), 1999; Art Association Gallery (Wyoming), 2002; Arte Digital IV (Cuba), 2002

Gravitulux, 1999
Custom PC software
Dimensions: variable
Exhibition history: NTT ICC (Tokyo), 1999; Art Association Gallery (Wyoming), 2002; Arte Digital IV (Cuba), 2002

Bubble Harp, 1998
Custom PC software
Dimensions: variable
Exhibition history: NTT ICC (Tokyo), 1999; Art Association Gallery (Wyoming), 2002; Arte Digital IV (Cuba), 2002

Interactive Sculpture

Blow Up, 2005
Dimensions: 16' x 12' x 4'
Exhibition history: Yerba Buena Center for the Arts (San Francisco). 2005
Commissioned by: Yerba Buena Center for the Arts (San Francisco), 2005

Circular Breathing, 2002
aluminum, steel, custom electronics, impeller, motor, motor driver, custom software
Dimensions: 10" x 8" x 12"
Exhibition history: Art Interactive (Boston), 2002
Commissioned by: Chuck Lewin, Art Interactive

Mirror, 2001
vintage fan parts, custom electronics, impeller, motor, motor driver
Dimensions: 14" x 14" x 20"
Exhibition history: New Langton Arts (San Francisco), 2001

Filmography

Just Mom and Me
Video, 6 animated segments for a documentary on single mothers, 1998.

Lost Momentum
Video, 7:00, Abstract improvised computer animation, 1994.
16mm, 3:30, Hand-drawn, narrative. 1990.

Motion Sketch
16mm, 2:00, Hand-drawn, narrative. 1988.