So here it is – my first ‘Harvest’ edition of the Vineyard Notes newsletter. In contrast to most of the other newsletters that we write, which try to focus on what’s coming up, much of the information in this issue is focused on looking back at the season that was. At first, it might not seem worthwhile to spend so much time and effort on this. But I think it is a good time to look back, take stock of what happened this year, and perhaps try to pull out a few nuggets of information that can help us next year, whether we’re growers or in extension.

This issue contains some of the usual items that have been included in past issues – summaries of cooperative research done in the Finger Lakes, a review of the growing season, discussion of grape prices, etc. One of the things that is not here this year, unfortunately, is Jerry White’s annual market outlook for the grape and wine industry. Jerry officially retired this past winter, but I convinced him to answer a few questions about his career at Cornell and working with the grape and wine industry in the Finger Lakes.

On a personal note, I want to thank everyone in the industry for making me feel welcome here in the Finger Lakes, and for your encouragement as I have been making the transition into this new job. As I have said before, I think the Finger Lakes region is one of the most diverse and exciting grape growing regions in the world, and I feel privileged to be a part of it. I look forward to working with all of you in the years ahead.

See you in the vineyard!

A Review of the 2007 Growing Season

Hans Walter-Peterson

It seems that the positive adjectives have been rolling out for the 2007 growing season almost since the beginning. As harvest was wrapping up last year, there were concerns on the part of many about the vines’ abilities to deal with a cold winter after cloudy and rainy weather dominated in September and October. But a mild winter followed by some of the best weather for grape growing that the region has seen in recent years has many growers feeling good about the 2007 season.

A Mild Winter in 2006-07. After a 2006 harvest season that saw very little sunshine and a seemingly endless supply of rain (leading to defoliation by downy mildew in many cases), there were some significant concerns about wood maturity and winter acclimation of the vines. Even a relatively “normal” winter might have impacted bud, cane and even vine survival. Fortunately, the winter of 2006-07 was a mild one, with only one or two low temperatures going below zero at all, and even then just barely (see Figure 1). In addition, unusually mild temperatures predominated during the first couple months of the pruning season. In many cases, this allowed those growers with native and cold tolerant hybrid varieties that are typically pruned early in the winter to get ahead of schedule with their pruning. More typical winter temperatures did not really appear until early to mid-January. The only excursions down below 0°F occurred in early March, when several of the region’s weather stations recorded low temperatures of around -2°F. For a second year in a row, the Finger Lakes had come through the winter in good shape, with minimal winter injury overall (but not zero – more on that in a second).

Growing Season

Budbreak in the Finger Lakes arrived pretty much on schedule, despite a stretch of temperatures in the 70s and 80s for a few days near the end of April, which were not enough to get buds to push out to any great extent. Low temperatures following bud-
Temperature Profile. I think for many people, 2007 will probably be thought of as both a warm and dry year. It certainly was dry, but just how warm were we, really? As warm as 2005? I think the comparison between the two years is an interesting one, because the final determiner of how good of a year it was – fruit quality (whether you’re talking Brix and tonnage or color and flavors) – was very good overall in both years. It is interesting, though, to look at the data from the two growing seasons and see how the conditions we had those two years got us to that final point.

Growing degree day (GDD) accumulation was close to average for the first two months of the season (Figure 2). Starting around Memorial Day, some warmer weather came in and moved our season ahead so we were a bit ahead of average by the time bloom arrived. In comparison, 2005 had a very cool beginning of the season, especially in May.

The period from bloom to veraison was kind of up and down this year, with a warmer than normal June, cooler July and then above average GDD accumulation again in August. In contrast, the heat came on around June 1 in 2005, and then just kept on coming. This was the biggest difference between the two years, with 2005 having much more heat accumulation during the middle of the season than 2007.

As much as the drought conditions we had this year, 2007 will probably

2007 FINGER LAKES GRAPE PROGRAM ADVISORY COMMITTEE MEMBERS

The Finger Lakes Grape Program Advisory Committee is a group of 11 grower and industry representatives that provides guidance and direction in planning meetings and activities of the program. Current members are:

Ontario County:
- Rich Jerome, Naples
- John Ingle, Bristol

Seneca County:
- Cameron Hosmer, Ovid
- Bill Dalrymple, Lodi

Schuyler County:
- John Santos, Hector
- Phil Davis, Hector

Steuben County:
- Ron Emery, Pulteney
- Mel Goldman, Hammondsport

Yates County:
- Eileen Farnan, Branchport
- Harry Humphreys, Dundee

Processor representative:
- Tim Moore, Canandaigua Wine Co.
be remembered for some spectacular stretches of weather from the end of August and through October. Warmer than normal temperatures and ample sunshine prevailed during most of the post-veraison period and into harvest this season, providing excellent ripening conditions, at least for those vines that had access to enough water.

Drought conditions in 2007. The primary characteristic of the season, however, was the dry conditions that prevailed throughout most of the region. Rainfall patterns throughout much of the season were spotty, with certain areas receiving a few tenths of an inch of rain from a storm while others relatively nearby received none. The severity of drought conditions varied fairly significantly within the Finger Lakes this year, with some of the most severe water stress symptoms showing up around northern Seneca Lake, while vineyards further south generally received more rain, particularly in August and early September.

Rainfall was actually plentiful in Geneva this past April, while areas south such as Valois were very dry, receiving only 33% of average rainfall for the month (Figure 4). Rainfall for both May and June were both significantly below average in both areas. A reduced water supply at this point in the growing season doesn’t have the impact of one that happens later because of the small size of the canopies at this time of year.

As vine canopies grew and achieved their full size by the end of July (which was often quite a bit smaller than they were in 2006 according to many growers the demand for water from the soil profile increased along with the amount of leaf area. This increased demand came at a time when there was a low supply, particularly around Geneva and the northern end of Seneca Lake. With every month having less rainfall than average, the rainfall deficit in the region became greater and greater as the season progressed (Figure 5). Drought stress symptoms started showing up in a few vineyards by the middle of August, and became more serious and widespread by early September. Drought conditions seemed to improve somewhat in September and October, as rainfall became a bit more frequent the last several weeks of the season.

Impacts in the vineyard
The lack of water in the soil profile in August and early September made it more difficult for roots to take up all of the nutrients that the vines required. As a result, it was not uncommon to find nutrient deficiencies in vineyards that were also starting to show some early signs of water stress, including potassium deficiency, which commonly occurs in drought years, especially on vines that are carrying large crops. Several vineyards also had leaves turning a more yellow-green color, likely indicating a lack of nitrogen. Some growers applied foliar urea sprays both to supply nitrogen to the vines and to try to avoid atypical aging (ATA) characteristics from developing in wines made from fruit that was drought stressed.

Growers who made the effort to incorporate practices that preserved soil moisture, or to supplement it, were rewarded with healthier vines through the dry portion of the season. These included:

- Application of mulch to the row middles—this both prevents moisture from evaporating from the soil surface and also smothers competing weeds.
- Herbicide application in the row middle to kill weeds—According to research done by Alan Lasko, eliminating living cover in the row middles for one month can have the equivalent effect of supplying 1.5 – 2.0” of water to the vines.
- Maintaining a weed free band under the trellis—The majority of grapevine roots are usually found within the weed-free band under the trellis. If grasses and other weeds get established in that region in a dry year, they will provide extra competition to the vine’s roots for water and nutrients
- Irrigation—While this is a more expensive option than the other two, it may be the best one. Vines under drought stress also had reduced shoot growth this year, which was a common theme from growers. Clusters had to be removed from shoots that were stunted in order to reduce the stress on those shoots. In a few severe cases, leaf function was virtually zero before harvest even arrived. Fruit from these vines was less mature with lower sugars, higher acids and more undesirable flavors than that from vines that were able to maintain adequate water status.

Drought stress resulted in the loss of basal leaves in a number of vineyards, including this Concord block.

This was the case with a number of varieties in the Finger Lakes, not just the more “finicky” vinifera. Some Concord and Catawba vineyards on the Keuka Lake bluff had lost their basal leaves as a result of significant drought stress as well.
Insects

A warm year like this, the potential for high insect populations in the vineyards goes up. Growers seemed to keep leafhopper and berry moth damage under control this year. "Here was concern about 2007 being an “up” year in the apparent biennial cycle of Multicolored Asian Lady Beetles (MALB), but fortunately they never really materialized to any extent in the Finger Lakes. Mite damage was fairly easy to spot during the growing season, as is often the case in dry years like 2007. Mite levels did not appear to get to the point of having serious consequences to vine health, and I was not aware of any growers applying miticides this year. It will be something to watch for if next year is dry again. Japanese beetles were the primary insect pest in vineyards this year. In most years, the amount of damage these insects do is more cosmetic than anything, but populations reached a level in many vineyards this year that we have not seen before. Many growers made applications of Sevin or other insecticides to keep populations down, but they often seemed to bounce right back. The length of time that they were found in vineyards this year was also seemed unusually long, as I found some on leaves as late as mid-September. While I haven’t seen any evidence that the damage they caused this year had a significant impact on vine health or fruit quality, the levels that we saw certainly raise some concerns about longer term control of this pest.

Japanese Beetle populations were unusually high in 2007.

Tonnage and Quality of Fruit. Overall tonnage from this year’s crop sounds to be about average for the most part. Berry weight was lower than average in most varieties that were measured this year, from Concord to several hybrid and vinifera varieties (see Figure 6), while Brix was higher (Figure 7). The harvest season started this year on August 27, and is still going on, but winding down, at the end of October as I am writing this. Harvest for a number of the wine varieties was about one week earlier than last year, while the Concord harvest began maybe only a few days earlier than normal. The long, sunny warm fall has given growers and wineries the ability to wait to pick fruit based on flavor development instead of the threat of disease or weather conditions that would cause the fruit to break down early.

Continued on page 12

Despite the dry season, some vineyards were defoliated by downy mildew in 2007.

Figure 6. Average berry size for Lemberger and Cabernet franc in 2006 and 2007.

Figure 7. Average Brix for Lemberger and Cabernet franc in 2006 and 2007.

(see picture below)

Pest management in 2007.

Diseases. Thanks to the dry weather this year, growers were able to stay ahead of the curve on disease management for the most part. Powdery mildew levels were about the lowest that I have seen since coming to New York. Phomopsis infections were also relatively scarce this year. Early foliar infections showed up in a few places, but I saw very little of the dark brown cane lesions later in the season.

The dry weather also helped to keep fruit rots at bay. This was a welcome change from last year, when many farms were having problems controlling them. Black rot was a non-issue for most growers this year, as reduced canopy growth, warm temperatures and sunshine allowed for more rapid drying of the fruit zone. Botrytis fruit infections were a bit more persistent this year, but in most cases were not accompanied by other fruit rots. Most of the botrytis infections we saw this fall were in Riesling blocks, and know of only one instance where a grower was forced to pick early because of high levels of infection.

The biggest surprise this year was the early defoliation of some canopies by downy mildew. After last year’s high levels of infection, there was plenty of inoculum out there for potential problems this year. I think the common thread in most of these cases was an assumption that the dry weather meant that downy mildew would not be an issue, and materials to control it were not included in some of the late summer sprays until it was too late. This year was an important reminder that downy can rear its ugly head very quickly and do its damage before a grower can have a chance to react to it, even in a dry year.
2007 Grape Price Summary

Jamie Hawk
Finger Lakes Grape Program

Reported prices for 2007 increased for all non-native grape categories. Major native varieties matched last year’s average price, red and white vinifera each rose 3%, and red and white vinifera increased 1% and 3%, respectively. The accompanying table was compiled from price lists submitted to the NYS Department of Agriculture and Markets and forwarded to our office. A detailed list of varietal prices was published in the August issue of Vineyard Notes. Please note that these averages do not take into account the quantity of grapes purchased by each processor. Large processors buy more but typically pay a lower price, so the true average price is often lower than the average reported in our table.

Natives. Among the major varieties, Niagara, Catawba and Concord all saw increases with Catawba leading the way in percent (5%) and price ($15) increases. Average Elvira prices fell 8% (back to its 2005 price), and Delaware dropped 1%. Isabella showed the highest gain (8%) among minor varieties, while Ives dropped 9% to just above its 2005 price.

Hybrids. Among the red hybrids, Baco noir, Chambourcin, Colobel, Dechaumac, Leon Millot and Marechal Foch all saw growth in price of 4% or greater. Rosette was the only red hybrid selling at a lower price this year. The 9% increase for Chambourcin reversed the 8% drop seen last year, and the 8% decline for Rosette negated the 10% increase from last year. The price of white hybrids had a strong year with increases across the board. Aurora, Cayuga White, Seyval blanc and Vidal blanc all saw an increase in price of 4% or greater. Vignoles had only a very slight increase ($3), and Aurora prices rose from $358/ton to $380/ton.

V. vinifera. Red varieties showed modest gains in price with the exception of Cabernet franc which was down 1%. Lemberger and Merlot enjoyed the highest price increases at 2%. White vinifera varieties showed a consistent return versus 2006 with prices climbing 2-3% for all varieties.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Native</td>
<td></td>
</tr>
<tr>
<td>Niagara</td>
<td>320</td>
<td>450</td>
<td>225</td>
<td>329</td>
<td>450</td>
<td>225</td>
<td>3%</td>
<td>0%</td>
<td>0%</td>
<td>16</td>
</tr>
<tr>
<td>Elvira</td>
<td>276</td>
<td>350</td>
<td>230</td>
<td>255</td>
<td>285</td>
<td>230</td>
<td>-8%</td>
<td>-19%</td>
<td>0%</td>
<td>3</td>
</tr>
<tr>
<td>Delaware</td>
<td>380</td>
<td>600</td>
<td>200</td>
<td>378</td>
<td>450</td>
<td>250</td>
<td>-1%</td>
<td>-25%</td>
<td>25%</td>
<td>10</td>
</tr>
<tr>
<td>Concord</td>
<td>279</td>
<td>450</td>
<td>200</td>
<td>285</td>
<td>375</td>
<td>215</td>
<td>2%</td>
<td>-17%</td>
<td>8%</td>
<td>12</td>
</tr>
<tr>
<td>Catawba</td>
<td>315</td>
<td>355</td>
<td>230</td>
<td>330</td>
<td>400</td>
<td>245</td>
<td>5%</td>
<td>13%</td>
<td>7%</td>
<td>14</td>
</tr>
<tr>
<td>Average (Majors)</td>
<td>314</td>
<td>441</td>
<td>217</td>
<td>315</td>
<td>392</td>
<td>233</td>
<td>0%</td>
<td>-11%</td>
<td>7%</td>
<td></td>
</tr>
<tr>
<td>Diamond</td>
<td>425</td>
<td>475</td>
<td>400</td>
<td>431</td>
<td>475</td>
<td>400</td>
<td>1%</td>
<td>0%</td>
<td>0%</td>
<td>4</td>
</tr>
</tbody>
</table>

We thank the following processors and wineries for providing copies of their price lists for this report:

- Anthony Road Wine Company
- Atwater Estate Winery
- Bully Hill Vineyards
- Centerra Wine Company
- Chateau Lafayette Reneau
- Cliffstar Corporation
- Dr. Konstantin Frank Vinifera Wine Cellars
- Fall Bright Winemakers Shop
- Fox Run Vineyards
- Fulkerson’s Winery
- Glenora Wine Cellars
- Hazlitt 1852 Vineyards
- Heron Hill Winery
- Hunt Country Vineyards
- King Ferry Winery
- Lakewood Vineyards
- Lucas Vineyards
- Miles Wine Cellars
- Mogan David Wine Company
- Rooster Hill Winery
- Royal Kedem / Springledge Farms
- Sheldrake Point Vineyards
- Swedish Hill Vineyards
- White Springs Winery

Continued on page 6
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2006</td>
<td>2007</td>
<td>2007</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Native</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isabella</td>
<td>450</td>
<td>488</td>
<td>8%</td>
<td>3%</td>
<td>27%</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ives</td>
<td>451</td>
<td>410</td>
<td>-9%</td>
<td>-25%</td>
<td>0%</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dutchess</td>
<td>400</td>
<td>400</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Golden Muscat</td>
<td>375</td>
<td>375</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average (Others)</td>
<td>420</td>
<td>470</td>
<td>386</td>
<td>421</td>
<td>443</td>
<td>406</td>
<td>0%</td>
<td>-6%</td>
</tr>
<tr>
<td>Red Hybrid</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baco Noir</td>
<td>601</td>
<td>850</td>
<td>5%</td>
<td>13%</td>
<td>1%</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cascade</td>
<td>395</td>
<td>400</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Castel</td>
<td>538</td>
<td>540</td>
<td>0%</td>
<td>0%</td>
<td>1%</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chambourcin</td>
<td>875</td>
<td>900</td>
<td>9%</td>
<td>3%</td>
<td>38%</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chancellor</td>
<td>658</td>
<td>750</td>
<td>1%</td>
<td>7%</td>
<td>0%</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chelois</td>
<td>688</td>
<td>900</td>
<td>3%</td>
<td>0%</td>
<td>0%</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colobel</td>
<td>650</td>
<td>800</td>
<td>8%</td>
<td>14%</td>
<td>0%</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DeChaunac</td>
<td>497</td>
<td>650</td>
<td>5%</td>
<td>0%</td>
<td>29%</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leon Millot</td>
<td>615</td>
<td>650</td>
<td>4%</td>
<td>0%</td>
<td>14%</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marechal Foch</td>
<td>642</td>
<td>666</td>
<td>4%</td>
<td>4%</td>
<td>9%</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rosette</td>
<td>466</td>
<td>525</td>
<td>-8%</td>
<td>-13%</td>
<td>0%</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rougeon</td>
<td>525</td>
<td>650</td>
<td>2%</td>
<td>0%</td>
<td>0%</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vincent</td>
<td>679</td>
<td>740</td>
<td>1%</td>
<td>2%</td>
<td>0%</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td>602</td>
<td>720</td>
<td>3%</td>
<td>3%</td>
<td>7%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Table grapes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Himrod</td>
<td>600</td>
<td>600</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lakemont</td>
<td>550</td>
<td>550</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td>575</td>
<td>575</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White Hybrid</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aurora</td>
<td>358</td>
<td>440</td>
<td>6%</td>
<td>10%</td>
<td>0%</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cayuga White</td>
<td>596</td>
<td>700</td>
<td>6%</td>
<td>0%</td>
<td>27%</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seyval blanc</td>
<td>600</td>
<td>700</td>
<td>5%</td>
<td>0%</td>
<td>0%</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Traminette</td>
<td>1049</td>
<td>1150</td>
<td>2%</td>
<td>1%</td>
<td>11%</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verdelet blanc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vidal blanc</td>
<td>650</td>
<td>800</td>
<td>4%</td>
<td>0%</td>
<td>0%</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vignoles</td>
<td>800</td>
<td>900</td>
<td>0%</td>
<td>0%</td>
<td>8%</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Villard blanc</td>
<td>850</td>
<td>875</td>
<td>3%</td>
<td>3%</td>
<td>3%</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Continued on page 7
<table>
<thead>
<tr>
<th>Variety</th>
<th>2006 Average</th>
<th>High</th>
<th>Low</th>
<th>2007 Average</th>
<th>High</th>
<th>Low</th>
<th>% Change (2006-2007)</th>
<th>Number Wineries Responding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Native</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td>700</td>
<td>784</td>
<td>593</td>
<td>723</td>
<td>795</td>
<td>635</td>
<td>3%</td>
<td>1% 7%</td>
</tr>
<tr>
<td>Ave. w/o Traminette</td>
<td>642</td>
<td>725</td>
<td>542</td>
<td>665</td>
<td>736</td>
<td>574</td>
<td>4%</td>
<td>1% 6%</td>
</tr>
<tr>
<td>Vidal late harvest</td>
<td>2000</td>
<td>2000</td>
<td>2000</td>
<td>2000</td>
<td>2000</td>
<td>0%</td>
<td>0% 0% 0%</td>
<td>1</td>
</tr>
<tr>
<td>Vignoles late harvest</td>
<td>1413</td>
<td>1600</td>
<td>850</td>
<td>1450</td>
<td>1600</td>
<td>1000</td>
<td>3%</td>
<td>0% 18% 4</td>
</tr>
<tr>
<td>Late Harvest</td>
<td>1707</td>
<td>1800</td>
<td>1425</td>
<td>1725</td>
<td>1800</td>
<td>1500</td>
<td>1%</td>
<td>0% 5%</td>
</tr>
<tr>
<td>Red Vinifera</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cabernet Franc</td>
<td>1575</td>
<td>1800</td>
<td>1100</td>
<td>1560</td>
<td>1850</td>
<td>1100</td>
<td>-1%</td>
<td>3% 0% 15</td>
</tr>
<tr>
<td>Cabernet</td>
<td>1813</td>
<td>2800</td>
<td>1600</td>
<td>1815</td>
<td>2850</td>
<td>1100</td>
<td>0%</td>
<td>2% -31% 15</td>
</tr>
<tr>
<td>Sauvignon</td>
<td>1407</td>
<td>1650</td>
<td>1000</td>
<td>1431</td>
<td>1650</td>
<td>1000</td>
<td>2%</td>
<td>0% 0% 8</td>
</tr>
<tr>
<td>Gamay</td>
<td>1937</td>
<td>2800</td>
<td>1600</td>
<td>1968</td>
<td>2850</td>
<td>1600</td>
<td>2%</td>
<td>2% 0% 13</td>
</tr>
<tr>
<td>Lemberger</td>
<td>1654</td>
<td>2000</td>
<td>1500</td>
<td>1675</td>
<td>2000</td>
<td>1500</td>
<td>1%</td>
<td>0% 0% 13</td>
</tr>
<tr>
<td>Merlot</td>
<td>1800</td>
<td>1800</td>
<td>1800</td>
<td>1800</td>
<td>1800</td>
<td>1800</td>
<td>0%</td>
<td>0% 0% 1</td>
</tr>
<tr>
<td>Pinot Noir</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sangiovese</td>
<td>1698</td>
<td>2142</td>
<td>1433</td>
<td>1708</td>
<td>2167</td>
<td>1350</td>
<td>1%</td>
<td>1% -6%</td>
</tr>
<tr>
<td>White Vinifera</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chardonnay</td>
<td>1332</td>
<td>1500</td>
<td>1000</td>
<td>1375</td>
<td>1600</td>
<td>1000</td>
<td>3%</td>
<td>7% 0% 18</td>
</tr>
<tr>
<td>Gewurztraminer</td>
<td>1614</td>
<td>1800</td>
<td>1400</td>
<td>1657</td>
<td>1800</td>
<td>1400</td>
<td>3%</td>
<td>0% 0% 15</td>
</tr>
<tr>
<td>Pinot Blanc</td>
<td>1467</td>
<td>1500</td>
<td>1400</td>
<td>1500</td>
<td>1500</td>
<td>1500</td>
<td>2%</td>
<td>0% 7% 2</td>
</tr>
<tr>
<td>Pinot Gris</td>
<td>1600</td>
<td>1700</td>
<td>1450</td>
<td>1634</td>
<td>1725</td>
<td>1450</td>
<td>2%</td>
<td>1% 0% 11</td>
</tr>
<tr>
<td>White Riesling</td>
<td>1582</td>
<td>1700</td>
<td>1400</td>
<td>1628</td>
<td>1800</td>
<td>1500</td>
<td>3%</td>
<td>6% 7% 19</td>
</tr>
<tr>
<td>Average</td>
<td>1519</td>
<td>1640</td>
<td>1330</td>
<td>1559</td>
<td>1685</td>
<td>1370</td>
<td>3%</td>
<td>3% 3%</td>
</tr>
</tbody>
</table>
What was the grape industry like in the Finger Lakes when you started in your position at Cornell?

I started work at Cornell in January 1978. It was a pivotal time for the grape and wine industry. In 1977, Taylor Vineyard company, the major buyer of grapes in the Finger Lakes, had been acquired by the Coca-Cola Company. Later, the original Taylor holdings were acquired, respectively, by Seagram [1983]; Vintners International [1987]; and Canandaigua Wine Company [1993-brands only-the wineries]. Canandaigua is now a part of Constellation Brands, the world’s largest wine company. The second major processor was National Grape Cooperative. There were nearly 600 grape farms in the Finger Lakes with over 15,000 acres of grapes. There were fewer than 20 small wineries in New York, mostly in the Finger Lakes.

It was a relatively comfortable time for growers, even though there was a lot of concern about a local company being acquired by a Fortune 500 company. The price per ton of juice grapes averaged $219, and wine grapes averaged $266, higher in nominal dollars than today for the varieties grown at that time! Yields had been static for more than a decade. Taylor products were in national distribution, and wine consumption in the US was growing at a healthy pace. Growers were comfortable with the varieties they had, dominated by native and a few French American varieties. There were fewer than 350 tons of vinifera harvested in the whole state, most of it in the Finger Lakes, but there was growing interest in these varieties.

One of the real seminal events for the Finger Lakes industry was the loss of the Taylor Vineyard company as a major buyer of grapes from New York growers. What were some of the things you did to try to help growers adjust to this new market reality?

The sale of Taylor was indeed, a seminal event occurring in 1977. There was an active Cost of Production committee that periodically developed estimates of the cost of production for grapes, and those estimates had been a factor in Taylor’s pricing. The series of mergers and acquisitions described above, however, ushered in a new era of regional and international competition.

A second seminal event was the passage of the Small Wineries Act in 1976, which made it easier and cheaper, to start a small winery. Those two events together ushered in a period of change which is still in motion as grape growers continue to adjust to the resulting challenges and opportunities.

In the early 80’s, several changes rocked grape markets—regional and international competition; changes in the demand of wine (white wine gaining in popularity relative to red wine; consumers began consuming more vinifera varieties and European quality wines; and the growing strength for the US Dollar led to surging imports from Europe.) Grape prices fell, and I wrote at the time (1985), “the depressed state of the industry has left many growers with inadequate cash flow and leverage to obtain the necessary capital to replant. With average yields of 4 tons per acre, receipts per acre averaged approximately $936 for 1979-1983. For many growers, cash costs were nearly $900 per acre. Therein lies the crux of New York’s grape industry problem.” These numbers came from the Finger Lakes Grape Farm Business Summary that we conducted at that time with the help of Tom Zabadal.

One of the projects I undertook, along with the late Bob Pool, was to try to convince growers to increase yields. Believe it or not, that was controversial at the time, because it was a common perception that there were “too many grapes”, and increasing yields would only exacerbate the problem. (Of course that was true in the aggregate for the US, but not for the individual grower who needed to be more efficient to survive. It was not accepted that the solution might lie in having fewer, more efficient growers farming more acres individually, but fewer acres in total). The “free market” result would be painful, but it would allow efficient growers on good sites to survive.

In 1986, we organized two major educational efforts: (1) A series of workshops called “Financial Stress in the Grape Industry: Options for Growers” organized by Cooperative Extension, but involving agricultural lenders, Farmers Home Administration, a bankruptcy attorney, and viticulturists and economists from Cooperative Extension, Geneva, and Cornell. (2) Articles and extension presentations on why growers need to increase yields with presentations by Bob Pool and me at the Grape Growers’ Conferences at Fredonia and Keuka Park. I wrote a news article for the Vineyard and Winery Management magazine entitled “Eastern Growers Need to Increase Yields or Face Extinction.” I argued for the need to attain yields of six to seven tons per acre for native varieties to remain competitive. Average yield per acre at the time in the Finger Lakes was about 3.7 tons per acre. Remember that there were not many acres of vinifera at the time, but a lot of Concord and Niagara.

Anyway, during that time, because of my outlook predictions, and my belief that restructuring of the industry was imminent and inevitable, I became known in some circles as “Old Gloom and Doom”! However, the record shows that by 2001, the number of grape growers in the Finger Lakes had fallen to less than half of the number that had existed in 1980, and acreage had fallen by over one-third.
You’ve worked on a number of projects for the New York grape industry over the years. What are a few that you are particularly proud of?

Many projects came about as a result of the chain of events following the sale of Taylor Wine Co. and the new winery start-ups. I was privileged to work with some outstanding graduate students who did their theses on various aspects of the Finger Lakes grape and wine industry. Their work gave me relevant research to use in working with the industry. The first study which comes to mind is Curtis Vreeland’s thesis on “An Investment Analysis of New York Small Premium Wineries” in 1983. This was one of the first studies, perhaps the first detailed study for the Finger Lakes, in which estimates were developed for after-tax cash flow and years to payback for several different winery sizes ranging from six thousand to 100 thousand gallons. These estimates came as a shock to some who were contemplating taking the plunge into investing in a small winery—but in retrospect, if they were incorrect, they were optimistic! Long paybacks are characteristic of the wine industry.

More recently, Mark Pisoni’s thesis (2001) on investment analysis of small premium wineries producing vinifera varieties, and a follow up “Grow NY” grant from Ag & Markets was used to develop a Guide and an Example for Business Planning for Ultra Premium Wineries in 2002. This work resulted in resources available on the web that have been used widely over the United States, and indeed, internationally. Mark also developed the spreadsheet program that was used for the Cost of Establishment and Production of Vinifera Grapes bulletins for 2001, 2004, and that is now in progress for 2007. This bulletin is widely used over the eastern United States by growers who are interested in planting vinifera grapes.

Finally, the work of Trent Preszler in his thesis studying the Perceptions of Ultra Premium Wines among Restaurants and Retailers in New York City (2002) should be mentioned. While this thesis involved several wine regions in the state, winery owners and managers in the Finger Lake were certainly a key to the success of this study. Results were communicated to the industry by Trent at the 2002 Wine Industry Workshop and Annual Meeting in Geneva and in other contacts that Trent had with industry people through the NY Grape and Wine Foundation’s activities and events.

I am really proud to have been an advisor for these graduate students! They all continue to have involvement with the wine industry—most recently, Trent became a member of the Board of Directors of the New York Grape and Wine Foundation. Their research was instrumental in bringing relevant and timely research-based economic information to the industry.

In conducting the four studies above, probably at least a couple of hundred Finger Lakes growers and vintners were involved in working with me and my graduate students, answering surveys, serving on advisory committees, serving as a sounding board for our “almost final” results. This is my opportunity to thank all of you for your interest, cooperation, and guidance. From my standpoint, the opportunity to work with graduate students, growers and vintners, extension and research people in the field and at Cornell and Geneva on these and other studies has been an extremely rewarding partnership.

Although you’re officially retired from Cornell, you’re still working on a couple of grape-related projects. Can you tell us a little bit about these?

I specified in my agreement with the College of Agriculture and Life Sciences that in my quarter time appointment, I would continue with several projects, two of which are relevant to the Finger Lakes industry. The first was to update the Vinifera Cost publication mentioned above, which I have done every three years since 1997. We have met with the Grower Advisory Committee a couple of times already, and the work is in progress.

The second project is an update of the business planning guide. The first business planning guide that Mark Pisoni developed was oriented toward “ultra premium wineries”. The guide I plan to work on next year will be more generic, one that any winery (with a broad range of products, including fruit wines) would find helpful. When I start work on this project, I will be contacting some wineries to interview regarding how they have developed their business and marketing strategies.

As an agricultural economist, what do you think are two or three potential ‘clouds on the horizon’ that grape growers in the Finger Lakes need to be thinking about over the next few years?

The industry made many adjustments in the mid 80’s to late 90’s that have in my opinion put the Finger Lakes industry on better footing. This is reflected in the recent preliminary estimate of grape acreage in NY state which indicated that acreage in the five main counties in the Finger Lakes is holding at approximately 9,000 acres. The fact that acreage has stabilized is a change from the previous large reductions in acreage that occurred in the 80’s and early 90’s. Over two thirds of the market for grapes in the Finger Lakes is still with major processors, and prices are relatively low in these markets, especially for native varieties. Several other cash market processors take most of the grapes produced in the Finger Lakes, the major player being Centerra. For these types of grapes being marketed to cash market processors (mostly native varieties for wines sold through national distribution), the low cost producer rules!

I would say that the major clouds on the horizon don’t lie with grape markets, but more in the areas of the macro economy, energy markets, and labor markets. The economy could be subject to a recession which would hurt in that consumers have less to spend on wine. High prices for gasoline, especially during a recession, might limit visitors from the surrounding states from making trips to NY wine country. The weak dollar has some positive and some negative effects. To the extent producers buy special machinery or winery equipment from Europe, it raises those costs. However, on the other side, European and Australian wines cost more now, giving NY producers some new market opportunities. If a recession occurred, the Federal Reserve would be under tremendous pressure to reduce interest rates, which ultimately would help growers who need to borrow for new plantings or machinery.

Labor, especially with more reliance on migrant labor for pruning and tiring, is a concern. More growers need to consider using H2A labor to forestall the possibility of labor shortages. Growers should be reminded that there is a long lead time involved in securing this labor. Since most grapes are harvested mechanically, the industry is not as vulnerable as the tree fruit and vegetable industries. Immigration reform would help ease growers’ minds considerably, but meaningful

Continued on page 15
Research

Finger Lakes Growers and Wineries Cooperate on Research and Demonstration Projects

Each year, a number of growers and wineries in the Finger Lakes cooperate with Cornell research and extension staff on applied research projects that deal with real issues in the vineyard and the winery. The participation of these people is a valuable contribution to the success of these projects, and we all appreciate their support of this work. Following are short summaries of many of these cooperative projects over the past year:

Enhancing and synchronizing grape berry maturation. Lailiang Cheng (Horticulture–Ithaca), Alan Lakso, Terry Bates (Horticultural Science–Geneva) and Vinay Pagay (Horticulture–Ithaca). The objective of this project is to enhance and synchronize ripening processes of both wine grapes and juice grapes with the ultimate goal to improve fruit composition and wine/juice quality. In 2007, in addition to characterizing variability between clusters and between berries within a cluster, we set up field trials on both Concord and Cabernet Franc in the Finger Lakes region and Lake Erie region to focus on gibberelic acid (GA), BA, and their combination to determine whether the effect of GA+BA we observed on ripening and cluster size during the first year was caused by either GA or BA alone, or the interaction between the two. Cooperators: Chris Verrill and Bill Dalymphle.

Develop a protocol and a database for assessing vineyard soil health to improve juice/wine quality and vine productivity. Lailiang Cheng and David Wolle (Dept. of Horticulture–Ithaca), Harold van Es (Dept. of Crop and Soil Science–Ithaca), Terry Bates (Fredonia Vineyard Lab), Tim Martinson (Dept. of Horticultural Science–Geneva), Steve Hoving (Hudson Valley Lab), Alice Wise (Long Island Research and Extension Center), Harris Walter-Peterson (Finger Lakes Grape Program). The objective of this project is to develop packages of meaningful soil physical, biological and chemical tests through a combination of field and laboratory methods and establish a soil health database for vineyard soils. We have collected approximately 350 vineyard soil samples from the Finger Lakes, Lake Erie, Long Island, and Hudson Valley regions for physical and biological measurements (aggregate stability, available water capacity, total organic matter, active carbon and potentially mineralizable nitrogen, etc.) as well as routine chemical analysis (nutrient availability). The collected data will be analyzed and a scoring system will be developed to allow interpretation of the test. Cooperators: Multiple growers throughout the Finger Lakes region.

Effects of winter-burying canes and vines on bud and cane cold tolerance, tissue composition, and springtime performance. Martin Coffinet and Tim Martinson (Horticultural Science–Geneva), Stephen Hoving (Hudson Valley Lab), and Rick Dunst (Fredonia Vineyard Lab). Over the last two winter periods we have been investigating the impact of cane burial not just for cold avoidance, but also for problems likely associated with keeping buds in soil over many months. Temperature recorders placed in the vine’s fruiting zone and in the soil next to buried canes show that the soil is buffered throughout winter, never colder than 27°F in the last two winters. When buried canes are tied up into the trellis in spring we have indeed found the buds to be more likely than canes left up all winter to have problems with delayed bud break, blind nodes, and diminished productivity. By mid to late winter, buds collected and examined after excavation from the soil often show visible symptoms of injury, both in primary and secondary buds, so that burial is affecting bud physiology in a negative way that is not yet known. Our goal is to understand the mechanism affecting the viability and robustness of buried buds, so that growers can improve the productivity and profitability of such canes when needed to supplement or even replace the canes left up over winter. Cooperators: Pfejean Winery, Anthony Road Winery, Harry Humphreys (Finger Lakes), Jeffrey Zitz (Hudson Valley), Rick Dunst (Lake Erie).

Evaluating the incidence and potential natural spread of leafroll-associated viruses in the Finger Lakes. Marc Fuchs (Plant Pathology–Geneva), Greg Loeb (Entomology–Geneva), Harvey Hoch (Plant Pathology–Geneva), Timothy Martinson (Horticulture–Geneva), Bill Willsey, (Finger Lakes Grape Program). The main objective of our project is to assess the incidence of the three major viruses associated with leafroll and to determine the potential for their natural spread by soft scale insects and mealybugs in the Finger Lakes. Our 2006 survey indicated that nearly two thirds of the blocks surveyed in 25 different vineyards had at least one of the three target viruses, i.e. GLRaV-1, GLRaV-2 and GLRaV-3. Soft scale insects were found at the majority of sites sampled, and mealybugs at one third of the sites. While soft scale and mealybug abundance was relatively low at most sites surveyed in 2006, the association of this level of insect pressure and the spread of grapevine leafroll viruses in the Finger Lakes is not known. This year, we expanded on our 2006 findings and tried to evaluate the transmissibility potential of GLRaV-1 and GLRaV-3 by soft scale insects and mealybugs. Cooperators: 13 different growers in the Finger Lakes.

Development of strategies for control of crown gall. Thomas Burr, Cheryl Reid (Plant Pathology–Geneva). All vines (130) in a field experiment in Geneva were tested for the presence of systemic Agrobacterium vitis by collecting bleeding sap and culturing on selective media. A. vitis was isolated from vines of both F2/5 (crown gall biological control) treated and non-treated vines. Several of the isolates were non-pathogenic and are being tested to determine if they genetically resemble F2/5 (i.e. did the biological control colonize treated vines?). Research was also done this year to determine whether A. vitis is able to spread from an infected vineyard to an adjacent non-infected vineyard.

Crown gall on a Riesling vine.
mother block. More than 50 isolates of A. vitis were collected from the infected vineyard and from the mother block that we determined in past years has become infected with the pathogen. A particular region of the bacterial chromosome from all of the isolates is being sequenced to determine the relatedness of them. Thus far isolates from the contaminated vineyard appear to be genetically identical to isolates from the mother block. Using this approach it will be possible to conclude whether the pathogen has spread, most likely through soil or surface water, from the infected vineyard to the mother block. Another research objective was to determine the location in grape canes where greatest populations of A. vitis exist. Canes collected were sectioned and isolations are being made from basal nodes compared to nodal sections further outward towards the apex of the cane. Results from this study will reveal where the pathogen overwinters in greatest numbers in canes and will facilitate more effective indexing procedures. **Cooperators:** Dennis Rak, Double A Vineyards, Jeff Morris, Glenora Farms.

Testing isomate GBM+ for managing grape berry moth. Greg Loeb and Steve Hesler (Entomology-Geneva). We conducted the second year of a trial to test the efficacy of Isomate GBM+ for disrupting the mating success of grape berry moth thereby reducing successful mating and egg-laying at two vineyards in the Finger Lakes. Isomate GBM+ is a relatively new product sold by CBC America, Inc. The advantage of this new mating disruption system over the older Isomate twist ties is that new twist ties have been re-designed to continue releasing pheromone for the entire growing season. We are comparing pheromone-baited trap catches and damage in roughly five-acre plots assigned to one of the following four treatments: 1) conventional insecticide program for grape berry moth, 2) conventional insecticide program plus GBM+ put out at a rate of 200 twist ties/Acre (label recommendation), 3) insecticide plus GBM+ at a rate of 50 twist ties/Acre and 4) insecticide plus GBM+ at 400 twist ties/Acre at edges and 50/Acre in the interior of plot. The experiment was set up in a large block of Riesling grapes and a large block of Concord grapes, each block with a history of problems with grape berry moth. We are currently completing data collection and analysis for 2007. This trial is part of a cooperative project with researchers in Western NY (Tim Weigle), Pennsylvania (Mike Saunders and Andy Muza) and Michigan (Rufus Isaacs). **Grower Cooperators:** Tom Hunt and Ryan Bossert.

Efficacy of insecticides in managing the root form of grape phylloxera on own-rooted V. vinifera. Greg Loeb (Entomology-Geneva), Peter Cousins (USDA-PRGU), Rick Dunst and Terry Bates (Fredonia Vineyard Lab). The root form of grape phylloxera, an aphid-like insect native to the eastern US, is very harmful to V. vinifera grapes. Hence, one effective approach to managing this pest is to graft vinifera vines on phylloxera-resistant rootstock such as 3309. However, in cold climates like ours, it is strongly recommended to bury the graft zone with earth in the late fall to protect vinifera buds in case of a killing freeze. The management costs associated with hilling up and un-hilling are significant and therefore we have started looking for alternative, insecticide-based, approaches to managing grape phylloxera that might allow growing own-rooted vinifera under some circumstances. Currently we are testing two compounds at two study sites; one at the new Cornell Viticulture Research Facility in Portland, NY using young, own-rooted Riesling and the second at Sawmill Creek Vineyards along Seneca Lake using layered Cabernet Sauvignon and Pinot Noir grapes. **Cooperators:** Jim and Eric Hazlitt (Sawmill Creek Vineyards).

Optimizing grape berry moth pheromone traps: understanding regional variation in pheromone trap captures. Greg Loeb, Steve Hesler (Entomology-Geneva), Peter Jentsch (Hudson Valley Lab), Tim Weigle (Fredonia Vineyard Lab), Andy Muza (Penn State Extension-Erie County), and Rufus Isaacs (Entomology-Michigan State). The objective of this project is to monitor male GBM using a standardized pheromone lure and trapping system in multiple sites in NY, PA, and MI and compare to GBM larval infestations. We hypothesize that the currently formulated pheromone lure is not similarly efficient at different locations. If this proves correct, it opens up a number of possibilities for improving the usefulness of pheromone-baited traps. **Cooperators:** Rob Thomas (Lodi), June and Jeff Pendleton (Rushville), Tom Hunt (Keuka Lake), Centerra Wine Company (Dresden).

Field testing a plant-based lure for capturing female grape berry moth. Greg Loeb, Dong Cha, Steve Hesler, Charlie Linn, and Wendell Roelofs (Entomology-Geneva). Pheromone-baited traps only capture male grape berry moth, and often this reveals little about the activity of female moths. We know from laboratory experiments that female Grape berry moths use volatiles (organic compounds released by plant tissue) to locate grape plants for egg laying. Over the past several years we have identified many of the key compounds in the volatile blend. Late this summer we began testing a synthetic lure based on these host plant volatiles as an attractant in a trap for monitoring female grape berry moth in the field. **Cooperators:** Jeff and June Pendleton. Evaluation of new hybrid wine grape varieties and selections. Bruce Reisch and Steve Luce, Cornell Grape Breeding Program. Newly named grape varieties along with breeding program selections are being tested by cooperators in New York and elsewhere for growth and adaptation, as well as wine quality potential. One new selection may have potential to be grown without fungicides. **Cooperators:** Swedish Hill, Amberg Wine Cellars, Prejman, Hunt Country, Niagara Landing Wine Cellars, Moorhead Vineyards, Deer Run, Knapp Wine Cellars, Double A Vineyards, Lakewood Vineyards, and others.

Albuz ATR Hollow cone versus TVI hollow cone air induction nozzles. Andrew Landers (Entomology-Geneva) and Wayne Wilcox (Plant Pathology-Geneva). A second, season-long field trial was conducted to see if new hollow cone air induction nozzles, fitted in an air blast sprayer, provide the same degree of biological efficacy as traditional nozzles. Parallel trials were conducted at the Experiment station to quantify drift reduction, coverage on the leaf and cluster and coverage throughout the canopy. **Cooperators:** Tim Moore, Matt Doyle and Steve McCann, Centerra Wine Company (Valois).

Software to determine the optimal volume rate for pesticides. Andrew Landers and Emilio Gil (Entomology-Geneva). A computer program was developed by Emilio Gil at the University Politecnica de Catalonia in Barcelona, Spain, to determine application volume based upon canopy dimensions at the time of application, pesticide, trellis and sprayer type. Three cooperating growers conducted a second season-long trial using recommended rates from the program. Biological efficacy between the reduced rate and growers own rate was noted by Wayne Wilcox. **Cooperators:** Bill Dalymple (Lodi), John Wagner (Lodi), Mike Jordan (Portland).
National effort to implement IPM decision support tools using site-specific weather technology. Bob Seem and David Gadoury (Plant Pathology-Geneva). We have completed the second of a three-year study. Our goal is to increase sustainability of U.S. fruit and vegetable farms by making IPM decision-support tools more grower-friendly. To accomplish this goal, we demonstrate to growers that site-specific weather estimation technology offers a cheaper, simpler, and safer way to operate disease and pest warning systems than on-farm weather monitoring. Each location has an on-site weather logger, plus we receive three weather forecasts daily for each location: 24-hour, 48-hour, and 72-hour. These forecasts drive models for powdery and downy mildews as well as black rot. We then ask growers to apply fungicides to a portion of a vineyard only when called for by the models. The past two seasons have been fairly wet at all locations and this has resulted in no difference in the number of fungicide application or disease levels in forecast vineyard sites and conventionally timed sprays. On the positive side, even the three-day forecasts (provided as e-mail messages at 7 AM each day) seem to work equally well for disease management as does on-site equipment. Cooperators: Lamoreaux Landing Wine Cellars (Lodi), Sheldrake Point Vineyard (Ovid), Knapp Vineyards (Romulus).

Delivering timely information across NY during the harvest season to increase wine quality. Tim Martinson (Horticulture-Geneva), Ben Gavitt (Food Science-Geneva), Hans Walter-Peterson (Finger Lakes Grape Program), Alice Wise (Long Island Research and Extension Center), Tim Weigle, Terry Bates (Fredonia Vineyard Lab), Steve McKay, Steve Hoving, John Hudelson (Hudson Valley Lab), Bill Wilsey (CCE) and Nancy Smith (Food Science-Geneva). Pre-harvest grape maturity samples were collected from 50 vineyards and juice analysis done at the NY Wine Analytical Laboratory, for publication in Veroaiso to Harvest. Finger Lakes. Cooperators: Jim Bedient, Fox Run Vineyards, Anthony Road, Harlan Fulkerson, Hazlitt 1852, Sheldrake Point, Hosmer.

Finger Lakes Vineyard Mapping Project. Mark Scholl (summer intern), Tim Martinson (Horticultural Sciences-Geneva), Hans Walter-Peterson (Finger Lakes Program), Peter Landre (CCE-Yates County), Yates County Soil and Water Conservator District. The goals of this project are 1) to get a more accurate assessment of vineyard acreage by incorporating all block boundaries in a GIS database, and 2) to use digital soil database along with the vineyard database to produce maps identifying vineyard acreage for county farmland protection boards and possible participation in purchase of development rights programs (see Mark's article elsewhere in this newsletter). Cooperators: Multiple vineyards in the Finger Lakes.

Improving the quality of hybrid grapes and wine. Justine Vanden Heuvel (Horticultural Science-Geneva), Gavin Sacks (Food Science-Geneva), Tim Martinson (Horticultural Science-Geneva), Terry Bates (Fredonia Vineyard Lab), Hans Walter-Peterson (Finger Lakes Grape Program), Ben Riccard (Student). Canopy management practices are well developed for V. vinifera, but their impact on red hybrid varieties, old and new, is less well documented. The impact of leaf removal and shoot thinning treatments on flavor components of Noiret, Corot noir, and Marechal Foch were tested to determine their impact on canopy density and fruit exposure, productivity, fruit chemistry and wine quality. Flavor components of these hybrids from exposed and shaded fruit will be compared. Cooperators: Jim Bedient, Prejean Winery, and Sweeish Hill Vineyards.

Targeting leaf removal practices towards development of specific flavor and aroma compounds in Cabernet franc fruit. Justine Vanden Heuvel (Horticultural Science-Geneva), Gavin Sacks (Food Science-Geneva). This study investigates the effects of timing and severity of leaf removal on phenolics (color and flavor compounds) and methoxypryrazines (compounds responsible for vegetative aroma) in Caberene: Franc. Either 50% or 100% of leaves were removed from the bottom 5 nodes on the shoot at either berry set, 30 days post-bloom, 50 days post-bloom, or 15 days post-veraison. Fruit samples have been removed at intervals throughout the season and will be taken at harvest to determine specifically how the treatments affect concentration of methoxypryrazines and phenolics. We expect to provide recommendations for using leaf removal in a targeted manner to increase/decrease concentration of specific classes of flavor compounds in wines. Cooperators: Sheldrake Point Vineyards.

Yields for most native and bulk hybrid varieties were average to slightly above average overall. Concord growers in the Finger Lakes had little or no trouble this year achieving the minimum Brix standards for their processors, with some growers already at the minimum sugar numbers at the beginning of harvest. Catawba and Elvira tonnage was about average overall, but acidity was low in the grapes harvested early in the season, when acid is the primary need of the processor. The standout this year was Niagara, with many growers having much larger than normal crops, both here and in the Lake Erie region. National Grape Cooperative is reporting that they received a record crop of Niagara grapes in 2007.

Yield from vinifera varieties was slightly below average this year, primarily due to berry weights that were anywhere from 5 – 20% below last year, as a result of the dry growing season. Brix levels were higher than 2006, with most varieties achieving 20 Brix or more before harvest. Total acidity levels were lower this year than last, but winemakers I spoke with weren't too concerned with this as adjustments can be made later in the winery. As mentioned earlier, growers were able to hang fruit this year to allow for greater flavor development before harvest, which can only mean good things for wine quality from this year's harvest. The potential is especially good for reds, as fruit has come in with good flavors, small berry size which provides higher skin to pulp ratios, and clean.

Outlook for 2008

Vine health going into the winter should be good for most vineyards, certainly when compared to last year. Canopies in many vineyards are still in good shape and have had a chance for some post-harvest photosynthesis to help build up some final carbohydrate reserves. Vineyards that experienced significant defoliation due to drought stress or late downy mildew infections have been unable to take advantage of the late season temperatures and sunshine, and therefore are at greater risk for winter injury this winter, and possibly problems with early season growth next year as well.
Field Meetings, Workshops and Demonstrations

May 8 and 9. “Effective Spraying of Vineyards” Field Demonstrations. These two field demonstrations were conducted as part of Dr. Andrew Landers’ “Effective Spraying of Vineyards” course. The half-day field demonstrations were held following four separate 1-day classroom sessions, two of which were held in Branchport and two in Himrod. The field demonstrations covered topics such as sprayer calibration, nozzle selection, tracing deposition of spray materials, modifying air flow to reduce drift, and modern sprayer designs. The development and presentation of the course was supported by a grant from the New York Farm Viability Institute. Participants: Andrew Landers, Bruce Wadhams; Gridley Farms and Atwater Estate Vineyard (hosts).

May 17. Spring IPM Field Day. The Grape Program’s annual spring IPM field meeting was held at Centerra Wine Company’s farm in Valois this year. During the meeting, growers heard about the status of the Sustainable Viticulture project, the latest information on DEC pesticide regulatory issues, updates on new products and label changes, the NEWA weather network, and the Pest Management Guidelines, as well as insect, disease and weed management issues. Growers also got a chance to meet Justine Vanden Heuvel, assistant professor of viticulture, and Hans Walter-Peterson, the new extension viticulturist for the Finger Lakes Grape Program. The barbeque dinner following the meeting was catered by Vinnie’s Hogs R Us. Special thanks to Matt Doyle and the crew with Centerra Wine Company for hosting the meeting, and to the program’s sponsors for their financial support. Participants: Tim Weigle (Lake Erie Regional Grape Program), Jamie Hawk (Finger Lakes Grape Program), Juliet Carroll (NYS IPM), Ed Hanbach (NYS DEC), Wayne Wilcox (NYSAES-Plant Pathology), Greg Loeb (NYSAES-Entomology), Rick Dunst (Freedonia Vineyard Lab). Sponsors: Valen, Gowan, Bayer, Helena, UAP, Acadian, Cerexa, Dow, Dupont.

June 12, July 9, July 31. Basics of Winemaking, and Basics of Must Analysis. An 8 hour course in Winemaking Basics was delivered to 50 attendees in 8 locations in NY, taught by Kathy Arnink in three evening sessions. A one-day hands-on wine analysis course was held at the NYSAES vinification and brewing laboratory for 16 students on August 9. Participants: Kathleen Arnink, Ben Gavitt, and Tim Martinson, with on-site recruitment and attendance by Tim Weigle and Andy Muza (W. NY), Hans Walter-Peterson (Finger Lakes), Sue Gwise (Watertown), Kevin Jungeman (Essex Co), Steve McKay (Columbia and Dutchess Co), and Alice Wise (Long Island).

July 5. Mechanical Leaf Pulling Demonstration. As the pool for vineyard labor shrinks and the future of immigration laws remains uncertain, growers are having to consider using mechanical systems to do work that has traditionally been done by hand. White Springs Winery has recently invested in a mechanical leaf pulling machine, and hosted a demonstration of the equipment. Harry Humphreys, Finger Lakes Harvester, discussed the design of the machine, timing for best use of it, and of course, costs. Staff from Lakeview Harvesters, in Ontario, were also there and discussed how they use the machine to help them farm a few hundred acres of premium wine grapes. The evening finished up with dinner on the White Springs crush pad. Participants: Harry Humphreys (Finger Lakes Harvester), White Springs Winery.

August 8-9. Canopy Management Seminar – Dr. Andy Reynolds. Dr. Andy Reynolds, professor of viticulture at Brock University in St. Catharines, Ontario, gave a seminar on canopy management practices on Wednesday, August 8th at Anthony Road Winery. Dr. Reynolds talked about the importance of balancing canopy growth and crop to achieve good productivity, high quality fruit and healthy vines. In addition to his seminar, Dr. Reynolds visited four growers in the area to offer some advice on specific canopy management issues they had on their farms. Dr. Reynolds made visits like these in all.

Students at August 9 Basics of Must Analysis workshop.

Dr. Andy Reynolds discusses canopy management during his seminar at Anthony Road.
The New York Guide to Sustainable Viticulture Practices Grower Self-assessment Workbook has been published and is available in print and online (www.vinebalance.com as pdf files or hard copy can be purchased on line at www.nysaes.cornell.edu/store/catalog) versions. The workbook is designed to guide growers in the evaluation and adoption of best management practices to reduce economic risks, minimize environmental impacts, and ensure the health and safety of our workers and communities.

Statewide to date, 61 growers have completed the workbook (6 in the Hudson Valley, 8 on Long Island, 22 in the Finger Lakes, and 25 in the Lake Erie Region), and 17 have developed action plans based on their self-assessment. These 17 growers have chosen to amend an average of 9 specific practices on their farms, with 7 practices to be modified in their first year of action. These practices include the safe storage and handling of fertilizers and pesticides (42% of the practices listed in their action plans), monitoring and improving soil health (19%), and modifying sprayers to increase deposition and reduce drift (5%). The 61 growers collectively farm over 5,300 acres.

The self-assessment workbook has been adopted as the Agricultural Environmental Management (AEM) Tier 2 worksheets for viticulture, and the growers’ action plans equate to the AEM Tier 3A. During action plan development, county Soil and Water Conservation District agents are invited to participate to facilitate potential cost-sharing for farm improvements by the growers.

Through funding from the New York Farm Viability Institute, outreach continues to both bring additional growers into the VineBalance sustainable viticulture program, as well as work with the growers already participating in the workbook and action plan process.

In addition to continued outreach surrounding the workbook, the VineBalance program has a few new wrinkles for 2008:

- A traveling, one-day conference on sustainable viticulture will be held in, and specifically tailored to, at least four New York grape growing regions. Whether this will be stand-alone or associated with regional grape meetings has yet to be determined, but details will follow in the coming months.

- To begin to quantify the potential benefit of increasing product marketability through sustainable production practices, a customer survey will be developed and distributed to the tasting rooms of 6 New York State wineries. Tasting room staff will be trained on the program, and the surveys will record the public’s response to the winery’s participation in the sustainable viticulture program (increased visits and purchases from participating wineries, improved industry reputation, etc.).

- The regional grape extension teams will work with industry representatives to start to develop a certification process to document growers’ adoption of sustainable practices.

For questions or to participate in the VineBalance program, please contact Jamie Hawk at (315) 536-5123 or jdh73@cornell.edu. The program’s website (www.vinebalance.com) has also been launched, and the content and organization of the site will continue to grow during the coming months.

Ed. Note: Mark will be graduating from Cornell in December, and has agreed to work on the mapping project again starting in January. He will be contacting growers whom he was not able to meet with this summer in order to continue this important project.
New bulletin on causes and management of winter injury in vineyards

A new 105 page bulletin entitled Winter Injury To Grapevines and Methods of Protection, has just been released by Michigan State University Extension Publications. This full-color bulletin was written by extension viticulturists and scientists from Michigan State University (Tom Zabadal) Cornell University (Tim Martinson and Martin Goffinet), Ohio State University (Imed Dami) and Penn State (Mark Chien). The bulletin has eight different chapters, addressing economics of winter injury, cold-hardiness of grapevines, weather conditions causing winter injury, vine tissue response to injury, managing vines to prevent winter injury, and managing vines that have already been injured. The book closes with a brief chapter on technology of the future, and appendices on methods of crop estimation. You can order the bulletin from the Finger Lakes Grape Program office by calling 315-536-5134. Cost is $15.

Field Meetings, continued

of the major grape growing regions of New York as part of a statewide extension project, supported by the NY Wine & Grape Foundation’s Total Quality Focus program. Participants: Dr. Andy Reynolds (Brock University), Hosmer Winery, Glenora Farms, Sawmill Creek Vineyards, Fox Run Vineyards, Anthony Road Winery (hosts).

October 9. Pellenc Harvester Demonstration. This demonstration was arranged by Jim Joy, processor field rep for National Grape Cooperative, and Jim Bedient. The machine was demonstrated at the Laferl farm in Penn Yan, after also doing demonstrations in the Lake Erie region. Instead of being designed as a stand-alone harvester, the Pellenc machine that was demonstrated is a multifunction “carrier”, with units designed for multi-row spraying, pruning, leaf pulling and other functions, in addition to its picking head. The machine also has a relatively small turning radius, allowing it to be used in vineyards with smaller headlands. Participants: Keith and Bruce Lafer (hosts).

Jerry White, continued

reform is far from being a sure thing!

Energy prices are also a major concern on the producing side. In the 2005 Vinifera cost study, we budgeted gasoline at $1.60 and diesel fuel at $1.50 per gallon! Obviously, these costs are considerably higher now. The cost of pesticides is now much greater. At the time I am writing this article, oil prices are approaching a record $90 per barrel! Between labor issues, pesticides, and energy, which together account for over two thirds of total costs in the vineyard, growers and vintners will definitely feel the pin of increasing costs. So cost control is now more important than it has been in the last 20 years.

On the flip side of that, what future opportunities do you see for the industry?

The Finger Lakes industry, although challenged by climate and by having many farms with site limitations, has some distinct advantages. Many progressive growers in those challenging times in the 80’s and early 90’s successfully launched small farm wineries. The growing small winery sector in the Finger Lakes is currently the largest concentration of small wineries in the eastern United States, and is close to major population centers in the northeastern US and eastern Canada. These small wineries will demand more grapes in the future. There are many more buyers of grapes now. Prices for vinifera and high end hybrids are showing growth over time. Our Canadian neighbors are able to get much more for their dollar now that with the decline in the value of the US dollar, the dollar values for the US and Canadian dollars are about at par (the first time this has occurred in approximately 30 years), meaning increased traffic for the wine trails.

We have the infrastructure in place, including knowledgeable agribusiness personnel providing inputs and services for growing the crop; lenders; processors; and world-recognized research and extension programs as well. We have the traditions that come from over a hundred years of being a national player in the wine industry.

Overall, I am optimistic for the Finger Lakes wine industry! Readers will be left to ponder the question, has “Old Gloom and Doom” Jerry White mellowed?
UPCOMING EVENTS

Unified Symposium
January 29-31, 2008
Sacramento Convention Center
Sacramento, CA
Registration, program and exhibitor information can be found at www.unifiedsymposium.org.

Finger Lakes Grape Growers’ Conference
March 14-15, 2008
Holiday Inn, Waterloo, NY
Program and registration information will be posted at the Finger Lakes Grape Program’s website, flg.cce.cornell.edu.

Wineries Unlimited 2008
March 4-7, 2008
Valley Forge Convention Center
King of Prussia PA
For further information about the program and registration, visit www.vwm-online.com.

Lake Erie Regional Grape Growers’ Conference
March 26-27, 2008
SUNY-Fredonia, Fredonia, NY
Contact Linda Auers at lauers@netsync.net for more information.

Wine Industry Workshop
March 26-28, 2008
Ramada Inn Geneva Lakefront, Geneva NY
Contact Nancy Long at NPL1@cornell.edu for further information.

Finger Lakes Grape Program
Cornell Cooperative Extension
417 Liberty Street
Penn Yan, New York 14527

Cornell University Cooperative Extension

Helping You Put Knowledge to Work
Cornell Cooperative Extension provides equal program and employment opportunities. NYS College of Agriculture and Life Sciences, NYS College of Human Ecology, and NYS College of Veterinary Medicine at Cornell University, Cooperative Extension associations, county governing bodies, and U.S. Department of Agriculture, cooperating.