FINGER LAKES VINEYARD NOTES
NEWSLETTER '97 #4  April 30, 1997

Written by Timothy E. Martinson, Area Extension Grape Specialist,
Finger Lakes Grape Program (315) 536-5134, and Tim Weigle,
Area Extension Grape Pest Management Specialist for the
Finger Lakes and Lake Erie Grape Programs (716) 672-6830.
Edited by Timothy E. Martinson.

IN THIS ISSUE

Pest Management Field Meeting
Disease Control Programs For Grapes In The Finger Lakes
Economics of Planting Elvira
Office Hours and Vineyard Calls
Calendar of Events
  • Vinifera Clones/Cultivars Wine Tasting (May 13)
  • Pest Management and Foliar Fertilizer Field Meeting (May 20)
  • NYS Wine Grape Growers/ Finger Lakes Wineries Picnic (May 21)

PEST MANAGEMENT FIELD MEETING
The growing season is upon us! Please join us at the
1997 Spring Pest Management and Foliar Fertilizer
Field Day. This meeting will take place on Tuesday,
May 20 from 2:45 - 6:00 pm at Lance Fullagar Vineyard Supplies on County Rd. 17, about 5 mi. S. of Penn Yan. The session will include:
  • Update on Worker Protection Standard, personal protective equipment, and other regulatory issues (Gail Mortimer, DEC, Avon, NY)
  • Foliar application of boron and other nutrients (W. Stiles)
  • Calibrating over-the-row herbicide sprayers (T. Martinson)
  • Update of Pesticides and Label Changes (Industry Field Representatives)
  • Insect Identification / Disease situation
  • Spray Equipment from area dealers will be on display.

You are invited to bring samples of insects from your vineyard for identification. We will have on hand live examples of banded grape bug, grape plume moth and potentially other insects (if out at that time!)

Immediately following the meeting will be a cookout sponsored by participating industry representatives (including Bayer, Zeneca, Dow Elanco, Elf ATOCHEM, Robert Miller Co, R. E. McQueen Co. and others). Wine and juice from area wineries will also be served.

For those enrolled in the Finger Lakes Grape Program (including all employees of the enrolled farm), there is no charge, but please pre-register by sending us the form at the end of this newsletter, or contact Katie

Helping You Put Knowledge to Work
Cornell Cooperative Extension provides equal program and employment opportunities. NYS College of Agriculture and Life Sciences, NYS College of Human Ecology, and NYS College of Veterinary Medicine at Cornell University, Cooperative Extension associations, county governing bodies, and U.S. Department of Agriculture, cooperating.
DISEASE CONTROL PROGRAMS FOR GRAPE IN THE FINGER LAKES

Wayne Wilcox

1996 was certainly a "challenging" year for controlling grape diseases. High levels of overwintering inoculum throughout most of the region provide the potential for significant disease pressure in 1997 if weather conditions are favorable for infection. The two practical consequences of this are that, compared to an "average" year: (i) the importance of the earlier sprays for each disease increases, provided that weather is conducive; and (ii) there is less margin for error than usual.

So, what did we learn from last year, and what's new for 1997?

FUNGICIDE CHANGES

1. Abound. This is the all-in-one product for control of Phomopsis, powdery mildew, downy mildew, and black rot. ABOUND IS NOT YET REGISTERED FOR USE IN THE UNITED STATES, although hope remains that it will receive Federal registration in May (note that similar "hope" for February, March, and April has come and gone already). Efforts are being made to expedite NY registration once the Federal label is approved. We'll let you know when there's any news.

If registration does occur in time for use this season, be aware that Abound is not a miracle drug, but does provide very good to excellent control of all major fungal diseases except Botrytis. That's IF you deliver the spray to the intended target! Its major benefits will be (a) Because Abound represents new chemistry, no resistance or tolerance has had a chance to develop; this should take significant pressure off the SI fungicides, and help keep them useful into the future. (b) As proposed on the label, the grower-friendly days-to-harvest limitation (14 days) and restricted-entry interval (12 hours) are significant improvements over those for mancozeb and captan, respectively. Major juice processors are not expected to impose their own additional restrictions. More details as appropriate.

2. Rubigan. The old label used to specify that the first application should be made at 12 to 18 inches of shoot growth. A minor amendment now allows prebloom sprays according to local recommendations, maintaining the prebloom rate of 2-3 fl oz/A and the 19 fl oz/A seasonal limitation. This legalizes a relatively low-cost option for growers of vinifera and highly-susceptible hybrids who need to start their powdery mildew control programs early. (Note that with good spray coverage, 2 fl oz/A probably provides more fungicide on each leaf early in the season than does 6 fl oz/A midsummer).

3. Procure. This is really an old SI that finally got Federal registration in 1995 and NY registration in 1996. Essentially, it's a Rubigan "substitute"—good on powdery mildew, but not on black rot. These two materials should compete on price, but right now Rubigan's significantly cheaper. For Procure, figure on 4 oz/A prebloom and 6 oz/A postbloom.

4. Ridomil. The "old" Ridomil products have been replaced by new products containing so-called "Ridomil Gold". This was not an attempt to match the name with the price, but merely reflects a modification of the active ingredient that extends its patent life. Efficacy of the old and new products is equal.

5. Ziram. In early 1996, the Ziram manufacturer petitioned several states for a "Special Local Needs" change to the label, allowing its use on a regular schedule to within 21 days of harvest. The NY State DEC granted the label change in mid-season, but for 1996 only. The manufacturer has petitioned the DEC to allow the same amendments for the 1997 season, but there has been no decision yet. Ziram is in the same chemical family as ferbam (Carbamate) and has a similar spectrum of activity: very good against black rot and Phomopsis, fair against downy mildew, no activity against powdery. Think of it as a more pleasant and less expensive substitute for ferbam. Most useful for juice grape growers who can't use mancozeb after bloom; limited appeal for wine grape programs.

POWDERY MILDEW (PM)

We've learned a lot about PM over the last few years. A couple of important findings relating to last year's work:

1. Most berry infection occurs between the immediate prebloom and early fruit set period. Disease that you see later in the season usually is caused by a combination of favorable weather and problems
with the spray program during and shortly after bloom. For several years, we've known that fruit infection of Concord occurs ONLY during this period, i.e., fruit become immune to further infection by about July 10. Last year, we also found that although Chardonnay and Riesling fruit maintain some susceptibility into late July/early August, they are much more susceptible during their initial stages of development. For instance, approximately 50 to 75% of the Chardonnay cluster surface became covered with mildew when fruit were inoculated at early bloom or 2 weeks later (July 4), but only 6% of the cluster became diseased when clean fruit were inoculated on July 17, at the 1/4-inch diameter stage. (Credit should go to David Gadouzy at Geneva for most of this work). Bottom line: The pre-bloom and first postbloom sprays are when you get most of your disease control on berries. Don't cut corners on spray coverage or materials!

2. Resistance to SI fungicides has reduced their margin for error, but has not eliminated their effectiveness. Thorough spray coverage is ABSOLUTELY CRITICAL for adequate disease control AND reducing further resistance development.

Surveys that we conducted during 1996 demonstrated that resistant strains of the PM fungus are present (and probably widespread) in the Finger Lakes region, but usually at levels that still allow the disease to be controlled by labeled rates of Rubigan, Nova, or Procure—IF thorough spray coverage is provided. (Bayleton still works in some vineyards, but will be the first SI to fail if it hasn't already. I think it's a big gamble with a small payoff, so no longer list it in the Recommends for PM control).

We've often made the point that SI resistance isn't an all-or-nothing phenomenon; instead, it occurs by matters of degree. We are now to a point where significant numbers of individual PM isolates can be controlled by full rates of the current SIs but not by partial rates (intentional "shaving" or just poor coverage). For instance, in an experiment conducted last year in a representative Finger Lakes vineyard, we found that nearly 40% of the PM isolates were controlled by 4 oz/A of Nova but not by 2 oz/A when the vines were thoroughly hosed down with the sprays.

This is what I mean by losing your previous margin for error—the partial dosage you sometimes apply to parts of the canopy due to alternate-row spraying, very low gallonage, windy conditions, etc. used to be good enough, but often isn't anymore. A good Chardonnay grower found this out the hard way last year, when alternate-row applications of Nova in windy conditions at early bloom (a critical time for infection, see above) resulted in significant cluster disease later on. The PM colonies on these berries were composed primarily of isolates that would have been controlled by a full dose of the fungicide but not by the partial dose they apparently received in the parts of the canopy where they showed up. Remember, it's not the dose in the tank that counts, it's the dose on the susceptible tissues.

BLACK ROT (BR)

Most vineyards were pretty clean last year. Remember that, in addition to weather conditions, the need for early season sprays is largely dependent on how much black rot you had last year. Generally, the less you had, the longer you can wait to start spraying. In a set of pretty involved timing trials in the Finger Lakes for the last 2 years, we've gotten complete control of fruit infections with only three sprays of Nova: immediate prebloom and two additional applications at 14-day intervals. But until we repeat these results in a year with a wet May, I'd probably sleep better if I had some protection starting about 10-inch shoot growth if disease pressure was high then (weather, disease carryover, varietal susceptibility, crop value, etc.).

There's now pretty good data to confirm that (i) berries are completely resistant to infection after about Aug. 1; and (ii) BR sprays are seldom needed beyond the peaberry sized berry stage IF control has been thorough up to that point.

Nothing beats Nova for control, but mancozeb, fortun, and ziram will do a good job under most conditions. Abound has been equivalent to mancozeb and ziram in our tests. Copper does little or nothing. Don't count on Rubigan or Procure.

DOWNY MILDEW (DM)

DM was serious in a number of vineyards in 1996. Growers who started spraying for it in June usually got good control, but there were plenty of problems. A quick review of the disease cycle, what happened, and what it means for '97.

Inoculum overwinters in last year's infected leaves on the vineyard floor. The first spores become mature about 2 to 3 weeks before bloom, and cause infection during rainy periods when temps are 50°F or higher.
These primary infections can continue until about 2 weeks after bloom.

The destructive phase of the disease is caused if spores that are produced from primary infections blow through the vineyard and cause repeated cycles of secondary infections when humid nights are followed by rainy days. At optimum temps of approximately 60 to 80°F, this cycle can repeat itself every 4 or 5 days, allowing an "explosive" disease epidemic when favorable weather conditions persist. Young fruit are highly susceptible to infection.

So, abundant carryover from a wet Fall 1995 provided plenty of early inoculum; abundant rains throughout June got the cycle started early and provided plenty of chances for buildup and early fruit infection; abundant fall rains provided plenty of late leaf infections. What this means for 1997 is (i) DM sprays should start on highly susceptible varieties at the 10-inch shoot growth stage (i.e., 2 to 3 weeks before bloom) unless the vineyard was very clean last year or you're sure it won't rain before the next spray; (ii) all but the most resistant vineyards should receive a DM fungicide in the immediate prebloom and first postbloom sprays. This is the critical time to protect against fruit infection. By the time the postbloom spray wears off, primary inoculum is pretty well shot and the need for additional treatments should be based on the usual array of factors: presence or absence of established disease in the vineyard, weather, and variety.

Ridemil is the "Cadillac" material, both in performance and cost. Copper, mancozeb, and captan are very effective if you can use them when necessary. Abound is excellent, should it become available.

**BOTRYTIS BUNCH ROT**

Roger Pearson developed reams of data showing that a spray of Rovral at 5° Brix and 2 weeks later did as good a job against Botrytis as did "classical" (and fungicide label) recommendations that also specify sprays at bloom and bunch closing. However, all of these data were from 'Aurore' vines, so there's at least some question as to how they might vary on later-maturing varieties like Riesling or super-susceptible ones like Pinot Noir.

The general recommendation to spray Rovral at 5° Brix and 2 weeks later has served many growers well, and shouldn't be fixed if it ain't broke. However, it looks like a couple of modifications might be appropriate in some instances: (1) Spray timing trials (also on Aurore) in 1994 and 1996 showed some benefit from including Rovral at bloom and bunch closing in addition to the two later sprays. Both of these were seasons were wet during bloom; there was no additional benefit from the bloom/bunch closing sprays in 1995, which was dry. If you've been having Botrytis problems, consider a Rovral application at bloom and/or bunch closing if weather is very wet then. Excessive use will hasten resistance problems, so don't make these early sprays routinely even if cost isn't an issue. (2) Many growers of late varieties have already figured out that making their last spray 2 weeks after 5° Brix leaves them vulnerable for a long period before harvest (only two sprays are allowed after veraison). On these varieties, I'd play the weather, shooting to put the first spray on about veraison, then save the second application until conditions warrant it (e.g., very wet weather or disease symptoms starting to show, but no sooner than 2 weeks after the previous spray).

Fungicide programs for Botrytis control are worth their cost most years on high value grapes, but don't forget: Botrytis control is greatly improved by leaf pulling and other canopy modifications that increase air flow around berry clusters. This is the first place to start if you're not doing it and aren't happy with the Botrytis control you've been getting. Leaf pulling is a hassle and costs money. So does Botrytis.

**PHOMOPSIS (Ph)**

There are some serious questions as to when it's most economically justifiable to spray for this disease. Traditional literature and recommendations to target the 1- to 5-inch shoot growth stages seem to be based largely on California experience (this is when it rains out there, Thompson Seedless canes break off when heavily infected, etc.) and the old mistaken belief that the Phomopsis fungus causes "dead arm" (that term has largely disappeared, we now know the disease by the name of its true causal agent, Eutypa). Early sprays do a good job of controlling leaf infections (not important) and infections of the basal nodes of the new canes. This may be of some benefit in hedged vineyards where many of these are retained each year and can provide inoculum for fruit and rachis infections over time, but is of questionable importance where they're mostly pruned out every winter.

Fruit and rachis infections are the economically important phases of Phomopsis. During the 1980's, Jay Pecheide and Roger Pearson showed that fruit become infected by Phomopsis when heavy rainfall occurs
most important time for rachis infection is unclear, but probably extends from the early period of cluster emergence until several weeks after bloom.

Perhaps just as importantly for many Finger Lakes growers, Jay and Roger demonstrated that disease severity is heavily influenced by the amount of inoculum present. Highest inoculum levels occur in vineyards where minimal pruning systems allow the retention of large volumes of old infected canes or stubs, but disease pressure is significantly lower in hand-pruned systems.

Mancozeb and captan are the preferred materials for control, but when should they be applied? Here's how I see it: Unless the block has a history of severe Phomopsis, save these sprays until rachises and fruit need protecting (see two paragraphs above) and then play the weather. Hedged vineyards will need more protection than others.

PUTTING IT ALL TOGETHER

There are many good programs for controlling these diseases. Here are a few considerations. Just because it's not listed here doesn't mean it won't work.

3-5 INCH SHOOT GROWTH. Time to start control of PM in vinifera and some hybrid blocks with bad PM last year. May be necessary to control Ph in high pressure blocks (hedged) or those with persistent Ph problems, depending on weather. BR control necessary only if disease was noticeable last year and weather's wet, or operator insists on avoiding risk. Even less necessary to control BR now if Nova will be used later. Option A: Nothing. Option B: Nova (PM, BR). Use the 3 oz rate (about $12/A). Option C: Rubigan (PM). At 2 oz/A, cost is only about $4. Option C: Sulfur (PM). Not very active at temps below 60°F. If you really need this spray, sulfur is a questionable choice unless it's warm. Option D: mancozeb (BR, Ph). Will also control angular leaf scorch (ALS) on susceptible varieties if very wet. Option E: (B or C) + D.

10-INCH SHOOT GROWTH. Traditionally, we've recommended not to wait any longer to control BR. This may be a bit conservative if BR was well-controlled last year and/or weather is dry. Again, you get a little latitude if using Nova in the prebloom and first postbloom sprays, due to its reach-back and high efficacy. Don't wait any longer to control PM on susceptible cultivars. DM control will be needed on susceptible cultivars if disease was prevalent last year and rains of at least 0.1 inches at temps >50°F occur. Rachis infections by Ph are a possibility, particularly if weather is wet. Option A: Mancozeb (BR, Ph, DM, ALS). A broad spectrum, economical choice if PM isn't a serious concern. Or add a PM material. Option B: Nova (PM, BR). Option C: Rubigan (PM). No BR but cheaper than Nova. Option D: JMS Stylet Oil. Use at the 1% rate (1 gal/100 gallons spray solution). If coverage is thorough, this spray should eradicate early PM colonies and take some pressure off the SI's. Retail cost is about $1/gallon. Option E: Mancozeb (BR, Ph, DM, ALS) + a PM material (Nova, Rubigan, Procure, sulfur). Choose PM material based on previously-discussed characteristics and cost.

PREBLOOM. A critical time for PM, BR, and DM, and Ph. Also important for ALS on susceptible varieties. This and the first postbloom spray are the most critical sprays of the season—DON'T CHEAT! Option A: Nova + mancozeb (PM, BR, Ph, DM). Provides postinfection activity against BR infections, which Option B doesn't. Nova is the big gun against BR. Option B: Rubigan + mancozeb (PM, BR, Ph, DM). Cheaper than Option A. Mancozeb does a commercially acceptable job of BR control in most vineyards. Option C: Nova + Ridomil MZ (PM, BR, DM). Pretty expensive, but the most effective option for DM under severe disease pressure. Spike with extra mancozeb if Ph and ALS protection is needed. (Or, if using this much mancozeb, substitute Rubigan for Nova and save some money).

BLOOM. Rovral for Botrytis control may be needed infrequently, i.e., if warm and prolonged wet. See previous discussion.

FIRST POSTBLOOM. Still a critical time for PM, BR, and DM, and Ph. Same Options as under PREBLOOM.

SECOND POSTBLOOM. BR control may still be needed if disease was present last year, particularly if weather is wet. Fruit are less susceptible to PM now, but continued protection of leaves is needed on susceptible varieties. Ph danger is mostly over. Primary DM should be over, but continued protection may be needed on susceptible varieties if weather is wet or if disease is established. Option A: Nova (BR, PM) + captan or mancozeb (if >66 days until harvest) if DM control needed. Option B: Rubigan (PM) + mancozeb (if >66 days until harvest) for BR and DM. Option C: Sulfur (PM). Option D: Mancozeb (if allowed) + sulfur (PM, DM, BR if needed) Option E: Include Ridomil
MZ (DM) in one of the preceding if disease pressure/economics say so.

ADDITIONAL SUMMER SPRAYS. Check the vineyard regularly to see what's needed. The goal is to keep SI's out of the program for the rest of the season, for resistance and bottom-line management. On vinifera and other cultivars requiring continued PM control, use sulfur or Stylet Oil. (NOTE: In both 1995 and 1996, Stylet Oil applied in early and mid-August gave excellent residual control of leaf PM into early October). Copper + lime will work for Concords; most important to maintain good leaf health if the crop is heavy. BR should not be an issue beyond this point, unless there's been a mess-up (even then, fruit lose susceptibility by about Aug. 1). For DM, there's copper/lime or Captain. See previous discussion for Botrytis.

ECONOMICS OF PLANTING ELVIRA

Gerald B. White

In the summer of 1996, we began a study to determine the economic and financial feasibility of planting Elvira grapes. Why study Elvira?

There are several reasons for considering Elvira. First, in a five year study of growing grapes organically, Elvira had a higher average yield per acre than did Concord. Furthermore, Elvira tolerated the less precise, organic management better than Concord. There was a significantly lower yield compared to conventionally managed vineyards for grapes grown organically for the Concord variety, but no significant difference for Elvira. In a study that included vineyards of Concord, Elvira, and Seyval varieties, the most favorable economic results for the organic system were obtained for Elvira. Secondly, even on the abused, highly eroded soils found in some of the older production areas in the Finger Lakes, yields of Elvira in the 6 to 7 ton range are achieved, in contrast to state average yields of about 5 tons per acre. Thirdly, Elvira grapes are excellent for blending with other varieties that are used in the current product lines of Canandaigua Wine Company, which is by far the largest buyer of grapes used for wine in New York state.

The objectives of this research were as follows:

1. To evaluate the yields, costs, and practices associated with replanting and growing Elvira grapes using the resources, both managerial and soil, of Finger Lakes, New York grape growers;

2. To evaluate the profitability and financial feasibility for these growers to convert their existing vineyards to the Elvira variety.

For the results, see Table 1. Receipts per acre were projected at $1,515. This revenue resulted from 7.5 tons per acre yields (the 5-year average yields reported from a survey of 23 growers of Elvira) and a price of $202 per ton (the average price New York growers received in 1991-1995 for Elvira).

Total costs per acre were $1,658, to include fixed costs as well as growing and harvesting costs. The largest fixed cost component is the annual amortized cost of $488 per acre to remove the old vineyard, prepare the site for replanting, the cost of planting in year 1, and the cost of developing the vineyard in years 2 and 3.

DISCUSSION

The base analysis, with yields of 7.5 tons per acre and a price of $202 per ton resulted in a -$143 returns to management. It should be kept in mind that this analysis was based on a 25 year time horizon, a 9 percent charge on capital investment, and an $8.00 per hour charge on owner's labor. Growers will have to use efficient management practices and aim for higher yields. Average yields of at least 8.4 tons are required to break even if the price received is $202 per ton.

Average yields over the five years surveyed were 7.5 tons per acre. The Elvira variety, however, is high yielding and tolerates less precise management practices. Progressive growers on good sites should be able to achieve at least 8 tons per acre long-term average yields.

To put the results in perspective, with yield of at least 8 tons per acre and a price of at least $200 per ton, growing Elvira is approximately a break even investment. With revenues of $1,600 per acre, growers will receive a return of $8.00 per acre for their own labor and a return on capital of 9 percent.

Another factor to consider is that, while the base analysis indicates that growing Elvira is approximately a break even proposition, it yields higher returns to fixed resources than many of the traditional varieties such as Catawba, Delaware, and Dutchess. These varieties are lower-yielding on average and do not have as good a future market outlook as does Elvira.
With yields of approximately 8 tons per acre and the price of grapes at $200 per ton, there is no margin for risk. Growers should consider that demand for the variety, and hence prices, could change in the next 25 years in such a way that the replanting is not profitable. On the other hand, if growers believe that the price will be $220 per ton, as was the price paid by large wineries for Elvira in 1996, then the economic outlook for replanting will appear more favorable than the base analysis presented here.

Table 1. Projected Receipts and Expenses for New Plantings of Elvira Grapes (Conventional Practices), 1996

<table>
<thead>
<tr>
<th>Item</th>
<th>Per Acre</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Receipts:</strong></td>
<td></td>
</tr>
<tr>
<td>Yield, ton per acre</td>
<td>7.5</td>
</tr>
<tr>
<td>Price, $ per ton</td>
<td>202</td>
</tr>
<tr>
<td>Total receipts</td>
<td>$1,515</td>
</tr>
<tr>
<td><strong>Costs:</strong></td>
<td></td>
</tr>
<tr>
<td>Variable</td>
<td></td>
</tr>
<tr>
<td>Growing</td>
<td>605</td>
</tr>
<tr>
<td>Interest on operating capital (9.25% for 6 months)</td>
<td>28</td>
</tr>
<tr>
<td>Harvesting and hauling (@ $50 per ton)</td>
<td>375</td>
</tr>
<tr>
<td>Total variable costs</td>
<td>$1,008</td>
</tr>
<tr>
<td><strong>Fixed</strong></td>
<td></td>
</tr>
<tr>
<td>Interest on machinery &amp; equipment (9% x market value)</td>
<td>45</td>
</tr>
<tr>
<td>Interest on buildings (9% x market value)</td>
<td>10</td>
</tr>
<tr>
<td>Interest and depreciation on vineyard</td>
<td>488</td>
</tr>
<tr>
<td>Property taxes</td>
<td>43</td>
</tr>
<tr>
<td>Insurance</td>
<td>55</td>
</tr>
<tr>
<td>Utilities</td>
<td>9</td>
</tr>
<tr>
<td>Total fixed costs</td>
<td>$650</td>
</tr>
<tr>
<td><strong>Total costs</strong></td>
<td>$1,658</td>
</tr>
<tr>
<td><strong>Returns to management</strong></td>
<td>($143)</td>
</tr>
<tr>
<td><strong>Break even price</strong></td>
<td>$221</td>
</tr>
<tr>
<td><strong>Break even yield (tons/acre)</strong></td>
<td>8.4</td>
</tr>
<tr>
<td><strong>Total cash costs</strong></td>
<td>$1,115</td>
</tr>
</tbody>
</table>

One risk that is likely to weight on the minds of growers who are contemplating investment in Elvira plantings is that there are somewhat limited alternative markets for that variety. Growers may want to consider planting other varieties (e.g. Cayuga White, Horizon or Melody) which are also adaptable to high yields and labor efficient technology, but have more potential alternative markets than does Elvira.

If you are interested in more of the details of this research, write to Department of Agricultural, Resource, and Managerial Economics, Cornell University, 46 Warren Hall, Ithaca, NY 14853-7801 and ask for a copy of R.E. 97-05 (The Economics of Replanting Generic Wine Grape Varieties in New York).

**OFFICE HOURS**

As the growing season gets underway, I want to encourage you all to contact me at 315-536-5134 for assistance with any vineyard problems or questions. I plan on setting aside most Mondays as 'office hours', so don't be surprised if I answer the phone! At other times, you can leave a message with Katie Tomlinson. I will check for messages at least once a day if I am out of the office, and will return your call as soon as possible. If you want me to come out to your farm to discuss a problem, please call at anytime and I will arrange an appointment with you. Our office hours are 8:30am to 4:30pm Monday through Friday.

**UPCOMING EVENTS**

**MAY 13. WINE TASTING, 9:00 - 12:00 AM.** Tasting of new vinifera cultivars/ clones from the clonal selection program. **Pre-registration is required.** Space is limited. Contact Terry Allen, Dept. Food Science, NYSAES, Geneva at 315-787-2272.

**May 20. PEST MANAGEMENT FIELD DAY. 2:45 - 6 PM Lance Fullagar Vineyards, Yates County Road 17, Penn Yan, NY.** From Penn Yan take Route 54 south to the edge of town, then left on County Road 17. Farm is approximately 3.5 miles past the Penn Yan Airport just south of the G. Fullagar Road. Credits will be given for Pesticide Applicator Recertification. **Pre-registration Required.** To register, call Katie at (315) 536-5134 on Monday through Friday between 8:30 am and 4:30 pm, or send in the form enclosed in this newsletter.
May 21. WINE GRAPE GROWERS AND FINGER LAKE WINERIES PICNIC. 6 PM at Lakewood Vineyards, 4024 State Rte 14, 4 mi N of Watkins Glen. At this picnic, wineries and NYS Wine Grape Grower members will get together to discuss potential grape needs of Finger Lakes wineries. Reservations required by May 16. Contact David Stamp at (607) 535-9252 or FAX: 607-535-5656 for more information.

Timothy E. Martinson  
Area Extension Educator  
Finger Lakes Grape Program

Cornell Cooperative Extension and its employees assume no liability for the effectiveness or results of any product. No endorsement of products is made or implied. When using any recommendation, check the product label which is the final word with respect to product usage, or check with the manufacturer or supplier for updated information."