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ABSTRACT 

 

Olivia Chen Valentine 

Cornell University 2015 

 

Dynamic pricing is a trendy term that can be found in a variety of industries. In the 

utilities industry, the implementation of dynamic pricing structure is an economic 

stimulus to encourage demand reduction of electricity usage in peak hours, when the 

power system is strained and the cost of electric power is very high. This study 

investigated the rate structure of day-ahead hourly pricing programs in New York 

State, and evaluated the demand and emissions impacts of dynamic pricing programs 

in the summer of 2008. Different scenarios of dynamic pricing programs are modeled 

to evaluate the demand and emissions change for NOx and SO2 emissions in peak 

hours, as well as in off-peak hours. Three methods are proposed to evaluate NOx 

emission reduction in New York State. Hourly emissions changes from power 

production in the NPCC power system model are scaled to emissions in the National 

Emissions Inventory (NEI), in order to simulate potential emissions changes in 

historical days caused by dynamic pricing. The NEI and the simulated emissions are 

used as point source emissions input into Sparse Matrix Operator Kernel Emissions 

(SMOKE) modeling system. The processed emissions change from SMOKE is 

visualized using Visualization Environment for Rich Data Interpretation (VERDI). 

Results show that dynamic pricing programs can result in considerable emissions 

reduction in peak hours, while inducing a slight increase in off-peak hours. The 
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emissions reduction will have non-negligible environmental and social impacts for the 

New York State, especially for the metropolitan areas like New York City. 
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CHAPTER 1 

 

INTRODUCTION 

 

Over the past decades, electricity consumption has been growing with the economic 

growth, and it is still expected to grow in the future. Moreover, peak demand is 

growing faster than electricity demand [1]. Concerns have been raised about high 

electric demand on peak days, especially in a hot summer.  

Peak demand affects human life in several ways. Firstly, costs in procuring energy, 

acquiring and maintaining adequate capacity during peak hours is much higher than 

that during off-peak hours. However, faced with a flat retail electric price, the majority 

of customers are not aware of the fluctuating price in the wholesale electricity market. 

Therefore, the demand for electricity is not always well matched with the generation 

supply in the electricity market throughout the day. Electricity is being over-consumed 

during the peak hours and under-consumed during off-peak hours. This results in 

deadweight loss and thus low economic efficiency. Therefore, some state that a price 

responsive demand greatly increases economic efficiency [2][3]. Next, the 

transmission system is bearing much stress in peak hours, which can lead to severe 

power outages, imposing large financial loss for businesses and lots of inconvenience 

for everyday life. For example, in 2012 the blackout that stroke India affected 620 

million people, 10% of the world’s population. Last but not the least, intense power 

generation on peak days, often provided by more costly and dirtier plants, has 
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significant impacts on the environment and human health. It is shown that NOx 

emissions from electric generating units double on peak days in New Jersey, 

downstate New York and New England region [4]. NOx is a main source of ozone 

precursors. High concentration of ground level Ozone is known to have adverse health 

effects on human beings, especially irritation of the respiratory system. However, 

some states in the northeast of United States have been among the 8-hour ozone 

nonattainment areas according to the 1997 and 2008 National Ambient Air Quality 

Standard(NAAQS) [5][6][7]. Meanwhile, acid rain, mainly caused by SO2 and NOx 

emissions from burning fuels, negatively affects water and soil which are essential 

parts of human life as well. It is without doubt that on high electric demand days, the 

air pollutants from fossil fuel combustion will largely aggravate the environmental 

problems. Therefore, reducing peak electricity demand is the key to alleviate the 

economic and environmental problems stated above. 

With growing peak demand causing those problems, several methods have been 

brought up to address the challenges. Demand-side management has been a main 

focus over the past two decades, among which energy efficiency and load 

management are the most popular programs. Energy efficiency, while more often 

considered to reduce customer energy use on a permanent basis, has proved to be able 

to achieve great peak demand reduction [8]. On the contrast, demand response was 

designed for load curtailing and shifting on high electricity demand days, thus has 

great potential in peak load reduction [9]. What’s more, integration of plug-in hybrid 

vehicles in the grid for peak reduction on high electric demand days can also yield 

considerable benefits economically and environmentally [10]. In addition, installing 
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emission control equipment at the power plants is a direct way to control emissions 

from the sources. 

A study conducted by the brattle group illustrated that dynamic pricing programs in 

New York State can reduce total resource costs, lower customer market costs, and 

improve economic efficiency [11]. However, there is little discussion about how 

dynamic pricing can affect the environment, which is also an important part of human 

life. This thesis studies the potential environmental impacts of dynamic pricing in the 

Northeast Power Coordinating Council (NPCC) region through modeling dynamic 

pricing programs in New York State. It shows that by implementing dynamic pricing 

rate structure in the retail electricity market, the demand reduction during peak hours 

from various customers can lead to considerable emissions reduction across the NPCC 

region, thus bringing huge environmental benefits.  
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CHAPTER 2 

 

 DYNAMIC PRICING AND EMISSIONS 

2.1 Introduction 

High electricity demand on peak days leads to tremendous air pollution, and puts the 

power system under stress. The electric generating units (EGUs) that are operated 

during peak times are often old, dirty, and less efficient ones. The emissions from the 

EGUs, especially NOx, are precursors of Ozone. Ground-level ozone can induce 

public health problems, such as harming lung function and irritating respiratory 

system. Ozone has been a problem for the northeast region of the United States, with 

exceedances of the 8-hour ozone National Ambient Air Quality Standards (NAAQS) 

on hot summer days [1].  

Strategies and technologies of demand-side management have been raised to address 

peak demand problems and maintain system reliability. Also, whether or not they will 

be conductive to alleviating the environmental problem is getting growing attention. 

For example, a recent study suggests that without proper emission control, the 

participation of behind-the-meter generation in demand response programs may result 

in significant NOx emissions, contributing to the formation of ozone pollution [2]. 

Also, regulated charging of plug-in hybrid electric vehicles in summer proves to 

produce significant overall emissions reductions for NOx [3][4][5].  
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Dynamic pricing (DP) is a time-varying retail rate structure that passes through the 

wholesale electricity market spot price. Better reflecting the cost of energy, it provides 

a price signal to the customers, giving incentives to curtail and/or shift usage during 

the peak hours. By reducing peak demand, dynamic pricing can potentially reduce the 

need to install additional generation and transmission infrastructure to meet capacity 

requirements. There are several types of dynamic pricing program, e.g. time-of-use 

pricing, real-time pricing, and critical-peak pricing. Hopper et al finds that large 

customers that respond to day-ahead hourly price are influential in reducing peak load 

and maintain system reliability [16]. It is also revealed that hourly pricing programs 

can provide stable and sizable demand reductions for residential customers [17]. A 

report by Navigant Research shows that dynamic electricity pricing will be available 

to about 14% of utility customers by 2020, in spite of the existing mythology that 

stalls the move to dynamic pricing[18][19]. Given that hourly pricing programs has 

proved to produce significant peak load reduction, day-ahead real-time is modeled and 

evaluated in this study. Also, it better reflects the wholesale market conditions. The 

objective of this study is to evaluate the environmental impacts of dynamic pricing in 

New York State, particularly on NOx emissions from EGUs.  

2.2  Methodology 

In March 2008, EPA strengthened its NAAQS for ground-level ozone, revising the 8-

hour primary and secondary ozone standard to a level of 0.075 parts per million (ppm) 

from the previous 1997 standard of 0.08 ppm. The year 2008 from June to September 

was studied to see if DP programs will help meet the new standard in hot summer days. 
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It is assumed all retail customers in New York State are subject to dynamic rates, in 

order to maximize the potential benefits brought by dynamic pricing. Under dynamic 

pricing programs, flat and dynamic retail electricity prices were constructed, then the 

impacts of dynamic pricing on demand was calculated depending on customer 

elasticity. Emissions impacts were evaluated using different methods.  

2.2.1 Retail Price Modeling in New York State 

 

Figure 1. Dynamic Pricing Methodology Flow Chart 
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The methodology of dynamic price modeling is demonstrated in Figure 1, following 

the New York Independent System Operator (NYISO) report [11]. Electricity rice 

based on 3 components: energy charge, capacity charge and other non-generation 

charges. Hourly prices are modeled by zone, while 3 regions are mainly considered 

here: Zone J (New York City), Zone K (Long Island) and ROS (Rest of System). The 

methods on calculating prices are elaborated in the Appendix A. Flat rate and dynamic 

rate of energy and capacity charges are calculated separately for flat price case and 

dynamic price cases, while other charges are assumed to be the same for both cases. 

Then the charges are combined to get flat and dynamic electricity prices. Then the 

ratio of dynamic to flat charges is calculated, and demand elasticity is applied to the 

ratio to evaluate the DP effects on the demand.  

Then demand changes in each hour are decided by the customer elasticity. Demand 

elasticity is observed through pilot experiments. There are several studies on pilot 

experiments rate designs and price elasticity evaluation [20-24].  The relationship 

between price ratio and the amount of peak reduction is found by surveying pricing 

pilot experiment and was quantified as a logarithmic model [25]. The logarithmic 

model of elasticity curve is extrapolated to model the load shifting in off-peak times, 

shown in Figure 2. The experiments with enabling technology, such as in-home 

displays and programmable thermostats produce larger demand reduction, thus it is 

described in a different curve. The logarithmic model shows that the amount of 

demand reduction rises at a decreasing rate with the increasing of price ratio.  
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Figure 2.  Demand Curves:                       

During peak time, the ratio of dynamic price to flat price is larger than one, while 

during off-peak time, the ratio is smaller than one. In our base case, the load reduction 

during peak time is up to 16% with the price ratio around 8, and the load increase 

during off-peak time is up to 7% with the price ratio around 0.36. In the base case with 

enabling technology case, the maximum load drop is 23.7%. 

2.2.2  Emissions Modeling in New York State 

Different methods are proposed in this study to evaluate the environmental impact of 

dynamic pricing, and to bound the uncertainties in the analysis. One perspective is to 

evaluate the emissions from marginal generators by simulating the economic dispatch 

in the NPCC region. The other perspective is to identify peaking units by emissions 

requirements and by capacity factors.  

2.2.2.1 Economic Dispatch Based Emissions Modeling 

In this approach, we propose a network-constrained economic dispatch (NCED) 

method. Emissions changes due to dynamic pricing programs in New York State are 
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derived through a power system model in the NPCC region. MATPOWER, a 

MATLAB-based power system simulation tool based on economic dispatch under 

network constraints is used to solve optimal power flow in the reduced NPCC network 

[26]. The inputs to this power system model include the original zonal hourly load 

from NYISO, Independent System Operator New England (ISO-NE), Pennsylvania, 

Jersey, Maryland Power Pool (PJM), Independent Electricity System Operator (IESO) 

websites, as well as the DP New York zonal hourly load. One of the outputs of this 

model is unit-level hourly power generation from each of the 693 generators in the 

NPCC network. NOx and SO2 emissions rates of each generator are also derived 

within the model. Comparing original case with the dynamic pricing cases, hourly 

power output rises or decreases due to marginal dispatch of fuel generators under 

network constraints. Accordingly, emissions rates from each generator on the grid also 

change due to power re-dispatch.  

2.2.2.2 Scenario Based Emissions Modeling 

2.2.2.2.1 Targeted Peaking Units  

In the peaking units (PU) method, NOx emission changes are evaluated by targeted 

peaking units in New York State. According to a NYISO report conducted by NERA 

Economic Consulting, generators within the annual operating hour threshold to avoid 

Lowest Achievable Emission Rate (LAER) and Best Available Control Technology 

(BACT) requirements for NOx emission were identified as peaking units [27]. Peaking 

units run only when there is a high demand, while in our study, they are assumed to be 

running during critical hours. To quantify NOx reduction during critical hours, 
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emission factors of the peaking generators are calculated from EPA Air Markets 

Program Data, and total NOx emissions are calculated using a weighted average 

method, according to their generation output [28]. 

                   
                          

           
                                         (1) 

           

                         
           

                              
                                  (2) 

2.2.2.2.2 Targeted Capacity Factors 

The capacity factor (CF) method is also based on EPA Air Markets Program Data. The 

generators in New York State are ranked by their capacity factors. Capacity factor is 

the ratio of the generator’s actual output over a year to the maximum output it could 

produce at full nameplate capacity over a year. The generators with lower capacity 

factors are considered being operated during peak demand periods. There are some 

units with very short operating times over the year, which are only dispatched on the 

hottest days in the summer. One peak days in the summer, NY zonal load profiles 

under DP programs are derived, and compared with the original load profiles. For each 

hour with demand reduction, the supply is stacked using units with lowest capacity 

factors while keeping total generation and load balanced.  Each dispatched unit runs at 

full production except the marginal unit.  The emission factor per unit and total 

emissions are described in equation 5 and 6. 

                   
                          

           
                                       (3)                                
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                                                                                   (4)                                       

2.3  Results and Discussion 

2.3.1 Demand Reduction Evaluation 

2.3.1.1 NYISO Load Duration 

 

Figure 3. NYISO Load Duration Curve 

Figure 3 is the NYISO load duration curve of the NPCC network from June to 

September of 2008. The blue line shows the original NYISO load. The red and green 

line depicts the new NYISO load under base case DP program and base case with 

technology. This load duration figure clearly shows that during critical hours, DP 

program effectively reduces the New York peak load by a significant amount. 

Meanwhile, for non-critical hours there is slight demand increase. Apparently, the load 

increase in non-critical hours is small compared to the load decrease in critical hours. 
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Also, base case with technology produces more load reduction during critical hours 

than base case, while induces more load increase during non-critical hours. 

 

Figure 4. Original NYISO Load and DP Loads on July 8th, 2008 

Figure 4 compares the base case dynamic pricing program and the base case with 

technology program. It shows dynamic pricing programs effectively reduce the peak 

load in New York State. The red line shows that base case scenario works well in 

flattening the peak load and smoothing the overall load curve, both of which are 

beneficial for the power systems. In the dynamic pricing programs with enabling 

technology, there is more demand reduction in the peak hours, which can reach up to 

23.7% as compared to 16.79% in the base case. However, the shoulder hours might 

become the new peak hours that set the capacity requirement. 
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2.3.1.2 Demand Reduction for Different-Hours Dynamic Pricing Scenarios 

In addition to applying technologies along with implementing dynamic pricing 

programs, demand changes with different pricing scenarios are also evaluated. 

Following the NYISO report, the scenarios vary by changing the number of critical 

hours in the dynamic pricing programs, shown in Table 1.  For the More-Hours Case, 

we nearly doubled the number of critical hours; while in the Fewer-Hours case, the 

number of critical hours is cut by half.  

Table 1. Dynamic Pricing Scenarios 

 

The total load reductions from different dynamic pricing scenarios are shown in Table 

2. It is shown that fewer-hours case can induce larger percentage demand reduction in 

peak hours, whether it is for a single hour, or considering all the critical hours in the 

summer. However, it causes less total energy reduced during the whole summer 

compared to other scenarios. The asymptotically-zero slope of the logarithmic price-

demand elasticity model shows that as critical peak hours decrease, prices increase, 

but demand does not reduce by a commensurate amount. In summary, more critical 

hours increase overall load reduction, while fewer critical hours further decrease the 

peak load.   

 

Critical Hours Upstate New York City Long Island 

Base Case 80 90 50 

More-Hours Case 150 180 90 

Fewer-Hours Case 40 50 30 
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Table 2.  Comparison of Demand Reduction  

 

Base Case Fewer-Hours More-Hours 

Total Demand Reduction (GWh) 185 118 274 

Maximum Single Hour Demand 

Reduction Within Critical Hours (%) 
16.8 21.2 12.9 

Maximum Zonal Peak Load 

Reduction Within Critical Hours (%) 
14.6 19.1 11.1 

Load Reduction Over All Hours (%) 0.3 0.2 0.5 

  

It is also valuable to assess the effects of dynamic pricing programs on a particular day 

in urban area. July 8th is a typical critical day in summer of 2008. Figure 5 shows how 

these 3 different dynamic pricing scenarios will change the demand in New York City. 

All 3 cases help reduce the peak load to different extents. However, by examining the 

load shape, deeper valley is noticed when decreasing the number of critical hours. 

More load reduction within fewer hours result in a sharper shoulder. The shoulder is 

not favorable due to the following reasons: On one hand, it will incur more ramping 

cost for the generators to shut down and turn back on again. On the other hand, the 

goal of dynamic pricing is to flatten the load. If peak load is reduced to be smaller than 

the off-peak load, then it will no longer be considered as critical.  Thus the extra 

reduction is not necessary, even harmful for the system. This problem might also been 

seen in the base case with technology, as indicated in figure 5. However, fewer-hours 

case has an advantage in real life. It means there are fewer days and hours when very 

high electricity prices are observed. Customers might be more likely to respond to 

high prices if there are not that many of them.  All in all, there are pros and cons under 
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each dynamic pricing scenario, but there is considerable demand reduction under each 

the dynamic pricing scenario. For the customer cost evaluation, see Appendix B.  

 

Figure 5. Original NYC Load and Load under DP Programs on July 8, 2008 

2.3.2 Emissions Reduction Evaluation 

2.3.2.1 Emissions Reduction based on Power System Model  

Based on MATPOWER model, after implementing dynamic pricing rate structure, 

emissions from some generator change as a result of power production change. To 

further evaluating the environmental impact, emission changes are evaluated on a state 

basis. Results in Table 3 show that for the base case dynamic pricing scenario, there 

are 6.7 tons NOx reduction on a typical hot summer day, July 8
th

, 2008 in New York 

State, which accounts for 4.05% of the total emissions. Compared with the NOx 

reduction goal of New York State, which is 50.8 ton NOx per day, dynamic pricing 

can achieve about 13% of the total reduction goal [29].  
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Compared with other cases, the more-hours case has slightly more NOx reduction in 

New York than the base case, given the fact that it does not have the most load 

reduction for the day, nor does it have the most NOx reduction for all the states in the 

NPCC network. Thus having more critical hours on a critical day is better for 

emissions reduction in New York State. For the fewer-hours case, although it has a lot 

of load reduction for the day, it is not favorable for NOx reduction. This corresponds to 

peak load reduction shape. For this case, more load reductions are induced in very few 

critical hours. Thus the generators that are on the margin are no longer the dirtiest ones, 

rather more efficient ones. And also, due to the fact that the original critical hours may 

no longer set the capacity requirement of the system in this case, having too few 

critical hours in dynamic pricing scheme does not yield the best benefits. As for the 

base case with technology, although it has more load reduction during peak hours due 

to the steeper elasticity curve, it does not have as much overall load reduction because 

of the bigger demand increase in non-critical hours. However, this case is still quite 

instrumental in addressing the peak demand problem.  

Table 3. Comparison of NOx Reduction Using NCED Method 

Scenarios Base Case 
More-

Hours Case 

Fewer-Hours 

Case 

Base Case 

w/Tech 

NY NOx Reduction (tons/day) 6.7 7.1 5.1 5.6 

NPCC NOx Reduction 

(tons/day) 
15.9 15.0 10.2 15.4 

Daily Load Reduction (GWh) 28.8 27.6 26.9 21.2 
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This approach shows that DP programs can bring considerable reduction on a state 

level; Meanwhile, demand changes brought by DP programs in the New York State 

can also cause some emissions reduction or increase in other states nearby in the 

NPCC network, due to the interstate network links. Upon close examination, the 

emissions change in the neighboring states generally account for around 1% of their 

total emissions. In addition to considering how total emissions reduction can affect a 

state, the locality of emissions are also important, especially for metropolitan areas. 

The base case DP program produces 3.4, 1.2 and 2.2 tons NOx reduction for NYC, LI, 

and ROS respectively, which accounts for 7.1%, 2.9% and 3.1% of original regional 

load. It is clear that there is more NOx reduction in New York City. In addition to the 

fact that NYC is designed to have a few more critical hours than ROS and LI, it also 

shows that there are more peaking generators in NYC. As there’s huge transmission 

congestion through the Central East and Upper New York to Southeast New York 

interface, a large portion of the peak demand needs to be served by generators local to 

New York City. DP programs prove a good way to solve peak demand problems in 

NYC, in terms of system reliability as well as regional air quality. They can also defer 

the need for new transmission build-outs to allow more efficient generation units to be 

dispatched across the state.  

2.3.2.2 Emissions Reduction based on Targeted Replacement 

2.3.2.2.1 Peaking Units Method 

In this method, peaking units (PU) are identified by zone, thus NOx reduction are 

evaluated by zone. It is assumed all peak load are served by those peaking units 
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selected according to the criteria. As shown in Table 5, there are about 3 times higher 

NOx reductions than in the NCED method. This is caused by the fact that the peaking 

units identified using the operating hour limits are among the dirtiest ones in New 

York States, especially in New York City and Long Island area. The generation-

weighted average emission factors for NYC, LI and ROS peaking generators are 3.42, 

5.85 and 0.80 kg/MWh, respectively. The selected peaking units are representative of 

peaking units in the zones, but it has the limitation of only covering a small portion of 

all generators. It is shown in figure 6 that although there is not as much overall load 

reduction in NYC as in ROS, more NOx reduction are produced in NYC, due to the 

high average emission factor.  

 

Figure 6. NOx Reduction in Different Zones Using PU Method 
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2.3.2.2.2 Capacity Factor Method 

With this method, DP programs yields the largest NOx emission reduction among the 

proposed methods. First of all, by ranking generators according to capacity factors, 

those dirty and less efficient ones which operate at high fuel costs are selected. By 

examining the emission factors closely, it is obvious that the generators with lower 

capacity factors have larger emission factors than average. 

Furthermore, the approach we adopted here is an extreme case because we consider all 

the dirtiest generators with very low capacity factors are fully dispatched to their total 

generation output within the simulated day. In the actual situation, for example, if a 

generator operates 6 hours totally in a year, it might occur in 1, 2, 3, up to 6 different 

hot days. In our simulation, we consider this generator is operated for 6 full hours in 

the simulated day, July 8th of 2008. This approach makes sure to get the upper bound 

of potential emissions reduction by dynamic pricing programs.  

Most importantly, in the wholesale energy market, generators do not bid their total 

generations at a uniform price. The upper bidding block of clean generators can also 

get costly. Thus those generators with higher capacity factors can also be on the 

margin during peaking hours. However, in our approach which ranks the generators by 

capacity factor, this possibility is not taken into consideration. Therefore, the results of 

this approach are considered a maximum potential emissions reduction when dynamic 

pricing programs are implemented. 
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Figure 7. NOx Reduction under Base Case DP program Using Different Methods 

Figure 7 is a comparison of NOx emission reduction using different methods under 

base case DP program. It is demonstrated that NCED method results in lowest NOx 

emission reduction, while PU method and CF method produced highest NOx emission 

reductions. Note that Figure 7 uses the CF method where each zone’s load reduction is 

balanced by a commensurate decrease in supply located in the same zone.    

2.3.2.3 Comparison of Emissions Analysis Methods 

To better understand the maximum potential of emissions change under different 

dynamic pricing programs, in this comparison only load shaving are considered, 

assuming there is no load shifting. For the NCED method, emissions change from all 

states in the NPCC network were included to evaluate the total emissions reduction 

brought by implementing DP programs in New York State. For a meaningful variation 

on the CF method in Section 2.3.2.2, Figure 8 is produced assuming peak load 
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reduction within the entire NYS is balanced by a commensurate decrease in supply of 

the entire State, not constrained to any zone. Under this circumstance, the total NOx 

reduction in New York State is larger than the previous case when demands has to be 

met by generators within each zone. The potential emissions reduction is bounded by 

CF method this way. On the other hand, it also demonstrates that having more 

transmission infrastructure to facilitate the power transmission between zones will 

greatly reduce emissions. For example, without any transmission congestion, when 

New York State load reduces, the dirtiest generators in NYC and LI would be first de-

committed, incurring more emissions reduction.  

  

Figure 8. Comparison of Three Methods of Determining NOx Reduction 

Figure 8 shows that the emissions reduction is intuitively and positively correlated to 

the amount of load reduction for the base case, few-hours case and base case with 
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technology. Interestingly comparing the more-hours case to the base case, the former 

has less load reduction, but more NOx reduction.  It is found for NYC and LI area, 

there is more load reduction for the more-hours case.  However, for ROS there is less 

load reduction for the more-hours case—resulting in less total load reduction. 

Nonetheless, peakers’ emission factors in NYC and LI are much higher than those in 

ROS—reducing emissions overall.  

Figures 7 and 8 show that the NCED method may serve as a lower bound of emissions 

reduction, while the capacity factor approach may serve as an upper bound—reaching 

to about five times of the NPCC total emissions reduction using NECD method. 

Estimation from the peaking units approach sits in-between, because this method 

results in a partial selection of dirty units.  In comparison, the CF method captures a 

larger pool of dirty units.  

2.4 Implications and Limitations 

With the emerging problems brought by growing peak demand in the summer, 

dynamic pricing serves as a good solution to improve the system reliability by 

reducing peak demand and to improve regional air quality by reducing emissions from 

power plants. In this study, impacts of dynamic pricing programs are evaluated 

through a multifaceted approach.  

Four scenarios of dynamic pricing programs are discussed to better understand the 

difference in dynamic retail electricity rate designs. Through analyzing the demand 

reduction for the system, it is shown that dynamic pricing programs can greatly reduce 
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hourly peak demand on hot summer days, up to 23% for critical peak hours. Thus DP 

programs enhance the system stability and reliability. 

Three approaches are proposed in this study to evaluate the impact of dynamic pricing 

on emissions. Firstly, an MATPOWER based approach is performed. The emissions 

are evaluated based on the network-constrained economic dispatch in the Northeast 

region as a whole, including New York. It yields around 7 tons NOx reduction in New 

York State, and some reductions outside of New York. The result shows DP programs 

are effective in inducing NOx reductions, but are still far from the New York goal of 

50.8 ton NOx reduction per day. In the peaking units method, the NOx reduction 

reaches about 50 to 60 ton per day, which reaches the goal. This is a large amount of 

NOx reduction just by implementing DP programs. Furthermore, in the extreme case 

of capacity factor method, the NOx reduction can reach 80 tons, exceeding the goal by 

around 60%, and serves as the upper bound of possible emissions reduction that can be 

reached.  The proposed methods demonstrate that while dynamic pricing programs can 

achieve solid NOx reduction, there is still large potential to further reduce the NOx 

emissions by implementing DP programs, especially when paired with upgrading or 

addition of the transmission infrastructure. 

The emissions estimation has some limitations: Firstly, MATPOWER includes a 

reduced network of NPCC. Some generators are aggregated, and some are not 

included. So the estimation from NCED method might be lower than the actual 

condition. Also, EPA includes generators that have 200 MW or more generation 

capacity. Smaller units are omitted from the inventory. Incomplete inventory will 

affect the accuracy of average emission factor and the emissions changes. There might 
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be other smaller, dirtier or cleaner units whose emissions are not captured by our 

methods. Lastly, for the capacity factor approach, information on generator costs is not 

available to the public. For example, cleaner units such as combined cycle gas units 

can also be on the margin in peak hours. Thus this method yields an upper bound of 

the potential emissions reduction. All in all, this study estimates the emissions benefits 

that can be brought by dynamic pricing by bounding the uncertainties, and has 

demonstrated that dynamic pricing has the potential to produce substantial NOx 

reduction in New York State.  
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CHAPTER 3 

 

EMISSIONS MODELING 

3.1 Introduction and Methodology 

As electricity use is still growing with the economic development, emissions from 

electricity production will still be a problem in the future. Some analyzed the linkage 

between consumer lifestyle, energy use and CO2 emissions from consumers’ 

perspective, pointing out the importance of studying consumer choices for policy 

makers [30-32]. Dynamic pricing, as one of the major ways to engage customers in the 

electricity market, will thus impact the emissions and air quality due to energy 

consumption. Without emissions modeling, it is hard to visualize the overall air 

quality impacts. The methodology of this study is shown in Figure 9. 

 

Figure 9. Methodology of Emissions Modeling 
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Sparse Matrix Operator Kernel Emissions (SMOKE) [33] modeling system is used for 

processing emission inventory data to prepare formatted emission input files for the 

Air Quality Models, including Community Multi-scale Air Quality Model (CMAQ). 

CMAQ is a three-dimensional gridded atmospheric chemistry and transport modeling 

system, using coupled mathematical representations of actual chemical and physical 

processes to simulate air quality [34]. The results of emissions analysis under the 

dynamic pricing schemes could be used in evaluation of air quality, and decision-

making about emissions controls and generation dispatch for both urban and regional 

applications. The impacts of dynamic pricing schemes on air quality could be 

evaluated using CMAQ in further studies.  

3.2 Emissions Processing 

There are 4 emissions categories in SMOKE: area sources, mobile sources, point 

sources and biogenic sources. While biogenic sources are currently integrated with the 

air quality model in CMAQ, emissions from other sources are processed and 

integrated in SMOKE.   

3.2.1 Area Source Emissions Processing 

Area sources include two categories: nonpoint/stationary area sources and non-road 

mobile sources. Nonpoint/stationary area sources refer to emissions that spread over a 

spatial extent and are not movable, not possible to collect at each point of emissions. 

Examples of nonpoint/stationary area source emissions include residential heating, use 

of paints and varnishes.  Non-road mobiles sources are considered to be vehicular or 

other movable sources that do not travel on roadways, such as lawn mowers and 
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constructions vehicles. There are several sub-categories in the area source emissions 

inventory, thus all of them need to be combined into one area source output file.   

(1) afdust: It refers to area-source fugitive dust. This sector contains PM10 and 

PM2.5 emission estimates for nonpoint SCCs identified as dust sources, 

such as paved/ un paved roads, construction, agriculture production and 

mining.  

(2) ag: It refers to agricultural NH3 sector, including livestock and fertilizers  

(3) c1c2rail: It refers to locomotive and Class 1 and 2 CMV (commercial 

marine vessel) emissions, except for railway maintenance locomotives. 

(4) nonpt: It refers to the main set of stationary nonpoint source emissions 

from the NEI(National Emissions Inventory ). 

(5) nonroad: It refers to monthly exhaust, evaporative and refueling emissions 

from nonroad engines. 

(6) othar: It refers to other area emissions than those in the U. S. state-county 

geographic FIPS, e.g., that in Canada and Mexico. 

(7) othon: It refers to other onroad mobile sources from Canada and Mexico. 

Gridded area emission file of the above subcategories are merged into area source 

emissions using Mrggrid program in SMOKE. A file list containing these logical file 

names is also created as an input into Mrggrid.   
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3.2.2 Mobile Source Emissions Processing 

Mobile source emissions refer to emissions from motorized vehicles that travel on 

roadways, such as light-duty gasoline vehicles, heavy duty diesel vehicles. They are 3 

types of mobile emissions in the gridded emissions inventory: 

(1) on_noadj: It refers to monthly on-road emissions that are not subject to 

temperature adjustments. 

(2) on_moves_runpm: It refers to on-road running mode emissions that contain 

different temperature adjustment curves from cold start exhaust. 

(3) on_moves_startpm: It refers to on-road cold start mode emissions that 

contain different temperature adjustment curves from running exhaust. 

In addition to on-road emissions, which mainly refer to running exhaust, crankcase 

running exhaust, brake/tire wear, or on-road evaporatives, there is also off-network 

emissions in the mobile emissions category, such as parked engine-off, engine starts, 

and idling. Motor Vehicle Emission Simulator (MOVES) [35] is thereby used to 

process mobile emissions. Specifically, the SMOKE-MOVES integration tool 

combines MOVES with SMOKE, to provide meteorological data and MOVES-based 

emissions rate. Eventually the output of MOVES is integrated with SMOKE for 

modeling on-roadway emission processes and off-network emissions processes, to 

create hourly gridded speciated model-ready emissions input for CMAQ. 
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3.2.3 Point Source Emissions Processing 

Point source emissions are those that can be identified by a specific geographic 

coordinates, such as an individual facility. It is further subdivided into 3 sources as 

following: 

(1) pt: It refers to emissions from electric generating utilities(EGUs). 

(2) ptnonipm: It refers to emissions from remaining non-EGUs. 

(3) othpt: It refers to all non-US point emissions, such as that from Canada, 

Mexico and all other offshore emissions. 

Dynamic pricing programs will affect electric generation in the power plants, thus the 

first type of emissions “pt” is the main focus of this study.  

3.2.4 Point Source Emissions Modeling and Simulation  

Point source emissions processing converts hourly emissions to hourly, gridded 

model-ready emissions of the chemical species used by air quality models. In this 

study a CMAQ-based approach is performed. The processing steps are shown in 

Figure 10: 
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Figure 10. Point Source Emissions Processing Steps for CMAQ-based Approach 

Emissions modeling requires spatial, temporal parameters and emissions inventory as 

input information. The model grid used in this study is named 12US1. It has 459 

columns and 299 rows, and each grid cell’s size is 12 by 12 kilometers. The 

specification is shown in Table 4: 

Table 4. Spatial Domain 12US1 

Projection Lambert Conformal Conic 

Standard Parallels 33⁰, 45⁰(N) 

Ion/ Lat Projection Center -97⁰(W), 40⁰(N) 

Domain Origin(From Projection Center, in km) -2556(W), -1728(S) 

Horizontal Grid Spacing 12 km 

Horizontal Grid Count(x,y) 459, 299 

 

The vertical resolution is 15 layers. The episode for this emissions modeling is one full 

day in the summer of 2008. The duration is 25 hours. Point sources emissions are 
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printed by vertical layer and by hour. A typical summer day, July 8
th

, 2008 is modeled 

to demonstrate the emission changes under different dynamic pricing schemes.  

The Continuous Emissions Monitoring (CEM) hourly-specific data from 

U.S. Environmental Protection Agency inventory (EPA) website is used for EGU 

point source emissions inventory [41]. Evaluation is focused on NOx and SO2 

emissions. NOx is the major catalyst for the formation of ozone, and SO2 is the 

precursor to acid rain and atmospheric particulates that are very hazardous to human 

health. To investigate the relationship between emissions from each power plant and 

the implementation of dynamic pricing programs, an optimal power flow simulation 

tool is needed to convert the zonal energy usage to unit-level power production from 

the generators.  

To link the simulated emissions change in the simplified NPCC network with potential 

emissions change based on historical data, an emission multiplier   is assumed to 

represent the ratio of original emissions to DP case emissions.    

Firstly, we run the original-load case in the NPCC network using MATPOWER, and 

get the original emissions rate. Then we run the DP cases in the same network setup, 

but with the load after implementing dynamic pricing programs, and thus get the DP 

case emissions rate. From these simulations, we can assume that generators in the 

NPCC network will respond in  such ways like reducing/ increasing power output 

when  load reduction/ increase occurs, and that the emissions from the generators will 

decrease/ increase as a result. Emission multiplier   is the ratio of the DP case 

emissions rate versus original emissions rate. It is thus used to represent the emissions 
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change pattern of the generators in the network. This is illustrated in the first part of 

equation 9. Then   is applied to the historical emissions in the CEM inventory to 

simulate how the power re-dispatch would have changed the historical emissions. The 

product of the ratio   and the historical CEM emissions rate equals the expecting 

CEM emissions rate, if dyanamic pricing programs were implemented at that time. 

Equation 9 illustrates how the assumption is built and applied to the emissions 

inventory. 

  
                      

                       
 

                            

                             
                                              (5)                

The key of Equation 5,    is calculated using the NO2 and SO2 emissions rate from 

MATPOWER output. During peak hours when there is emissions reduction from the 

generators,   is smaller than 1; during off-peak hours when there is emissions increase, 

  is bigger than 1. After applying emission multiplier    to emissions from the same 

generator in the CEM emissions inventory, we can get the expecting emission rates 

based on historical emissions with the implementation of the dynamic pricing 

programs.  

From MATPOWER output emissions to emissions inventory for SMOKE input, there 

is a generator matching process from the generators in the NPCC network to those in 

the Eastern Interconnection network, and to those in CEM data. The generator names, 

ORIS and boiler codes are used to identify each generator, and to match with the 

generators in different networks. And this process will have impacts on the 

effectiveness of emissions change in the CEM inventory. 
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There are 3 main factors that affect the effectiveness of emission changes. First and 

foremost is to match the generators. Generators in the NPCC network, which is used 

in MATPOWER, should be matched to generators in EPA, which is used in CEM 

inventory. This matching contains two parts. On One hand, the generators from 

MATPOWER are identifiable by their names. However, generators in the CEM 

inventory is identified by their ORIS ID and boiler ID.  In order to match the 

generators in these two emissions inventory, the Eastern Interconnect inventory is 

introduced here. So generator names in the NPCC network needs to be matched with 

generator names in the Eastern Interconnect inventory. On the other hand, ORIS ID 

and boiler ID of the generators found in the Eastern Interconnect inventory are used to 

match with that in the CEM inventory. About 45% of the generators in the NPCC 

network can be matched during this step.  

Then after the generators are matched, EPA inventory should have valid data on this 

specific generator. Invalid data in the EPA inventory is another possible cause of not 

reflecting the emission changes in the new emissions inventory. Any “missing” data 

are provided with a “-9” value to indicate the information was not available. And 

records that represent hours during which units were not operating are not included in 

the inventories to make them smaller. The above two factors resulted in a 25% 

effectiveness of emissions change in the EPA emissions inventory. 

However, there is another factor that we need to take into account of. For some 

generators that actually have emission changes, if the original emissions output are 

negligible, then the emissions ratio   would not accurately reflect the emission 
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changes. For example, when abnormally large emissions ratio occurs, e.g. when the 

ratio is larger than 10, it usually occurs to those generators that has very minimal 

emissions output. Under this circumstance, even though the emissions ration is very 

large, the absolute emissions change on this particular generator is still negligible. 

Upon examining these low-emission generators, a filter is set for the data processing 

to eliminate abnormal emissions ratios. If taken this factor into consideration, the 

expecting effective number of hours that has emission changes is further reduced. 

Lastly, not all generators in the NPCC network are affected when the electricity 

demand in a region changes. The emission ratio of original emissions to DP emissions 

will be almost 1 if the Optimal Power Flow (OPF) solver does not re-dispatch the 

power production on this particular generator.  

In addition, it is found during the generator matching process between these emissions 

inventories that there are generator units in the NPCC network with exact same names, 

not even numbered differently. In fact, they should be different boilers at the same 

facility. Thus in the matching process, when generating units with same names occur, 

they are successively assigned to different units under the same name in the Eastern 

Interconnect inventory, to match to different units in CEM inventory. It means they 

keep the same ORIS ID, but were assigned with different boiler ID. This effectively 

avoided repeated emission changes on one unit during the matching process. 
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3.3 Results and Discussion  

After the emissions inventories are processed by SMOKE, the result is viewed and 

analyzed using Visualization Environment for Rich Data Interpretation (VERDI) [36]. 

VERDI is a java based program for visualizing multivariate gridded environmental 

modeling datasets. The purpose of using VERDI is to demonstrate the aggregated 

dynamic pricing emissions reduction horizontally by its location and vertically by 

layer. VERDI provides a GUI that makes it easy to import the datasets, creating 

formulas, and generating plots that meet our needs. Figure 11 and 12 includes the time 

series plots for NOx and SO2 reduction in layer 6 on a typical summer day, July 8th, 

2008. The time series plots show the average emissions change across the modeling 

domain over the course of a day.  

 

Figure 11. Average NOx Emssions Reduction on a Typical Summer Day 
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Figure 12. Average SO2 Emssions Reduction on a Typical Summer Day 

Layer 6 is selected from the 15 modeling layers to be presented here as it is a layer 

where the most emissions change occurs. One thing to be noted is that it is set to use 

Coordinated Universal Time (UTC), for consistency purpose with the format of 

meteorology data and future air quality analysis in CMAQ. Since NPCC region are in 

the Eastern Time zone, what to be investigated is 5 hours behind what is shown in the 

figure. That is also why no emission changes are observed before 5 am.  

The plots are made for the formula in the headings, which represent the NOx/ SO2 

emissions difference in the unit of gram/s between the original case and the DP cases. 

The NOx emissions reduction includes emissions change in the form of NO as well as 

NO2. The graph in the left represents DP base case, the graph in the middle represents 

DP fewer-hours case and the graph on the right represents DP more-hours case.  

Not surprisingly, the graphs of NOx and SO2 emissions reduction in Figure 11 and 12 

are similar in shape. It is shown in these plots that the emissions reduction in layer 6 is 

negative in the morning, which means there is emissions increase during early 
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morning, which are off-peak hours. It is caused by the load-shifting effects of the DP 

schemes. Customers reduce their energy consumption during critical hours when 

electricity prices are high, and then increase energy consumption during non-critical 

hours when the prices are low. Meanwhile, in each case there is considerable 

emissions reduction in the afternoon, which is always peak time of the day. Layer 6 is 

a selected layer with major emissions change out of the 15 layers, and it is a good 

indication of the overall emissions change across the entire domain. The emissions 

reduction pattern coincides with the load change shapes in Section 2.3.1. In addition, 

by close examination at the y-axis limits in Figure 11, it is clear that DP fewer-hours 

case has the maximum single hour emissions reduction among those 3 cases. And it 

occurs in 21 o’clock, meaning 16 o’clock in the afternoon in Eastern Standard Time. 

What’s more, tile plots of the modeled emissions are included here to display grid cell 

aggregated data through time steps and vertical layers. The y axis limits are set to be 

the same between different DP cases for comparison convenience, in which case, the 

color on the map can demonstrate the value of the emissions reduction, as the value 

can also be easily compared from one case to another.     
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Figure 13. Total Daily NOx Emissions Reduction in DP Cases 

 

Figure 14. Total Daily SO2 Emissions Reduction in DP Cases 

Figure 13 and 14 illustrate the total emissions change over the course of the day 

between the original case and the DP cases. Seeing from Figure 13, there’s NOx 

reduction in Maryland, ranging from around 110 grams/s in DP fewer-hours case to 

around 15grams/s in DP base case. Figure 14 shows SO2 reduction in Layer 5. Layer 5 

is also a layer where considerable emissions change occurs. It is seen that there is 

notable SO2 emissions reduction in the Indiana county of Pennsylvania as well as in 
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the Maryland area. The y axis limits are carefully adjusted so that the graphs also 

reveal there is a little SO2 emissions increase in the NYC area.  

However, the tile plots of total emissions reduction is partly biased because by default 

VERDI displays the time in UTC. So the total emissions reduction calculated here 

does not take into account the last 5 hours of the day.  To better conclude on the 

emissions change, a closer look is taken at the emissions change from the power 

systems model. The tracing back of emissions reduction from the generator units 

shows that there is considerable emissions reduction in 20 p.m. in Queens County and 

also on 23 p.m. in Richmond County, New York. Since the emissions reduction occurs 

after the time step 25 in UTC, it is not captured by the tile plots discussed here, 

although it actually happens on the same day in Eastern Standard Time. The other 

states in the NPCC network are less affected, due to the fact that we are modeling DP 

programs in NYC, and that the MATPOWER NPCC model captures more generators 

in New York State. 

                     Figure 15.  Maximum NOx Emissions Reduction in Layer 5 in DP Cases 
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Figure 16.  Maximum SO2 Emissions Reduction in Layer 5 in DP Cases 

Figure 15-18 show the maximum emissions reduction between the original case and 

the DP cases over the course of the day in layer 5 and layer 6, respectively. Aside from 

further demonstrating that DP fewer hours case has larger maximum emissions 

reduction than DP base case and DP more hours case, it also provides a good example 

for comparing NOx and SO2 emissions reduction in different layers. It is evident from 

the y axis limit that there is more emissions reduction in layer 6 than in layer 5 for 

both SO2 and NOx. Also, there is more SO2 reduction than NOx reduction, especially 

in layer 6.  
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 Figure 17. Tile Plots of Maximum NOx Emissions Reduction in Layer 6 in DP Cases 

Figure 18. Tile Plots of Maximum SO2 Emissions Reduction in Layer 6 in DP Cases 

Given that NOx and SO2 are very harmful to human beings, emissions control is very 

important for urban and metropolitan area like the NYC and Washington, D. C., as 

well as the adjacent New Jersey state with high population density. Since future 

environmental regulations will ultimately affect generation resources in New York 

State, the result of this study will be useful in policy making and regional resource 

planning for the government. Further study in assessing dynamic pricing is to simulate 
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the air quality impacts in CMAQ model. As the various emissions interact with each 

other, pollutant such as ozone, fine particulate matter and volatile organic compounds 

will occur, thus imposing adverse influence in human’s everyday life and lifespan. 

Moreover, when combined with various meteorology conditions, emissions from one 

place will not only influence the local air quality, but also travel and influence air 

quality of places far away. Consequently, combining power system model with 

emissions and air quality model is very important in evaluating the expecting 

environmental impacts of power generation, which in turn will affect the power 

dispatch and transmission infrastructure in the future, if environmental cost is taken 

into consideration.    
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APPENDIX A 

 

PRICE MODELING 

 

Energy charge tracks Locational-Based Marginal Prices (LBMPs) set in the New York 

Independent System Operator (NYISO) day-ahead wholesale electricity market. Flat 

energy charges vary monthly, depending on the weighted average hourly prices during 

each month. Therefore, the hourly load shape is needed for the representative classes. 

We use load profiles from utility companies to represent customers in different regions, 

Consolidated Edison (ConEd) for customers in New York City and Long Island, and 

Niagara Mohawk (NiMo) customers in the rest of state (ROS). There are 11 zones in 

the New York state, Zone A to Zone K. New York City is in Zone J, while Long 

Island is in Zone K. In NYISO’s wholesale electricity market, hourly load and price 

data is posted by zones [37]. In general, SC-1 class of customer is used for the 

residential class and SC-2 customer class is used for commercial and industrial classes. 

For ConEd, the day type (such as Monday, Sunday, Holidays) and the temperature on 

that day are used to match the day with certain hourly load shapes [38]. For NiMo, we 

still use SC-1 standard service type to represent residential class, and use the weighted 

average load of SC-2 demand and SC-2 non-demand to represent commercial and 

industrial (C&I) class [39]. It is weighted by the energy consumed by the demand and 

non-demand class respectively, which can be found in the annual FERC Form 1 filed 

by Niagara Mohawk [40]. The energy charge for flat rate is calculated as following: 
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                      (A1)                                                                                                                                                                                                                                                                              

Dynamic energy charges vary on an hourly basis. Hourly LBMPs are used as the 

energy cost component in the dynamic electric rate. This way, the spot price in the 

wholesale market is passed through to the retail rates. 

Capacity is a proven ability of a resource to generate power. Capacity charge is 

calculated based on the annual price of Unforced Capacity (UCAP), adjusted by 

Installed Reserve Margin (IRM), Equivalent Forced Outage Rate on demand (ERORd), 

Load Factor (LF) and locality. UCAP is transacted in NYISO-administered ICAP 

auctions. The price of UCAP is determined by automated auctions. There are 3 types 

of auctions including strip auction, monthly auction and spot auction, conducted 

separately for 3 capacity control areas: NYC, Long Island and NYCA. 

LF is the rate class’s average load divided by peak load in the load profile we get from 

the representative utility companies. Local reliability rules require LSEs in Zone J 

(New York City) and Zone K (Long Island) to procure minimum level of capacity 

from facilities that are located in their zones. 

              
         

          
                                                                       (A2)           

                              
                              

             
                              (A3)                                                

                                                                                                  (A4) 
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PROS, PJ, and PK denote the price of UCAP in the region. UCAP shows a proven output 

of generating units, adjusted by availability and deliverability.  

Availability is affected by derating factors, such as forced outages, derate, and actual 

performance, represented by EFORd here. Forced outage and derate affect availability 

in different ways. For example, if EFORd is 0.05 due to forced outage, then the 

generating units is available 95% of the time, with full power output. If EFORd is 0.05 

due to derate, then this generating unit is available all the time, but with 95% power 

output.   

The IRM for the New York Control Area (NYCA) is established by New York State 

Reliability Council (NYSRC), such that the probability of disconnecting any firm load 

due to resource deficiencies shall be not more than once in ten year. The NYISO 

establishes Load Serving Entities (LSE) installed capacity requirements, including 

Locational Capacity Requirements (LCR), in order to meet the statewide IRM 

Requirements.  

The NYISO uses UCAP to match buyers and sellers, i.e., the LSE obligation to buy, 

and the amount each generator can sell into the capacity market. UCAP is transacted 

in NYISO-administered ICAP auctions. The price of UCAP is determined by 

automated auctions. There are 3 types of auctions including strip auction, monthly 

auction and spot auction, conducted separately for 3 capacity control areas: NYC, 

Long Island and NYCA. Strip auction is also called capability period auction, and it is 

run at least 30 days prior to the start of the capability period. There are two capability 

periods: winter capability period is from November to April, and summer capability 

http://www.nysrc.org/
http://www.nysrc.org/
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period is from May to October. Strip auction solves for a 6-month strip of UCAP at a 

single price per month. The monthly auction is run at least 15 days prior to the start of 

the month, and capacity may be bought or sold for any month remaining in the 

capability period. The clearing price is the weighted average price of any MW that is 

sold in this auction. For example, in the monthly auction for May, the capacity for 

May, June, up to October can be transacted. On the other hand, in the monthly auction 

for October, only capacity for October will be transacted. The spot auction is run 2 to 

4 days prior to the start of the month, and capacity is only sold for the upcoming 

month. It must certify all capacity before auction.  

For the capacity charges in flat rate, the capacity cost is allocated evenly to each hour 

of the year; while in the dynamic rate, it is allocated only to the peak hours. During 

peak hours, which is defined as approximately top one percent of demand hours in 

base case, dynamic electricity prices greatly increase due to additional allocation of 

capacity costs. On the other hand, during the other hours of the year, it presents a 

lower price than flat rate. This would send stronger price signal to the customer and 

thus encourage greater response when needed the most [41]. In addition to the base 

case, we have two more cases to consider: base case with technology and more-hours 

case with technology. In these cases, we assume elasticity is high with enabling 

technologies. In the latter case, we design the case with more critical hours, and also 

with high elasticity due to enabling technologies. The purpose is to flatten the load 

shape, instead of creating two sub-peaks while cutting the critical peak. Considering 

this reason, the fewer-critical-hours case is not favorable. If we cut the critical hours 

by half, the load shape will change in an undesirable way, i.e., the hours on the two 
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sides are likely to become the new peaks that will be setting the capacity requirement. 

Thus the load response is wasted on hours that no longer set the capacity requirement.  

Other charges represent non-generation charges such as transmission, distribution and 

other tariff elements. It stays the same for flat and dynamic rates. Other charges vary 

by class and by utility companies. Typical customer bills for residential, commercial 

and industrial customers are available from New York State Public Service 

Commission website [42]. Since monthly service charge does not affect consumption 

decisions under flat rates or dynamic rates, it is deducted from the total delivery 

charges on the bill. Then we calculate the mean of other charges by different customer 

size in each customer class. As commercial and industrial customers are considered as 

a whole in this study, we need to integrate the other charge for these two classes. 

Energy sales data for the two utility companies is available from the US Energy 

Information Administration (EIA) website [43]. Then we take a weighted average of 

the commercial and industrial charges to get the other charges for the representative 

SC-2 class.      
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APPENDIX B  

 

COST EVALUATION 

Customer costs are calculated assuming that all customers are given market electric 

prices without long-term contracts. Since other charges stay the same from original 

case to dynamic pricing cases, energy cost and capacity cost caused major changes in 

customer costs. The costs per time period are calculated as the following.  

                                                                               (B1)                 

                                                                            (B2)                     

                                                                       (B3)                  

                                                                                   (B4)                                 

From calculations based on the Equations B1 to B4, dynamic pricing will incur 

savings on energy costs, but higher capacity costs for the summertime, for annual 

capacity costs for the original case will be collected solely during critical 

peak/summer hours for the DP cases.  For the base DP case, the benefit from energy 

cost savings is 230 million ($2008), which is 3.58% of the original energy cost. On the 

contrary, there is a 1.2 billion ($2008) increase in capacity costs. Overall, there will be 

a customer cost increase by 7.45% during the summertime.  

The cost increase is resulted from the high capacity price during the critical hours. In 

the dynamic pricing case, capacity charge is only applied to the critical hours, whose 
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load tops the whole summer. What’s more, the capacity charges in critical hours in 

dynamic pricing cases are about 100 times that of the original case, because the total 

capacity charge is only distributed to the critical hours (60~90 hours) as opposed to all 

hours (8784 hours) in the year. Thus the capacity cost savings in the rest of the days of 

the summer is not enough to cover the capacity cost losses in the critical hours in the 

summer. This is the reason why there is cost increase for the customers in dynamic 

pricing cases from June to September. From the consumer perspective, there may be 

significant inertia to them enrolling in utility pricing programs when total electricity 

bills will be higher than what they have been paying particularly for the costliest 

summer months.   

However, if dynamic pricing programs remain active for the whole year, customers 

will likely save on electricity bills, because they will benefit from zero capacity cost 

for the non-summer months.  In effect, customers will only pay energy costs, which 

are shown to decrease in DP scenarios. Furthermore, evidence of monthly bills with 

PG&E and Alabama Power rate schedules also shows that with DP programs, 

customer bills increase during summer and decrease in other months of the year [44]. 

Meanwhile, the utilities will have major capacity costs savings from DP programs 

during summer, which will eventually pass on to the retail customers. Table 5 lists the 

cost changes from the flat rate to dynamic rate in the four cases studied. 
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Table 5. Comparison of Customer Costs 

 

Base 

Case 

Fewer-

Hours 

More-

Hours 

Base-

Tech 

Flat Energy Cost ($MM, 2008)  6420 6420 6420 6420 

Dynamic Energy Cost ($MM, 

2008) 
6190 6200 6180 6440 

Energy Cost Diff ($MM, 2008) 230 220 240 -20 

Flat Capacity Cost ($MM, 2008) 441 441 441 441 

Dynamic Capacity Cost ($MM, 

2008) 
1660 1710 1690 1590 

Capacity Cost Diff ($MM, 2008) -1220 -1270 -1260 -1140 

Customer Saving ($MM, 2008) -788 -837 -816 -1100 

Cost Increase (%) 7.5 7.9 7.7 10.5 

 

Under dynamic pricing scheme, all of the cases will incur energy cost savings for the 

customers. In terms of energy costs, the impacts of the four cases are very similar. 

There is more energy cost savings in the more-hours case and the base case with 

technology. According to the load shapes in Figure 4 and Figure 5, these two cases 

either have long peak hours or have dramatic demand reduction in the peak hours. For 

the more-hours case, customers reduce use of electricity for a longer period of time 

than the base case. Thus the risk of being exposed to the high LBMP passed through 

form the wholesale market on hot summer days is reduced more. On the other hand, in 

the base case with technology, due to the higher elasticity of the customers when they 

are more informed and equipped with controlling technology, the resulted demand 

reduction in the critical peak hours is higher. Thus there is more energy cost savings in 

the critical hours. Interestingly, the base case with technology will cause an increase in 

energy cost for the customers, although it is known to be the most effective load 

reduction case among those four cases in the critical hours. It simply is caused by 
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price elasticity during non-critical hours. From Figure 2, when the price ratio of 

dynamic rate versus flat rate is smaller than 1, the load drop goes below zero. And for 

the elasticity curve with enabling technology, the slope goes deep much faster than the 

price-only elasticity curve as the price ratio approaches zero.  

It is also seen that the base case and base case with technology will incur less capacity 

costs for the customers in the summer. The number of critical hours is in the middle 

range among those cases. It shows that capacity costs do not necessarily increase with 

the increase of critical hour capacity price. Meanwhile, since the utilities benefit the 

most from the decreasing of capacity needs in the wholesale market, they should 

eventually pass on the economic benefits to the customers. Due to data availability, 

this part of analysis is beyond the scope of this study. 
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