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ABSTRACT 

 
The P2X7 receptor is an ATP gated ion channel that plays significant roles 

in the immune response and neurodegeneration. In a heterologous system, P2X7 

channels open only when triggered by a high concentration of ATP (EC50 ≈  100 to 

1000 µM), suggesting that P2X7 receptors may function under pathological 

conditions. However, it remains unclear whether P2X7 functions under 

physiological conditions, in which extracellular concentrations of ATP are 

generally much lower. Here, I show that interaction with DHHC11, a 

palmitoyltransferase, modifies P2X7 gating in a manner independent from its 

palmitoyltransferase activity. This interaction sensitizes the P2X7 receptor to 

lower concentrations of ATP and slows its activation and deactivation, but does 

not affect the so-called "dilated state" where the P2X7 channel becomes 

permeable to large cations. Modified P2X7 currents were still seen with deletion 

of the P2X7 N- and C- termini, as well as with the deletions of the DHHC11 

termini. I developed a computational Markov state model and successfully 

replicated the observed modifications of the P2X7 receptor by DHHC11. This 

represents a potential interaction between P2X7 and DHHC11, which implies yet 

undiscovered roles of P2X7 receptor under physiological conditions. 
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Introduction 

ATP as a Signaling Molecule 

While ATP is well known for its role as a source of energy for biological systems, 

it also plays an important role as an extracellular signaling molecule. The ubiquitous 

nature of ATP initially provided a difficult experimental hurdle in identifying the 

mechanism and physiological significance of many of these roles.  Due to the relatively 

recent appreciation for its relevance (it was first proposed to be a signaling molecule by 

Burnstock, 1976; nearly 50 years after the discovery of ATP in 1929 (Khakh and 

Burnstock 2009)), purinergic signaling and its players represent a complex and under-

understood system with physiological significance and therapeutic potential (Burnstock 

2006). 

ATP has since been found to be released in a variety of physiological situations, 

from apoptosis and immune activation to neuro- and gliotransmission. In the context of 

apoptosis/inflammation this is thought to be a “find-me” signal, alerting and directing 

immune cells to the location of damage (Elliott et al 2009). In the context of the central 

nervous system, signaling via ATP has been implicated as having a neuromodulatory 

role regulating functions such as long term potentiation (LTP) and neurotransmitter 

release (Khakh and North 2012). Extracellular ATP is thought to be released via a 

number of regulated pathways, most notably through large transmembrane pores such 

as the Pannexxin 1 channel (Chekeni et al 2010) and vesicular release from neurons 

and astrocytes (Pankratov et al 2007, Zhang et al 2007).  
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Once in the extracellular space, ATP is able to activate ionotropic P2X receptors 

or metabotropic P2Y receptors, and is also broken down by ectonucleotidases to ADP 

and then adenosine, each of which has its own cadre of membrane protein receptors 

(Burnstock 2007). Because ATP is able to break down and activate such a wide range 

of receptors, it has been challenging for the field to determine which ATP 

derivative/receptor combination is responsible for an elicited response in any given 

physiological situation. Because of these difficulties in vivo, our approach has been to 

isolate and investigate the structure/function of specific proteins using in vitro 

overexpression systems. 

 

The P2X Receptor Ion Channel Family 

Following the cloning of the seven P2X receptor subunits (P2X1-7) (Valera et al 

1994, Brake et al 1994), it was found that these proteins represent a molecularly unique 

family of cation-permeable ion channels and that their expression is widespread in 

vertebrates. The variety of functional roles ascribed to these ionotropic receptors in 

different tissues is astounding (Surprenant and North 2009). In the central nervous 

system, P2X receptors are seen in both neuronal and glial cell types (Collo et al 1997, 

Burnstock and Knight 2004, Rubio and Soto 2001); P2X4 and P2X6 subunits are found 

at postsynaptic sites in hippocampal CA1 pyramidal cells and their activation is thought 

to be involved in LTP by regulating the incorporation of NMDA receptors into synapses 

(Baxter et al 2011). In the cardiovascular system, P2X4 and P2X7 are expressed in 

vascular endothelial cells and P2X4 is thought to be involved in the regulation of nitric 
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oxide (NO) production and release (Yamamoto 2006).  Most immune cells express 

P2X1, P2X4, and P2X7, where their activation results in calcium influx (Burnstock and 

Knight 2004) and has been shown to lead to caspase-1 activation and IL-1β (Ferrari et 

al 2006).  While this is not meant to be a comprehensive review, it does provide an 

illustrative subset of the variety of systems for which P2X receptors play a number of 

roles. 

Elucidation of the molecular structure of crystalized zebrafish P2X4 (Kawate et al 

2009) revealed a trimer of subunits resembling “a dolphin rising from the ocean 

surface”, with a large external domain that extends nearly 70 Å above the cell 

membrane. Halfway up this domain resides three ATP binding sites, each located at the 

interface between two subunits. Closer to the membrane, ions permeate into a central 

“vestibule”, which plays a role in controlling ion selectivity and from which they can 

access the pore (Samways et al 2012). All P2X receptors are more permeable to Ca2+ 

than to Na+ ions, with PCa/PNa ranging from 1.2 for P2X3 to 4.8 for P2X1 (Khakh and 

North 2012). Each of the receptors display distinct functional properties and kinetic 

profiles - many of the family (P2X1 and P2X3) desensitize rapidly after treatment with 

ATP, and P2X2, 4, and 7 appear to undergo a phenomena termed “pore dilation”, 

characterized by an increase in permeability to organic cations and dyes with extended 

ATP treatment (> several seconds). 
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P2X7 Receptors 

Among the P2X family, the P2X7 receptor stands as an “odd man out”. 

Structurally, it has a large (~200 amino acid) intracellular C-Terminal Domain (CTD) not 

seen in the other P2X family members (Surprenant 1996). This CTD houses potential 

sites for P2X7 to interact with a variety of large and small-molecule intracellular binding 

partners and has been implicated in regulating a number of receptor functions including 

downstream pathway activation and cellular localization (Costa-Junior et al 2011). 

Associated with the CTD is the channel’s unique biphasic current profile (Fig. 1a), and 

the ability of the channel to “sensitize”, such that ATP-induced currents of naïve (not 

previously exposed to ATP) receptors look drastically different than those of “sensitized” 
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receptors (Fig. 1b,d). As the channel sensitizes, it becomes permeable to large cations 

such as NMDG. Experimentally this is evidenced by an increase in reversal potential 

when P2X7-expressing cells are treated with ATP in NMDG-containing external solution 

(Fig. 1c). Sensitized channels also show different current kinetics and ATP sensitivity 

than their naïve counterparts (Fig 1d). The changes associated with dilation are 

reversible only on the scale of hours. Additionally, P2X7 shows significantly lower 

affinity for ATP than the other P2X family members – with an EC50 in the mM range, 

which is way above a typical concentration of extracellular ATP under physiological 

circumstances.  

The low affinity for ATP presents a major open question in the P2X7 field: how 

does a channel that is unresponsive to physiologically relevant concentrations of ATP in 

vitro play a role in vivo? While this sensitivity to high concentrations of ATP makes 

sense given the role of P2X7 in response to pathologically high concentrations of ATP, 

as seen in macrophage (Hanley et al 2012) and astrocytes (Oliveira et al 2011). It begs 

to question if and how this same channel is functional in more tame physiological 

situations, as has been shown in astrocytes (Suadicani et al 2006) and cerebellar 

neurons (Leon et al 2008) in situ, but not yet confirmed in vivo.  

As divalent cations are allosteric inhibitors of the channel (Yan et al 2012), 

physiological situations associated with a drop in external calcium (such as high levels 

of neuronal activity) will lower the EC50, but even in divalent-free solution, the channel 

has an EC50 of ~200µM ATP (naïve) (Fig 1d). Dilation increases the sensitivity of the 

receptor as well, with dilated channels having an EC50 of ~75µM in divalent-free 
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solution. However, a way by which receptors are able to dilate in vivo, which itself 

requires repeated or extended stimulation by pathological concentrations of ATP, is yet 

unknown. One possibility is that interactions with other cellular proteins modulate P2X7 

function and sensitize the channel to lower concentrations of ATP. While these 

interacting agents may be present in vivo, they are probably not sufficiently present in 

the typical in vitro overexpression systems without being overexpressed themselves. In 

the work reported here, I explore one proposed such possible interaction partner for 

P2X7, namely palmitoylation of the protein by a palmitoyltransferase, as outlined below. 

 

S-palmitoylation by a DHHC palmitoyltransferase represents a possible 

interaction partner of P2X7 

Zinc-finger, DHHC-motif containing zDHHC proteins are a family of 

palmitoyltransferases. They catalyze protein S-palmitoylation, the reversible thioester 

linkage of a 16-carbon palmitate lipid to an intracellular cysteine residue, via the 

catalytic Asp-His-His-Cys (DHHC) region (Shipston 2011). S-palmitoylation represents a 

reversable mechanism to spatiotemporally control protein function and interactions, and 

has been shown to play a role in regulating the trafficking and localization of a number 

of membrane proteins.  The addition of palmitic acid increases the hydrophobicity of a 

protein, and is thought to result in the hydrophobic tail of the palmitoyl group 

“embedding” itself in the membrane, increasing a palmitoylated protein’s association 

with cholesterol-rich regions of the cell membrane.  
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While many ion channels have been shown to be palmitoylated, little is known about 

the effect of this modification on the gating properties of these channels. Importantly, 

P2X7 has been shown to be palmitoylated at a few conserved clusters of cysteine 

residues on the CTD (Gonnord et al 2009), however the palmitoyltransferase involved 

and the effect of this modification on P2X7 function is yet unknown. I propose that post-

translational modification or protein-protein interactions could sensitize P2X7 to lower 

concentrations of ATP and that the DHHC-family of palmitoyltransferases represent 

good candidates for mediating this modification. 

 

Results 

Expression profiles of DHHCs and P2X7 in the Brain 

 While earlier work (Gonord et al 2009) suggested that P2X7 could be palmitoylated 

in HEK cells, it is unclear which of the 23 acyltransferaces modulate P2X7. To narrow 

down the DHHC proteins to a few candidates of interest, the Allen Human Brain Atlas 

was used to find which DHHCs are most likely to be coincident with P2X7 in vivo. 

Regional mRNA microarrays revealed that DHHC9, 11, and 20 are coexpressed with 

P2X7 (correlation of 0.883, 0.558, and 0.413, respectively) (Figure 2). Interestingly, 

DHHC11 and DHHC20 show alternate expression patterns in the Hypothalamus and 

Cerebellum, where P2X7 is highly expressed. 
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DHHC11, but not DHHC9 or 20 alters P2X7 current when expressed in HEK cells 

 To assess the effect of DHHC proteins on P2X7 channel activity, I cotransfected 

P2X7 and three different DHHCs (DHHC9, 11, and 20) in HEK cells and measured ATP 

evoked currents (5 s applications of 300 mM ATP in 45 s intervals) using the whole-cell 

patch clamp configuration. This protocol allowed the measurement of kinetics of both 

the naïve current (the first current) and the dilated current (after repetitive ATP 

applications).  While P2X7 currents were not visibly altered by coexpression with DHHC 

9 and 20, they was dramatically altered with DHHC11 (Fig 3a).   

Cotransfection with DHHC11 resulted in naïve P2X7 currents showing slower 

activation (Fig 3b. 𝜏a,P2X7 = 0.33±0.1s vs. 𝜏a,P2X7+DHHC11 = 1.04±0.3s) and larger max 

current (Imax,P2X7 = 755±103pA vs. Imax,P2X7+DHHC11 = 4.34±0.19nA). As previously 



 

 9 

published (Yan et al 2010), deactivation of the naïve P2X7 current fit well to a double 

exponential (𝜏d,1 = 7.80±1.21s and 𝜏d,2 = 0.28±0.04s). However, the deactivation current 

for the cotransfected (P2X7 + DHHC11) condition fit much better to a single exponential 

(correlation coefficient: 0.96±0.01 vs. 0.78±0.06) and was much slower than the 

dominant term of the P2X7 alone condition (𝜏d,2 ) with 𝜏d = 4.29±0.38s (Fig 3b).  

Repeated sweeps showed that the current magnitude for both conditions 

gradually reached a plateau, or “dilated” state (Fig 3c).  Once “dilated”, the ATP-induced 

currents of both states were indistinguishable, showing comparable activation kinetics 

(𝜏a,P2X7 = 0.18±0.01s; 𝜏a,P2X7+DHHC11 = 0.23±0.03s), deactivation kinetics (𝜏d,1,P2X7 = 

7.35±1.3s, 𝜏d,2,P2X7 = 0.95±0.19s,𝜏d,1,P2X7+DHHC11 = 6.34±0.94s, 𝜏d,2, P2X7+DHHC11 = 

0.69±0.14s), and current magnitude (Imax,P2X7 = 3.53±0.26nA, Imax,P2X7+DHHC11 = 

4.1±0.45nA). Together, these results indicate that DHHC11 affects gating of naive, but 

not sensitized P2X7 channels. The effect of dilation was not reversible with 30 minute 

wash following extended ATP treatment. 

 

DHHC11 sensitizes the small cation-permeable P2X7 state but not the large 

cation-permeable state 

To further characterize the current profile of the DHHC11-modulated P2X7 

channel activity, co-transfected HEK cells were treated with ATP in 0.1mM Ca, 0mM Mg 

at a range of concentrations from 3µM to 100µM for an extended period of time (120 

seconds). As seen in Figure 4a, the current show two phases at ATP concentrations of 
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10µM or higher - a large initial current that desensitizes over the course of 20-50 

seconds, and a slower current. While the second phase of the induced current is 

comparable to that seen in cells transfected with P2X7 alone, the initial current is in 

stark contrast to the small P2X7 initial current.  Interestingly, the threshold at which a 

biphasic current is seen is lower than that for P2X7 alone, which shows only 

monophasic current with ATP consentrations lower than 100 µM. Following the dose 

response protocol outlined in Figure 1d, it was found that, in contrast to P2X7 alone, the 

naïve current of P2X7 cotransfected with DHHC11 was more sensitive to ATP than the 

current in the dilated state (Fig 4b). 

 Associated with the sensitized state is an increased permeability to large cations, 
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such as NMDG. To measure the change in permeability, cells were treated with ATP in 

external solution with 90% of the Na+ replaced with NMDG+ and voltage was ramped 

from -60 to +60mV, two times per second during ATP stimulation, following the protocol 

by Yan et al 2008.  As previously reported, cells expressing P2X7 are initially 

impermeable to NMDG, showing a reversal potential (Vrev) of ~-40mV.  With continued 

ATP treatment, Vrev increases to ~-30mV, as permeability to NMDG increases. This shift 

in Vrev was also observed in the DHHC11 cotransfected condition, indicating that the 

naïve condition, while showing much larger small cation currents than those seen for 

P2X7 alone, is impermeable to large cations. 

 

DHHC11 affects P2X7 in a palmitoylation-independent manner 

 I then sought to assess the role of DHHC11’s palmitoytransferase activity in 

mediating the observed effect on P2X7 receptor ion channel function. Surprisingly, 

including the reducing agent DTT in the patch pipette did not nullify the observed effect 

on ATP-induced current of P2X7/DHHC11 cotransfected cells (data not shown). This 

suggested 1) that the palmitoylated residue is not accessible to the cytosol and thus 

was not able to be removed by DTT, 2) that palmitoylation changes the channel into a 

sensitized state after which palmitoylation is not necessary, or 3) that the observed 

effect is not due to DHHC11’s palmitoyltransferase activity.  

To test whether the effect of DHHC11 is mediated by palmitoylation, I made a 

DHHC11-S mutant, with the Cys residue in the DHHC motif mutated to serine (DHHS), 

as this is known to render the catalytic site nonfunctional in DHHC family members 
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(Maurine Linder, personal communication).  Cotransfection with the DHHC11-S mutant 

still showed an altered P2X7 current, with slow deactivation and a large naive current 

(Fig 5a).  Finally, Dr. Aki Nishimura performed click chemistry showing that while 

DHHC11 is co-immunoprecipitated with P2X7, it negligibly increases P2X7 

palmitoylation above basal level (Fig 5b,c). Together these results indicate that the 

observed effect of DHHC11 on P2X7 function is not due that protein’s 

palmitoyltransferase activity but is instead the result of a yet unknown interaction. 

 

DHHC11 and P2X7 Termini are not necessary for DHHC11/P2X7 interaction 

 To narrow down the region of DHHC11 involved in the interaction with P2X7, I 

truncated the DHHC11 N- and C-Termini (DHHC11-∆CTD: Residues 1-298. DHHC11-

∆NTD: Residues 44-348). Both of these truncations effected P2X7 currents similarly to 
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DHHC11-WT, (Fig 6c) indicating that the site of interaction is in one of the 

transmembrane helices or in the intracellular loop of DHHC11. 

 Similarly, I truncated the P2X7 termini (P2X7-∆CTD: Residues 1-361. P2X7-

∆NTD: Residues 20-595). As previously reported (Becker et al 2008), deletion of the C-

Terminal domain results in a P2X7 channel that only shows monophasic currents and is 

impermeable to NMDG, i.e. a P2X7 channel that does not dilate. I found that 

cotransfection with DHHC11 significantly slowed P2X7-∆CTD current deactivation 

kinetics (Fig 6a,b), as seen for the wildtype P2X7 current. Unlike wildtipe P2X7, no 

change was seen in current magnitude with repeated ATP treatments in the presence of 

DHHC11. The P2X7-∆NTD truncation also showed monophasic currents with a kinetic 

profile indistinguishable from the CTD truncation. This construct showed similarly 
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slowed deactivation kinetics, and again no change in the magnitude of the naïve current 

(Fig 6a,b). A slightly shorter truncation of the P2X7 NTD  (P2X7-∆NTD13: Residues 13-

595) did dilate with repeated ATP treatments and when this construct was cotransfected 

with DHHC11 showed both sensitization of the naïve current as well as slower 

deactivation kinetics (Fig 6d). Together, these truncation results suggest that the termini 

of neither protein are required for their interaction. Furthermore, they suggest that while 

DHHC11 does not affect P2X7 in the dilated state, the ability of DHHC11 to potentiate 

the naïve current is related to the ability of P2X7 to dilate, as this feature of the 

modification is only seen in constructs for which dilation is seen 

 

 
Discussion 

 This work identifies expression of the palmitoyltransferase DHHC11 as a factor 

that alters the gating properties of the P2X7 ion channel. Cotransfection of P2X7 with 

DHHC11 sensitizes naïve P2X7 to lower concentrations of ATP and slows the activation 

and deactivation of the channel upon presentation and removal of ATP, respectively. 

The permeability of the channel to large organic cations such as NMDG was not altered 

by the presence of DHHC11, suggesting that this sensitization is distinct from the dilated 

state seen with extended stimulation by ATP (Yan et al 2008).  Supporting this idea, 

modifications were seen to the P2X7 current in the naïve, but not the dilated state of the 

channel. Neither the DHHC11 nor the P2X7 intracellular N- or C-Terminal domains were 

necessary to see an effect with cotransfection with DHHC11. 
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 Interestingly, the observed DHHC11-mediated effect on P2X7 function was 

shown to be independent from DHHC11’s palmitoyltransferase activity, as mutating the 

DHHC11 palmitoyltransferase catalytic site did not rescue normal P2X7 function and 

cotransfection with DHHC11 did not increase P2X7 palmitoylation above basal level. I 

did, however, discover that two other members of the DHHC family, DHHC3 and 

DHHC7, do increase palmitoylation of P2X7 above basal level. Preliminary 

electrophysiological data suggests that palmitoylation through DHHC 3 or 7 inhibits 

P2X7 channel opening (data not shown), and work to characterize this effect represents 

an interesting direction for further research. 

 

P2X7+DHHC11 Model 

To quantitatively test potential models of how DHHC11 alters P2X7 function, I 

developed a “reduced” P2X7 model based on the model proposed by Yan et al 2010. 

The reduced model consists of five states: one naïve closed state, two naïve open 

states (one with high sensitivity to ATP, and one with low sensitivity to ATP and with the 

ability to dilate), and two dilated states, one open and one closed (Fig 7a). States and 

the transitions between them are described by the five linear ordinary differential 

equations in Table 1; the variable for each state in the model is bounded between 0 and 

1 and represents the fraction of receptors in that state at a given time.  

Unlike the previously proposed model, I did not take into account the number of 

bound ATP molecules, but focused instead on the minimal states and transitions that 

would be necessary to reproduce the experimentally observed P2X7 current. Namely, 
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biphasic kinetics from the naïve state are sufficiently modeled by two successive open 

states, the first with higher sensitivity to ATP than the second (k1 > k2), and with the 

second able to irreversibly access a higher-conductance dilated state. Once in the 

dilated state, experimental results show that activation and deactivation are 

monophasic, and can thus be represented by a single open and closed state.  Because 

dilation is irreversible on the time scale of any single experiment I did not include a 

transition from the dilated to the naïve state. To further simplify the model, I 

nondimensionalized agonist concentration and conductance, such that the input, A(t), is 

in terms of agonist concentration relative to the EC50 of the dilated state and the output, 

G, is in terms of conductance normalized to the maximum conductance of the dilated 

state. This model is able to reproduce the fundamental features of the P2X7 current 

profile with minimal parameters (Fig 7 c,d). 
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I propose that interaction with DHHC11 transitions the closed P2X7 receptor ion 

channel to a “parallel” closed state, which is able to access an alternate open state. This 

open state has higher macroscopic conductance than the naïve state, presumably due 

to a higher open probability rather than unitary conductance, as a significantly higher 

unitary conductance would most likely coincide with permeability to larger cations as 

seen in the dilated state. Based on the fitted kinetics of the DHHC11-modified P2X7 

current, I presume that the kinetic constants for activation and deactivation are smaller 

than those for the usual naïve closed to open transition. As shown in Fig 8, this model is 

able to match well with the observed currents if the DHHC affected state is able to 

return to the P2X7 model in a transition from the DHHC11-affected open state to state 
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O2 (Candidate Model 1) or from the DHHC11-affected closed state to state O1 

(Candidate Model 2) upon treatment with ATP. Optimal fit was obtained by assuming 

that only a fraction of P2X7 receptors were affected by the presence of DHHC11 (50% 

were used for the results in Figure 8). While these were not the only model schemes 

that were able to fit the observed P2X7 + DHHC11 currents, they were the simplest. 

Experimentally testing the validity of these models is a potential area of further research 

for the lab. 

 

 In conclusion, the DHHC11-P2X7 interaction and its effect on P2X7 

function represents a new tool for studying P2X7 function as well as a possibly 

physiologically significant player in the regulation of purinergic signaling. An obvious 

next question is “does this interaction play a role in vivo?”  While the increase in 

sensitivity to extracellular ATP due to P2X7-DHHC11 interaction is a promising solution 

to the issue of physiological ATP concentration, further work is necessary to identify its 

significance. This represents a promising future direction for work in the field. 
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Methods  

Cell Culture and Transfection 

 HEK 293 cells were used for the expression of P2X7 and DHHC11 constructs. 

Cells were maintained in DMEM containing 10% FBS and 1% Gentamycin solution. Two 

days prior to electryphysiological recording, cells were plated on coverslips in 35mm 

dishes at a density of 1 x 105 cells/dish. Transfection was conducted 24hr after plating. 

A transfection mixture of 155uL Opti-Mem, 500ng of each experimental DNA construct, 

and 6uL FUGENE was mixed by pipette, incubated at RT for 15 minutes, and added to 

the cells with fresh culture media. Cells were then incubated in the transfection mixture 

for 12-15 hours, rinsed with PBS, and again replaced with fresh culture media. 

Electrophysiological measurements were made within 12 hours of media replacement. 

All mutations were made from a rat P2X7 construct or mouse DHHC11 construct also 

containing GFP or mCherry for cell identification. 

 

Electrophysiology 

 Prior to patching, cover slips were transferred to bath external solution at room 

temperature. Patch pipettes were pulled and heat-polished to a final tip resistance of 2-5 

MΩ. Brightly fluorescing cells with GFP or GFP/mCherry were selected for patching. 

Cell attached seals of >2 GΩ were obtained and whole-cell patch-clamp mode was 

achieved by pipette suction. For current recording, membrane potential was held at -

60mV during the perfusion protocol for ATP application. To measure changes in 

reversal potential, voltage was ramped from -60mV to +60mV twice per second during a 
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120s treatment with 300uM ATP. Patch pipettes were filled with a solution containing 

147mM NaCl, 10mM EGTA, and 10mM HEPES; the pH was adjusted to 7.0 with 1M 

NaOH. The external solution contained 147 mM NaCl, 2 mM KCl, 0.1 mM CaCl2, 13 

mM glucose, and 10 mM HEPES; the pH was adjusted to 7.3 with 1M NaOH. ATP was 

added to the external solution each recording day from a 1M ATP stock solution. 

 

Calculations 

 Curve fitting of currents was performed in Clampfit 10.0 using predefined 

functions of exponential standard (f(t) = A1exp(-t/𝜏1) + A2exp(-t/𝜏2) + C). Whenever 

appropriate, the data were presented as mean ± SEM values. 

 

Mathematical Model 

 Modeling was carried out using the Mathematica 8 software package from 

Wolfram. For P2X7 alone I used a Markov state model consisting of 5 states (see Fig. 7 

and Table 1), the variable for each of which corresponds to the fraction of receptors that 

are in a given state (equations are fit to data with ATP). Corresponding to this scheme is 

the system of 5 linear ordinary differential equations outlined in Table 1. To minimize the 

number of parameters necessary, the total conductance was normalized to the maximal 

possible conductance of the dilated state (Eq. 6), such that if all receptors were in the 

open dilated state (OD(ti) = 1), G(ti) = 1. Agonist concentration, A, was similarly 

normalized to the EC50 of the dilated state. 
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 To model the effect of DHHC11, two additional states and thus two equations 

were added to the P2X7 model 

CANDIDATE MODEL 1: 

ĊDHHC   =  k2DODHHC  -  k1DACDHHC                                                          

ȮDHHC  =  k1DACDHHC  -  (k2D + kDD)ODHHC  

 

CANDIDATE MODEL 2: 

ĊDHHC   =  k2DODHHC  -  (k1DA + kDDA)CDHHC                                                          

ȮDHHC  =  k1DACDHHC  -  k2DODHHC  

 

and an additional term (kDDODHHC or kDDACDHHC) added to the ODE for state O1 or C1, 

with the relevant parameters shown in Figure 8. 
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