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Abstract

In this paper we re-visit a long-standing multi-echelon inventory al-
location problem from a robust optimization perspective. We formulate
the problem as a one warehouse, N —retailer, multi-period, stock alloca-
tion problem in which holding costs are identical at each location and
no stock is received from outside suppliers for the duration of the plan-
ning horizon. Stock may be transferred from the central warehouse to
the retailers instantaneously and without cost at the beginning of each
period for which the central warehouse still has stock on hand. No other
stock transfers are allowed. Under this set-up, the only motive for hold-
ing inventory at the central warehouse for allocation in future periods is
the so-called risk-pooling motive. The dynamic programming formulation
of this problem requires a state space too large for practical computa-
tion. Various approximation methods have been proposed for variants of
this problem. We apply robust optimization to this problem extending
the typical uncertainty set to capture the risk pooling phenomenon and
extending the inventory policy to allow for an adaptive, non-anticipatory
shipment policy. We show how to represent the uncertainty set compactly
so that it grows by no more than the square of the number of retailers.
The problem can be solved using Benders’ decomposition in the general
case. In the special case of no initial retailer inventories, two periods, and
identical retailers, a relaxed form of the problem admits a closed form
solution with surprising insights. Summarizing the experimental results
of the paper, we see both confirmation of the value of the robust optimiza-
tion approach as well as managerial insights into the design and operation
of multi-echelon inventory systems.

1 Introduction

During the past half-century, researchers have studied multi-echelon inventory
allocation problems extensively. Surveys of this literature can be found in
[Axséter, 2003] and [Dogru et al., 2009]. For periodic review systems, Clark and
Scarf, in their seminal paper [Clark and Scarf, 1960], developed a decomposition
approach that, under certain conditions, provides a mechanism for analyzing and



solving a two-echelon central warehouse and multiple retailer distribution sys-
tem problem. The modeling approach they employed provided a way to find an
optimal procurement and allocation policy for the two echelon system under the
so-called balance assumption. Basically, balance occurs when there is no desire
to move, or re-allocate, stock from one retailer to another in any time period.
Thus, if x;; is the echelon stock at retailer 4 at the beginning of period ¢ and ;¢
is the desired order-up-to level for that retailer in period ¢, then balance occurs
if y;+ > x; for all retailers. Suppose the central warehouse does not place or-
ders with its supplier every period. The time between placement of these upper
echelon orders is called a cycle. [Jonsson and Silver, 1987] made the observa-
tion that for items having relatively low coefficients of variation in their daily
demand processes, inventory imbalance will occur among retailers, if at all, only
at the end of a cycle. This has led to many formulations of the problem with
only two periods: a lengthy first period during which imbalance at the retailer
locations can be ignored followed by a short period during which imbalance
may be an issue at these locations. If imbalance is an issue, then it is neces-
sary to include constraints requiring shipments to retailers to be non-negative.
The inclusion of these constraints leads to a dynamic programming problem
formulation that is computationally intractable for realistic problem sizes. The
balance assumption, on the other hand, permits the problem to be decomposed
into single-location problems. Numerous papers have exploited the balance as-
sumption, beginning with [Clark and Scarf, 1960], [Eppen and Schrage, 1981],
[Federgruen and Zipkin, 1984a], and [Federgruen and Zipkin, 1984b]. An ana-
lytical investigation of the imbalance assumption, including the impact of de-
mand correlation, can be found in [Zipkin, 1984]. A more recent review and
application of the balance assumption can be found in [Gallego et al., 2007].

[Dogru et al., 2009] survey the papers in this area in order to highlight the
widespread use of the balance assumption. To test the applicability of the
balance assumption they compute a gap between an upper and lower bound
on the optimal expected cost. The lower bound is based on the relaxation
approach of Federguen and Zipkin and relies on the balance assumption. The
upper bound is determined by simulating a policy based on the optimal solution
to the relaxed problem but which myopically optimizes allocations subject to the
non-negative shipment constraints. The authors find that the gap is small for
identical retailers if the coefficient of variation of demand is small or moderate
(less than 0.5) or if the incremental holding cost at the retailers is high. The
gap is small for non-identical retailers only in a few of their parameters settings,
even with moderate coefficients of variation. This suggests that either the lower
bound or the heuristic upper bound policy, or both, are mediocre in settings
characterized by high coefficients of variation or non-identical retailers.

A number of authors have attempted to incorporate the non-negative ship-
ment constraints to improve the optimization results. [Jackson and Muckstadt, 1989]
restrict attention to a two-period allocation cycle and show that when non-
negative shipments are enforced, the maximum post-allocation stockout proba-
bility across retailers converges to a constant as the number of retailers increases.
Using this constant, they develop an approximate cost function which is sepa-



rable by retailer and can be optimized to set their target inventory levels.

[Axsdter et al., 2002] introduce a two-step allocation heuristic which is also
based on a two-period allocation cycle. Target allocation levels for the first
period, y;(u), for each retailer ¢ are determined for different values of u, the
total allocation in the first period, to optimize cost myopically in the first pe-
riod. For each vector of realized demands in period 1, the optimal second
period allocations can be determined as a function of these target allocation
levels, enforcing the non-negative shipment constraints. Using convolutions of
a three-point probability function to represent the joint probability distribution
of period 1 demands, the expected cost associated with period 2 can then be
approximated. Summing the period 1 and period 2 costs, the total cost can be
tabulated as a function of u, the initial allocation, and, from this, the optimal
value of v can be chosen. The optimally-chosen u is then allocated to retailers
in a myopically optimal way. The best length for the first period is determined
experimentally.

Using a more general multi-period approach, [Kunnumkal and Topaloglu, 2008]
develop a lower bound on the cost of the optimal policy by associating Lagrange
multipliers with the non-negative shipment constraints. The resulting dynamic
programming problem is separable into single-location dynamic programs which
are solved easily. Subgradient optimization is then used to find a vector of La-
grange multipliers which maximizes the lower bound. [Kunnumkal and Topaloglu, 2011]
acknowledge the computational difficulty of the subgradient optimization step
in this approach and instead use much faster linear programming approaches to
find good Lagrange multipliers. The best of these methods requires Monte Carlo
simulation of realized demand vectors, solving a linear program for each realized
demand vector, extracting the Lagrange multipliers from the dual solution, and
averaging these multiplier values.

One important instance of the central warehouse, multi-retailer problem is
the following. The central warehouse is replenished once in each cycle of a
lengthy time horizon. Each cycle consists of multiple periods. For example,
a cycle could be a week in duration and a period could be a day in length.
The question then is how much inventory should be allocated to each retailer
S0 as to minimize costs. Suppose that there are two types of costs, holding
and backorder costs. Furthermore, suppose the holding cost rate is the same at
the central warehouse as it is at each of the retailers. In this case, there is no
economic incentive to hold inventory at the central warehouse. The only motive
for holding inventory at the central warehouse is to reduce the risk of inventory
imbalance. Holding inventory back at the central warehouse is a form of risk
pooling. Suppose we make the Clark- Scarf balance assumption. Then, when
holding costs are equal among all locations, and the balance assumption holds,
it is easy to show that all inventory received at the central warehouse will be
immediately allocated to the retailers. This is the policy first employed for this
situation by Eppen and Schrage.

Suppose, on the other hand, we do not make the balance assumption. To
study this problem for the environment we have stated, we use a robust op-
timization approach. Robust optimization has been proposed as a tractable



optimization approach for stochastic planning problems that are too large to
be solved by dynamic programming. Proponents of robust optimization make
several claims for the approach:

1. Robust optimization models lead to solutions whose expected cost is close
to the minimum expected cost in cases where the optimum can be com-
puted, especially when compared to the error possible from selecting prob-
ability distribution models incorrectly;

2. Robust optimization models do not suffer the curse of dimensionality
which plagues expected cost optimization models; in many cases, the di-
mension of the robust optimization formulation is no larger than the size
of a corresponding deterministic model.

3. Robust optimization models in special cases lead to closed form solutions
which provide analytical insight into the underlying problems.

All three of these benefits, for example, are demonstrated in [Bertsimas and Thiele, 2006].
The problem with applying this approach directly to stock allocation problems
is that it is a static planning problem: all shipments to all retailers are set at one
time. Worst case performance is determined relative to these fixed shipments.
As a result, the value of withholding inventory for the purpose of risk-pooling
is not captured. What is needed in the representation is an adaptive policy:
one in which shipments will depend on the evolution of demand across time and
retailers.

In [Bredstrém et al., 2013], the current status of adaptive policies for robust
optimization is reviewed. The authors propose a general approach for modeling
planning problems with right hand side uncertainty, specifically, demand uncer-
tainty. In their approach, variables are partitioned into business decisions, to be
made without knowledge of actual demand, and recourse decisions, to be made
after revelation of the actual demands. The partition results in a master prob-
lem which is a linear program and a subproblem which is a bilinear program.
They propose using Benders’ decomposition approach to solve the problem and
rely on iterative techniques to solve the bilinear program subproblems. We use
a similar approach in this paper, dividing the decisions between inventory policy
variables and actual stock allocation decisions. The former are chosen before
demands are realized and the latter are consequences of the policy variables
and the actual demands. We too use Benders’ decomposition to solve the over-
all problem and we face a bilinear program for the subproblem. In our case,
the simplicity of our formulation allows us to recast the bilinear program as a
mixed-integer linear program.

Our primary contribution to modeling inventory systems using robust opti-
mization is to include the phenomenon of risk pooling across retailers. In partic-
ular, we develop a computationally tractable approach, via robust optimization,
to recommend stock allocations from a central warehouse to multiple retailers
over multiple time periods when imbalance is a distinct possibility. Recall that
we assume that holding costs are the same at all locations in order to focus solely



on the risk-pooling motive for holding stock centrally, distinct from economic
motivations. We also assume that demand distributions are characterized by
their means and variances and that demands are independent across retailers
and across time. We find that the claimed benefits of robust optimization, with
some qualification, do materialize for this problem. In particular,

1. Stock allocation decisions recommended by this approach capture a large
fraction of the risk-pooling benefit that is possible in an expected value
sense;

2. The approach is capable of quickly solving problems far beyond the reach
of dynamic programming methods; however, to adequately capture the
risk-pooling effect, the model size grows with the square of the number of
retailers; and

3. A closed form solution is possible for a relaxed version of a two-period,
identical-retailer stock allocation problem; this solution provides analyti-
cal insight not seen before in the study of this problem.

That is, all the benefits of robust optimization emerge except that the prob-
lem size is not proportional to the size of a corresponding deterministic model.

In the course of evaluating the performance of the robust allocation ap-
proach, we consider a variety of situations in which risk pooling, and the bal-
ance assumption, may or may not play a role in system performance. This study
reinforces some conclusions from earlier studies, but also points to new manage-
rial insights. For example, [Dogru et al., 2009] show the balance assumption to
be violated to a significant extent when demand among retailers is unbalanced,
even for moderate coefficients of variation. Our results point to a different con-
clusion, and this can be traced to our contention that coefficients of variation are
inversely correlated with demand rates, as we have observed in several practical
instances.

The remainder of this paper is organized as follows. In section 2, we restrict
attention to a single period stock allocation problem in order to review some
basic ideas pertaining to expected value-based optimization models. We also in-
troduce a possible robust optimization formulation and contrast the form of its
optimal solution with the optimal expected value-based solution. In section 3,
we extend the one period models for both approaches, expected value and robust
optimization, to handle multi-period problems. The expected value formulation
is a dynamic program with a large state space. The robust optimization for-
mulation includes an uncertainty set which captures the risk pooling effect and
an adaptive, non-anticipatory shipment policy. The model can be represented
as a linear program with a potentially large number of constraints. In Section
4, we propose solution techniques. For the general case, we apply a Benders’
decomposition approach to solve the linear form of the general multi-period ro-
bust optimization stock allocation problem. The master problem is a simple
linear program and the sub-problem is a mixed integer-linear program (MILP).
We then consider a special case in which there are no initial inventories at the



retailers and only two periods in the planning horizon. For the purpose of devel-
oping analytical insight, we further simplify this two-period model by assuming
the retailers have identical demand distribution parameters in each period, al-
though the parameters may differ between periods. A closed form solution is
available for a relaxed version of this problem. The analytical insight is that the
worst case from an allocation perspective is that exactly half of the retailers will
receive an allocation in the second period and the other half will be in a situa-
tion of imbalance. In Section 5, we report on a numerical study which suggests
that the recommended stock allocations from the robust optimization approach
capture much of the risk-pooling benefit possible, in an expected value sense.
Solution times of the robust optimization approach are shown to be quite short
although they increase with the number of retailers considered. The numeri-
cal studies also give rise to managerial insights into the role of risk pooling in
the design of distribution systems. In Section 6, we summarize the results and
suggest further research. Many of the results of the paper are established using
standard proof approaches and are not instructive. We collect such proofs in an
appendix to allow a more focused presentation in the main body of the paper.

2 Single-Period Stock Allocation

We begin by considering a single period problem in which a central warehouse
allocates stock at the beginning of the period to meet uncertain demand which
will occur during the period at each retailer. We introduce some nomenclature
and assumptions in the context of an expected value formulation of the prob-
lem, state the form of the optimal policy, and then present a robust optimization
formulation of the problem. We compare the optimal policies of the two formu-
lations and establish a condition under which the two policies will lead to the
same allocation decision.

2.1 Expected Value Optimization

Let the set of retailers be denoted by N and indexed by i € A/. Let N denote
the number of retailers: N = |N|, the cardinality of N. Let v;, ¢ € N, denote
the beginning net inventory level (possibly negative) at retailer ¢ and x; denote
the allocation of stock from the central warehouse to retailer ¢ at the beginning
of the single period. Let & = (z;), the vector of all stock allocations. Assuming
distribution lead times are zero time units in length, the new inventory level at
retailer ¢ is thus v; + x; for each retailer, 7 € N. A random demand d; is then
observed at each retailer and backorders, if any, are given by B; :

B; = (Ji_vi_xi>+

where £ = max(0, ). The warehouse begins the period with a quantity of
stock, vg, held in reserve. Remember, we require that the allocations to re-
tailers be non-negative and that their total does not exceed the stock held in



reserve. We assume the cost of holding inventory is the same for an item at
all locations in the system and that there are no fixed costs associated with
the allocation. Given these assumptions, a reasonable objective is to minimize
the sum of expected backorders. Under these conditions, let fi(v) denote the
minimal expected sum of retailer backorders at the end of the period when the
period begins with inventory vector v = (vg, v1, .., Up):

M (e

2ien i<vo N

Suppose demand at each retailer is represented by a random variable whose
probability distribution is expressed in terms of two parameters, its mean and
its standard deviation. Specifically, let {&;,7 € N'} be a set of identically dis-
tributed, mean-zero, unit-variance, random variables such that the demand at
each retailer is given by: _
di = p; + 04

for suitable means, u;, and standard deviations, o;, for each i € N. Let G (¢)
denote the cumulative probability distribution function of €;, common to all
retailers i € N let G(¢) = 1 — G(¢) denote its complement, and 571(9) denote
its inverse. We assume the cumulative probability distribution is continuous
and G(g) > 0 for all e.

Proposition 1 Any optimal solution, x*, is an equal fractile solution among
retailers receiving allocations. That is, there will exist a constant 6 such that

xl = (ui +§71(9)Ui - 'Ui)Jr

for each i € N'. Furthermore, the optimal solution will satisfy

*
E x; = Vo.

iEN

Proof. Appendix 6.2. =

Suppose the
1

yi(0) = p; + G (0)o; (1)
for each retailer 7 € A/, for a given value of the parameter §. We can interpret
y;(0) as the target stock level for retailer i. If v; < y;(0) then the optimal
allocation to retailer ¢ is given by =} = y;(0)—v;. On the other hand, if v; > y;(0),
the initial inventory is greater than the target stock level and the retailer receives
no allocation: z} = 0. Furthermore, as noted in Proposition 1, the value of § for
the equal fractile solution must satisfy the reserve stock constraint with equality:

Z (i(0) — vi) = vo. (2)
yi(9i)€—j\£i>0



2.2 Robust Optimization

We now consider the same single period problem but using a robust optimiza-
tion approach. Instead of random variables g;, ¢ € N, we consider a vector &
belonging to an uncertainty set U(d) defined by:

U(é):{Ei,iEN:€i<5}

for some parameter §. We also choose a target inventory level, y;, for each
location 7 € . These targets specify a shipment policy, z(y), as the solution to
the following problem:

S(y) = min Z T
subject to

T Yi — Vi,

0,

(AVARAYS

Ly

for each ¢ € V. We also specify a weighting factor to apply to backorders at each
retailer. Let w; denote the weight to apply to backorders at retailer i, i € N.
A possible robust optimization model is to minimize the maximum weighted
backorders across all retailers and all possible demand vectors:

B* = min maxB
yi,i€EN,B &€
subject to
B = w;(p;+ o —yi)
B > 0
E; § 1)
for all i € N and
S(y) < vo.

Note that the shipment optimization problem, S(y), could be eliminated and
its constraints incorporated into the backorder optimization problem directly.
That is not possible in the multi-period formulations to follow; we maintain the
separation at this point to emphasize the structure.

Proposition 2 Ifwvg > 0, there exists an optimal robust solution satisfying, for
each i € N,
y; = p; + 00 —w; 'B*

Proof. Appendix 6.2. =

Corollary 3 Let y;(B) = pu; + 0;0 — w;lB, for alli € N'. Then, provided

Z (ﬂi + 01'5 — Ui)+ > Vg
1EN



the optimal value of B, B*, satisfies

Z (yi(B*) — ’Uz')+ = o-

iEN

The proposition implies that whereas the expected value criterion leads to
a solution which, to the extent possible, equalizes the probability of a stockout
across retailers, the robust optimization formulation leads to an equalization,
to the extent possible, of maximum weighted backorders across retailers, where
the maximum is relative to the worst case demand.

Consider the situation in which the backorder weighting factors, w;, i € N,
are inversely proportional to the corresponding standard deviations of demand,
g1 €N :

w
W; = —
2§

for some constant w.

Corollary 4 If w; = g%, for alli € N, and provided

Z (‘Ll,Z + 0'26 — ’Ui)+ > o,
ieN

then the robust solution also minimizes f1(v).

Proof. Appendix 6.2. =

That is, if the weights are inversely proportional to the standard deviations
of demand and provided ¢ is not too small relative to the initial stock levels,
the robust solution is identical to the expected value-minimizing solution.

3 Multi-Period Stock Allocation

In this section, we consider a multi-period version of the stock allocation prob-
lem. There are several periods of uncertain demand at the retailers and the
warehouse has the opportunity to make costless allocations to the retailers at
the beginning of each period, to the extent that it holds stock in reserve for
these periods. As in the previous section, we begin by formulating the problem
as an expected value minimization problem. No closed form solution to this
problem exists but small restricted problems can be solved to optimality using
linear programming. We then present a robust optimization formulation of the
problem which will be the focus of the balance of the paper.

3.1 Expected Value Optimization Formulation

Let T denote the stock allocation horizon, the number of periods considered in
the stock allocation problem. Period T + 1 is assumed to be a period in which
the system is replenished with sufficient inventory from an external source to



eliminate all backorders at all retailers. Let t = 1,2,...,T index the periods in
the stock allocation problem. The periods are not necessarily of equal length:
As discussed earlier, it is often desirable to allow the first period to cover a longer
span of time than the other periods because re-balancing of inventories does not
typically become an issue until near the end of the horizon. We further assume
that the lead time to ship from the warehouse to the retailers is negligible.

Let d;; denote the random demand occuring at retailer ¢ during period £,
and let d; = (d;t)ien denote the vector of demands in period ¢. The stochastic

process d = {dt t=1,2,..., T} is assumed to be independent from period-to-

period.

For a generic period ¢, let v; denote the beginning net inventory at retailer 4,
i € N, and let vy denote the stock held in reserve at the central warehouse. Let
v = (vo, V1, ..., Uy ), as before. Again, we assume the cost of holding inventory is
the same at all locations. We also assume that backorder costs are the same at all
retailers. Our objective is to focus on allocation policies that have risk pooling
as the predominate consideration. Let f;(v) denote the minimal expected total
backorders over periods t,t + 1,...,7, given that the system begins period ¢
in state (v). This function can be shown to satisfy the dynamic programming
recursion given by:

) = i S| (dven)

>ien i<vo ieN

~ +
S (A
fil) =, min 7
ZZQNVwiSvo +E {ft‘i‘l <(U0 - ZiEN iy (Ui + T — diff) ) N>>:|

(S
fort=1,2,....,7 — 1.

Computing f1(v) exactly is a severe computational challenge because of the
so-called curse of dimensionality: the state space over which each f; must be
evaluated is exponential in the number of retailers. As mentioned, past ap-
proaches in the literature have focussed on different approximation techniques
to reduce the computational burden.

3.2 Robust Optimization
3.2.1 The Risk Pooling Uncertainty Set

Following the development of the one-period model, we define parameters pu;,
and o;; to be the mean and standard deviation, respectively, of demand at re-
tailer 4 in period ¢, for each i € N, and t = 1,2,...,T. As before, the demand
distribution at location ¢ in period ¢ is taken to be characterized by only these
two parameters. Thus we assume that d;; = p;;, + 0i€¢ where the variables ;4
are chosen from some uncertainty set U(d), to be defined. We write the demand
variables as d;;, rather than cjit, because they are no longer interpreted as ran-
dom variables. The uncertainty set contains constraints of the form e;; < 6, for

10



all 4 and ¢; but, these constraints alone are insufficient to capture the motive for
holding stock in reserve at the central warehouse. We require constraints that
represent the phenomenon of risk pooling. For example, if we consider the sum
of two independent, normalized demand variables, say €;; and €;; for ¢ # 7, then
the standard deviation of the sum, €; + €y, is V2. An appropriate uncertainty
set constraint on the sum would therefore be €5 + €5, < V/26. Extending this
idea, we define the multi-period risk pooling uncertainty set U(4) as follows:

U(J) Y I , €it < (S,V(Z,t) (3)
. ZiEI Zi:l git < V |I|t167VI c Na t = 1727"'7T .

Since the number of sets satisfying I C A is 2%, this formulation of the risk
pooling uncertainty set is impractical for large numbers of retailers. How-
ever, the problem of bounding the k largest entries of an n-vector is known
to have an equivalent formulation with fewer constraints. (See, for example,
[Ben-Tal and Nemirovski, 2001], equation 18.c on p. 147. An alternative proof
to the result below, using duality, can be found in [Zakeri et al., 2014]).
Lemma 5 The set Z = {z = (2i)ieN : D ier 2 < My, NI C N, |I| = n} for some
M,,n € N, is equivalent to the set Z' where

2= (2i)ien : Jan, B, = (Bri)ienr -t
Z, _ noy, + Zy;/’ll ﬁm S Mm
an + B > 2i, 1 €N
B; >0, i€N.

Proof. If z € Z, then order the elements of z from largest, z[;), to smallest,

). Let o, = 2p) and B,,; = (2 — an), i € N. Let I be the set of the n
largest elements of z. It is clear that §,; = 0 for all ¢ ¢ I. Since z € Z and
|I| = n, we have

M,

v

>

icl

= na, + Zﬁm-

icl

= nan+ Y B

iEN

establishing that z € Z’. Now, suppose z € Z’' and consider any subset I,
I C N with |I| = n. Let (an, 3,,) be any solution to the conditions in Z’. Then,

11



since f3,,, > 0 for all ¢ :

M, > no,+ Zﬁm

iEN
> na, + Z,@’m
i€l
el
> Y
el

Hence, z€ Z. m

Observe that for a given t', z; can play the role of Zi;l €it, and M, can
play the role of \/|I|#'d in (3) where |I| = n. Using this equivalent form of the
risk pooling bound set leads to the following equivalent formulation of the risk
pooling uncertainty set, U(9) :

€= (5it)z‘eN,t6T :
gy <0,i€N,teT; and
foralln e N, teT:

U (6) = Hanhﬁnt = (ﬁnti)ie_/\f s.t.
Nant + ZiGN ﬁnti S \/ﬁéa
Ot + Bsi = oy €iv, Vi €N,
Bnti > 07VZ € N

Proposition 6 The number of constraints required to express the multi-period
uncertainty set is of order TN? where N is the number of retailers.

Proof. There are constraints in U(4) for all combinations of i € N',n € N, and
teT. m

3.2.2 Multi-Period Robust Optimization

An Adaptive Shipment Policy Suppose the initial net inventory at location
i at the beginning of period 1 is given by v;, 7 € . The initial reserve stock at the
central warehouse at the beginning of period 1 is vg. The variable y;; represents
the target net inventory level at retailer ¢ in period ¢, just after allocation from
the central warehouse. The variable x;; represents the corresponding allocation
from the central warehouse. The symbols u,o,v,d,e,y, and x with subscripts
omitted represent vectors of parameters or variables ranging over the omitted
subscripts.

In this approach, the target net inventory levels, y, are chosen without ref-
erence to a particular ¢ vector. The shipments in each period are allowed to be
adaptive but they must be non-anticipatory. In particular, we require

~—

t—1 +
zit(e) = (yit —vi+ Y (Wi + OivEir — T (6))> : (4

t'=1

12



That is, in each period, the policy is to ship the minimum non-negative quantity
required to achieve the target net inventory level, subject to past demands,
shipments, and initial net inventories.

Lemma 7 Partial sums of required shipments satisfy the following relation:

¢ t—1
Z Ty (€) > Yir — vi + Z (Bigy + Cirr€irr) (5)
=1 =1

with equality holding if x;p (€) > 0.

Proof. By definition, x;(¢) > (yit —v; + Zi,_:ll (i + OivEitr — T (s))) with
equality holding if z;;(g) > 0. Rearranging terms yields the result. m

Let S(y,e) denote the total shipments required over the stock allocation
horizon following an adaptive, non-anticipatory policy for a given normalized
demand vector, ¢ :

T t—1 +
S(y,e) = Z Z (yit — v+ Z (Higr + i€ — l’it/)) .

ieEN t=1 t'=1

Proposition 8 The total required shipment to support a target net inventory
vector y given normalized demand vector € can be determined using the following

linear program:
T
S(y,e) = min Z Z Tyt

iEN t=1
subject to
t t—1
Z ziw(e) > yir —vit Z (i + oivEir)
t'=1 t'=1
zg 2> 0

forallie N andt=1,2,...,T.
Proof. Appendix 6.2. =

Corollary 9 Alternatively,

T t—1
S(y,e) = HlT?XZ th (yit — Vi + Z (Hip + Uit’£it’)> (6)

ieN t=1 t'=1

subject to

T
Zﬁit’ < 1

t'=t
Tt

v
o

forallie N andt=1,2,....T.

13



Proof. The result follows easily by duality. =
For each retailer ¢« € N, let t;(¢) denote the following maximizing period for
retailer i:

)

t—1
ti(e) = arg max (yit — v+ Z (Hip + Uz‘tfit/)) :

- =1

In the case of ties, select the earliest period which achieves the optimum. The
resulting maximum may not be positive. Consequently, we let ¢} (e) equal zero
in such cases:

£ (e) = ti(e) if yi, o) + Z:}ig_l (W + Tivr€irr) > vis
‘ 0 otherwise.

Proposition 10 The solution to the dual shipment problem, (6), is given by
i (€) = L=t (e)}
forallie N, t=1,2,...,T.

Proof. Appendix 6.2. =
Let II denote the set

T

= {77: Y mw < Lmp € {0,1} i €Nt = 1,2,...,T}.
=1

Corollary 11 There exists an optimal solution to (9) satisfying m € II.

We can interpret the dual solution to the shipment problem as follows. Let
7; (¢) denote the last period in which retailer ¢ receives a shipment, or zero if
retailer ¢ receives no shipment:

- (E) _ argmax¢=12,...T 1{93“(5)>0}t, if 23;1 IEit(é‘) > O;
! 0, otherwise.

Proposition 12 For a given target inventory vector y and normalized demand
vector e, the shipment vector x(e) satisfies

zi(e) = 0,Vt >t ().
Furthermore, if 7; (€) > 0, then ti(e)=7; ().
Proof. Appendix 6.2. =

Corollary 13 Barring ties, the vector m optimizing (9) selects the last shipment
period for each retailer. That is,

Tit (€) = Li=r,(e)}-
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The Multi-Period Robust Stock Allocation Problem We say that a
target net inventory vector y is feasible if and only if its shipment requirements
do not exceed the available reserve stock vy for any normalized demand vector
in the uncertainty set. That is, y is feasible iff

S(yv E) S Vo
for all e € U(6). Let S (y) be the worst case shipping requirements:

S(y) = nax S(y,¢).
Then, y is feasible iff
S(y) < vo.

Lemma 14 S(y) is non-decreasing in y.

Proof. For every ¢ € U(9), if = is feasible for y, then it is also feasible for
y' <y. Hence, S(y/,¢) < S(y,e) for alle € U(5). m

Let w;; denote the weight to apply to backorders at retailer ¢ in period ¢. Let
B; denote the maximum weighted backorders in period ¢ across all retailers and
all possible demand vectors. Our robust optimization formulation of the multi-
period stock allocation problem is to minimize the sum of maximum weighted
backorders across retailers in each period and across all possible normalized

demands, as follows:
T
ming B;
y,B
t=1

subject to, for all € € U(9),

By > wir (py + 0itcir —yir) Vi€ Nyt =1,...,T;
Bt Z O,t: 1,...,T;
S(y) < o

By definition of the risk pooling uncertainty set (3), for any ¢ € N and ¢t =
1,..., T, there exists a normalized demand vector ¢ € U(§) with ;4 = §. (For
example, set €, = 0 for all (j,t") # (¢,¢).) Consequently, the problem reduces
to

y,B

T
min Z B, (7)
t=1

Bt > Wi (alt((s)_ylt)avz ENvt: 177T7
Bt Z 07t = 1,,T7
S(y) < Vo,

where d;;(§) = p;; + 010, i € N. The uncertainty set U(§) has been removed
from all but the sub-problem, S(y).
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Proposition 15 There exists an optimal solution, (y*, B*), to the multi-period
stock allocation problem (7) satisfying

yir = din(6) — wy, By (8)
forallie N, andt=1,2,...,T.

Proof. Appendix 6.2. =
By proposition 9, we can restate the shipment requirement as follows:

T t—1
S(y) = Efen(?()g) glélﬁiz Z'/Tit (yit — v+ Z (pir + Jit/f?it')) (9)

ieN t=1 t'=1

This is a bilinear program (it involves the products m;:e;) but we show later
that it can be reformulated as a mixed-integer linear program.
For any 7 € II, let S, (y) be given by

T t—1
Sr(y) = Erenéigg) Z Z Tit (yit —v; + Z (tier + Uit’£it’)>

ieN t=1 t'=1
T T t—1
= E E TitYit — E E Tit | Vi — E e
ieN t=1 ieN t=1 t'=1

T -1
+ETGHU34()§)ZZ7Tz’t Zait’fit“ (10)

ieN t=2 t'=1

Observe that Sy (y) is an affine function of y for each = € II. Furthermore,
S(y) = max S (y).

It follows that an equivalent formulation of the robust multi-period stock
allocation problem (7) is as follows:

y,B

T
min » B, (11)
t=1

Bt 2 Wit (azt(é) _y’bt)7V7' eNat: lvaTv (12)
B, > 0t=1,..T; (13)
Sz(y) < wo,Vmell (14)

Since for each 7 € II, S (y) is affine in y and since II is a finite set, it follows that
the robust multi-period stock allocation problem can be expressed as a linear
program. We refer to this formulation, (11)-(14), as the Linear Form of the
Robust Multi-Period Stock Allocation Problem. In general, II is a large set and
the coefficients of the linearized shipment requirement (10) can be expensive to
compute. In the general case, we propose a decomposition approach. However,
in certain special cases it is possible to solve the Linear Form directly. We treat
the general case first.
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4 Solution Techniques

4.1 The General Case: A Decomposition Algorithm

In this section, we apply Benders’ decomposition approach to solve the general
multi-period robust stock allocation problem. We begin by re-expressing the
worst case shipment requirement (9), max,cr Sx(y), as a mixed-integer linear
program (MILP) in the following manner. We know that for each retailer ¢ there
is a last period, ¢ (¢), in which it receives stock. For ¢ (¢) > 0, let u; = 0
if t = tf(e) for retailer ¢ and u; = 1 otherwise. By corollary 13, we will have
u;; = 1 — m; at the optimum. Let u;o = 0 if no shipment is made to retailer
¢ during the time horizon and w;g = 1 otherwise. This covers the situation
when t}(e) = 0, that is, when v; is sufficiently large that retailer ¢ requires no
shipment to meet the target inventory levels, y;;, for any ¢t = 1,2,...,T. Let S;
denote the total shipment required by retailer ¢ under the adaptive shipment
policy. By lemma 7 and proposition 12, S; is given by

t*(e)—1 -
G — ) Yitr(e) Vit thi? (tipr + oipe) if £ (e) > 0;
! 0 otherwise,

for each retailer i € N.

Proposition 16 An equivalent MILP for determining the shipment require-
ment function is given by:

S(y) =max » S; (15)
e,u,S 4
ieN
subject to
Si < Mujo,i € N; (16)
t—1
Si < Wi —vit+ Y (y +iwgiv) + Mug, i € Nyt =1,2,...,T{17)
=1
T
t=0
Uit € {071}7 iEN,t:LQ,...,T; (19)
e € U(9), (20)

where M is a sufficiently large number.
Proof. Appendix 6.2. =

Corollary 17 At optimality for (9) and (15), i = 1 — ug, for alli € N and
t=1,2,..,N.
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Input (Hits Tits Wit)jenr =10, 7 V05 (Vi)iens Assume vo > 0;

Output  (y5;, BY, Tit)ienr 11 2. T}

Step

0 Set k« 0; 7%, « 0, Vi e Nt =1,2,...,T; II° — {ﬂo};Sﬂo(-) =0;

1 Solve the master problem (21)-(24) using I1¥; Extract solution y*, B
2 Solve MILP (15)-(20) using y*; Extract solution S(y*), u*, and *.

3 If S(y*) < wo then stop; Set (y*, B, 7%) « (yk,Bk,ﬂk) .

4 Else set 7771 — 1 —uf, Vie Nt =1,2,...,T;

5 Using (10) extract the coefficients of S, x+1(y) from S(y*), y*,eF, ©F+L;
6 Set IFT! —TIFU {7*} k — k+ 1

7 Return to step 1.

Table 1: Benders’ decomposition algorithm applied to the linear form of the
robust multi-period stock allocation problem.

Applying Benders’ approach, we state the master problem in linear form as

T
min » " B, (21)
t=1

y,B
subject to
Bt Z Wit (azt((s) _ylt)7VZ ENat: 17>T7 (22)
B, > 0,t=1,..,T; (23)
S(y) < wo,Vrell? (24)

where Sy (y) is the affine function given by (10) and IT* is some subset of the full
set II as of iteration k of the algorithm. The master problem can be solved as
a linear program. Benders’ decomposition algorithm as applied to this problem
is described in Table 4.1.

Proposition 18 Benders’ decomposition algorithm (Table 4.1) solves the Lin-
ear Form of the Robust Multi-Period Stock Allocation Problem (11) - (14).

Proof. Appendix 6.2. =

4.1.1 Large Numbers of Retailers: Regional Models

In many applications, the number of retailers can be extremely large. Com-
mercial applications involve thousands of retail locations; public health applica-
tions similarly have thousands of points of dispensing. Even with the approach
described above, it would be impractical to model uncertainty sets which con-
sider all possible demand combinations. Other modeling and approximation ap-
proaches would be required in such applications. It is outside the scope of this
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paper to consider or compare many such approaches: that might be best left to
application-specific research. Such models should also capture the multi-echelon
distribution structure that is likely present in such systems. Nevertheless, we
propose one variation which increases the reach of the robust optimization ap-
proach.

In the case of large numbers of retailers, they will likely be organized into
sales regions. Demand within these regions is also likely to exhibit correlation.
Suppose we wish to capture risk pooling effects at the inter-regional level as
well as at the intra-regional level. In that case, a natural modeling approach is
to imagine that demand at a retailer has two sources of variability, a regional
effect and a local effect. Let &7 denote the regional variation as a mean-zero,
variance-one random variable for region g and let €;; denote the local variation
as a mean-zero, variance-one random variable for retailer ¢ in period ¢. All such
random variables are mutually independent. Let N, denote the set of retailers
within region g and let G denote the set of regions. Demand at retailer ¢ in
period t is modeled as _

dit = puyy + 0JE] + TitEit,
for each i € N, g € G, and ¢t = 1,...,T, where of is the standard deviation
of the regional variation for region g. Modeling demand in this way leads to
consideration of an uncertainty set with the following form:

Eit S (5,V(i,t)
ef <6,¥(g,1)

e iy e < VITTEO,VI C N, (g, )
Ygeqr D & < VIGTH,YG C G, vt

Observe that the approach of Lemma 5 to representing the uncertainty set
constraints can be applied to each region separately as well as to the collection
of regions. This drastically reduces the number of constraints needed.

We conclude that, with suitable approximations, the robust optimization
approach is capable of capturing risk pooling effects even for large numbers of
retailers.

U(s) = (25)

4.2 Special Cases

4.2.1 Special Case: No Initial Retail Inventories and Only Two Pe-
riods

Let us now consider the special case in which there is no initial stock at any
retailer and there are only two periods in the planning horizon, that is, v; = 0
for all € A/, and T = 2. In such cases, it is likely that each retailer will receive
a shipment in the first period. The solution will therefore be indistinguishable
from a situation in which initial retail inventories are non-zero but each retailer
receives a shipment in the first period. Since the first period is typically associ-
ated with the receipt of stock at the central warehouse, this will be a common
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situation. In this case (10) simplifies to the following:

Sr(y) = max (Ti1yin + Tiayiz + Tiz (i1 + 0i1€i1)) -
eelU(d) “
ie N
Let I = {i:mj1 =1} and let I = {i:m;2 =1}. By Corollary 13, I; is the
set of retailers receiving their last shipment in the first period and I is the
set of retailers receiving a shipment in the second period. S;(y) is then the
maximum shipment required to minimally achieve the target inventories y under
that arrangement across all normalized demand vectors in the uncertainty set.
That is,

Sr(y) = Z yi1 + Z Yi2 + Z M1 + max Ti1€il-

s
ieh icl il €U T,
Consider the last term:
max Ji1€41- (26)
e€U(6)
el,

Let [j] index the retailer with the j* largest value of o;; for i € I and let
ny = |Iz|. Then,
O[1 Z 021 2 *** 2 Olnyll-

The optimization problem can be written as:

max Y ofjie)
j=1

subject to

> en < V8,V C I (27)

iel
Proposition 19 An optimal solution to (26) is to set:
epn =0 (Vi—vi—1)
forj=1,2,...,n9.
Proof. Appendix 6.2. =

Corollary 20 If 051 = o1 for alli € N, then

max 041€i1 = V |IQ|O'15.

eeU(9) iclo

Corollary 21 Ify > 0, p;; > 0, and 7 is an optimal solution to Problem (9)
for the given y, then w1 + mio = 1 for each i € N.

Proof. Appendix 6.2. =
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Corollary 22 Ify > 0, pu;; > 0, and 7 is an optimal solution to Problem (9)
for the given y, then Iy Uly = N and I, N I, = @.

In an attempt to further simplify the problem, we assume, for the balance
of this section, that y > 0 in the optimal solution to the robust stock allocation
problem. This will likely be the case for sufficiently large values of the stock
budget, vg. By the corollary, we need only consider 7 € II with 7;; + ;0 = 1, Vi.

Assembling these results, we have

|12

max Z y¢1+zyiz+2ui1+520m1 (f—vj—l) <y (28)
j=1

IL,CN ‘ :
iEN\Iz i€l i€ly

where the selector function [j] is relative to the chosen set I5. Next, we exploit
(8) to eliminate the y vector from the formulation. The constraint S(y) < wg
can be represented as

LN + Y ven i + O o (Vi - VT 1)

If we assume the retailers are identical in their demand characteristics and back-
order penalties, then further simplication of the shipment constraint is possible,
as we now show.

. { YA (din(8) —w;;'By) + Yicr, (dia(8) — wi' By) } <. (29)

4.2.2 Special Case: No Initial Retail Inventories, Two Periods, and
Identical Retailers

We continue the analysis of the two-period robust stock allocation problem when
v; =0, for all i € N and T = 2. In this section, we consider the special case in
which the retailers are identical in their demand characteristics and weighting
factors: p;; = py, 0t = o4, and wy; = wy for all 4 € A and ¢t = 1,2. We continue
to assume that y > 0 in the optimal solution to the robust stock allocation
problem. In this case, for a relaxed version of the problem, it is possible to
express the optimal solution in closed form.

Under the two-period, identical retailer case, let n = |I3|, the number of
retailers receiving a shipment in the second period. The two-period shipment
constraint (29) simplifies to:

(N — 71) (31(5) — wl_lBl) +n (82(5) — w{lBg)
n:(r)r,lf?.).(‘,N { +npq ++/no1d < -

In particular, knowledge of the set of retailers receiving shipments in period 2
collapses to knowledge of just n, the number of retailers receiving shipment in
period 2. The number of retailers receiving their last shipment in period 1 is
therefore (N —n).
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Let y; = d(6) — w;lBl and yp = da(d) — w;lBg. We assume that § is large
enough to ensure y > 0. Substituting back into the linear form, and discarding
constants from the objective function, results in a restatement of the robust
stock allocation problem as

max wiy; + waY2
Y1,Y2

subject to

ye < di(6),t=1,2
(N —n)y; +nys +npy +vVnod < wvo,m=1,2 ... N.

For the purpose of deriving analytical insight, we relax the integer constraint
on n and ignore the bounds on y related to the maximum demand in each
period. We designate the relaxed problem as the Relazed Robust Two-Period
Stock Allocation Problem with Identical Retailers (RR2), which is

max wiyi + way2 (30)
Y1,Y2
subject to
Ny1—|—1g711a§XN{\/ﬁal5—n(y1 —y2 — 1)} < vo. (31)

Note that the maximand of the left hand side of (31) is a strictly concave
function of n, provided o1 > 0. Let n* denote its optimizing value in the
optimal solution.

Theorem 23 If N > %2“’2 and vg > 5015, the solution to the problem (RR2)

18 given by:
« W (019)
1= N e
2 /MN
w2
. . 010
Y2 = M=~
2 (’w1+w2)N
and w
n*=-—2__N.
(wy 4 wo)

Proof. Let D(y,n) denote the maximand of the left hand side of (31):
D(y,n) = vVno1d — n(yr — y2 — pq)-
Its partial derivative with respect to n is given by

0D (y, 1
;) = fgl(s* (y1 — y2 — tq)-

on 2\/n
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Setting this derivative to zero provides a formula for the unconstrained optimizer

for n, denoted 7:
2
A= (m)
2(y1 — Y2 — 11q)

By the concavity of D(y,-),

].7 ify17y27ﬂ1>l0'15;
n* = N, ify17y27ﬂ1<m0'15;
m, otherwise.

Since the constraint (31) will be binding in an optimal solution, this results in
three possible expressions for the optimal ¥, as a function of y; :

y1 — py +vo — Ny; — 016, if (vo— Ny1) <%01(5;
y;: vﬁo—ul—ﬁalé, if (UO—Ny1)>\/2jO'1§;
y1 =+ 5 (o = Ny1) = —=010, if 5010 < (vo — Ny1) < YNg5.

Substituting for 7 in the last expression, we see that if %alci < (vp—Ny1) <
éjald, then

1 . (Uo—Nyl)—(ié)UlJ

()
2(y1—y3—p1)

Rearranging terms yields the following:

4
(010)°

Ys = Y1 — py +
2(y1—y3—Hq)

0= (y1— 5 — 1) (vo — Ny1) — (1 — 93 — )

Simplifying, assuming y5 # y1 — pq:

* _ N (015)2
Yo = U1 251 4 (UO — Nyl) .

Let Y = wyy1 + ways. Substituting for yo = y3,

(w1 —+ U)Q) Yy — 'LUQILl,l + wWoVy — ’lUQNyl — w2015, lf (UO — Nyl) < 5015;
W U +wa R — wapy — 010, if (vo — Ny1) > Y0165
w2(015)2 if %Oldg (’UQ—Nyl
(w1 +w2) Yo — w2ty = 50 Ry < YEg.5

2

Taking the derivative of Y with respect to y1, we get

”11)14’”(1)2(17]\7)7 if (U()*Nyl)<%0'15;
dY . VN .
e w1, if (vo — Ny1) > Y5-016;
2
Y1 (w1 +wa) — 44“(’12}5)‘11]%11;72—, if %015 <(vo—Ny1) < —V2N015.
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Consequently, if N > %;”2, any solution with (vg — Ny;) < 3016 can be
improved by decreasing y;. If, further, vg > %Uld, then y; = 0 would dominate
any solution in this region. Similarly, any solution with (vg — Ny;) > @016
could be improved by increasing y;. The optimal y;, therefore, must lie in the
third region. Setting % = 0 in this region yields

1 w2
vo—Nyl) =,/ ——Noid
(O yl) 2 (U}1+U)2) 1

and solving for y; yields

Vo (0’15)

yl:N_Q w1+w2N.
\/ wa

Substituting for (vg — Nyj) in the expression for y3 yields

<
[ V)

Il
<
=

|
=
—

2 (w1w+2w2) N

Finally,

o ()
2(y7 — 5 — 11)

2

Corollary 24 The optimal amount of stock to hold in reserve at the central
warehouse at the end of period 1 is:

1 w2
Ny ==,/ —2_Noys.
Vo Y1 B (w1+w2) 01

Surprisingly, the optimal stock to hold in reserve at the central warehouse for
allocation in period 2 in unaffected by v, the initial stock available in period

1 at the central warehouse, provided vy > %015. To see this another way,

Theorem 23 establishes that the worst case situation is for w“jfsz retailers
to receive shipments in the second period. This insight is new in the study

of allocation problems. The total shipment required in period 2 is therefore
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o5 NV (¥5 — y7) plus the demand which can occur at these -2~ N retailers.
Ignoring the integrality restriction on the number of retailers, this demand is at
most

- &Nul + LNQ&
wy + w2 w1 + we

by Corollary 20 in the identical retailer case. The stock held in reserve for period
2 must therefore be at least

wWo w2 w2
—= Ny —y})+ ———N +1/7N06
w1 + wo (y2 yl) w1 + wo H 1+ wo !
w3
= ———N — )
TS (Y5 — Y1 + 1) \/ Noy
—010
= w2 N a1 0'15
w1 + we 2 w1 + wao

(wl +w2

1 Wa
= 7,/7N )
2 w1 + w2 a1

units, as the corollary states.

Corollary 25 If N > 2, w; = wa, and vy > 5016, the solution to the problem
(RR2) is given by:

y* _ Uio _ (0-15)
! N 22N’
. (010)

Yy = R
and
n* = N/2.

and the optimal stock to hold in reserve at the central warehouse for period 2 in

problem (RR2) is given by
1 /N
Vo — Nyl = 5 50’16

Another way to view this result is to observe that the stock employed for
pooling risk in this allocation problem, vy — Nyj, grows with the square root
of the number of retailers. Another insight is that y3 approaches yi — u; as
N — oo. That is, due to risk pooling, the target minimum inventory level for
each retailer in period 2 becomes less dependent on demand variability as the
number of retailers increases.
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5 Experimental Results

In this section we report on an empirical study conducted to assess the contri-
bution robust optimization can make to optimizing stock allocation problems.
A general scheme for generating test cases is detailed in Appendix 6.1. The
relevant parameters are as follows:

e N, the number of retailers;

e T, the number of time periods (opportunities for allocation) in the cycle;

T, the average demand per retailer per day;

l, the average number of days per period;

1, the coefficient of variation of daily demand of the smallest retailer
(larger retailers experience lower coefficients of variation; hence v is the
maximum coefficient of variation across retailers);

e (3p, the Pareto demand shape parameter (5, = 0.2 results in identically
distributed demands across retailers, and 5 = 0.8 results in an 80-20 dis-
tribution: 80% of expected demand comes from only 20% of the retailers);

e (3, the Pareto period-length shape parameter (§; = 0.2 results in equal
period lengths, and 8, = 0.8 results in an 80-20 distribution: 80% of total
cycle days are concentrated in the first 20% of the number of periods);
and

e 7, the number of standard deviations of total system demand to hold as
safety stock.

The shape parameters allow us to generate test cases with non-identical
retailers and unequal period lengths. The appendix also details a method for
generating backorder weights but none of the experiments conducted to date
employ non-identical weights. For the purpose of this section, then, we take
wi = 1 for alli € M and all t = 1,2,...,T. Table 2 summarizes the parameters
used to generate test cases.

Demands are simulated using truncated normals. That is, we set

dig = (pp + 03Zin) ™

for each i € A and all t = 1,2,...,T, where each ;; is drawn independently
from a N(0,1) distribution. Note, first, that these demands cover allocation
periods each of which may span several demand periods. For example, if the
first allocation period covers five demand days, then d;; represents five days of
demand. Note, second, that the demand truncation introduces bias into the
simulation (i.e. E[d;] > p;;) and our results must be interpreted in light of this
bias. Each policy considered faces the same bias and so comparisons between
feasible policies should still be valid. However, in the case of non-identical
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Parameter Name Symbol Value Range

Number of retailers N 4,8

Number of periods T 2,3

Mean daily demand n 25,5

Mean days per period 1 )

Coefficient of variation P 0.5, 1, 1.5, 2,25, 3
Pareto demand shape Bp 0.2,0.8

Pareto period-length shape [ 0.2, 0.8

Safety stock factor v 1,1.5,2,2.5

Table 2: Parameter ranges for generating test cases.

retailers, the lower bounding policy may not yield a true lower bound as a
result of this bias. Most of the results, however, refer to the identical retailer
case.

Each simulation run corresponds to a sample vector Ek, given by

&= (&)
(i) EN x{1,2,....T}

for sample index k. We generate a total of 10,000 sample vectors (or cycles) and
re-use the same sample set with each experiment. This is a variance reduction
technique allowing us to estimate more precisely the impact of different policies
on performance. Each experiment is divided into 10 sample groups with K =
1000 sample vectors in each group. Performance metrics are computed for each
sample group and then averaged over all groups.

We simulate the performance of different policies in a rolling horizon setting
and compare them under different metrics. For simplicity, we assume that initial
inventories at all retailers are zero: v; = 0, for alli € N. Let 5" = (z5F") denote
the shipment decisions made under generic policy P for sample vector k. Two
metrics considered for each sample group are average time-weighted backorders:

1K T t t +
BTy (Y- 3
k=1lieN t=1 \#'=1 t'=1
and average terminal backorders:
1 X T T +
Tk ~
B3y (YA yar)
k=1lieN \t'=1 =1

Other metrics are introduced below for specific policies.

5.1 Robust Allocation in a Rolling Horizon

The Linear Form of the Robust Multi-Period Stock Allocation Problem is given
by (11)-(14). Implicit in the definition of the shipment requirement function,
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Sr(y), is the vector of initial inventories v. The robust allocation policy is formed
by re-solving the robust multi-period stock allocation problem at the beginning
of each period, setting the problem data to match the remaining periods of
allocation and the initial inventories to match the residual net inventories at the
end of the previous period. The Robust policy is denoted as Z* and its computed
average time-weighted backorders as BT and average terminal backorders as BX.

5.2 Policy Bounds

A lower bound on the minimal number of expected backorders can be developed
by allowing costless, instantaneous re-balancing of retail inventories in each
period. Suppose, in each period, echelon inventory is instantaneously reallocated
without restriction among retailers. We refer to this as the Rebalance policy and
denote it with a superscript B. If v; is the total echelon net inventory at the
beginning of period ¢, then the optimal allocation in period ¢, under the balance
assumption, is a myopic policy given by zZ(v;) :

o= gy, So[e)]

Dien TiSv ieN

We denote the average time-weighted backorders for this policy by B? and the
average terminal backorders by BE. The Rebalance policy is not feasible for the
system we consider. However, it is easy to see that it yields a lower bound on
our backorder metrics.

A natural upper bound on backorder metrics can be found by following the
Eppen and Schrage Ship All policy in which all stock is allocated in the first
period and no stock is held in reserve for rebalancing purposes. As noted, this
policy can be seen as a consequence of assuming that inventory rebalancing is
possible in every period. With that assumption, together with our assumption
that inventory holding costs are identical at every location, there is no motive
for holding inventory at the central warehouse. We use a superscript A to denote
the Ship All policy:

T +
NA = i Z Z d,
Ty = ar min FE ditr — 8; — T4
1 g Iilzoﬁie./\/ it ¢ ¢

2ien Ti1<v0 ieN t'=1

and 7} = 0, for all i € N and ¢ > 1.Since this policy does not reserve any stock
at the central warehouse, it cannot capture any of the potential risk-pooling.
We denote the corresponding average time-weighted backorders for this policy
by B4 and the average terminal backorders by B#. Also note that our bounds
are sensitive to the number of allocation periods, T', and their lengths.

It will be seen that, for some experiments, the Ship All policy outperforms
the Robust policy with respect to average time-weighted backorders. The Ro-
bust policy, on the other hand, will be seen to always outperform the Ship All
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policy with respect to average terminal backorders. However, this latter com-
parison is not fair. If the objective were truly to minimize expected terminal
backorders, it is easy to see that the optimal policy would be to reserve all stock
at the central warehouse until the last period, after demands for all periods
except the last period have been observed, and then to allocate it to minimize
expected terminal backorders. This suggests that the Robust policy may be
holding an excessive amount of stock in reserve.

To test this conjecture, we also consider a simple Ship Mean policy which
sets the target inventory level at each retailer in each period, except the last,
equal to the expected demand at that retailer in that period. That is, shipments
are made to raise net inventory at each retailer to the mean demand for the next
period. In the last period, or in any period for which central stock is insufficient
to meet the targets, the policy reverts to the Ship All policy in that period,
allocating stock to minimize expected terminal backorders in one final set of
shipments. Because the Ship Mean policy is so conservative in holding stock
in reserve until the last period, it can be expected to outperform other feasible
policies with respect to average terminal backorders but perform poorly with
respect to average time-weighted backorders. This comparison will permit us
to better see where the Robust policy falls between these two extremes. We
denote the average time-weighted backorders for the Ship Mean policy by BM
and the average terminal backorders by B3.

Since the Ship All policy involves no risk-pooling and the Rebalance pol-
icy captures all possible risk-pooling, the differences in metrics, B4 — BZ and
B{} — BE | are upper bounds on the risk-pooling benefit (average time-weighted
backorders and average terminal backorders, resp.) possible from holding some
stock in reserve at the central warehouse. Recall B® (B2 resp.) represent the
average time-weighted backorders (average terminal backorders, resp.) when
following the Robust policy. For each experiment sample group, we score the
Robust policy using percentages

BA - BE

R

and A R
r_ By — Br
" Bf - BF
called the capture percentage and terminal capture percentage, respectively. We
score the Ship Mean policy in a similar fashion (substitute B for B and BCIXI
for BE), denoting the results by C™ and C} | respectively. Using the 10 sample
groups for each experiment we construct 95% confidence intervals around the
mean capture percentages and mean terminal capture percentages.

Since the test cases differ widely, we need a metric to compare the ease or
difficulty of the underlying allocation problem. Let D7 denote the average total
demand in a sample group:

1 K T ~
) H

k=1ieN t'=1

C x 100%,
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Then a measure of problem ease is given by FZ :

B Bf
FP=(1—-—+ 100%
; ( DT) < 100%
which we call the Rebalance terminal fill rate: the fraction of demands served
within the allocation cycle under the Rebalance policy. The lower this ideal fill
rate is, the more difficult the underlying allocation problem must be. We also
compute terminal fill rates for the Ship All policy:

BA
Fi = (1 — D;) x 100%

and for the Robust policy:

R B’? %
Fr= <1—DT> x 100%
As with the other metrics, we use the 10 sample groups to estimate means and
confidence intervals for F.Z, F#, and FE. As with the other bounds, the fill rate
statistics are sensitive to the number of allocation periods and their lengths. In
particular, the fill rate for the Ship All policy varies with T and the length of
the allocation periods.

5.3 Test Results

Unless otherwise noted, the number of retailers, N, is 5, the number of allocation
periods, T, is 2, the average daily demand per retailer, [z, is 5, the average period
length, 1, is 5, and the safety stock factor, ~, is 2. We explore other values for
these parameters in some cases as well.

5.3.1 Identical Retailers, Equal Period Lengths, Varying COVs

In this set of experiments, we consider identical retailers (8, = 0.2) with equal
period lengths (8; = 0.2) and we vary the coefficient of variation of daily re-
tailer demand, 1. Table 3 shows the results. We notice immediately that the
Robust policy is capturing a large share of the risk pooling potential ranging
from 60.7% to 86.2%. Ignoring time-weighted backorders, we see that the Ro-
bust policy captures between 78.2% to 100% of risk pooling potential. These
capture percentages decrease markedly with increases in the coefficient of varia-
tion. Not surprisingly, we see that the rebalance terminal fill rate also decreases
with increases in the coefficient of variation, dropping from 99.4% to 96.48%,
indicating that the difficulty of the underlying allocation problem is increasing
in the coefficient of variation.

5.3.2 Identical Retailers, Pareto Period Lengths, Varying COVs

In this set of experiments, we consider identical retailers and varying coefficients
of variation, but we make the first period longer than the second period by
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$,COV | CE [CE FP F2 FI
05 862 | 100.0 | 9940 | 9872 | 99.40
' +£1.0 | +0.0 | +0.03 | +0.04 | +£0.03
Lo 85.8 | 99.6 98.80 | 97.44 | 98.79
' +1.1 | +05 | +0.05 | +0.08 | =+0.06
s 820 | 95.0 9819 | 9622 | 98.09
' +1.7 | £12 | +0.08 | £0.12 | =£0.09
20 733 | 844 9759 | 9512 | 97.20
! +£20 | +1.6 | £0.10 | +0.15 | +0.11
05 646 | 765 97.01 | 94.16 | 96.34
' +21 | +1.8 | +0.12 | +0.18 | =+£0.13
20 60.7 | 782 9648 | 9332 | 95.79
' +21 | £18 | +£0.14 | +020 | +0.14

Table 3: Simulation results for identical retailers, equal period lengths, and
varying coefficients of variation, showing robust capture percentage, C?, robust
terminal capture percentage, C, and terminal fill rates, F.¥, Ff, and F¥.

setting B = 0.8. As a result, the first period is 8 days in length and the second
period is 2 days in length. As motivated in the appendix, we refer to this setting
as Pareto period lengths.

Table 4 shows the results. The results initially suggest that shifting the
allocation point to later in the cycle makes things worse: the robust capture
percentages have all decreased from their counterparts in Table 3. Notice, how-
ever, that the robust terminal fill rates are all higher as a result of the relative
change in period lengths. As first noted by Silver, this suggests that shifting
the allocation point to later in the cycle makes it easier to achieve high service
levels. Put another way, the opportunity to exploit risk pooling has increased
with this change in period lengths. In this light, the Robust policy is capturing
a smaller share of a larger pie.

5.3.3 Identical Retailers, Three Periods

In this section, we return to considering identical retailers, equal length periods,
and varying coeflicients of variation; but we extend the number of periods to
T=3.

Table 5 shows the results for this three period case and we compare the re-
sults with Table 3. We note first that the rebalance terminal fill rate is generally
higher for the three-period case than for the two-period case, suggesting that the
opportunities for risk pooling are greater. The Robust policy terminal capture
percentage is also generally higher for the three-period case than for the two-
period case. It is therefore capturing a larger share of a larger pie. The story
is mixed for the robust capture percentage: in the three-period test case the
capture percentage is lower (82.9%) for the lowest coefficient of variation than
in the two-period case (86.2%) but the reverse is true for the highest coefficient
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»,COV | CE | CE FB F4 Fl
0.5 75.6 84.3 99.77 98.72 99.60
' +1.4 | £1.2 | £0.01 | £0.05 | +0.02
L0 48.6 75.5 99.54 97.44 99.02
' +1.2 | £1.3 | £0.03 | £0.11 | £0.05
L5 33.8 75.8 99.31 96.16 98.55
' +1.5 | 413 | £0.04 | +0.16 | +0.07
50 25.3 76.2 99.10 94.96 98.11
' +1.7 | +1.3 | +0.05 | £0.20 | +0.09
55 20.0 76.7 98.90 93.88 97.72
' +1.7 | £1.3 | £0.06 | +£0.23 | +0.11
10 16.5 77.3 98.70 92.92 97.38
' +1.8 | +£1.2 | £0.07 | 40.26 | +0.12

Table 4: Simulation results for identical retailers, Pareto period lengths, and
varying coefficients of variation, showing robust capture percentage, C?, robust
terminal capture percentage, C¥, and terminal fill rates, F.5, ij‘, and FE.

$,COV | CF [CE FPZ FA FI
05 829 | 100.0 | 99.68 | 98.94 | 99.68
' +1.1 | 0.0 | +0.02 | +0.03 | =+£0.02
Lo 824 | 99.3 99.36 | 97.87 | 99.34
' +12 | +04 | +004 | +0.06 | +0.03
s 796 | 95.5 99.01 | 96.85 | 98.91
' +13 | £08 | +0.05 | +£0.08 | =+0.05
20 71 | 922 98.63 | 9590 | 9842
' +1.1 | +0.8 | £0.07 | +0.10 | =+0.07
05 752 | 89.9 9824 | 95.02 | 97.92
' +£1.0 | +1.0 | £009 | +0.12 | +0.08
20 731 | 81.7 97.86 | 9422 | 974l
' +£10 | +1.2 | £0.10 | +0.14 | +0.10

Table 5: Simulation results for identical retailers, three equal-length periods,
and varying coefficients of variation, showing robust capture percentage, C,
robust terminal capture percentage, C¥, and terminal fill rates, F.Z, Ff‘, and
FE,
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of variation (73.1% versus 60.7%).

Comparing the results with Table 4, we note that the risk pooling oppor-
tunities are greater with the two-period Pareto-length case than for the three
equal periods case (the rebalance terminal fill rates are generally higher). How-
ever, the differences are not as pronounced as with Table 3. On the other hand,
the capture percentages are much lower. A tentative conclusion is that given
a choice between two regimes for allocating stock: three equal periods versus
two-periods with Pareto-lengths, the Robust policy will fare better under the
three equal-period regime.

5.3.4 Lower Demand Rate

In this set of experiments, we consider identical retailers, two equal-length pe-
riods, and varying coefficients of variation, but we cut the demand rate in half,
o = 2.5, to see if the results are sensitive to scale. The results are not displayed
as they are identical to Table 3. This is not surprising because the coefficient

of variation is preserved through the scaling.

5.3.5 Identical Retailers, Two Pareto-Periods, Varying Safety Stock
Factor

In this set of experiments, we consider the impact of the safety stock factor
and the choice of the uncertainty set parameter. All the experiments are run
with identical retailers (8, = 0.2), two Pareto-periods (8; = 0.8), and a high
coefficient of variation (¢ = 3). From Table 4, we would expect this to result
in relatively low capture percentages for the Robust policy. We consider safety
stock parameters ranging from v = 2.5, a relaxed setting, down to v = 1, a
stress setting. For each setting of the safety stock parameter we consider three
possible settings for the uncertainty set parameter: § € {y—0.1,7,v+ 0.1}.
This is by way testing a conjecture that the best choice of ¢ is § = ~.

Table 6 presents the results. As anticipated, all of the Robust capture per-
centages are relatively low (under 20%) because of the high coefficient of varia-
tion and the choice of period length. Of more interest is the direction of change
in capture percentages with respect to local changes in the uncertainty set pa-
rameter about the value of the safety stock parameter. Without exception,
increasing the uncertainty set parameter, ¢, in the neighborhood of «y leads to a
decrease in the Robust capture percentage, C*, but an increase in the Robust
terminal capture percentage, C’q@. It is outside the scope of this paper to recom-
mend a setting for the uncertainty set parameter; it appears to be a management
parameter with interesting tradeoffs.

5.3.6 Eight Pareto Retailers, Two Pareto Periods

In this set of experiments, we consider eight non-identical retailers with 8 =
0.8. The daily demand rates that result from this setting are shown in Table 7.
As motivated in the appendix, we refer to this case as having Pareto retailers
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v § CE ] CE FZ F7 Fl
vs | 94| 124 | 855 | 9953 | 9571 | 9897
S 1240 400 | £1.0 | 4005 | 4021 | +0.07
88 | 865 ) ) 99.01
251250 o1 | 110 £0.07
50 | 873 ) ) 99.01
25126 99 | 110 40.06
2o | 10| 190 | 757 | 9870 | 9292 | 97.29
O 7 | f19 | 007 | 026 | <013
65 | 773 ) ) 97.33
201200 yg | 419 40.12
38 | 787 ) ) 0745
200210 119 | 110 40.12
o 14| 180 | 08 | 968 | 8579 | 93.60
S 0 ] 209 | 013 | 4030 | 4093
168 | 633 ) ) 93.89
L5115 9 | 410 40.22
53 | 657 ) ) 91.08
L5160 s | 410 40.22
ol og | 120 | 420 | 9312 | s207 | srd
01090 406 | 206 | 2025 | +033 | 033
117 | 455 ) ) §7.58
LOPLO T o7 | +o6 40.33
11 | 487 ) ) 7,01
Loy L o7 | so7 40.33

Table 6: Simulation results for identical retailers, two Pareto-length periods,
a high coeflicient of variation, and various combinations of safety stock factor
and uncertainty set parameter, showing robust capture percentage, C®, robust
terminal capture percentage, CZ, and terminal fill rates, F.Z, Fq’i‘, and FX.
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1 2 3 4 5 6 7 8
Mean | 22.08 | 9.91 | 4.45 | 2.00 | 0.90 | 0.40 | 0.18 | 0.08
C.V. | 0.18 | 0.27 | 0.41 | 0.60 | 0.90 | 1.35 | 2.01 | 3.00

Table 7: Daily demand mean and coefficient of variation by retailer when N = §,
w=>5,p=0.8, and ¢ = 3.

Y Ct [ CE FP cM co
—425 | 986 | 9984 | —351.8 | 995
+3.7 +0.2 +0.01 +9.17 +0.1

5| 035 | 988 [ 9965 | —2329 | 99.0

21 432 | 402 | 001 +4.8 +0.1

Table 8: Simulation results for eight Pareto retailers, two Pareto periods, high
COV, and two safety stock factors, v, showing robust capture percentage, C%,
robust terminal capture percentage, CTB’, and rebalance terminal fill rate, Ff,
Ship Mean capture percentage, C™, and Ship Mean terminal capture percent-
age, CM.

since they follow an 80-20 rule with respect to demand rates. We consider a
high coefficient of variation, ¥ = 3, but this is only for the smallest retailer. As
the table shows, our test case generation approach assumes the larger retailers
will have lower coefficients of variation. We also consider two Pareto periods,
with 8; = 0.8. Because of the computational effort involved in the eight re-
tailer scenario, we limit consideration to only two settings of the safety stock
parameter: v = 1.5 and 2.

Table 8 shows the results. In this case, the Robust capture percentages
are negative: the Robust policy performs worse than the Ship All policy with
respect to time-weighted backorders. On the other hand, it performs quite well
with respect to terminal backorders (greater than 98.5% in both cases). This
suggests that it is conservative in reserving stock. The Ship Mean is an extreme
example of a conservative policy so we include its performance in the table
as well. The Ship Mean terminal capture percentages are marginally better
than the Robust policy but the Ship Mean capture percentages (i.e. for time-
weighted backorders) are a factor of 10 worse. The Robust policy is not nearly
as conservative as the Ship Mean policy.

5.3.7 Four Retailers with Varying Demand Shape Parameters

In order to further explore the phenomenon discovered in the previous experi-
ment, we consider a range of demand shape parameters varying from S, = 0.2
(identical retailers) to S = 0.8 (Pareto retailers), but limited to four retailers.
As in the previous section, we set the coefficient of variation of the smallest
retailer, ¢ = 3. Table 9 displays the results. The ideal fill rate, F.¥, from the
Rebalancing policy reveals that the allocation problem becomes progressively
easier as demand among the retailers becomes more unbalanced. This can be
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Bp ct | CF F7 Fi P}
0.2 16.53 77.26 98.70 92.92 97.34
' £1.77 £1.23 +0.07 +0.26 +0.12
0.35 4.34 82.69 98.93 94.15 98.10
+2.12 +1.16 +0.07 £0.22 +0.09
0.5 —38.95 90.30 99.30 96.27 99.01
' £3.63 +1.02 +0.05 +0.16 +0.06
0.65 —149.04 95.92 99.63 98.16 99.57
£8.70 +0.86 +0.03 £0.09 +0.03
08 —122.62 95.33 99.87 99.44 99.85
' £9.25 +0.94 +0.01 £0.03 +0.01

Table 9: Simulation results for Pareto retailers, Pareto period lengths, and
varying shape parameters, 3, showing robust capture percentage, Ct, robust
terminal capture percentage, C, and terminal fill rates, F'7, Fj‘f‘, and FE.

explained in part because the coefficients of variation of demand for the larger
retailers decrease. In other words, unbalancing the retailers is, in itself, a form
of risk pooling because concentrating demand in a smaller number of retailers
reduces the safety stock requirements. Furthermore, recall that system service
levels can be increased by supplying retailers more frequently. Consequently,
when demand rates are very low and coefficients of variation are very high, as
for the low demand rate retailers in these examples, we recommend a policy of
differentiation among retailers. Low demand rate retailers should be resupplied
more frequently than high demand rate retailers.

5.3.8 Computational Time

Finally, we consider the computational time required to determine the Robust
policy in a rolling horizon. For each test case and each demand sample we
capture the elapsed time to compute the policy. We then compute the average
elapsed time over all demand samples for each test case. Table 10 computes the
mean and standard deviation of these test case averages across test cases with
similar dimensions. As can be seen, there is a dramatic increase in computation
time when the number of retailers is doubled. For eight retailers, the policy
requires approximately one minute of computation time. Computing the policy
for 10,000 samples requires approximately 180 hours on a single processor. For
this reason, we have focused the studies on the cases with four retailers.

5.3.9 Conclusions

In this paper we have re-visited a long-standing multi-echelon inventory alloca-
tion problem and considered it afresh from a robust optimization perspective.
We formulated the problem as a one warehouse, N —retailer, multi-period, stock
allocation problem in which holding costs are identical at each location and no
stock is received from outside suppliers for the duration of the planning horizon.
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Scenario N
Dimensions T=
1
0

Mean
Std.Dev.

Table 10: Computation time (in seconds) to compute the robust policy in a
rolling horizon fashion for a single demand sample, averaged over samples and
summarized by test case dimension.

Stock may be transferred from the central warehouse to the retailers instanta-
neously and without cost at the beginning of each period whenever the central
warehouse still has stock on hand. No other stock transfers are allowed. Under
this set-up, the only motive for holding inventory at the central warehouse for
allocation in future periods is the so-called risk-pooling motive. The dynamic
programming formulation of this problem requires a state space too large for
practical computation. Various approximation methods have been proposed for
variants of this problem. In this paper, beginning with a single period allocation
problem, we have shown how to formulate both the objective function and the
constraints needed to apply robust optimization to this problem. In particu-
lar, the objective of minimizing expected backorders is replaced by minimizing
maximum backorders; the uncertainty set is expanded to include limits on par-
tial sums of demand across retailers; and, the decision variables are partitioned
into target inventory variables, which are set before demands are observed, and
shipment variables, which are consequences of the inventory targets and the
observed demands. The target inventory variables are optimized against the
worst case observed demands. We have shown how to represent the uncertainty
set compactly so that it grows by no more than the square of the number of
retailers. The problem can be solved using Benders’ decomposition employing
a linear program as the master problem and a mixed-integer linear program as
the subproblem. In the special case of no initial retailer inventories, two peri-
ods, and identical retailers, a relaxed form of the problem admits a closed form
solution. A surprising result of this special case is that the optimal stock to
hold in reserve at the central warehouse for allocation to retailers in the second
period is invariant to the initial stock at the warehouse. Furthermore, this stock
is proportional to the square root of the number of retailers. Risk pooling is
captured in the formula through the interesting result that the worst case num-
ber of retailers to participate in the period 2 allocation is exactly N/2 in the
relaxed problem.

Summarizing the experimental results of the paper, we see both confirmation
of the value of the robust optimization approach as well as managerial insights
into the design and operation of multi-echelon inventory systems. In contrast
to previous studies, we find that the Ship All policy, which ignores the risk-
pooling phenomenon, works well in systems with highly unbalanced demand
rates across retailers. This is because the act of concentrating demand in a
small number of retailers is, in itself, a form of risk pooling: the coefficient of
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variation of demand at the larger retailers can be expected to be much smaller
than at the smaller retailers. The Robust policy performs worse than the Ship
All policy in highly unbalanced systems: it is too conservative in reserving
stock centrally. However, we also observed that system service levels can be
increased by supplying retailers more frequently. Consequently, when demand
rates are very low and coefficients of variation are very high, we recommend
a policy of differentiation among retailers. Low demand rate retailers should
be resupplied more frequently than high demand rate retailers. In all other
situations considered, with identical demand rates across retailers, the Robust
policy outperforms the Ship All policy both in terms of time-weighted backorders
and terminal fill rate. The degree to which the Robust policy captures the risk-
pooling potential benefit is affected by the coefficient of variation of demand,
the number of periods, the relative period lengths, the initial stock level, and
the uncertainty bound.

Computation times increase in the number of retailers considered, but are
small in comparison with dynamic programming approaches.

Future research on this topic should include comparison of the quality of
robust solutions with those of approximate dynamic programming, scaling the
algorithm and testing with large numbers of retailers, developing guidelines or
heuristics for setting the uncertainty bound parameter, and extending the model
to include procurement as well as allocation.
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6 Appendices

6.1 Experimental Design

In this section, we propose a model for generating test cases based on an eco-
nomical set of generating parameters. Let p; denote the expected daily demand
at retailer 7, 7 € N. Let N = |N]. Let i@ denote the average daily demand across
retailers: @ = N~! vazl ;. We assume the distribution of demand across re-
tailers, in expected value, follows a Pareto law:

;= oy g, (32)

for some ap < 1, for : = 1,2,..., N. When ap = 1, the retailers are identical
and p; = . When ap < 1, we have the relationships

1—aof
Z,uz_:ull L
—Qap
and NE(1 )
p{l—ap
= — 33
251 1_a]£)] ( )

so the parameters 7w and ap are sufficient to generate the complete vector of
daily demands, (i, ..., uy) . We seck to create demand distributions for which
some prespecified fraction, 5, of total demand is concentrated in the largest
20% of retailers. That is, we look to create distributions satisfying the relation

E:n 1 /’[/L
Zz 1:“1

where m is approximately 20% of N. This reduces to finding a value of ap,
which we call ap (), which satisfies

=5,

) 1— a[O.ZN]
a1—1>1(rxlD 1—aN /BD'

This equation does not have an analytical solution but can be solved easily by
a search procedure. Observe that S = 0.8 will approximate the common 80-20
Pareto distribution and 8, = 0.2 will yield ap(8p) = 1 (the limit of the left
hand side, as ap approaches 1, by L’Hopital’s Rule, is 0.2). As a result, the
two parameters i and (8, are sufficient to generate the complete vector of daily
demand means. We refer to 5 as the Pareto demand shaping parameter.

Let ¢ denote the coefficient of variation of daily demand of the smallest
retailer. The standard deviation of daily demand of the smallest retailer is
therefore Y N The variance of demand of the smallebt retailer ib (Y N)2 . As-

(WN) - For
example, if a retailer has twice the rate of daily demand of retaller N, that is,

W; = 2, then its demand behaves like the sum of two independent demand
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streams each with the standard deviation of the smallest retailer. Let o; denote
the standard deviation of daily demand for retailer i. According to the previous

logic, we have
0 = U\l (34)

i =1,..., N. Consequently, given the vector of demand rates, the parameter 1) is
sufficient to generate reasonable choices for daily demand standard deviations.

Let T denote the number of allocation periods in the problem. Let [; denote
the length (number of days) of allocation period ¢. We assume that the periods
are non-increasing in length: [y > ls > ... > lp. In parallel fashion to the
way we generate the mean daily demand parameters, we assume we are given
the average number of days per period, [, and a Pareto period length shaping
parameter, ;. From these, we determine a value of oy, called ar (8} ), which

solves
1— a[O.QT]

lm ——— =
a—ar 1 —aT Pu

and the length of the first period, 1, using

I = Tz(l—aL(ﬁL))
YT 1 —an(B)T

The remaining period lengths are given by Iy = ar(8.) "y, t = 2,3,...,T.
Setting 8;, = 0.2 will result in period lengths being identical. We do not require
period lengths to be integer because the period length is used only to scale
demand rates.

Combining the daily demand rates with the period lengths permits us to
generate the period demand rates required by the optimization model:

fyy =Ly, i=1,2,. Nit=1,2 T

Similarly, assuming daily demands are independent and identically distributed
over time, the standard deviations of period demands are given by

o =lo;, i=1,2,.. ., N;t=1,2,...,T.

In summary, using this test case model, the demand parameters for the
optimization model can be generated from the following seven test parameters:
n, ﬁ? 5D7 1p7 T7 lv and 5[/

Considering the initial conditions for the optimization model, we assume that
initial inventories at all retailers are zero in all test cases: v; = 0, ¢ € N. This is
equivalent to assuming that the delivery of stock which initiates the allocation
cycle is sufficient to raise all retailers to their ideal target inventories and that
no retailer has more than its ideal target level. The ideals are computed relative
to the total amount of inventory in the system. So, for simplicity, we assume
all inventory in the system is initially concentrated at the central warehouse.
We express the initial system reserve stock, vg, in terms of a parameter -, the
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safety stock factor under the assumption that all demand is concentrated in a
single location and time period:

T
vo = TINT + v thZUf.

t=1 ieN

That is, v is the number of standard deviations of total system demand to hold
as safety stock. Assuming that normal operation of the system would result in
at least two standard deviations of total system demand, we assume that v <1
would represent a system under stress and v > 3 would represent a system flush
with stock.

Substituting sequentially for o;, py and p, from (34), (32), and (33), re-

spectively, yields
TINE + 7, [T Z g
ieN

TINT + v/ Tluy N

Vo

TINT + v/ TlaN =1y NTi

_ _ 1—
— TING+A9NE  Gimy/TlaN-1 3T

a—ap(Bp) 11—«

For the special case of identical retailers, 8, = 0.2 and ap (8p) = 1, this
reduces to

vo = TINT + vV TIN.

The optimization algorithm can be tuned by choosing different values of
4, the uncertainty set parameter. Two natural values to consider would be
0 =2 and § = 7. The optimization algorithm can be further tuned by choosing
different values for the time period weights, w;, t = 1,2, ...,T. We consider the
following time period weighting scheme: w, = t, t = 1,2,...,T. Hence, § = 0
generates equal weights, 6 > 0 generates weights which increase over time,
and 0 < 0 generates weights which decrease over time. Finally, in the case of
non-identical retailers, the algorithm can be tuned by choosing retailer-specific
weights. Motivated by Corollary 4, we propose the following scheme:
Wt
Wit = —=
it
for every i € N, t = 1,2,...,T, where w € {0,1}, a weighting scale exponent.
Setting w = 0 results in w;; = w; for all 4 € A/ i.e. it corresponds to no weight
adjustment at the retailer level. Setting w = 1, adjusts the weights as suggested
by Corollary 4.
Table 11 summarizes the parameters used to generate test cases.
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Parameter Name Symbol
Number of retailers N
Number of periods T

]

l

Mean daily demand

Mean days per period

Coeflicient of variation )
Pareto demand shape Bp
Pareto period-length shape [
Safety stock factor ~y

Table 11: Parameters and symbols for generating test cases.

6.2 Standard Proofs

Many of the results of the paper are established using standard proof approaches
and are not particularly instructive. We collect such proofs in this appendix to
allow a more focused presentation in the main body of the paper.

6.2.1 Proposition 1

+
Proof. Let Fj(x;;v;) = E {(dl — v — :cL) } , 1 € N. Then we wish to solve

min E Fi(zi;v;).
x;>0,ieN
Yien Tilvo N

The Karush-Kuhn-Tucker conditions for optimality imply Z—Z + 6 > 0, for all
i € N, with equality holding if 2; > 0, where 6 is the Lagrange multiplier
corresponding to the constraint . ci7 Ti < vo and 6 is non-negative. Expanding
F;, we have

Fi(xz‘;vi) = /OO (di_vi_xi)fi(di)ddi

itTi

oo

= [ o= - m) (o)
VitTi—py

where f; () is the density function for the random variable d; and g (-) is the

common density function for the random variable €. The derivative is given by

dFZ' oo
dr; _/WM g(e)de
—, Ui tT;— W
= —_ G i ’
( - )

Let y; = v; + x;. Then the optimality condition states that

oF}
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for all i € N, with equality holding if y; > v;. By assumption, G(¢) > 0 for
all €, so we must have § > 0 in the optimal solution and, hence the constraint
Eie ~ Ti < wg must be satisfied with equality. Let N Dbe the set of retailers for

which y; > v;, that is, given y, N is the set of retailers which receive a positive
allocation. Thus, G(y’ a #F) are equal for all i € N and 6 provides the common

fractile value. Hence, the optimal value y; satisfies yf = p; + G 1(0)01 for all
ieN. Noting x} = y — v; and the definition of N, the result follows quickly.
]

6.2.2 Proposition 2.

Proof. Clearly, the worst case demand satisfies €f = §, for all : € . Further-
more, if B* > 0 then S(y*) = vg. For y; to be feasible, we must have

yr > p; + 06 — w; B

Suppose, by way of contradiction, that y > p; + 0,6 — w;lB* for some i. If
y¥ < v, then xf = 0 in the solution to S(y) and y; can be decreased without
changing either S(y) or the value of B*. On the other hand, if y* > v; then the
corresponding shipment z} = y — v; is positive. If B* > 0, then, by decreasing
y;, it would be possible to increase the shipments to all other retailers, j, for
which y7 = p; + 0,0 — w;lB*. It follows that it would thereby be possible to
decrease B* thus contradicting its optimality. Alternatively, if B* = 0, then, by
decreasing y¥, S(y) can be decreased without any change to B*. Hence, it must
be possible to find an optimal solution satisfying the stated condition. m

6.2.3 Corollary 4

Proof. In this situation, y;(B) = u; + (6 — w™'B) 0;. Comparing this with (1),
we let -

0=G(6—w 'B").
Then y;(0) = y;(B*) and, by Corollary 3, 6 satisfies (2). m

6.2.4 Proposition 8

Proof. Both the linear program and the expression for S(y, ) are separable by
retailer. Let S;(y;,e;) denote the problem restricted to retailer i. The solution
(4) is feasible for the linear program and so S;(y;,&;) is an upper bound on the
linear programming solution restricted to retailer 7. Let ] denote an optimal
solution to the linear program. Let ¢ be the first period for which x}, # z; ().
Since x;:(g) is minimal, we must have z};, > x;(e). Define a new solution
reducing the t'* component of x} by x}, — x;/(¢) and increasing the t + 1
component of 7 by the same quantity. It is easily verified that this solution,
), is also optimal but now differs from z;(g) starting in the ¢ + 15! component.
Continuing in this manner, we find that z;(¢) is optimal for the linear program
and so S;(y;, ;) must equal the optimal objective value of the linear program
restricted to retailer ¢. m
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6.2.5 Proposition 10

Proof. If ¢t} (¢) = 0, then no objective coefficient in (6) is positive for retailer i.
In this case the optimal solution will be to set 7}, (¢) =0 for all t = 1,2,...,T. If
t¥ (¢) > 0, then a marginal analysis argument can be used to show that, barring
ties, any solution in which more than one 7;; > 0 for any 7 can be improved by
increasing the 7, for the period ¢ with the largest objective coeflicient, ¢} (¢),
and decreasing the others. In the case of ties, the solution is unchanged by
increasing one of the tied variables and decreasing the others. Hence, for each
i € N, an optimal solution consists of setting one m;; = 1 and the rest equal to
zero. M

6.2.6 Proposition 12
Proof. By (5)

t t—1
Z T (€) 2 Yir — vi + Z (i + oiEirr)
=1 =1

with equality holding if 2;;(¢) > 0. Furthermore, Zi,:l x;(€) is non-decreasing
in ¢t. Suppose Zle x;+(e) > 0. Let 7 = 7; (¢) denote the last period in which
x;(e) > 0. It follows that

T t—1
Z ziv () = Si(y,e) = R <yit — v + Z (Hip + O'it’ffit’)>

t'=1 t'=1

where S;(y, ) is the required shipment for location i. Note that we have dropped
the positive part function under the assumption that x;;(g) > 0. It follows that
for this value of 7 we have

T—1 -1
Yir —vi+ Y (M + Owwein) = =TT (yit —vit > (i + Jit/&tl)) '

t'=1 t'=1

That is, 7 is a candidate for ¢f(¢). In the case of ties, we defined tf(¢) to be
the earliest period ¢ optimizing the right hand side. Consequently, ¢f(¢) < 7.
Suppose, by way of contradiction, that ¢} () < 7. In that case, we would have,

by (5),

ti (¢) ti(e)—1
dowi(e) = i —vit D, (W +oiwei)
=1 t'=1
= D ()
t'=1

leading to the conclusion
.

Z l'it/(é?) =0

t'=t7(e)+1
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which contradicts the assumption that x;,(¢) > 0. Consequently, ¢ () = 7. On
the other hand, if 23:1 x;+(e) = 0, then 7;(¢) = 0, by definition, and the result
holds trivially. m

6.2.7 Proposition 15

Proof. This is a straightforward consequence of the fact that S(y) is nonde-
creasing in y. That is, if (y°, B*) is any optimal solution to (7) with g§, >
d;;(6) —w;;* B}, then it can be shown that y* as defined by (8) satisfies y* < y°
and, hence, S(y*) < S(y°) < vo. The combination (y*, B*) is therefore feasible
and yields the same objective value as the optimal solution (yo, B*) . m

6.2.8 Proposition 16

Proof. Denote an optimal solution to the MILP using the superscript "«". The
binary variables u, act as selectors. For each ¢ € A, there will be exactly one
uf, = 0, and hence if t > 0, then S} = y;; —v; + Z:;ll (g + oipel,,) for that
value of ¢. If u;0 = 0, then S} = 0. It follows that

t—1 +
S; = max <yit —v; + Z (i + Uit’£:t’)>

t=1,2,...,T
=1
and that S(y) = >, 5. =

6.2.9 Proposition 18

Proof. Initially, i.e. on iteration k = 0, we set So(-) = 0. That is, we ignore
the shipment constraint on the first iteration. Let (y*, B¥) denote the optimal
solution to the master problem on iteration k. The sub-problem at the k"
iteration is to solve .
max Sr(y").

The optimal solution to the k' sub-problem is denoted by 7*. It follows that
if Sk (y*) < v, then (y*, B¥) is an optimal solution to the original problem.
In this case, the algorithm is terminated. On the other hand, if S.«(y*) >
vp, then, clearly, 7% ¢ II*. Consequently, we extract the coefficients for S« (y)
using (10) and add the constraint S;x(y) < vo to the master problem. We
replace IT* with II*+t! = IT* U {ﬂ'k} and repeat the process. Since II is finite
and a new element, 7%, is identified on each iteration which fails to find an
optimal solution, the algorithm must terminate with an optimal solution in a
finite number of iterations. m
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6.2.10 Proposition 19

Proof. The proposed solution satisfies the following constraints of (27) with
equality:

5[1]1 = 5
epp +epn = V26
enp e o FEmt = Vn2d.

These correspond to subsets I = {[1]},{[1],[2]}, ..., {[1], [2], ..., [n2]} of I3, re-

spectively. Denote the dual variables for these constraints by 711y, M{[1,121} -+ M{[1),[2],....[na]} *
respectively. Set all other dual variables, n;, I C I3, to zero and solve the dual

equations to find:

T[22y = o]t
{1, (2)ne=1]} = Plna—1]1 = Tna]1
Ty = [ T 9

By construction, 7 > 0 and so 7 is dual feasible. The primal objective is given
by

no

no
>ognesn = Yoopnd (Vi-vi-1)
j=1 j=1

nzfl
= Z (op11 = o11) VIO + Oy v/126.
j=1

The dual objective is given by

Z 01\/m5 i Z mmé

ICI, n=1 ICI,

[I|l=n
= D)2, ) V7O
n=1
ngo—1
= Z (Ot — Ofnt1)1) VIO + Oy /020
n=1

The dual objective value is therefore equal to the primal objective value. By
duality, we have found an optimal extreme point. =
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6.2.11 Corollary 21
Proof. By (5),
2
Z T (€) > Yiz + pi1 + oir€n
=

for each i € N. By Proposition (19), the optimal ¢ is positive. Under the
conditions of the corollary, therefore, for each i € N, we have

2
Z Tt (6) > 0.

t'=1

That is, the optimal ¢ requires that the shipments to each retailer be strictly
positive in at least one of the two periods. Consequently, by Corollary (13) at
least one of m;; or m;» must equal 1, for each i € N. ®
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