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Abstract

In this paper we analyze demand for cycling using a discrete choice model with

latent variables and a discrete heterogeneity distribution for the taste parameters.

More specifically, we use a hybrid choice model where latent variables not only enter

into utility but also inform assignment to latent classes. Using a discrete choice exper-

iment we analyze the effects of weather (temperature, rain, and snow), cycling time,

slope, cycling facilities (bike lanes), and traffic on cycling decisions by members of

Cornell University (in an area with cold and snowy winters and hilly topography). We

show that cyclists can be separated into two segments based on a latent factor that

summarizes cycling skills and experience. Specifically, cyclists with more skills and

experience are less affected by adverse weather conditions. By deriving the median of

the ratio of the marginal rate of substitution for the two classes, we show that rain

deters cyclists with lower skills from bicycling 2.5 times more strongly than those with

better cycling skills. The median effects also show that snow is almost 4 times more

deterrent to the class of less experienced cyclists. We also model the effect of external

restrictions (accidents, crime, mechanical problems) and physical condition as latent

factors affecting cycling choices.
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1 Introduction

The negative externalities of automobile-dependent societies range from congestion

and high levels of pollution to health issues due to lack of physical activity (Litman

and Laube, 2002). One of the solutions to the degradation in livability provoked by

automobile dependency is the adoption of non-motorized alternatives. In particular,

there are several benefits associated with the use of cycling (Hillman, 1993; Sallis

et al., 2004), including better air quality, no fossil fuel dependency, less noise, more

efficient use of space, increased levels of physical activity, competitive speed on middle

range distances, low purchase price and virtually zero operating costs (Heinen et al.

2010; Jones et al, 2009; Rabl and Nazelle 2012; Akar and Clifton, 2010).

To encourage the use of non-motorized alternatives we need to better understand

the motives underlying demand. Econometric travel demand models are highly valu-

able for assessing the effect of policies and incentives seeking to reduce the indiscrim-

inate use of cars. In fact, forecasting demand using discrete choice models has proved

to be successful in the case of modal split among motorized alternatives. Excellent

literature reviews of modeling the disaggregate demand for cycling are provided in

Sener, et al. (2009), Heinen, et al. (2010), Li et al. (2013), Fernández-Heredia et al.

(2013), and Maldonado-Hinajeros et al. (2014). In particular, Fernández-Heredia et

al. (2014), Habib et al. (2014) and Maldonado-Hinajeros et al. (2014) discuss the

integration of discrete choice models of cycling decisions with subjective (latent) fac-

tors, using hybrid choice models (Walker and Ben-Akiva, 2002; Ben-Akiva et al.,

2002; see also Bhat et al., 2015 and Kamargianni et al., 2015).

The review papers cited above discuss some of the challenges in the application of

discrete choice analysis to non-motorized options. Users of the transportation system

may be motivated to cycle or walk not because of the tradeoff between cost and time

(the main determinant of motorized mode choice), but because of health and environ-

mental benefits of these alternatives. Improvements in health and in environmental

footprint, for example, are positive externalities that are difficult to quantify. Addi-

tionally, several factors may discourage choice of non-motorized transportation, such

as poor accessibility, safety concerns (Wilkinson et al., 1994; Pucher and Dijkstra,

2003), and unfavorable route and weather conditions. For instance, it is often argued

1



that the American North East has a poor climate for cycling (see the discussion in

Pucher and Beuhler, 2011).

In this paper we analyze demand for cycling using a discrete choice model with

latent variables and a discrete heterogeneity distribution for the taste parameters.

Our technical contribution is to use the estimator of a hybrid choice model where

latent variables not only enter utility but also inform assignment to latent classes.

Using a discrete choice experiment we analyze the effects of weather (temperature,

rain, and snow), cycling time, slope, cycling facilities (“bike paths”), and traffic on

cycling decisions by members of the community of Cornell University. We note that

analyzing commuting patterns in university campuses has become a relevant case

study for better understanding adoption of sustainable transportation (Shannon et

al., 2006; Akar et al., 2012; Akar et al., 2013; Whalen et al., 2013; Danaf et al., 2014;

Rotaris and Danielis, 2014; Erdogan et al., 2015).

In the hybrid choice modeling literature, most empirical applications consider a

conditional logit kernel (for example, Kamargianni and Polydoropoulou, 2013) be-

cause of the problems associated with maximizing the complex likelihood function

of the model (cf. Kamargianni et al., 2015). Habib et al. (2014), for example, work

with a combination of binary logit and bivariate probit models. Other researchers

have been working on the incorporation of random parameters with continuous het-

erogeneity distributions. For example, Maldonado-Hinajeros et al. (2014) consider a

mixed logit kernel with latent variables. Nevertheless, these authors use a limited

information estimator that has poorer statistical properties compared to the joint

estimator. In this work we use a full information estimator for the combination of a

hybrid choice model with a latent class module. Our methodological approach differs

from the work of Hurtubia et al. (2014) in that we model the effect of the latent

variables on the class assignment probabilities. The remainder of the paper proceeds

as follows. In Section 2, we describe our data collection method and statistics of the

data. In Section 3 and Section 4, we describe our results from Structural Equation

Modeling and Discrete Choice Modeling, respectively. In Section 5, we conclude by

discussing the results and policy implications of our study.
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2 The Data: Cycling Choices in a University En-

vironment

2.1 Motivation

Universities campuses are no exceptions from an auto-dependent environment where

much of the infrastructure is built for cars and other motorized vehicles rather than

for bicycles and pedestrians. In the last decades, however, numerous colleges have

been adopting transportation demand management plans that aim at reducing mo-

torized trips to and within campus (Barla et al., 2015). Bicycling improvements are

particularly appropriate and effective for transportation management on university

campuses for a number of reasons. University communities consist of many young

and physically active commuters. If student commuters acquire environmental trans-

portation habits it is likely that they will retain these habits after their graduation

(Balsas, 2004). Nevertheless, if one expects that bicycling improvements will raise

ridership in the future, careful planning and appropriate investment in bicycle in-

frastructure are necessary in order to accommodate future demand. Since accurate

ridership prediction is indispensable for those planning investment decisions, it is

important to identify the significant factors related to the motivation for people to

bicycle.

Since the institution of a Transportation Demand Management Plan in the 1990s,

Cornell University has continued to promote sustainable land use and environmen-

tally friendly transportation plans, such as encouraging mixed land use, limiting

growth within core campus boundaries, and ensuring a walkable and a cycling-

friendly campus environment. Despite these efforts and despite the fact that a major-

ity of students – 84% of graduate students and 97% of undergraduates – live within

5 miles of campus, the share of bicycle as a commuting transportation mode is very

small. The 2006 Cornell University Travel Survey showed that the share of bicycle as

the primary commuting mode was 1.4% for undergraduate students, 4.0% for grad-

uate students, and 3.1% for employees (the US average share of cycling was roughly

1% in 2009; Pucher et al., 2011). There are two main factors that discourage the

use of bicycles as a commuting mode at Cornell. The first is topography. The Ithaca
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campus of Cornell is located on a hill about 400 ft. (122 m.) above downtown of the

city of Ithaca. Buffalo street, which connects downtown Ithaca and the area adjacent

to campus called Collegetown, has a 15% grade (slope). The second factor is weather.

The climate of the area where Cornell is located – upstate New York – is character-

ized by hot and wet weather in summer (in July, the average maximum temperature

is 80.1F / 26.7C and the average precipitation is 3.54 inches / 8.99 cm), and cold and

snowy weather in winter (in January, the average minimum temperature is 13.9F /

-10.1C, and the average snowfall is 17.9 inches / 45.47 cm).

2.2 Data Collection

In this project we used a web-based survey to analyze bicycle route choice by eval-

uating (1) the trade-offs among the route facility attributes such as travel time and

existence of bike lanes, and (2) the effects on weather conditions on route choice

decisions. We designed the survey instrument in multiple stages – two focus groups,

one pilot, two samples for full data collection – to reflect specific needs of the Cornell

community. We first reviewed several survey instruments to identify questions for

desired topics, such as travel patterns, environmental factors, and perceptions asso-

ciated with bicycling (Akar and Clifton, 2009; Stinson and Bhat, 2003). We chose an

online survey instead of a paper survey because of the high rate of Internet usage in

the target population.

The survey instrument consisted of 23 survey items, which fell into six cate-

gories. The first category, “Travel characteristics”, asked about basic travel patterns,

including bicycle use. The second category, “Obstacles”, was concerned with factors

that discourage respondents to commute to campus by bicycle (What keeps/would

keep you from riding a bicycle more to/ on campus?). The third category, “Improve-

ment”, was concerned with factors that encourage the use of bicycle (What encour-

ages/would encourage you to ride a bike to/ from campus?). Included in the second

and third categories were factors primarily related to the natural and built environ-

ments and the lack of bicycle facilities. The fourth category, “Behavior and Percep-

tions”, included seven statements about subjective perceptions related to bicycling

and self-evaluation of physical ability (Indicate whether you agree or disagree with
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the following statements). Categories 2-4 used a five-point Likert Scale (“Strongly

Disagree”, “Disagree”, “Neither Disagree or Agree”, “Agree”, and “Strongly Agree”).

Since bicycling necessarily requires physical efforts, we also speculate that the de-

cision to bicycle is also related to one’s willingness and confidence to exercise; thus

we included three questions asking about a respondent’s willingness to exercise and

his or her perception of own physical ability. The fifth category consisted of 6 binary

route choice experiments, which will be discussed in the next section. Finally, the

sixth category consisted of questions regarding respondents’ basic socio-demographic

information.
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Table 1: Descriptive statistics of the sample.

Total N = 599 Sample 1 N1 = 544 Sample 2 N2 = 55

Respondent characteristic Total % Total % Total %

Male 250 42% 220 40% 30 55%

Access to bike (yes=1) 323 54% 291 53% 32 58%

Advanced, confident cyclist 127 21% 110 20% 30 55%

Intermediate cyclist 195 33% 176 32% 19 35%

Cycling commute: never 497 83% 451 83% 46 84%

Cycling commute: less than once a week 32 5% 31 6% 1 2%

Cycling commute: 1-2 days a week 29 5% 31 6% 1 2%

Cycling commute: 3-4 days a week 18 3% 18 3% 0 0%

Cycling commute: 5+ days a week 15 3% 15 3% 0 0%

Commute mostly by car 66 11% 58 11% 8 15%

Commute mostly by bus 168 28% 145 27% 23 42%

Live on campus 164 27% 156 29% 8 15%

Distance to campus: within 1 mile 276 46% 253 47% 23 42%

Distance to campus: 1-5 miles 118 20% 101 19% 17 31%

Distance to campus: 5-10 miles 18 3% 13 2% 5 9%

Age: 18-22 351 59% 332 61% 19 35%

Age: 23-27 116 19% 91 17% 25 45%

Age: 28-40 78 13% 70 13% 8 15%

Age: 40+ 54 9% 51 9% 3 5%

Exercise frequency: never 37 6% 37 7% 0 0%

Exercise frequency: less than once a month 34 6% 31 6% 3 5%

Exercise frequency: once a month 19 3% 19 3% 0 0%

Exercise frequency: 2-3 times a month 66 11% 59 11% 7 13%

Exercise frequency: once a week 90 15% 79 15% 11 20%

Exercise frequency: 2-3 times a week 225 38% 198 36% 27 13%

Exercise frequency: daily 128 21% 121 22% 7 13%

Undergraduate student 350 58% 335 62% 15 27%

Graduate student 184 31% 148 27% 36 65%

Faculty 36 6% 36 7% 0 0%

Staff 29 5% 25 5% 4 7%

We distributed the survey to students, faculty, and staff of the Cornell University’s

Ithaca campus during the spring semester of 2013.1

1Composition of the Cornell community is as follows (males/females): 7,082/7,371 undergrad-
uates; 4,148/3,249 graduates; 2,844/3,735 non-academic staff; 1,157/495 academic professionals.
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Table 2: Descriptive statistics of the attitudinal questions.∗

Question Mean Stdv

What encourages/would encourage you to ride a bike to/ from campus?

a. Dedicated bike lanes on roads 3.96 0.90

b. Bike pathways physically separated from the roadway 3.43 0.93

c. Regulating car traffic on roads 3.25 0.99

d. A campus map showing bicycle routes 3.29 0.96

e. More convenient bike parking 3.46 1.01

f. More secure or covered bike parking 3.23 1.02

g. A convenient place to shower/ change clothes 3.39 1.00

h. A bicycle station on campus providing repairs/ supplies 3.25 0.97

i. Bike racks on buses 3.30 1.00

j. Priority given by law to use road over vehicular traffic 3.99 1.33

Indicate whether you agree or disagree with the following statements

a. Motor vehicle drivers seem to care little about bikers on road 3.89 1.36

b. Bicyclists seem to care little about vehicular traffic on road 3.73 1.40

c. Bicyclists seem to care little about pedestrians on street 3.90 1.55

d. I do not like to share road with bikers when I am driving 4.39 1.38

f. I am confident about my physical fitness 4.81 1.20

g. I enjoy outdoor activities (camping, fishing, jogging, etc.) 4.88 1.16

What keeps/would keep you from riding a bicycle more to/ on campus?

a. I am not interested in biking 2.11 1.17

b. I live too far 2.86 1.23

c. I need to change clothes 2.38 1.05

d. Lack of adequate bicycle parking 2.96 1.26

e. I am worried about accidents 2.21 1.00

g. Lack of bike lanes on road 2.31 1.04

h. I am worried about possible mechanical problems that may occur, such as a flat tire 3.81 1.15

i. Severe weather conditions 3.27 1.18

j. Poor road conditions 2.81 1.19

∗ A main source for the definition of the attitudinal questions is the work of Akar and Clifton (2009)

The link to the dedicated Qualtrics webpage was sent to the mailing lists of the

following colleges: Agriculture and Life Sciences; Architecture, Art, and Planning;

Arts and Sciences; and Engineering (the email was sent by each college; we did not

have information about how many students received the invitation). An iPad was

the incentive for respondents to participate. Although we could not determine actual

response rates, we considered response to the survey to be successful as we received

more than 600 responses within 2 weeks. Two versions of the discrete choice experi-
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ment led to two samples, the main sample (Sample 1) focused on cold temperatures,

and the secondary sample (Sample 2) focused on warm and hot temperatures. The

first sample was larger as the original motivation of the study was to assess the ef-

fect of cold weather on cycling demand. Partly as a control group, and also to add

variability that would allow us to explore nonlinearity in the temperature effects,

we decided to collect the second, smaller sample focused on hot temperatures.Table

1 presents the descriptive statistics of the sample after validation of the responses.

Table 2 summarizes the responses to the attitudinal questions of the survey.

2.3 Discrete Choice Experiment

The discrete choice experiment is the key component of the survey. The experiments

were based on hypothetical binary route choices for bicycling. The experimental

attributes and levels were decided after the results of the focus groups.

To examine effects of weather on a respondent’s choice of route we included infor-

mation regarding weather conditions of the day (“sun”, “rain”, and “snow”), includ-

ing temperature and expected depth of precipitation in inches (for rain and snow).

In fact, each choice situation started with a screenshot of the weather conditions

similar to how information is displayed in smartphones (Figure 1).

Figure 1: Weather screenshot for rain as presented in the choice experiment.

The experimental route attributes were travel time, slope (grade), presence of a

bike lane, and traffic volume. The slope of the route was described with a triangle

sign indicating the percent grade. Text descriptions of the route grade levels were

8



“flat surface”, “moderate slope”, and “steep slope”. Traffic volume was presented as

text (“light” and “heavy”) and in the form of a road sign.

Additionally, we presented pictures describing the two routes for each choice

situation in the experiment (Figure 2). The pictures, which were discussed in the

two focus groups, were chosen to reflect the combination of the actual experimental

levels of the route-specific attributes of slope (percent grade), presence of a bike lane,

and traffic. The pictures also reflected general weather conditions (sun, rain, snow),

but not actual experimental levels of these conditions. Using pictures to visualize

the attribute levels has benefits and costs. For example, the angle and perspective of

the picture may affect how slope is perceived; this is why we presented the triangle

with the percent grade (which was an idea that emerged in the first focus group and

tested in the second one). We also chose pictures of roads that are well known by

Cornellians, so that even if the image was somewhat distorted, respondents would

recognize the general conditions being depicted.

Figure 2: Sample of route descriptions in the choice experiment.

Table 3 summarizes the experimental attribute and attribute levels. These levels

were combined using a D-efficient design with 9 choice situations.2

2The design was based on a conditional logit model with interactions and on parameter values
that we obtained in a pretest of the experiment among members of bicycling groups in the Ithaca
area, as well as participants of the second focus group that included non-cyclists.
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Respondents were asked to choose between the two unlabeled routes, but we also

included an “opt-out” option in each choice situation to represent the decision not

to bicycle.

Table 3: Attributes and attribute levels for the route choice experiment.

Attribute Number of levels Levels

Slope 3 0% (Flat), 3% (Moderate), 5% (Moderate), 8% (Steep), 10% (Steep)

Travel Time 3 10, 15, 20 minutes

Bile Lane 2 Yes, No

Traffic 5 Heavy, Light

Weather 3 Sun, Rain, Snow

Precipitation: Raina 3 0, 0.3, 1 inches (0, 0.76, 2.54 cm)

Precipitation: Snowa,b 3 0, 0.5, 2 inches (0, 1.27, 5.08 cm)

Traffic 5 Heavy, Light

Temperature 3/2 25◦F, 35◦F, 50◦F (Sample 1) / 75◦F, 90◦F (Sample 2)

−4◦C, 2◦C, 10◦C (Sample 1) / 24◦C, 32◦C (Sample 2)

a conditional on weather conditions (sun: zero chance of precipitation)
b only for Sample 1

3 Psychometric Modeling

In this section we discuss the main elements and results of psychometric modeling

with the data collected in the attitudinal sections of the survey. First, we overview

the use of structural equation modeling. Then, we identify the underlying latent

variables that summarize attitudes toward bicycling.

3.1 Structural Equation Modeling

Structural equation modeling (SEM) is a dimension-reduction technique that can

handle a large number of endogenous and exogenous variables, as well as unobserved

(latent) variables specified as linear combinations of the observed variables. Regres-

sion, simultaneous equations, path analysis, and variations of factor analysis can be
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considered as special cases of SEM. A SEM with latent variables is usually com-

posed of a measurement model for the endogenous variables and a structural model.

However, a SEM model can consist of a structural model without any measurement

models (if all variables are observable), or a measurement model alone (as in factor

analysis).

SEM has been applied in many research fields such as psychology, sociology,

educational research, political science, and market research. Several SEM applications

in travel behavior research have been conducted in the past (examples of seminal work

include Tardiff, 1976; and Allaman et al., 1982).

A bicycle trip has unique characteristics in that while factors such as time and cost

constitute an objective appraisal, there are psychological motivations which may act

as determinants of the decision to cycle. Past research has used either factor analysis

or principal component analysis to examine these psychological factors. For a review

of SEM applied to cycling demand in general, see Li et al. (2013), Fernández-Heredia

et al. (2013), and Maldonado-Hinajeros et al. (2014).

In a university context, Akar and Clifton (2009) identified three underlying vari-

ables that affect commuters’ mode choice by using principal component analysis.

The first factor is associated with people who see walking and cycling as an op-

portunity for exercising. The second factor is associated with people who feel safe

walking and biking on campus after dark, and the third factor is associated with

people who find that the car parking costs on campus are high and think that they

do not have many options to travel to campus. Heinen et al. (2010), conducted ex-

ploratory factor analyses to identify attitudes regarding cycling. The main attitudes

these authors identified were labeled “direct trip-based benefit”, “awareness”, and

“safety”. Kamargianni and Polydoropoulou (2013) collected both revealed preference

and stated preference data to study the effect of teenagers’ attitudes toward walk-

ing or cycling to school in Cyprus. From the survey responses the authors defined a

latent variable called “willingness to walk or cycle” as an explanatory variable. The

authors found that this willingness to walk or cycle has a positive impact on the bicy-

cle choice and walk choice, and a negative impact on car choice. Li et al. (2013) first

identify eight latent factors (“need for flexibility”, “sensitivity to time”, “need for

fixed schedule”, “desire for comfort”, “desire for economy”, “environmental aware-
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ness”, “perception toward cycling”, and “willingness to use bicycle”) and then apply

attitudinal market segmentation based on a subset of four factors (“need for fixed

schedule”, “desire for comfort”, “environmental consciousness”, and “willingness to

use bicycle”). Another example is the work of Fernández-Heredia et al. (2014), where

four latent variables were identified, namely “convenience”, “pro-bike”, “external re-

strictions” and “physical determinants”. Finally, Maldonado-Hinajeros et al. (2014)

worked with the following four factors: “pro-bike”, “context”, “image” and “stress”.

3.2 Identification of Latent Variables

Many SEM specifications were tested, but a Multiple Indicator and Multiple Causes

(MIMIC) model with three latent variables was selected. The MIMIC model is a

confirmatory factor analysis model with explanatory variables (causal indicators of

the structural model). In the literature that integrates discrete choice models with

SEM specifications, MIMIC models are preferred because the structural equations of

the latent variables can be used for forecasting.

The underlying concepts that the data revealed in this study were labeled as:

(1) bicyclist status; (2) external restrictions; and (3) physical condition. The path

diagram of the selected MIMIC model is presented in Figure 3.

The latent bicyclist status summarizes the cycling skills and experience of the

respondent, and is measured by the frequency of cycle for commuting, the frequency

of recreational cycling, self-evaluation as a cyclist, and stated interest in cycling. The

latent external restrictions variable is measured by problems that may prevent the re-

spondent from cycling, namely being worried about accidents, mechanical problems,

and the possibility of crime. Finally, the latent physical condition of the respon-

dent summarizes overall fitness and is manifested by the strength of the motivation

to exercise, confidence about physical fitness, and stated satisfaction with outdoor

activities.
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z2*

external 
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Frequency of recreational cycling - I2

Self-evaluation as a cyclist - I3

Interest in cycling - I4

Worried about accidents - I5

Worried about mechanical problems, flat tire - I6

Worried about crime - I7

Strong motivation to exercise - I8

Confidence about physical fitness - I9

Enjoy outdoor activities - I10

Age: 23-27 - w2

Age: 28-40 - w3

Age: 40+ - w4

Distance to campus: 1-5 miles - w5

Current access to bike - w6

Commute mostly by car - w7

Commute mostly by bus - w8

Exercise frequency: never - w9

Exercise frequency: once a week - w10

Exercise frequency: 2-3 times a week - w11

Exercise frequency: dayly - w12

Figure 3: Path diagram of the MIMIC model.

Different sociodemographic variables help to explain differences in both bicyclist

status and external restrictions. For example, gender and access to a bike enter

the structural equation of the two latent concepts. Gender also helps to explain

differences in the latent physical condition, together with the frequency the individual

exercises. Finally, note that in our model the latent external restrictions and physical

condition also help to explain differences in the latent bicyclist status.

Actual parameter estimates of the MIMIC model are presented and discussed in

the next section, where a discrete choice model is integrated into the SEM specifica-

tion (Table 5).

4 Choice Modeling

4.1 Specification and estimation of a discrete choice model

with latent attributes and discrete heterogeneity

Discrete choice models describe the process of decision-making by individual agents

among mutually exclusive alternatives under uncertainty (McFadden, 2011). This

family of models are usually derived under an assumption of utility-maximizing be-
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havior by the decision maker. In random utility maximization (RUM) models, the

researcher has limited information about the decision making process and hence an

error term is added to the utility function. Hybrid choice models (HCMs) are a

generalization of standard discrete choice models where different expanded models

are considered simultaneously (Ben-Akiva et al., 2002). HCMs expand on standard

discrete choice modeling by considering the integration of latent (unobserved) con-

structs, which may be abstract hypothetical constructs, such as attitudes as well as

qualitative attributes that do not have a natural order. By using HCM, it is possible

to incorporate an SEM, such as the one estimated in the previous section, into the

responses to a discrete choice experiment, such as the route choice experiment.

In the past few years there has been an exponential increase in the use of HCM. In

fact, because of the importance of non-monetary and indirect tradeoffs that charac-

terize active transportation choices, recent studies have used HCM to analyze cycling

usage (Fernández-Heredia et al., 2014; Habib et al. 2014; and Maldonado-Hinajeros

et al. 2014). However, one of the problems with the introduction of latent variables

directly in the utility function is that the segmentation of users becomes rather diffi-

cult. With latent variables, latent clusters are continuous and based on an arbitrary

measurement scale. The construction of segments is then complex, especially for

those latent attributes entering linearly. Thus, in this work we propose to explore

a discrete segmentation approach, where latent variables are used to identify the

discrete segments of the population.

Consider the following system of latent variables for individual n:

z∗n = (IL −Π)−1Bwn + (IL −Π)−1ζn, ζn ∼ N (0, [(IL −Π)−1]Ψ[(IL −Π)−1]′)(1)

U
∗(q)
tn = Xtnβq + Y∗tn(Xtn, z

∗
1n)%q + Γqz

∗
1n + νtn, νitn

iid∼ EV1(0, 1) (2)

I∗n = Λz∗n + εn, εn ∼ N (0,Θ) (3)

Irn =


1

2
...

Mr

if µ0r < I∗rn ≤ µ1r

if µ1r < I∗rn ≤ µ2r

if µMr−1 < I∗rn ≤ µMr ,

(4)

where z∗n in equation (1) is a vector of L latent variables representing factors that are
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either hard or impossible to measure by direct observation (such as attitudes); wn is a

vector of M characteristics of the individual; B is a matrix of K unknown parameters; IL

represents the identity matrix of size L; the matrix Π allows for interactions among the

latent variables; and ζn is an error term that has a multivariate normal distribution with

a full covariance matrix Ψ.

Equation (2) represent the random utility vector of individual n in segment q and choice

situation t ∈ {1, . . . , T} for J alternatives. This utility depends on the design matrix Xtn

with elements x′tin for alternative i; the vector of unknown taste parameters βq for segment

q; a subset of the latent variables z∗1nthe matrix of interactions Y∗tn(Xtn, z
∗
1n) between the

observable attributes and the latent variables; the vector of unknown parameters associated

with these interactions %q; the matrix of unknown parameters associated with the latent

variables Γq; and an error term νtn with elements that are iid EV1(0, 1).

Equations (3) and (4) represent a system of ordered probit models for measurement of

z∗n, where I∗n is a latent vector of continuous measurement indicators of the latent variables,

with elements I∗rn = λ′rz
∗
n + εrn; Λ is a matrix of G unknown factor loadings; εn is a

normally distributed error term with a diagonal covariance matrix Θ; Irn is an categorical

indicator (assuming r ∈ {1, . . . , R} measurement elements) with Mr categories; and µr =

(µ0r, . . . , µMr)′ is a vector of threshold parameters.

Because the structural parameters of utility are assumed to have a discrete heterogene-

ity distribution, with q ∈ {1, . . . , Q} possible values (segments), we need to consider a class

assignment probability. In the current literature, class assignment is usually modeled as a

function of characteristics of the individuals. We construct the class assignment probability

as a function of a subset of the latent variables z∗2n (cf. Hurtubia et al, 2014), following a

multinomial distribution with probabilities

πnq =
exp(z∗

′
2nθq)∑Q

q=1 exp(z∗
′

2nθq)
, (5)

where πnq represents the probability of individual n belonging to class q, and θq is a vector

of allocation parameters.

The likelihood function of the whole system is:

`(y, I; δ) =
N∏
n=1

∫
z∗n

Q∑
q=1

πnq

[
T∏
t=1

Ptn(itn|q, z∗n)

]
R∏
r=1

f(Irn)g(z∗n)dz∗n, (6)
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where δ the complete set of unknown parameters of the system; yn is (y1n, ..., yTn)′;

In is (I1n, ..., IRn)′; Ptn(itn|q, z∗n) is the choice probability of the chosen alternative

conditional on both class q and the latent variables, we note that this choice kernel

is given by the choice probability of a conditional logit model; g(z∗n) ∼ N ((IL −
Π)−1Bwn, [(IL −Π)−1]Ψ[(IL −Π)−1]′); and f(Irn) is given by

f(Irn = m) = Φ

(
µmr − λ′rz∗n

[Θ]rr

)
− Φ

(
µm−1r − λ′rz∗n

[Θ]rr

)
(7)

with Φ being the CDF of a standard normal distribution, and [Θ]rr being the r-th

element of the diagonal of Θ.

To propose a value for δ we use the maximum simulated likelihood estimator

δ̂MSL = arg max ˆ̀(δ; y, I), where ˆ̀ is the Monte Carlo approximation of the original

likelihood.

4.2 Empirical Results: Point Estimates

There are three components in the joint model: (1) the discrete choice kernel, (2)

the class assignment model, and (3) the MIMIC model. The path diagram of the

joint model is depicted in Figure 4. As a reminder, through the MIMIC model we

identified three latent concepts, one that identifies in a single index their bicyclist

status, one that summarizes the physical condition of the respondents, and a third

one summarizing problems that may be encountered when cycling, labeled as external

restrictions. In our model, the latent bicyclist status helps in assigning individuals

to one of two classes of cyclists. Whereas the latent external restrictions entered

additively to the bike constant in the discrete choice kernel, for the latent physical

condition we considered an interaction with the slope of the route.

Even though estimation is performed using the full information maximum likeli-

hood estimator, we discuss results of the class assignment model first (estimates at

the bottom of Table 4). We tried models with differing numbers of classes, but the

only specification with satisfactory results was the one with 2 discrete segments.
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Figure 4: Path diagram of the joint hybrid choice model.

The class assignment model uses class 2 as baseline. We tried several specification

for the class assignment probability. The selection of the class assignment model was

based on statistical significance of the latent variables and on the Bayesian Informa-

tion Criterion. The resulting dependence on just the latent bicyclist status makes

sense in terms of the utility estimates for each class and the policy implications.

Because of the positive (and significant) bicyclist status parameter of the class as-

signment model, class 1 can be interpreted as being the segment of more experienced

cyclists. In effect, the higher the latent bicycle status is, the higher the probability

of an individual being an experienced cyclist. As a result, all the choice parameters

for class 1 correspond to the valuations of more experienced cyclists, whereas those

of class 2 represent the valuation of less experienced or non-cyclists (Table 4). For

example, for individual n in class q and choice situation t, the structural equation of
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choice is

U
(q)
atn = β

(q)
bike + β

(q)
TTTravel.Timeat + β

(q)
SlopeSlopeat + %

(q)
SPCSlopeat × Phys.Condn (8)

+β
(q)
BLBike.Laneat + β

(q)
HTHeavy.Trafficat + β

(q)
rainraint + β(q)

snowsnowt

+β
(q)
T<75FTemp<75Ft + β

(q)
T≥75FTemp≥75Ft + γ

(q)
ERExt.Restn + νatn

U
(q)
btn = β

(q)
bike + β

(q)
TTTravel.Timebt + β

(q)
SlopeSlopebt + %

(q)
SPCSlopebt × Phys.Condn (9)

+β
(q)
BLBike.Lanebt + β

(q)
HTHeavy.Trafficbt + β

(q)
rainraint + β(q)

snowsnowt

+β
(q)
T<75FTemp<75Ft + β

(q)
T≥75FTemp≥75Ft + γ

(q)
ERExt.Restn + νbtn

U
(q)
Otn = νOtn (10)

The effects in both classes are similar, but the sensitivities are different. Longer travel

times, steeper slopes, the presence of heavy traffic, and rain and snow have a negative

impact on the likelihood of bicycling. For example, if a particular route has a steeper

slope, then individuals are less likely to choose that route, either by taking a different

route or by choosing not to bike. The positive parameter for the interaction Slope ×
Physical condition indicates that the more fit the individual is, the lower the effect of

the slope is on his or her cycling decisions. Bike lanes are appreciated: the presence

of a bike lane increases the probability of riding a bike.

Regarding weather impacts, if the amount of precipitation increases then indi-

viduals are more likely to choose not to cycle (as rain or snow affect all routes).

The effect of colder temperatures is significant for class 1, while the effect of warmer

temperatures is significant for class 2.
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Table 4: Latent class model with latent variables.

Parameter Estimate (s.e.) t-stat p-value LB 95% CI UB 95% CI

Class 1

Constant 3.0771 0.6263 4.9100 0.0000 1.8495 4.3047

External restrictions −0.3237 0.1762 −1.8400 0.0660 −0.6691 0.0218

Travel time −0.0601 0.0069 −8.7500 0.0000 −0.0735 −0.0466

Slope −0.1675 0.0106 −15.8600 0.0000 −0.1882 −0.1468

Slope × Physical condition 0.0259 0.0063 4.1300 0.0000 0.0136 0.0383

Bike lane 0.4338 0.0585 7.4200 0.0000 0.3192 0.5484

Heavy traffic −0.8675 0.0569 −15.2600 0.0000 −0.9790 −0.7561

Rain −0.8492 0.3243 −2.6200 0.0090 −1.4848 −0.2136

Snow −0.9785 0.1669 −5.8600 0.0000 −1.3056 −0.6513

Temperature < 75◦F 0.0479 0.0234 −2.0500 0.0410 0.0020 0.0937

Temperature ≥ 75◦F 0.0090 0.0102 −0.8900 0.3740 −0.0109 0.0290

Class 2

Constant 2.2629 0.3236 6.9900 0.0000 1.6286 2.8972

External restrictions −0.4922 0.0944 −5.2100 0.0000 −0.6772 −0.3071

Travel time −0.0337 0.0131 −2.5600 0.0100 −0.0594 −0.0079

Slope −0.2683 0.0170 −15.7800 0.0000 −0.3017 −0.2350

Slope × Physical condition 0.0251 0.0085 2.9600 0.0030 0.0085 0.0417

Bike lane 0.3973 0.0982 4.0400 0.0000 0.2047 0.5898

Heavy traffic −0.9745 0.0885 −11.0200 0.0000 −1.1480 −0.8011

Rain −1.1527 0.1659 −6.9500 0.0000 −1.4778 −0.8276

Snow −2.1573 0.2465 −8.7500 0.0000 −2.6403 −1.6742

Temperature < 75◦F −0.0096 0.0059 −1.6500 0.0990 −0.0211 0.0018

Temperature ≥ 75◦F −0.0215 0.0038 −5.6700 0.0000 −0.0289 −0.0141

Class Assignment

Constant class 1 −0.2870 0.1556 −1.8400 0.0650 −0.5920 0.0180

Bicycle status 0.2447 0.0883 2.7700 0.0060 0.0717 0.4177

Simulated loglikelihood -4081.60

Pseudo ρ2 0.307
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Table 5: MIMIC component estimates.

Measurement Equation: λ (R squared) Estimate s.e. t-stat p-value LB 95% CI UB 95% CI

Bicycle Status Reliability: 0.755 (α), 0.765 (ω)

Frequency of cycle commuting (0.803) 1.000

Frequency of recreational cycling (0.449) 0.661 0.051 12.893 0.000 0.561 0.761

Self-evaluation as a cyclist (0.661) 0.861 0.056 15.329 0.000 0.751 0.971

Interest in cycling (0.501) 0.711 0.050 14.277 0.000 0.613 0.809

External Restrictions Reliability: 0.728 (α), 0.733 (ω)

Worried about accidents (0.544) 1.000

Worried about mechanical problems (0.518) 0.975 0.057 17.071 0.000 0.863 1.087

Worried about crime (0.453) 0.908 0.055 16.486 0.000 0.800 1.016

Physical Condition Reliability: 0.778 (α), 0.780 (ω)

Strong motivation to exercise (0.834) 1.000

Confidence about physical fitness (0.722) 0.898 0.005 17.880 0.000 0.800 0.996

Enjoy outdoor activities (0.436) 0.644 0.036 17.685 0.000 0.573 0.715

Measurement Equation: λ (R squared) Estimate s.e. t-stat p-value LB 95% CI UB 95% CI

Bicycle Status (0.578)

Male 0.355 0.090 3.927 0.000 0.179 0.531

Age: 23-27 0.341 0.120 2.842 0.004 0.106 0.576

Age: 28-40 0.488 0.147 3.318 0.001 0.200 0.776

Age: 40+ 0.455 0.164 2.771 0.006 0.134 0.776

Distance to campus: 1-5 miles 0.278 0.121 2.306 0.021 0.041 0.515

Latent Physical Condition 0.211 0.046 4.609 0.000 0.121 0.301

Latent External Restrictions −0.427 0.062 −6.919 0.000 −0.549 −0.305

Access to bike 0.989 0.102 9.692 0.000 0.789 1.189

Commute mostly by car −0.389 0.135 −2.872 0.004 −0.654 −0.124

Commute mostly by bus −0.239 0.098 −2.435 0.015 −0.431 −0.047

External Restrictions (0.105)

Male −0.306 0.074 −4.122 0.000 −0.451 −0.161

Age: 23-27 −0.204 0.105 −1.950 0.051 −0.410 0.002

Age: 28-40 −0.295 0.123 −2.404 0.016 −0.536 −0.054

Access to bike −0.213 0.074 −2.884 0.004 −0.358 −0.068

Commute mostly by car 0.173 0.118 1.471 0.141 −0.058 0.404

Commute mostly by bus 0.174 0.084 2.068 0.039 0.009 0.339

Physical Condition (0.426)

Male 0.195 0.088 2.222 0.026 0.023 0.367

Exercise frequency: never −0.535 0.185 −2.888 0.004 −0.898 −0.172

Exercise frequency: once a week 0.568 0.147 3.863 0.000 0.280 0.856

Exercise frequency: 2-3 times a week 1.155 0.126 9.137 0.000 0.908 1.402

Exercise frequency: daily 1.889 0.145 13.015 0.000 1.605 2.173

p-value (Chi-square) 0.000

Comparative Fit Index (CFI) 0.941

Tucker-Lewis Index (TLI) 0.927

Root Mean Square Error of Approximation 0.057

p-value RMSEA ≤ 0.05 0.049
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The effect of the latent external restrictions is not significant for class 1, but is

significant and negative for class 2. This last result makes sense, as class 2 is the

segment of less experienced cyclists who are more concerned about the problems

that may arise when cycling. The latent external restrictions can be thus interpreted

as a variable measuring cycling anxiety for individuals that are not frequent cyclists.

The measurement equations of the embedded MIMIC model reduce the dimen-

sionality of the effect indicators, but it is the structural equations that provide a

causal relationship that helps to explain how the latent variables are built. Bicy-

clist status is explained by gender, age, distance to campus, access to bike, commute

mostly by car, commute mostly by bus, physical condition, and bike anxiety. For

example, a higher bicyclist status is expected for men, people living 1-5 miles from

campus (a shorter distance encourages walking and more than 5 miles discourages

cycling), respondents having access to a bike, and for those having a higher (latent)

physical condition. Commuting by motorized modes and a higher degree of (latent)

bike anxiety reduce the bicyclist status of the respondent. A higher level of bike

anxiety is expected for individuals that prefer motorized modes, but for men and

for people aged 23-40 years old bike anxiety is lower. Finally, the latent physical

condition is explained by gender and the frequency of exercising.

4.3 Empirical Results: Inference

To analyze the taste differences between the two identified classes, we calculated the

ratio of the marginal rates of substitution of each variable with respect to time. Both

the median and mean of these ratios are presented in Table 6. We also present the

lower and upper bounds of the 95% Krinsky-Robb confidence intervals using 100,000

repetitions for the required simulation.
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Table 6: Ratio of the marginal rate of substitution with respect to travel time for
class 2 versus class 1.

Variable Median Mean LB 95% CI UB 95% CI

Bike lane 1.6387 2.4489 0.5015 4.3964

Heavy traffic 1.9921 3.2415 0.7741 5.7088

Slope 2.8360 4.6637 1.0203 8.3072

Rain 2.5480 6.4246 0.4239 12.4253

Snow 3.9785 6.6600 1.2050 12.1151

The median effects show that the degree of steepness of a slope deters less ex-

perienced cyclists almost 3 times more strongly relative to experienced cyclists, the

presence of traffic discourages bicycling twice as much, rain 2.5 times as much, and

snow almost 4 times more. An interesting result is that bike lanes are more appre-

ciated by less experienced cyclists and non-cyclists. (The benefit of the presence of

bike lanes is valued 1.6 times higher by less experienced cyclists.) This bike-lane ap-

preciation is consistent with the hypothesis that experienced cyclists care less about

the availability of bike lanes because they have higher skills than non-cyclists (e.g.,

Taylor and Mahmassani, 1996; Hunt and Abraham, 2007).

In order to provide a visual representation of the nonlinear effects of the deterrents

on route choice, we plotted the changes in choice probabilities against the level of

the deterrents. We chose the first respondent in choice situation 1 in the data as the

representative agent in this analysis. Route A is characterized by 20 minutes of travel

time, slope gradient of 0%, and light traffic. Route B is characterized by 10 minutes

of travel time, slope gradient of 10%, and heavy traffic. Figure 2 shows the choice

probability for route A as a function of slope for the two classes. At the original

conditions, the probability of choosing route A is close to 0.80 for both classes (route

A takes longer, but is much more attractive than route B in terms of slope and

traffic). When slope is considered to be the same for both routes (10%), the class

of more experienced cyclist now choose route A with a probability of 0.5, while the

choice probability for less experienced cyclists is slightly above 0.2

For analyzing the effects of precipitation, for each class we display the choice
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probability of bicycling (probability of choosing either route A or route B). Because

of the binary nature of this choice probability, the right vertical axis can be read as

the probability of opting out (probability of choosing not to bike). Figure 3 shows the

effect of rain on the choice probability of bicycling. Figure 4 summarizes the effect

of snow on the choice probability of bicycling. In the case of rain, if the individual

belongs to the class of experienced cyclists then when there is no rain the probability

of cycling is 0.9. With 2 inches of rain, the experienced cyclist is still more like to cycle

(probability of 0.6) than not to cycle. With 1 inch of rain in the forecast, the class of

less experienced cyclists are indifferent between cycling and not cycling (probability

of 0.5).
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Figure 5: Choice probability of choosing route A as a function of slope.
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Figure 6: Choice probability of bicycling vs. not bicycling as a function of rain.
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Figure 7: Choice probability of bicycling vs. not bicycling as a function of snow.
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From the three sets of graphs it is possible to see that, in general, the marginal

probability effects are less pronounced (and almost constant) for the class of more

experienced cyclists. In fact, a linear approximation of the marginal probability ef-

fects seems reasonable for class 1, whereas nonlinear effects are evident for the class

of less experienced and non cyclists (especially for snow where a dramatic fall in the

probability of biking is obtained). Because the effects of the cycling deterrents are

lower for experienced cyclists, the preferences of this class can be seen as the bench-

mark when more cycling experience is gained. For example, snow precipitation is a

big deterrent only for less experienced cyclists. Communities with weather conditions

that are traditionally considered as poor for encouraging biking can make efforts for

increasing the possibilities for gaining more experience in biking.

Another set of similar plots using a randomly chosen respondent in a different

choice situation is presented in the Appendix.

5 Conclusions

We designed a web-based survey aimed at collecting attitudinal data about cycling,

including behavioral intentions of using a bike for commuting. The experimental de-

sign has some new elements when compared with previous empirical applications of

cycling route choice modeling. Besides common attributes (time, slope/topography,

cycling infrastructure) we included variables related to weather conditions (tempera-

ture, amount of expected rain, amount of expected snow). In addition, for each choice

situation we considered the possibility of opting out (i.e. choosing not to cycle). The

survey was applied to members of the Cornell University community in Ithaca, NY

(an area characterized by its hills as well as by hot and wet weather in summer,

and cold and snowy weather in winter). More than 600 individuals responded to the

survey, for a total of 599 valid responses.

For analyzing the stated route choices and for determining the impact of cycling

determinants (including weather and topography), we used discrete choice theory.

We tested several models, including logit-based models integrated with a structural

equation model for three latent variables (summarizing bicyclist status, external re-

strictions/cycling anxiety, and physical condition). In particular, we derived a latent
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class model with a class assignment mechanism based on the latent bicyclist status

of the respondent.

Two segments were identified: (1) more-skilled and experienced cyclists, versus

(2) less-skilled and non-cyclists. The two segments have different sensitivities to the

factors that may encourage or discourage riding a bike. Because cycling route de-

cisions do not involve any direct monetary cost, to analyze differences in the taste

parameters we proposed the ratio of the marginal rate of substitution with respect

to travel time. The median of the ratios reveal that slope inclination is considered

almost 3 times worse by less-skilled cyclists. Less-skilled cyclists are not only affected

twice as much by heavy traffic, but also consider rain to be 2.5 times more bothersome

and snow almost 4 times more bothersome relative to more-skilled cyclists.

In addition, we measured the diminishing negative effect of a hilly topography

(slope inclination) as a function of the physical condition of the cyclist, i.e. the more

fit the cyclist, the less bothersome a steeper route.

In terms of cycling infrastructure, our results are in line with previous findings

from past research on bicycling. In particular, having more bicycle facilities results

in a higher share of cycling (Akar and Clifton, 2009; Barnes and Thompson, 2006;

Pucher and Buehler, 2006; Klobucar and Fricker, 2007; Dill and Voros, 2007). Our

analysis showed that the presence of bike lanes is appreciated not only by individuals

with higher skills and experience in bicycling but also by individuals who have less

skills. In fact, the estimates of the latent class model shows that less-skilled cyclists

appreciate the presence of bike lanes 1.6 times more than more-skilled cyclists. People

with less skills and experience in bicycling apparently value bike lanes as safety

measures so that the availability of bike lanes increases their likelihood to choose a

bike route.

In terms of policy recommendations, the provision of bike lanes may encourage

an increase in the modal share of cycling, especially among those individuals with

a lower bicyclist status (i.e. using a bike infrequently, or mostly for recreational

purposes). Because the marginal probability effects of cycling deterrents are much

lower for more experienced cyclists, the creation of opportunities for the community

to gain experience in cycling emerges as a promising policy. In this respect, bike

lanes not only have a direct effect in increasing the likelihood of cycling but also an
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indirect effect on neutralizing factors that discourage the use of a bike (rain, snow,

slope, “bike anxiety”).
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