2005–2006
COURSES of Study
Cornell University
Cornell University Calendar

Fall Semester
- Residence halls open
- New undergraduate student registration
- New student orientation begins
- New graduate student registration
- Course add/drop begins
- Instruction begins
- Fall break: instruction suspended
- Instruction resumes
- Homecoming
- First-Year Family Weekend
- Thanksgiving recess: instruction suspended, 1:10 P.M.
- Instruction resumes
- Instruction ends
- Study period
- Final examinations begin
- Final examinations end
- Residence halls close

Winter Session Period Begins
- Three-week classes begin
- Winter session period ends

Spring Semester
- Residence halls open
- Course add/drop begins
- Instruction begins
- Spring break: instruction suspended
- Instruction resumes
- Instruction ends
- Study period
- Final examinations begin
- Final examinations end
- Residence halls close (students who are graduating may stay through Commencement Day)
- Senior Week
- Commencement

Summer Session
- Three-week session classes begin
- Eight-week session classes begin
- Six-week session classes begin

The dates shown in this calendar are subject to change at any time by official action of Cornell University.

In this calendar, the university has scheduled classes, laboratories, and examinations on religious holidays. It is the intent of the university that students who miss those activities because of religious observances be given adequate opportunity to make up the missed work.

The Law School and College of Veterinary Medicine calendars differ in a number of ways from the university calendar. Please consult the catalogs of those colleges for details.

The courses and curricula described in this catalog, and the teaching personnel listed herein, are subject to change at any time by official action of Cornell University.

The rules and regulations stated in this catalog are for information only and in no way constitute a contract between the student and Cornell University. The university reserves the right to change any regulation or requirement at any time.

This catalog was produced by the Office of Publications and Marketing at Cornell University.
Courses of Study

2005-2006

Change in Course Numbering System

In the near future, the university will be moving from a three-digit to a four-digit course numbering system (e.g., HIST 404 becomes HIST 4041). As part of this transition, this issue of Courses of Study shows both three- and four-digit (in parentheses) course numbers for course listings. For a complete explanation of the course numbering system, see page 12.

Accreditation

Cornell University is accredited by the Middle States Association of Colleges and Schools. A copy of the most recent reaffirmation of Cornell's accreditation can be found at dpb.cornell.edu/irp/accreditation.htm. Requests to review additional documentation supporting Cornell's accreditation should be addressed to Michael Matier, director, Institutional Research and Planning, Cornell University, 440 Day Hall, Ithaca, NY 14853-2801, mwm5@cornell.edu.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>5</td>
</tr>
<tr>
<td>University Registration</td>
<td>5</td>
</tr>
<tr>
<td>Leaves and Withdrawals</td>
<td>5</td>
</tr>
<tr>
<td>Bursar Information</td>
<td>5</td>
</tr>
<tr>
<td>Tuition, Fees, and Expenses</td>
<td>5</td>
</tr>
<tr>
<td>Billing and Payment</td>
<td>6</td>
</tr>
<tr>
<td>Student Health Insurance</td>
<td>6</td>
</tr>
<tr>
<td>Student Records</td>
<td>6</td>
</tr>
<tr>
<td>Academic Integrity</td>
<td>7</td>
</tr>
<tr>
<td>Protection of Human Subjects in Research</td>
<td>7</td>
</tr>
<tr>
<td>Use of Animals for Courses</td>
<td>7</td>
</tr>
<tr>
<td>Advanced Placement</td>
<td>8</td>
</tr>
<tr>
<td>Credit and Placement</td>
<td>8</td>
</tr>
<tr>
<td>Supplementary Information</td>
<td>10</td>
</tr>
<tr>
<td>Course Enrollment</td>
<td>12</td>
</tr>
<tr>
<td>Preenrollment</td>
<td>12</td>
</tr>
<tr>
<td>Course Add/Drop/Change</td>
<td>12</td>
</tr>
<tr>
<td>Auditing Courses</td>
<td>12</td>
</tr>
<tr>
<td>Explanation of Course Numbering Systems and Course Prefixes</td>
<td>12</td>
</tr>
<tr>
<td>Class Attendance, Meeting Times, and Examinations</td>
<td>14</td>
</tr>
<tr>
<td>Class Attendance and Meeting Times</td>
<td>14</td>
</tr>
<tr>
<td>Final Examinations</td>
<td>14</td>
</tr>
<tr>
<td>Evening Preliminary Examinations</td>
<td>15</td>
</tr>
<tr>
<td>Grading Guidelines</td>
<td>15</td>
</tr>
<tr>
<td>S-U Grades</td>
<td>15</td>
</tr>
<tr>
<td>Incomplete</td>
<td>15</td>
</tr>
<tr>
<td>Changes in Grades</td>
<td>15</td>
</tr>
<tr>
<td>Official Transcripts</td>
<td>15</td>
</tr>
<tr>
<td>University Requirements for Graduation</td>
<td>16</td>
</tr>
<tr>
<td>Student Responsibilities</td>
<td>16</td>
</tr>
<tr>
<td>Physical Education</td>
<td>16</td>
</tr>
<tr>
<td>Internal Transfer Division</td>
<td>16</td>
</tr>
<tr>
<td>Interdisciplinary Centers, Programs, and Studies</td>
<td>17</td>
</tr>
<tr>
<td>Andrew D. White Professors-at-Large</td>
<td>17</td>
</tr>
<tr>
<td>Frank H. T. Rhodes Class '56 University Professorship</td>
<td>17</td>
</tr>
<tr>
<td>Center for Applied Mathematics</td>
<td>17</td>
</tr>
<tr>
<td>The Mario Einaudi Center for International Studies</td>
<td>18</td>
</tr>
<tr>
<td>Center for the Study of Inequality</td>
<td>19</td>
</tr>
<tr>
<td>Cognitive Studies</td>
<td>19</td>
</tr>
<tr>
<td>Cornell Abroad</td>
<td>19</td>
</tr>
<tr>
<td>Cornell in Washington Program</td>
<td>22</td>
</tr>
<tr>
<td>Cornell Institute for Public Affairs</td>
<td>22</td>
</tr>
<tr>
<td>Cornell Plantations</td>
<td>23</td>
</tr>
<tr>
<td>Program on Ethics and Public Life</td>
<td>23</td>
</tr>
<tr>
<td>Program in Real Estate</td>
<td>24</td>
</tr>
<tr>
<td>Science of Earth Systems: An Intercollege Major</td>
<td>24</td>
</tr>
<tr>
<td>Department of Statistical Science</td>
<td>25</td>
</tr>
<tr>
<td>Business and Preprofessional Study</td>
<td>27</td>
</tr>
<tr>
<td>Undergraduate Business Study</td>
<td>27</td>
</tr>
<tr>
<td>Combined Degree Programs</td>
<td>27</td>
</tr>
<tr>
<td>Prelaw Study</td>
<td>27</td>
</tr>
<tr>
<td>Premedical Study</td>
<td>28</td>
</tr>
<tr>
<td>Preveterinary Study</td>
<td>28</td>
</tr>
<tr>
<td>College of Agriculture and Life Sciences</td>
<td>29</td>
</tr>
<tr>
<td>Introduction</td>
<td>29</td>
</tr>
<tr>
<td>Degree Programs</td>
<td>31</td>
</tr>
<tr>
<td>Opportunities in Research</td>
<td>32</td>
</tr>
<tr>
<td>Off-Campus Opportunities</td>
<td>36</td>
</tr>
<tr>
<td>Graduation Requirements for the Bachelor of Science</td>
<td>37</td>
</tr>
<tr>
<td>Academic Policies and Procedures</td>
<td>40</td>
</tr>
<tr>
<td>Major Fields of Study</td>
<td>41</td>
</tr>
<tr>
<td>Description of Courses</td>
<td>54</td>
</tr>
<tr>
<td>Interdepartment/Intercollege Courses</td>
<td>54</td>
</tr>
<tr>
<td>Nondepartment Courses</td>
<td>57</td>
</tr>
<tr>
<td>Applied Economics and Management</td>
<td>58</td>
</tr>
<tr>
<td>Animal Science</td>
<td>65</td>
</tr>
<tr>
<td>Biological and Environmental Engineering</td>
<td>69</td>
</tr>
<tr>
<td>Biometry and Statistics</td>
<td>74</td>
</tr>
<tr>
<td>Communication</td>
<td>76</td>
</tr>
<tr>
<td>Crop and Soil Sciences</td>
<td>80</td>
</tr>
<tr>
<td>Development Sociology</td>
<td>85</td>
</tr>
<tr>
<td>Earth and Atmospheric Sciences</td>
<td>88</td>
</tr>
<tr>
<td>Education</td>
<td>94</td>
</tr>
<tr>
<td>Entomology</td>
<td>99</td>
</tr>
<tr>
<td>Food Science</td>
<td>102</td>
</tr>
<tr>
<td>Horticulture</td>
<td>105</td>
</tr>
<tr>
<td>Information Science</td>
<td>111</td>
</tr>
<tr>
<td>Landscape Architecture</td>
<td>112</td>
</tr>
<tr>
<td>Natural Resources</td>
<td>115</td>
</tr>
<tr>
<td>Plant Breeding</td>
<td>119</td>
</tr>
<tr>
<td>Plant Pathology</td>
<td>121</td>
</tr>
<tr>
<td>Faculty Roster</td>
<td>124</td>
</tr>
<tr>
<td>College of Architecture, Art, and Planning</td>
<td>125</td>
</tr>
<tr>
<td>Administration</td>
<td>128</td>
</tr>
<tr>
<td>Faculty Advisers</td>
<td>128</td>
</tr>
<tr>
<td>Degree Programs</td>
<td>128</td>
</tr>
<tr>
<td>Facilities</td>
<td>128</td>
</tr>
<tr>
<td>College Academic Policies</td>
<td>129</td>
</tr>
<tr>
<td>Architecture</td>
<td>129</td>
</tr>
<tr>
<td>Art</td>
<td>157</td>
</tr>
<tr>
<td>City and Regional Planning</td>
<td>143</td>
</tr>
<tr>
<td>Landscape Architecture</td>
<td>152</td>
</tr>
<tr>
<td>Faculty Roster</td>
<td>153</td>
</tr>
<tr>
<td>Biological Sciences</td>
<td>155</td>
</tr>
<tr>
<td>Organization</td>
<td>155</td>
</tr>
<tr>
<td>Distribution Requirement</td>
<td>155</td>
</tr>
<tr>
<td>Use of Animals in the Biological Sciences Curriculum</td>
<td>155</td>
</tr>
<tr>
<td>Advanced Placement</td>
<td>155</td>
</tr>
<tr>
<td>The Major</td>
<td>155</td>
</tr>
<tr>
<td>Curriculum Committee</td>
<td>159</td>
</tr>
<tr>
<td>Advising</td>
<td>159</td>
</tr>
<tr>
<td>Transferring Credit</td>
<td>159</td>
</tr>
<tr>
<td>General Courses</td>
<td>159</td>
</tr>
<tr>
<td>Animal Physiology</td>
<td>162</td>
</tr>
<tr>
<td>Biochemistry, Molecular and Cell Biology</td>
<td>163</td>
</tr>
<tr>
<td>Ecology and Evolutionary Biology</td>
<td>166</td>
</tr>
<tr>
<td>Genetics and Development</td>
<td>171</td>
</tr>
<tr>
<td>Microbiology</td>
<td>173</td>
</tr>
<tr>
<td>Neurobiology and Behavior</td>
<td>175</td>
</tr>
<tr>
<td>Plant Biology</td>
<td>178</td>
</tr>
<tr>
<td>Courses in Marine Science</td>
<td>182</td>
</tr>
<tr>
<td>Shoals Marine Laboratory</td>
<td>183</td>
</tr>
<tr>
<td>Faculty Roster</td>
<td>186</td>
</tr>
</tbody>
</table>
Independent Major Program 577
Inequality Concentration 578
Information Science 581
International Relations Concentration 583
Program of Jewish Studies 585
John S. Knight Institute 587
Latin American Studies 589
Latino Studies Program 591
Law and Society 594
Lesbian, Bisexual, and Gay Studies 597
Linguistics 598
Mathematics 603
Medieval Studies 613
Modern European Studies Concentration 614
Music 615
Near Eastern Studies 621
Philosophy 629
Physics 633
Psychology 640
Religious Studies 650
Romance Studies 652
Russian 664
Science & Technology Studies 668
Science of Earth Systems 674
Society for the Humanities 675
Sociology 676
South Asia Program 683
Southeast Asia Program 683
Theatre, Film and Dance 684
Visual Studies Concentration 698
Faculty Roster 700

Index 709

Key
M Monday
T Tuesday
W Wednesday
R Thursday
F Friday
S Saturday
S-U Satisfactory- Unsatisfactory
disc discussion
lab laboratory
lec lecture
rec recitation
sec section
TBA to be announced/to be arranged
@ geographic breadth
* historical breadth
Courses with names and descriptions enclosed in brackets—[]—are not offered fall 2005 and spring 2006.
All area codes are 607 unless otherwise specified.
Introduction

Courses of Study (cuinfo.cornell.edu/Academic/Courses/), a catalogue of Cornell University's many academic programs and resources, contains information about colleges and departments, interdisciplinary programs, undergraduate and graduate course offerings, and procedures. Students also should consult with their college's advising office for specific information on their college's academic policies and procedures, degree programs, and requirements. Not included in this publication is information concerning the Medical College and the Graduate School of Medical Sciences, located in New York City.

It is not possible to keep this single volume completely up-to-date. The most current information regarding course descriptions, schedules, sections, rooms, credits, and registration procedures may be found at www.cornell.edu/academics/courses.cfm, which also includes the Course and Time Roster and the Course and Room Roster. Students are also advised to consult individual college and department offices for up-to-date course information.

The Policy Notebook (www.policy.cornell.edu/notebook.cfm) summarizes pertinent university policies, including the Code of Conduct and the Code of Academic Integrity. If you do not have web access, the Courses of Study and the Policy Notebook publications are available in the university libraries, the Office of the Dean of the University Faculty, the Office of the University Counsel, the Office of the Judicial Administrator, and the college offices.

The following are offices and sources of information about admission to Cornell University.

Undergraduate Admissions Office. 410 Thurston Avenue, Ithaca, NY 14850-2488, 255-5241, admissions.cornell.edu.

Joan and Sanford I. Weill Medical College and Graduate School of Medical Sciences, Office of Admissions, 445 E. 69th Street, New York, NY 10021, 212-746-1067-6565, www.med.cornell.edu/education/admissions/.

University Registration

University registration is the official recognition of a student's relationship with the university and is the basic authorization for a student's access to services and education. Completion of registration is essential to enable the university to plan for and provide services and education, guided by the highest standards for efficiency and safety. Unauthorized, unregistered persons who use university services and attend classes have the potential to use university resources inappropriately and to dispose properly registered students. In addition, the university assumes certain legal obligations for persons who participate as students in the university environment. For example, policy states that New York State health requirements must be satisfied. Because these requirements are intended to safeguard the public health of students, the university has a responsibility to enforce the state regulations through registration procedures.

The policy on university registration is intended to describe clearly the meaning of and the procedures for registration so that students can complete the process efficiently and be assured of official recognition as registered students. With the clear communication of the steps for registration, it is hoped that compliance will occur with a minimum of difficulty.

To become a registered student at Cornell University, a person must:

- complete course enrollment according to individual college requirements;
- settle all financial accounts, including current semester tuition;
- satisfy New York State and university health requirements;
- have no holds from the college, the Office of the Judicial Administrator, Gannett Cornell University Health Services, or the bursar.

Individuals must become registered students by the end of the third week of the semester or they will be subject to a financial penalty.

Cornell University does not allow persons who are not registered with the university in a timely manner to attend classes. The university reserves the right to require unauthorized, unregistered persons who attend classes or in other ways seek to exercise student privileges to leave the university premises. The university does not permit retroactive registration and does not record courses or grades for unregistered persons.

LEAVES AND WITHDRAWALS

A leave of absence must be requested from the college in which the student is enrolled. A leave of absence is granted for a specified time, after which the student is expected to return to resume course work. Students should inform their college of intent to return.

Students may withdraw from the university at their own discretion. In addition, a college may withdraw a student who fails to return at the end of a period of authorized leave.

Medical leaves are granted by the student's college upon recommendation by Gannett Cornell University Health Services.

Bursar Information

Tuition, Fees, and Expenses

Tuition for Academic Year 2005-2006

Endowed Divisions

Undergraduate

Architecture, Art, and Planning

Arts and Sciences

Engineering

Hotel Administration

Graduate

Graduate School (with chairman in an endowed college)

Johnson Graduate School of Management

Professional

Law School

Entering students

Second-year students

Third-year students

Contract Divisions (tuition rates are tentative)

Undergraduate

Agriculture and Life Sciences

Human Ecology

Industrial and Labor Relations

New York resident*

Nonresident (entering students)*

Nonresident (second-year students)*

Nonresident (third- and fourth-year students)

Graduate and Professional Students

Graduate School (with chair in a contract college)

Veterinary Medicine

New York State resident DVM

Nonresident DVM

Graduate

Student Activities Fee

Undergraduate students*

Graduate and professional students

Summer Session (2005)

per credit**
In Absentia Fees
Undergraduate $15 per semester
Graduate and professional $200 per semester
Law and management $75 per semester

Excurs-Tuition
$690 per credit hour

The amount, time, and manner of payment of tuition, fees, or other charges may be changed at any time without notice.

* Residency status is determined at the time of admission by the college. Change in residency status is determined by the university's bursar following matriculation. The deadline for submission of requests for the Fall 2005 semester is June 1, 2005. The deadline for the Spring 2006 semester is November 1, 2005. Further information and an application can be found at www.bursar.cornell.edu.

New contract college undergraduate nonresident students are defined as:

- new entering students (i.e., freshmen).
- new transfers from external colleges (including transfers from two-year institutions with which Cornell has transfer agreements).
- new transfers from an endowed Cornell college to a contract college.
- students who have deferred entry of more than one semester.
- returning students who had withdrawn from the university.
- graduates who are returning for additional degrees.
- students who have taken a leave of absence for more than one year.

Regular session rates. Special program rates may vary.

Fees and Expenses
Undergraduate applicants to Cornell pay a nonrefundable $65 application fee when submitting an application for admission. The Graduate and Law School application fee is $65. Application to the Johnson Graduate School of Management costs $180 for MBA applicants and $70 for Ph.D. applicants.

Tuition Refund Policy
Amounts personally paid for tuition may be refunded if the student requests a leave of absence or withdrawal from the office of the dean of his or her college of enrollment. The date of this request will determine the tuition liability for the semester. All students refer to the "Proration Schedule for Withdrawals and Leaves of Absence" below.

Repayment policy. Students receiving financial aid from the university who withdraw during a semester will have their aid reevaluated, possibly necessitating repayment of a portion of aid received. Repayment to aid accounts depends on the type of aid received, government regulations, and the period of time in attendance. Cornell is authorized to offset any credit balances against any debts owed by the student to the university.

Proration Schedule for Withdrawals and Leaves of Absence

<table>
<thead>
<tr>
<th>Fall 2005</th>
<th>Spring 2006</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentage</td>
<td>All Students</td>
</tr>
<tr>
<td>10% charge</td>
<td>8/23-8/29</td>
</tr>
<tr>
<td>20% charge</td>
<td>8/30-9/5</td>
</tr>
<tr>
<td>30% charge</td>
<td>9/6-9/19</td>
</tr>
<tr>
<td>40% charge</td>
<td>9/20-10/6</td>
</tr>
<tr>
<td>50% charge</td>
<td>9/27-10/3</td>
</tr>
<tr>
<td>60% charge</td>
<td>10/4-10/10</td>
</tr>
<tr>
<td>80% charge</td>
<td>10/11-10/17</td>
</tr>
<tr>
<td>100% charge</td>
<td>10/25</td>
</tr>
</tbody>
</table>

Special programs, such as Cornell Abroad and Executive MBA, may follow their own tuition refund policies for withdrawals and leaves of absence. Please refer to the appropriate program office for details regarding those policies.

BILLING AND PAYMENT

Billing
Tuition and room and board charges will be billed in July and December and must be paid before registration. The due date for these semester bills will normally be 5 to 10 working days before registration day. All other charges, credits, and payments will appear on monthly statements mailed before the middle of the month.

It is possible that some charges will not be listed on the first bill and will appear on a subsequent monthly bill. A student must be prepared to pay any charges appearing on a subsequent bill even though the student receives a financial aid stipend before the charges are billed.

All bills are due by the date stated on the bill; all payments must be received by that date to avoid finance charges. Payments are not processed by postmark.

Changes to billing addresses can be made via Just the Facts. Address changes made at other offices will not change the billing address. The address initially used on billing statements will be the home address as listed on each student's application for admission.

The Office of the Bursar conducts all business directly with the student. Monthly charges, as well as any awards, grants, scholarships, and loans, are listed and billed under the student's name. Refund checks and direct deposit refunds are also drawn in the name of the student. Cornell is authorized to offset any credit balances against any debts owed by the student to the university.

Payments
An individual who has outstanding indebtedness to the university will not be allowed to register or reregister in the university, receive a transcript of record, have academic credits certified, be granted a leave of absence, or have a degree conferred. University policy precludes the use of any current financial aid for payment of past-due charges.

The Office of the Bursar acts as a clearinghouse for student charges and credits that are placed directly on a student's bill by several departments and offices of the university. Because the Office of the Bursar does not have detailed records concerning many items that appear on a bill, students should contact the office involved if they have questions.

For further information, students should contact the Office of the Bursar, Cornell University, 200 Day Hall (tel. 255-2356; fax 255-6442; bursar@cornell.edu; www.bursar.cornell.edu). Bursar account and Cornellcard information may be viewed real time on Just the Facts.

Student Health Insurance

Because of the high cost of medical care, it is Cornell University policy that every full-time registered student must have health insurance coverage.

The Student Health Insurance Plan (SHIP) is developed especially for Cornell students and provides extensive coverage at a reasonable cost for most on- or off-campus medical care. Complete and current details of the SHIP, its cost, and population-specific material for undergraduates, graduate students, and professional students are mailed to each student in July. Undergraduates, graduate students, and professional students each have separate deadlines and guidelines. Please be sure to check the July mailing for complete details.

The Student Health Insurance Plan provides coverage 24 hours a day, 365 days a year, anywhere in the world. Students graduating midyear may be eligible to purchase a five-month plan. Those enrolled in the SHIP may enroll their eligible dependents for an additional cost (fall deadline: September 30). Graduate and professional students who prefer to pay monthly must enroll in the installment payment plan no later than September 30. Because of policy restrictions, the plan is nonrefundable (except for dependents who no longer meet eligibility requirements and students who withdraw from Cornell within the first 30 days of the academic year).

For more information, students should contact Cornell University Office of Student Health Insurance, 409 College Avenue, Suite 211 (tel. 255-6363; sicu@cornell.edu; www.studentinsurance.cornell.edu).

Student Records

The Family Educational Rights and Privacy Act (FERPA) affords students certain rights with respect to their education records. Further details may be found in Cornell University Policy 4.5 Access to Student Information, available at www.policy.cornell.edu/VOL4_5.cfm. These rights include:

1. The right to inspect and review the student's education records within 45 days of the day the university receives a request for access.

Students should submit to the registrar, dean, head of the academic department, or other appropriate official, written
requests that identify the record(s) they wish to inspect. The university official will make arrangements for access and notify the student of the time and place where the records may be inspected. If the records are not maintained by the university official from whom the request was submitted, that official shall advise the student of the correct official to whom the request should be addressed.

2. The right to request the amendment of the student’s education records that the student believes is inaccurate. Students may ask the university to amend a record that they believe is inaccurate. They should write the university official responsible for the record, clearly identify the part of the record they want changed, and specify why it is inaccurate.

If the university decides not to amend the record as requested by the student, the university official will notify the student of the decision and advise the student of his or her right to a hearing. Additional information regarding the hearing procedures will be provided to the student when notified of the right to a hearing.

3. The right to consent to disclosures of personally identifiable information contained in the student’s education records, except to the extent that FERPA authorizes disclosure without consent. One exception, which permits disclosure without consent, is disclosure to school officials with legitimate educational interests. A school official is a person employed by the university in an administrative, supervisory, academic (including emeritus faculty) or research, or support staff position (including law enforcement unit personnel and health staff), a person or company with whom the university has contracted (such as an attorney, auditor, or collection agent); a person authorized by the Board of Trustees; or a student serving on an official committee, such as a disciplinary or grievance committee, or assisting another school official in performing his or her tasks.

A school official has a legitimate educational interest if the official needs to review an education record to fulfill his or her professional responsibility.

Upon request, the university discloses education records without consent to officials of another school in which a student seeks or intends to enroll.

4. The right to file a complaint with the U.S. Department of Education concerning alleged failures by Cornell University to comply with the requirements of FERPA. The name and address of the office that administers FERPA is:

Family Policy Compliance Office
U.S. Department of Education
400 Maryland Avenue, SW
Washington, DC 20202-5901

5. Cornell University has defined directory information to include the following: name, local address, local telephone listing, e-mail address, major field of study and college attended, dates of attendance, enrollment status, participation in officially recognized activities (in athletics, the weight and height of members of athletic teams), and any degrees earned and awards. Directory information may be released unless the student informs the Office of the University Registrar otherwise in writing or on Just the Facts. Students who wish to suppress their directory information from the printed telephone directory must inform the Office of the University Registrar in writing or through Just the Facts within 10 days of the date of official university registration. Students may rescind their no-release request at any time by writing to the Office of the University Registrar or on Just the Facts.

Academic Integrity

Absolute integrity is expected of every Cornell student in all academic undertakings. Any fraudulent act by a student to advance his or her academic status, including, but not limited to, cheating in test taking and such cases are governed by the Code of Academic Integrity. A pamphlet titled the Code of Academic Integrity and Acknowledging the Work of Others is available from the office of the dean of faculty, in the Policy on the web, and at www.policy.cornell.edu/Code_of_Academic_Integrity.html.

Protection of Human Subjects in Research

The University Committee on Human Subjects is the official review board for all university projects that use humans as research subjects, assuring compliance to federal regulations protecting human subjects in research at universities. A human subject is defined by federal regulations as “a living individual about whom an investigator (whether professional or student) obtains data through intervention or observation, the individual, or identifiable, private information.” Projects affected by regulation include, but are not limited to, experiments and psychological or physical tests on humans, surveys, questionnaires, and studies of existing data, documents, or records in which there are individual identifiers. All proposals involving human subjects in any category, including those initiated by students, must be submitted to the University Committee on Human Subjects for review before the research projects begin. The guidelines for the use of human subjects in research are available at www.csp.cornell.edu/Compliance/UCHS/homepageUCHS.htm. Inquiries and communications about the guidelines should be directed to the committee’s coordinator (255-5138;UCHS@cornell.edu).

Use of Animals for Courses

Vertebrate animals serve as an invaluable aid in instruction. It is recognized, however, that some students have ethical objections to the use of vertebrate animals in this manner. Courses that use vertebrate animals are identified as such in the course descriptions. Students who have concerns about the use of animals in these courses should consult the course instructor for more information about the precise ways in which the animals are used. A set of university guidelines on the use of vertebrate animals in teaching for faculty and students is printed below and is available from departments in which the courses are offered. The use of live vertebrates in instruction is reviewed and approved by the Institutional Animal Care and Use Committee (IACUC).

Students should contact the Occupational Medicine Office of Gannett Health Services, or their personal health care provider, before working with animals or entering an animal facility, if they may have any medical conditions that may increase their risk.

Background: On December 8, 1987, the Cornell University Institutional Animal Care and Use Committee approved a series of guidelines recommended to them by the University Animal Welfare Committee. These guidelines were prepared by a subcommittee of faculty members, after they had the opportunity to evaluate the use of animals in undergraduate teaching (and student concerns for the same) from a representative sample of instructors.

Guidelines

1. For demonstrating certain principles and procedures, the use of animals in teaching is recognized as an invaluable, often essential, pedagogical device.

2. For courses in which vertebrate animals are to be used in dissection, surgery, or in other experimental procedures, the course description that appears in Courses of Study should alert students to this fact.

3. A detailed description of the intended use of vertebrate animals should be available to students upon request to the instructor of each course.

4. Faculty members are encouraged to explain their reasons and need for using vertebrate animals and should indicate to students the availability of the procedures described in item 8 below.

5. Students are encouraged to discuss their concerns about the instructional use of vertebrate animals with the instructor of the course.

6. When consistent with pedagogical objectives, faculty members are encouraged to consider adopting alternative methods and procedures that do not involve the use of live animals.

7. When students object on ethical or other valid grounds to participating in an exercise using vertebrate animals, instructors are encouraged to provide alternative means when consistent with pedagogical objectives for learning the same material.

8. A student who is reluctant to voice his or her concerns about animal use in a particular course or who thinks these concerns have not received proper attention may seek assistance from the chair of the Institutional Animal Care and Use Committee (IACUC) at 253-3845 or by e-mail at iacuc-mailbox@cornell.edu.

9. Faculty members should instruct students in the responsible use of animals. For more information, see www.policy.cornell.edu/voll_4.cfm.
Advanced Placement

Definition and Purpose of Advanced Placement Credit

Advanced placement credit is college credit that students earn before they matriculate as freshmen and that counts toward the degree and degree requirements as specified by the individual college at Cornell. Its primary purpose is to exempt students from introductory courses and to place them in advanced courses. Its value is that it allows students to include more advanced courses in their course of study.

Sources of Advanced Placement Credit

Advanced placement credit may be earned from the following:

1. The requisite score from the Advanced Placement Examinations (AP exams) from the College Entrance Examination Board (CEEB) in Princeton, N.J. The requisite scores, which vary by subject, are determined by the relevant departments at Cornell and are listed on pages 8–10.

2. Acceptable performance on a Cornell department exam (offered only in some subjects, usually during orientation).

3. A regular course taught at an accredited college to college students and approved by the relevant department at Cornell. Some departments accept credit from virtually all accredited colleges; some do not.

4. International credentials from "A" level or IB Examinations are listed on page 11.

Note: Cornell University does not accept credit for courses sponsored by colleges but taught in high schools to high school students, even if they have been taught at the college level.

Advanced Placement examinations. Entering first-year students should have their scores from CEEB Advanced Placement Examinations sent to their college or school registrar’s office (see list below).

Departmental advanced standing examinations. In certain subjects, students may also qualify for advanced placement or credit, or both, on the basis of departmental examinations given on campus during Orientation Week. A schedule of these examinations appears in the orientation booklet mailed in late summer to entering students. The departments that award advanced placement credit and credit on the basis of departmental examinations are shown on pages 8–12. Students need to register for those examinations in the relevant department.

Advanced Subject	Score	Placement (AP) Credit	Placement
Arabic | | | Department of Near Eastern Studies determines credit and placement based on departmental examination.
Biology | | | see www.bio.cornell.edu/advising/ap.cfm for credit and placement information.
Chemistry | 5 | 4 credits | Placement out of 206, 207, or 211; if students take 215 they may also receive 4 AP credits.
Computer science AB | 4.5 | 4 credits | Placement out of COMS 100. Department also offers placement exam during fall orientation.
Computer science A | 5 | 4 credits | Placement out of COMS 100. Department also offers placement exam during fall orientation.
Economics, micro | 4.5 | 3 credits | Placement out of ECON 101 and HADM 141.
Economics, macro | 4.5 | 3 credits | Placement out of ECON 102.
English literature and composition | | | varies by college

Transfer of credit. Entering first-year students who have completed college courses for which they want to receive credit toward their Cornell degree should send transcripts and course syllabi to their college or school office (see the list below).

Written inquiries. Students can address questions to departments, schools, or college offices by adding Ithaca, NY 14853 to the addresses given in the following sections.

College of Agriculture and Life Sciences | 140 Roberts Hall
College of Architecture, Art, and Planning | 1 West Sibley Hall
College of Arts and Sciences | 55 Goldwin Smith Hall
College of Engineering | 158 Olin Hall
School of Hotel Administration | 174B Statler Hall
College of Human Ecology | 145 Martha Van Rensselaer Hall
School of Industrial and Labor Relations | 101 Ives Hall

CREDIT AND PLACEMENT

The tables below summarize how credit and placement are determined for most subjects. Supplementary information for some subjects follows immediately.

CEEB’s AP Exams
CEEB’s AP Exams (continued)

<table>
<thead>
<tr>
<th>Subject</th>
<th>Score</th>
<th>Placement</th>
</tr>
</thead>
<tbody>
<tr>
<td>English language and composition</td>
<td></td>
<td>varies by college</td>
</tr>
<tr>
<td>Environmental science</td>
<td>4,5</td>
<td>Placement out of EAS 101 or 111 and NTRES 201.</td>
</tr>
<tr>
<td>French language</td>
<td>4,5</td>
<td>Department of Romance Studies determines placement. Students should take the CASE because they will obtain appropriate placement.</td>
</tr>
<tr>
<td>French literature</td>
<td>4,5</td>
<td>Department of Romance Studies determines placement. Students should take the CASE because they will obtain appropriate placement.</td>
</tr>
<tr>
<td>German</td>
<td>4,5</td>
<td>Department of German Studies determines placement. Students should take the CASE because they will obtain appropriate placement.</td>
</tr>
<tr>
<td>Government and politics, U.S.</td>
<td>4,5</td>
<td>Placement out of GOVT 111.</td>
</tr>
<tr>
<td>Government and politics, comparative</td>
<td>4,5</td>
<td>Placement out of GOVT 131.</td>
</tr>
<tr>
<td>Greek, Ancient</td>
<td></td>
<td>Department of Classics determines credit and placement based on departmental examination.</td>
</tr>
<tr>
<td>Greek, Modern</td>
<td></td>
<td>Department of Near Eastern Studies determines credit and placement based on departmental examination.</td>
</tr>
<tr>
<td>Hebrew</td>
<td></td>
<td>Department of Near Eastern Studies determines credit and placement based on departmental examination.</td>
</tr>
<tr>
<td>American history</td>
<td>4,5</td>
<td>Placement out of HIST 153 and 154.</td>
</tr>
<tr>
<td>European history</td>
<td>4,5</td>
<td>Placement out of HIST 151 and 152.</td>
</tr>
<tr>
<td>Human Geography</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Italian language</td>
<td>4,5</td>
<td>Department of Romance Studies determines placement. Students should take the CASE because they will obtain appropriate placement.</td>
</tr>
<tr>
<td>Italian literature</td>
<td>4,5</td>
<td>Department of Romance Studies determines placement. Students should take the CASE because they will obtain appropriate placement.</td>
</tr>
<tr>
<td>Latin</td>
<td></td>
<td>Department of Classics determines credit and placement based on departmental examination.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Permission to take MATH 221, 223, 213, or 231. Students wishing to take engineering calculus will place into MATH 192. (Engineering and BEE students receive only 4 credits.)</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Placement out of MATH 106, 111, and 121. Permission to take MATH 112, 122, 190, 191, or 231. (Engineering and BEE students receive no credit.)</td>
</tr>
<tr>
<td>Mathematics AB or AB subscore of BC exam</td>
<td>3,4,5</td>
<td>Placement out of MATH 106, 111, and 121. Permission to take MATH 112, 122, 190, 191, or 231. (Engineering and BEE students receive no credit.)</td>
</tr>
<tr>
<td>Music</td>
<td></td>
<td>Department of Music determines credit and placement based on departmental examination.</td>
</tr>
<tr>
<td>Physics B</td>
<td>5</td>
<td>Placement out of PHYS 101–102. Students who also have a score of 4 or 5 on Mathematics BC may choose to accept 4 AP credits for 207 or 112 and then take 208 or 213. Students in the College of Engineering should refer to www.engineering.cornell.edu/student-services/academic-advising/academic-information/ap-credit/index.cfm for credit and placement information.</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Placement out of PHYS 101.</td>
</tr>
</tbody>
</table>
CEEB’s AP Exams (continued)

<table>
<thead>
<tr>
<th>Subject</th>
<th>Score</th>
<th>Advanced Placement Credit</th>
<th>Placement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physics C-Mechanics</td>
<td>4,5</td>
<td>4 credits</td>
<td>Placement out of PHYS 112 or 207, or placement into PHYS 116 with no AP credit. For more information, contact department representative.</td>
</tr>
<tr>
<td>Physics C-Electricity/ Magnetics</td>
<td>5</td>
<td>4 credits</td>
<td>Placement out of PHYS 213.</td>
</tr>
<tr>
<td>Psychology</td>
<td>4,5</td>
<td>3 credits</td>
<td>Placement out of PSYCH 101.</td>
</tr>
<tr>
<td>Spanish language</td>
<td>4,5</td>
<td>3 credits</td>
<td>Department of Romance Studies determines placement. Students should take the CASE† because they will obtain appropriate placement.</td>
</tr>
<tr>
<td>Spanish literature</td>
<td>4,5</td>
<td>3 credits</td>
<td>Department of Romance Studies determines placement. Students should take the CASE† because they will obtain appropriate placement.</td>
</tr>
<tr>
<td>Statistics (excluding engineering students)</td>
<td>4,5</td>
<td>3 credits</td>
<td>Placement out of AEM 210, ILRST 210, PAM 210, or MATH 171 (not HADM 201).</td>
</tr>
<tr>
<td>Studio Art</td>
<td></td>
<td>no credit</td>
<td></td>
</tr>
<tr>
<td>World History</td>
<td></td>
<td>no credit</td>
<td></td>
</tr>
</tbody>
</table>

†Cornell Advanced Standing Examination. Contact Callean Hile, 303 Morrill Hall, for French, Italian, and Spanish. Contact Miriam Zubal, 183 Goldwin Smith Hall, for German.

International Credentials

The policies currently in effect for General Certificate of Education (GCE) “A” Level Examinations and International Baccalaureate Higher Level Examinations are summarized in the table below. Students may submit results of the French Baccalaureat or German Abitur for possible credit depending on the stream or specialization followed. Accepted students holding any other secondary school credentials are urged to sit for the Advanced Placement Examinations of the College Entrance Examination Board or for the departmental examinations offered during Orientation Week.

The table lists subjects and the marks for which credit will be awarded.

SUPPLEMENTARY INFORMATION

Chemistry and Chemical Biology

The Department of Chemistry and Chemical Biology offers two 8-credit sequences that satisfy prerequisites for further work in the department: CHEM 207–208 and 215–216. CHEM 215–216 is the sequence intended for students with a solid background in chemistry and strong math skills.

Freshmen may qualify for advanced placement and advanced standing credits in chemistry by satisfactory performance on the CEEB Advanced Placement Examination or an international examination, or by passing an advanced standing examination offered by the department. A score of 5 on the CEEB examination entitles a student to 4 credits. A student may earn 4 or 8 credits by suitable performance on the departmental examination. To take the departmental examination students must sign up beforehand in the Chemistry and Chemical Biology Instructional Office, 131 Baker Laboratory.

The specific course in which a student will register after having received a certain advanced placement standing will be decided by consultation between the student, his or her adviser, and the professors teaching the courses. Questions may also be directed to the director of undergraduate studies, in 760A S. T. Olin Laboratory. Students receiving advanced placement who are interested in a major in chemistry or a related science should consider taking CHEM 215–216 and should consult the CHEM 215 instructor or department staff.

Computer Science

Students who receive a score of 4 or 5 on the AB version of the CEEB Advanced Placement Examination in computer science, a score of 5 on the A exam, or a score of 6 or 7 on the IB exam will receive 4 advanced placement credits and may take COM S 211. These credits may be used to satisfy the requirement in computer programming for students in the College of Engineering.

Freshmen may also earn 4 credits by suitable performance on a departmental examination to be given during Orientation Week. To take the departmental examination, students need only show up at the time and location indicated on the Orientation Week Schedule; advanced signup is not necessary.

English

Separate from AP credit for a high score on the CEEB AP test, students who receive scores of 700 or better on the CEEB SAT II examination in English composition, 700 or better on the CEEB SAT II examination in literature, or 4 or 5 on either CEEB Advanced Placement Examination in English are eligible to enroll, space permitting, in the following first-year writing seminars: ENGL 270, 271, or 272.

Mathematics and Statistics

Students entering Cornell before fall 2004 should contact the Department of Mathematics for placement information. The following applies to students in fall 2004 or later. The calculus courses MATH 111, 112, and 191 cover substantially the same topics as calculus courses given in many high schools, and it is best to avoid repeating material that has already been covered at an appropriate level. Secondary-school students who have had the equivalent of at least one semester of calculus should, if possible, take one of the CEEB’s two Advanced Placement Examinations (Calculus AB or Calculus BC) during their senior year.
International Baccalaureate (IB) Higher-Level Examination passes are awarded advanced standing and credit on receipt of the original or a certified copy of the examination results.

<table>
<thead>
<tr>
<th>Subject</th>
<th>Marks</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anthropology</td>
<td></td>
<td>subject to departmental review</td>
</tr>
<tr>
<td>Biology</td>
<td></td>
<td>see www.bio.cornell.edu/advising/ap.cfm</td>
</tr>
<tr>
<td>Chemistry and Physical</td>
<td></td>
<td>8 credits (PHYS 101 and 102)</td>
</tr>
<tr>
<td>Systems</td>
<td>6 or 7</td>
<td>4 credits (CHEM 207)</td>
</tr>
<tr>
<td>Chemistry</td>
<td>6 or 7</td>
<td>4 credits (COMS 100)</td>
</tr>
<tr>
<td>Computer Science</td>
<td>6 or 7</td>
<td>6 credits (ECON 101 and 102)</td>
</tr>
<tr>
<td>Economics</td>
<td>6 or 7</td>
<td>3 credits and placement out of one first-year writing seminar</td>
</tr>
<tr>
<td>English Literature</td>
<td>7</td>
<td>3 credits (excluding Arts and Sciences students)</td>
</tr>
<tr>
<td>Mathematics</td>
<td>6 or 7</td>
<td>4 credits and placement out of MATH 106 and 111. Students may obtain</td>
</tr>
<tr>
<td></td>
<td></td>
<td>more credit by taking the Mathematics Department placement exam.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Engineering and BEE students receive no credit.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>by departmental examination</td>
</tr>
<tr>
<td>Music</td>
<td></td>
<td>3 credits</td>
</tr>
<tr>
<td>Philosophy</td>
<td>7</td>
<td>8 credits (4 credits, CHEM 206; 4 credits, PHYS 101)</td>
</tr>
<tr>
<td>Physical Science</td>
<td>6 or 7</td>
<td>4 credits (PHYS 101, 112, or 207)</td>
</tr>
<tr>
<td>Physics</td>
<td>6 or 7</td>
<td></td>
</tr>
</tbody>
</table>

General Certificate of Education (GCE) Advanced ("A") Level Examination passes are awarded advanced standing and credit. Students must present the original or a certified copy of their examination certificate to receive credit.

<table>
<thead>
<tr>
<th>Subject</th>
<th>Marks</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biology</td>
<td></td>
<td>see www.bio.cornell.edu/advising/ap.cfm</td>
</tr>
<tr>
<td>Chemistry</td>
<td>A</td>
<td>8 credits (CHEM 207 and 208)</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>4 credits (CHEM 207)</td>
</tr>
<tr>
<td>Economics</td>
<td>A</td>
<td>6 credits (ECON 101 and 102)</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>3 credits and placement out of one first-year writing seminar</td>
</tr>
<tr>
<td>English literature</td>
<td>A</td>
<td>3 credits (excluding Arts and Sciences students)</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>4 credits and placement out of MATH 106, 111, and 121. (Engineering</td>
</tr>
<tr>
<td></td>
<td></td>
<td>and BEE students receive no credit.) Students may obtain more credit</td>
</tr>
<tr>
<td></td>
<td></td>
<td>by taking the Mathematics Department placement exam.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Students who take the A level exam in Singapore will receive 8 credits</td>
</tr>
<tr>
<td></td>
<td></td>
<td>and placement out of MATH 106, 111, 121, 122, 190, and 191. (Engineering</td>
</tr>
<tr>
<td></td>
<td></td>
<td>and BEE students receive 4 credits.) by departmental examination</td>
</tr>
<tr>
<td>Mathematics</td>
<td>A, B, or C</td>
<td>3 credits and placement out of one first-year writing seminar</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 credits (excluding Arts and Sciences students)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 credits and placement out of MATH 106, 111, and 121. (Engineering</td>
</tr>
<tr>
<td></td>
<td></td>
<td>and BEE students receive no credit.) Students may obtain more credit</td>
</tr>
<tr>
<td></td>
<td></td>
<td>by taking the Mathematics Department placement exam.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Students who take the A level exam in Singapore will receive 8 credits</td>
</tr>
<tr>
<td></td>
<td></td>
<td>and placement out of MATH 106, 111, 121, 122, 190, and 191. (Engineering</td>
</tr>
<tr>
<td></td>
<td></td>
<td>and BEE students receive 4 credits.) by departmental examination</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 additional credits for PHYS 213 are granted for a combination of</td>
</tr>
<tr>
<td></td>
<td></td>
<td>grades of A or B and a minimum of 8 advanced placement or advanced</td>
</tr>
<tr>
<td></td>
<td></td>
<td>standing credits in mathematics. Students planning to major in physics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>are encouraged to enroll in PHYS 116. If students take 116, they do</td>
</tr>
<tr>
<td></td>
<td></td>
<td>not receive 4 credits for 112. If students take 217, they do not</td>
</tr>
<tr>
<td></td>
<td></td>
<td>receive credit for 213. Students in the College of Engineering should</td>
</tr>
<tr>
<td></td>
<td></td>
<td>refer to www.engineering.cornell.edu/student-services/academic-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>advising/ap-credit/index.cfm for credit and placement information.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Engineering students will take the engineering calculus sequence,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>which assumes students have one semester of calculus experience before</td>
</tr>
<tr>
<td></td>
<td></td>
<td>entering Cornell. Because the engineering sequence is more advanced</td>
</tr>
<tr>
<td></td>
<td></td>
<td>than other sequences at Cornell, engineering students may receive at</td>
</tr>
<tr>
<td></td>
<td></td>
<td>most 4 AP credits, which they will forfeit if they take MATH 190 or</td>
</tr>
<tr>
<td></td>
<td></td>
<td>191, the first course in the sequence.</td>
</tr>
</tbody>
</table>

Modern Foreign Languages

Students who have studied a language for two or more years and want to continue study in that language at Cornell must present the results of a placement test. See "Placement Tests and Advanced Placement Credit" under "Foreign Language Requirements" in the College of Arts and Sciences section of this catalog. Students who have had a year of formal study or substantial informal study since they last took a placement test should take the examination again during orientation week if they plan to continue course work.
Advanced standing credit may be earned as follows:

1. Students with a score of 4 or 5 on the language Advanced Placement Examination of the CEEB, earn 3 credits, and are eligible to take the Cornell Advanced Standing Examination (CASE).

2. Students who achieve a minimum score of 65 on the Cornell language placement test given during orientation week are eligible to take the Cornell Advanced Standing Examination (CASE). Outstanding performance on this examination can result in a maximum of 3 credits.

3. For formal language work at an accredited college, credit is considered by the relevant department on submission of a syllabus and transcript. Sometimes an exam score or the CASE is also required.

4. Native speakers of languages other than English may, if an examination by the appropriate department is available, be granted a maximum of 3 credits for proficiency equivalent to that required in English for a first-year writing seminar.

Information about times and places of placement tests is available in the orientation booklet and from Academic and Career Counseling Services at sao.cornell.edu/orientation/placement.htm. For more information, see "College of Arts and Sciences" on language course placement, or contact Callecon Hile, 303 Morrill Hall, for French, Italian, and Spanish; Miriam Zuhul, 185 Goldwiz Smith Hall, for German; Doreen Silva, 226 Morrill Hall, for Russian; Kim Robinson, 388 Rockefeller Hall, for Asian languages; Nava Scharf, 409 White Hall, for Hebrew; or Munthe Yones, 409 White Hall, for Arabic.

Music

Advanced placement and credit are awarded only in music theory, and only on the basis of an examination administered by the Department of Music; that is, credit cannot be earned on the basis of the AP, IB, or other examinations from outside Cornell, nor on the basis of course work done elsewhere. Outstanding performance on the departmental examination will earn students 3 credits and placement directly into MUSIC 152 Tonal Theory II. In rare instances students may place into MUSIC 251, in which case they will earn 6 credits. The placement examination is normally administered on the Sunday during fall orientation week. For more information about the examination, see the departmental web site.

Physics

Advanced placement and credit are awarded on the basis of the CEEB Advanced Placement Examination in physics (Physics B or Physics C), certain international examinations, or the departmental examination (offered only during orientation week, fall semester; appointment required). For information about the departmental examination, students should consult the director of undergraduate studies, 101 Clark Hall (physics.cornell.edu), or the department chair, 109 Clark Hall.

Physics B—Students earning a score of 5 may receive 8 credits for non–calculus-based PHYS 101 and 102. Those earning a score of 5 in Physics B and a score of 4 or 5 in Calculus BC may choose to accept 4 credits in calculus-based PHYS 112 or 207 instead of 8 credits in PHYS 101 and 102. Those earning a score of 4 may receive 4 credits in PHYS 101.

Physics C—Mechanics: Students earning a score of 4 and receive 4 credits for PHYS 112 or 207, or placement into PHYS 116, a more analytic first-semester course, with no AP credit.

Physics C—Electricity and Magnetism: Students earning a score of 5 may receive 4 credits for PHYS 213.

Students will not receive credit for an advanced placement course if they receive credit for a Cornell course with similar content. Students may receive credit for only one of the courses in each group:

- PHYS 101, 112, 116, 207
- PHYS 102, 208, 213, 217

A student planning a major in physics or applied and engineering physics and who is eligible for AP credit should consult with his or her adviser or the department representative.

Advanced placement into a next-in-sequence course depends on the completion of the appropriate mathematics prerequisites before enrollment. To qualify for advanced placement credit, it is not necessary to continue the study of physics.

General information and advice may be obtained from the director of undergraduate studies, 101 Clark Hall, or from the Department of Physics, 109 Clark Hall.

Course Enrollment

PREENROLLMENT

Pre-course enrollment for each semester at Cornell takes place partway through the preceding semester using an online application through just the Facts. Dates are announced in advance and are posted in school and college offices. Students are expected to meet with their advisers during this period to affirm that the courses they plan to take will ensure satisfactory progress toward a degree.

New students and transfer students may be sent course enrollment instructions by their college offices before they arrive on campus. Procedures vary from college to college.

COURSE ADD/DROP/CHANGE

Students may adjust their schedules during add/drop/change periods. Courses may be added, dropped, or changed online through just the Facts. Permission-only courses and courses with specific add/drop procedures will be handled using a written add/drop form. The form is completed by the student and signed by both the student's adviser and an appropriate representative of the department offering the course (an instructor, department staff member, or college registrar, depending on the college).

The completed and signed form must be returned to the student's college office to be processed. Professional schools, the School of Continuing Education and Summer Sessions, and the Department of Physical Education and Athletics have different course enrollment and add-drop policies. See the chart below for their course add/drop/change fees.

Late Course Enrollment and Late Add/Drop/Change Fees

<table>
<thead>
<tr>
<th>Course Enrollment</th>
<th>Late Add/Drop Fee</th>
<th>Late Change Fee</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic Unit</td>
<td>Fee</td>
<td>Fee</td>
</tr>
<tr>
<td>Continuing Education and Summer Sessions</td>
<td>$50</td>
<td>$20</td>
</tr>
<tr>
<td>Johnson Graduate</td>
<td>$100</td>
<td>$100</td>
</tr>
<tr>
<td>School of Management</td>
<td>No fee</td>
<td>No fee</td>
</tr>
<tr>
<td>Law School</td>
<td>$30</td>
<td>$20</td>
</tr>
<tr>
<td>Physical education</td>
<td>$100*</td>
<td>$100*</td>
</tr>
<tr>
<td>Veterinary medicine</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Consult the Summer Session catalog and the Division of Extramural Study brochure for fees.

**Consult the college office for special considerations and requirements.

AUDITING COURSES

Summer school and extramural students may officially register as visitors (auditors) in courses and have this entered on their permanent records if their attendance is reported as satisfactory. Graduate students may register for courses as auditors but will not have the courses listed on their transcripts. Undergraduates may not register to audit courses.

EXPLANATION OF COURSE NUMBERING SYSTEMS AND COURSE PREFIXES

As the university makes the transition to a new course numbering system, the course levels for three-digit (current) and four-digit (future) course numbers will correspond in the manner shown in the list below. In this issue of Courses of Study all of the current three-digit course numbers and most of the future four-digit course numbers have been included in the course listings (some four-digit course numbers were not available at press time).

- **100(1100) level**—introductory course, no prerequisites, open to all qualified students
- **200(2000) level**—lower-division course, open to freshmen and sophomores, may have prerequisites
- **300(3000) level**—upper-division course, open to juniors and seniors, prerequisites
- **400(4000) level**—upper-division course, open to seniors and graduate students, 200(2000)- and 300(3000)-level course prerequisites or equivalent
- **500(5000) level**—professional level (e.g., management, law, veterinary medicine)
- **600(6000) level**—professional and graduate-level course, open to upper-division students
- **700(7000) level**—graduate-level course
- **800(8000) level**—master’s level, thesis, research
- **900(9000) level**—doctoral level, thesis, research
The list of courses that follows is arranged in two broad groups.

Group 1: Divisions that offer both undergraduate- and graduate-level courses

- Agriculture and Life Sciences
- Architecture, Art, and Planning
- Arts and Sciences
- Engineering
- Hotel Administration
- Human Ecology
- Industrial and Labor Relations
- Nutritional Sciences
- Officer Education

Group 2: Graduate professional divisions

- Law
- Veterinary Medicine

No courses are offered by the Graduate School as a unit; graduate-level courses are contained in the various departments that offer the instruction.

Within each division, courses are generally arranged in alphabetical order by department and in numerical order within the departments. All courses are briefly described for those divisions (group 1) offering instruction to both undergraduate and graduate students. Courses in the graduate professional divisions (group 2) are designated by number and title only.

Course Prefixes and Their Meanings

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAS</td>
<td>Asian American Studies</td>
</tr>
<tr>
<td>AEM</td>
<td>Applied Economics and Management</td>
</tr>
<tr>
<td>AIR</td>
<td>Aerospace Studies</td>
</tr>
<tr>
<td>AIS</td>
<td>American Indian Studies</td>
</tr>
<tr>
<td>ALS</td>
<td>Agriculture and Life Sciences</td>
</tr>
<tr>
<td>AM ST</td>
<td>American Studies</td>
</tr>
<tr>
<td>AN SC</td>
<td>Animal Sciences</td>
</tr>
<tr>
<td>ANTHR</td>
<td>Anthropology</td>
</tr>
<tr>
<td>ARCH</td>
<td>Architecture</td>
</tr>
<tr>
<td>ARKEO</td>
<td>Archaeology</td>
</tr>
<tr>
<td>ART</td>
<td>Art</td>
</tr>
<tr>
<td>ART H</td>
<td>History of Art</td>
</tr>
<tr>
<td>ASIAN</td>
<td>Asian Studies</td>
</tr>
<tr>
<td>AS&RC</td>
<td>Africana Studies and Research Center</td>
</tr>
<tr>
<td>ASTRO</td>
<td>Astronomy</td>
</tr>
<tr>
<td>BEE</td>
<td>Biological and Environmental Engineering</td>
</tr>
<tr>
<td>BENG</td>
<td>Bengali</td>
</tr>
<tr>
<td>BIOAP</td>
<td>Animal Physiology</td>
</tr>
<tr>
<td>BIOBM</td>
<td>Biochemistry, Molecular and Cell Biology</td>
</tr>
<tr>
<td>BIOEE</td>
<td>Ecology and Evolutionary Biology</td>
</tr>
<tr>
<td>BIO G</td>
<td>Biology</td>
</tr>
<tr>
<td>BIOGD</td>
<td>Genetics and Development</td>
</tr>
<tr>
<td>BIOMI</td>
<td>Microbiology</td>
</tr>
<tr>
<td>BIONB</td>
<td>Neurobiology and Behavior</td>
</tr>
<tr>
<td>BIOPL</td>
<td>Plant Biology</td>
</tr>
<tr>
<td>BIOSM</td>
<td>Shoals Marine Laboratory</td>
</tr>
<tr>
<td>BME</td>
<td>Biomedical Engineering</td>
</tr>
<tr>
<td>B&SOC</td>
<td>Biology and Society</td>
</tr>
<tr>
<td>BTRY</td>
<td>Biometry and Statistics*</td>
</tr>
<tr>
<td>BURM</td>
<td>Burmese</td>
</tr>
<tr>
<td>CAPS</td>
<td>China and Asia Pacific Studies</td>
</tr>
<tr>
<td>CATAL</td>
<td>Catalan</td>
</tr>
<tr>
<td>CEE</td>
<td>Civil and Environmental Engineering</td>
</tr>
<tr>
<td>CHEM</td>
<td>Chemistry</td>
</tr>
<tr>
<td>CHEME</td>
<td>Chemical and Bio molecular Engineering</td>
</tr>
<tr>
<td>CHIN</td>
<td>Chinese</td>
</tr>
<tr>
<td>CHLIT</td>
<td>Literature in Chinese</td>
</tr>
<tr>
<td>CIS</td>
<td>Computing and Information Science</td>
</tr>
<tr>
<td>CLASS</td>
<td>Classics</td>
</tr>
<tr>
<td>COGST</td>
<td>Cognitive Studies</td>
</tr>
<tr>
<td>COM L</td>
<td>Comparative Literature</td>
</tr>
<tr>
<td>COMM</td>
<td>Communication</td>
</tr>
<tr>
<td>COM S</td>
<td>Computer Science</td>
</tr>
<tr>
<td>CRP</td>
<td>City and Regional Planning</td>
</tr>
<tr>
<td>CSS</td>
<td>Crop and Soil Sciences</td>
</tr>
<tr>
<td>CZECH</td>
<td>Czech</td>
</tr>
<tr>
<td>DANCE</td>
<td>Dance</td>
</tr>
<tr>
<td>DEA</td>
<td>Design and Environmental Analysis</td>
</tr>
<tr>
<td>D SOC</td>
<td>Developmental Sociology</td>
</tr>
<tr>
<td>DUTCH</td>
<td>Dutch</td>
</tr>
<tr>
<td>EAS</td>
<td>Earth and Atmospheric Sciences</td>
</tr>
<tr>
<td>ECE</td>
<td>Electrical and Computer Engineering</td>
</tr>
<tr>
<td>ECON</td>
<td>Economics</td>
</tr>
<tr>
<td>EDUC</td>
<td>Education</td>
</tr>
<tr>
<td>ENGL</td>
<td>English</td>
</tr>
<tr>
<td>ENGLF</td>
<td>English for Academic Purposes</td>
</tr>
<tr>
<td>ENGR C</td>
<td>Engineering Common Courses</td>
</tr>
<tr>
<td>ENGRD</td>
<td>Engineering Distribution Courses</td>
</tr>
<tr>
<td>ENGBG</td>
<td>Engineering General Interest</td>
</tr>
<tr>
<td>ENGRI</td>
<td>Engineering Introductory Courses</td>
</tr>
<tr>
<td>ENTM</td>
<td>Entomology</td>
</tr>
<tr>
<td>FGSS</td>
<td>Feminist, Gender, and Sexuality Studies</td>
</tr>
<tr>
<td>FILM</td>
<td>Film Studies</td>
</tr>
<tr>
<td>FD SC</td>
<td>Food Science</td>
</tr>
<tr>
<td>FRDR</td>
<td>Freehand Drawing and Scientific Illustration</td>
</tr>
<tr>
<td>FRLIT</td>
<td>Literature in French</td>
</tr>
<tr>
<td>FRROM</td>
<td>French</td>
</tr>
<tr>
<td>GERST</td>
<td>German Studies</td>
</tr>
<tr>
<td>H ADM</td>
<td>Hotel Administration</td>
</tr>
<tr>
<td>HD</td>
<td>Human Development</td>
</tr>
<tr>
<td>HE</td>
<td>Human Ecology</td>
</tr>
<tr>
<td>HINDI</td>
<td>Hindi</td>
</tr>
<tr>
<td>HIST</td>
<td>History</td>
</tr>
<tr>
<td>HORT</td>
<td>Horticulture</td>
</tr>
<tr>
<td>HUNGR</td>
<td>Hungarian</td>
</tr>
<tr>
<td>IARD</td>
<td>International Agriculture and Rural Development</td>
</tr>
<tr>
<td>ILRBC</td>
<td>Collective Bargaining, Labor Law, and Labor History</td>
</tr>
<tr>
<td>ILRIHR</td>
<td>Human Resources Studies</td>
</tr>
<tr>
<td>ILRIC</td>
<td>International and Comparative Labor</td>
</tr>
<tr>
<td>ILHID</td>
<td>Interdepartmental</td>
</tr>
<tr>
<td>ILRLE</td>
<td>Labor Economics</td>
</tr>
<tr>
<td>ILROB</td>
<td>Organizational Behavior</td>
</tr>
<tr>
<td>ILRST</td>
<td>Social Statistics</td>
</tr>
<tr>
<td>INDO</td>
<td>Indonesian</td>
</tr>
<tr>
<td>INFO</td>
<td>Information Science</td>
</tr>
<tr>
<td>ITALA</td>
<td>Italian</td>
</tr>
<tr>
<td>ITALL</td>
<td>Literature in Italian</td>
</tr>
<tr>
<td>JAPAN</td>
<td>Japanese</td>
</tr>
<tr>
<td>JAVA</td>
<td>Javanese</td>
</tr>
<tr>
<td>JPLIT</td>
<td>Literature in Japanese</td>
</tr>
<tr>
<td>JWST</td>
<td>Jewish Studies</td>
</tr>
<tr>
<td>KHM ER</td>
<td>Khmer (Cambodian)</td>
</tr>
<tr>
<td>KOREA</td>
<td>Korean</td>
</tr>
<tr>
<td>KRLIT</td>
<td>Korean Literature</td>
</tr>
<tr>
<td>LA</td>
<td>Landscape Architecture</td>
</tr>
<tr>
<td>LASP</td>
<td>Latin American Studies Program</td>
</tr>
<tr>
<td>LAT A</td>
<td>Latin American Studies</td>
</tr>
<tr>
<td>LAW</td>
<td>Law</td>
</tr>
<tr>
<td>LING</td>
<td>Linguistics</td>
</tr>
<tr>
<td>M&AE</td>
<td>Mechanical and Aerospace Engineering</td>
</tr>
<tr>
<td>MATH</td>
<td>Mathematics</td>
</tr>
<tr>
<td>MIL S</td>
<td>Military Science</td>
</tr>
<tr>
<td>MS&EE</td>
<td>Materials Science and Engineering</td>
</tr>
<tr>
<td>MUSIC</td>
<td>Music</td>
</tr>
<tr>
<td>NAV S</td>
<td>Naval Science</td>
</tr>
<tr>
<td>NBA</td>
<td>Business Administration</td>
</tr>
<tr>
<td>NCC</td>
<td>Graduate School of Management Common Course</td>
</tr>
<tr>
<td>NEPAL</td>
<td>Nepali</td>
</tr>
<tr>
<td>NES</td>
<td>Near Eastern Studies</td>
</tr>
<tr>
<td>NMI</td>
<td>Graduate School of Management, Research and Advanced Studies</td>
</tr>
<tr>
<td>NRE</td>
<td>Graduate School of Management, Doctoral Seminars</td>
</tr>
<tr>
<td>NS</td>
<td>Nutritional Sciences</td>
</tr>
<tr>
<td>NS&E</td>
<td>Nuclear Science and Engineering</td>
</tr>
<tr>
<td>NTRES</td>
<td>Natural Resources</td>
</tr>
<tr>
<td>OR&IE</td>
<td>Operations Research and Industrial Engineering</td>
</tr>
<tr>
<td>PALI</td>
<td>Pali</td>
</tr>
<tr>
<td>PAM</td>
<td>Policy Analysis and Management</td>
</tr>
<tr>
<td>PHIL</td>
<td>Philosophy</td>
</tr>
<tr>
<td>PHYS</td>
<td>Physics</td>
</tr>
<tr>
<td>PL BR</td>
<td>Plant Breeding</td>
</tr>
<tr>
<td>PL PA</td>
<td>Plant Pathology</td>
</tr>
<tr>
<td>POLISH</td>
<td>Polish</td>
</tr>
<tr>
<td>PORT</td>
<td>Portuguese</td>
</tr>
<tr>
<td>PSYCH</td>
<td>Psychology</td>
</tr>
<tr>
<td>QUECH</td>
<td>Quechua</td>
</tr>
<tr>
<td>RELST</td>
<td>Religious Studies</td>
</tr>
<tr>
<td>ROM S</td>
<td>Romance Studies</td>
</tr>
<tr>
<td>RUSSA</td>
<td>Russian</td>
</tr>
</tbody>
</table>
GENERAL INFORMATION - 2005-2006

Class Attendance, Meeting Times, and Examinations

CLASS ATTENDANCE AND MEETING TIMES

Students are expected to be present throughout each semester at all meetings of courses for which they are registered. The right to excuse a student from class rests at all times with the faculty member in charge of that class.

Absences because of religious beliefs. In accordance with Section 224-a of the New York State Education Law, each student who is absent from school because of his or her religious beliefs must be given an equivalent opportunity to register for classes or make up examinations, study, or work requirements for which they are registered. The right to such equivalent opportunity.

No fees of any kind shall be charged by the office of the university faculty governing examinations, study, or work requirements because of religious beliefs. Absences because of religious beliefs shall be recorded as such in the student's record and shall be regarded as excused.

In accordance with Section 242-a of the New York State Education Law, a student who is absent from school because of his or her religious beliefs must be given an equivalent opportunity to register for classes or make up examinations, study, or work requirements for which they are registered.

FINAL EXAMINATIONS

Final examinations for undergraduate courses are scheduled by the Office of the University Registrar. The dates and times of these examinations are listed in the course rosters for each semester.

FINAL EXAMINATIONS

Final examinations for undergraduate courses are scheduled by the Office of the University Registrar. Examinations may be, one, two, or two and one-half hours in length at the discretion of the department concerned. The schedule of final examinations is available in the Course and Room Roster, or online at www.comell.edu/academics/courses.cfm.

General Rules Governing Final Examinations

Legislation of the university faculty governing study periods and examinations is as follows:

1. No final examinations can be given at a time other than the time appearing on the official examination schedule promulgated by the Office of the University Registrar without prior written permission of the dean of the faculty.

2. No permission will be given, for any reason, to schedule final examinations during the last week of classes or the designated study period preceding final examinations.

3. Permission will be given by the dean of the faculty to offer an alternate examination during the examination period itself if requested in writing by the faculty member, but only on condition that a comparable examination also be given for those students who wish to take it at the time the examination was originally scheduled. The faculty member preparing such a change shall be responsible for making appropriate arrangements for rooms or other facilities in which to give the examination. This should be done through the university registrar's office.
4. No tests are allowed during the last week of scheduled classes unless such tests are part of the regular week-by-week course program and are followed by an examination (or the equivalent) during the final examination period.

5. Papers may be required of students during the study period if announced sufficiently far in advance that the student did not have to spend a significant segment of the study period completing them.

6. Faculty can require students to submit papers during the week preceding the study period.

7. Take-home examinations should be given to classes well before the end of the regular semester and should not be required to be submitted during study period but rather well into the examination period.

The university policies governing study period and final examinations are:

1. Each course should require that a final examination or some equivalent exercise (for example, a term paper, project report, final critique, oral presentation, or conference) be conducted or due during the period set aside for final examinations.

2. Although not specifically prohibited, it is university policy to discourage more than two examinations for a student in one 24-hour time period and especially on any one day. It is urged that members of the faculty consider student requests for a make-up examination, particularly if their course is the largest of the three involved and thus has the strongest likelihood of offering a make-up for other valid reasons, such as illness or death in the family.

3. Students have a right to examine their corrected exams, papers, etc., to be able to question their grading. (Note that students have no absolute right to the return thereof.) Exams, papers, etc., as well as grading records, should be retained for a reasonable time after the end of the semester, preferably till the end of the following semester, to afford students such right of review.

EVENING PRELIMINARY EXAMINATIONS

The most convenient times and places for "prelims" are the normal class times and classrooms. In cases where the only alternative is to hold evening preliminary examinations, they may be scheduled only on Tuesday and Thursday evenings and only after 7:30 P.M.

An alternative time to take the examination must be provided for those students who have academic, athletic, or employment conflicts at the time scheduled.

Note that instructors holding evening examinations are strongly urged to indicate this in the course descriptions listed in Courses of Study and must notify students of the dates of such examinations as early as possible in the semester, preferably when the course outline is distributed. For more information on the policy governing evening examinations, contact the office of the dean of the faculty, 315 Day Hall.

Grading Guidelines

The official university grading system is composed of letter grades with pluses and minuses. Passing grades range from A+ to D-. F is failing. INC denotes a grade of incomplete, and R is the grade given at the end of the first semester of a yearlong course. The grades of INC and R do not have quality-point equivalents attached. These are the quality-point equivalents:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>A+</td>
<td>4.3</td>
</tr>
<tr>
<td>A</td>
<td>4.0</td>
</tr>
<tr>
<td>A-</td>
<td>3.7</td>
</tr>
<tr>
<td>B+</td>
<td>3.3</td>
</tr>
<tr>
<td>B</td>
<td>3.0</td>
</tr>
<tr>
<td>B-</td>
<td>2.7</td>
</tr>
<tr>
<td>C+</td>
<td>2.3</td>
</tr>
<tr>
<td>C</td>
<td>2.0</td>
</tr>
<tr>
<td>C-</td>
<td>1.7</td>
</tr>
<tr>
<td>D+</td>
<td>1.3</td>
</tr>
<tr>
<td>D</td>
<td>1.0</td>
</tr>
<tr>
<td>D-</td>
<td>0.7</td>
</tr>
<tr>
<td>F</td>
<td>0.0</td>
</tr>
</tbody>
</table>

This is how a semester average is computed:

\[
\text{Quality Product} = \text{Product (credits x quality points)}
\]

To arrive at the semester average, add the products (credits x quality points) and divide by the number of credits taken. Here, 42 divided by 16 equals 2.625.

The cumulative average (an average of grades from two or more semesters) equals the sum of the products of all the grades at Cornell divided by the total number of credits taken.

S-U GRADES

On September 6, 1972, the Faculty Council of Representatives passed the following legislation:

Resolved, that:

a. the S-U system have symbol equivalents which are uniform within the university. S means C- or above; U means D+, D, D-, or failure.

b. S-U options be chosen by the student during the first three weeks of the semester.

c. the Announcements and/or supplementary course registration materials describing each course include a description of the course grading options, particularly if the course is graded with an exclusive S-U. Any change in grading options must be announced by the instructor within the first two weeks of the semester.

d. course requirements (required reading, term paper, etc.) be the same for students electing S-U grades as for those electing letter grades.

e. the rules for the S-U option are further defined by each of the academic units. They are as follows:

Agriculture and Life Sciences. (1) Must have 100 credit hours with A, B, C, D grades. (2) The S-U option is available only in those courses so designated in the course catalog after approval by the Educational Policy Committee. (3) Freshmen may not exercise the S-U option. (4) Only one optional S-U course is allowed per semester.

Architecture, Art, and Planning. (1) All courses specifically required for a degree excluded. Various departments may designate specific required courses where S-U will be permitted. (2) In a course designated as S or U, the entire class is so graded. The instructor must announce this decision within the first two weeks of class. (3) Where the option for S or U exists, both student and instructor must agree on the option. This decision must be made by the end of the third week of classes on the appropriate form in the college office. Once agreed upon, this grade option will be used for the final grade.

Arts and Sciences. (1) Courses that count toward satisfaction of major requirements should not be taken for an S or U grade unless the department grants permission. (2) Permission of instructor. (3) A minimum of 80 of the 120 hours required for the A.B. degree must be in courses for which the student has received letter grades.

Engineering. (1) The course in question must be offered with an S-U option. (2) The student must have completed at least one full semester of study at Cornell. Freshmen may not take any courses on an S-U basis during their first semester with the exception of courses graded "S-U only" such as physical education, ROTC, supplemental courses, and writing workshops. (3) The proposed S-U course must count as either a liberal studies distribution or an approved elective in the Engineering curriculum. (4) Students may only exercise S-U in one course each semester in which the choice between letter grade and S-U is an option. (5) S-U is an option. Additional courses offered "S-U only" may be taken in the same semester as the "elective S-U course." (6) After the end of the third week of classes, the grading option may not be changed nor will students be permitted to add a course in which they were previously enrolled (in the current semester) under a different grading option.

Note: Courses graded S-U do not count toward eligibility on the Dean's List and may weaken a student's chances for acceptance into graduate school. Questions regarding the S-U grading option should be addressed to Engineering Advising.

Graduate School. (1) Seminars and thesis research courses are usually graded S-U, and should be registered accordingly or a grade error results at semester's end. Other courses may be registered as S-U only if offered as S-U option.

Hotel. (1) Maximum of 4 free-elective credit hours per semester. (2) Exceptions are by petition only.

Human Ecology. (1) Not part of student's major. (2) May be used in the 9 credit hours required outside the major in Human Ecology courses. (3) Not part of hours required in humanities, natural sciences, and social sciences. (4) A department may approve S-U grading in specific courses if approved by Educational Policies Committee. (5) Freshmen enrolled in ENGL 137 and 138, which are offered only for S-U credit, are permitted to apply these courses to the first-year writing seminar requirements. (6) Total of 12 credits in S-U courses (not counting physical education) may be counted toward degree requirements during a student's college career.
Industrial and Labor Relations (1) This option may be elected, if available in ILR electives, or in out-of-college electives but not including directed studies. (2) Degree requirements include a minimum of 105 letter grade (A to D-) credits. (3) Student must also be in good academic standing. (4) A U grade is considered the equivalent of an F in determining a student’s academic status. (5) Limited to two courses per semester, not to exceed four hours in any one course.

Internal Transfer. (1) S-U grades permitted only when it is the only option or (2) when specifically approved by an admissions officer in the school or college to which the student plans to transfer.

Veterinary Medicine. (1) There is one foundation course in the veterinary curriculum that is offered on an S-U basis only. All other required core courses must be taken for a letter grade. (2) Elective courses for veterinary students may be offered on an S-U basis at the option of the professor.

INCOMPLETE

The grade of incomplete is appropriate only when two basic conditions are met:

1. the student has a substantial equity at a passing level in the course with respect to work completed, and
2. the student has been prevented by circumstances beyond the student’s control, such as illness or family emergency, from completing all of the course requirements on time.

A grade of incomplete may not be given merely because a student fails to complete all course requirements on time. It is not an option that may be elected at the student’s own discretion. While it is the student’s responsibility to initiate a request for a grade of incomplete, reasons for requesting one must be acceptable to the instructor, who establishes specific make-up requirements. The instructor has the option of setting a shorter time limit than that allowed by the student’s college for completing the course work. Several colleges require that a statement signed by the instructor be on file indicating the reason for the grade of incomplete and the restriction, if any.

It is the responsibility of the student to see that all grades of incomplete are made up before the deadline and that the grade has been properly recorded with the student’s college registrar.

CHANGES IN GRADES

Changes in a grade may be made only if the instructor made an error in assigning the original grade.

OFFICIAL TRANSCRIPTS

An official transcript is one that bears the official signature of the university registrar, sent in a sealed envelope directly from the Office of the University Registrar to another institution or agency as directed by the student. Transcripts can be obtained through the Office of the University Registrar, B7 Day Hall, or requested at transcript.cornell.edu.

University Requirements for Graduation

The university has only two requirements for graduation that must be fulfilled: the swim test and physical education courses. A student’s college determines degree requirements such as residency, number of credits, distribution of credits, and grade averages. See the individual requirements listed by each college or school contact the college registrar’s office.

STUDENT RESPONSIBILITIES

Students are responsible for meeting all requirements for the courses in which they are enrolled, as defined by the faculty members teaching the courses. It is also the student’s responsibility to be aware of the specific major, degree, distribution, college, and graduation requirements for completing his or her chosen program of studies. Students should know how far they have progressed in meeting those requirements at every stage of their academic career.

PHYSICAL EDUCATION

Classes

All undergraduate students must complete two semesters of work in physical education unless exempted from this requirement for medical or other special reasons or by virtue of advanced standing on admission. For transfer students the requirement is reduced by the number of semesters satisfactorily completed, not necessarily including physical education, in a college of recognized standing before entering Cornell.

Credit in physical education may be earned by participating in courses offered by the Department of Athletics and Physical Education, participating on an intercollegiate athletic team as a competitor or manager, or performing in the marching band.

Physical education is a requirement of the first two terms at Cornell. Students must register for the required credit in each semester, except those in which a waiver is granted. A student who is enrolled for a letter grade must earn a grade of D or better in order to count the course toward graduation.

Physical education is a requirement of the first two terms at Cornell. Students must register for the required credit in each semester, except those in which a waiver is granted. A student who is enrolled for a letter grade must earn a grade of D or better in order to count the course toward graduation.

Swim Test

The University Faculty Committee on Physical Education has established a basic swimming and water safety competency requirement for all entering freshman undergraduate students. Normally, the test is given for women in the Helen Newman pool and for men in the Teagle pool as part of their orientation process. The test consists of a one-foot-first entry into the deep end of the pool and a continuous 75-yard swim using front, breast, and optional strokes. Any student who cannot pass the swim test is required to include the course Basic Swimming and Water Safety in his or her program of physical education before electives can be chosen.

Students will receive a grade of incomplete in physical education until they have passed the swim test or fulfilled the requirement by satisfactory attendance in two semesters of Basic Swimming and Water Safety. Students unable to meet the swim requirement because of medical, psychological, or religious reasons must petition the University Faculty Committee on Physical Education for a waiver of the requirement. When a waiver is granted by the Faculty Committee on Physical Education, an alternate requirement is imposed. The alternate requirement substitutes a course in either Advanced First Aid (Emergency Response) or Wellness and Fitness for the original swimming requirement.

Internal Transfer Division

Students may not always be satisfied with the original Cornell school or college into which they have been admitted, and may decide to transfer from one college to another within the university. This process is called internal transfer, and application procedures and deadlines vary by college. It may be possible to be admitted directly into a new program. Students who are uncertain if they immediately qualify for direct transfer, however, should apply to the Internal Transfer Division (ITD).

To apply, candidates must interview with the division’s director and submit an essay to the ITD office outlining their reasons for wanting to transfer. Internal Transfer Division applicants must also fulfill the application requirements (e.g., interviews, essays) of their target college as if they were applying for direct transfer. In many cases, colleges formally sponsor students in ITD and essentially guarantee admission if students successfully complete the requirements (taking particular courses, earning a specified grade point average while enrolled in ITD) that are outlined in their letter of sponsorship. Sponsorship is the most important factor determining acceptance into ITD. Students can apply simultaneously for direct transfer and to ITD, so that if direct transfer is denied they might be offered the option of being sponsored in the Internal Transfer Division. For more information about transfer requirements, students should contact the admissions office of the college they hope to enter and the office of the Internal Transfer Division, 220 Day Hall (255-4386).
Interdisciplinary Centers, Programs, and Studies
ANDREW D. WHITE PROFESSORS-AT-LARGE
726 University Avenue (255-0832)
The program has its origins in Cornell's early history. Andrew D. White, the first president of Cornell University, inaugurated the position of nonresident professor, to be held by eminent scholars, scientists, and intellectuals who periodically visit the university for the stated purpose of "contributing to the intellectual and cultural life of the university." Toward this end, Andrew D. White Professors-at-Large engage in a variety of activities including public lectures, ongoing courses, and collaborative research, as well as holding office hours for undergraduate and graduate students. They serve for a six-year term and are full members of the faculty when in residence.

Term Ending in 2006
Cleese, John, writer and actor
Goldsworthy, Andy, sculptor
Sacks, Oliver, physician and writer

Term Ending in 2007
Pretty, Jules, sustainable agriculture ecologist
Short, Roger, reproductive physiologist

Term Ending in 2008
Holldobler, Bert, zoologist
Subrahmanyan, Sanjay, economic historian

Term Ending in 2009
Behrends, Okko, legal historian
Butler, Judith, cultural theorist
Venter, Craig, geneticist

Term Ending in 2010
Aldous, David, statistician
Leeson, Lynn Hershman, digital artist
Peshkin, Charlen, mathematician
Sala, Osvaldo, ecologist
Tibi, Bassam, Islamist

Term Ending in 2011
Sims, Lowery Stokes, art curator
Wasserstein, Wendy, playwright

FRANK H. T. RHODES CLASS OF '56 UNIVERSITY PROFESSORSHIP
To commemorate their 40th reunion, the Class of 1956 initiated an endowment to create the Frank H. T. Rhodes Class of '56 University Professorship in honor of Cornell's ninth president (1977–1995). The purpose of the Rhodes Class of '56 Professorship is to strengthen the undergraduate experience by bringing to the university individuals from every walk of life who represent excellence of achievement and to create opportunities for interaction with undergraduates. The endowment also makes it possible to create public events related to the professorship such as lectures, performances, films, art exhibits, or conferences. Rhodes Class of '56 Professors are full members of the faculty while in residence. Appointments are awarded for a period of one to five years. During each year of their appointment, Rhodes Class of '56 Professors visit the campus for a minimum of two weeks to engage in a variety of activities including public lectures, ongoing courses, and collaborative research.

Term Ending in 2006
McKinney, Cynthia, educator and politician
Nye, Bill, science guy
Parker, John, journalist and documentary filmmaker

CENTER FOR APPLIED MATHEMATICS
657 Frank H. T. Rhodes Hall (255-4335)
The Center for Applied Mathematics administers a broad-based interdisciplinary graduate program that provides opportunities for study and research over a wide range of the mathematical sciences. Each student develops a solid foundation in analysis, algebra, and methods of applied mathematics. The remainder of the graduate student's program is designed by the student and his or her Special Committee. For detailed information on opportunities for graduate study in applied mathematics, students should contact the director of the Center for Applied Mathematics, 657 Frank H. T. Rhodes Hall.
There is no special undergraduate degree program in applied mathematics. Undergraduate students interested in an application-oriented program in mathematics may select an appropriate program in the Department of Mathematics, the Department of Computer Science, or some department of the College of Engineering. Graduate students in the center take courses related to their program of study that are offered by various departments. Below are listed selected courses in applied mathematics in the main areas of research interest of the center's members. Detailed descriptions of these courses can be found in the listings of the individual departments.

Selected Applied Mathematics Courses

Basic Graduate Courses in Mathematics and Applied Mathematics
MATH 413 Honors Introduction to Analysis
MATH 414 Honors Introduction to Analysis
MATH 433 Honors Linear Algebra
MATH 434 Honors Introduction to Algebra
MATH 411-412 Real and Complex Analysis
MATH 415 Mathematical Methods in Physics
MATH 621 Measure Theory and Lebesque Integration
MATH 622 Applied Functional Analysis
MATH 631-632 Algebra
MATH 633 Non-Commutative Algebra
MATH 634 Commutative Algebra
MATH 651 Introductory Algebraic Topology
MATH 661 Geometric Topology
T&M 610, 611, 613, 614 Methods of Applied Mathematics

Analysis (and Differential Equations)
MATH 428 Introduction to Partial Differential Equations
MATH 617 Dynamical Systems
MATH 618 Smooth Ergodic Theory
MATH 619-620 Partial Differential Equations
MATH 652-653 Differentiable Manifolds
MATH 662 Riemannian Geometry
MATH 711-712 Seminar in Analysis
MATH 713 Functional Analysis
MATH 714 Fourier Analysis
MATH 722 Topics in Complex Analysis
MATH 728 Seminar in Partial Differential Equations

Logic and Theory of Computing
COM S 671 Introduction to Automated Reasoning
COM S 677, Reasoning about Uncertainty
COM S 682 Theory of Computing
COM S 715 Seminar in Programming
Refinement Logics
MATH 486 Applied Logic (also COMS 486)
MATH 681 Logic
MATH 781-782 Seminar in Logic
MATH 783 Model Theory
MATH 784 Recursion Theory
MATH 787 Set Theory
MATH 788 Topics in Applied Logic

Numerical Mathematics and Operations Research
COM S 522 Computational Tools and Methods for Finance
COM S 621 Matrix Computations
COM S 622 Numerical Optimization and Nonlinear Algebraic Equations
COM S 624 Numerical Solution of Differential Equations
COM S 664 Machine Vision
COM S 681 Analysis of Algorithms
COM S 721 Topics in Numerical Analysis
ECE 423 Computer Methods in Digital Signal Processing
MATH 425 Numerical Analysis and Differential Equations
MATH 728 Seminar in Partial Differential Equations
OR&IE 625 Scheduling Theory
OR&IE 630-631 Mathematical Programming, I and II
OR&IE 632 Nonlinear Programming
OR&IE 635 Interior-Point Methods for Mathematical Programming

Discrete Mathematics and Geometry
MATH 441 Introduction to Combinatorics
MATH 442 Introduction to Combinatorics
MATH 455 Applicable Geometry
OR&IE 633 Graph Theory and Network Flows
OR&IE 636 Integer Programming
OR&IE 639 Polyhedral Convexity

Information Communication and Control Theory
CHEME 472 Feedback Control Systems (also ECE 472, M &AE 478)
ECE 411 Random Signals in Communications and Signal Processing
ECE 425 Digital Signal Processing
ECE 467 Digital Communication Receiver Design
ECE 468 Telecommunication Systems
ECE 521 Theory of Linear Systems (also M &AE 521)
ECE 525 Adaptive Filtering in Communication Systems
ECE 526 Signal Representation and Modeling
ECE 561 Error-Control Codes
ECE 562 Fundamental Information Theory
ECE 563 Communication Networks
ECE 564 Detection and Estimation
ECE 567 Digital Communications
M &AE 677 Robust and Optimal Control

Mathematical Biology
BIOE 460 Theoretical Ecology
BTRY 697 Individual Graduate Study in Biometry and Statistics

Mathematical Economics
ECON 619 Econometrics I
ECON 620 Econometrics II
ECON 710 Stochastic Economics: Concepts and Techniques
ECON 717-718 Mathematical Economics
ECON 719-720 Advanced Topics in Econometrics
THE MARIO EINAUDI CENTER FOR INTERNATIONAL STUDIES
170 Uris Hall (255-6370)

The Mario Einaudi Center for International Studies, established in 1961 to encourage and support comparative and interdisciplinary research on international subjects, is one of the largest and most diverse centers of its kind in the United States. Currently, it includes five U.S. Department of Education Title VI National Resource Centers and 16 other area, development, topical, and educational programs. More than 500 faculty members voluntarily collaborate in the center's programs with well over 300 graduate students involved directly in its international programs. Undergraduate students may choose concentrations in international relations, Latin American studies, modern European studies, East Asian studies, South Asian studies, or Southeast Asian studies. (See also Africana and International Studies and Research Center, Asian Studies, and International Agriculture for related majors and concentrations.)

Cornell's international programs are poised to anticipate and respond to changing global circumstances and perspectives. While some programs offer study of geographic regions, others focus on such topics as international agriculture, nutrition, population, law, planning, politics, rural development economics, and world peace. As programs gain momentum and recognition to attract their own resources, the center applies its resources to new pilot activities that bring faculty members and students together across traditional disciplines and departmental boundaries.

Each year the center brings an eminent world leader to campus as the Henry E. and Nancy Horton Bartels World Affairs Fellow to deliver a public lecture, meet with classes, and interact informally with faculty members and students. The center also hosts a Current Events Roundtable each June that enables Cornell alumni to join faculty members in discussion of key world events.

The center promotes graduate students' overseas field research through an annual competition for travel grants and assistance with the Fulbright fellowship program and the Fulbright-Hayes awards, both administered by the center.

Cornell is committed to the study of the global community in all its complexity—through a faculty of preeminent scholars and teachers, outstanding research facilities, instruction in more than 40 languages, and a library system that houses 2,500,000 volumes related to international and comparative studies. For additional information on current programs, publications, and courses, contact:

The Mario Einaudi Center for International Studies
Cornell University
170 Uris Hall
Ithaca, NY 14853-7601 USA
255-6370 (tel.)
254-5000 (fax)
www.einaudi.cornell.edu

The Einaudi Center Administration:
Nicolas van de Walle, director
Leilani Pock, associate director
170 Uris Hall

Comparative Muslim Societies Committee:
David Powers, director
386 Rockefeller Hall

East Asia Program (formerly China-Japan Program):
John Whitman, director
140 Uris Hall

Latin American Studies Program:
John Henderson, director
190 Uris Hall

South Asia Program:
Thak Chaloemtiarana, director
170 Uris Hall

Southeast Asia Program:
Kaushik Basu, director
17 Uris Hall

International Programs in the College of Agriculture and Life Sciences:
James Haldeman, senior associate director
31 Warren Hall

Berger International Legal Studies:
John Barceló, director
309 Myron Taylor Hall

International Political Economy:
Jonathan Kirshner, director
B2 McGraw Hall

Gender and Global Change:
Josephine Allen and Rosemary Batt, co-directors
190 Uris Hall

International Studies in Planning:
Lourdes Beneria, director
209 West Sibley Hall

Population and Development Program:
Thomas Hirsch, director
333 Warren Hall

Comparative Societal Analysis:
Valerie Bunce, acting director
204 White Hall

Cornell Participatory Action Research Network:
Paula Horrigan, director
450 Caldwell Hall

Peace Studies Program:
Matthew Evangelista, director
150 Uris Hall

Program in International Nutrition:
Edward Frongillo, director
B17 Savage Hall

Program on Comparative Economic Development:
Kausik Basu, director
458 Uris Hall

Cornell International Institute for Food, Agriculture, and Development:
Norman Uphoff, director
31 Warren Hall

Cornell Food and Nutrition Policy Program:
David Sahn, director
458 Uris Hall

International Relations Concentration:
David Lee, director
248 Warren Hall
CENTER FOR THE STUDY OF INEQUALITY

365 Uris Hall
254-8674 (tel.)
inequality@cornell.edu
www.inequality.com

The Center for the Study of Inequality (CSI) fosters basic and applied research on social and economic inequalities as well as the processes by which such inequalities change and persist. The study of inequality lies at the heart of current debates about welfare reform, affirmative action, the “glass ceiling,” globalization, and any number of other contemporary policy issues. In recent years, public and scholarly interest in issues of inequality has intensified, not merely because of historic increases in income inequality in the United States and other advanced industrial countries, but also because inequalities of race, ethnicity, and gender are evolving in equally dramatic and complicated ways. The mission of CSI is to support research and teaching relevant to issues of inequality, to disseminate findings coming out of this research, and to otherwise facilitate the study of inequality in the United States and throughout the world.

Symposia and Lecture Series
The CSI regularly sponsors symposia, workshops, and lecture series that draw attention to the most pressing problems and controversies in the field. The current schedule of symposia and lecture series is listed on the center’s web site (www.inequality.com).

Research Support
For faculty affiliates of CSI, small seed grants for inequality-related research are available, especially for research that has the potential to attract external funding. The CSI also runs a small grant program that supports graduate and undergraduate research on poverty or inequality. The application deadline for all grants is May 1, 2007 (for further details, see www.inequality.com/support/index.shtml).

Internships
The CSI serves as a clearinghouse for student internships that are relevant to the study of inequality. For a full listing of possible internships, please consult www.inequality.com/academics/index.shtml.

Dissemination
The working paper series on the center’s web site assists in disseminating research findings, opinion pieces, and related scholarship from some of the top scholars of inequality in the world. This series can be found at www.inequality.com/publications/index.shtml.

Awards
The CSI presents a Distinguished Book Award and Distinguished Paper Award for publications that significantly advance our understanding of inequality. The recipients are invited each year to Cornell University to present their research (see www.inequality.com/publications/awards.shtml).

Undergraduate Concentration
The inequality concentration allows undergraduate students to supplement their studies for their major with a coherent program of courses oriented toward the study of inequality. The concentration is organized into tracks examining such topics as globalization and inequality; social policy; the ethics of inequality; poverty and economic development; social movements; education and inequality; race and ethnicity in comparative perspective; the family and inequality; and literature, postmodernism, and inequality. The concentration is open to students enrolled in any of the seven Cornell undergraduate colleges. If the requirements of the concentration are met, a special notation to this effect will be recorded on the transcript (see www.inequality.com/academics/undergraduate.shtml for further information).

For more information about CSI, contact us at 254-8674 or inequality@cornell.edu.

COGNITIVE STUDIES
278C Uris Hall
255-6431
cogst@cornell.edu
www.cogstud.cornell.edu

Cognitive studies focuses on the nature and representation of knowledge. It approaches the study of perception, action, language, and thinking from several perspectives—theory, experiment, and computation—with the aim of gaining a better understanding of human cognition and the nature of intelligent systems. The comparison between human and artificial intelligence is an important theme, as is the nature of mental representations and their acquisition and use. Cognitive studies draws primarily from the disciplines of computer science, linguistics, neuroscience, philosophy, and psychology. The field of cognitive studies is primarily represented by faculty members in the following departments: Communication, Computer Science, Design and Environmental Analysis, Economics, Education, Electrical and Computer Engineering, Human Development, Linguistics, Mathematics, Mechanical and Aerospace Engineering, Neurobiology and Behavior, Philosophy, Psychology, and Sociology, as well as the Johnson Graduate School of Management.

Undergraduate Programs
An undergraduate concentration in cognitive studies in the College of Arts and Sciences provides a framework for the design of structured, individualized programs of study in this growing interdisciplinary field. Such programs of study are intended to serve as complements to intensive course work in a single discipline as represented in an individual department. For further information on the undergraduate program, see “Cognitive Studies Program” under “College of Arts and Sciences.” Contact Linda LeVan (255-6431 or cogst@cornell.edu).

Graduate Programs
Cornell offers a graduate field minor in cognitive studies. Cornell’s unique program of graduate training, which seeks to tailor an optimal program of study and research for each individual, fosters interdisciplinary committees. It is the norm for students interested in cognitive studies to combine faculty members from such fields as philosophy, computer science, linguistics, psychology, or neurobiology and behavior on common committees. For further information on the graduate field of cognitive studies, contact Michael J. Spivey, director of graduate studies (255-9865, spivey@cornell.edu), or Linda LeVan, executive staff assistant, 278C Uris Hall, Office of Cognitive Studies (255-6431, cogst@cornell.edu).

CORNELL ABROAD

500 Caldwell Hall
255-6224 (tel.)
255-8700 (fax)
cuabroad@cornell.edu
www.cuabroad.cornell.edu

Study abroad is an integral part of a Cornell education. Recent events have made us aware that those aspiring to lead in this century need, more than ever, to learn and experience the diverse world beyond the boundaries of their home country. To help students develop the knowledge, skills, and attitudes necessary for informed citizenship in a transnational world, Cornell Abroad offers a wide range of international study opportunities that reflect the fundamental educational goals and objectives of the university. Study abroad is a continuous experience with study on campus, enabling students to make regular progress toward the degree.

Qualified students study abroad through programs administered by Cornell and other institutions, and by enrolling directly in foreign universities. Among the many study abroad programs available, students select programs with thoughtful planning and apply with the approval of their colleges and faculty advisers. To earn credit for overseas study during the fall and/or spring semester(s), students must apply through Cornell Abroad, whose staff members assist in the planning and application process.

LOCATIONS ABROAD

Cornell students majoring in a broad array of fields in all seven undergraduate colleges study in more than 40 countries each year. The following list includes programs chosen frequently by students with college approval; those locations preceded by an asterisk (*) are programs run directly by Cornell.

AFRICA
Botswana, Cameroon, Ghana, Kenya, Madagascar, Tanzania, Uganda: School for International Training (SIT)

Ghana: University of Ghana (through the Council of International Educational Exchange, CIEE, NYU)

Kenya: Wildlife Management (School for Field Studies)

South Africa: Universities of Cape Town and KwaZulu-Natal, Organization for Tropical Studies, School for International Training (SIT)
ASIA
China: Chinese University of Hong Kong; *Cornell-OC 2006 or for the spring semester or full year at the Inter-University Program for Chinese Language Studies at Tsinghua University, Beijing; Peking, Nanjing, and East China Normal Universities (CIEE); International Chinese Language Program at National Taiwan University; IES Beijing; CET in Beijing, Harbin, or Hangzhou
India: School for International Training; St. Stephen's College Delhi (through Brown or Rutgers Universities); CIEE at University of Hyderabad
Japan: Kyoto Center for Japanese Studies; International Christian University and other universities (American Council of Teachers of Russian); Smolny College, Math in Moscow
Spain: *Cornell-Michigan-Penn program at the University of Seville; various language and culture programs
Sweden: *Swedish Practicum in Childhood, Family, and Social Policy at the University of Goteborg; The Swedish Program at the University of Stockholm

EUROPE
CZECH REPUBLIC: CERGE at Charles University
FRANCE: *EDUCO (Cornell, Duke, and Emory in Paris) at Universite de Paris VII, Paris I, Institut d'Etudes Politiques de Paris ("Sciences Po"); Critical Studies Program at the University of Paris (CIEE); Paris Internship (Boston University); IES Dijon Business Program
GERMANY: *Berlin Consortium for German Studies at the Free University of Berlin; Wayne State University in Munich and Freiburg; Heidelberg University
GREECE: College Year in Athens, Arcadia
HUNGARY: Central European University
IRELAND: Trinity College Dublin and the National University Colleges of Dublin, Galway, and Cork
ITALY: *Bologna Consortial Studies Program; *Cornell College of Art, Architecture, and Planning Program in Rome; Arcadia University in Florence at the Accademia Italiana; Boston University Program in Padova; IES Milan and Rome; Intercollegiate Center for Classical Studies in Rome; Syracuse University program in Florence
Netherlands: University of Amsterdam; Leiden University

MIDDLE EAST AND NORTH AFRICA
Egypt: American University in Cairo
Israel: Ben-Gurion University, Haifa University; Hebrew University of Jerusalem, Tel Aviv University
Jordan: University of Jordan (CIEE)
Lebanon: American University of Beirut
Morocco: School for International Training

WHO STUDIES ABROAD
Cornell students are by no means limited to the locations listed above, as programs identified for particular countries. In recent years, they have also studied in Austria, Croatia, Dominican Republic, Finland, Mongolia, Poland, Portugal, Switzerland, Turkey, Venezuela, and elsewhere.

APPLICATION PROCESS
Applications for all study abroad programs—Cornell programs, as well as those administered externally by other institutions—are available at Cornell Abroad, 300 Gates Hall. Students are encouraged to consult the library of study abroad materials, talk with staff members, and attend information meetings. The Cornell Abroad web site is an excellent resource for program offerings and links to universities and programs worldwide, as well as for applications to download and comprehensive information on all aspects of study abroad. Students meet with the study abroad advisers in their colleges to discuss how they will meet college degree requirements.

Each applicant completes a written statement of academic purpose outlining goals for study abroad and the program of study that will be followed. Applications are signed by both the faculty adviser and the college study abroad adviser. Arts and Sciences, Human Ecology, and Industrial and Labor Relations students submit applications to their college for forwarding to Cornell Abroad. Agriculture and Life Sciences, Architecture, Art, and Planning, Engineering, and Hotel Administration students submit applications directly to Cornell Abroad. Cornell Abroad reviews all applications and forwards them to programs and universities. All students who wish to receive academic credit for study abroad...
must apply through Cornell Abroad and their undergraduate college.

The application deadline for study abroad in the fall 2006 semester and the 2006–2007 academic year is February 15, 2006, for all programs except Oxford and Cambridge, for which the deadline to study at those universities for the full year in 2006–2007 is November 1. Students planning to study abroad in the spring semester should initiate the application process during the preceding spring. Early application may improve your chances of admission. In all cases, it is a good idea to check with Cornell Abroad.

Registration, Credit Transfer, and Grades

Students who apply through Cornell Abroad to programs approved by their colleges, as outlined above, must be registered at Cornell during study abroad. They are eligible for financial aid and receive full academic credit for pre-approved courses of study completed with satisfactory grades. Students enroll for a full load of courses abroad, according to the standards of the institution or program overseas, and normally receive 30 credits per year, or 12 to 20 credits per semester. The colleges review course work taken abroad and make the final decisions concerning credit transfer and distribution. When study abroad credit has been transferred, the transcript will indicate the names of the courses taken, the grades received, and the total credits earned for each semester. Foreign grades are not translated into the Cornell/American grading system, nor are they averaged into the Cornell grade point average.

Foreign Language Requirements

Study abroad programs in non-English-speaking countries that offer direct enrollment in universities generally require the equivalent of at least two years of college-level language study. Students should make firm plans for any requisite language courses early in their freshmen year. Many language study abroad programs are increasingly available in non-English–speaking countries—for example, Belgium, Denmark, Egypt, France, Hong Kong, Hungary, Israel, Italy, Japan, Korea, Netherlands, People’s Republic of China, and Sweden. Cornell students who participate in programs in a non–English-speaking country with English-language course work are required to take at least one language course as part of their program of study and are strongly encouraged to take more. Students are advised to consult with their college study abroad advisers about relevant language preparation, and students in the College of Arts and Sciences should note that they are required to have studied the host country language, if taught at Cornell, before study abroad.

Housing Arrangements

Study abroad programs generally provide housing in the homes of local residents, in halls of residence for university students, or in rental apartments. Cornell Abroad will advise students of the arrangements that are available and most appropriate to their individual needs.

Costs

Students studying abroad in Cornell-managed programs pay a fixed Cornell Abroad tuition per semester, which covers tuition during term (except in U.K. universities), orientation, program-sponsored trips and events, and administrative and financial aid costs, including emergency medical evacuation and repatriation coverage. It may include other items (e.g., meals, commuter passes) depending on the program. Students pay other costs (e.g., airfare and personal expenses) directly. Different fee levels for different Cornell programs reflect the relative costs of operation.

Pending approval by the Board of Trustees in 2005–2006 the Cornell Abroad tuition for students participating in the Berlin Consortium for German Studies, the Cornell Nepal Study Program, EDUCCO (Emory, Duke, and Cornell in Paris), the Michigan–Cornell–Penn Program in Seville, and the Swedish Practicum at the University of Goteborg is $18,550.

There are three tiers of Cornell Abroad tuition for universities in the United Kingdom: Group 1, University of Cambridge, Oxford, and the King’s College pre-med program, at $18,100 per semester; Group 2, University of Edinburgh, St. Andrews, Imperial College, King’s College, London School of Economics, School of Oriental and African Studies, and University College London, at $15,750; and Group 3, University of Birmingham, Bristol, East Anglia, Glasgow, Manchester, Sussex, Warwick, and York, at $11,700 per semester.

For Denmark’s International Studies Program (DIS), the Cornell Abroad tuition is $17,640 per semester, and for the Kyoto Center for Japanese Studies (KCJS), the tuition is $25,000 per semester. For the Bologna Cooperative Studies Program (BCSP) the tuition is $28,800 for academic-year students and $16,800 for spring-only participants.

Students studying in other programs in 2005–2006 pay the tuition and other costs charged by their programs and a Cornell Abroad program fee of $4,250 per semester. The International Program Tuition covers the direct and indirect costs of study abroad to the university, including financial aid for all study abroad students.

Financial Aid

Students who are accepted for study abroad during the academic year or semester, having applied through Cornell Abroad, are eligible for two semesters of financial aid, consistent with general university aid policy; this applies to all programs, whether run directly by Cornell or not. Students who have transferred into Cornell with 60 or more credit hours are not likely to receive aid for study abroad assuming they need more than eight semesters to earn the undergraduate degree. Some programs abroad offer need-based and merit-based scholarships and there are also external aid sources.

Security Abroad and Related Issues

The decision to study in a particular region of the world must be made by each student and his or her family in light of their own interpretation of current events. The director, associate director, and staff of Cornell Abroad stay in regular contact with representatives abroad and receive information regarding rapidly changing political situations worldwide through the U.S. Department of State Office of Citizens Emergency Services and other agencies. As long as the State Department does not restrict travel by U.S. citizens, Cornell Abroad does not normally recommend limitations on student plans for study abroad. Cornell Abroad will do everything possible to notify students immediately that they should defer plans when official travel restrictions are issued. Nothing is as important as student security and well-being.

Responsibility for a decision to withdraw from a program or return home early rests with the individual and his or her family. There can be no guarantee of credit for students who withdraw from programs sponsored by colleges and universities other than Cornell; they are advised to inquire about those institutions’ policies regarding the completion of academic work and the potential financial implications of a premature departure. In the event of a disrupted semester, refunds of tuition and fees, and the appropriate number of credits to be awarded, will be reviewed by Cornell and affiliated institutions on a case-by-case basis. Most institutions sponsoring study abroad programs strive to facilitate student completion of academic programs even under unusual circumstances and have tuition refund policies based on prorated formulas.

Sources of Information and Advice Concerning Study Abroad

Cornell Abroad (300 Caldwell Hall): Richard Gaulton, Ph.D., director; Kristin Grace, Ph.D., associate director; Libby Okhiro, student services coordinator, Kathy Lynch, financial services coordinator. The Cornell Abroad library contains an extensive collection of university catalogs and study abroad program brochures, files of course syllabi and evaluations, books, videotapes, and some information on travel, summer study, and work abroad. Comprehensive information is provided on the Cornell Abroad web site, which incorporates linkages to universities, programs, and resources worldwide as well as a database of cost estimates. In the early weeks of every semester, students and faculty and staff members discuss programs in a series of information meetings announced in the Cornell Daily Sun and on the Cornell Abroad web site (www.cuabroad.cornell.edu). The director and associate director are available at Cornell Abroad for individual advising.

College Study Abroad Advisers

Agriculture and Life Sciences: Bonnie Shelley or Tamara Durham, 140 Roberts Hall; Architecture, Art, and Planning: Jayne LeGro, B1 West Sibley Hall; Arts and Sciences: Dean Pat Wasylw, 55 Goldwin Smith Hall; Engineering: Dan Makoney Hahn, 167 Olm Hall; Hotel Administration: Amber Cohen, 180 Stader Hall, Human Ecology: Paul Fisher, 172 Martha Van Rensselaer Hall; Industrial and Labor Relations: Kevin Harris, 101 Ives Hall.
CORNELL IN WASHINGTON PROGRAM
M101 McGraw Hall
255-4090
ciw.cornell.edu

Cornell in Washington is a program that offers students from all colleges in the university an opportunity to earn full academic credit for a semester of study in Washington, D.C. The aim of the program is to give students a chance to take advantage of the rich resources of the national capital. Washington, as the center of much of the nation’s political energy, is an ideal place to study American public policy and the institutions and processes through which it is formulated and implemented. At the same time, Washington’s rich collection of libraries, museums, theaters, and art galleries offers an opportunity to explore American history, literature, art, and the full range of the American humanistic tradition. Washington’s vast high-technology sector, concentrated in both telecommunications and biotechnology, creates endless opportunities for the study of recent developments and future prospects in those arenas, as well. Cornell in Washington students enroll in one of two core courses—Studies in Public Policy or Studies in the American Experience—take one or two elective courses, conduct individual research projects, and choose externships from more than a thousand positions in government agencies, research institutes, non-profit organizations, and private professional firms and businesses.

The program is housed at the Cornell Center, 2148 O Street, NW, Washington, DC 20037. The academic and administrative space is located on the first floor and 27 residential units for approximately 60 students are on the upper floors.

The Cornell in Washington program is open to qualified seniors from all colleges, schools, and divisions of the university. Students enroll in one core course, which involves a major research project often carried out with an externship. Students also select one or two other seminars from such fields as government, history, economics, history of art, and social policy. All seminars are taught by Cornell faculty and carry appropriate enrollment with an externship. Students gain an understanding of the political and administrative processes through which issues, problems, and policies are formulated; the economic and fiscal basis for public and private organizations and their management. They also develop sensitivity to the moral and ethical dimensions of policy issues.

Tuition
Students are registered as full-time students, earn Cornell credit, pay full tuition, and remain eligible for financial aid.

Housing
Apartments are rented at the Cornell Center during the academic year. All are fully furnished (except for dishes, cookware, towels, and bedding) and reasonably priced by both Washington and Cornell standards. Two students are assigned to each efficiency and three to each one-bedroom apartment. Because of the limited number of spaces and the need for accurate planning, a non-refundable deposit of $150 is required to reserve a space. Students are discouraged from bringing automobiles.

The public transportation system, consisting of both bus and subway service, is extensive and convenient to the center, and street parking is not permissible.

Applications
Application forms are available from the Cornell in Washington program office at M101 McGraw Hall. Students may also apply at ciw.cornell.edu. Applications should be submitted the semester before participation.

Information
The Cornell in Washington program web site is located at ciw.cornell.edu. Regular information meetings are held on campus in early October and March. These meetings are advertised in the Cornell Daily Sun and on campus bulletin boards. Additional information concerning externships, courses, housing, and other features of the program may be obtained at either the Cornell in Washington program office at M101 McGraw Hall, 607-255-4090, or in Washington at the Cornell Center, 2148 O Street, NW, Washington, DC 20037, 202-466-2184.

CORNELL INSTITUTE FOR PUBLIC AFFAIRS
294 Caldwell Hall
255-8018 (tel.)
255-5240 (fax)
cipa@cornell.edu
www.cipa.cornell.edu

The Cornell Institute for Public Affairs (CIPA) offers a university-wide two-year program of graduate professional studies leading to the master of public administration (M.P.A.) degree. CIPA prepares leaders for government, for nonprofit organizations, and for institutions in the private sector that interact with both.

CIPA Fellows (graduate students) have the opportunity to study public policy and program management from a cross-disciplinary perspective. Students gain an understanding of the political and administrative processes through which issues, problems, and policies are formulated; the economic and fiscal basis for public and private organizations and their management. They also develop sensitivity to the moral and ethical dimensions of policy issues.

Faculty Members
The depth and flexibility of the program is reflected in the growing number of affiliated faculty members. CIPA is not confined within a single school or college, but spans the entire university. More than 100 field faculty members, representing 25 departments, welcome CIPA Fellows into their courses and serve on professional report/thesis committees.

About 10 members of this group, known as the Program Faculty, teach courses taken most frequently by CIPA Fellows. Within this group, members of the Core Faculty provide instruction in the foundation courses. Core Faculty members include David B. Lewis, CIPA director, City and Regional Planning; Nancy Chau, Applied Economics and Management; Neema Kudva, City and Regional Planning; Theodore J. Low, the John L. Senior Professor of American Institutions in the Department of Government; Kathryn S. March, Anthropology; Christine Ranney, Applied Economics and Management; and Jerome Ziegler, Department of Policy Analysis and Management.

M.P.A. Program Flexibility
The two-year master of public administration (M.P.A.) degree program consists of 16 courses; CIPA Fellows typically take four courses per semester for four semesters.

Although the M.P.A. program offers a basic structure for study, each CIPA Fellow works closely with a faculty adviser to design an individualized program based on his or her specific area of interest. Courses may be taken through the program in any department or college in the university.

Advising
Upon entering the M.P.A. program, each fellow is assigned a program adviser based on his or her area of interest. These advisers are drawn from the CIPA Core Faculty. They assist fellows in designing their individual program of study and selecting their courses.

The assignment of advisers is meant to assist new students in getting a strong start with their studies. Once familiar with the resources available, students are welcome to ask another Core Faculty member to be their program adviser.

Toward the end of their first year, when they select their professional report/thesis topic, CIPA Fellows choose a report/thesis adviser from among the more than 100 faculty members in the field of public affairs. The adviser guides the fellow in research and writing.

Foundation Course Work
To develop a foundation of basic concepts and capabilities for the study of public policy, CIPA Fellows take three courses in each of the following three subject areas:

• Administration, Politics, and Public Policy
• Economics and Public Finance
• Quantitative Analysis

At least one of the three courses in each subject area must be a core foundation course—a course taught by a CIPA Core Faculty member.

Concentration Course Work
The M.P.A. program offers eight concentration options:

• Environmental Policy
• Finance and Fiscal Policy
• Government, Politics, and Policy Studies
• Human Rights and Social Justice
• International Development Studies
• Public and Nonprofit Management
• Science and Technology Policy
• Social Policy

During the latter half of the first year of course work, CIPA Fellows select a concentration. Concentrations are designed to help students organize and develop a particular area of study. Fellows are encouraged to pursue a broad range of interests within their choice of a concentration.
makes arrangements for the chosen guest lecturers to come to campus.

- **Point of View (POV):** The CIPA Public Affairs television program, POV is part talk show and part debate show. Fellows work in all aspects of TV production and presentation, gaining invaluable experience for the media exposure they will encounter as public-policy professionals.

- **The Current:** CIPA Fellows publish a journal of student policy research. Working on *The Current* offers fellows a firsthand view of the rigors of publishing academic work, and also provides a foundation in professional writing and editing—necessary skills for preparing reports and position papers, and publishing research findings.

Complementary Degrees

CIPA Fellows may elect to combine their M.P.A. program with study for a complementary degree such as a J.D. from the Cornell Law School, an M.B.A. from the Graduate School of Management, an M.M.H. from the Hotel School, or an M.P.R. in the field of City and Regional Planning. Admission to the complementary degree program is independent from admission into CIPA.

Accelerated Master's Program

An accelerated program for Cornell undergraduates allows advanced students to apply to CIPA in their junior year, begin CIPA-related course work in their senior year, and complete the M.P.A. in just one year beyond their undergraduate studies.

Residence Requirement

Fellows are required to spend four semesters of study in residence to complete the M.P.A. Those who enroll in the Cornell Accelerated Master's program can earn the equivalent of two semesters in residence during their senior year.

Admission

The CIPA program seeks diversity in its student body, drawing from a pool of applicants who have studied in a wide range of disciplines. No specific background or undergraduate major is required, although individuals with previous work experience in policy making or implementation are strongly encouraged to apply. Admission to CIPA is selective.

Credit Courses

Cornell Plantations offers three for-credit courses: HORT 480, Plantations Fall Lecture Series; HORT 485, Public Garden Management; and HORT 640, New Directions in Public Horticulture. HORT 480 is a 1-credit S-U lecture series offered each fall. HORT 485 is a 3-credit course offered alternate spring semesters. HORT 640 is a 1-credit S-U discussion course offered alternate spring semesters. Cornell Plantations also offers noncredit classes and workshops such as botanical illustration, arts and crafts, gardening techniques, and ecology walks; visit www.plantations.cornell.edu, or call 255-2400 for more information.
Internships
Cornell Plantations' internship program is just for you, the Cornell University student! Since the 1990s, more than 70 university students have been working side by side with Plantations' knowledgeable staff, learning and having fun. A number of positions in various areas are available each year, beginning after finals in May. All positions strive to build on having fun. A number of positions in various Plantations' knowledgeable staff, learning and the natural world.

Master's Program
Cornell Plantations' master of professional studies program offers fully funded fellowships in public garden management. Visit our web site for program details.

Planning a Visit
To discover all that is Cornell Plantations, visit www.plantations.cornell.edu or pick up a map and a copy of the Cornell Plantations Path Guide at the Visitor Resource Center and Garden Gift Shop in the Lewis Education Center just below Tower Road. The Path Guide and accompanying video are also available at the Cornell Store.

PROGRAM ON ETHICS AND PUBLIC LIFE
240 Goldwin Smith Hall
255-8515
The critical issues of public life are inescapably ethical issues. In the economy, we face questions of equity and justice and questions about the relation between prosperity, the environment, and the quality of individual lives. In constitutional law, we confront dilemmas about civil rights, freedom of speech, privacy, and abortion. In politics and government, we wrestle with questions about campaigning, character, and compromise. And in international affairs, we encounter the complexities of war and peace, human rights, multilateral aid, and climate change.

The university-wide Program on Ethics and Public Life (EPL) is Cornell's initiative in the systematic study of the ethical dimension of specific public issues. EPL grew out of a conviction that these questions need something more than abstract philosophical discussion. In addition to the general study of values and principles that goes on in theoretical ethics, universities need to foster ways of thinking about the complex, uncertain, and urgent problems of the real world, ways of thinking that are realistic without sacrificing their ethical character.

EPL seeks to enhance and facilitate the discussion of ethical issues by students whose central educational interests lie elsewhere, but whose work and lives will nevertheless confront them with dilemmas and responsibilities for which a university education should prepare them. EPL aims to enter into conversations with courses that are intellectually and practically fruitful at the same time. It offers a concentration in Law and Society (see separate listing under "Special Programs and Interdisciplinary Studies").

For information regarding content or availability of EPL core related courses, contact the academic department listed.

EPL Core Courses
PHIL 194/GOVT 294 Global Thinking
PHIL 242/GOVT 260 Social and Political Philosophy
PHIL 246/B&SOC 206/S&TS 206 Ethics and the Environment
PHIL 247 Ethics and Public Life
PHIL 342 Law, Society, and Morality
GOVT 460/LAW 648 Feminism and Gender Discrimination
GOVT 468 Global Climate and Global Justice
GOVT 491/691/PHIL 691 Normative Elements of International Relations

Related Courses
AN SC 414 Ethics and Animal Science
ENGRG 360/S&TS 360 Ethical and Social Issues in Engineering
PHIL 446 Topics in Social and Political Philosophy
ILRBC 482 Ethics at Work
ILRBC 488 Liberty and Justice for All
LAW 655 International Human Rights
LAW 667 Law and Ethics of Lawyering
LAW 718 Ethnic Conflict and International Law
LAW 748 Legal Ethics and Professionalism
MIL S 441 Leadership, Management, and Ethics for Junior Military Officers
NAV S 402 Leadership and Ethics
NBA 671 Business Ethics
NTRES 332 Introduction to Ethics and Environment
NTRES 433 Applied Environmental Philosophy
PAM 567 Health Policy
PHIL 145 Contemporary Moral Issues
PHIL 193 Inequality, Diversity, and Justice
PHIL 241 Ethics
PHIL 245 Ethics and Health Care
PHIL 341 Ethical Theory
PHIL 344 History of Ethics: Ancient and Medieval
PHIL 345 History of Ethics: Modern
PHIL 346 Modern Political Philosophy
PHIL 447 Contemporary Ethical Theory
PHIL 611 Ethics and Value Theory
Michele M. Moody-Adams, Wyn and William Y. Hutchinson Professor of Ethics and Public Life, and professor of philosophy; Burke Hendrix, assistant professor of government and assistant professor of ethics and public life; Henry Shue, professor of ethics and public life and professor of philosophy.

PROGRAM IN REAL ESTATE
114 West Sibley Hall
255-7110
The two-year master of professional studies in real estate (M.P.S. / RE) degree program is an interdisciplinary program that combines courses from nearly every college at Cornell University. The degree is designed for aspiring real estate professionals who are in the initial or early stages of their careers. Two entities provide support for the degree program. The Program in Real Estate exists at Cornell University to serve as the integrating organizational unit for financial management and administration of academic and industry-related real estate activities on and off campus. The field of real estate is a committee of faculty members selected from several different colleges that is directly involved in and responsible for the design, delivery, and administration of the real estate curriculum.

The professional study of real estate is concerned with the finance, exchange, development, management, marketing, and many other aspects of the real estate business. Real estate professionals also contribute an understanding of the long-range social, political, ethical, and environmental implications of decisions about real estate. The 62 credit hours of course work needed to earn the degree provide a comprehensive and lasting foundation for professional careers in real estate.

Students take core courses in principles of real estate, the real estate development process, real estate finance and investments, managerial finance, residential development, real estate law, construction planning and operations, design in real estate development, and real estate marketing and management, along with a weekly industry seminar. Elective courses are taken in a chosen area of concentration, and there is a leadership and management distribution requirement. Many concentration options are possible and may be structured from the hundreds of related courses taught at Cornell University (e.g., development, finance, investments, real estate consulting, sustainable development, property and asset management, real estate marketing analysis, or international real estate concentrations). Students complete real-world, semester-long project workshops during their second and final semesters.

Admissions
Applicants to the Program in Real Estate must have completed a bachelor's degree with a good academic record. Applicants must submit a resume plus two letters of recommendation on appropriate letterhead either from faculty members familiar with the applicant's academic work, or if appropriate, professional recommendations based on work experience. Competitive scores for the GMAT are required. Extension and relevant work experience will receive favorable consideration. International students, for whom English is a second language, will need to achieve a minimum TOEFL score of 250 (computer based) or 600 (paper based). There is no work experience required for admission; however, it is strongly preferred that applicants have at least some work experience; three to five years has been typical. Applications are received on a rolling basis. To be considered for financial aid, applications must be received by January 15. Otherwise, please submit complete application by March 1. Wait list applications will be accepted until June 1. For more information, contact the graduate field coordinator at 255-7110, or real_estate@cornell.edu.

SCIENCE OF EARTH SYSTEMS: AN INTERCOLLEGE MAJOR
During the past several decades, with the increasing concern about air and water pollution, nuclear waste disposal, the ozone hole, and global climate change, the scientific community has gained considerable insight into how the biosphere, hydrosphere, atmosphere, and lithosphere systems interact. It has become evident that we cannot understand and solve environmental problems by studying these individual systems in isolation. The interconnectedness of these systems is a fundamental attribute of the Earth system,
and understanding their various interactions is crucial for understanding our environment.

The Science of Earth Systems (SES) major emphasizes the rigorous and objective study of the Earth system as one of the outstanding intellectual challenges of modern science and as the necessary foundation for the future management of our home planet. In this program, Cornell's strengths across a broad range of earth and environmental sciences have been coalesced to provide students with the tools to engage in what will be the primary challenge of the 21st century.

Graduates of Cornell's SES program are well prepared for several career and advanced study options:

- Graduate studies leading to the M.S. and/or Ph.D. in any of the earth science subdisciplines (e.g., atmospheric science, geology/geophysics, biogeochemistry, hydrology, oceanography).

- Employment in environmentally oriented careers in both the private and public sector at the B.S. or B.A. level such as environmental consulting and science writing.

- Graduate degree in environmental law or policy. These fields value students with an understanding of the science behind legal and policy decisions.

- Advanced degree in teaching, for example, earth science at the middle or high school level.

- Medical school. The emphasis on basic sciences in the SES curriculum makes the SES major a suitable springboard for a career in medicine.

The SES major is available for students in the College of Agriculture and Life Sciences and the College of Arts and Sciences. In the College of Engineering, the SES curriculum may be completely by choosing the SES option in the Department of Earth and Atmospheric Sciences. The SES major has its home in the Department of Earth and Atmospheric Sciences but relies on the collaboration of several departments across the university.

The SES Curriculum

The SES curriculum provides strong preparation in mathematics, physics, chemistry, and biology during the freshman and sophomore years. In the junior and senior years, students take a set of common SES core courses and an additional set of advanced disciplinary or interdisciplinary courses that build on the basic sequences.

The requirements for the major are as follows:

1. Basic Math and Sciences
 a. MATH 111 and 112, or MATH 191 and 192
 b. PHYS 207 and 208, or PHYS 112 and 213 if PHYS 214 will also be taken (see below)
 c. CHEM 207 and 208
 d. BIO G 101/103 and 102/104 (or 105–106) or BIO G 109 and 110

2. Required introductory course: EAS 220 The Earth System

 EAS 302 Evolution of the Earth System
 EAS 331/ASTRO 331 Climate Dynamics
 EAS 321/NTRES 321 Introduction to Biogeochemistry

4. Concentration Courses
 Four intermediate to advanced-level courses (300 level and up) are chosen on the core courses and have prerequisites among the "Basic Math and Sciences" courses listed above. Note: Additional basic math and science courses may be required to complete the concentration courses; the specific courses will depend on the student's choice of concentration. These concentration courses build depth and provide the student with a specific expertise in some facet of earth system science. Possible areas of concentration include, but are not limited to, Ocean Sciences, Environmental Geology, Climate Dynamics, Biogeochemistry, Ecological Systems, Environmental Biophysics, Hydrological Systems, and Soil Science.

For more information contact Professor Bryan Isaacs, Department of Earth and Atmospheric Science, hli@cornell.edu, and visit www.eas.cornell.edu/eas/ses/SES.home.html

DEPARTMENT OF STATISTICAL SCIENCE

301 Malott Hall 255-8066

The university-wide Department of Statistical Science at Cornell coordinates activities in statistics and probability at the undergraduate, graduate, and research levels.

Students interested in graduate study in statistics and probability can apply to the graduate field of statistics or to one of the other graduate fields of study that offer related course work. Students in the field of statistics plan their graduate programs with the assistance of their Special Committee.

For detailed information on opportunities for graduate study, students should contact the director of graduate studies, 301 Malott Hall.

The department offers an undergraduate major and minor in biometry and statistics through the Department of Biological Statistics and Computational Biology (BSCB) in the College of Agriculture and Life Sciences. It also offers a minor in Engineering Statistics through the Department of Operations Research and Industrial Engineering in the College of Engineering. Undergraduate majors and certificate programs are currently under development for other colleges. For information, contact the undergraduate coordinator (301 Malott Hall, 255-8066).

Statistics courses offered by the departments listed below will fill distribution requirements in many of the colleges.

A statistical consulting service is offered by the faculty of BSCB. There is no charge to members of the Cornell community for using the Statistical Consulting Service. It provides guidance to researchers in a broad variety of fields on designing experiments, collecting and analyzing data, and drawing appropriate conclusions from the results of their studies. Statistical computing consulting is also available through the Office of Statistical Consulting, B21 Sage Hall, 255-1925.

The department is organized into four units: Biological Statistics, Engineering Statistics, Mathematical Statistics and Probability, and Social Statistics. The areas covered include agricultural statistics, biostatistics, economic and social statistics, epidemiology, manufacturing statistics, control and reliability, probability theory, sampling theory, statistical computing, statistical design, statistical theory, and stochastic processes and their applications.

Course Designations

The following course identifiers are used to designate the courses offered by the separate units: Biological Statistics and Computational Biology (CALS), STBTRY; Engineering Statistics Unit (ENGR), STENGR; Mathematical Statistics Unit (ARTS), STMATH; Social Statistics Unit (ILR and ARTS), STSOC. To enroll in one of the courses, see the listing for the appropriate college.

Descriptions of undergraduate and graduate courses are listed below.

Department of Statistical Science

ST 201(2010) Introductory Statistics

This is an introduction to the basic concepts of probability, statistics and data analysis. Descriptive methods, normal theory models, and inferential procedures are considered. Topics include basic statistical designs, an introduction to probability, estimation, confidence intervals, tests of significance for a single population mean and proportion, the difference in two population means and proportions, ANOVA, multiple linear regression, contingency tables, and logistic regression.

ST 501-502(5010-5020) Applied Statistical Analysis

Two-semester core course for students in master of professional studies (M.P.S.) degree program in applied statistics in Department of Statistical Science. Prerequisite: enrollment in M.P.S. program. Consists of a series of modules on various topics in applied statistics. Some modules include guest lectures from practitioners. Parallel with the course, students complete a yearlong, in-depth data analysis project.

ST 501(5010) Applied Statistical Analysis

Letter grades only. Topics include, but are not limited to: statistical computing systems, statistical software packages, data management, statistical graphics, and simulation methods and algorithms.

ST 502(5020) Applied Statistical Analysis

Letter grades only. Topics include, but are not limited to: sample surveys and questionnaire design, data sources, experimental design, and data mining.

ST 600(6000) Statistics Seminar

Fall and spring. 3 credits. Core- or co­require: BTRY 409 or permission of instructor. S-U grades only.
Biological Statistics Unit

STBTRY 301 Biological Statistics I (enroll in BTRY 301)
STBTRY 302 Biological Statistics II (enroll in BTRY 302)
STBTRY 310 Statistical Sampling (enroll in BTRY 310)
STBTRY 382 Introduction to Statistical Genetics and Bioinformatics (enroll in BTRY 382)
STBTRY 408 Theory and Probability (enroll in BTRY 408)
STBTRY 409 Theory of Statistics (enroll in BTRY 409)
STBTRY 482 Statistical Genetics (enroll in BTRY 482)
STBTRY 494 Undergraduate Special Topics in Biometry and Statistics (enroll in BTRY 494)
STBTRY 495 Statistical Consulting (enroll in BTRY 495)
STBTRY 497 Undergraduate Individual Study in Biometry and Statistics (enroll in BTRY 497)
STBTRY 498 Undergraduate Supervised Teaching (enroll in BTRY 498)
STBTRY 499 Undergraduate Research (enroll in BTRY 499)
STBTRY 601 Statistical Methods I (enroll in BTRY 601)
STBTRY 602 Statistical Methods II (enroll in BTRY 602)
STBTRY 603 Statistical Methods III (enroll in BTRY 603)
STBTRY 604 Statistical Methods IV: Applied Design (enroll in BTRY 604)
STBTRY 652 Computationally Intensive Statistical Inference
STBTRY 672 Topics in Environmental Statistics (BTRY 672)
STBTRY 682 Statistical Genomics (enroll in BTRY 682)
STBTRY 694 Graduate Special Topics in Survival Analysis (enroll in BTRY 694)
STBTRY 697 Individual Graduate Study in Biometry and Statistics (enroll in BTRY 697)
STBTRY 717 Linear and Generalized Linear Models (enroll in BTRY 717)
STBTRY 795 Statistical Consulting (enroll in BTRY 795)
STBTRY 798 Graduate Supervised Teaching (enroll in BTRY 798)

Engineering Statistics Unit

STENGR 310 Introduction to Probability and Random Signals (enroll in ECE 310)
STENGR 360 Engineering Probability and Statistics I (enroll in ORIE 360)
STENGR 361 Introductory Engineering Stochastic Processes I (enroll in ORIE 361)
STENGR 411 Random Signals in Communications and Signal Processing (enroll in ECE 411)
STENGR 436 A Mathematical Examination of Fair Representation (enroll in ORIE 436)
STENGR 467 Telecommunication Systems I (enroll in ECE 467)
STENGR 474 Statistical Data Mining (enroll in ORIE 474)
STENGR 476 Applied Linear Statistical Models (enroll in ORIE 476)
STENGR 512 Fundamental Information Theory (enroll in ECE 562)
STENGR 517 Feedforward Neural Networks (enroll in ECE 573)
STENGR 523 Introductory Engineering Stochastic Processes I (enroll in ORIE 523)

Mathematical Statistics and Probability Unit

STMATH 171 Statistical Theory and Application in the Real World (enroll in MATH 171)
STMATH 311 Introduction to Analysis (enroll in MATH 311)
STMATH 471 Basic Probability (enroll in MATH 471)
STMATH 472 Statistics (enroll in MATH 472)
STMATH 621 Measure Theory and Lebesgue Integration (enroll in MATH 621)
STMATH 671-672 Probability Theory (enroll in MATH 671-672)
STMATH 674 Introduction to Mathematical Statistics (enroll in MATH 674)
STMATH 771-772 Seminar in Probability and Statistics (enroll in MATH 771-772)
STMATH 777-778 Stochastic Processes (enroll in MATH 777-778)

Social Statistics Unit

STSOC 210 Statistical Reasoning I (enroll in ILRST 210)
STSOC 211 Statistical Reasoning II (enroll in ILRST 211)
STSOC 310 Statistical Sampling (enroll in ILRST 310)
STSOC 312 Applied Regression Methods (enroll in ILRST 312)
STSOC 319 Introduction to Statistics and Probability (enroll in ECON 319)
STSOC 320 Introduction to Econometrics II (enroll in ECON 320)
STSOC 321 Applied Econometrics II (enroll in ECON 321)
STSOC 411 Statistical Analysis of Qualitative Data (enroll in ILRST 411)
STSOC 499 Directed Studies (undergraduate) (enroll in ILRST 499)
STSOC 510 Statistical Methods for the Social Sciences I (enroll in ILRST 510)
STSOC 511 Statistical Methods for the Social Sciences II (enroll in ILRST 511)
STSOC 630 Econometrics II (enroll in ECON 630)
STSOC 639 Econometrics I (enroll in ECON 639)
STSOC 721 Time Series Econometrics (enroll in ECON 721)
STSOC 722 Semi/Nonparametric Econometrics (enroll in ECON 722)
STSOC 730 Advanced Topics in Econometrics II (enroll in ECON 730)
STSOC 731 Time Series Econometrics (enroll in ECON 731)
STSOC 739 Advanced Topics in Economics I (enroll in ECON 739)

Related Courses in Other Departments

AEM 410 Business Statistics
AEM 411 Introduction to Econometrics
AEM 417 Decision Models for Small and Large Business
AEM 710 Econometrics I
AEM 713 Quantitative Methods I
BTRY 421 Matrix Computations
BTRY 726 Problems and Perspectives in Computational Molecular Biology
CEE 594 Engineering Management Methods II: Managing Uncertain Systems
CEE 621 Water-Resources Systems II: Stochastic Hydrology
CHEM 794 Quantum Mechanics
CHEM 796 Statistical Mechanics
COM S 522 Computational Tools and Methods for Finance
COM S 624 Numerical Solution of Differential Equations
COM S 626 Computational Molecular Biology
CRP 321 Introduction to Quantitative Methods for the Analysis of Public Policy
CRP 632 Methods of Regional Sciences and Planning I
D SOC 619 Research Design II
ECON 321 Applied Econometrics
GOVT 602 Field Seminar in Political Methodology
GOVT 605 Comparative Methods
H ADM 371 Hospitality Quantitative Analysis
HD 401 Empirical Research
NS 637 Epidemiology of Nutrition
NS 639 Epidemiology Seminar
NS 541 Applied Regression
ORIE 674 Statistical Learning Theory for Data Mining
ORIE 468/568 Financial Engineering with Stochastic Calculus I
ORIE 469/569 Financial Engineering with Stochastic Calculus II
ORIE 576 Regression
ORIE 464/566 Extreme Value Analysis with Applications to Finance and Data Communication
ORIE 677 Sequential Methods in Statistics
PAM 215 Research Methods
PAM 230 Introduction to Policy Analysis
PAM 423 Risk Management and Policy
PHYS 316 Modern Physics I
PHYS 562 Statistical Physics
PHYS 574 Quantum Mechanics II
PSYCH 472 Multiple Regression
BUSINESS AND PREPROFESSIONAL STUDY

UNDERGRADUATE BUSINESS STUDY
Cornell offers an accredited general undergraduate business degree program as well as world-renowned business-related programs in five other colleges and schools. Because the choices are so broad, students are encouraged to explore the offerings carefully to identify the program that best matches their business career goals. Graduate study is available in the Johnson Graduate School of Management as well as in graduate fields associated with each of the undergraduate options.

Applied economics and management
The Department of Applied Economics and Management (AEM) in the College of Agriculture and Life Sciences is home to Cornell's general undergraduate business degree. Accredited by AACSB International—The Association to Advance Collegiate Schools of Business, AEM's undergraduate business program offers courses that prepare students for careers in finance, marketing, management, and business strategy. Students also may participate in AEM's specialized programs focusing on entrepreneurship, agribusiness, small business, and food industry management. Courses reflect the program's analytical, applied economics focus (business.aem.cornell.edu).

Arts and sciences
Many of the liberal arts majors offered by the College of Arts and Sciences provide students with a background for a successful business career. In particular are majors in economics, mathematics, sociology, and psychology. Economics focuses on the production, distribution, and consumption of goods and services; monetary systems; and economic theories. Students interested in the human dimensions of business can choose sociology or psychology. Mathematics majors can choose concentrations in computer science, operations research, or economics to prepare for careers in areas such as actuarial science or finance (www.arts.cornell.edu).

Engineering
Many of today's business managers hold engineering degrees. Each of the College of Engineering's 12 major fields prepares students for business careers. Operations research and engineering is the most business-oriented engineering field, preparing graduates for careers such as investment banking and process engineering. Engineering students in any field can take a business-oriented minor in areas such as industrial systems and information technology, and operations research and management science (www.engineering.cornell.edu).

Hotel administration
The School of Hotel Administration, the world's leading hospitality management program, prepares students for management and entrepreneurial careers in businesses such as hotels, resorts, restaurants, airlines, sports arenas, cruise lines, and airlines. The school offers a rigorous business curriculum with courses in finance and real estate; hospitality facilities and operations; marketing, tourism, strategy, and information systems; and organizational management, communication, and law. The school's 150-room conference hotel gives students the opportunity to apply what they learn in a real-world business (www.hotel.school.cornell.edu).

Human ecology
The College of Human Ecology offers three business-oriented majors. The textiles and apparel major prepares students for careers in the fashion industry, for example, as a retail executive or merchandise buyer. Students majoring in facility planning and management, by study interdepartmental design, management, environmental psychology, and real estate to pursue careers as facility planners and consultants. The policy analysis and management major offers concentrations focusing on health, consumers, and policy, and its graduates pursue careers as nonprofit managers, consumer advocates, and policy researchers (www.humec.cornell.edu).

Industrial and labor relations
The School of Industrial and Labor Relations (ILR) focuses on the "people" side of business. Its professional-level curriculum provides a strong social science foundation in organizational behavior, human resource management, labor law, labor economics, history, and statistics. Students can then develop special interests in management, dispute resolution, negotiation, employee relations, labor unions, collective bargaining, public policy, and international labor issues. Most ILR graduates begin careers in areas such as management, consulting, and public policy and develop specializations directly to law school (www.ilr.cornell.edu).

Related Areas
Entrepreneurship and Personal Enterprise Program
This university-wide program is open to all Cornell students interested in eventually starting their own businesses or working for venture capital firms. A series of almost 50 linked entrepreneurship-related courses are offered by the above six colleges and schools as well as by the Johnson Graduate School of Management, the Law School, and the College of Veterinary Medicine (epe.cornell.edu).

International programs
Several additional programs allow business students to focus on a particular geographic area. Concentrations are offered in Latin American Studies, Modern European Studies, East Asian Studies, South Asian Studies, Southeast Asian Studies, and African Studies (all in the College of Arts and Sciences). The College of Agriculture and Life Sciences offers an interdepartmental program in international agriculture.

PRELAW STUDY
Law schools do not prescribe any particular prelaw program, nor do they require any specific undergraduate courses as do medical schools. Law touches nearly every phase of human activity, and there is practically no subject that cannot be considered of value to the lawyer. Therefore, no undergraduate course of study is totally inappropriate. Students contemplating legal careers should be guided by certain principles, however, when selecting college courses.

1. Interest encourages scholarship, and students will derive the greatest benefit from those studies that stimulate their interest.

2. Of first importance to the lawyer is the ability to express thoughts clearly and cogently in both speech and writing. First-year writing courses are mandatory for nearly all Cornell first-year students, are designed to develop these skills. English literature and composition, and communication courses, also serve this purpose. Logic and mathematics develop exactness of thought. Also of value are economics, history, government, and sociology, because of their close relation to law and their influence on its development and ethical aspects. Some knowledge of the influence of philosophic reasoning on legal reasoning and jurisprudence. Psychology and human development lead to an understanding of human nature and mental behavior. Some knowledge of the principles of accounting and of the sciences such as chemistry, physics, biology, and engineering is recommended and will prove of practical value to the lawyer in general practice in the modern world.

3. Cultural subjects, though they may have no direct bearing on law or a legal career, will expand students' interests; help cultivate a wider appreciation of literature, art, and music; and make better-educated and well-rounded persons.

4. Certain subjects are especially useful in specialized legal careers. For some, a broad scientific background—for example, in agriculture, chemistry, physics, or engineering—when coupled with training in law, offers qualifications necessary for specialized work with the government, for counseling certain types of businesses, or for a career as a patent lawyer. A business background may be helpful for those specializing in corporate or tax practice. Students who anticipate practice involving labor law and...
legislation might consider undergraduate study in the School of Industrial and Labor Relations. Whatever course of study is chosen, the important goals are to acquire perspective, social awareness, and a critical cast of mind; to develop the ability to think logically and analytically; and to express thoughts clearly and forcefully. These are the crucial tools for a sound legal education and a successful career.

The presence of the Cornell Law School on campus provides the opportunity for a limited number of highly qualified undergraduates registered in the College of Arts and Sciences at the university to apply and be admitted to the Law School. At the time of entry they must have completed 105 of the 120 credits required for the bachelor of arts degree, including 92 credits of course work in the College of Arts and Sciences.

It may be possible for exceptionally well-qualified students in other Cornell undergraduate colleges to arrange to enter the Law School after three years. In addition, members of the Cornell Law School faculty sometimes offer undergraduate courses such as The Nature, Functions, and Limits of Law, which are open to all undergraduates.

PREMEDICAL STUDY

Medical and dental schools, while not requiring or recommending any particular major course of study, do require that particular undergraduate courses be completed. These courses usually include general chemistry and organic chemistry, biology, and physics, and all must be taken with a lab. A year of English composition (or a first-year writing seminar) is also required. In addition, many medical schools require or recommend mathematics and at least one advanced biological science course, such as biochemistry, genetics, embryology, histology, or physiology.

There is no major that is the best for those considering medical or dental school, and students are therefore encouraged to pursue their own intellectual interests. Students are more likely to succeed at, and benefit from, subjects that interest and stimulate them, and there is no evidence that medical colleges give special consideration to any particular undergraduate training beyond completion of the required courses. In the past, successful Cornell applicants to medical and dental schools have come from the Colleges of Arts and Sciences, Agriculture and Life Sciences, Human Ecology, and Engineering. The appropriate choice depends to a great extent on the student’s other interests.

PREVETERINARY STUDY

There is no specific preveterinary program at Cornell, and students interested in veterinary medicine as a career should select a major for study that fits their interests while at the same time meeting the entrance requirements for veterinary college as listed below. Most preveterinary students at Cornell are enrolled in the College of Agriculture and Life Sciences, which offers several applied science majors, including animal science, that can lead to related careers if the student does not go to veterinary college. Some enter other divisions of the university, especially the College of Arts and Sciences, because of secondary interests or the desire for a broad liberal arts curriculum.

The college-level prerequisite courses for admission to the College of Veterinary Medicine at Cornell are English composition, biology or zoology, physics, inorganic chemistry, organic chemistry, biochemistry, and microbiology. All science courses must include a laboratory. These requirements, necessary for admission to the College of Veterinary Medicine at Cornell, may vary at other veterinary colleges.

For information on additional preparation, including work experience and necessary examinations, students should consult the brochure, Admissions Information, obtained by writing to the Office of DVM Admissions, College of Veterinary Medicine, Cornell University, S2-009 Schurman Hall, Ithaca, NY 14853-6401. Information on the Guaranteed Admissions Program is available from the same address.

Qualified students in the College of Agriculture and Life Sciences may apply for acceptance in a double-registration program arranged between Cornell University and the College of Veterinary Medicine at Cornell. This program allows registered students to save one year in pursuit of the bachelor’s and D.V.M. degrees. Further information about this program is available from the Health Careers Program, Cornell Career Services, 103 Barnes Hall, Ithaca, NY 14853-1601.
INTRODUCTION

College Focus
The College of Agriculture and Life Sciences offers men and women broad-based educational programs to provide them with technical, management, and leadership skills in four primary areas of focus. These areas were developed in response to the global challenges of the 21st century. They are fluid, overlapping, and interdependent and represent agriculture and life sciences at its broadest and most dynamic meaning. These four areas are:

- Land-grant, or agricultural sciences
- Applied social sciences
- Environmental sciences
- New life sciences

Faculty members challenge students with educational programs that promote problem-solving, basic and applied research, extension, and outreach. The programs are geared to the discovery and dissemination of knowledge for the purposes of advancing agriculture and food systems, health and nutrition, food security, biological sciences, education, communication, natural resources and environmental quality, and community, urban and rural development throughout New York State, the nation, and the world.

Administration
Susan A. Henry, dean
William E. Fry, senior associate dean
John M. Finamore, associate dean for financial affairs
Mary Lou Doyle, assistant dean for human resources
Michael P. Riley, assistant dean for alumni affairs, development, and communications
Donald R. Viands, associate dean and director of academic programs
Mark W. Wyszocki, associate director of academic programs
Jeffrey J. Doyle, director of undergraduate biology
vacant, associate dean and director of the Cornell University Agricultural Experiment Station
Susan J. Riha, director for sponsored research in the senior associate dean’s office
Helene R. Dillard, associate dean and director of cooperative extension
Michael P. Hoffmann, associate director of cooperative extension
W. Ronnie Coffman, director of international programs
James E. Haldeman, associate director of international programs
Terry W. Tucker, associate director of international programs
vacant, director of Cornell International Institute for Food, Agriculture, and Development

Department Chairs
Animal science: Alan W. Bell, 149 Morrison Hall
Applied economics and management: William H. Lesser, 154 Warren Hall
Atmospheric science unit (part of Earth and Atmospheric Sciences): Stephen J. Colucci, 1116 Bradfield Hall, Teresa E. Jordan, 4108 Snee Hall
Biological and environmental engineering: Michael F. Walter, 104 Riley-Robb Hall
Biological statistics and computational biology: Martin T. Wells, 435 Warren Hall
Communication: Geri K. Gay, 303 Kennedy Hall
Crop and soil sciences: Stephen D. DeGloria, 232 Emerson Hall
Development sociology: Philip D. McMichael, 133A Warren Hall
Ecology and evolutionary biology: Nelson G. Hairston, E305 Conron Hall
Education: Rosemary S. Caffarella, 435 Kennedy Hall
Entomology: Jan P. Nyrop, 2130 Comstock Hall
Food science: Joseph H. Hotchkiss, 119 Stocking Hall
Horticulture: Marvin P. Pritts, 134A Plant Science Building
Landscape architecture: Kathryn L. Gleason, 446 Kennedy Hall
Microbiology: William C. Ghiorse, B75C Wing Hall
Molecular biology and genetics: Charles F. Aquadro, 235 Biotechnology Building
Natural resources: Barbara A. Knuth, 117 Femow Hall
Neurobiology and behavior: Thomas D. Seeley, W159 S. G. Mudd Hall
Plant breeding and genetics: W. Ronald Coffman, 241 Emerson Hall
Plant pathology: George W. Hudler, 318 Plant Science Building
Statistical sciences: Bruce W. Turnbull, 227 Rhodes Hall

Student Services
Office of Academic Programs
The College of Agriculture and Life Sciences (CALS) provides a variety of services for students, faculty and alumni. The hub of these services is the Office of Academic Programs in Roberts Hall, including the director, associate director, the Admissions Office, the Career Development Office, the Counseling and Advising Office, the Multicultural and Diversity Office, and the Registrar’s Office. Although most of the student services are in the Office of Academic Programs, significant efforts are located across the college in the Office of Undergraduate Biology and in various departments.

The Counseling and Advising Office coordinates the faculty advising program, serves as the college’s central undergraduate advising office, and offers personal counseling. Academic advising is available for students who are interested in international study, need to file petitions to waive college academic regulations, have disability concerns, are experiencing academic difficulties, or have requests for tutoring. The staff coordinates new student orientation, award ceremonies, commencement activities, and the activities of Ho-Nun-De-Kah, the college’s honor society. Students seek counseling and advising on a variety of issues including academic problems, course problems and college procedures, graduation requirements, personal and family problems, stress management, and time management. Two counselors provide short-term counseling with an expertise in college policies and guidelines. Counseling is framed as appropriate to each student’s academic circumstances. The staff is available on a walk-in basis, as well as by appointment in 140 Roberts Hall. Visit www.cals.cornell.edu/Counseling_and_Advising.cfm. Counseling and Advising staff: Lisa Ryan, Bonnie Shelley, Pamela Torelli, Tamara Durham.

Faculty members in the College of Agriculture and Life Sciences consider advising to be an important and integral part of the undergraduate program. Each student enrolled in the college is assigned to a faculty adviser in his or her major field of study for assistance and guidance in developing a program of study, and to enhance the student’s academic experience.

The Office of Multicultural and Diversity Programs serves to monitor, support, and influence policy on behalf of all underrepresented students within the College of Agriculture and Life Sciences. This population is defined as encompassing, but not limited to, all African American, Latin American, Asian American, and Native American students. Its constituency includes students, faculty, and the general public.

In the past academic year this represented approximately 20 percent of the college’s undergraduate population. Additionally, the office is charged with monitoring and programming for the Educational Opportunity Program (EOP) and Prehealth Collegiate Science and Technology Entry Program (CSTEP). EOP and CSTEP are state-supported programs intended to assist New York State students who meet economic and academic criteria set by the college, State Programs Office, and New York State Board of Regents. For further information, please contact Catherine Thompson in 140 Roberts Hall.

Within the university, the Office of Multicultural and Diversity Programs is charged with acting as the college liaison with the central Office of Minority Education Affairs, Learning Strategies Center and the State Programs Office. Other University connections include the University Career
The director together with peer advisers and the Office of Multicultural and Diversity Programs is also responsible for some functions which serve the college's entire population. At present, that includes general college diversity activities, serving as the college prehealth adviser and providing ongoing support at all levels for the Office of Counseling and Advising.

The CALS Registrar's Office ensures the accuracy, confidentiality, and reliability of student records and serves as an important link between the university's and college's policies and procedures and the student. The Registrar's Office maintains student records and reviews degree progress on a semester basis, maintains the Dean's List, evaluates and applies non-Cornell credit (transfer, study abroad credit, and advanced placement credit), provides registration and enrollment information, considers individually with students on graduation requirements, and schedules all CALS courses. Specific information can be found at www.cals.cornell.edu/registrar.cfm.

The CALS Registrar's Office holds walk-in hours to assist students with any registrar-related issue. Walk-in hours are Tuesdays from 1:00 to 3:00 and Wednesdays from 10:00 a.m. to 12:00 p.m. in 140 Roberts Hall. No appointment is necessary during these times. Registrar's Office staff: Melanie Holland, Torrey Jacobs, Amy Paolangeli, Elisa Rafferty.

The Office of Career Development offers a variety of helpful services to all students and alumni of the college. Career development includes self-assessment, career exploration, decision making, and transition to employment or further study. Services are designed to assist students and alumni with those activities and to help them develop the career planning and job search skills they will find useful as their career paths progress and change.

The Career Library contains an extensive collection of current and useful material, including career information books, extensive internship files, employer directories, and job listings. Alumni Career Link is a database of more than 400 college alumni who have offered to help students and alumni with their career development in a variety of ways. Job search talks on topics such as resume writing, cover letter writing, and interview skills are presented throughout the semester and are available on videotape. An active on-campus recruiting program brings more than 50 employers to campus each year to interview students for full-time and summer jobs. Additionally, the office provides information on hundreds of internships.

The office, in conjunction with a network of college faculty and staff members, assists students throughout their undergraduate years and beyond. For further information, students should contact Amy Benedict-Augustine, Laurie Gillespie, or Sharon Radcliffe in 177 Roberts Hall.

The CALS Admissions Office is responsible for admitting and enrolling a talented and diverse class of students each year in the college. The process and outcome must reflect and support the college mission and help to meet college and institutional enrollment goals. This includes freshman, transfer, and intra-university transfer student processes. The office hosts on-campus and off-campus information sessions for prospective students, evaluates and makes decisions on more than 4,000 applications each year, and coordinates Cornell Days for the admitted students each April. The Admissions Office staff advises and supports the CALS Ambassador program. The office is located in 177 Roberts Hall. Staff members include Ann LaFave, Cathy Sheils, Tara Bublie, Jared Rivers, and Lorie Fessenden.

Financial aid is administered through the university office in Day Hall. Endowment funds and annual donations in the college provide supplemental aid for students who are eligible for financial aid. Information about these college grants is available from the Office of Academic Programs in 140 Roberts Hall for students who have their financial aid package established through the university office in Day Hall. Grants are processed through the university's Office of Financial Aid.

Students

Undergraduate enrollment is approximately 3,100, with about 56 percent in the upper division. Each year about 850 students are graduated, while 645 freshmen and 250 new transfer students are enrolled. College faculty members serve as chairs of the Special Committees of roughly 1,000 graduate students.

Admission

The CALS Admissions Office selects applicants who are academically well prepared and appear most likely to benefit from the college's various curricula.

While most students come from New York State, about 43 percent come from other parts of the United States or abroad. Slightly more than half of the first-year women. Approximately 22 percent are self-identified as members of minority ethnic groups.

The CALS Admissions Office is in 177 Roberts Hall (255-2036; www.cals.cornell.edu/admissions/).

Transfer Students

All accepted transfer credit must be from a regionally accredited college or university. Transfer credit is awarded on a case-by-case basis. Additional course information may be required. Contact the CALS Registrar's Office for information. A maximum of 60 non-Cornell credits is allowed. Approximately 20 percent of CALS undergraduate students are transfers who have completed part of their collegiate work at community colleges, agricultural and technical colleges, or four-year institutions. Many of them hold an associate degree. Detailed information on transfer admission is available from the CALS Admissions Office.

Intra-University Transfer

A Cornell student in good standing may apply for an intra-university transfer to pursue a course of study unavailable in his or her current college. Guidelines are available in the CALS Admissions Office. The procedure involves filing a transfer request, meeting with a faculty member in the proposed area of study, and submitting a letter of interest in the new area. Consideration is given to students who have demonstrated an interest in their proposed field of study by taking appropriate prerequisite subjects and courses within the area of study. Academic achievement is also considered. Students are not encouraged to transfer during their freshman year. In certain cases, a student may be referred to the Internal Transfer Division (ITD) to study for one semester before entering the college. A second semester in ITD is considered only in unusual circumstances. During this time, the student must achieve a predetermined average (usually 2.7) and take approved courses to assure acceptance.

Special Students

A limited number of nondegree candidates who want to take courses in the college are admitted each year. Applicants should submit the standard Cornell transfer application, a résumé of their work experience, and a list of the courses in which they are interested. For more information and guidelines, students should contact the CALS Admissions Office.

Off-Campus Students

Programs in which students study off campus but enroll for Cornell credit include SEA, semester, field study in human ecology or industrial and labor relations, and the internship. Cornell in Washington, student teaching, IPM internship, and clinical microbiology internship. Students intending to receive Cornell credit for work done off campus should inform the college registrar at the time of enrolling for courses to ensure that proper registration will occur.

Facilities

The College of Agriculture and Life Sciences is located on the upper campus, up the hill from the central area of Cornell University, on land that was once part of the Ezra Cornell family farm.

Buildings around the area commonly known as the Ag Quad house classrooms, offices, and laboratories. Flanking them are the greenhouses, gardens, and research facilities. Nearby orchards, barns, field plots, forests, and streams extend as far as the Animal Science Teaching Research Center at Harvard and the New York State Agricultural Experiment Station at Geneva.

Roberts Hall serves as headquarters for the administrative units, including offices of the deans and directors of academic programs, Cornell University Agricultural Experiment Station, and cooperative extension. Included in the Office of Academic Programs are the director and associate director, the Admissions Office, the Career Development Office, the Counseling and Advising Office, the Office of Multicultural and Diversity Programs, and the Registrar's Office.

Mann Library, with its extensive collections of materials in the agricultural and life sciences, is at the east end of the Ag Quad. The student lounge and service center, known as the...
DEGREE PROGRAMS

The College of Agriculture and Life Sciences offers programs leading to the degrees of bachelor of science, master of science, and doctor of philosophy. Professional degrees include the master of professional studies and the master of arts in teaching. Some registered professional licensing and certification programs are also available.

Each curriculum in the college creditable toward a degree is registered with the New York State Education Department.

Bachelor of Science Degree

Departments in the College of Agriculture and Life Sciences sponsor study for the B.S. degree in 23 major programs. To qualify for the degree, students must fulfill requirements established by the faculty of the college and administered through the Office of Academic Programs. Students are admitted into a single major but afterwards may pursue and graduate with two or more majors within the College of Agriculture and Life Sciences. Students need an adviser in each major.

Course requirements for double majors may overlap. The Counseling and Advising Office (140 Roberts Hall) and department representatives have a form for students to complete to officially recognize the double major. The following units offer major fields of study for undergraduates. A faculty advising major. The following units offer major fields of study. Minor fields of study do not require an academic adviser, but each minor field has a contact person who will provide information and verify on the application to graduate that the student will successfully complete the requirements of the minor by graduation. Students may complete as many minors as they wish; the requirements of minors may overlap. Minors are described along with the majors later in the CALS section of this catalog. Not all majors or departments offer minors. Minors available in CALS at the printing of this catalog are listed below with contact person, e-mail address, and location. For minors outside of CALS, please consult with the specific department.

Majors

- Agricultural science education: Leah Hershhey, 418 Kennedy Hall, lbh4@cornell.edu
- Animal sciences: W. Bruce Currie, 434 Morrison Hall, wbc1@cornell.edu
- Applied economics and management: Dale Grossman, 205 Warren Hall, dag14@cornell.edu
- Atmospheric science: Mark Wysocki, 1114 Bradley Field Hall, mwv33@cornell.edu
- Biological Engineering: James Bartsch, 314 Riley-Robb Hall, jah35@cornell.edu
- Biological Sciences: Jeffrey Doyle, 216 Simpson Hall, jdy5@cornell.edu; Bonnie Cornell, 216 Simpson Hall, bcc3@cornell.edu
- Biology and Society: Brian Chabot, E309A Hall, bch3@cornell.edu
- Biometry and statistics: Steven Schwager, 424 Warren Hall, sj5@cornell.edu
- Business: Dale Grossman, 205 Warren Hall, dag14@cornell.edu; Marge Arcangeli, 104 Warren Hall, mfa2@cornell.edu
- Communication: Linda Van Buskirk, 309 Kennedy Hall, lvp1@cornell.edu; Brian Earle, 328 Kennedy Hall, boe1@cornell.edu
- Crop and soil sciences: Gary Fick, 507 Bradford Hall, gwf2@cornell.edu
- Development sociology: Max Pfeffer, 133 Warren Hall, mjp5@cornell.edu
- Entomology: John Losey, 4126 Comstock Hall, jcl7@cornell.edu
- Environmental engineering: James Bartsch, 314 Riley-Robb Hall, jah35@cornell.edu
- Food science: Janice Brown, 107 Stocking Hall, jmb14@cornell.edu
- Information science: Lindsay Marzano, 303 Upson Hall, lindsay@cis.cornell.edu
- Interdisciplinary studies: Lisa Ryan, 140 Roberts Hall, major@infosci.cornell.edu
- International agriculture and rural development: Terry Tucker, 33 Warren Hall, twt2@cornell.edu
- Landscape architecture: Peter Trowbridge, 440 Kennedy Hall, ptt@cornell.edu
- Natural resources: Tim Fahey, 12 Fernow Hall, tff5@cornell.edu
- Nutritional sciences: J. Thomas Brenna, B38 Savage Hall, jtb4@cornell.edu
- Plant sciences (plant biology, plant genetics and breeding, horticulture, plant pathology/ protection): Peter Davies, 255 Plant Sciences Bldg., pd2@cornell.edu
- Science of earth systems: Bryan Isaacks, 3110 Snee Hall, bli1@cornell.edu
- Science of natural and environmental systems: Tim Fahey, 12 Fernow Hall, tff5@cornell.edu

Minors

Students in the College of Agriculture and Life Sciences may pursue one or more minor fields of study. Minor fields of study do not require an academic adviser, but each minor field has a contact person who will provide information and verify on the application to graduate that the student will successfully complete the requirements of the minor by graduation. Students may complete as many minors as they wish; the requirements of minors may overlap. Minors are described along with the majors later in the CALS section of this catalog. Not all majors or departments offer minors. Minors available in CALS at the printing of this catalog are listed below with contact person, e-mail address, and location. For minors outside of CALS, please consult with the specific department.

- Agricultural economics: Jason Hunt, 313 Comstock Hall, jch3@cornell.edu
- Animal sciences: Deloris Bevins, 149 Morrison Hall, dgb31@cornell.edu
- Biological Sciences: Bonnie Cornell, 216 Simpson Hall, bcc3@cornell.edu
- Biological sciences: Jeffrey Doyle, 216 Simpson Hall, jdy5@cornell.edu; Bonnie Cornell, 216 Simpson Hall, bcc3@cornell.edu
- Biology and Society: Brian Chabot, E309A Hall, bch3@cornell.edu
- Biometry and statistics: Steven Schwager, 424 Warren Hall, sj5@cornell.edu
- Business: Dale Grossman, 205 Warren Hall, dag14@cornell.edu; Marge Arcangeli, 104 Warren Hall, mfa2@cornell.edu
- Communication: Linda Van Buskirk, 309 Kennedy Hall, lvp1@cornell.edu; Brian Earle, 328 Kennedy Hall, boe1@cornell.edu
- Crop and soil sciences: Gary Fick, 507 Bradford Hall, gwf2@cornell.edu
- Development sociology: Max Pfeffer, 133 Warren Hall, mjp5@cornell.edu
- Entomology: John Losey, 4126 Comstock Hall, jcl7@cornell.edu
- Environmental engineering: James Bartsch, 314 Riley-Robb Hall, jah35@cornell.edu
- Food science: Janice Brown, 107 Stocking Hall, jmb14@cornell.edu
- Information science: Lindsay Marzano, 303 Upson Hall, lindsay@cis.cornell.edu
- Interdisciplinary studies: Lisa Ryan, 140 Roberts Hall, major@infosci.cornell.edu
- International agriculture and rural development: Terry Tucker, 33 Warren Hall, twt2@cornell.edu
- Landscape architecture: Peter Trowbridge, 440 Kennedy Hall, ptt@cornell.edu
- Natural resources: Tim Fahey, 12 Fernow Hall, tff5@cornell.edu
- Nutritional sciences: J. Thomas Brenna, B38 Savage Hall, jtb4@cornell.edu
- Plant sciences (plant biology, plant genetics and breeding, horticulture, plant pathology/ protection): Peter Davies, 255 Plant Sciences Bldg., pd2@cornell.edu
- Science of earth systems: Bryan Isaacks, 3110 Snee Hall, bli1@cornell.edu
- Science of natural and environmental systems: Tim Fahey, 12 Fernow Hall, tff5@cornell.edu

Early Enrollment in Cornell Graduate Programs

The College of Veterinary Medicine may accept students who are then permitted to double-register in their seventh and/or eighth semester and complete requirements for the bachelor of science degree in the College of Agriculture and Life Sciences. Students should consult with the college registrar, 140 Roberts Hall, to ensure that degree requirements have been fulfilled.

Students who have been offered admission to the S. C. Johnson Graduate School of Management may take courses in their senior year if approved by their college faculty adviser as part of their undergraduate program. These courses count toward the endowed college credits (maximum 55 without additional tuition charge). Students may consult with the college registrar, 140 Roberts Hall, to verify degree requirements and endowed credits earned.

The Department of Landscape Architecture offers a first professional degree curriculum in landscape architecture at both undergraduate (BLA) and graduate levels (MLA I), as well as a second professional graduate degree program (MLA II). The curricula for both the undergraduate and graduate programs are accredited by the Landscape Architecture Accreditation Board (LAAB). The graduate program is supported by the Department of Landscape Architecture in the College of Agriculture and Life Sciences and by the College of Architecture, Art, and Planning.

Graduate Fields of Study

Graduate study is organized by fields that generally coincide with the academic
OPPORTUNITIES IN RESEARCH

Undergraduate Research

A multitude of opportunities to be engaged in research exists across the College of Agriculture and Life Sciences and the university.

Students may be able to work on a faculty member's research project for pay. Opportunities can be explored by contacting individual faculty members; departmental offices; the CALS Career Development Office, in 177 Roberts Hall; or Cornell Career Services, in 102 Barnes Hall. Another option is to receive credit through a 499-level course within a department by conducting your own research project under a faculty mentor. More than 600 students each year conduct research, but freshmen and sophomores also may be equipped to do some types of research.

Off-campus research experiences are also available for pay or as internships. The following web sites provide information about research and internships:

CALS Career Development Office: cals.cornell.edu/Careers.cfm

CALS Undergraduate Research Opportunities: cals.cornell.edu/CALSUndergraduate_Research Alternatives.cfm (information on how to explore research opportunities)

CALS Research Honors Program: cals.cornell.edu/CALS_Research_Honors_Program.cfm

CALS Undergraduate and Graduate Student Grants Proposal Development: cals.cornell.edu/undergraduate_and_Graduate_Students/Grants.cfm

CALS Undergraduate Minority Research: cals.cornell.edu/undergraduate_Minority_Research.cfm

CALS Internship Guidelines: cals.cornell.edu/Internship_Guidelines.cfm

Undergraduate Research @ Cornell: www.research.cornell.edu/undergrad/

Cornell Undergraduate Research Board: www.sso.cornell.edu/curl/ (student organization to promote and facilitate undergraduate research)

Biological Sciences: www.bio.cornell.edu

Research Honors Program

The Research Honors Program provides students with a special opportunity to work with a faculty mentor to experience the research process. Successful completion of this program requires a thesis written in the style of a master’s thesis or professional journal article in that area of research. Original honors research may be published in a professional journal. Students are required to send an electronic version of their thesis title, abstract, student's name, and the research adviser's name to Ann Gantner, amg28@cornell.edu, by the end of the spring semester. In addition to copies of the entire thesis requested by the program area, one copy is required by the Office of Academic Programs (140 Roberts Hall). This copy is made available in Mann Library. Students may volunteer to publish their theses in the Internet-First University Press if it does not interfere with other plans, such as patenting or publishing in another journal. During the summer of each year, the CALS Research Honors Abstracts is published as a compilation of abstracts of the honors theses.

The bachelor of science degree with “distinction in research” is conferred upon those students who, in addition to having completed the requirements for the B.S. degree, have satisfactorily completed the honors program in their chosen subject of major interest and have been recommended for the degree by the honors committee of that area.

Research may be done under the appropriate program area: animal sciences, biological sciences, biology & society, entomology, information science, landscape studies, natural resources, nutritional sciences, physical sciences, plant sciences, and social sciences.

Each program area has its own requirements in addition to the college requirements. After reviewing the requirements of each program area (below), students may be directed toward the appropriate program area chair.

Consult “Undergraduate Research Opportunities” on the web (cals.cornell.edu/CALSUndergraduate_Research Opportunities.cfm) for information about identifying a research topic, conferring with a faculty member, and undergraduate funding opportunities.

Honor Program Requirements

An undergraduate wishing to enroll in the honors program must have completed at least 55 credits, at least 30 of those 55 at Cornell. In addition, the student must have attained a cumulative Cornell GPA of at least 3.0 (unless otherwise noted by a particular program) at the time of entry.

Interested students must make written application to the CALS Registrar's Office no later than the end of the sixth week of the first semester of their senior year, but are encouraged to make arrangements with a faculty member during the second semester of their junior year (or earlier if required by the program area). Earlier application deadlines to program area committees are noted in
the sections below. For most of the program areas, an application form is available from the college registrar in 140 Roberts Hall. The application form can also be printed from the web at www.cals.cornell.edu/CALS_Research_Honors_Program2.cfm. Applications for biological sciences students can be picked up at 206 Simons Hall, and for biology & society students at 306 Rockefeller Hall.

Before the completed application is returned to the college registrar, signatures of approval are required in the following order: faculty research mentor, academic advisor, and the research honors program area chair. After the college registrar verifies the student’s GPA, the student will be officially enrolled in the honors program. Additional requirements for application and completion of the program are described under each particular program area.

Academic credit also may be earned by enrolling in an appropriate independent research course (required by some program areas). When applying for admission to the program, the student may, if appropriate, submit a budget and a modest request for funds (up to $350) to cover some of the costs incurred in doing the research. If approved, the funding will be transferred from an account in the Office of Academic Programs to a departmental account of the student’s research adviser to support the student’s research. This funding is not to be used as a student salary. Additional funding opportunities are described at cals.cornell.edu/CALS_Undergraduate_Research_Opportunities.cfm. Unless otherwise indicated in the following program area descriptions, the research report in the form of a thesis or journal article should be submitted to the research program committee no later than four weeks before the end of classes of the semester in which the student expects to graduate. Students in the College of Agriculture and Life Sciences wishing to participate in the Research Honors Program must be accepted in one of the program areas approved by the faculty. Students are not eligible for distinction in research by participating in a program offered by another college or administrative unit.

The research honors committee for each program area recommends to the college registrar those students who qualify for honors. Only those who maintain a GPA of at least 3.0 will be graduated with "distinction in research."

At or near the completion of their research, students are required to give an oral presentation or poster session during any event at Cornell. Some departments have a seminar series when presentations may be given. The Cornell Undergraduate Research Board (CURB) Forum is another venue for presentations.

For more information, go to www.cals.cornell.edu/CALS_Research_Honors_Program2.cfm.

The following are the honors program areas:

Animal Sciences

Faculty committee: S. M. Quirk, chair, Y. R. Boisclair, J. R. Giles, J. Gavalchin, P. A. Johnson, T. R. Overton

The objective of the animal sciences research honors program is to provide outstanding undergraduates with the opportunity to pursue supervised independent research and to develop an awareness of the scientific process. It is expected that the research will require significant effort and creative input by the student in its design and execution and in the reporting of the results.

Those students with majors in animal sciences who are interested in doing a research project should consult with their faculty advisers by their junior year. All students are expected to meet the college requirements in qualifying for the program and to complete the following:

- Identify a potential research honors project supervisor (i.e., a faculty member working in the animal sciences) and secure that faculty member’s commitment to sponsor the student in the research project. This should be accomplished by the second semester of the junior year. Students are encouraged to implement some research during the junior year and/or summer before the senior year.
- Register for AN SC 499 Undergraduate Research.
- Participate in AN SC 402 Seminar in Animal Sciences, during the spring semester and report on and discuss the project.
- Submit a written thesis to the Animal Sciences Research Honors Committee by the scheduled deadline. Specific information regarding deadlines, format, and organization for the thesis will be provided.
- Meet with the Animal Sciences Research Honors Committee for a short oral defense of the thesis following a review of the thesis by the student’s sponsor and the research committee.

Details pertaining to the specific requirements of the program can be obtained from the administrative office of the Department of Animal Science, 149 Morrison Hall.

Biological Sciences

Students interested in the Research Honors Program in the biological sciences should consult with their faculty advisers and with potential faculty research sponsors early in their junior year. A student must complete the following:

- The coursework requirements of ENTOM 497 should be completed in B&SOC 499, Animal Sciences Research Honors Committee for a short oral defense of the thesis following a review of the thesis by the student’s sponsor and the research committee.

Details pertaining to the specific requirements of the program can be obtained from the administrative office of the Department of Animal Science, 149 Morrison Hall.

Biological Society

Faculty committee: D. Pimentel, chair

The Research Honors Program in Biology & Society is designed to provide independent research opportunities for academically talented undergraduate students in biology & society. Students who enroll in this program are expected, with faculty guidance, to do independent study and research dealing with issues in Biology & Society. Students participating in the program should find the experience intellectually stimulating and rewarding whether or not they intend to pursue a research career.

Biology & Society students are considered for entry into the research honors program at the end of the second semester of the junior year. Application forms for the program are available in the Biology & Society office, 306 Rockefeller Hall. To qualify for the Biology & Society Research Honors Program, a student must have an overall Cornell cumulative GPA of at least 3.3, have formulated a research topic, and have found a project supervisor (with a Cornell academic appointment) and a Biology & Society faculty member willing to serve as his or her adviser. The director of undergraduate studies will appoint a third reader of the completed research thesis. Applications will be reviewed by a committee headed by the director of undergraduate studies, who will notify students directly of the outcome. Students will be permitted to register for the research honors program only by permission of the biology & society program. Students must enroll for two semesters for 6 credits each in B&SOC 499, Honors Project I and II. More information on the honors program is available in the Biology & Society office, 306 Rockefeller Hall (255-6047).

Important Deadlines

Note: If the following dates fall on a weekend, the deadline is the preceding Friday.

- Last week of second semester of the junior year: Application for honors program submitted to 306 Rockefeller Hall.
- April 14: Thesis completed in a form satisfactory for evaluation and submitted to the three readers.
- April 28: Thesis defense accomplished.
- May 12: One bound copy of completed and defended thesis submitted to director of undergraduate studies.

Entomology

Faculty committee: J. Ewer, chair

The Program. A research honors program in entomology may be pursued by any qualified student in the College of Agriculture and Life Sciences. The student need not be specializing in entomology. Insects, because of their variety, small size, and easy availability, are convenient subjects for studying a wide array of problems dealing with living systems. Short life cycles, unique physiologies and developmental patterns, and species with newly bred colonies and expanding libraries in entomology are also major assets if a student selects entomology as a minor in research honors study.

Prerequisites. An undergraduate wishing to enroll in the research honors program must have completed at least 55 credits, at least 30 of which must be at Cornell. In addition, the student must have attained a cumulative GPA of at least 3.0 at the time of entry and maintain this GPA to graduate with distinction in research. The CALS registrar will verify GPAs of applicants before officially enrolling them in the research honors program. Research honors students have the option of earning academic credit by enrolling in ENTR 497 Independent Study during any semester while working toward a research honors thesis. Credits and grade option for satisfying requirements of ENTR 497 should be
discussed with the thesis adviser (following page.)

Note: Enrolling in independent study is not a requirement for graduating with distinction in research honors in entomology.

Sequence of Requirements

The Entomology Research Honors Committee requires that an undergraduate who is interested in embarking on a research honors project proceed with the following steps:

1. Discuss the matter with his or her academic adviser, preferably in the junior year. This schedule makes it possible to carefully plan a research project and implement some research during the junior year and/or summer before the senior year.

2. Select an appropriate faculty member in the Department of Entomology who can serve as a supervisor to oversee the honors research. This need not be the student’s academic adviser. The academic adviser will be of assistance in determining which faculty entomologist has expertise most compatible with the interests of the student.

3. Prepare a brief, tentative plan for the project for discussion and approval of the honors project supervisor. The plan should include a statement of objectives or hypotheses, proposed methods for testing hypotheses, needs for laboratory space or shared equipment, and a budget outlining financial support needed for travel and supplies.

4. Submit a completed application and proposal (approved by the honors project supervisor and the chair of the Entomology Research Honors Committee) no later than the end of the sixth week of the first semester of the senior year. Earlier submission is encouraged. Applications are available and should be submitted to the CALS registrar, 140 Roberts Hall. These applications include an opportunity to request a modest amount of funding from the CALS honors program. Funds are distributed only one time per year (in late fall).

5. Submit a brief progress report, approved by the project supervisor, to the Entomology Research Honors Committee by midterm of the semester in which the student will complete his or her graduation requirements.

6. Present a formal seminar reporting the significant findings of the research to the Department of Entomology (as a Jugged seminar) in the last semester of the senior year.

7. Submit two copies of the final honors thesis (as approved by the thesis supervisor) to the chair of the Entomology Research Honors Committee no later than two weeks before the last day of classes in the semester in which the student anticipates graduation. The thesis will be reviewed by the faculty honors project supervisor and one other referee selected by the chair of the honors committee.

8. Referees will return the thesis to the student one week before the last day of classes. If reviewers indicate that changes must be made, the revised thesis should be submitted to the Entomology Research Honors Committee chair no later than the last day of classes. Referees should include a recommendation to the Entomology Research Honors Committee chair regarding acceptability of the honors thesis. The approved honors theses will be bound and housed in the Entomology Library in Costume Hall.

The complete text of this section can be found at: www.entomology.cornell.edu/Undergrad/EntomHonors.shtml.

Information Science

Students should follow the CALS social sciences guidelines to obtain research honors in information science.

Landscape Studies

Faculty committee: K. Gleason, chair

The research honors program in landscape studies offers outstanding undergraduates in CALS the opportunity to work with a member of the landscape architecture faculty to pursue supervised independent research in design, the cultural landscape, landscape archaeology, environmental design, and community-based planning and design. The student need not be a major in the landscape architecture professional session. The subject matter and nature of the research experience may be quite varied. Students participating should find the experience intellectually stimulating and rewarding, whether or not they intend to pursue a research career. The guidance and supervision of a faculty member with substantial interest and expertise in the subject is essential to the success of the project. It is expected that the research will require significant effort and creative input by the student in its design and execution and in reporting the results.

Students who consider this option should be aware that honors research is undertaken above and beyond any of the requirements for graduation in the major of landscape architecture. It involves a number of deadlines and a considerable time commitment. Before signing on for honors research, students need to consult with their academic adviser to make sure that honors research projects will not interfere with other academic or professional objectives, such as job applications, preparation of portfolios, or application to graduate school. These may need to be deferred until the thesis is complete. Students are responsible for meeting deadlines and being prepared for presentations and other meetings.

Although honors research credits for spring semester junior year and both semesters senior year are designated a letter grade, individual mentors may choose the R grade for work in progress until the project has been fully completed. Grade is determined by each student’s mentor. The designation of “distinction in research” on the diploma is awarded at the recommendation of the faculty adviser. Successful thesis proposals will be reviewed by ad hoc committee members, and successful thesis proposals will be submitted to the college honors committee by the sixth week.

5. Submit an outline of the thesis to the chair of the committee by the end of January for a May graduation.

6. Submit a draft to the readers by April 15. Describe and summarize the work within the range of formats used in the master’s thesis program or professional journals in design or research. This version will be reviewed by the faculty supervisor and at least two ad hoc reviewers, and the student will be able to incorporate the committee’s comments and suggestions into the final version, which will be due the last day of classes. Referees prepare a recommendation to the honors committee chair regarding the acceptability of the honors thesis.

7. Give two oral presentations to the group of other honors research students and invited faculty members. Both presentations are during the student’s senior year.

8. Send two bound copies of the completed and defended thesis to the honors committee chair by May 13. These copies are in addition to the unbound copy required for Mann Library. A 250-word abstract must be provided electronically to the CALS Office of Academic Programs and must appear at the front of the thesis (see “CALS Requirements for Honors Thesis”).

Natural Resources

Faculty director: J. B. Yavitt, chair

The research honors program in natural resources involves original, independent research that generates novel findings in applied ecology and resource policy and management. Students learn how to design and carry out research under the direct supervision and guidance of a faculty member or senior research associate in the department. Most students in the program begin their research before the start of the senior year, often in the summer after their junior year. Students may enroll and receive credit in independent study (NTRES 494) during their honors research. The research findings are...
presented in a written thesis that is reviewed by two experts in the field. Many theses have been published in leading journals in the disciplinary area of the research. Although the format is not prescribed, the thesis usually consists of a short introduction, relevant materials and methods, a concise presentation of the meaningful data, a discussion, and the student's interpretation of the conclusions. Students also give an oral presentation of their research findings in a special symposium hosted by the department in early May.

Students should adhere to the following schedule:

Junior Year
1. File an informal application with the program director. The application includes a project description and adviser information.

Senior Year
1. Sixth week of fall semester: Submit formal application.
2. March 30: Thesis should be close to completion.
3. April 13: Submit two copies of the thesis to the program director for ad hoc reviews.
4. April 29: Pick up ad hoc reviewers' comments from the program director.
5. May 13: Submit two copies of the final thesis: one for the college, one for the program director.
6. Week of May 24: Students are notified.

Nutritional Sciences
Faculty committee: J. T. Brenna, C. Bisogni

The research honors program in the Division of Nutritional Sciences is a structured experience that involves (1) taking a course in research (NS 398), (2) conducting a research project through which the student becomes intellectually engaged in the whole research process, (3) completing a written thesis that reports the research, and (4) giving an oral presentation of the project at the undergraduate honors symposium. Students must maintain a minimum grade point average to graduate with honors in research.

The research honors program is an excellent opportunity for students who are highly interested in research and wish to commit substantial time and intellectual energy to a project that will span at least four semesters of their undergraduate experience. Honors students experience the excitement of designing a project to generate new knowledge on a topic that interests them and reporting the project findings. By working with faculty mentors and other researchers, they develop skills in research methods and data analysis. Students also learn that research projects are labor intensive and that writing research reports, such as the honors thesis, is a vital, but time-consuming, aspect of the research process. This intensive research experience is not suitable for all students, and those who wish a less intensive research experience may conduct research with a faculty member under NS 401.

Students interested in the program should take NS 398 as early in their program as possible. Students may review program requirements at the NS 398 web site or contact the program directors. Acceptance into the research honors program occurs when the student (1) is accepted into a faculty member's research program and (2) submits a research proposal abstract that is approved by the directors of the research honors program.

Students interested in the program typically spend the spring sophomore semester and fall junior semester exploring honors project opportunities with prospective faculty mentors. Students are responsible for contacting faculty members and applying to their research programs, although some guidance in this process will be provided in NS 398. By the fall of the junior year, the student is expected to have identified their faculty member and be working with him/her on a proposal abstract, which is due early in the spring junior semester.

Students receive academic credit for work on their honors project under NS 499. The 6 required credits may be taken over several semesters. How much time is spent on the project each semester will be the decision of the student and the faculty mentor. For each three to four hours of work per week, the faculty mentor usually will assign one hour of academic credit. This applies to the preparation of the research plan and necessary library research (usually completed during the junior year) as well as the carrying out of the research itself and preparation of the thesis.

The research honors project is the major component of the research honors program. It should be well defined and sufficiently circumscribed to give the student the opportunity to develop the research plan, execute the research, and write an acceptable thesis within the limited time available to students carrying full academic loads.

Typically, the project is designed early in the junior year and conducted in the spring junior semester and fall senior semester. Students may arrange with their faculty mentor to work on the project during the summer. The spring senior semester is usually devoted to writing the thesis (at least 25 pages). The student works with the faculty mentor to prepare a draft of the thesis, which is submitted before spring break for faculty member evaluation. When comments are received from the reader, the student must revise the thesis to meet the criteria for acceptance. The student presents the thesis at the Honors Student Symposium at the end of the semester.

Physical Sciences
Faculty committee: A. T. DeGaetano, chair; S. J. Mulvany, C. D. Bustamante

The research honors program in physical sciences provides outstanding students with an opportunity to do independent research under the supervision of a faculty member in the Departments of Biological and Environmental Engineering, Food Science, Earth and Atmospheric Sciences, or Biological Statistics and Computational Biology.

In addition to meeting the requirements of the college, the student is expected to:
1. Identify a thesis adviser and thesis topic before the end of the junior year.
2. Work with the thesis adviser to prepare a budget and application form (due by the sixth week of senior year).
3. Enroll in the program for a minimum of two semesters.
4. Enroll in the appropriate departmental undergraduate research course for a total of at least 6 credits.
5. Submit an outline of the thesis to the chair of the committee by the end of January (for a May graduation).
6. Submit a draft of the thesis to the thesis adviser with sufficient lead-time for a revision to be prepared.
7. Submit three copies of the thesis and names of recommended reviewers to the chair of the honors committee by four weeks before the end of classes in the semester in which graduation is expected.

There is no required format, but the thesis is usually written in the form of a research journal article or a master's thesis.

Further details of the program can be obtained from the chair of the Physical Sciences Research Honors Committee.

Plant Sciences

Students perform independent scientific research under the guidance of faculty members in the fields of horticultural, agronomic, and soil sciences; plant biology; plant genetics and breeding; and plant pathology. For admission to the program, students must meet college requirements and submit to the Plant Sciences Research Honors Committee a project proposal (two to three pages) that includes a title, a brief background of the problem (justification and literature review), a clear statement of objective(s) and hypotheses to be tested, methodology, and experimental plan, necessary space, equipment, and supplies; and a project budget. The proposal must be accompanied by a letter from the faculty supervisor stating that he or she has approved the proposal and that its completion within the remainder of the student's undergraduate tenure is feasible.

A brief progress report will be made to the committee usually during the third week of the spring semester. Research presentations are recommended (e.g., Cornell Undergraduate Research Board Forum, department seminars, professional meetings).

Successful completion of the research honors program requires acceptance by the honors committee of two copies of a research report. The report should be written in the format of a research publication in the appropriate scientific field. The acceptable report and the acceptable report form must have been reviewed and corrected according to the recommendations of the research supervisor before the report is submitted to the honors committee. The report must be received by the honors committee at least two weeks before the last day of classes of the semester in which the degree is sought and must be accompanied by a letter from the research supervisor evaluating the research and, if appropriate, recommending graduation with distinction in research.

The research honors committee will review the report within one week and may accept it or return it to the student with specific recommendations for revisions. A suitably revised version must be submitted to the committee before the second day of the
CALS students should be directed by the faculty research honors project. Students should register for honors credit to the Social Science Honors Committee. Exceptions may be granted pending petition if the student is deemed capable of thesis supervision; Faculty advisers must be members of the Social Science Research Honors Committee. The research should deal with a substantive issue in one of the fields in the social sciences. Both the results of the research and the methodology (or the logical argument by which the results were achieved) must be reported. Reviews of the literature, practical conclusions or applications, or broad characterizations of an area of inquiry may constitute part of the research report but are not themselves sufficient to count as research. Honors theses should be written according to the form of any standard journal within the appropriate field. We recommend the submission of the thesis draft to the student's research adviser by the beginning of the month two months before graduation, for revision suggestions. Two copies of the thesis must be submitted to the chair of the social science committee no later than the middle of the second-to-last month before graduation (i.e., April or November). A supporting letter from the faculty member supervising the work also must be submitted. The thesis will be independently reviewed and further revisions may be required before the thesis is accepted. Final approval of the thesis requires a majority vote of the honors committee.

OFF-CAMPUS OPPORTUNITIES

Distinction in research is awarded upon approval of the research honors thesis by the Social Science Research Honors Committee. The research should deal with a substantive issue in one of the fields in the social sciences. Both the results of the research and the methodology (or the logical argument by which the results were achieved) must be reported. Reviews of the literature, practical conclusions or applications, or broad characterizations of an area of inquiry may constitute part of the research report but are not themselves sufficient to count as research. Honors theses should be written according to the form of any standard journal within the appropriate field. We recommend the submission of the thesis draft to the student's research adviser by the beginning of the month two months before graduation, for revision suggestions. Two copies of the thesis must be submitted to the chair of the social science committee no later than the middle of the second-to-last month before graduation (i.e., April or November). A supporting letter from the faculty member supervising the work also must be submitted. The thesis will be independently reviewed and further revisions may be required before the thesis is accepted. Final approval of the thesis requires a majority vote of the honors committee.

1. Research Topic: State the problem to be studied or the topic of interest. Review the basic literature and the background of the problem or topic. Include a more extensive bibliography to be consulted.

2. Research Questions/Empirical Hypotheses: Specify the proposed questions to be answered or hypotheses to be tested empirically via collection of data and a mode of analysis accepted in the social sciences.

3. Research Methods: Discuss the models to be constructed (if any), sampling procedures, data collection procedures (including measurement instruments and survey or experimental designs, if appropriate), and proposed methods of analysis.

4. Expected Significance: State what new knowledge or information is likely to be forthcoming and why it is important. State any practical applications expected as a result of the research.

Faculty advisers must be members of the graduate faculty. Exceptions may be granted for persons with special expertise who are deemed capable of thesis supervision; exceptions may be granted pending petition to the Social Science Honors Committee. Students should register for honors credit directed by the faculty research honors project adviser.

Cornell in Washington

The Cornell in Washington program offers students from all colleges in the university an opportunity to earn full academic credit for a semester in Washington, D.C. Students take courses from Cornell faculty members, conduct individual research projects, and work as externs. Students take part in a public policy or humanities seminar, serve as externs in federal agencies, congressional offices, or nongovernmental organizations, and carry out individual research projects under the supervision of Cornell faculty members. The required externships and all course enrollments are arranged through, and approved by, the Cornell in Washington program. Students in the College of Agriculture and Life Sciences must register for ALS 500 and cannot receive credit for the externship experience alone. For further information, see p. 22, inquire at M101 McGraw Hall, 255-4090, or visit ciw.cornell.edu.

SEA Semester

The Sea Education Association is a nonprofit educational institution offering ocean-focused academic programs and the opportunity to live, work, and study at sea. Students may choose to participate in the humanities, and practical seamanship are integrated in small, personal classes. The 17-credit program is 12 weeks in length. Six weeks are spent in Woods Hole, and the following six weeks are spent on either one of SEA's two sailing vessels: the SSV Robert Seamans or the SSV Corwith Cramer. For more information, contact the Cornell Marine Programs office, G14 Simons Hall (255-3717) or visit www.sea.edu. CALS students should file an intent to study off campus form with the college registrar as early as possible to ensure proper registration and enrollment in courses.

Shoals Marine Laboratory (SML)

The Shoals Marine Laboratory, run cooperatively by Cornell University and the University of New Hampshire, is a seasonal field station located on 95-acre Appledore Island off the coast of Portsmouth, N.H., in the Gulf of Maine. SML offers undergraduates and other interested adults a unique opportunity to study marine science in a setting noted for its biota, geology, and history. Please refer to "Courses in Marine Science," in the section on the Office of Undergraduate Biology, for a list of courses offered. For more information, contact the Shoals Marine Laboratory office, G14 Simons Hall, 255-3717, or visit www.sml.cornell.edu.

Internships

Several departments in the college offer supervised internships for academic credit. Internships may be granted for pay and/or credit with a limit of up to 6 credits per internship. Students should register for, or receive credit for, the number of credits total allowed for internships consisting of off-campus work experiences that do not have the continued presence of a Cornell faculty member. The number of credits awarded should reflect the amount of knowledge gained per internship and/or following the CALS guidelines for academic credit. The 6-credit allotment includes transfer credit and credit from other internships in other colleges at Cornell. The 6-credit limit does
not apply to secondary, post-secondary, and Cooperative Extension teaching internships in the Department of Education. The awarding of credit will not be allowed in cases where a student brings to the college or to a professor a description of a past experience and requests credit. Note that a maximum of 15 (prorated for transfer students) of the 120 credits required for the degree may be taken in internships, independent study courses, and undergraduate teaching or research. For internships not governed by an established internship course, the student must enroll in a 497-level course for the number of credits assigned.

To ensure a fair and manageable system to deal with internships, the College of Agricultural and Life Sciences has set forth guidelines to serve as minimum requirements for a student to receive internship credit.

1. Credit will be assigned or accepted only in cases in which a Cornell faculty member is directly involved in determining both the course content and in evaluating the student's work.

2. The internship should be purposeful, provide opportunities for reflection, present a continual challenge to the student, and incorporate active learning, with the student an active participant in all stages of the experience from planning to evaluation.

3. Before a student begins the internship, a learning contract needs to be written between the Cornell faculty internship adviser on campus, the supervisor at the location, and the student. This contract should state the conditions of the work assignments, supervisor, learning goals, number of credits, and methods of evaluation of the work. A contract form can be obtained from the college Registrar's Office, or departments may have their own.

4. Students should further develop the internship experience based on the college Experimental Learning Criteriа, which can be found on the web at cals.cornell.edu/Experimental_Learning_Report.cfm.

5. Students need to keep their faculty internship adviser updated on the progress of the internship while away from campus. Arrangements should be made with the offering department for assignment of a faculty mentor for planning the program of work, and for evaluating student performance. Individual departments may add more requirements to the internship based on specific needs such as time constraints, faculty workloads, and the relationship of the internship to the goals of the department.

The specific terms of the contract should be recorded, using the independent study, research, teaching, and internship form, available in the Registrar's Office in 140 Roberts Hall.

Study Abroad

Each year about 200 CALS undergraduates spend an academic year or semester studying abroad. Whether attending a large university in Australia, a smaller campus in Sweden, or a technical school in Singapore, CALS students have a variety of international study options available to them. They can choose from:

- a CALS exchange program in Austria, Australia, Brazil, Denmark, Mexico, Netherlands, New Zealand, Singapore, Sweden, Switzerland or the United Kingdom;
- a study abroad program through the Cornell Abroad office;
- an international study tour as part of a CALS course, or a summer program designed especially for CALS students.

CALS exchange programs are unique agreements created with other prestigious universities around the world. CALS students participating in an exchange program pay only their Cornell tuition, with no additional administrative fees. To learn more about the exchange programs, please visit: www.cals.cornell.edu/Study_Abroad_Exchange_Index.cfm or e-mail exchange coordinator Bonnie Shelley, bshelley@cornell.edu.

Study abroad opportunities offered through the Cornell Abroad office are vast, ranging from a traditional university in London to field study in Africa. For information about specific programs, costs and more, visit their office in 300 Caldwell Hall or go to www.cuabroad.cornell.edu/

Whether on a CALS exchange or going through Cornell Abroad, all CALS students interested in studying abroad must receive approval from their faculty adviser and meet with the college study abroad adviser to review the college policies and to receive college approval. College policies can be viewed at: www.cals.cornell.edu/College_Policies.cfm.

Study abroad advising hours are held in 140 Roberts Hall on Tuesdays and Thursdays, 9:00 a.m. to 12:00 p.m. and Wednesdays 1:00 to 3:00 p.m.

Ithaca College and Wells College Exchange Programs

The Cornell University–Ithaca College Exchange Program is a reciprocal arrangement between Cornell and Ithaca College that allows matriculated full-time students with prior approval and within stated stipulations, to cross-register at the other institution. No additional tuition is charged except in the case of undergraduate students enrolled during any one semester for a total of more than 18 credits (Cornell and Ithaca College combined). Those students are subject to additional tuition charges on a per-credit basis. This arrangement is available during the fall and spring semesters only, and is contingent upon space availability. A maximum of 12 credits may be taken through this program.

Cornell University also has a reciprocal arrangement with Wells College in Aurora, N.Y. For further information, contact the Cornell School of Continuing Education office, B20 Day Hall, 255-4987, or on the web at www.sce.cornell.edu/exmu/.

Graduation Requirements for the Bachelor of Science

Graduation Requirements

1. Credit Hours
 a. Minimum: 120

 Exceptions:
 • Credit for review or supplemental courses (MATH 109, EDUC 005, and 00 level) increases the number of credits required for graduation by the number of credits in the course. The credits do count toward the minimum 12 credits for full-time status.
 • Credit for repeated courses increases the number of credits required for graduation by the number of credits in the course. The credits do count toward the minimum 12 credits for full-time status.
 b. Minimum at Cornell: 60 academic credits
 maximum non-Cornell credits: 60
 c. Minimum from College of Agriculture and Life Sciences: 55 (includes credit used in the distribution and appropriate transfer and AP credit). CALS credit includes courses from departments within CALS, and Biological Sciences, Translational and Atmospheric Sciences, Information Science, and Nutritional Sciences.
 d. Maximum from endowed colleges (Arts and Sciences; Architecture, Art, and Planning; Engineering; and Hotel School) without additional tuition charge: 55 (includes credit used in the distribution and failed courses). Summer session courses taken in endowed colleges do not count.
 e. Minimum with letter grade: 100 (prorated for transfer students). Freshmen are limited to one optional S/U course per semester.
 f. Maximum independent study, research, teaching experience, internships based on 120 credits: 15 (prorated for transfer students).
 g. Freshmen may not enroll in more than 18 credits, not including physical education.
 h. Credit for physical education does not count toward the 120 credits or the minimum 12 credits for full-time status (see #6).

2. Residence
 a. Students are entitled to enroll eight full-time semesters (prorated for transfer students). A full-time semester requires a minimum of 12 credits per semester (not counting physical education.) Review or supplemental courses and repeated courses (see #1a) are counted.
 b. A minimum of seven semesters is expected; graduation in fewer than seven requires a coplate. The Transfer students are credited with one semester in residence for each 15 credits from another institution.
 c. Internal transfer students must be enrolled in CALS for at least two semesters, not including residency in Internal Transfer Division.
d. The final semester before graduation must be in residence at Cornell as a full-time student in good academic standing. Exception: Students with 8 or fewer credits remaining for graduation and with circumstances that prevent full-time study may apply to complete remaining credits at another institution or pro rated in CALS. An application must be submitted the semester before graduation. Contact The CALS Registrar’s Office (140 Roberts Hall) for additional information.

3. Grade Point Average (GPA)
A cumulative GPA of 2.00 or above must be maintained. This requirement includes all grades earned at Cornell.

For students who matriculated before 8/01:
A cumulative GPA of 1.70 or above must be maintained. This requirement includes all grades earned at Cornell.

4. Distribution
The purpose of the distribution requirement is to provide a broad educational background and to ensure a minimum level of competency in particular skills. Through study of the physical and life sciences, students develop their understanding and appreciation of the physical sciences, enhance their quantitative reasoning skills, and gain an appreciation of the variability of living organisms. The social sciences and humanities give students perspective on the structure and values of the society in which we live, and prepare them to make decisions on ethical issues that will affect their work and role in society. Written and oral expression is designed to help students become competent and confident in the use of oral and written communication to express themselves and their ideas.

Credits received for independent study, field, teaching, research, work experience, and internships cannot be used to fulfill the distribution requirement. Courses judged to be review or supplemental in the discipline, such as MATH 109, EDUC 005, and 00 level, will not be counted.

Physical and Life Sciences. 18 credits in at least three disciplines of which 6 credits must be introductory biology and 3 credits in chemistry or physics.

Exempt from the CALS Math Placement Exam: (a) internal transfer students who already have completed a mathematics course listed below in the College of Engineering, (b) biological and environmental engineering (BEE) students who take the placement exam during orientation. The following students are exempt from the CALS Math Placement Exam: (a) internal transfer students who already have passed one mathematics course listed below under Group II, section 1, and (b) entering biological and environmental engineering (BEE) students who take the placement exam in the College of Engineering. The CALS exam score determines the college math proficiency exam (administered during orientation). The following students are exempt from the CALS Math Placement Exam: (a) internal transfer students who already have passed one mathematics course listed below under Group II, section 1, and (b) entering biological and environmental engineering (BEE) students who take the placement exam in the College of Engineering.

Mathematics requirements and placement suggestions:
Group I: Students in this group are considered proficient in math for college graduation requirements. If further math is needed for the major, placement score suggests calculus skill level (e.g., MATH 111).

Group II: Placement score suggests pre-calculus skill level, and students in this group must satisfy one of the following:

1. Successfully complete an approved mathematics course at Cornell. EDUC 115 is recommended.
Approved Courses:
- Math: EDUC 115, any mathematics course (except MATH 100, 103 and 109).
- Statistics: MATH 171; AEM 210; BTRY 301/NTRES 313; ILRST 211, 310, 311, 312; ENGRD 270; Pam 210. (Also BTRY 100, 101, 102, 201 and 261, and ILRST 210 formerly offered)

2. Successfully complete or have completed an approved calculus course at another college or university with a final grade of C- or better.

3. Receive AP credit for calculus (4 or 5 on the AP exam), Calculus at Cornell, or have completed a non-Cornell mathematics course at Cornell.

Group III: Students in Group III on the CALS math placement exam must successfully complete an approved non-statistics mathematics course at Cornell. Students may also be recommended at the discretion of the student’s academic adviser.

Approved Courses:
- EDUC 115; any mathematics course (except MATH 100, 103, 109 and 171).

Transfer and AP math credit (up to 6) will be recorded in Physical and Life Science of the college distribution requirements. Additional transfer credit in math will be recorded as general electives. BEE students typically receive fewer AP credits than other CALS students with the same scores. BEE students also may receive AP credits based on the Engineering math placement exam.

6. Physical Education
a. Pass a required swim test, administered during orientation. External transfer students who are exempt from PE are exempt from the swim test. See below.

b. Pass two courses with a satisfactory grade (courses do not count toward 120 credits for graduation or the minimum 12 credits for full-time study).

c. Students are expected to complete the physical education requirement in their first two semesters at Cornell.

d. External transfer students are credited with one course of physical education for each semester previously enrolled full-time (12 or more credits) at another college and are exempt from the swim test.

Non-Cornell Credit Policies
1. Non-Cornell credit includes advanced placement credit (see p. 8 for further details), credit earned at an accredited college or university, credit earned through the Ithaca College and Wells College Exchange Programs, and credit earned through a Cornell Abroad or CALS exchange program.

2. Non-Cornell credit is accepted by CALS when:
 - the credits are earned at an accredited institution;
 - the credits do not duplicate coursework already completed at Cornell;
 - the credits are earned before matriculating into a CALS course during the summer or winter session (except for an approved exchange program);
 - the credits have not been applied toward high school graduation requirements (except for AP exam credit, see p. XX);
 - the grade earned is "C-" or better; and
 - an official transcript is sent directly to the CALS Registrar’s Office from the college/university where the credits were completed.

Please note: Cornell University does not accept credit for courses sponsored by colleges but taught in high schools to high school students, even if the college provides a transcript for such work. Students who have taken such courses may, however, earn credit by taking an appropriate examination as described on pp. 8-10 of this catalog.

3. A student may apply a maximum of 60 non-Cornell credits toward his or her graduation requirements.
 - Cornell Abroad (not CALS exchange) credits are limited to 15 credits per semester, 30 per academic year.
 - If more than 60 non-Cornell credits have been completed, the CALS Registrar’s Office will work with the student to determine which credits best fulfill CALS graduation requirements.

4. Non-Cornell credits are recorded on the graduation summary and can be applied toward CALS credits, distribution requirements, and major requirements.*
 - Non-Cornell courses that are similar to courses offered in CALS are recorded as CALS credits on the graduation summary and count toward the minimum of 55 CALS credits required for graduation.
 - Non-Cornell courses that are equivalent to Cornell courses which fulfill distribution requirements are recorded under the appropriate distribution area on the graduation summary.
 - Non-Cornell courses that are equivalent to endowded courses can be applied toward distribution requirements or general electives; however, these credits do not count against the minimum of 55 endowed credit hours.
 - If a course has no comparable course at Cornell, the Registrar staff will determine how the credit should be applied.

*Faculty advisers determine how non-Cornell credit will be applied toward major requirements; the CALS Registrar’s Office determines how non-Cornell credit will be applied toward CALS graduation requirements.

5. Students who have already matriculated into CALS and are planning to take courses at another institution must complete a transfer credit pre-approval form before completing the course work. Pre-approval forms are available in the CALS Registrar’s Office in 140 Roberts Hall.

Graduation Procedures
1. The progress of each student toward meeting the degree requirements is recorded each semester in the CALS Registrar’s Office on a graduation summary form. All students receive an updated graduation summary in the fall check-in packet. Students can review their graduation summary online at https://dust.cals.cornell.edu.

2. Students who have been in residence for eight semesters and who have met the graduation requirements will be graduated. Students entitled to attend for the full eight semesters even if they have completed the graduation requirements in fewer semesters. A student who wishes to either graduate early or delay graduation must complete an additional application with the CALS Registrar’s Office.

3. Application to graduate. In the first semester of their senior year, students must complete and submit an application to graduate to the CALS Registrar’s Office.

Student Responsibilities: It is the student’s responsibility to complete the application to graduate, obtain signatures from faculty adviser(s), and then schedule an appointment to file the application with the CALS Registrar’s Office.

Deadlines: January graduates must complete the application to graduate, obtain required signatures, and meet with the CALS Registrar’s Office before the end of the third week of classes in their final fall semester.

May graduates must complete the application to graduate, obtain required signatures, and meet with the CALS Registrar’s Office before the end of the sixth week of classes in their final fall semester.

Failure to meet these deadlines could result in a student’s name being omitted from the commencement program and/or a diploma not being available for pick-up on commencement Sunday.

Faculty Adviser Responsibilities: It is the faculty adviser’s responsibility to inform seniors of any courses still needed to fulfill major and/or minor requirements and to list those courses on the application to graduate. Faculty advisers must sign the application to graduate before the student meets with the CALS Registrar’s Office. If a student is completing more than one major, the signatures of all faculty advisers are required. If a student is completing a minor, the signature of the minor faculty adviser is also needed.

CALS Registrar’s Office Responsibilities: It is the responsibility of the CALS Registrar’s Office to inform seniors of any credits needed to fulfill the CALS graduation requirements and to list those courses on the application to graduate. The Registrar’s Office will sign the application to graduate and provide both the student and faculty adviser with copies of the signed application. The student should retain a record of the application.

Commencement Information: Commencement information will be provided to all graduating seniors directly from the Commencement Office. Information is also available at www.commencement.cornell.edu.
ACADEMIC POLICIES AND PROCEDURES

Registration
All students must register with the university and check in with this college at the beginning of each fall semester. Check-in materials are available in 140 Roberts Hall.

Course Enrollment
Students will receive course enrollment information from the university registrar. After planning a schedule of courses in consultation with their faculty adviser, students pre-enroll by computer.

To enroll in courses that involve independent study, teaching, or research, a student must file an independent study form, available in the CALS Registrar's Office, 140 Roberts Hall. Students who will be studying off campus should notify the Registrar's Office to ensure that proper registration will occur.

Students may enroll again for a course in which they received a grade of F in a previous semester. Both grades will be recorded and calculated as part of their GPA. If a student retakes a course in which a passing grade was earned, both grades will be recorded and calculated as part of their GPA. However, repeating a course increases the number of credits required for graduation by the number of credits in the course.

Students must not enroll again for a course in which they received an incomplete or NGR. Instead, work for that course should be completed without further enrollment. The instructor files a manual grade form with the college registrar when a grade has been assigned. An incomplete not made up by the end of two successive semesters of residence reverts to a failure. In the case of a graduating senior, incompletes revert to failures at the time of graduation.

A student is held responsible for and receives a grade for those courses in which he or she enrolls unless the student officially changes such enrollment. All changes in courses or credit, grading options, or sections must be made by the student using the online add/drop through "just drop courses" or the official course drop and add form at the Registrar's Office, 140 Roberts Hall. Approval of the faculty adviser is required to change course enrollment. Department or course instructor approval may be required for select courses.

Students may add courses and change grading options or credit hours where applicable during the first three weeks of the semester, and may drop courses until the end of the seventh week.

Academic Integrity Policy
The College of Agriculture and Life Sciences faculty, students, and administration support and abide by the university Code of Academic Integrity. Its principle is that absolute integrity is expected of every student in all academic undertakings: students must in no way misrepresent their work, fraudulently or unfairly advance their academic status, or be a party to another student's failure to maintain academic integrity.

The maintenance of an atmosphere of academic honor and the fulfillment of the provisions of the code are the responsibility of the students and the faculty. Therefore, all students and faculty members shall refrain from any action that would violate the basic principles of this code.

1. Students assume responsibility for the content and integrity of their submitted work, such as papers, examinations, or reports.
2. Students are guilty of violating the code if they
 - knowingly represent the work of others as their own.
 - use or obtain unauthorized assistance in any academic work.
 - give fraudulent assistance to another student.
 - fabricate data in support of laboratory or field work.
 - forge a signature to certify completion or approval.
 - submit the same work for two different courses without advance permission.
 - knowingly deprive other students of library resources, laboratory equipment, computer programs, or similar aids.
 - in any other manner violate the principle of absolute integrity.
3. Faculty members assume responsibility to make clear to students and teaching assistants specific regulations that apply to scholarly work in a discipline.
4. Faculty members fulfill their responsibility to
 - maintain in all class, laboratory, and examination activities an atmosphere conducive to academic integrity and honor.
 - make clear the conditions under which examinations are to be given.
 - make clear the consequences of violating any aspects of the code.
 - provide opportunities for students to discuss the content of courses with each other and help each other to master that content and distinguish those activities from course assignments that are meant to test what students can do independently.
 - state explicitly the procedures for use of materials taken from published sources and the methods appropriate to a discipline by which students must cite the source of such materials.
 - approve in advance, in consultation with other faculty members, which work submitted by a student and used by a faculty member to determine a grade in a course may be submitted by that student in a different course.
 - monitor the work and maintain such records as will support the crucial underpinning of all guidelines: the students' submitted work must be their own and no one else's.

Cornell's Code of Academic Integrity spells out how individuals who have allegedly violated Cornell standards for academic integrity are to be confronted and, if found to be in violation of these standards, sanctioned. The code provides informal resolution of most perceived violations through a primary hearing between the faculty member, the student involved, and an independent witness. If necessary, a hearing before a hearing board follows.

The Academic Integrity Hearing Board for the College of Agriculture and Life Sciences consists of three elected faculty members, three elected student members, a chair appointed by the dean, and the director of counseling and advising, who serves as a nonvoting record keeper. Professor Dale Grossman is the current chair.

Individuals who observe or are aware of an alleged violation of the code should report the incident to the faculty member in charge of a course or to the chair of the hearing board. General information and details on procedures for suspected violations or hearings are available from the Counseling and Advising Office, 140 Roberts Hall.

Academic Honors
The college encourages high academic achievement and recognizes outstanding students in several ways:

1. Dean's List. Each semester, students are recognized for academic excellence by inclusion on the Dean's List. Eligibility for the Dean's List in the College of Agriculture and Life Sciences is determined by the following criteria:
 a. a minimum course load for the semester of 12 letter-graded credits;
 b. completion of at least one CALS course;
 c. achievement of a semester GPA of at least 3.50;
 d. achievement of an S grade, or a C- or better grade in each course (including physical education), with no Incompletes. Dean's List will be granted retroactively if students meet all the requirements after successful course completion to make up INC grades.

2. Bachelor of Science with Honors
 a. Students receiving a cumulative GPA of 4.00 or greater (based on the last four full-time residential semesters of Cornell credits, with a minimum of 48 letter-graded credits) will graduate "summa cum laude."
 b. Students receiving a cumulative GPA of greater than or equal to 3.50 and less than 4.00 (based on the last four full-time residential semesters of Cornell credits, with a minimum of 48 letter-graded credits) will graduate "magna cum laude."
 c. Students receiving a cumulative GPA of greater than or equal to 3.00 and less than 3.50 (based on the last four full-time residential semesters of Cornell credits, with a minimum of 48 letter-graded credits) will graduate "cum laude."

3. Bachelor of Science with Distinction in Research. Students will graduate with a bachelor of science degree with distinction in research when, in addition to having completed all the graduation requirements, they have satisfactorily completed the research honors program in their area of interest and have been recommended for the degree by the honors committee of that area. Special requirements are given in the section on the Research Honors Program.
4. Ho-Nun-De-Kah, founded in 1929, is the undergraduate honor society of the College of Agriculture and Life Sciences. Members are recruited from the top 20 percent of the senior class and top 15 percent of the junior class. In keeping with the ideals of encouraging scholarship, leadership, and citizenship, members provide free tutoring and a variety of service activities to both the college and the community.

5. Gamma Sigma Delta is an honor society of faculty members and students in the Colleges of Agriculture and Life Sciences, Human Ecology, and Veterinary Medicine. The common bond is promotion of excellence in work related to the quality of our environment and life as it relates to agriculture and the related sciences. The Cornell chapter recognizes the academic achievements of students, faculty members, and alumni of those colleges with nominations for membership and with special awards. To be eligible, seniors must be in the upper 15 percent of their major. Five juniors with the highest grade point average in the college are also nominated. Gamma Sigma Delta also promotes academic excellence through sponsorship of special programs in the three colleges.

6. Golden Key is an international honor society that recognizes and encourages scholastic achievement and excellence in all undergraduate fields of study. Juniors and seniors in the top 15 percent of their class are invited to membership. Visit Golden Key's web site at www.rso.cornell.edu/gks/. The Committee on Academic Achievement and Petitions reviews the records of those students who persistently fail to attend classes. For students not making satisfactory progress, the committee takes appropriate action, including, but not limited to, issuing warnings, placing students on probation, granting a leave of absence, advising students to withdraw, or suspending or expelling students.

Specifically, the committee considers as possible cause for action failure to attend and participate in courses on a regular basis, or, at the end of any semester, failure to attain one or more of the following:
- semester GPA of at least 2.00
- cumulative GPA of at least 2.00
- satisfactory completion of 12 or more credits per semester
- reasonable progress toward completion of distribution requirements
- appropriate completion of college and university requirements

In general terms, regular participation in course work with academic loads at a level sufficient to secure graduation within eight semesters and grades averaging C (2.00) or higher are prima facie evidence of satisfactory progress and good academic standing.

*For those students matriculating 8/01 or later. Requirements are 1.70 for those who matriculated before 8/01.

Petitions Procedures
The Committee on Academic Achievement and Petitions is a college committee of six faculty and two student members. On behalf of the faculty, the committee
- reviews, at the end of each semester and at other times as shall seem appropriate to the committee, the progress of students toward meeting graduation requirements.
- receives and acts on petitions from individual students asking for exceptions from particular academic regulations or requirements of the college, or for reconsideration of action previously taken by the committee.
- acts on readmission requests from persons whose previous enrollment was terminated by the committee.
- notifies the petitioner in writing of the action taken by the committee.

A petition for exemption from a college academic requirement or missed deadline may be filed by any student who has grounds for exemption. A petition is usually prepared with the assistance of a student's faculty adviser, whose signature is required. The adviser's recommendation is helpful to the committee. The committee reviews the written petition and determines whether there is evidence of mitigating and unforeseen circumstances beyond the control of the student that would warrant an exemption or other action.

A student wishing to withdraw from a course after the end of the seventh week of classes must petition. Requests for course changes are approved only when the members of the committee are convinced that unusual circumstances are clearly beyond the control of the student. The committee assumes that students should have been able to make decisions about total workload and scheduling prior to stated deadlines. A grade of W (for "withdrawal") is recorded on the transcript if a petition to drop a course is approved after the end of the seventh week. An approved drop results in fewer than 12 credits.

Forms are available in the Counseling and Advising Office, 140 Roberts Hall. Counselors are available to assist with the process.

Leaves of Absence
A student wishing a break from studies in a future semester or who finds it necessary to leave the university before the end of a semester must submit a written petition for a leave of absence. Such action is necessary to clear the record for the semester and if not taken may adversely affect the student's subsequent readmission to the university.

An approved leave is considered a voluntary interruption in study and holds the student's place in the college without requiring reapplication to the university. Voluntary leaves are issued in two ways: unrestricted for students in good academic standing (no restrictions placed on length of leave, or activities pursued, and simple notification by student of intent to return), and restricted (length of leave and activities pursued may be specified, and a petition to return must be approved by the Petitions Committee).

A database is maintained by the Counseling and Advising Office to assist students with questions and the return procedure. Information and petition forms are available in the Counseling and Advising Office, 140 Roberts Hall.

Withdrawal
A student who wishes to leave the university permanently should file a petition for withdrawal. Such petitions are approved if the student is in good academic standing. Students who have withdrawn and who later decide to return must apply to the CAES Admissions Office.

MAJOR FIELDS OF STUDY
The college curriculum consists of 23 major program areas that reflect the departmental academic effort in the college. Faculty and curriculum committees in each area identify a sequence of courses appropriate to all students studying in that field. Courses of study are designed to provide systematic development of basic skills and concepts as well as critical thinking. Opportunity for concentration in an area of particular interest is usually available.

Programs are planned with considerable flexibility, allowing students to prepare for careers, graduate work, professional opportunities, and the responsibilities of educated citizens. Course requirements in each program area are different, but all students must meet the minimum distribution requirements of the college.

Animal Sciences
The Animal Sciences program area offers a coordinated group of courses dealing with the principles of animal breeding, nutrition, physiology, management, and growth biology. Emphasis in subject matter is directed toward domestic animal species, cattle, horses, poultry, pigs, sheep, and laboratory, companion, and exotic animal species are also included in research and teaching programs. The Department of Animal Science has extensive facilities for animal production and well-equipped laboratories and classrooms, including a teaching barn, in which students can gain practical experience in the care and management of large animals.

The program focuses on the application of science to the efficient production of animals for food, fiber, and other products. It accommodates a variety of interests and goals. Beyond a core of basic courses (suggested minimum, 15 credits) students select production and advanced courses to fulfill an individually tailored program worked out in consultation with their advisors. In this way it is possible to concentrate by species as well as by subject matter (nutrition, physiology, growth biology, breeding, management). For each subject area, supporting courses in other departments are readily available and strongly encouraged. Many science-oriented students elect a program emphasizing supportive preparation in the physical and biological sciences appropriate to graduate, veterinary, or professional study following graduation.
Dairy management is a popular program among students who may be preparing to manage a dairy farm or enter a related career. Other students may elect a program oriented toward economics and business in preparation for a career in the poultry, dairy, meat-animal, horse, feed, or meats industry. These are examples of the flexibility within these programs that can be developed to meet a student’s career interest related to animals.

It is recommended that students obtain appropriate fieldwork or animal experience during summers. Several special training opportunities exist for highly motivated students. Juniors and seniors whose academic records warrant it may, by arrangement with individual faculty members, engage in research (either for credit or honors) or assist with teaching (for credit). The Dairy Management Fellows Program offers an equally challenging but different type of experience for a select group of students.

Students declaring a minor in animal science will arrange for a formal academic adviser in animal science at least three semesters before graduating. It is expected that the minor will be satisfied by completing at least 12 credit hours of animal science courses (at least 6 of which must be taken at Cornell), the makeup of which will be determined in consultation with the adviser. For example, it is recommended that students completing the minor will assemble courses (or demonstrate having the equivalent from elsewhere) including some basic and applied biology of animals (anatomy, physiology, nutrition, genetics) along with a selection of intermediate or advanced offerings from the animal science curriculum. Satisfactory completion of minor requirements will be verified by the minor adviser’s signature on the petition to graduate.

For information, contact Deloris Bevins in 149 Morrison Hall, dgbi@cornell.edu.

Applied Economics and Management

The Department of Applied Economics and Management (AEM) offers undergraduate programs of study in three broad areas: business, agribusiness, and applied economics.

AEM is home to Cornell’s undergraduate general business degree. Here students can immerse themselves in finance, marketing, management, and business strategy courses, as well as take specialized courses in entrepreneurship, food industry management, and agribusiness. This highly selective program is accredited by AACSB International, the accrediting body for general business degree programs.

AEM also includes undergraduate specialization that focus on the economics of agriculture and the environment. All AEM courses stress the application of analytical skills, critical thinking, and economic theory to real-world business and public policy issues.

The six areas of specialization offered in AEM are:

- Business, one of the largest undergraduate majors at Cornell University, offers students a broad array of courses in the fields of finance, marketing, management, accounting, and entrepreneurship.
- Food industry management is a specialized business program for students interested in management positions in the retailing, manufacturing, and distribution sectors of the food industry.
- Agribusiness management students study general business and take courses tailored to agricultural businesses.
- Farm business management and finance is for students interested in working for firms with ties to farming and agriculture, such as cooperatives, banks, horticultural businesses, and family farms.
- Agricultural and applied economics is a broad-based specialization that focuses on such important national and international issues as the economics of policy, markets, production, international trade, and international development.

Environmental and resource economics students study the economics of water and air quality, waste management, rural-urban land use, the sustainability of natural resources, energy use, and global climate change.

AEM graduates are actively recruited by elite businesses for positions in finance, marketing, investment banking, and management consulting, as well as by federal and international agencies. Many graduates go on for advanced professional and academic degrees, often after several years in a challenging career position in business or government.

Minors

Through the Department of Applied Economics and Management, CALS students may complete a minor program of study in five different subject areas—agribusiness, business, environmental and resource economics, farm management, or food industry management. These minors consist of between 18 and 20 credits of required courses. Students should contact the Department of Applied Economics and Management for more detailed information and to enroll in one of these minor programs of study. These minors are not open to students outside of CALS.

Atmospheric Science

Atmospheric science is the study of the atmosphere and the processes that shape weather and climate. The curriculum emphasizes the scientific study of the behavior of weather and climate, and applications to the important practical problems of weather forecasting and climate prediction. Students develop a fundamental understanding of atmospheric processes and acquire skill and experience in the analysis, interpretation, and forecasting of meteorological events.

All students are required to complete a minimum of three semesters of calculus, two semesters of physics, and a semester each of chemistry, computer science, and statistics.

Atmospheric science courses are offered through the Department of Earth and Atmospheric Sciences (EAS). The requirements for the B.S. in atmospheric science through the College of Agriculture and Life Sciences are as follows:

1. Atmospheric science:
 a. EAS 341, 342, 352, 447, 451
 b. See tracks listed below for additional required courses

2. Mathematics, statistics, and computer science:
 a. MATH 111, 112, 213, or equivalent
 b. AEM 210 or equivalent
 c. MATH 222, or MATH 223, or EAS 435
 d. EAS 121/150 or equivalent

3. Basic physical sciences:
 a. PHYS 207, 208, or equivalent
 b. CHEM 206

4. Tracks

 a. Operational
 b. Education
 c. Broadcasting

<table>
<thead>
<tr>
<th>Environment</th>
<th>required</th>
<th>Education</th>
<th>required</th>
<th>Broadcasting</th>
<th>required</th>
</tr>
</thead>
<tbody>
<tr>
<td>EAS 250</td>
<td>EAS 131/133</td>
<td>EAS 131/133</td>
<td>EAS 250</td>
<td>COMM 201</td>
<td></td>
</tr>
<tr>
<td>EAS 296</td>
<td>EAS 250</td>
<td>EAS 250</td>
<td>EAS 296</td>
<td>EAS 470</td>
<td></td>
</tr>
<tr>
<td>EAS 456</td>
<td>EAS 268</td>
<td>EAS 268</td>
<td>EAS 331</td>
<td>EAS 435</td>
<td></td>
</tr>
<tr>
<td>EAS 470</td>
<td>EAS 457</td>
<td>EAS 457</td>
<td>EAS 483</td>
<td>EAS 483</td>
<td></td>
</tr>
</tbody>
</table>

It is recommended that students who are interested in graduate study in atmospheric science should take additional courses in mathematics and physics.

A student may minor in atmospheric science by completing any four of the following EAS courses:

(two of the courses must be taken at Cornell.)

Courses satisfying the requirements for a major or minor in atmospheric science may not be taken S-U.

Biological Sciences

Biology is a popular subject at many universities for a variety of reasons: it is a science that is in an exciting phase of development; it prepares students for careers in challenging and appealing fields such as human and veterinary medicine, environmental sciences, and biotechnology; and it deals with the inherently interesting questions that arise when we try to
understand ourselves and the living world around us. Many of the decisions we face today deal with the opportunities and problems that biology has put before us.

The major in biological sciences is available to students enrolled in either the College of Agriculture and Life Sciences or the College of Arts and Sciences. The Office of Undergraduate Biology in 216 Simons Hall provides student services that are available to students from either college.

The biology major is designed to enable students to acquire the foundations in physical and life sciences necessary to understand modern biology and to pursue advanced studies in a specific area of biology. Programs of study include either a general biology or one of the following concentrations: animal genetics and development, insect biology, molecular and cell biology, microbiology, neurobiology and behavior, nutrition, plant biology, and systematics and biotic diversity. Students interested in the marine sciences should consult the Shoals Marine Laboratory to acquire the foundations in physical and life sciences.

The department also offers two technology programs: biological engineering and environmental engineering technology. The technology programs emphasize applied and technical aspects of biological, environmental, physical, and life sciences. These programs incorporate courses in basic biological and physical sciences and mathematics as well as engineering and technology, agriculture, business, social sciences, and liberal studies.

Many engineering and technology undergraduate students participate in honors programs, undergraduate teaching and research, internships, independent study, design teams, and study abroad. Students in the engineering program are also eligible to participate in the Engineering Cooperative Education Program. Students pursuing majors offered in the BEE department should have a strong aptitude for the physical and life sciences and mathematics and an interest in the complex social issues that surround technology.

Career opportunities for engineers and technologists cover the spectrum of self-employment and industry, public agencies, educational institutions, and graduate programs in engineering and science, as well as the professional fields like medicine, business, and law. In recent years graduates have pursued careers in environmental consulting, biotechnology, pharmaceutical industries, biomedical engineering, management, sustainable technologies, consulting, and international development.

The living world is all around us and within us. The biological revolution continues and it has given rise to a growing demand for engineers and technical people who have studied biology and the environment, who have strong math and science skills, who can communicate effectively, who are sensitive to the ethical, and who are interested in the challenges facing society. The Department of Biological and Environmental Engineering is educating the next generation of engineers to meet these challenges.

Specific course requirements for the accredited engineering technology programs are found in the College of Engineering section of this book.

Specific course distribution requirements for the academic programs in biological engineering technology and environmental engineering technology include:

1. Basic Subjects
 a. Calculus 8
 b. Chemistry 7
 c. Physics 8
 d. Introductory biological sciences 6-8
 e. Computer programming 4
 f. Statistics or probability 3
 g. Written and oral expression 9
 h. Social sciences 6
 i. Humanities 6

2. Advanced and Applied Subjects
 a. Five courses in the biological, environmental, or life sciences 15
 b. Five engineering or technology courses at the 300 level or above; including at least 9 credits in biological and environmental engineering 15

3. Electives
 Additional courses to complete College of Agriculture and Life Sciences requirements

4. Total (minimum) 120

For further details on the biological and environmental engineering and technology programs, see the BEE Undergraduate Program Handbook, available at 207 Riley-Robb Hall or at www.bee.cornell.edu. Contact Professor Jim Barnas at 255-2800, jab55@cornell.edu, or go to www.bee.cornell.edu for more information.

Biological and Environmental Engineering

The Department of Biological and Environmental Engineering (BEE) addresses three great challenges facing humanity today: ensuring an adequate and safe food supply in an era of expanding world population; protecting and remediating the world's natural resources, including water, soil, air, biodiversity, and energy; and developing engineering systems that monitor, replace, or intervene in the mechanisms of living organisms. The undergraduate engineering major in the Department of Biological and Environmental Engineering (BEE) has a unique focus on biological systems, including the environment, that is realized through a combination of fundamental engineering sciences, biology, engineering applications and design courses, and liberal studies. The program leads to a bachelor of science degree in biological engineering, which is awarded jointly by the Colleges of Engineering and Agriculture and Life Sciences, and is accredited by the Engineering Accreditation Commission (EAC) of the Accreditation Board for Engineering and Technology, Inc. (ABET).

All students in the jointly administered BEE major enroll in the College of Engineering and pay endowed tuition their last two semesters. Biological engineering students take courses in mathematics, statistics, computing, physics, chemistry, basic and advanced biology, fundamental engineering sciences (mechanics, thermodynamics, fluid mechanics, and transport processes), engineering applications, and technology. They may select upper-level engineering courses in subjects that include bioprocessing, soil and water management, biotechnology applications, bioinstrumentation, engineering aspects of agricultural and environmental systems analysis, and waste treatment and disposal. Students further strengthen their programs by completing minors or a second engineering major. Students planning for medical school may take additional lab-based courses in biology, biochemistry, and organic chemistry. Throughout the curriculum, emphasis is placed on communication and teamwork skills, and all engineering students complete a capstone design project. Students in the engineering program may major in either biological engineering or environmental engineering and may pursue minors and options in specialized areas as noted in the engineering section of this publication.

Biological engineering majors interested in the environment may complete a formal program of courses in the environmental engineering option. Further information is also available at the BEE Undergraduate Program Handbook, available at 207 Riley-Robb Hall or at www.bee.cornell.edu.

The department also offers two technology programs: biological engineering and environmental engineering technology. The technology programs emphasize applied and technical aspects of biological, environmental, physical, and life sciences. These programs incorporate courses in basic biological and physical sciences and mathematics as well as engineering and technology, agriculture, business, social sciences, and liberal studies.

Many engineering and technology undergraduate students participate in honors programs, undergraduate teaching and research, independent study, design teams, and study abroad. Students in the engineering program are also eligible to participate in the Engineering Cooperative Education Program. Students pursuing majors offered in the BEE department should have a strong aptitude for the physical and life sciences and mathematics and an interest in the complex social issues that surround technology.

Career opportunities for engineers and technologists cover the spectrum of self-employment and industry, public agencies, educational institutions, and graduate programs in engineering and science, as well as the professional fields like medicine, business, and law. In recent years graduates have pursued careers in environmental consulting, biotechnology, pharmaceutical industries, biomedical engineering, management, sustainable technologies, consulting, and international development.

The living world is all around us and within us. The biological revolution continues and it has given rise to a growing demand for engineers and technical people who have studied biology and the environment, who have strong math and science skills, who can communicate effectively, who are sensitive to the ethical, and who are interested in the challenges facing society. The Department of Biological and Environmental Engineering is educating the next generation of engineers to meet these challenges.

Specific course requirements for the accredited engineering technology programs are found in the College of Engineering section of this book.

Specific course distribution requirements for the academic programs in biological engineering technology and environmental engineering technology include:

1. Basic Subjects
 a. Calculus 8
 b. Chemistry 7
 c. Physics 8
 d. Introductory biological sciences 6-8
 e. Computer programming 4
 f. Statistics or probability 3
 g. Written and oral expression 9
 h. Social sciences 6
 i. Humanities 6

2. Advanced and Applied Subjects
 a. Five courses in the biological, environmental, or life sciences 15
 b. Five engineering or technology courses at the 300 level or above; including at least 9 credits in biological and environmental engineering 15

3. Electives
 Additional courses to complete College of Agriculture and Life Sciences requirements

4. Total (minimum) 120

For further details on the biological and environmental engineering and technology programs, see the BEE Undergraduate Program Handbook, available at 207 Riley-Robb Hall or at www.bee.cornell.edu. Contact Professor Jim Barnas at 255-2800, jab55@cornell.edu, or go to www.bee.cornell.edu for more information.

Biology & Society

The Biology & Society program area is designed for students who wish to combine the study of biology with perspectives from the social sciences and humanities. Many of the most critical social issues of our time, from the implications of genetic engineering to the impact of global climate change, have biological processes at their core. At the same time, these issues are inherently social, involving complex relationships among people, institutions, laws, and beliefs. The Biology & Society field of study provides the skills and perspectives necessary to confront problems with biological, social, and ethical dimensions. In consultation with a faculty member, students are expected to select their courses in the field to meet their own goals and interests. For a description of the Biology & Society requirements and courses, see "Biology & Society" under the College of Arts and Sciences in this publication or visit www.sts.cornell.edu.

Students who elect Biology & Society as their major field of study graduate from Cornell with well-developed writing and analytical skills and a knowledge base that can lead to employment in a variety of fields. Many graduates have accepted positions as health counselors, writers, or policy analysts and researchers for government organizations, medical institutions, consumer or environmental groups, or scientific research institutes. Students have found that Biology & Society is also excellent preparation for
Biometry and Statistics

Quantitative prediction and interpretation are increasingly essential components of biological and social sciences. Complex patterns, structures, and interactions raise fundamental and fascinating questions that can be addressed only using formal mathematical, statistical, and computational methods. The wealth of data that can be acquired using modern methodologies to address these questions, in turn, requires substantive quantitative approaches to make possible appropriate analysis and interpretation. Computational power, meanwhile, has increased exponentially providing the means for sophisticated analysis of complex phenomena.

The biometry and statistics major, in the Department of Biological Statistics and Computational Biology, focuses on the application of mathematical and statistical techniques to the sciences. Biometry applies mathematics and statistics to problems with a biological component, as seen in agricultural, environmental, biological, and medical science. Statistics is concerned with quantitative aspects of scientific investigation: design, measurement, summarization of data, and reaching conclusions based on probability statements. Students with ability in mathematics and an interest in its applications will find this a rewarding and challenging major.

The work of an applied statistician or computational biologist can encompass research, teaching, consulting, and computing in almost any combination, and in a wide variety of fields of application. Opportunities for employment are abundant in academics, government, and businesses ranging from large corporations to small consulting firms; salaries are usually excellent. Experience gained through summer employment or work as an undergraduate teaching assistant is highly recommended. For further details on the biometry and statistics major/minor, please contact the director of undergraduate studies, Professor Steven J. Schwager (424WN) at sj5@cornell.edu or go to www.bscb.cornell.edu.

Requirements for the Major (beyond the college requirements)

Ten (10) core courses:

BTRY 301 Biological Statistics I or BTRY 601 Statistical Methods I
BTRY 302 Biological Statistics II or BTRY 602 Statistical Methods II
BTRY 408 Theory of Probability
BTRY 409 Theory of Statistics
BTRY 495 Statistical Consulting
MATH 111 and 112 Calculus I and II or MATH 121 and 122 Honors Calculus I and II
MATH 191 and 192 Calculus I and II for Engineers
MATH 221 and 222 Linear Algebra and Differential Equations or MATH 223 and 224 Theoretical Linear Algebra and Calculus
MATH 293 and 294 Engineering Mathematics or MATH 213 and 231 Calculus III and Linear Algebra with Applications
COM S 100M Introduction to Computer Programming or BEE 151 Introduction to Computing

Statistics concentration: Students must complete three (3) advanced courses in statistics, computer science, operations research, biology, and/or mathematics courses: below is a sample of such courses (for complete list, go to www.bscb.cornell.edu/ugrads04/).

BTRY 310 Statistical Sampling
BTRY 382 Introduction to Genomics and Bioinformatics
BTRY 604 Applied Experiment Design
ELST 410 Multivariate Analysis
NTRES 670 Spatial Statistics
COM S 211 Computers and Programming
COM S 426 Computational Biology
ORIE 361 and 462 Stochastic Processes
ORIE 473 Empirical Finance
BIOL 440 Phylogenetic Systematics
AN SC 420 Quantitative Animal Genetics
MATH 311 or 413-414 Introduction to Analysis
MATH 420 Differential Equations and Dynamical Systems

Statistical genomics concentration: Students must complete BTRY 382 Introduction to Genomics and Bioinformatics and BIOGD 281 Genetics; in addition, they must complete two (2) courses from the advanced courses previously listed (for complete list go to www.bscb.cornell.edu/ugrads04/). BTRY 482/682 Statistical Genomics is highly recommended.

Supplementary concentration: Each biometry and statistics major is strongly encouraged to supplement the required courses with a concentration in an area of interest to the student, consisting of a cohesive set of courses chosen by the student. It is the student’s responsibility to develop this concentration, with advice from the faculty, particularly the student’s faculty adviser. It will be helpful to discuss the selection of courses with the director of undergraduate studies or undergraduate advising coordinator of a department closely linked with the chosen concentration.

The Minor

A minor in biometry and statistics is available to all undergraduate students in CALS. To complete the program, students must submit a minor program of study form, available in 444 Warren Hall. Each student will retain a copy of the form and will be responsible for planning the minor program of study in conjunction with the adviser in the student’s major and a BSCB faculty adviser. Students and their advisers in other departments should contact the director of undergraduate studies in the Department of Biological Statistics and Computational Biology if they have questions about biometry and statistics courses or the minor. The director of undergraduate studies or another BSCB faculty member will supervise and assist each minor in course selection.
The communication major is a program with sustaining the environment, reaching the public with new knowledge, and managing mass media work in our society. Communication influences attitudes, opinions, and behaviors. It involves oral and written communication skills; they understand the nature of science, health, and environmental communication; learn specific skills for communicating in the life sciences; and explore conceptual and theoretical issues in science communication.

Communication majors at Cornell study communication in three main areas: science, media, and technology. Students gain a strong core in the theory of communication processes, including attitude, knowledge, and behavior change; public opinion, and information systems. They develop applied oral and written communication skills; they learn how communication systems work in society and in their personal and professional lives; they apply their understanding of communication to solving problems, sustaining the environment, reaching the public with new knowledge, and managing intricate networks of technologies.

Communication majors learn how
- communication influences attitudes, opinions, and behaviors.
- mass media work in our society.
- to use, evaluate, and design communication technologies.
- to apply their understanding of communication to solving problems in science, the environment, government, industry, health, and education.

The communication major is a program with a strong core of contemporary communication knowledge, theory, and practice.

Required freshman courses

Fall semester
- **COMM 120** Contemporary Mass Communication
- **COMM 117** Writing about Communication

Spring semester
- **COMM 116** Understanding Human Communication

This set of courses provides students with a basic understanding of communication and the communication process.

Sophomore courses

Fall semester
- **COMM 201** Oral Communication
- **COMM 282** Communication Industry Research

Spring semester
- **COMM 230** Visual Communication

After completing the courses in the core curriculum, all majors take an additional 18 credits in communication. In consultation with their advisors, students can choose to concentrate in one of four defined focus areas or they may plan an independent focus area appropriate to specific educational and career goals.

1. **Communication in the life sciences (CILS)**—Students focusing in CILS will understand the nature of science, health, and environmental communication; learn specific skills for communicating in the life sciences; and explore conceptual and theoretical issues in science communication.

2. **Communication media studies (CMS)**—Students concentrating in CMS will analyze and understand the social processes that are affected by media in contemporary society.

3. **Communication and information technology (CIT)**—Students focusing in CIT will explore the nature of communication systems and technologies, their social and organizational uses and impacts, and their social design.

4. **Communication planning and evaluation (CPE)**—Students focusing in CPE will develop skills in identifying audiences and in preparing and implementing communication programs to meet the needs of those particular audiences. Courses in this focus area stress the positive, ethical, and effective uses of communication in human affairs.

Independent concentration

The Undergraduate Program Committee will review proposed independent focus areas and authorize students to proceed with approved independent concentrations.

MAJOR FIELDS OF STUDY

Crop and Soil Sciences

The Department of Crop and Soil Sciences provides instruction in the subject matter areas of crop science, soil science, environmental information science, and agronomy.

Agronomy integrates the first three subjects. A specialization in crop science is a part of the plant science major. A focus on soil science is possible in two majors, the science of natural and environmental systems (SNES) or the science of earth systems (SES). The SNES major is a biophysical science-based major that addresses the interface of environmental science and human systems involved in environmental management. Within the SNES major, students can concentrate in agronomy, systems science, environmental biology, environmental information science, and sustainable development. The SES major places emphasis on the basic disciplines of chemistry, physics, and mathematics. The agronomy area combines crop production and soil management. Students interested in agronomy can major in crop and soil sciences. This major requires 30 credits with 6-12 credits in each of the categories of applied crop science, plant protection, and soil science.

A minor in crop management is also available for students with any major at Cornell University. In summary, it requires at least two courses and at least 7 credits in each of crop science (CSS 311, 312, 317, or 414) and plant protection (CSS 315, 444, ENTM 471, or PL PA 301 or 401) plus at least three courses and at least 12 credits in soil science (CSS 260, 372, 412, 421 or 466). Equivalent transferred courses can be substituted. This minor helps prepare students for the Certified Crop Advisor examination, which provides an important credential for jobs in agriculture and environmental management.

A minor in soil science requires 15 credits in soil science, but an additional 12 credits in biological, physical, and earth sciences are recommended to qualify the student for the Civil Service classification as Soil Scientist (GS-0470). In addition to 15 credits in soil science, Civil Service classification as
Soil Conservationist (GS-0457) requires 12 credits in natural resources and agriculture and three credits in applied plant science. The soil science minor is also available to students with any major at Cornell University and transfer credit can be used to meet requirements. Students wishing to pursue either the crop management or soil science minor should contact the Department of Crop and Soil Sciences (255-5459).

Development Sociology

Technological, economic, demographic, and environmental changes are social processes. Each has major impacts on individual, social groups, societies, and the international order. At Cornell, development sociology students study these and other facets of social change in both domestic and international settings. The development sociology major provides an opportunity for in-depth study of the interactions among development processes, environmental and technological contexts, demographic structures and processes, and the linkages between social movements through which people seek change in these dimensions. Courses offered by the department cover topics such as: the impact of changes in agricultural systems on rural development and regional development; environmental sociology; rural industrialization and labor markets; technology and social change; the implications of the genomic revolution for agriculture and communities; the linkages between population dynamics, the environment, and development; the political economy of globalization; women in development, and ethnic competition and stratification. Most courses are required in both domestic and international aspects of the subject matter. Students can develop a specialization with a domestic, international, or global emphasis by choosing appropriate elective courses. All students learn the theory and methodology of sociology and how to apply both to research and policy in their subject areas.

Majors in development sociology are required to successfully complete seven core courses: introductory sociology (D SOC 101), developmental international (D SOC 205), population studies (D SOC 201), methods (D SOC 213 or 214), theory (D SOC 301), methodological stratification (D SOC 370), and a course in statistics. Four additional development sociology courses are also required of all majors, at least two of which must be at the 300 level or higher. The elective courses allow students to focus their major on particular themes such as the sociology of development, the social processes linking the environment, population, and development; and more general areas such as ethnic and class stratification, social movements, social policy, and gender and development. In each of these focus areas, students can choose to concentrate on domestic or international situations. Students are encouraged to complement courses in the department with course work in the history and economics of development, area studies, and the policy sciences.

Recognizing that students are concerned with future career opportunities, the development sociology major emphasizes acquisition of skills as well as general knowledge in preparation for jobs or post-graduate study. Accordingly, students are expected to become involved in the application of theory, methodology, and principles and concepts in the analysis of practical problems. Development sociology offers degree programs at both the undergraduate and graduate levels (B.S., M.S., and Ph.D.). The department and graduate field are recognized as top programs in the area. The department is particularly known for providing instruction in international as well as domestic aspects of community and rural development, environmental sociology, sociology of agriculture, population studies, and the interactions among these dimensions. Development sociology faculty are committed to both quality instruction and cutting-edge research programs.

The department maintains strong ties with technical fields in CALS as well as with programs dealing with a range of issues of importance to international and domestic development. These include: the International Agriculture Program, the Biology and Society Program, the Cornell Institute for Social and Economic Research, the Center for the Environment, and the associations for Global Development, the Community and Rural Development Institute, the Gender and Global Change Program, the Bronfenbrenner Life Course Institute, and the Center for International Studies. Nearly half of the department faculty is associated with one or more area studies programs including the Southeast Asia Program, South Asia Program, Latin American Studies Program, East Asia Program, and the Institute for African Development. Department members also maintain working relationships with faculty members in the Department of Sociology and social science units located in other colleges at Cornell. Students are encouraged to supplement their development sociology coursework by electing courses in these other departments.

Education

Building on strong academic disciplines and grounding in sociological, psychological, empirical, and theoretical bases of educational practice, the department has two foci to meet societal demands for teachers of mathematics, science, and agriculture, and for leaders in nonformal educational settings. The Learning, Teaching, and Social Policy (LTSP) program is designed to foster the development of educational leaders, researchers, and practitioners who approach issues and challenges in education from multiple perspectives, and seek to construct an integrated knowledge base upon which the practice of teaching, learning, and social policy is based. The impacts of implementation and practice are explored for creating new theories and approaches, and policies to improve teaching, learning, and community life.

Drawing on the dynamic nature of teaching and learning, this program challenges students to create and apply research-based, critically reflective analysis of cognitive, intellectual, personal, social, moral, and institutional dimensions of learning, teaching, and educational policy in a variety of contexts and at multiple governance levels. Students engage in critically reflective practice to address pressing problems and emerging challenges, and professional development; continuing professional education, staff development; and social issues related to the education of adults.

Learning, Teaching, and Social Policy (LTSP)

This program is designed to foster the development of educational leaders, researchers, and practitioners who approach issues and challenges in education from multiple perspectives, and seek to construct an integrated knowledge base upon which the practice of teaching, learning, and social policy is based. The impacts of implementation and practice are explored for creating new theories and approaches, and policies to improve teaching, learning, and community life.

The program is philosophically grounded in the perspective that learning and teaching is a lifelong process vital to individual development, the development of democratic communities, and the implementation of democratic values in educational policy and practice. Context, gender, social, and economic diversity underlie the design and implementation of curriculum, teaching and learning theory, and social interactions, and are lenses for examining educational practice, theory, and policy.

Faculty members and graduate students in research programs in Learning, Teaching, and Social Policy (LTSP) engage in research that investigates factors that facilitate and quantitative literacy; curriculum design and evaluation in science, mathematics, and agricultural science; effectiveness of teacher professional development, educational policy in rural schools; and sociocultural development, action, and reflective thought in schools and communities. Our mission is to contribute to an educated, global society of leaders and citizens who are prepared to respond to emerging social, technological, and scientific
issues, with ethical and critically reflective judgment.

The Cornell Teacher Education (CTE) program is a unique interdisciplinary cohort-based program that certifies teachers for secondary teaching in agriculture, science, and mathematics. Students in the CTE program develop a solid mastery of their content areas and an understanding of the issues in education, and interact with and learn from each other. Each of the certification areas contributes to the others in important ways. Understanding the modern agricultural enterprise requires knowledge of the scientific bases for the changes in the way agriculture is practiced and is developing. Understanding science fully requires knowledge of how principles are applied in the world. Agriculture provides a salient field in which to apply science notions. Understanding the ways that mathematics is used to develop analytic systems, build arguments, and organize the world is essential to any modern scientistic enterprise, whether basic or applied. Agriculture and science topics give mathematics teachers practical examples they can use to help their future pupils develop understanding of abstract mathematical principles. CTE teachers are prepared as scholars of teaching and learning, able to help all their students achieve the scientific and quantitative literacy and ethical decision making skills needed for participation in a democracy.

Effective College Teaching Series. The Center for Learning and Teaching, under the auspices of the Department of Education, offers a series of courses, both credit and noncredit, for the improvement of teaching at Cornell, designed for Cornell faculty members and graduate students who are either currently teaching or intending to teach. For details contact the Center for Learning and Teaching, 607-255-6130, or www.clt.cornell.edu.

Current offerings include:

EDUC 548/5480 Effective College Teaching
Spring and one-week summer session. 1–3 credits. For faculty and graduate students who intend to pursue an academic career.

EDUC 578/5780 ITADP Cross-Cultural Classroom Dynamics, Language, and Teaching Practicum
Fall and spring. 2 credits. For international graduate students who have, or will have, teaching assistantships.

EDUC 579/5790 ITADP Further Training for International Teaching Assistants
Fall and spring. Noncredit course for international teaching assistants who have completed EDUC 578 but need or desire continued work in classroom instructional and communication skills.

Graduate Teaching Development Workshops
Offered early in each fall and spring semester, this daylong series offers an array of workshops in teaching effectiveness, from teacher-student interactions to developing a teaching portfolio. Noncredit, open to all Cornell faculty members and graduate teaching assistants.

EDUC 620/6200 Internship in Education
Fall and spring. 1 credit. Prerequisite: CALS Graduate Student Professional Development Workshop. For CALS graduate teaching assistants or CALS teaching personnel who wish to extend their workshop experience through reflective practice and consultation with an instructional support specialist.

Entomology
The entomology curriculum provides students with a basic background in biological and natural sciences, with a special emphasis on the study of insects. Majors may pursue graduate study in entomology or related sciences upon completion of the B.S. degree. Alternatively, students may immediately begin careers in various aspects of basic or applied insect biology, including integrated pest management, insect pathology, environmental assessment, medical or veterinary entomology, insect toxicology, insect systems, or insect ecology. Because of the diversity of career options, the major includes flexibility among the core requirements and electives that can be selected by students in consultation with their advisers.

Requirements
General Requirements for CALS (see Graduation Requirements for Bachelor of Science)
Basic Science and Math Requirements
- One year of college mathematics, may substitute statistics or biometry, but must include one course in calculus
- One semester of physics (may need two depending on future plans)
- CHEM 206-208 or 207-208
- CHEM 257 (organic)
- Introductory biology (101–104 recommended, even if AP credit received)
- BIOLG 281 (genetics) or PL BR 225 (plant genetics)
- BIOEE 278 (Evolutionary Biology)
- Choose one of the following two courses: BIOEE 261 (Ecology and the Environment)
- Biochemistry (Choice depends on student interest in organismal vs. cellular/molecular aspects of biology)

Entomology Requirements (15–21 credits)
- ENTOM 212 Insect Biology - 4 cr
- Group A (core courses). Choose two of the following six courses:
 - ENTOM 322 Insect Morphology - 4 cr
 - ENTOM 333 Larval Insect Biology - 3 cr
 - ENTOM 331 Insect Systematics - 4 cr
 - ENTOM 400 Insect Development - 4 cr
 - ENTOM 455 Insect Ecology - 3 cr
 - ENTOM 483 Insect Physiology - 4 cr
- Two additional entomology courses from Groups A or B (see link to Entomology Course Spreadsheet for a complete list of entomology courses, www.entomology.cornell.edu)

Food Science
The food science program prepares students for careers in the food industry or research organizations and for graduate study in food science or related disciplines. Food scientists enjoy satisfying careers that help ensure the sustainable availability of a safe, nutritious, affordable, and high-quality food supply for people throughout New York State, the nation, and the world.

Students in the food science program can choose from one of four specialization options in the major: (1) food science; (2) food operations and management; (3) food biotechnology; or (4) enology. The first option meets the curriculum standards set by the Institute of Food Technologists (IFT), the premier professional society for food scientists, allowing students to compete for IFT scholarships and awards. Students choose an option based on their individual interests and career goals.

The first two years of the undergraduate food science program are intended to establish a solid background in the physical and biological sciences, math and statistics, and communication skills. Required courses include chemistry (introductory and organic), biology, microbiology, calculus, and a first-year seminar, introductory food science courses, and nutrition. The last two years emphasize the application of these basic sciences and technology to the manufacturing, sensory evaluation, distribution, and safety of foods and food ingredients. Examples of food science core courses include Food Engineering Principles, Physical Principles of Food Manufacturing, Food Safety Assurance, Food Chemistry, Sensory Evaluation of Foods, and Food Microbiology. Many elective courses are offered as well. Students choose electives to satisfy both college distribution requirements and their individual interests within the major and beyond.

Students are also strongly encouraged to participate in undergraduate research supervised by a faculty member and/or complete an internship in a food company during their program of study. Most teaching faculty in the department also have active research programs and welcome participation by undergraduate students. Students may receive academic credit or wages for faculty-directed undergraduate research. Several food companies recruit on campus for their internship programs. These internships provide an excellent opportunity for students to gain hands-on experience in their chosen field of interest and to establish contacts for future employment. A modern food processing and development pilot plant, an operational dairy plant, and well-equipped laboratory facilities are available to support the teaching and research needs of undergraduates.

Enology and Viticulture
Students with primary interest in viticulture and secondary interest in enology (V/E) can enroll in the plant sciences degree program, with a concentration in horticulture and a specialization in Viticulture. For these students, plant science requirements include a "major," and their required courses in enology (offered within the Food Science program) will constitute a "minor" in Food Science with a concentration in enology.

Students with primary interest in enology and secondary interest in viticulture (E/V) can "major" in food science (with a concentration in enology) and a "minor" in plant sciences (with a concentration in Horticulture).
Students in either track will take many of the same courses during their two years and must satisfy the core degree-program requirements of their major and minor program, as well as the general requirements of the college. The curriculum will consist of course work in the basic sciences (e.g., chemistry, biology, microbiology) as well as advanced courses in plant and food sciences. In addition, students will be expected to participate in internships at vineyards and/or with wine makers.

The curriculum is designed to provide students with a strong background in the basic sciences, coupled with a thorough understanding of plant and food sciences as applied to viticulture and wine making. Elective courses can be taken in a variety of areas to support and expand the major.

Prospective students should contact the undergraduate coordinators in either the Department of Horticulture (viticulture option) or Food Science (enology option) for specific course requirements.

Information Science

Information Science (IS) is an interdisciplinary field that studies the design and use of information systems in a social context; the field studies the creation, representation, organization, application, and analysis of information in digital form. The focus of Information Science is on systems and their use, rather than on the computing and communication technologies that underlie and sustain them. Moreover, Information Science examines the social, cultural, economic, historical, legal, and political contexts in which information systems are employed, both to inform the design of such systems and to understand their impact on individuals, social groups, and institutions.

The Information Science major organizes its courses into three area-based tracks:

- **Human-Centered Systems.** This area examines the relationship between humans and information, drawing from human-computer interaction and cognitive science.
- **Information Systems.** This area examines the computer science problems of representing, organizing, storing, manipulating, and accessing digital information.
- **Social Systems.** This area studies the cultural, economic, historical, legal, political, and social contexts in which digital information is a major factor.

Students must complete a set of 11 core courses: one introductory course, four courses in math and statistics, and two courses from each of the three IS areas. Students must also obtain depth in two tracks—a primary and a secondary track—that together best represent their interests. In particular, completion of the major requires four advanced courses from the selected primary track and three advanced courses from the secondary track.

Tracks

Students must complete four advanced courses in their selected primary track and three advanced courses in their selected secondary track. The Human-Centered Systems and Information Systems tracks can be used as primary or secondary tracks. The Social Systems track can be used only as a secondary track.

Courses taken to satisfy the core-course requirements may not be used to fulfill the track requirements.

All courses used toward the major must be taken for a letter grade.

Additional information on Information Science courses can be found below and in the GSB section of *Courses of Study*. Course information for all other courses in the major can be found in the departments (e.g., AEM, COM S, and S&T/S).

Requirements

Core (11 courses):

1. **Introductory (one course):**

 INFO 130 Introductory Design and Programming for the Web

2. **Math and Statistics (four courses):**

 • MATH 111 Calculus I

 • one course chosen from: MATH 171 Statistical Theory and Application in the Real World; H ADM 201 Hospitality Quantitative Analysis; AEM 210 Introductory Statistics; PAM 210 Introduction to Statistics; ENGRD 270 Basic Engineering Probability and Statistics; BTRY 301 Statistical Methods I; SOC 301 Evaluating Statistical Evidence; CEE 304 Uncertainty Analysis in Engineering; IJIST 312 Applied Regression Methods; ECON 319 Introduction to Statistics and Probability; PSYCH 350 Statistics and Research Design

 • either MATH 231 Linear Algebra or MATH 221 Linear Algebra and Differential Equations

 • INFO 295 Mathematical Methods for Information Science

3. **Human-Centered Systems (two courses):**

 INFO 214 Cognitive Psychology

 INFO 245 Psychology of Social Computing

4. **Information Systems (two courses):**

 COM S 211 Computers and Programming

 INFO 230 Intermediate Design and Programming for the Web

5. **Social Systems (two courses):**

 • either ECON 301 Microeconomics or ECON 313 Intermediate Microeconomic Theory

 • either INFO 292 Inventing an Information Society or INFO 355 Computers: From the 17 C. to the Dot.com Boom or INFO 356 Computing Cultures

1. Human-Centered Systems

- **PSYCH 342 Human Perception: Applications to Computer Graphics, Art, and Visual Display**
- **INFO 345 Human-Computer Interaction Design**
- **PSYCH 347 Psychology of Visual Communications**
- **PSYCH 360 Social Cognition**
- **PSYCH 413 Information Processing: Conscious and Unconscious**
- **PSYCH 416 Modeling Perception and Cognition**
- **INFO 440 Advanced Human-Computer Interaction Design**
- **INFO 445 Seminar in Computer-Mediated Communication**
- **INFO 450 Language and Technology**
- **DEA 470 Applied Ergonomic Methods**

Students who take PSYCH 342 may also count its prerequisite, PSYCH 205, toward the Human-Centered Systems primary/secondary track requirements. Similarly, students who take PSYCH 380 may also count PSYCH 280 toward the Human-Centered Systems primary/secondary track requirements. At most, one of PSYCH 280 or 205 can be counted toward the primary/secondary track requirements.

2. Information Systems

- **INFO 330 Applied Database Systems**
- **COM S 419 Computer Networks**
- **LING 424 Computational Linguistics**
- **INFO 430 Information Retrieval**
- **INFO 431 Web Information Systems**
- **COM S 432 Introduction to Database Systems**
- **COM S 465 Computer Graphics I**
- **COM S 472 Foundations of Artificial Intelligence**
- **LING 474 Introduction to Natural Language Processing**
- **ORIE 474 Statistical Data Mining**
- **COM S 478 Machine Learning**
- **ORIE 480 Information Technology**
- **COM S 501 Software Engineering**
- **INFO 530 Architecture of Large-Scale Information Systems**

3. Social Systems

- **SOC 304 Social Networks and Social Processes**
- **AEM 322 Technology, Information, and Business Strategy**
- **INFO 349 Media Technologies**
- **INFO 355 Computers: From the 17 C. to the Dot.com Boom**
- **INFO 356 Computing Cultures**
- **ECON 368 Game Theory (formerly ECON 467)**
- **INFO 387 The Automatic Lifestyle: Consumer Culture and Technology**
- **LAW 410 Limits on and Protection of Creative Expression—Copyright Law and Its Close Neighbors**
Students are encouraged to take additional specialized courses in one of the other program areas of the college.

International Studies Minor
Preparation for leadership in an increasingly interconnected and dynamic world, CALS undergraduates need knowledge, skills, and attitudes that build "global competencies."

The minor for CALS students not majoring in international agriculture and rural development will recognize an international concentration of coursework and experiences.

Requirements
1. Four courses with significant international content, as recommended by students' major departments (two should be from CALS).
2. One semester of IARD 480 Global Seminar.
3. The foreign language requirement for the international studies minor is identical to that of the College of Arts and Sciences (see p. 422).
4. An approved overseas experience (exchange, study abroad program, internship, or faculty-led short course).

For more information, contact the academic programs coordinator in the International Programs Office, 255-3037.

Landscape Architecture
Landscape architecture focuses on the art of landscape design as an expression of the cultural values and the natural processes of the ambient environment.

The program's unique place within the university promotes interaction among the areas of horticulture, environmental science, architecture, and city and regional planning.

The course of study prepares students for the practice of landscape architecture. The curriculum focuses on graphic communication, basic and advanced design methods, landscape history and theory, plant materials, construction, and engineering technology, and professional practice. Design studios deal with the integration of cultural and natural systems requirements as applied to specific sites at varying scales. Projects may include garden design, parks design, housing design, historic preservation, environmental rehabilitation, and urban design.

Landscape architecture offers two professional degree alternatives: a four-year bachelor of science degree administered through the College of Agriculture and Life Sciences and a three-year master of landscape architecture degree administered through the Graduate School for those who have a four-year undergraduate degree in another field. Both of these degrees are accredited by the Landscape Architecture Accreditation Board (LAAB) of the American Society of Landscape Architects. The major in each degree is composed of core courses related to professional education in landscape architecture, a concentration in a subject related to the core courses, and free electives.

The department also offers a two-year master of landscape architecture advanced degree program administered through the Graduate School for those with accredited degrees in landscape architecture or architecture. The program entails core courses in the discipline and the development of a concentration in subject matter areas such as landscape history and theory, landscape ecology, and urban horticulture, the cultural landscape, site/landscape, and art, or urban design.

Dual-Degree Options
Graduate students can earn a master of landscape architecture and a master of science (Horticulture) or a master of city and regional planning simultaneously. Students need to be accepted into both fields of study to engage in a dual-degree program and must fulfill requirements of both fields of study. Thesis requirements are generally integrated for dual degrees.

Study Abroad
The faculty encourages study abroad and has two formally structured programs. The *Denmark International Study (DIS)* program is available primarily to senior undergraduates and third-year graduate students in the fall semester and is administered through Cornell Abroad. The *Rome Program* is made available to undergraduates and graduate students through the College of Architecture, Art, and Planning.

Bachelor of Science Landscape Architecture Degree Sequence
(Note: Each semester, the studio classes require payment of a supply and field trip fee, and all landscape architecture majors are required to pay an annual technology fee.)

<table>
<thead>
<tr>
<th>First Year</th>
<th>Fall Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>LA 141 Grounding in Landscape Architecture</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Biological sciences elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Physical sciences elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Social sciences or humanities elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Written or oral expression elective</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>LA 142 Grounding in Landscape Architecture</td>
<td>4</td>
</tr>
<tr>
<td>Biological sciences elective</td>
<td>3</td>
</tr>
<tr>
<td>Social sciences or humanities elective</td>
<td>3</td>
</tr>
<tr>
<td>Written or oral expression elective</td>
<td>3</td>
</tr>
<tr>
<td>Physical sciences elective</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Year</th>
<th>Fall Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>LA 491 Creating the Urban Eden: Woody Plant Selection, Design and Landscape Establishment</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>LA 201 Medium of the Landscape</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Biological sciences elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Social sciences or humanities elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Historical studies</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

| Total | 18 |

International Agriculture and Rural Development
International agriculture and rural development provides students with an understanding of the special problems of applying basic knowledge to the processes of agricultural development in low-income countries. The student typically specializes in a particular subject and works with an adviser to plan a program oriented toward international agriculture. The courses in international agriculture and rural development are designed to acquaint students with the socioeconomic factors in agricultural development, the physical and biological nature of tropical crops and animals, and the various world areas for which study programs exist.

Requirements
In addition to the college distribution requirements, students in international agriculture and rural development must take a minimum of 36 credits toward the major. A minimum of 7 credits in international agriculture and rural development (IARD) are required. The foreign language requirement for the IARD major is identical to that of the College of Arts and Sciences (see p. 422). Students are expected to complete an overseas field experience of a minimum of six weeks. The other courses recommended are drawn from a wide range of disciplines. The objective is to familiarize students with the many facets of agricultural development
First Year

<table>
<thead>
<tr>
<th>Fall Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>*LA 202 Medium of the Landscape</td>
<td>5</td>
</tr>
<tr>
<td>*LA 315 Site Engineering I</td>
<td>3</td>
</tr>
<tr>
<td>*LA 492 Creating the Urban Eden: Woody Plant Selection, Design and Landscape Establishment</td>
<td>4</td>
</tr>
<tr>
<td>Written or oral expression elective</td>
<td>3</td>
</tr>
<tr>
<td>Physical sciences elective</td>
<td>3</td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Fall Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>*LA 301 Integrating Theory and Practice</td>
<td>5</td>
</tr>
<tr>
<td>*LA 316 Site Engineering II (second seven weeks)</td>
<td>2</td>
</tr>
<tr>
<td>**Concentration</td>
<td>3</td>
</tr>
<tr>
<td>**Free electives</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>*LA 302 Integrating Theory and Practice Community Design Studio</td>
<td>5</td>
</tr>
<tr>
<td>Historical studies</td>
<td>3</td>
</tr>
<tr>
<td>*LA 318 Site Construction</td>
<td>5</td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Fall Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>*LA 402 Integrating Theory and Practice II</td>
<td>5</td>
</tr>
<tr>
<td>**Concentration</td>
<td>3</td>
</tr>
<tr>
<td>*LA 412 Professional Practice</td>
<td>1</td>
</tr>
<tr>
<td>**Free elective</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>*LA 601 Integrating Theory and Practice</td>
<td>5</td>
</tr>
<tr>
<td>*LA 616 Site Engineering II</td>
<td>2</td>
</tr>
<tr>
<td>**Electives</td>
<td>2</td>
</tr>
<tr>
<td>**Concentration</td>
<td>6</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Fall Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>*LA 602 Integrating Theory and Practice</td>
<td>5</td>
</tr>
<tr>
<td>*LA 618 Site Construction</td>
<td>5</td>
</tr>
<tr>
<td>*LA 590 Theory Seminar</td>
<td>3</td>
</tr>
<tr>
<td>**Concentration</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>*LA 800 Master's Thesis in Landscape Architecture</td>
<td>9</td>
</tr>
<tr>
<td>or *LA 702 Advanced Design Studio</td>
<td>5</td>
</tr>
<tr>
<td>*LA 412 Professional Practice</td>
<td>1</td>
</tr>
<tr>
<td>**Free elective(s)</td>
<td>2 or 6</td>
</tr>
<tr>
<td>Concentration LA 603</td>
<td>1</td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Fall Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>*LA 701 Urban Design and Planning</td>
<td>5</td>
</tr>
<tr>
<td>**Free elective</td>
<td>2</td>
</tr>
<tr>
<td>**Historical studies</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>*LA 800 Master's Thesis in Landscape Architecture</td>
<td>9</td>
</tr>
<tr>
<td>or *LA 702 Advanced Design Studio</td>
<td>5</td>
</tr>
<tr>
<td>*LA 412 Professional Practice</td>
<td>1</td>
</tr>
<tr>
<td>**Free elective(s)</td>
<td>2 or 6</td>
</tr>
<tr>
<td>Concentration LA 603</td>
<td>1</td>
</tr>
</tbody>
</table>

Summary of credit requirements

- Specialization requirements: 58
- Distribution electives: 39
- **Free electives: 8
- Concentration: 15

Total: 120

Master of Landscape Architecture (M.L.A.) License Qualifying Degree

Requirements of the three-year M.L.A. curriculum include 90 credits, six resident units of satisfactory completion of the core curriculum courses, and a thesis or a capstone studio. (Note: Each semester, the studio classes require payment of a supply and field trip fee, and all landscape architecture majors are required to pay an annual technology fee.)

- by providing an expanded educational experience to those who are technically skilled. Applicants must hold a bachelor's degree in landscape architecture or architecture from an accredited program.
- The objective of the two-year (M.L.A./A.D.) program is to develop specializations for individuals who may wish to teach, practice, or conduct applied research in landscape architecture.
- Students admitted to the two-year M.L.A./A.D. program are required to complete 60 credits of course work as approved by the members of their graduate committee. For landscape architects, this must include at least two advanced studios, a graduate seminar, a concentration, and a thesis. For architects, the curriculum requires three advanced studios, two courses in plants and planting design, two courses in the history of landscape, two courses in site engineering, a seminar in design theory, a course in professional practice, a concentration, and electives.

Undergraduate Minor for Nonmajors

Students outside the professional program may choose the undergraduate minor (five courses, 15 credits) in cultural landscape studies to complement their major. A variety of courses consider the cultural landscape as an object, something to be studied for its own sake, and as a subject, as means to understand society's relationship to natural systems. The study of cultural landscapes also includes perceptions of landscapes, cultural ideas and values, and visible elements. Direct inquiries to Professor A. Hammer, Department of Landscape Architecture, 440 Kennedy Hall.

Courses: choose five for a total of 15 credits
- *LA 140 The Symbols of New York State's Cultural Landscape (3 credits)*
- *LA 155 American Indian Cultural Landscapes: Changes in Time (3 credits)*
- *LA 360 Pre-Industrial Cities and Towns of North America (3 credits)* offered alternate years
- *LA 261 Urban Archaeology (4 credits)*
- *LA 262 Laboratory in Landscape Archaeology (3 credits)*
- *LA 263 American Indians, Planners, and Public Policy (3 credits)*, offered alternate years
- *LA 282 The American Landscape (3 credits)*
- *LA 418 New York Landscapes Oral History Project (3 credits)*
- *LA 483 Seminar in Landscape Studies (3 credits)*
- *LA 497 Independent Study (1-5 credits)*
- LANAR 524 History of European Landscape Architecture (3 credits)
- LANAR 525 History of American Landscape Architecture (3 credits)
- LA 545 The Parks and Fora of Imperial Rome (3 credits)
- LA 569 Archaeology in Preservation Planning and Design (3 credits)
- LA 580 Landscape Preservation: Theory and Practice (3 credits)

+ Distribution elective
Natural Resources

As the number of humans living on the Earth surpassed six billion at the start of the 21st century, there is growing interest in how to conserve and manage well the Earth's remaining biological resources and natural environments, particularly in light of increasing importance and urgency. The field of natural resources sits squarely at the interface of science and policy, applied to these important conservation and environmental challenges. This is a biologically based major that focuses on the interface of nature (species, populations, ecosystems, and landscapes) and society (people, institutions) and emphasizes the role of human institutions involved in environmental conservation and management. The major's focus on biological resources (e.g., fisheries, wildlife, forests, and wetlands) includes issues concerning conservation and restoration of scarce species and their habitats, sustainable harvest of species of economic importance, management of invasive species and overabundant species, population dynamics in aquatic and terrestrial environments, ecosystem analysis, and natural resource management or jobs in mitigating the effects of human-induced changes on the environment.

The mission of the Department of Natural Resources, home of the major, is to "develop knowledge and facilitate learning to improve society's stewardship of natural resources and the environment." A commitment to undergraduate education is a vital component of that mission. For more information see www.dnr.cornell.edu. The curriculum emphasizes the biology and ecology of natural systems, as well as the social science/human aspects of conservation challenges. The major allows students flexibility to pursue a variety of paths to understand the scientific, ethical, and societal basis for management and protection of natural resources and environments through the application of ecological principles and knowledge of societal needs.

The Future for Natural Resources Majors

Most students entering the major have a strong interest in the natural world and in contributing to greater harmony between humans and the environment. An undergraduate degree in natural resources and life sciences provides students the concepts and tools needed to participate intelligently and effectively in decisions that determine the future of our environment, either as natural resources professionals or as informed citizens.

Career opportunities in natural resources are diverse. The major prepares students for graduate school or entry-level positions in natural resources and environmental management agencies at local, state, federal, and international levels, or for jobs in the private for-profit (e.g., environmental consulting firms) or nonprofit sectors. Many students ultimately pursue graduate studies in environmentally related fields including the biological, physical, and chemical sciences, forest, wetland, stream, wildlife, or fisheries management; and environmental law and public policy. Graduates often assume leadership positions in government, colleges and universities, and international conservation organizations, environmental consulting firms, environmental divisions of private industry, and organizations involved in environmental education or communication.

Curriculum

Natural resources is a flexible major, and free electives can account for as many as 40 credits out of the total of 120 required for graduation. Students complete a set of courses in biology, ecology, chemistry, mathematics, economics, ethics, and written and oral expression; many of these courses also meet the college's distribution requirements for graduation. Freshmen and sophomores take a series of four foundation courses in the major: Introduction to the Field of Natural Resources, Environmental Conservation, Introductory Field Biology, and People, Values, and Natural Resources. Juniors complete three core courses: Applied Population Ecology, General Ecology, and Natural Resources Management and Planning. These foundation and core courses introduce the critical environmental and natural-resource issues confronting society, and develop the conceptual and methodological tools that students will use in upper-division courses.

Juniors and seniors may specialize in one of three areas of concentration: applied ecology, resource policy and management, or environmental studies. Course work in these concentrations, students gain an in-depth understanding of key principles, concepts, and practices. All students also have the flexibility to gain exposure to a wide variety of environment-related courses offered by Natural Resources and other departments throughout Cornell. Many students elect to conduct a research honors thesis.

Areas of Concentration within the Major

Applied ecology is designed as a foundation for those who wish to pursue careers or advanced study in science-based conservation or management of fish and wildlife populations and their habitats, conservation biology, control of invasive and overabundant species, watershed and landscape management, quantitative population dynamics, resource inventory and information management, global ecology, or applied ecology and biogeochemistry of forests and wetlands. This concentration also may interest students seeking a biologically-based approach to environmental science or global studies. Students who select this concentration typically focus their course work in the areas of species biology and applied ecosystem ecology, including quantitative analysis of fish, wildlife, and plant populations, ecosystems, and landscapes. They complement their course work within the department with courses in other departments, such as Ecology and Evolutionary Biology, Microbiology, Geology, Crop and Soil Science, Atmospheric and Earth Sciences, Animal Sciences, and Plant Biology.

Resource policy and management provides a foundation for students who wish to pursue careers or advanced study in the human dimensions or policy aspects of natural resource conservation and management, natural resource and environmental law, environmental policy analysis, or environmental communication. Students who select this concentration typically focus on courses related to the development of environmental policy, environmental strategies for particular species or ecosystems, natural resource planning, resource economics, or programs in environmental communication and education. They complement their course work within the department with courses in other departments such as Government, Ecology and Evolutionary Biology, Development Sociology, Communications, Applied Economics and Information Policy, City and Regional Planning, and Policy Analysis and Management.

Environmental studies is intended for those who wish to pursue a broad and synthetic approach to understanding and participating in the interactions between society and environment. The concentration's emphasis is on developing an ability to think critically about these interactions. Building on a foundation of courses required for the major, during years 3 and 4, each student will design a cohesive sequence of six upper-division courses with help from their departmental adviser. These six courses should include two courses from each of three categories: (1) natural science; (2) social science and analytic skills; e.g., economics, political economy, logic, computer programming, GIS, statistics; and (3) humanities, e.g., history, philosophy, literature, arts, foreign language. This self-defined concentration provides the development of specific competencies linked to personal and professional ambitions of the individual student. Example themes include environmental law, environmental education, "green" business, sustainability, and development, environmental communication. Students are expected to take advantage of internship, independent study, and honors thesis opportunities, as appropriate.

Research and Work Opportunities for Undergraduates

The department offers many opportunities for field-oriented studies, independent research, internships, and jobs. These include several field-based courses and access for research at the Arnot Teaching and Research Forest near Ithaca, the Little Moose Field Station in the Adirondacks, the Cornell Biological Field Station on Oneida Lake near Syracuse, and the Hubbard Brook Experimental Forest in New Hampshire, as well as numerous natural areas near campus. Part-time jobs in the research and extension programs of many faculty members offer students opportunities for career-related work experience. A research honors program is available for qualified students.

For a comparison of the natural resources major with other environmental majors, see www.dnr.cornell.edu/teaching/ugrad/faq/cabs_env.pdf.

Nutritional Sciences

Nutritional sciences draws upon chemistry, biology, and the social sciences to understand complex relationships among human health and well-being, food and lifestyle patterns, food and agricultural systems, and social and institutional environments.

The program in nutritional sciences provides students with strong training in human nutrition in the context of an understanding and appreciation of the agricultural and life sciences. The program reflects the growing and important interrelationships among human nutrition and the agricultural and life sciences. Growing public interest in health and nutrition has placed new demands upon food producers, processors, and retailers. The problems of hunger and malnutrition in the United States and abroad
require that nutritionists work with specialists in areas such as agricultural economics, food production, and development sociology. Advances in biotechnology provide researchers with new ways to understand human nutritional requirements and the regulation of human metabolism.

Nutritional sciences majors complete a core set of requirements and choose elective courses in the areas of their particular interest. The core curriculum includes introductory chemistry and biology, organic chemistry, biochemistry, physiology, and mathematics. Students complete five courses in nutritional sciences, NS 115 Nutrition, Health and Society, NS 245 Social Science Perspectives on Food and Nutrition, NS 345 Nutritional and Physicochemical Aspects of Foods; NS 331 Physiological and Biochemical Bases of Nutrition, and NS 332 Methods in Nutritional Sciences. In addition, students select a minimum of three advanced courses in nutritional sciences as well as elective courses in the broad areas of food production and processing, food and agricultural policy, the life sciences, natural resources, communication, and education.

All majors have faculty advisers in the Division of Nutritional Sciences with whom they meet regularly. Advisers help students plan course schedules and help find opportunities for special study or experiences outside the classroom.

Many students engage in laboratory or field research with a faculty member for academic credit. The research honors program is designed for academically talented students who are interested in research. Honors students conduct independent research projects under the guidance of a faculty member and prepare an honors thesis. Many students participate in field experiences for credit during the academic year or summer. Placements in laboratories, industries, or community agencies are possible.

The major in nutritional sciences can lead to many different career paths. By supplementing the core requirements with courses in different areas, students can prepare for jobs in industry, government, or community agencies in the United States or abroad. The major is excellent preparation for graduate study in a variety of fields.

The Division of Nutritional Sciences is affiliated with both the College of Agriculture and Life Sciences and the College of Human Ecology. Most of the division faculty members work in Sage Hall, Kneisselberg Hall, and Martha Van Rensselaer (MVR) Hall. In addition to housing offices, classrooms, and seminar rooms, these buildings contain research facilities, specialized laboratories, a human metabolic research unit, and computer facilities.

For additional information about the nutritional sciences program, contact the Division of Nutritional Sciences Academic Affairs Office, 335 MVR Hall, 255-2628, aadns@cornell.edu.

The minor in nutrition and health in the College of Agriculture and Life Sciences allows students to choose from courses concerned with economic influences on human nutrition, epidemiology and public health, food quality and food service management, human health and nutrition, nutritional biochemistry, and the psychological and social influences on human nutrition. The minor consists of NS 115 Nutrition, Health, and Society plus 9 credits of 200-level or above didactic NS courses. Enroll in at least one honors course. Please check www.nutrition.cornell.edu/undergrad/calmsrin.html for details.

Plant Sciences

Plant sciences prepares students for careers that meet the challenges of providing a safe, nutritious, and abundant food supply for a growing world population and using plants to enhance the beauty of our landscapes. It is a multidisciplinary program administered by faculty in the Departments of Crop and Soil Sciences, Horticulture, Plant Biology, Plant Breeding and Genetics, and Plant Pathology, representing one of the strongest groups of plant scientists in the world. Students in the program share a common interest in learning about topics associated with plant growth and development in the broadest sense, but beyond that common thread, individual career goals vary widely. Some have their sights set on careers in applied agriculture, others plan to contribute to our knowledge of how to feed the world, and still others see study in plant science as a stepping-stone to specialized training in business, government, or law. In addition to the college distribution requirements, Plant science majors must take at least one course in each of several areas including botany, plant physiology, ecology, taxonomy/systematics, genetics, statistics, plant-pest interactions, crop production, and soil science, for a total of 40 credits.

Students who begin with well-defined interests or who identify certain areas of interest after several semesters of course work may choose a specialization within one of the five cooperating departments. Each specialization has additional requirements beyond the basic core courses. Students who are uncertain about the breadth of their interests or who are seeking as much flexibility as possible may choose to design their course of study in plant sciences without declaring a specialization. Some students develop a strong background in plant science but have fewer required courses so that they can explore other areas of interest.

More than 100 courses that deal directly with some area of plant science are offered by the cooperating departments, and other courses relating to plant science are offered elsewhere in the university. There are also ample opportunities for internships, undergraduate teaching, and research experience. Qualified students, especially those expecting to go on for graduate degrees, are encouraged to avail themselves of such opportunities. Students who are planning to enter the work force immediately upon completion of the B.S. degree are encouraged to obtain practical experience. This may involve summer employment in research or in a plant production or maintenance related industry such as a lawn and tree care company, commercial greenhouse: nursery, orchard, vineyard or winery, garden or arboretum, crop production farm, or with Cooperative Extension. Plant sciences faculty members also encourage students to avail themselves of opportunities to work and/or study abroad.

In addition to classrooms and laboratories in five buildings on the Cornell campus proper, research and teaching facilities adjacent to the campus are freely available to students for hands-on practice, technical training, independent research projects, and internships. These facilities include research orchards and vineyards, golf courses and a turf research facility, the Cornell Plantations (including arboretum and natural areas) and vegetable and field crop farms. Demonstration/research facilities in Aurora (Cayuga County), Geneva (Ontario County), Highland (Ulster County), Lake Placid (Essex County), Middletown (Orange County), Odessa (Tioga County), and Riverhead (Suffolk County) are also sites administered by departments in the Plant Sciences consortium and are available for undergraduate and graduate field study.

Crop science is a specialization that focuses on the major food and feed crops of the world, such as wheat, corn, rice, soybeans, and alfalfa. In addition to 15 credits in applied crop science, students in this program also take at least 6 credits in plant protection (weed science, entomology, and plant pathology), and at least 6 credits in biochemistry. The crop science specialization can be focused on preparation for graduate school or be combined with a crop management minor for those planning to be certified crop advisers.

Enology and viticulture. The College of Agriculture and Life Sciences offers a curriculum in viticulture and enology within existing undergraduate B.S. degree programs in plant sciences and food science.

Students with primary interest in viticulture and secondary interest in enology (V/E) will enroll in the plant sciences degree program, with a concentration in horticulture and a specialization in viticulture. For these students, plant sciences will be their "major," and their required courses in enology (offered within the food science program) will constitute a "minor" in food science with a concentration in enology.

Students with primary interest in enology and secondary interest in viticulture (E/V) will "major" in food science (with a concentration in enology) and "minor" in plant sciences (with a concentration in Horticulture).

Students in either track will take many of the same courses during their two to four years, and must satisfy the core degree-program requirements of their major and minor programs, as well as the general requirements of the college. The curriculum will consist of coursework in the basic sciences (e.g., chemistry, biology, microbiology) as well as advanced courses in plant and food sciences. In addition, students will be expected to participate in internships at vineyards and/or with wine makers.

The curriculum is designed to provide students with a strong background in the basic sciences, coupled with a thorough understanding of plants and their diseases as applied to viticulture and wine making. Elective courses can be taken in a variety of areas to support and expand the major.

Prospective students should contact the undergraduate coordinators in either the Department of Horticulture (viticulture option) or Food Science (enology option) for specific course requirements.

Horticulture. Derived from the Latin word "hortus," meaning garden, horticulture is a blend of science and culture involving...
knowledge of plants in farms and gardens, parks and landscapes, and athletic and recreational facilities; indoor plants, greenhouse and nursery plant production; and crops used for wines, herbs and spices, medicinal purposes, and coffee and tea.

The knowledge and skills essential to grow, maintain, process, and market horticultural plants are in high demand in a world increasingly concerned with environmental quality, recreation, and health.

The 40 faculty members in horticulture specialize in almost every aspect of horticultural science, with active research and outreach programs regionally, nationally and internationally.

Students choosing a concentration in horticulture must complete a minimum of 40 credits of core courses for the plant sciences major, plus the following courses:

HORT 101 Horticultural Science and Systems (4 credits)
HORT 400 Plant Propagation (3 credits)

Two HORT courses in plant production or management at the 400 level (6 credits)

One additional course of integrated pest management (plant pathology, entomology, or weed science) beyond the 3-credit plant sciences core requirement (3 credits)

Students transferring into Cornell from other colleges can petition to waive or adjust these requirements, in consultation with their faculty advisers.

Plant biology stresses a basic, rather than applied, understanding of how plants function, grow, and develop, as well as a study of their genome, evolution, and adaptation. It provides undergraduates with a thorough preparation for graduate study in plant sciences. In cooperation with an adviser each student plans a curriculum with a concentration in basic sciences, supplemented by more advanced courses in plant biology. Students specializing in plant biology within the plant sciences major should take a minimum of four courses beyond the core of plant sciences courses offered at the plant molecular biology, plant cell biology, biochemistry, ethnobotany, and further courses in the function, growth, genetics, systematics, ecology, and evolution of plants. Individual research under professional guidance is encouraged. Different options within plant biology afford a flexible curriculum.

Plant genetics and breeding relates information about genetics/genomics of plants to the improvement of cultivated plant species. Agronomically important genes are identified, cloned, and deployed through combinations of molecular studies and sexual crosses. This area of study integrates genetic information with plant physiology/biochemistry, plant pathology, entomology, conservation biology, international agriculture, and related areas to create crops that meet the needs of modern society. In addition to the core plant sciences courses, students should take PL BR 201, 403, 404, and BIOPL 343. Other courses may be included after consultation with the adviser. Students are encouraged to participate in research projects and take advantage of opportunities for internships in industry.

Plant pathology is the study of plant diseases caused either by microorganisms or by chronic exposure to toxic elements in air and water. At the very least, specialists in the field must learn how to identify plant diseases and to design management strategies that will limit their overall impact. However, by employing contemporary tools from molecular biology, plant pathologists are also well positioned to answer fundamental questions about the nature of host-pathogen interactions and the genes that control them. Use of these new tools has already led to rapid deployment of disease-resistant crop varieties and it promises to offer much more in the future. For most students, a concentration in plant pathology as an undergraduate is preparation for graduate study in the field. However, graduates may also be employed as representatives with agribusiness firms. Cooperative Extension educators, state or federal regulatory agents, and laboratory technicians. Suggested courses beyond the plant sciences core include organic chemistry, biochemistry, calculus, introductory plant pathology, mycology, entomology, and plant breeding.

Science of Earth Systems (SES)

During the past several decades, with the increasing concern about air and water pollution, nuclear waste disposal, the destruction of the ozone layer, and global climate change, the scientific community has gained considerable insight into how the biosphere, hydrosphere, atmosphere, and lithosphere systems interact. It has become evident that we cannot understand and solve environmental problems by studying these individual systems in isolation. The interconnectedness of these systems is a fundamental attribute of the Earth system, and understanding their various interactions is crucial for understanding our environment.

The SES major emphasizes the basic study of the Earth system as one of the outstanding intellectual challenges in modern science and as the necessary foundation for the future management of our home planet. Cornell’s strengths across a broad range of earth and environmental sciences have been fused to provide students with the tools to engage in what will be the primary challenge of the 21st century. The SES major has its home in the Department of Earth and Atmospheric Sciences, but relies on the collaboration of several departments across the university. The SES curriculum includes a strong concentration in mathematics, physics, organic chemistry, biochemistry, ecology, and evolution of plants. Individual research under professional guidance is encouraged. Different options within plant biology afford a flexible curriculum.

Plant protection is offered to students who are interested in the management of plant pests. It includes the study of insects, diseases, weeds, vertebrate pests, and other factors that prevent maximum crop production. Although designed as a terminal program for students desiring practical preparation for careers in pest management, the specialization can also provide an adequate background for graduate work in entomology, plant pathology, or weed science.

Ecological Systems

Science of Earth Systems Core Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>EAS 220</td>
<td>The Earth System</td>
</tr>
<tr>
<td>EAS 331/ASTRO 331</td>
<td>Climate Dynamics</td>
</tr>
<tr>
<td>EAS 302</td>
<td>Evolution of the Earth System</td>
</tr>
<tr>
<td>EAS 351</td>
<td>Atmospheric Systems</td>
</tr>
<tr>
<td>EAS 321</td>
<td>Biogeochemistry</td>
</tr>
</tbody>
</table>

Plant protection |

Science of Earth Systems Core Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 190</td>
<td>Advanced Calculus I</td>
</tr>
<tr>
<td>MATH 191</td>
<td>Advanced Calculus II</td>
</tr>
<tr>
<td>MATH 219</td>
<td>Advanced Calculus III</td>
</tr>
<tr>
<td>PHYS 112</td>
<td>University Physics I</td>
</tr>
<tr>
<td>PHYS 207</td>
<td>University Physics II</td>
</tr>
<tr>
<td>PHYS 208</td>
<td>University Physics III</td>
</tr>
<tr>
<td>CHEM 207</td>
<td>Organic Chemistry I</td>
</tr>
<tr>
<td>CHEM 208</td>
<td>Organic Chemistry II</td>
</tr>
<tr>
<td>CHEM 209</td>
<td>Organic Chemistry III</td>
</tr>
<tr>
<td>BIOG 101</td>
<td>Environmental Science I</td>
</tr>
<tr>
<td>BIOG 102</td>
<td>Environmental Science II</td>
</tr>
<tr>
<td>BIOG 103</td>
<td>Environmental Science III</td>
</tr>
<tr>
<td>BIOG 104</td>
<td>Environmental Science IV</td>
</tr>
<tr>
<td>BIOG 105</td>
<td>Environmental Science V</td>
</tr>
<tr>
<td>BIOG 106</td>
<td>Environmental Science VI</td>
</tr>
</tbody>
</table>

Science of Earth Systems Concentration Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>EAS 331</td>
<td>Climate Dynamics</td>
</tr>
<tr>
<td>EAS 302</td>
<td>Evolution of the Earth System</td>
</tr>
<tr>
<td>EAS 351</td>
<td>Atmospheric Systems</td>
</tr>
<tr>
<td>EAS 321</td>
<td>Biogeochemistry</td>
</tr>
</tbody>
</table>

Science of Natural and Environmental Systems

Environmental stewardship and sustainability are increasingly recognized as human and planetary imperatives. Graduates who understand how people both generate and can resolve environmental problems.
will contribute significantly to creating a sustainable environment for their own and future generations. This new major in environmental science provides a broad-based, integrative program in the physical, biological, social, and economic sciences, as well as disciplinary strength in one or more subjects suitable for entry-level professional positions or post-baccalaureate studies.

The curriculum comprises an intensive foundation in the sciences; an environmental core with courses covering earth, biotic, social, and economic systems; and several disciplinary programs of study. This major emphasizes interdisciplinary work, independent thinking and analysis, and development of competency in writing and speaking throughout the curriculum.

Foundation Courses
The foundation courses, listed here, can be used to fulfill many of the CALS distribution requirements. The purpose of this component of the program is to provide a strong foundation in the basic sciences and an introduction to the relationships between the biophysical and social sciences.

- two semesters of college-level biology
- two semesters of college-level calculus
- four semesters of college-level chemistry and physics (at least one semester of each)
- one semester of college-level statistics
- NTRES 201 Environmental Conservation
- DEA 150 Introduction to Human-Environment Relationships

The freshman and sophomore years are designed to provide foundation courses and meet CALS requirements at the outset. The freshman year provides engagement with environmental study through DEA 150 and NTRES 201. Depending on student interest and available time, other courses in environmental study may be taken as electives early in the schedule.

Advanced placement credit will be accommodated in the program through consultation with the student's faculty adviser.

Environmental Core
The environmental core consists of five courses. Its purpose is to provide a rigorous, integrated understanding of the environment, broadly defined. This core recognizes that knowledge of the environment encompasses physical and biological sciences, social sciences, and human behavior. ALS 115, required in the freshman year, provides a unifying overview of the goals, facts, depth, and breadth of the major.

Core courses are to provide integration (among areas, disciplines, methodologies, topics, and issues); systems emphasis; basic, rigorous presentation of core material; root competencies for understanding the environment; a framework for further advanced courses; and a new way of thinking that enables innovative solutions to difficult problems.

Environmental Science: ALS 115 Environmental Science: Core Principles
Earth Systems: CSS 365 Environmental Chemistry: Soil, Air, and Water
Biotic Systems: BIOEE 261 Ecology and the Environment
Economic Systems: AEM 250 Environmental and Resource Economics
Social Systems: D SOC 324 (S&T/SOC 324) Environment and Society

Programs of Study
Programs of study that focus in one or more areas of environmental science are being established to provide disciplinary expertise sufficient for entry-level proficiency. Each student in the major will be required to take four courses at the 300 level or above in at least one program of study.

Programs of study will not replace or duplicate current majors. Rather, they will provide the basic core of knowledge essential for an introductory understanding of the area—the concepts, basic science, methodologies, and major applications.

Proposed programs of study are:
- environmental biology
- environmental information science
- sustainable development
- agroecosystem science
- environmental economics

If established programs of study do not meet the student's interests and needs, the student may propose a program of study, in collaboration with a faculty mentor and subject to approval by the Faculty Program Committee.

Freshmen are encouraged to enroll in the introductory environmental science course. For more information about this major, see ntes.eas.cornell.edu, visit the undergraduate program office in 12 Fernow Hall, or send e-mail to ws386@cornell.edu.

Special Programs in Agriculture and Life Sciences
Interdisciplinary Studies. The opportunity to develop an independent major in interdisciplinary studies is available for students interested in pursuing a general education in agriculture and life sciences. In consultation with a faculty adviser, students may plan a sequence of courses suited to their individual interests, abilities, and objectives in an area not encompassed by the existing programs. In addition to the distribution and other college requirements, this major may include a concentration of courses in one of several academic units of the college or university.

Students completing this major are often planning a career in agriculturally related food and service enterprises. Many of the fast-growing occupations require the broad perspective, the scientific and technical skills, and the attitudes and the analytical ability that a general education provides.

Interdisciplinary studies include production agriculture as well as technical work in the agricultural and life sciences. Many biotechnology concerns deal with aspects of agriculture, especially crops, plants, and ecosystems in the natural environment. A strong grounding in biological sciences as well as knowledge of the agricultural sciences is essential in this rapidly growing field. Students should plan basic course work in the major areas of study in the college—animal sciences, plant sciences, environment and technology, agronomic sciences, biological sciences, and social sciences. Advanced courses may be selected in these and other areas of individual interest or career aspiration. A course of study for a special program must be planned with and approved by a college faculty adviser. Information on the options and names of faculty advisers prepared to advise in special programs are available in the Counseling and Advising Office, 140 Roberts Hall.

Agricultural Science Program
Many students wish to pursue a general education in agriculture to prepare for careers that require knowledge of food systems and natural resources, such as production and marketing of foods (animals and plants) and ornamental plants; agricultural education in secondary schools, cooperative extension, food systems, and crop consultants. The agricultural science program is designed to allow students to work with their adviser in developing a curriculum that best fits the needs of each individual student. In this program, students can gain a broad exposure to the agricultural courses across the college. The program is very flexible and allows students to develop a general course of study and to select one or two areas of concentration.

All students are required to take the core courses. Concentrations requiring at least 12 credits are available in animal science, applied economics and management, education and communication, and plant sciences-agronomy.

Students will gain practical experience through special projects, extracurricular activities, and/or internships. Opportunities are available in research and outreach experiences, and in summer employment, which enrich the practical experience. Students will engage in group activities and will participate in discussions with faculty and other experts in various sectors of the agricultural industry.

Approval of this program as a major is anticipated by summer 2005.

DESCRIPTION OF COURSES
Undergraduate and graduate courses in the college are offered through the departments and units and also through the biological sciences undergraduate program and the Division of Nutritional Sciences.

Descriptions of undergraduate and graduate courses are arranged by department, in alphabetical order.

Graduate study is organized under graduate fields, which generally coincide with the departments. Graduate degree requirements are described in the Announcement of the Graduate School. Courses for graduate students are described in the section on the academic department that offers them.

INTERDEPARTMENTAL/INTERCOLLEGE COURSES
American Indian Studies
The American Indian Program offers a minor in American Indian Studies to undergraduate students. The minor is earned upon the completion of five courses: AIS 100 and AIS...
101, plus at least three other courses from the AIS curriculum, for a minimum total of 15 credit hours. The three additional courses must include one course from Group A (arts and humanities) and one course from Group B (social and natural sciences) as listed below. One of the courses offered toward the minor must be at the 300- or 400-level. Only one 3-credit independent study (AIS 497) may be counted toward the minor. Only program-listed courses for which the student has earned a letter grade of C or better will be counted toward the minor. No courses taken for S-U credit will be counted toward the minor. Students seeking to minor in American Indian studies are encouraged to contact Professor Kurt Jordan, associate director of academic development, 255-3109. Application materials for the minor may also be obtained from the AIP office, 4th floor, Caldwell Hall. Students are also advised to consult www.aip.cornell.edu/academic.htm for the most up-to-date listings of course offerings.

Minor in American Indian Studies

Required Courses

AIS 100 Introduction to American Indian Studies I: Indigenous North America to 1890
AIS 101 Introduction to American Indian Studies II: Contemporary Issues in Indigenous North America

Electives

(Group A, Arts and Humanities)

AIS 195 Colonial Latin America
AIS 256 Native Peoples of the Northeast
AIS 259 Seminar in Iroquois History
AIS 260 Introduction to Native American Literature
AIS 266 Introduction to Native American History
AIS 386 Contemporary American Indian Fiction of the United States
AIS 404 Race and Ethnicity in Latin America
AIS 486 American Indian Women's Literature
AIS 490 New World Encounters, 1500-1800

(Group B, Social and Natural Sciences)

AIS 230 Cultures of Native North America
AIS 235 Archaeology of North American Indians
AIS 311 Social Movements
AIS 333 Environmental Issues and Indigenous People
AIS 340 Contested Terrain: Hawaii
AIS 348 Iroquois Archaeology
AIS 353 Anthropology of Colonialism
AIS 435 Indigenous Peoples and Globalization
AIS 472 Historical Archaeology of Indigenous Peoples

(Independent Study)

AIS 497 Independent Study

J. Mt Pleasant, director; E. Cheyfitz, L. Donaldson, C. Geisler, A. Gonzales, K. Jordan, B. Lambert, M. Musket, J. Parmenter, A. Simpson

AIS 100(1100) Introduction to American Indian Studies I: Indigenous North America to 1890
Fall. 3 credits. T-R 12:25-2:40 plus sec. K. Jordan
Provides an interdisciplinary introduction to American Indian cultures and histories from Pre-Columbian times to 1890, emphasizing the current relevance of traditional values and the ways the past continues to affect present day Indian peoples. Course materials draw on perspectives from the humanities, social sciences and expressive arts.

AIS 101(1110) Introduction to American Indian Studies II: Contemporary Issues in Indigenous North America
Spring. 3 credits. M W 11:15-12:05 plus sec. A. Simpson
Interdisciplinary exploration of contemporary issues in American Indian Country north of Mexico after 1890. Examines Indian sovereignty, nationhood, agency and engagement through time using the perspective of American Indian Studies. Course materials are drawn from the humanities, social science and expressive arts.

AIS 195(1950) Colonial Latin America (also HIST 195(1950))
Fall. 4 credits. S-U option. M W 11:15-12:05, plus sec. K. Graubart
Examines the colonial "encounter" of Iberia, Africa and the New World, which began in 1492. Topics include economic and social organization of the colonies; the cultural hybridity that preceded as well as developed within colonialism; the production of ethnicity and race; slavery, forced labor and economic stratification; intellectual currents and daily life; indigenous and slave resistance and rebellion; and independence.

AIS 230(2300) Cultures of Native North America (also ANTHR 230(2730))
Fall. 3 or 4 credits. M W F 1:25-2:15. B. Lambert
Survey of the principal Inuit and American Indian culture area north of Mexico. Examines selected cultures to bring out the distinctive features of the economy, social organization, religion, and worldview. Although the course concentrates on traditional cultures, some lectures and readings deal with changes in native ways of life that have occurred during the period of European-Indian contact.

AIS 235(2350) Archaeology of North American Indians (also ANTHR 235(2235))
Spring. 3 credits. M W F 10:10-11:00. K. Jordan
Introductory course surveying archaeology's contributions to the study of North American Indian cultural diversity and change. A principal focus is on major transformations in lifeways such as the adoption of agriculture, the development of political-economic hierarchies, and the disruptions that accompanied the arrival of Europeans to the continent.

AIS 236(2360) Native Peoples of the Northeast, Pre-Contact to the Present (also HIST/AM ST 236[2360])
Fall. 4 credits. Not offered 2005-2006. J. Parmenter
After an initial, hostile series of economic and military exchanges with Europeans beginning off the coast of Maine in 1524, the native peoples of northeastern North America have undergone a fascinating and dramatic series of transformations. Adopting an interdisciplinary approach, this course analyzes the history of Native Americans in the Northeast from a variety of perspectives. Readings and discussions are drawn from a wide range of secondary and primary sources, including historical documents, traditional narratives, archaeological reports, the Internet, and museum exhibits of material culture. The course emphasizes critical reading of texts and discussion.

AIS 239(2390) Seminar in Iroquois History (also HIST 239(2390))
Fall. 4 credits. M W 2:55-4:10. J. Parmenter
Interdisciplinary seminar exploring the history and culture of Iroquois people from ancient times, through their initial contacts with European settlers, to their present-day struggles and achievements under colonial circumstances in North America.

AIS 260(2600) Survey of American Indian Literatures in the United States (also ENGL 260[2600])
Spring. 4 credits. Not offered 2005-2006. E. Cheyfitz
Introduction to U.S. American Indian literatures, both oral and written. The method of studying these literatures emphasizes historical, legal, and cultural contexts as well as current critical debates over methodological approaches. In addition to examples of the oral tradition transcribed in writing, students study a variety of written genres from their beginnings in the late 18th century, including autobiography, the essay, poetry, and fiction.

AIS 266(2660) Introduction to Native American History (also HIST/AM ST 266[2660])
With the abandonment of earlier perspectives grounded in romantic and evolutionary stereotypes, Native American history represents today one of the most exciting, dynamic, and contentious fields of inquiry into America's past. This course introduces students to the key themes and trends in the history of North America's indigenous peoples by taking an issues-oriented approach. It stresses the ongoing complexity and change in Native American societies and emphasizes the theme of Native peoples' creative adaptations to historical change. Additionally, the course provides numerous opportunities for students to develop their critical thinking and reading skills.

AIS 311(3110) Social Movements (also D SOC/LSP 311[3110])
Fall. 3 credits. Prerequisites: D SOC/SOC 101 or permission of instructor. S-U grades optional. T R 10:10-11:25. A. Gonzales
Social movements are collective efforts by relatively powerless groups of people to change society. Typically conceptualized as political activity outside the institutional framework, social movements are "politics by other means." This course examines the transnational dimensions of social movements to assess the implications of globalization for political mobilization and the ways that social movement actors engage the global political process to effect social change. Under what
circumstances do movements emerge? How do global processes shape both domestic and transnational movements? How do movements internally organize and choose political tactics and strategies to achieve their goals? How have social movements changed history, identities, society, and politics? This course addresses these and related questions through an examination of indigenous peoples' movements in the United States, Canada, and Latin America.

AIS 333(3330) Environmental Issues and Indigenous People (also NTRES 333[3330])
Spring. 3 credits. TBA. M. Muskett. For description, see NTRES 333.

AIS 340(3400) Contested Terrains: Hawaii
Spring. 3 credits. Prerequisite: introductory or intermediate-level social sciences or history. F 8–11 A.M.; one S a month 8–11 A.M. M. M. Hamabata. This course, offered in conjunction with Earth and Atmospheric Sciences' program in Hawaii, draws from the fields of history, political science, and sociology to present an historical understanding of contemporary Hawaiian society. Topics include Western contact, establishment of Western institutions, overthrow of a sovereign government, annexation, integration into the United States. Direct experience with Hawaiian leaders and institutions are incorporated to address contemporary issues: sovereignty, economic development/dependency, social change, and land use as a sociopolitical and cultural struggle. Students should consult www.eas.cornell.edu/hawaii/ regarding the status of this course.

AIS 348/448(3480/4480) Iroquois Archaeology (also ANTHR 348/448(3480/4480))
Spring. 4 credits. S-U grades optional. K. Jordan. Surveys the long-term development of Iroquois (Haudenosaunee) culture from an archaeological perspective. Issues examined will include the origins of the Iroquois; material culture, settlement, and subsistence; the Iroquois Confederacy; responses to European encroachment; and contemporary Haudenosaunee perspectives on archaeology. Course requirements differ at the 300 and 600 levels.

AIS 353(3530) Anthropology of Colonialism (also ANTHR 353[3530])
Fall. 4 credits. M W F 10:10–11 A.M. A. Simpson. Examines the relationship between colonialism and anthropology and the ways in which the discipline has engaged this global process locally in North America. One of the aims is to gain an appreciation of colonialism both as a theory of political legitimacy and as a set of governmental practices. As such, North America is re-imagined in light of the colonial project—and its technologies of the such as education, law, policy—that worked to transform indigenous notions of gender, property, and territory. Students come to appreciate the ways in which these forms of knowledge and practice advanced the settlement of space and place and both settled and unsettled peoples. This course is comparative in scope but is grounded in the literature from Native North America.

AIS 386(3860) Contemporary American Indian Fiction (also ENGL 367[3870])
Fall. 4 credits. Not offered 2005–2006. Examines contemporary American Indian fiction as a response to the colonial structure of federal Indian law. Beginning with Mourning Dove's novel of the Allotment Era, students read works by a range of Native fiction writers (from a list that includes McNickle, Welch, Silko, Vizenor, Hogan, Alexie, Walters, Glancy, and Red Corn) that respond critically to U.S. federal Indian policy.

AIS 404(4040) Race and Ethnicity in Latin America (also HIST 404[4041])
Fall. 4 credits. Recommended: Latin American history course. M 2:30–4:25. K. Graubart. Seminar examining the historical production of "race" and ethnicity in the Latin American context, beginning with the creation of "Indians" by European colonists and the introduction of African slaves into these already complex societies. The second half of the course addresses contemporary issues that stem from these colonial concerns: nationalism, the romantic invocation of the indigenous past, cultural practices, land rights, political representation, and enduring racism.

AIS 435/635(4350/6350) Indigenous Peoples and Globalization (also D SOC 435/635(4350/6350))
Fall. 3 credits. Not offered 2005–2006. Explores ways in which processes of globalization affect indigenous peoples worldwide and the strategies indigenous peoples are using to deal with those pressures. Globalization, whether under the auspices of the World Trade Organization and regional economic agreements such as the NAFTA or the deterritorialization of social and political arrangements coterminous with modernization or the expansion of communication technology and its impact on traditional knowledge systems, have had profound social, cultural, and economic impacts on indigenous peoples. At issue are the lands, resources, traditional knowledge, intellectual and cultural property, and indigenous struggles for recognition and self-determination.

AIS 472/772(4720/7720) Historical Archaeology of Indigenous Peoples

AIS 486/4860 American Indian Women's Literature (also ENGL 486/4860)
Spring. 4 credits. Not offered 2005–2006. Explores the development of women's literature in a number of different American Indian cultures. Attends to native paradigms of cultural production such as women's songmaking, weaving, basketmaking, and storytelling, as well as the appropriation of European literary forms such as the novel. Students read a diverse range of materials including novels, autobiography, poetry, drama, and short stories.
Environmental Toxicology

There is both breadth and depth in many facets of environmental toxicology and related disciplines. The program offers a combination of research and didactic training that is designed to prepare students for solving the problems of modern toxicology. The graduate student may choose from three degree options: M.S., M.S./Ph.D., or Ph.D. Concentrations include cellular and molecular toxicology, nutritional and food toxicology, ecotoxicology and environmental chemistry, and risk assessment, management, and public policy. Research by the faculty associated with the program focuses on the interactions of drugs, pesticides, and other potentially hazardous environmental agents with a wide variety of living organisms (including humans) as well as the ecosystems with which these organisms are associated. General information is available through the Environmental Toxicology office in 116 Stocking Hall, or at toxicology.cornell.edu.

TOX 323(3230) Principles of Toxicology (Undergraduate) (also NTRES 323[3230])
Spring. 3 credits. Prerequisites: one year each of chemistry and biology with labs; one semester of organic chemistry lecture or permission of instructor. J. W. Gillett. For description, see NTRES 323.

TOX 370(3700) Pesticides and the Environment (also ENTM 370[3700])
Fall. 2 credits. Prerequisites: BIO G 101–102 or equivalent. Offered every year. J. G. Scott. For description, see ENTM 370.

TOX 406(4060) Ecology Risk Assessment (also NTRES 406[4060])
Fall. 3 credits. Prerequisites: BIOEE 261 or equivalent; advanced student in natural sciences or engineering or permission of instructor. J. W. Gillett. For description, see NTRES 406.

TOX 437(4370) Eukaryotic Cell Proliferation (also BIOM 437[4370])
Fall. Variable credit; students may take for 2 credits, or lec and disc for 3 credits. Limited to 20 students per disc; priority for 2 credits, or lec and disc for 3 credits. Spring. 3 credits. Prerequisites: general chemistry course. Offered odd years. J. G. Scott. For description, see ENTM 490.

TOX 607(6070) Ecotoxicology (also NTRES 607[6070])
Spring. 3 credits. Prerequisites: graduate or senior standing; two 300-level courses in chemistry, biological science, or toxicology. Offered alternate even years. J. W. Gillett. For description, see NTRES 607.

TOX 610(6100) Introduction to Chemical and Environmental Toxicology (also BIOMI 610[6100])
Fall. 3 credits. Prerequisite: graduate standing in field or permission of instructor. A. G. Hay. For description, see BIOMI 610.

Related Courses in Other Departments

CEE 597(5970) Risk Analysis and Management
Spring. 3 credits. Prerequisite: introduction to probability and statistics course (e.g., CEE 304, ENGRD 270, ILSRT 210, BTRY 261 or AEM 210); two semesters of calculus. Prerequisites: senior or graduate standing or permission of instructor. J. R. Stedinger. For description, see CE 597.

FD SC 621(6210) Food Lipids

NONDEPARTMENTAL COURSES

ALS 101(1101) Transition to and Success at Cornell
Fall. 1 credit. Prerequisite: entering students in CALS. Letter grades only. R. O. Earle and CALS Career Development Office.
Discussion-oriented course to enable all new CALS students to enjoy their experience at and transition to Cornell. Lecture, discussion, guest speakers, student panels, and assignments that explore Cornell's history, academic opportunities, services, and organizations are used. Emphasizes the role of Agriculture and Life Sciences in the future of all related careers.

ALS 118(1180) Environmental Science: Core Principles
Fall. 3 credits. Letter grades only. Lec, T R 10:10–11; lab, R 1–4. E. L. Madsen. Environmental science is the multidisciplinary study of how the Earth works, how humans influence and manage the Earth’s life-support systems. This course highlights facts and principles from the physical, chemical, biological, social, and economic sciences. The readings, case studies, discussions, field/laboratory experiences, and research topics are designed to unify the curriculum for students majoring in the Science of Natural and Environmental Systems (SNES).

ALS 134(1340) Emergency Medical Technician
Fall and spring. 3 credits each semester. Two-semester course; students enroll to fall semester only. Recommended: basic or advanced first aid. S-U grades optional. Lec, M 1:30–4:30; lab, W 1:30–4:30 or W 6:30–9:30. D. A. Grossman, P. Rach, and A. F. Gantner. Intensive 140-hour course taught throughout the fall and spring semesters. Includes training in C.P.R. for the professional rescuer, oxygen administration, airway management, fracture management, bleeding control, patient assessment, spinal immobilization, the use of medical antishock trousers, and defibrillation. Students qualify for the New York State E.M.T. Certification Exam upon successful completion of the course.

ALS 135(1350) Advanced Emergency Medical Technician, Critical Care
Fall and spring; two-semester course. 4 credits each semester. Prerequisites: current certification as N.Y.S. Basic E.M.T. or have applied for reciprocity. S-U grades optional. Lec, T 1:30–4:30; lab, R 1:30–4:30, Sat 9:00–12:00. D. Grossman, P. Rach, and D. Spaulding.
Includes topics such as emergency pharmacology, patient assessment, advanced cardiac life support, emergency hypoperfusion management, and basic trauma life support. Uses classroom, lab, hospital, and field sessions to teach skills such as intubation, emergency IV access, electro-cardioversion and defibrillation, and patient assessment and pharmacologic intervention. Requires extensive out of classroom (exceeds 140 hours) time.

ALS 392(3920) New York State Government Affairs (also PAM 392(3920))
Spring. 15 credits. Prerequisite: junior or senior standing, minimum GPA of 2.5. W. Rosen.
For description see PAM 392.

ALS 400(4000) Internship
Fall, spring, or summer. 6 credits max. Not open to students who have earned internship credits elsewhere or in previous semesters or grades.
Students may register only for internships in the New York State Assembly Intern Program, the New York State Senate Session Assistant's Program, and the Albany Semester Program. A learning contract is negotiated between the student and the faculty supervisor(s), stating conditions of the work assignment, supervision, and reporting. Requires participation in any structured learning activities associated with the internship.

ALS 402(4020) Agricultural Study Tour to Burgundy, France
Spring. 2 credits. Prerequisite: registered CALS students. S-U grades optional. L. A. Weston and P. Durand.
Two-week study tour held in the month of May in Burgundy, France. Students experience French agriculture, history, and cuisine. Tour includes wine, fruit, vegetable, cheese, dairy, beef, and poultry production, and French university facilities featuring modern agricultural research. Requires 10-20-page paper. Students travel throughout Burgundy and eastern France with Pascal Durand, professor at ENESAD in Dijon, France.

ALS 403(4030) Internship Opportunities in Burgundy, France
Spring. Variable to 4 credits. Prerequisite: enrollment in Agricultural Study Tour to Burgundy, France. Recommended: some French language experience. S-U grades optional. L. A. Weston and P. Durand. Six- to eight-week internship experiences in Burgundy, France, in agriculturally related subject areas including viticulture, agribusiness, agronomy, food science, and biotechnology. Requires final paper documenting internship experience.

ALS 477(4770) Environmental Stewardship in the Cornell Community
Spring. 2-4 credits, variable. T R 11:40-1:30. J. M. Regenstein, plus faculty adviser. Each student undertakes an original project to improve the environment at Cornell while working with a faculty adviser and the Cornell infrastructure (generally campus life and/or facilities). Through interactive class discussions, students learn how to be more effective at developing environmental programs in the future, both during and after college. Students present the final written project report orally at a public forum. (Note: If students prefer to take 1 or 2 credits of independent research in a depart-

ment in the College of Agriculture and Life Sciences, this can be arranged. Assistance in finding a faculty adviser is provided. May be taken more than once.)

ALS 481(4810) Global Conflict and Terrorism
Spring. 3 credits. Lec. M 7:30-9:30; sec, R 2:30-3:20. J. Shanahan. Reviews and discusses issues concerning global development and its relationship to conflict and terrorism. Each class section focuses on a specific topic presented by either a faculty member or a guest speaker leading the discussion and actively engaging the students. The weekly discussion section focuses on discussion in greater depth the reading assignments.

ALS 494(4940) Special Topics in Agriculture and Life Sciences
Fall or spring. 4 credits max. S-U grades optional.
The college teaches “trial” or temporary courses under this number. Offerings vary by semester and are advertised by the college before the beginning of the semester. The same course is not offered more than twice under this number.

ALS 499(4991/4992) Honors Project I and II (also B&SOC/SATS 499/4995/4996)
Fall and spring (yearlong). 8 credits each semester. Prerequisite: biology & society seniors and permission of department; overall GPA of 3.3. Apply in 306 Rockefeller Hall.

ALS 500(4998) Politics and Policy:
Theory, Research, and Practice (also AM ST 501(4998), PAM 406(4998), GOVT 500(4998))
Students in CALS must register for ALS 500. S. Jackson.

ALS 580(5800) International Teaching Assistant Development Program
Fall or spring. 2 credits. Prerequisite: EDUC 579. ITADP staff.
Specifically designed for international graduate students who plan to assume teaching assistant responsibilities that range from lab introductions to individual tutoring sessions with undergraduate students. Participants develop skills in self-monitoring, critical listening and language fluency with attention to time frame usage, academic terminology, extended discourse, and compensatory speech strategies.

ALS 581(5810) International Teaching Assistant Development Program
Course 4
Fall or spring. 2 credits. Prerequisite: ALS 580. ITADP staff.
Specifically designed for international graduate students who plan to assume teaching assistant responsibilities that range from lab introductions to individual tutoring sessions with undergraduate students. Participants develop skills in self-monitoring, critical listening and language fluency with attention to time frame usage, academic terminology, extended discourse, and compensatory speech strategies.

ALS 581(6610) Environmental Policy
Fall or spring. 3 credits each semester; students must register for 6 credits each semester since "R" grade is given at end of fall semester. Limited to 12 students. Prerequisite: permission of instructor. Sem. R 2:30-4:30. D. Pimentel.

Focuses on complex environmental issues. Ten to 12 students, representing several disciplines, investigate significant environmental problems. The research team spends two semesters preparing a scientific report for publication in Science or BioScience. Thus far, every study has been published.

APPLIED ECONOMICS AND MANAGEMENT

Courses by Subject
Farm management, agricultural finance, and production economics: 302, 403, 404, 405, 408, 708
Statistics, quantitative methods, and analytical economics: 210, 410, 412, 415, 417, 419, 711, 712, 713, 714, 717
Policy and international trade: 230, 335, 430, 431, 432, 433, 434, 630, 632, 633, 554, 730, 735

Address English-language issues relating to phonemes, grammar, and suprasegmentals. Activities in these areas include communicative functions such as presenting concepts, initiating and sustaining conversation, and interpreting information in academic settings.

ALS 581(5810) International Teaching Assistant Development Program
Course 4
Fall or spring. 2 credits. Prerequisite: ALS 580. ITADP staff.
Specifically designed for international graduate students who plan to assume teaching assistant responsibilities that range from lab introductions to individual tutoring sessions with undergraduate students. Participants develop skills in self-monitoring, critical listening and language fluency with attention to time frame usage, academic terminology, extended discourse, and compensatory speech strategies.

ALS 581(6610) Environmental Policy
Fall or spring. 3 credits each semester; students must register for 6 credits each semester since "R" grade is given at end of fall semester. Limited to 12 students. Prerequisite: permission of instructor. Sem. R 2:30-4:30. D. Pimentel.

Focuses on complex environmental issues. Ten to 12 students, representing several disciplines, investigate significant environmental problems. The research team spends two semesters preparing a scientific report for publication in Science or BioScience. Thus far, every study has been published.

APPLIED ECONOMICS AND MANAGEMENT

Courses by Subject
Farm management, agricultural finance, and production economics: 302, 403, 404, 405, 408, 708
Statistics, quantitative methods, and analytical economics: 210, 410, 412, 415, 417, 419, 711, 712, 713, 714, 717
Policy and international trade: 230, 335, 430, 431, 432, 433, 434, 630, 632, 633, 554, 730, 735
AEM 101(1101) Introduction to Applied Economics and Management
Fall. 1 credit. Prerequisite: required of and limited to freshmen in AEM. S-U grades only. D. A. Grossman and A. M. Novakovic.
Freshman transition course exploring the major courses of study available to AEM students, including a discussion of "hot topics," research, and career paths in each field. Normally, major seniors are guest presenters. Students are introduced to campus resources such as the library system, study abroad opportunities, course planning, career planning, and learning strategies. Short written assignments and active group participation are required.

AEM 120(1200) Foundations of Entrepreneurship and Business
Fall. 2 credits. P. D. Perez.
Introductory course providing a sound base to both the understanding of entrepreneurial activity and possibilities and the study and practice of entrepreneurship at Cornell. Includes lectures, selected guest appearances by successful entrepreneurs, and extensive use of IT-based learning and presentation tools.

AEM 121(1210) Entrepreneurship Speaker Series
Fall. 1 credit. M. P. D. Perez.
Seminars and guest lectures by faculty members engaged in the study and practice of entrepreneurship and by prominent entrepreneurs associated with the Entrepreneurship and Personal Enterprise program at Cornell, with a view to inform and inspire students. Evaluation includes attendance and written feedback on lectures. Intended as a companion to AEM 120 but may be taken independently.

AEM 200(2000) Contemporary Controversies in the Global Economy
Fall. 3 credits. Prerequisite: ECON 101. Recommended: ECON 102. Priority given to sophomores and juniors in AEM. C. Barrett.
Aims to stimulate critical thinking and cogent writing and speaking about contemporary controversies that attract regular attention in the international press and among key private and public sector decision-makers. Students read and discuss competing arguments about current issues such as patenting and pricing of pharmaceuticals worldwide, controls on commercial and humanitarian distribution of genetically modified foods, and immigration restrictions. Students write a series of short briefing papers and give regular oral briefs, which are evaluated for quality of communication and content.

AEM 210(2100) Introductory Statistics
Spring. 3 credits. Prerequisite: EDUC 115 or equivalent level of algebra. Two evening prelims. C. van Es.
Introduces statistical methods. Topics include the descriptive analysis of data, probability concepts and distributions, estimation and hypothesis testing, regression, and correlation analysis. Uses applications from business, economics, and the biological sciences to illustrate the methods covered.

AEM 220(2200) Introduction to Business Management
Spring. 3 credits. Two evening prelims. P. D. Perez.
Provides an overview of management and business. Human resource, marketing, finance, and strategy concerns are addressed with consideration paid to current issues such as technology and its impact on operations, globalization, ethics, quality, and entrepreneurship. Guest speakers are an important part of the course.

AEM 221(2210) Financial Accounting
Fall. 3 credits. Not open to freshmen. Priority given to CALS majors. Two evening prelims. J. Little.
Comprehensive introduction to financial accounting concepts and techniques, intended to provide a basic understanding of the accounting cycle, elements of financial statements, underlying theory of GAAP, and financial statement interpretation. Topics include methods of recording inventory, receivables, depreciation, bonds, and equity. Requires two evening prelims and a comprehensive final, weekly homework assignments.

AEM 222(2220) Business Management Case Analysis
Spring. 1 credit. Requirement for and limited to AEM majors. P. D. Perez.
Offers students teams the opportunity for hands-on application of general business management concepts through discussion and written analysis of a series of cases. Case topics are closely coordinated with both the content and sequencing of material presented in AEM 220.

AEM 230(2300) International Trade and Finance (also ECON 230[2300])
Spring. 3 credits. Prerequisites: ECON 101 or equivalent. Recommended: ECON 102 or equivalent. S-U grades optional. One evening prelim. D. R. Lee.
One-semester introduction to international economic principles and issues. Begins by surveying key topics such as the elements of comparative advantage, tariff and nontariff barriers, and multilateral institutions. The second part of the course treats selected topics in international finance, including exchange rates, balance of payments, and capital markets. Discusses current issues such as the effects of trade liberalization, trade and economic growth, and instability in international capital markets. Designed as a less technical introduction to concepts developed at a more advanced level in AEM 430 and ECON 361-362.

AEM 240(2400) Marketing
Fall. 3 credits. E. W. McLaughlin.
Provides a broad introduction to the fundamentals of marketing. Explores the components of an organization's strategic marketing program, including how to price, promote, and distribute goods and services. Industry guest lectures and current marketing applications from various companies are presented and analyzed.

AEM 241(2410) Marketing Plan Development
Fall. 1 credit. Requirement for and limited to AEM majors. D. J. Perosio.
Offers student teams the opportunity for an intense, hands-on application of basic marketing concepts through research and development of a marketing plan. Guided by a series of assignments, teams develop key components that are integrated into a comprehensive written plan for a local business.

AEM 250(2500) Environmental and Resource Economics
Spring. 3 credits. S-U grades optional. G. L. Poe.
Introduces fundamental economic principles and the "economic approach" to policy issues, and demonstrates how these concepts underpin contemporary environmental and natural resource issues and policy solutions. Subjects include valuation, benefit-cost analysis, policy design, property rights, and ecological economics. Uses these tools to explore major current policy issues such as economic incentives in environmental policy, endangered species protection, air and water pollution, depletion of renewable and nonrenewable resources, and global warming.

AEM 302(3020) Farm Business Management
Fall. 4 credits. Not open to freshmen. Prerequisite for AEM 405 and 427. On days farms are visited, sec is 1.25-6. W. A. Knoblauch.
Intensive study of planning, directing, organizing, and controlling a farm business, with emphasis on the tools of managerial analysis and decision making. Topics include financial statements, business analysis, budgeting, and acquisition, organization, and management of capital, labor, land, buildings, and machinery.

AEM 320(3200) Business Law I (also NBA 560[5600])
Fall and summer. 3 credits. Prerequisite: junior, senior, or graduate standing. One evening prelim. D. A. Grossman.
Examines legal problems of particular interest to persons who expect to engage in business. Emphasizes the law of contracts, sales, agency, and property.

AEM 321(3210) Business Law II (also NBA 561[5610])
Spring. 3 credits. Prerequisite: junior, senior, or graduate standing; business law course or permission of instructor. D. A. Grossman.
The first portion of this course examines legal issues in the formation and operation of business enterprises, particularly partnerships, corporations, and limited liability companies. The second portion reviews selected topics in business law, like employment discrimination, debtor/creditor relations, product liability, unfair competition, e-commerce law, and international business law.

AEM 322(3220) Information Technology Strategy
Spring. 3 credits. Prerequisites: AEM 220 and ECON 101. A. Leiponen.
Explores the impact of new technologies on business processes and industries. Focuses particularly on the effects of information and communication technologies (ICT).
The objective is to understand the nature of information as an economic good, business opportunities and challenges created by ICT, and organizational constraints involved in exploiting these opportunities.

AEM 323 Managerial Accounting
Spring. 3 credits. Priority given to CALS majors. Prerequisite: AEM 221 or equivalent. Two evening prelims. J. Little. Introduction to financial accounting, emphasizing the application of accounting concepts to managerial control and decision making. Major topics include product costing, standard costing, cost behavior, cost allocation, budgeting, variance analysis, and accounting systems in the global environment. Requires use of electronic spreadsheets. Includes two evening prelims; a third exam, weekly homework.

AEM 324(3240) Finance
Fall. 4 credits. Priority given to CALS majors. Prerequisites: AEM 210, 220, and 221 or equivalents. Three evening prelims. R. Curtis. Focuses on the mathematics of finance, valuation, and the economics of managerial decisions, corporate financial policy, risk management, and investment theory. Topics include the valuation of money, bond and stock valuation, capital-budgeting decisions, financing alternatives, the cost of capital and the capital-structure decision, distribution policy, mergers and acquisitions and restructuring, options, forward and futures contracts, market efficiency and market anomalies, strategies of successful investors, and personal finance.

AEM 325(3250) Personal Enterprise and Small Business Management
Spring. 4 credits. Prerequisites: junior or senior standing; AEM 220 and 221 or permission of instructor. Absolutely no adds or drops after second class meeting. Cost of term project: approx. $100 per team. D. Streeter. Focuses on the activities involved in planning a start-up business, including the exploration of strategic dimensions, performance of marketing research, and planning of financial aspects related to the new company. Lectures and hands-on clinics include visits by real world entrepreneurs who discuss the start-up process and the challenges of managing growth in a small business. Term project is the development of a business plan, completed in teams of no fewer than three students.

AEM 328(3280) Innovation and Dynamic Management (also H ADM 444/4443)
Spring. 3 credits. Prerequisite: junior or senior standing. Staff. For description, see H ADM 443.

AEM 329(3290) International Agribusiness Study Trip
Fall. 2 credits. Prerequisites: AEM 220 or 302, and 240. Open by application before March 1 of spring semester before course is offered. Approximately 12 students are selected with preference given to sophomores and juniors in CALS. Field study co-payment: $800. B. A. Gloy and L. W. Tauer. Gives students interested in agribusiness management exposure to the managerial practices essential to the success of agriculture, agribusiness, and food companies competing in the global marketplace. Involves a two-week international field study trip that takes place after the final exam period of the spring semester before the course is offered. There are these meetings in advance of the field study trip. A paper analyzing an aspect of the field study is required.

AEM 330(3300) Managerial Economics and Decision Making
Spring. 3 credits. Prerequisites: AEM 220 and ECON 101 or equivalents. S-U or letter grades. J. Prince. Focuses on tools for making various decisions managers encounter in the real world, including decisions of pricing, output, advertising expenditures, and new product introductions. Considers issues such as how to estimate a firm’s demand and cost functions as considered in making such decisions. Compares standard microeconomic models with more realistic approaches to making decisions. Emphasizes considering decisions that are less stylized and more similar to those managers face on a regular basis.

AEM 331(3310) Economic of Business Regulation
Spring. 3 credits. Prerequisites: ECON 101, 313, and AEM 220. S-U or letter grades. J. Prince. Studies the economics and other factors (e.g., politics, lobbying) that determine regulation policy along with firm strategies in regulated or potentially regulated markets. Major topics include: antitrust, economic regulation and environmental regulation. Applications to the current business environment are emphasized.

AEM 333(3330) Women, Leadership, and Entrepreneurship
Fall. 1 credit. D. Streeter. Seminar that uses lectures, guest panels, and readings to focus on issues facing women (and their partners) in their business careers. Topics include status of women in business leadership, pathways and strategies for leadership development, family/life balance issues, gender issues in the workplace, and resources for emerging leaders.

AEM 335(3350) International Technology Marketing of Biotechnology
Spring. 3 credits. Prerequisites: ECON 101 and BLOG 109 or equivalents. S-U grades optional. W. H. Lesser. Explores international technology marketing from an economics perspective using biotechnology as an example. Topics include technology theories, products, risk (health and environmental) regulation, industry structure, labeling uses and regulations, public perceptions, patents, trade, and international conventions. The course is of interest to students of biotechnology, public technology policy, and international technology marketing.

AEM 340(3400) Futures and Options Trading
Fall. 3 credits. Prerequisite: junior or senior standing. Priority given to CALS juniors and seniors, then non-CALS seniors; ECON 101, EDUC 115, and AEM 210 or equivalent. S-U grades optional. Staff. Focuses on the use of futures and options as risk management tools. Covers commodities, exchange rate, and interest rate derivatives from the perspective of the hedge, but those also provides insight for students interested in arbitrage and speculation. Students participate in a simulated trading course which they use price and market information and input from industry experts to manage a hedge position.

AEM 342(3420) Integrated Marketing Communication
Fall. 3 credits. Prerequisite: introductory marketing course. S. P. Raj. Focuses on decisions regarding communication and promotion decisions in companies that market consumer products and services. Explores how business-to-business communication differs. Responsibility for many of these decisions typically resides under the brand-management umbrella and calls for an integrated approach to planning, budgeting, and evaluating advertising, sales promotion, and public relations.

AEM 344(3440) Consumer Behavior
Fall. 3 credits. Prerequisites: AEM 240 or equivalent. B. Wansink. Develops a useful, conceptual understanding of the problems and strategies associated with psychology behind consumer behavior. In doing so, the course provides frameworks that enable students to address these issues responsibly, systematically, and creatively.

AEM 346(3460) Dairy Markets and Policy
Spring. 3 credits. Prerequisites: junior, senior, or graduate standing; ECON 101 or equivalent. S-U grades optional. A. Novakovic. Survey of topics related to the structure and performance of U.S. dairy markets and federal and state policies that regulate market activities. Emphasizes learning both the origin and characteristics of dairy policies and methods for analyzing their impacts on market performance.

AEM 380(3800) Independent Honors Research In Social Science
Fall or spring. 1–6 credits. Prerequisite: requirements for honors program met (see “Honors Program” under CALS). Provides qualified students an opportunity to conduct original research under supervision. Information is available in the AEM undergraduate program office in Warren Hall.

AEM 403(4030) Farm Management Study Trip
Spring. 1 credit. Prerequisite: AEM 302. Open by application only. W. A. Knoblauch. Special program to study production and management systems in diverse agricultural regions of the United States. Includes a trip (usually taken during spring break) to the region being studied. A different region is visited each year. The course meets in advance of the study trip and upon return from trip. Students must write a paper that further explores an aspect of the trip.

AEM 404(4040) Advanced Agricultural Finance Seminar
Spring. 3 credits. Limited to 16 students. Prerequisite: senior standing; extensive course work in farm management and farm finance. Open by application before March 1 of year before course is offered. Staff. Special program in agricultural finance, conducted with financial support from the Farm Credit System. Includes two days at Northeast Farm Credit offices, one week in Farm Credit Association offices, one day program on FSA financing during fall semester, a two- to four-day trip to financial institutions in New York City, and an actual
farm consulting and credit analysis experience in the spring semester.

AEM 405(450) Agricultural Finance
Spring: 4 credits. Prerequisite: AEM 302 or equivalent. L. Tauer.
Discusses the principles and practices used in financing agricultural businesses, from the perspectives of the business owner and the lender. Topics include sources of capital, financial conomy into agriculture, financial analysis of a business, capital management, financial statements, credit instruments, loan analysis, financial risk, and leasing.

AEM 410(4100) Business Statistics
Fall: 3 credits. Prerequisite: AEM 210 or equivalent. C. van Es.
Focuses on techniques used to analyze data from marketing research, business, and economics. Topics include experimental design and ANOVA, contingency-table analysis, quality-control methods, time-series analysis and forecasting. Also includes brief introductions to nonparametric methods and multivariate analysis. Involves a research project designed to give experience in collecting and interpreting data.

AEM 411(4110) Introduction to Econometrics
Fall: 3 credits. Prerequisite: AEM 210 and either ECON 313 or PAM 200 or equivalents. D. Just.
Introduces students to basic econometric principles and the use of statistical procedures in empirical studies of economic models. Introduces assumptions, properties, and problems encountered in the use of multiple regression are discussed and simultaneous equation models, simulation, and forecasting techniques.

AEM 412(4120) Computational Methods for Management and Economics
Spring: 3 credits. Primarily for juniors, seniors, and M.S. degree candidates. Prerequisite: AEM 210 or equivalent. C. Gomes.
Course in applied mathematical programming. Emphasizes formulation of and interpretation of solution models of problems in economics and business. Studies blending, resource allocation, capital budgeting, transportation and financial planning, and inventory management. Introduces integer and nonlinear programming.

AEM 414(4140) Behavioral Economics and Managerial Decisions
Fall: 3 credits. Prerequisites: junior or senior standing; ECON 313 or PAM 200. Lab fee: $40. D. Just.
Behavioral economics integrates psychology and economics by identifying systematic anomalies in decision-making. These are now recognized to be an important source of error in business decisions, and provide the foundation for both behavioral marketing and finance. The course compares rational choice theory with behavior both in lecture and through a series of economics experiments in which students face situations that are likely to lead to outcomes such as "the winner's curse," the status quo bias, hyperbolic discounting, and bias in assessing risks. Students have the opportunity to evaluate their own decision-making.

AEM 415(4150) Price Analysis (also ECON 415)
Fall: 3 credits. Prerequisites: AEM 210 or equivalent. ECON 313 or PAM 200 or equivalent. H. M. Kaiser.
Focuses on the analysis of supply and demand characteristics of particular attention to agricultural products. Pays special attention to empirical analysis. Includes institutional aspects of pricing, temporal and spatial price relationships, price forecasting, and the economic consequences of pricing decisions.

AEM 416(4160) Consumer Demographics and Market Analysis (also D SOC 331[3310])
Summer: 3 credits. Prerequisite: AEM 210 or equivalent. W. Brown.
For description, see D SOC 331.

AEM 417(4170) Decision Models for Small and Large Businesses
Fall: 3 credits. Prerequisite: junior or senior standing (priority given to AEM majors). AEM 210 or equivalent. No F in weeks labs are held. C. L. van Es.
Focuses on economic and statistical models of decision making and their applications in large and small business settings. Demonstrates how use of models can improve the decision-making process by helping the decision maker. Emphasizes the importance of sensitivity analysis and the need to combine both quantitative and qualitative considerations in decision making. Draws cases from small business scenarios, the public policy arena, and corporate settings. Lab sessions are conducted implementing decision models with computers.

AEM 419(4190) Strategic Thinking
Fall: 3 credits. Prerequisite: PAM 200 or ECON 313. S-U grades optional. N. H. Chau.
The art of thinking strategically putsashed one's adversary at the core of the decision-making process, anticipating that the adversary is doing exactly the same thing. Businesses make investment decisions and innovate products in anticipation of the reaction of their rivals; managers make pay contingent upon performance, taking into account the reaction of their superordinates and superiors; national trade policies are formulated based on whether trading partners are committed to make creditible concessions. This course introduces and explores the use of game theory to understand these interactions; students are expected to work with a balanced dose of both theory and relevant case studies. The objective of the course is to facilitate students' ability to think strategically on firm level issues (e.g., pricing, advertising wars, product differentiation, and entry deterrence) and strategic policy interaction in international economic relations (e.g., trade wars, and the arms race).

AEM 420(4200) Investments
Spring: 3 credits. Prerequisite: AEM 210 or equivalent and AEM 324. Recommended: basic knowledge of statistics and linear algebra. Priority given to AEM students. S-U grades optional. A. Wang.
Introduces the basic conceptual frameworks and analytical tools used in investment analysis. These tools are then applied to a variety of financial applications, both theoretical and empirical. Topics include: forwards and futures, portfolio theory, CAPM, options, financial management, and selected advanced topics. A portion of this course involves the use of a spreadsheet or other computer programs.

AEM 421(4210) Derivatives and Risk Management
Fall: 3 credits. Prerequisites: AEM 210 and 324 or equivalents. Recommended: ECON 313 or equivalent and a calculus course; familiarity with calculus and probability and statistics. Priority given to students in AEM. S-U grades optional. H. Daouk.
Covers the pricing of derivatives and how derivatives can be used for the purpose of risk management and speculation. A portion of this course involves the use of a spreadsheet or other computer programs.

AEM 422(4220) Estate Planning (also MBA 562(5620))
Fall: 1 credit. Prerequisite: junior, senior, or graduate standing. S-U grades only. D. A. Grossman.
Fourteen sessions on the various aspects of estate planning techniques. Covers the law and use of trusts, the law of wills, federal and New York State estate and gift taxes, and substitutes for probate procedures.

AEM 423(4230) Contemporary Topics in Applied Finance
Fall: 3 credits. Prerequisites: ECON 101, MATH 111 or equivalents. AEM 210 or equivalent. AEM 324. Letter grades. V. Bogan.
Stimulates critical thinking about contemporary topics that attract attention in the press and among key financial decision makers. This analytical course draws on the theory of modern finance to facilitate the understanding of real world issues. Covers traditional topics in financial markets such as security trading, derivatives, fixed income, IPOs, portfolio formation, and market efficiency. Also explores newer issues such as technology and financial markets.

AEM 424(4240) Management Strategy
Fall and spring: 3 credits. Prerequisite: AEM seniors in business. Fall, G. Blalock; spring, D. Simon.
Calculates course designed to integrate what students have learned in other AEM courses with an emphasis on strategic decision making. Approaches issues from the standpoint of the board of directors, chief executive officer, and business unit managers. Focuses on what should be considered and how strategic decisions should be made.

AEM 425(4250) Small Business Management Workshop
Fall: 4 credits. Prerequisite: senior standing. AEM 325 or MBA 300 and permission of instructor. Cost of term project: approx. $100 per team. D. Streeter.
Students serve as counselors to small businesses in the central New York area and confront problems facing small personal enterprises. Encourages the application of business principles to an existing business and the witnessing of the results of firm-level decision making. Student teams meet with the business owners and course staff members at arranged times during the semester.

AEM 427(4270) Agribusiness Strategy
Fall: 3 credits. Prerequisite: AEM 220 or 302. B. A. Gloy.
Intended for students with an interest in agribusiness and designed to integrate previous course work and enhance
problem identification and solving skills. Focuses on the evaluation, formulation, and implementation of strategy designed to create and sustain competitive advantage for agribusiness firms. Covers industries analysis, firm analysis, market analysis and selection, risk analysis, strategy development, organizational design and structure, and leadership for agribusiness firms. Designed as a capstone course for the agribusiness management specialization.

AEM 428(4280) Valuation of Capital Investment

Spring. 3 credits. Prerequisites: AEM 210 and D. T.-C. Ng.

Focuses on the analysis of financial information—particularly firms' financial reports—for making decisions to invest in businesses. The primary focus is on equity (shares) and debt (bonds) valuation. This course examines various valuation models in detail and applies them in cases and projects involving listed companies. Topics include models of shareholder value, discounted cash flow approaches to valuation, the analysis of profitability, growth, and valuation generation in a firm, forecasting earnings and cash flows, pro forma analysis for strategy and planning, analysis of risk, and the determination of market price-earnings and market-to-book ratios.

AEM 429(4290) International Finance

Spring. 3 credits. Prerequisites: AEM 210 and 324. S-U grades optional. D. T.-C. Ng.

Teaches students about issues in international financial management and international investment. The major issues discussed include the balance of payments, the benefit of international diversification, and the analysis of international capital budgeting decisions. Specific topics include the determination of the cost of capital for foreign investments, the determination of exchange rates, and the impact of foreign exchange risks and country risks, and the use of innovative financing for the multinational corporation.

AEM 430(4300) International Trade Policy

Spring. 3 credits. Prerequisites: ECON 101–102 or equivalents and intermediate microeconomics course. S-U grades optional. N. H. Chau.

Examines the economic principles underlying international trade and monetary policy, and the policies, practices, and institutions that influence trade and foreign exchange markets. Also emphasizes applications to current topics in international trade policy, to trade in primary commodities, and to both developed and developing countries.

AEM 431(4310) Agricultural and Food Policy

Spring. 3 credits. Prerequisites: junior, senior, or graduate standing; PAM 200, ECON 301, 313, or equivalent. S-U grades optional. A. Novakovic.

Acquaints students with current and historically important U.S. policies related to agriculture and food, including subsidies and regulations related to markets, production, and the environment. Explores methods of policy analysis, and students learn to critique policies and write policy briefs.

AEM 432(4320) Business and Governments in a Global Marketplace

Fall. 3 credits. Prerequisite: intermediate microeconomics course. C. K. Ranney.

The government agency and the individual business enterprise are two of the most powerful institutions in modern society. This course looks at the economic interfaces between government and business. The shifting and complicated relationships between them exert great influence on the changing performance of the economy and on the lives of citizens. These relationships range from cooperative to competitive, from friendly to hostile. It is an uneasy relationship, each side possessing basic powers and yet each having an important need for the other. In the United States, the relationship is a mixed economy in which the public and the private sectors interact in many ways. Government exercises a variety of important powers in dealing with the individual private enterprise, ranging from taxation to regulation. Business, in turn, relies on constitutional protections as well as on public support of its basic role in creating income, employment, and material standards of living. In a dynamic and increasingly globalized economy, the business-government relationship is constantly changing and the line between public and private sectors frequently shifts. Future managers are constantly confronted with issues that relate to government-business interfaces.

AEM 433(4330) Devolution, Privatization, and the New Public Management

[also CRP 412(4120), FGSS 411/611(4110/6110)]

Fall. 4 credits. Prerequisite: ECON 101. S-U grades optional. M. E. Warner.

For description, see CRP 412.

AEM 434(4340) Government Policy Workshop

[also CRP 418(4180), FGSS 420(4200)]

Spring. 4 credits. S-U grades optional. M. E. Warner.

For description, see CRP 418.

AEM 437(4370) Technological Change and Innovation Strategy

Spring. 3 credits. Prerequisites: AEM 220 and ECON 101. A. Leiponen.

Explores innovation and technological change. Studies how technological change affects economies and industries, and how innovation of new products, processes, and services takes place in firms. Focuses on the creation, management, and exchange of knowledge within and across organizational boundaries.

AEM 442(4420) Emerging Markets

Fall. 3 credits. Prerequisites: senior or graduate standing. AEM 240 and PAM 200 or ECON 313. R. D. Christy.

Provides a framework for examining the effectiveness of marketing strategies in economies in transition and identifying the challenges and opportunities for firms in low-income economies to access industrial markets. Appraises the risk of entering markets in low-income economies and assesses the political, legal, cultural, and economic forces, and when and how competitors are likely to react. The course is designed to provide opportunities to learn about the theoretical and applied perspectives of marketing strategy from readings, case analyses, and guest speakers.

AEM 443(4430) Food-Industry Strategy

Fall. 3 credits. Prerequisite: AEM juniors, seniors, or graduate students; AEM 240 or 448; or permission of instructor. J. M. Hagen.

Examines the decisions that businesses must make, including what to sell, where to invest, when to outsource, and how to market—all in a changing and competitive environment. While the principles are applicable to any competitive environment, the focus is on the food industry, to allow an in-depth look at how the various players (manufacturers, retailers, and others) both cooperate and compete in the process of supplying food to consumers. Students learn how such issues as global food, industry consolidation, new technologies, and health concerns add to their challenges and opportunities.

AEM 444(4440) Marketing Strategy and Brand Management

Fall. 3 credits. Prerequisite: AEM 240. S. P. Raj.

A sound marketing strategy is essential for the long-term success of a firm. This requires an understanding of how customer needs evolve, how product-market boundaries shift, and how competitors are likely to react. The seminar provides an understanding of the strategic roles of established and new products, need to be assessed, appropriate resource allocations made, and strategies developed to ensure sustained growth. The course is designed to provide opportunities to learn about the theoretical and applied perspectives of marketing strategy from readings, case analyses, and guest speakers.

AEM 445(4460) Food Marketing Colloquium

Spring. 1 credit. Prerequisite: junior or senior standing; extensive course work in food industry management and marketing. D. J. Persico.

AEM 445 and 447 have been developed as a two-semester special seminar that provides the weekly focus for the Food Marketing Fellows Program. The seminar is designed to provide advanced topics in food marketing, many of which have an important international dimension and are presented by industry members. Several field trips are taken. Students participate in research topics on various aspects of the food industry.

AEM 446(4470) Food Marketing Colloquium

Spring. 1 credit. Prerequisite: food marketing fellows. D. J. Persico.

For description, see AEM 446.

AEM 448(4480) Food Merchandising

Spring. 3 credits. Prerequisite: junior or senior standing; AEM 240. D. J. Persico.

Covers merchandising principles and practices as they apply to food industry situations. Examines the various elements of merchandising such as buying, pricing, advertising, promotion, display, store layout, price planning and control, and merchandising strategy. considers the impact of the food industry trends and initiatives for other industry members, public policymakers, and consumers.

AEM 449(4490) Global Marketing Strategy

Spring. 3 credits. Prerequisite: junior, senior, or graduate standing; marketing course. J. M. Hagen.

Examines opportunities and challenges in the rapidly changing global marketplace. Topics
include the decision to serve a foreign market, alternative strategies for entry into foreign markets (such as exporting or establishing a local subsidiary), and issues in implementing those strategies. Includes case analysis and discussion.

AEM 450(4500) Resource Economics (also ECON 450(4500))
Fall. 3 credits. Prerequisites: MATH 111, ECON 513, and familiarity with Excel. J. M. Conrad.
Constructs dynamic models of renewable, nonrenewable, and environmental resources to examine market allocation and optimal resource management.

AEM 451(4510) Environmental Economics (also ECON 409(4090))
Spring. 3 credits. Prerequisites: undergraduate standing; intermediate microeconomics course, and calculus. S-U grades optional. G. L. Poe.
Explores the economic foundations for public decision making about environmental commodities and natural resources, using tools from intermediate microeconomics. Emphasizes the welfare economic approach for allocating public goods, with specific emphasis on market failure, externalities, benefit-cost analysis, nonmarket valuation techniques, and cost-effective policy instruments. Also examines property rights/ institutional perspectives and ecological economic concepts.

AEM 460(4600) Security Trading and Market Making
Spring. 3 credits. Prerequisites: AEM 324. S-U grades optional. A. Wang.

AEM 464(4640) Economics of Agriculture Development (also ECON 464(4640))
Fall. 3 credits. Prerequisites: ECON 101–102 or permission of instructor. R. D. Christy.
Provides an understanding of the economics of the agricultural sector in low-income countries. Also covers more general issues of economic development beyond the agricultural sector to provide the necessary context for an understanding of rural problems. Topics include the nature of development and technical change, welfare and income distribution, land reform, food and nutrition policy, food security and food aid, competition with more developed countries and international markets, the effect of U.S. policy on agricultural development, and the role of international institutions. Uses examples from a wide variety of developing countries to illustrate the basis for economic analysis.

AEM 494(4940) Undergraduate Special Topics in Applied Economics and Management
Fall or spring. 4 credits max. S-U grades optional. Staff.
The department teaches "trial" courses under this number. Offerings vary by semester and are advertised by the department before the beginning of the semester.

AEM 497(4970) Individual Study in Applied Economics and Management
Fall or spring. Variable credit. S-U grades optional. Students must register using independent study form (available in undergraduate program office in Warren Hall). Staff.
Used for special projects designed by faculty members.

AEM 498(4980) Supervised Teaching Experience
Fall or spring. 1–4 credits. Students must register using independent study form (available in undergraduate program office in Warren Hall). Staff.
Designed to give qualified undergraduate experience through actual involvement in planning and teaching courses under the supervision of department faculty. Students cannot receive both pay and credit for the same hours of preparation and teaching.

AEM 499(4990) Undergraduate Research
Fall, spring, or summer. 1–4 credits. Prerequisites: GPA of at least 2.7. Students must register using independent study form (available in undergraduate program office in Warren Hall). S-U grades optional. Staff.
Permits outstanding undergraduates to carry out independent study of suitable problems under appropriate supervision. Students cannot receive both pay and credit for the same hours of work.

AEM 555(5550) Environmental Management and Policy
Fall. 3 credits. Prerequisites: ECON 101 and 102 or equivalent and calculus course. L. D. Chapman.
Seminar giving an inside perspective on implementation and evaluation of environmental policy in a business or organization. Examines the effectiveness of the new market-based green policies; analyzes the operational significance of sustainability in a business context; and come to understand the economic basis for government's role in environmental protection. Uses HBS case studies; each seminar participant prepares a case study of environmental management in a business or organization. Makes extensive use of guest speakers from finance, electricity, forest products, construction, and manufacturing.

[AEM 605(6050) Agricultural Finance
Fall. 3 credits. Prerequisite: AEM 324 or 405 or equivalent. Not offered 2005–2006. B. A. Gloy.
Covers advanced topics in agricultural finance, including investment analysis, capital budgeting under uncertainty, decision analysis, risk management, capital structure, and financial intermediaries.]

AEM 608(6080) Production Economics (also ECON 408[4080])
Fall. 3 credits. Prerequisite: ECON 313 and MATH 111 or equivalents. L. W. Tauer.
Studies the theory of production economics with emphasis on applications to agriculture and natural resources. Topics include the derivation, estimation, and use of production, cost, profit, revenue, demand, and supply functions. Discusses the concepts of efficiency and productivity. Introduces production response over time and under risk.

AEM 611(6110) Global Modeling
Spring. 3 credits. Prerequisite: graduate micro theory course. T. D. Mount and R. N. Boisvert. Taught over Internet by Tom Hertel at Purdue University.
Teaches how to use a global general equilibrium model (GTAP) for research on trade and environmental issues. Weekly assignments start with the components of a single-country model and end with a full global model. A final project and the assignments are the primary course requirements.

AEM 612(6120) Applied Econometrics
Fall. 1 credit. Co-requisite: AEM 411. D. Just
Designed for M.S. and Ph.D. students who do not meet the prerequisites for other graduate-level econometrics courses. Complements AEM 411, providing greater depth of understanding of econometrics and exposure to applied econometric literature. Focuses on preparing students to conduct their own applied economic research.

AEM 630(6300) Policy Analysis: Welfare Theory, Agriculture, and Trade (also ECON 430[4300])
Spring. 4 credits. Prerequisites: AEM 608 or PAM 603, ECON 313, or equivalent intermediate micro theory course incorporating calculus. H. de Gorter.
The first half of the course surveys the theory of welfare economics as a foundation for public policy analysis. Major issues addressed include the problem of social welfare measurement, the choice of welfare criteria, and the choice of market or nonmarket allocation. Basic concepts covered include measurement of welfare change, including the compensation principle, consumer and producer surplus, willingness-to-pay measures, externalities, and the general theory of second-best optimality. The second half focuses on public policy analysis as applied to domestic agricultural policy and international trade. The domestic policy component examines major U.S. farm commodity programs and related food and macroeconomic policies; protection; the effects on producers, consumers, and other groups. The international trade component examines the structure of world agricultural trade, analytical concepts of trade policy analysis, and the principal trade policies employed by countries in international markets.

AEM 632(6320) Open Economy Analysis: Theory and Applications
Spring. 3 credits. Prerequisites: ECON 313/314 or permission of instructor. S-U grades optional. N. Chau and S. Kyle.
Explores both recent theoretical and methodological advances as well as practical applications in analyzing current topics and issues in open economies. Brings together research methods pertinent to open economy macroeconomics and international trade policies to give students a basic understanding of how different aspects of contemporary debates are analyzed in practice.

AEM 633(6330) Devolution, Privatization, and the New Public Management (also CRP 612(6120), FGSS 611(6110))
Fall. 4 credits. S-U grades optional. M. E. Warner.
For description, see CRP 612.
AEM 634(6340) Government Policy Workshop (also CRP 618(6180), ECE 620) Spring. 4 credits. S-U grades optional. M. E. Warner. For description, see CRP 618.

[AEM 640(6400)] Analysis of Agricultural Markets (also ECON 440(4400)) Fall. 3 credits. Prerequisites: AEM 411 and 415 or equivalents. Offered every year; not offered 2005–2006. H. M. Kaiser. Focuses on the unique features of agricultural commodity markets. Emphasizes government and private institutions that affect these markets, as well as on models of price behavior including marketing margins and imperfect competition. Also covers empirical tools to evaluate market characteristics.

AEM 641(6410) Commodity Futures Markets Spring, weeks 8-14. 2 credits. Prerequisites: AEM 411 and 415 or equivalents. Recommended: AEM 640. W. G. Tomek. Focuses on markets for agricultural futures contracts. Emphasizes models of price behavior on futures markets including relationships among cash and futures prices. These principles provide a foundation for a discussion of hedging, speculation, and public policy issues.

AEM 642(6420) Globalization, Food Security and Nutrition (also NS 642(6420)) Fall. 2 credits. Prerequisites: permission of instructor, enrollment in a graduate program, and basic understanding of economics and nutrition. Letter grades. P. Pinstrup-Andersen. For description, see NS 642.

AEM 651(6510) Environmental and Resource Economics Spring. 4 credits. Core course for environmental management concentration/option. Prerequisite: graduate standing. Open to graduate students outside economics. W. D. Schulze. Review of welfare economics, environmental externalities, and common property resources, and a survey of current environmental and natural resource policy. Covers techniques for measuring the benefits and costs—including property value and wage hedonic approaches, travel cost models, and contingent valuation. Describes survey/data collection methods in detail. Explores innovative market mechanisms for resolving public good, common property, and externality problems. Students are required to complete a paper describing their own formal economic analysis of a natural resource or environmental problem.

[AEM 652(6520)] Land Economics Problems Fall or spring. 1 or more credits. Prerequisite: graduate standing and permission of instructor. S-U grades optional. Staff. Special work on any subject in the field of land and resource economics.

AEM 655(6550) Electric Systems Engineering and Economics (also ECE 551(5510)) Fall. 2 credits. Prerequisites: basic calculus and microeconomics courses. T. D. Mount and R. Thomas. For description, see ECE 551.

AEM 660(6600) Agroecosystems, Economic Development, and the Environment Spring. 3–4 credits. Prerequisite: graduate standing. Open to graduate students outside economics; additional sec TBA for economics majors. S-U grades optional. D. R. Lee. Examines selected topics in agricultural and economic development, technology assessment, ecosystem management and the environment, with a focus on developing countries. Topics include production efficiency, the natural environment, tradeoffs; sustainable technology development; trade and environment linkages; economics of conservation and development; and alternative methodologies for analyzing these interactions. Readings emphasize the economic literature, but also draw from the biophysical sciences, ecosystem management, and the broader social sciences.

AEM 667(6670) Topics in Economic Development (also ECON 770(7770)) Fall. 5 credits. Targeted to second-year graduate students. Prerequisites: basic first-year courses in ECON or AEM or permission of instructor. S-U grades optional. R. Kanbur. Topics vary from year to year but may include poverty, inequality, intra-household allocation, structural adjustment, and debt. Examination is by term paper.

AEM 670(6700) Economics of Consumer Demand (also PAM 608(6080)) Fall. 3 credits. Prerequisites: ECON 311 or 313 and two semesters of calculus. S-U grades optional. C. K. Ranney. Graduate-level introduction to theory and empirical research on household demand, consumption, and saving. Emphasizes the use of the theory in empirical research. Topics include neoclassical theory of demand, duality, complete demand systems, conditional demand, demographic scaling and translating, consumption, and savings. As time allows, Becker and Lancaster models of demand may be introduced.

AEM 694(6940) Graduate Special Topics in Applied Economics and Management Fall or spring. 3 credits max. S-U grades optional. Staff. The department teaches “trial” courses under this number. Offerings vary by semester, and are advertised by the department before the beginning of the semester.

AEM 698(6980) Supervised Graduate Teaching Experience Fall or spring. 1-4 credits; max. 4 credits during graduate program. Prerequisite: graduate standing; permission of instructor. Undergraduate students should enroll in AEM 498. Students must register using independent study form (available in undergraduate program office in Warren Hall). S-U grades optional. Staff. Designed to give graduate students teaching experience through involvement in planning and teaching courses under the supervision of departmental faculty members. The experience may include leading discussion sections, preparing, assisting in, or teaching lectures and laboratories, and tutoring. Students are expected to actually teach at least one hour per week for each credit awarded. Students may not receive both pay and credit for the same hours of preparation and teaching.

AEM 699(6990) M.P.S. Research 1–6 credits. Prerequisite: M.P.S. students. Credit granted for M.P.S. project report. Staff.

AEM 700(7000) Individual Study in Applied Economics and Management Fall or spring. Prerequisite: graduate standing; S-U grades optional. Credit, class hours, and other details TBA with faculty mentor. Staff. Used for special projects designed by faculty members. More than one topic may be given each semester in different sections. Student must register in section appropriate to topic being covered; section number is provided by instructor.

AEM 706(7060) Advanced Production Economics Fall. 3 credits. Prerequisite: AEM 608, 710, or equivalents. Highly recommended: ECON 609. Offered alternate years; not offered 2005–2006. R. N. Boisvert. Covers theoretical and mathematical developments in production economics, with emphasis on estimating production relationships, scale economies, technical change, and factor substitution. Emphasizes developments in flexible functional forms, duality, and dynamic adjustment models. Gives considerable emphasis to empirical specification and estimation. Discusses other topics (risk, supply response, and household production functions) based on student interest.

AEM 710(7100) Econometrics I Spring. 3 credits. Prerequisites: matrix algebra and statistical methods courses at level of ISTEP 311 or ECON 619. H. Daouk. Provides (together with AEM 711) a graduate sequence in applied econometrics that is suitable for M.S. and Ph.D. students. Covers linear-regression models and the associated estimation and testing procedures.

AEM 711(7110) Econometrics II Fall. 3 credits. Prerequisite: AEM 610 or equivalent. T. D. Mount. Coverage beyond AEM 610 of dynamic models, including single equation ARIMA, vector ARIMA, Kalman filtering, structural dynamic models, and regime switching. Topics include endogeneity, stability, causality, and cointegration.

AEM 712(7120) Quantitative Methods I Fall. 4 credits. Prerequisite: some formal training in matrix algebra. Highly recommended: course at level of BTRY 417. R. N. Boisvert. Comprehensive treatment of linear programming and its extensions, including postoptimality analysis. Topics include nonlinear programming, including separable, spatial equilibrium, and risk programming models. Discusses input-output models and their role in social accounting matrices and computable general equilibrium models. Makes applications to agricultural, resource, and regional economic problems.

AEM 713(7130) Dynamic Optimization Spring. 3 credits. Prerequisite: ECON 609. S-U grades only. J. M. Conrad. Concerned with the solution of dynamic allocation problems. Objectives are to (1) pose prototype optimization problems in discrete and continuous time, (2) introduce the common methods for solving prototype problems, (3) present a set of numerical...
problems, and thereby (4) equip students with basic theory and methods to perform applied research on dynamic allocation problems.

AEM 714(7140) Experimental Economics
Fall 4 credits. Prerequisite: ECON 609. Offered alternate years. W. D. Schulze. Surveys both experimental economics methods and research as an approach to test economic theory. Students participate as subjects in a series of illustrative computerized experiments ranging from double auctions to public goods provision. Topics include experimental methods; decisions and games; market designs and institutions; market power (monopoly, oligopoly); bargaining, compensation, and performance; public goods; externalities and voting; information and uncertainty; and economic anomalies. Students must design and write a paper describing their own experiment.

AEM 717(7170) Research Methods in Agricultural Economics
Spring 2 credits. Prerequisite: graduate standing. R. N. Boisvert. Discusses the research process and scientific method as applied in agricultural economics. Topics include problem identification, hypotheses, sources of data, sampling concepts and designs, methods of collecting data, questionnaire design and testing, field organization, and analysis of data. During the semester, each student develops a research proposal that may be associated with his or her thesis.

[AEM 730(7300) Seminar on International Trade Policy: Agriculture, Resources and Development
Spring 3 credits. Prerequisite: graduate standing; AEM 630 or equivalent. Not offered 2005-2006. D. R. Lee. Examines selected topics in the professional literature on international trade policy, focusing on agricultural trade and related topics, including trade liberalization, trade and environmental linkages, technological change, and trade policy, and agricultural trade and development.]

AEM 735(7350) Public Finance: Resource Allocation and Fiscal Policy (also ECON 733(7330))
Fall 4 credits. R. Kanbur. For description, see ECON 735.

[AEM 740(7400) Agricultural Markets and Public Policy
Spring, weeks 1-7 2 credits. Prerequisite: graduate standing; familiarity with multiple regression techniques at AEM 411 level or higher. Recommended: AEM 640. W. H. Lescar. Develops the concepts and methodology for analyzing the effects of public-policy directives to the improvement of performance in the U.S. food marketing system. Prospective topics include a survey of industry organization, institutional principles, antitrust and other legal controls, and coordination systems in agriculture. Topics may be adjusted to students' interests.]

AEM 744(7440) Advanced Consumer Research
Fall 3 credits. Prerequisite: graduate standing; priority given to CALS Ph.D. students, especially in AEM, nutritional science, or food technology. B. Wansink. Workshop providing students with a unique opportunity to develop an advanced theory-based understanding of consumers by using innovative methods and new research techniques. Class sessions alternate theory with implementation.

AEM 750(7500) Resource Economics
Fall 3 credits. Prerequisites: ECON 609 and 618, or AEM 713. J. M. Conrad. Uses optimal control and other methods of dynamic optimization to study the allocation and management of natural resources.

AEM 751(7510) Environmental Economics
Spring. 4 credits. Prerequisites: ECON 609 and 618, or AEM 713. S-U grades optional. R. N. Boisvert. Studies the basic theory and applications of environmental economics and policy. Extensions include comparisons of taxes, subsidies, and other policy instruments; an examination of the effects on policy of market imperfections, multiple positive and negative externalities, and other government regulations such as those in agriculture. Also examines the effects of uncertainty, and special problems associated with nonpoint externalities and asymmetric information. There is an extensive treatment and evaluation of contingent valuation and other methods for valuing nonmarket goods. Throughout, the theoretical results are highlighted through discussions of important empirical policy applications.

AEM 752(7520) Applied Welfare Economics: Nonmarket Valuation of Public Goods
Fall, first seven weeks of semester. 2 credits. Prerequisites: ECON 609 and graduate-level econometrics course or permission of instructor. G. L. Poe. Estimates of nonmarket values associated with improvements (or decrements) in public goods, such as environmental resources and public health and safety, are now widely required in public decision-making. This course develops the policy context and the economic-theoretic foundations of nonmarket valuation and benefit-cost analysis. Uses these foundations to develop empirical models of public goods valuation methods, including both stated (e.g., contingent valuation and stated-choice methods) and revealed (e.g., hedonic analysis, travel-cost method and defensive expenditures) preference methods.

AEM 762(7620) Microeconomics of International Development
Fall 3 credits. Prerequisite: completion of first-year Ph.D. course sequence in AEM or ECON or permission of instructor. S-U grades optional. C. B. Barrett. Focuses on models of individual, household, farm/farm, and market behavior in low- and middle-income developing economies. Topics include agricultural land, labor, and financial institutions; technology adoption; food security and nutrition; risk management; intra-household analysis; reciprocity networks; and product/ factor markets analysis. Emphasizes empirical research.

AEM 765(7650) Development Microeconomics Graduate Research Seminar
Fall/spring. 1-3 credits. Prerequisite: graduate standing or permission of instructor. C. B. Barrett. Graduate students and the instructor present draft research proposals, papers, and preliminary thesis results for group review and discussion. Students who actively participate by offering written and oral comments on others' work receive 1 credit. Students who also present their own proposal or paper receive 2 credits. Presentations last 75 minutes and thus represent a substantial investment of time. Students who present a second proposal or paper receive 3 credits.

AEM 800(8900) Master's-Level Thesis Research
Fall or spring. 1-9 credits. Prerequisite: permission of graduate committee chair. S-U grades only. Graduate faculty. For students admitted specifically to a master's program.

AEM 900(9900) Graduate-Level Thesis Research
Fall or spring. 1-9 credits. Prerequisite: permission of graduate committee chair. S-U grades only. Graduate faculty. For Ph.D. students only before "A" exam has been passed.

ANIMAL SCIENCE

AN SC 100(1000) Domestic Animal Biology I
Fall 4 credits. S-U grades optional. Lee, M W F 9:05; sec. T W or R 2:00-4:25.

AN SC 105(1050) Contemporary Perspectives of Animal Science
Spring 1 credit. Prerequisite: freshmen, sophomores, and first-year transfers. T 1:25 or W 12:20. D. J. R. Cherney and D. E. Bauman. A forum to discuss the students' career planning and the contemporary and future role of animals in relation to human needs.
AN SC 110(1100) The Animals That Sustain Us: Lecture
Teaches the importance of the symbiosis between humans and domestic animals and how animal use can be ethically, environmentally, and economically sound.
AN SC 111(1110) The Animals That Sustain Us: Lab
Teaches students to restrain and care for several species of domestic animals, including cats, dogs, sheep, cattle, goats, fish, and horses. Other species may be added according to student interest. Associated with AN SC 110 but may be taken separately.
AN SC 150(1500) Domestic Animal Biology II
Fall. 4 credits. S-U grades optional. Lec, M W F 9:05; lab/disc, T W or R 2:00-4:25; W. R. Butler and staff.
Second of a two-semester sequence (100/150) applying the basic biology and physiology of growth, defense, reproduction, and lactation to aspects of the production and care of domestic animals. Uses fresh tissues and organs from dead animals along with preserved specimens in laboratories, exercises, and demonstrations. Uses a colony of Japanese quail for growth exercises, behavior, and data collection.
AN SC 204 Sophomore Seminar: Domestic Animal Issues
Expression of discoveries, opinions, and solutions to problems in the area of domestic animal science and industry take on an extremely wide variety of forms. These expressions may include the peer-reviewed journal article, summaries of scientific work for the public grant writing for science, film, music, cowboy poetry, investigative journalism, web pages, online discussion groups, computer models and the conference. This course challenges students from any major with the criticism and practice of these arts. Topics used as points of reference for exposition of biological principles and for practicing those means of expression will vary as the years go on, but for 2005-2006 include: roles animals play in society; BSE; Sustained Us: Lecture
GRICULTURE AND LIFE SCIENCE 005-2006

AN SC 213(2130) Nutrition of the Dog
Spring, weeks 1-7. 1 credit. Prerequisite: AN SC 212 or equivalent. Offered alternate years; next offered 2007. Lec, W 7:30-9:25 P.M. A. W. Bell.
Covers digestive physiology, nutrient requirements, feeding management systems, and ration formulation. Describes signs of nutrient deficiencies and excesses.
AN SC 214(2140) Nutrition of Exotic Animals
Fall, weeks 1-7. 1 credit. Prerequisite: AN SC 212 or equivalent. Lec, W 7:30-9:25 P.M. H. F. Hintz.
Discusses nutrient requirements, sources of nutrients, feeding management systems, and ration formulation. Describes signs of nutrient deficiencies and excesses.
AN SC 215(2150) Exotic Avian Husbandry and Propagation
Fall. 2 credits. Limited to 100 students. Prerequisite: AN SC 100, 150, or one year introductory biology. Lec, M 2:30-4:25; J. Parks and D. Muscarella.
Natural history, care, management, health, and breeding of exotic avian species with emphasis on psittacines (parrots and related species) and raptors (birds of prey). Includes lectures, demonstrations, and local field trips.
AN SC 216(2160) Nutrition of the Cat
Fall, weeks 1-7. 1 credit. Prerequisite: AN SC 212 or equivalent. Offered alternate years; next offered 2006. Lec, W 7:30-9:25 P.M. H. F. Hintz.
Covers digestive physiology, nutrient requirements, feeding practices, and interactions of nutrition and disease.
AN SC 221(2210) Introductory Animal Genetics
Spring. 3 credits. Prerequisite: one year of college biology. Lec, T R 9:05; sec, T W R or F 2:00-4:25; E. J. Pollak.
Examination of basic genetic principles and their application to the improvement of domestic animals, with emphasis on the impacts of selection on animal populations.
AN SC 222(2220) Introduction to Canine Genetics
Winter or summer. 1 credit. Prerequisite: introductory biology or permission of instructor. (May not be taken for credit by students who have successfully completed AN SC 221.) S-U grades only. To receive credit, students must register through School of Continuing Education, www.sccornell.edu/DL/html/caninegenetics.html. E. J. Pollak.
Introduction to basic Mendelian genetics and simply inherited characteristics in the dog. This distance-education course is delivered by CD and web interaction for residents and nonresidents consists of lectures on basic genetic principles, probabilities, linkage and genetic testing, and seminars on genome mapping, inherited sexual disorders, bleeding disorders, and eye defects.
AN SC 250(2500) Dairy Cattle Principles
Fall. 3 credits. Prerequisite: AN SC 251, 351, 354, and 255. S-U grades optional. Lec, T R 10:10; lab, T or R 1:25-4:25; D. M. Galton and T. Batchelder.
Introduction to the fundamental scientific principles relating to dairy cattle production. Laboratories are designed to provide an understanding of production techniques.
AN SC 251(2510) Dairy Cattle Selection
Fall. 2 credits. Prerequisite: senior standing or permission of instructor. S-U grades optional. Lec, W 11:15-12:05; disc, W 12:20-1:10; D. M. Galton.
Application of scientific principles of genetic principles, and growth to sexual maturity; emphasizes economical traits to be used to improve genetic progress and herd profitability.
AN SC 265(2650) Horses
Fall. 3 credits. Prerequisites: AN SC 100 and 150 or permission of instructor. S-U grades optional. Lec, T R 9:05; lab, R 1:25-4:25; C. Colliver.
Selection, management, feeding, breeding, and training of light horses.
AN SC 280(2800) Molecular Biology in Agriculture and Medicine
Fall. 3 credits. Prerequisite: one year introductory biology. Lec, T R 10:10-11:25; S. M. Quirk.
Discusses the applications of molecular biology to animal research, animal agriculture, industry, and medicine. Introduction of basic recombinant DNA techniques followed by topics such as genome projects, comparative and functional genomics, genetic screening, gene therapy, transgenic animal production, and mammalian cloning. Class discussions and debates allow discussion of ethical issues raised by the use of these technologies.
AN SC 290(2900) Meat Science (also FD SC 290[2900])
Fall. 2 or 3 credits. Lec, T R 11:15; lab, M or R 12:20-3:20. Lec only, 2 credits; lec plus lab, 3 credits; lab cannot be taken without lec. J. E. Parks.
Introduction to meat science through a study of the structure, composition, and function of muscle and its conversion to meat. Also includes study of fresh and processed meat, microbiology, preservation, nutritive value, inspection, and sanitation. Laboratory exercises include anatomy, meat-animal surgery, meat cutting, wholesale and retail cut identification, inspection, grading, curing, sausage manufacture, and quality control. An all-day field trip to a commercial meat plant may be taken.
AN SC 300(3000) Animal Reproduction and Development
Spring. 3 credits. Prerequisite: AN SC 100-150 or equivalent and one year introductory biology. Lec, M W F 10:10; J. E. Parks.
Comparative anatomy and physiology of mammalian and avian reproduction, with emphasis on domestic and laboratory animals; fertilization through embryonic development, pregnancy, and growth to sexual maturity; emphasizes on physiological mechanisms and application to fertility regulation. Separate laboratory is offered to demonstrate fundamental aspects of reproduction and reproduction in technology.
AN SC 301(3010) Animal Reproduction and Development Lab
Spring. 1 credit. Limited to 30 students per lab. Prerequisite: AN SC 100-150 or equivalent; concurrent enrollment in or completion of AN SC 300 Lab. Lec, M W F or 1:25-4:25; J. E. Parks.
Demonstrates fundamental principles and applied aspects of mammalian and avian reproduction. A limited number of live
animals are used in some demonstrations. Dissection and examination of tissues from vertebrate animals are included in selected laboratories.

AN SC 305(3050) Farm Animal Behavior (also BIOAP 312[3120])

Spring. 2 credits. Prerequisites: one year introduced to animal behavior and introductory animal physiology (AN SC 100 and 150 or equivalent or BIOAP 311). Recommended: at least one animal production course or equivalent experience. S-U grades optional. Lect; T R 1:25-4:25. Staff.

The behavior of production species (avian and mammalian) influences the success of any management program. Students study behaviors relating to communication, learning, social interactions, reproduction, and feeding of domestic animals and their physiological basis. Management systems for commercial livestock production and their implications for animal behavior and welfare are stressed.

AN SC 323(3230) Equine Genetics Seminar

Fall. 2 credits. Prerequisite: AN SC 221 or equivalent. S-U or letter grades. Disc; T 1:25-2:15. P. A. Oltenacu. Presents and discusses topics of equine genetics. Students are also required to view one seminar each week. Seminars are animated PowerPoint presentations available in computer lab and can be viewed at flexible times during the week.

AN SC 341(3410) Biology of Lactation

Spring. 2 credits. Prerequisite: AN SC 100–150 or animal physiology course. Offered alternate years; next offered 2007. Lect; T R 9:05. Y. R. Boisclair and staff. Comprehensive survey of the biology of the mammary gland. Lectures cover (1) basic aspects such as anatomy and development of the mammary gland, biochemistry and hormone regulation of milk synthesis and regulation of gene expression in the mammary cells; (2) practical aspects such as the impact of lactation on nutrition, reproduction, and diseases. Lactation in the dairy cow provides the primary context, but examples from other mammals, including humans, are used.

AN SC 351(3510) Dairy Herd Management

Spring. 4 credits. Prerequisite: AN SC 250 or permission of instructor. Recommended: AEM 302. Lect; M W F 11:15; lab, W 1:25–4:25 and F (alternate weeks) 1:25–4:25.

Application of scientific principles to practical herd management with components of reproduction, milking, housing, records, and production economics. Laboratory emphasizes practical applications, analyses of alternatives, decision making, field trips, and discussion.

AN SC 354(3540) Dairy Cattle Health

Fall. 3 credits. Prerequisite: AN SC 250 or permission of instructor. Lect; T R 9:05–9:55; lab, R 1:25–4:25. D. M. Galton and A. R. Metz.

Application of scientific principles to practical herd management with emphasis on herd health and animal well-being. Laboratory emphasizes practical applications of herd health management including on-farm herd health analysis.

AN SC 355(3550) Dairy Cattle Nutrition

Spring. 3 credits. Prerequisite: AN SC 250 or permission of instructor. Letter grades only. Lect; W F 10:10; lab, R 1:25–4:25. T. L. Bauman and T. A. Roniker. Application of scientific principles to practical herd nutrition relating to herd production and feeding management. Laboratory emphasizes practical applications and field trips.

AN SC 360(3600) Beef Cattle

Spring. 3 credits. Offered alternate years; next offered 2007. Lect; T R 10:10. Staff.

Emphasizes the management of reproduction, nutrition, and selection in beef cattle enterprises. A cattle growth model is studied. Laboratories acquaint students with management skills through computerized simulations and working directly with cattle. Students spend several days during the semester feeding and caring for cows and their newborn calves.

AN SC 365(3650) Equine Nutrition

Fall. 3 credits. Prerequisites: AN SC 100, 212, and 265 or equivalent. S-U grades optional. Lect; M W F 9:05–9:55. Not offered 2005. Staff. Presents the principles of nutrition for horses. Discusses digestive physiology, sources of nutrients, feeding programs for various classes of horses, and interactions of nutrition and diseases.

AN SC 370(3700) Swine Nutrition and Management

Fall. 3 credits. Recommended: AN SC 212. Lect; T R 11:15; lab, T 2–4:25. Offered alternate years; next offered 2006. X. G. Lei and K. Roneker. Focuses on swine nutrition, feeding, and management. Lectures are integrated basic nutrition and swine system, including pig biology, digestive and metabolic development, nutritional biochemistry and physiology, impact of swine nutrition on environment, use of pig model in medicine, and current swine nutrition and biotechnology. Offers laboratory practice, animal projects, and problem troubleshooting.

AN SC 380(3800) Sheep

Spring. 3 credits. Lect; T R 10:10; sec, W 2–4:25; lab, R 2–4:25. Offered alternate years; next offered 2007. M. L. Thonney. Emphasizes the breeding, feeding, management, and selection of sheep from a production-system approach. Lectures and laboratories are designed to give students a practical knowledge of sheep production as well as the scientific background for improved management practices. Students work directly with sheep during laboratories and spend several (several) days during the semester feeding and caring for ewes and their newborn lambs.

AN SC 400(4000) Livestock in Tropical Farming Systems

Spring. 3 credits. Prerequisite: AN SC 250. Lab; M W F 10:10; lab, M W F 1:25–4:25. M. E. Van Amburgh. Besides tropical forages as hay or silage. Applied approach to predicting nutrient requirements and feed use to meet requirements with wide variations in cattle type, feed composition, and environmental conditions. Emphasizes dairy cattle. Discusses nutrient management to minimize cost of production and environmental effects. Computer models (Cornell Net Carbohydrate and Protein System) are used in the laboratory to apply the information presented in lectures.
including evaluation of feeding programs on
case study farms.

AN SC 412(4120) Whole-Farm Nutrient
Management (also CSS 412(4120))

Spring. 2- or 4-credit option. Prerequisite:
junior, senior, or graduate standing; AN SC
411. Offered as two modules. Enrollment in
Module 1 for first half of semester required
(2 credits). Consists of crop and
manure nutrient management planning; no
prerequisites for CALS students. Enrollment
in Module 2 for second half of semester is
optional (additional 2 credits), builds on
credit and manure nutrient management
planning module by integrating agronomic
nutrient management planning with herd
nutrient management planning. Lect; T R
11:15-12:30; lab, T 1:25—4:25 for both modules,
with work on case studies outside class.
M. E. Van Amburgh and Q. M. Kettersing.
Provides students with an understanding
of the concepts underlying whole farm
nutrient management planning to improve
profitability while maintaining water and air
quality. Students learn and apply concepts
in the development of a Comprehensive
Nutrient Management Plan (CNMP) that is
required for a Concentrated Animal Feeding
Operation plan to meet environmental
regulations. Students develop components
of a CNMP for a case study farm, using the
Cornell University Nutrient Management
Planning System (canMPS) and other tools.
All students enrolled must learn the concepts
and processes of developing the crop and manure
nutrient management plan component of
a CNMP during the first half of the semester
in Module 1. Students opting to continue
through the rest of the semester in Module
2 (4-credit option) build upon knowledge
learned in the first half of the semester by
learning the knowledge and skills necessary
to integrate crop production and herd feeding
management for reducing nutrient imports on
farms.

AN SC 414(4140) Ethics and Animal
Science

Fall. 2 credits. Prerequisite: junior or senior
D. J. R. Chermey.

Explores the place of humans in the biological
world, origins of ethics and morality,
speciesism, the use of animals for research
and agricultural purposes, transgenic animals.
A book review, participation in discussion in
class and online, and a project of the student's
choice are used to evaluate the performance of
each student.

AN SC 420(4200) Quantitative Animal
Genetics

Spring. 2 credits. Limited to 30 students.
Prerequisite: AN SC 221 or equivalent. S-U
grades only. Lect, M 12:20; sec, M 2:00-

Consideration of problems involved in
improvement of animals through application
of the theory of quantitative genetics, with
emphasis on genetic evaluation and analysis
of data for genetic parameters. Computer labs
use interactive matrix algebra programs for
problem solving.

AN SC 425(4250) Gamete Physiology
and Fertilization (also BIOAP 425(4250))

Fall. 2 credits. Limited to 50 students.
Prerequisite: AN SC 300 or equivalent.
Offered alternate years. Next offered 2005.
Lect; R 2:30-4:25, J. E. Parks.

Study of the formation, growth, differentiation,
and maturation of mammalian sperm and
ova; gamete transport and interaction with
male and female reproductive tracts; and
cytological, physiological, and molecular
changes required for fertilization. Lecture,
discussion, and aspects of gamete
physiology and in vitro technologies such as
cryopreservation, oocyte maturation, and
fertilization are covered.

AN SC 427(4270) Fundamentals
of Endocrinology (also BIOAP
427(4270))

Fall. 3 credits. Prerequisite: animal or
human physiology course or permission of

Physiology and regulation of endocrine
secretions. Emphasizes neuroendocrine,
reproductive, growth, and metabolic aspects
of endocrinology. Examples are selected from
many animals, including humans.

AN SC 451(4510) Dairy Herd Business
Management

Fall. 3 credits. Co-requisite: AN SC 456.
Lect, W 1:25-2:15; disc, W 2:30-4:25; lab, F

Emphasizes dairy herd business management
with application to herd management analysis.
Laboratory includes farm tours and analysis.

AN SC 456(4560) Dairy Management
Fellowship

Spring. 2 credits. Prerequisites: senior
standing; AN SC 351; permission of
instructor. S-U grades only. Times TBA.
D. M. Galton.

Designed for undergraduates who have a
sincere interest in dairy farm management.
Objective is to gain further understanding of
the integration and application of dairy farm
management principles and programs with
respect to progressive dairying and related
industries.

AN SC 457(4570) Communicating to
Hispanic Staff

Fall. 2 credits. Pre- or co-requisite: AN SC
250 or permission of instructor. Lect.
2:30-4:25. Staff.

Students with a focus on dairy management
learn to communicate with the increasingly
Spanish-speaking workforce to assure that the
knowledge gained in on-farm dairy management
and observations from the field are exchanged
accurately. This is the first of a sequence of
two courses developed to meet these goals.
Students are expected to be able to converse
and explain, through the use of live animals,
technical processes involved in the care
of livestock and to listen and understand
observations and concerns of Spanish-
speaking staff.

AN SC 458(4580) Communicating to
Hispanic Staff

Spring. 2 credits. Pre- or co-requisite: AN SC
250 or permission of instructor. Lect.
W 2:30-4:25. Staff.

Students with a focus on dairy management
need to be able to communicate with the
Hispanic workforce and upward mobility of
that workforce depends on knowledge of
cutting-edge dairy management. This is the
second course of a two-sequence program
that will further develop the students' skills
to be able to communicate in Spanish high-
level dairy production tasks and principles to
Hispanic dairy workers. Students are expected
to be able to converse and explain through
the use of live animals technical processes
involved in the care of livestock and to listen
and understand observations and concerns of
Spanish-speaking staff.

AN SC 494(4940) Special Topics in
Animal Science

Fall or spring. 4 credits max. Prerequisite:
undergraduate standing. S-U grades
optional. Staff.

The department teaches "trial" courses under
this number. Offerings vary by semester and
are advertised by the department before the
semester begins. Courses offered under the
number will be approved by the department
curriculum committee, and the same course is
not offered more than twice under this number.

AN SC 496(4960) Internship In Animal
Science

Fall or spring. 1-3 credits; may be repeated
for credit. Intended for students in animal
sciences. Prerequisite: permission of
instructor. Students must register using
independent study form (available in 140
Roberts Hall). S-U grades optional. Staff.
May include individual tutorial study or a
lecture topic selected by a professor. Because
topics may change, the course may be
repeated for credit.

AN SC 497(4970) Individual Study In
Animal Science

Fall or spring. 1-3 credits, limited to two
experiences during undergraduate career. Prerequisite: GPA of at least 2.7. Students
must register using independent study form (available in 140 Roberts Hall). Designed to consolidate the student's knowledge. A participating student assists
in teaching a course allied with his or her
education and experience. The student is
expected to meet regularly with a discussion
or laboratory section, to gain teaching
experience, and regularly to discuss teaching
objectives, techniques, and subject matter with
the professor in charge.

AN SC 499(4990) Undergraduate
Teaching

Fall or spring. 1-3 credits, limited to two
experiences during undergraduate career. Prerequisite: GPA of at least 2.7. Students
must register using independent study form (available in 140 Roberts Hall). Designed to consolidate the student's knowledge. A participating student assists
in teaching a course allied with his or her
education and experience. The student is
expected to meet regularly with a discussion
or laboratory section, to gain teaching
experience, and regularly to discuss teaching
objectives, techniques, and subject matter with
the professor in charge.

AN SC 499(4990) Undergraduate
Research

Fall or spring. 6 credits max. during
undergraduate career. Prerequisite: junior
or senior standing; GPA of at least 2.7. Not
open to students who have earned 6 or
more undergraduate research credits
dependent on the college. Students must register using independent study form
(available in 140 Roberts Hall).

Affords opportunities for students to carry
out independent research under appropriate
supervision. Each student is expected to
review pertinent literature, prepare a project
outline, conduct the research, and prepare a
report.
Emphasizes metabolism, gene regulation, antioxidation, and genetic defects related to mineral nutrition. Team-taught lectures cover topics ranging from single gene mutation to social and environmental aspects of mineral nutrition and mineral-related disorders. Discusses effective approaches to improve global mineral nutrition by agriculture and food systems.

AN SC 606(6060) Ruminant Nutrition: Microbial Ecology and Forage Chemistry
Spring. 4 credits. Prerequisites: AN SC 212, biochemistry, and nutrition courses. Letter grades only. Lec, T 2:45—4:25. Offered alternate years; next offered 2006. X. G. Lei and C. C. McCormick.

Provides an overview of ruminant nutrition with an emphasis on microbial ecology, forage chemistry, and rumen function.

AN SC 610(6100) Animal Science Seminar
Fall and spring. 1 credit. Prerequisite: graduate standing. S-U grades optional. Lec, T 12:20—1:10. A. W. Bell.

Weekly seminar on topics related to animal science. The requirement for an S grade is regular attendance at seminars during the semester.

AN SC 619(6190) Field of Nutrition Seminar (also NS 619(6190))
Fall and spring. 0 credits. No grades given. For description, see NS 619.

AN SC 620(6200) Seminar in Animal Breeding
Fall and spring. 1 credit. Prerequisite: graduate standing and major or minor in animal breeding. S-U grades only. Times TBA. E. J. Pollak.

Current topics in animal breeding and statistics as applied to genetic evaluation and selection of domestic animals.

AN SC 621(6210) Reproductive Physiology/Endocrinology Seminar
Fall and spring. 1 credit. Prerequisite: graduate standing or permission of instructor. S-U grades only. Lec, W 4:00. W. R. Butler and staff.

Current research in reproductive physiology is presented by staff members, graduate students, and visitors.

AN SC 622(6220) Seminar in Animal Metabolism
Fall and spring. 1 credit. Prerequisite: permission of instructor. S-U grades only. Lec, R 4:00. Y. R. Boisclair and D. E. Bauman.

Current issues in metabolism are discussed as they relate to productivity, well-being, and diseases of animals. Students present research proposals for new initiatives, progress reports on ongoing projects and recent peer-reviewed publications of high significance.

AN SC 625(6250) Nutritional Toxicology (also TOX 625(6250))

Explores toxicological principles and a selective survey of natural food and feed toxicants. At the end of this course, students understand relationships between nutrition and toxicology; are prepared to conduct research concerning the effects of naturally occurring toxicants; and are able to use multimedia to present their understanding of a class of toxicants. Occasional on-campus field trips. In addition, students read printed and electronic communications and create STELLA simulation models and a system of web pages related to a specific family of toxicants.

Fall and spring. 1 credit. S-U grades only. Times TBA. R. W. Blake.

Study of topics in animal science more advanced than, or different from, other courses. Subject matter involves research and training collaborations between Cornell University and Mexican institutions in the Gulf Region of Mexico.

AN SC 650(6500) Molecular Techniques for Animal Biologists
Spring. 4 credits. Limited to 15 students. Prerequisites: BIOHM 330 or 332 or 333 or equivalents and permission of instructors. Lec, T 11:15; lab, T and R 1:25—4:25. Offered alternate years; next offered 2006. Y. Boisclair and staff.

Lab course designed for students who have little or no experience with techniques in molecular biology. Emphasizes modern techniques used in conducting research in animal-related sciences such as nutrition, physiology, genetics, and immunology (e.g., subcloning, mutagenesis of DNA, RT-PCR, analysis of gene and protein expression, overexpression of proteins, and study of protein-DNA interactions). Lectures introduce laboratory exercises and supplement laboratory topics. Students perform an independent project requiring time outside scheduled laboratories and give a scientific presentation.

AN SC 694(6940) Special Topics in Animal Science
Fall or spring. 4 credits max. Prerequisite: graduate standing. S-U grades optional. The department teaches "trial" courses under this number. Offerings vary by semester and time of publication. If changes occur, the department will provide new information as soon as possible.

AN SC 720(7200) Advanced Quantitative Genetics
Spring. 3 credits. Prerequisites: matrix algebra, linear models, and mathematical statistics courses. S-U grades optional. Times TBA. Offered alternate years; next offered 2006. R. L. Quaas.

Covers statistical methods used in a variety of problems in the quantitative genetics of animal populations. The initial focus is the estimation of breeding values for purposes of ranking animals for selection. The core of the course is the mixed linear model; linear estimators and predictors are treated extensively. Emphasizes the importance of appropriate modeling; makes generalizations to nonlinear models, via Bayesian principles, i.e., inferences from posterior distributions.

AN SC 800(8900) Master's-Level Thesis Research
Fall or spring. Credit TBA, max. 12 per semester. Prerequisite: permission of adviser. S-U grades only. Graduate faculty. For students admitted specifically to a master's program.

AN SC 900(9900) Graduate-Level Thesis Research
Fall or spring. Credit TBA, max. 12 credits per semester. Prerequisite: permission of adviser. S-U grades only. Graduate faculty. For students admitted to candidacy after "A" exam has been passed.

Related Courses in Other Departments
Introductory Animal Physiology (BIOAP 311)
Introductory Animal Physiology Laboratory (BIOAP 319)

BIOLICAL AND ENVIRONMENTAL ENGINEERING

Note: Class meeting times are accurate at the time of publication. If changes occur, the department will provide new information as soon as possible.

BEE 102(1102) Introduction to Microcomputer Applications
Fall or spring. 3 credits. All students, including graduating seniors and pre-enrolled students, must attend first lec to guarantee admittance and select a lab sec. Letter grades only. Lec, fall: T R 8:00—9:50; lab, L 10:00—11:50. Offerings vary by semester and time of publication. If changes occur, the department will provide new information as soon as possible.

Related Courses in Other Departments
Introductory Animal Physiology (BIOAP 311)
Introductory Animal Physiology Laboratory (BIOAP 319)

Oxidation and Reduction (NS 602)

Basic Immunology Lectures (BIO G 305)
Introduction to application packages on microcomputers. Laboratories provide experience with word processing, object-oriented and bit-mapped graphics, spreadsheets, visual basic macros, database management, computer-aided graphics, and web page authoring. An independent project using spreadsheets, presentation graphics, and word processing is required. These packages and others such as anti-virus software and those used for research or information are discussed and demonstrated in the lectures, along with an overview of computer hardware and health hazards and social issues of computing.

BEE 110(1030) Introduction to Metal Fabrication Techniques
Spring. 3 credits. Limited to 18 students per lab. Lec, T 8-9:05-9:55; lab, M T or R 1:25-4:25; M or T 7:30-10:30 p.m.
T. J. Cook.
Emphasizes selection of proper materials and techniques to accomplish a variety of metal fabrication and maintenance projects. Covers hand and machine tools, fasteners, strengths of materials, classification and identification of metals, soldering, brazing, forging, pipe fitting, sheet metal work, controlling distortion, oxyacetylene cutting, and arc welding.

BEE 132(1040) Introduction to Wood Construction
Fall. 3 credits. Limited to 16 students per lab. Lec, T 9:05-9:55; lab, T W or R 1:25-4:25; T or W 7:30-10:30 p.m.
T. J. Cook.
Provides basic practice of wood construction. Covers site selection and preparation, drainage, water and septic development, footers and foundations, material properties, framing and roofing, comparison of alternatives to wood construction, use of hand and power tools, wood joining methods, fasteners, concrete work, and block construction. Each student plans and constructs an approved carpentry project.

BEE 151(1510) Introduction to Computer Programming
Fall. 4 credits. Limited to 22 students per lab. Lec, T 11:15-12:05; lab, W 12:20-2:15; 2:30-4:25; F 1:25-3:20; L. D. Albright.
Introduction to computer programming and concepts of problem analysis, algorithm development, and data structure in an engineering context. The programming language MATLAB with Simulink is implemented on personal computers and is applied to problems of interest in biological and environmental engineering.

BEE 200(1200) The BEE Experience
Spring. 1 credit. Requirement for BEE freshmen. Not required for students who have completed ENGR 150. Prerequisite: BEE majors or permission of instructor.
Letter grades only. Lec, T 1:25-2:15.
J. A. Bartsch.
Forum covering the career opportunities for engineering students and the activities and curricular and co-curricular opportunities. A series of seminars are given by practicing engineers, Cornell faculty members, alumni, and students. Students develop their undergraduate course plans, complete a professional level assignment to locate jobs and internships, and select future courses to meet their academic objectives and career goals.

BEE 222(2220) Bioengineering Thermodynamics and Kinetics
Spring. 3 credits. Prerequisites: MATH 192, one semester of introductory biology, or equivalent; PHYS 213 and chemistry course completed or concurrent. Lec, M W F 9:05-9:55. J. B. Huntor.
Living systems rely on chemical and phase equilibria, precise coordination of biochemical pathways, and the release of chemical energy as heat, all of which are governed by the laws of thermodynamics and the rates of chemical reactions. The course covers concepts and laws of thermodynamics as applied to phase transformations, work, heat, and chemical reactions; and reaction kinetics applied to industrial processes and living systems, all with a focus on biological examples.

BEE 251(2510) Engineering for a Sustainable Society (also ENGRD 251(2510))
Fall. 3 credits. Pre- or co-requisite: MATH 293. Lec, T R 10:10-11:25. B. A. Ahner.
Case studies of contemporary environmental issues including pollutant distribution in natural systems, air quality, hazardous waste management, and sustainable development. Emphasis is on the application of math, physics, and engineering sciences to solve energy and mass balances in environmental sciences. Introduces students to the basic chemistry, ecology, biology, ethics, and environmental legislation relevant to the particular environmental problem. BEE students must complete either BEE 251 or 260 according to their academic plan. BEE students who complete both BEE 251 and 260 receive engineering credit for only one of these courses.

BEE 260(2600) Principles of Biological Engineering (also ENGRD 260(2600))
Spring. 3 credits. Pre- or co-requisite: MATH 293. Lec, T R 8:40-9:55. Offered spring 2006 and fall 2006 and every fall thereafter. A. J. Baenmmer.
Focuses on the integration of biological principles with chemical, physical, and engineering sciences. Students learn how to formulate equations for biological systems in class and practice in homework sets. Topics range from molecular principles of reaction kinetics and molecular binding events to macroscopic applications such as energy and mass balances of bioprocessing and engineering design of implantable sensors. BEE students must complete either BEE 251 or 260 according to their academic plan. BEE students who complete both BEE 251 and 260 receive engineering credit for only one of these courses.

BEE 299(3299) Sustainable Development: A Web-Based Course
Spring. 3 credits. Prerequisite: at least sophomore standing. S-L grades optional. N. R. Scott.
Sustainable development is the dominant economic, environmental, and social issue of the 21st century. This course develops the concepts of sustainable development as an evolutionary process, demanding the integration of the physical sciences and engineering with the biological and social sciences for design of systems. Topics include the nature of ecosystems, global processes, sustainable communities, and industrial ecology and life cycle analysis.

BEE 305(3050) Principles of Navigation (also NAV S 301(3050))
Fall. 4 credits. 4 classes each week (lec-rec-project work). Lec, T R 8-9:15; lab, F 8-9:50 or 9:05-9:50. L. Leirnir.
Introduction to the fundamentals of marine navigation emphasizing piloting and celestial navigation procedures. Covers coordinate systems, chart projections, navigational aids, instruments, compass observations, time, star identification, use of the nautical almanac, tides, and currents. Also briefly discusses electronic navigation systems.

BEE 310(1050) Advanced Metal Fabrication Techniques
Spring. 1 credit. 2-credit option available. Prerequisite: BEE 110 or permission of instructor. Lab, F 1:25-4:30. T. J. Cook.
Principles and practices beyond the scope of BEE 110. Includes out-of-position, high-carbon steel and cast iron welding. Topics such as soldering and brazing of aluminum, hard surfacing, both tungsten (TIG) and metal (MIG) gas metal, and plasma-arc and oxy cutting of metals. Planning, development, and fabrication of a metal construction project is required for the 2-credit option.

BEE 325(3250) Environmental Management
Fall. 3 credits. Lec, T R 2:55-4:10.
W. J. Jewell.
Explores the decline in environmental quality caused by human activities and the limits of science and technology solutions. Emphasizes understanding complex issues such as global warming and deriving sustainable solutions, which are illustrated with case studies. Includes field trips to water supply and waste treatment facilities. Emphasizes water, using energy, air quality, and soil evaluations to illustrate environmental quality problems. Meets concurrently with BEE 625. BEE 625 students complete a semester-long design-oriented project.

BEE 330(3500) Biological and Environmental Transport Processes
Fall. 3 credits. Pre- or co-requisites: MATH 221 or 241 and fluid mechanics course. Lec, M W F 11:15-12:05; disc, W 2:30-3:20, two evening prelims. A. K. Datta.
Focuses on understanding the principles of heat and mass transfer in the context of biological, biomedical, and environmental systems. Emphasizes physical understanding of transport processes and simple reaction rates with application examples from plant, animal, and human biology, the environment (soil, water, air), and industrial processing of food and biomaterials.

BEE 350(3600) Molecular and Cellular Bioengineering (also BME 350(3600))
Spring. 3 credits. Prerequisite: biochemistry course or AEP 252 or permission of instructor. Lec, T R 2:55-4:10. D. Luo.
Biological engineering at the molecular and cellular level, focusing on different organisms (viruses, bacteria, cells, animals, and plants) and different scales (nano, molecular, cellular, tissue, and environment) with two underlying themes: DNA and cancer. Introduction to quantitative analysis and measurement as well as ethics in molecular and cellular bioengineering with emphasis on integration of molecular and cell biology with engineering.
BEE 385(3650) Properties of Biological Materials
Mechanics and structural properties of biological materials; mechanical testing of animal, plant, and food products. Laboratory exercises involve quasistatic and dynamic testing of materials and interpretation of test results. Uses experimental techniques to determine engineering properties of these materials. Satisfies BEE laboratory experience requirement.

BEE 368(3680) Biotechnology Applications: Animal Bioreactors
Fall. 3 credits. Prerequisite: biochemistry course or permission of instructor. Lec; M W F 10:10–11:00. R. C. Gorowit.
Introduces students to the biotechnological applications of animals; their organs, tissues, and cells as bioreactors for the production of substances such as pharmaceuticals; growth factors, anti-tumor proteins, antibodies, and vaccines. Exposes students to various design issues, technical constraints, societal concerns, and ethical considerations of this biotechnology.

BEE 371(3710) Physical Hydrology for Ecosystems
Spring. 3 credits. Prerequisite: MATH 192 or permission of instructor. Lec; T R 9:05–9:55; lab, R 2:30–4:25. T. S. Steenhuis and M. T. Walter.
Physical hydrological processes and their interaction with ecological systems and human activities; surface and near-surface processes and introduction to deep groundwater hydrology. Topics include hydrologic cycles, watershed hydrology, ecosystem–watershed interactions, runoff generation, physical and biophysical vadose-zone processes, soil erosion, ecohydrology, biogeochemical–watershed budgets. Assignments and lab activities provide opportunities to manipulate, and analyze hydrological data in various contexts.

BEE 401(4010) Renewable Energy Systems
Spring. 3 credits. Prerequisite: college physics. Lec; T R 10:10–11:25. L. D. Alfright.
Introduces energy systems with emphasis on quantifying costs and designing renewable energy systems to convert environmental inputs into useful forms of energy. Covers solar energy, small-scale hydropower, wind, bio-conversion processes, house energy balances. Focuses on the technologies and small-scale system design, not policy issues. Use of spreadsheets is extensive.

BEE 427(4270) Water Sampling and Measurement
Fall. 3 credits. Satisfies BEE laboratory experience requirement. Prerequisites: fluids or hydrology course and MATH 191. Lec; T R 9:05–9:55; lab, T 1:25–4:25. L. D. Geohring and T. S. Steenhuis.
Get your feet wet with this field-based lab course on water sampling methods where scientists are integrating monitoring technologies are integrated to quantify, characterize, and analyze environmental engineering problems. Focuses on quantification of surface and subsurface flow and quality, and includes sampling techniques for seals and sediment. Addresses standard environmental site characterization and monitoring methods, quality assurance and control protocols, and interpretation of watershed loading of contamnants.

BEE 435(4350) Principles of Aquaculture
Spring. 3 credits. BEE students who wish to take this course to satisfy BEE capstone design requirement must co-register in BEE 496 for 1 credit hour. Prerequisite: at least junior standing. Lec; W 1:25–4:25. M. B. Timmons.
In-depth treatment of the principles of aquacultural engineering; mass balances, waste-treatment system design, gas conditioning, and fish economics, and fish processing. Presents nutrition and fish health in the context of global and local demand. Builds upon previous biology and engineering course work and emphasizes fish-production system design. Includes "hands-on" experiences and field trips.

BEE 450(4500) Bioinstrumentation
Spring. 3 credits. Satisfies both BEE laboratory experience and BEE capstone design requirement. Satisfies College of Engineering technical writing requirement when co-registered in BEE 495. Prerequisite: MATH 294, PHYS 213, or permission of instructor. Lec; T R 8:40–9:55; lab, M, T, or W 2:30–4:25. D. J. Aaneshansley.
Lab-based course emphasizing biological and biomedical instrumentation. Considers the electronic instrument from sensor to computer. Static and dynamic characteristics of components and systems are determined theoretically and empirically. General analog and digital signal conditioning circuits are designed, constructed, and tested.

BEE 453(4530) Computer-Aided Engineering: Applications to Biomedical Processes (also M&AE 453(4530))
Spring. 3 credits. Satisfies BEE capstone design requirement. Prerequisite: heat and mass transfer (BEE 350 or equivalent). Lec; M W 10:10–11; computation disc/lab, F 10:10–11. A. K. Datta.
Introduction to simulation-based design as an alternative to prototype-based design. Application and optimization of complex real-life processes using industry-standard physics-based computational software on a supercomputer or on high-end personal computers. Covers biomedical heat and mass transfer processes, including cryosurgery, hyperthermia treatment, laser eye surgery, detection of breast cancer, and drug delivery. Computational topics introduce the finite-element method, pre- and post-processing, and pitfalls of using computational software. Students choose their own term project, which is the major component of the course (no final exam).

BEE 454(4540) Physiological Engineering
Engineering analysis and design in the physiology of animals and humans. Covers the use of engineering principles to study how animals work. Nature and to intervene in physiological functions. The two major engineering themes are: signal processing as related to neural conduction, sound processing, vision, and image processing; and physiological systems relating cardiovascular and respiratory systems, bioenergetics, and bird flight. Laboratories involve experiments, computing applications, field trips, and live animal demonstrations.

BEE 456(4560) Biomechanics of Plants (also BIOPL 456(4560))
Takes an engineering approach to plant form and function following the text Plant Biomechanics. Topics include mechanical behavior of materials, effect of geometry on mechanical behavior, plant-water relations, plant cell walls, mechanical behavior of tissues, mechanical attributes of organs, the plant body, fluid mechanics and biomechanics, and plant evolution.

BEE 459(4590) Biosensors and Bioanalytical Techniques
Spring. 4 credits. Satisfies BEE capstone design requirement and BEE 499 experience requirement for engineering students. Prerequisites: biochemistry course and permission of instructor. Lec; T R 11:40–12:55; lab, M 1:25–4:25 and 7:30–10:30 M. R. M. Baeumner.
Provides students with an understanding of the scientific and engineering principles of biosensors and bioanalytical techniques. Addresses selected topics from simple biosensors to micro/nanofabricated Micro Total Analysis Systems (MicroTAS). Biosensor and Micro TAS applications in environmental analysis, food safety, and medical diagnostics are explored. Students give oral presentations in lecture, prepare a biosensor of their choice in the laboratory, and present a poster in a biosensor workshop at the end of the semester. Undergraduate students work together in teams of two to four.

BEE 464(4640) Bioseparation Processes
Fall. 3 credits. Prerequisites: introductory biochemistry, physiological chemistry 453(4530), or equivalent, or permission of instructor. Lec; M W F 12:20–1:10. J. B. Hunter.
Bioseparation is the science and engineering of fractionating and purifying biological materials: DNA, proteins, living cells, antibiotics, biotoxins, and even foods. This course covers separation methods used in the biotechnology industry, principles governing these methods, approaches to improving bioseparation performance, and the special challenges of scale-up. Key topics (centrifugation, filtration, extraction, membrane methods, ion exchange, chromatography, electrophoresis) are supplemented with student presentations. Intended for seniors and graduate students in engineering, chemistry, biology, and food science.

BEE 471(4710) Introduction to Groundwater (also EAS 445(4710))
Spring. 3 credits. Prerequisites: MATH 293, fluid mechanics or hydrology course. Lec; T R 10:10–11:25; lab trip. L. M. Catlles and T. S. Steenhuis.
Intermediate-level study of aquifer geology, groundwater flow, and contamination of aquifers and cleanup methods. Describes transport of pesticides and toxics through the unsaturated zone and aquifers. Discusses theoretical and practical applications. Includes short field trips.
BEE 473(4730) Watershed Engineering
Fall. 3 credits. BEE students who wish to take this course to satisfy BEE capstone design requirement must co-register in BEE 496 for 1 credit. Satisfies College of Engineering writing requirement when co-registered in BEE 493.
Prerequisite: fluid mechanics or hydrology course. Lec, T R 10:10–11:00; disc, R 1:25–4:25. M. F. Walter.
Applies ecosystem principles to the design of management strategies aimed at solving natural resource problems in the context of watersheds. Emphasizes rural systems and small-scale design for water conveyance, soil erosion, flood damage control, earth dams, ponds, moisture conservation, drainage, and water supply.

BEE 474(4740) Water and Landscape Engineering Applications
Spring. 3 credits. Satisfies BEE capstone design requirement. Prerequisite: fluid mechanics or hydrology course or permission of instructor. Lec, M W F 12:20–1:10. T. S. Steenhuis and L. D. Geelhoed.
Addresses water-soil plant relationships and methods to solve water-management problems in humid and arid ecosystems. The main focus is on drainage and irrigation systems. Emphasizes the practical application of hydrology and hydraulics for solving problems in agriculture and nonagricultural settings. A major design project is required and actual situations are evaluated.

BEE 475(4750) Environmental Systems Analysis
Fall. 3 credits. Prerequisites: computer programming and one year of calculus. Lec, T R 11:40–12:55. D. A. Haith.
Applications mathematical modeling, simulation, and optimization to environmental-quality management. Fate and transport models for contaminants in air, water, and soil. Optimization methods (search techniques, linear programming) to evaluate alternatives for solid-waste management and water and air pollution control. Introduction to hydrologic simulation (runoff and streamflow).

BEE 476(4760) Solid Waste Engineering
Spring. 3 credits. Prerequisites: one semester of physics and chemistry. Lec, T R 11:40–12:55. D. A. Haith.
Planning and design of processes and facilities for management of municipal solid wastes. Source characterization and reduction; collection and transport systems; waste-to-energy combustion; sanitary landfills; composting, recycling, and materials recovery facilities; and hazardous waste management. Emphasizes quantitative analyses.

BEE 478(4780) Ecological Engineering
Spring. 3 credits. BEE students who wish to take this course to satisfy BEE capstone design requirement must co-register in BEE 496 for 1 credit. Prerequisite: junior-level environmental quality engineering course or equivalent. Lec, T R 2:25–4:10. W. J. Jewell.
Ecological engineering is the language of sustainable living. Waste management with natural systems, the most advanced form of this new engineering direction, includes constructed wetlands, hydroponic applications of plants in resource-recovery waste management systems, soil restoration, phytoremediation, and bioremediation of toxins. Biomass refineries to create energy-independent communities, sustainable drinking water systems, carbon sequestration, and zero polluting farms are future sustainable living topics that also solve some of society's larger problems.

BEE 481(4791) LRFD-Based Engineering of Wood Structures (also CEE 481(4791))
Spring. 3 credits. BEE students who wish to take course to satisfy BEE capstone design requirement must co-register in BEE 496 for 1 credit. Prerequisite: ENGRD 202. Lec, M W F 12:20–1:10 (Hollister Hall); two evening prelims. K. G. Gebremedhin.
Computer-aided and manual computation procedures of Load and Resistance Factor Design (LRFD)-based engineering of wood structures. Topics include national design codes and standards; estimation of design loads (dead, live, wind, snow, and seismic loads); determination of factored resistance and stiffness values; mechanical properties of wood and wood products; designs of beams, columns, trusses, arches, bridges, and diaphragms; and connections and special wood structural members and systems. Also discusses engineering design judgment as an integral component of the quantitative design procedures.

BEE 482(4820) Biothermal Engineering for Humans
Fall. 3 credits. Satisfies BEE capstone design requirement. Prerequisites: BEE 350 or equivalent and introductory biology. Letter grades optional. Lec, M W F 11:15–12:05. P. E. Hillman.
Engineering design to help humans survive outdoor extremes of heat and cold as well as achieving comfort indoors. Three major topics are discussed: principles of heat and mass transfer applied to humans interacting with their environment, physiological responses to stressful environments, and designing overwear for environmental extremes.

BEE 484(4840) Metabolic Engineering
Spring. 3 credits. Prerequisite: biochemistry course or permission of instructor. S-U grades optional. Lec, T R 10:10–11:25. R. M. Spanswick.
The principles of metabolic engineering as they relate to the regulation of metabolic pathways, including membrane transport, are considered in terms of enzyme kinetics and metabolic control analysis. Case studies, reflecting the interests of the instructor, include examples involving higher plants. Each student is expected to investigate one topic in depth and make a short class presentation.

BEE 487(4870) Sustainable Energy Systems
Offers a systems approach to understanding renewable energy systems (solar, wind, and biomass) and their conversion processes, from various aspects of biology, physics, engineering, environmental impacts, economics, and sustainable development.

BEE 489(4890) Engineering Entrepreneurship, Management, and Ethics
Spring. 4 credits. Satisfies College of Engineering technical writing requirement. Prerequisites: junior standing (ENGRD 270 or CEE 304 or equivalent). Lec, T R 1:25–2:40; disc, M 1:25–2:15, or 7:30–8:20 P.M. M. B. Timmons.
Focuses on engineering entrepreneurship, economics, management, and professional ethics. Covers prediction/probability of net returns; financial calculations (internal rate of return, time value of money, pro forma statements); legal structures of businesses; project management; developing an awareness of issues related to professional ethics; and technical writing and communication. Group project required to produce a business plan for a technology-driven concept suitable for a venture fair audience.

BEE 493(4930) Technical Writing for Engineers
Fall or spring. 1 credit. Meets College of Engineering technical writing requirement when taken concurrently with BEE 473 in fall or BEE 450 in spring. Co-requisite: BEE 473 (fall), BEE 450 (spring). Lec, M 7:30–9:25 P.M. (five evenings in first half of semester). Staff.
Covers writing skills necessary for technical project reports. Also considers outlines, style, audience, and general writing mechanics.

BEE 494(4940) Fundamentals of Tissue Engineering
Spring. 3 credits. Limited to 20 students; priority given to graduating seniors. Prerequisites: biochemistry, BEE 350. Letter grades only. Lec, M W F 12:20–1:10. R. C. Gorewit.
Fundamentals and applications of tissue engineering. Cell technology, cell function in constructs and sources of cells for tissue engineering. Biomaterials, including functional requirements, biomimetics and substrates, and biological constructs. Diffusion and transport processes in engineered tissue, manufacture and scale-up of production processes, regulation and FDA approval of engineered products. Examples include cartilage, bone, skin, cardiovascular and neural tissues.

BEE 495(4950) BEE Honors Research
Fall or spring. 1-6 credits, variable. Prerequisite: enrollment in BEE research honors program. Students must complete honors program application by third week of fall semester, senior year. Letter grades only. Staff.
Intended for students pursuing the research honors program in BEE.

BEE 496(4960) Capstone Design in Biological and Environmental Engineering
Fall and spring. 1 credit. Co-requisite: one approved upper-level course (BEE 435, 475, 478, 481). Students must register using independent study form (available in 140 Roberts Hall). Staff.
Involves capstone design experience, including a team project incorporating analysis, design, evaluation, synthesis, and a written and oral report of the end product.
BEE 497(4970) Individual Study in Biological and Environmental Engineering
Fall and spring. 1-4 credits. S-U grades optional. Prerequisite: written permission of instructor and adequate ability and training for work proposed; normally reserved for seniors in upper two-fifths of their class. Students must register using independent study form (available in 140 Roberts Hall). Staff. Special work in any area of biological and environmental engineering on problems under investigation by the department or of special interest to the student, provided in the latter case, that adequate facilities can be obtained.

BEE 498(4980) Undergraduate Teaching
Fall and spring. 1-4 credits. Prerequisite: written permission of instructor. Students must register using independent study form (available in 140 Roberts Hall). Staff. The student assists in teaching a biological and environmental engineering course appropriate to his or her previous training. The student meets with a discussion or laboratory section, prepares course materials, grades assignments, and regularly discusses objectives and techniques with the faculty member in charge of the course.

BEE 499(4990) Undergraduate Research
Fall and spring. 1-4 credits. Prerequisites: normally reserved for seniors in upper two-fifths of their class; adequate training for work proposed; written permission of instructor. Students must register using independent study form (available in 140 Roberts Hall). Staff. Research in any area of biological or environmental engineering on problems under investigation by the department or of special interest to the student, provided that adequate facilities can be obtained. The student must review pertinent literature, prepare a project outline, carry out an approved plan, and submit a formal final report.

BEE 501(5010) Bioengineering Seminar (also BME 501(5010))
Fall, spring. 1 credit. Prerequisite: junior, senior, or graduate standing. S-U grades only. Fall, R 3:35-4:25; spring, W 3:35-4:25. D. Putnam. Broad survey of all aspects of bioengineering, including biomedical, bioprocess, biological, and bioenvironmental engineering and aspects of biotechnology. Seminars may be technical presentations for discussions. Sessions may occasionally be held outside of scheduled times.

BEE 520(5900) M.P.S. Project
Fall and spring. 1-6 credits. Requirement for each M.P.S. candidate in field. ABEN graduate faculty. Comprehensive project emphasizing the application of agricultural technology to the solution of a real problem.

BEE 551(5950) Master of Engineering Design Project
Fall and spring. 3-6 credits. Prerequisite: admission to M.Eng. degree program. ABEN graduate faculty. Comprehensive design projects dealing with existing engineering problems in the field. Emphasizes the formulation of alternative design proposals, the implementation and study of the engineering options, the selection of the best design solution. Projects are supervised by faculty members on an individual basis. There is, however, a formal orientation during the first four weeks of the semester. A formal report and public presentation of the results of the design project are required for completion of the course(s). A minimum of 3 to a maximum of 12 credits of 551 is required for the M.Eng. degree.

BEE 625(6250) Environmental Management
Fall. 3 credits. Lec, T R 2:55-4:10. W. J. Jewell. For description, see CEE 325.

BEE 647(6470) Water Transport in Plants
(Instructor: also BIOPL 647(6470))
Fall. 2 credits. Lec, T R 10:10-11:00. Offered alternate years. R. M. Spanswick. Topics include water relations of plant cells and tissues using water potential terminology; permeability of plant cells to water and the role of aquaporins; transport of water through whole plants, including transpiration, stomatal physiology, and the modifications due to plant communities; water status and plant growth in relation to water stress.

BEE 649(6490) Solute Transport in Plants
(Instructor: also BIOPL 649(6490))
Fall. 3 credits. Lec, T R 10:10-11:25. Offered alternate years; not offered 2005-2006. R. M. Spanswick. Fundamental treatment of the transport of ions and small organic molecules in plants. Topics include electrophysiology of cell membranes, including ion channels and electronic ion pumps; transport mechanisms for major ions; intercellular and long-distance ion transport, cotransport systems for sugars and amino acids; phloem transport; ABC-type transporters.

BEE 651(6510) Bioremediation: Engineering Organisms to Clean Up the Environment
Spring. 3 credits. Prerequisites: BIOMI 290 or 398 or BIOBM 351 or permission of instructor. Lec, T R 10:10-11:25; Lab, L 1:25-4:25. A. Ahner. Examines ways in which organisms may be used to remove or metabolize pollutants in the environment, including bacterial degradation of organics and phytoremediation of heavy metals. Through readings and current literature, students evaluate the benefits as well as the current obstacles. Examines the current efforts to genetically engineer organisms for bioremediation and the potential risks of releasing them into the environment.

BEE 655(6550) Thermodynamics and Its Applications
Fall. 3 credits. Prerequisite: MATH 293 or equivalent. Lec, R 2:30-4:30. Offered alternate years. J.-Y. Parlange. Thermodynamics and its applications to problems in engineering and agriculture. Topics include basic concepts (equilibrium, entropy, processes, systems, potentials, stability, phase transitions) and applications (soil and water processes, dilute solutions, electromagnetism, surface phenomena, heat and mass transport, and structure of organizations).

BEE 659(6590) Biosensors and Bioanalytical Techniques
Spring. 4 credits. Prerequisites: biochemistry course and permission of instructor. Lec, M W F 11:15-12:05; Lab, M 1:25-4:25 and 7:30-10:30 P.M. Not offered 2005-2006. A. J. Baeumner. Provides students with an understanding of the scientific and engineering principles of biosensors and bioanalytical techniques. Addresses selected topics from simple biosensors to micro/nanolaminated Micro Total Analysis Systems (Micro-TAS) biosensor and Micro TAS applications in environmental analysis, food safety, and medical diagnostics are explored. Students give oral presentations in lecture, prepare a biosensor of their choice in the laboratory, and present a poster in a biosensor workshop at the end of the semester. Graduate students work independently on individual biosensor projects.

BEE 671(6710) Analysis of the Flow of Water and Chemicals in Soils
Fall. 3 credits. Prerequisites: four calculus courses and fluid mechanics course. Lec, M 2:30-4:25 (first meeting TBA). Offered alternate years; not offered 2005-2006. J.-Y. Parlange. Emphasizes a full range from simple to complex methods to describe the chemical and water flows on the surface, in the vadose zone, and through the aquifer. Discusses current analytical, semi-analytical, and computer-based techniques. Analyzes both homogeneous and heterogeneous soils are analyzed. Offered alternately with CEE 653—a complementary, but not identical, course.

BEE 672(6720) Drainage
Spring. 4 credits. Satisfies BEE capstone design experience requirement. Prerequisites: BEE 471 or BEE 473. S-U grades optional. Lec, M W F 12:20-1:10; lab, T 1:25-4:25. T. S. Steenhus and L. D. Gehring. Discusses the theory of water and solute flow in aquifers, hill slopes, and the vadose zone as it relates to natural and artificial drainage. Critically reviews drainage design as it relates to agricultural land, landfills, and land application sites. Examines the importance of preferential flow and matrix flow on water quality of drainage water. Provides an introduction to provide hands-on experience with measuring soil parameters and for actual drainage design.

BEE 673(6730) Sustainable Development Seminar (also NBA 573(5730))
Spring. 1-3 credits. Prerequisites: upper-division undergraduate or graduate standing or permission of instructor. Lec, F 1:30-3:00. N. R. Scott. Sustainable development is the most beneficial concept to come out of the environmental movement in years. The concept of a sustainable world, however, is not a constant. There are many aspects of sustainability involving economics, environment, and political, social, scientific, and technological developments. This seminar explores topics such as energy, agricultural and food systems, green building and ecological design, corporate sustainability, and other contemporary issues.

BEE 685(6850) Biological Engineering Analysis
Spring. 4 credits. Prerequisite: TAM 310 or permission of instructor. Lec, M W F 11:15-12:05. J. R. Swafford. Explores engineering problem-solving strategies and techniques. Students solve several representative engineering problems that inherently involve biological properties. Emphasizes formulation and solution of mathematical models and the interpretation of results.
of results. Makes extensive use of students' knowledge of fundamental principles.

BEE 687(6870) The Science and Engineering Challenges to the Development of Sustainable Bio-Based Industries
Fall. 1 credit. Prerequisite: Graduate standing. Lec, R 12:20-1:10; disc, R 1:25-2:15. B. A. Ahner.
Environmentally sustainable alternatives for our energy and chemical needs are critical. This seminar series explores challenges facing the development of industries that use biologically derived materials to produce useful chemicals and energy for society. Topics include natural products from biological systems, conversion of biomass to useful products, physical and chemical concepts associated with the pretreatment of biomass and the separation of key biomolecules, and energy balances and mathematical models (with MATLAB) to simulate process behavior.

BEE 694(6940) Graduate Special Topics in Agricultural and Biological Engineering
Fall or spring. 4 credits max. S-U grades optional. ABEN graduate faculty.
The department teaches "trial" courses under this number. Offers vary by semester, and are advertised by the department. Courses offered under the number will be approved by the department curriculum committee, and the same course is not offered more than twice under this number.

BEE 697(6970) Graduate Individual Study in Agricultural and Biological Engineering
Fall or spring. 1–6 credits. Prerequisite: permission of instructor. S-U grades optional. ABEN graduate faculty.
Topics are arranged by the staff at the beginning of the semester.

BEE 700(7010) General Seminar
Fall. 1 credit. S-U grades only. Staff.
Presentation and discussion of research and special developments in agricultural and biological engineering and related fields.

BEE 740(6430) Veterinary Perspectives on Pathogens Control in Animal Manure (also VTMED/BIONI 740(6430))
Spring, March 24–May 10. 2 credits. Prerequisite: undergraduate major. Lec, M T W R 3:00–4:00. D. D. Bowman.
In-depth look at the management of pathogens in animal manures. Reviews the pathogens involved, the role of government agencies, the survival of pathogens in the field, and methods of pathogen destruction. Discusses commercial methods of manure processing for the control of these pathogens, the protective role of other animals and the human population. Concludes with discussions about major stakeholders representing the dairy, beef, pork, and poultry industries and their understanding of the problem as it relates to veterinary students.

BEE 750(7000) Orientation to Graduate Study
Fall, six to seven weeks. 1 credit. Prerequisite: new graduate students. S-U grades only. Lec, M 3:35–4:25. D. J. Aneshansley.
Introduction to BEE research policy, programs, methodology, resources, and degree candidates' responsibilities and opportunities.

BEE 754(7540) Watershed Management
Spring. 2–3 credits. Prerequisite: graduate standing or permission of instructors. Lec, W 2:30–4:25, T. S. Steenhuis and M. J. Pfeffer.
Traditional top-down approaches to watershed management have been challenged by advocates of public participation. These challenges have raised questions about how to effectively integrate science, policy, and public participation. This course reviews different management approaches and evaluates their usefulness in dealing with different watershed management problems. Considers case examples from watersheds in the United States and overseas.

BEE 760(7600) Nucleic Acid Engineering
Spring. 2 credits. Prerequisite: BEE 360 or permission of instructor. Lec, T R 12:20–1:10. D. Luo.
Nucleic acid engineering focuses on manipulating nucleic acid molecules in a true sense as well as in the "genetic engineering" sense by treating DNA, RNA, PNA, and TNA as both genetic and generic materials. Both biomedical and nonbiomedical applications of nucleic acid engineering, including tools for nucleic acid engineering and current examples of DNA-based engineering, DNA nanotechnology, and DNA-based medicine. A design project and formal project presentation are required.

BEE 771(7710) Soil and Water Engineering Seminar
Fall and spring. 1–3 credits. Prerequisite: graduate standing or permission of instructor. S-U grades optional. T. S. Steenhuis, J.-Y. Patilange, and M. F. Walter.
Study and discussion of research or design procedures related to selected topics in irrigation, drainage, erosion control, hydrology, and water quality.

BEE 781(7810) Structures and Related Topics Seminar
Spring. 1 credit. Prerequisite: graduate standing or permission of instructor. S-U grades only. Times TBA. Staff.
Advanced analysis and design of production systems with emphasis on structural and environmental requirements, biological responses, and economic considerations.

BEE 785(7850) Biological Engineering Seminar
Spring. 1 credit. Prerequisite: graduate standing or permission of instructor. S-U grades only. Staff TBA.
Examines the interactions of engineering and biology, especially the environmental aspects of plant, animal, and human physiology to improve communication between biologists.

BEE 787(7870) Industrial Ecology of Agroecologically Based Bioindustries
Spring. 3 credits. Prerequisites: graduate standing; one year of calculus, some knowledge of MATLAB, BEE 687. Lec, M W F 3:35–4:25. L. P. Walker.
Uses input/output modeling methods to explore the use of the industrial ecology perspective for the design and analysis of sustainable bio-based industries.

BEE 788(7880) Biomass Conversion of Energy and Chemicals
Fall. 3 credits. Prerequisite: one year of college calculus and chemistry, minimum of one course in thermodynamics and computer programming. Lec, M W F 1:25–2:15. L. P. Walker.
Biological and physical conversion of biomass to bioenergy and bioproducts. Biological and engineering concepts associated with microbial and enzymatic conversion of biomass to useful products, physical and chemical concepts associated with the pretreatment of biomass and the separation of key biomolecules (mass and energy balances and mathematical models (with MATLAB) to simulate process behavior.

BIO 800(8900) Master's-Level Thesis Research
Fall and spring. 1–15 credits. Prerequisite: permission of adviser. S-U grades. ABEN graduate faculty.

BIO 900(9900) Doctoral-Level Thesis Research
Fall and spring. 1–15 credits. Prerequisite: permission of adviser. S-U grades. ABEN graduate faculty. Variable credit for Ph.D. research.

BIOLOGICAL SCIENCES
The program of study in biology is coordinated by the Office of Undergraduate Biology. For course descriptions, see the separate section "Biology & Society."

BIOLGY & SOCIETY
The undergraduate major field of study in biology & society is offered through the Department of Science and Technology Studies. For a full description of courses that fulfill field requirements, see "Biological & Society" under the College of Arts and Sciences.

BIOMETRY AND STATISTICS
M. Wells, chair (301 Malott Hall, 255-4388, -8801), J. Booth, C. Bustamante, R. Nielsen, S. J. Schwager, A. C. Siepel, R. Strawderman
The Department of Biological Statistics and Computational Biology in Statistical Science offers the following courses in Biometry and Statistics. Students must register under Course Listings: College of Agriculture and Life Sciences—Biometry and Statistics.

BTRY 301(310) Biological Statistics I (also NTRES 313[3130], STBTRY 301[310])
Fall and summer. 4 credits.
Develops and applies statistical methods to problems encountered in the biological and environmental sciences. Methods include data visualization, population parameter estimation, sampling, bootstrap resampling, hypothesis testing, the Normal and other probability distributions, and an introduction to modeling. Carries out applied analysis in the S-Plus statistical computing environment.
BTRY 302(3020) Biological Statistics II (also NURES 413[4130], STBTRY 302[3020])
Spring. 4 credits. Prerequisite: BTRY 301 or 601.
Applies linear statistical methods to quantitative problems addressed in biological and environmental research. Methods include linear regression, inference, model assumption evaluation, the likelihood approach, matrix formulation, generalized linear models, single factor and multifactor analysis of variance (ANOVA), and a brief foray into nonlinear modeling. Carries out applied analysis in the 5-Plus statistical computing environment.

BTRY 310(3100) Statistical Sampling (also ILRST 310[3100] and STBTRY 310[3100])
Fall. 3 credits. Lec, T.R 1:25-2:40.
Prerequisites: two semesters of statistics, one of calculus and mathematical analysis preferred. Applied methodology and theory of statistical sampling, with particular emphasis on sampling from finite populations, including estimation of populations, and estimation of sample size.

BTRY 382(3820) Introduction to Statistical Genomics and Bioinformatics (also STBTRY 382[3820])
Fall. 4 credits. Intended for undergraduates and beginning graduate students in the mathematical and biological sciences.
Prerequisite: BTRY 301, MATH 111, BIOG 102, or equivalent.
Survey course focusing on the statistical analysis of genomic data. Includes an introduction to probability and statistics and application to DNA sequence analysis, phylogenetic inference, population genetics, genetic mapping, molecular evolution, and macromolecular structure prediction. Evaluation is based on weekly problem sets and computer assignments as well as a midterm and final examination.

BTRY 406(4060) Theory and Probability (also STBTRY 406[4060])
Fall. 4 credits. Prerequisites: MATH 111, 112, or equivalent.
Introduction to probability theory: axiomatic foundations; combinatorics and equally likely events; conditional probability and independence; discrete and continuous random variables, their distributions and moments; generating functions; transformations; extensions to problems involving two or more random variables; random samples. Can serve as either one-semester introduction or a foundation for a course in statistical theory.

BTRY 409(4090) Theory of Statistics (also STBTRY 409[4090])
Spring. 4 credits. Prerequisites: BTRY 408 or equivalent and at least one introductory statistics course.
Introduction to classical theory of parametric statistical inference that builds on the material covered in BTRY 408. Topics include sampling distributions, principles of data reduction, likelihood, parameter estimation, hypothesis testing, interval estimation, and basic asymptotic theory.

BTRY 421(4210) Matrix Computation
Fall. 4 credits. Prerequisite: calculus course. Not offered 2005-2006.
Introductory course in matrix computations that reviews linear algebra (vector spaces, linear independence) and emphasizes a matrix approach to solving systems (LU-factorization, QR-decomposition, SVD, Schur complements) and the role of the condition number of a matrix. Discusses positive definite matrices, eigenvalues, and applications in mathematical modeling and statistics.

BTRY 482(4820) Statistical Genomics (also STBTRY 482[4820])
Fall. 4 credits. Prerequisite: BTRY 382 or equivalent. S-U grades optional.
Covers topics in the statistical analysis of genetic, molecular, and genomic data, including the statistics of DNA database searches and alignment, statistical methods in molecular evolution, population genetics, phylogenetic, molecular ecology, forensic genetics, the analysis of comparative molecular data, QTL mapping, and association mapping. Topics may vary from year to year. Meets concurrently with BTRY 682; undergraduate students are evaluated on the basis of a final exam and a term paper instead of a research project.

BTRY 494(4940) Undergraduate Special Topics in Biometry and Statistics (also STBTRY 494[4940])
Fall or spring. 1-3 credits. S-U grades optional.
Course of lectures selected by the faculty. Because topics usually change from year to year, this course may be repeated for credit.

BTRY 495(4950) Statistical Consulting (also STBTRY 495[4950])
Fall and spring. 2-3 credits. Prerequisite: BTRY 302 or 602 and 409 and permission of instructor. S-U grades optional.
Participation in the Department of Biological Statistics and Computational Biology consulting service: faculty-supervised statistical consulting with researchers from other disciplines. Discussion sessions are held for joint consideration of literature and selected consultations encountered during previous weeks.

BTRY 497(4970) Undergraduate Individual Study in Biometry and Statistics (also STBTRY 497[4970])
Fall and spring. 1-3 credits. S-U grades optional.
Students must register using independent study form (available in 140 Roberts Hall).
Consists of individual tutorial study selected by the faculty. Because topics usually change from year to year, this course may be repeated for credit.

BTRY 498(4980) Undergraduate Supervised Teaching (also STBTRY 498[4980])
Fall and spring. 2 credits. S-U grades optional.
Students must register using independent study form (available in 140 Roberts Hall).
Students assist in teaching a course appropriate to their previous training. Students meet with a discussion or laboratory section and regularly discuss objectives with the course instructor.

BTRY 499(4990) Undergraduate Research [also STBTRY 499[4990]]
Fall or spring. 1-3 credits. Prerequisite: statistics and biometry undergraduates; permission of faculty member directing research. S-U grades optional. Students must register using independent study form (available in 140 Roberts Hall).

BTRY 601(6010) Statistical Methods I (also STBTRY 601[6010])
Fall and summer. 4 credits. Prerequisite: graduate standing or permission of instructor.
Develops and uses statistical methods to analyze data arising from a wide variety of applications. Topics include descriptive statistics, point and interval estimation, hypothesis testing, inference for a single population, comparisons between two populations, one- and two-way analysis of variance, comparisons among population means, analysis of categorical data, correlation and regression analysis. Introduces interactive computing through MINITAB statistical software. Emphasizes basic principles and criteria for selection of statistical techniques.

BTRY 602(6020) Statistical Methods II (also STBTRY 602[6020])
Spring. 4 credits. Prerequisite: graduate standing or permission of instructor; BTRY 501 or equivalent.
Continuation of BTRY 601. Emphasizes the use of multiple regression analysis, analysis of variance, and related techniques to analyze data in a variety of situations. Topics include an introduction to data collection techniques; least squares estimation; multiple regression; model selection techniques; detection of influential points, goodness-of-fit criteria; principles of experimental design; analysis of variance for a number of designs, including multi-way factorial, nested, and split plot designs; comparing two or more regression lines; and analysis of covariance. Emphasizes appropriate design and analysis strategies before data collection, and the appropriate application and interpretation of statistical techniques. Practical applications are implemented using a modern, widely available statistical package.

BTRY 603(6030) Statistical Methods III (also STBTRY 603[6030])
Spring. 4 credits. Prerequisites: BTRY 601 and 602 or permission of instructor.
Offered alternate years.
Categorical data analysis, including logistic regression, log-linear models, stratified tables, matched pairs analysis, polytomous response and ordinal data. Applications in biomedical and social sciences.

BTRY 604(6040) Statistical Methods IV: Applied Design (also STBTRY 604[6040])
Spring. 3 credits. Prerequisites: BTRY 601 and 602 or permission of instructor.
Offered alternate years.
Applications of experimental design including such advanced designs as split plots, incomplete blocks, fractional factorials. Stress on use of the computer for both design and analysis, with emphasis on solutions of real data problems.
BTRY 652(6520) Computationally Intensive Statistical Inference (also STBTRY 652(6520))
Spring. 4 credits. Prerequisite: BTRY 421 and 409 or equivalents. S-U grades optional. Offered alternate years. Modern applications in statistics often require intensive computation not handled by "off-the-shelf" software. This course covers topics in statistical computing, including numerical optimization and finding zeros (likelihood and related techniques including generalized estimating equations and robust estimation), kernel density estimation, resampling methods (randomization tests and bootstrap tests and confidence intervals), and statistical simulation (random number generation, heuristic search methods, Bayesian estimation, and Monte Carlo Markov Chain methods for tests and interval estimation). Programming is done in MATLAB. Focuses on the use of numerical analysis methods for solving problems in statistical inference and estimation.

BTRY 672(6720) Topics in Environmental Statistics (also STBTRY 672(6720))
Fall and spring. 2 credits. S-U grades optional. Prerequisite: BTRY 601 or permission of instructor. Not offered 2005–2006. Discussion group focusing on statistical problems arising in the environmental sciences. Explores these issues in a number of different ways, such as student presentations of research papers, directed readings, and outside speakers.

BTRY 682(6820) Statistical Genomics (also STBTRY 682(6820))
Fall. 4 credits. Prerequisite: BTRY 382 or equivalent. S-U grades optional. Covers topics in the statistical analysis of genetic, molecular, and genomic data, including the statistics of DNA database searches and alignment, statistical methods in molecular evolution, population genetics, phylogenetics, molecular ecology, forensic genetics, the analysis of comparative molecular data, QTL mapping, and association mapping. Topics may vary from year to year. All students are expected to participate in small research projects.

BTRY 694(6940) Graduate Special Topics in Biometry and Statistics (also STBTRY 694(6940))
Fall or spring. 1–3 credits. S-U grades optional. Course of lectures selected by the faculty. Because topics usually change from year to year, this course may be repeated for credit.

BTRY 697(6970) Individual Graduate Study in Biometry and Statistics (also STBTRY 697(6970))
Fall. Spring, or summer. 1–3 credits. S-U grades optional. Individual tutorial study selected by the faculty. Because topics usually change from year to year, this course may be repeated for credit.

BTRY 717(7170) Linear and Generalized Linear Models (also STBTRY 717(7170))
Fall. 3 credits. Prerequisites: BTRY 409, 421, and 602 or equivalents. S-U grades optional. Offered alternate years. Statistical modeling and inference using linear models and generalized linear models. Includes estimation by least squares, maximum likelihood, quasi-likelihood, and generalized estimating equations. Covers the use of link functions and generalized linear models to accommodate nonlinear models and non-normally distributed data. Also covers the use of random effects to accommodate correlation structures in both linear mixed models and generalized linear mixed models and to model longitudinal data. Some use of software packages and illustrative examples.

BTRY 726(7260) Problems and Perspectives in Computational Molecular Biology (also PL BR 726(7260))
Fall and spring. 1 credit. Prerequisite: permission of instructor. S-U grades only. Weekly seminar series discussing timely topics of computational molecular biology. Emphasis on methodological approaches to sequence annotation, protein structure and function relationships, and evolutionary relationships across species. Discusses statistical and deterministic computational approaches to sequence annotation and detailed biological examples. Discusses topics of interest discussed in relation to papers prepared by teams of students and/or faculty members. Students/faculty members from biology backgrounds are paired with students from math, econ, and statistics for paper preparation. Students summarize the salient questions addressed by the paper, the research methods used, and the results obtained. At the end of the presentation, questions should be listed on an overhead slide to initiate discussion in the group.

BTRY 795(7950) Statistical Consulting (also STBTRY 795(7950))
Fall and spring. 2–3 credits. Pre- or co-requisite: BTRY 602 and 409 and permission of instructor. S-U grades optional. Participation in the Department of Biological Statistics and Computational Biology consulting service: faculty-supervised statistical consulting with researchers from other disciplines. Seminars are held for joint consideration of literature and selected consultations encountered during previous weeks.

BTRY 798(7980) Graduate Supervised Teaching (also STBTRY 798(7980))
Fall and spring. 2–4 credits. Prerequisites: permission of instructor and chair of special committee plus at least two advanced courses in statistics and biometry. S-U grades only. Students assist in teaching a course appropriate to their previous training. Students meet with a discussion section, prepare course materials, and assist in grading. Credit hours are determined in consultation with the instructor, depending on the level of teaching and the quality of work expected.

BTRY 800(8000) Master's-Level Thesis Research
Fall or spring. Credit TBA. Prerequisite: M.S. candidates; permission of graduate field member concerned. S-U grades only. Research at the M.S. level.

BTRY 900(9000) Graduate-Level Dissertation Research
Fall or spring. Credit TBA. S-U grades only.

COMM 116(1160) Understanding Human Communication
Spring. 3 credits. Lec, M W F 1:15–12:05. G. K. Gay. Introduces students to communication theory and its applications to social relations. Students gain an understanding of theory development and evaluation and learn about the major paradigms of communication research. Covers a wide range of communication theories in a variety of settings, including interpersonal, group, and organizational.

COMM 117(1170) Writing about Communication
Spring or summer. Fall: lec, M W F 12:20–1:10. J. Shanahan. The processes and effects of mass communication systems. Topics include the evolution of communication media, current knowledge about mediated communication, and the role of communication in contemporary social issues.

COMM 201(2010) Oral Communication
Fall, spring, or summer. 3 credits. Limited to 20 students per section (fall and spring) or 15 students per section (summer). Priority given to sophomores, juniors, and seniors. Fluency in spoken English assumed. Class meets first day of class before mass lecture. Students attend twice during first week of class and are dropped from course roster if they do not attend. K. McComas, B. O. Earle, T. L. Gillespie, D. A. Grossman, J. T. Hancock, B. V. Lewenstein, K. A. McComas, P. L. McLeod, R. E. Ostman, T. M. Russo, C. W. Scherer, J. E. Shanahan, M. A. Shapiro, L. P. Van Buskirk, J. B. Walther, Y. C. Yuan.

Note: Class meeting times are accurate at the time of publication. If changes occur, the department will provide new information as soon as possible.

COMM 100(1000) Contemporary Mass Communication
Fall or summer. Fall, lec, M W F 12:20–1:10. J. Shanahan. The processes and effects of mass communication systems. Topics include the evolution of communication media, current knowledge about mediated communication, and the role of communication in contemporary social issues.

COMM 201(2010) Oral Communication
Fall, spring, or summer. 3 credits. Limited to 20 students per sec (fall and spring) or 15 students per sec (summer). Priority given to sophomores, juniors, and seniors. Fluency in spoken English assumed. Class meets first day of class before mass lecture. Students attend twice during first week of class and are dropped from course roster if they do not attend. C. W. Scherer, J. E. Shanahan, M. A. Shapiro, L. P. Van Buskirk, J. B. Walther, Y. C. Yuan.

COMM 201(2010) Oral Communication
Fall, spring, or summer. 3 credits. Limited to 20 students per sec (fall and spring) or 15 students per sec (summer). Priority given to sophomores, juniors, and seniors. Fluency in spoken English assumed. Class meets first day of class before mass lecture. Students attend twice during first week of class and are dropped from course roster if they do not attend. C. W. Scherer, J. E. Shanahan, M. A. Shapiro, L. P. Van Buskirk, J. B. Walther, Y. C. Yuan.
COMM 203(2030) Argumentation and Debate
Fall, spring, and summer. 3 credits. Fall: T R 11:40–12:55; spring: T R 11:40–12:55.
Staff.
Students learn the principles of argumentation and debate. Topics emphasize Internet database research, synthesis of collected data, analysis of evidentiary quality, refutation of counter claims, identification of logical fallacies, evaluation, framing of issues, and coherent storytelling. Prepares students to work with a great range of opinion and evidence. Emphasizes different viewpoints, including those of different cultures. Assumptions are interrogated.

COMM 220(2200) Mass Media and Society
Spring. 3 credits. Lec, T R 11:40–12:55.
T. Gillespie.
Considers the role of the mass media in a democratic society. Explores recent theories of communication, media, and society by considering: the industries and institutions that structure media production and distribution; the representational complexity of media texts and genres; the role of news media in the political life of the nation; the interpretive work of audiences; and the relationship between media texts and cultural identity.

COMM 230(2300) Visual Communication
Introduction to visual communication theory. Examines how visuals influence our attention, perspectives, and understanding. Uses examples of visuals drawn from advertising, TV news, documentaries, entertainment movies, print, and interactive media develop a theoretical framework for becoming more visually aware and for thinking more critically about how visuals influence us.

COMM 245(2450) Psychology and Social Computing (also INFO 245(2450))
Fall. 3 credits. T R 10:10–11:25. J. Hancock.
In-depth examination of several social aspects of computing, drawing upon recent advances in psychology and social cognition research. Closely examines a small number of topics that may include impression formation/management, group behavior, deception and trust, disinhibition, and online cognition research. Closely examines a small number of topics that may include impression formation/management, group behavior, deception and trust, disinhibition, and online relationships.

COMM 260(2600) Science Writing for Public Information
Fall, spring, or summer. 3 credits. Limited to 25 students per sec. Prerequisite: sophomores, junior, senior, or graduate-student standing; college-level writing course. Fall: Lec 01, M W F 9:05–9:55, lec 02, M W F 10:10–11:00; spring: Lec 01, M W F 9:05–9:55 or lec 02, M W F 1:25–2:15. S. Conroe.
Intensive course in simplifying scientific and technical material for specific audiences within the general public. Weekly assignments include instructions, descriptions, explanations, and summaries in such formats as the science report, brochure, and report. Emphasizes audience analysis. Not oriented to the mass media.

COMM 263(2630) Organizational Writing
Fall, spring, or summer. 3 credits. Limited to 25 students per sec. Prerequisite: junior, senior, or graduate standing; college-level writing course. Fall: Lec 01, M W F 9:05–9:55; lec 02, M W F 10:10–11:00; lec 03, M W F 11:15–12:05. Spring: Lec 01, M W F 10:10–11:00, lec 02, M W F 11:15–12:05. L. Van Buskirk and staff.
Students write from the point of view of various organizations, including businesses, government agencies, and nonprofit organizations. This course emphasizes appropriate representation of the writer's organization, audience analysis, and clear and effective written presentation of detailed content. Assignments include text for web sites, reports, proposals, memoanda, letters, and e-mail.

COMM 272(2720) Principles of Public Relations and Advertising
Summer. 3 credits. Not open to freshmen.
Staff.
Survey of the fields of public relations and advertising. Describes organizations, jobs, and functions in the industry. Covers the roles of public relations and advertising in society, the economic system, and organizations; psychological and sociological principles as bases for appeals; strategies for media selection and message execution. Introduction to research and regulation.

COMM 282(2820) Communication Industry Research
Fall. 3 credits. Pre- or co-requisite: COMM 116, 120. Lec, M W F 11:15–12:05.
R. Ostman and staff.
Public opinion polls, readership/viewerhip studies, audience segmentation techniques, and media and message effect evaluation are all widely used in communication industry research. This course covers the use of basic research design, measurement, sampling, and simple descriptive and inferential statistics in conducting these studies.

COMM 284(2840) Sex, Gender, and Communication
Fall. 3 credits. Not open to freshmen. T R 2:55–4:10. L. Van Buskirk.
Explores the personal, career, social, and economic implications of male and female gender categories. Topics include theories of male and female gender construction, social structures, representations, and gender concerns in the workplace.

COMM 285(2850) Communication in Life Sciences (also S & T 285(2851))
Spring. 3 credits. M W F 10:10–11.
B. Lewenstein.
Environmental problems, public health issues, scientific research—in each of these areas, communication plays a fundamental role. From the mass media to individual conversations, from technical journals to textbooks, from lab notes to the web, communication is essential. This course covers major issues and research findings. This course examines the institutional and intellectual contexts, processes, and practical constraints on communication in the life sciences.

COMM 301(3010) Business and Professional Presentation
The study and practice of written and oral communication skills used in formal and informal organizations. These skills include interviews; informative, persuasive, and special-occasion speeches; reports; discussions; and Powerpoint presentations. Students study and practice the organizational, analytical, and presentational skills needed in contexts suited to their own business and professional career goals.

COMM 303(3030) Speech and Debate Practicum
Fall and spring. 2 credits. Prerequisite: Program in Speech and Debate members; permission of instructor; completion of one year in program. Staff.
Students learn how to prepare for CEDA (Cross Examination Debate Association) debate, Lincoln-Douglas debate, or individual speaking events. The class is divided into four groups according to level of experience; therefore, it may be repeated to a maximum of 8 credits.

COMM 345(3450) Human-Computer Interaction Design (also INFO 345(3450))
Gives students insight into the design of computer interfaces and software from the user's point of view. Students come to understand how hardware and software design influence the interaction between people and computers. Using assigned readings, demonstrations, and projects, students examine issues and trade-offs in interaction design and invent and evaluate alternative solutions.

COMM 349(3490) Media Technologies (also S & T 349(3491))
Our efforts to communicate, share culture, and drive social agendas depend on the tools we've developed. However, our commonplace notions of communication and media regularly overlook the role of the material technologies that are so crucial to them. This course considers the technologies of media (including printing, photography, film, telegraph, telephone, radio, television, and computer networks) as an opportunity to think about the intersection of technology, communication, and its social context.

COMM 350(3500) Writing for Magazines
Fall. 3 credits. Limited to 25 students. Prerequisite: junior, senior, or graduate standing or permission of instructor; college-level writing course. No drops after third week. M 1:25–4:25; lab, R 1:25–2:15. S. Conroe.
Course in profession freelance writing for magazines. Intensive fact writing to help students communicate more effectively through the medium of the printed word in magazines. Art and techniques of good writing are studied, practiced, and evaluated. Issues of interest are reviewed. All articles are analyzed and returned to the student to rewrite and submit to a magazine. Extensive out-of-class writing assignments.

COMM 352(3520) Science Writing for the Mass Media (also S & T 352(3521))
Fall and spring. 3 credits. Limited to 24 students. Not open to freshmen.
Prerequisite: college-level writing course. Lec, M W 10:10–11; lab, W 12:20–2:15.
B. Lewenstein and staff.
How to write about science, technology, and medicine for the mass media. Discussion topics include accuracy, simplicity, comprehensiveness, risk communication, and the history and social structure of science.
The primary goal of the seminar is to enrich students' examination of new ideas and practices. Chapters, curriculum, and evaluation tools, and deepen the novice teaching experience. Discussions of actual teaching experiences, of their common experiences, much less of educators. Novice teachers are not aware of their efforts is challenging for professional to discuss ideas, experiences, and practice. Integration of theory into actual education is met with an in-depth understanding of the topic—with an in-depth understanding of the advanced approaches to methods of data collection (e.g., focus groups, experiments, surveys) and analysis of campaign-related data sources.)

COMM 376(3760) Planning Communication Campaigns
Fall. 3 credits. Pre- or co-requisites: COMM 282 or equivalent social research course. Not offered 2005-2006. T R 11:40-12:55.
K. McComas.
Provides a theoretical and practical overview of the audiences, messages, and evaluation of communication campaigns. Includes principles of planning and evaluation relevant to several kinds of campaigns. Topics include discussion of campaign goals, objectives, strategies, and tactics, research design and implementation; audience segmentation; message construction; and techniques of evaluation. Considers common methods of data collection (e.g., focus groups, experiments, surveys) and analysis of campaign-related data sources.)

COMM 382(4832) Advanced Communication Research
Fall. 3 credits. Prerequisite: COMM 282 or equivalent social research course. C. Yuan.
Advanced approaches to methods of data collection and analysis in communication research for students who intend to complete advanced research projects such as honors research or independent studies and who have preliminary research under way. Every week the class examines one or two research situations in detail, analyzes specific problems connected to the method used, and discusses strategies for data analysis and presentation. This format provides all students—individuals of their specific thesis topic—with an in-depth understanding of the methods used in communication research and how they are applied to specific projects.

COMM 396(3980) Issues in Teaching Communication
Fall and spring. 1 credit. Pre- or co-requisite: junior or senior standing; present or past undergraduate teaching assistant for COMM course. Alternate M 7:30-9:10 P.M. K. Berggren.
Seminar bringing together novice educators to discuss ideas, experiences, and practice. Integration of theory into actual education efforts is challenging for professional educators. Many educators are not aware of their common experiences, much less of a theoretical component to education. In discussions of actual teaching experiences, literature reviews, research reports, textbook chapters, curriculum, and evaluation tools, students examine new ideas and practices. The primary goal of the seminar is to enrich and deepen the novice teaching experience.

COMM 405(4040) Community Service Practicum
Fall and spring. 1 credit; may be repeated once for credit. Meets 1 hour weekly, time TBA. Staff.
Students share their communication talents in structured educational or non-educational settings by designing and implementing a speech or debate project in local schools or the community.

COMM 410(4100) Organizational Communication: Theory and Practice
Fall. 3 credits. Limited to 15 students per lab. Prerequisite: junior, senior, or graduate standing; COMM 110 or permission of instructor. Not offered 2005-2006. Lec, M W 11:15-12:05; lab 01, M W 12:20-2:15; lab 02, W 2:30-4:15; lab 03, R 12:20-2:15; lab 04, R 2:30-4:15. C. Yuan.
Study of management communication processes in formal organizations. Applies relevant organizational behavior and communication principles in today’s business environment; examines formal and informal communication networks, and explores the craft of consulting. Case studies analyzed in lab.

COMM 420(4200) Public Opinion and Social Process
Provides a scientific and applied overview of the concept of “public opinion” and its implications for macrosocial processes. Reviews the historical development of this concept in fields such as political science, social psychology, and communication science, followed by a closer look at what is meant by “measuring” public opinion. For example, is public opinion measured by summing across individual opinions, or are there macro-level dynamics of public opinion that go beyond what individuals in a society think? Based on theory, students conduct survey research on the importance of public opinion and public opinion perception for democratic societies, examining such areas as communication media, policymaking, risk perceptions, mass and popular culture, or political participation.

COMM 421(4210) Communication and the Environment
Students investigate how values, attitudes, social structure, and communication affect public perceptions of environmental risk and public opinion about the environment. A primary focus is mass media’s impact on public perceptions of the environment, how the media portray the environment, and discussion of the implications of public consumption of environmental content.

COMM 422(4220) Psychology of Television (and Beyond)
Fall. 3 credits. Prerequisites: introductory psychology or HD 120 or COMM 120 or 116. Lec, M W F 12:30-1:10. M. Shapiro.
Survey of knowledge about how people mentally process television and other audiovisual communication technologies—including media, reality, and the Internet. Topics include why people watch television, why people watch, how people understand and mentally process media, and how media psychologically influence beliefs, attitudes, thinking, and emotion.

COMM 424(4240) Communication in the Developing Nations
Fall. 3 credits. Prerequisite: junior or senior standing. Not offered 2005-2006. Lec, T 1:25-2:35; lab, T 2:35-4:25. R. Colle.
The role of communication in development programs, particularly in the Third World. Emphasizes communication interventions in agriculture, health, nutrition, family planning, and community development and especially on methods for designing communication strategies for reaching low-income, rural people. Considers extension, social marketing, and development support communication.

COMM 428(4280) Communication Law
Spring. 3 credits. Prerequisite: junior, senior, or graduate standing or permission of instructor. Lec, M W F 11:15-12:20. D. Grossman.
Deals with the law governing communication media. Topics include First Amendment concepts, restraints on newsgathering and dissemination, libel, invasion of privacy, copyright protection, regulation of broadcast and nonbroadcast electronic media, advertising law, and current legal issues unique to online communication.

COMM 440(4400) Advanced Human-Computer Interaction Design (also INFO 440(4400)
Fall. 3 credits. Prerequisite: COMM 245 or permission of instructor. T R 10:10-11:25. G. Gay.
Focuses on the design of computer interfaces and software from the user’s point of view. The goal is to teach user interface designs that “serve human needs” while building feelings of competence, confidence, and satisfaction. Topics include formal models of people and interactions, collaborative design issues, psychological and philosophical design considerations, and cultural and social issues.

COMM 445(4450) Seminar in Computer-Mediated Communication (also INFO 445(4450)
Fall. 3 credits. Prerequisite: COMM 245. T R 11:40-12:55. J. Wilther.
Focuses on reading and evaluating the theories and research methodologies used to investigate communication on computer systems. Assignments include student collaborations using electronic conferencing and other advanced communication technologies, as well as reflections on and evaluations of these collaborations in light of current theories and research findings. Topics include virtual teams, videoconferencing, and others as they emerge.

COMM 450(4500) Language and Technology (also INFO 450(4500)
Spring. 3 credits. T R 11:40-12:55. J. Hancock.
Examines how new communication technologies affect the way we produce and understand language and modify interaction with one another. Focuses on the collaborative nature of language use and how Internet technologies affect the joint activities of speakers and listeners during the construction of meaning in conversation.

COMM 466(4660) Public Communication of Science and Technology (also S&TS 466(4660)
Fall. 3 credits. Prerequisite: COMM 260 or 352, ENGRG 350, or permission of instructor. Offered odd-numbered years. M W 2:55-4:10. B. Lewenstein.
Explores the structure, meanings, and implications of "public communication of science and technology" (PCST). Examines the contexts in which PCST occurs, looks at motivations and constraints of those involved in producing information about science for nonprofessional audiences, and analyzes the functions of existing ideas about PCST to general communication research, and leads to developing new knowledge about PCST. Format is primarily seminar/discussion.

COMM 476(4760) Communication Fellows Program
Spring. 2 credits. Prerequisites: communication seniors selected based on goals and academic preparation; permission of instructor. Fee for three-day trip: $150. M 2:55-4:10. B. O. Earle. Series of lectures, seminars, and guest speakers exploring the planning, evaluation, and policy-making process. Includes a three-day trip to a metropolitan area to visit corporate leaders, administrative agencies, and policymakers.

COMM 480(4800) Independent Honors Research in Social Science
Fall or spring. 1-6 credits. Prerequisite: undergraduate standing; requirements met for honors program. Times TBA. Staff. Students who have successfully completed COMM 382 register for no more than 3 credits. Students who have not completed an advanced research methods course may register for up to 6 credit hours.

COMM 486(4860) Risk Communication
Spring. 3 credits. T R 1:25-2:15; lab, R 2:30-4:25. C. Scherer. Examination of theory and research related to the communication of scientific information about environmental, agricultural, food, health, and nutritional risks. Concentrates on social theories related to risk perception and behavior. Examines case studies involving pesticide residues, water quality, environmental hazards, and personal health behaviors. Emphasizes understanding, applying, and developing theories.

COMM 494(4940) Special Topics in Communication
Fall, spring, or summer. 1-3 credits. Variable. Prerequisite: permission of instructor, S-U grades optional. Study of topics in communication not otherwise provided by a department course and determined by the interest of the faculty and students.

COMM 496(4960) Communication Internship
Fall or spring. Work component and variable. 1 credit; may be repeated once for a total of 2 credits. Prerequisite: COMM major or minor (first-, second-, third-, or fourth-year) for 1 credit (minimum 60 hours); K. Berggren. Students receive credit, on-the-job learning experience under the supervision of communication professionals in cooperating organizations. A minimum of 60 hours of on-the-job work is required; the number of work hours is beyond the discretion of the intern and the supervising company. A final paper linking communication theory to practical work experience is required. All internships must be approved by the internship coordinator.

COMM 497(4970) Individual Study in Communication
Fall or spring. 1-3 credits; may be repeated to 6 credits with different supervising faculty member. Prerequisite: 3.0 GPA. Students must register using independent study form (available in 140 Roberts Hall). Individual study under faculty supervision. Work should concentrate on locating, assimilating, synthesizing, and reporting existing knowledge on a selected topic. Attempts to implement this knowledge in a practical application are desirable.

COMM 498(4980) Communication Teaching Experience
Fall or spring. 1-3 credits; may be repeated to 6 credits with different courses. Intended for undergraduates desiring classroom teaching experience. Prerequisite: junior or senior standing; 3.0 GPA (2.7 if teaching assistant for skills development course); permission of faculty member who supervises work and assigns grade. Students must register using independent study form (available in 140 Roberts Hall). Periodic meetings with the instructor cover realization of course objectives, evaluation of teaching methods, instruction feedback, in addition to aiding with the actual instruction, each student prepares a paper on some aspect of the course.

COMM 499(4990) Independent Research
Fall or spring. 1-3 credits; may be repeated to 6 credits. Prerequisites: senior standing; 3.0 GPA. Students must register using independent study form (available in 140 Roberts Hall). Permits outstanding students to conduct laboratory or field research in communication under appropriate faculty supervision. The research should be scientific, systematic, controlled, empirical. Research goals should include description, prediction, explanation, or policy orientation and should generate new knowledge.

COMM 610(6100) Seminar in Communication and Social Networks

COMM 616(6160) Communication and Persuasion
Spring. 3 credits. Prerequisite: introductory research methods course and introductory psychology or social psychology course. Not offered 2005-2006. T R 10:10-11:25. J. Walther and J. Hancock. Focuses on theories of communication's influence on persuasion and attitude change. Familiarizes students with a variety of social-psychological theories of attitude change and persuasion. Also applies those theories to a variety of communication situations including mass communication, advertising, public relations/public information, and interpersonal communication. Lectures concurrent with COMM 418; graduate students should enroll in COMM 618.

COMM 621(6210) Advanced Communication and the Environment
Spring. 3 credits. M W 2:55-4:10. Offered odd-numbered years. K. McComas. Students investigate how values, attitudes, social structure, and communication affect public perceptions of environmental risk and public opinion about the environment. A primary focus is mass media's impact on public perceptions of the environment, how the media portray the environment, and discussion of the implications of public consumption of environmental content. Lectures concurrent with COMM 421; graduate students should enroll in COMM 621.

COMM 622(6220) Advanced Psychology of Television (and Beyond)
Fall. 3 credits. Prerequisites: graduate standing and permission of instructor. Times TBA. M. Shapiro. Survey of knowledge about how people mentally process television and other audiovisual communication technologies—including movies, video games, virtual reality, and the Internet. Topics include why people watch, what happens mentally when they watch, how people understand and mentally process media, and how media psychologically influence beliefs, attitudes, thinking, and emotion.

COMM 624(6240) Communication in the Developing Nations
Fall. 3 credits. Prerequisite: junior, senior, or graduate standing. Lect. M 2:30-4:25; lab, 1 hour TBA. R. D. Cole. The role of communication in development programs, particularly those in Third World nations. Emphasizes communication interventions in agriculture, health, nutrition, family planning, and community development, and especially methods for designing communication strategies for reaching low-income, rural people. Among the approaches considered are extension, social marketing, and development support communication. Lectures concurrent with COMM 424; graduate students should enroll in COMM 624.

COMM 640(6400) Human-Computer Interaction Design (also INFO 640(6400))
Fall. 3 credits. Prerequisite: graduate standing or permission of instructor. T R 10:10-11:25. G. Gay. Graduate-level readings and research supplementing COMM 440. Focuses on the design of computer interfaces and software from the user's point of view. The goal is to teach user interface designs that "serve human needs" while building feelings of competence, confidence, and satisfaction. Topics include formal models of people and interactions, collaborative design issues, psychological and philosophical design considerations, and cultural and social issues.

COMM 645(6450) CMC Graduate Seminar (also INFO 645(6450))
Spring. 3 credits. Prerequisite: graduate standing or permission of instructor. T R 11:40-1:25. J. Walther and J. Hancock. Graduate-level readings and research supplementing COMM 445. Through close reading and research in communication and technology, and participation in projects using these technologies, students enhance experiential, theoretical, and critical understanding of contemporary computer-mediated communication systems and uses. Topics include virtual teams, videoconferencing, and others.

COMM 650(6500) Language and Technology (also INFO 650(6500))
Spring. 3 credits. T R 11:40-12:55. J. Hancock. Graduate-level readings and research supplementing COMM 450. Examines how new communication technologies affect the
way we produce and understand language and modify interaction with one another. Focuses on the collaborative nature of language use and how Internet technologies affect the joint activities of speakers and listeners during the construction of meaning in conversation.

[COMM 676(6760)] Communication Planning for Social and Behavioral Change

[COMM 680(6800)] Studies in Communication
Fall. 3 credits. Prerequisite: communication graduate students or permission of instructor. M W 8:40–9:55. J. Shanahan. Reviews classical and contemporary readings in communication, including key concepts and areas of investigation. Explores the scope of the field, the interrelationships of its various branches, and examines the role of theory in the research process.

[COMM 681(6810)] Advanced Communication Theory
Spring. 3 credits. Prerequisite: COMM 680 or graduate standing and permission of instructor. M W 2:55–4:10 with additional meetings TBA. M. Shapiro. Development of, and contemporary issues in, communication theory. Discusses the interaction between communication and society, social groupings, and mental processing.

[COMM 682(6820)] Methods of Communication Research
Spring. 3 credits. Recommended: familiarity with basic statistical concepts. M W F 12:20. R. Osman. Analyzes the methods used in communication research. Emphasizes understanding the rationale for survey, textual, experimental, and ethnographic research methods. Development of class research project from research question to final report. (Uses Statistical Package for the Social Sciences [SPSS] to assist in data analysis.)

[COMM 683(6830)] Qualitative Research Methods in Communication

[COMM 684(6840)] Special Topics in Communication
Fall, spring, or summer. 1–3 credits, variable. Prerequisite: permission of instructor. S-U grades optional. Study of topics in communication not otherwise provided by a department course and determined by the interest of faculty members and students.

[COMM 781(7810)] Seminar in Psychology of Communication
Spring. 3 credits. Prerequisite: COMM 680 and 681 or equivalent graduate-level theory in psychology or social psychology. Letter grades. Offered odd-numbered years. M. Shapiro. Discusses and analyzes selected current issues in the psychology of communication. Students discuss and synthesize current research and theory in the mental processing of communication.

[COMM 794(7940)] Seminar in Communication Issues
Fall, spring, or summer. 1–3 credits. Prerequisite: permission of instructor. Letter grades only. Small group study of topical issue(s) in communication not otherwise examined in a graduate field course.

[COMM 797(7970)] Graduate Independent Study
Fall, spring, or summer. 1–3 credits. Prerequisite: permission of instructor. Letter grades only. Individual study concentrating on locating, assimilating, synthesizing, and reporting existing knowledge on a selected topic.

[COMM 798(7980)] Communication Teaching Laboratory
Fall and spring. 1–3 credits each semester, may be repeated once. Prerequisite: graduate standing and permission of faculty member who will supervise work and assign grade. (Students must use faculty member’s section number to register.) Letter grades only. Graduate faculty. Designed primarily for graduate students who want experience in teaching communication courses. Students work with an instructor in developing course objectives and philosophy, planning, and teaching.

[COMM 799(7990)] Graduate Research
Fall, spring, or summer. 1–3 credits. Prerequisite: appropriate communication graduate course work or permission of instructor. Letter grades only. Small-group or individual research based on original, empirical, data-based designs regarding topical issues in communication not otherwise examined in a graduate field course.

[COMM 800(8900)] Master’s-Level Thesis Research
Fall or spring. 1–6 credits. Prerequisite: permission of committee chair. S-U grades only. Thesis research for M.S. (communication) students.

[COMM 901(9900)] Doctoral-Level Dissertation Research
Fall or spring. 1–9 credits; may be repeated for max. of 9 credits. Prerequisites: completion of "A" exam; permission of committee chair. S-U grades only. Dissertation research for Ph.D. candidates.

[CROP AND SOIL SCIENCES]

Note: Class meeting times are accurate at the time of publication. If changes occur, the department will provide new information as soon as possible.

Courses by Subject
Crop Science: 311, 312, 315, 317, 414, 415, 444, 455, 608, 610, 612, 613, 614, 642, 691, 820, 920, 921
Environmental Information Science: 398, 410, 411, 460, 465, 485, 486, 620, 660, 675, 694, 860, 960, 961

General Courses

CSS 190(1900) Sustainable Agriculture
Fall. 0 or 4 credits. variable. Limited to 60 students. S-U grades optional. Lee, T R 10:10; labs, M T 2:00–4:25. G. W. Fick. Concerns food, farming, and the future. Designed to introduce basic food production resources in the context of the human aspects of farming. The information is of general value for nonmajors and students new to the field. Several field trips enhance appreciation for the diversity of agriculture. Students earn 1 extra credit by participating in team preparation and delivery of a lesson in sustainable agriculture.

CSS 494(4940) Special Topics in Crop and Soil Sciences (undergraduate level)
Fall or spring. 4 credits max. S-U grades optional. The department teaches "trial" courses under this number. Offerings vary by semester, and are advertised by the department before the semester begins. Courses offered under this number will be approved by the department curriculum committee, and the same course is not offered more than twice under this number.

CSS 497(4970) Individual Study in Crop and Soil Sciences
Fall or spring. 1–6 credits. S-U grades optional. Students must register using independent study form (available in 140 Roberts Hall). Topics in soil science, crop science, or environmental information science are
arranged at the beginning of the semester for individual study or for group discussions.

CSS 498(4980) Teaching Experience in Crop and Soil Sciences
Fall or spring. 1–5 credits. S-U grades optional. Students must register using independent study form (available in 140 Roberts Hall).

Teaching experience in soil science, crop science, or environmental information science is obtained by assisting in the instruction of a departmental course.

CSS 499(4990) Undergraduate Research
Fall or spring. Credit TBA. S-U grades optional. Students must register using independent study form (available in 140 Roberts Hall).

Independent research on current problems selected from any phase of crop science, soil science, or environmental information science.

CSS 696(6960) Seminar in Crop and Soil Sciences
Fall and spring. 1 credit. S-U grades only. Lec, R 12:20–1:10. Staff.

Covers current research and selected topics in the crop and soil sciences and related fields.

Crop Science

CSS 311(3110) Grains and Nutraceuticals
Fall. 4 credits. Prerequisite: CSS 260 or BIOP 241. Lec, M W F 10:10; lab, M 1:25–4:25. One or two field trips during lab periods (until 5 P.M. of on weekends). R. L. Obendorf.

Globally, six seed crops provide 75 percent of the calories and protein needs of mankind by direct consumption or indirectly through animal and microbial products. Seed crops for starch, protein, oil, fiber, sugar, nutraceutical, pharmaceutical, and industrial uses are emphasized, including adaptation, growth and development, environmental stress, optimization of yield and quality, and genetic improvement in the context of food systems for improved health. Laboratory uses living plants, an extensive crop garden, and computer simulation.

CSS 312(3120) Forage Crops
Spring. 4 credits. Prerequisite: introductory crop and/or soil science course. Recommended: animal nutrition course. Lec, M W F 9:05; lab, M 1:25–4:25. G. W. Fick.

Considers the production and management of crops used for livestock feed in terms of establishment, growth, harvesting, and preservation. Emphasizes forage grasses, forage legumes, and corn and considers their value as livestock feed in terms of energy, protein, and other nutritional components.

CSS 315(3150) Weed Science
Fall. 4 credits. Prerequisite: introductory course in biology or botany. Lec, T R 10:10–11:25; lab, T or W 2:00–4:25. A. DiTommaso.

Examines principles of weed science. Emphasizes (1) weed biology and ecology; (2) weed control strategies used in agricultural and natural ecosystems; and (3) chemistry of herbicides in relation to effects on plant growth and the environment. Hands-on laboratory sessions cover weed identification and ecology, herbicide application, selectivity, and symptomology.

CSS 317(3170) Seed Science and Technology (also HORT 317(3170))
Fall. 3 credits. Prerequisite: BIOP 241 or equivalent. Lec, T R 11:15–12:05, lab, R. Two all-day field trips are scheduled during semester. Offered alternate years; not offered 2005–2006. A. G. Taylor, Geneva Experiment Station. (Ithaca contact, R. L. Obendorf.)

The principles and practices involved in the production, harvesting, processing, storage, testing, quality management, certification, and use of high-quality seed from improved cultivars. Information is applicable to various kinds of agricultural seeds. Hands-on laboratory experience.

CSS 403(4030) Traditional Agriculture in Developing Nations (also IARD 403(4030))
Fall. 1 credit. S-U grades only. P. Hobbs.

Half the world's arable land is farmed by traditional farmers who have produced food and fiber for millennia with few outside inputs. Many of these practices are forgotten by some and are still used by farmers in developing countries. This course examines the pros and cons of some of these traditional systems.

CSS 414(4140) Tropical Cropping Systems: Biodiversity, Social, and Environmental Impacts (also IARD 314(3140))
Fall. 3 credits. Prerequisite: introductory crop science or soil science or biology course or permission of instructor. Lec, T R 8:40–9:55; labs, one per month, TBA. P. Hobbs.

Characterizes and discusses traditional shifting cultivation; lowland rice-based systems; upland cereal-based systems; smallholder mixed farming including root crops and livestock; plantation fruit and oil crop systems; and agroforestry. In addition to species diversity and domestication, factors such as climate, land quality, soil management, land tenure, labor, and markets are considered. Evaluates the impact of tropical cropping systems on the environment.

CSS 426(4260) Practicum in Forest Farming as an Agroforestry System (also HORT/MTRES 426(4260))
Fall. 2 credits. Lab, W 1:25–4:25. K. W. Mudge, L. E. Buck, and P. Hobbs. Students actively take part in the development and management of a 75-year-old nut grove originally planted at Cornell in the 1930s. The MacDaniel's Nut Grove is being developed as a multipurpose forest-farming teaching, research, and extension site. Hands-on activities include: all or most of the following: temperate-nut harvest and variety evaluation, mushroom culture, small-fruits, and fruit-tree culture, medicinal-herb culture, site evaluation and planning, and field trips to other agroforestry-related sites. Outside activities are integrated with selected readings via an online discussion board.

CSS 444(4440) Integrated Pest Management (also ENTOM 444(4440))
Fall. 4 credits. Prerequisite: biology course or permission of instructor. Lec, M W F 9:05; lab, M 1:25–4:25. J. E. Losey and A. DiTommaso.

Lectures integrate the principles of pest control, ecology, and economics in the management of pests across multiple systems. Laboratory exercises reinforce concepts presented in lecture and demonstrate pest monitoring techniques and the application of computer technology to management problems.

CSS 455(4550) Mineral Nutrition of Crops and Landscape Plants (also HORT 455(4550))
Spring. 3–5 credits. Prerequisite: CSS 260 and BIOP 242, or equivalent. Lec, M W F 9:05; lab, R 1:30–4. Offered alternate years; next offered 2006–2007. H. C. Wien and staff.

Modular course on principles of plant mineral nutrition and nutrient management. A mandatory module on principles is followed by modules on agroforestry, floriculture, and fruit crops. Each module carries 1 credit; a minimum of 3 credits must be taken in one semester. By the end of the course, students understand the principles of mineral nutrient function in crop plants, and are able to diagnose deficiencies by symptoms and tissue tests and devise organic and conventional nutrient management schemes that maximize productivity and mineral nutrient quality.

CSS 608(6080) Water Status in Plants and Soils
Fall. 2 credits. Prerequisite: CSS 312 or permission of instructor. Lec, R 1:25–4:25, first class meeting R. Offered alternate years; not offered 2005–2006. T. L. Setter.

Covers techniques for field appraisal of the status of water in plants and soil, including methods used in physiological studies, such as the psychrometer, pressure chamber, gas exchange analyzer, and abscisic acid analysis with ELISA.

CSS 610(6101) Physiology of Environmental Stresses
Fall. 3 credits. Prerequisite: plant physiology course (BIOP 242 or 342) or permission of instructor. Offered alternate years; not offered 2005–2006. Lee, M W F 12:20–1:10. T. L. Setter.

Study of the responses of plants to environmental stresses, including chilling, drought, freezing, high temperature, salinity, hypoxia, and toxic elements. Emphasizes the physiological and biochemical basis of injury and plant resistance mechanisms at the whole-plant, cellular, and molecular levels.

CSS 612(6120) Seed Biology
Fall. 3 credits. Prerequisite: plant physiology course. T R 8:30–9:55. R. L. Obendorf.

Describes the molecular, biochemical, physiological, environmental, and genetic regulation of seed development, maturation, and germination events, including the deposition and mobilization of seed reserves with illustrations from the world's major food and feed seeds. Illustrations extend the principles to practical situations, industrial uses, and food systems for improved health.

CSS 613(6130) Physiology and Ecology of Yield
Spring. 3 credits. Prerequisite: plant physiology course (BIOP 242 or 342) or permission of instructor. M W F 12:20–1:10. T. L. Setter.

Study of environmental constraints on crop plant productivity from the perspective of key biological processes. Examines acclimation responses and genetic adaptations for adaptation for temperature, light, water, compacted
soil, and mineral nutrient environments. Topics include photosynthesis and nitrogen assimilation, translocation, and partitioning; canopy-scale influences on solar radiation use efficiency; regulation of growth processes in leaf, root, and floral sinks in response to environment; seed set; water transport and stomatal regulation; root growth in flooded and compacted soils; and drought responses. Emphasizes growth processes of vegetative plant organs.

[CSS 614(6140)] Weed Ecology and Management

Examination of plant ecological principles governing weed population dynamics and weed-plant competitive interactions in different crop and noncrop ecosystems. Explores the application of these fundamental principles for the development and implementation of environmentally sound and sustainable weed management strategies. Topics include seed biology and seedbank dynamics, weed demography and spatial variation, weed-crop interference, invasive weed biology, biological weed control, and site-specific weed management.

[CSS 642(6420)] Plant Mineral Nutrition (also BIOPL 642[6420])

Detailed study of the processes by which plants acquire and use mineral nutrients from the soil. Topics include the uptake, translocation, and compartmentation of mineral elements; root-soil interactions; metabolism of mineral elements; the involvement of mineral nutrients in various physiological processes; and nutrition of plants adapted to extreme environmental stresses (e.g., acidic soils). Emphasizes specific mineral elements to illustrate the above topics.

[CSS 691(6910)] Special Topics in Crop Science

Fall or spring. 1–6 credits. S-U grades optional. Staff.

Study of topics in crop science that are more specialized or different from other courses. Special topics to be offered depend on staff and student interests.

[CSS 820(8200)] Master's-Level Thesis Research in Crop Science

Fall or spring. Credit TBA. S-U grades only. Times TBA. Graduate faculty.

Thesis research for M.S. candidates.

[CSS 920(9200)] Graduate-Level Thesis Research in Crop Science

Fall or spring. Credit TBA. S-U grades only. Times TBA. Graduate faculty.

Thesis research for Ph.D. students before "A" exam has been passed.

[CSS 921(9210)] Doctoral-Level Dissertation Research in Crop Science

Fall or spring. Credit TBA. S-U grades only. Times TBA. Graduate faculty.

Dissertation research for Ph.D. candidates after "A" exam has been passed.

Environmental Information Science

[CSS 397(3970)] Environmental Microbiology [also BIOMI 397(3970)]

Spring. 3 credits. Prerequisite: BIOEE 261 or BIOMI 290 or CSS 260 or permission of instructor. Offered alternate years; not offered 2005–2006. Lec. M W F 10:10-11:10. E. L. Maden.

Discusses the biology, behavior, and function of microorganisms in natural environments in relation to past and present environmental conditions on Earth. Also considers the role of microorganisms in ecologically and environmentally significant processes through discussion of specific topics such as elemental cycles, nutrient cycling, transformation of pollutant chemicals, wastewater treatment, and environmental biotechnology.

[CSS 410(4100)] The GMO Debate: Environmental Impacts

This course covers issues pertaining to the agricultural use of genetically modified organisms with emphasis on evaluating their environmental impact. Students will learn to critically evaluate the risks of benefits associated with the use of GMOs. We will examine the types of GMOs in use and in development, how they are made, and their potential impacts on the environment including: gene flow, non-target effects, horizontal gene transfer, biodiversity effects and the implications of changes in farming practices and chemical inputs.

[CSS 411(4110)] Resource Inventory Methods [also CEE 411(4110)]

Spring. 3 credits. Prerequisite: permission of instructor. Lec. M W F 9:05-9:55; lab, M R 1:25-4:25. A. Lembo.

Survey of resource inventory methods applied to field-based studies of environmental systems. Laboratory emphasizes using maps, spatial databases, global positioning systems, and aerospace imagery to discriminate, measure, inventory, and monitor environmental resources.

[CSS 420(4200)] Geographic Information Systems

Fall. 4 credits. Prerequisite: CSS 411 or permission of instructor. Lec. T R 9:05-9:55; lab, T 10:10-11:10. M W F 1:25-4:25; F lab added only if enrollment numbers dictate. A. Lembo.

Principles and applications of geographic information systems for the characterization and assessment of agronomic and environmental resources. Emphasizes methods for accessing, updating, analyzing, and mapping spatial data and information. Considers needs assessment, coordinate systems, database design and maintenance, data transformations, and map accuracy assessment.

[CSS 485(4850)] Global Positioning System

Fall, first five weeks of semester. 1 credit. Prerequisite: CSS 411 or 420, or equivalent, or permission of instructor. Lec. F 9:05-12:00. Spring, last five weeks of semester. 1 credit. Prerequisite: CSS 411 or 420, or equivalent, or permission of instructor. Lec. F 1:25-4:25. A. Lembo.

Introduction to navigation-grade GPS instruments used in agricultural and environmental science. Topics include instrument familiarization; field-data collection and processing; real-time and post-differential correction; and GPS-GIS integration.

[CSS 485(4850)] Problem Solving in Environmental and Agroecosystem Science I

Fall. 4 credits. Prerequisite: senior standing. CSS 260 or equivalent, or permission F 1:25; lab, at least one four-hour afternoon per week plus additional time as needed. P. Baveye.

Capstone experience for seniors, in continuation of CSS 485. Students work in groups to carry out a comprehensive analysis of a specific problem (e.g., a brownfield in Ithaca in fall 2004), with a number of faculty members serving as technical resources and lecturing as needed. Involves field trips, in-depth discussions of data assembled before the course, gathering of relevant scientific information (in groups), and report writing. Students are expected to work approximately 15 hours per week on a range of assignments. The course is conceived as the first of a sequence of two capstone courses, but it can be taken alone.

[CSS 486(4860)] Problem Solving in Environmental and Agroecosystem Science II

Spring. 4 credits. Prerequisite: senior standing, CSS 485. Lec. TBA; lab, at least one four-hour afternoon per week plus additional time as needed. P. Baveye.

Capstone experience for seniors, in continuation of CSS 485. Students work in groups to carry out the basic analysis of the targeted problem (e.g., in spring 2005, a brownfield in Ithaca).

[CSS 620(6200)] Spatial Modeling and Analysis

Spring. 2 credits. Prerequisite: CSS 420, 461, or permission of instructor. Lec. T R 9:05-9:55; lab, T W 1:25-4:25. A. Lembo.

Theory and practice in the development, integration, and visualization of spatial data for resource inventory, environmental process modeling, land classification, and evaluation. Emphasizes application and evaluation of advanced spatial analytical methods applied to environmental systems and databases of interest to the student.

[CSS 621(6210)] Applications of Space-Time Statistics

Spring. 2 credits. Prerequisite: STBTRY 601 or equivalent. S-U grades only. Offered alternate years; offered after spring break 2006. W F 2:30-4:25. H. Van Es.

Introduction to space-time statistics with applications in agriculture and environmental management. Topics include geostatistics (including use of ArcView's Geostatistical Analyst), temporal statistics, sampling, experimental design, state-space analysis, data mining, and fuzzy logic. Focuses on landscape-scale processes and a user's perspective.
photographing the area, and interviewing experts, students will relate their experiences and how best to relate their observations in a thorough but engaging manner to a future audience. Students will receive extensive feedback at every step of the way, from outlining and revising their thoughts to the final formatting and submission of their work.

This is a special seminar sponsored by the John S. Knight Institute's Sophomore Seminars Program. Seminars offer discipline-intensive study within an interdisciplinary context. While not restricted to sophomores, the seminars aim at integrating students into the discipline's outlook, discourse community, modes of knowledge, and ways of articulating that knowledge. Special emphasis is given to strong thinking and writing and to personal instruction with top university professors.

CSS 260(2600) Soil Science

Fall. 4 credits. S-U grades optional. Lec. M W F 9:05; lab, M T W or R 1:25–4:25.

J. Russell-Anelli.

Designed for students interested in a comprehensive introduction to soil science from both the environmental and plant management perspective. Divided into three units: (1) soil information unit introduces students to soil characterization, testing, mapping, classification, GIS, and land evaluation. (2) soil management unit addresses fertility, pest management, water, and microclimate, as well as erosion, conservation, pollution, and soil health. (3) unit on the role of soils in ecosystems considers topics such as biodiversity, soils as sinks and sources of greenhouse gases, and the impact of soils on land use. Labs are initially field-oriented with an emphasis on learning practical skills needed to evaluate and manage soils. Subsequent labs focus on accessing, interpreting, and applying soil information.

CSS 362(3620) Soil Morphology

J. Russell-Anelli.

Presents the principles for field identification of soil properties, profiles, and landscapes. A series of soil pits are examined, described, classified, and interpreted in the field.

CSS 365(3650) Environmental Chemistry: Soil, Air, and Water

Spring. 3 credits. Prerequisites: CHEM 207–208. Lec. M W F 10:10–11.

M. B. McBride.

Overview of the chemical processes that control the fluxes, concentrations, and bioavailability of nutrients and pollutants in soil, air, and water. Discusses particular attention to soil's function as a filter for contaminants. Describes the history of environmental contamination by xenobiotics and heavy metals and their impact on agricultural soils and ecosystems.

CSS 372(3720) Nutrient Management in Agroecosystems

Spring. 4 credits. Prerequisite: CSS 260 or permission of instructor. Graduate students should enroll in CSS 472. Lec. T R 8:40–9:55; lab, R 1:25–4:25. J. Lehmann.

Familiarizes students with the basic concepts of soil fertility and crop nutrition and how soil and environmental properties affect nutrient availability and cycling. Discussion focuses on the way organic farming and soil conservation affect the fate of nutrients in agroecosystems. Emphasizes how nutrient management can be improved without creating environmental hazards. Students have hands-on training in analytical procedures and expand knowledge in discussion groups and through oral as well as poster presentations.

CSS 412(4120) Whole-Farm Nutrient Management [also AN SC 412(4120)]

Spring. 2 or 4-credit option. Prerequisite: AN SC 411; junior, senior, or graduate standing. Offered as two modules. Enrollment in Module 1 for first half of semester required (2 credits); consists of crop and manure nutrient management planning; no prerequisites for CALS students. Enrollment in Module 2 for second half of semester optional (additional 2 credits). Lec. T R 11:15 and lab T T 1:25–4:25 for both modules, with work on case studies outside of lab. M. E. VanAmburgh, Q. M. Ketterings, and G. L. Albrecht.

Provides students with an understanding of the concepts underlying whole-farm nutrient management planning to improve profitability while protecting water and air quality. Students learn and apply concepts in the development of a Comprehensive Nutrient Management Plan (CNMP) that is required for a Concentrated Animal Feeding Operation plan to meet environmental regulations. Students develop components of a CNMP for a case study farm, using the Cornell University Nutrient Management Planning System (cNMPs) and other tools. All students enrolled learn the concepts and processes of developing the crop and manure nutrient management plan component of a CNMP (Module 1). Students choose through the end of the semester in Module 2 (4-credit option) build on knowledge gained in the first half of the semester by learning the knowledge and skills necessary to integrate crop production and herd feeding management for reducing nutrient imports on farms.

CSS 421(4210) Soil and Water Management

Introduces students to the principles of soil and water interaction and to the effects of human intervention on these processes. Examines aspects of soil and water management, including hydrology, soil erosion and conservation, water management, contaminant movement, tillage, soil compaction, and water quality. Discusses case studies and policy approaches from both the United States and abroad.
CSS 466(4660) Soil Ecology (also HORT 461(4610))
Spring. 4 credits, with lab. Prerequisite: one year of biology or ecology and CSS 260 or permission of instructor. Lec., T R 10:10–11:25; lab, W 1:25–4:25. J. E. Thies.
Discover the wonder of life underground. This course covers the amazing diversity of soil organisms along with their multifaceted functions in terrestrial ecosystems. It highlights the fundamental principles and features of biologically mediated processes in the soil and the interactions of soil biology in the context of both managed and unmanaged ecosystems. Special topics are selected from beneficial symbioses, biological control of plant pathogens, biogeochemistry of unique habitats, bioremediation and composting, habitat for microorganisms and the ecology of the rhizosphere environment, plant-pathogen interactions, biological pest control, and evolutionary processes in agriculture. Uses case studies from both the tropics and the temperate zone to illustrate important concepts.

[CSS 483(4830) Environmental Biophysics (also EAS 483(4830))]
Spring. 3 credits. Prerequisite: CSS 260 or equivalent or permission of instructor.
Offered alternate years; next offered 2006–2007. Lec., T R 8:40–9:55. S. J. Riha
Introduction to basic principles of energy and mass transfer and storage in soil-plant systems. Covers energy budgets; soil heat flow; water movement in saturated and unsaturated soils; evapotranspiration; and water, gas, and nutrient dynamics in the soil-plant-atmosphere continuum. Emphasizes the role of soil in agronomic and environmental problems and instrument design and use through discussion and problems sets.

[CSS 663(6630) Pedology]
Spring. 3 credits. Prerequisite: CSS 361 or permission of instructor. M W F 11:15–12:05. Offered alternate years; not offered 2005–2006. J. E. Thies. Weathering, reactions, and processes of soil genesis: principles of soil classification and the rationale and use of soil taxonomy; development and significance of major groups of soils of the world.

CSS 666(6660) Applied Plant-Microbe Interactions
Fall. 4 credits. Prerequisite: CSS 466 or equivalent or permission of instructor. Lec., T R 10:10–11:25; lab, F 1:25–4:25. Offered alternate years. Next offered fall 2005. J. E. Thies. Discussion and laboratory-based course focusing on the nature of microbial interactions with plants, concentrating largely on bacterial and fungal associations. Investigates symbiotic, associative, and pathogenic interactions with an aim of improving professional practice, within the context area. Students learn to examine the primary literature, present research reports, write and review proposals, conduct a small independent-research project, and report on the outcomes in conference and journal formats. Class discussions explore the nature of the rhizosphere environment as a habitat for microorganisms and the ecology of rhizosphere respiration through readings in the primary literature. In laboratory, all students conduct an independent research project, aligned with their interests, in which they develop testable hypotheses and conduct experiments using relevant, modern methods.

[CSS 667(6670) Advanced Soil Physics]
Spring. 3 credits. Prerequisite: one year of college physics and CSS 483 or permission of instructor. S-U grades optional. Offered alternate years, not offered 2005–2006. M W F 11:15–12:05. P. C. Davy.
Acquaints students with advanced topics in soil physics in a number of areas, including the statics and thermodynamics of soil water, the physics of swelling-shrinkage soils, the transport of water and solutes in heterogeneous soils, the measurement of soil physical parameters, and the effect of spatial-temporal heterogeneity of soils on their physical characteristics. The format of the course, based in most years on weekly, individual tutorials, allows different topics to be covered, depending on the interests of the students. If a group of students expresses interest, the course also can involve reflection on the detailed design of one or more laboratory or field experiments related to soil physics.

CSS 669(6690) Organic Matter—Soils, Sediments, and Waters
Fall. 3 credits. Prerequisite: CSS 260 and CHEM 357–358 or equivalent. M W F 10:10–11:00. J. M. Duxbury.
Discussion of current concepts on the chemical nature, dynamics, and properties of natural organics and organo-mineral associations in terrestrial and aquatic environments. Includes a modeling project of soil carbon dynamics in natural or agricultural ecosystems.

CSS 671(6710) Soil Chemistry
Fall. 3 credits. Prerequisite: one year of physical chemistry or permission of instructor. Lec., M W F 10:10. Offered alternate years. M. B. McBride.
Detailed examination of the structure and surface chemistry of colloidal particles important to the function of soils. Emphasizes ion exchange, mineral-solution equilibria, and adsorption reactions of silicate clays, oxides, and organic matter. Describes the sorption behavior of environmental contaminants in soils, particularly metals and xenobiotics.

CSS 672(6720) Nutrient Cycling in Natural and Managed Ecosystems
Fall. 3 credits. Prerequisite: CSS 572 or NTRES 321 or BIOEE 478, or permission of instructor. Offered alternate years; offered 2006–2007. Lec., T R 10:10–11; lab, F 1:25–4:25. J. Lehmann.
Covers nutrient cycling in soil and the interface between the soil and the biosphere, atmosphere, and hydrosphere. Examines the biogeochemistry of nutrient elements in natural ecosystems, disturbed or degraded ecosystems, and agricultural systems, including pollution in watersheds. Students develop independent projects to present a research proposal, and conduct field research that culminates in a presentation and a paper in publishable format.

CSS 693(6930) Special Topics in Soil Science
Fall, spring, or summer. 1–6 credits. S-U grades optional.
Study of topics in soil science that are more specialized or different from other courses. Special topics covered depend on staff and student interests.

CSS 696(6960) Seminar: Organic Inputs in Tropical Soils and Agroforestry (also NTRES 596(5960))
A variety of speakers present seminars on organic inputs in the tropics and agroforestry. Students are required to prepare a synopsis of each seminar.

CSS 880(8880) Master's-Level Thesis Research in Soil Science
Fall or spring. Credit TBA. S-U grades only. Times TBA. Graduate faculty. Thesis research for master's students.
DEVELOPMENT SOCIOLOGY

Note: The prefixes for courses in this department were listed as RSOC in previous years.

Note: Class meeting times are accurate at the time of publication. If changes occur, the department will provide new information as soon as possible.

D SOC 101(1101) Introduction to Sociology
Fall or spring. 3 credits. Lec, T R 10:10-11:00; sec, various times. Fall, T. Hirschl; spring, A. Gonzales and R. Mize. Introduction to theory and research in sociology. Demonstrates how the insights, theories, and methods of sociological analysis can be brought to bear on major issues of social life. A primary goal is to convey a sense of the manner in which sociologists formulate theories and how the collection and analysis of data are used to evaluate those theories. Provides "hands-on" experience in analyzing sociological issues. Students undertake guided research exercises that involve using computers to analyze actual data. No prior background is presumed; necessary skills are covered in class and section meetings.

[D SOC 103(1103) Self and Society (also SOC 103)]

D SOC 111(1201) Development Sociology First-Year Writing Seminar
Fall, spring. 3 credits. Lec, T R 10:10-11:25. The department offers first-year writing seminars on a wide range of development sociology topics. Consult John S. Knight Writing Seminar Program brochures for instructors and descriptions.

[D SOC 112(1200) Development Sociology First-Year Writing Seminar]
Fall, spring. 3 credits. Lec, M W 2:55-4:10. Staff. The department offers first-year writing seminars on a wide range of development sociology topics. Consult John S. Knight Writing Seminar Program brochures for instructors and descriptions.

[D SOC 200(2000) Social Problems (also SOC 200)]

D SOC 201(2010) Population Dynamics (also SOC 202(2202))
Spring. 3 credits. Limited to 35 students. AUS students must enroll in D SOC 201. S-U grades optional. T R 2:55-4:10. P. Eloundou-Enyegue. Introduction to population studies. First reviews basic concepts and demographic principles and techniques, then focuses on how demographic processes (fertility, mortality, and migration) affect social and economic outcomes. Discussions cover special topics related to population growth and distribution, including mass education, marriage and family formation, labor force participation, inequality and poverty, women's status, resource allocation, and the environment.

D SOC 205(2050) International Development (also SOC 206(2206))
Spring. 3 credits. Limited to 74 students. M W F 10:10-11:00. P. McMichael. Examines new questions concerning development models in the post-Cold War era from a conflictual perspective on North-South relations. While the focus is the "Third World," the issues confronting it are often global, even when they concern the most basic issue of food security. Using films and various theoretical perspectives, the course examines Southern societies (economies, ecologies, class/gender relations) and the impact of global forces on Southern resources. Such forces include global food systems, new forms of production, development agencies, multinational institutions, local bureaucracies, transnational corporations, the debt crisis, and new technologies. Also examines the new global Justice movements, such as environmentalism, feminism, and landless workers, peasant, and grassroots activism.

D SOC 206(2060) Gender and Society (also FGSS 206(2060))
Spring. 3 credits. Limited to 100 students. Lec, T R 10:10-11:25; sec, various times. Not offered 2005-2006. Staff. Familiarizes students with origin of gender hierarchies, social and behavioral similarities/differences between females and males, and the degree that biological, psychoanalytic, psychological and sociological perspectives help to understand the differences. United States and cross-cultural comparisons of the consequences of gender inequality are a major focus of the course. Objectives are met through lectures, readings, films, participant observation, and personal experiences.

[D SOC 208(2080) Technology and Society]

D SOC 209(2090) Social Inequality (also SOC 208(2208))
Spring. 4 credits. T R 10:10-11:25. K. Weeden. For description, see SOC 208.

[D SOC 210(2100) Race in America and at Cornell (also GOVT 210(2101))]

D SOC 212(2120) Social Indicators, Data Management, and Analysis
Fall. 3 credits. Offered alternate years (complement of D SOC 214). T R 11:40-12:55. P. Bloumdou-Enyegue. Survey of definitions of social indicators and general principles of social indicators research is illustrated from data on both developed and less-developed countries. Data management and analysis of measures of poverty, level of living, inequality, and quality of life based on census data, household surveys, and key-informant and other low-cost techniques, are examined using personal computers.

[D SOC 214(2140) Research Methods for the Social Sciences]

[D SOC 215(2150) Introduction to Organizations (also SOC 215(2150))]

D SOC 220(2200) Sociology of Health of Ethnic Minorities (also LSP 220(2200))
Fall. 3 credits. Limited to 15 students. S-U grades optional. T R 10:10-11:25. P. A. Parra. Discusses the health status of minorities in the United States. Explores intragroup diversity such as age, gender, economic status, and the influence of culture and the environment on health status and access to health care. Although special attention is given to Latino populations, discussion encompasses other minorities who face similar problems.

D SOC 230(2300) Latino Communities (also AM ST/ELL 230)
Fall. 3 credits. T R 1:25-2:40. R. Mize. From community sociology perspectives, an analysis of Latino community formation in U.S. urban and rural contexts. A major focus is the predominance of Puerto Ricans and Dominicans in New York, Cubans in South Florida, and Mexicans in the Southwest. The last portion of the course addresses the increasing "Latination" of new receiving areas and the formation of transnational communities that transcend spatially defined communities.

[D SOC 261(2610) Sociology of Sustainable Development]

D SOC 275(2750) Immigration and a Changing America
Fall. 3 credits. S-U grades optional. T R 2:55-4:10. M. M. Kritz. Immigration helped America become the nation that it is today. While many experts thought that immigration stopped with the end of American history ended in the early 1900s, immigration surged to historic highs in the second half of the 20th century and shows no signs of diminishing in the 21st century. This course examines the economic, social, and policy forces that underlie contemporary U.S. immigration and the impacts that immigrants are having on the American economy and society today. It looks in detail at who the new immigrants are, why they come to America, where they live, and what roles they fill in America.

[D SOC 301(3010) Theories of Society (also SOC 375(3750))]

Spring. 3 credits. Limited to 30 students. Prerequisites: development sociology or sociology course. S-U grades optional. T R 11:40-12:55. P. Ebets. Introduction to the "classical" sociological theorists (Marx, Weber, Durkheim) of the late 19th and early 20th century. Also addresses the dramatic social upheavals of the industrialization, capitalism, and rise of bureaucracy to which these thinkers reacted and the inspiring (and conflicting) visions for the future which they offered. Emphasizes the intellectual history, the influence of the theorists on subsequent sociology, and the potential for relevance to contemporary society.
D SOC 305(3050) Education, Inequality and Development
Simpson, G. Spring. 3 credits. Prerequisite: introductory social science course or permission of instructor. Letter grades. T R 10:10-11:25.

P. Eloundou-Enyegue.

Improvements in formal schooling are often advocated as solutions for a variety of socioeconomic problems in nonindustrial and industrial nations alike. This course critically assesses human capital approaches to development. Topics include (1) the variety and functions of school systems, (2) the individual and macro-level determinants of education, (3) education and socioeconomic stratification, (4) the effects of education on development, and (5) tools for evaluating education projects.

D SOC 311(3110) Social Movements [also D SOC 311(3110)]
Fall. 3 credits. Prerequisites: D SOC 101/ SOC 101 or permission of instructor. S-U grades optional. T R 2:55-4:10.

A. Gonzales.

Introduces students to the causes and characteristics of social movements and related ideologies central to the sociological study and interpretation of major trends involving both social and cultural change in society. One can describe a wide range of empirical examples, students examine key theories that explain the origins, tactics, and success of social movements and the ways in which people have mobilized to bring about political and social change.

D SOC 324(3240) Environment and Society [also S&T S 324(3241), SOC 324(3240)]
Spring. 3 credits. Limited to 100 students. T R 2:55-4:10.

C. Geisler.

The main objective is to develop a critical understanding of the dominant trends in modern U.S. environmental thought, such as preservationism, conservationism, deep ecology, social ecology, NIMBYism, risk assessment, ecological modernization, and environmental equity. A second objective is to familiarize students with some major contemporary substantive environmental problems and policies. These topics include air and water quality, public lands management, biodiversity, deforestation, climate change, and ozone depletion. A sociological framework is applied to evaluate interrelationships of substantive and philosophical/theoretical issues.

D SOC 333(3330) Genomics and Society

D. Brown.

Analyzes the changing structure and role of small towns and rural areas in developed nations. Focuses on adaptation of rural communities and populations to major trends, including increased societal differentiation and complexity; increased societal interdependence; and rapid social, economic, technological, and ecological change. Considers alternative policies to ameliorate rural problems and enhance rural contributions to national development. Students participate in group research projects in rural communities.

D SOC 340(3400) Sociology of Food Systems

G. W. Gillespie.

Examines our changing food and agricultural systems sociologically, with attention to how these reflect and shape the development of an increasingly global society. Addresses such questions as: What are the major trends? What drives them? What do these trends imply for people, communities, and the environment? What are the social, human-health, and environmental implications? What might be better alternatives and what strategies of development might achieve them?

D SOC 354(3540) Sociology of Contemporary Culture [also S&T S 354(3541), SOC 352(3520)]

C. Leuenberger.

Introduces students to the rapidly expanding body of work at the intersection of sociology, cultural studies, and science and technology studies. Provides an introduction to theoretical debates in cultural studies and to sociological studies of culture. Discusses the emergence of the tourist industry; the significance of consumption and advertisements in modern life; the cultures of music, art, and television; the use of celebrity; the use of science and scientific culture; and feminist analyses of knowledge, science, and technology; as well as the social construction of self, bodies, and identities.

D SOC 355(3550) Latinos, Law, and Identity [also LSP S 355(3550), AM ST 357(3570)]
Spring. 3 credits. Prerequisite: D SOC 101 or permission of instructor. Letter grades only. M W F 11:15-12:05. Not offered 2005-2006.

R. L. Mize.

D SOC 370(3700) Comparative Issues in Social Stratification [also SOC 370(3700)]
Fall. 3 credits. Prerequisite: introductory social science course. T R 1:25-2:40.

T. Lyson.

Reviews both classical and contemporary issues in the comparative social stratification literature. Gives particular attention to the changing configurations of different labor markets, debates on the meaning of new economic constituencies, and the role of gender, race, ethnicity, and sexuality in assessing the patterns, meanings, and experiences of inequality. Throughout the course special attention is given to the importance of understanding how questions of measurement are constructed and employed in understanding social inequality.

D SOC 375(3750) Comparative U.S. Racial and Ethnic Stratifications [also AM ST/LSP 375(3750)]
Spring. 3 credits. Prerequisite: D SOC 101 or permission of instructor. Letter grades only. T R 1:25-2:40.

R. L. Mize.

Comparative discussion of the construction of race. Examines structures of racism as they influence Latina/o, African American, Native American, and Asian American experiences. Does a critical interrogation of whiteness and ethnic identities. Focuses on historical legacy of institutional and interpersonal racism and its contemporary relevance in terms of political, economic, residential, legal, educational, cultural, health, and social-psychological inequalities.

D SOC 380(4900) Independent Honors Research in Social Science
Fall and spring. 1-6 credits; 6 credits max. may be earned in honors program. Prerequisite: requirements for honors program met. J. Frey.

Students should select a faculty adviser and begin proposal development during the junior year. Students must submit written proposals by the third week of the semester of their senior year to the departmental honors committee representative.

D SOC 410(4100) Health and Survival Inequalities [also SOC 410(4100)]

A. Basu.

Historical inequalities in health and survival continue to exist today. This course covers some of the markers of such inequalities, including region, class, race, gender, and age, and examines some of the biological, socioeconomic, and political determinants of these differences. Examines macro as well as individual and family-level determinants. Evaluates policy prescriptions and proposes new innovative approaches.

D SOC 421(4210) Theories of Reproduction [also SOC 421(4210)]

A. Basu.

Examines the contentious debate on what makes women have any, few, and many children. Covers theories of population growth and changing fertility in both historical and contemporary populations. Discusses demographic concepts like "the demographic transition" and "natural fertility." Gives primary attention to "sociocultural" and "gender-based" explanations of reproductive behavior. Also looks at theories about the place of the state in women's lives.

D SOC 430/629(4300/6300) Human Migration: Internal and International
Fall. 3 credits. Prerequisite: demography course or permission from instructor. M W F 10:10-11:10.

D. Brown.

Analyzes the determinants and consequences of internal and international migration in developed and developing nations. Emphasizes multilevel and multidisciplinary approaches. Examines public policy implications of the volume and composition of migration for origin and destination communities. Discusses techniques and measurement issues. (For 629, graduate students also meet with instructor every other week to discuss graduate readings and topics relevant to term project.)

D SOC 431(4310)/631(6310) Comparative Ethnoscience: Demographic Perspectives
Spring. 3 credits. Prerequisite: introduction to sociology or permission of instructor. S-U grades optional. T R 11:40-12:55.

D. Gurak.

Comparative examination of ethnic stratification and mobility that focuses principally on dimensions of social groups.
that can be empirically measured using readily available demographic sources. These include residential segregation, occupational status and mobility, marriage and family formation patterns, health and mortality, family structure, fertility, and intermarriage. Also examines the role of migration in shaping ethnic stratification systems. About half of the course examines the U.S. situation. Other societies receiving significant attention include India, Brazil, Nigeria, and several European societies. For D SOC 631, graduate students also meet with the instructor every other week to discuss graduate readings and topics relevant to their papers.

[D SOC 437(4370) Aging and Aging Social Policy in the 1990s]

D SOC 438/638(4380/6380) Population and Development
Fall. 3 credits. Prerequisite: permission of instructor. S-U grades optional. T R 11:40-12:55, D. Gurak.
Exams major historical and recent demographic transitions in mortality, fertility, age structure, and composition, and explores the relation of these transitions and the social, or economic, and cultural changes being experienced by diverse societies before, during, and following the onset and conclusions of the demographic shifts. Uses case studies from diverse historical periods and geographic locations. Graduate students meet with the instructor every other week to discuss graduate readings and topics relevant to their papers.

[D SOC 494(4800) Special Topics in Development Sociology]

Fall or spring. 4 credits max. S-U grades optional. The department teaches "trial" courses under this number. Offerings vary by semester, and are advertised by the department before the semester starts. Courses offered under the number will be approved by the department curriculum committee, and the same course is not offered more than twice under this number.

[D SOC 495/695(4650/6650) Population and Development in Sub-Saharan Africa]

D SOC 497(4901) Independent Study in Development Sociology
Fall or spring. 3 credits, variable; may be repeated for credit. Students must register using independent study form (available in 140 Roberts Hall). S-U grades optional. Informal study may include a reading course, research experience, or public service experience.

D SOC 560(5600) Managing Local Environmental Systems: Social Perspectives and Research Bases
Fall. 3 credits. W 1:25—4:25, J. Francis.
For students with diverse backgrounds: undergrads, grads, people in professional careers, others with interesting environmental issues/identification, resolution, and management. Discussions include ecological, social, economic, and local government perspectives. Via lab exercises throughout the semester, students have opportunities to apply the concepts and principles of these perspectives to analysis of specific local environmental-management problems. Readings, lectures, and a course project are mandatory.

D SOC 601(6010) Theoretical and Methodological Approaches to Community and Rural Development
Fall. 3 credits. Prerequisite: graduate standing. Letter grades only. Lec, W 7:30–10:30, I. Chopra.
Survey of three general approaches for conducting analysis and practice in community and rural development. These approaches include examinations of (1) community structural changes and policymaking; (2) participatory processes for generating community development; and (3) planning strategies as mechanisms for creating community development opportunities.

D SOC 602(6020) Community Development Seminar
Spring. 1 credit. Prerequisite: D SOC 601. Letter grades only. W 7:30–10:00, P. Ebets.
A participatory seminar for feedback, collective learning, and guidance as M.P.S. students apply community and rural development theory and methods in thesis project work with local and regional communities.

D SOC 603(6303) Classical Sociological Theory
Spring. 4 credits. Prerequisite: graduate standing. T 2:30–5:30, M. J. Pfeffer.
Reviews the classical sociological thought, focusing on the work of Weber, Durkheim, Marx, and Simmel. Course materials include original texts and secondary literature used to examine the concepts, methods, and explanation in classical sociological thought. Important objectives are to identify the philosophical and conceptual core of the discipline and to critically evaluate the relevance of the classical theories to contemporary social change and development.

D SOC 606(6060) Sociological Theories of Development
Fall. 3 credits. P. Ebets.
Critical examination of a historical range of theories and research in the sociology of development from the postwar period through the present. Major topics include modernization theory, world-system theory, the developmental state, global commodity chains, and globalization. Throughout the course, the concept of development itself is questioned and critiqued both theoretically and in terms of practical challenges from environmental, indigenous, and other social movements.

[D SOC 607(6070) Sociology of Natural Resources and Development (also ASIAN 603(6603))]

D SOC 608(6080) Demographic Techniques (also PAM 606(6606))
Fall. 3 credits. Prerequisite: multivariate statistics or permission of instructor. S-U grades optional. W 4:30–7:30, K. Joyner.
Introduction to the methods, measures, and data used in the analysis of human populations. Topics include demographic rates, life-table analysis, cohort vs. period analysis, sources and quality of demographic data, population estimation and projection, and stable population models.

[D SOC 611(6110) Globalization and Social Movements]

D SOC 612(6120) Population and Development in Asia (also FGSS 612(6120))

D SOC 615(6150) Qualitative Research Methods
Fall. 3 credits. Letter grades only. Lec, T 1:25–4:25, L. Williams.
Seminar introducing students to a number of qualitative methods of field research in the social sciences. Discusses field observation, archival research, in-depth individual interviews, and focus group interviews. Assesses the strengths and weaknesses of various strategies of field research and consider a range of practical matters such as choice of research site (and sample where appropriate), choice of questions, and issues of validity and reliability. Highlights ethical considerations.

D SOC 617(6170) Foundations in Social Research: Comparative Epistemologies
Fall. 3 credits. Letter grades only. W 1:25–4:25, S. Feldman.
Seminar designed to introduce graduate students in the social sciences to the variety of epistemological approaches used by social scientists to analyze social change and development. Examines both positivist and nonpositivist approaches. Relates the relationship of quantitative and qualitative methodologies to different epistemologies.

[D SOC 619(6190) Research Design I]

D SOC 619(6190) Quantitative Research Methods
Spring. 4 credits. Prerequisite: statistics course. Letter grades only. T R 12:20–2:15, J. Francis.
Graduate-level course in measurement and analysis of survey, demographic, and observational data. Topics include linear regression, analysis of variance, and analysis of covariance with both continuous and categorically coded variables. Introduces logistic regression and some nonlinear models. Gives special attention to handling ordered and unordered categorical data as these are prevalent in social demographic data sets. Analyzes data from real surveys like the American National Election Studies and the General Social Surveys using programs like SAS and SPSS includes labs and writing programs to analyze these data. Students familiarize themselves with data cleaning, missing data estimation, transformations, subsetting, and other data handling procedures.

D SOC 620(6200) Sociology of the Community
Fall. 3 credits. W 1:25–4:25, D. Brown.
Graduate seminar that critically analyzes the intellectual core of community sociology and its theoretical development over time. "Community" as a concept is often reified and rarely critically examined, hence the course begins by clarifying the various ways in which "community has been conceptualized and operationalized by sociologists. The course provides students with both a grounded conceptual foundation and an overview of multiple strategies for conducting research on community structure and change in the United States and internationally. Includes a critical examination of the forms and shapes sociological research on the community.
D SOC 621(6210) Foundations of Environmental Sociology

D SOC 625(6250) State, Economy, and Society
Fall. 3 credits. T 1:25-4:25.
P. D. McMichael.
Reviews major issues concerning the relations between political and economic institutions and the role of states, markets, firms, social movements, and cultural institutions in the process of social change. Draws theoretical perspectives from classical and modern social theory, including the application of comparative and world/historical methodologies.

D SOC 630(6500) Field Research Methods and Strategies

D SOC 635(6350) Indigenous Peoples and Globalization (also AIS 635[6350])
Explores ways in which processes of globalization affect indigenous peoples worldwide and the strategies indigenous peoples are using to deal with those pressures. Globalization, whether under the auspices of the World Trade Organization and regional economic agreements such as the NAFTA or the de-territorialization of social and political arrangements contemporaneous with modernization or the expansion of communication technology and its impact on traditional knowledge systems, has had profound social, cultural, and economic impacts on indigenous peoples. At issue are the lands, resources, traditional knowledge, intellectual and cultural property, and indigenous struggles for recognition and self-determination.

D SOC 640(6400) Community and Changing Property Institutions
Fall. 3 credits. R 1:25-4:25. C. C. Geisler.
The "ownership society" assumes multiple forms. The seminar focuses on property in land and acquaints students with the origin and evolution of property rights. It traces major property debates (aboriginal ownership vs. terra nullius; private versus public (and mixed) ownerships; the tragedy (versus the opportunity) of the commons; takings vs. giving) as well as abiding property topics with which social scientists should be familiar (the "new" property, property rights as human rights, and new currents in and reform).

D SOC 641(6410) Politics and Economics of Rural and Regional Development
Survey of social, political, and economic factors in local and regional development. Explores theories of community and regional development, indigenous alliances and practices, as well as shape interpretations of current processes of resistance, change, and exchange. Course engages historical, poststructural, postcolonial, and comparative theories particularly as these have emerged and been refined by current debates in South Asia, Latin America, and Africa.

D SOC 645(6450) Rural Economy and Society

D SOC 655(6550) Advanced Techniques of Demographic Analysis

D SOC 661(6610) Sustainable Agriculture and Development
Fall. 3 credits. M 12:20-2:50. T. A. Lyon.
Examines the relationship between local agriculture and development as these are embedded in a globalizing economy.

D SOC 666(6660) Genomics, Agriculture, Food Systems, and Development

D SOC 671(6710) Epistemological Challenges to Social Science Paradigms: A Feminist Inquiry (also FGSS 671[6710])

D SOC 675(6750) Global Patterns of International Migration

D SOC 684(6800) Special Topics in Development Sociology
Fall or spring. 4 credits max. S-U grades optional. The department teaches "trial" courses under this number. Offerings vary by semester, and are advertised by the department before the semester starts. Courses offered under the number will be approved by the department curriculum committee, and the same course is not offered more than twice under this number.

D SOC 715(7150) Comparative Research Methods

D SOC 718(7180) Multidimensional Measurement and Classification

D SOC 719(7190) Logistic and Log Linear Models

D SOC 725(7250) Theories of State, States of Theory
Examines how processes of political, economic, and social restructuring reshape state capacities and processes of state formation. The animating question: How have new patterns of "globalization"—transnational corporatist alliances, social movements, and new hegemonic relations—altered how we understand the meanings, activities, and power of rule? Critical to these discussions are the contours of nationalisms, and fundamentalisms as these emerge and reconfigure national, regional, and global alliances and practices, as well as shape interpretations of current processes of resistance, change, and exchange. The course engages historical, poststructural, postcolonial, and comparative theories particularly as these have emerged and been refined by current debates in South Asia, Latin America, and Africa.

D SOC 800(8900) Master's-Level Thesis Research
Fall or spring. Credit TBA. Prerequisite: permission of instructor. S-U grades optional. Graduate faculty. Thesis research for master's students.

D SOC 872(8720) Development Sociology
Prerequisite: master's and doctoral degree candidates, permission of graduate faculty concerned. S-U grades optional. Graduate faculty.

D SOC 900(9900) Graduate-Level Thesis Research
Fall or spring. Credit TBA. Prerequisite: permission of instructor. S-U grades optional. Graduate faculty. Thesis research for Ph.D. students only before "A" exam has been passed.

Related Courses in Other Departments
(Others may be added)

Population Dynamics (SOC 205)
Gender Relations, Gender Ideologies, and Social Change (FGSS 524)

EARTH AND ATMOSPHERIC SCIENCES

Field Study in Hawaii
Field study is a fundamental aspect of earth system science. Students wishing to increase their field experience may fulfill some of the requirements for the SES major by off-campus study through the Cornell Earth and Environmental Semester program
EAS 351(3510) Marine Ecosystems Field Course (also BIOEE 351[3510])
Spring. 4 credits. Prerequisite: EAS 240. Recommended: oceanography course.
C. Greene, B. Monger, and C. D. Harvell. Covers biogeochemical interactions of physical and biological processes in marine ecosystems. Begins by looking at these processes on ocean-basin to regional scales and work down to the smaller scales relevant to individual organisms. Introduces students to modern techniques of marine-ecosystem research, including remote sensing, oceanographic survey methods, and experimental marine ecology. This course is field and laboratory intensive with students engaged in hands-on, active learning that takes advantage of local resources.

General Courses
EAS 121(1210) Introduction to Computer Programming
Fall. 2 credits. Prerequisites: MATH 111. Co-requisite: MATH 191. D. Schwartz.

EAS 150(1500) FORTRAN Applications in Earth Science
Spring, seventh-week course. 2 credits. Prerequisite: C/ES/EAS 121 or equivalent. Letter grades only. Lect, R 9:05-9:55; lab, T 1:25-3:25. A. J. Penning.
Emphasizes the application of scientific computing in the Earth sciences, including data processing and modeling of the Earth, its atmosphere, and oceans. Extends the procedural programming concepts developed in CIS 121/EAS 121 and considers their implementation in high-performance, compiled languages. Topics include the structure and syntax of a FORTRAN program, data input/output, compilation, and debugging.

EAS 496(4960) Internship Experience
Fall or spring. 1-2 credits. S-U grades only. Staff. See individual units for requirements.

EAS 497(4970) Teaching Experience in Earth and Atmospheric Sciences
Fall and spring. 1 credit; students enroll for one semester. Interdisciplinary field course covering fundamental concepts of the Earth system. Topics include global circulation patterns in the solid Earth, atmosphere and ocean; energy and mass transfer; change and variability of Earth atmosphere and ocean systems; the temporal record of change preserved in the geologic record; Earth/ocean/atmospheric controls on ecosystem processes. The course is project-based with students engaged in hands-on, active learning that takes advantage of local resources.

EAS 133(1330) Basic Meteorology Lab
This course is required for atmospheric science majors, but is optional for other students taking EAS 131.

EAS 250(2500) Meteorological Observations and Instruments
Fall. 4 credits. Prerequisite: EAS 131. Lec, M W F 12-20; lab, R 1:25. M. W. Wysocki and B. Monger.
Covers methods and principles of meteorological measurements and observations including surface, free-air, and remote systems. Also covers instrument siting, mounting, and protection; instrument response characteristics; calibration, and standardization; and recorders and data logging systems. Laboratory exercises are in observation and data analysis. The course is intended to serve as preparation for Observers Examination.

EAS 268(2680) Climate and Global Warming
Familiarizes students from a range of disciplines with some contemporary issues in climatology as global warming and El Nino. Introduces the natural greenhouse effect, past climates, and observed and projected climate changes and impacts. Also covers natural climate variations (e.g. El Nino) and their consequences and predictability. Weekly student-led discussion of issues appearing in journals such as Nature.

EAS 296(2960) Forecast Competition
Fall and spring. 1 credit; students enroll for two consecutive semesters; credit awarded after second semester; may be repeated for credit. Prerequisite: sophomore standing in atmospheric science or permission of instructor. S-U grades only. D. S. Wilks.
Two-semester course providing daily exercise in probabilistic weather forecasting, in which students compete to forecast local weather most skillfully.

EAS 331(3310) Climate Dynamics (also ASTRO 331[3311])
Fall. 3 credits. Prerequisites: two semesters of calculus and one semester of physics. Lect, M W F 12:20-1:10; disc, F 1:25-2:15. K. H. Cook and P. J. Gierasch.
Discusses processes that determine climate and contribute to its change, including atmospheric radiation, ocean circulation, and atmospheric dynamics. Investigates contemporary climate change issues and discusses them in the context of natural variability of the system.

EAS 334(3340) Microclimatology
The relationships of radiant energy, temperature, wind, and moisture in the atmosphere near the ground are examined. Interplay between physical processes of the atmosphere, plant canopies, and soil with emphasis on the energy balance.)
EAS 341(3410) Atmospheric Thermodynamics and Hydrostatics
Fall. 3 credits. Prerequisites: one year of calculus and one semester of physics. M W F 10:10–11:00. M. W. Wysocki. Introduction to the thermodynamics and hydrostatics of the atmosphere and to the methods of description and quantitative analysis used in meteorology. Topics include thermodynamic processes of dry air, water vapor, and moist air, and concepts of hydrostatics and stability.

EAS 342(3420) Atmospheric Dynamics (also ECE 342)
Spring. 3 credits. Prerequisite: EAS 341. Co-requisite: EAS 342. Lec, T R 9:05; lab, M 1:25. M. W. Wysocki. Study of weather map analysis and forecasting techniques by applying the principles of fluid and heat flow. Strengthens previously introduced meteorological concepts that are applied to forecasting midlatitude synoptic scale weather systems, such as cyclones, anticyclones, jet streams, fronts, and waves.

EAS 435(4350) Statistical Methods in Meteorology and Climatology
Fall. 3 credits. Prerequisites: one introductory course each in statistics (e.g., AEM 210) and calculus. T R 10:10–11:25. D. S. Wilks. Statistical methods used in climatology, operational weather forecasting, and selected meteorological research applications. Includes statistical characteristics of meteorological data including probability distributions and correlation structures. Covers operational forecasts derived from multiple regression models, including the MOS system and forecast evaluation techniques.

EAS 447(4470) Physical Meteorology
Fall. 3 credits. Prerequisites: one year each of calculus and physics. M W F 9:05–9:55. Offered alternate years. A. T. DeGaetano. Primarily a survey of natural phenomena of the atmosphere, with emphasis on their underlying physical principles. Topics include atmospheric electricity, atmospheric optics and radiation, micrometeorological cloud processes, and principles of radar probing of the atmosphere.

EAS 451(4510) Synoptic Meteorology II
Fall. 3 credits. Prerequisites: EAS 341 and 342. Lec, T R 9:05; lab, M 1:25–4:25. S. J. Colucci. Structure and dynamics of large-scale midlatitude weather systems, such as cyclones, anticyclones, jet streams, and waves, with consideration of processes that contribute to temperature changes and precipitation. Lab sessions involve real-time weather forecasting and the computer application of a numerical model of the atmosphere to study selected large-scale midlatitude weather events.

EAS 456(4560) Mesoscale Meteorology
Spring. 3 credits. Prerequisites: EAS 341 and 342 or permission of instructor. T R 11:40–12:55. S. J. Colucci. Covers structure and dynamics of midlatitude mesoscale weather systems such as fronts, jets, squall lines, convective complexes, precipitation bands, downslope windstorms, mountain breezes, sea breeze circulations, and lake effect snowstorms. Also considers tropical weather systems and mesoscale modeling.

EAS 457(4570) Atmospheric Air Pollution
Fall. 3 credits. Prerequisites: EAS 341 or one course in thermodynamics, and one semester of chemistry, or permission of instructor. M W F 10:10–11. Offered alternate years; next offered 2006–2007. M. W. Wysocki. Examines sources, effects, transport, measurement, and controls of air pollution. Discusses the basic principles in each area with an emphasis on their local, regional, and global impacts.

EAS 470(4700) Weather Forecasting and Analysis
Spring. 3 credits. Prerequisites: EAS 352 and 451. Times TBA. M. W. Wysocki. Applied course focusing on weather forecasting and analysis techniques for various regions around the world. Lectures emphasize the application of student’s knowledge of atmospheric dynamics, thermodynamics, and computer data analysis, to forecast the development and movement of multiscale weather systems. Students participate in weekly forecast discussions; write daily forecasts that include a synoptic discussion, quantitative precipitation forecasts, and severe weather outlook for the forecast region; and lead class discussion on assigned readings.

EAS 483(4830) Environmental Biophysics (also CSS 483(4830))
Spring. 3 credits. Prerequisites: EAS 341 or 342. Offered alternate years; next offered 2006–2007. S. J. Rihm. Introduces basic principles of energy and mass transfer and storage in soil-plant systems. Covers energy balance, soil heat flow, water movement in saturated and unsaturated soils; evapotranspiration; and water, gas, and nutrient dynamics in the soil-plant-atmosphere continuum. Considers applications to agronomic and environmental problems and instrument design and use through discussions and problem sets.

EAS 487(4870) Introduction to Radar Remote Sensing (also ECE 487(4870))
Fall. 3 credits. Prerequisite: PHYS 208 or 213 or equivalent, or permission of instructor. Lec, M W F 9:05–9:55. D. L. Hysell. Fundamentals of radar, antennas, and remote sensing. Exposes students to the principles underlying the analysis and design of antennas used for communication and for radar-related applications. Students also encounter both a mathematical and a practical description of how radars function, how their performance can be optimized for different applications, and how signals acquired by them can be processed. The objective is to familiarize students with a wide variety of radars rather than to turn them into practicing radiometric radar engineers. Each topic is developed from basic principles so students with a wide variety of backgrounds are able to take the course. Emphasizes radar applications in geophysics, meteorology and atmospheric sciences, and astronomy and space sciences. Gives special attention to radar remote sensing of the Earth from spacecraft.

EAS 494(4940) Special Topics in Atmospheric Science (undergraduate level)
Fall or spring. 8 credits max. S-U grades optional. The department teaches “trial” courses under this number. Offerings vary by semester and are advertised by the department before the semester starts. The same course is not offered more than twice.

EAS 497(4970) Individual Study in Atmospheric Science
Fall or spring. 1–6 credits. S-U grades optional. Students must register using independent study form. Staff. Topics are arranged at the beginning of the semester for individual study or for group discussions.

EAS 499(4990) Undergraduate Research in Atmospheric Science
Fall or spring. Credit TBA. S-U grades only. Students must register using independent study form. Staff. Independent research on current problems in atmospheric science.

EAS 651(6510) Atmospheric Physics (also ASTRO 651(7651))
Fall. 3 credits. Prerequisite: good background in undergraduate calculus and physics. Offered alternate years; next offered 2006–2007. T R 11:40–12:55. K. H. Cook, P. J. Gierasch, and S. J. Colucci. Survey of the fundamental physical processes in atmospheres. Topics include thermodynamics of atmospheric gases, moist effects, hydrostatics, convective instability, atmospheric radiation and radiative heating, radiative-convective equilibrium, clouds, cloud microphysics, and precipitation processes. Discusses thermal structure and greenhouse effects on the Earth and other planets. Taught at the level of Thermodynamics of Atmospheres and Oceans by Curry and Webster.

EAS 652(6520) Advanced Atmospheric Dynamics (also ASTRO 652(7652))
Spring. 3 credits. Prerequisites: EAS 341 and 342 or equivalents. T R 11:40–12:55. Offered alternate years; next offered 2006–2007. S. J. Colucci and P. J. Gierasch. Covers quasigeostrophic theory, atmospheric waves, hydrodynamic instability, the general circulation of the atmosphere, and other topics selected from among numerical weather prediction and tropical, mesoscale, and middle atmosphere processes according to student interest.

EAS 666(6660) Applied Multivariate Statistics
Spring. 3 credits. Prerequisites: multivariable calculus, matrix algebra, two statistics courses. Offered alternate years; not offered 2005–2006. T R 10:10–11:25. D. S. Wilks. Statistical techniques for multivariable data. Topics include multivariate exploratory data analysis, the multivariate normal distribution, parametric and nonparametric inference about multivariate means, principal component analysis, canonical correlation analysis, discriminant analysis, and cluster analysis. Emphasizes geophysical applications, using
primarily atmospheric and oceanographic data as examples, but the development is general enough to be of broader interest."

EAS 675(6750) Modeling the Soil-Plant-Air System (also CSS 675(6750))
Spring. 3 credits. Prerequisite: EAS/CSS 483 or equivalent. Introduction to the interaction between the living organisms and their environment with a focus on soil-plant-weather interactions. Includes field trips to different locations around the globe.

EAS 692(6920) Special Topics in Atmospheric Science
Fall or spring. 1-6 credits. S-U grades optional. Staff. Studies topics in atmospheric science that are more specialized or different from other courses. Special topics vary depending on staff and student interests.

EAS 711(7110) Upper Atmospheric and Space Physics
Fall or spring. 1-6 credits. Seminar course TBA. D. L. Hysell.

EAS 850(8500) Master's-Level Thesis Research in Atmospheric Science
Fall or spring. Credit TBA. S-U grades only. Times TBA. Graduate faculty. Thesis research in atmospheric science master's students.

EAS 951(9510) Doctoral-Level Dissertation Research in Atmospheric Science
Fall or spring. Credit TBA. S-U grades optional. Times TBA. Graduate faculty. Dissertation research for atmospheric science Ph.D. candidates. Before "A" exam has been passed.

EAS 101(1101) To Know the Earth
Fall. 3 credits. Staff. Introduces the nonscientist to the Earth, its major features, and the ways the Earth has evolved. Discusses the interactions of the atmosphere, hydrosphere, lithosphere, and biosphere.

EAS 107(1107) Evolution of the Earth and Life (also BIO G 170[1700])
Spring. 3 credits. Staff. Examines the evolution of Earth's history and life, including the development of the biosphere, the evolution of life, and the interactions between the biosphere and the environment.

EAS 108(1108) Earth in the News
Summer. 3 credits. S. L. Losh. Introduces students to the study of natural hazards and environmental issues, including climate change, natural disasters, and human impacts on the environment.

EAS 109(1109) Dinosaurs
Fall. 1 credit. J. L. Cisne. An introductory survey course for anyone interested in dinosaurs. Lectures examine the fossil evidence and illustrate how various geological and biological disciplines contribute to understanding dinosaurs and their world.

EAS 111(1110) To Know the Earth
Fall. 3 credits. Staff. Introduces the nonscientist to the Earth, its major features, and the ways the Earth has evolved. Discusses the interactions of the atmosphere, hydrosphere, lithosphere, and biosphere.

EAS 112(1220) Earthquakes! (also ENGR 122[1220])
Spring. 3 credits. L. D. Brown. Introduces students to the science of natural hazards and strategic resource. Covers techniques for locating and characterizing earthquakes and assessing the damage they cause. Introduces methods for using seismology to understand the Earth's interior.

EAS 123(1230) The Sea: An Introduction to Oceanography—Lecture (also BIOEE 154[1540])
Fall, summer. 3 credits; optional 1-credit lab. Prerequisite: MATH 112 or equivalent. Lectures examine the physical, chemical, and biological processes that govern the ocean environment.

EAS 154(1540) The Sea: An Introduction to Oceanography—Laboratory (also BIOEE 154[1540])
Fall, summer. 3 credits. Laboratory exercises include laboratory exercises for EAS 154, including field trips to the Great Lakes and the Pacific Ocean.

EAS 201(2010) Introduction to the Physics and Chemistry of the Earth (also ENGRD 201[2010])
Fall. 3 credits. Prerequisite: PHYS 112 or PHYS 207. J. Phipps Morgan. Introduces students to the physics and chemistry of the Earth, including the physical, chemical, and biological processes that govern the Earth's environment.
EAS 321(3210) Introduction to Biogeochemistry (also NTRES 221(210))
Fall. 4 credits. Prerequisites: CHEM 207, MATH 112, and biology and/or geology course. L. A. Derry and J. Yavitt.
Control and function of the Earth's global biogeochemical cycles. Begins with a review of the basic inorganic and organic chemistry of biologically significant elements, and then considers the biogeochemical cycling of carbon, nutrients, and metals that take place in soil, sediments, rivers, and the oceans. Topics include weathering, acid-base chemistry, biological redox processes, nutrient cycling, trace gas fluxes, bio-active metals, the use of isotopic tracers, controls on atmospheric carbon dioxide, and mathematical models. Interactions between global biogeochemical cycles and other components of the Earth system are discussed.

EAS 326(3260) Structural Geology
Spring. 4 credits. Prerequisite: one semester of calculus plus introductory geology course, or permission of instructor. One weekend field trip. R. W. Allmendinger.
Nature and origin of deformed rocks at microscopic to macroscopic scales, with emphasis on structural geometry and kinematics. Topics include strain, stress, rheology, deformation mechanisms, minor structures, faulting, folding, and structural families.

EAS 350(3500) Dynamics of Marine Ecosystems (also BIOEE 350(3500))
Fall. 3 credits. Prerequisites: one year of calculus and one semester of oceanography (i.e., BIOEE/EAS 154), or permission of instructor. C. H. Greene and R. W. Howarth.
Lecture course covering the interactions of physical and biological processes in marine ecosystems. Begins by looking at these processes on a global scale and works down to the scales relevant to individual organisms. Topics include global patterns of ocean circulation; global patterns of ocean productivity; factors controlling variability and the role of the ocean in global climate change; the El Niño/Southern Oscillation; ecosystem dynamics of the open ocean and coastal environments.

EAS 355(3550) Mineralogy
Fall. 4 credits. Prerequisite: EAS 101 or 201 and CHEM 207 or permission of instructor. S. Mahlburg Kay.
Examination of minerals by hand-specimen properties and optical microscopy. Covers geological setting, classification, crystal structures, phase relations, chemical properties, and physical properties of minerals. Introduces X-ray diffraction. Includes an independent research project.

EAS 356(3560) Petrology and Geochemistry
Spring. 4 credits. Prerequisite: EAS 355. R. W. Kay.
Principles of phase equilibrium as applied to igneous and metamorphic systems. Includes description, classification, chemistry, origin, regional distribution, and dating of igneous and metamorphic rocks; geochemical distribution of trace elements and isotopes in igneous and metamorphic systems. Also covers the petrological evolution of the planets.

EAS 375(3750) Sedimentology and Stratigraphy
Fall. 4 credits. Prerequisite: EAS 101, 102, or 201. J. L. Casne.
Sediments, sedimentary rocks, and the rock cycle; sedimentary systems and stratigraphic sequences; fossil organisms and their paleoecology; correlation of strata in relation to age and environment; construction of the geological time scale; stratigraphic study of plate-tectonic processes and global change.

EAS 388(3880) Geophysics and Geotectonics
Spring. 4 credits. Prerequisites: MATH 192 or (or 112) and PHYS 206 or 213. B. L. Isaac.
Covers global tectonics and the deep structure of the solid Earth as revealed by investigations of earthquakes, earthquake waves, the Earth's gravitational and magnetic fields, and heat flow.

EAS 401(4010) Fundamentals of Energy and Mineral Resources
Spring. 3 credits. Prerequisites: math through differential equations, physics through electricity and magnetism, CHEM 207, or equivalent. Recommended: introduction to geology and mineralogy. L. M. Cathles.
Fossil fuels will continue to be the prime source of energy for the foreseeable future, and society depends upon mineral resources. This course describes and quantitatively analyzes energy and mineral resources on the earth. Describes the distribution and nature of earth resources, focusing on U.S. examples. Develops quantitative tools and uses them to understand the processes that accumulate resources to economic levels.

EAS 404(4040) Geodynamics
Spring. 3 credits. Prerequisite: calculus and calculus-based physics courses or permission of instructor. J. Phipps Morgan.
Quantitative study of the deformation, heat transport, and melting processes that have shaped the evolution of the solid Earth. Familiarizes students with the physical principles and concepts applied to the study of plate tectonics, fluid dynamics, mantle convection, melting, and mountain building.

EAS 405(4050) Active Tectonics
Spring. 3 credits. Recommended: mechanical background equivalent to EAS 326/388. M. Pritchard.
Develops the ideas and methods necessary to understand how the Earth deforms—from individual earthquakes to the construction of mountain ranges. Discusses the driving forces of deformation, and how these forces interact with different geologic materials to cause deformation.

EAS 417(4170) Field Mapping in Argentina
Summer. 3 credits. Prerequisites: EAS 210 and 326. Recommended: knowledge of Spanish. J. Phipps Morgan.
Modern techniques of geological mapping applied in the region of San Juan, Argentina, including folded and faulted sedimentary rock units of the Andean Precordilleran (San Juan River section), intensely deformed Precambrian metamorphic rocks of the Pampean Ranges (Pie de Palo), and shallow-level silicic intrusives (Cerro Blanco-Ullun).

EAS 434(4340) Reflection Seismology
Fall. 3 credits. Prerequisites: MATH 192 and PHYS 213 or 215, or equivalent. Not offered 2005-2006. L. D. Brown.
Fundamentals of subsurface imaging by multichannel seismic reflection techniques as used in oil exploration and geophysical investigations. Covers survey design, acquisition, analysis, processing, and interpretation in both 2-D and 3-D. Includes discussion of related techniques such as seismic refraction analysis, tomographic inversion, vertical seismic profiling, shear wave exploration, and ground-penetrating radar. Lab is keyed to state-of-the-art seismic processing, modeling, and interpretation software from LandMark.

EAS 437(4370) Geophysical Field Methods (also ARKEO 437(4370))
Fall. 3 credits. Prerequisites: PHYS 213 or 208, or permission of instructor. Offered alternate years. L. D. Brown.
Introduction to field methods of geophysical exploration, especially as applied to environmental issues. Emphasizes seismic, ground penetrating radar, gravity, and magnetic techniques. Analyzes and interprets field surveys carried out at the beginning of the semester.

EAS 452(4530) Advanced Petrology
Fall. 3 credits. Prerequisite: EAS 356.
Offered alternate years. R. W. Kay.
Magmas and metamorphism in the context of plate tectonics: major and trace element chemistry and phase petrology as monitors of the creation and modification of igneous rocks; temperature and stress in the crust and mantle and their influence on reaction rates and textures of metamorphic rocks; application of experimental studies to natural systems.

EAS 454(4540) Advanced Mineralogy
Spring. 3 credits. Prerequisite: EAS 355 or permission of instructor. Offered alternate years. S. M. Kay.
Covers crystallography and crystal chemistry of minerals and the methods of their study. Includes X-ray diffraction, optical methods, and computer simulation of crystal structures. Emphasizes effects of high pressures and temperatures with implications for understanding the Earth's interior.

EAS 455(4550) Geochemistry
Fall. 4 credits. Prerequisites: CHEM 207 and MATH 192 or equivalent. Recommended: EAS 356. Offered alternate years. W. M. White.
The Earth from a chemical perspective. Covers the formation of the elements; cosmochemistry; chemical evidence regarding the formation of the Earth and solar system; trace-element geochemistry; isotope geochemistry; geochronology; thermodynamics and kinetics; chemical evolution of the crust, mantle, and core; and major and trace elements in natural waters; chemistry of rivers and the oceans; hydrothermal systems; and ore deposition.

EAS 458(4580) Volcanology
Causes of volcanism, melting in the Earth, and the origin of magmas. Physical volcanology, and nature and types of volcanic eruptions and associated deposits, and eruption mechanisms. Volcanic plumbing systems, magma chamber

[EAS 460(4600) Late Quaternary Paleoecology]
Exploration of problems in Late Quaternary paleoecology. Topics include diversity of environmental proxies; (2) field- and laboratory-based research. The field research provides students with hands-on experience in sediment core collection, while in the laboratory students learn the basics of core description, pollen, and macrofossil analysis.

[EAS 462(4620) Marine Ecology (also BIOC 4620)]
Fall. 3 credits. Limited to 75 students.
Prerequisite: BIOC 261. Offered alternate years. C. D. Harvell and C. H. Greene. Lectures and discussion focus on current research in broad areas of marine ecology with an emphasis on processes unique to marine systems. A synthetic treatment of multiple levels of organization in marine systems including organismal, population, community, ecosystem, and evolutionary biology. Draws examples from all types of marine habitats, including polar seas, temperate coastal waters, and tropical coral reefs.

[EAS 471(4710) Introduction to Groundwater (also BEE 471(4710))]
Spring. 3 credits. Prerequisite: MATH 293, fluid mechanics or hydrology course.
T. S. Steenhus and L. M. Cathles.
Intermediate-level study of aquifer geology, groundwater flow, and contamination of aquifers and cleanup methods. Includes description of transport of trace elements, nutrients, and toxics through the unsaturated zone and aquifers. Discusses theoretical and practical applications. Includes short field trips.

[EAS 475(4750) Special Topics in Oceanography]
Fall, spring, summer. 2–6 credits, variable.
Prerequisites: one semester of oceanography and permission of instructor.
T. S. Steenhus and L. M. Cathles.
Introduction to the techniques and philosophy of research in geological sciences and an opportunity for undergraduates to participate in current faculty research projects. Topics chosen in consultation with, and guided by, a faculty member. A short written report is required, and outstanding projects are chosen in consultation with, and guided by, a faculty member. A short written report is required, and outstanding projects are chosen in consultation with, and guided by, a faculty member. A short written report is required, and outstanding projects are chosen in consultation with, and guided by, a faculty member. A short written report is required, and outstanding projects are chosen in consultation with, and guided by, a faculty member.

[EAS 476(4760) Sedimentary Basins: Tectonics and Mechanics]
Fall. 3 credits. Prerequisite: EAS 375 or permission of instructor. Offered alternate years. T. E. Jordan.
Subsidence of sedimentary basins from the point of view of plate tectonics and geomechanics. Covers interactions of subsidence, sediment supply, and environmental characteristics in development of stratigraphic architecture. Also covers stratigraphic characteristics of active-margin, passive-margin, and cratonic basins. Geophysical and stratigraphic modeling: sequence stratigraphy. Uses modern and ancient examples.

[EAS 478(4780) Advanced Stratigraphy]
Fall. 3 credits. Prerequisite: EAS 375 or permission of instructor. Offered alternate years; next offered 2005–2006.
T. E. Jordan.
Covers modern improvements on traditional methods of study of ages and of genetic relationships of sedimentary rocks emphasizing 3-D relationships. Introduces techniques and applications of sequence stratigraphy at scales ranging from beds to entire basins. Considers physical correlation, dating techniques, and time resolution in sedimentary rocks as well as physical controls on the stratigraphic record and numerical modeling.

[EAS 479(4790) Paleobiology (also BIOC 479(4790))]
Fall. 4 credits. Prerequisites: one year of introductory biology and BIOC 274 or 375, or EAS 375, or permission of instructor. Offered alternate years; not offered 2005–2006. W. D. Allmon.
Surveys the major groups of organisms and their evolution to aid students to fill out the biological backgrounds of Earth and atmospheric science students concerning the nature and significance of the fossil record for their respective studies.

[EAS 491-492(4910-4920) Undergraduate Research]
Fall, spring. 1 to 4 credits. Staff.
Introduction to the techniques and philosophy of research in geological sciences and an opportunity for undergraduates to participate in current faculty research projects. Topics chosen in consultation with, and guided by, a faculty member. A short written report is required, and outstanding projects are prepared for publication. Fill out form at 2124 Snee Hall.

[EAS 498(4980) Teaching Experience in Earth and Atmospheric Sciences]
Fall, spring. 1–4 credits. S-U grades only.
Students must register using independent study form. Staff.

[EAS 500(5000) Design Project in Geohydrology]
Fall, spring. 5–12 credits. Alternative to industrial project for M.Eng. students choosing geohydrology option. May continue over two or more semesters.
L. M. Cathles.
The project may address one of the many aspects of groundwater flow and contamination, and must involve a significant geological component and lead to concrete recommendations or conclusions of an engineering nature. Results are presented orally and in a professional report.

[EAS 502(5020) Case Histories in Groundwater Analysis]
Spring. 4 credits. L. M. Cathles.
Analyzes in depth groundwater flow in a specific area, such as a proposed nuclear-waste disposal site. Geological and resource data on the area are presented early in the course. Students working as an engineering analysis team analyze the material. Each student makes a weekly progress report and writes part of a final report. Results are presented in a half-day seminar at the end of the semester.

[EAS 622(6220) Advanced Structural Geology II]
Spring. 3 credits. Prerequisites: EAS 326 and permission of instructor. Offered alternate years. R. W. Allmendinger.
Stress-strain theory and application; advanced techniques of structural analysis. Topics include: finite and incremental strain measurement; microstructure, preferred orientation, and TEM analysis; and pressure solution and cleavage development; and experimental deformation. Applications to deformation of unconsolidated sediments, brittle and brittle-ductile deformation of supracrustal strata, and ductile deformation of high-grade metamorphic rocks. Kinematic analysis of shear zones and folds in these regimes.

[EAS 624(6240) Advanced Structural Geology II]
Spring. 3 credits. Prerequisites: EAS 326 and permission of instructor. Offered alternate years. R. W. Allmendinger.
Geometry, kinematics, and mechanics of structural provinces. Concentrates on thrust belts, rift provinces, or strike-slip provinces. Covers techniques of balanced cross sections.

[EAS 628(6280) Geology of Orogenic Belts]
Spring. 3 credits. Prerequisite: permission of instructor. Not offered 2005–2006. Staff.
Seminar course in which students study specific geologic topics of an orogenic belt selected for study during the semester.

[EAS 641(6410) Analysis of Biogeochemical Systems]
Spring. 3 credits. Prerequisite: MATH 293 or permission of instructor. Offered alternate years; TBA. L. A. Derry.
Covers dynamics of biogeochemical systems; kinetic treatment of biogeochemical cycles; box models, residence time, response time; analytical and numerical solutions of model systems; Eigen-analysis of linear systems; feedback and nonlinear cases, problems of uncertainties in natural model development, and computer programs such as MATLAB; and applications to current research of participants or from recent literature.

[EAS 656(6560) Isotope Geochemistry]
Spring. 3 credits. Open to undergraduates.
Prerequisite: EAS 455 or permission of instructor. Offered alternate years.
W. M. White.
Nucleosynthetic processes and the isotopic abundance of the elements; geochronology and cosmochemistry using radiometric dating schemes, including U-Pb, Rb-Sr, Sm-Nd, K-Ar, U-series isotopes, and cosmogenic isotopes such as 14C and 36Cl. Use of radiogenic and stable isotopes in petrology and their application to study the evolution of the crust and mantle. Isotopic evidence regarding the formation of the Earth and the solar system. Stable isotopes and their use in geothermometry, ore petrogenesis, paleontolgy, and the global climate system.

[EAS 693(6830) Special Topics in Geological Sciences]
1–4 credits. Fall or spring. S-U grades optional.
Study of specialized advanced topics in the Earth Sciences through readings from the scientific literature, seminars, and discussions.
EAS 707-708(7070-7080) Seminars and Special Work
Fall. 1-3 credits. Prerequisite: permission of instructor. Staff. Advanced work on original investigations in earth and atmospheric sciences. Topics change from semester to semester. Contact appropriate professor for more information.

EAS 722(7220) Advanced Topics in Structural Geology
R. W. Allmendinger.

EAS 731(7310) Planetary Geodynamics, Active Tectonics, Volcanology, Earthquakes, and Geodesy
M. Pritchard.

EAS 733(7330) Advanced Topics in Geodynamics
Spring. J. Phipps Morgan.

EAS 751(7510) Petrology and Geochemistry
R. W. Kay.

EAS 755(7550) Advanced Topics in Tectonics and Geochemistry
J. Phipps Morgan.

EAS 757(7570) Current Research in Petrology and Stratigraphy
S. Mahlburg Kay.

EAS 762(7620) Advanced Topics in Paleobiology
W. D. Allm.

EAS 771(7710) Advanced Topics in Sedimentology and Stratigraphy
T. E. Jordan.

EAS 773(7730) Paleobiology
J. L. G. Cane.

EAS 775(7750) Advanced Topics in Oceanography
C. H. Greene.

EAS 780(7800) Earthquake Record Reading
Fall. M. Barzangi.

EAS 781(7810) Geophysics, Exploration Seismology, Ground-Penetrating Radar
L. D. Brown.

EAS 783(7830) Advanced Topics in Geophysics
B. L. I. B. L. Isacks.

EAS 789(7890) Lithospheric Seismology Seminar
L. D. Brown.

EAS 793(7930) Andes-Himalaya Seminar

EAS 795(7950) Low Temperature Geochemistry
L. A. Derry.

EAS 796(7960) Geochemistry of the Solid Earth
W. M. White.

EAS 797(7970) Fluid-Rock Interactions
L. M. Cathles.

EAS 799(7990) Soil, Water, and Geology Seminar
Spring. L. M. Cathles and T. S. Steenhuis.

EDUCATION

EDUC 005(1005) Basic Review Mathematics
Spring. 3 credits; not counted toward 120 credits required for degree. S-U grades. Lec, T R 2:55-4:10. S. Pihl.

EDUC 100(1100) Multiculturalism in Education
Fall. 3 credits. M W F 10:10-11:25. S. Kroma. Should schools provide mandatory bilingual education programs to non-English-speaking students? Should the United States adopt an "English only" official language policy? Should Kwanza be celebrated as a public holiday? These are some of the many questions that challenge the notion of "cultural unity" once expressed as the "melting pot." In this course, students develop writing skills as they explore discourse on the forces responsible for our cultural diversity and the changing perspectives on our "cultural unity." Through writing activities, students learn to critically examine the historical, political, and legal contexts of this diversity and define their own views on the competing public positions that multicultural education issues arouse.

EDUC 100.2 Writing through Action: Scholarly Discourse in the University
Fall, spring. 3 credits. Disc, T R 10:10-11:25. C. Shafer.

EDUC 100.3 Re-creating the World: Education for Transformation
Fall or spring. 3 credits. S-U grades. Lec, T R 1:25-2:40. S. K. Kroma.

EDUC 115(1150) Introductory College Mathematics
Fall. 4 credits. Does not count toward graduation credit in College of Arts and Sciences. M W F 11:15-12:05; lab, TBA. S. Pihl.

EDUC 220(2200) Community Learning and Service Partnership (CLASP)
Fall only. 2 credits. Prerequisite: permission of instructor. Students must commit to taking EDUC 221 the following spring. S-U grades. Lec, T R 2:30-4:25. A. Wilson.

EDUC 221(2210) Community Learning and Service Partnership (CLASP)
Spring only. 2 credits. Prerequisites: EDUC 220 and permission of instructor. S-U grades. Lec, T R 2:30-4:25. A. Wilson.

Society

Multicultural Issues in Education and Society
Fall only. 2 credits. Prerequisite: EDUC 100.2. Students must commit to taking EDUC 221 the following spring. S-U grades. Lec, T R 1:25-2:40. S. K. Kroma.

EDUC 120(1200) Education for Empowerment

EDUC 151(1510) Engaging Diversity: Multicultural Issues in Education and Society
Fall or spring. 3 credits. S-U grades. Lec, T R 1:25-2:40. S. K. Kroma.

EDUC 151.1510 Engaging Diversity: Multicultural Issues in Education and Society
Fall. 3 credits. M W F 10:10-11:25. S. Kroma.

EDUC 151.1510 Engaging Diversity: Multicultural Issues in Education and Society
Fall or spring. 3 credits. S-U grades. Lec, T R 1:25-2:40. S. K. Kroma.

EDUC 120(1200) Education for Empowerment

EDUC 151(1510) Engaging Diversity: Multicultural Issues in Education and Society
Fall or spring. 3 credits. S-U grades. Lec, T R 1:25-2:40. S. K. Kroma.

EDUC 120(1200) Education for Empowerment

EDUC 151(1510) Engaging Diversity: Multicultural Issues in Education and Society
Fall or spring. 3 credits. S-U grades. Lec, T R 1:25-2:40. S. K. Kroma.

EDUC 120(1200) Education for Empowerment

EDUC 151(1510) Engaging Diversity: Multicultural Issues in Education and Society
Fall or spring. 3 credits. S-U grades. Lec, T R 1:25-2:40. S. K. Kroma.

EDUC 120(1200) Education for Empowerment

EDUC 151(1510) Engaging Diversity: Multicultural Issues in Education and Society
Fall or spring. 3 credits. S-U grades. Lec, T R 1:25-2:40. S. K. Kroma.
EDUC 240(2400) The Art of Teaching
Fall and spring. 3 credits. Fall: M 12:20–2:15; or T 2:30–4:25; or W 12:20-2:15, or R 2:30–4:25; spring: M 12:20–2:15, or T 2:30–4:25, or W 12:20-2:15, or R 2:30–4:25. B. Heath-Camp. Exploratory course designed for students of all backgrounds and interests who have a desire to learn more about teaching. Teaching takes place in a variety of contexts from the family to the workplace and this course endeavors to examine the elements of teaching that transcend K-12 schooling environment. Designed to guide students in reflecting upon their experiences to help them better understand the decisions they make as teachers. Students have the opportunity to pursue their own interest through a teaching fieldwork assignment. Possible field experiences range from large group to tutorial situations, from preschool to adult education, from traditional school subject matters to recreational and career and technical areas, and from school-based to nonformal situations. The course work and readings are designed to build on these experiences throughout the semester and provide concepts and skills to apply in the field.

EDUC 271(2710) Social and Political Context of American Education
Fall. 3 credits. Disc, T R 1:25-2:40. J. W. Sipple. Examines the goals, roles, inputs, and outcomes of schooling in American society and the policy environment in which schools operate. Analyzes controversies and tensions (e.g., equity, market forces, state control) surrounding public education at local, state, and federal levels. Includes current and historical, urban and rural issues and problems.

EDUC 331(3310) Careers in Agriculture, Extension, and Adult Education
Fall. 1–3 credits. Letter grades only. F 1:25–4:20, 2:00-4:25. G. J. Applebee. Offers modules in three areas of teaching: adult education, cooperative extension, and agricultural education. Each module offers 1 hour of credit, and students may take one or more of the modules. The course provides an historical perspective and an introduction to the organization and scope of programs for each module. Students examine career opportunities and characteristics of the professions addressed by each module. Course activities include field observations and experiences during arranged times.

EDUC 335(3350) Youth Organizations
Spring. 3 credits. R 2:55–4:25, lab, TBA. B. Heath-Camp. Visionary, creative, and competent leaders are essential for youth organizations. Class participants learn how to facilitate both youth and adult volunteer leadership development. They examine factors affecting membership, purposes, design, operation, and administration of youth organizations. The course provides students with in-depth learning—by-doing experience of helping organizations function. Requires field experience with a recognized youth organization.

EDUC 380(3800) Independent Honors Research in Social Science
Fall or spring. 1–6 credits; max. 6 credits may be earned in honors program. Prerequisite: requirements for honors program met. S-U grades optional.

EDUC 401(4010) Our Physical Environment
Fall. 3 credits. Prerequisite: permission of instructor. Lab fee: approx. $7. T 1:25–4:25, V. N. Rockcastle. Practical, relatively nonmathematical study of some basic relationships and physical interactions in the environment, with emphasis on physics and earth science. Pays attention to analysis for understanding and techniques for teaching. Includes an individual research project. Useful for teachers, environmental educators, and those for whom physical science seems difficult or uninviting.

EDUC 404(4040) Learning and Teaching I
Fall. 4 credits. Prerequisite: admission to Cornell Teacher Education program or permission of instructor. Letter grades.LEC, T R 8:40–9:55 P.M.; fieldwork, TBA. D. Trumbull. Designed to foster development of pedagogical and reflective understanding crucial to good teaching. Students explore what it means to understand and teach through examining key disciplinary topics, which requires reflective, disciplinary knowledge, assessment of learning, and motivation. Required fieldwork (4 hours weekly) focuses on learners' understandings and classroom structures.

EDUC 405(4050) Learning and Teaching II
Spring. 4 credits. Prerequisite: EDUC 404 or permission of instructor. Letter grades. LEC, T R 8:40–9:55, fieldwork, TBA. W. Camp, B. A. Crawford, and S. Piliero. Important part of a sequence of courses and experiences intended to lead to excellence in science, agricultural science, and mathematics teaching. Prospective teachers develop understanding and skills in effective planning, instruction, and assessment of students studying agricultural science, mathematics, and science in middle and high school. The course is intended to integrate theory and practice associated with learning and teaching in school classroom settings and includes a minimum of 40 hours of fieldwork in area classrooms.

EDUC 411(4110) Educational Psychology
Fall. 3 credits. Prerequisite: PSYCH 101 or permission of instructor. S-U grades optional. T R 11:15–12:20, F, sec TBA. D. E. Schrader. Educational psychology is the application of psychological concepts to educational settings. This course examines the dynamic interaction between people as teachers and learners, schools as social and learning environments, and the sociocultural contexts that influence learning. The focus is on those interactions in cognitive, epistemic, social, moral, and personal domains in educational contexts.

EDUC 420(4200) Field Experience
Fall or spring. 1–4 credits. Undergraduates must attach to their course enrollment material written permission from faculty member who will supervise work and assign grade. S-U grades optional. Staff. Students may engage in planned, supervised experience in a professional practice in an educational enterprise. Each student prepares a plan of action including rationale, purposes, and procedures and arranges with a faculty member to supervise and evaluate their field experience.

EDUC 441(4410) Language, Literacy, and Environments
Spring. 3 or 4 credits. M W 2:55–4:10; lab, TBA. S. Kroma. Foundation for literacy activities in secondary education. Examines current research, policy, and practice related to the acquisition of first and second languages, the dynamics of literacy in school contexts, and the development of academic language proficiency. The fourth credit hour requires a practical project based on fieldwork.

EDUC 445(4450) Curriculum Design Workshop
Spring. 3 credits. Not offered 2005–2006. Staff. General practical approach to course planning. Includes readings, group discussions, and individual conferences centering on students' projects. Consists of designing course materials in a subject area for an age level and an institutional setting of the student's choosing and, when possible, testing materials.

EDUC 448(4480) Instruction for Students with Disabilities
Summer. 3 credits. Prerequisite: educational psychology or introductory psychology course, or permission of instructor. S-U grades optional. LEC, TBA: 3 hours weekly. Not offered 2005–2006. Staff. Provides preservice middle and secondary school teachers a comprehensive overview of disability law, functional limitations caused by disabling conditions, and classroom strategies to provide academic accommodations/adjustments to meet the needs of students with disabilities. Focuses on specific classroom and curriculum strategies for adapting instruction to meet the needs of students with disabilities.

EDUC 450(4500) Education Technology
Fall. 3 credits. Letter grades. M W 10:10–11:25. W. Camp. Gives future educators the skills necessary to use current technology in educational settings. Focuses on examining how applying technology in the classroom can be used to enhance students' understanding of course content. Course participants complete an electronic portfolio demonstrating skills developed throughout the semester. A quarter of the class time is lecture and discussion focused on the current use of technology in the classroom. The remainder of the time is spent in lab completing hands-on projects.

EDUC 451(4510) Multicultural Issues in Education
Fall. 3 credits. Letter grades. Lec, M W 2:55–4:10. S. K. Kroma. Explores issues pertaining to teaching and learning in multicultural classrooms in American schools. Examines events that have shaped contemporary American society, the educational policies and practices that affect the cultural diversity that has emerged, and the teacher's role in dealing with cross-cultural issues in the classroom.

EDUC 452(4520) Multicultural Issues in Secondary Education
Fall. 1 credit. Prerequisites: EDUC 451 and permission of instructor. Letter grades. S. K. Kroma. Students spend two out-of-class hours a week in a classroom setting in the Ithaca school community and write a project on
EDUC 459(4590) Educational Innovations in Africa and the Diaspora
Fall: 3 credits; 4 in College of Arts and Sciences. T 10:10–12:35. N. Assié-Lumumba.
Deals with educational innovations geared to promoting equal opportunity based on gender, race and class, in Africa and the African Diaspora. After introducing the concepts and theories of education and innovations and the stages of innovation as planned change, the course focuses on concrete cases and different types of educational innovations. Selected case studies, in the United States, include black institutions with a focus on Tuskegee Institute (now Tuskegee University), Lincoln University, Spelman College, and the Westside Preparatory School in Chicago. The African cases studied include African languages for instruction in Nigeria, science education in Nigeria, Ujamaa and education for self-reliance in Tanzania, classroom action research in Lesotho, Information Communication Technologies (ICTs) in African higher education with a focus on African Virtual Universities (AVU), the application of the Global Development Learning Network (GDLN) in Côte d’Ivoire, and OnLine learning in South Africa.

EDUC 463(4630) Policies, Practices, and Critical Issues of Distance Learning in Developing Countries
Distance learning is increasingly being adopted to respond to the high demand for education in developing countries. This course critically analyzes distance education for the general population as well as specific social and professional categories. A typology of the ICTs (information and communication technologies) used and the different forms of virtual learning institutions are examined. Case studies include single-mode and dual-mode institutions in Africa, Asia, and Latin American countries and also eLearning programs designed in industrial countries for developing countries.

EDUC 498(4980) Undergraduate Teaching
Fall or spring. 1 or 2 credits; 4 credits max. during undergraduate career. Prerequisite: GPA of at least 2.7. S-U grades optional. Students must register using independent study form (available in 140 Roberts Hall).
Participating students assist in teaching a course allied with their education and experience. Students are expected to meet regularly with a discussion or laboratory section, to gain teaching experience, and regularly to discuss teaching objectives, techniques, and subject matter with the professor in charge.

EDUC 499(4990) Undergraduate Research
Fall or spring. 6 credits max. during undergraduate career. Not open to students who have earned 6 or more undergraduate research credits elsewhere in the college. Prerequisite: junior or senior standing; GPA at least 2.7. Students must register using independent study form (available in 140 Roberts Hall).
Affords opportunities for students to carry out independent research under appropriate supervision. Each student is expected to review pertinent literature, prepare a project outline, conduct the research, and prepare a report.

EDUC 502(5020) Education and Development in Africa (also AS&RC 502(5020))
Spring: 3 credits; 4 in College of Arts and Sciences. S-U grades optional. T 2:00–4:25. N. Assié-Lumumba.
Examines the relationship between education and individual and national development. Besides human capital theory, different paradigms of development, including modernization and dependency theories, and Third World Forum, are examined. Issues discussed include schooling and nonformal education, the role of primary, secondary, and higher education in development; the issues related to employment, national migration and international brain drain, language, equity in access, output, and outcome based on social class, ethnicity, race, gender, and nationality. Finally, the uses of ICTs, indigenous knowledge systems, and the role of higher education in the national, regional, and international contexts and cooperation are discussed.

EDUC 503(5030) Diversity in the Classroom
Fall, spring, or summer. 1 credit for each seminar. Prerequisite: admission to CTE program. S-U grades optional. Disc. TBA. S. Kroma.
Builds on knowledge of literacy and diversity gained from course work and field activities in the CTE program. Students review literacy development, cultural diversity, learning style preferences, fieldwork experiences, and strategies for accommodating difference in teaching.

EDUC 504(5040) Research Experience for Teachers (also PL BR/BIO G 504(5040))
Spring. 3 credits. Prerequisites: appropriate science major, 6 credits education or educational psychology course work, and permission of instructor. Intended for, but not restricted to, students in M.A.T. degree program, practicing teachers, and students considering becoming teachers. S-U or letter grades. T. Fulton.
Students work in a laboratory with a research team for the semester. Research experiences are accompanied by weekly discussions and readings. Students explain how research is conducted, how formal scientific discourse and informal communication occur and differ, and how these topics can be conveyed during classroom teaching.

EDUC 523(5230) Food and Fiber Across the Curriculum
Spring. 3 credits. TBA. W. Camp.
Intensive five-day course focusing on agriculture and food systems. Students travel throughout upstate New York visiting farms of all types, forests, food processors, food retailers, and agriculture research and education centers. Participants explore agriculture, global and local food systems, issues of sustainability, environment and natural resources, and careers in agriculture. Students visit all aspects of the food and fiber system and explore a variety of marketing and distribution models. The integration of agriculture and food systems into the core disciplines of math, science, English, language arts, social studies, the arts, family and consumer sciences, health, physical education, technology, and career exploration—while meeting all the State Learning Standards at the local level—is a course priority.

EDUC 532(5320) Educational Programs in Agricultural Science
Fall. 3 credits. R 3–5:25. W. Camp.
Overview of the organization and planning process and program needs assessment for agricultural science education program in the public schools. Topics include local needs assessments, agricultural advisory boards, community-partnering strategies, program planning, course development, sequencing instruction, professional development, and fieldwork. Fieldwork provides experience with New York agricultural education students, teachers, and programs.

EDUC 548(5480) Effective College Teaching
Designed to help participants become more effective college teachers. Examines the basic principle of learning, identifies different learning styles, and explores a variety of teaching techniques, methods, and technologies. Participants also learn how to design a course and improve their effectiveness as teachers.
EDUC 571(5710) Social and Political Context of American Education
Fall. 3 credits. Prerequisites: admission to Cornell Teacher Education Program or permission of instructor. T R 1:25-2:40. J. W. Sipple. Examines the goals, roles, inputs, and outcomes of schooling in American society, and the policy environment in which schools operate. Analyzes controversies and tensions (e.g., equity, strategy, forces, state control) surrounding public education at local, state, and federal levels. Includes current and historical, urban and rural issues and problems.

EDUC 578(5780) International Teaching Assistant Development Program (ITADP) Training Course: Cross-Cultural Classroom Dynamics, Pronunciation, and Language, Video Teaching Practicum
Fall and spring. 2 credits. S-U grades only. TBA. ITADP staff. Designed for first-time international teaching assistants from countries in which English is not the primary language. Focuses on three areas: cross-cultural classroom dynamics, video teaching practicum, and language—enhancing communicative competence in English. Through small-group seminars and individual conferences, the ITADP helps international teaching assistants develop their linguistic and pedagogical skills as they gain sensitivity to the dynamics of U.S. classrooms.

EDUC 579(5790) Further Training for International Teaching Assistants
Fall, spring, summer. 2 credits. Prerequisite: EDUC 578. S-U grades optional. Lec: TBA. ITADP staff. Designed for international teaching assistants from countries in which English is not the primary language and who have completed EDUC 578, the ITADP follow-up course provides further instruction and practice in oral English and pedagogical skills.

EDUC 601(6010) Secondary Agriculture, Science, and Mathematics Teaching Practicum
Fall or spring. 6 credits. Prerequisite: graduate students enrolled in Teacher Education in Science and Mathematics Program; permission of instructor. S-U grades only. M T W R F 8:00-3:00. S. C. Piliero, D. J. Trumbull, and W. Camp. Supervised student teaching in agriculture, mathematics or science at the secondary level. Program includes teaching in a local school for 14 weeks.

EDUC 602(6020) Practicum Seminar
Fall or spring. 9 credits. Co-requisite: EDUC 601 or permission of instructor. M T W R F 9:00-3:00. W. Camp, B. A. Crawford, and S. C. Piliero. Begins with full-day sessions of intensive consideration of theoretical frameworks relevant to all aspects of student teaching. Assignments and an online seminar during the semester require students to use those theories to develop and evaluate teaching materials and practices. Students complete an extensive portfolio documenting their work.

EDUC 603(6030) Inquiry Science Outreach in Secondary Schools (also NTRES 603(6030))
Fall or spring. 1 credit. Prerequisite: receipt of fellowship from Cornell Science Inquiry Partnerships (CSIP) program. S-U grades. N. Trautmann, L. Tompkins, and M. Krasny. Prepares graduate students who receive Cornell Science Inquiry Partnerships fellowships for outreach work in high school and middle school science classes. Participants explore effective strategies for inquiry-based learning and review core educational issues such as learning standards, working with students of various ability levels, and assessing student learning.

EDUC 614(6140) Gender, Context, and Epistemological Development (also FGSS 624(6240))
Fall. 3 credits. S-U grades optional. T 12:20-2:15. D. E. Schrader. Insight into how individuals make sense of knowledge is essential to teaching and learning. This course examines theories of personal epistemology and their implications for educating students across the lifespan. Places particular emphasis on the role of gender and contextual influences on the development of thought and on metacognitive development.

EDUC 620(6200) Internship in Education
Fall or spring. 1–6 credits. S-U grades optional. Each student, before course enrollment, must obtain approval of faculty member who will assume responsibility for supervising work. Staff. Opportunity for practical experience in educational professions development.

EDUC 621(6210) Work-Experience Coordinator Certification Course I
Summer. 3 credits. Prerequisite for EDUC 622. S-U grades optional. Staff. First of a two-course sequence designed to develop the competencies needed for certification as a coordinator of diversified cooperative work experience programs. Focuses on the related philosophy, types, operation, and evaluation of work-experience programs including articulation with JPTA and VESID. Requires field interviews.

EDUC 622(6220) Work-Experience Coordinator Certification Course II
Summer. 3 credits. Prerequisite: EDUC 621. Staff. Second course for certification as a diversified cooperative work experience coordinator combines course work and directed field experience leading to the planning, developmental, and evaluation of a work-experience program in a local educational agency. Development of a philosophy and policy statement, budget, curriculum for related instruction, annual work plan by function, promotional materials, and all program forms for Board of Education approval required.

EDUC 630(6300) Special Problems in Agricultural, Extension, and Adult Education
Fall or spring; may also be offered in summer. 1–3 credits. S-U grades optional. Staff. Provides an opportunity for graduate-level study of individually selected problems and issues in agricultural, extension, and adult education.

EDUC 632(6320) Teaching Agricultural, Extension, and Adult Education
Spring. 3 credits. S-U grades optional. Lec: Tue. 4–6:30. Offered alternate years beginning 2006. A. Wilson. Examines current social and economic conditions affecting agricultural, extension, and adult education. Applies principles, objectives, strategies, and sources of information to program planning. Participants have an opportunity to observe ongoing programs in agricultural, extension, and adult education and to pursue individual interests in program development and improvement.

EDUC 635(6350) Experiential Learning
Fall. 2 credits. Prerequisite: for undergraduates, permission of instructor. S-U grades optional. T 12:20–2:15. Not offered 2004–2005. Staff. Participants explore various dimensions of scholar and practitioner thinking about the understanding and practice of experiential learning. Theoretical perspectives on experiential education, reflective practice, and a critical learning systems perspective are explored through readings and applied assignments. The instructor introduces methods of facilitation designed to encourage inquiry and dialogue for improvement of both nonformal and formal educational activities. The course process is intended to engage participants in reflective discussion of learning community elements.

EDUC 645(6450) Curriculum for a Diverse and Technological Society
Spring. 3 credits. Letter grades only. Disc: TBA. Staff. Examines basic curriculum concepts, principles, and theories. Gives special emphasis to the ways diversity and technology drive changes in the development of curriculum. Each student chooses a particular curriculum for analysis as a project. Within that context, theoretical perspectives on curriculum and the basic elements of any curriculum are discussed.

EDUC 661(6610) Administration Leadership and Organizational Change
Fall. 3 credits. T 3:35–6:00. J. W. Sipple. Perspectives on the administration of educational organizations. Considers social science, legal and ethical theories, and their application to both public schools and higher education. Intended for students who are considering careers as educational administrators, as well as for those who want to further their understanding of educational organizations.
EDUC 671(6710) American School Reform: Organizational and Sociological Perspectives
Spring. 3 credits. Prerequisite: Graduate standing. Lec, M 1, 1.55-2:15. J. J. A. Miller.
For individuals interested in the role of schools in society and in organizational behavior and public policy. This seminar investigates the sociological functions of schooling, including the stability of school organization and the changing history of policy initiatives designed to reform schools. The focus is American K-12 public education, though issues of pre-K, private, and post-secondary education are covered.

EDUC 680(6800) Foundations of Adult and Extension Education
Analysis of alternative purposes, nature, and scope of extension, adult, and continuing education in the United States and abroad, with emphasis on the relationship of programs to historical, cultural, political, and social settings. Examines definitions, conceptual controversies, philosophical issues, and current trends and directions through a seminar approach.

EDUC 682(6820) Community Education and Development
Fall. 3 credits. Limited to 25 students. Letter grades only. W 1:25-4:25. S. Peters.
Critical study of the democratic purposes and practices of educators in community and economic development, with a special focus on the role of education in community organizing. Key philosophies and traditions of community education and development are analyzed in their historical, cultural, social, and political context, with an eye toward implications for contemporary practice.

EDUC 683(6830) Adult Education and Globalization: Comparative Perspectives
Examines the internationalization between particular economic and political systems as key to understanding the relationships of adult education to society. Employing a critical framework, the course explores emerging local, regional, and national responses in adult education that are planting seeds of change and creativity in ways that are nurturing new forms of educational life in the context of globalization. Particular attention is paid to modes of social analyses that explore the relationships between adult education and social structural factors, including gender, race and class, to inform a sense of place and social location.

EDUC 685(6850) Training and Development: Theory and Practice (also IARD 685/6850)
Prepares professionals to design, administer and facilitate training programs responsive to the challenges of sustainability in our world system. Focuses on the theory and practice of training for the development of human resources in small farm agriculture, rural health and nutrition and literacy. Through in-depth discussions and analysis of selected readings, students develop insights into the range of methods and strategies employed in situation analysis, the analysis of socioeconomic, sociocultural, and sociopolitical contexts of training programs; facilitation of participatory training programs for the development of human resources in small holder agriculture, rural health and nutrition, and community building. The structure of training education in larger change-promoting systems is also explored. The course is appropriate for persons likely to be playing professional roles as educator-trainers, scientists, administrators, and social organizers in rural and agricultural development programs in international as well as domestic contexts.

EDUC 694(6940) Special Topics in Education
Fall, spring, or summer. 1-3 credits. Prerequisite: permission of instructor. S-U grades optional. Staff.
Topics TBA.

EDUC 700(7000) Directed Readings
Fall or spring. 6 credits, variable. Prerequisite: graduate standing; permission of instructor. S-U grades optional. Staff.
For study that primarily involves collection and analysis of research data.

EDUC 702(7020) Practicum
Fall or spring. 6 credits, variable. Prerequisite: graduate standing; permission of instructor. S-U grades optional. Staff.
For study that predominantly involves field experience in community settings.

EDUC 703(7030) Teaching Assistantship
Fall or spring. 6 credits, variable. Prerequisite: graduate standing; permission of instructor. S-U grades optional. Staff.
For students assisting faculty with instruction. Does not apply to work for which students receive financial compensation.

EDUC 704(7040) Research Assistantship
Fall or spring. 6 credits, variable. Prerequisite: graduate standing; permission of instructor. S-U grades optional. Staff.
For students assisting faculty with research. Does not apply to work for which students receive financial compensation.

EDUC 705(7050) Extension Assistantship
Fall or spring. 6 credits, variable. Prerequisite: graduate standing; permission of instructor. S-U grades optional. Staff.
For students assisting faculty with extension activities. Does not apply to work for which students receive financial compensation.

EDUC 714(7140) Moral Development and Education
Seminar exploring moral psychology from cognitive developmental, social contextual, normative, and feminist perspectives. Topics vary by semester, yet all semesters discuss theoretical and empirical studies of the development of moral reasoning, gender differences, cultural context, the relationship between moral judgment and moral action, the development of the self in relation to others and to society, and moral education. Emphasis is on development in adolescence through adulthood.

EDUC 718(7180) Adult Learning and Development
Spring. 3 credits. Prerequisite: permission of instructor. S-U grades optional. W 8-9:55. S. Peters.
Deals with adult development and learning from points of view of educational psychology, sociocultural, and adult education. Draws inferences from theory and research to the practice of adult and extension education. Appropriate for graduate students in adult and extension education and community service education, and for others interested in adult learning and development.

EDUC 730(7300) Seminar in Agricultural, Extension, and Adult Education
Emphasizes current problems and research in agricultural, extension, and adult education. Includes discussion and analysis of student and staff research.

EDUC 762(7620) Comparative and International Education
Seminar that critically analyzes education conceived both as a universal social institution and a reflection of cultural, economic, and political dynamics of the local and global contexts. The analysis focuses on policies, organization, and the functioning of education in industrial, new/emerging economies, and developing countries. Specific case studies are drawn from different countries.

EDUC 783(7830) Farmer-Centered Research and Extension (also IARD 783/7830)
Fall. 3 credits. S-U grades optional. M. Kroma.
Forum for discussion and critical analyses of participatory research and extension approaches in agriculture and natural resource management in the complex and diverse environments characteristic of many developing countries. Theoretical and philosophical arguments that underpin participatory research and extension, as well as current tools and techniques for facilitating participation and social learning are examined. Case studies and individual projects related to farmer-centered research and extension provide a focus for analyses. The course also explores and pays special attention to the challenges and opportunities related to institutionalization of participatory research and extension for sustainable agriculture and natural resource management.

EDUC 800(8900) Master's-Level Thesis Research
Fall or spring. Credit TBA. Each student, before course enrollment, must obtain approval of faculty member who will assume responsibility for guiding work. S-U grades optional. Times TBA. Staff.

EDUC 900(9900) Doctoral-Level Thesis Research
Fall or spring. Credit TBA. Each student, before course enrollment, must obtain approval of faculty member who will assume responsibility for guiding work. S-U grades optional. Times TBA. Staff.

EDUC 901(9910) Doctoral-Level Dissertation Research
Fall or spring. Credit TBA. Each student, before course enrollment, must obtain approval of faculty member who will assume responsibility for guiding work. S-U grades optional. Times TBA. Staff.

EDUC 902(9920) Doctoral-Level Dissertation Research
Fall or spring. Credit TBA. Each student, before course enrollment, must have approval of faculty member who will assume responsibility for guiding work. S-U grades optional. Times TBA. Staff.

EDUC 903(9930) Doctoral-Level Dissertation Research
Fall or spring. Credit TBA. Each student, before course enrollment, must have approval of faculty member who will assume responsibility for guiding work. S-U grades optional. Times TBA. Staff.

EDUC 904(9940) Doctoral-Level Dissertation Research
Fall or spring. Credit TBA. Each student, before course enrollment, must have approval of faculty member who will assume responsibility for guiding work. S-U grades optional. Times TBA. Staff.

EDUC 905(9950) Doctoral-Level Dissertation Research
Fall or spring. Credit TBA. Each student, before course enrollment, must have approval of faculty member who will assume responsibility for guiding work. S-U grades optional. Times TBA. Staff.

EDUC 906(9960) Doctoral-Level Dissertation Research
Fall or spring. Credit TBA. Each student, before course enrollment, must have approval of faculty member who will assume responsibility for guiding work. S-U grades optional. Times TBA. Staff.

EDUC 907(9970) Doctoral-Level Dissertation Research
Fall or spring. Credit TBA. Each student, before course enrollment, must have approval of faculty member who will assume responsibility for guiding work. S-U grades optional. Times TBA. Staff.

EDUC 908(9980) Doctoral-Level Dissertation Research
Fall or spring. Credit TBA. Each student, before course enrollment, must have approval of faculty member who will assume responsibility for guiding work. S-U grades optional. Times TBA. Staff.

EDUC 909(9990) Doctoral-Level Dissertation Research
Fall or spring. Credit TBA. Each student, before course enrollment, must have approval of faculty member who will assume responsibility for guiding work. S-U grades optional. Times TBA. Staff.
ENTOMOLOGY 99

Courses by Subject

Apiculture: 260, 264
Behavior: 215, 315, 325, 394, 471, 662
Conservation: 344
Ecology: 359, 452, 455, 477, 670
Entomology: 201, 210, 212, 215, 241
Medical and veterinary entomology: 210, 352, 652
Morphology: 322
Pathology: 463, 670
Pest management: 214, 277, 441, 444, 477, 644, 670
Physiology, development, and toxicology: 370, 394, 400, 483, 490, 685
Systematics: 331, 333, 453, 634, 635

Note: Class meeting times are accurate at the time of publication. If changes occur, the department will provide new information as soon as possible. Check the web site for updates.

ENTOM 201(2010) Allen Empire: Bizarre Biology of Bugs
Spring. 2 credits. Limited to 100 students. S-U grades optional. Lec, T R 9:05; optional field trips, required lab demonstrations. B. N. Danforth.
Insects are the most abundant and diverse animals on earth. This course explores the bizarre biology of insects by examining their evolutionary history, anatomy, development, feeding habits, life-history strategies, behavior, and their interactions with humans (both positive and negative) through history. Optional field trips and one open lab provide hands-on opportunities for examining these amazing animals.

ENTOM 210(2100) Plagues and People
Fall. 2 or 3 credits. Prerequisites: introductory biology or permission of instructor. Lec, M W F 2:30-3:20. Offered alternate years; not offered 2005-2007. L. C. Harrington.
Human diseases transmitted by insects and related forms (arthropods) have affected human lives and society through history. This course focuses on the pathogens, parasites, and arthropods causing human plagues. Those plagues that have had the greatest impact on human culture and expression are emphasized. Lectures are supplemented with readings and films. Also addresses emerging diseases, bioterrorism, and future plagues. Students taking the course for 3 credits participate in readings, presentations/discussions each week (on Fridays), weekly readings quizzes, and have a comprehensive final project.

ENTOM 212(2120) Insect Biology
Fall. 4 credits. Pre- or co-requisites: BIO G 101-102 or equivalent. Lec, T R 11:15-12:05; lab, T R 12:20-1:10. Lab fee: $38. J. P. Sanderson.
Introduces the science of entomology by focusing on basic principles of systematics, morphology, physiology, behavior, and ecology of insects. The laboratory in early fall includes field trips to collect and study insects in the natural environment. Requires a collection emphasizing ecological, behavioral, and taxonomic categories.

ENTOM 215(2150) Spider Biology: Life on a Silken Thread
Fall. 2 credits. Prerequisite: introductory biology or permission of instructor. S-U grades optional. Lec, W F 1:25-2:15. L. S. Rayor.
Introduction to the fascinating world of spiders. Explores evolution, ecology, behavior, and physiology of spiders, and their close kin from a modern perspective. Topics include identification of major spider families, spiders' unique use of silk, risky courtship, predatory behavior, diverse life styles, social spiders, and potential use in IPM.

ENTOM 241(2410) Insect Pest Management for Practitioners
Introduction to insect pest management in plant or animal production for those preparing for careers in extension, service, and production. Emphasizes pest monitoring, sight identification, diagnosis, decision-making, and management tactics for the major groups of insect and arthropod pests affecting field, forage, and vegetable crops; floriculture, woody ornamentals, and turf; urban environments and public health; veterinary, dairy, livestock, and poultry. Five off-campus laboratory field trips with an in-depth look at pests of pest management decision-making, pest-monitoring tools, and pesticide-application equipment.

ENTOM 260(2600) Introductory Beekeeping
Fall. 2 credits. Lec, T R 11:15-12:05. Offered alternate years; not offered 2006-2007. N. W. Calderone.
Introduces students to the life history, physiology, and behavior of honey bees, as well as to the fundamentals of practical beekeeping. Reviews classical and contemporary research on the dance language, chemical communication, behavioral genetics, division of labor, and evolution of social behavior. Also includes lectures on pollination of agricultural crops, honey and beeswax, bees in ancient and modern rituals, Africanized honey bees, and insect politics.

ENTOM 264(2640) Practical Beekeeping
Fall. 1 credit. Limited to 20 students. Pre- or co-requisites: ENTOM 260. Lab, R 2:4-2:5. Offered alternate years; not offered 2006-2007. N. W. Calderone.
Consists of 14 laboratory sessions that acquaint students with practical methods of colony management. Laboratories involve hands-on work with honey bee colonies and equipment. Topics include management of bees for apple pollination, honey harvesting and processing, and disease identification/ control. The class makes a number of field trips to commercial beekeeping operations. Students conduct simple experiments to demonstrate color perception by bees, as well as the chemical basis for swarming, nest guarding, and mating.

ENTOM 277(2770) Natural Enemies: An Introduction to Biological Control
Introduces students to the dynamic field of biological control: What it is, when it should be used, and how to use it safely. The course covers a diversity of types of biological control, including use of parasitoids, predators, pathogens and antagonists to control pests, form microbes to weeds to invertebrates and vertebrates. This course is intended for students curious about the biology and ecology of these organisms and their practical use. Students are not allowed to take both ENTOM 277 and ENTOM 377 for credit.

ENTOM 315(3150) Spider Biology
Fall. 3 credits. Prerequisite: introductory biology or permission of instructor. Letter grades only: Lec, M W F 1:25-2:15. L. S. Rayor.
In-depth introduction to the fascinating world of spiders and their relatives. Meets concurrently with ENTOM 215 (2 credits). Students in ENTOM 315 meet for another hour with additional lab work. Topics in arachnology and developing spider identification skills. Entomology majors and biology majors in the Insect Biology Program of Study should take ENTOM 315 rather than 215. Students may not take both ENTOM 215 and 315 for credit.

ENTOM 322(3220) Comparative Insect Morphology
Provides a detailed introduction to the external and internal anatomy of insects. Lectures introduce basic concepts in insect morphology, such as the organization of the insect body plan and the basis of functional morphology, homology, phylogeny, modularity, and development. The lab introduces students to the basic methods of insect microdissection, specimen preparation, and scientific illustration. High-quality, publishable illustrations are produced based on student artwork.

ENTOM 325(3250) Insect Behavior
Spring. 3 credits. Prerequisite: introductory biology and either ENTOM 212 or BION 221. Lec, T R 10:10-11:25. Offered alternate years; not offered 2005-2006; next offered 2006-2007. L. S. Rayor.
Insects are the most diverse organisms on earth, with equally diverse behavior. This course explores the behavior of insects, ranging from the individual sensory and physiological mechanisms that are the basis of insect behavior, to the behavioral dynamics of foraging, courtship, parental care, and social behavior. Topics include insect learning, perceptual abilities, host finding strategies, predation, pollination, and organ colonization of current issues in insect behavior.

ENTOM 331(3310) Introductory Insect Systematics
Introduction to the classification, evolutionary history, and distribution of insects. Includes
lab practice in the identification of orders, families, and representative genera of insects; methods of collection, preservation, and study. Lectures cover theory and practice of insect systematics and major features of insect evolution. Insect collections required. extending experience with modern laboratory research and increased medical/veterinary importance, and hands-on training in collection and identification of arthropods of medical or veterinary importance. The laboratory includes field trips and an overview of the fields of medical and veterinary entomology. The goal is to encourage an understanding of evolutionary and ecological aspects associated with disease transmission. The laboratory includes field trips, collection and identification of arthropods of medical or veterinary importance, and hands-on experience with modern laboratory research methods. Undergraduate and graduate students from entomology as well as other disciplines including pre-medical and veterinary students are encouraged to enroll. Students preparing for careers in horticulture, urban forestry, pest management, and natural history/science education. Dealing with the nature, diagnosis, assessment, and management of insect and disease pests on trees and shrubs in forests, urban landscapes, Christmas tree plantations, and other sites where intensive pest management is practiced.

ENTOM 444(4440) Integrated Pest Management (also OSS 444(4440))
Fall. 4 credits. Prerequisite: introductory biology or permission of instructor. Lec. M W F 9:05-9:55; lab, M 1:25-4:25. J. E. Losey and A. DiTommaso. Lectures integrate the principles of pest control, ecology, and economics in the management of pests across multiple systems. Labs consist of exercises to reinforce concepts presented in lecture and demonstrate pest monitoring techniques and the application of computer technology to management problems.

ENTOM 452(4520) Herbivores and Plants: Chemical Ecology and Coevolution (also BIOEE 452(4520))
Spring. 3 credits. Prerequisites: one year introductory biology; BIOEE 201; CHEM 257 or 357/358 and 251 or 301; or permission of instructor. Lec. M W F 11:15-12:05. Offered alternate years; not offered 2005-2006; next offered 2006-2007.

P. P. Feeny. Significance of plant chemistry in mediating interactions between plants and herbivorous animals; mechanisms and strategies of plant finding and exploitation by animals, especially insects, and of defense and escape by plants; evolutionary hypotheses for ecological patterns of resistance and implications for human food and agriculture.

ENTOM 453(4530) Principles and Practice of Historical Biogeography (also BIOPL 453(4530))
Fall. 4 credits. Prerequisites: BIO 101-102 or permission of instructor. S-U grades optional. Lee, T R 10:10-11:50; K. Lee (fall, even years) and J. Ewer (fall, odd years).

F. 11:15-12:05. A. Agrawal, G. Jander, and J. J. Losey. Focuses on individual and population aspects of insect ecology as well as some topics in community and ecosystem ecology. Stresses the importance of interactions with the biotic and abiotic environment stressed.Topics include sampling rare populations, insect conservation genetics, the role of phylogeny in determining conservation priorities, refuge design, saving individual species, plus the unique political, social, and ethical aspects of insect conservation and preservation of their ecological services (i.e., pollination, decomposition, pest suppression, and insect-evo-lute food sources).

ENTOM 333(3350) Naturalist Outreach in Biology
Spring. 3 credits. Prerequisite: entomology or conservation biology course or permission of instructor. S-U grades optional. Lee, T R 10:10-11:25. Offered alternate years; not offered 2006-2007.

J. E. Losey. In-depth look at the concepts and issues surrounding the conservation of insects and other invertebrates. Topics include sampling rare populations, insect conservation genetics, the role of phylogeny in determining conservation priorities, refuge design, saving individual species, plus the unique political, social, and ethical aspects of insect conservation and preservation of their ecological services (i.e., pollination, decomposition, pest suppression, and insect-evo-lute food sources).

ENTOM 335(3350) Maggots, Grubs, and Outworms: Larval Insect Biology
Spring. 3 credits. Prerequisites: ENTOM 212 or permission of instructor. S-U grades optional. Lec. T R 11:15-12:05; lab, T 1:25-4:25. Offered alternate years, not offered 2006-2007. J. K. Liewehr.
The evolution of the life history of the Holometabola has been greatly informed by attributes of their larvae. This course introduces students to the biology, anatomy, and natural history of holometabolous insect larvae. The lab includes field sampling, curating of field-collected specimens, and identification of unknowns. Development of a small larval collection required.

ENTOM 336(3360) Chemical Ecology (also BIOEE/BIONB 336(3360))
Spring. 3 credits. Prerequisites: one semester of introductory biology for majors or nonmajors and one semester of introductory chemistry for majors or nonmajors or equivalents, or permission of instructor. S-U grades optional. Lecs, M W F 11:15-12:05. A. Agrawal, G. Jander, A. Kessler, and J. Thaler.

ENTOM 394(3940) Circadian Rhythms (also BIOGD/BIONB/PL PA 394(3940))
Fall. 2 credits. Prerequisite: 200-level biology course. S-U grades optional. Lec. T 1610-1150. K. Lee (fall, even years) and J. Ewer (fall, odd years).

Explores a fundamental feature of living organisms from all kingdoms: how the cellular 24-hour biological clock operates and influences biological activities. Covers fundamental properties of biological rhythms and cellular and molecular structure of circadian oscillators in many organisms, including cyanobacteria, fungi, insects, plants, reptiles, birds, and mammals (including humans).

ENTOM 400(4000) Insect Development (also BIOGD 402(4020))

J. C. Huntington.
Diseases resulting from arthropod-borne pathogens (such as malaria, dengue, and yellow fever) cause considerable human and animal suffering and death worldwide. This course explores the impact of vector-borne disease and provides a comprehensive overview of the fields of medical and veterinary entomology. The goal is to encourage an understanding of evolutionary and ecological aspects associated with disease transmission. The laboratory includes field trips, collection and identification of arthropods of medical or veterinary importance, and hands-on experience with modern laboratory research methods. Undergraduate and graduate students from entomology as well as other disciplines including pre-medical and veterinary students are encouraged to enroll.
Lecture presents principles of pathology as applied to invertebrates. Topics include noninfectious and infectious diseases caused by viruses, bacteria, fungi, protozoa, and nematodes, epizootiology of insect diseases, and use of pathogens for control. Lab involves a diverse range of pathogens and host using techniques such as microinjection, electrophoresis, immunoassay, density gradient centrifugation, soil extraction, and computer simulation.

[ENTOM 470(4700) Ecological Genetics]
Spring. 3 credits. Prerequisites: BIOEE 278 or equivalent. S-U grades optional. Offered alternate years; next offered 2006–2007. B. P. Lazzaro.
Focuses on the application of population genetic concepts in ecological or applied contexts. Emphasizes measuring adaptation in natural populations, detecting the effects of population demography, and determining the genetic basis of quantitative traits. Lab exercises are drawn from primary research on animals and plants to illustrate experimental techniques and methods of data analysis on single-gene, multi-focus and genome-wide scales.

[ENTOM 477(4770) Biological Control]
Lectures present case studies exploring classical biological control, augmentation and conservation, and applications of strategies to control arthropods and weeds. Labs focus on selected concepts in more depth using live organisms.

[ENTOM 483(4830) Insect Physiology]
Fall. 4 credits. Prerequisite: ENTOM 212 or permission of instructor. Lect, M W F 11:15–12:05; lab, T 1:25–4:25 disc, TBA. Offered alternate years; not offered 2006–2007. C. Gilbert.
Introduction to the often unique ways in which insects have met their basic needs. Examines each organ system with emphasis on basic principles and specific examples. Also introduces students to some common methods used in physiological research and to the critical reading of scientific literature.

[ENTOM 490(4900) Toxicology of Insecticides (also TOX 490(4900))]
History, metabolism, and mechanism of action of genetically modified, synthetic, and naturally occurring insecticides. Discusses insecticide resistance, resistance management, and new approaches to insect control with genetically modified organisms.

[ENTOM 491(4910) Special Topics in Entomology]
Fall or spring. 4 credits max. S-U grades optional. Staff.
The department teaches "trial" courses under this number. Offerings vary by semester, and a departmental Bernies course before the semester starts. Courses offered under the number will be approved by the department curriculum committee, and the same course is not to be offered more than twice under this number.

[ENTOM 497(4970) Individual Study in Entomology]
Fall or spring. Credit TBA. Prerequisite: permission of instructor. Students must register using independent study form (available in 140 Roberts Hall). Staff.

[ENTOM 498(4980) Undergraduate Teaching]
Fall or spring. Credit TBA. Prerequisite: permission of instructor. Students must register using independent study form (available in 140 Roberts Hall). Staff.
Undergraduate teaching assistance in an entomology course by agreement with the instructor. Participating students assist in teaching a course allied with their education and experience. Students are expected to meet regularly with a discussion or laboratory section, to gain teaching experience, and regularly to discuss teaching objectives, techniques, and subject matter with the professor in charge.

[ENTOM 634(6340) Special Topics in Systematic Entomology]
Fall or spring; on demand. 2–4 credits.
Prerequisite: permission of instructor. Staff. Lectures on the classification, evolution, and bionomics of selected taxa, with accompanying laboratory studies on identification and comparative morphology. Collections sometimes required.

[ENTOM 635(6350) Insect Molecular Systematics]
Spring. 2 credits. Prerequisite: permission of instructor. Times TBA. Offered alternate years; not offered 2006–2007. B. N. Danforth.
Analysis of DNA sequence variation can provide a powerful tool for resolving problems in insect systematics, from species-level taxonomic decisions to higher-level (ordinal) relationships. This course introduces students, through readings of the primary literature, to the basic methods of insect molecular systematics, including DNA extraction, gel electrophoresis, PCR, DNA purification, and DNA sequencing (manual and automated). Results are analyzed using available computer programs. Students are encouraged to collect preliminary data for thesis or post-doctoral research.

[ENTOM 644(6440) Advanced IPM: Theory and Implementation]
Spring. 1–4 credits. Prerequisites: upper-level undergraduate or graduate standing; intermediate background in IPM. (On special cases, student with little or no background in IPM seeking intensive instruction on a specialized topic may enroll with permission of instructor.) S-U grades optional. Lect, M W F 10:10. Coordinator: J. E. Losey.
Rotating series of four-week intensive modules on specialized topics. Topics range from basic ecology and genetics of pests and their natural enemies to specific strategies for pest management implementation. Each module is a unique unit and students may take any or all modules each time the course is offered. Prerequisites and grading procedures are determined by the instructor(s) of each module. Potential modules include: Insecticide Resistance and Resistance Management—J. Scott; Entomology (Ithaca); Crop Protection Decision Making—J. Nyrop; Entomology (Geneva); Greenhouse and Floriculture IPM—J. Sanderson; Entomology (Ithaca); Agricultural Acarology—J. Sanderson; Entomology (Ithaca); Fruit Arthropod IPM Methods in New York—A. Agnello; English-Loeb: Entomology (Geneva); Plant Resistance—W. Tingley; Entomology (Ithaca); Aerial Sampling in Pest Management—E. Shields: Entomology (Ithaca); Conservation Biological Control—J. Nyrop and G. English-Loeb; Entomology (Geneva); Insect Population Ecology—J. Losey; Entomology (Ithaca); Veterinary Entomology—IPM Methods for New York—D. Rutz; Entomology (Ithaca); Chemical Conversations and Integrated Pest Management—C. Linn; Entomology (Geneva).

[ENTOM 652(6520) Seminar in Medical Entomology]
Fall. 1 credit. Prerequisite: permission of instructor or ENTO 352. Disc, TBA. L. C. Harrington.
Addresses a variety of topics in the field of medical entomology. Weekly discussions of key topics selected by participating students and faculty.

[ENTOM 662(6620) Insect Behavior Seminar]
Spring. 2 credits. Prerequisites: permission of instructor or ENTOM 212 and BION 221 or equivalents. S-U grades optional. Offered alternate years, not offered 2005–2006; next offered 2006–2007. Times TBA. C. Gilbert.

[ENTOM 670(6700) Seminar on Biological Control]
Fall. 1 credit. Prerequisite: ENTO 463 or 644 or permission of instructor. S-U grades optional. Times TBA. Offered alternate years; not offered 2005–2006, next offered 2006–2007. A. E. Hajek.
Upper-level seminar series in biological control covering topics chosen by participating students and faculty. Weekly discussion groups with each participant presenting at least one oral report based on independent reading or research focusing on a central theme for the semester.

[ENTOM 685(6850) Seminar in Insect Physiology]
Spring. 1 credit. Prerequisite: permission of instructor. S-U grades optional. Times TBA. Offered alternate years; next offered 2006–2007. C. Gilbert.

[ENTOM 707(7070) Individual Study for Graduate Students]
Fall or spring. Credit TBA. Prerequisite: permission of instructor. Not for thesis credit. Staff.

[ENTOM 709(7090) Teaching Entomology]
Credit TBA. Staff.
Teaching entomology or for extension training.

[ENTOM 767(7670) Current Topics in Entomology]
Fall and spring. 1 credit. Requirement for first- and second-year entomology graduate students. S-U grades only. Staff.
After the Jugatae seminar, the students taking the course discuss the seminar and additional papers with the speakers from 4:30 to 5:30 in 2123 Comstock Hall.
FD SC 101(1010) Science and Technology of Foods
Fall, 1 credit. S-U grades only. M 1:25-2:15. J. H. Hotchkiss and staff.
Explores the application of science and technology to foods. Lectures elucidate the role of engineering, biotechnology, chemistry, biochemistry, nutrition, toxicology, and microbiology in supplying the world with safe and nutritious food. An overview of food science as a discipline and career choice is given.

FD SC 150(1500) Food Choices and Issues
Spring, 2 credits. S-U grades optional. T R 12:20-1:10. R. B. Gravani and D. D. Miller. Provides Cornell students with the knowledge needed to make healthy food choices. Topics include the U.S. food system; relationships between diet and health; food processing; food safety; and discussions of contemporary issues relating to food quality, safety, and nutrition. Students will learn the nutritional quality of their personal diets and learn how to make changes to improve their eating habits.

FD SC 151(1510) Food and Health: Current Issues and Controversies
Spring, 1 credit. Limited to 25 students. Pre- or co-requisites: FD SC 150 or permission of instructors. S-U grades only. Disc, M 2:30-3:25. R. B. Gravani and D. D. Miller. Discussion-based course designed to explore current issues and controversies that involve relationships between food and health. A required reading from the popular press or the scientific literature is assigned each week. S-U grades are based on attendance, overall participation, and the oral presentation. Topics may include the obesity epidemic, food irradiation, food safety, plant sterols, heart disease, eating disorders, functional foods, dietary supplements, food regulations, genetically modified foods, and other current issues. Several class discussions are held at a Cornell dining facility on selected Wednesday evenings during the semester.

FD SC 200(2000) Introductory Food Science
Fall, 3 credits. Prerequisite: college-level courses in chemistry and biology. Letter grades only. M W F 11:15-12:05. J. H. Hotchkiss. Comprehensive introduction to the principles and practice of food science and technology. Topics include chemistry of foods; nutritional significance; food formulation, preservation, and processing; microbiology and fermentations; composition and processing of food commodities; and contemporary issues including food safety, regulation, and world food needs. Stresses interrelationships between the chemical, physical, nutritional, and quality properties of foods as affected by formulation and food processing.

FD SC 210(2100) Food Analysis
Introduces basic analytical techniques for food analysis and biological analysis. Emphasizes fundamental principles of analytical chemistry, basic laboratory techniques, and modern instrumental methods. Discusses gravimetric, volumetric, and spectrophotometric methods, gas chromatography (GC), high-performance liquid chromatography (HPLC), infrared spectra (IR), and atomic absorption spectrometry.

FD SC 230(2300) Sophomore Seminar: Functional Foods; Where Food Science and Nutrition Meet (also NS 230[2300])
Spring, 2 credits. Limited to 15 students. Priority given to sophomores who have completed two first-year writing seminars and introductory course in either food science or nutritional sciences. Lec, W 2:30-4:25. S. J. Mulvaney and R. Parker. Functional foods are foods whose nutrient composition has been modified to achieve targeted health outcomes. This course explores the interface between nutritional science and food science can work together to design and produce foods to meet certain health goals using a case study approach. Each case study involves interdisciplinary discussion, and a writing assignment that includes both technical (e.g., scientific basis for diet-health claims) and non-technical (e.g., personal experience and opinions related to functional foods) content.

This is a special seminar sponsored by the John S. Knight Institute's Sophomore Seminars Program. Seminars offer discipline-intensive study within an interdisciplinary context. While not restricted to sophomores, the seminars aim at initiating students into the discipline's outlook, discourse community, modes of knowledge, and ways of articulating that knowledge. Special emphasis is given to strong thinking and writing and to personalized instruction with top university professors.

FD SC 250(2500) Kosher and Halal Food Regulations
Spring, 2 credits. Prerequisite: at least sophomore standing. S-U grades optional. Lec, M 7:30-9:25 P.M. J. M. Regenstein. Comprehensive introduction to kosher and halal foods in the American food industry with some coverage of home practices. Examines the kosher food laws, their origin, and their application in modern food processing. Describes the nature of the kosher supervision industry in America. Also examines Halal laws and explores the interactions between the two communities. Reviews current food-related issues in both communities, including recent court decisions. May also consider some aspects of ethnic foods.

FD SC 290(2900) Meat Science (also AN SC 290[2900])
Fall or Spring. 2 credits. Options—lec only—2 credits; lec plus lab—3 credits; lab cannot be taken without lec. Letter grades only. Lec, T R 11:15; lab, M or R 12:20-3:20. D. E. Shaw. Introduction to meat science through a study of the structure, composition, and function of muscle and its conversion to meat. Also studies properties of fresh and processed meat, microbiology, preservations, nutritive value, inspection, and sanitation. Lab exercises include anatomy, meat-animal slaughter, meat cutting, wholesale and retail cut identification, processing, inspection, grading, quality control, and meat merchandising. An all-day field trip to commercial meat plants may be taken.
FD SC 394(3940) Applied and Food Microbiology (also BIOMI 394(3940))
Fall. 5 credits. Prerequisites: BIOMI 290–291. M W F 12:20–1:10. C. A. Batt. Microorganisms play a central role in a variety of food, agricultural, and environmental processes. This course presents a comprehensive survey of the roles that microorganisms play in industrial/biotechnological processes as well as their importance to safety and production of foods. Reviews issues related to the biochemistry, genetics, and physiology of microorganisms important in these processes. A 2-credit core section on food microbiology is complemented by a 3-credit section on industrial/biotechnological applications.

FD SC 395(3950) Food Microbiology Laboratory
Fall. 2 credits. Prerequisite: BIOMI 291 or equivalent. Letter grades only. M W F 2:40–4:25. J. M. Brown. Work includes study of the physiological characteristics of representative food microorganisms, practice in using general and rapid methods for microbiological testing and control of food products, and practice in the application of a systematic approach to controlling the safety of foods, or addressing a food safety issue.

FD SC 396(3960) Food Safety Assurance
Spring. 2 credits. Prerequisite: BIOMI 290 or permission of instructor. T R 9:05–9:55. Offered alternate years; not offered 2005–2006, next offered 2006–2007. R. B. Graubard. Provides information on procedures to control biological, chemical, and physical hazards and assure the safety of foods. Topics include discussions on the Hazard Analysis Critical Control Point (HACCP) concept, good manufacturing practices, prerequisite programs, and the application of current technologies in reducing the risk of foodborne illnesses. Uses case studies and class projects to demonstrate and apply the key principles discussed.

FD SC 400(4000) Current Topics in Food Science and Technology

FD SC 401(4010) Concepts of Product Development
Spring. 2 credits. Prerequisite: FD SC 200 or equivalent. Letter grades only. M W 11:15–12:05. Offered alternate years; not offered 2005–2006; next offered 2006–2007. J. H. Hatchick. Discussion of the sequence of events in developing and marketing new food products. Topics include food formulation, packaging and labeling, food additive and ingredient regulations, taste panels, market testing, market research, and patents.

FD SC 402(4020) Agriculture in Developing Nations I (also IARD 402(4020))
Fall. 2 credits. F 1:25–3:20. T. W. Tucker and R. W. Blake (Mexico sec); K. V. Raman and W. R. Gofton (India sec). Acquaints students with the major issues and problems in international agriculture and rural development and demonstrates how problems in development are being addressed in the Gulf Region of Mexico and India. The lectures/discussions establish the global and regional contexts for sustainable agricultural development and focus on development challenges in Latin America and Asia through cases in southern Mexico and India. This course may be repeated as a stand-alone survey course in international agriculture and rural development. However, it is primarily a preparatory course for participants selected to participate in the spring semester course Agriculture in the Developing Nations II (IARD 602), which includes concurrent field trips to the Gulf Region of Mexico and India during the January intersemission.

FD SC 405(4050) Managing Food Waste Without Trashing the Environment
Spring. 2 credits. Prerequisite: FD SC 200 or equivalent. Letter grades only. Lec, M 12:30–2:15; lab, M 2:30–4:25. Offered alternate years; not offered 2005–2006; next offered 2006–2007. J. M. Rogenstein. Examines the various waste streams generated by food plants, institutional feeders, supermarkets, and restaurants. What is the role of waste minimization? What technologies can control or remediate the problems? What are the disposal, composting, and recycling requirements? Locally, statewide, and nationally that affect various food waste processes? This course serves as a general introduction to available waste management technologies and to policy issues faced by the change of business and production plans.

FD SC 406(4060) Dairy and Food Fermentations
Fall. 2 credits. Prerequisite: BIOMI 290. Letter grades only. R 12:20–2:15. M. Wiedmann. Lecture course covering the basic principles of fermentation. The microbiology of food fermentations (including the physiology and genetics of fermentative microorganisms), starter cultures and their preparations and applications, as well as specific examples of food fermentations. Selected textbook readings are supplemented with papers from peer-reviewed journals. Significant parts of class focus on discussion and critical analysis of the assigned reading materials.

FD SC 410(4100) Sensory Evaluation of Food
Fall–Winter. 2–3 credits; 1 lab credit. Lee and lab. M 1:25–4:25. H. T. Lawless. Topics include the sensory evaluation methods used to test the flavor, appearance, and texture of foods by quantitative description and simple difference testing; consumer testing for product acceptability; sensory tests in quality control, product research, and product development. Presents the psychological principles in sensory testing and statistical methods for sensory data analysis. The lab provides first-hand experience in organizing and conducting sensory tests and an introduction to online date collection and analysis.

FD SC 415(4150) Principles of Food Packaging
Spring. 3 credits. Letter grades only. M W F 10:10–11:00. Offered alternate years; offered in year of odd-numbered years. J. H. Hotchkiss. Discusses the chemical and physical properties and manufacture of the basic materials used to construct packaging. Presents the influence of packaging on shelf life. Emphasizes newer packaging technologies and materials. Briefly presents economics, design, and regulation of food packaging.

FD SC 417-418(4170-4180) Food Chemistry I and II
417. Spring (3 credits). 418. Fall (2 credits). Prerequisites: CHEM 257 or BIOMI 330 or 351. S-U or letter grades. 417. M W F 9:05–9:55; 418, M W 9:05–9:55. J. W. Brady. Covers the chemistry of foods and food ingredients. Discusses the chemical and physical properties of fats, proteins, lipids, carbohydrates, and other food components and additives in the context of their interactions and functional roles in foods. Describes the effects of chemical changes during processing and storage on the quality and nutritional aspects of several food commodity groups (dairy, meat, fruits and vegetables, cereals, and legumes).

FD SC 419(4190) Food Chemistry Laboratory
Spring. 2 credits Prerequisites: BIOMI 350 or BIOM 257 or equivalent. Co­require: FD SC 417. M 12:40–2:45. D. M. Miller. Deals with the chemical properties of food components and changes they undergo in processing and storage. Focus on principles and practices fundamental to the processing and storage of foods, with emphasis on processing aids and new technologies. Provides the student with the necessary knowledge to understand the processing and storage of foods. Also helps students to develop critical thinking and problem-solving skills.

FD SC 423(4230) Physical Principles of Food Preservation and Manufacturing
Fall. 3 credits. Prerequisite: FD SC 321. Letter grades only. Lec, T R 11:15–12:05; disc, T 12:20–2:15. S. J. Mulvaney and S. Roberts. Emphasizes the fundamental principles that underlie much of food preservation and manufacturing. Uses a systems analysis approach to make connections between the chemical and physical changes that occur in food processing and their impact on food quality. Topics include materials properties of foods, heat processing, freezing, concentration, and drying. Selected products serve as case studies for more complex manufactured foods.

FD SC 425(4250) Dairy Foods Processing
Spring. 3 credits. Prerequisites: FD SC 321, 394, 417, 418, and 423. Letter grades only. Lec, M 12:20–1:10; W 9:05–9:55; lab, M 1:25–4:25. C. I. Moraru. Combined lecture-laboratory course focusing on principles and practices fundamental to modern dairy foods processing. Structured in two parts. The first part deals with the main unit operations used in dairy processing (i.e., pasteurization, sterilization, centrifugal separation, homogenization, separation, concentration, and drying) and the second part focuses on the science and technology that underpins the manufacture of many classes of dairy products (e.g., fluid milk, milk powder, ice cream, butter, and cheese). Laboratories are conducted in a food processing pilot plant facility, which allows students to gain hands-on experience.
in operating pilot plant equipment and the manufacture of safe, high quality dairy products. One field trip to operating dairy plants in the area is scheduled during the semester.

FD SC 430(4300) Understanding Wine and Beer

Introduction to wine and beer appreciation through the study of fermentation biology, product composition, and sensory perception. Lists samples of wines and beers to illustrate the sensory properties, microbiological processes, and chemical components that determine quality. Students learn to recognize the major features of wine and beer that determine sensory quality and know the processes that produced them. Topics include the psychology and chemistry of bouquet, taste, and aroma; the microbiology of fermentation and spoilage; the sensory properties of wines from different grape varieties; viticultural practices, and wine-making techniques; and the effects of brewing raw materials and processing procedures on beer quality.

FD SC 450(4500) Fundamentals of Food Law

Introduction to the complex array of federal and state statutes and regulations that control the processing, packaging, labeling, and distribution of food, including aspects of safety and nutritive value. Emphasizes the Food and Drug Administration and U.S. Department of Agriculture regulations but also refers to other regulatory agencies. Emphasizes how a food or agricultural process interacts with the U.S. legal system during legislative action, regulatory rule making, and with respect to compliance.

FD SC 456(4560) Advanced Concepts in Sensory Evaluation

Advanced topics in sensory evaluation, including recent advances in sensory methods, historical perspectives, psychophysics, perceptual biases, and multivariate statistical approaches to sensory data. Students conduct a major independent research project on a current issue in sensory evaluation.

FD SC 480(4800) Global Seminar: Building Sustainable Environments and Secure Food Systems for a Modern World (also NTRES/IARD 480[4800])
Spring. 3 credits. Prerequisite: junior, senior, or graduate standing. J. Lassiee and D. Miller.

Modernization has led to development pressures that have increasingly disrupted natural systems, leading to widespread concerns about the long-term viability of important environmental services, including those critical to food security worldwide. This multidisciplinary course uses case studies to explore interrelationships among social, economic, and environmental factors basic to sustainable development. Cases include population growth, genetically modified foods, biodiversity, sustainable tourism, global warming, and global responsibility. Cornell faculty members lead discussions in each of the major topic areas. In addition, students participate in discussions and debates with students from Sweden, Costa Rica, Honduras, South Africa, and Australia through live interactive videoconferences and electronic discussion boards.

FD SC 494(4940) Special Topics in Food Science
Fall or spring. 4 credits max. S-U grades optional. Staff.

The department teaches "trial" courses under this number. Offerings vary by semester, and are advertised by the department before the semester starts. Courses offered under the number will be approved by the department curriculum committee, and the same course is not offered more than twice under this number.

FD SC 497(4970) Individual Study in Food Science
Fall or spring. 3 credits max. Prerequisite: permission of instructor. Students must register using independent study form (available in 140 Roberts Hall). S-U grades optional. Staff.

May include individual tutorial study, a special topic selected by a professor or a group of students, or selected lectures of a course already offered. Since topics vary, the course may be repeated for credit.

FD SC 498(4980) Undergraduate Teaching Experience
Fall or spring. 3 credits max. Prerequisite: permission of instructor. Students must register using independent study form (available in 140 Roberts Hall). S-U grades optional. Staff.

Students assist in teaching a course appropriate to their previous training and experience. Students meet with a discussion or laboratory section and regularly discuss objectives with the course instructor.

FD SC 499(4990) Undergraduate Research in Food Science
Fall or spring. 4 credits max; may be repeated for additional credits. Students must register using independent study form (available in 140 Roberts Hall). S-U grades optional. Staff.

Students conduct original research directed by a food science faculty member.

FD SC 599(5990) Research for Lausanne Exchange Students
Fall/spring. 10 credits max. Prerequisite: permission of instructor. S-U grades optional. Staff.

Undergraduate senior thesis research for Lausanne exchange students only. Students conduct original research directed by a food science faculty member, then write and present a final report to the faculties of both Cornell University and the University of Lausanne.

FD SC 600(6000) Seminar in Food Science
Fall and spring. 1 credit. S-U grades optional. Requirement for all graduate students in field of food science and technology; highly recommended for graduate students minorin in food science and technology. T 4:00–5:00. Staff.

Weekly seminar series on contemporary topics and issues in the field of food science and technology. Representatives from academia, industry, and government provide presentations on a wide variety of topics. Graduate students in the field of food science and technology may use the forum to present their required thesis research seminar.

FD SC 602(6020) Agriculture in Developing Nations II (also IARD 602[6020])
Spring. Field trips to Gulf Region of Mexico (Sec 1) and India (Sec 2) during Jan intersession. 3 credits. Prerequisites: IARD 402 and (or) permission of instructors. Cost of field study trip (including airfare, local transportation, and lodging; some merit and need based financial aid may be available): approx. $2,500. T R 2:30–4:25 until midterm only. R. W. Blake, T. W. Tucker, and C. F. Nicholson (Mexico); K. V. Raman and W. R. Coffman (India). Designed to provide students with an opportunity to observe agricultural development in tropical Mexico or India and to promote interdisciplinary exchange among faculty, staff, students and their Mexican and Indian counterparts. A two-week field study trip in January is followed by discussions, written projects and oral presentations dealing with problems in food, agriculture and livestock production in the context of social and economic conditions.

FD SC 604(6040) Chemistry of Dairy Products
Fall. 2 credits. Limited to 16 students. Prerequisites: introductory organic and biochemistry, food chemistry, and dairy foods processing courses or permission of instructor. Letter grades only. Offered alternate years; not offered 2005-2006; next offered 2006–2007. F 1:25–3:20. D. M. Barbano.

Detailed study of milk constituents and their properties. Covers the chemical and physical changes that occur in dairy products before, during, and after processing. Emphasizes current research in dairy chemistry.

FD SC 607(6070) Advanced Food Microbiology

Explores advanced topics in food microbiology. Places major emphasis on critical evaluation of current literature and on microbiological concepts that affect food microbiology. Specific areas covered include microbial ecology of foods, rapid detection and typing methods for foodborne pathogens, microbial modeling, pathogenesis of foodborne diseases, and food applications of genetic engineering. Some guest lectures may be arranged to provide an introduction to other advanced food microbiology topics (e.g., risk assessment).

FD SC 608(6080) Chemometric Methods in Food Science
Fall. 2 credits. Prerequisites: basic statistics and chemistry course or permission of instructor. S-U grades optional. W 1:25–3:20. Offered alternate years; not offered 2005–2006; next offered 2006–2007. K. J. Siebert.

Food science applications using multivariate statistical methods (chemometrics) include extracting information from large data sets,
modeling molecular and product properties, optimizing analytical methods and processing operations, discerning relationships between product composition and sensory properties, identifying cultivars or species, and detecting adulteration. The techniques covered are also applicable to many other problems in biology and chemistry.

FD SC 616(6160) Flavours—Analysis and Applications

Advanced course in sensory and instrumental analysis of flavors, flavor chemistry, and flavor applications in foods for food scientists and those in related fields concerned with human food perception and consumption. Surveys taste, aroma and volatile flavors, and trigeminal stimuli from the perspectives of chemical structures, methods of analysis, uses and interactions in food systems. Also discusses recent advances in the physiology of taste and smell.

FD SC 620(6220) Food Carbohydrates
(Same as BIOM 330)
Spring. 2 credits. Prerequisite: qualified seniors and graduate students, BIOM 330 or equivalent. T R 10:10–11. Offered alternate years; not offered 2006–2007. B. A. Lewis and J. W. Brady.

Considers the chemistry of carbohydrates, including sugars, starches, pectins, hemicelluloses, gums, and other complex carbohydrates. Emphasizes the intrinsic chemistry and functionality in food systems and the changes occurring during food processing and storage.

FD SC 621(6210) Food Lipids

Describes the physical, chemical, biochemical, and functional properties of lipids. Emphasizes lipid oxidation, emulsions, and functional foods associated with lipids.

FD SC 622(6220) Nutraceuticals and Functional Foods
Fall. 2 credits. Prerequisites: biochemistry course equivalent to BIOM 330 and one year college biology or permission of instructor. Letter grades only. Offered alternate years; not offered 2006–2007. Lec, T R 2:30–3:20. R. H. Liu.

Covers nutraceuticals and functional foods, natural bioactive compounds, antioxidants, and dietary supplements, botanicals and herbs in disease prevention and health promotion. Emphasizes the mechanisms of action and scientific evidence of efficacy of nutraceuticals and functional foods. Also discusses biomarkers, safety and efficacy testing, and regulations for nutraceuticals and functional foods.

FD SC 664(6640) Food Polymer Science: Principles and Applications

Integrates polymer science, chemistry, and mathematical science principles as the basis for characterization of the physical properties of biopolymer materials of interest to the food industry. Emphasizes unique aspects of food materials, e.g., polysaccharides, proteins, biological materials, transient networks, and effects of thermal treatments on material properties. Problems and case studies based on proteins, starches, gelatin, and other hydrocolloids relevant to food systems.

FD SC 665(6650) Food and Bioprocessing Systems

Fundamental and quantitative analyses of processes for manufacture of foods and related biological products. Topics include centrifugation, membranes, supercritical fluids, extrusion, high pressure, pulsed electric field, thermal processing, drying, and crystallization.

FD SC 694(6940) Special Topics in Food Science
Fall or spring. 4 credits max. S-U grades optional. Staff.

The department teaches "trial" courses under this number. Offerings vary by semester, and are advertised by the department before the semester starts. Courses offered under the number will be approved by the department curriculum committee, and the same course is not offered more than twice under this number.

FD SC 695(6950) Current Readings in Food Science
Fall and spring. 1 credit; may be taken multiple times. Graduate students in food science strongly encouraged to enroll. Prerequisite: 300- to 400-level course relevant to chosen topic. S-U grades only. Lec, TBA/one hour per week. Staff.

Seminar series on current topics chosen by participating faculty members and students on a rotating basis. Format consists of weekly discussion groups with each participant presenting at least one original presentation based on independent reading. Multiple sections focusing on different topics may be taught in any given semester. Topics include food microbiology and food safety; food chemistry, packaging; and food engineering. Interested students should contact the designated instructor(s) for each semester.

FD SC 688(6980) Graduate Teaching Experience
Fall and spring. 1 to 3 credits. S-U grades only. Staff.

Designed to give graduate students teaching experience through involvement in planning and teaching courses under the supervision of field faculty members. The experience may include leading discussion sections; preparing, assisting in, or teaching lectures and laboratories; and tutoring.

FD SC 900(9000) Master's-Level Thesis Research
Fall or spring. Credit TBA; max. 12. Prerequisite: master's candidates; permission of Special Committee chair. S-U grades only. Graduate faculty.

FD SC 901(9010) Doctoral-Level Thesis Research
Fall or spring. Credit TBA. Maximum of 12 credits. Prerequisite: doctoral students who have passed "A" exam; permission of Special Committee chair. S-U grades only. Graduate faculty.

HORT 101(1110) Horticultural Science and Systems
Fall. 4 credits. Lec, M W F 9:05; lab, W 1:25–4:25. T. A. Merwin.

Science and technology of horticultural plants grown for foods and beverages, ornamental, landscape, or recreational purposes. Lectures, labs, and field trips involve natural history and evolution of horticultural plants, botany and physiology, sustainable management, and bioprocessing. Topics include natural history and evolution of horticultural plants, botany and physiology, sustainable management, and bioprocessing. Emphasis is on integrated design and management of horticultural plantings and production systems.

HORT 102(1120) Hands-On Horticulture

The objective is to instill in students a lifelong appreciation for how gardening can enhance individual well-being through aesthetics, culinary experiences, and mastery of techniques. Emphasizes hands-on learning and practice of key gardening skills and techniques in the greenhouse and the field, such as landscape management, garden design, propagation, pruning, grafting, pest management, and flower arrangement. It is one Saturday field trip at the end of the semester to visit gardens in the local area.

HORT 201(2010) The Art of Horticulture I: Plants and Gardens as a Subject of Art

Part of a HORT 201 and 203 sequence, this experiential course considers plants and gardens as a subject of art. Students explore basic drawing techniques, botanical illustration methods, watercolor, and photography. The course addresses the natural history and symbolic use of plants in fine art. Students critically reflect on course content in journals and explore the work of garden writers.

HORT 203(2030) The Art of Horticulture II: Plants Used in Art or As Artforms

Part of a HORT 201 and 203 sequence, this experiential course focuses on plant materials used to create art or manipulated as artforms. Acquaints students with a range of topics such as the use of plants in fibers and dyes; floral design; and living-sculpture practices such as topiary, bonsai, turfworks, and tree sculpture. Students create a final project focused on these or related methods.
Horticulture and Life Sciences 2005-2006

HORT 215(2150) Sophomore Seminar: Nonfiction Adventure Writing: Reclaiming the Scientist's Voice
Spring. 4 credits. Limited to 15 students. Letter grades only. Lec. TBA. T. H. Whitelow.
Using juxtaposed readings drawn from the published chronicles of scientific and nonscientific adventures, this course discovers strategies for conveying excitement in their own writing. In addition to classroom discussions, in-people in the field and lab provide raw material for writing individual narratives. Each student has opportunities to cultivate individual awareness of natural processes and recount their discoveries in writing.

This is a special seminar sponsored by the John S. Knight Institute's Sophomore Seminars Program. Seminars offer discipline-intensive study within an interdisciplinary context. While not restricted to sophomores, the seminars aim at initiating students into the discipline's outlook, discourse community, modes of knowledge, and ways of articulating that knowledge. Special emphasis is given to strong thinking and writing and to personalized instruction with top university professors.

HORT 220(2200) Practicing Sustainable Land Care
Fall. 2–3 credits; 1 additional credit for student projects by permission of instructor. Letter grades only. Lec. R 12:20; lab. R 1:25–4:25. Offered odd years. L. E. Drinkwater.
Experiential course emphasizing interdisciplinary, ecosystem-based approaches to land management and food production. Covers concepts from biological and environmental sciences (i.e. ecology, soil science, horticulture) and includes hands-on activities in organic agriculture, agroforestry, and ecosystem restoration. Classes are held at Dillman Hill Organic Farm and the MacDaniels Nut Grove.

HORT 225(2250) Vegetable Production
Fall. 4 credits. Lec. M W F 11:15; lab. W 2:00–4:25; four field trips (Sept.). W 11:15–2:00; 2:00–4:25; 2006. Staff.
Intended for those interested in the production, processing, and marketing of vegetables. Topics include techniques, problems, and trends in the culture, harvesting, and storage of the major vegetable crops. Includes field trips to conventional and organic farms and hands-on experience in growing vegetables in the greenhouse.

HORT 235(2350) Plants and Human Well-Being
Examines the beneficial effects of plants on human cultures, communities and individuals. Areas of focus include: impacts of community gardens, green space, and farmer's markets; use of plants for pollution control, economic development, conflict resolution, and tourism; how plants benefit individuals, in terms of adult cognition, K–12 education, mental health, and personal empowerment. Laboratories include field trips and exercises to local groups to analyze and evaluate plant-based initiatives in many phases of contemporary life.

HORT 242(2420) Taxonomy of Cultivated Plants [also BIOL 242(2420)]
Fall. 4 credits. Prerequisite: one year introductory biology or written permission of instructor. May not be taken for credit after BIOL 248. Lec. M W F 10:10–11; lab. M or W 3:30–4:25. Offered even years. M. A. Luckow.
Study of ferns and seed plants, their relationships, and their classification into families and genera, emphasizing cultivated plants. Places particular emphasis on gaining proficiency in identifying and distinguishing families and in preparing and using analytic keys. Also gives attention to the economic importance of taxa, the basic taxonomic literature, and the elements of nomenclature.

HORT 300(3000) Herbsaceous Plant Materials
Fall. 3 credits. Lec. T R 10:10; lab. T 2:00–4:25. Cost of field trip: $75. W. B. Miller.
Identification, use, characteristics, and garden cultural requirements of annual and herbaceous perennial plants, especially those used in nontraditional climates. Practical gardening experiences at selected campus locations. Field trips to nearby specialty nurseries.

HORT 310(3100) Production and Marketing of Greenhouse Crops
Spring. 4 credits. Letter grades only. Lec. T R 10:10; lab. R 1:25–4:25. Cost of required three-day field trip: approx. $130. Offered even years. Staff.
Covers basics of establishing a greenhouse operation, growing crops in optimized environments, and serving niche or mass markets. Discusses technology basics, including structures and equipment, systems for heating and cooling, lighting, irrigating and fertilizing, materials handling; environmental stewardship and integrated pest management; and production management. Also covers world centers of greenhouse crop production, culture of cut, pot, bedding, vegetable, and fruit crops in greenhouses, emphasizing predictive harvesting through environmental, physical, and chemical management of growth and development. Each student grows one or more crops.

HORT 317(3170) Seed Science and Technology [also CSS 317(3170)]
Study of the principles and practices involved in seed production, conditioning, storage, quality management, seed enhancement, and stand establishment. Information is applicable to various kinds of agricultural and horticultural seeds. Hands-on laboratory experience.

HORT 391(3910) Woody Plant Identification and Use I
Module of HORT/WA 491 covering the identification of approximately 200 woody trees, shrubs, and vines in leaf and their use in the landscape. Students desiring a more comprehensive course that covers site assessment, soil modification, design, plant specifications and landscape establishment principles and techniques should take HORT/ LA 491 or the 491–492 sequence.

HORT 392(3920) Woody Plant Identification and Use II
Spring. 2 credits. Limited enrollment. Prerequisite: permission of instructor. Letter grades only. Lec. T 12:00–1:10; lab. T 1:25–4:25. N. L. Bassuk.
Module of HORT/LA 492 covering the identification of approximately 160 evergreen trees and shrubs and deciduous plants using winter identification. Practical identification (HORT 391) need not be taken before taking HORT 392 (spring module). Students also assist in the establishment of a new landscape on campus.

HORT 400(4000) Principles of Plant Propagation
Fall. 3 credits. Prerequisites: BIOL 242 and 244 or another plant physiology course or permission of instructor. Lec. T R 9:05; lab. R 1:25–4:25. K. W. Mudge.
Sexual (seed) propagation and asexual (vegetative) propagation including cuttage, grafting, tissue culture, and specialized vegetative reproductive structures. Stresses physiological, environmental, and anatomical principles and industry applications in lecture, and hands-on skills in laboratories. Examples include both temperate and tropical horticultural, agronomic and forestry crops.

HORT 401(4010) The How, When, and Why of Grafting—A Distance Learning Approach
Spring, 10 weeks. 2 credits. Lec. , autotutorial (web); lab. greenhouse/ autotutorial (web/CD); disc. ; web; one introductory face-to-face meeting, TBA. K. W. Mudge.
Web/CD-based autotutorial approach to the principles and practices of grafting and budding as applied to plant propagation. Emphasizes the role of grafting in modern horticultural practice and on student development of hands-on grafting skills. Instruction involves web-based asynchronous presentation of lecture and lab materials (web, CD-ROM), asynchronous discussion, and autotutorial hands-on grafting lab exercises.

HORT 420(4200) Principles of Nursery-Crop Production
Principles of commercial production of nursery crops to marketable stage, including potted-horticulture handling and storage. Term project required. Includes field trips to commercial nurseries.

HORT 425(4250) Postharvest Biology of Horticultural Crops
Study of the technological processes controlling physical and chemical changes
in harvested yet living horticultural crops or their parts. Discusses the theoretical principles and fundamental processes underlying these changes. Also covers strategies and practical handling requirements/conditions for storage, transportation, and quality monitoring of harvested horticultural crops.

HORT 426(4260) Practicum in Forest Farming as an Agroforestry System (also NTRES/CSI 426[4260])
Fall. 2 credits. Prerequisite: junior, senior, or graduate standing or permission of instructor. Lab, W 1:25–4:25. K. W. Mudge and L. E. Buck. Students actively take part in the restoration of a 70-year-old nut grove. The MacDaniel's Nut Grove is being developed as a multipurpose forest-farming teaching, research, and extension site. Hands-on activities include: temperate-nut harvest and variety evaluation, mushroom culture, small-fruits and fruit-tree culture, medicinal-herb culture, site evaluation and management, and tree pruning to other agroforestry-related sites. Outdoor activities are integrated with selected readings via an online discussion board.

HORT 435(4350) The Care of Woody and Herbaceous Plants in the Landscape
Fall. 4 credits. Prerequisites: HORT 301 and 491 or permission of instructor. Lect, M W F 9:05, lab, M 2–4:25. Field trips. Offered every year. Staff. Study of the practices involved in the maintenance of ornamental plants in the landscape. The major emphasis is on post-planting techniques, including water and fertilization management, weed management, pruning, and general tree care. Labs have a hands-on focus.

HORT 440(4400) Restoration Ecology
Fall. 5 credits. Prerequisite: upper division or graduate standing and permission of instructor. Letter grades only. Lect, T R 8:45–9:55, lab, F 12:30–1:45, plus several weekends. T. H. Whitlow. Draws concepts from ecology, hydrology, soil science, and conservation biology and applies these in both principle and practice to the rapidly evolving field of restoration ecology. Through lectures, reading, and discussion, site visits to active restoration sites, and a real world class project, students learn and practice skills needed to develop restoration plans for a variety of situations.

HORT 442(4420) Berry Crops: Culture and Management
Fall. 3 credits. Lect, M W 9:05, lab, M 1:25–4:25. Offered every year. M. P. Pritts. Study of the evolution, breeding history, and physiology of strawberries, raspberries, blackberries, blueberries, and other minor small fruit crops, and of cultural practices that influence productivity, fruit quality, and pest management. Considers marketing and economics of production or plant ecology course or its equivalent. Lab, T R 11, lab, T R 11:15–12:05. D. A. Rakow. Introductory class, 10 lectures, and a final project that includes a presentation. Emphasizes the interrelationships of cultivation, physiology, and role of the plant hormones auxin, gibberellins, cytokinins, abscisic acid, ethylene, and brassinosteroids. An optional additional 1-credit writing component is offered for construction of a book on plant hormones appropriate for the course.

HORT 443(4430) Viticulture and Vineyard Management—I
Fall. 3 credits. Prerequisites: BIO G 101/103, 102/104, BIOPL 241, CSI 260, BIOPL 242/244 or equivalents. Lect, T R 9:05, lab, R 1:25–4:25. R. M. Pool, A. N. Lakso, and M. C. Goffinet. First-semester course in commercial grape production with an emphasis on the problems of production in cold climates. Students examine environmental factors favoring production and quality. soils, and the anatomical and physiological bases for vineyard management decision-making. Laboratory exercises and field trips offer hands-on experience.

HORT 444(4440) Viticulture and Vineyard Management—II
Spring. 3 credits. Prerequisites: HORT 443 and PL BR 225 or equivalent. Lect, T R 9:05, lab, R 1:25–4:25. R. M. Pool, B. I. Reisch, P. Cousins, and C. Owens. Second-semester course in commercial grape production with an emphasis on the problems of production in cold climates. Students examine the genetics of the vine, and learn principles of vineyard establishment, propagation, pruning and training, and conservation. Laboratory exercises and field trips offer hands-on experience.

HORT 445(4450) Ecological Orchard Management
Spring. 3 credits. Prerequisite: ecological biology. S-U grades optional. Recommended: previous horticulture/plant science courses. Lect, T R 10:10; lab, T 1:25–4:25. Offered every year. I. A. Merwin. The ecology and technology of deciduous tree-fruit production. Topics include basic tree and fruit physiology; orchard renovation and design systems; nutrition, irrigation, and water conservation; propagation practices, tree pruning and training; post-harvest fruit storage; marketing and decision-making systems for integrated pest management; and efficient use of orchard equipment. Emphasizes the agroecology of perennial crop systems, with labs providing hands-on experience in orchard management.

HORT 449(4490) Green Signals and Triggers—The Plant Hormones
(also BIOPL 449[4490]) Fall. 1 or 2 credits. Prerequisites: introductory biology and BIOPL 102 or 342 or permission of instructor. S-U grades optional. Lect, F 1:25–2:15. Offered odd years. P. J. Davies. Study of the plant hormones and how they regulate plant growth and development. Topics include the discovery, role in growth and development, mode of action, and practical uses of the plant hormones auxin, gibberellins, cytokinins, abscisic acid, ethylene, and brassinosteroids. An optional additional 1-credit writing component is offered for construction of a book on plant hormones appropriate for the course.

HORT 455(4550) Mineral Nutrition of Crops and Landscape Plants
(also CSS 455[4550]) Spring. 3–5 credits. Prerequisite: CSS 260 and BIOPL 242/2420, or equivalent. Lect, M W F 9:05; lab, R 2:45–4:25. Offered every year. H. C. Wien and staff. Modular course on principles of plant mineral nutrition and nutrient management. A mandatory module on principles is followed by others on agronomic crops, vegetables, floriculture, and fruit crops. Each module carries 1 credit; a minimum of 3 credits must be taken in one semester. By the end of the course, students understand the principles of mineral nutrient function in crop plants, are able to diagnose deficiencies by symptoms and tissue tests, and can devise organic and conventional nutrient management schemes that maximize productivity and mineral nutrient quality.

HORT 460(4600) Plant-Plant Interactions
Spring. 3 credits. Prerequisite: any crop production or plant ecology course or permission of instructor. Lect, T R 9:05; lab/disc, M 2–4:25. Offered even years. D. W. Wolfe. Uses our basic understanding of plant ecology and physiology to evaluate the mechanisms by which plants perceive “neighbors” and compete or positively interact with each other in natural and managed ecosystems. Emphasizes agricultural systems, from tropical and temperate-nut harvest and variety evaluation, mushroom culture, small-fruits and fruit-tree culture, medicinal-herb culture, site evaluation and management, and tree pruning to other agroforestry-related sites. Outdoor activities are integrated with selected readings via an online discussion board.

HORT 462(4620) Physiology of Vegetables and Flowers
Spring. 4 credits. Prerequisite: BIOPL 242 or equivalent. Lect, M W F 9:05, lab/disc, M 2–4:25. Offered odd years. H. C. Wien. Study of the physiological principles that govern growth, development, and production of reproductive structures of vegetable crops and herbaceous ornamental plants. Emphasizes processes of flower induction, fruit and seed set, and the balance of vegetative and reproductive growth, especially in perennial shrubs. Practice involves greenhouse experiments and small group discussions illustrating the lecture material.

HORT 466(4660) Soil Ecology
(also CSS 466[4660]) Spring. 3 credits, with lab. Prerequisite: one year of biology or ecology and CSS 260 or permission of instructor. Lect, T R 10:10–11:25; lab, W 1:25–4:25. J. E. Thies. For description, see CSS 466.

HORT 480(4850) Plantations Lecture Series
Fall, 12 weeks. 1 credit. S-U grades only. W 7:30-8:45. D. A. Rakow. Introductory class, 10 lectures, and a final evaluation session. Each lecture features prominent speakers on a broad range of popular horticultural, natural-science, and human-cultural themes.

HORT 485(4850) Public Garden Management
Spring. 3 credits. Prerequisites: HORT 300 or 301; HORT 230 or 335. Lect, T R 10:10–11, lab, T R 11:15–12:05. Two- and a-half-day field trip to other botanical gardens and arboretum. Offered odd years. D. A. Rakow and S. M. Skelly. Explores the history, design, construction, management of landscapes and natural areas, educational programming, interpretive programs, research, financial management, and staffing.
HORT 491(4910) Creating the Urban Eden: Woody Plant Selection, Design, and Landscape Establishment (also LA 491[4910])
Fall. 4 credits. Limited to 48 students. Prerequisite: horticulture or landscape architecture majors or permission of instructor. Preregistration required. Lec, T R 12:20-1:10; Lab, T R 1:25-4:25. N. L. Bassuk and P. J. Trowbridge. Focuses on the identification, uses, and establishment of woody plants in urban and garden settings. By understanding the environmental limitations to plant growth, students can critically assess potential planting sites, select appropriate trees, shrubs, vines, and ground covers for a given site, and learn about the principles and practices of site amelioration and plant establishment. Design followed by written specifications and graphic details is produced to implement these practices. A project where students implement what they have learned by creating a new landscape serves to integrate theory, principles, and practices. No prior design experience necessary.

HORT 492(4920) Creating the Urban Eden: Woody Plant Selection, Design, and Landscape Establishment (also LA 492[4920])
Spring. 4 credits. Limited to 48 students. Prerequisite: passing grade in HORT/LA 491; horticulture or landscape architecture majors or permission of instructors. Preregistration required. Lec, T R 12:20-1:10. lab, T R 1:25-4:25. N. L. Bassuk and P. J. Trowbridge. Second half of course focusing on the winter identification, uses, and establishment of woody plants in urban and garden settings. Issues of site assessment and soil remediation are emphasized in addition to soil volume calculations, drainage and surface detailing, and planting techniques. Students critically assess potential planting sites, and select appropriate trees, shrubs, vines, and ground covers for a given site. Design for specific sites followed by written specifications and graphic details are produced to implement these proposals. Students implement, in a hands-on manner, site remediation and planting techniques they have learned by creating new landscapes that serve to integrate theory, principles, and practices. Together, HORT/LA 491 and 492 constitute an integrated course.

HORT 494(4940) Special Topics in Horticulture
Fall or spring. 4 credits max. S-U grades optional. Staff. The department teaches "trial" courses under this number. Offerings may vary by semester, and will be advertised before the semester begins. Courses offered under the number will be approved by the department curriculum committee. Undergraduate participation in weekly departmental seminar series.

HORT 496(4960) Internship in Horticulture
Fall or spring. Variable credit. Prerequisite: permission of student's advisor in advance of participation in internship programs. S-U grades optional. Students must register using independent study form (available in 140 Roberts Hall) signed by faculty member who will supervise study and assign grade. Staff.

HORT 497(4970) Independent Study in Horticulture
Fall or spring. Variable credit. Prerequisite: permission of instructor(s). S-U grades optional. Students must register using independent study form (available in 140 Roberts Hall). Independent study in horticultural sciences under the direction of one or more faculty members. Staff.

HORT 498(4980) Undergraduate Teaching Experience
Fall or spring. Variable credit. Prerequisites: previous enrollment in course to be taught or equivalent, and written permission of instructor(s). S-U grades optional. Students must register using independent study form (available in 140 Roberts Hall). Designed to give qualified undergraduate students teaching experience through actual involvement in planning and teaching horticultural sciences courses under the supervision of departmental faculty members. May include leading discussion sections; preparing, assisting in, or teaching laboratories, and tutoring.

HORT 499(4990) Undergraduate Research
Fall or spring. Variable credit. Prerequisite: permission of instructor. S-U grades optional. Students must register using independent study form (available in 140 Roberts Hall). Staff. Undergraduate research projects in horticultural sciences.

HORT 500(5000) Master of Professional Studies (Agriculture) Project
Fall or spring. 1-6 credits; 6 credits max. toward M.P.S. (agriculture) degree. Requirement for M.P.S. (Agriculture) candidate in specific graduate fields of horticulture. S-U grades optional. Staff. Comprehensive project emphasizing the application of principles and practices to professional horticultural teaching, extension, and research programs and situations.

HORT 600(6000) Seminar in Horticulture
Fall and spring. 1 credit. Requirement for graduate students majoring or minoring in horticulture. Undergraduate students enrolled in HORT 495. S-U grades only. M 11:15-12:05. L. Cheng. Weekly seminars consisting of graduate student research project reports, faculty research topics, as well as guest speakers from other universities and/or industry.

HORT 615(6150) Quantitative Methods in Horticulural Research
Spring, weeks 1-7. 2 credits. Prerequisite: BTRY 601, 602, or permission of instructor. S-U grades only. M 2:30-4:25. Offered even years. D. W. Wolfe. Provides experience in applying statistics principles to real-world agricultural research problems. Uses examples of lab, greenhouse, and field studies from the published literature. Explores other quantitative methods. Topics include approaches to controlling and analysis of variation; common block and incomplete block designs; selecting an appropriate significance level: designing on-farm experiments and demonstration plots; regression methods in relation to mechanistic models and path and principal components analysis; and plant growth analysis techniques.

HORT 617(6170) Advanced Analytical Methods for Plant Systems
Spring. 3 credits. Prerequisite: one year of general chemistry, one semester of organic chemistry, plant physiology. Letter grades only. Lec, T 12:20. lab, T 1:25-4:25. Offered every years. Staff. Principles and practical applications of selected laboratory methods in the plant and environmental sciences. Emphasizes enhancement of laboratory technique and problem-solving skills. Discusses suitability of various procedures for determining important plant and soil components. Analytical techniques are chosen from ICP spectroscopy, elemental analysis by combustion or flow analysis, gas chromatography, HPLC, electrophoresis, electrochemical assays, enzyme assays, biosassays, and mass spectrometry.

HORT 618(6180) Breeding for Pest Resistance (also PL BR 618[6180])
Fall. 2 credits. Prerequisites: BIOGD 281 and PL BR 463 or equivalents. Highly recommended: introductory plant pathology and/or entomology course. Letter grades only. Lec, M 2:30-4:25. Offered every years. P. D. Griffiths. For description, see PL BR 618.

HORT 625(6250) Advanced Postharvest Biology

Sec 01 Advanced Postharvest Physiology. 1 credit. (12 lec). S. Gan. Emphasizes the physiological and biochemical aspects of growth and maturation, ripening, and senescence of harvested horticultural plant parts.

Sec 02 Plant Senescence (also BIOPL 653-06). 1 credit. (12 lec). S. Gan. Introduces molecular, genetics, and genomics approaches in plant senescence and postharvest research. Topics include gene expression, regulation, and function associated with physiological and biochemical changes in senescing, maturing, and/or ripening plants or parts. Also discusses genetic manipulation of senescence/ripening processes.

Sec 03 Advanced Postharvest Technology. 1 credit. (12 lec). C. B. Watkins. Emphasizes advanced existing and emerging technology and practice for handling, monitoring, and storage of horticultural crops after harvest.

HORT 635(6350) Tools for Thought
Fall. 1 credit. Prerequisite: graduate standing. S-U grades only. Disc. TBA. T. H. Whitlow. Discusses readings from Kuhn, Waddington, Wilson, Lewontin, and others emphasizing application of the philosophy of science to the real-world practices of scientists.
INTERNATIONAL AGRICULTURE AND RURAL DEVELOPMENT 109

HORT 636(6360) Current Topics in Horticulture
Fall or spring. 1 credit. S-U grades only. One hour per week. TBA. Staff. Seminar series on current topics chosen by participating students and faculty members, on a rotating basis. Format consists of weekly discussion groups, with each participant presenting at least one oral report based on independent reading and/or experimentation related to a chosen topic. Interested students should contact the designated instructor(s) for each semester.

HORT 6400(6400) New Directions in Public Horticulture
Spring. 1 credit Disc TBA. Offered even years. D. A. Rakow and S. M. Skelly. Designed to introduce students to a range of current issues facing public gardens through a set of required readings. Each class period is devoted to a discussion of the topic between the instructors and students based on both the readings and personal experiences.

HORT 694(6940) Special Topics in Horticulture
Fall or spring. 4 credits max. S-U grades optional. Staff. The department teaches "trial" courses under this number. Offerings vary by semester and are advertised by the department before the semester starts. Courses offered under this number will be approved by the department curriculum committees, and the same course is not offered more than twice under this number.

HORT 700(7000) Graduate Teaching Experience
Fall or spring. Variable credit. Prerequisite: permission of instructor; graduate standing. Undergraduates should enroll in HORT 498. S-U grades optional. Times TBA. Staff. Designed to give graduate students teaching experience through involvement in planning and teaching courses under the supervision of departmental faculty members. May include discussion sections; preparing, assisting in, or teaching lectures and laboratories; and tutoring.

HORT 800(8000) Thesis Research, Master of Science
Fall or spring. Credit TBA. S-U grades only.

HORT 900(9000) Thesis Research, Doctor of Philosophy
Fall or spring. Credit TBA. S-U grades only.

INTERNATIONAL AGRICULTURE AND RURAL DEVELOPMENT

IARD 314(3140) Tropical Cropping Systems: Biodiversity, Social, and Environmental Impacts [also CSS 314(3140)]
Fall. 3 credits. Prerequisite: introductory crop science, soil science, or biology course or permission of instructor. P. Hobbs. Characterization and discussion of traditional shifting cultivation, lowland rice-based systems, upland cereal-based systems, smallholder mixed farming including root crops and livestock, plantation fruit and oil crop systems, and agroforestry. In addition to species diversity and domestication, factors such as climate, land quality, soil management, land tenure, labor, and markets are considered. Evaluates the effect of tropical cropping systems on the environment.

IARD 402(4020) Agriculture in Developing Nations I [also FD SC 402(4020)]
Fall. 2 credits; F 1:25-3:20. T. W. Tucker and R. W. Blake (Mexico sec); K. V. Raman and W. R. Coffman (India sec). Acquaint students with the major issues and problems in international agriculture and rural development, and focus on development challenges in Latin America and Asia through cases in southern Mexico and India. This course may be taken as a stand-alone survey course in international agriculture and rural development. However, it is primarily a preparatory course for graduate students selected to participate in the spring semester course Agriculture in the Developing Nations II (IARD 602), which includes concurrent field trips to the Gulf Region of Mexico and India during the January intersession.

IARD 403(4030) Traditional Agriculture in Developing Countries [also CSS 403(4030)]
Fall. 1 credit. S-U grades optional. P. Hobbs. Today, perhaps more than half of the world's arable land is farmed by traditional farmers. They have developed sustainable agriculture practices that allowed them to produce food and fiber for millennia with few outside inputs. Many of these practices have been forgotten in developed countries but are still used by many traditional, subsistence, or partially subsistence farmers in developing countries. This course examines traditional systems from several disciplinary points of view.

IARD 404(4040) Crop Evolution, Domestication, and Diversity [also PL BR/BIOL 404(4040)]
Spring. 2 credits. Prerequisite: BIOGD 281 or PL BR 225 or permission of instructor. S-U grades optional. S. Kresovich. Evolution, domestication, and breeding of crop plants have molded the current diversity we conserve and use. Based on advances in systematics and molecular genetics, this course presents an integrated approach to understanding and describing diversity of agricultural and horticultural species. Underlying ethical, legal, and social issues affecting conservation and use are also addressed.

IARD 480(4800) Global Seminar: Building Sustainable Environments and Secure Food Systems for a Modern World [also NTRES/FD SC 480(4800)]
Spring. 1-3 credits. Prerequisite: junior, senior, or graduate standing. Letter grades. J. Lassoie and D. Miller. For description, see NTRES 480.

IARD 494(4940) Special Topics in International Agriculture [also IARD 694(6940)]
Fall, spring, summer. 1-3 credits. S-U grades optional. The department teaches "trial" courses, and special topics not covered in other courses, at the undergraduate level, under this number. Offerings vary by semester, and will be advertised by the department. Courses offered under the number are approved by the department curriculum committee, and the same course is not offered more than twice under this number.

IARD 496(4960) International Internship
Fall, spring. 1-6 credits. Prerequisite: submission of approved internship form (see CALS internship policy guidelines). S-U grades optional. Staff. International internship, supervised by a faculty member who is directly involved in determining both the course content and in evaluating a student's work. The student will work within an international internship and negotiate a learning contract with the faculty supervisor, stating the conditions of the work assignment, supervision, and reporting.

IARD 497(4970) Independent Study
Fall and spring. 1-3 credits. S-U or letter grades. Prerequisite: permission of instructor. Students must register using independent study form (available in 140 Roberts Hall). Staff. Allows students the opportunity to investigate special interests that are not treated in regularly scheduled courses. The student develops a plan of study to pursue under the direction of a faculty member.

IARD 598(5980) International Development M.P.S. Project Paper
Fall and spring. 1-6 credits. Max. 6 credits may be applied toward M.P.S. degree. Prerequisite: M.P.S. candidates in field of international development (ID). S-U grades only. N. Uphoff. Problem-solving project entailing either fieldwork and/or library work. The aim of the project is to give students supervised experience in dealing intellectually and analytically with a professional problem related to a substantive area of international development.

IARD 599(5990) International Agriculture and Rural Development M.P.S. Project Paper
Fall and spring. 1-6 credits; maximum of 6 credits may be applied toward M.P.S. degree requirements. Prerequisite: M.P.S. candidates in field of international agriculture and rural development (IARD). S-U grades only. S. Kyle. Problem-solving project entailing either fieldwork and/or library work. The aim of the project is to give students supervised experience in dealing intellectually and analytically with a professional problem
related to a substantive area of international agriculture and rural development.

IARD 602(6200) Agriculture in Developing Nations II (also FD SC 602(6200))
Spring, field trips to Gulf Region of Mexico (sec 1) and India (sec 2) during Jan. intersession. 3 credits. Prerequisites: IARD 402 and (or) permission of instructors. Cost of field-study trip (including airfare, local transportation, and lodging; some merit and need-based financial aid may be available): approx. $2,500. T R 2:30–4:25 until midterm only. R. W. Blake, T. W. Tucker and C. F. Nicholson (Mexico); K. V. Raman and W. R. Coffman (India). Designed to provide students with an opportunity to observe agricultural development in tropical Mexico or India and to promote interdisciplinary exchange among faculty, staff, students and their Mexican and Indian counterparts. A two-week field-study trip in January is followed by discussions, written projects and oral presentations dealing with problems in food, agriculture and livestock production in the context of social and economic conditions of the Gulf Region of Mexico and India.

IARD 603(6030) Administration of Agricultural and Rural Development (also GOVT 682)
Spring, 4 credits. N. T. Uphoff and T. W. Tucker. Intercollege course designed to provide graduate students with a multidisciplinary perspective on the administration of agricultural and rural development activities in developing countries. The course is oriented to students in agricultural or social sciences who may have administrative responsibilities during their professional careers.

IARD 612(6120) Patents, Plants, and Profits: Intellectual Property Management for Scientists and Entrepreneurs (also PL BR 612(6120))
Spring. 2 credits. Prerequisite: senior or graduate standing. S-U grades only. A. E. E. Poiger, R. Poter, and R. D. Kryder. For description, see PL BR 612.

IARD 620(6200) Rural Livelihoods and Biological Resources: Technologies and Institutions
Fall, spring. 1–2 credits. S-U grades only. Biweekly, TBA. C. Barrett, A. Pell, and E. Fernandes. Seminar exploring issues that straddle the boundaries of the biological and social sciences as they relate to rural livelihoods, food security, and the management of biological resources. Students taking the 1-credit option participate in seminars and panels. Students taking the 2-credit option must also participate in a group project.

IARD 685(6850) Training and Development: Theory and Practice [also EDUC 685(6850)]
Spring. 4 credits. S-U grades optional. M. Kroma. Analysis, design, and administration of training programs for the development of human resources in small-farm agriculture, rural health and nutrition, literacy as nonformal education, and general community development. Designed for scientists, administrators, educator-trainers, and social organizers in rural and agricultural development programs in the United States and abroad.

IARD 694(6940) Graduate Special Topics in IARD
Fall or spring. 1–4 credits. S-U or letter grades. Staff. The department teaches "trial" courses under this number. Offerings vary by semester and are advertised by the department before the semester starts. Courses offered under the number will be approved by the department curriculum committee, and the same course is not offered more than twice under this number.

IARD 696 Agroecological Perspectives for Sustainable Development (also NTRES/CSS 696/6960)
Fall, spring. 1 credit. S-U grades only. L. Fisher and L. Buck. A variety of speakers present seminars on agroecological topics relating to sustainable development throughout the world. Students are required to prepare a synopsis of each seminar.

IARD 697–698(6970–6980) International Development M.P.S. Seminar
Fall, spring. 1 credit. S-U grades only. N. Uphoff. For M.P.S. students to discuss important issues in international development and to prepare them to write their project papers. Specific content varies.

IARD 699(6990) International Agriculture and Rural Development M.P.S. Project Seminar
Fall, spring. 1 credit. S-U grades only. Prerequisites: permission of instructor. S. C. Kyle. Provides students with the opportunity to develop and present their special projects. Also serves as a forum for discussion of current issues in low-income agricultural and rural development, with particular attention to interdisciplinary complexities.

IARD 783(7830) Farmer-Centered Research and Extension [also EDUC 783(7830)]
Fall. 3 credits. S-U or letter grades. M. Kroma and T. Tucker. Introduction to participatory traditions in farming systems research, extension, evaluation of rural development, technology generation, gender analysis, participatory rural appraisal, and documentation of local and indigenous knowledge of community-based development. Case studies of farmer-centered research and extension provide a focus for analysis. Appropriate roles of researchers and extensionists as partners with farmers are examined. A major contribution of farmer-centered research and extensions is its potential to legitimize people's knowledge by enhancing their capacity to critically analyze their own problems, to conduct their own research, and to empower them to take direct action to solve those problems.

Related Courses in Other Departments
In addition to international agriculture and rural development (IARD) courses, many other courses have an international focus. The following are suggested relevant courses:

- Applied Economics and Management
 - International Trade and Monetary Economics (AEM 230)
 - Agricultural and Rural Development (AEM 630)

- Agriculture and Life Sciences
 - Agricultural and Rural Development (AEM 630)

- Animal Science
 - Tropical Livestock Production (AN SC 400)

- Asian Studies
 - Southeast Asia Seminar: Country Seminar (ASIAN 601)

- Biology
 - Biology of the Neotropics (BIOEE 405)
 - Food, Agriculture, and Society (BIOEE 469)
 - The Healing Forest (BIOL 348)

- Communication
 - Communication in the Developing Nations (COMM 424)

- City and Regional Planning
 - Seminar in International Planning (CRP 671)

- Crop and Soil Science
 - Properties and Appraisal of Soils of the Tropics (CSS 471)

- Ecology of Agricultural Systems (CSS 473)

- Tropical Cropping Systems (CSS/ARD 314)

- Development Sociology
 - Comparative Issues in Social Stratification (D SOC 370)
 - Education, Inequality, and Development (D SOC 305)
 - International Development (D SOC 205)

- Population Dynamics (D SOC 201)

- Population, Environment, and Development in Sub-Saharan Africa (D SOC 495)

- Population Policy (D SOC 418)

- Migration and Population Redistribution (D SOC 430)

- Social Indicators, Data Management, and Analysis (D SOC 213)

- Sociological Theories of Development (D SOC 606)

- Sustainable Development (D SOC 261)

- The Sociology of "Third World" States (D SOC 725)

- Sustainable Development (D SOC 261)

- The Sociology of "Third World" States (D SOC 725)

- Education
 - Farmer-Centered Research and Extension (EDUC/ARD 783)
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>INFO 292(2921)</td>
<td>Inventing an Information Society</td>
<td>(also AM ST 292[2980], ECE/ENGRG 298[2980], HIST 292[2920], S&T S 292[2921]) Spring. 3 credits; may not be taken for credit after ECE/ENGRG 298. For description, see ENGRG 298.</td>
</tr>
<tr>
<td>INFO 295(2950)</td>
<td>Mathematical Methods for Information Science</td>
<td>Fall. 4 credits. Corequisite: MATH 231 or equivalent. For description, see INFO 295 in CIS section.</td>
</tr>
<tr>
<td>INFO 330(3300)</td>
<td>Applied Database Systems</td>
<td>(also COM S 330[3300]) Fall. 3 credits. Prerequisites: COM S/ENGRG 211. COM S majors may use only one of the following toward their degree: COM S/INFO 330 or COM S 435. For description, see COM S 330 in CIS section.</td>
</tr>
<tr>
<td>INFO 345(3450)</td>
<td>Human-Computer Interaction Design</td>
<td>(also COMM 345[3450]) Spring. 3 credits. For description, see COMM 345.</td>
</tr>
<tr>
<td>INFO 349(3491)</td>
<td>Media Technologies</td>
<td>(also COMM 349[3490], S&T S 349[3491]) Spring. 3 credits. For description, see S&T S 349.</td>
</tr>
<tr>
<td>INFO 355(3551)</td>
<td>Computers: From the 17 C. to the Dot.com Boom</td>
<td>Fall. 4 credits. For description, see S&T S 355.</td>
</tr>
<tr>
<td>INFO 356(3561)</td>
<td>Computing Cultures</td>
<td>(also S&T S 356[3561]) Spring. 4 credits. Prerequisites: none. For description, see S&T S 356.</td>
</tr>
<tr>
<td>INFO 430(4300)</td>
<td>Information Retrieval</td>
<td>(also COM S 430[4300]) Fall. 3 credits. Prerequisite: COM S/ENGRG 211 or equivalent. For description, see COM S 430 in CIS section.</td>
</tr>
<tr>
<td>INFO 430(4302)</td>
<td>Web Information Systems</td>
<td>(also COM S 431[4310]) Spring. 3 credits. Prerequisites: COM S 211 and some familiarity with web site technology. For description, see COM S 431 in CIS section.</td>
</tr>
<tr>
<td>INFO 435(4350)</td>
<td>Seminar on Applications of Information Science</td>
<td>(also INFO 635[6350]) Spring. 3 credits. Prerequisites: background in computing, data structures, and programming at level of COM S 211 or equivalent, experience in using information systems. For description, see INFO 435 in CIS section.</td>
</tr>
<tr>
<td>INFO 440(4400)</td>
<td>Advanced Human-Computer Interaction Design</td>
<td>(also COMM 440[4400]) Fall. 3 credits. Prerequisites: COMM/INFO 345 or permission of instructor. For description, see COMM 440.</td>
</tr>
<tr>
<td>INFO 445(4450)</td>
<td>Seminar in Computer-Mediated Communication</td>
<td>(also COMM 445[4450]) Fall. 3 credits. Prerequisite: COMM/INFO 245. For description, see COMM 445.</td>
</tr>
<tr>
<td>INFO 447(4470)</td>
<td>Social and Economic Data</td>
<td>(also ILRLE 447[4470]) Spring. 4 credits. Prerequisites: one semester of calculus, IS statistics requirement, at least one upper-level social science course, or permission of instructor. For description, see INFO 447 in CIS section.</td>
</tr>
<tr>
<td>INFO 450(4500)</td>
<td>Language and Technology</td>
<td>(also COMM 450[4500]) Spring. 3 credits. For description, see COMM 450.</td>
</tr>
<tr>
<td>INFO 490(4900)</td>
<td>Independent Reading and Research</td>
<td>Fall, spring. 1-4 credits. Independent reading and research for undergraduates.</td>
</tr>
<tr>
<td>INFO 491(4910)</td>
<td>Teaching in Information Systems, and Technology</td>
<td>Fall, spring. Variable credit. Involves working as a TA in a course in the information science, systems, and technology major.</td>
</tr>
<tr>
<td>INFO 515(5150)</td>
<td>Culture, Law, and Politics of the Internet</td>
<td>Fall. 4 credits. For description, see INFO 515 in CIS section.</td>
</tr>
<tr>
<td>INFO 530(5300)</td>
<td>The Architecture of Large-Scale Information Systems</td>
<td>(also COM S 530[5300]) Spring. 4 credits. Prerequisite: COM S/INFO 330 or COM S 432. For description, see COM S 530 in CIS section.</td>
</tr>
<tr>
<td>[INFO 614(6140)</td>
<td>Cognitive Psychology</td>
<td>(also COGST 614, PSYCH 614[6140]) Fall. 5 credits. Two components: PSYCH 214 (3 credits) and COGST 501 (2 credits). Intended for graduate students; undergraduates opting for 5 credits should enroll simultaneously in PSYCH 214 and COGST 501. Not offered 2005-2006. For description, see PSYCH 614.</td>
</tr>
<tr>
<td>INFO 630(6300)</td>
<td>Representing and Accessing Digital Information</td>
<td>(also COM S 630[6300]) Spring. 4 credits. Prerequisite: basic knowledge of linear algebra and probability theory; basic programming skills. For description, see COM S 630 in CIS section.</td>
</tr>
<tr>
<td>INFO 634(6341)</td>
<td>Information Technology in Sociocultural Context</td>
<td>(also S&T S 634[6341]) Fall. 4 credits. Prerequisite: permission of instructor. Not offered 2005-2006. For description, see S&T S 634.</td>
</tr>
<tr>
<td>INFO 635(6350)</td>
<td>Seminar on Applications of Information Science</td>
<td>(also INFO 435[4350]) Spring. 3 credits. Prerequisites: background in computing, data structures, and programming at level of COM S 211 or equivalent, and experience in using information systems. Undergraduates and master's students should enroll in INFO 435; Ph.D. students should enroll in INFO 635. For description, see INFO 635 in CIS section.</td>
</tr>
<tr>
<td>INFO 640(6400)</td>
<td>Human-Computer Interaction Design</td>
<td>(also COMM 640[6400]) Fall. 3 credits. Prerequisite: graduate standing or permission of instructor. For description, see COMM 640.</td>
</tr>
</tbody>
</table>
LA 141(1410) Grounding in Landscape Architecture
Fall. 4 credits. Limited to 15 students. Letter grades only. Fee for required drafting equipment plus materials for projects: approx. $250. Introduction to the representation and design of landscapes and to working in a studio setting. Uses hand-drawings, measured drawing, and model making to understand design principles of the changing landscape.

LA 142(1420) Grounding in Landscape Architecture
Spring. 4 credits. Limited to approx. 20 students. Prerequisite: freshman landscape architecture and permission of instructor. Required drafting equipment plus project supplies: approx. $250. Applies fundamentals of landscape design to small-scale site-planning projects. Work in the studio introduces students to the design process, design principles, construction materials, planting design, and graphics.

LA 155(1550) American Indian Cultural Landscapes: Changes in Time
Fall. 3 credits. Lectures with slides and other media illustrate American Indian cultures and philosophies both before and after 1492. A major focus is on how all Indian societies, from hunting societies to agricultural communities, continually transformed their cultural landscapes. Lectures also include how European expansion forcefully transformed American Indian cultural landscapes.

LA 201(2010) Medium of the Landscape
Fall. 5 credits. Prerequisite: landscape architecture majors. Required drafting equipment, supplies, and fees: approx. $200; field trip: approx. $250. Studio course emphasizing the design process and principles involved in organizing and giving form to outdoor space through the use of structures, vehicular and pedestrian circulation systems, earthforms, water, and vegetation.

LA 202(2020) Medium of the Landscape
Spring. 5 credits. Prerequisite: LA 201 with grade of C or better. Supplies and fees: approx. $250; field trip: approx. $250. Focuses on the role of materials in design, design theory, and design vocabulary associated with landscape architecture projects.

LA 215(2150) Sophomore Seminar: Engaging Places
Fall. 4 credits.LEC: M W 2:55-4:10. A. Hammer. Explores how places come to be what they are, how they shape—and are shaped by—the people who live in them, how they become coordinates for and landmarks to the cultural biography and the meaning of a life. While the course serves as an introduction to cultural landscape studies, or the interaction of people and place, its focus is on writing: how do we represent the complexity of a place and our relation to it?

LA 261(2610) Fieldwork in Urban Archaeology [also CRP/ARKEO 261(2610)]
Fall. 4 credits.

Urban archaeologists study American Indian, colonial, and 19th-century sites that now lie within the boundaries of modern cities. This course explores how urban centers evolve; what lies beneath today's cities; and how various cultures have altered the urban landscape. Students participate in a local archaeological excavation. Three 8-hour Saturday field labs are required. Students choose three labs from those that are offered.

LA 262(2620) Laboratory in Landscape Archaeology [also ARKEO 262(2620)]
Spring. 3 credits. Prerequisites: LA 261 or ARKEO 261 or permission of instructor. Various American Indian civilizations and European cultures have altered the landscape to meet the needs of their cultures. Students learn how to interpret the American Indian and Euro-American landscapes of specific archaeological sites by identifying and dating artifacts, studying soil samples, and creating site maps.

LA 266(2660) Jerusalem through the Ages [also NES 266(2660), JWST/ ARKEO/REILST 268(2680)]
Fall. 3 credits.

Explores the history, archaeology, and natural topography of Jerusalem throughout its long life, from its earliest remains in the Chalcolithic period (ca. 4000 B.C.E.) to the 19th century, including Jebusite Jerusalem, Jerusalem as the capital of the Davidic dynasty, the Roman era city of Herod and Jesus, the Crusaders and medieval Jerusalem, and Ottoman Jerusalem as the city entered the modern era. Students examine the original historical sources (e.g., Bible, Josephus, and the Madaen map) that relate to Jerusalem. Uses slides and videos to illustrate the natural features, human-built monuments, and artifacts that flesh out the textual material, providing a fuller image of the world's most prominent spiritual and secular capital.

LA 282(2820) The American Landscape
Fall. 3 credits.

Interdisciplinary study of the environmental and cultural history of the American landscape. Topics include the relation of landscape to culture, landscape use and ecological change, regional and national landscapes, and perceptions of landscape expressed in paintings, photographs, and literature.

LA 301(3010) Integrating Theory and Practice I
Fall. 5 credits. Prerequisite: LA 202 with grade of C or better. Supplies and fees: approx. $250; field trip: approx. $250. Engages participants in the art and science of design. The studio focuses on site-scaled projects that consider significant cultural and natural landscapes. Explores theories of landscape restoration, sustainable design, and landscape representation through projects that derive form from site and place.
Working with their adviser, students create a critical exploration through theory and practice of site design and planning. Participants gain an understanding of how to integrate meaningful projects with design, invention and creativity, engage rigorous design research methods, and understand how institutional and community contexts influence design problem-solving. Students are expected to contribute independently and collaboratively on teams projects in a community. One class period per week is designated for community fieldwork. Studio theme to be announced.

LA 315(3150) Site Engineering I
Spring. 3 credits. Prerequisite: permission of instructor.
Lectures and studio projects focusing on the professional skills and knowledge required to competently and creatively develop grading plans for project-scale site design.

LA 316(3160) Site Engineering II
Fall. 2 credits. Prerequisite: LA 315 or permission of instructor.
Lectures and studio projects dealing with earthwork, storm-water management, site surveys, site layout, and horizontal and vertical road alignment.

LA 318(3180) Site Construction
Spring. 5 credits. Prerequisite: permission of instructor.
Emphasizes detail design and use of landscape construction materials in project implementation. Explores construction materials, including specifications, cost estimates, and methods used by landscape architects in project implementation. Includes lectures, studio problems, and development of drawings leading to construction documentation for a comprehensive project. Participants also fabricate material prototypes in wood and metal.

LA 360(3600) Pre-Industrial Cities and Towns of North America (also ARKEO 360[3600], CRP 360[3600], HORT 460[4660], LA 666[6660])
Fall. 3 credits. Not offered 2005-2006. Various American Indian civilizations as well as diverse European cultures have all exerted their influences on the organization of town and city living. This course considers how each culture has altered the landscape in its own unique way as it created its own built environment.

LA 402(4020) Integrating Theory and Practice II
Spring. 5 credits. Supplies and fees: approx. $250; field trip: approx. $250.
Studio focusing on the expression of design solutions that grow from and affirm an explicit sense of site and place. Social, cultural, physical, and historic factors and their relationships to site design and planning are critically explored through theory and practice in this studio.

LA 403(4030) Directed Study: The Concentration
Fall, spring. 1 credit. Prerequisite: landscape architecture undergraduates in final year of study. Working with their adviser, students create a written and visual paper that documents the concentration intent.

LA 410(4100) Computer Applications in Landscape Architecture
Fall or spring. 3 credits. Limited to 15 students. Prerequisite: landscape architecture students.
Designed to develop a working knowledge of various computer software applications with emphasis on Autocad. Explores other applications relative to land-use planning and the profession of landscape architecture.

LA 412(4120) Professional Practice
Spring. 1 credit.
Prepares the student with a comprehensive understanding of the role of the professional landscape architect and the problems and opportunities one may encounter in an office or in other professional situations. Topics include practice diversity, marketing professional services, office and project management, construction management, computers in the profession, and ethics.

LA 418(4180) New York Landscapes Oral History Project
Fall/spring. 3 credits. Limited to 15 students. Letter grades only.
Long-term project documenting the changing face of New York agriculture. Given students hands-on experience in audio documentation, in creating visual portraits of rural landscapes, and communities undergoing critical change. Students talk to people about their lives and work, explore local soundscapes—what Donald J. Ihde calls "the noise and voice of the environment, of the surrounding lifeworld"—make field recordings, write and prepare pieces for the ear, and use the Pro Tools digital editing system to create compelling pieces for listening. The course encourages students to listen more deeply to the changing world around them, while it offers New Yorkers an occasion to speak meaningfully about the decisions they face.

LA 483(4830) Seminar in Landscape Studies
Spring. 3 credits. Prerequisite: senior or graduate standing in any major or field.
Topical seminar with a different subject and method each time it is offered. Subject and schedule include “Landscapes and Visual Culture," spring 2006—an inquiry into the visual construction of landscape and landscape representation in visual (painting, photography, film, graphic design) and written texts.

LA 486(4860) Placemaking by Design
Fall. 3 credits. Limited to 20 students. Priority given to juniors, seniors, and graduate students. S-U grades optional.
Seminar providing an understanding of contemporary planning and landscape architecture design strategies that reaffirm and reclaim a sense of place. Readings and discussions focus on the theory and practice of placemaking as represented in the literature and in built works. Addresses the following questions: What constitutes a place-based design approach and what distinguishes it from other more conventional design approaches? Who are the key players shaping the theory and practice of placemaking?

LA 491(4910) Creating the Urban Eden: Woody Plant Selection, Design, and Landscape Establishment (also HORT 491[4910])
Fall. 4 credits. Limited to 48 students.
Prerequisite: horticulture or landscape architecture majors or permission of instructors. Prerequisite: HORT/LA 491. Regristration required. Supplies: approx. $50; field trips: approx. $50.
Focuses on the identification, uses, and establishment of woody plants in urban and garden settings. By understanding the environmental limitations to plant growth, students are able to critically assess potential planting sites; select appropriate trees, shrubs, vines, and ground covers for a given site; and learn about the principles and practices of site amelioration and plant establishment. Design followed by written specifications and graphic details is produced to implement these practices.

LA 492(4920) Creating the Urban Eden: Woody Plant Selection, Design, and Landscape Establishment (also HORT 492[4920])
Spring. 4 credits. Limited to 48 students.
Prerequisite: horticulture or landscape architecture majors or permission of instructors. Prerequisite: HORT/LA 491. Preregistration required. Supplies: approx. $50; field trips: approx. $50.
Second half of course focusing on winter identification, uses, and establishment of woody plants in urban and garden settings. Issues of site assessment and soil remediation are emphasized in addition to soil volume calculations and plant selection techniques. Students critically assess potential planting sites and select appropriate trees, shrubs, vines, and ground covers for a given site. Students implement, in a hands-on manner, site remediation and planting techniques they have learned by creating new landscapes that serve to integrate theory, principles, and practices. Together, HORT/LA 491 and 492 constitutes an integrated course.

LA 494(4940) Special Topics in Landscape Architecture
Fall or spring. 1-3 credits; may be repeated for credit. S-U grades optional.
Topical subjects in landscape architectural design, theory, history, or technology. Group study of topics not considered in other courses.

LA 495(4950) Green Cities: The Future of Urban Ecology (also CRP 384/584[3840/5840])
Fall. 4 credits.
Examines the history and future of the ecology of cities and their role in solving the present global ecological crisis. Examines the politics, design, and economics of "green cities" in terms of transportation, renewable energy, solid waste and recycling, land use, and the built environment.

LA 497(4970) Individual Study in Landscape Architecture
Fall or spring. 1-5 credits; may be repeated for credit. Students must register using independent study form (available in 140 Roberts Hall). S-U grades optional.
Work on special topics by individuals or small groups.
LA 498/(4980) Undergraduate Teaching
Fall or spring. 1–2 credits. Prerequisites: permission of instructor. Students must register using independent study form (available in 140 Roberts Hall). Designed to give qualified undergraduates experience through actual involvement in planning and teaching courses under the supervision of department faculty members.

LA 499/(4990) Undergraduate Research
Fall or spring. 1–5 credits. Students must register using independent study form (available in 140 Roberts Hall). Permits outstanding undergraduates to carry out independent research in landscape architecture under appropriate faculty supervision. Research goals should include description, prediction, and explanation, and should generate new knowledge in the field of landscape architecture.

LA 501/(5010) Composition and Theory
Fall. 5 credits. Prerequisite: graduate standing. Drafting supplies and fees: approx. $250; field trip: approx. $250. Basic principles of natural and cultural processes that form “places” in the landscape. Projects focus on design applied to the practice of landscape architecture: particularly the relationship between measurement, process, experience, and form at multiple scales of intervention.

LA 502/(5020) Composition and Theory
Spring. 5 credits. Prerequisite: graduate standing. Drafting supplies and fees: approx. $250; field trip: approx. $250. Studio focusing on the spatial design of project-scale site development. Students develop their expertise in applying the design theory, vocabulary, and graphic expression introduced in LA 501.

LA 505/(5050) Landscape Representation I
Fall. 3 credits. Co-requisite: LA 501 or permission of instructor. Introduces students to both conventional and unconventional modes of landscape architectural design representation. Teaches drafting, orthographic drawing, axonometric projection, lettering, analysis, and concept drawing alongside more expressive modes of direct site study and representation.

LA 506/(5060) Graphic Communication II
Spring. 3 credits. Prerequisite: LA 505. Co-requisite: LA 502 or permission of instructor. Intermediate-level course focusing on modes of landscape representation from ideation to presentation. Representation modes may include freehand, process drawing, analysis and orthographic drawing; concept modeling; composite drawings; and visual books.

LA 524/(5240) History of European Landscape Architecture*
Fall. 3 credits. *Offered through College of Architecture, Art, and Planning.

LA 525/(5250) History of American Landscape Architecture*
Spring. 3 credits. *Offered through College of Architecture, Art, and Planning.

LA 545/(5450) The Parks and Fora of Imperial Rome
Spring. 3 credits. Prerequisites: advanced standing in a design field, classics, or history of art, other disciplines, or permission of instructor. Advanced seminar seeking an interdisciplinary group of students in classics, art history, archaeology, landscape architecture, horticulture, and architecture to bring their knowledge of Latin, Greek, Italian, archaeology, drawing, design, or computer modeling to a collaborative study of the ancient fora and public parks depicted on the Severan Marble plan of Rome. Opportunity for a spring break trip to Rome.

LA 569/(5690) Archaeology in Preservation Planning and Site Design (also CRP 569[5690])
Spring. 3 credits. Offered alternate years; not offered 2005–2006. In response to federal, state, and local legislation, historical archaeology now plays an important role in design, planning, and land-use decisions. Students develop the research skills needed to complete environmental review projects and historic landscape plans.

LA 580/(5800) Landscape Preservation: Theory and Practice
Fall. 3 credits. Prerequisite: junior, senior, or graduate standing. Examines the evolving practice of landscape preservation in the United States. Topics include the recent history of the discipline, methodology in documentation of historic landscapes, and important practitioners and notable projects. Format is assigned readings and discussion, invited speakers, lectures, and a project documenting a local site.

LA 582/(5820) The American Landscape
Fall. 3 credits. Interdisciplinary study of the environmental and cultural history of the American landscape. Topics include the relation of landscape to culture, landscape use and ecological change, regional and national landscapes, and perceptions of landscape expressed in paintings, photographs, and literature. Graduate students complete additional outside work and attend an additional class session.

LA 590/(5900) Theory Seminar
Spring. 3 credits. Prerequisite: senior or graduate standing. Seminar in landscape design theory.

LA 598/(5980) Graduate Teaching
Fall or spring. 1–3 credits. Prerequisite: permission of instructor. Students must register using independent study form (available in 140 Roberts Hall). Staff designed to give qualified students experience through involvement in planning and teaching courses under the supervision of faculty members. The experience may include leading discussion sections, preparing, assisting in desk critiques, and presenting lectures. There are assigned readings and discussion sessions on education theory and practice throughout the semester. (Credit hours are determined by the formula: 2 hours per week = 1 credit hour).

LA 601/(6010) Integrating Theory and Practice I
Fall. 5 credits. Prerequisite: graduate standing or permission of instructor. Supplies and fees: approx. $250.

LA 602/(6020) Integrating Theory and Practice II
Spring. 5 credits. Prerequisite: graduate standing. Drafting supplies and fees: approx. $250; field trip: approx. $250. Studio building on prior course work with an expectation that participants can creatively manipulate the program and conditions of a site, with increased emphasis on contemporary construction technology. Focuses on the expression of design solutions that grow from and affirm an explicit sense of site and place. Social, cultural, physical, and historic factors and their relationship to site design and planning are critically explored through theory and practice.

LA 603/(6030) Directed Study: The Concentration
Fall. Spring. 1 credit. Prerequisite: landscape architecture graduate students in final year of study. Working with their adviser, students create a written and visual paper that documents the concentration intent.

LA 615/(6150) Site Engineering I
Spring. 3 credits. Prerequisite: permission of instructor. Lectures and studio projects focusing on the professional skills and knowledge required to competently and creatively develop grading plans for project-scale site design.

LA 616/(6160) Site Engineering II
Fall. 2 credits. Prerequisite: LA 615 or permission of instructor. Lectures and studio projects dealing with earthwork estimating, storm water management, site surveys, site layout, and horizontal and vertical road alignment.

LA 618/(6180) Site Construction
Spring. 5 credits. Prerequisite: permission of instructor. Emphasizes detail design and use of landscape materials in project implementation. Explores materials, including specifications, cost estimates, and methods used by landscape architects in project implementation. Includes lectures, short studio problems, and the development of drawings leading to construction documentation for a comprehensive project. Participants also fabricate material prototypes in wood and metal.

LA 666/(6660) Pre-Industrial Cities and Towns of North America (also CRP 666[6660])
Fall. 3 credits. Offered alternate years. Various American Indian civilizations as well as diverse European cultures have all exerted their influences on the organization of town and city living. This course considers how each culture has altered the landscape in its own unique way as it created its own built environments.
NTRES 100(1001) Introduction to Environmental Studies
Summer. 3 credits. S-U grades optional. R. J. McNeil.
Discussion-centered course examining the interrelationships between the sciences, arts, and humanities as they relate to our environment. Students explore how we manage nature and negotiate with each other to meet our needs. Emphasis is on principles of ecology, economics, aesthetics, ethics, and law.

NTRES 101(1010) Introduction to the Field of Natural Resources
Fall. 3 credits. Prerequisite: first-year students in Department of Natural Resources. J. Lassio.
Overview of the modern field of renewable natural resources. Focuses on identifying the components of knowledge required to understand the Earth's natural resources and ecological systems, and to participate intelligently in their conservation and management. Uses case studies introduce students to the scientific, ethical, and societal basis for protection and use of natural resources and their related environments. Students become actively engaged in data collection and analysis, use quantitative models to analyze and interpret data, explore the human dimensions of natural resource issues, and come to understand the complexities of the policy process and management strategies.

NTRES 201(2010) Environmental Conservation
Spring. 3 credits. T. Fahey.
At the beginning of the 21st century, our lives are increasingly touched by questions about environmental degradation at local, regional, and global scales. Business as usual is being challenged. This course stimulates students to go beyond the often simplistic portraits of nature. Emphasizes the application of these principles to the conservation and management of natural resources. Focuses on identifying the components of knowledge required to understand the Earth's natural resources and ecological systems, and to participate intelligently in their conservation and management. Uses case studies introduce students to the ethical, societal, and ecological basis for protection and use of natural resources and their related environments. Students become actively engaged in data collection and analysis, use quantitative models to analyze and interpret data, explore the human dimensions of natural resource issues, and come to understand the complexities of the policy process and management strategies.

NTRES 210(2100) Introductory Field Biology
Fall. 4 credits. Limited to 90 students.
Prerequisite: sophomore or junior standing with advisor in natural resources or permission of instructor; BIOG 101 and 102 or equivalent. Cost of two required overnight weekend field trips: approx. $12.
T. Gavvin and C. Smith.
Introduction to methods of inventorying, identifying, and studying plants and animals. Students are required to learn taxonomy, natural history, and how to identify approximately 170 species of vertebrates and 80 species of woody plants. Stresses selected aspects of current ecological thinking. Emphasizes the interaction of students with biological events in the field and accurate recording of those events.

NTRES 220(2200) People, Values, and Natural Resources
Spring. 3 credits. J. Tantillo.
Cultural and political context for natural resources conservation and management in North America. Examines historical basis through analysis of North American environmental history, examining shifts in attitudes and conceptions of human relationships to natural resources and the environment. Reviews key laws guiding policy, conservation, and management of natural resources. Introduces concepts underlying the study of human attitudes, behaviors, institutions, and decision-making processes related to natural resource conservation and management.

NTRES 306(3060) Coastal and Oceanic Law and Policy
Summer. 2 credits. Special one-week course offered at Cornell's Shoals Marine Laboratory (SML), located on an island off Portsmouth, N.H. For more details and an application, contact SML office, G14 Stimson Hall. Staff.
Intended for students interested in careers in management of marine or coastal resources or in the natural sciences. Subjects include law and policy related to ocean dumping, marine sanctuaries, environmental impact statements, water and air pollution, fisheries management, offshore gas and oil production, and territorial jurisdiction. Lectures on the status and history of law are accompanied by discussion of relevant policy and efficacy of various legal techniques. A case study that requires extensive use of the laboratory's library and personnel is assigned. The week concludes with a mock hearing.
NTRES 313(3130) Biological Statistics I (also BTRY 301(3010))
Fall. 4 credits. Prerequisite: one semester of calculus. P. J. Sullivan.
Develops statistical methods and applies them to problems encountered in the biological and environmental sciences. Methods include data visualization, population parameter estimation, sampling, bootstrap resampling, hypothesis testing, the Normal and other probability distributions, and an introduction to modeling. Applied analysis is carried out in the Splus statistical computing environment.

[NTRES 314(3140) Conservation of Birds]
Spring or summer. 2 credits. Prerequisite: NTRES 210 or permission of instructor.
Offered alternate odd years; next offered 2007. C. R. Smith.

[NTRES 315(3141) Conservation of Birds Laboratory]
Spring or summer. 1 credit. Co-requisite: NTRES 314. Saturday mornings, TBA
Offered alternate odd years; next offered 2007. C. R. Smith.

NTRES 321(3210) Introduction to Biogeochemistry (also EAS 321(3210))
Fall. 4 credits. Prerequisites: college-level chemistry and/or geology course. J. B. Yavitt and L. A. Derry.
For description, see EAS 321.

NTRES 322(3220) Global Ecology and Management
Spring. 3 credits. Prerequisites: college-level biology and general ecology course. J. B. Yavitt.
The subjects of biogeochemistry, ecology, and biodiversity have patterns and processes that emerge only at the global scale. Recognizing the global importance of these patterns and processes is even more imperative in light of the tremendous increase in the human population size and the effects of humans on the Earth. This course is an introduction to the field of global ecology. Topics include comparative ecology and biogeography, community-level biogeography, and ramifications of global climatic change.

NTRES 323(3230) Principles of Toxicology (also TOX 323(3230))
Spring. 3 credits. Prerequisites: one year each of chemistry and biology with labs, one semester of organic chemistry lecture and/or permission of instructor. J. W. Gillett.
Introductory lecture course in human and environmental toxicology emphasizing basic principles (exposure, dose-response, effects) involved with pesticides, hazardous wastes, and natural products. Science-based assessments for risk analysis and policy are integrated with other considerations. Guest speakers and extensive case studies augment lectures and student team exercises applied to management.

NTRES 324(3240) Ecological Management of Fresh and Marine Water Resources
Spring. 3 credits. Prerequisites: introductory ecology and introductory chemistry or permission of instructor. R. Schneider.
In-depth analysis of those ecological and biological principles relevant to the management of fresh and marine water resources, with emphasis on the effects of water management on community ecology. Lectures and discussion integrate scientific literature with current management issues. Topics include linkages between hydrologic variability and communities, groundwater-surface connections, flow paths for dispersal, patchily distributed water resources, and water quality controls on organisms.

NTRES 325(3250) Forest Management and Maple Syrup Production
Spring. 3 credits. Letter grades only. Offered alternate even years. P. J. Smallidge.
Practical, field-oriented course emphasizing principles and practices of stewardship and multiple purpose management of small, nonindustrial, private forest land in the northeastern United States, including the production of maple syrup.

NTRES 326(3260) Applied Ecosystem Analysis Laboratory
Spring. 2 credits. Prerequisite: introductory biology. BIOEE 261 or permission of instructor. S. Morreale.
Field and lab course designed to provide experience with techniques for examining and measuring ecosystem structure and function, especially within the context of contemporary applied ecology. Tools and methods to study ecosystems include field sampling schemes and methods, measures of biodiversity and biomass, resource mapping, spatial referencing, and techniques to quantify soil and stream biota, decomposition, and physical and chemical factors controlling ecosystem structure and function.

NTRES 330(3300) Natural Resources Planning and Management
Fall. 3 credits. Prerequisite: junior standing. T. B. Lauber.
Focuses on terrestrial and aquatic resources. Emphasizes the comprehensive planning process and human dimensions of resource management. Students integrate biological, social, and economic dimensions of management through case studies. Grades are based on individual and group performance.

NTRES 331(3310) Environmental Governance (also S&T/S&R/SOC 331(3311))
Spring. 3 credits. S. Wolf.
Considers the question of environmental governance, defined as the assembly of social institutions that regulate natural resource use and shape environmental outcomes. Participants explore the roles of public policy, market exchange, and collective action in resource (mis)management. Introduces theoretical concepts from a variety of social science perspectives to support case studies and student-led discussions. Comparative analysis of how governance is pursued in different countries, historical periods, and ecological contexts (forestry, endangered species, water quality) highlight scope for institutional innovation. Students who wish to take the course for graduate credit should see NTRES 631.

NTRES 332(3320) Introduction to Ethics and Environment
Fall. 4 credits. J. Tamillio.
Introduction to ethics, aesthetics, and epistemology as related to the environment. Asks the question "How should we live?" and explores the implications of different answers to that question for our treatment of nature. Also examines the various approaches to ethics theory: the relations between art, literature, religion, and morality, the objective nature of value judgments, and the subjective nature of nature.

NTRES 333(3330) Environmental Issues and Indigenous People (also AIS 330(3330))
Spring. 3 credits. M. Muskett.
Explores environmental perceptions and relationships held by indigenous people. Interpretations of the relationships between Indians and nature are examined through the concepts of connective and holistic interrelationship, community, identity, and the sacredness of nature. These concepts are illustrated with specific legal cases, stories, individual perceptions, and current environmental case studies.

NTRES 406(4060) Ecology Risk Assessment (also TOX 406(4060))
Fall. 3 credits. Prerequisites: BIOEE 261 or equivalent, an advanced student in natural sciences or engineering or permission of instructor. J. W. Gillett.
Strives to develop understanding of and competence in the different types of ecological (nonindustrial) health risk assessments based on USEPA principles and methods. Focuses on cases for chemical, physical, and biological stressors in a variety of circumstances.

NTRES 410(4110) Conservation Biology: Concepts and Techniques
Fall. 4 credits. Limited to first 30 seniors, plus graduate students. Prerequisite: NTRES 210. Highly recommended: completion of, or concurrent enrollment in, NTRES 310. E. G. Cooch and T. A. Gavin.
Thorough analysis of the ecological and quantitative dimensions for decision making in modern conservation biology and management. Emphasizes analysis of variation and maintenance of biological diversity, and focuses on principles and techniques, including demographic viability analysis of populations, genetic analysis, as well as aspects of the human dimensions of conservation biology.

NTRES 411(4110) Quantitative Ecology and Management of Fisheries Resources
Spring. 4 credits. S-U grades optional. Prerequisites: NTRES 313 recommended or permission of instructor. Offered alternate even years. P. J. Sullivan.
Examines the dynamics of marine and freshwater fisheries resources with a view toward observation, analysis, and decision making within a quantitative framework. Growing pressure on fisheries' resources, habitat modification, and increased uncertainty about the nature of biological systems are at the center of many fisheries' issues. Quantitative models are useful for integrating information needed by decision makers in addressing these issues. The course develops analytical methods to assess the dynamics and status of fisheries' resources and then demonstrates how the information may be transformed into useful information for decision makers.

Spring. 3 credits. Prerequisite: NTRES 310 (or equivalent or permission of instructor), a college-level math or statistics course. Not offered 2005-2006; next offered 2007-2008. E. Cooch.]
NTRES 413(4130) Biological Statistics II (also BYTR 302/3020)
Spring. 4 credits. Prerequisite: NTRES 313 or BYTR 301. P. J. Sullivan.
Applies linear statistical methods to quantitative problems addressed in biological and environmental research. Methods include linear regression, inference, model assumption evaluation, the likelihood approach, matrix formulation, generalized linear models, single factor and multifactor analysis of variance (ANOVA), and a brief foray into nonlinear modeling. Applied analysis is carried out in the Splus statistical computing environment.

NTRES 414(4140) A Darwinian Perspective on Human Behavior and Natural Resources
Spring. 2 credits. Offered alternate even years. Prerequisite: BIONB 221 or permission of instructor. T. Gavin.
Seeks to understand why human behavior, a product of natural selection and cultural factors, seems to result in environmental degradation. Students learn how human activities affect natural resources and ecosystems. The probable underlying basis for this human behavior, the course explores possible methods for altering this behavior.

NTRES 420(4200) Forest Ecology
Fall. 3 credits. Prerequisite: introductory biology. T. J. Fahey.
Comprehensive analysis of the distribution, structure, and dynamics of forest ecosystems. Topics include paleoecology of forests; ecophysiology of forest trees; disturbance, succession and community analysis; primary productivity; and nutrient cycling.

NTRES 421(4201) Forest Ecology Laboratory
Fall. 1 credit. Co-requisite: NTRES 420.
Field trips designed to familiarize students with the nature of regional forests and to provide experience with approaches to quantifying forest composition and its relation to environmental factors. Optional weekend field trips to Adirondacks and to the White Mountains, New Hampshire. Includes group research projects in local forests.

NTRES 422(4220) Wetland Ecology and Management—Lecture
Fall. 3 credits. Prerequisite: BIOEE 261. B. L. Bedford.
Examination of the structure, function, and dynamics of wetland ecosystems with an emphasis on principles required to understand how human activities affect wetlands. Topics include geomorphology, hydrology, biogeochemistry, plant and animal adaptations to wetland environments, and vegetation dynamics of freshwater and saline wetlands. Considers conservation regulations, protection programs, and management strategies.

NTRES 423(4221) Wetland Ecology and Management—Laboratory
Fall. 1 credit. Optional. Co-requisite: NTRES 422. One weekend field trip required. B. L. Bedford.
Intended for students interested in wetland ecosystems and the development of wetland management programs. Students identify wetlands, measure wetland characteristics, and develop a set of field and laboratory exercises designed to expose students to the diversity of wetland ecosystems; the vegetation, soils, water chemistry, and hydrology of wetlands in the region; methods of sampling wetlands; vegetation, soils, and water; and methods of wetland identification and delineation.

NTRES 424(4240) Landscape Impact Analysis
Spring. 3 credits. Prerequisites: junior standing; one introductory and one advanced course in ecology or equivalents. B. L. Bedford.
Presents ecological concepts and analytical tools needed to evaluate environmental impacts to natural resources and ecosystems within an integrated context that incorporates the landscapes in which these resources occur. Explores diverse conceptual frameworks for landscape impact analysis and exposes students to modern tools for evaluating landscapes.

NTRES 426(4260) Practicum in Forest Farming as an Agroforestry System (also HORT/CSS 426/4260)
Fall. 2 credits. Lab, W. 125-4:25.
K. W. Mudge, L. E. Buck, and P. Hobbs.
Students actively take part in the development and management of a 70-year-old nut grove originally planted at Cornell in the 1930s. The site, MacDaniel’s Nut Grove is being developed as a multipurpose forest-farming teaching, research, and extension site. Hands-on activities include all or most of the following: temperate-nut harvest and variety evaluation, mushroom culture, small-fruit and fruit-tree culture, medicinal-herb culture, site evaluation and planning, and field trips to other agroforestry-related sites. Outdoor activities are integrated with selected readings via an online discussion board.

Spring. 2 credits. Prerequisites: NTRES 210, 310; junior standing or above. Recommended: statistics course. Lec/lab. Letter grades only. Offered alternate even years; not offered 2005-2006. C. R. Smith.

NTRES 430(4300) Environmental and Natural Resources Policy Processes
Spring. 4 credits. Limited to 40 students.
J. Lassoie.
Focuses on environmental policy and natural resource management decisions and actions. Uses examples from federal, state, and nongovernmental fish, wildlife, and forest management programs to illustrate the importance of socioeconomic considerations in problem solving and decision making.

NTRES 433(4330) Applied Environmental Philosophy
Spring. 3 credits. Recommended: NTRES 332. T. Cantillo.
Focuses on environmental and philosophical ethics considered as an academic field. Major themes include anthropocentrism versus non-anthropocentrism, intrinsic value, monism versus pluralism, animal rights versus environmental ethics, and various approaches to environmental ethics, including deep ecology, ecofeminism, and pragmatism.

NTRES 434(4340) International Conservation: Communities and the Management of the World’s Natural Resources
Spring. 3 credits. Letter grades only. J. Lassie.
Lectures, readings, and multimedia information, including the Internet, build a multidisciplinary understanding of the principles underpinning conservation and natural-resource management. Specific attention is given to the role of local communities in developing sustainable land-use strategies. Case studies from Africa, Latin America, China, and the United States examine particular conservation and management issues from widely different geopolitical perspectives. Stakeholder analyses are used to base discussions of each case, followed by a synthesis and discussion of key contrasts and comparisons centered on common themes identified during the course.

NTRES 444(4440) Resource Management and Environmental Law (also CRP 444/4440)
Spring. 3 credits. Prerequisite: junior, senior, or graduate standing. S-U grades optional. R. Booth.
For description, see CRP 444.

NTRES 456(4560) Stream Ecology (also BIOEE 456/4560)
Fall. 4 credits. Limited to 40 students.
Prerequisite: BIOEE 261 or permission of instructor. S-U grades optional. One S field trip. Offered alternate odd years. C. Kraft and A. Flecker.
Lecture examines patterns and processes in stream ecosystems, including geomorphology and hydrology, watershed-stream interactions, trophic dynamics, biogeochemistry, disturbance, and conservation and management. Field and laboratory exercises focus on experimental and analytical techniques used to study stream ecosystems, including techniques to measure stream ecology. T. J. Fahey.

management schemes, students explore the mechanics of this general class of policy tools and develop a critique as to why the market does not represent a comprehensive approach to sustainability.

NTRES 432(4320) Human Dimensions of Natural Resource Management
Spring. 3 credits. Prerequisite: junior or senior standing; S-U grades optional. J. Endk.
Focuses on how a social science-based understanding of human attitudes, values, and behaviors can be incorporated in natural resource management decisions and actions. Uses examples from federal, state, and nongovernmental fish, wildlife, and forest management programs to illustrate the importance of socioeconomic considerations in problem solving and decision making.

NTRES 433(4330) Applied Environmental Philosophy
Spring. 3 credits. Recommended: NTRES 332. T. Cantillo.
Focuses on environmental and philosophical ethics considered as an academic field. Major themes include anthropocentrism versus non-anthropocentrism, intrinsic value, monism versus pluralism, animal rights versus environmental ethics, and various approaches to environmental ethics, including deep ecology, ecofeminism, and pragmatism.

NTRES 434(4340) International Conservation: Communities and the Management of the World’s Natural Resources
Spring. 3 credits. Letter grades only. J. Lassie.
Lectures, readings, and multimedia information, including the Internet, build a multidisciplinary understanding of the principles underpinning conservation and natural-resource management. Specific attention is given to the role of local communities in developing sustainable land-use strategies. Case studies from Africa, Latin America, China, and the United States examine particular conservation and management issues from widely different geopolitical perspectives. Stakeholder analyses are used to base discussions of each case, followed by a synthesis and discussion of key contrasts and comparisons centered on common themes identified during the course.

NTRES 444(4440) Resource Management and Environmental Law (also CRP 444/4440)
Spring. 3 credits. Prerequisite: junior, senior, or graduate standing. S-U grades optional. R. Booth.
For description, see CRP 444.

NTRES 456(4560) Stream Ecology (also BIOEE 456/4560)
Fall. 4 credits. Limited to 40 students.
Prerequisite: BIOEE 261 or permission of instructor. S-U grades optional. One S field trip. Offered alternate odd years. C. Kraft and A. Flecker.
Lecture examines patterns and processes in stream ecosystems, including geomorphology and hydrology, watershed-stream interactions, trophic dynamics, biogeochemistry, disturbance, and conservation and management. Field and laboratory exercises focus on experimental and analytical techniques used to study stream ecosystems, including techniques to measure stream ecology. T. J. Fahey.
discharge, physical habitat, water chemistry, and stream biota. Field project with lab papers.

NTRES 480(4800) Global Seminar: Building Sustainable Environments and Secure Food Systems for a Modern World (also FD SC/IARD 480[48003])
Spring. 3 credits. Prerequisite: junior, senior, or graduate standing. J. Lassoie and D. Miller.
Modernization has led to development pressures that have increasingly disrupted natural systems leading to widespread concerns about the long-term viability of important environmental services, including those critical to food security worldwide. This multidisciplinary course uses case studies to explore interrelationships among social, economic, and environmental factors basic to sustainable development. Cases include population growth, genetically modified foods, biodiversity, sustainable tourism, global warming, and global responsibility. Cornell faculty members lead discussions in each of the major topic areas. In addition, students participate in discussions and debates with students from Sweden, Costa Rica, Honduras, South Africa, and Australia through live interactive videoconferences and electronic discussion boards.

NTRES 493(4930) Individual Study in Resource Policy, Management, and Human Dimensions
Fall, spring, or winter. Credit TBA.
Topics in environmental and natural resource policy, management, and human dimensions are arranged depending on the interests of students and availability of staff.

NTRES 494(4940) Special Topics in Natural Resources
Fall or spring. 4 credits max. S-U grades optional.
The department teaches "trial" courses under this number. Offerings vary by semester, and are advertised by the department before the semester starts. Courses offered under the number will be approved by the department curriculum committee, and the same course is not offered more than twice under this number.

NTRES 495(4950) Individual Study in Fish and Wildlife Biology and Management
Fall or spring. Credit TBA.
Topics in fish and wildlife biology and management are arranged depending on the interests of students and availability of staff.

NTRES 496(4960) Individual Study in Ecology and Management of Landscapes
Fall or spring. Credit TBA.
Prerequisite: permission of instructor. S-U grades optional. Students must register using independent study form (available in 140 Roberts Hall). B. Bedford, B. Blassey, T. Fahey, M. Krasny, J. Lassoie, R. Schneider, R. Sherman, P. Smallidge, and J. Yavitt.
Topics in ecology and management of landscapes are arranged depending on the interests of students and availability of staff.

NTRES 497(4970) Honors Research in Natural Resources
Fall or spring. 1-6 credits. Variable, may be repeated for credit. Prerequisite: enrollment in NTRES honors research program; students must register using independent study form (available in 140 Roberts Hall). NTRES Staff.
Intended for students pursuing the research honors program in natural resources. Students must complete the CALS Honors program application by the third week of the fall semester of their senior year. The research supervisor should be a faculty member or senior research associate within NTRES.

NTRES 498(4980) Teaching in Natural Resources
Fall and spring. 1-4 credits.
Prerequisite: permission of instructor. Students must register using independent study form (available in 140 Roberts Hall). S-U grades optional.
Design to give students an opportunity to obtain teaching experience by assisting in labs, field trips for designated sections, discussions, and grading. Students gain insight into the organization, preparation, and execution of courses, and plans through application and discussions with instructor.

NTRES 500(5000) Professional Projects—M.P.S.
Fall and spring. Credit TBA.
Prerequisite: M.P.S. graduate students working on professional master's projects. S-U grades only.

NTRES 603(6030) Inquiry Science Outreach in Secondary Schools (also EDUC 603[6030])
Fall or spring. 1 credit.
Prerequisite: recipients of fellowships from Cornell Science Inquiry Partnerships (CSIP) program. S-U grades. N. Trautmann, L. Tompkins, and M. Krasny.
Prepares graduate students who receive Cornell Science Inquiry Partnerships fellowships for outreach work in high school and middle school science classes. Participants explore effective strategies for inquiry-based learning and review core educational issues such as learning standards, working with students of various ability levels, and assessing student learning.

NTRES 604(6040) Seminar on Selected Topics in Resource Policy and Management
Fall. 2 credits. S-U grades only. Times TBA.
Check with department for availability.
Special topics seminar on subjects related to resource policy and management. Offering varies by semester and is subject to availability of staff.

NTRES 605(6050) Issues in Risk Analysis Seminar (also CEE 605[6050])
Fall. 1 credit.
Prerequisite: calculus course, advanced course in statistics and basic natural sciences (chemistry, biology, earth systems). S-U grades only. Lec. TBA. J. Gillett and J. Sledinger.
Discussion of current issues and ongoing research on risk analysis issues from many perspectives with an emphasis on environmental risk analysis. Speakers address problem formulation, quantitative/qualitative methods in assessment of risks, communication issues, and challenges to risk assessment methodologies. Some sessions held jointly with other seminar series.
Requires short reports and participation in two required discussion meetings for class members designed to integrate the issues raised during the semester.

NTRES 607(6070) Ecotoxicology (also TOX 607[6070])
Fall or spring. 3 credits.
Prerequisites: graduate or senior standing and two 300-level courses in chemistry, biological science, or toxicology. Offered alternate even years. J. W. Gillett.
Lectures, readings, and special guests focus on the principles of effects of toxic chemicals on natural ecosystems, their components, and processes. Major topics include fate and transport of chemicals (chemodynamics), comparative biochemical toxicology, ecosystem process analysis, simulation through mathematical and physical (microcosm) models, and relationships to regulation and environmental management.

NTRES 611(6110) Quantitative Ecology and Management of Fisheries Resources
Spring. 4 credits.
Prerequisite: NTRES 313 or permission of instructor. Offered every even year. P. J. Sullivan.
Taught in conjunction with NTRES 411 (see description above). Students taking the course for graduate credit are asked, in addition to the 400-level projects and homework, to construct and document a model of population or community dynamics that reflects and extends the concepts covered in the course.
The department teaches "trial" courses under number. 620.

Discussion of individual research, current problems, and current literature in fish and in wildlife ecology. Offered varies by semester and subject to availability. Fall and spring. 1 credit. Prerequisite: permission of instructor. Check with department for availability. Staff.

NTRES 614(6140) Fish and Wildlife Ecology Seminar

Fall and spring. 1 credit. Prerequisite: permission of instructor. Check with department for availability. Staff.

NTRES 615(6150) Case Studies and Special Topics in Agroforestry

Fall. 2 credits. S-U grades only. Prerequisites: graduate standing or permission of instructor. Offered alternate odd years. J. P. Lassoie.

Multidisciplinary examination of the principles and practices of agroforestry in developed and developing countries through discussions of specific case studies and key research and development literature. Students, working individually or in teams, prepare written reviews and analyses of original cases or contemporary topics in agroforestry for presentation to the class. Fall. 1 credit. Prerequisite: upper-level undergraduate or graduate standing. J. B. Yavitt.

Reviews current literature, student research, and selected topics of interest. Topics include biogeography, ecology, and human use of forests located in boreal, temperate, and/or tropical environments. Fall and spring. 1 credit. S-U grades only. Staff.

NTRES 631(6310) Environmental Governance

Spring. 4 credits. S. Wolf.

For description, see NTRES 331. Students taking the course for graduate credit are required to read supplemental materials, undertake more complex research assignments, and participate in seminar discussion section.

NTRES 670(6700) Spatial Statistics

Develops and applies spatial statistical concepts and techniques to ecological and natural resource issues. Topics include visualizing spatial data and analysis and modeling of geographical, lattice, and spatial point processes. Students should consider taking this course simultaneously with CSS 620.

NTRES 694(6940) Special Topics in Natural Resources

Fall or spring. 4 credits max. S-U grades only. The department teaches "trial" courses under this number. Offerings vary by semester, and are advertised by the department before the semester starts. Courses offered under the number will be approved by the department curriculum committee, and the same course is not offered more than twice under this number.

NTRES 698(6980) Agroecological Perspectives for Sustainable Development (also IARD/CSS 696(6960))

Fall and spring. 1 credit. S-U grades only. F 12,20-1-10. L. Buck, L. Fisher, and S. DeClerq.

For description, see IARD 696.

NTRES 698(6980) Current Topics: Environmental Toxicology (also TOX 698(6980))

Fall, spring. 1-3 credits. Prerequisites: senior or graduate standing in scientific discipline and permission of instructor. Student-faculty colloquium on subjects of current interest, usually focusing on multidisciplinary aspects of topical problems (e.g., Superfund, oil spills).

NTRES 699(6990) Graduate Individual Study in Natural Resources

Fall or spring. Credit TBA. Prerequisite: permission of instructor. 3 credits. S-U grades only. Staff.

Study of topics in natural resources more advanced than, or different from, other courses. Subject matter depends on interests of students and availability of staff. Fall and spring. Credit TBA. S-U grades only. Staff.

NTRES 900(9000) Master's Thesis Research

Fall and spring. Credit TBA. Prerequisite: graduate students working on master's thesis research. S-U grades only. Fall and spring. Credit TBA. S-U grades only.

NTRES 900(9000) Graduate-Level Thesis Research

Fall and spring. Credit TBA. Prerequisite: Ph.D. students. "A" exam has been passed. S-U grades only.

NTRES 901(9010) Doctoral-Level Thesis Research

Fall and spring. Credit TBA. Prerequisite: Ph.D. candidates after "A" exam has been passed. S-U grades only.

Related Courses in Other Departments

Courses in many other departments are relevant to students majoring in natural resources. The following list includes some of the most closely related courses but is not exhaustive.

Environment and Society (D SOC 208, 324, 340, 410, 438, 495)

Environmental Law, Ethics, and Philosophy (S&TS 206; CRP 380, 443, 444, 451, 453, PHIL 241, 246, 247, 381)

Human Systems and Communication (COMM 260, 281, 352, 421)

Physical Sciences (BEE 151, 301, 371, 427, 435, 471, 473, 475, 478; CSS 250, 305, 372, 390, 465; EAS 102, 104, 321; DEE 422)

Public Policy and Politics (GOVT 427, 428; B&SOC 461)

Resource Economics (AEM 250, 450, 451)

Spatial Data Interpretation (CSS 411, 420, 620, 660)

PLANT BREEDING

Note: Class meeting times are accurate at the time of publication. If changes occur, the department will provide new information as soon as possible.

PL BR 201(2010) Plants, Genes, and Global Food Production

Fall. 2 credits. May be used for partial fulfillment of CALS distribution requirement GROUP B—Biological Sciences. Prerequisite: one year of introductory biology or permission of instructor. Lect, T R 11:15-12:05; lab, R or F 1:25-4:25. M. S. Mutschler.

Introduces plant breeding, offers a sense of the historical and social importance of the field, tracing its evolution from the pre-scientific days of crop domestication to modern applications of biotechnology. Offers specific examples of how breeding objectives are realized and raises questions about the environmental, social, and economic consequences of intensive food production systems.

PL BR 225(2250) Plant Genetics

Spring. 3 or 4 credits; 2 credits if taken after BIOGD 281. Prerequisites: one year of introductory biology or equivalent; permission of instructor. Offered alternate odd years. J. P. Lassoie.

Introduces plant breeding, offers a sense of the historical and social importance of the field, tracing its evolution from the pre-scientific days of crop domestication to modern applications of biotechnology. Offers specific examples of how breeding objectives are realized and raises questions about the environmental, social, and economic consequences of intensive food production systems.

PL BR 299(2990) Introduction to Research Methods in Plant Breeding and Genetics

Fall, spring, or summer. 1-3 credits, variable. S-U grades only. Staff.

Intended for students who are new to undergraduate research. Students may be reading scientific literature, learning research techniques, or assisting with ongoing research. Students must identify a faculty supervisor who determines the work goals and the form of the final report.

PL BR 401(4010) Plant Cell and Tissue Culture

Fall. 3 credits. Prerequisite: plant biology or genetics course or permission of instructor. Recommended: concurrent enrollment in PL BR 402. Lect, T R 10:10. E. D. Earle.

Provides broad coverage of techniques of plant tissue, cell, protoplast, embryo, and anther culture and the applications of those techniques to biological and agricultural studies. Examples include horticultural, agronomic, and endangered species. Genetic
Aims to provide fundamental knowledge and understanding and describing diversity of crop plants. Covers basic techniques of crop breeders' training, and intellectually rigorous courses in genetic resources and plant breeding. Plant materials involve a wide range of crop species. Courses cover national and international agriculture and international agriculture. The course is particularly relevant to students interested in science management, technology transfer, international agriculture, and business.

Field trips to plant breeding programs involve discussion on experience of using methods used, overall goals, selection and screening techniques, and variety and germplasm release. Additional labs include selection techniques for various traits, intellectual property issues, genetically modified crops, and international agriculture. For a term project, each student designs a comprehensive breeding program on a chosen crop.

PL BR 404[4040] Crop Evolution, Domestication and Diversity (also BIOPL/IARD 404[4040])
- Fall. 2 credits. Prerequisite: BIOGD 281 or PL BR 225 or permission of instructor. S-U or letter grades.
- S. Kresovich.

Evolution, domestication, and breeding of crop plants have molded the current diversity we conserve and use. Based on advances in systematics and molecular genetics, this course presents an integrated approach to understanding and describing diversity of agricultural and wild relatives. Also addresses underlying ethical, legal, and social issues affecting conservation and use.

PL BR 496[4960] Internship in Plant Breeding
- Fall or spring. Variable credit; may be repeated to a maximum of 6. Pre-requisite: permission of instructor. S-U grades optional. T. Fulton.

Internship experience under the supervision of a professional in the agriculture industry. Learning contract is written between the faculty supervisor and student, stating the conditions of the work assignment, supervision, and reporting.

PL BR 498[4980] Undergraduate Teaching
- Fall or spring. Variable credit; may be repeated to a maximum of 6. S-U grades optional. Prerequisites: permission of instructor and previous enrollment in course to be taught or equivalent. Students must register using independent study form (available in 140 Roberts Hall). Staff.

Teaching experience may include leading a discussion section, preparing and teaching laboratories, and tutoring.

PL BR 604[6040] Methods of Plant Breeding Laboratory
- Fall. 2 credits. Pre- or co-requisite: PL BR 403 or equivalent. S-U grades optional. T R 1:25-4:15. M. E. Sorrells.
PL BR 650(6500) Special Problems in Research and Teaching
Fall or spring. 1 or more credits.
Prerequisite: permission of instructor supervising research or teaching.
Staff.

PL BR 652 Plant Biotechnology (also PL BIOL 652 6)
Spring. 1 credit. Prerequisite: BIOL 653.1 or permission of instructor. S-U grades optional. Lec, M W F 1:25-2:15 (12 lecs). E. D. Earle and M. Zaitlin.
Deals with current and proposed use of transgenic plants for agricultural and industrial purposes. Topics include procedures for gene introduction and control of gene expression, as well as strategies for obtaining transgenic plants that are resistant to insects, diseases, and herbicides, or have improved nutritional or processing characteristics. Other topics are use of transgenic plants for production of valuable products and for environmental remediation. Biosafety, social, legal, and international issues relating to plant biotechnology are discussed.

PL BR 653.1 Concepts and Techniques in Plant Molecular Biology (also BIOL 653.1, PL PA 663.01)
Fall, eight weeks. 2 credits. Prerequisites: see BIOL 653. S-U grades optional. Two 1-credit modules. The first is the data collection module. Lec, M W F 10:10 (24 lecs), Aug. 26-Oct. 21. S. McCouch, J. Giovannioni, and J. Rose. Introductory module providing a broad overview of molecular biology concepts relevant to the plant sciences. Serves as a prerequisite to other modules in the BIOL 653 (fall) and BIOL 652 (spring) series. The course is divided into three sections: (1) gene discovery, genetic, molecular, and genomics approaches to the isolation of plant genes; (2) gene characterization: DNA sequence analysis, assessment of gene expression, functional genomics approaches, and production of transgenic plants; (3) analysis and characterization of proteins and metabolites: metabolomic techniques. Course material is coordinated with BIOL 641 (lab). Emphasis is on understanding concepts, techniques, and strategies that are appropriate for different experiments and objectives.

PL BR 653.3 Plant Genome Organization (also BIOL 653.3)
Fall. 1 credit. Prerequisite: BIOL 653.1. M W F 10:10-11:00 (12 lecs), September 23-October 19. S-U or letter grades. Offered alternate years. S. D. Tanksley.
Structure and variation of plant nuclear genomes, including changes in genome size, centromere/elomere structure, DNA packaging, transposable elements, genetic and physical mapping, positional gene cloning, genomic sequencing, and comparative genomics.

PL BR 652.6 Molecular Breeding (also BIOL 652.6)
Fall. 1 credit. S-U or letter grades. Lec, M W F 10:10-11:10 (12 lecs). Offered alternate years. S. Tanksley.
Application of DNA markers to the identification, manipulation, and isolation of genes important to plant and animal productivity using molecular genetic techniques. Students learn how to design and execute experiments to identify quantitative trait loci (QTLs), as well as how to apply molecular markers to plant and animal breeding programs.

PL BR 694(6940) Special Topics in Plant Breeding
Fall or spring. 4 credits max. S-U grades optional.
The department teaches "trial" courses under this number. Offerings vary by semester, and are advertised by the department before the semester starts. Courses offered under the number will be approved by the department curriculum committee, and the same course is not offered more than twice under this number.

PL BR 716(7160) Perspectives in Plant Breeding Strategies
Emphasizes critical discussion and evaluation of selected benchmark papers and current literature. Reviews and discusses conventional and molecular selection techniques and breeding objectives, methods, and strategies for both self- and cross-pollinated crops. Requires extensive outside reading. Grades are based on four papers demonstrating creative thinking and analysis of plant breeding concepts.

PL BR 717(7170) Quantitative Genetics in Plant Breeding
Spring. 3 credits. Prerequisites: PL BR 403 and BTRY 601 or equivalent. S-U grades optional. W F 2:55-4:10. Offered even years. D. R. Viands.
Discussion of quantitative genetics and quantitative trait loci (QTLs) for more efficient plant breeding. Specific topics include population genetics, linkage, components of variance (estimated from various mating designs); theory and computer analysis for QTL population structure, multiple locus regression, and interval analysis; heritability; theoretical gain from selection; and genotypic and phenotypic correlation coefficients.
During one period, plants in the greenhouse are evaluated to provide data for computing quantitative genetic parameters.

PL BR 726(7260) Problems and Perspectives in Computational Molecular Biology (also COM S/BTRY 726(7260))
Fall and spring. 4 credits max. S-U grades optional.
Weekly seminar series discussing timely topics of computational molecular biology. The course addresses methodological approaches to sequence annotation, protein structure and function relationships, and evolutionary relationships across species. Statistical and deterministic computational approaches are covered and specific and detailed biological examples are discussed. Topics of interest are discussed in relation to papers prepared by teams of students and/or faculty members. Students/faculty members from biology backgrounds are paired with students from math, computer science, and statistics for paper preparation. Students summarize the salient questions addressed by the paper, the research methods used, and the results obtained. At the end of the presentation, questions are listed on an overhead slide to initiate discussion in the group.

PL BR 800(8900) Master's-Level Thesis Research
Fall or spring. Variable credit. Prerequisite: Ph.D. students only before "A" exam has been passed. Permission of instructor. S-U grades optional. Graduate faculty.
For students working on a master's thesis.

PL BR 900(9900) Graduate-Level Dissertation Research
Fall or spring. Variable credit. Prerequisite: permission of instructor. S-U grades optional. Graduate faculty.
For students admitted to candidacy after "A" exam has been passed.

PLANT PATHOLOGY
Note: Class meeting times are accurate at the time of publication. If changes occur, the department will provide new information as soon as possible.

PL PA 201(2010) Magical Mushrooms, Mischievous Molds
Spring. 2 credits. S-U grades optional. Lec, T R 11:15. G. W. Hudler.
Introduction to the fungi and their roles in nature and in shaping past and present civilizations. Emphasizes the historical and practical significance of fungi as decomposers of organic matter, as pathogens of plants and animals, as food, and as sources of mind-altering chemicals.

PL PA 301(3100) Plant Diseases and Disease Management
Fall. 4 credits. Prerequisite: one year of biology. Lec, M W T R 11:15; lab, T or W 1:25. M. G. Milgroom.
Introduction to plant diseases, their diagnosis, and their management. Topics include fungi, bacteria, viruses, nematodes, and other plant pathogens; disease cycles, plant disease epidemiology, disease forecasting, and the principles and practices of plant disease management. Intended for students who want a practical knowledge of plant diseases and their control.

PL PA 309(3090) Introductory Mycology
Survey of the astounding kingdom of fungi, including mushrooms, molds, yeasts, athlete's foot, fairy rings, and the blue stuff in blue cheese. Covers fungal biodiversity and systematics, how fungi work, and their roles in the environment and in human affairs. Students work with preserved and living fungi and learn basic identification skills. Grades are based on two prelims, a final exam, and a culture collection project.
PL PA 319(3190) Field Mycology
Fall. weeks 1-8. 1 credit. Letter grades only. Lab, W 1:25-4:25 and W 7:30-9:25
P.M. K. T. Hodge.
Students learn to identify mushrooms and other organisms using a series of eight afternoon field trips followed by evening lab sessions. Fungi are collected during afternoon trips to sites around Ithaca. In the evenings, students use technical keys and microscopes to identify the fungi and learn about their ecology. Grades are based on a collection project and a final laboratory examination.

PL PA 394(3940) Circadian Rhythms (also ENТОМ 394(3940), BIOG/ BIОN 394(3940))
Fall. 2 credits. Prerequisite: 200-level biology. S-U grades optional. Lect, T 10:10-11:50. K. Lee (even years) or Lect, 7:50-9:25 P.M. J. Ewer (odd years).
Explores a fundamental feature of living organisms from all kingdoms: how the cellular 24-hour biological clock operates and its influences on activities. Covers fundamental properties of biological rhythms and cellular and molecular structure of circadian oscillators in many organisms including cyanobacteria, fungi, insects, plants, reptiles, birds, and mammals (including humans).

PL PA 409(4090) Principles of Virology (also VETМI/BIOM 409(4090))
Fall. 3 credits. Prerequisites: BIOM 290, 291 or permission of instructor. Recommended: BIOM 330-332, 432. Letter grades only. Lect, T R 1:25-2:40. G. R. Whitaker and S. G. Lazarowitz.
For description, see VETМI 409.

PL PA 411(4110) Plant Disease Diagnosis
Fall. 3 credits. Limited to 18 students. Prerequisites: PL PA 301 or equivalent and permission of instructor. Lect, T R 10:10. Lab, T R 1:25-4:25. Next offered 2007 Staff.
Teaches a method of diagnosing plant diseases caused by infectious and noninfectious agents with emphasis on application of contemporary laboratory techniques and effective use of the literature. After seven weeks of formal lecture and laboratory sessions, students spend the rest of the semester working on their own to determine the causes of plant diseases on samples that have either been received by the Plant Disease Diagnostic Lab or that have been prepared by instructors.

PL PA 419(4190) Agricultural Application of Plant Disease Concepts
Fall. 2 credits. Seven sessions. Prerequisite: PL PA 301 and permission of instructor. S-U or letter grades. Lect, M 8:30-10:30; Lab, M 10:30-12:50. H. Aldwinkle.
Addresses real-world problems in plant pathology through the application of research. Students tour production fields of a diversity of major fruit and vegetable crops that have been affected by diseases. Strategies for managing diseases based on research findings as well as the interface between Research and Extension are emphasized. This course is taught at Geneva. Free transportation available.

PL PA 443(4430) Pathology and Entomology of Trees and Shrubs (also ENТОМ 443(4430))
Fall. 4 credits. Limited to 30 students. Prerequisite: PL PA 301 or equivalent. ENТОМ 212 or equivalent. Lect, M W F 11:15; Lab, F 1:25-4:25. Offered even years; not offered 2005-2006; next offered 2006-2007. G. W. Hudler and P. A. Weston.
For students preparing for careers in horticulture, urban forestry, natural resources, and pest management. Deals with identification, impact, assessment, biology, and management of insects and diseases that damage trees and shrubs. Emphasizes pests of northeastern flora but examples from other parts of the country and the world are also used. Considers forest, shade, and ornamental plants.

PL PA 470(4700) Professional Skills in Plant Science
Provides students who are aspiring to careers as research plant scientists with an overview of the art and science of the profession. Topics include (1) what it means to be a scientist and plant pathologist; (2) preparation required of graduate students in plant pathology programs; (3) ethical considerations important to plant pathologists; (4) how to seek funding to support research activities; (5) managing the scientific literature; (6) funneling curiosity into scientific inquiry; and (7) how to read a scientific paper. Students in related disciplines (e.g., horticulture, plant breeding, plant biology) also benefit from concepts presented in this course.

PL PA 494(4940) Special Topics in Plant Pathology
Fall or spring. 4 credits maximum. S-U grades optional. Staff.
The department teaches "trial" courses under this number. Offerings vary by semester, and are advertised by the department before the semester starts. Courses offered under the number will be approved by the department curriculum committee, and the same course is not offered more than twice under this number.

PL PA 497(4970) Independent Study
Fall or spring. 1-5 credits. S-U grades optional. Students must register using independent study form (available in 140 Roberts Hall). An opportunity for independent study of a special topic in mycology or plant pathology under the direction of a faculty member.

PL PA 498(4980) Teaching Experience
Fall or spring. 1-5 credits. S-U grades optional. Students must register using independent study form (available in 140 Roberts Hall). Undergraduate teaching assistance in a mycology or plant pathology course by mutual agreement with the instructor.

PL PA 499(4990) Undergraduate Research
Fall or spring. 3-5 credits. Students must register using an Independent Study form (available in 140 Roberts Hall). S-U grades optional. Opportunity for research experience under the direction of a faculty member.

PL PA 601(6010) Concepts of Plant Pathology
Spring. 3 credits. Prerequisites: PL PA 301 or equivalent. S-U grades optional. Lect, T R 8:40-10:55; Lab, R 2:00-4:25. A. R. Collmer.
Concepts in plant-pathogen relationships unify molecular and population biology approaches, with emphases on molecular/cellular investigations of model pathosystems and population biology studies of integrating host-pathogen evolution, genetics, and ecology. The discussion section is used for examining current research literature and other exercises complementary to lecture topics; emphasis is on critical thinking in science. Students prepare and review mock grant proposals.

PL PA 602(6020) Biology of Plant Pathogens
Spring. 3 credits. Prerequisite: PL PA 301. Recommended: PL PA 601 as prerequisite. Lect, T R 10:10-12:10; Lab, T 12:20-2:25. Staff. Biology and ecology of four major groups of plant pathogens: fungi, bacteria, viruses, and oomycetes. Model plant pathogens are used to illustrate concepts of pathogen diversity, host evolution and reproduction, life cycles, movement, diagnosis, and control. Lecture and laboratory topics are coordinated with PL PA 601 to provide students with a comprehensive treatment of pathogen-host interactions at all levels from molecular to ecological. Laboratory periods are used for hands-on demonstration of pathogen diagnosis and manipulation or to discuss current literature relevant to lecture topics.

PL PA 606(6060) Molecular Plant Virology (also BIOM 650(6500))
Spring, 7 weeks, first half of semester. 1 credit. Prerequisites: BIOM 409, cell biology course, or permission of instructor. S-U grades optional. Lect, M W 11:15. Offered odd years; not offered 2005-2006; next offered 2006-2007. S. G. Lazarowitz.
Introduces students to the molecular biology of plant virus replication and interactions with the host to produce disease. Topics include virus replication strategies, cell-to-cell and systemic movement, host defense responses and virus counterstrategies, and engineered resistance.

PL PA 608(6080) Genomics of Bacterium-Host Interactions (also BIOM 608(6080))
Fall, second half of semester. 1 credit. Prerequisites: BIOM 290 or equivalent or permission of instructor. S-U grades optional. Lect, M W 9:05. Offered even years; not offered 2005-2006; next offered 2006-2007. A. Collmer and S. Winans.
Introduction to genomic approaches, tools, and discoveries involving the study of bacterial interactions with plant and animal hosts. Topics include the TIGRE Comprehensive Microbial Resource and Artemis tools, the pathogens Yersinia pestis, V. enterococlicta, Pseudomonas syringae, Ralstonia solanacearum, and Agrobacterium tumefaciens, and the symbiont Sinorhizobium meliloti.

PL PA 620(6200) Ecology of Plant Pathogens
Spring, seven weeks, first half of semester. 1 credit. S-U grades optional. Prerequisite: PL PA 301 or permission of instructor. Lect, M 9:05-9:55. Offered every even. E. B. Nelson.
Covers the basic ecological concepts, principles, methods, and literature important to the understanding of the interactions of plant pathogens with their physical, biochemical, and microbial environments. Emphasizes ecological processes that regulate the pre-infection behavior of plant pathogens in both aboveground and belowground habitats. Topics include the nature and behavior of pathogen inoculum, population and community biology, pathogen interactions with plant-associated microbial populations and communities, and rhizosphere and phyllosphere dynamics.

[PL PA 621(6210) Chemical and Biological Disease Control]
Spring, seven weeks, second half of semester. 1 credit. S-U grades optional. Prerequisite: PL PA 301 or permission of instructor. Lec, M W 9:05-9:55. Offered even years. E. B. Nelson and W. Koeller. Discussion of the principles and methods used for the control of plant diseases. Emphasizes chemical and biological strategies for disease control. Topics include historical aspects of disease management in plant pathology; the discovery, use, and mode of action of major fungicide groups; pathogen resistance to fungicides; microbial strategies for biological control, regulation, and commercialization of microorganisms; transgenic microorganisms; and strategies for integrating biological and chemical control strategies.

[PL PA 624(6240) Quantitative Trait Loci Analysis (also BIOGD/PL BR 624(6240)] Fall. 1 credit. Limited to 20 students. Prerequisite: Introductory statistics and genetics or permission of instructor. S-U grades optional. Lec, T 10:10-11 (4 computer labs until 12:05). K. Lee. The combination of genomic sequences, new molecular marker technologies and sophisticated mapping algorithms has made it possible to use natural variation in combination with quantitative genetic techniques to dissect complex traits down to single loci. In this modular QTL analysis course, students learn basic principles of statistical inference and quantitative genetics for QTL analysis. Students also learn how to use the statistical and QTL analysis programs so that they can perform QTL analysis independently.

[PL PA 638(6380) Filamentous Fungal Genomics and Development (also BIOGD 638(6380))]
Spring, last four weeks of semester. 1 credit. Prerequisite: BIOGD 281 or equivalent. S-U grades optional. Lec, M W F 10:10. Offered odd years; not offered 2005-2006; next offered 2006-2007. B. G. Turgeon. Molecular genetic and genomic approaches to the study of fungal biology. Applications of the contemporary methodology to genetic dissection of developmental processes, such as pathogenesis and reproduction, are described and experimental data are evaluated. Examples are chosen from investigations of model plant pathogenic fungi such as Cochliobolus heterostrophus, Fusarium graminearum, Magnaporthe grisea, and Ustilago maydis and from well known genetic models such as Aspergillus nidulans and Neurospora crassa.

[PL PA 642(6420) Pathogen Population Biology]
Fall. TBA. M. G. Milgroom.
[PL PA 644(6440) Current Topics in Oomycete Biology]
[PL PA 645(6450) Plant Virology]
[PL PA 647(6470) Phytopathology Research Updates]
Fall and spring. Alternate M 12:20. S. V. Beer. Emphasizes current research in phytopathology undertaken in laboratories at Cornell
[PL PA 649(6490) Fungal Biology]
Spring. 1 credit. Recommended: Some background in mycology or plant pathology. Weekly, TBA. K. T. Hodge and B. G. Turgeon. Weekly meeting to discuss current scientific articles on the biology of fungi. Primarily directed at graduate students, but undergraduates, postdocs, staff, and guests who have an interest in fungi are welcome.
[PL PA 650(6500) Diseases of Vegetable Crops]
[PL PA 652(6520) Field Crop Pathology]
Spring. 1 credit. TBA. W. G. C. Bergstrom.
[PL PA 660(6600) Special Topics in Plant Disease Management]
Fall and spring. 1 credit. S-U grades only. Lec, F 12:20-11:00. C. D. Smiley. Weekly discussions of current topics in plant disease management. These include not only management practices, but also factors that influence management strategies. Students are required to read current literature and present oral reports on a topic. Offered only at the Geneva campus. Students provide their own transportation.
[PL PA 661(6610) Diagnostic Lab Experience]
Summer and fall. 1 or 2 credits. Priority given to graduate students in plant pathology and plant protection. Recommended: course work or experience in diagnostic techniques. S-U grades only. Requires 3 hours per week per credit hour. T. A. Zitter. For graduate students and advanced undergraduates with a special interest in diagnosing plant diseases. Students work in the Diagnostic Laboratory (plant pathology department) under supervision of the diagnostician.

[PL PA 662.1 Molecular Plant-Pathogen Interactions I and II (also BIOPL 652.1)]
Spring, Jan. 23-Feb. 17 (12 lecs). 1 credit. Prerequisites: BIOGD 281, BIOBM 330 or 331, and BIOPL 653.1. Lec, M W F 10:10. A. A. Collmer, S. G. Lazarowitz, G. Martin, and B. Turgeon. Examines the molecular and cellular factors that control plant-pathogen interactions from the perspectives of plant pathologists and plant biologists and the interactions of plant defenses and pathogen counterstrategies that result in resistance or susceptibility to disease production, with topics including the genetic nature of dominant and recessive resistance, induction of pathogen defense genes, apoptotic responses that limit infection, and RNA interference; and (2) the genetic and molecular mechanisms of microbial pathogenesis, with an emphasis on fungal and bacterial virulence proteins, toxins, and their deployment systems.

[PL PA 662.2 Plant Biotechnology (BIOL 652.2 and PL BR 652)]
Spring. 1 credit. Lec, M W F 1-2:50 (12 lecs). Mar. 27-Apr. 21. M. Zaitlin and E. D. Earle. Deals with production and uses of transgenic plants for agricultural and industrial purposes. Topics include procedures for gene introduction and control of gene expression, as well as strategies for obtaining transgenic plants that are resistant to insects, diseases, and herbicides; produce useful products; or have improved nutritional and food processing characteristics. Discusses regulatory and social issues relating to plant biotechnology.

[PL PA 663 (6630) Molecular Plant-Microbe Interactions (also PL BR 653.1)]
Fall. Aug. 26-Oct. 22, 12 lecs. 2 credits. Lec, M W F 10:10. J. J. Giovannoni, S. R. McCouch, and J. Rose. Introductory module that provides a broad overview of molecular biology concepts relevant to the plant sciences, and serves as a prerequisite to other modules in the BIOPL 653 (fall) and BIOPL 652 (spring) series. The course is divided into two sections: (1) gene discovery, which covers genetic, molecular, and genomics approaches to the isolation of plant genes; and (2) gene characterization, which covers DNA sequencing, DNA and RNA blotting, use of gene databases, and various approaches to producing transgenic plants. Emphasis is on understanding the appropriate approach that is needed for different experiments.

[PL PA 664 Molecular Plant-Microbe Interactions (also BIOPL/BIOMI 652.2)]
Spring, first four weeks: Jan. 23-Feb. 17 (12 lecs). 1 credit. Prerequisites: BIOGD 281, BIOBM 330 or 331, and BIOPL 653 (sec 1) or equivalents. S-U grades optional. Lec, M W F 12:20. Offered even years. S. C. Winans.
For description, see BIOPL 652, sec 2]
The department teaches "trial" courses under semester starts. Courses offered under the are advertised by the department before the number. is not offered more than twice under this number will be approved by the department viruses) and plants at the molecular level. Guided research experiences in laboratories include, but is not limited to, preparing, plant pathology course by mutual agreement. For students working on a master's degree. For Ph.D. students who have not passed "A" exam. For Ph.D. students who have not passed "A" exam. For students working on a master's degree. For students working on a master's degree. For students working on a master's degree.
DiTommaso, Antonio, Ph.D., McGill U. (Canada). Asst. Prof., Crop and Soil Sciences

Drinkwater, Laurie, Ph.D., U. of California, Davis. Assoc. Prof., Horticulture

Durst, Richard A., Ph.D., Massachusetts Inst. of Technology. Prof., Food Science and Technology (Connecticut)

Duxbury, John M., Ph.D., U. of Birmingham (England). Prof., Crop and Soil Sciences

Earle, Elizabeth D., Ph.D., Harvard U. Prof., Plant Breeding

Eberts, Paul R., Ph.D., U. of Michigan. Prof., Development Sociology

Eloundou-Enyegue, Parfait M., Ph.D., Brandeis U. Assoc. Prof., Plant Breeding

Egger, John, Ph.D., Brandeis U. Assoc. Prof., Plant Breeding

Eger, Steven C., Ph.D., U. of Wisconsin. U. Assoc. Prof., Crop and Soil Sciences

Egan, Susheng, Ph.D., U. of Wisconsin. Asst. Prof., Plant Pathology

Ehlers, Donald E., Ph.D., Cornell U. Assoc. Prof., Horticulture

Ehlers, Donald E., Ph.D., Cornell U. Assoc. Prof., Horticulture

Elnicki, Cary, Ph.D., Oregon State U. Prof., Development Sociology

England-Loeb, Gregory M., Ph.D., U. of California, Davis. Assoc. Prof., Entomology (Geneva)

Everett, Robert W., Ph.D., Michigan State U. Prof., Animal Science

Everett, John, Ph.D., Brandeis U. Assoc. Prof., Entomology

Fahy, Timothy J., Ph.D., U. of Wyoming. Prof., Natural Resources

Feldman, Shelley, Ph.D., U. of Connecticut. Prof., Development Sociology

Fernandes, Erick C. M., Ph.D., North Carolina State U. Assoc. Prof., Crop and Soil Sciences

Fick, Gary W., Ph.D., U. of California, Davis. Prof., Crop and Soil Sciences

Forsline, Philip L., M.S., U. of Minnesota. Courtesy Asst. Prof., Horticultural Sciences (Geneva)

Fox, Danny G., Ph.D., Ohio State U. Prof., Animal Science

Francis, Joe D., Ph.D., U. of Missouri. Assoc. Prof., Development Sociology

Fry, William E., Ph.D., Cornell U. Prof., Plant Pathology

Fuchs, Mark, Ph.D., U. Louis Pasteur (France). Asst. Prof., Plant Pathology (Geneva)

Galton, David M., Ph.D., Ohio State U. Prof., Animal Science

Gan, Susheng, Ph.D., U. of Wisconsin. Asst. Prof., Horticulture

Gavin, Thomas A., Ph.D., Oregon State U. Prof., Development Sociology

Gay, Geraldine K., Ph.D., Cornell U. Prof., Communication

Gebremedhin, Kifle G., Ph.D., U. of Wisconsin. Prof., Biological and Environmental Engineering

Geiser, Charles C., Ph.D., U. of Wisconsin. Prof., Development Sociology

Gellert, Paul K., Ph.D., U. of Wisconsin. Asst. Prof., Development Sociology

Gillet, Cole, Ph.D., U. of Kansas. Assoc. Prof., Entomology

Gillet, James W., Ph.D., U. of California, Berkeley. Prof., Natural Resources

Gloy, Brent A., Ph.D., Purdue U. Asst. Prof., Applied Economics and Management

Gonzales, Angela, M.A., Harvard U. Asst. Prof., Development Sociology

Gottfried, Herbert W., Ph.D., Ohio U. Prof., Landscape Architecture

Gravani, Robert B., Ph.D., Cornell U. Prof., Food Science

Griffiths, Edward E., Ph.D., U. of Florida. Assoc. Prof., Horticultural Sciences (Geneva)

Gural, Douglas T., Ph.D., U. of Wisconsin. Prof., Development Sociology

Hahn, Russell R., Ph.D., Texas A&M U. Assoc. Prof., Crop and Soil Sciences

Hajek, Ann E., Ph.D., U. of California, Berkeley. Assoc. Prof., Entomology

Halsey, Donald E., Ph.D., Cornell U. Assoc. Prof., Horticulture

Hancock, Jeffrey T., Ph.D., Dalhousie U. (Canada) Asst. Prof., Communication

Hang, Yong D., Ph.D., McGill U. (Canada). Prof., Food Science and Technology (Geneva)

Harman, Gary E., Ph.D., Oregon State U. Prof., Horticultural Sciences (Geneva)

Harrington, Laura, Ph.D., U. of Massachusetts. Asst. Prof., Entomology

Henrik-Cling, Thomas, Ph.D., U. of Adelaide (Australia). Assoc. Prof., Food Science and Technology (Geneva)

Hesp, Stephen, Ph.D., U. of Wisconsin. Asst. Prof., Horticulture

Heschl, Thomas A., Ph.D., U. of Wisconsin. Prof., Development Sociology

Hoch, Harry P., Ph.D., Wisconsin Prof., Plant Pathology (Geneva)

Hodge, Kathie, Ph.D., Cornell U. Asst. Prof., Plant Pathology

Hoffmann, Michael P., Ph.D., U. of California, Davis. Prof., Entomology

Horrigan, Hugh, M.L.A., Cornell U. Assoc. Prof., Landscape Architecture

Hotchkiss, Joseph H., Ph.D., Oregon State U. Prof., Food Science

Hrzadina, Geza, Ph.D., Eidg. Technische Hochschule, Zürich (Switzerland). Prof., Food Science and Technology (Geneva)

Huddler, George W., Ph.D., Colorado State U. Prof., Plant Pathology

Hullar, Theodore L., Ph.D., U. of Minnesota. Prof., Natural Resources

Hunter, Jean B., D.En.Sc., Columbia U. Assoc. Prof., Biological and Environmental Engineering

Irwin, Lynne H., Ph.D., Texas A&M U. Assoc. Prof., Biological and Environmental Engineering

Jahn, Margaret M., Ph.D., Cornell U. Prof., Plant Breeding

Jewell, William J., Ph.D., Stanford U. Prof., Biological and Environmental Engineering

Johnson, Patricia A., Ph.D., Cornell U. Prof., Animal Science

Ketterings, Quirine, Ph.D., Ohio State U. Prof., Crop and Soil Sciences

Knipple, Douglas C., Ph.D., Cornell U. Assoc. Prof., Entomology (Geneva)

Knothe, Australia A., Ph.D., Michigan State U. Prof., Applied Economics and Management

Kruth, Barbara A., Ph.D., Virginia Polytechnic Inst. and State U. Prof., Natural Resources

Koeller, Wolfram, Ph.D., Phillips-U.-Marburg (Germany). Prof., Plant Pathology (Geneva)

Kraft, Clifford T., Ph.D., U. of Wisconsin. Madison. Assoc. Prof., Natural Resources

Kral, Daniel W., M.L.A. Cornell U. Assoc. Prof., Landscape Architecture

Krasny, Mark, Ph.D., U. of Washington. Prof., Natural Resources

Kresovich, Stephen, Ph.D., Ohio State U. Prof., Plant Breeding

Kroma, Margaret M., Ph.D., Iowa State U. Asst. Prof., Education

Lalai, Cheng, Ph.D., Oregon State U. Asst. Prof., Horticulture

Lakso, Alan N., Ph.D., U. of California, Davis. Prof., Horticultural Sciences (Geneva)

Lassosio, James P., Ph.D., U. of Washington. Prof., Natural Resources

Lawless, Harry T., Ph.D., Brown U. Prof., Food Science

Lazarowitz, Sandra G., Ph.D., Rockefeller U. Prof., Plant Pathology

Lazzaro, Brian, Ph.D., Pennsylvania State U. Asst. Prof., Entomology

Lee, Chang Y., Ph.D., Utah State U. Prof., Entomology

Lee, Kwangwon, Ph.D., Texas A&M U. Asst. Prof., Plant Pathology

Ley, Ronald, Ph.D., Cornell U. Assoc. Prof., Crop and Soil Sciences

Lewenstein, Bruce V., Ph.D., U. of Pennsylvania. Assoc. Prof., Communication

Liebherr, James K., Ph.D., U. of California, Berkeley. Prof., Entomology

Liu, Ruihai, Ph.D., Cornell U. Assoc. Prof., Food Science

Lorbeer, James W., Ph.D., U. of California, Berkeley. Prof., Plant Pathology

Loria, Rosemary, Ph.D., Michigan State U. Prof., Plant Pathology

Losey, John E., Ph.D., U. of Maryland. Assoc. Prof., Entomology

Lovette, Irby, Ph.D., U. of Pennsylvania. Asst. Prof., Ornithology

Luo, Dan, Ph.D., Ohio State U. Asst. Prof., Biological and Environmental Engineering

Lyson, Thomas A., Ph.D., Michigan State U. Prof., Development Sociology

Martin, Gregory B., Ph.D., Michigan State U. Prof., Crop and Soil Sciences

McBride, Murray B., Ph.D., Michigan State U. Assoc. Prof., Plant Pathology

McComas, Katherine A., Ph.D., Cornell U. Asst. Prof., Communication

McCoull, Susan, Ph.D., Cornell U. Prof., Plant Breeding

McGrath, Margaret T., Ph.D., Pennsylvania State U. Assoc. Prof., Plant Pathology

McLaughlin, Edward W., Ph.D., Michigan State U. Prof., Applied Economics and Management

McMichael, Philip D., Ph.D., SUNY, Binghampton. Prof., Development Sociology

Medley, Margaret G., Ph.D., Cornell U. Adj. Asst. Prof., Applied Economics and Management
Walter, Michael F., Ph.D., U. of Wisconsin, Madison. Prof., Biological and Environmental Engineering
Walther, Joseph B., Ph.D., U. of Arizona. Prof., Communication
Wang, Albert, Ph.D., Massachusetts Inst. of Technology. Asst. Prof., Applied Economics and Management
Wang, Ping, Ph.D., Cornell U. Asst. Prof., Entomology, Geneva
Wansink, Brian C., Ph.D., Stanford U. Prof., Applied Economics and Management
Watkins, Christopher B., Rutgers U. Assoc. Prof., Horticulture
Weber, Courtney A., Ph.D., U. of Florida. Assoc. Prof., Horticultural Sciences (Geneva)
Welch, Ross M., Ph.D., U. of California, Davis. Prof., Crop and Soil Sciences
Weston, Leslie A., Ph.D., Michigan State U. Assoc. Prof., Horticulture
White, Gerald B., Ph.D., Pennsylvania State U. Prof., Applied Economics and Management
Whitlow, Thomas H., Ph.D., U. of California, Davis. Assoc. Prof., Horticulture
Wiedmann, Martin, Ph.D., Cornell U. Asst. Prof., Food Science
Wien, Hans C., Ph.D., Cornell U. Prof., Horticulture
Wilcox, Wayne F., Ph.D., U. of California, Davis. Prof., Plant Pathology (Geneva)
Wilks, Daniel S., Ph.D., Oregon State U. Prof., Earth and Atmospheric Sciences
Williams, Linda, Ph.D., Brown U. Assoc. Prof., Development Sociology
Wilson, Arthur L., Ph.D., U. of Georgia. Assoc. Prof., Education
Wolf, Steven, Ph.D., U. of Wisconsin, Madison. Asst. Prof., Natural Resources
Wolfe, David W., Ph.D., U. of California, Davis. Prof., Horticulture
Worobo, Randy W., Ph.D., U. of Alberta (Canada). Assoc. Prof., Food Science and Technology (Geneva)
Yavitt, Joseph B., Ph.D., U. of Wyoming. Assoc. Prof., Natural Resources
Zitter, Thomas A., Ph.D., Michigan State U. Prof., Plant Pathology
ADMINISTRATION
Mohsen Mostafavi, dean
W. Stanley Taft, associate dean
Nasrine Seraji, chair, department of architecture
Buzz Spector, chair, department of art
Kenneth M. Reardon, chair, department of city and regional planning
John McKeown, interim director, administration and finance
Deborah Durnam, director, admissions
Carol Cooke, director, alumni affairs and development
M. Susan Lewis, director, career services
Leon Lawrence, director, multicultural affairs
Margaret N. Webster, director, visual resources facility
Jayne A. LeGro, registrar

FACULTY ADVISERS
Architecture students are assigned faculty advisers and are also invited to share concerns with and seek advice from the most appropriate faculty member or college officer, including the registrar, the department chair, and the dean.

Students in the fine arts department are assigned a faculty adviser for the first year. After the first year, students may select their advisers. Students are required to have an adviser throughout their program in their area of concentration.

Undergraduate students in the Program of Urban and Regional Studies are assigned faculty advisers.

All students in the college are invited to share concerns and seek advice from the volunteer student advisers (EARS) at any time.

DEGREE PROGRAMS

<table>
<thead>
<tr>
<th>Degree Programs</th>
<th>Degree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architecture</td>
<td>B. Arch.</td>
</tr>
<tr>
<td>Fine Arts</td>
<td>B.F.A.</td>
</tr>
<tr>
<td>History of Architecture and Urbanism</td>
<td>B.S.</td>
</tr>
<tr>
<td>Urban and Regional Studies</td>
<td>B.S.</td>
</tr>
</tbody>
</table>

The college offers programs leading to the bachelor's degree—the five-year program in architecture leads to the bachelor of architecture; four-year programs in art and architecture lead to the bachelor of fine arts. In addition, four-year programs with a concentration in either urban and regional studies or history of architecture lead to the bachelor of science.

Graduate-level programs are offered in art, architectural design and urban design, architectural science, history of architecture and urbanism, historic preservation planning, city and regional planning, regional science, and landscape architecture.

Students in most of these programs work in physical proximity to one another and thus gain a broader understanding of their own special area of interest through contact with students and faculty from other disciplines.

Early in its development, the college set a limit on the number of students it would enroll and devised a selective method of admission. There are now more than 670 students and a full-time teaching staff of over 60, supplemented by visiting professors and critics, part-time lecturers, and assistants. Teachers and students mix freely, and much instruction and criticism is on an individual basis.

The college's courses are integral parts of the professional curricula. Fundamental subjects are taught by faculty members whose experience provides them with professional points of view. The concentration of professional courses within the college is balanced by the breadth of view gained from courses and informal learning in the rest of the university. The college believes that this breadth is an essential element of professional education. This conviction is evident in the form of the curricula, the methods of teaching, and the extracurricular life of teachers and students.

FACILITIES

The college occupies Sibley Hall, Olive Tjaden Hall, Rand Hall, and the Foundry. Facilities for architecture and city and regional planning, as well as for administrative offices, the Visual Resources Facility, and the Fine Arts Library, are located in Sibley Hall. The Department of Art is housed in Olive Tjaden Hall. Sculpture facilities are in Olive Tjaden Hall, Rand Hall, and the Foundry.

The college's courses are integral parts of the professional curricula. Fundamental subjects are taught by faculty members whose experience provides them with professional points of view. The concentration of professional courses within the college is balanced by the breadth of view gained from courses and informal learning in the rest of the university. The college believes that this breadth is an essential element of professional education. This conviction is evident in the form of the curricula, the methods of teaching, and the extracurricular life of teachers and students.

Through the generosity of the late Lillian P. Heller, the college also owns the Miller-Heller House, home of William H. Miller, the first student to enroll for the study of architecture at Cornell, and later a practicing architect in Ithaca. This building is used to house visiting teachers and guests of the college and for occasional receptions and social events.

DEGREE PROGRAMS

<table>
<thead>
<tr>
<th>Degree Programs</th>
<th>Degree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architecture</td>
<td>B. Arch.</td>
</tr>
<tr>
<td>Fine Arts</td>
<td>B.F.A.</td>
</tr>
<tr>
<td>History of Architecture and Urbanism</td>
<td>B.S.</td>
</tr>
<tr>
<td>Urban and Regional Studies</td>
<td>B.S.</td>
</tr>
</tbody>
</table>

The college offers programs leading to the bachelor's degree—the five-year program in architecture leads to the bachelor of architecture; four-year programs in art and architecture lead to the bachelor of fine arts. In addition, four-year programs with a concentration in either urban and regional studies or history of architecture lead to the bachelor of science.

Graduate-level programs are offered in art, architectural design and urban design, architectural science, history of architecture and urbanism, historic preservation planning, city and regional planning, regional science, and landscape architecture.

Students in most of these programs work in physical proximity to one another and thus gain a broader understanding of their own special area of interest through contact with students and faculty from other disciplines.

Early in its development, the college set a limit on the number of students it would enroll and devised a selective method of admission. There are now more than 670 students and a full-time teaching staff of over 60, supplemented by visiting professors and critics, part-time lecturers, and assistants. Teachers and students mix freely, and much instruction and criticism is on an individual basis.

The college's courses are integral parts of the professional curricula. Fundamental subjects are taught by faculty members whose experience provides them with professional points of view. The concentration of professional courses within the college is balanced by the breadth of view gained from courses and informal learning in the rest of the university. The college believes that this breadth is an essential element of professional education. This conviction is evident in the form of the curricula, the methods of teaching, and the extracurricular life of teachers and students.

FACILITIES

The college occupies Sibley Hall, Olive Tjaden Hall, Rand Hall, and the Foundry. Facilities for architecture and city and regional planning, as well as for administrative offices, the Visual Resources Facility, and the Fine Arts Library, are located in Sibley Hall. The Department of Art is housed in Olive Tjaden Hall. Sculpture facilities are in Olive Tjaden Hall, Rand Hall, and the Foundry.

The facility includes both student and faculty exhibition spaces, which are open to the public.

The Fine Arts Library in Sibley Hall serves the College of Architecture, Art, and Planning through its collections on architecture, fine arts, city and regional planning, and landscape architecture. The library, with more than 177,000 books, is capable of supporting undergraduate, graduate, and research programs. Some 1,300 serials are currently received and maintained.

The Visual Resources Facility, made possible through gifts from George and Adelaide Knight, is located in Sibley Hall and contains the F. M. Wells Memorial Slide Collection, which consists of a large and growing collection of slides of architecture, architectural history, and art. The collection now includes approximately 450,000 slides.

The facilities of the libraries of other schools and departments on campus and the John M. Olin Library, designed primarily as a research library for graduate students, are also available.

Museums and Galleries

The Herbert F. Johnson Museum of Art was formally opened in May 1973. Although many of its exhibitions and activities relate directly to academic programs of the university, the museum has no administrative affiliation with any department. In this way, its programs freely cross academic boundaries, stimulating interchange among disciplines. With a strong and varied collection and a continuous series of high-quality exhibitions, it fulfills its mission as a center for the visual arts at Cornell. Throughout the year, works of students, faculty, and staff in the College of Architecture, Art, and Planning and of guest artists may be viewed in the John Hartley Gallery in Sibley Hall and in the Olive Tjaden Gallery in Olive Tjaden Hall.

Art galleries are also maintained in Willard Straight Hall, where loan exhibitions of paintings and graphic work by contemporary artists are held.

Rome Program

The College of Architecture, Art, and Planning's Rome Program was founded in the fall of 1986 to provide instruction in Italy for students seeking excellence in art, architecture, and other disciplines. The program offers an educational experience that draws upon the rich past of Rome, its resources in museums, its art and architecture, and its wide variety of cultural offerings. The school is located in the restored 17th-century Palazzo Lazarro in the center of the eternal city near each well-known Roman sights as Piazza Navona, the Pantheon, and Rome's famous outdoor market at the Campo dei Fiori.

The program in Rome offers components for students majoring in architecture, fine arts, planning, and liberal arts. Full course loads are available to all students in a curriculum that stresses the convergence of artistic, cultural, and architectural ideas vital to
an understanding of the city. Students are responsible for planning course schedules that ensure their particular requirements can be met, since course offerings in Rome are limited. For additional information, see individual department listings or contact the Rome Program office, 149 East Sibley Hall.

COLLEGE ACADEMIC POLICIES

Ownership of Student Work
All drawings, models, paintings, graphic art, and sculpture done in the studios and drafting rooms as a part of the instructional program are the property of the college until they have been graded and released by the instructor. Certain works may be selected by the college for retention for academic purposes.

Exhibitions of Student Work
Exhibitions of student work are held each semester as part of the yearly schedule of the Olive Tjaden Gallery and the John Hartell Gallery. In these galleries display work from a specific course or exhibit examples of recent work by individual faculty members, students, and visitors.

Scholastic Standards
Semester by semester, a candidate for an undergraduate degree in this college is required to successfully complete a minimum of 12 credit hours with a grade point average for the semester of not less than C (2.0). The record of each student who falls below the standards will be reviewed by the college's Academic Records Committee for appropriate action, among those described below:

1. The student is issued a Warning. This means the student's performance is not up to expectations. Unless improvement is shown in the subsequent semester, the student may be placed on Final Warning or given a Required Leave of Absence from the college.

2. The student is issued a Final Warning. This indicates the student's record is unsatisfactory. Unless considerable improvement is shown in the subsequent semester, the student may be given a Required Leave of Absence from the college.

3. The student is placed on a Required Leave of Absence. The student is dismissed from the college and may not continue studies in the college. A student who has been placed on a required leave of absence may request to resume studies after a leave of absence of at least two semesters. This request is made by letter addressed to the college dean, chair of the Academic Records Committee, 129 Sibley Hall, Ithaca, NY 14853-6702. The student must submit evidence that time has been well used, and if employed, the student must submit a letter from the employer that the student is not allowed to register extramurally at Cornell, as the intention of the required leave is to insist upon a break from study at Cornell. If a student chooses to enroll in courses at another institution while on a required leave, credit is not granted automatically. Upon receiving permission to return, a student must petition the department to request credit for courses taken. A return to study in the college after a required leave of absence is at the discretion of the college's Academic Records Committee. Requests for spring and fall return must be made by November 15 and requests for fall semester return must be made by April 15. The second required leave of absence is a de facto dismissal and the student will be permanently withdrawn from the college.

4. The student is placed on a Required Withdrawal. The student may not reregister in the College of Architecture, Art, and Planning and is dismissed from the college and is permanently prohibited from continuing studies in it.

The required withdrawal action does not prevent the student from applying for admission to another division of the university.

The above actions are not necessarily sequential. A student who has received a warning may be placed on a required leave of absence at the end of the next semester if the performance during that semester is deemed to be grossly deficient.

It is necessary to have a cumulative grade point average of at least 1.7 (C-) for graduation.

ARCHITECTURE

Professional Degree Programs
Cornell offers two professional degrees in architecture: the undergraduate bachelor of architecture and the graduate master of architecture. These degrees count toward the professional registration requirements established by the various states, the National Architectural Accrediting Board, and the National Council of Architectural Registration Boards.

B. Arch.
The undergraduate professional program is normally five years in length and is designed particularly for people who, before they apply, have established their interest and motivation to enter the field. It therefore incorporates both a general and professional educational base.

The program is oriented toward developing the student's ability to deal creatively with architectural problems on analytical, conceptual, and developmental levels. The sequence courses in design, consisting of studio work augmented by lectures and seminars, are the core of the program. Sequences of studies in the history of architecture and cities, culture and society, architectural theory, visual studies, environmental control, structures, construction, and computer applications provide a base for the work in design.

In the first three years, the student has the opportunity to establish a foundation in the humanities and sciences through electives. During the fourth and fifth years, this base may expand through other detailed studies in these areas. Within the professional program a basis for understanding architecture in its contemporary and historical cultural contexts is established.

The structure of the program incorporates considerable flexibility for the individual student to pursue his or her particular interest in the fourth and fifth years. By carefully planning options and electives in the fifth year, it is possible for a qualified student to apply the last year's work for the bachelor of architecture degree to the post-professional M. Arch. II program. Some students are then able to complete the requirements for the master's degree in one additional year.

M. Arch. I
Cornell's graduate professional program is normally three and one-half years long and is intended for students who already have a bachelor's degree in any subject. Information on this professional graduate program can be found on the architecture web site (www.architecture.cornell.edu).

Note on Professional Accreditation
In the United States, most state registration boards require a degree from an accredited professional degree program as a prerequisite for licensure. The National Architectural Accrediting Board (NAAB), which is the sole agency authorized to accredit U.S. professional degree programs in architecture, recognizes three types of degrees: the bachelor of architecture, the master of architecture, and the doctor of architecture. A program may be granted a six-year, three-year, or two-year term of accreditation, depending on the extent of its conformance with established educational standards.

Master's degree programs may consist of a preprofessional undergraduate degree and a professional graduate degree, which, when earned sequentially, constitute an accredited professional education. The professional degree, however, is not, by itself, recognized as an accredited degree.

Rome Program
The program offers the opportunity for students from Cornell and other universities to spend one or two semesters of study in Rome. This option is open to fourth- and fifth-year architecture students. Students are admitted by petition and a review of their design record. Courses offered by this department include design, history, theory, architectural science, and visual studies. In addition, further details are offered by other departments in Italian language, Italian culture, art, city and regional planning and history of art. The program provides a unique urban and architectural experience drawing from the rich past of the city for sources of instruction and inspiration.

Overlap Program
For qualified students the department offers an option that combines the fifth year of the undergraduate program with the first year of the post-professional master of architecture program. In the fall of the fourth undergraduate year, interested students
petition the department to substitute ARCH 601–602 or 603–604 for ARCH 501–502. At the same time, they complete graduate school applications and submit them with fee and portfolio to the graduate field assistant for architectural. Students accepted into the program may not normally begin until the fall of their fifth year and, once enrolled, may not transfer back into the 501–502 sequence.

Following admission into the Overlap Program, students may petition to apply toward the requirements of the master’s degree a maximum of 30 credits, including ARCH 601–602 or 603–604 and other advanced courses taken in excess of distribution requirements for the bachelor of architecture degree.

Curriculum

First Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall Semester</td>
<td></td>
</tr>
<tr>
<td>101 Design I</td>
<td>6</td>
</tr>
<tr>
<td>181 History of Architecture I</td>
<td>3</td>
</tr>
<tr>
<td>151 Drawing I</td>
<td>2</td>
</tr>
<tr>
<td>MATH 111 Calculus or out-of-college elective</td>
<td>3-4</td>
</tr>
<tr>
<td>Out-of-college elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>17-18</td>
</tr>
<tr>
<td>Spring Semester</td>
<td></td>
</tr>
<tr>
<td>102 Design II</td>
<td>6</td>
</tr>
<tr>
<td>182 History of Architecture II</td>
<td>3</td>
</tr>
<tr>
<td>152 Drawing II</td>
<td>2</td>
</tr>
<tr>
<td>MATH 106 or 111 or out-of-college elective</td>
<td>3-4</td>
</tr>
<tr>
<td>Out-of-college elective (first-year writing seminar suggested)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>17-18</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall Semester</td>
<td></td>
</tr>
<tr>
<td>201 Design III</td>
<td>6</td>
</tr>
<tr>
<td>203 Structural Concepts</td>
<td>4</td>
</tr>
<tr>
<td>251 Architectural Analysis I</td>
<td>2</td>
</tr>
<tr>
<td>262 Building Technology, Materials, and Methods</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 253 or out-of-college elective</td>
<td>2-3</td>
</tr>
<tr>
<td></td>
<td>17-18</td>
</tr>
<tr>
<td>Spring Semester</td>
<td></td>
</tr>
<tr>
<td>202 Design IV</td>
<td>6</td>
</tr>
<tr>
<td>252 Architectural Analysis II</td>
<td>2</td>
</tr>
<tr>
<td>261 Site Planning</td>
<td>3</td>
</tr>
<tr>
<td>264 Structural Elements</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 253 or college elective</td>
<td>2-3</td>
</tr>
<tr>
<td></td>
<td>16-17</td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall Semester</td>
<td></td>
</tr>
<tr>
<td>301 Design V</td>
<td>6</td>
</tr>
<tr>
<td>361 Environmental Systems I—Lighting and Acoustics</td>
<td>3</td>
</tr>
<tr>
<td>Departmental elective</td>
<td>3</td>
</tr>
<tr>
<td>Departmental elective</td>
<td>3</td>
</tr>
<tr>
<td>Out-of-college elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring Semester</td>
<td></td>
</tr>
<tr>
<td>302 Design VI</td>
<td>6</td>
</tr>
<tr>
<td>363 Structural Systems</td>
<td>3</td>
</tr>
<tr>
<td>362 Environmental Systems II—Mechanical and Passive Solar Systems</td>
<td>3</td>
</tr>
<tr>
<td>342 Architecture as a Cultural System</td>
<td>3</td>
</tr>
<tr>
<td>College or out-of-college elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>18</td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall Semester</td>
<td></td>
</tr>
<tr>
<td>401 Design VII</td>
<td>6</td>
</tr>
<tr>
<td>Departmental elective</td>
<td>3</td>
</tr>
<tr>
<td>Departmental elective</td>
<td>3</td>
</tr>
<tr>
<td>College elective</td>
<td>3</td>
</tr>
<tr>
<td>Out-of-college elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>18</td>
</tr>
<tr>
<td>Spring Semester</td>
<td></td>
</tr>
<tr>
<td>402 Design VIII</td>
<td>6</td>
</tr>
<tr>
<td>521 Professional Practice</td>
<td>3</td>
</tr>
<tr>
<td>Departmental elective</td>
<td>3</td>
</tr>
<tr>
<td>College or out-of-college elective</td>
<td>3</td>
</tr>
<tr>
<td>Out-of-college elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring Semester</td>
<td></td>
</tr>
<tr>
<td>501 Design IX</td>
<td>6</td>
</tr>
<tr>
<td>for Overlap Program 601 or 603</td>
<td>9</td>
</tr>
<tr>
<td>Departmental elective</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 510</td>
<td>3</td>
</tr>
<tr>
<td>Out-of-college elective</td>
<td>3</td>
</tr>
<tr>
<td>Out-of-college elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>18</td>
</tr>
</tbody>
</table>

Fifth Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall Semester</td>
<td></td>
</tr>
<tr>
<td>502 Design X</td>
<td>8</td>
</tr>
<tr>
<td>for Overlap Program 602 or 604</td>
<td>9</td>
</tr>
<tr>
<td>Departmental elective</td>
<td>3</td>
</tr>
<tr>
<td>Out-of-college elective</td>
<td>3</td>
</tr>
<tr>
<td>College or out-of-college elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

Required Departmental Courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Subject</th>
<th>Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>101-502</td>
<td>501</td>
<td>62</td>
</tr>
<tr>
<td>101-502</td>
<td>design</td>
<td>62</td>
</tr>
<tr>
<td>MATH 111, MATH 106, or approved equivalent</td>
<td>3-4</td>
<td></td>
</tr>
<tr>
<td>263, 264, 363</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>261, 262, 361, 362</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>231, 232</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>181, 182</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>1 architecture, culture, and society</td>
<td>342</td>
<td>3</td>
</tr>
<tr>
<td>1 professional practice</td>
<td>521</td>
<td>3</td>
</tr>
<tr>
<td>3 drawing</td>
<td>151, 152, 253</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>107-108</td>
<td></td>
</tr>
</tbody>
</table>

Electives

<table>
<thead>
<tr>
<th>Departmental Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall Semester</td>
<td></td>
</tr>
<tr>
<td>1 history of architecture: 300 level</td>
<td>9</td>
</tr>
<tr>
<td>1 visual representation in architecture</td>
<td>3</td>
</tr>
<tr>
<td>1 architectural theory or 600-level design-related course</td>
<td>6</td>
</tr>
<tr>
<td>1 architectural structures, construction, or environmental systems and conservation</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>21</td>
</tr>
<tr>
<td>Spring Semester</td>
<td></td>
</tr>
<tr>
<td>1 first-year writing seminar</td>
<td>3</td>
</tr>
<tr>
<td>1 mathematics, physical or biological sciences</td>
<td>3</td>
</tr>
<tr>
<td>1 humanities</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>12</td>
</tr>
</tbody>
</table>

Free

Of the electives, 15 credits are to be taken outside the College of Architecture, Art, and Planning, and 15 credits may be taken either in or outside the college. Total credits 176

Architecture Concentrations for Majors

The Department of Architecture recognizes any concentration earned within the university but outside of the department (using standards set by those departments) on the transcripts of its students. It is often advantageous for undergraduates to concentrate in specific disciplines of architecture, especially if they anticipate application to specialized graduate programs; therefore, the following concentrations in architecture are offered within the department for B. Arch. and B.F.A. in architecture candidates only:

Architecture, Culture, and Society 342 (or equivalent), plus 9 credits in this area.

Architectural Science and Technology 261, 262, 263, 264, 361, 362, 363. distribution requirement (3 credits), plus 6 credits in this area.

History of Architecture 181, 182, distribution requirements (9 credits), plus 7 credits (including a 4-credit seminar course) in this area.

Theory of Architecture 231, 232, distribution requirements (6 credits), plus 6 credits in this area.
Visual Representation in Architecture 151, 152, distribution requirement (3 credits), plus 9 credits in this area.

Students wishing to receive recognition for a concentration must submit a concentration request form to the Architecture Department office. For a course to count toward a concentration, the student must receive a grade of C or better.

Transfer Students

Although the program leading to the bachelor of architecture is directed specifically to those who are strongly motivated to begin professional study when entering college, it is sufficiently flexible to allow transfers for students who have not made this decision until after they have been in another program for one or two years. Individuals who have already completed a nonprofessional undergraduate degree may apply to the professional M. Arch. I program.

Transfer students are responsible for completing that portion of the curriculum which has not been covered by equivalent work. Applicants who have had no previous work in architectural design must complete the 10-semester design sequence. Since this sequence may be accelerated by attending summer semesters, seven or eight regular semesters and two or three summer terms are typically required.

Admission is offered to a limited number of transfer applicants who have completed a portion of their architecture studies in other schools. Each applicant’s case is considered individually. Transfer students must complete a minimum of 70 credits and four semesters in residence, taking 35 of the 70 credits (including four semesters of design) in the Department of Architecture. Placement in the design sequence is based on a review of a representative portfolio of previous work.

For those who would benefit from an opportunity to explore the field of architecture before deciding on a commitment to professional education, the department offers an introductory summer program that includes an introductory studio in architectural design, lectures, and other experiences designed to acquaint participants with opportunities, issues, and methods in the field of architecture.

Alternative Programs

Bachelor of Fine Arts

After completing the first four years of requirements, the student may choose to receive the degree of bachelor of fine arts (B.F.A.) in architecture, which is not a professional degree.

Bachelor of Science in History of Architecture

The history of architecture major leads to a bachelor of science degree, conferred by the College of Architecture, Art, and Planning. Transfer students are eligible to transfer from other programs at Cornell and from colleges and universities outside Cornell. Students in the Department of Architecture and the College of Arts and Sciences may take the major as part of a dual-degree program.

The course of study in this major, available to students from a variety of academic backgrounds, offers the opportunity for a vigorous exploration of architecture and its history.

Admission requirements.

Two years of undergraduate study. ARCH 181 and 182 or the equivalent. Students transferring from a B. Arch. program must be in good standing in their design sequence.

Procedure.

Students from Cornell may transfer to the program at the beginning of the fall semester of their third or fourth year of study. They submit a short application as prospective internal transfer students. Before applying, all prospective internal transfer students meet with a history of architecture faculty member to discuss scheduling for the program.

All students who wish to enter the program, either from Cornell or other institutions, must apply by November 15 for spring admission or by March 31 for fall admission. Applications for both internal and external transfer students are available from the Admissions Office, College of Architecture, Art, and Planning, Cornell University, B-1 West Sibley Hall, Ithaca, NY 14853-6702. Completed applications must be submitted to the Admissions Office.

Curriculum.

A student entering the program is assigned an adviser from the history of architecture faculty in the Department of Architecture. Adviser and student together prepare an appropriate two-year course of study according to the following guidelines:

1. 24 credits of 300-level courses in architectural history: ARCH 380 through 399
2. 12 credits in 600-level architectural history seminars: ARCH 681 through 699; or 8 credits in a 600-level seminar plus ARCH 499, offered for honors candidates only
3. One 300-, 400-, or 600-level course in architectural theory
4. 24 credits in electives selected in consultation with the student’s adviser
5. Language requirement, to be met in the manner specified for students enrolled in the College of Arts and Sciences

Honors program.

Students graduate with honors if, during their two years of study in the program, they have a cumulative average of B or better in all courses, have no grade lower than A- in all history of architecture courses taken at the 300 level, and have completed an honors thesis (ARCH 490) deemed to be of distinguished quality by the history of architecture faculty.

Dual-Degree Options

Students can earn both the B.S. and B. Arch. degrees either simultaneously or sequentially. Students who have transferred into the B. Arch. program at Cornell may find this to be a special opportunity for an enlarged and enriched program of study.

Students currently enrolled in the College of Arts and Sciences at Cornell can earn a B.A. in an arts college major and a B.S. in the history of architecture in five years. In this option, students complete a minimum of 150 credits, which includes the B.S. prerequisites and curriculum requirements and 100 credits of the usual distribution and major requirements in the College of Arts and Sciences.

Further information about this option is available at the Admissions Office, B-1 West Sibley Hall, and at the Academic Advising Center of the College of Arts and Sciences, 55 Goldwin Smith Hall.

Students may also elect to continue toward a master of arts degree in the history of architecture. The M.A. ordinarily requires a minimum of two years of graduate work beyond the bachelor’s degree; with this special sequential degree arrangement that time is shortened to one year.

Summer Term in Architecture

The summer term offers students the opportunity of a concentrated period of design work; the term is six to eight weeks in duration.

Undergraduate design sequence courses, excluding 101 and 502, are offered in Ithaca. Normally there is also a design program abroad for third-, fourth-, and fifth-year students.

Students from schools of architecture other than Cornell are welcome to apply to enroll in any summer program.

Other department courses may be offered as elective courses, contingent upon student interest, faculty availability, and departmental approval.

The department offers a Career Explorations in Architecture Program for high school students and college students considering a professional education in architecture.

Concentration in Architecture for Nonmajors

A special concentration has been formulated specifically for those students not enrolled in the Department of Architecture but who are interested in complementing their current academic program with an introduction to various facets of architectural studies. Some students may wish to use the Concentration in Architecture for Nonmajors as a means of investigating possible graduate studies in architecture. Some may wish to develop architectural specialties within other disciplines. Students meeting the requirements for this concentration should complete a concentration form, which is available in the architecture department office. This form, when validated by the architecture department and the AAP college registrar, serves as evidence of completion of the concentration requirements. Students should consult their individual college registrars for information about whether their home college recognizes and notes such concentrations on transcripts or diplomas.

The curriculum for students in the Concentration in Architecture Program totals 14 credit hours minimum, including 8 credits of required courses and 6 credits of elective courses. Grades earned must be C or better in all courses.

Required courses.

A minimum of 8 credits, including one design studio, one visual studies course (e.g., drawing), and one history of architecture course. For example, ARCH 110 Introduction to Architecture Design Studio (offered summer only) 3 credits or ARCH 103 Elective Design Studio (offered fall only, not offered every year) 6 credits.
ARCHITECTURE, ART, AND PLANNING 2005-2006

ARCH 101(1101) Design I
- Fall, spring, 6 credits. Prerequisite: department students. Staff. Continuation of ARCH 101. Covers human, social, technical, and aesthetic factors related to space and form. Design problems range from those of the immediate environment of the individual to that of small social groups.

ARCH 102(1102) Design II
- Spring, 6 credits. Prerequisite: department students; ARCH 101 and 151. Staff. Introduction to design as a conceptual discipline directed at the analysis, interpretation, synthesis, and transformation of the physical environment. Exercises are aimed at developing an understanding of the issues, elements, and processes of environmental design.

ARCH 201-202(2101-2102) Design III and IV
- Fall and spring, 6 credits each semester. Prerequisite: department students; ARCH 151-152; for ARCH 201, ARCH 102 and 152; for 202, ARCH 201. Co-requisite: ARCH 251-232. Staff.

ARCH 203(301-3101-3102) Design V and VI
- Fall and spring, 6 credits each semester. Prerequisite: department students; for ARCH 301, ARCH 202; for 302, ARCH 301. Staff.

ARCH 401-402(4101-4102) Design VII and VIII
- Fall and spring, 6 credits each semester. Prerequisite: department students; for ARCH 401, ARCH 302; for 402, ARCH 401. Staff. Programs in architectural design, urban design, or architectural technology and environmental science and topical studies.

ARCH 501(5101) Design IX
- Fall or spring, 6 credits. Prerequisite: department students; ARCH 402. Co-requisite: ARCH 510. Staff. Programs in architectural design, building topology investigations, and research leading to complete development of the student's thesis program. General instruction in the definition, programming, and development of a thesis.

ARCH 502(5902) Design X—Thesis
- Fall or spring, 8 credits. Requirement for B. Arch. candidates who must satisfactorily complete a thesis. Students accepted for admission to Overlap Program are exempt from thesis requirement. Prerequisite: ARCH 501 and 510. Staff.

ARCH 601-602(6101-6102) Special Program in Architectural Design
- Fall and spring, 9 credits each semester. Prerequisite: acceptance into Overlap Program. Registration by petition only. Staff.

ARCH 603-604(6103-6104) Special Program in Urban Design
- Fall and spring, 9 credits each semester. Prerequisite: acceptance into Overlap Program. Registration by petition only. Staff.

Graduate Courses

ARCH 511-512(5111-5112) Core Design Studios
- Fall and spring, 6 credits. Prerequisites: M. Arch. I students; for ARCH 512, ARCH 511 and 551. Staff. Two-semester sequence in which fundamental design skills are taught. The core studios integrate a broad range of architectural territories, and students acquire a command of techniques of design and representation through a number of complex architectural problems.

ARCH 513-516(5113-5116) Vertical Design Studios
- Fall and spring, 6 credits. Prerequisites: M. Arch. I students; for ARCH 513, ARCH 512 and 552; for ARCH 513-516 must be taken in sequence. Staff. Vertical studios investigate a variety of programs and project types, from individual buildings to urban districts. Students examine topics of architectural production—such as building technology, landscape, urbanism, history, and theory—and their roles in analysis and design.

ARCH 701-702(7101-7102) Problems in Architectural Design
- Fall and spring, 9 credits each semester. Staff. Basic first-year design course for M. Arch. II students whose major concentration is architectural design.

ARCH 703-704(7103-7104) Problems in Urban Design
- Fall and spring, 9 credits each semester. Staff. Basic first-year design course for M. Arch. II students whose major concentration is urban design.

ARCH 801(8901) Thesis or Research in Architectural Design
- Fall or spring, 9 credits. Prerequisite: ARCH 701-702. Staff. Second-year design course for M. Arch. II students whose major concentration is architectural design.

ARCH 802(8902) Thesis or Research in Urban Design
- Fall or spring, 9 credits. Prerequisite: ARCH 703-704. Staff. Second-year design course for M. Arch. II students whose major concentration is urban design.

ARCH 811(8911) Graduate Thesis Proseminar
- Fall. 3 credits. Prerequisites: M. Arch. I students; ARCH 515. Staff. First half of the yearlong thesis in architecture. Covers research methods and other subjects students employ in the development of their individual thesis topics. Emphasizes learning different types of theses and developing specific programming, design, and site definition techniques.

ARCH 812(8912) Independent Design Thesis
- Spring. 9 credits. Prerequisites: M. Arch. I students; ARCH 516. Staff. The master of architecture thesis is an independent design project on a topic selected by the student and researched in ARCH 811. The student develops a thesis statement outlining an area of study or a problem that has consequences for contemporary architectural production and produces a design project that examines it. Marking the transition between the academic and professional worlds, the thesis project is an opportunity for each student to define an individual position with regard to a specific aspect of architectural practice.

Elective Design Courses

ARCH 103-104(1103-1104) Elective Design Studio
- 103, fall; 104, spring, 6 credits each semester. Prerequisite: nonarchitecture students; for ARCH 103, permission of instructor; for ARCH 104, ARCH 103 and permission of instructor. Staff.

ARCH 200, 300, 400, 500(2100, 3100, 4100, 5100) Elective Design Studio
- Fall, spring, or summer. 6 credits. For students who are not architecture majors at Cornell. Prerequisite: permission of department office. Each student is assigned to a class of appropriate level. Staff. Nonsequence design used as temporary placement of transfer students, off-campus foreign programs for third-year students (summer and Rome) and for incompletes in design sequence. In some cases student must petition to convert elective design into sequence design.

ARCH 503(5103) Design IX
- Fall and spring, 6 credits. Limited to department students. Prerequisites: ARCH 406 and passing, but nonadvancing, grade in ARCH 502. Structured studio for those needing to take an alternative to design thesis. Operates within the 401-402, 501 design studios.

Related Courses and Seminars

ARCH 110(1110) Introduction to Architecture: Design Studio
- Summer. 3 credits. Open to nonarchitecture majors in college, high school students in 11th and 12th grades, and any individuals with a minimum of a high school diploma interested in exploring the field of architecture. S-U option. Not offered every year. Staff. Designed to introduce students to ideas, principles, and methods of solving architectural problems in a studio setting. Through a graduated sequence of exercises culminating in a major semester project, students explore the architectural concepts of space, form, function, and technology. Instruction is via highly personalized critiques.
of individual student work by assigned department faculty members, as well as periodic reviews of the group by invited faculty and guest critics. The grade is based on the overall performance in the studio with special emphasis on the quality of a major studio project.

ARCH 111(1111) Concentration in Architecture: Design Studio
Summer only. 3 credits. Subject to enrollment. Prerequisite: nonarchitecture students. Not offered every year. Staff. Designed to introduce students to ideas, principles, and methodologies of solving architectural problems in a studio setting. Through a graduated sequence of exercises culminating in a major term project, students explore the interrelationship of the architectural concepts of space, form, function, and technology. Instruction includes critiques of individual student work by department faculty, as well as by periodic reviews by guest critics.

ARCH 303(3103) Special Problems in Architectural Design
Fall or spring. Variable credit; max. 3. Does not count for design sequence credit. Prerequisite: permission of instructor and approved independent study form. Staff. Independent study.

ARCH 306(3106) Praxis: Community Design Workshop (also ARCH 606(6106))
Fall or spring. 3 credits. Prerequisite: permission of instructor. Not offered every year. F. Davis. Workshop-based, hands-on course directed to underserved local and global communities that seek to improve the quality of life for all citizens. It is an interdisciplinary, service-learning course that challenges the usual definition and separation of practice and theoretical research. Services are provided collaboratively to not-for-profit agencies, civic and governmental groups, as well as community-action groups to support sustainable design solutions. The course teaches professional work proficiency, and emphasizes teamwork as well as written, verbal, and graphic communication skills to negotiate the public realm.

ARCH 313(3113) Furniture Design
Fall or spring. 3 credits. Limited enrollment. Students who wish to earn arch visual representation credit must enroll in sec 01; arch technology credit, sec 02; and in-college elective credit, sec 03. Prerequisite: permission of instructor. Not offered every year. G. Hascup. Explores the history, design, and materiality of furniture. Analyses of materials and joinery-connective systems are developed in parallel with ergonomic constraints. Design transformation occurs through cycles of conceptual alternatives (models and drawings), increasing in scale as the idea evolves. Full-scale prototypes and detailed tectonic drawings are required on three pieces.

ARCH 317(3117) Contemporary Italian Culture
Fall or spring. Variable credit; max. 3. Prerequisite: Rome Program participants. Staff. Provides a broad view of the culture and social structure of Italy, drawing from Italian literature, history, and current events.

ARCH 510(5110) Thesis Proseminar
Fall and spring. 2 credits. Prerequisite: ARCH 402. Staff. Lectures, seminars, and independent research leading to complete development of the student's thesis program. General instruction in the definition, programming, and development of a thesis.

ARCH 521(5201) Professional Practice
Fall or spring. 3 credits. Staff. Examination of organizational and management theories and practices for delivering professional design services. Includes a historic overview of the profession and a review of the architect's responsibilities from the precontract phase through construction. Application of computer technology in preparing specifications.

ARCH 522(5202) Professional Seminar
Fall or spring. 3 credits. Prerequisite: ARCH 411. Staff. Visits to public and private agencies and architectural firms. Discussions relative to the various aspects of each firm's practice and the identification of agency roles.

ARCH 605(6109) Special Problems in Design
Fall and spring. Variable credit; max. 3. Does not count toward design sequence credit. Prerequisite: permission of instructor. Staff. Independent study.

ARCH 606(6106) Praxis: Community Design Workshop (also ARCH 306(3106))
Fall or spring. 3 credits. Prerequisite: permission of instructor. Not offered every year. F. Davis. For description, see ARCH 306.

ARCH 610(6110) Graduate Design Seminar
Fall. 3 credits. Intended for, but not limited to, graduate students in Architectural Design and Urban Design Program. Not offered every year. Staff. Issues in architectural and urban design.

ARCH 611-612(6111-6112) Urban Housing Developments
611, fall; 612, spring. 3 credits each semester. Prerequisite: fourth- and fifth-year students. Instruction and graduate students: permission of instructor. Not offered every year. Staff.

Architectural Theory

ARCH 130(1300) An Introduction to Architecture: Lectures
Summer. 3 credits. Open to nonarchitecture majors in college, high school students in 11th and 12th grades, and anyone with minimum of a high school diploma interested in exploring the field of architecture. S-U grades optional. Not offered every year. Staff. Survey course that covers the many facets of architecture: history, design principles, preservation, landscape architecture, building technology, and cultural factors. Course format comprises lectures, demonstrations, films, and field trips. Evaluation is based on quizzes and a final exam.

ARCH 131(1301) An Introduction to Architecture

ARCH 231(2310) Architectural Analysis I
Fall. 2 credits. Co-requisite: for architecture students, ARCH 201. Staff. Introduction to analysis of the object of study in the interest of broadening one's understanding of the ways in which architecture can connote and denote meanings.

ARCH 232(2302) Architectural Analysis II

ARCH 334(3304) Column, Wall, Elevation: Facade: A Study of the Vertical Surface in Architecture (also ARCH 634(6304))
Fall or spring. 3 credits. Prerequisite: third-year students and above. J. Wells. Field and figure relationships (interaction of parts dominated by the general character of the whole) are the general themes for studying numerous issues relevant to the design of elevations and facades. The first part of the semester is a lecture and seminar format. Students are required to research and present a paper for discussion. In the latter part of the semester, students do exercises to demonstrate their understanding of the issues addressed.

ARCH 337(3309) Special Investigations in the Theory of Architecture I
Fall or spring. Variable credit; max. 3. Prerequisite: permission of instructor and approved independent study form. Staff. Independent study.

ARCH 338(3308) Special Topics in the Theory of Architecture I
Fall or spring. 3 credits. Prerequisite: permission of instructor. Not offered every year. Staff. Topic TBA before preregistration.

Spring. 3 credits. Not offered every year. L. Mirin. Examination of Japanese architecture (buildings and gardens) and their contexts: landscapes, settlements, and cities. The course is addressed to those interested in Japanese architecture as a manifestation of Japanese culture and as a subject for analysis. Emphasis is on underlying concepts, ordering principles, formal typologies, space and its representation, perceptual phenomena, and symbolic content. Readings focus on theoretical treatments of these aspects by Japanese and western writers.

ARCH 431(4301) Theory of Architecture

ARCH 432(4302) Theory of Architecture
Spring. 3 credits. Prerequisite: third-year standing. Not offered every year. Staff. Development of urban form, urban intervention, contextualism, ideal cities, historic new towns, streets, piazzas, fortifications, public buildings and social housing types, site planning, and transportation.

ARCH 439(4305) Architecture and Representation
Fall. 3 credits. Prerequisite: degree candidates in architecture; successful completion of ARCH 231–232. Not offered every year. Staff. Study of architecture as it functions as a representational art, referring to its past while inferring its present.
These courses explore the practice of drawing through analog and digital methods. They serve as an introduction to visualization and representation skills necessary to the development of architectural thought. Students learn a broad range of techniques and tools in relation to one another.

ARCH 585(5059) Special Investigations in Visual Representation II
Fall or spring. Variable credit; max. 4. Prerequisites: permission of instructor and approved independent study form. Staff. Independent study.

ARCH 659(6508) Special Topics in Visual Representation II
Fall or spring. 3 credits. Prerequisite: permission of instructor. Staff. Topics TBA before preregistration.

Architectural Science and Technology

Structures

ARCH 263(2603) Structural Concepts
Fall. 4 credits. Prerequisite: MATH 111 or approved equivalent. M. Cruvellier. Fundamental concepts of structural behavior. Statics and strength of materials. Introduction to and analysis of simple structural systems.

ARCH 264(2604) Structural Elements
Spring. 3 credits. Prerequisite: ARCH 263. J. Ochsorn or staff. Concepts and procedures for the design of individual structural components (e.g., columns, beams) in steel, concrete, and timber construction.

ARCH 363(3603) Structural Systems
Fall or spring. 3 credits. Prerequisite: ARCH 264. M. Cruvellier. Concepts and procedures for the design of overall structural framing systems in steel, concrete, and timber construction.

ARCH 364(3604) Vertigo Structures (also ARCH 664/666)
Fall or spring. 3 credits. Prerequisite: ARCH 363 or equivalent. Limited enrollment. Not offered every year. M. Cruvellier.

ARCH 365(3605) Bridge Design (also ARCH 665/665)
Fall or spring. 3 credits. Limited enrollment. Prerequisite: ARCH 363 or equivalent. M. Cruvellier. The major visual impact of bridges on the built environment cannot be denied. And yet, during the past century, architects have virtually abandoned their historical role in the design of these structures. Engineers, on the other hand, have claimed bridge design as their responsibility and have hailed it as evidence of structural art. Are the basic principles of bridge design such that this situation makes sense for our society? Or is there a rethinking of the manner in which bridges are designed called for? Students examine and experiment with the design of bridge structural forms, not only in terms of what is technically feasible but also with equal emphasis, in the context of aesthetic, historical, and social considerations. Weekly meetings include lectures, discussion seminars, and studio-type design reviews.

ARCH 366(3606) The Tectonic Articulation of Structure (also ARCH 666/666)
Fall or spring. 3 credits. Limited enrollment. Prerequisite: ARCH 363 or
equivalent. Not offered every year.
J. Ochshorn.
Through a series of readings, exercises, and case studies, students investigate ways in which structural forces can be expressed in works of architecture. Both the structural basis of form as well as the formal articulation of structure are considered. Course objectives include: gaining insight into the behavior of structure; investigating the cultural meaning of structure and technology; and exploring the interaction of structure and form.

ARCH 463(4603) Special Topics in Structures
Fall or spring. 3 credits. Limited to 30 students. Prerequisites: ARCH 263, 264, and 365 or permission of instructor. Not offered every year. Staff.
Topics TBA before preregistration.

ARCH 473(4608) Special Investigations in Structures
Fall or spring. Variable credit, max. 3. Prerequisite: permission of instructor and approved independent study form. Staff. Independent study

ARCH 563(5603) Structural Concepts
Fall or spring. 3 credits. Prerequisite: M. Arch. I students or permission of instructor. Staff.
For description, see ARCH 263.

ARCH 564(5604) Structural Elements
Fall or spring. 3 credits. Prerequisite: M. Arch. I students or permission of instructor. Staff.
For description, see ARCH 264.

ARCH 663(6603) Structural Systems
Fall or spring. 3 credits. Prerequisite: M. Arch. I students or permission of instructor. Staff.
For description, see ARCH 363.

[ARCH 664(6604) Vertigo Structures (also ARCH 364[3604])]

ARCH 665(6605) Bridge Design (also ARCH 365[3605])
Fall or spring. 3 credits. Limited enrollment. Prerequisite: ARCH 365 or equivalent. Not offered every year. Staff.
For description, see ARCH 365.

ARCH 666(6606) The Tectonic Articulation of Structure (also ARCH 366[3606])
Fall or spring. 3 credits. Limited enrollment. Prerequisite: ARCH 365 or equivalent. Not offered every year. J. Ochshorn.
For description, see ARCH 366.

Construction

ARCH 262(2602) Building Technology, Materials, and Methods
Fall. 3 credits. J. Ochshorn.
Properties of materials—their use and application to the design of buildings and building systems. Discussion of various methods of building construction and assembly.

ARCH 367(3607) Working Drawings (also ARCH 667[6607])
Fall or spring. 3 credits. Prerequisite: ARCH 262 or equivalent. Limited enrollment. Not offered every year. J. Ochshorn.

ARCH 465(4605) Special Topics in Construction
Fall or spring. 3 credits. Limited to 30 students. Prerequisite: ARCH 262 or permission of instructor. Not offered every year. Staff.
Topics TBA before preregistration.

ARCH 475(4604) Special Investigations in Construction
Fall or spring. Variable credit, max. 3. Prerequisite: permission of instructor and approved independent study form. Staff.
Independent study

ARCH 562(5602) Building Technology, Materials, and Methods
Fall or spring. 3 credits. Prerequisite: M. Arch I students or permission of instructor. Staff.
For description, see ARCH 262.

ARCH 667(6607) Working Drawings (also ARCH 367[3607])
Fall or spring. 3 credits. Prerequisite: ARCH 262 or equivalent. Limited enrollment. Not offered every year. J. Ochshorn.

Environmental Systems and Conservation

ARCH 261(2601) Environmental Systems—Site Planning
Spring. 3 credits. Staff.
Basic principles involved in design in the outdoor environment. A brief historical perspective. A development of inventory including grading and drainage. Foundations, surfacing, and construction.

ARCH 361(3601) Environmental Systems I—Lighting and Acoustics
Fall. 3 credits. Staff.
Basic properties and principles of sound and light. Sound phenomena, noise control, absorption, acoustical design; light, color, and form. Natural lighting possibilities and constraints as well as good and bad examples of artificial lighting.

ARCH 362(3602) Environmental Systems II—Mechanical and Passive Solar Systems
Spring. 3 credits. Staff.
Basic thermal analysis of buildings, human comfort criteria, energy conservation, passive solar design, HVAC distribution systems, overview of mechanical conveying systems, and plumbing.

ARCH 461(4601) Ecological Literacy and Design (also DEA 422[4220])
Spring. 3 credits. Letter grades only. Cost of field trips: approx. $25. J. Elliott.
Lecture/seminar course for advanced (junior or senior) students interested in learning about the effects of designing the built environment of the biophysical world. Course objectives are to develop sensitivities to environmental issues, construct conceptual frameworks for analysis, and demonstrate how ecological knowledge can be applied to the practice of design through participatory approaches to learning. Visit http://instruct1.cit.cornell.edu/courses/dea422/ARCH.

ARCH 464(4619) Special Topics in Environmental Systems and Conservation
Fall or spring. 3 credits. Limited to 30 students. Prerequisites: ARCH 261, 361, and 362 or permission of instructor. Not offered every year. Staff.
Topics announced before preregistration.

ARCH 474(4618) Special Investigations in Environmental Systems and Conservation
Fall or spring. Variable credit, max. 3. Prerequisite: permission of instructor and approved independent study form. Staff.
Independent study

ARCH 561(6601) Environmental Systems I—Lighting and Acoustics
Fall or spring. 3 credits. Prerequisite: M. Arch. I students or permission of instructor. Staff.
For description, see ARCH 361.

ARCH 662(6602) Environmental Systems II—Mechanical and Passive Solar Systems
Fall or spring. 3 credits. Prerequisite: M. Arch. I students or permission of instructor. Staff.
For description, see ARCH 362.

Computer Applications

ARCH 374(3704) Computer Graphics I (also COM S 465)
Fall. 4 credits. Prerequisite: COM S/ENGRD 211. Staff.
For description, see COM S 465.

ARCH 476(4706) Special Topics in Computer Applications
Fall or spring. 3 credits. Limited to 30 students. Prerequisite: ARCH 374 or 379 or permission of instructor. Not offered every year. Staff.
Topics TBA before preregistration.

ARCH 479(4709) Advanced Computer Graphics: Virtual Reality (also ARCH 679[6709])
Fall. 3 credits. Prerequisites: introductory computer graphics or computer science course, or permission of instructor; upper-level undergraduate or graduate standing.
H. Richardson.
Explores the role of synthetic imaging and computer graphics in architectural design. The first half of the course examines the new possibilities that information technologies offer for multimedia visualization of architecture, from abstract conceptual drawings, to sketching, photorealistic rendering, and multimodal representation, including motion and sound. The second half explores the uses of information technologies to model and simulate the creative design process. These explorations include developing a library of design ideas as building blocks for design; creating multimodal, multidimensional, immersive, virtual environments; interactive transformation and synthesis of design concepts; and "reverse architecturing" of canonical works. The emphasis of this course is on concepts as well as methods and techniques of computer graphics and their application to simulating the creative design process in architecture.
Architectural History

The history of the built domain is an integral part of all aspects of the architecture curriculum, from design and theory to science and technology. Incoming students take ARCH 181-182 in the first year, and three additional courses from the 380–399 series, preferably in the third and fourth years. Seminars are intended for advanced undergraduate and graduate students and do not satisfy undergraduate history requirements. Courses with the same number may be taken only once to satisfy history of architecture or in college requirements.

Sequence Courses
ARCH 181(1801) History of Architecture I
Fall. 3 credits. Requirement for first-year architecture students; open to all students in other colleges interested in the history of the built domain. Staff.

ARCH 182(1802) History of Architecture II
Spring. 3 credits. Requirement for first-year architecture students; open to all students in other colleges interested in the history of the built domain; may be taken independently of ARCH 181. Staff.

Directed Electives
ARCH 380(3800) History of Theory
Not offered every year.

ARCH 381(3801) From Utopia to the Ghetto: Renaissance Urban Form
Fall or spring. 3 credits. Prerequisites: ARCH 181-182 or permission of instructor. Not offered every year. M. Lasansky.

ARCH 382(3802) The Cinematic City
Fall. 3 credits. Prerequisite: ARCH 181-182 or permission of instructor. Not offered every year. M. Lasansky.

Fall or spring. 3 credits. Prerequisite: ARCH 181-182 or permission of instructor. Not offered every year. M. Lasansky.

ARCH 384(3804) The Urban Landscape of Renaissance Rome: 1450 to 1600
Fall or spring. 3 credits. Prerequisites: ARCH 181-182 or permission of instructor. Not offered every year. M. Lasansky.

ARCH 385(3805) Magnificent Utility—Architecture and the Arts of Persuasion

ARCH 386(3806) The Architecture of India and Its Interpretation
Spring. 3 credits. Not offered every year. B. MacDougall.

ARCH 387(3807) 19th Century: Tales of the City
Fall or spring. 3 credits. Prerequisite: ARCH 181-182 or permission of instructor. Not offered every year. M. Woods.

ARCH 388(3808) Modernism

ARCH 389(3809) Architecture, Revolution, and Tradition

ARCH 390(3810) American Architecture and Building I (also AM ST 390/3810)
Fall or spring. 3 credits. Prerequisites: ARCH 181-182 or permission of instructor. Not offered every year. M. Woods.

ARCH 391(3811) American Architecture and Building II (also AM ST 391/3811)
Fall or spring. 3 credits. Prerequisites: ARCH 181-182 or permission of instructor. Not offered every year. M. Woods.
to the present day. Particular attention is paid to the processes of industrialization, professionalization, and urbanization as well as to the manifestations of gender, class, race, and ethnicity in the built and architectural environments.

ARCH 392(3812) Modern Architecture on Film
Fall or spring. 3 credits. Prerequisites: ARCH 181–182 or permission of instructor. Not offered every year. M. Woods.
Exploration of certain themes deemed critical to modern architecture and urbanism through their representations in both commercial and avant-garde films from the medium’s birth until the present day. The focus varies each semester with particular emphasis to include the modern house and housing, the modern city, technology and visions of the future, and finally the image of the architect. Representations of these themes in other forms such as painting, photography, theater, literature, and advertising also are examined. The course includes selected readings in modern architecture and film, screenings in class, class discussions, presentations, and papers.

[ARCH 393(3813) The Cumulative City]

ARCH 395(3815) History of the Present—Contemporary Architecture and Urbanism
Fall or spring. 3 credits. Prerequisite: ARCH 181–182 or permission of instructor. C. F. Otto.
Theory and practice in architecture and urbanism is investigated from the immediate past using methods of cultural and design history, the course problematizes the relationship (and relevance) of history to architectural practice and experience.

ARCH 396(3816) Special Topics in the History of Architecture and Urbanism
Fall or spring. 3 credits. Prerequisites: ARCH 181–182 or permission of instructor. Not offered every year. Staff.
Topics TBA.

ARCH 397(3817) Special Topics in the History of Architecture and Urbanism
Fall or spring. 3 credits. Prerequisites: ARCH 181–182 or permission of instructor. Not offered every year. Staff.
Topics TBA.

ARCH 398(3818) Special Topics in the History of Architecture and Urbanism
Fall or spring. 3 credits. Prerequisites: ARCH 181–182 or permission of instructor. Not offered every year. Staff.
Topics TBA.

Graduate Seminars in the History of Architecture and Urbanism
All topics for ARCH 682 to 699 TBA before the start of the semester.

ARCH 680(6800) Seminar in Historiography
Fall. 4 credits. Requirement for first- and second-year graduate students in History of Architecture and Urbanism Program. Prerequisite: permission of instructor. Staff. Examines historiographic and methodological issues in relation to the history of architecture and urbanism. Taught by different faculty members in successive years, the seminar is required of all first- and second-year graduate students in the History of Architecture and Urbanism Program.

[ARCH 686(6806) Seminar in 17th- and 18th-Century Architecture and Urbanism]

[ARCH 688(6808) Seminar in 20th-Century Architecture and Urbanism]

[ARCH 690(6810) Seminar in American Architecture, Building, and Urbanism]
Fall or spring. 4 credits. Prerequisite: permission of instructor. Not offered every year. Staff.

[ARCH 692(6812) Seminar in 19th-Century Architecture, Building, and Urbanism]
Fall or spring. 4 credits. Prerequisite: permission of instructor. Not offered every year. Staff.

ARCH 696(6816) Seminar in Special Topics in the History of Architecture and Urbanism
Fall or spring. 4 credits. Prerequisite: permission of instructor. Not offered every year. Staff.

ARCH 697(6817) Seminar in Special Topics in the History of Architecture and Urbanism
Fall or spring. 4 credits. Prerequisite: permission of instructor. Not offered every year. Staff.

ARCH 699(6818) Seminar in Special Topics in the History of Architecture and Urbanism
Fall or spring. 4 credits. Prerequisite: permission of instructor. Not offered every year. Staff.

ARCH 699(6819) Independent Study in the History of Architecture and Urbanism
Fall or spring. Variable credit; max. 12. Prerequisite: permission of instructor. Staff. Independent study for graduate students only.

ARCH 899(8921) M.A. Essay in the History of Architecture and Urbanism
Fall or spring. 4 credits. Staff. Independent preparation of the M.A. essay, often developed from topics investigated in ARCH 680.

ARCH 999(9901) Ph.D. Dissertation in the History of Architecture and Urbanism
Fall or spring. Variable credit; max. 12. Staff. Independent study for the doctoral degree.

ART
B. Spector, chair (224 Tjaden Hall, 255-3558); R. Bertoia, J. Loevy, T. McGrain, E. Meyer, G. Page, director of graduate studies; B. Perlus, W. S. Taft, and visiting artists and critics.

Undergraduate Program
The curriculum in art is a program of study within the College of Architecture, Art, and Planning, as well as other colleges at Cornell. The undergraduate curriculum in art is an excellent background for a career in the visual arts. Past graduates have found it to be an excellent preparation for a career in applied art, although no specific technical courses are offered in such areas as interior design, fashion, or commercial art.

The undergraduate curriculum in art, leading to the degree of bachelor of fine arts, provides an opportunity for the student to combine a general liberal education with the studio concentration required for a professional degree. During the first four semesters, all students follow a common course of study designed to provide a broad introduction to the arts and a basis for the intensive studio experience of the last two years. Beginning with the third year, students concentrate in painting, sculpture, photography, printmaking, or combined media.

Studio courses occupy approximately one-half of the student’s time during the four years at Cornell; the remaining time is devoted to a diversified program of academic subjects with a generous provision for electives.

All members of the faculty in the Department of Art are practicing, exhibiting artists, whose work represents a broad range of expression. A candidate for the B.F.A. degree may also earn a bachelor of arts degree from the College of Arts and Sciences or the College of Human Ecology, or a bachelor of science degree from the College of Engineering, in a five-year dual degree program. This decision should be made early in the candidate’s career (no later than the third semester) so that he or she can apply to be registered in both colleges simultaneously. Each student is assigned an adviser in both colleges of their dual-degree program to provide needed guidance. Candidates for two degrees must satisfy all requirements for both degrees. At least 62 of the total credits must come from
courses offered in the Department of Art. In addition, all Department of Art requirements for first-year writing seminars, art history, and distribution must be met.

It is expected that a dual-degree candidate will complete the pre-thesis and thesis requirements for the B.F.A. degree during the fourth and fifth year.

Bachelor of Fine Arts Degree Requirements

Credits and Distribution

The B.F.A. degree requires 130 academic credits. A minimum of 38 are taken in the Department of Art.

Curriculum

Students are expected to take an average course load of 16 credits per semester during their four years. Students wishing to take more than three studio courses in any one semester must file a petition. All students must take at least one studio course a semester unless there are exceptional circumstances expressed in the form of a petition. Any request to deviate from the standard curriculum must be petitioned to the department before the act. No student in the first year of the B.F.A. program will be permitted to deviate from the required curriculum.

Specific Course Requirements

By the end of the second year, students must have completed an introductory course in each of the areas of painting, sculpture, printmaking, photography, electronic imaging, and four drawing courses. By the end of the third year, all students must have completed an additional 12 credits beyond the introductory level in three of the four areas.

Concentration

Students must plan their programs to complete 27 credits in one of the studio areas of painting, sculpture, photography, electronic imaging and printmaking (26 credits each). Declaration of the area of concentration must be made by the second semester of the sophomore year. Students concentrating in combined media must also submit an approved projected course plan. B.F.A. students complete a senior thesis in one area of concentration and are required to participate in the Senior Exhibition in the semester the thesis is taken.

Concentration Requirements (27 credits total; 26 in electronic imaging and printmaking)

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Painting: ART 121, 221, 321, 421, 422</td>
<td>23</td>
</tr>
<tr>
<td>Sculpture: ART 141, 241, 341, 441, 442</td>
<td>23</td>
</tr>
<tr>
<td>Printmaking: ART 131/132/133 (2 of 3)</td>
<td>23</td>
</tr>
<tr>
<td>Photography: ART 161, 261, 263/264/265/361 (1 of 4)</td>
<td>461, 462</td>
</tr>
<tr>
<td>Electronic Imaging: ART 171/172/234 (1 of 2)</td>
<td>272/273 (1 of 2)</td>
</tr>
</tbody>
</table>

Dual Concentration

Students interested in studying in more than one area may choose to do a dual concentration. The dual concentration requires a first area, in which the thesis is conducted, and a nonthesis second area. Pre-thesis and thesis must be taken in the first area of concentration. Students take 23 credits in the first area of concentration (22 for printmaking) and 15 credits in the second area of concentration (14 for printmaking). Drawing is available only as a second area of concentration.

The required courses for the dual concentration are:

<table>
<thead>
<tr>
<th>First Area of Concentration</th>
<th>Total Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Painting: ART 121, 221, 321, 421, 422</td>
<td>23</td>
</tr>
<tr>
<td>Sculpture: ART 141, 241, 341, 441, 442</td>
<td>23</td>
</tr>
<tr>
<td>Printmaking: ART 131/132/133 (2 of 3)</td>
<td>23</td>
</tr>
<tr>
<td>Photography: ART 161, 261, 263/264/265/361 (1 of 4)</td>
<td>461, 462</td>
</tr>
<tr>
<td>Electronic Imaging: ART 171/172/234 (1 of 2)</td>
<td>272/273 (1 of 2)</td>
</tr>
</tbody>
</table>

Combined Media Concentration

The combined media concentration enables students to fulfill concentration requirements by combining several studio disciplines, including out-of-department studio courses such as those offered in the departments of music and theatre, film, and dance. Students must file an approved "area of concentration" form. In addition to the courses required of all B.F.A. majors during their first and second year (see B.F.A. curriculum), students must take two studios at the 200 or 300 level, a minimum of two "out of college" studio electives (OCE studio) of 3-4 credits each, ART 481 Pre-Thesis in Combined Media and ART 482 Thesis in Combined Media.

Note: The total number of out-of-college elective credits required will be adjusted to allow for the additional credits required of the dual concentration.

Combined Media Concentration

The combined media concentration requires students to fulfill concentration requirements by combining several studio disciplines, including out-of-department studio courses such as those offered in the departments of music and theatre, film, and dance. Students must file an approved "area of concentration" form. In addition to the courses required of all B.F.A. majors during their first and second year (see B.F.A. curriculum), students must take two studios at the 200 or 300 level, a minimum of two "out of college" studio electives (OCE studio) of 3-4 credits each, ART 481 Pre-Thesis in Combined Media and ART 482 Thesis in Combined Media.

Note: The total number of in- and out-of-college elective credits required will be adjusted to allow for additional credits required of the combined media concentration.

Rome Program

Students in good standing who have completed the requirements of the first two years of the curriculum are eligible for participation in the Rome Program. Students are admitted to the program by application and review of their academic record. Applications are submitted to the Rome Program coordinator. Students applying to the Rome Program must meet with their faculty adviser and the department chair to obtain signatures of approval for admission to the program. Students in the department wishing to attend the Rome Program must register for a full semester of credits. The department recommends that students attend the program during the first or second semester of their junior year. (Under special circumstances, seniors may petition to attend the Rome Program.) Only under special circumstances, and with prior permission and approval, are seniors allowed to attend the Rome program. Students wishing to spend two consecutive semesters in Rome must submit a petition, which should include the proposed course schedule for both semesters and must have appropriate faculty approval.

Sample Rome Curriculum

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ART 400 Rome Studio</td>
<td>4</td>
</tr>
<tr>
<td>Requirement for Rome B.F.A. students, fulfills 4 credits in a studio concentration</td>
<td></td>
</tr>
<tr>
<td>ART 209 Site-Specific Processes</td>
<td>3</td>
</tr>
<tr>
<td>ART 312 Modern Art in Italy</td>
<td>3</td>
</tr>
<tr>
<td>ART 318 History of Art in Rome: Renaissance in Rome and Florence</td>
<td>4</td>
</tr>
<tr>
<td>or ART 372.20 Special Topics in Art History (spring only)</td>
<td>4</td>
</tr>
<tr>
<td>ITALIA 111/112 Italian Language</td>
<td>4</td>
</tr>
<tr>
<td>[ARCH 317 Contemporary Italian Film []]</td>
<td>4</td>
</tr>
</tbody>
</table>

Students may add by approved petition to take 19 credits in Rome.

18 Total

Other electives available to B.F.A. students include courses in architectural history, visual studies, city and regional planning, and the Independent Studio in Art.

Students may petition to take more than 16 credits per semester in the Rome Program. Students may study in Rome for one or two academic semesters.

*Fulfills 300-level theory and criticism requirement.

Out-of-College Requirements

A minimum of 57 elective credits must be taken outside of the college. In the first year, students must take two first-year writing seminars. Students are required to take courses from among three groups, which include: physical and biological sciences (minimum of two courses, of at least 3 credits each), social sciences (minimum of three courses, of at least 3 credits each); and humanities and expressive arts (minimum of three courses, of at least 3 credits each). All B.F.A. students are required to take 20 credits in the history of art. One course must be taken in each of the following areas:

Three electives: any art history elective at the 300 level or above or any architectural history elective. (Note: Offerings may vary each semester. Students are encouraged to consult with their adviser. Students may petition to substitute courses of similar content.)

The university requirement of two semesters in physical education must be met.

A candidate for the B.F.A. degree at Cornell is required to spend the last two semesters of candidacy in residence at the university, subject to the conditions of the Cornell faculty legislation of November 14, 1962. No student may study in absentia for more than two semesters.

Students who transfer into the undergraduate degree program in art must complete a minimum of four semesters in residence at Cornell and a minimum of 60 credits at the university, of which 30 credits must be taken in the Department of Art, including four semesters of studio work.

For those students matriculating in fall of 2005:

Students are required to take ART 111 Introductory Art Seminar; ART 121 Introductory Painting; or ART 141 Introductory Sculpture; Art History elective; and a first-year writing seminar during the fall semester of the freshman year. ART 121/122/133 Introductory Printmaking; Art History elective; and an additional first-year writing seminar must be taken during the spring semester of the freshman year. Two 300-level courses in theory and criticism must be taken sometime between the sophomore and senior years.

Courses that will fulfill the theory and criticism requirement (Note: Offerings may vary from year to year. Check the current course catalog):

- ART 447
- ART 170
- ART 312 (Rome students only)
- ART H 367, 370, 377, 422, 463, 464, 466, 494, 571, 594
- ENGL 395
- GERST 660
- GOVT 375
- ASRC 304, 503
- ANTHR 320, 322, 453
- THETR 376

First Year

<table>
<thead>
<tr>
<th>Fall Semester (Required Curriculum)</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>111 Introductory Art Seminar</td>
<td>1</td>
</tr>
<tr>
<td>Art History Elective</td>
<td>4</td>
</tr>
<tr>
<td>121 Introductory Painting</td>
<td>3</td>
</tr>
<tr>
<td>or 141 Introductory Sculpture</td>
<td>3</td>
</tr>
<tr>
<td>151 Drawing I</td>
<td>3</td>
</tr>
<tr>
<td>First-year writing seminar</td>
<td>3</td>
</tr>
<tr>
<td>In-/Out-of-College Electives</td>
<td>3</td>
</tr>
</tbody>
</table>

Spring Semester (Required Curriculum)

Art History Elective	4
121 Introductory Painting	3
or 141 Introductory Sculpture	3
152 Drawing II	3
One of the following:	
131 Introductory Etching	3
132 Introductory Graphics	3
133 Introductory Lithography	3
First-year writing seminar	3

Second Year

Fall Semester (Required Curriculum) - 16 credits

<table>
<thead>
<tr>
<th>Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>161 Introductory Photography</td>
<td>3</td>
</tr>
<tr>
<td>171 Electronic Imaging in Art</td>
<td>3</td>
</tr>
<tr>
<td>251 Drawing III</td>
<td>3</td>
</tr>
<tr>
<td>Out-of-college elective (OCE)/Art History</td>
<td>3</td>
</tr>
<tr>
<td>OCE</td>
<td>3</td>
</tr>
</tbody>
</table>

Spring Semester

<table>
<thead>
<tr>
<th>Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>190-level studio</td>
<td>4</td>
</tr>
<tr>
<td>200-level studio</td>
<td>4</td>
</tr>
<tr>
<td>251 Drawing IV</td>
<td>3</td>
</tr>
<tr>
<td>300-level course in theory and criticism</td>
<td>3</td>
</tr>
<tr>
<td>OCE</td>
<td>3</td>
</tr>
</tbody>
</table>

Third Year

Fall Semester

<table>
<thead>
<tr>
<th>Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>200-level studio</td>
<td>4</td>
</tr>
<tr>
<td>Art studio concentration</td>
<td>4</td>
</tr>
<tr>
<td>Art history elective or 300-level course in</td>
<td>3-4</td>
</tr>
<tr>
<td>theory and criticism</td>
<td></td>
</tr>
<tr>
<td>OCE</td>
<td>3</td>
</tr>
<tr>
<td>In/OCE</td>
<td>3</td>
</tr>
</tbody>
</table>

Spring Semester

<table>
<thead>
<tr>
<th>Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art studio concentration</td>
<td>4</td>
</tr>
<tr>
<td>Art history elective or 300-level course in</td>
<td>3-4</td>
</tr>
<tr>
<td>theory and criticism</td>
<td></td>
</tr>
<tr>
<td>OCE</td>
<td>3</td>
</tr>
<tr>
<td>In/OCE (two courses)</td>
<td>3</td>
</tr>
</tbody>
</table>

Fourth Year

Fall Semester

<table>
<thead>
<tr>
<th>Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-Thesis</td>
<td>6</td>
</tr>
<tr>
<td>In/OCE (three to four courses)</td>
<td>10</td>
</tr>
</tbody>
</table>

Spring Semester

<table>
<thead>
<tr>
<th>Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thesis</td>
<td>6</td>
</tr>
<tr>
<td>In/OCE (three courses)</td>
<td>9</td>
</tr>
</tbody>
</table>

The M.F.A. Program

The master of fine arts program requires four semesters of full-time study, equal to a minimum of 60 credits. Graduate work done elsewhere or in the summer session is not applicable to the M.F.A. degree. The curriculum leading to the master's degree is flexible to accommodate the needs of the individual student and to enable the student to partake of the greater Cornell community. The ratio of graduate faculty to students allows an exceptional opportunity for individual mentoring. Graduate students are provided individual studios and have 24-hour access to studios and labs.

Graduate students in art may enroll in introductory or advanced courses in any field of study offered at the university. Fifteen credits are required in each semester; of these, 9 credits are in studio work, and 3 credits are in graduate seminar (ART 611, 612, 623, 624). Students are required to take at least 12 credits of academic work outside the Department of Art during their four semesters in residence. Candidates for the master of fine arts degree must have completed 18 credits in the history of art in the course of their graduate and/or undergraduate study. Every M.F.A. candidate must prepare a written statement, offer a thesis exhibition of studio work completed during residency, and give an oral defense of the written statement and visual thesis. Gallery space is provided for a one-week solo thesis exhibition during the final spring semester.

Course Information

Most courses in the Department of Art are open to students in any college of the university who have fulfilled the prerequisites or have permission of the instructor.

Fees are charged for all studio courses. See the specific course description for course fees.

To take advantage of the special opportunities afforded by summer study, several courses are offered during summer session.

Guidelines for Independent Study

A student who wishes to undertake an independent study must be a junior and in good academic standing. Fine arts students must have completed two years of the curriculum, including all first- and second-year studios and four semesters of drawing. Students must have prior approval to have an independent study count as a drawing requirement. All students must have taken a minimum of one Cornell art department course in the area of the proposed independent study. It is recommended that the student take the independent study with a professor with whom they have previously studied. Out-of-department students may be exempt from the studio sequence requirement at the discretion of the supervising professor. Independent studies must be petitioned to count toward required studio courses. Credit hours are variable up to a maximum of 4.

Courses in Theory and Criticism

The ratio of graduate and/or undergraduate study.

ART 111/1101 Introductory Art Seminar

Fall. 1 credit. Prerequisite: B.F.A. students. S-U grades only. Staff. Students meet each week with a different member of the faculty. The varying artistic interests of the faculty are presented and discussed. A maximum of two absences are allowed except by permission of chairman.
ART 170(1700) Visual Imaging in the Electronic Age
Fall or spring. 3 credits. D. Greenberg. Interdisciplinary survey course designed to introduce students in the creative arts, science, and engineering to the concepts of digital pictorial representation and display. It is a concept and theory course that concentrates on "why" rather than "how." Topics include perspective representations, display technology, how television works, bandwidth concepts, digital photography, computer graphics modeling and rendering, matting and compositing, color perception, data acquisition, volumetric imaging, and historical precedents, primarily from the art world. Also included are other modes of imaging.

Related Courses
ART 209(2009) Site-Specific Processes
Fall or spring. 3 credits. Prerequisite: ART 251 or permission of instructor. Staff. This studio course investigates materials, methods, and issues specific to Rome. The Italian experience and specifically the city of Rome is used to engage in artistic practices not readily available on the Ithaca campus. The methods to be studied in workshop settings include: fresco painting, egg tempera, watercolor, paper making, wood carving, stone carving, mosaics, and ceramics. The final project involves the use of one or more processes presented in a site-specific installation.

ART 214(2104) Art and the Multicultural Experience
Fall. 3 credits. R. Dalton. Investigates selected topics related to art and the multicultural experience. Students study the basic vocabulary and tools used in the expression of art. Students question the nature of the visual arts as a discipline and survey art created by underrepresented American minority cultural groups.

ART 312(3102) Modern Art in Italy
Fall or spring. 3 credits. Fulfills 300-level theory and criticism requirement for fine arts majors. Prerequisite: Rome Program participants. Staff. Introduces students to contemporary art in Rome through studio visits, gallery exhibitions, and museum collections. Lectures by artists, critics, and others. Traces art from idea to realization and explores the gallery and its relationship to artists and to promotion of art, the role of the art critic and museum, and art collecting.

ART 317(3107) History of Art in Rome: Early Christian to the Baroque Age

ART 318(3108) History of Art in Rome: Renaissance in Rome and Florence
Not offered every year. Staff. Surveys art from the beginning of the 15th century to Michelangelo's death (1564) with field trips to important churches, collections, and villas. Emphasis is given to sculpture and painting, and in the case of fresco, mosaics, and stucco decoration, the relationship with architecture and environment is a key element.

ART 419(4109) Independent Study/Supervised Readings in Art
Fall, spring, or summer. 4 credits, variable. Prerequisite: Juniors in good academic standing and written permission of instructor. Staff. Independent reading and research allows a student the opportunity to investigate special interests that are not treated in regularly scheduled courses. The student develops a plan of study to pursue under the supervision of a faculty member.

ART 570(5700) Theory Seminar
Fall and spring. 4 credits. Prerequisites: given to AAP and Art History graduate students. B. Spector and M. Fernandez. Introduces students in art, art history, and architecture to diverse theoretical texts of relevance to the three fields. Readings include classic texts in post-structural theory and more recent writings in new areas of theory and artistic practice, including digital art, cyber-feminism, globalization, museums and museology, architecture in visual space, biotechnology and artificial life, as well as issues in cognitive science and human-computer interaction centering on space and embodiment. Occasionally this seminar focuses on a single topic of convergence for these diverse areas.

ART 611(6101) Professional Skills for the Visual Artist
Spring. 3 credits. Prerequisite: M.F.A. students. Staff. This seminar helps fine arts graduate students build professional skills that will assist them in their careers as practicing artists and in their work at art-related employment. Students complete a resource notebook that will be useful to them in the years after they graduate. Topics include: funding resources, employment options, documentation of work, health, safety, and legal issues.

ART 612(6102) Recent Practice in the Visual Arts
Fall. 3 credits. Prerequisite: M.F.A. students. Staff. This seminar is designed to provide graduate students with an overview of recent visual artwork. Students study work from a wide range of artists who have received significant recognition within the visual arts community. Reviews of major exhibitions such as "Documenta," "La Biennale di Venezia," and the "Whitney Biennial" are discussed. Students are encouraged to travel to nearby cities to look at contemporary work.

ART 613(6103) Online Publication for the Visual Artist
Fall. 3 credits. Prerequisite: M.F.A. students. Staff. Seminar designed to introduce graduate students to the basic principles of electronic imaging. As a major project, each student interviews a contemporary visual artist. These interviews are illustrated with digital images of each artist's work and combined in an online magazine. Additionally each student learns to create a home page on the web.

ART 614(6104) Contemporary Theory in the Visual Arts
Spring. 3 credits. Prerequisite: M.F.A. students. Staff. Seminar exploring selected writings on the current issues represented within the visual arts. Designed to introduce graduate students to several approaches to critical inquiry and analysis of contemporary visual practice. Topics vary but may include related criticism in areas such as visual culture, semiotics, identity politics, and institutional frames.

ART 623(6203) Contemporary Theory and Visual Culture
Fall. 3 credits. Prerequisite: M.F.A. students. Staff. Seminar exploring selected writings on current issues in the visual arts. Designed to introduce graduate students to several approaches to critical inquiry and analysis of contemporary visual practice in the visual arts. Topics vary but may include related criticism in areas such as visual culture, semiotics, identity politics, and institutional frames.

ART 624(6204) Current Criticism in the Visual Arts
Spring. 3 credits. Prerequisite: M.F.A. students. Staff. Seminar designed to introduce graduate students to critical writing in the visual arts, both in print and in digital format. As a major project, each student interviews a contemporary visual artist. These interviews are illustrated with digital images of each artist's work and combined in an online magazine. Additionally, each student learns to create a home page on the web.

Studio Courses in Painting

ART 121(1201) Introductory Painting
Fall, spring, or summer. 3 credits. Staff. Studies the language of painting through color, form, materials, and techniques. Aspects of traditional and modern pictorial composition are studied including proportion, space, and color theory through the representation of a variety of subjects.

ART 221(2201) Painting I
Fall or spring. 4 credits. Prerequisite: ART 121 or permission of instructor. Staff. Continuation of the study of aspects of pictorial composition initiated in ART 121, focusing on problems relating to the depiction of the figure, space, and light. Topics are explored within the context of historical and contemporary artistic expression.

ART 321(3201) Painting III
Fall or spring. 4 credits. Prerequisite: ART 221 or permission of instructor. Staff. Advanced course centered on issues of artistic expression. A variety of traditional painting techniques are explored including egg tempera, fresco, gouache, encaustic, and artists' paints and associated techniques developed in the 20th century are used as well as developing technologies applicable to the painting process.

ART 322(3202) Painting IV
Fall or spring. 4 credits. Prerequisite: ART 321 or permission of instructor. Staff. Advanced course centered on issues of artistic expression. A variety of painting media are used to address conceptual issues through representation as well as abstraction.

ART 421(4201) Pre-Thesis in Painting
Fall or spring. 6 credits. Prerequisite: ART 322. Staff. Advanced study of painting through assigned and independent projects using a variety of
Studio Courses in Printmaking

Fees for printmaking courses:
Intaglio (131, 231, 431, 432, 439): $95
Screenprinting (132, 232, 431, 432, 439): $45
Lithography (133, 233, 431, 432, 439): $95
Expanded Print Forms (134, 234): $95

ART 131(1301) Introductory Intaglio
Fall and spring. 3 credits. Staff.
Basic introduction to etching techniques, with emphasis on engraving, lift ground, relief printing, monotype, and experimental techniques.

ART 132(1302) Introductory Graphics
Fall and spring. 3 credits. Staff.
Introduces the two-dimensional thought process and the language of vision. Students explore design projects and the use of graphic materials, including collage, pochoir, and screen printing.

ART 133(1303) Introductory Lithography
Fall and spring. 3 credits. Staff.
Study of the theory and practice of lithographic printing, using limestone block and aluminum plate. Basic lithographic techniques of crayon, wash, and transfer drawing are studied.

ART 134(1304) Expanded Print Forms
Spring. 3 credits. Prerequisite: one of the following: ART 131, 132, 133, 161, 171. 251, or permission of instructor. Staff.
Intensive experimental studio designed to introduce students to various ideas and processes of making artists' books. Encourages the integration of studio practice (photography, printmaking, drawing, and painting) with new digital strategies (digital photography, ink jet print, video/sound, CD-ROM/digital book making). Presents both concept and process as related to the visual book form. An introduction to digital publication as an expanded print form helps students investigate how the book is reinvented or reshaped within an electronic context.

ART 231(2301) Intaglio II
Spring. 4 credits. Prerequisite: ART 131. Staff.
Studio course in advanced etching techniques. Refinement of processes and ideas through the use of aquatint, spit bite, lift ground, soft ground, and dry point in black and white with an introduction to multiple-plate color printmaking.

ART 232(2302) Advanced Screen Printing

ART 233(2303) Lithography II
Spring. 4 credits. Prerequisite: ART 133. Staff.
Theory and practice of lithographic printing using lithographic stones and aluminum plates. Traditional techniques in crayon, tusche wash, and color printing as well as photolithography using kodakilith and computer-generated transparencies.

ART 234(2304) Large-Format Digital Printing
Fall and spring. 4 credits. Prerequisites: ART 161, 171, and one of the following: ART 131, 132, 133, 134 or permission of instructor. Staff.
Focuses on the use of digital printing and its use in combination with traditional forms of printmaking. Students explore various approaches to image making while also using traditional materials and media, including relief, monotype, lithography, screen printing, intaglio, transfers, collage, and photomechanical processes. Students use appropriate software, including Adobe Photoshop, Quarkxpress, Final Cut Pro, and Adobe illustrator to draw from both still and video base sources. Students work with large-format inkjet printers.

ART 231(2301) Printmaking III
Fall or spring. 4 credits. Prerequisite: ART 231, 232, or 233 or permission of instructor. Staff.
Study of the art of graphics through both assigned and independent projects. Work may concentrate in any one of the graphic media or in a combination of media.

ART 332(3302) Printmaking IV
Fall. 4 credits. Prerequisite: ART 331 or permission of instructor. Staff.
Continuation and expansion of ART 331.

ART 431(4301) Pre-Thesis in Printmaking
Fall or spring. 6 credits. Prerequisite: ART 332. Staff.
Further study of the art of graphics through both assigned and independent projects executed in various media. Instruction through group discussions and individual criticism.

ART 432(4302) Thesis in Printmaking
Fall or spring. 6 credits. Prerequisite: ART 431. Staff.
Advanced printmaking project to demonstrate creative ability and technical proficiency.

ART 439(4309) Independent Studio in Printmaking
Fall, spring, or summer. 4 credits. Prerequisite: juniors in good academic standing and written permission of instructor. Staff.

Independent studio in printmaking that allows the student the opportunity to pursue special interests not treated in regularly scheduled courses. The student plans study and projects under the supervision of a faculty member selected to guide his or her progress and evaluate the results.

ART 731-732(7301-7302), 831-832(8301-8302) Graduate Printmaking
Fall, winter, spring. First-year M.F.A. students, 9 credits. 831, fall; 832, spring; second-year M.F.A. students, 9 credits. Staff.
Students are responsible under faculty direction for planning their own projects and selecting the media in which they work. Members of the faculty are available for consultation; discussion sessions of work in progress are held.

Studio Courses in Sculpture

Fees for sculpture courses:
ART 141(1401) Introductory Sculpture
Fall, spring, or summer. 3 credits. Staff.
Series of studio problems introducing the student to the basic principles of artistic expression in three-dimensions, i.e., clay modeling, direct plaster, plaster casting, and construction in wood, metal, and other materials.

ART 241(2401) Sculpture II
Fall or spring. 4 credits. Prerequisite: ART 141, or architecture design studio, or permission of instructor. Staff.
Various materials, including clay, plaster, wood, stone, and metal, are used for exercises involving figurative modeling, abstract carving, and other aspects of three-dimensional form and design. Beginning in the second year, students are encouraged to explore bronze/metal casting processes. The sculpture program, which is housed in its own building, contains a fully equipped bronze-casting foundry.

ART 341(3401) Sculpture III
Fall or spring. 4 credits. Prerequisite: ART 241 or permission of instructor. Staff.
Continued study of the principles of sculpture and conceptual development. Each student explores the selection and expressive use of materials, media, scale, and content. Group discussions and individual criticism. Experimentation is encouraged.

ART 342(3402) Sculpture IV
Fall or spring. 4 credits. Prerequisite: ART 341 or permission of instructor. Staff.
Continued study of the principles of sculpture and conceptual development. Each student develops an individual project. Group discussions and individual critiques. Experimentation is encouraged.

ART 343(3403) Sculpture V
Fall or spring. 4 credits. Prerequisite: ART 342 or permission of instructor. Staff.
Continued study of the principles of sculpture and the selection and expressive use of materials and media. Group discussions and individual criticisms.

ART 441(4401) Pre-Thesis in Sculpture
Fall or spring. 6 credits. Prerequisite: ART 342. Staff.
Further study of the art of sculpture through both assigned and independent projects executed in various media. Instruction through
bimonthly group discussions and individual criticism. Students complete a body of work through an approved statement of purpose and proposed schedule.

ART 442(4402) Thesis in Sculpture
- Fall or spring. 6 credits. Prerequisite: ART 411. Staff.
- Advanced sculpture project to demonstrate creative ability and technical proficiency culminating in a cohesive B.F.A. thesis exhibition.

ART 449(4409) Independent Studio in Sculpture
- Fall, spring, or summer. 4 credits variable. Prerequisites: juniors in good academic standing and written permission of instructor. Staff.
- Independent studio in sculpture that allows the student the opportunity to pursue special interests not treated in regularly scheduled courses. The student plans study and projects under the supervision of a faculty member selected to guide their progress and evaluate their results.

Studio Courses in Photography

Darkroom fees for photography courses:
- Black-and-white courses: $135
- Color courses: $215
- Additional black-and-white course taken the same semester: $55
- Additional color course taken the same semester: $135

ART 161(1601) Photography I
- Fall, spring, or summer. 3 credits. Staff.
- Basic lecture-studio course in black-and-white photography for beginners. Emphasis is on basic camera skills, darkroom techniques, and understanding of photographic imagery.

ART 169(1609) Color Photography
- Summer, three-week session only. 3 credits. Staff.
- Intended for students at all levels, from introductory to advanced. Emphasis is on camera skills, darkroom techniques, and the content of black-and-white photographic imagery.

ART 251(2501) Drawing I
- Fall. 3 credits. Prerequisite: ART 151. Staff.
- Intermediate drawing course in which students study composition, the articulation of form, and the illusion of space in a variety of materials. Expressive content, conceptualization, and the exploration of materials are stressed.

ART 152(1502) Drawing II
- Spring. 3 credits. Prerequisite: ART 151. Staff.
- General course in drawing that emphasizes figure study and life drawing. Builds on the foundation of ART 151 and concentrates on the analytical study of the figure. Students explore a variety of materials, traditional and contemporary.

ART 158(1508) Conceptual Drawing
- Summer, six-week session. 3 credits. Staff.
- Emphasizes drawing from the imagination. Stresses the generation of ideas and their development in sketches. The intent is not to produce finished art but rather to experience a series of problems that require image and design concepts different from those of the artist working directly from nature.

ART 159(1509) Life and Still-Life Drawing
- Summer, six-week session. 3 credits. Staff.
- Studies the human figure and still life both as isolated phenomena and in relation to their environment. Focuses on helping the student observe and discover.

ART 251(2501) Drawing III
- Fall. 3 credits. Prerequisite: ART 152. Staff.
- Intermediate drawing course in which students study composition, the articulation of form, and the illusion of space in a variety of materials. Expressive content, conceptualization, and the exploration of materials are stressed.

Studio Courses in Electronic Imaging

Course fees:
- 171, 372, 479 $250
- 234, 271, 272 $105
- 373/374 $250
- 481, 482, 489 $70
ART 171(1701) Electronic Imaging in Art
Fall or spring. 3 credits. Staff.
Introductory studio course using the computer as a tool for making art. Students explore various approaches to 2- and 3-D web art using software programs and various functions. This course is an introduction to the web.

ART 234(2304) Large-Format Digital Printing
Fall and spring. 4 credits. Prerequisite: ART 171. Staff.
Focuses on the use of digital printing and its use in combination with traditional forms of printmaking. Students explore various approaches to image making while also using traditional materials and media, including relief, monotype, lithography, screen printing, intaglio, transfers, collage, and photomechanical processes. Students use appropriate software, including Adobe Photoshop, Quarkxpress, Final Cut Pro, and Adobe Illustrator to draw from both still and video-based sources. Students work with large-format inkjet printers.

ART 271(2701) Electronic 3-D Modeling and Animation
Fall or spring. 4 credits. Prerequisite: ART 171. Not offered every year. Staff.
Studio course in creating 2- and 3-D still and animated visualizations using computers and 3-D software for object modeling, animation, and rendering. This course concentrates on the web.

ART 272(2702) Digital Video and Sound
Fall or spring. 4 credits. Prerequisite: ART 171. Not offered every year. Staff.
Studio course that introduces students to digital video including capture stills, animation, video, and sound with an introduction to interactive presentation and CD-ROM production. This course concentrates on the web.

ART 273(2703) Computer Animation (also CIS 565/5640)
Fall. 4 credits. D. Greenberg.
Focuses on techniques of computer animation. Combines critical readings with studio projects that employ a variety of animation software. Topics include modeling, storytelling, 2-D and 3-D key frame animation, motion and kinematics, lighting effect and shading, texture and material properties, physical simulation, and cinematography.

ART 373(3703) Intermediate Electronic Imaging Studio I
Fall. 4 credits. Prerequisite: ART 272 or 273. Lab fee TBA. Staff.
For information, please call department.

ART 374(3704) Intermediate Electronic Imaging Studio II
Spring. 4 credits. Prerequisite: ART 272 or 273. Lab fee TBA. Staff.
For information, please call department.

ART 471(4701) Pre-Thesis in Electronic Imaging
Fall and spring. 6 credits. Prerequisites: ART 171, 234 or 271, 573 or 574. Lab fee TBA. Staff.
For information, please call department.

ART 472(4702) Thesis in Electronic Imaging
Fall and spring. 6 credits. Prerequisite: ART 471. Lab fee TBA. Staff.
For information, please call department.

Special Studio Courses

ART 372(3702) Special Topics in Art Studio
Fall, spring, or summer. 4 credits, variable. Staff.
Exploration of a particular theme or project.

ART 372.20(3702.20) Special Topics in Art History
Spring, 4 credits, variable. Prerequisite: Rome Program participants. Staff.
Topic TBA.

ART 379(3709) Independent Studio in Rome
Fall and spring. 4 credits, variable. Prerequisites: Rome Program participants; juniors in good academic standing and written permission of instructor. Staff.
Independent studio in Rome that allows non-art majors the opportunity to pursue special interests in fine arts not treated in regularly scheduled courses. Students plan a course of study or projects that meet the approval of the faculty member selected to guide his or her progress and evaluate the results.

ART 391(3901) Media Arts Studio I (also ARCH 459/659/4509/6509, FILM/DANCE 391/3910)
Fall. 3 credits. Prerequisites: FILM 277 or 277, junior standing and written permission of instructor. Lab fee: $50. Staff.
For description, see FILM 391.

ART 392(3902) Media Arts Studio II

ART 400(4000) Rome Studio
Fall or spring. 4 credits. Fulfills 4 credits of concentration requirement. Prerequisites: Rome Program participants; permission of instructor. Content for Rome studio determined by instructor. Fee: $560; additional fees for photography and printmaking. Staff.
Emphasis is divided between work accomplished in the studio and work executed outdoors in the environs of Rome. Media consists primarily of painting, drawing, sculpture, and photography, or those assigned by the instructor.

ART 479(4709) Independent Studio in Electronic Imaging
Fall, spring, or summer. 4 credits, variable. Prerequisites: juniors in good academic standing and written permission of instructor. Staff.
Independent studio in electronic imaging that allows the student the opportunity to pursue special interests not treated in regularly scheduled courses. The student plans study and projects under the supervision of a faculty member selected to guide his or her progress and evaluate the results.

ART 481(4801) Pre-Thesis in Combined Media
Fall or spring. 6 credits. Prerequisite: written permission of instructor on combined media thesis form (must be received in art department before enrollment in course). Students must enroll in pre-thesis course in their primary area of concentration. Staff.
Students are responsible, under faculty direction, for planning their own projects and selecting the media in which they work. Projects should reflect experiences gained by exploring and combining various media including those taken in studio courses outside the department. Students select a faculty member from the area of concentration most appropriate to their area of combined media.

ART 482(4802) Thesis in Combined Media
Fall or spring. 6 credits. Prerequisites: ART 481 and written permission of instructor on combined media thesis form (must be received in art department before enrollment in course). Students must enroll in thesis course in their primary area of concentration. Staff.
Students are responsible, under faculty direction, for planning their own projects and selecting the media in which they work. The projects should reflect experiences gained by exploring and combining various media including those taken in studio courses outside the department. Students select a faculty member from the area of concentration most appropriate to their area of combined media.

ART 489(4809) Independent Studio in Combined Media
Fall, spring, or summer. 4 credits, variable. Prerequisites: juniors in good academic standing and written permission of instructor. Staff.
An independent studio in combined media that allows the student the opportunity to pursue special interests not treated in regularly scheduled courses. The student plans study and projects under the supervision of a faculty member selected to guide their progress and evaluate their results.

CITY AND REGIONAL PLANNING
The department offers several programs of study at both the undergraduate and graduate levels.

The Undergraduate Program in Urban and Regional Studies
The Program in Urban and Regional Studies (URS) is a four-year academic program aimed at assessing the problems of human communities and regions. Students who graduate from the program receive a bachelor of science degree. The program provides both an excellent liberal arts education and a strong concentration of studies respecting urban and regional issues. The urban and regional studies courses in the program provide students with a broad understanding of relevant issues, the ability to assess those issues, and technical analysis skills. The URS Program is truly interdisciplinary. Students learn to evaluate urban and regional problems by using a wide range of analytic tools and disciplinary perspectives.
Basic Degree Requirements *(for students in the graduating class of 2006 and earlier)*

Requirements for graduation: URS requirements include (1) eight semesters of residence; (2) 60 credits; (3) two first-year seminars; (4) qualification in one foreign language; (5) four groups of distribution requirements; (6) required courses for major; (7) area requirements for major; (8) free electives; (9) a minimum of 34 courses; and (10) completion of the university requirement of two 1-credit nonacademic courses in physical education. Note: Physical education credit does not count toward graduation or toward the 12-credit minimum required for good academic standing each semester. No course may satisfy more than one requirement.

1. **General Education**
 a. First-year writing seminars: two courses
 b. Foreign language: three courses or qualification in one foreign language
 c. Distribution requirement: nine courses

 Students must take a total of nine courses for the distribution requirement: four courses (of three or more credits each) from Groups 1 and 2, at least two of which are from Group 1, and at least one of which is from Group 2; five courses from Groups 3 and 4, with at least two in each group and two in the same department. No single course may satisfy more than one distribution requirement. URS students must follow the College of Arts and Sciences guidelines specifying courses that meet the requirements for groups 1–4.

 - **Group 1**: Physical and biological sciences (two to three courses required)
 - **Group 2**: Quantitative and formal reasoning (one to two courses required)
 - **Group 3**: Social sciences and history (two to three courses required)
 - **Group 4**: Humanities and the arts (two to three courses required)

2. **Advanced Placement Credit**

 Students in the graduating class of 2006 and earlier may apply up to two courses of approved advanced placement credit in calculus, physics, and science toward satisfaction of the distribution requirement in Groups 1 and 2 above, if they complete at least one science course during their undergraduate career. They may apply no advanced placement credit toward the distribution requirement in Groups 3 and 4.

 Grades of S-U courses cannot be applied to the distribution requirements.

 Students in the graduating classes of 2007 and later may apply no advanced placement or transfer credit to general education requirements in Groups 1 through 4 (sciences, quantitative reasoning, social sciences/humanities/arts).

3. **Distribution Requirements** *(same as graduating class of 2006 and earlier)*

 (For a complete listing of courses in Groups 1 through 4, see "Distribution Requirements" under "College of Arts and Sciences." Note: The Arts and Science distribution requirement has been changed for entering freshmen in that college (class of 2007). Rather than selecting courses from Groups 3 (social sciences and history) and 4 (humanities and the arts), as of fall semester 2004, Arts and Sciences students are required to complete five courses in at least four of the following five categories: Cultural Analysis (CA); Historical Analysis (HA); Knowledge, Cognition, and Moral Reasoning (KCM); Literature and the Arts (LA); and Social and Behavioral Analysis (SBA). Social science and humanities courses are marked individually by category, and any given department may offer courses that fall into distinct categories. URS students are also encouraged to select their Group 3 and Group 4 courses from four of these five categories.

 Required Courses for the Major in Urban and Regional Studies: seven courses

 - CRP 100 The American City
 - CRP 101 The Global City: People, Production, and Planning in the Third World
 - Statistics (at least 3 credits from approved list below)

 AEM 210 Introduction to Statistics
 BTRY 261 Statistical Methods
 ECON 219 Introduction to Statistics and Probability
 MATH 171 Statistical Theory and Application in the Real World
 SOC 301 Evaluating Statistical Evidence (II)

4. **Free Electives: six to nine courses**

5. **Physical Education (two semesters)**

 Required credits: 120

New requirements for students in the graduating class of 2007 and after

General Education: same as graduating class of 2006 and earlier

1. First-year writing seminars: two courses

 Students earning a score of 5 on both English literature and English language exams will receive 3 credits (in out-of-college electives) and place out of one first-year writing seminar.

Distribution Requirements: same as graduating class of 2006 and earlier

- **E. Methods for Planning and Urban Studies**
 - CRP 331 or 332

URS-Approved Area Requirements List *(available in program office)*

Honor Program

Each year a few well-qualified juniors may join the honors program. Each honors student develops and writes an honors thesis under the guidance of his or her faculty adviser.

Concentrations

- **Urban Studies Concentration (non-URS majors)**

 The Urban and Regional Studies Concentration has been formulated specifically for those students not enrolled in the Program of Urban and Regional Studies and who are interested in complementing their current academic program with an introduction to various facets of urban studies (domestic, environmental, international, professional, urban affairs).

 To complete the Urban and Regional Studies (URS) concentration, students must take at least six courses (minimum total of 18 credits) in the Department of City and Regional Planning (CRP). Courses must be completed with letter grade of C or above.
Nine (9) credits of required core courses:

CRP 100 American Cities (3 credits)

CRP 101 The Global City: People, Production in the Third World (3 credits)

CRP 200 The Promise and Pitfalls of Contemporary Planning (3 credits)

And 9 credits of elective department courses at the 300 level or higher.

(Please consult department course listings.)

Students meet with their home college faculty adviser. Upon completion of course requirements, students complete a URS concentration application form, available in 106 W. Sibley Hall. The AAP registrar verifies course completion and grades for concentration requirements and signs the application form. The URS program director (URS concentration adviser) also verifies completion of the concentration, signs the form, and sends a letter (on department letterhead) to the student's home college. The home college will record completion of the URS concentration on the student's transcript.

The department recognizes concentrations earned within the university (accepting standards of other colleges). Students may apply for concentrations in any college (e.g., Africana Studies, Architecture, Latino Studies, Southeast Asian Studies, and Feminist, Gender, and Sexuality Studies). When a student satisfies the requirements for a concentration, and formal notification is received by the AAP registrar, the concentration will be recorded on the student's official transcript.

Off-Campus Opportunities

Cornell in Washington Program. Students in good standing may earn degree credits in the Cornell in Washington program through coursework and an urban-oriented externship in Washington, D.C. Students may work as externs with congressional offices, executive-branch agencies, interest groups, research institutions, and other organizations involved in the political process and public policy. Students also select one or two other seminars from such fields as government, history, economics, human development, architectural history, natural resources, and social policy. Cornell faculty members teach these seminars, which provide credit toward fulfillment of major, distribution, and other academic requirements.

Cornell Abroad. Qualified undergraduates are encouraged to study abroad because exposure to foreign cultures can be an eye-opening aspect of a university education.

In an increasingly interdependent world, the experience of living and learning in a foreign country is invaluable. Study-abroad opportunities are continually being developed. Current programs are available in Great Britain, Spain, and Germany. Opportunities in Asia, the Mideast, and France should be forthcoming. The department encourages URS students to explore these opportunities.

Cornell-in-Rome Program. The College of Architecture, Art, and Planning has a teaching facility in Rome located in the 17th-century Palazzo Lazzaroni. Students in good standing may earn degree credits through courses taken with Cornell faculty members assigned to Rome and with accredited instructors. Courses are available in areas of urban development, regional development, and architecture.

Research and fieldwork. Students are welcome to work with department faculty members on research or other opportunities that are appropriate to their particular interests. Fieldwork and community-service options also exist for students in the Urban and Regional Studies Program.

Additional Degree Options

Linked degree options. Urban and regional studies students may earn both a bachelor of science degree and a master of regional planning (M.R.P.) degree in a fifth year of study. Ordinarily the professional M.R.P. degree requires two years of work beyond that for the bachelor's degree. Under this option, a minimum of 30 credits and a master's thesis or thesis project are required for the M.R.P. degree. Interested students apply to the Graduate School, usually in the senior year.

Dual-degree option. A student accepted in Cornell's College of Arts and Sciences may earn both a B.A. in a College of Arts and Sciences major and a B.S. in urban and regional studies in a total of five years. Special requirements have been established for this dual-degree program. Cornell students interested in pursuing the dual degree program should contact either the director of the Urban and Regional Studies Program or the appropriate dean of the College of Arts and Sciences for further information.

Admissions Requirements and Procedures

Among the most important criteria for admission to the Urban and Regional Studies Program are intellectual potential and commitment—a combination of ability, achievement, motivation, diligence, and use of educational and social opportunities. Nonacademic qualifications are important as well. The department encourages students with outstanding personal qualities, initiative, and leadership ability. Above all, the department seeks students with a high level of enthusiasm and commitment toward the study of urban and regional issues. Applicants must complete a university admission application.

Transfer Students

In most cases, transfer applicants should no longer be affiliated with a high school and should have completed no fewer than 12 credits of college or university work at the time of application. High school students who have completed graduation requirements at midyear and are taking college courses for the rest of the year may apply as freshmen. Prospective candidates who believe that their circumstances are exceptional should consult with the director of admissions in the Cornell division of interest to them before filing an application.

Forms for transfer application and financial aid are available from the Cornell University Office of Admissions, 410 Thurston Avenue, Ithaca, NY 14850-2488. Official transcripts of all high school and college work must be submitted along with SAT or ACT scores and letters of recommendation.

Prospective transfers should have taken at least 6 credits in English. In addition, students should have taken basic college-level courses distributed across the natural and social sciences, humanities, and mathematics. Applicants whose previous course work closely parallels the "General Education" requirements of the Urban and Regional Studies curriculum will have relative ease in transferring. Nevertheless, students with other academic backgrounds, such as engineering, architecture, fine arts, management, and agriculture, are eligible to apply.

Although an interview is not required, applicants are urged to visit the campus. Applicants who want further information regarding the Urban and Regional Studies Program may contact Professor Barbara Lynch, program director, Urban and Regional Studies, Cornell University, 106 West Sibley Hall, Ithaca, NY 14853-6701. 255-2186.

The Graduate Program in City and Regional Planning

There are five graduate degree programs in the city and regional planning department. The master of regional planning program stresses skills basic to professional planning practice and responds to individual needs and interests. The faculty strongly recommends that students concentrate in one of three areas of planning. The Land Use and Environmental Planning concentration focuses on the forces and actions that directly affect the physical character, transformation, rehabilitation, and preservation of cities and regions. Economic Development Planning: Communities and Regions focuses on the economics of neighborhoods, cities, and regions with the intent of producing more informed and effective economic development policy. International Studies in Planning (ISP) focuses on urban, regional, and international development processes and their implications for people's lives and livelihoods in diverse international contexts.

The master of professional studies in international development (M.P.S./I.D.) degree is administered jointly with the Cornell International Institute for Food, Agriculture, and Development (CIIFAD). It is intended to meet the specific training needs of experienced professionals or midcareer professionals in related fields.

The 60-credit master of arts (M.A.) in historic preservation planning prepares students for professional work in the creative preservation and use of our physical heritage.

The master of science (M.S.) or master of arts (M.A.) degrees in regional science is the study of regional economies and their interactions with each other. Central issues include capital flows, trade, location of economic activity, growth, and regional conflicts. Graduates are positioned for careers as researchers and policy analysts at the highest levels in national governments, corporations, and international organizations.

The doctor of philosophy (Ph.D.) program is for those who seek advanced, specialized education for a career in teaching, research, or policy making.

Off-Campus Opportunities

Rome Program. Graduate students have the opportunity to spend one or two semesters in Rome, studying at Cornell's center at the Palazzo Lazzaroni. Instruction is given by Cornell professors-in-residence and by other faculty. The program is structured to include
work assignments in one of the international development organizations headquartered in Rome.

Course Information
Most courses in the Department of City and Regional Planning are open to students in any college of the university who have fulfilled the prerequisites and have the permission of the instructor.

The department attempts to offer courses according to that plan; however, students should check with the department at the beginning of each semester for late changes.

Undergraduate Program in Urban and Regional Studies

CRP 100(1100) The American City
Fall. 3 credits. S-U grades optional for out-of-department students only. W. W. Goldsmith.

Introduces planning as a profession, with emphasis on the early years of American city planning. The urban environment is explored in the context of the city's history. Readings, discussions, and guest lectures will cover a variety of topics ranging from suburban development to central city poverty, from environmental threats to downtown revitalization, and from municipal finance to the new position of women in the urban economy.

CRP 101(1101) The Global City: People, Production, and Planning in the Third World
Spring. 3 credits. S-U grades optional for out-of-department students only. N. Kudva.

Critical look at the physical and social development of giant cities in the Third World. Their origins, roles, contributions, and shortcomings are examined. Their place in world political economy is evaluated. Policy prescriptions for their principal problems are discussed.

CRP 106(1106) URS First-Year Seminar
Fall. 2 credits. S-U grades only. N. Kudva.

Introduces students to substantive issues of the diverse disciplines that make up the planning profession through weekly interaction with URS and other faculty members. Students have the opportunity to engage in open discussions.

Fall. 3 credits. Prerequisite: CRP 100. K. Readon.

Introduction to the historical origins and evolution of the city planning profession in the United States. The theoretical foundation, core values, primary methods, and key challenges facing contemporary planners are examined through a combination of readings, lectures, films, guest speakers, and field trips. Students acquire a deeper understanding of professional practice by working with local officials to develop community development profiles for several Ithaca neighborhoods.

CRP 201(2010) People, Planning, and Politics in the City
Spring. 3 credits. Prerequisites: CRP 100 and 101. P. Opadawala.

Seminar examining various bases of political and professional power. What do professionals who want to serve the public need to know about power and decision-making processes in the institutional settings in which they operate? How and why can professionals make a difference when facing problems characterized by great complexity and severe inequalities among affected groups? The course addresses these and others questions.

CRP 261(2610) Fieldwork in Urban Archaeology (also LA 261[2610])
Fall. 3 credits. S. Baugher.

For description, see LA 261.

CRP 293(2930) Inequality, Diversity, and Justice (also GOVT 293[2935], SOC 293[2930], PHIL 193[1930])
Fall. 4 credits. R. Miller.

For description, see PHIL 193.

CRP 309(3090) Community Development Seminar (also CRP 509[5090])
Spring. 3 credits. Letter grades. K. Reardon.

Introduction to the theory, method, and practice of contemporary community development. Topics include: the role of community-based organizations are playing in promoting sustainable development in distressed communities; the contribution planners are making to enhancing the organizational capacity of community-based organizations; and the interplay between neighborhood-based community development activities and regional economic development policy-making.

CRP 318(3810) Politics of Community Development (also CRP 518[5180])
Spring. 3 credits. Letter grades. Staff Seminar on city economic development and community institutions. Attention to issues of local politics, planning, housing, and economics. Term papers on field investigations are encouraged. Topics vary from year to year.

CRP 321(3210) Introduction to Quantitative Methods for the Analysis of Public Policy
Spring. 3 credits. Not offered every year. Y. Mansury.

Introduction to the role and use of quantitative methods in the study of urban and regional issues. Focuses on various types of models commonly used to analyze urban and regional policy, including regression models, content analysis, simulation, and others. Strengths and weaknesses of these methods are also considered.

CRP 327(3270) Regional Economical Impact Analysis (also CRP 627[6270])
Fall. 3 credits. Letter grades. Y. Mansury.

Applies quantitative methods to the study of the regional economic impact of different events in a regional economy, such as out-migration of population, disasters, or floods. The course addresses the critical environmental, economic, and social challenges facing contemporary planners. A participatory action research approach is used to co-produce professional-quality development plans with local stakeholders. Significant fieldwork required.

CRP 331(3310) Preparation for Urban Fieldwork
Spring. 3 credits. Prerequisite: Urban Scholars or permission of instructor. Letter grades only. R. Sinton.

Introduces students to the key theories, methods, and principles of experiential learning, service-learning, reflective practice, and urban ethnography, in preparation for field-based learning and research experiences with nonprofit organizations and local government agencies that serve distressed urban communities. The course covers the principles of experiential learning, learning contracts, participant observation, informal/formal interviewing skills, creating critical-incident journals, managing field relations, professional ethics, ethnographic report-writing, and urban social inequality.

CRP 332(3320) Urban Policy Research Seminar on New York City
Fall. 3 credits. Prerequisite: successful completion of Cornell Urban Scholars, Adult Literacy, or Urban Semester Programs or permission of instructor(s).

S-U grades optional. R. Sinton.

Designed to enhance students' organizational, analytical, research, and communication skills in producing scholarly articles of publishable quality that critically examine important urban policy issues affecting the lives of New York City's poorest children, families, and neighborhoods. Students produce policy-oriented journal articles that address vital issues confronting the city's most vulnerable residents, whom they've identified while working in Cornell-sponsored summer internships with nonprofit organizations and public agencies that provide direct services to the poor.

CRP 342(3420) Affordable Housing Policy and Programs (also CRP 643[6430])
Fall. 3 credits. S-U grades optional. R. Pendall.

Overview of federal, state, and local policies and programs to deliver affordable housing to low-income people; public housing, vouchers, inclusionary zoning, rent control, and much more. Lectures, debates, short papers, and term paper.
CRP 354(3540) Introduction to Environmental Planning (also CRP 554(5540))
Spring. 3 credits. A. M. Esnard. Introduction to problems facing planners and decision makers as they attempt to manage and preserve natural quality in urban and rural settings. Case studies are used to discuss issues related to sustainability, quality of life, environmental hazards, and environmental justice. Students are also introduced to the basic regulatory and institutional aspects of environmental planning and tools and techniques for environmental impact assessment, inventorying, and risk analysis.

[CRP 360(3600)] Pre-Industrial Cities and Towns of North America (also LA 260/666(2600/6660), CRP 666(6660))

CRP 361(3610) Seminar in American Urban History (also CRP 661(6610))
Fall or spring. 3 credits. Prerequisite: permission of instructor. M. Tomlan. Seminar in the historical evolution of the American city. Emphasizes factors in urban growth, the process of urbanization, the urban reform movement, and intellectual and social responses to the city.

[CRP 363(3630)] American Indians, Planners, and Public Policy (also CRP 547(5470), LA 263/547(2630/5470))

CRP 365(3650) Gender and Globalization (also FGSS 365/3650)
Fall. 3 credits. L. Beneria
For description, see FGSS 360(3600).

CRP 368(3860) The History of Urban Form in America (also CRP 668(6680))
Fall or spring. 3 credits. Letter grades. M. Tomlan. Covers the history of city planning in America from colonial times to the early 20th century, including brief reviews of European influences on urban form. Lectures, discussions, and short papers.

CRP 370(3700) The Regional Question: The Case of Italy
Spring. 4 credits. Variable. Prerequisite: Rome Program participants; majors in urban and regional studies. Staff. The "regional problem" in Italy has long interested regional planners, economists, sociologists, and political scientists. This course makes use of field trips to the Italian Mezzogiorno and the North to explore theoretical and practical aspects of regional inequality. The question of how Italy's integration into the European Union affects and is affected by its regional issues will be considered.

CRP 372(3720) 20th-Century Italy: Politics and Society
Spring. 3 credits. S. U grades optional for out-of-department students only. Staff. Comprehensive survey of Italian society today, starting with Italy's geography and the historical forces that shaped the nation. Discussion includes north-south tensions and such broad features of Italian social life as consumerism, urban development, and family forms. The course also covers selected institutional issues, such as gender, the system of education, problems of criminality and justice, economic reform, social class, religion, and politics.

CRP 377(3770) The City in Brazil (also CRP 667(6670))
Summer. 3 credits. S. U grades optional. W. Goldsmith.
Students are taught in Brazil by professors from Cornell and the Instituto de Pesquisa e Planejamento Urbano e Regional (IPPAR), at the Federal University of Rio de Janeiro. Students will live in three Brazilian cities, on site with local scholars, top city officials, and activists. In Belem de Para, at the mouth of the Amazon River, the focus is on the environment and development. In Brasilia, the focus is on modernist planning of the new national capital with its signature Plano Piloto, the separated satellites cities, and migration from the Brazilian Northeast. In Rio de Janeiro, the focus is on housing, transportation, and the informal economy in the context of metropolitan growth and decline.

CRP 378(3780) Recycling and Resource Management (also CRP 578(5780))
Spring. 3 credits. S. U grades optional. Not offered every year. R. Young. Advanced resource-recycling and management systems are critical to the development of a sustainable society. This course covers the political, technological, and economic strategies necessary for cities and communities to achieve a closed-loop resource-management system. Drawing from readings, speakers, and field trips that examine the cutting edge of recycling-program development, the course provides students with exposure to leading practitioners and best practices in the recycling field. Open to undergraduates and graduate students. Graduate students have additional research requirements.

CRP 380(3800) Environmental Politics

CRP 381(3810) Principles of Spatial Design and Aesthetics (also CRP 581(5810))

CRP 384(3840) Green Cities (also CRP 584(5840), LA 495(4950))
Fall. 4 credits. S. U grades optional. Not offered every year. R. Young.
For the first time in history, a majority of human beings live in cities. As a result, any realistic solution to the global ecological crisis will need to include strategies for urban life that are ecologically sound. This course examines the history and future of urban ecology and the technology and politics that shape it. Alternative transportation, renewable energy, urban design, recycling and resource management, and sustainable economics are explored in source-reducing and transforming cities to become the basis of a new, ecological society. Open to both graduate and undergraduate students. Graduate students have additional research requirements.

CRP 390(3900) Professional Planning Colloquium I (also CRP 790(7850))
Fall. 1 credit. Visiting lecturers address problems and opportunities in the practice of planning. Topical focus to be announced. The only formal requirements for the course are attendance and a three- to five-page paper about the lecture series.

CRP 395(3850) Special Topics (also CRP 585(5850))
Fall, spring, summer. 4 credits, variable. Times TBA. Staff. For description, see department coordinator, 106 West Sibley Hall.

CRP 395.03(3850) Wilderness and Wildlands: Issues in Policy and Planning (also CRP 679.03(5850))
Fall. 3 credits, variable. Graduate seminar open to juniors and seniors. Not offered every year. L. Thorndike.
Wilderness and wildland resources have been under assault by the Congress, the "Wise Use" movement, property rights activists, pollutants, and the actual users. This seminar considers historical and philosophical foundations and political factors that affect decisions about wilderness policies, planning, acquisition, protection, and management. The roles of appointed, elected, and activist managers, organized special interests, the legal system, citizens, and user groups are examined. Practical exposure to planning and policy development through readings, discussions, guest practitioners, and a field trip to the Finger Lakes National Forest. Optional weekend trip to Adirondack Park Wilderness area.

CRP 395.73(3850) Planning for Sustainable Transportation: Crisis or Utopia? (also CRP 679.73(5850))
Spring. 3 credits. S. U grades optional. Y. Levine.
Explores issues related to sustainable transportation policy and practice. The course (1) provides an overview of current transportation trends and their impacts, (2) reviews themes such as planning history and politics, the problems with the present auto-dominated systems, and key challenges to developing sustainable transport systems; and (3) looks at regulatory, design and market-based approaches to reducing automobile dependency, introducing creative sustainable solutions from around the world.

CRP 404(4040) Urban Economics (also CRP 504(5040))
Spring. 4 credits. Not offered every year. Prerequisite: microeconomics course. Staff. Analyzes urban phenomena from an economic point of view. Areas examined include economic aspects of urbanization processes and policies, determinants of urban growth and decline, urban land and housing markets, urban transportation, and urban public services. Some time is spent in discussing problems of cities in developing countries.

CRP 408(4080) Introduction to Geographic Information Systems (GIS) (also CRP 508(5080))
Spring. 4 credits. A. M. Esnard. Geographic Information Systems (GIS) have revolutionized the way we manage, analyze, and present spatial information. This course focuses on GIS in the social sciences. Many of the exercises and examples are based on planning issues, but the concepts can be applied to many other disciplines such as government, economics, natural resources, and sociology. Some of the issues covered include: fundamentals of spatial analysis, overview of GIS technology and related options, designing a GIS project, gathering and analyzing data; and creating thematic maps.
This course focuses on the spatial, social, and political dimensions of urban transformations, paying particular attention to such topics as competition among cities for international capital and its implications for sociospatial organization, dynamic interrelations between informality in labor markets and in housing urban environmental challenges and municipal efforts to address them; and issues related to governance, social movements, and new formulation of citizenship.

CRP 477(4770) Issues in African Development (also CRP 677[6770])
Fall and spring. 1 credit. S-U grades only. M. Ndulo.
Examines a broad range of critical concerns in contemporary Africa including food production, human resource development, migration, urbanization, environmental resource management, economic growth, and policy guidance. The weekly presentations are made by invited specialists. Students are required to write a term paper.

CRP 492(4920) Honors Thesis Research
Fall or spring. 4 credits. Prerequisite: Urban and Regional Studies Program majors who have been selected as honor students by department faculty. Each selected student works with his or her thesis adviser.

CRP 493(4930) Honors Thesis Writing
Fall or spring. 4 credits. Prerequisite: CRP 492. Staff.
Each selected student works with his or her thesis adviser.

CRP 497(4970) Independent Study
Fall or spring. 4 credits. variable. Prerequisite: junior or senior standing; permission of instructor. Staff.
Graduate Courses and Seminars
Courses numbered from 500 to 599 and 600 to 699 are generally considered introductory or first-year courses, those numbered from 700 to 799 and 800 to 899 are generally considered more advanced. Upper-level undergraduate courses are numbered from 300 to 499.

CRP 504(5040) Urban Economics (also CRP 404[4040])
Spring. 4 credits. Not offered every year. Prerequisite: microeconomics course. Staff. For description, see CRP 404.

CRP 508(5080) Introduction to Geographic Information Systems (GIS) (also CRP 508[5080])
Spring. 4 credits. A.-M. Esnard.
For description, see CRP 408.

CRP 509(5090) Community Development Seminar (also CRP 309[3090])
Spring. 3 credits. K. Reardon.
For description, see CRP 309.
CRP 512(5120) Public and Spatial Economics for Planners
Fall. 3 credits. No prior knowledge of economics necessary. Staff. Covers basic microeconomic theory and some topics in mathematical economics. What distinguishes it from foundation courses in economics is that the context of every topic is both spatial and public. The concept of space is central to city and regional planning. The perspective of the public and nonprofit sectors is the same as that of city and regional planning. Both space and the public–nonprofit sectors are peripheral to (or absent from) the usual graduate foundational courses in economics. The course also covers the economic theory necessary to understand the many applications of economics presented in subsequent courses in city and regional planning.

CRP 513(5130) Introduction to Planning Practice and History
Fall. 4 credits. Staff. Introductory seminar on the theory and history of planning, administration, and related public intervention in urban affairs. Topics are analyzed from the perspective of the political economy of the growth and development of cities. Students improve their understanding of the planning process and of the urban application of the social sciences, get practice in writing, and explore one research topic in depth.

CRP 517(5170) Economic Development: Firms, Industries, and Regions (also CRP 417(4170))
Fall. 4 credits. S. Christopherson. For description, see CRP 417.

CRP 518(5180) Politics of Community Development (also CRP 318(3180))
Spring. 3 credits. P. Clavel. For description, see CRP 318.

CRP 519(5190) Urban Theory and Spatial Development
Spring. 3 credits. W. Goldsmith. Surveys theories on the existence, size, location, and growth of cities and their metropolitan areas in rich and poor regions of the world. Considers orthodox/conservative treatments as well as critical/left-wing perspectives of planners, geographers, economists, sociologists, and political economists. These theories are indispensable for understanding the origins of cities, the persistence of urban and regional spatial patterns, and the distinctive nature of urban problems.

CRP 520(5200) Statistical and Mathematical Concepts for Planning
Fall. 3 or 4 credits. Not offered every year. Staff. Introduction to statistical and mathematical concepts and methods of importance in planning and policy analysis. Topics include matrix algebra, probability, sampling, estimation, and regression, and the use of a microcomputer statistical package.

CRP 521(5210) Mathematical Foundation for Planning Analysis
Fall. 1 credit. Meets for two hours, once each week, for approximately half the semester. Prerequisite: permission of department. S-U grades only. Not offered every year. Staff. Review of mathematical foundations for planning analysis. Topics include probability statistics, mathematical functions, and matrix algebra. Intended for students with prior course work as a refresher course in preparation for higher-level courses in planning analysis.

CRP 525(5250) Introductory Methods of Planning Analysis
Fall. 4 credits. R. Pendall. Quantitative and qualitative analysis of neighborhoods, cities, and regions. Focus is on data from various regions of the United States, but tools are applicable throughout the world. They include: descriptive and inferential statistics, mapping, and observation. Required lab exposes students to essential microcomputer operations and builds skills in writing and analysis.

CRP 528(5280) Overview: Quantitative Methods in Policy Planning (also CRP 328(3280))
Fall and spring. 3 credits. S-U grades optional. Staff. For description, see CRP 328.

CRP 529(5290) Mathematics for Planners
Fall. 4 credits, variable. S-U grades optional. Not offered every year. Staff. Covers basic mathematical concepts and techniques—with an emphasis on calculustheorized by the student who wishes to take intermediate-level courses in economics, urban and regional planning. Intermediate methods for the social sciences, and policy analysis. Topics include: matrix algebra, set theory, functions, differentiation, and integration.

CRP 530(5300) Neighborhood Planning Workshop (also CRP 330(3300))
Spring. 4 credits. R. Keardon. For description, see CRP 330.

CRP 532(5320) Real Estate Development Process
Fall. 3 credits. Letter grades. Fee for case studies packet. B. Olson. Examination of various forms of development as well as the role of major participants in the processes. Reviews particular aspects, such as residential, retail, industrial, office, and low-income housing projects. Guest speakers and case studies included.

CRP 533(5330) Real Estate Marketing and Management
Fall. 3 credits. R. Abrams. Focuses on the tenant or user as the basic source of the value of real estate. Students explore the characteristics and needs of tenants, and how the ownership and management of buildings respond to these needs. Office buildings are considered in detail while other elements common to the operation and marketing of all types of property are reviewed. Topics include examination of tenant types, factors creating preferred locations, and the need for marketing campaigns, marketing campaigns, and governmental regulations. Guest speakers and case studies included.

CRP 537(5370) Real Estate Seminar Series
Fall and spring. 0.5 credit each semester. Prerequisite: M.P.S./R.E. students. S-U grades only. B. Olson. Designed to bring students weekly into direct contact with real-estate professionals mainly through the use of videoconferences originating from locations around the world.

CRP 544(5440) Resource Management and Environmental Law (also CRP 444(4440)/NTRES 444(4440))
Spring. 4 credits. R. Booth. For description, see CRP 444.

CRP 546(5460) Introduction to Community and Environmental Dispute Resolution
Fall. 3 credits. J. Forester. Explores the theories and techniques of dispute resolution as they apply to community, environmental, and related public-policy disputes. Analysis complements skill-building, issues of power, participation, and strategy are central to our examinations of negotiation and mediation practice.

CRP 547(5470) American Indians, Planners, and Public Policy (also CRP 363(3630), LA 263/264(2640)/5470)
Spring. 4 credits. Not offered every year. S. Christopherson. For description, see CRP 448.

CRP 551(5510) Environmental Law (also CRP 481(4810))
Fall. 4 credits. Not offered 2005-2006.

CRP 552(5520) Land-Use Planning
Fall. 3 credits. A-M. Esnard. Covers surveys, analyses, and plan-making techniques for guiding physical development of urban areas, location requirements, space needs, and interrelations of land uses. Emphasizes residential, commercial, and industrial activities and community facilities, and housing and neighborhood conditions. Lectures, seminars, and field exercises.

CRP 553(5530) Land-Use Regulations
Spring. 3 credits. R. Pendall. This seminar covers the essentials of "smart growth," zoning, and subdivision, and the main tools for implementing a land-use plan. Also covers agriculture and open-space preservation, infrastructure timing controls, redevelopment, and planned-unit development.

CRP 554(5540) Introduction to Environmental Planning (also CRP 354(3540))
Spring. 3 credits. A-M. Esnard. For description, see CRP 354.

CRP 555(5550) Urban Systems Studio (also LA 701(7010))
Fall. 5 credits. Prerequisite: permission of instructor. R. Trancik. Application of urban-design and town-planning techniques to specific contemporary problems of city environments. Issues of urbanism are investigated and applied to physical-design interventions involving the street, square, block, garden, and park systems. Topics include urban land-use development, spatial systems and aesthetics, and urban and private implementation of urban-design plans. Computer modeling and digital-design media are introduced as tools for urban design. This is a specially arranged collaborative studio with the Landscape Architecture Program.

CRP 556(5560) Design in Real Estate Development
Spring. 3 credits. S-U grades optional. H. Richardson.
Provides a basic understanding of the importance of design in real estate development. The role of the architect and other design professionals is considered from the initial needs assessment through project implementation. Fundamentals involved in defining, stimulating, and recognizing quality in design are addressed. The analysis of case-study presentations by guest speakers examines the methods and procedures employed to achieve quality design and how this can create added value to development.

CRP 557(5570) City Planning Design Studio
Spring. 4 credits. Prerequisite: design courses or permission of instructor. Staff. Series of individual and team small-area design projects at district, neighborhood, and project scale. The course objective is to develop an understanding of the spatial issues, knowledge, and skills needed to design for the functional, aesthetic, social, and cost needs of urban communities. Studio projects, field trips, and reading.

CRP 559(5590) City and Regional Planning Workshop
Fall or spring. 4 credits, variable. S-U grades optional. R. Pendall. Students work on urban issues, such as housing, traffic and parking, economic development, zoning, and related planning issues with public or nonprofit organizations in New York State. Projects are undertaken on a community-service basis for "clients" who specifically request planning assistance. Students work individually or in teams.

CRP 560(5600) Documentation for Preservation
Fall or spring. 3 credits. M. Tomlan. Methods of identifying, recording, collecting, processing, and analyzing information dealing with historic and architecturally significant structures, sites, and objects.

CRP 561(5610) Historic Preservation Planning Workshop: Surveys and Analyses
Fall or spring. 4 credits. M. Tomlan. Course techniques for the preparation of surveys of historic structures and districts; identification of American architectural styles, focusing on upstate New York; and explorations of local historical resources, funding sources, and organizational structures. Lectures and training sessions. Emphasizes fieldwork with individuals and community organizations.

CRP 562(5620) Perspectives on Preservation
Fall. 3 credits. M. Tomlan. Introductory course for preservationists: A survey of the historical development of preservation activity in Europe and America leading to a contemporary comparative overview. Field trips to notable sites and districts.

CRP 563(5630) Problems in Contemporary Preservation Practice
Spring. Variable credit. M. Tomlan. Review and critique of ongoing preservation projects and an investigation of areas of expertise currently being developed. Presented by staff and guest lecturers.

CRP 564(5640) Building Materials Conservation
Spring. 3 credits. Prerequisite: junior, senior, or graduate standing. M. Tomlan. Survey of the development of building materials in the United States, chiefly during the 19th and early 20th centuries, and a review of the measures that might be taken to conserve them.

CRP 565(5650) Fieldwork or Workshop in History and Preservation
Fall or spring. Variable credit. M. Tomlan. Work on applied problems in history and preservation planning in a field or laboratory setting or both.

CRP 566(5660) Planning and Preservation Practice
Fall 1 credit. Prerequisite: graduate standing in CRP programs or M.P.S./R.E. or permission of instructors. S-U grades only. R. Pendall and M. Tomlan. Students participate in field study of city planning, historic preservation, economic and community development, and real estate issues in large Eastern U.S. cities.

CRP 567(5670) Measured Drawing
Fall. 3 credits. Prerequisite: undergraduate architecture students and graduate students in history and preservation; permission of instructor. M. Tomlan. Combines study of architectural drawing as historical documents with exercises in preparing measured drawings of small buildings. Presents the basic techniques of studying, sketching, and measuring a building and the preparation of a finished drawing for publication.

CRP 568(5680) Archaeology in Preservation Planning and Site Design (also LA 569(5690))

CRP 570(5780) Recycling and Resource Management (also CRP 378(3780))
Spring. 3 credits. S-U grades optional. R. Young. For description, see CRP 378.

CRP 581(5810) Principles of Spatial Design and Aesthetics (also CRP 381(3810))

CRP 584(5840) Green Cities (also CRP 384(3840), LA 495(4950))
Fall. 4 credits. S-U grades optional. Not offered every year. R. Young. For description, see CRP 384.

CRP 585(5850) Special Topics (also CRP 385(3850))
Fall, spring, or summer. 4 credits, variable. Times TBA. Staff. For description, see CRP 385.

CRP 614(6140) Gender and International Development (also FGSS 614(6140))
Spring. 3 credits. L. Beneria. The four main objectives are to (1) analyze the location of women in development processes and to understand the centrality of gender in each case; (2) examine theoretical and conceptual frameworks for the analysis, including an understanding of gender divisions and their interaction with other forms of inequality such as class, race, and ethnicity; (3) reflect upon the linkages between the global economy and the macro and micro processes of development from a gender perspective; and (4) provide a basis for research, practical action, and policy formulation and for evaluating directions and strategies for social change.

CRP 618(6180) Government Policy Workshop (also CRP 418(4180), AEM 434/634(4340/6340), FGSS 420/620(4200/6200))
Spring. 4 credits. S-U grades optional. M. Warner. For description, see CRP 418.

CRP 621(6210) Quantitative Techniques for Policy Analysis and Program Management
Spring. 4 credits. D. Lewis. Examines selected analytical techniques used in the planning and evaluation of public policy and public investments. Topics include simulation modeling, benefit-cost and cost-effectiveness analysis (including capital budgeting), and optimization strategies.

CRP 627(6270) Regional Economic Impact Analysis (also CRP 327(3270))
Fall. 3 credits. Letter grades. Staff. For description, see CRP 327.

CRP 632(6320) Methods of Regional Science and Planning I
Spring. 4 credits, variable. Staff. Introduction to some of the major methods and models used in regional science and planning. Topics related to the structure and assumptions of the models, model development, and their applications in regional science and planning are discussed. Where appropriate, computer implementation emphasizing statistical, econometric models is considered.

CRP 635(6350) Workshop: State Economic Development Strategies
Fall or spring. 4 credits. S-U grades optional. S. Christopherson.
The purpose of this workshop is twofold: (1) to provide students with research tools useful in developing state-level economic-development strategies; and (2) to provide a critical understanding of the primary economic-development strategy used by U.S. state policymakers: firm-specific subsidies. The course consists of lecture and discussion meetings. The workshop sessions include exercises in qualitative information gathering on economic-development topics; use of the census in combination with geographic information systems for analysis and presentation; and shift-share analysis.

CRP 637(6370) Regional Development Planning: An International Perspective
Fall. 4 credits, variable. S-U grades optional. T. Vietoriz.
Develops a broad historical and theoretical context within which urban and regional planning problems across the world are embedded; addresses aspects of the global information economy affecting economic development and cultural identity; and demonstrates how such a broad perspective can make for more viable local plans. From the perspective of commitment to an open society, the course also examines the tension between planning oriented to social equity and the polarizing forces of market fundamentalism.

CRP 638(6380) Planning and the Global Knowledge Economy: Sustainability Issues
Spring. 4 credits, variable. S-U grades optional. T. Vietoriz.
Analyzes the current sustainability crisis in terms of major changes in the social organization of production, emphasizing the worldwide economic and cultural shocks created by the emerging knowledge economy. Insight into the dynamics of this transition, in the light of similarly dramatic transitions in the past, can guide attempts to move toward sustainability and high-quality urban and regional living environments.

CRP 642(6420) The Micro-Politics of Participatory Planning Practices
Spring. 4 credits, variable. J. Forester.
This seminar explores issues of "practice" (rhetoric and negotiation, interpretation and judgment, narrative and recognition) as they influence particular deliberations involving questions of ethics and argument, participation and identity, historical trauma and working-through, and more. The approach taken can be called a "pragmatic criticism." Practitioners' oral histories are used to investigate the challenges of participatory planning practices.

CRP 643(6430) Affordable Housing Policy and Programs [also CRP 343(3430)]
Fall. 3 credits. S-U grades optional. R. Pendall.
For description, see CRP 343.

CRP 653(6530) Legal Aspects of Land-Use Planning
Spring. 3 credits. R. Booth.
Survey of leading cases and legal concepts in land-use planning, with particular attention to zoning, subdivision control, condemnation, and growth-control issues.

CRP 655(6550) Real Estate Project Workshop
Spring. 4 credits. Prerequisite: permission of instructor. Fee for mandatory field trip. R. Abrams and M. Schack.
Students are asked to undertake the preparation of reports analyzing various aspects of real estate activity. Individual and team working relationships are required. A range of types of problems that may be encountered in the real estate field is addressed, including project feasibility, marketing, planning and design, and legal constraints and concerns. Projects focus on real-world case studies and require professional-level reports suitable for oral and written presentations.

CRP 657(6570) Real Estate Law
Spring. 3 credits. Letter grades. A. Klausner.
Examination of major legal concepts pertaining to acquisition, use, management, and transfer of real estate. Particular focus is on important legal considerations pertaining to property rights, contracts, and public controls on the use of land. Consideration of important case law, statutory law, and rules and regulations. Current legal issues affecting the real estate industry are discussed.

CRP 658(6580) Residential Development
Spring. 4 credits. Letter grades. Fee for mandatory field trip. B. Olson.
Explores the residential development process from site acquisition through delivery of the finished product. Topics include market feasibility, land planning and acquisition, product selection and design considerations, project financing and feasibility, schedule and budgetary controls, contracting and construction issues, marketing, and sales activities. Current issues in providing competitive housing products in today's markets are addressed. The composition of the residential-development project team is discussed. Classes are supplemented by presentations from visiting professionals. The course includes a semester-long project based on an actual property and market opportunity.

CRP 661(6610) Seminar in American Urban History (also CRP 361(3610))
Fall or spring. 3 credits. Prerequisite: permission of instructor. M. Tomlan.
For description, see CRP 361.

CRP 662(6620) Historic Preservation Planning Workshop: Plans and Programs
Fall or spring. 1-4 credits. Prerequisite: CRP 561. M. Tomlan.
Preparation of elements of historic preservation plans, designs, legislation, and special studies. Individual or group projects are selected by students. Fieldwork is emphasized.

CRP 663(6630) Historic Preservation Law
Spring. 3 credits. Offered alternate years. R. Booth.
Covers laws of historic district and landmark designation; tools for preservation (e.g., police power, taxation, eminent domain); and recent developments in state and federal historic preservation.

CRP 664(6640) Economics and Financing of Neighborhood Conservation and Preservation
Spring. 3 credits. M. Tomlan.
The economic and financial aspects of historic preservation and neighborhood conservation. Topics include public finance, selected issues in urban economics, real estate economics, and private financing of real estate projects.

CRP 665(6650) Preservation Planning and Urban Change
Fall. 3 credits. M. Tomlan.
Examination of fundamental planning concepts and issues as they relate to historic preservation. Neighborhood revitalization, federal housing programs, the role of public and private institutions, displacement, and other social issues are among the primary topics.

CRP 666(6660) Pre-Industrial Cities and Towns of North America [also CRP 360(3600), LA 260(260)/666(6600)]

CRP 668(6860) The History of Urban Form in America [also CRP 368(3680)]
Fall or spring. 3 credits. M. Tomlan.
For description, see CRP 368.

CRP 670(6700) Regional Planning and Development in Developing Nations
Fall or spring. 4 credits. Prerequisite: second-year graduate standing. Staff.
Extensive case studies in regional development planning are analyzed. Focus is on the political economy of the process of regional development through urbanization and in particular on the concepts of equity and efficiency, external spillover, internal linkages, and internal self-sufficiency and integration. Resource development, national integration, human development, and migration problems are discussed.

CRP 671(6710) Seminar in International Planning
Spring. 1 credit. S-U grades only. Staff.
The international planning lecture series sponsors lectures by visiting scholars or professionals in the field of international development and planning. The only formal requirement for the course is a brief evaluation of the seminar at the end of the semester.

CRP 672(6720) International Institutions
Spring. 3 credits. L. Beneria.
Focuses on the growth and transformation of international institutions since World War II. The first part includes a discussion of the Bretton Woods institutions and of the U.N. system up to the early 1970s, and how these function and have evolved over time. The second part examines some of the crises and tensions within the international system since the 1980s and how these have affected institutional change and current debates on reform and global governance.

CRP 674(6740) Urban Transformations in the Global South [also CRP 474(4740)]
Fall or spring. 4 credits. S-U grades optional. W. Goldsmith.
For description, see CRP 474.

CRP 675(6750) Workshop on Project Planning in Developing Countries
Fall. 4 credits. D. Lewis.
Examines the problems and issues involved in preparing project proposals for presentation to funding agencies. Topics include technical design, financial feasibility, social-impact analysis, and policy relevance, as well as techniques for effective presentation of proposals. The course is organized as a seminar-workshop providing both an analysis of the critical elements of effective proposals and an opportunity to use those
elements in the preparation of proposals. A multidisciplinary perspective is emphasized.

CRP 677(6770) Issues in African Development [also CRP 477(4770)]
Fall or spring. 1 credit. S-U grades only. M. Ndulo.
For description, see CRP 477.

[CRP 678(6780) Concrete Manifestations—Infrastructure in the New World Order]
Fall or spring. 4 credits. S-U grades optional. Not offered 2005-2006.

CRP 679.03(3850) Wilderness and Wildlands: Issues in Policy and Planning [also CRP 395.03(3850)]
Fall. 2-3 credits. variable. Graduate seminar open to juniors and seniors. Not offered every year. L. Thordike.
For description, see CRP 395.03.

CRP 687.73(3850) Planning for Sustainable Transportation: Crisis or Utopia? [also CRP 385.73(3850)]
Spring. 3 credits. S-U grades optional. Y. Levitte.
Explores issues related to sustainable transportation policy and practice. The course (1) provides an overview of current transportation trends and their impacts; (2) reviews themes such as planning history and politics, the problems with the present auto-dominated systems, and key challenges to developing sustainable transport systems; and (3) looks at regulatory, design and market based approaches to reducing automobile-dependency, introducing creative sustainable solutions from around the world.

CRP 683(6830) Environmental Aspects of International Urban Planning [also CRP 453(4530)]
Fall. 4 credits. B. Lynch.
For description, see CRP 453.

CRP 687(6870) The City in Brazil [also CRP 377(3770)]
Summer. 3 credits. Letter grades optional. Staff.
For description, see CRP 377.

CRP 790(7900) Professional Planning Colloquium I [also CRP 390(3900)]
Fall. 1 credit. Staff.
For description, see CRP 390.

CRP 791(7910) Master's Thesis in Regional Science
Fall or spring. 12 credits, variable. S-U grades only. H. Gottfried.

CRP 792(7920) Master's Thesis, Project, or Research Paper
Fall or spring. 10 credits, variable. S-U grades optional. Staff.

CRP 794(7940) Planning Internships
Fall, spring, or summer. 12 credits, variable. Staff.
Combines a professional planning internship in a metropolitan area with academic study to provide experience and understanding of the planner's role in formulating and implementing plans and policies. Salaried internships in federal or state agencies, legislative offices, and comparable settings include development of research, analysis, and other technical skills. Weekly seminars draw on student field experiences, assigned readings, and guest speakers to examine current issues of federal, urban, and regional policy from the perspective of planning practice.

CRP 795(7950) Master's Thesis in Preservation Planning
Fall or spring. 5 credits, variable. Staff.

CRP 796(7960) Professional Writing and Publishing (Colloquium)
Fall or spring. 2 credits. S-U grades only. Not offered every year. Staff.
Individual and group projects culminating in the production of a professional journal.

CRP 797(7970) Graduate Independent Study
Fall or spring. 4 credits, variable. Prerequisites: graduate student standing, permission of instructor. Staff.
For description, see department coordinator, 106 West Sibley Hall.

CRP 800(8000) Advanced Seminar in Urban and Regional Theory I
Fall. 3 credits. S. Christopherson. Introduction to key conceptual and empirical literature in urban theory. Focuses on the relationship between political and economic processes and their joint influence on urban spatial form.

[CRP 801(8010) Advanced Seminar in Urban and Regional Theory II]
For description, see department coordinator, 106 West Sibley Hall.

CRP 830(8300) Seminar in Regional Science, Planning, and Policy Analysis
Fall or spring. 4 credits, variable. S-U grades only. Staff.
Provides an opportunity to review some of the literature and current research in regional science, planning, and policy analysis. Specific topics covered vary each year. Empirical and analytical research are emphasized. Students are expected to prepare and present a research paper during the semester on some aspect of the topics under review.

CRP 890(8900) Planning Research Seminar I
Fall or spring. 2 credits. Staff.
Intended for doctoral candidates in city and regional planning, other students welcome. Presentation and discussion of current problem areas and research by advanced doctoral students, faculty members, and visitors.

CRP 892(8920) Doctoral Dissertation
Fall or spring. 2 credits, variable. Staff.

Special Topic Courses
Fall or spring. Variable credit. Staff. Typical topics are:

CRP 609(6090) Urban and Regional Theory
CRP 619(6190) Planning Theory and Politics
CRP 629(6290) Quantitative Methods and Analysis
CRP 639(6390) Regional Development Planning
CRP 649(6490) Social-Policy Planning
CRP 659(6590) Urban Development Planning

CRP 669(6690) History and Preservation
CRP 679(6790) Planning and Developing Regions
CRP 689(6890) Environmental Planning
CRP 699(6990) Regional Science
CRP 719(7190) Planning Theory and Politics

LANDSCAPE ARCHITECTURE

Landscape Architecture at Cornell is jointly sponsored by the College of Agriculture and Life Sciences and the College of Architecture, Art, and Planning.

The Program

Landscape Architecture offers a three-year master of landscape architecture license qualifying degree, administered through the Graduate School, for those who have a four-year undergraduate degree in another field. The major is composed of several parts: core courses related to professional education in landscape architecture; a concentration in a subject related to the core courses; and free electives. Requirements of the three-year M.L.A. curriculum include 90 credits, six resident units, satisfactory completion of the core curriculum courses, and a thesis or a capstone studio.

The department also offers a two-year master of landscape architecture advanced degree program, administered through the Graduate School, for those with accredited degrees in landscape architecture or architecture. The two-year program entails core courses in the discipline and the development of concentrations in subject-matter areas such as landscape history and theory, landscape ecology and urban horticulture, the cultural landscape, site-landscape and art, or urban design.

Both of these degrees are accredited by the Landscape Architecture Accreditation Board (LAAB) of the American Society of Landscape Architects.

Dual-Degree Options

Graduate students can earn a master of landscape architecture and a master of science (horticulture) or a master of city and regional planning simultaneously. Students need to be accepted into both fields of study to engage in a dual-degree program and must fulfill requirements of both fields of study. Thesis requirements are generally integrated for dual degrees.

Course Information

Note: All of the following courses are offered through the College of Agriculture and Life Sciences except LANAR 497, 524, and 525.

LA 140(1400) The Symbols of New York State's Cultural Landscape
Spring. 3 credits.
LA 141(1410) Grounding in Landscape Architecture
Fall. 4 credits.

LA 142(1420) Grounding in Landscape Architecture
Spring. 4 credits.

LA 155(1550) American Indian Cultural Landscapes: Changes in Time
Fall. 3 credits.

LA 201(2010) Medium of the Landscape
Fall. 5 credits.

LA 202(2020) Medium of the Landscape
Spring. 5 credits.

LA 261(2610) Fieldwork in Urban Archaeology (also CRP 261[2610])
Fall. 4 credits.

LA 262(2620) Laboratory in Landscape Archaeology (also ARKEO 262[2620])
Spring. 3 credits.

LA 282(2820) The American Landscape
Fall. 3 credits.

LA 301(3010) Integrating Theory and Practice I
Fall. 5 credits.

LA 302(3020) Integrating Theory and Practice: Community Design Studio
Spring. 5 credits.

LA 315(3150) Site Engineering I
Spring. 3 credits.

LA 316(3160) Site Engineering II
Fall. 2 credits.

LA 318(3180) Site Construction
Spring. 5 credits.

LA 360(3600) Pre-Industrial Cities and Towns of North America (also CRP 360[3600]/6660[6660], LA 547[5470])

LA 402(4020) Integrating Theory and Practice II
Spring. 5 credits.

LA 403(4030) Directed Study: The Concentration (also LA 603[6030])
Fall or spring. 1 credit.

LA 410(4100) Computer Applications in Landscape Architecture
Fall or spring. 3 credits.

LA 412(4120) Professional Practice
Spring. 1 credit.

LA 433(4330) Seminar in Landscape Studies

LA 466(4660) Placemaking by Design: Theory Seminar
Fall. 3 credits.

LA 491(4910) Creating the Urban Eden: Woody Plant Selection, Design, and Landscape Establishment (also HORT 491[4910])
Fall. 4 credits.

Spring. 4 credits.

LA 494(4940) Special Topics in Landscape Architecture
Fall or spring. 1–3 credits.

LA 495(4950) Green Cities (also CRP 384[3840]/5840[5840])
Fall. 4 credits.

LA 497(4970) Individual Study in Landscape Architecture
Spring. 1–5 credits; may be repeated for credit. S.U. grade optional. L. J. Mirin.
Work on special topics by individuals or small groups.

LA 498(4980) Undergraduate Teaching
Fall or spring. 1–2 credits.

LA 501(5010) Composition and Theory
Fall. 5 credits.

LA 502(5020) Composition and Theory
Spring. 5 credits.

LA 505(5050) Graphic Communication I
Fall. 3 credits.

LA 506(5060) Graphic Communication II
Spring. 3 credits.

LANAR 524(5240) History of European Landscape Architecture
Fall. 3 credits. L. Mirin.
Survey from classical times to the present, emphasizing design principles and techniques that have established the landscape architecture tradition in Europe. Particular reference is made to the manner in which gardens, streets, plazas, parks, and new towns reflect in their built form, a range of responses to demands of culture, economics, technology, security, the law, and ecology.

LANAR 525(5250) History of American Landscape Architecture
Spring. 3 credits. L. Mirin.
Landscape architecture in the United States from Jefferson to the present is examined as a unique expression of the American experience. Influences exerted by the physical landscape, the frontier and utopian spirit, and the cultural assumptions of democracy and capitalism are traced as they affect the forms of urban parks, private and corporate estates, public housing, transportation planning, national parks, and other open-space designs.

LA 545(5450) The Parks and Fora of Imperial Rome

LA 547(5470) Americans, Indians, Planners, and Public Policy (also CRP 363[3630]/547[5470], LA 282[2820])

LA 569(5690) Archaeology in Preservation Planning and Site Design (also CRP 569[5690])

LA 580(5800) Landscape Preservation: Theory and Practice
Fall. 3 credits.

LA 582(5820) The American Landscape
Fall. 3 credits.

LA 590(5900) Theory Seminar
Spring. 3 credits.

LA 598(5980) Graduate Teaching
Fall or spring. 1–2 credits.

LA 601(6010) Integrating Theory and Practice I
Fall. 5 credits. Prerequisite: graduate standing.

LA 602(6020) Integrating Theory and Practice II
Spring. 5 credits. Prerequisite: graduate standing.

LA 603(6030) Directed Study: The Concentration (also LA 403[4030])
Fall or spring. 1 credit.

LA 615(6150) Site Engineering I
Spring. 3 credits.

LA 616(6160) Site Engineering II
Fall. 2 credits.

LA 618(6180) Site Construction
Spring, weeks 8–15. 5 credits.

LA 656(6560) Pre-Industrial Cities and Towns of North America (also CRP 360[3600]/6660[6660], LA 260[2600])

LA 680(6800) Graduate Seminar in Landscape Architecture
Fall or spring. 1–3 credits.

LA 684(6840) Special Topics in Landscape Architecture
Fall or spring. 1–3 credits.

LA 701(7010) Urban Design and Planning: Designing Cities in the Electronic Age (also CRP 555[5550])
Fall. 5 credits.

LA 702(7020) Advanced Design Studio
Spring. 5 credits.

LA 800(8000) Master's Thesis in Landscape Architecture
Fall or spring. 9 credits.

FACULTY ROSTER

Azis, Iwan, Ph.D., Cornell U. Visiting Prof., City and Regional Planning.

Baquher, Sherene, Ph.D., SUNY, Stony Brook. Visiting Prof., City and Regional Planning

Beneria, Lourdes, Ph.D., Columbia U. Prof., City and Regional Planning.

Blum, Zevi, B. Arch., Cornell U. Prof. Emeritus.

Booth, Richard S., J.D., George Washington U. Prof., City and Regional Planning.

Christopherson, Susan M., Ph.D., U. of California, Berkeley. Prof., City and Regional Planning.

Clavel, Pierre, Ph.D., Cornell U. Assoc. Prof., Architecture.

BIOLOGICAL SCIENCES

The biology major provides a unified curriculum for undergraduates enrolled in either the College of Agriculture and Life Sciences or the College of Arts and Sciences. Courses in biological sciences are integral to many disciplines and are basic requirements in many schools and colleges at Cornell.

Graduate study in the biological sciences is administered by more than a dozen specialized fields within the Graduate School, as described in the Announcement of the Graduate School.

ORGANIZATION

Many different departments participate in the biology major.

Student services are provided by the Office of Undergraduate Biology (OUB), bio.cornell.edu. Located in Stimson Hall, the professional and student advisers provide academic and career advising, as well as help undergraduates find research opportunities on campus. Advisers in the OUB also follow the progress of biology majors and work closely with faculty advisers. Additional services and resources of the Biology Center include tutoring, lecture tapes, examination files, and extensive information on summer research opportunities and graduate programs.

The center has comfortable areas for studying and relaxing.

The Shoals Marine Laboratory, a cooperative venture with the University of New Hampshire, is located on Appledore Island in the Gulf of Maine. Its base office in Stimson Hall provides academic advising for students interested in the marine sciences and administers the SEA Semester program for Cornell students pursuing studies at Woods Hole, Mass., or aboard the schooner Robert C. Seamans or brigantine Corwin Cramer.

DISTRIBUTION REQUIREMENT

In the College of Agriculture and Life Sciences, the Physical and Life Sciences distribution requirement is a minimum of 18 credits, including at least 6 credits of introductory biology satisfied by BIO G 109–110, 105–106, or 101 and 103 plus 102 and 104, or 107–108.

For students in the College of Arts and Sciences, all biology ("BIO") courses can be used toward fulfillment of the biological sciences distribution requirement except BIO G 200 (unless permission is obtained), BIO G 209, or BIOSM 204. The following courses are especially suitable for the distribution requirement because they have no prerequisites: BIO G 101–104, 105–106, 107–108, 109–110, 170; BIOP 212; BIOE 154, 207, 275; BIOGD 184; BIOMI 192; BIONB 111; BIOPL 240, 241.

In the College of Human Ecology, the natural sciences distribution requirement is for at least 6 credits selected from BIO G 109–110, 101 and 103 plus 102 and 104, 105–106 or 107–108 or from specified courses in chemistry or physics.

Switching between BIO G 109–110 and either BIO G 101–104 or 105–106 at midyear may not be possible because of variation in presentation of topics. Students must receive permission of the instructor to switch sequences. Taking sequences in reverse order is strongly discouraged in BIO G 101–104.

USE OF ANIMALS IN THE BIOLOGICAL SCIENCES CURRICULUM: CORNELL UNIVERSITY

Students wishing to enroll in biology ("BIO") courses should know and understand the following criteria relative to the use of animals in the teaching program, as passed by the faculty of the Division of Biological Sciences in 1988, and reaffirmed in 1997:

1. "Live animals will be used for teaching in certain courses in the biological sciences. Some animals will require humane euthanasia after they have been used for teaching.

2. Courses bearing the "BIO" description conform to the rules for the care of such animals as outlined in Guiding Principles in the Care and Use of Animals (as approved by the Council of the American Physiological Society), the Guide for the Care and Use of Laboratory Animals (DHHS Publication 85-23, revised 1996; see p. 7, Courses of Study), the Animal Welfare Act, and the New York State Public Health Law. Within these regulations, and in keeping with the principle of Academic Freedom of the Faculty, the use of animals to aid in teaching any biological sciences discipline is at the discretion of the professor in charge.

3. Each course, as well as research projects, in which animals are used receives a formal review annually by the Cornell University Institutional Animal Care and Use Committee (IACUC).

4. Any concerns regarding the use of live animals in teaching should be addressed first to the faculty member responsible for that course. He or she is required to be in compliance with all applicable regulations and guidelines. Alternatively, students may choose to address their concerns to the director of the Cornell Center for Research Animal Resources, Dr. Michele Bailey, at 253–3520. The director may initiate discussion with the faculty member responsible for a particular course without involving the student if he or she would prefer to remain anonymous.

5. Enrollees in those courses in the biological sciences in which animal use is a component may, at the professor's discretion, be asked to sign copies of this statement (USE OF ANIMALS ...) at the first meeting of the course.

ADVANCED PLACEMENT

For information on credit for advanced placement in biological sciences, see www.bio.cornell.edu/advising/ap.cfm.

THE MAJOR

The major of biological sciences is available to students enrolled in either the College of Agriculture and Life Sciences or the College of Arts and Sciences. The undergraduate program is coordinated for students in both colleges by the Office of Undergraduate Biology. By completion of the sophomore year, all students who intend to major in biological sciences must declare the major and a program of study through the Office of Undergraduate Biology, in 216 Stimson Hall.

Whenever possible, students should include the introductory biology, chemistry, and mathematics sequences in their freshman schedule and complete the organic chemistry lecture course in their sophomore year. Biology majors should regularly monitor their progress in the major, and should assess as realistically as possible the likelihood of completing it with a minor at Cornell.

Students with questions, particularly with concerns about whether or not they should elect to complete the major, are encouraged to consult with their biology adviser and to take advantage of the advising and counseling resources of the Office of Undergraduate Biology as well as those of the university and their college.

The requirements for the biological sciences major are listed below. Requirements 1–9 must be taken for a letter grade. Courses taken for the program of study should be taken for a letter grade unless the course is offered for S-U grades only or if the student's adviser grants permission.

1. Introductory biology for majors (one year): BIO G 101 and 103 or 102 and 104, or 105–106. BIO G 107–108, offered during the eight-week Cornell summer session for 8 credits, also satisfies the introductory biology requirement for majors.

2. General chemistry: CHEM 207–208 or 215. Students who, via advanced placement, take only CHEM 208 or only 215 should be aware that some professional and graduate schools require 8 credits of general chemistry.
These students may wish to take both CHEM 215 and 208 or 215 and 216. Students may wish to consult with their faculty adviser or advisers in the Office of Undergraduate Biology for further clarification.

3. **College mathematics** (one year):
 - one semester of calculus (MATH 106, 111, 191, or their equivalents) plus one semester selected from the following:
 a. a second semester of calculus (MATH 112, 192, or their equivalents).
 b. a course in finite mathematics (BTRY 101, 417, MATH 105, 231).
 c. a course in statistics (BTRY 301, MATH 171, AEM 210, PSYCH 350, PAM 210, ECON 319, ECON 321, SOC 301).

4. **Organic chemistry**: CHEM 357 and 251, or 355-358 and 251, or 357-358 and 301, or 359-360 and 251, or 359-360 and 301.

5. **Physics**: PHYS 101-102, 207-208, or 112-213. "Those who take PHYS 112-213 are advised to complete PHYS 214 as well.

6. **Genetics**: BIOD 281.

7. **Biochemistry**: BIBM 330, or 331 and 332, or 334.

8. **Evolutionary Biology**: BIOEE 278 or BIOL 448. Note: BIOL 241 Botany is a prerequisite course to BIOL 448.

9. **A program of study** selected from the outline below.

10. **Foreign language**: Students registered in the College of Arts and Sciences must satisfy the language requirement as stated by that college.

Although not required for the biological sciences major, a course in statistics is recommended for students planning graduate study or a research career. Students should consult their faculty advisers when choosing appropriate courses in statistics.

Note: Core courses cannot count toward the program of study requirements.

Programs of Study and Requirements

As noted in the list of requirements above, students accepted into the biological sciences major must choose a program of study. Whereas the core requirements of the biology curriculum provide the common foundation deemed essential for all biology majors, the role of the program of study is to provide either a concentration in a particular area of biology or, in the case of the general biology program of study, a survey of biology that is broad but not superficial. The program of study requirement can be met by taking 15 to 15 credit hours of courses chosen by the student in consultation with his or her biology adviser. Programs of study for particular subject areas are designed by faculty members specializing in the subject. Typically, the program of study consists of one or more courses that provide foundation in the subject area or list of optional courses from that area or related areas, many of which are at an advanced level (300 or higher). Because biology is an experimental science, most programs of study require one or more laboratory courses. The laboratory requirement in some programs of study can be met by participation in the independent research course (BIO G 499). The possible programs of study and their requirements are listed below.

1. **Animal Physiology**: BIOAP 311 Introduction to Animal Physiology, BIOAP 316 Cellular Physiology, plus a minimum of 7 credit hours selected from the following lecture and laboratory courses, of which at least 4 credit hours must be a laboratory course.
 a. Lecture courses: BEE 454 Physiological Engineering; AN SC 300 Animal Reproduction and Development; AN SC 410 Nutritional Physiology and Metabolism; AN SC 427 Fundamentals of Endocrinology; BIO G 305 Basic Immunology; BIOAP 214 Biological Basis of Sex Differences; BIOAP 458 Mammalian Physiology; BIBM 407 Nature of Sensing and Response; Signal Transduction in Biological Systems; BIBM 408 Eukaryotic Cell Proliferation; BIOG 385 Developmental Biology; BIOG 483 Molecular Aspects of Development; BIBM 322 Hormones and Behavior; BIOAP 425 Neurosciences-Molecular Aspects; BIBM 326 The Visual System; BIBM 492 Sensory Function, NS 351 Physiological and Biochemical Bases of Human Nutrition.
 b. Laboratory courses: BEE 454 Physiological Engineering; AN SC 301 Animal Reproduction and Development; BIO G 401 Introduction to Scanning Microscopy; BIO G 403 Transmission Electron Microscopy for Biologists; BIOAP 413 Histology; The Biology of the Tissues; BIOAP 319 Animal Physiology Laboratory; BIBM 416 Cellular Physiology and Genetics Laboratory; BIBM 440 Laboratory in Biochemistry and Molecular Biology; BIBM 491 Principles of Neuroradiology.

2. **Biochemistry**: CHEM 300 Quantitative Chemistry: 5 credits of organic chemistry (CHEM 357-358 or 359-360); a minimum of 4 credits of organic chemistry laboratory (CHEM 301-302 or 301 or 251-252); 4 credits of biochemistry laboratory courses (BIBM 440 Laboratory in Biochemistry and Molecular Biology); and physical chemistry (CHEM 389-390 or 287-288 or 389-380).
 - CHEM 288 is designed for biologists. Five hours of biochemistry are recommended (331 and 332, or 330 and 334 and 331 and 334), and students are urged to take BIBM 432 Cell Biology. Students interested in graduate work in biochemistry should take PHYS 207-208 and consider taking a third semester of calculus in preparation for CHEM 389-390. They should be sure to complete CHEM 207-208 or 215-216 during their freshman year.
 - Note: Biology majors in the College of Agriculture and Life Sciences who select this program of study are allowed to take up to 61 credit hours in the endowed colleges because of the high number of required endowed courses for this program of study.

3. **Computational Biology**: One course in computer programming (COM S 100 Introduction to Computer Programming or BEE 151 Introduction to Computing); one course in mathematics (MATH 221 Linear Algebra and Calculus or MATH 231 Linear Algebra; or MATH 294 Engineering Mathematics II; or MATH 420 Differential Equations and Dynamical Systems; or BTRY 408 Theory of Probability; or BTRY 421 Matrix Computation); a bridging course, i.e., a course in mathematical modeling applied to biology (BIOE 362 Dynamic Models in Biology; BIOEE 460 Theoretical Ecology; or BIBM 321 Numerical Methods in Computational Molecular Biology; or BTRY 382 Introduction to Statistical Genomics and Bioinformatics); or COM S 428 Introduction to Computational Biophysics; and one course from the following list of advanced courses:

It is strongly recommended that students complete the core organic chemistry requirement using the PHYS 207/208 option. It is strongly recommended that students complete the core organic chemistry requirement using the CHEM 257-251 option and that the time saved be used to take either COM S 211 or a second mathematics course from the list above.

Note: MATH 112 Calculus should be used to fulfill the core requirement for a second semester of math.

- Note: Bridging courses require linear algebra (MATH 221 Linear Algebra and Calculus or MATH 231 Linear Algebra or MATH 294 Engineering Mathematics II or BTRY 421 Matrix Computation). For bridging courses, BIOEE 460 Theoretical Ecology; MATH 420 Differential Equations and Dynamical Systems will also serve as a prerequisite.

Note: BTRY 408 and MATH 420 can satisfy either the math requirement or a requirement for an additional course.

Note: Students who use BTRY 408 to fulfill the additional mathematics requirement should not use OR&IE 360 Engineering Probability and Statistics II to
fulfill the requirement for an additional course.

Note: Biology majors in the College of Agriculture and Life Sciences who select this program of study are allowed to take up to 61 credit hours in the endowed colleges because of the high number of required endowed courses for this program of study.

4. Ecology and Evolutionary Biology: BIOEE 241 Ecology and the Environment. Effective fall semester 2005, new students must also complete 10 credits from the following lists: (a) Principles, (b) Organisms, and (c) Ecological and Evolutionary Processes. One course must be chosen from list (a) and a second either from list (b) or (c). The remaining credits can be satisfied with courses from all three lists. Students are encouraged to take at least one course from each list.

b. Organisms: BIOEE 274 The Vertebrates: Structure, Function, and Evolution; BIOEE 325 Marine Invertebrates or BIOSM 376 Marine Invertebrate Zoology; BIOEE 471 Mammalogy; BIOEE 470 and 472 Herpetology Lectures and Laboratory; BIOEE 475 Ornithology; BIOEE 476 Biology of Fishes; ENTOM 212 Insect Biology; BIOPL 241 Introductory Botany; BIOPL 448 Plant Evolution and the Fossil Record; PL PA 309 Introductory Mycology; BIOSM 449 Seaweeds, Plankton, and Seagrasses.

Note: Students also are encouraged to gain experience in some aspect of field biology through course work at a biological field station and can apply up to 6 credits in the place of courses from lists (b) or (c). For example, students may apply 6 credits from the following courses taken at the Shoals Marine Laboratory (BIOSM), 304 Marine Microbial Ecology; BIOSM 309 Climates and Ecosystems; BIOSM 310 Marine Symbiosis; BIOSM 374 Field Ornithology; BIOSM 377 Diversity of Fishes; BIOSM 477 Marine Vertebrates; and BIOSM courses in lists h and c. The Ecology and Evolutionary Biology program offers a specialization in Marine Biology and Oceanography (for a description, see "Courses in Marine Science"). The Organization for Tropical Studies (OTS) offers an Undergraduate Semester Abroad Program, featuring two courses (Fundamentals in Tropical Biology and Field Research in Tropical Biology) that can count as two 3-credit courses toward graduation. Six credits can be applied from the 15-week fall "Semester in Environmental Science" program offered by the Woods Hole Marine Biological Laboratory.

5. General Biology: The program of study in general biology requires a minimum of 13 credit hours in addition to courses counted toward requirements 1-10 on page 156. These 13 credits must include:

a. One course from each of three different programs of study in biology. Only those courses specifically listed as fulfilling a program of study requirement are acceptable without permission of adviser.

b. A course with a laboratory.

c. A minimum of two upper-level (300 and above) courses of 2 or more credits each.

100-level courses are not acceptable for meeting any of these requirements. BIO G 498 may be used not to fulfill the requirements of this program of study. BIO G 498 (minimum of 2 credits, but no more than 3 credits) may count as one of the upper-level courses, and may count as the laboratory course with approval of the adviser, but it cannot count as a course representing a program of study.

Note: It is possible to use a single course to fulfill more than one requirement. For example, BIOAP 413 Histology could count in all three areas: as a course in the Animal Physiology program of study, as an upper-level course, and as a course with a lab.

6. Genetics and Development: A minimum of 13 credits, usually chosen from the following courses: BIOGD 385 Developmental Biology; BIOGD 400 A Genomics Approach to Studying Life; BIOGD 401 Genomics Analysis; BIOGD 450 Vertebrate Development; BIOGD 480 Seminar in Developmental Biology; BIOGD 481 Population Genetics; BIOGD 482 Human Genetics and Society; BIOGD 483 Advanced Developmental Biology; BIOGD 484 Molecular Evolution; BIOGD 486 Advanced Eukaryotic Genetics; BIOGD 487 Human Genetics; BIOGD 489 Mammalian Embryology; BIOGD 490 Manipulating the Mouse Genome; BIOGD 500 Development of Sensory Systems; BIOGD 610-624 Genomics Modules; BIOGD 640 Stem Cell Biology; BIOGD 662 Fertilization and the Early Embryo; BIOGD 684 Advanced Topics in Population Genetics; BIOGD 687 Developmental Genetics; BIOGD 689 Cellular Basis of Development; BIOMI 420 Microbial Genetics; BIOMI 485 Bacterial Genetics; ENTOM 400 Insect Development; BIOAP 475 Mechanisms of Underlying Mammalian Developmental Defects; BIOMB 492 Developmental Neurobiology; BIOMB 495 Molecular and Genetic Approaches to Neuroscience; BIOBM 457 Cell Proliferation and Senescence; BIOMB 459 Molecular Basis of Human Disease; NS 508 Epigenetics; BIOBM 653 Biosynthesis of Macromolecules; BIOBM 639 The Nucleus; BIOEE 453 Speciation; PL BR 403 Genetic Improvement of Crop Plants; PL BR 606 Advanced Plant Genetics; BIOPL 434 Molecular Biology and Genetic Engineering of Plants; BIOPL 641 Laboratory in Plant Molecular Biology; BIOPL 652 Plant Molecular Biology II; BIOPL 655 Plant Molecular Biology I.

Up to 3 credits for this program of study may be chosen from other biological sciences courses, including BIO G 499 Independent Undergraduate Research in Biology, with approval from the faculty adviser.

7. Insect Biology: ENTOM 212 Insect Biology plus a minimum of three additional courses totaling at least 9 credits selected from the following two groups. At least one of the three additional courses must be selected from group a.

Group a

*ENTOM 322 Insect Morphology
*ENTOM 331 Introductory Insect Systematics
*ENTOM 333 Larval Insect Biology
*ENTOM 400 Insect Development
*ENTOM 455 Insect Ecology
*ENTOM 483 Insect Physiology

Group b

*ENTOM 315 Spider Biology
*ENTOM 325 Insect Behavior
*ENTOM 334 Insect Conservation Biology
*ENTOM 352 Medical and Veterinary Entomology
*ENTOM 369 Chemical Ecology
*ENTOM 370 Pesticides, Environment, and Human Health
*ENTOM 394 Circadian Rhythms
*ENTOM 443 Entomology and Pathology of Trees and Shrubs
*ENTOM 444 Integrated Pest Management
*ENTOM 452 Herbivores and Plants
*ENTOM 453 Historical Biogeography
*ENTOM 455 Insect Ecology
*ENTOM 456 Stream Ecology
*ENTOM 463 Invertebrate Pathology
*ENTOM 470 Ecological Genetics
*ENTOM 471 Freshwater Invertebrate Biology and Biomonitoring
*ENTOM 477 Biological Control
*ENTOM 490 Insect Toxicology

8. Microbiology: Students in the Microbiology program of study must complete BIOMI 290 General Microbiology, Lec; BIOMI 291 General Microbiology, Lab. At least 8 additional credits are required, which must include at least one of the following courses:
BIOL 414 Bacterial Diversity; BIOM 416 Bacterial Physiology; BIOM 418 Microbial Ecology; BIOM 485 Bacterial Genetics.

Additional approved courses are included in the list below. Students are invited to complete their requirements in one of three areas of interest (these are only recommended areas of interest; students may design their own course list as long as they meet the requirements described below): (a) Prokaryotic Biology, (b) Molecular Microbiology and Biotechnology, and (c) Pathogenic Microbiology. Courses acceptable to the program of study that cover topics related to a particular area of interest are:

Prokaryotic Biology: BIOM 391 Advanced Microbiology Laboratory; BIOM 414 Bacterial Diversity; BIOM 416 Bacterial Physiology; and BIOM 418 Microbial Ecology.

Molecular Microbiology and Biotechnology: BIOM 391 Advanced Microbiology Laboratory; BIOM 416 Bacterial Physiology; BIOM 420 Microbial Genomics; BIOM 485 Bacterial Genetics; and BIOM 591 Applied Food Microbiology.

Pathogenic Microbiology: BIOM 404 Pathogenic Bacteriology and Mycology; BIOM 409 Viruses and Disease; BIOM 417 Medical Parasitology; and BIOM 485 Bacterial Genetics.

9. **Molecular and Cell Biology:** CHEM 357-358 or 359-360; BIOM 422 Survey of Cell Biology; BIOM 440 Laboratory in Biochemistry and Molecular Biology, or BIOM 430 Experimental Molecular Neurobiology; and at least 7 additional credits of courses that have a cell biological or molecular biological orientation. The 7 additional hours should include at least two courses from the following list: BIOAP 416 Cellular Physiology and Genomics Laboratory; BIOM 434 Applications of Molecular Biology; BIOM 437 Cell Proliferation and Senescence; BIOM 439 Molecular Basis of Human Disease; BIO G 305 Immunology; BIOGD 385 Developmental Biology; BSE 485 Advanced Developmental Biology; BIOGD 484 Molecular Evolution; BIOGD 486 Advanced Eukaryotic Genetics; BIOGD 487 Human Genomics; BIOGD 490 Manipulating The Mouse Genome; BIOM 409 Principles of Virology; BIOM 420 Microbial Genomics; BIOM 485 Bacterial Genetics; BIOM 425 Molecular Neurophysiology; BIOM 495 Molecular and Cellular Approaches to Neurosciences, BIOM 343 Molecular Biology and Genetic Engineering of Plants; BIOPL 347 Laboratory in Molecular Biology and Genetic Engineering of Plants; BIOPL 444 Plant Cell Biology. Students graduating in spring 2008 or earlier may include BIOM 290 General Microbiology, Le; and BIOM 222 Neurobiology and Behavior II. Introduction to Neurobiology. Graduate-level courses such as BIOM 631 Protein Structure and Function: BIOM 633 Biosynthesis of Macromolecules; BIOM 656 Functional Organization of Eukaryotic Cells; and CHEM 207-208 or 215-216 should be completed in the freshman year.

10. **Neurobiology and Behavior:** The two-semester introductory course sequence Neurobiology and Behavior I and II (BIONB 221-222) and the discussion section (4 credits per semester) and 7 additional credits. The 7 additional credits must include at least one ADVANCED COURSE from the BIONB offerings. "Topics" courses (BIONB 420s and 720s) and independent study (BIO G 499) may be used as supplemental credits but do not qualify as ADVANCED courses.

Note: Students who declare the program of study in Neurobiology and Behavior after taking BIONB 221 or 222 for only 5 credits must still take the 1-credit discussion section in BIONB 221 and 222. To arrange this, the student should consult the professors in charge of the two courses.

11. **Nutrition:** NS 331 Physiological and Biochemical Bases of Human Nutrition (4 credits) and at least 9 credits of additional courses with at least 2 credits of nutrition, such as NS 222 Maternal and Child Nutrition; NS 315 Obesity and the Regulation of Body Weight; NS 322 Methods in Nutritional Sciences; NS 341 Human Anatomy and Physiology; NS 347 Human Growth and Development; NS 361 Biology of Normal and Abnormal Behavior; NS 421 Nutrition and Exercise; NS 431 Mineral Nutrition and Chronic Disease; NS 452 Molecular Epidemiology and Dietary Markers of Chronic Diseases; NS 455 Nobel Prizes in Biomedical Research; NS 475 Mechanisms Underlying Mammalian Developmental Defects; NS 602 Lipids; NS 603 Mineral Nutrition: Metabolic, Health, and Environmental Aspects; and NS 614 Topics in Maternal and Child Nutrition. Some courses require NS 115 Nutrition: Society, which may be used as part of the additional 9 credits. Independent study credits cannot be used toward the 13-credit minimum.

Note: For students in the College of Agriculture and Life Sciences, credits in NS courses count toward the required 55 CALS credits. For students in the College of Arts and Sciences, NS credits will count toward the 100 credits. For students in the College of Agriculture and Life Sciences, credits in NS courses count toward the required 55 CALS credits.

12. **Plant Biology:** Students choose one area of study from the following two options:

Option (a) Botany: Students are required to take BIOPL 221 Introductory Botany. Students should then choose, with the aid of their faculty adviser, a minimum of five credits of courses from the following two groups, including at least 7 credits from group a and three from group b:

- **Group A:** BIOPL 221 Introductory Botany; BIOPL 241 Introductory Botany; BIOPL 414 Plant Physiology; and BIOL 422 Plant Development. BIOPL 444 Plant Cell Biology; BIOPL 456 Biomechanics of Plants; BIOL 462 Plant Biochemistry; PL BR 401 Plant Cell and Tissue Culture; or PL BR 402 Plant Tissue Culture Laboratory.

Option (b) Plant Biotechnology: Students are required to take BIOPL 343 and 347 Molecular Biology and Genetic Engineering of Plants, Le; and Lab. Students choose, in consultation with their faculty adviser, a minimum of 10 additional credits from the following list:

- BIOL 241, 242 and 244 Plant Function and Growth, Le; and Lab. BIOPL 414 Plant Physiology, Le and Lab. BIOPL 422 Plant Development. BIOPL 444 Plant Cell Biology; BIOPL 456 Biomechanics of Plants; BIOL 462 Plant Biochemistry; PL BR 401 Plant Cell and Tissue Culture; or PL BR 402 Plant Tissue Culture Laboratory.

13. **Systematics and Biotic Diversity:** A minimum of 13 credits from the following two groups, including at least 7 credits from group a and three from group b:

a. **BIOL 264 Tropical Field Ornithology; BIOL 274 The Vertebrates: Structure, Function, and Evolution; BIOL 373 Biology of the Marine Invertebrates; BIOL 405 Biology of Neotropics; BIOL 471 Mammalogy; BIOL 470 Herpetology, Le; BIOL 472 Herpetology, Lab; BIOL 475 Ornithology; BIOL 476 Biology of Fishes, BIOL 477 Marine Invertebrates Seminar; BIOM 290 General Microbiology, Le; BIOM 291 General Microbiology, Lab; BIOM 414 Bacterial Diversity, Le; BIOP 241 Introductory Botany; BIOP 243 Taxonomy of Cultivated Plants; BIOP 247 Ethnobotany; BIOP 248 Taxonomy of Vascular Plants; BIOP 346 The Healing Forest; BIOP 359 Biology of Grasses; BIOP 452 Systematics of Tropical Plants, Lab. BIOP 454 Systematics of Tropical Plants: Field Laboratory; ENTOM 212 Insect Biology; ENTOM 213 General Entomology; SPIL 215 Spider Biology. Life on a Silken Thread; ENTOM 322 Insect Morphology; ENTOM 331 Introductory Insect Systematics; ENTOM 333 Maggots, Grubs, and Larval Insect Biology; ENTOM 471 Freshwater Invertebrate Biology; ENTOM 631
Systematics of the Coleoptera, PL PA 309 Introduc to Mycology; *PL PA 319 Field Mycology.

h. BIOEE 453 Speciation; BIOE 464 Macroevolution; BIOEE 479 Paleobiology; *BIOL 440 Phylogenetic Systematics; BIOL 447 Molecular Systematics; *BIOL 448 Plant Evolution and the Fossil Record; *BIOL 453 Historical Biogeography; BIOL 442 Current Topics in Ethnobiology.

14. Independent Option: Students who want to undertake a course of study not covered by the existing programs of study may petition the Biological Sciences Curriculum Committee. Information on independent option and Curriculum Committee petition forms are available in the Office of Undergraduate Biology, 216 Stimson Hall.

The Minor in Biological Sciences

The minor in biological sciences has been designed to provide students with a broad background in biology while allowing them some flexibility to choose courses of interest. Students must have completed one full year of introductory biology (or its equivalent) to declare the minor. Students will complete 12 to 15 credits by taking either all three biology core course requirements (listed below) or two biology core course requirements and 5 or more biology credits from the lists of approved program of study courses as found in Courses of Study.

Biology core courses

1. Biochemistry: BIORM 330, 333, or 331-332, one year of general chemistry and organic chemistry lecture (CHEM 257 or 357-358) are prerequisites.

2. Evolutionary biology: BIOE 278 or BIOL 448

3. Genetics: BIOGD 281

Notes:
*BIO G 499 Independent Research may not be used to fulfill any requirement for the minor. No course substitutions are allowed. With the exception of transfer and study abroad students, no biology courses taken at other institutions will count toward the minor. **Biological sciences, biology and society, and human biology, health and society majors are not eligible to complete the biological sciences minor.

***Applications for the minor are located in 216 Stimson Hall. See Bonnie Cornella or Wendy Aquadro for academic advising and for certifying completion of the minor.

Independent Research and Honors Program

Faculty members may consider the student's previous academic accomplishments, interests and career goals, and the availability of space and equipment when agreeing to supervise a student in their laboratory. Students conducting research for the first time must enroll in BIO G 299, an S-U course designed to introduce students to research. After the first semester, students enroll in BIO G 499. Registration for both of these classes is done in the Office of Undergraduate Biology in 216 Stimson Hall. Students may work with faculty in any department on campus as long as the research topic is biological. Students may not earn credit for research done off campus, unless supervised by a Cornell faculty member. Up to 3 credits per year may be used to complete the program of studies in general biology, genetics and development, systematic and biotic diversity, as well as 4 credits in neurobiology and behavior.

The honors program in biological sciences is designed to offer advanced training in laboratory or field research through the performance of an original research project under the direct guidance of a member of the Cornell faculty. Applications for the honors program are available in the Office of Undergraduate Biology, 216 Stimson Hall, and must be submitted in October of the senior year to the Honors Program Committee by the announced deadline. To qualify for the program, students must have been accepted into the biological sciences major, have completed at least 30 credits at Cornell, and have a cumulative Cornell grade point average (GPA) of at least 3.0. In addition, students must have at least a 3.0 cumulative Cornell GPA in all biology, chemistry, mathematics, and physics courses. (Grade earned in courses in other departments that are used to fulfill biology major requirements are included in this computation.) In addition, candidates must find a Cornell faculty member to supervise their research. An honors candidate usually enrolls for credit in BIO G 499 Undergraduate Research in Biology under the direction of the faculty member acting as honors supervisor, although the honors program does not require enrollment for credit. Students accepted into the honors program are required to participate in honors research seminars during their senior year; submit an acceptable honors thesis; complete all major requirements; and maintain a 3.00 Cornell cumulative and science GPA through graduation. Recommendation to the faculty that a candidate graduate with honors and at what level of honors is the responsibility of the Honors Program Committee. The student's final GPA and quality of his or her thesis are factors in determining the level of honors recommended.

Students interested in the honors program are strongly encouraged to begin their research projects in their junior year and to consider spending the following summer at Cornell engaged in full-time research on their honors project. Students interested in staying for the summer also are encouraged to apply to the Cornell Hughes Scholars Program.

Biology majors who are considering study abroad and graduating with honors are encouraged to meet with their academic and research adviser during their sophomore year to carefully plan their academic schedule to meet the requirements of the honors program. Application forms, requirements, deadline dates for the honors program and the Hughes Scholars Program, and information pertaining to faculty research may be obtained at the Office of Undergraduate Biology, 216 Stimson Hall, and at www.bio.cornell.edu.

CURRICULUM COMMITTEE

Many decisions pertaining to the curriculum and to the programs of study are made by the Biology Curriculum Committee. The committee consists of faculty and elected student members and welcomes advice and suggestions from all interested parties.

ADVISING

Students in need of academic advice are encouraged to consult their advisers or go to the Office of Undergraduate Biology, 216 Stimson Hall.

Students interested in marine biology should visit the Shoals Marine Laboratory Office, G14 Stimson Hall.

Students interested in the multidisciplinary program biology and society should see "Special Programs and Interdisciplinary Studies" in the "College of Arts and Sciences" section of this catalog.

TRANSFERRING CREDIT

Students wishing to transfer biology credit to Cornell must receive approval from the director of advising, 216 Stimson Hall. Biology majors are required to complete all three biology core courses at Cornell. External transfer and study abroad students may be allowed to transfer a limited number of biology credits upon approval from the director of advising.

Online course credit is not acceptable to transfer for any biology course.

GENERAL COURSES (BIO G)

Three introductory biology course sequences are taught during the academic year:

BIO G 101-104, 105-106, and 109-110; and one during the eight-week summer session: BIO G 107-108. BIO G 101-104, 105-106, and 107-108 are intended for biological sciences majors and other students needing 8 credits from an introductory sequence for majors (e.g., students in a premedical curriculum). Any of these sequences meet the prerequisite for upper-level courses listing "one year of introductory biology for majors" as a prerequisite. BIO G 109-110 is a course sequence intended for nonmajors and meets the prerequisite for many, but not all, upper-level courses listing "one year of introductory biology" as a prerequisite. Students can earn a maximum of 8 credits in introductory biology (including advanced placement credits).
testing involves identification of important structures in real organisms.

BIOL G 103-104 Biological Sciences, Laboratory

103, fall; 104, spring. 2 credits each semester. Co-requisite: BIO G 101 (fall) or 102 (spring). Prerequisite: for 104, 103 or permission of instructor. Students registered for lab courses who are more than 10 missing days after first meeting of lab forfeit registration in that course; no admittance after second week of classes. S-U grades optional by permission of instructor. Lab, M T W F or R 1:25-4:25, M or W 7:30-10:30 P.M., or R or F 8-11 A.M., or S 9 A.M.-12 P.M.; one 3-hour lab each week and weekly lec for lab, sec, special lecs, etc. P. R. Ecklund and staff.

Designed to provide lab experience with major biology phenomena to support an understanding of the important concepts, principles, and theories of modern biology. A second objective is to help students gain expertise in the methods used by biologists to construct new knowledge. Students are exposed to basic concepts, research methods, including laboratory and data transformation techniques, and instrumentation in the major areas of biology. First-semester topics include biochemistry, physiology, plant biology, and behavior. In the second semester, laboratory experience is provided in genetics, biotechnology, invertebrate diversity, plant and animal development, and ecology. During the first semester, students dissect a doubly pitted frog (pitting is done by the instructor). Students dissect several invertebrates during the second semester. For those students who object to animal dissection, alternative materials are available for study. However, testing involves identification of important structures in real organisms.

BIOL G 105-106 Introductory Biology

105, fall; 106, spring. 3 credits each semester. Co-requisite: BIO G 101 (fall) or 102 (spring). Prerequisite: for 106, passing grade in BIO G 105 or permission of instructor. May not be taken for credit after BIO G 101-104 or 109-110. No admittance after first week of classes. S-U grades optional by permission of instructor. Lec, T 9:05 (first lec of fall semester, R 8-25, 9:05); additional study and lab. T. Sacco.

Designed primarily for biology majors, preprofessionals, and other students who desire a challenging, broad introduction to fundamental concepts of biology. Cell biology, physiology, anatomy, and biochemistry are strongly emphasized in the fall semester. The spring semester covers genetics, development, ecology, evolution, behavior, and the diversity of organisms. Students who plan to concentrate in anatomy and physiology should consider taking this course because of the strong emphasis on organismal biology. Because the course is offered each semester, additional laboratory work is included in the core units. Evaluation is based on written reports on experimental work, practical exams, and a comprehensive final exam.

BIOL G 107-108 General Biology

Semester-of-week session; 107, weeks 1-4; 108, weeks 5-8; 4 credits each. 107-108 fulfills introductory biology requirement for majors and forms suitable introductory biology course sequence for students intending to go to medical school. Prerequisite: one year of college or permission of instructor, for BIO G 108, BIO G 101, 103, or 107. Fee for weeks 1-4, $25; for weeks 5-8, $25. Lec, M T R F 9-12; lab, M-R 3-4-5-6. Staff.

Designed for students who plan further study in biology or who want a broad course in biology as part of their general education. 107 covers biological metabolism, first at the molecular level and then progressively to the organismal level. Laboratory work involves an introduction to some major techniques, vertebrate dissection, and a survey of plant organization. 108 seeks to integrate the topics of genetics, developmental biology, population biology, and ecology in a general consideration of biological evolution. The laboratory work is a continuation of the material covered in 107 and involves more techniques, a survey of animal organization, and the design and performance of a field study. For those students who object to animal dissection, alternative materials are available for study. However, testing involves identification of important structures in real organisms.

BIOL G 109-110 Principles of Biology

109, fall; 110, spring. 3 credits each semester. Limited to 600 students. Nonmajors survey course, not appropriate for major in biological science or premed requirements. BIO G 109 and 110 taken in either order, are required to fulfill distribution requirement in CALS and Human Ecology. Either course fulfills Arts and Sciences distribution requirement. Students are encouraged to consult with course instructors for appropriate course placement. Due to overlap in content, BIO G 109 may not be taken after BIO G 102 or 106, or equivalent, and BIO G 110 may not be taken after BIO G 101, 105, or equivalent. Note: This course may not satisfy prerequisite for upper-level courses in biology. Letter grades only. Lab meets twice a week in a section and class. Prelims: fall (in class), Sept. 22 and Nov. 1; spring (evening), Feb. 23 and Apr. 4. Fall, C. Hopkins; Spring, J. Morin.

BIOLOGICAL SCIENCES - 2005-2006
research, biology in the post-9/11 era, and women in science.

[BIO G 202(2020)] The Diversity of Life

[BIO G 209(2090)] Introduction to Natural Science Illustration
Summer, six-week session. 2 credits. Limited to 12 students. Prerequisite: freshman drawing course or permission of instructor. S-U grades optional. Lec. and lab, T R 6:30-9:30 p.m. B. S. King.
Introduction to the art of natural science illustration for publication and to the techniques of various media including pencil, pen and ink, watercolor, colored pencil, scratchboard, and carbon dust. Potentials and limitations of line and half-tone reproduction, copyright, and portfolio presentation are discussed.

[BIO G 299(2990)] Introduction to Research Methods in Biology
Fall, spring. Prerequisites: Variable credit; max. 3 suggested. S-U grades only. Recommended for freshmen and sophomores. Students must register for credit in Office of Undergraduate Biology, 229 OUB. Applications available in OUB and at www.bio.cornell.edu. Add deadline is three days before university deadline. Any Cornell faculty member whose research field is biological in nature may serve as a supervisor for this course. Non-Cornell supervisors not acceptable. Intended for students who are new to undergraduate research. Students enrolled in BIO G 299 may be reading scientific literature, learning research techniques, or assisting with ongoing research. The faculty supervisor determines the work goals and the form of the final report.

[BIO G 305(3050)] Basic Immunology Lectures (also VETMI 315(3150))
Fall. 3 credits. Highly recommended: basic courses in microbiology, biochemistry, and genetics. S-U grades optional. Lec. J. A. Marsh.
For description, see VETMI 315.

[BIO G 400(4000)] Undergraduate Seminar in Biology
Fall or spring. Variable credit; 1-3 assigned for individual seminar offerings; may be repeated for credit. S-U grades optional. Staff.
Specialized seminars on topics of interest to undergraduates presented by biology faculty including visiting faculty.

Sec 1 Functional Genomics in Non-Model Organisms (also BIOGD 480.1)
Fall. 2 credits. Prerequisites: BIOGD 281 and BIOEE 278 (or equivalent by permission of instructor). Intended for advanced undergraduates. M 12:50-2:20 plus required attendance at four seminars, M 9/26, 10/17, 10/31, and 11/14. A. McCune, A. Clark, D. Winkler, and M. Woflner.
For description, see BIOGD 480.

[BIO G 401(4010)] Introduction to Scanning Electron Microscopy
Spring, weeks 1-8. 1 credit. Limited to 8 students. S-U grades optional. Fee may be charged. Lec. M 10:10; lab, T or R 9:05-12:15 or T W or R 1:25-4:25. Offered alternate years. Staff.
Introductory course that includes the principle and use of the scanning electron microscope. Students use biological material to explore and understand some of the fine biological architecture. In addition to preparing the specimens, students use the scanning electron microscope to study and obtain micrographs of features that interest them.

[BIO G 403(4030)] Transmission Electron Microscopy for Biologists
Fall. 1, 3, or 4 credits (4 credits if student takes both sections). Limited to 8 students, minimum of 4. Prerequisites: BIOAP 313, BIOPL 443, or S-U grades optional. Two sections: 01, 1 credit, weeks 1-4; 02, 3 credits, weeks 5-12. Students may register for one or both sec. Fee may be charged. Lec, T 11:15; lab, M W or T R 1:25-4:25.
Section 01 covers the principles and use of the transmission electron microscope (TEM), with emphasis on proper operation of the instrument and interpretation of images obtained. Negatively stained materials are used for viewing with the transmission electron microscope. Section 02 covers the principles and techniques of preparing biological material for transmission electron microscopy. Limited to students with plant, and microbe materials, this section studies chemical fixtures, cryofixations, ultrathin sectioning, immunogold localization, quantitative microscopy, and metal shadowing techniques.
Students have two additional weeks to complete laboratory assignments at the end of each section.

[BIO G 404(4040)] Planning for Graduate Study in Biology
Fall. 1 credit. S-U grades only. Times TBA.
L. E. Southard.
For students who plan to pursue a graduate degree leading to a research career. Covers all aspects of the application process. Selected topics include general information on academic and industrial research careers, selecting appropriate programs, and options for funding. Faculty, graduate student, and outside speakers. Students write and receive feedback on personal statements.

[BIO G 408(4080)] Presentation Skills for Biologists
Spring. 1 credit. S-U grades only. Prerequisite: research experience. Priority given to students accepted into Biology Honors Program. L. Southard and G. Hess.
Covers oral and written communication skills used in presenting research to other scientists. Topics include organization and writing of scientific papers, presentation tips for research seminars, and preparation of visual aids using Microsoft PowerPoint. All students present a 10-minute seminar on their research and evaluate other presentations.

[BIO G 410(4100)] Teaching High School Biology
Fall. 3 credits. Prerequisite: one year introductory biology, permission of instructor. S-U grades optional. Offered alternate years.
L. Southard.
Gives students the opportunity to experience teaching high school science. Students select an important biological concept, then develop inquiry-based teaching plans appropriate for high school students. The first part of the course consists of lectures, discussion, and laboratory experiences to familiarize the students with the scientific content. Students then work in teams with high school teachers to develop their curriculum. The final part of the course includes practice presentations and teaching at regional high schools.

[BIO G 431(4310)] Frontiers in Biophysics
Fall, full day of lec., S. Sept. 17, 9 A.M.-4 P.M., Racker Room, Biotechnology Bldg. 0.5 credit. S-U grades only. Lec. TBA.
G. Feigenson and staff.
Overview of current research in biophysics at Cornell by faculty from different departments across the university. Designed for undergraduates considering a career in biophysics and for graduate students interested in biophysics research opportunities at Cornell.

[BIO G 450(4500)] Light and Video Microscopy for Biologists
Spring. 3 credits. Limited to 12 students. Prerequisite: one year introductory biology and permission of instructor. Lec, T R 1:25-2:30; lab, R 2:30-4:30. R. O. Wayne.
Students learn the relationship between reality and the image using philosophy, mathematics, and physical theory. Next they apply these tools theoretically and in practice to understand and become experts at image formation but not analysis using brightfield, darkfield, phase-contract, fluorescence, polarization, interference, differential interference and modulation contrast microscopes. They build upon our knowledge to understand how analog image processors and digital image processors can influence, enhance and analyze the images gathered by the microscope. Last they learn about many other kinds of microscopes, imaging confocal, near field, x-ray, acoustic, nuclear magnetic resonance, infrared, centrifuge, atomic force, and scanning tunneling microscopes.

[BIO G 498(4980)] Teaching Experience
Fall or spring. 1-4 credits. Limited enrollment. Prerequisites: previous enrollment in course to be taught or equivalent. Note: Arts students may not count this course toward graduation but may, upon petition (one time only) to their class dean, carry fewer than 12 other credits and remain in good standing. This would affect Dean's List eligibility but not eligibility for graduating with distinction.
S-U grades optional. By permission of instructor. Staff.
Designed to give qualified undergraduate students teaching experience through actual involvement in planning and assisting in biology courses. This experience may include supervised participation in a discussion group, assisting in a biology laboratory, assisting in field biology, or tutoring. Biological sciences courses currently offering such experience include: BIO G 105-106, BIOAP 311, 313, 319, BIOM 350, 531; BIOEE 274, 475; BIOGD 281; and BIOMI 291, 292.

[BIO G 499(4990)] Independent Undergraduate Research in Biology
Fall, spring, or summer. Variable credit. S-U grades optional. Note: Arts students may not register for more than 6 credits per semester with one supervisor or 8 credits per semester with more than one supervisor. Students in CAS may use up to 15 credits of independent study (BIO G 499, 4980) toward graduation. Up to 3 credits of research may be used to complete programs of study in General Biology, Genetics and Development, and Systematics and Biotic Diversity, and 4
BIOLOGICAL SCIENCES - 2005-2006

BIH who research field is biological in nature

regulation, and integration common to a

General course in animal physiology

BIOAP 312(3120) Farm Animal Behavior

Spring. 2 credits. Prerequisites: one year introductory biology, and introductory animal physiology (AN SC 305 or equivalent). Recommended: BIOAP 311. Recommended: at least one animal production course or equivalent experience. S-U grades optional.

The behavior of production species (avian and mammalian) influences the success of any management program. Students study behaviors relating to communication, learning, social interactions, reproduction, and feeding of domestic animals, and their physiological basis. Management systems for commercial livestock production and their implications for animal behavior and welfare are stressed.

BIOAP 316(3160) Cellular Physiology

Spring. 3 credits. Pre-or co-requisite: BIOAP 311 or 331. Lecture, discussion, and aspects of gamete physiology and in vitro technologies such as pre- or co-requisite: BIOAP 416 or BIOBM 432 or permission of instructor. Instructor. Lee, M W F 11:15-12:05; evening prelins.

A. Quantitative.

Comprehensive course covering the general characteristics of eukaryotic cells; the structure, composition, and function of subcellular organelles; and the major signal transduction pathways regulating a variety of physiological cell activities. Among the main subjects covered are absorption and transport processes, mechanism of action of signaling molecules (hormones), the cell cycle and regulation of cell proliferation, cell-cell communication, extracellular matrix, and carcinogenesis.

BIOAP 319(3190) Animal Physiology Expermentation

Fall. 4 credits. Limited to 40 students per lab sec. Prerequisites: one year introductory biology. S-U grades optional. Pre- or co-requisite: BIOAP 311 or permission of instructor. Designed for upper-level undergraduate and graduate students studying physiology and other students interested in biomedically related professions. Graduate students in field of physiology and related fields without equivalent background strongly encouraged to enroll. Lec, R 12:20; lab, M or W 12:20-5 E. R. Loew, N. A. Lorr, and staff.

Series of student-conducted in vivo and in vitro experiments designed to illustrate basic physiological processes in animals, with emphasis on relevance to humans, and to introduce students to physiological research techniques, instrumentation, experimental design, and interpretation. Techniques include anesthesia, surgical procedures, dissection under anesthesia, and real-time computer recording and analysis of data. Experiments with living tissues or live animals examine properties of membranes and epithelia, blood, nerves, skeletal and smooth muscle; cardiovascular, respiratory, renal, and reproductive function and their regulation by the nervous and endocrine systems. Experimenal resources include frogs, rats, rabbits, and sheep, which are not always euthanized after the laboratory exercises.

Written reports of laboratory activities are required. Grading based on evaluation of these reports, attendance, in-class and written tests, and final exam.

BIOAP 413(4130) Histology: The Biology of the Tissues

Spring. 4 credits. Prerequisite: one year introductory biology. Recommended: BIOBM 350 or 331, or equivalents. S-U or letter grades. Lec, M W 1:25-3:25 S. Suarez and L. Miller.

Provides students with a basis for understanding the microscopic, fine-structural, and functional organization of vertebrates (primarily mammals), as well as methods of histologic morphology and histochemistry. Emphasizes dynamic interrelations of structure, composition, and function in cells and tissues.

BIOAP 416(4160) Cell Physiology and Genomics Laboratory

Spring. 4 credits. Limited to 24 students.

Designed for graduate and upper-level undergraduate students; priority given to biologic majors with physiology concentration. Pre- or co-requisite: BIOAP 316 or BIOBM 432 or permission of instructor. Instructor. Lec: M W 12:20-1:10; lab, M W 1:25-2:25 A. Quaranta, W. R. Moore, and staff.

Introduces students to modern methods and instrumentation in cell physiology and genomics. Laboratory exercises teach the following experimental methods: (1) primary cell culture, cell cloning, subculturing, and cell counting; (2) cell and macromolecule imaging using fluorescence and electron microscopy; (3) karyotyping including chromosome spreading, banding, and fluorescent in situ hybridization; (4) flow cytometry and DNA electrophoresis for the assay of apoptosis and cell proliferation; (5) protein electrophoresis and Western blotting; (6) recombinant DNA technology including restriction analysis, cloning, transformation of competent cells, plasmid isolation, and transfection; (7) analysis of gene expression by use of RT-PCR, real time-PCR and microarray analysis; and (8) analysis of electrogenic transport systems in cultured epithelia mounted in Ussing chambers.

BIO AP 425(4250) Gamete Physiology and Fertilization (also AN SC 425(4250))

Fall. 2 credits. Limited to 50 students. Prerequisite: AN SC 300 or equivalent. Offered alternate years; not offered 2006-2007. Instructor. R. C. 2:30-4:25, J. E. Parkes.

Studies the formation, growth, differentiation, and maturation of mammalian sperm and oocytes; gamete transport and interaction with male and female reproductive tracts; and cytological, physiological, and molecular changes required for fertilization.

Lecture, discussion, and aspects of gamete physiology and in vitro technologies such as cryopreservation, cryoprotectant formulation, and fertilization are covered.

BIOAP 427(4270) Fundamentals of Endocrinology (also AN SC 427(4270))

Fall. 3 credits. Prerequisite: animal or human physiology course or permission of instructor. Instructor. M W T F 9:05-10:20 A. Johnson.

For description, see AN SC 427.

BIOAP 450(4560) Mammalian Physiology

Spring. 3 credits. Limited enrollment. Graduate student auditors allowed. Prerequisite: BIOAP 311 or equivalent. Recommended for biological sciences majors, pre-medical, pre-vet students, and beginning graduate students in physiology.

ANIMAL PHYSIOLOGY (BIOAP)

BIOAP 214(2140) Biological Basis of Sex Differences (also BOSC 214(2141), FGSS 214(2140))

Examines the structural and functional differences between the sexes. Emphasizes mechanisms of mammalian reproduction; where possible, special attention is given to studies of humans. Current evidence on the effects of gender on nonreproductive aspects of life (development, the central and peripheral nervous systems, and physical capabilities) is discussed. The course is intended to provide students with a basic knowledge of reproductive endocrinology and with a basis for objective evaluation of sex differences in relation to contemporary life.

BIOAP 311(3110) Introductory Animal Physiology, Lectures (also VETMI 346(3460))

Fall. 3 credits. Prerequisites: one year college biology, chemistry, and mathematics. Recommended: previous or concurrent physics course. S-U grades optional by permission of instructor. Lec, M W F 11:15; evening prelins. E. R. Loew.

General course in animal physiology emphasizing principles of operation, regulation, and integration common to a broad range of living systems from the cellular to the organismal level. Structure/function relationships are stressed along with underlying physico-chemical mechanisms.

BIOAP 312(3120) Farm Animal Behavior (also AN SC 305(3050))

Spring. 2 credits. Prerequisites: one year introductory biology, and introductory animal physiology (AN SC 305 or equivalent). Recommended: BIOAP 311. Recommended: at least one animal production course or equivalent experience. S-U grades optional.

The behavior of production species (avian and mammalian) influences the success of any management program. Students study behaviors relating to communication, learning, social interactions, reproduction, and feeding of domestic animals, and their physiological basis. Management systems for commercial livestock production and their implications for animal behavior and welfare are stressed.

For description, see VETMI 703.

BIO G 663(6630) Nanobiotechnology (also AEP 663(6630))

Spring. 3 credits. Letter grades only. C. Batt.

For description, see AEP 663.

BIO G 706(7060) Immunology of Infectious Diseases (also VETMI 719(7190))

Spring. 4 credits. Prerequisite: BIO G 305 or permission of instructor. S-U grades optional by permission of instructor. Lee. Offered odd alternate years; not offered 2005-2006. Coordinator, E. Denkers.

For description, see VETMI 705.
Advance course on biochemical, metabolic, and cardiac arrhythmias. Emphasizes nonlinear membrane properties, ion channels, and cardiovascular physiology. Lectures incorporate clinical correlations whenever appropriate. Occasional guest lecturers talk about work and careers in basic research and/or clinical medicine.

BioAP 475(4750) Mechanisms Underlying Mammalian Developmental Defects (also NS 475(4750))
Spring. 3 credits. Prerequisites: BioBM 330, 331-332, or 335 (may be taken concurrently). M. W. F. 11:15. Offered alternate years. D. M. Noden and P. Stover. Focuses on the causes of developmental defects and how genetic changes or teratogenic insults disrupt developmental regulatory and metabolic pathways.

BioAP 489(4890) Mammalian Embryology (also BioGD 489(4890))
Spring. 3 credits. Prerequisite: introductory biology. Lec, T R 1:25; lab, T 2:30. Offered alternate years. D. M. Noden. Examines the early formation of the mammalian body and placenta, emphasizing comparative aspects, and morphogenesis and histogenesis of each organ system.

BioAP 610(6100) Lipids (also NS 602(6020))
Fall. 2 credits. Lec, T R 11:15. A. Bensadoun. Advanced course on biochemical, metabolic, and nutritional aspects of lipids. Emphasizes critical analysis of current topics in lipid methodology; lipid absorption; lipoprotein secretion, molecular structure, and catabolism; molecular biology, function, and regulation of lipoprotein receptors; mechanism of hormonal regulation of lipolysis and fatty acid synthesis; and cholesterol metabolism and atherosclerosis.

BioAP 710-718(7100-7180) Special Topics in Physiology
Fall or spring. 1 or 2 credits per topic; may be repeated for credit. Enrollment in each topic may be limited. S-U grades optional by permission of instructor. Lectures, laboratories, discussions, and seminars on specialized topics.

BioAP 711(7110) Readings in Applied Animal Behavior
Fall. 1 credit. Prerequisite: BioAP 311 or equivalent. Offered alternate years; next offered 2007-2008. Lec, 1 hour each week. TBA. K. A. Houpt.

BioAP 714(7140) Cardiac Electrophysiology
Fall. 1 credit. S-U grades only. Offered alternate years; next offered 2006-2007. R. Gilmour. Survey of cardiac potentials, passive membrane properties, ion channels, and cardiac arrhythmias. Emphasizes nonlinear dynamic aspects of cardiac electrophysiology and cardiac arrhythmias.

BioAP 715(7150) Stress Physiology: To Be Discussed as Part of Animal Welfare
Fall. 1 credit. Prerequisite: BioAP 311 or equivalent. Offered alternate years; next offered 2006-2007. K. A. Houpt. Emphasizes physiological stress.

BioAP 720(7220) Animal Physiology and Anatomy Seminar
Spring and fall. 1 credit each semester. Prerequisite: admission to graduate field of physiology. Designed to train graduate students in the field of physiology to become professional scientists. Students are required to give a seminar on their research. Advice and feedback are provided. Throughout the semester and in one special session devoted to a particular topic, advice is provided on subjects such as preparation of manuscripts, seminars, and grant proposals.

BioAP 757(7570) Current Concepts in Reproductive Biology
Fall. 3 credits. Limited to 20 students. Prerequisite: undergraduate degree in biology and strong interest in reproductive biology. S-U grades optional. Lec/disc, T R 10:10-12:05. Offered alternate years; next offered 2006-2007. J. E. Fortune, W. R. Butler, and staff. Team-taught survey course in reproductive physiology/endoendocrinology. Lectures by a number of reproductive biologists on various aspects of male reproductive function (endocrine regulation, testis function, spermatogenesis, and sperm physiology/function); female reproductive function (endocrinology, ovarian development and function, ovocyte physiology/function); fertilization and early embryonic development; pregnancy; parturition; puberty; and reproductive technology. Student participation in the form of discussions and/or presentations.

Related Courses in Other Departments
Adaptations of Marine Organisms (BioBM 413)
Advanced Work in Animal Parasitology (VETMI 737)
Animal Reproduction and Development (AN SC 300)
Developmental Biology (BioGD 385)
Embryology (BioGD 389)
Fundamentals of Endocrinology (AN SC 427)
Insect Morphology (ENTOM 322)
Integration and Coordination of Energy Metabolism (BioBM 537, NS 536)
Sensory Function (BioNB 492)
Teaching Experience (Bio G 498)
Undergraduate Research in Biology (Bio G 499)

BioCHEMISTRY, MOLECULAR AND CELL BIOLOGY

BioBM 132(1320) Orientation Lectures in Molecular Biology and Genetics (also BioGD 132[1320])
Spring, weeks 1-3. 0 credits. Primarily for freshmen, sophomores, and transfer students. S-U grades only. Lec, S 11:15, first three S of semester (Jan. 28, Feb. 8, Feb. 11, 180 Biotechnology Bldg). Staff. Six professors discuss their research and promising new areas for research in the future.

BioBM 233(2330) Introduction to Biomolecular Structure (also CHEM 233(2330))
Fall. 2 credits. Limited to 30 students. Prerequisites: CHEM 207-208 or equivalents. Lec, T R 7:30-11:00. Lec offered 2005-2006. S. E. Ealick. For description, see CHEM 233.

BioBM 321(3210) Numerical Methods in Computational Molecular Biology (also COM S 321[3210])
Fall. 3 credits. Prerequisites: at least one course in calculus (e.g., MATH 106, 111, or 191) and course in linear algebra (e.g., MATH 221 or 294 or BTRY 417). No particular course in programming required, but student should have some familiarity with iteration, arrays, and procedures. Offered alternate years. For description, see COM S 321.

BioBM 330-332(3300-3332) Principles of Biochemistry
Introductory biochemistry is offered in three formats: individualized instruction (330) and lectures (331 and 332) during the academic year, and lectures (333) during the summer. Individualized instruction is offered to a maximum of 250 students each semester. Lectures are given fall semester (331), spring semester (332), and summer (333).

BioBM 330(3300) Principles of Biochemistry, Individualized Instruction
Fall or spring. 4 credits. Prerequisites: one year introductory biology for majors and one year general chemistry and CHEM 257 or 357-358 (CHEM 358 may be taken concurrently) or equivalent, or permission of instructor. Recommended: concurrent registration in BIOBM 334. May not be taken for credit after BioBM 351, 352, or 353. S-U grades optional by permission of instructor. Evening prelims: fall, Sept. 29 and Nov. 1; spring, Feb. 23 and Apr. 14. J. E. Blankenship, P. C. Hinkle, and staff. Fourteen units that cover protein structure and function, enzymes, basic metabolic pathways, DNA, RNA, protein synthesis, and an introduction to gene cloning. No formal lectures, autotutorial format.

BioBM 331(3310) Principles of Biochemistry: Proteins and Metabolism
Fall. 3 credits. Prerequisites: one year introductory biology for majors, one year general chemistry, and CHEM 257 or 357-358 (CHEM 257 or 357 should not be taken concurrently) or equivalent, or permission of instructor. May not be taken for credit after BioBM 350 or 353. S-U grades by permission of instructor. Lec; M W F 10:10; evening prelim, Oct. 20. G. W. Feigenson. The chemical reactions important to biology, and the enzymes that catalyze these reactions,
are discussed in an integrated format. Topics include protein folding, enzyme catalysis, bioenergetics, and key reactions of synthesis and catabolism.

BIOBM 332(3320) Principles of Biochemistry: Molecular Biology
Spring. 2 credits. Prerequisites: one year introductory biology for majors or equivalent general chemistry, and CHEM 257, or 257-258, or equivalents, or permission of instructor. May not be taken for credit after BIOBM 330, 331, or 332. H. T. Nivison.

Comprehensive course in molecular biology that covers the structure and properties of DNA, RNA replication and repair, synthesis and processing of RNA and proteins, the regulation of gene expression, and the principles and applications of recombinant DNA technologies, genomics, and proteomics.

BIOBM 333(3330) Principles of Biochemistry: Proteins, Metabolism, and Molecular Biology
Summer, eight-week session. 4 credits. Prerequisites: one year introductory biology for majors, one year general chemistry, and CHEM 257, or 257-258, or equivalents, or permission of instructor. May not be taken for credit after BIOBM 330 or 332. J. T. Ely.

Topics include the structure and function of proteins, enzyme catalysis, metabolism, and the replication and expression of genes.

BIOBM 334(3340) Computer Graphics and Molecular Biology
Fall or spring. 1 credit. Prerequisite: BIOBM 330 or 331-332 (BIOBM 332 may be taken concurrently). Co-requisite: BIOBM 330, J. F. Blankenship, P. C. Hinkle, and staff. Visualization of complex biomolecules using Silicon Graphics computers. Group presentations on current topics in molecular biology.

BIOBM 422(4230) Survey of Cell Biology
Spring. 3 credits. Prerequisite: BIOBM 330, 333, or 331, and previous or concurrent registration in 332, or equivalent. Recommended: BIOGD 281. Lee, M W 8:40-9:55. M. V. Vogt.

Survey of a wide array of topics focusing on the general properties of eukaryotic cells. Topics include methods used for studying cells, the structure and function of the major cellular organelles, and analyses of cellular processes such as mitosis, endocytosis, cell motility, secretion, cell-to-cell communication, gene expression, and oncogenesis. Some of the material is covered in greater depth in BIOBM 437, BIOGD 469, and BIOBM 632, 636, and 639.

BIOBM 434(4340) Applications of Mole Bio Med in Agriculture, Against, and Industry
Fall. 3 credits. Limited to 50 students. Prerequisites: BIOBM 330 or 333 or 331-332. Recommended: BIOGD 281. S-U grades optional. Lec, M W F 11:15-12:05. J. M. Calvo and S. Ely.

Lecture topics include large-scale sequencing of genomes, drug discovery based on genomics, combinatorial approaches to chemical libraries, pharmacogenetics, antibiotics derived from innate immune system, DNA and edible vaccines, transgenic animals, engineering plants resistant to insects, and gene therapy. About one-quarter of the course is devoted to exploring factors that are required for commercializing ideas and to some social ramifications of biotechnology.

BIOBM 435-436(4350-4360) Undergraduate Biochemistry Seminar
435, fall; first meeting 4 p.m., T, Aug. 30. 436, spring meeting 4 p.m., T, Jan. 25, 471 Biotech. Bldg. 1 credit each semester; may be repeated for credit. Prerequisites: upperclass standing. BIOBM 330, 333, or 331-332, or written permission of instructor. S-U grades only. Times TBA: organizational meeting first W of each semester. D. Wilson.

Selected papers from the literature on a given topic are evaluated critically during 12 one-hour meetings.

BIOBM 437(4370) Regulation of Cell Proliferation, Senescence, and Death (also TOX 437(4370))
Spring. Variable credit; students may takelec. for 2 credits or lec and disc for 3 credits. Limited to 20 students per disc; priority given to graduate students. Prerequisite: BIOG 101-102 or 105-106 and BIOBM 330 or 331-332. Recommended: BIOGD 281 and BIOBM 432. S-U grades optional. M W 11:15-12:05; disc, TBA. S. Lee.

Covers a wide spectrum of issues related to cell proliferation in eukaryotes. Lectures include various aspects of the regulation of cell division cycle and signal transduction pathways, with additional topics on oncogenesis, cell cycle, and cell death. The facts as well as concepts and logics behind findings are presented in the lectures. Research articles are analyzed and discussed in depth during discussion section.

BIOBM 439(4390) Molecular Basis of Human Disease (also BIOGD 439(4390))
Fall. 3 credits. Prerequisites: biochemistry and molecular biology (e.g., BIOBM 330, 331-332, or 333) and genetics (e.g., BIOGD 281) or permission of instructor. Prerequisites (continued): BIOBM 430 or BIOAP 316 and physiology (e.g., BIOAP 311 or 458). S-U grades optional. Lec, T R 10:10-11:25. Not offered 2006-2007. W. L. Kraus.

Experiments related to molecular biology for majors in biochemistry or molecular biology and to graduate students with minor in field of biochemistry. Prerequisites: BIOBM 330 or 333 or 331-332 (at least one of 331-332 completed but one may be taken concurrently). Lab, M W 12:20-4:25 (disc, F 1:25) or T R 12:20-4:25 (disc, F 2:30); summer, M-F 10-5:30. S. Ely and H. Nivison.

Experiments related to molecular biology (includes PCR, DNA cloning, hybridization analysis, restriction mapping, and DNA sequence analysis), protein purification and analysis (salt fractionation, ion exchange chromatography, affinity chromatography, SDS-PAGE, and immunoblotting), and determination of enzyme kinetic parameters.

BIOBM 443(4430) Experimental Molecular Neurobiology (also BIOMI/BIOGD 445(4450))
Spring. 3 credits. Prerequisites: CHEM 357-358, 359-360, or equivalent. T. P. Begley.

For description, see CHEM 450.

BIOBM 485(4850) Bacterial Genetics (also BIOMI/BIOGD 485(4850))
Fall. 2 credits. Prerequisite: BIOGD 281. Recommended: BIOMI 290 and BIOBM 330 or 331 and 332 or 333. Lec, W 7:30-9:25 p.m. J. E. Peters.

Students gain a detailed understanding of how bacteria maintain and pass on genetic information with a strong focus on the bacterium *Escherichia coli*. Students discover the mechanisms by which bacteria evolve through different types of mutations and the exchange of genetic information. The course explores how genes are regulated efficiently through negative and positive regulation and by global regulatory mechanisms. Upon completion of the course students should understand the tools used to manipulate bacterial genomes for the understanding of bacteria and other living organisms.

BIOBM 631(6310) Protein Structure and Function
Fall. 3 credits. Prerequisites: BIOBM 330 or 333 or 331-332 and organic chemistry. Recommended: physical chemistry course. S-U grades optional. Lec, M W 8:40-9:55. L. Richardson.

Presentations on the principles of protein structure and the nature of the transition to catalysis. Specific topics include protein folding, stability, dynamics and evolution, folded conformations and structure prediction, ligand binding energetics, and the structural basis of catalysis.

BIOBM 632(6320) Membranes and Bioenergetics
Spring. 2 credits. Prerequisite: BIOBM 330 or 333 or 331-332 or equivalent. Lec, T R 11:15. Offered alternate years. P. C. Hinkle.
Structure and dynamics of biological membranes, physical methods, model membranes, ionophores, ion-transport ATPases, mitochondrial and chloroplast electron transfer chains, and examples of transport from plants, animals, and bacteria. Emphasis given to structure of membrane proteins.

BIOBM 632(6330) Biosynthesis of Macromolecules

BIOBM 636(6360) Advanced Cell Biology

Spring. 3 credits. Prerequisites: BIOBM 330 or 333 or 331–332, and 432, or equivalents. Lec, T R 8:40-9:55. A. P. Bretsch and W. J. Brown. Aims to provide an integrated view of eukaryotic cell organization as elucidated using biochemical, molecular, genetic, and cell biological approaches. Major topics include the cytoskeleton, membrane traffic, and cell polarity. Together with BIOBM 437, 632, and 639 this course provides broad coverage of the cell biology subject area.

BIOBM 638(6380) Macromolecular Interactions and Cell Function

Spring. 2 credits. Prerequisite: BIOBM 330 or 333 or 331–332. Recommended: BIOBM 631 or 633. S-U grades optional. Lec, T R 11-12-15. J. Fu. Lectures focusing on the principles of protein-protein and protein-nucleic acid interactions that underlie cellular processes such as signal transduction, intracellular traffic, gene regulation, and cell development. The emphasis throughout is on the structural basis of these processes as related to cell function. Some specific topics are signal amplification, nuclear import and export, transcription by RNA polymerase, RNA processing and export, and translation of mRNAs.

BIOBM 639(6390) The Nucleus

Spring. 2 credits. Prerequisite: BIOBM 330 or 333 or 331–332, or equivalent. Recommended: BIOGD 281. Lec, T R 10:10 J. T. Lis. Lectures on topics of eukaryotic genome organization, chromatin structure, regulation of gene expression, RNA processing, the structure and movement of chromosomes, and nuclear export and import. Covers the structure and function of the nucleus at the molecular and cellular biological levels and, together with BIOBM 457, 652 and 656, provides broad coverage of the cell biology subject area.

BIOBM 641(6410) Laboratory in Plant Molecular Biology (also BIOPL 64[6410])

Fall. 4 credits. Prerequisites: BIOGD 281 or equivalent, BIOBM 330 or 331 or equivalent, and permission of instructor. S-U grades by permission of instructor. Lab, T 9:05-10:55 J. B. Nasrallah, M. R. Hanson, and H. Wang. Selected experiments on gene expression, gene transfer, and assay of reporter genes in plants. Emphasizes the application of molecular biology methodology to plant systems. Additional lab time is required to complete assignments.

BIOBM 652(Sec 05) Molecular Biology of Plant Organelles (also BIOPL 652.5)

Spring. 1 credit. Lec, M W F 10:10 (12lec) Feb. 17–Mar. 14. M. R. Hanson and D. B. Stern. In-depth examination of the molecular biology of plant mitochondria and plastids. Topics include the organization, evolution, and expression of organelle genomes, RNA editing, and the expression of nuclear genes encoding structural or regulatory organelle proteins. Special topics include mitochondrial encoded cytoplasmic male sterility, transformation and expression of foreign genes in chloroplasts, and the use of genetics to investigate nucleus-organelar interactions.

BIOBM 653(Sec 04) Molecular Aspects of Plant Development I (also BIOPL 653.4)

Fall. 1 credit. Lec, M W F 10:10 (12lec), Nov. 1–Dec. 3. J. B. Nasrallah. Focuses on the molecular genetics of plant development. Discusses current approaches to elucidating the molecular signals and pathways that lead to the establishment of the differentiated state of floral cells and organs. Topics include cell-cell signaling in the establishment of pattern and differentiation of specialized cell types and the control of developmental pathways by endogenous and external cues. The module is a companion to BIOPL 652, Sec 02 (Molecular Aspects of Plant Development I).

BIOBM 730(7300) Protein NMR Spectroscopy (also VETMM 7077[7070])

Spring. 2 credits. Prerequisites: CHEM 389 or 390, or 287 and 288, or permission of instructor. S-U grades optional. Offered alternate years. Lec, TBA. L. K. Nicholson and R. E. Oswald. Students acquire the tools necessary for in-depth understanding of multidimensional, multinuclear NMR experiments. Schemes for magnetization transfer, selective excitation, water suppression, decoupling, and others are presented. The application of these techniques to proteins for resonance assignment, structure determination, and dynamics’ characterization is studied.

BIOBM 732–737(7320–7370) Current Topics in Biochemistry

Fall or spring. 0.5 or 1 credit for each topic, may be repeated for credit. Prerequisite: BIOBM 330 or 333 or 331–332 or equivalent. S-U grades only. Times TBA. Lectures and seminars on specialized topics. Topics for fall and spring to be announced in the division’s course supplement published at the beginning of each semester or the department mini-courses web site, mbg, cornell.edu/minicourses_cfm.

BIOBM 738(7380) Macromolecular Crystallography (also CHEM 788[7880])

Fall. 3 credits. Prerequisite: permission of instructor. Lec, T R 10:10 J. E. Ellick. Lectures briefly cover the fundamentals of crystallography and focus on methods for determining the three-dimensional structures of macromolecules.

BIOBM 751(7510) Ethical Issues and Professional Responsibilities

Spring. 1 credit. Prerequisite: graduate students beyond first year. S-U grades only. Organizational meeting first W of semester. Sem, W 3:35–4:25. Additional sec may be offered. P. Hinkele. Ethical issues in research and the professional responsibilities of scientists are discussed based on readings and occasional lectures. The topics are intended to cover the requirements for ethical training of graduate students on training grants and follow the recommendations of the Office of Research Integrity.

[**BIOBM 761(7610) Topics in Cancer Cell Biology (also VETMM 709[7090])**](2)

Spring. Series of 0.5- or 1-credit graduate sections that reflect cancer expertise of Cornell faculty. Not offered 2005–2007. Course director: B. U. Pauli. For description, see VETMM 709.

BIOBM 830(8300) Biochemistry Seminar

Fall or spring. 0 credits. Prerequisite: graduate students in Biochemistry, Molecular, and Cell Biology. Lec open to everyone. Sem, P.R. Smith. Lectures on current research in biochemistry, presented by distinguished visitors and staff members.

BIOBM 831(8310) Advanced Biochemical Methods I

Fall. 6 credits. Requirement for, and limited to, first-year graduate students in field of biochemistry, molecular, and cell biology. S-U grades only. Lab and disc, 12 hours per week TBA. Organizational meeting first R of semester 10:10. T. C. Huffer. The first half of this course comprises an intensive laboratory covering fundamental aspects of modern molecular biology and cell biology. The second half comprises research in the laboratory of a professor chosen by the student (see BIOBM 852). Students must enroll separately for each half.

BIOBM 832[8320] Advanced Biochemical Methods II

Spring. 6 credits. Requirement for, and limited to, first-year graduate students in field of biochemistry, molecular, and cell biology. S-U grades only. Lab TBA. T. C. Huffer. Research in the laboratories of two different professors chosen by the student. Arrangements are made jointly between the director of graduate studies and the research adviser.

BIOBM 833(8330) Research Seminar in Biochemistry

Fall or spring. 1 credit each semester; may be repeated for credit. Requirement for, and limited to, second-, third-, and fourth-year graduate students majoring in field of biochemistry, molecular, and cell biology. S-U grades only. Lab TBA. T. C. Huffer. Research in the laboratories of two different professors chosen by the student. Arrangements are made jointly between the director of graduate studies and the research adviser.

1. [Course descriptions and requirements for BIOBM 761(7610) Topics in Cancer Cell Biology](http://www.cornell.edu/biochemistry/graduate/7610.html)
2. [Course descriptions and requirements for BIOBM 830(8300) Biochemistry Seminar](http://www.cornell.edu/biochemistry/graduate/8300.html)
3. [Course descriptions and requirements for BIOBM 831(8310) Advanced Biochemical Methods I](http://www.cornell.edu/biochemistry/graduate/8310.html)
4. [Course descriptions and requirements for BIOBM 832[8320] Advanced Biochemical Methods II](http://www.cornell.edu/biochemistry/graduate/8320.html)
5. [Course descriptions and requirements for BIOBM 833(8330) Research Seminar in Biochemistry](http://www.cornell.edu/biochemistry/graduate/8330.html)
Evolution is the central concept in biology.

BIOBM 836(8360) Methods and Logic in Biochemistry, Molecular, and Cell Biology, Part I
Spring. 1 credit. Prerequisite: first-year graduate students majoring in field of biochemistry, molecular, and cell biology. S-U grades only. Sem and disc; TBA. G. P. Hess. Seminar with critical discussion by students of original research papers selected by faculty members of the field of biochemistry, molecular, and cell biology.

BIOBM 838(8380) Methods and Logic in Biochemistry, Molecular, and Cell Biology, Part II
Spring. 2 credits. Prerequisite: second-year graduate students majoring in field of biochemistry, molecular and cell biology or field of genetics and development. S-U grades only. R 5-7 P.M. D. Shalloway. Interactive seminar to develop the general skills needed to support a career in scientific research: experimental design, writing scientific papers, oral presentation, basic statistical and computational methods, and managing a research laboratory. Exercises focus on the preparation of a mock research grant proposal.

Related Courses in Other Departments
- Lipids (BIOAP 619, NS 602)
- Molecular Aspects of Development (BIOGD 483)
- Molecular Biology Techniques for Animal Biologists (AN SC 650)
- Molecular Mechanisms of Hormone Action (BIOAP 668, VETMD 758)
- Teaching Experience (BIO G 498)
- Undergraduate Research in Biology (BIO G 499)

ECOLOGY AND EVOLUTIONARY BIOLOGY (BIOEE)

BIOEE 154(1540) The Sea: An Introduction to Oceanography, Lectures (also EAS 154[1540])
Fall. 3 credits. Optional 1-credit laboratory offered as BIOEE/EAS 155. S-U grades optional. Lect, M W F 10:10-11. B. Monger and C. H. Greene. For description, see EAS 154.

BIOEE 155(1550) The Sea: An Introduction to Oceanography, Laboratory (also EAS 155[1550])

BIOEE 207(2070) Evolution (also HIST/STS 287[2870])
Fall or summer (six-week session). 3 credits. Intended for students with no background in college biology. May not be taken for credit after BIOEE 278. Does not meet evolutionary biology requirement for biological sciences major. S-U grades optional. Fall: Lect, M W 10:10; disc, 1 hour each week TBA. Summer: Lect and disc, M W 8-9 P.M. W. B. Provine. Evolution is the central concept in biology. This course examines evolution in historical and cultural contexts. This course aims to understand the major issues in the history and current status of evolutionary biology and explore the implications of evolution for culture. Issues range from controversies over mechanisms of evolution in natural populations to the conflict between creationists and evolutionists.

BIOEE 261(2610) Ecology and the Environment
Fall or summer (three-week session). 4 credits. Prerequisite: one year introductory biology. S-U grades optional. Fall: lect, M W F 11:15; disc, W or R 1:25, 2:30, or 3:35. B. F. Chabot and N. G. Hairston. Summer: Lect, M W T R F 8:30-12:20; 1 weekend field trip. A. T. Watver. Fall: Explores interactions between the environment and organisms in the context of individuals, populations, communities, and ecosystems. Emphasizes basic ecological principles and processes intrinsic to understanding the world around us and in more advanced studies in the environmental sciences, including management-oriented disciplines. Major topics include adaptive strategies of organisms, population dynamics, species interactions, community structure and ecosystem processes, biogeochemistry, productivity, human influences on ecosystems, and sustainable practices.

Summer: Introduction to principles of ecology, concerning the interactions between organisms and their environment. Deals with both terrestrial and aquatic ecology, drawing examples from both plant and animal studies. Phenomena that occur at the individual, population, community, and ecosystem levels of organization are examined through classroom lectures and discussion and through a series of lab and field experiences in natural habitats around Ithaca and in the Adirondack Forest Preserve. Ecological principles are applied extensively to current environmental problems and issues.

BIOEE 263(2630) Field Ecology
Fall. 3 credits. Pre- or co-requisite: BIOEE 261. Lect, R 1:25; lab, F 12:20-4:25; one weekend field trip to Hudson Valley. P. L. Marks. Field exercises designed to give students direct experience with fieldwork, with emphasis on developing observational skills, journal keeping, and a landscape perspective. Topics include plant succession, niche relationships of insects, influence of herbivores and competition on plant performance, decomposition of soil litter, foraging behavior, census methods, and use of scientific collections.

BIOEE 264(2640) Tropical Field Ornithology
Winter. Jan. 5-19, 2006; two-week, full-time course. 3 credits. Limited to 12 students. Minimum of 8 Prerequisite: permission of instructor. Intended for students with limited or no bird knowledge. S-U grades optional. Daily fieldwork, disc, reading, and individual project. Cost of airfare, food, and lodging. A. A. Dhondt. Provides students with the opportunity to study birds intensively in a neotropical environment. Students learn observational and field techniques, participate in group research projects and in daily seminars. The group is housed in the Biodiversity Center at Punta Cana. One or two field trips are taken to national parks in the Dominican Republic.

BIOEE 265(2650) Tropical Field Ecology and Behavior (also BIONB 265[2650])
Summer, three-week field course based in Kenya, Africa, during July. 4 credits. Limited to 15 students. Prerequisites: other introductory biology course and permission of instructors. J. J. Lovette and D. Rubenstein. Gives students a broad hands-on understanding of tropical biology, ecology, and behavioral ecology. Students gain experience with experimental design and data collection, field methods, basic statistics, interpretation and evaluation of primary scientific literature, and scientific paper writing. Most in-country costs (e.g., ground transportation, room, board) are covered by course tuition, but students pay separately for their international airfare and there may also be a small supplementary laboratory fee.

BIOEE 267(2670) Introduction to Conservation Biology
Fall. 3 credits. Intended for both science and non-science students. May not be taken for credit after NTRES 450. Completion of BIOEE 267 not required for NTRES 450. S-U grades optional. Lect, M W 9:05; disc, F 9:05 or R 2:30; one 8 A.M. field trip in lieu of disc. Offered alternate years. J. W. Fitzpatrick. Broad exploration of biological concepts and practices related to conserving the earth's biodiversity; integrates ecological, evolutionary, behavioral, and genetic principles important for understanding conservation issues of the 21st century. Topics include species and ecosystem diversity, values of biodiversity, causes of extinction, risks facing small populations, modeling, design of nature preserves, the Endangered Species Act, species recovery, ecosystem restoration and management, and past and future human impacts on the planet.

BIOEE 274(2740) The Vertebrates: Structure, Function, and Evolution
Spring. 4 credits. Prerequisite: one year introductory biology. S-U grades optional. Lect, M W F 9:05; lab, M T or W 1:25-4:25. B. McGuire. Introductory course in vertebrate organismal biology that explores the structure and function of vertebrates with an emphasis on trends in vertebrate evolution. Lectures cover topics such as the origin and evolution of various vertebrate groups, sensory systems, thermoregulation, life history, locomotion, feeding, size, and scaling. Laboratories include dissections of preserved vertebrate animals and noninvasive live animal demonstrations.

BIOEE 275(2750) Human Biology and Evolution (also ANTHR/NS 275[2750])
responses. Topics such as creationism, the Piltdown fraud, the sociobiology debate, genetic engineering, race and IQ, and racism are presented as examples of current issues in human biology.

BIOEE 278(2780) Evolutionary Biology
Fall or spring. 3 or 4 credits; 4-credit option involves writing component and two disc per week; 4-credit option limited to 20 students per sec each semester. (Students may not preregister for 4-credit option; interested students complete application form on first day of class.) Limited to 300 students. Prerequisite: one year introductory biology or permission of instructor; first-semester freshmen by permission of instructor. S-U grades optional. Evening prelms: fall, Sept. 29 and Nov. 5; spring, Mar. 2 and Apr. 4, perc, T R 9:05; disc, 1 hour each week TBA.
Fall. R. G. Harrison; spring, M. J. Shulman. Considers explanations for patterns of diversity and for the apparent "good fit" of organisms to their environment. Topics include the genetic and developmental basis of evolutionary change, processes at the population level, the theory of evolution by natural selection, levels of selection, concepts of fitness and heredity, modes of speciation, long-term trends in evolution, rates of evolution, and extinction. Students taking the 4-credit option read additional materials from the primary literature and write a series of essays in place of the regular prelms.

BIOEE 350(3500) Dynamics of Marine Ecosystems (also EAS 350[3500])
Fall. 3 credits. Limited to 25 students. Prerequisite: one year of calculus and semester of oceanography (i.e., BIOEE/EAS 154), or permission of instructor. S-U grades optional. Lec, T R 1:25-2:40. Offered alternate years. C. H. Greene and R. W. Howarth. For description, see EAS 350.

BIOEE 351(3510) Marine Ecosystems Field Course (also EAS 351[3510])
Spring, full-time, three-week course. 4 credits. Limited to 25 students. Prerequisite: enrollment in Cornell Abroad Earth and Environmental Sciences Semester in Hawaii; one semester of calculus and two semesters of biology or permission of instructor. C. H. Greene, C. D. Harvell, and B. Monger. For description, see EAS 351.

BIOEE 362(3620) Dynamic Models in Biology (also MATH 362[3620])
Spring. 4 credits. Prerequisites: two semesters introductory biology (BIO G 101-102, 105-106, 107-108, 109-110 or equivalent) and completion of mathematics requirements for Biological Sciences major or equivalent. S-U grades optional. Lec, T R 1:25-2:40; computer lab, F 12:20-2:15. Offered alternate years. S. P. Ellner and J. M. Guckenheimer. Introductory survey of the development, computer implementation, and applications of dynamic models in biology and ecology. Case-study format covering a broad range of current application areas such as regulatory networks, neurobiology, cardiology, infectious disease management, and conservation of endangered species. Students also learn how to construct and study biological systems models and compute solutions using a scripting and graphics environment.

BIOEE 369(3690) Chemical Ecology (also BIONB/ENTOM 369[3690])
Spring. 3 credits. Prerequisites: one semester of introductory biology for majors or nonmajors and one semester of introductory chemistry for majors or nonmajors or equivalents, or permission of instructor. S-U grades optional. Lec, M W F 11:15-12:05. A. Agrawal, G. Jander, A. Kessler, J. Thaler. Why are chilies so spicy? This course examines the chemical basis of interactions between species and is intended for students with a basic knowledge of chemistry and biology. Focuses on the ecology and chemistry of plants, animals, and microbes. Stresses chemical signals used in diverse ecosystems, using Darwinian natural selection as a framework. Topics include: plant defenses, microbial warfare, communication in marine organisms, and human pheromones.

BIOEE 371(3710) Human Paleontology (also ANTH 371)
Spring. 4 credits. Limited to 18 students. Prerequisite: one year introductory biology or ANTHR 101 or permission of instructor. Lec and lab, M W F 2-3:30; occasional field trips. K. A. Karlin. Broad survey of the fossil evidence for human evolution with special attention to skeletal and dental anatomy, geological contexts, paleoecology, dating methods, archaeological associations, and current theories of human origins and physical diversity.

BIOEE 373(3730) Biology of the Marine Invertebrates (also ANTH 373)
Fall (but course must be taken previous summer at Shoods Marine Laboratory (SML), three-week, full-time course. 5 credits (students enroll for credit during fall semester). Limited to 24 students. Prerequisite: one year introductory biology for majors; permission of faculty because off campus. Daily and evening lec, lab, and fieldwork. Total cost for room, board, and overhead at SML $1,200. Offered alternate years. C. D. Harvell and J. G. Morin. Introduction to the biology and evolution of the major invertebrate phyla, concentrating on marine representatives. In addition to the evolution of form and function, lectures cover aspects of ecology, behavior, physiology, chemical ecology, and natural history of invertebrates. SML exposes students to a wealth of marine and terrestrial invertebrates in their natural habitats. Regular field excursions allow an excellent opportunity to study freshly collected and in situ representatives of most of the major phyla.

BIOEE 405(4050) Biology of the Neotropics
Spring. 4 credits. Limited to 18 students. Prerequisite: BIOEE 261 or permission of instructor. S-U grades optional. Lec and disc, W 7:30-9:30 p.m. P. H. Hrger and A. S. Flecker. Introductory survey of the biology of the Neotropical region, with particular focus on montane lowland forests. The objectives are to learn basic characteristics and phenomena important to understanding neotropical biology, to gain firsthand knowledge of the resources in tropical biology available at Cornell, and to learn how to organize and execute a meaningful seminar presentation.

BIOEE 452(4520) Herbivores and Plants: Chemical Ecology and Coevolution (also ENTOM 452[4520])
Spring. 3 credits. Prerequisites: one year introductory biology, BIOEE 261, CHEM 257 or 357/358 and 251 or 301, or permission of instructor. S-U grades optional. Field trips, additional lec, or lab demonstrations may be held in place of (F lec; lect M W F 11:15. Offered alternate years; not offered 2005-2006. P. P. Feeny. Topics include significance of plant chemistry in mediating interactions between plants and herbivorous animals; mechanisms and strategies of plant finding and exploitation by animals, especially ants and wasps; and defense and escape by plants; evolutionary hypotheses for ecological patterns of resistance and attack; and implications for human food and agriculture.

BIOEE 453(4530) Speciation
Spring. 4 credits. Limited to 40 students. Prerequisites: BIOEE 261 or equivalents, or permission of instructor. S-U grades optional. Lec, T R 10:10-11:25, disc, one hour each week TBA. Offered alternate years; not offered 2005-2006. R. G. Harrison. Advanced course in evolutionary biology focusing on the pattern and process of speciation and the nature and origin of intrinsic barriers to gene exchange. Lecture topics include species concepts and definitions, the history of ideas about speciation, the biological basis of intrinsic barriers to gene exchange, current models for the origin of such barriers, genetic architecture of speciation, rates of speciation. Emphasis is on developing a rigorous conceptual framework for discussing speciation and on detailed analysis of a series of case histories.

BIOEE 455(4550) Insect Ecology (also ENTOM 455[4550])
Fall. 3 credits. Recommended: ENTOM 212 or BIOEE 261 or permission of instructor. S-U grades optional. Lec, M W 9-10; lab, T 1:25-4:25. Offered alternate years. J. S. Thaler. For description, see ENTOM 455.

BIOEE 456(4560) Stream Ecology (also NTRES 456[4560])
Fall. 4 credits. Limited to 40 students. Prerequisite: BIOEE 261 or permission of instructor. S-U grades optional. Field project with lab papers. Lec, T R 9:05; lab, T or W 1:25-4:25, one Sat field trip. Offered alternate years. A. S. Flecker and E. Kraf. For description, see NTRES 456.

BIOEE 457(4570) Limnology: Ecology of Lakes, Estuaries
Spring. 3 credits. Prerequisite: BIOEE 261 or written permission of instructor. Recommended: introductory chemistry. Letter grades; S-U by permission only. Lec, M W F 11:15. Offered alternate years; not offered 2005-2006. N. G. Hairston, Jr. Limnology is the study of fresh waters and other inland, nonmarine environments. This course focuses on lakes and ponds, which are discussed as distinct aquatic environments with clear terrestrial boundaries, and within which ecological interactions are especially evident. In lakes, interactions between organisms are often strong and adaptations easily recognized. Physicochemical and chemical properties of the environment impact organisms in important ways and organisms,
likewise, influence physics and chemistry. As a result, lakes provide excellent systems for understanding the links between physical (thermal and mixing), chemical (dissolved elements and compounds), and organismal dynamics. Lakes are exciting environments for study in and for gaining perspective on ecological and evolutionary processes in general.

BIOEE 458(4580) Community Ecology

BIOEE 459(4590) Limnology: Ecology of Lakes, Laboratory
Spring. 2 credits. Pre- or co-requisite: BIOEE 457. Letter grades. S-U by permission only. Lab, T W or R 1:25–4:25; one weekend field trip. Fee for food on field trip. $12. Offered alternate years; not offered 2005–2006; next offered spring 2008. N. L. G. Grant and staff. Laboratories and field trips devoted to studies of the biological, chemical, and physical properties of lakes and other freshwater environments. Exercises focus on understanding freshwater environments, on experimentation, and on understanding ecological processes within lakes. Optional vertebrate dissection (fish) during one laboratory exercise and during a portion of the weekend field trips.

BIOEE 460(4600) Theoretical Ecology
Spring. 4 credits. Limited enrollment. Prerequisite: completion of Biological Sciences mathematics requirement or equivalent, and either one additional semester of mathematics, statistics, or modeling (e.g., BEE 260/411, NTRES 340/3400, BIOEE 278 or permission of instructor. S-U grades optional. Lect, T R 1:25–2:40; lab, M 2–4:25. Offered alternate years, not offered 2005–2006. S. P. Ellner. Introduction to the models used to construct ecological theory and analyze data on ecological dynamics, and to the mathematical and computer methods used to analyze these models. Applications from individual decision-making through multispecies and spatial dynamics introduce the main themes in theoretical ecology: optimization, dynamics, and the links between process and pattern. The lab includes instruction in computer programming and review of mathematical methods.

BIOEE 462(4620) Marine Ecology (also EAS 462/4620)
Fall. 3 credits. Limited to 75 students. Prerequisite: BIOEE 261. Letter grades. S-U by permission only. Lect and disc, M W F 11:15. Offered alternate years; not offered 2005–2006. C. D. Harvell and C. H. Greene. Lectures and discussion focus on current research in broad areas of marine ecology with an emphasis on processes unique to marine systems. A synthetic treatment of multiple levels of organization in marine systems including organismal, population, community, ecosystems, and evolutionary biology. Examples are drawn from all types of marine habitats, including polar seas, temperate coastal waters, and tropical coral reefs.

BIOEE 463(4630) Plant Ecology and Population Biology, Lectures
Fall. 3 credits. Prerequisite: BIOEE 261 or 278 or equivalents, or permission of instructor. Recommended: some taxonomic familiarity with vascular plants and concurrent enrollment in BIOEE 465. Lect, M W F 10:10–11:25. Offered alternate years. M. A. Geber and P. L. Marks. Examines the biological and historical factors affecting the structure of plant communities, and the distribution, abundance, and population dynamics of individual species. Considers the influence of the environment, disturbance history, competition, and herbivory on the organization of plant communities. Plant populations are also studied through a thorough analysis of plant life histories and plant-plant and plant-animal interactions. Throughout the course an attempt is made to blend empirical patterns, experimental results, and theory. Readings are drawn from the primary literature.

BIOEE 464(4640) Macroevolution
Spring. 4 credits. Limited to 30 students. Prerequisite: BIOEE 278 or permission of instructor. Interested graduate students strongly encouraged to preregister. S-U grades optional. Lect, T R 10:10–11:25; disc, one hour each week TBA. Offered alternate years. A. R. McCune. Advanced course in evolutionary biology centered on large-scale features of evolution. Areas of emphasis include phylogeny reconstruction, patterns and processes of speciation, the origin of variation, causes of major evolutionary transitions, and patterns of diversification and extinction in the fossil record. Discussion of these problems involves data and theories from genetics, morphology, systematics, paleobiology, development, and ecology.

BIOEE 465(4650) Plant Ecology and Population Biology, Laboratory

BIOEE 466(4660) Physiological Plant Ecology, Lectures
Spring. 3 credits. Limited to 30 students. Prerequisite: BIOEE 261 or introductory plant physiology. S-U grades optional by permission of instructor. Lect, M W F 10:10–11. Offered alternate years; not offered 2005–2006. J. P. Sparks. Detailed survey of the physiological approaches used in understanding the relationships between plants and their environment. Laboratories apply physiological techniques to specific ecological problems and cover aspects of experimental design and computer-aided data analysis. Most laboratories run past the three-hour period, with students spending an average of three hours per week in additional lab time for this course.

BIOEE 469(4690) Food, Agriculture, and Society (also B&SOC/S&T 469/4691)
Spring. 3 credits. Limited to 20 students. Prerequisite: introductory ecology course or permission of instructor. S-U grades optional. Lect, T R 1:25–2:40. Not offered 2005–2006. A. G. Provenzano. Multidisciplinary course dealing with the social and environmental impact of food production in the United States and developing countries. Agroecosystems of various kinds are analyzed from biological, economic, and social perspectives. The impacts of traditional, conventional, and alternative agricultural technologies are critically examined in the context of developed and developing economies. Specific topics include pest management, soil conservation, plant genetic resources, biotechnology, and sustainable development.

BIOEE 470(4700) Herpetology, Lectures

BIOEE 471(4710) Mammalogy

BIOEE 467(4670) Seminar in the History of Biology (also HIST 415[4150], B&SOC/S&T 447[4471])

BIOEE 468(4680) Physiological Plant Ecology, Laboratory
Spring. 2 credits. Limited to 15 students. Pre-or co-requisite: BIOEE 466. Lab, M W F 1:25–4:25, plus additional lab Times TBA. Offered alternate years; not offered 2005–2006; J. P. Sparks.
the North American fauna. Systematics laboratories held in the museum at Research Park. Live animals are studied in the field and are sometimes used in the laboratory for nondestructive demonstrations or experiments. The systematics laboratory exercises are based on museum specimens.

[BIOEE 472/473] Herpetology, Laboratory

Laboratory topics include systematics, morphology, and behavior. Live animals are studied in the field and are used in the laboratory for nondestructive demonstrations and experiments. The systematics laboratory exercises are based on museum specimens and dissection of preserved materials.

[BIOEE 473/4730] Ecology of Agricultural Systems (also CSS 473/4730)

Analyzes the ecological processes operating in agricultural systems, with an emphasis on the interactions between organisms. Topics include nutrient dynamics in agroecosystems, plant-herbivore relations, plant-pathogen interactions, biological pest control, and environmental processes in agriculture. Uses case studies from both the tropics and the temperate zone to illustrate important concepts.

[BIOEE 475/4750] Ornithology
Spring. 4 credits. Limited to 35 students. Prerequisite: permission of instructor by preregistering in E141. Comon Hall. Recommended: BIOEE 274 or permission of instructor. S-U grades optional by permission of instructor. Carpooling to Lab of Ornithology necessary. Fee: $15. Lec and lab, T R 12:20–4:25; occasional field trips and special projects. Offered alternate years. D. W. Winkler.

Lectures cover various aspects of the biology of birds, including anatomy, physiology, systematics, evolution, behavior, ecology, and biogeography. Laboratory includes dissection of dead material, studies of skeletons and plumages, and specimen identification of avian families of the world and species of New York.

[BIOEE 476(4760)] Biology of Fishes
Fall. 4 credits. Limited to 24 students. Recommended specific: BIOEE 274 or equivalent experience in vertebrate zoology. S-U grades optional by permission of instructor. Small lab fee may be required. Lec, M W F 10:10; lab, M 1:25–4:25; additional lab time TBA, two field trips. Offered alternate years; not offered 2005–2006. A. R. McCune.

Introduction to the study of fishes: their structure, physiology and functional morphology, behavior, ecology, diversity, evolution, classification and identification. Emphasizes marine fishes from different habitats (temperate, tropical coral reef, intertidal and deep sea); local freshwater species; and interesting freshwater fishes from around the world, especially South America and Africa. Two field trips, including one full-day return, are required. Live animals are studied in the field and are sometimes used in the laboratory for nondestructive demonstrations or experiments. The systematics and dissection laboratories use preserved specimens.

[BIOEE 477(4770)] Marine Invertebrates, Sem Short course
Fall. 1 credit. Prerequisite: BIOEE 373 or permission of instructor. S-U grades only. Sem, one hour each week TBA. Offered alternate years; not offered 2005–2006. C. D. Harvell and J. G. Morin.

Discussions and directed readings center on current research themes in Invertebrate Biology. Designed as an on-campus companion course to the field-based BIOEE 373 Biology of Invertebrates. Students write individual research essays based on projects done in the field.

[BIOEE 478(4780)] Ecosystem Biology

Analyzes ecosystems in terms of energy flow and nutrient cycles, emphasizing an experimental approach and comparative aspects of terrestrial, freshwater, and marine ecosystems. Considers anthropogenic effects on ecosystems, such as fossil fuel combustion and nitrogen pollution. Also analyzes climate change and regional environmental change from an ecosystem perspective.

[BIOEE 479(4790)] Paleobiology (also EAS 479(4790))

For description, see EAS 479.

[BIOEE 490(4900)] Topics in Marine Biology

Seminar courses on selected topics in marine biology, many of which may be field-trips. Topics and time of organizational meeting are shown in departmental course offerings listed on the web site.

[BIOEE 660(6600)] Field Studies in Ecology and Systematics
Fall or spring. Variable credit. Prerequisites: BIOEE 373 or equivalent, and permission of instructor. S-U grades optional by permission of instructor. Lec and field trips TBA. Estimated costs: TBA. Staff.

Provides students with opportunities to learn field techniques and new biota by participating in an intensive series of field exercises. Extended field trips may be scheduled during fall break, intersession, or spring break. The regions visited, trip objectives, and other details are announced by the various instructors at an organizational meeting held at the beginning of the semester. Meetings on campus are devoted to orientation and reports on completed projects.

[Sec 01] Life Histories of Marine and Freshwater Invertebrates
Spring. 2 credits. Prerequisite: for undergraduates, experience or course work with marine or freshwater invertebrates. Extended field trips over winter break. Fee to cover transportation and housing. TBA. Offered alternate years; not offered 2005–2006. C. D. Harvell and N. G. Hairston. Jr.

Field trips to the Yucatan Coast of Mexico. Students employ experimental approaches to study the ecology of invertebrate life histories.

[Sec 02] Graduate Field Course in Ecology
Spring. 3 credits. Prerequisite: graduate standing. Fee charged to help cover food and lodging for trip to Florida. Offered alternate years. J. P. Sparks.

Designed to give graduate students experience in defining questions and designing field investigations. The course is based at the Archbold Biological Station in central Florida over spring break and during the following week. The class visits several ecosystems including sand pine scrub, cattle ranches, cypress swamps, and the everglades.

BIOEE 661(6610) Environmental Policy (also ALS 661(6610), BASOC 461(4611))
Fall and spring. 3 credits each semester; students must register for 6 credits each semester since R is given at the end of fall semester. Limited to 12 students. Prerequisite: permission of instructor. Sem, R 2:30–4:30. D. Pimentel.

Focuses on complex environmental issues. Ten to 12 students, representing several disciplines, investigate significant environmental problems. The research team spends two semesters preparing a scientific report for publication in Science or Bioscience. Thus far, every study has been published.

[BIOEE 665(6650)] Limnology Seminar
Spring. 1 credit; may be repeated for credit. Prerequisite: graduate standing or permission of instructor. S-U grades optional. Sem TBA. Not offered 2005–2006. N. G. Hairston, Jr.

Advanced topics in freshwater ecology.

BIOEE 668(6680) Principles of Biogeochemistry
Spring. 4 credits. Limited to 20 students. Prerequisite: solid background in ecology, environmental chemistry, or related environmental science; for undergraduates, permission of instructor. S-U grades optional. Lec and disc, T R 10:10–12:05. Offered alternate years. R. W. Howarth and C. L. Goodale.

Lectures cover the biogeochemical controls on the chemistry of the environment and reports on new advances in the chemical control of ecosystem function. Emphasis is on cycles of major elements and minor elements globally and in selected ecosystems, stressing the coupling of element cycles. A comparative approach is used to illustrate similarities and differences in element cycling among ecosystems. Analysis of both theoretical and applied issues, including global atmospheric changes and factors controlling the acidification of lakes and soils.

ECOLOGY AND EVOLUTIONARY BIOLOGY 169
GENETICS AND DEVELOPMENT (BIOGD)

BIOGD 132(1320) Orientation Lectures in Molecular Biology and Genetics (also BIOBM 132)
Spring, weeks 1-3, 6 credits. Primarily for freshmen, sophomores, and transfer students. S-U grades only. Lec, S 11:15, for first three 5 of semester (Jan. 28, Feb. 8, Feb. 11, 180 Biotechnology Bldg.) Staff. For description, see BIOBM 132.

BIOGD 280(2800) Lectures in Genetics
Fall, spring, or summer (eight-week session). 3 credits. Not open to freshmen in fall semester. Lec component of BIOGD 281. Not open to students majoring in biological sciences, may not be used to fulfill requirements for biological sciences major. Prerequisites: one year introductory biology or equivalent, or permission of instructor. Lec, T R 10:10-12:05. T. P. O'Brien. Recommended: problem-solving sessions, T or W 8:30-9:45 (additional session by arrangement). T. D. Fox and R. J. MacIntyre.

General study of the fundamental principles of genetics in eukaryotes and prokaryotes. Topics include gene transmission, gene linkage and recombination, gene structure, gene and chromosome mutations, gene expression, and the manipulation of genes.

BIOGD 281(2810) Genetics
Fall, spring, or summer (eight-week session). 5 credits. Not open to freshmen in fall semester. Prerequisite: one year introductory biology or equivalent. Lec, T R 10:10-12:05; lab, Highly recommended: problem-solving sessions, T or W 8:30-10 (additional session TBA). T. D. Fox, R. MacIntyre, and D. Nero.

For description, see BIOGD 280.

BIOGD 282(2820) Human Genetics
Spring 2 or 3 credits; 2 credits if taken after BIOGD 281. Limited to 20 students per disc. Prerequisite: one year introductory biology or equivalent. Lec, T R 10:10-12:05; lab. Recommended: problem-solving sessions, T or W 8:30-10 (additional session TBA). T. D. Fox, R. MacIntyre, and D. Nero.

For description, see BIOGD 280.

BIOGD 385(3850) Developmental Biology
Fall. 3 credits. Prerequisite: BIOGD 281. Lec, M W F 11:15. J. Liu.
Introduction to the morphogenetic, cellular, and genetic aspects of the developmental biology of animals.

BIOGD 394(3940) Circadian Rhythms (also ENTOM/BIONB/PL PA 394(3940))
Fall. 2 credits. Prerequisite: ENTOM 212 or BIOGD 281 or BIONB 221 or 222 or permission of instructor. S-U grades optional. Lec, W 7:30-9:40 p.m. J. Ewer.
For description, see ENTOM 394.

BIOGD 400(4000) A Genomics Approach to Studying Life
Fall. 3 credits. Prerequisites: one year introductory biology plus BIOGD 281 or 300 or 332 or 332/332/332/332 or permission of instructor. S-U or letter grades. Lec, M W 2:55-4:10. T. Schierwater. Introduction to principles underlying the organization of genomes and the methods of studying them, emphasizing genome-wide approaches to research. Covers the application of genomics methodologies for addressing issues including evolution, complex systems, genetics and gene: phenotype relationships. Includes periodic, in-depth discussions of landmark or timely genomics papers.

BIOGD 401(4010) Genomic Analysis
Spring. 3 credits. Prerequisites: BIOGD 400 or permission of instructor. Lec, T R 10:10-11:25. T. P. O'Brien. Overview of approaches and tools used in genomics research. Covers experimental and computational technologies as well as theoretical concepts important for the study of genomics and their function. Topics include high-throughput DNA sequencing and genotyping, genetic mapping of simple and complex traits, RNA expression profiling, proteomics, genome modification and transgenesis, and computational genomics.

BIOGD 402(4020) Insect Development
Spring. 4 credits. Prerequisite: ENTOM 212 or BIOGD 281 or permission of instructor. S-U grades optional. Lec, M W 11:15; lab, M 12:20-3:20; disc, F 11:15-12:05. Offered alternate years. J. Ewer.
For description, see ENTOM 400.

BIOGD 439(4390) Molecular Basis of Human Disease (also BioBM 439)
Fall. 3 credits. Prerequisites: biochemistry and molecular biology (e.g., BIOBM 300, 331, 332, or 333) and genetics (e.g., BIOGD 281) or permission of instructor. Recommended: cell biology (e.g., BIOBM 432 or BIAOP 316) and physiology (e.g., BIAOP 311 or 458). S-U grades optional. Lec, T R 11:10-12:25. Not offered 2006-2007. W. L. Knecht.
For description, see BIOBM 439.

BIOGD 450(4500) Vertebrate Development
Designed to examine the development of characteristics that make vertebrates unique. Begins with an introduction to recent evolutionary and molecular approaches to understanding the rise of vertebrate structures. The development of vertebrate structures, such as neural crest, specialized sense organs, and limbs, is examined in detail with emphasis on the cellular and molecular events controlling their development.

BIOGD 480(4800) Seminar in Developmental Biology
Fall or spring. 1 or 2 credits; may be repeated for credit. Prerequisite: junior or senior standing; BIOGD 281. S-U grades only. Times TBA. Staff.

Sec 1 Functional Genomics in Nonmodel Organisms (also BIO G 400.1)
Fall. 2 credits. Prerequisites: BIOGD 281 and BIOEE 278 (or equivalent by permission of instructor). Intended for advanced undergraduates. S-U grades optional. M 12:25-3:20; physics required attendance at four sem, 12:20-1:15 M 9/26, 10/17, 10/31 and 11/14. 2 credits. A. McCune, A. Clark, D. Winkler, and M. Wolpert.
This one-time course, offered only in fall 2005, brings geneticists/genomists together with ecologists/evolutionary/organismal biologists to explore an important interdisciplinary area: the genetic basis of phenotypes in nonmodel organisms. Part of the course develops background on genomic techniques and on study of nonmodel organisms. Subsequently, the course centers on research lectures by four eminent visiting scientists who are leaders in genomic studies of nonmodel organisms. Groups of students present a seminar to the class on the work of each upcoming visitor. On the week of a speaker-visit, students attend the speaker's seminar T 12:20, and then visit with the class to discuss the research presented as well as more general aspects of functional genomics.

BIOGD 481(4810) Population Genetics
Fall. 4 credits. Prerequisite: BIOGD 281. BIOEE 278, or equivalents. Lec, M W F 10:10, disc, M 2:30 or T 1:25. C. F. Aquadro and B. Lazzaro.
Population genetics is the study of the transmission of genetic variation through time and space. This course explores how to quantify this variation, what the distribution of variation tells us about the structure of natural populations, and about the processes that lead to evolution. Topics include the diversity and measurement of genetic variation, mating and reproductive systems, selection and fitness, genetic drift, migration and population structure; mutation, recombination, the genetics of speciation, quantitative traits, and the maintenance of molecular variation. Emphasis is placed on DNA sequence variation and the interplay between theory and the data from experiments analyzing natural populations. Specific case studies include the population genetic issues involved in DNA fingerprinting, the genetic structure and evolution of human populations, and the study of adaptation at the molecular level. Examples are drawn from studies of animals, plants, and microbes.

BIOGD 482(4820) Human Genetics and Society
Fall. 4 credits. Limited to 24 students. Prerequisite: senior biological sciences majors; priority given to students studying genetics and molecular biology. BIOGD 281 and BIOBM 330 or 331 and 332, and permission of instructor. T R 2:30-4:25. R. A. Calvo.
Presentation of some of the science and technology of human genetics, plus discussion of the ethical, social, and legal implications of recent advances in the field. Topics include assisted reproductive strategies, eugenics, genetic counseling, genetic screening (pre-implantation, prenatal, neonatal, pre-symptomatic, carrier, and workplace), wrongful life and wrongful birth, genetic effects of abused substances, genetics and behavior, human cloning, forensic uses of genetics, and therapy for genetic diseases. Students lead some discussions. There is a major writing component to the course.
BIOLOGICAL SCIENCES - 2005-2006

[BIOGD 482(4830) Advanced Developmental Biology] Spring. 3 credits. Prerequisites: BIOGD 281; BIOMB 330 or 333 or 333; and BIOGD 385 or permission of instructor. Lee, T R. This is an alternate year; next offered spring 2007. M. F. Wolfner. Emphasizes the molecular events underlying developmental processes. Simultaneously, a molecular/cell biology course that focuses on how development modulates and uses transcription and post-transcriptional, translational, and post-translational regulation of gene expression and cellular events such as signal transduction and cell-cell communication. Numerous developmental systems are analyzed in microorganisms, plants, and, especially, animals including fruit flies, nematode worms, and vertebrates such as mice, frogs, and humans. Course readings include original research articles. Discussion emphasizes specific experiments and approaches, and results and their interpretation.

[BIOGD 484(4840) Molecular Evolution] Spring. 3 credits. Prerequisites: BIOGD 281. Lect. M W 8:40-9:55. D. Barbash. Explores the various processes by which DNA and proteins evolve over time, and how this evolution at the molecular level relates to changes in the morphology, behavior, and physiology of organisms that have occurred over times scales ranging from thousands to billions of years. After developing basic principles the course discusses the evolution and organization of genomes from viruses to higher eukaryotes including humans, and the relationship between molecular evolution at the sequence level and the evolution of developmental pathways and systems.

[BIOGD 485(4850) Bacterial Genetics (also BIOMI/BIOBM 485(4850))] Fall. 2 credits. Prerequisite: BIOGD 281. Recommended. BIOMI 290 and BIOBM 330 or 331 and 332 or 333. Lee, W. T 7:30-9:25 P.M. J. E. Perun. For description, see BIOMI 485.

[BIOGD 486(4860) Advanced Eukaryotic Genetics] Spring. 4 credits. Enrollment may be limited to 50 students. Prerequisites: BIOGD 281, BIOMB 330 or 333 or 331 and 332. S/U grades optional. Lect. T 12:20-2:15 and R 12:20-1:10; disc. R 1:25-2:15 or F 11:15-12:05. E. F. Alani. Develops fundamental skills in eukaryotic genetic analysis through lectures and by reading, analyzing, and presenting research articles. Concepts are presented within the context of a well-studied field, such as chromosome segregation. The basic tools that have been developed to study this field are used to analyze other topics such as vegetative and mitotic cell cycle control, embryonic development, pathogen resistance in plants, and human genetics.

[BIOGD 487(4870) Human Genomics] Fall. 3 credits. Prerequisite: BIOGD 281. Lect. T 9:05-10:15. A. G. Clark. Applies fundamental concepts of transmission, population and molecular genetics to the problem of determining the degree to which familial clustering of diseases in humans has a genetic basis. Emphasizes the role of full genome knowledge in expediting this process of gene discovery, whereas stresses the role of statistical inference in interpreting genomic information. Population genetics, and the central role of understanding variation in the human genome in mediating variation in disease risk, are explored in depth. Methods such as homozygosity mapping, linkage disequilibrium mapping, and admixture mapping are used. This format is a series of lectures with classroom discussion. Assignments include a series of problem sets and a term paper.

[BIOGD 489(4890) Mammalian Embryology (also BIOAP 489(4890))] Spring. 3 credits. Prerequisite: introductory biology. Lab. T 2:25. Offered alternate years. D. M. Noden. Examines the early formation of the mammalian body and placenta, emphasizing comparative aspects, and morphogenesis and histogenesis of each organ system.

[BIOGD 490(4900) Manipulating the Mouse Genome (also NS 490(4900))] Fall. 1 credit. Prerequisite: BIOGD 280, or 281 and BIOMB 330, 332, or 333 or NS 320. Lect. M 1:25-2:15. P. D. Soloway. For description, see NS 490.

[BIOGD 600(6000) Development of Sensory Systems (also BIOMB 600(6000))] Spring. 2 credits. Prerequisites: introductory biology, genetics, development, and neurobiology, or permission of instructor. S/U or letter grades. Lect. M 7-8:40 P.M. Offered alternate years; next offered 2006-2007. K. Whitlock. Explores the unique and shared mechanisms used in sensory system development of both vertebrates and invertebrates. The first class provides a general introduction to the developmental processes in vertebrates and invertebrates. Following classes involve the reading of current and classic papers in sensory system development. Students choose a topic and articles from a list provided by the instructor. Students are responsible for an oral presentation and short paper.

[BIOGD 608(6080) Epigenetics (also NS 608(6080))] Fall. 2 credits. Prerequisites: BIOGD 281 and BIOMB 330, 332, or 333 or NS 320. W F 11:15. Letter grades only. P. Soloway. For description, see NS 608.

[BIOGD 610(6100) Genomes as Chromosomes] Fall. 3 credits. Limited to 15 students. Prerequisites: BIOGD 281 and BIOMB 330 or 333 or 332 or equivalent by permission of instructor. Letter grades only. T. P. O'Brien and P. E. Cohen. The eukaryotic genome is partitioned into discrete structural units, the chromosomes. The course examines how chromosome organization is related to chromatin structure, gene expression, DNA replication, repair and stability. Special emphasis is placed on how the linear arrangement of sequence features along the chromosome, such as genes and regulatory modules, relate to the functional organization of the genome in the nucleus. Experimental and computational approaches used to address chromosome structure and function are studied.

[BIOGD 611(6110) Genome Maintenance Mechanisms] Fall. 1 credit. Limited to 25 students. Prerequisites: BIOGD 281, as well as BIOMB 330, or 333, or 331/332 (or equivalents). S/U or letter grades. R. Weiss. Focuses on the molecular mechanisms used by eukaryotic cells to preserve genomic integrity. Topics include endogenous and exogenous sources of nutrition, DNA repair pathways, and cycle checkpoint mechanisms. Also addresses how genome maintenance impacts genome plasticity and evolution, as well as the relationship between genomic instability and disease, including cancer.

[BIOGD 612(6120) Overview of Model Genetic Organisms] Spring. 1 credit. Limited to 20 students. Prerequisites: BIOGD 281 or 400 or permission of instructor S/U or letter grades. J. Schimenti. Presents the features of various model organisms and their relative merits for conducting various types of genomics/genetics research. Model systems discussed include: yeast, Arabidopsis, Drosophila, C. elegans, zebrafish, and mice.

[BIOGD 624(6240) Quantitative Trait Loci Analysis (also PL PA 624(6240)] Fall. 1 credit. Prerequisites: introductory statistics and BIOGD 281 or permission of instructor S/U or letter grades. Offered alternate years. K. Lee. For description, see PL PA 624.

[BIOGD 638(6380) Filamentous Fungal Genomics and Development (also PL PA 638(6380)] Spring, last four weeks of semester. 1 credit. S/U grades optional. Prerequisite: BIOGD 281 or equivalent, or permission of instructor. Lect. M W F 10:10. B. G. Turgeon. Molecular genetic and genomic approaches to the study of fungal biology. Applications of contemporary methodology to genetic dissection of developmental processes, such as plant pathogenesis and reproduction. Examples are chosen from investigations of model plant pathogenic fungi (Magnaporthe, Fusarium, Cochliobolus) and from well-known genetic models such as Saccharomyces cerevisiae and Neurospora crassa.

[BIOGD 640(6400) Stem Cell Biology: Basic Science and Clinical Applications] Spring. 2 credits. Limited to 30 students. Prerequisites: BIOGD 432 or BIOGD 395 or permission of instructor. Offered alternate years. Covers basic aspects of tissue morphogenesis and homeostasis with emphasis on the biological role of embryonic and adult stem cells in development. Focuses on the molecular mechanisms that govern stem cell self-renewal, classes of stem cells. The second part of the course is a survey of common approaches for in vitro characterization of stem cells and underlines the potential relevance to the field to human health. Some sessions include discussion of research papers.

[BIOGD 682(6820) Fertilization and the Early Embryo] Spring. 2 credits. Prerequisites: BIOGD 281; BIOMB 332 or 333 or 331 or E. P. M. 385 or permission of instructor. Lect. R 2:30-4:25. Offered alternate years. M. F. Wolfner. Treats the earliest events in the formation of a new organism. Discusses the methods and findings of genetic, developmental, cell, and molecular analyses. Readings in the recent literature and discussions focus on pre-gastrulation embryos from several
animal species. Topics include fertilization (sperm/egg binding, sperm entry into egg), pronuclear fusion, egg activation, initiation and terminating the cleavage, division period, cytoplasmic determinants, and changes in nuclear and cytoplasmic architecture.

[BIOGD 684(6840) Advanced Topics in Population Genetics]
Spring. 2 credits. Limited to 20 students. Prerequisites: BIOGD 481 or equivalent and written permission of instructor. S-U grades optional. Lect. T 2:30-4:25. Not offered 2005-2006. A. G. Clark and C. P. Aquadro. In-depth exploration of current areas of research in population genetics. Readings primarily from recent books and the current literature. Specific topics are announced the previous fall and in the division's catalog supplement. Format includes lectures, discussion, and presentations by students.

[BIOGD 687(6870) Developmental Genetics]
Fall. 2 credits. Limited to 20 students. Prerequisites: BIOGD 281 and 385 or equivalents. S-U grades optional. Lect: TBA. Offered alternate years. K. J. Kemphues. Topics focus on the use of genetic analysis in understanding mechanisms of development. Topics are drawn primarily from studies in fruitflies, nematodes, mice, and fish. Possible topics include pattern formation, cell lineage, neural development, maternal information in development, germ cell development, sex determination, and intercellular communication. Students read current literature and are encouraged to discuss each topic in class.

[BIOGD 689(6890) Cellular Basis of Development]
Fall. 2 credits. Limited to 20 students. Prerequisites: BIOGD 281 and 385, and either BIOMI 330 or 331-332. Lect. W 2:30-4:25 P.M. S-U grades optional. Offered alternate years; next offered 2006-2007. J. Liu. Focuses on the integration of different cellular processes in various developmental contexts. Topics include cell migration, cell adhesion and contraction, cell growth and proliferation, cell-cell communication, and cell death. Students are required to read current literature and participate in discussions in class.

[BIOGD 780(7800) Current Topics in Genetics]
Fall or spring. 1 credit; may be repeated for credit. Limited to 20 students. Primarily for graduate students; priority given to majors in field of genetics. Prerequisite: for undergraduates, written permission of instructor. No auditors. S-U grades only, by permission of instructor. Seminar TBA. Staff.

Sec 1 Functional Genomics in Nonmodel Organisms (also BIOEE 766.2)
Fall. 2 credits. M 1:25-5:20, plus required attendance: at four sem, 12:20-1:15 M 9/26, 10/17, 10/31, and 11/14. Prerequisite: knowledge of either basic genetics or ecology/evolutionary biology. Intended for graduate students. S-U grades optional. A. McCune, A. Clark, D. Winkler, and M. Wolfrer. For description, see BIOEE 760.

BIOMI 290(2900) General Microbiology Lectures
Fall, spring, or summer (six-week session). 3 credits. Prerequisites: one year introductory biology. Fall or spring: 2 credits. Prerequisites: BIOMI 290, S-U grades only. Disc TBA. Staff.

BIOMI 331(3310) General Parasitology (also VETMI 331[3310])
Spring. 2 credits. Prerequisites: one year introductory biology. Lect. T 12:20-1:10. D. Bowman. Introduction to the basic animal parasites, stressing systematics, taxonomy, general biology, ecological interactions, and behavior of nonmedically important groups. Introduces the major animal parasites: protozoan, nematode, platyhelminth, acanthocephalan, annelid, and arthropod.

BIOMI 394(3940) Applied and Food Microbiology (also FD SC 394[3940])
Fall or spring, summer (six-week session). 2 credits. Prerequisites: BIOMI 290. M W F 10:10. Offered alternate odd years. E. L. Madsen. Discusses the biological properties, evolution, and behavior of microorganisms in natural systems in relation to past and present environmental conditions on Earth and other living planets. Also considers the functional role of microorganisms in ecologically and environmentally significant processes through discussion of specific topics such as nutrient and toxic elemental cycles, transformation of pollutant chemicals, wastewater
BIOMI 404(4040) Pathogenic Bacteriology and Mycology (also VETMI 404[4040])
Spring. 2 credits. Prerequisites: BIOMI 290 and 291; for undergraduates, permission of instructor. Highly recommended: BIO G 305.LEC, M W 10:10-11:10 F. E. Peters.
Offered alternate odd years. D. Debbie.
For description, see VETMI 404.

BIOMI 409(4090) Principles of Virology (also VETMI/PL PA 409[4090])
Fall. 3 credits. Prerequisites: BIOMI 290 and 291 or permission of instructor. Recommended: BIOMI 330 or 331 or 332 or 333.LEC, W 7:30-8:25 P.M. J. E. Peters.
Students gain a detailed understanding of how bacteria maintain and pass on genetic information with a strong focus on the bacterium Escherichia coli. They discover the processes by which bacteria evolve through different mutations and regulatory changes. Upon completion of the course students should understand the tools used to manipulate bacterial genomes for the understanding of bacteria and other living organisms.

BIOMI 410(4140) Prokaryotic Diversity
Spring. 3 credits. Prerequisites: BIOMI 290 and 291. Recommended: BIOMI 330 or 331 or 332.LEC, M W F 11:15-12:05. A. Hay.
Consideration of the evolutionary biology, physiology, ecology, genetics, and practical potential of important groups of prokaryotes. Topics include prokaryotic phylology, the evolution of diverse mechanisms of energy conservation, fixation of carbon and nitrogen, and adaptation to extreme environments.

BIOMI 410(4140) Bacterial Physiology
Spring. 3 credits. Prerequisites: BIOMI 290 and 291, and BIOMI 330 or 331, or equivalents.LEC, M W F 11. Offered alternate even years. J. P. Shapleigh.
Focuses on physiological and metabolic functions of bacteria. Consideration is given to chemical structure, regulation, growth, and energy metabolism. Special attention is given to those aspects of bacterial metabolism not normally studied in biochemistry courses.

BIOMI 418(4180) Microbial Ecology
Spring. 3 credits. Prerequisites: BIOMI 290 and 291, or 398 and permission of instructor, and BIOMI 330 or 331 and 332.LEC, M W F 10:10-11. E. R. Angett.
Understanding the role of microorganisms in natural environments is one of the greatest challenges facing microbiologists. This course introduces current biochemical and macromolecular sequence-based methods to assess community diversity and microbial activity in a variety of ecosystems. Other topics discussed include bacterial growth and survival, population biology, and microbial interactions.

BIOMI 420(4200) Microbial Genomics
Spring. 2 credits. Prerequisites: BIOMI 290, BIO G 281, BIOMI 330, or equivalent.LEC, T R 10:10-11. J. D. Helmann.
Genomic information is revolutionizing biology. This course discusses the impact of genomic information on the study of microbial physiology, evolution, and biotechnology. Topics include both techniques (automated DNA sequencing, assembly, annotation, DNA chip technology, and applications (genome-wide analysis of transcription, functional genomics).)

BIOMI 431(4310) Medical Parasitology (also VETMI 431[4310])
Fall. 2 credits. Prerequisites: zoology and histology courses.LEC, T R 3:35-4:25. D. Bowman.
For description, see VETMI 431.

BIOMI 485(4850) Bacterial Genetics (also BIOGD/BIOEM 485[4850])
Fall. 2 credits. Prerequisite: BIOGD 281. Recommended: BIOMI 290 and BIOMI 330 or 331 and 332 or 333.LEC, W 7:30-9:25 P.M. J. E. Peters.
For description, see BIOGD 281.

BIOMI 410(4140) Introduction to Chemical and Environmental Toxicology (also TOX 610[6100])
Fall. 3 credits. Prerequisite: graduate standing in field of or permission of instructor.Lecturer grades.LEC, M W F 11:15-12:05. A. Hay.
Introduction to the general principles of toxicology including the sources, mechanisms, and targets of environmental toxins. Focuses special attention to the interaction between toxic agents and biological systems at both the organismal and ecological level. The effects of both anthropogenic and natural toxins are examined with respect to genetic and developmental toxicity as well as carcinogenesis and specific organ toxicity.

BIOMI 650(6060) Molecular Plant Virology (also PL PA 606[6060])
Spring, first seven weeks of semester. 1 credit. S-U grades only. Prerequisites: BIOMI 409, cell biology course, or permission of instructor.LEC, M W F 11:15-12:05. A. Hay.
For description, see PL PA 606.

BIOMI 651(6080) Genomics of Bacterium-Host Interactions (also PL PA 608[6080])
Fall, second half of semester. 1 credit. S-U grades only. Prerequisites: BIOMI 409, cell biology course, or permission of instructor.LEC, M W F 11:15-12:05. Offered alternate odd years. S. G. Lazarowitz.
For description, see PL PA 608.

BIOMI 652(Sec 02) Molecular Plant-Microbe Interactions (also BIOPH 652, Sec 02, PL PA 664[6640])
Spring. 1 credit. Prerequisites: BIOGD 281, BIOMI 330 or 331 or 333, and BIOPH 653 (sec 01) or equivalents. S-U grades only.LEC, M W F 12:20 (12 lec). Offered alternate even years. S. C. Winans.
For description, see BIOPH 652, Sec 02.

BIOMI 690 Prokaryotic Biology
Fall and spring. 4 weeks/8 lec. 1 credit per sec to be offered. T R 10:15-11:30.

Sec 1 Microbial Structure and Function
Fall. J. P. Shapleigh.
Discusses those macromolecules and assemblies of cell organelles that together define the structure of the prokaryotic cell. This includes external structures, such as cell wall, flagella, pili, and peptidoglycan and internal structures such as specialized vesicles and other large complexes.

Sec 2 Environmental Microbiology
Fall. E. L. Madsen.
Core course of concepts, methods, and current literature that reveals the multidisciplinary nature of environmental microbiology and its relationship to prokaryotic biology. Discusses the crucial roles that microorganisms play in catalyzing biochemical reactions throughout the biosphere.

Sec 3 Microbial Physiology/Diversity
Fall. S. H. Zinder.
Reviews the major energy-conserving modes of metabolism and their phylogenetic distributions among both bacteria and archaea. Topics include phyllogenetic analysis, fermentation, respiration, photosynthesis, pathways of carbon and nitrogen fixation, and evolution of the three domains of life.

Sec 4 Microbial Genetics
Spring. J. D. Helmann.
Reviews the fundamental concepts of microbial genetics including mutations and their analysis, plasmids, conjugation, transformation, transduction, transposition, recombination, repair, and mutagenesis.

Sec 5 Microbial Pathogenesis
Spring. S. C. Winans.
Introduction to the fundamental concepts of bacterial pathogenesis including the normal flora, pathogen entry and colonization, the production and regulation of toxins, horizontal transfer of pathogenesis determinants, and the roles of both specific and nonspecific host defenses. Examples include bacterial pathogens of both animals and plants.

BIOMI 725(7250) Mechanisms of Microbial Pathogenesis (also VETMI 725[7250])
Spring. 3 credits. Prerequisites: for undergraduates, written permission of instructor. BIOMI 404, 409, 417, or equivalent. Highly recommended: completion of two of the three courses.LEC, M W 2:30-3:20 P.M. D. Debbie, M. Hesse, H. Marquis, J. Parker, M. Scidmore, and G. Whittaker.
For description, see VETMI 725.

BIOMI 740(6430) Veterinary Perspectives on Pathogen Control in Animal Manure (also VTMED/BEE 740[6430])
Spring, eight weeks. 2 credits. Prerequisite: third- and fourth-year veterinary students.LEC, 1 credit; may be repeated for credit. Primarily for veterinary students. S-U grades only.LEC, TBA.
Prerequisite: upper-level courses in microbiology. S-U grades only.LEC, 2 credits; may be repeated for credit. Primarily for students in microbiology. S-U grades only.LEC, TBA.
Lectures and seminars on special topics in microbiology.

BIOMI 791(7910) Advanced Topics in Microbiology
Fall or spring. 1 credit; may be repeated for credit. Prerequisite: graduate standing in microbiology. S-U grades only. Sec 01 Bacterial Genetics, T 4-5, S. C. Winans.
Sec 02 Environmental Microbiology, W 4-5, E. R. Angett.
Reading and presentation by graduate students of current literature in selected areas of modern microbiology.

BIOMI 796(7960) Current Topics in Microbiology
Fall and spring. 0.5 or 1 credit for each topic; may be repeated for credit. Primarily for graduate students in microbiology. Prerequisite: upper-level courses in microbiology. S-U grades only.LEC TBA.
Staff.
Lectures and seminars on special topics in microbiology.
NEUROBIOLOGY AND BEHAVIOR

BIOMI 111(1110) Brain Mind and Behavior (also PSYCH/COGST 111(1110))
Spring. 3 credits. Prerequisite: none. Intended for freshmen and sophomores in humanities and social sciences; not open to juniors and seniors. Not recommended for psychology majors; biology majors may not use course for credit toward major. Letter grades only. Lec, M W F 9:05. E. Adkins-Regan and R. R. Hoy.
For description, see COGST 111.

BIOMI 222(2210) Neurobiology and Behavior I: Introduction to Behavior
Fall. 3, 4, or 5 credits; 4 credits with one disc per week; 5 credits with two disc per week and participation in Writing in the Majors program; 4- or 5-credit option required of students in neurobiology and behavior program of study. Limited to 20 students per 4-credit disc. Priority given to students studying neurobiology and behavior. Limited to 12 students in 5-credit option. Students may not preregister for 5-credit option; interested students complete application form on first day of class). Not open to freshmen. Prerequisite: one year introductory biology for majors. May be taken independently of BIOMI 222. S-U grades only. Lec, M W F 12:20; disc, TBA. C. Walcott and staff.
General introduction to the field of animal behavior. Topics include evolution and behavior, behavioral ecology, sociobiology, chemical ecology, communication, orientation and navigation, and hormonal mechanisms of behavior.

BIOMI 221(2210) Neurobiology and Behavior II: Introduction to Behavior
Summer, six-week session. 3 or 4 credits; 4 credits with one disc per week.
General introduction to the field of animal behavior. Topics include evolution and behavior, behavioral ecology, sociobiology, chemical ecology, communication, orientation and navigation, and hormonal mechanisms of behavior.

BIOMI 222(2220) Neurobiology and Behavior II: Introduction to Neurobiology
Spring. 3 or 4 credits; 4 credits with disc and written projects, 4-credit option required of students studying neurobiology and behavior. Limited to 15 students per disc; priority given to students studying neurobiology and behavior. Not open to freshmen. Prerequisites: one year introductory biology for majors and one year of chemistry. May be taken independently of BIOMI 222. S-U grades optional. Lec, M W F 12:20; disc, TBA. R. Booker and staff.
General introduction to the field of cellular and integrative neurobiology. Topics include neural systems, neuroanatomy, developmental

BIOMI 223(2230) Methods in Animal Behavior
Fall. 4 credits. Limited to 20 students. Prerequisites: junior or senior standing; one of the following: PSYCH 223 or BIOMI 222; and permission of instructor. Lab, T R 12:30-1:25. T. J. Devogod.
For description, see PSYCH 322.

BIOMI 232(3220) Biopsychology Laboratory (also PSYCH 324(3240))
Fall. 4 credits. Limited to 20 students. Prerequisites: junior or senior standing; PSYCH 223 or BIOMI 222, and permission of instructor. Lab, T R 1:25-4:25. T. J. Devogod. Letter grades only. S. Edelman.

BIOMI 325(3250) Insect Behavior (also ENTOM 325[3250])
Spring. 3 credits. Prerequisite: BIOMI 222 or BIOAP 311 or permission of instructor. S-U grades only. Lec, M W F 10:10; disc, 1 hour each week. TBA. Offered alternate years. H. C. Howland. The visual systems of vertebrates are discussed in breadth and depth as well as neurobiology, electrical properties of nerve cells, synaptic mechanisms, neurotransmitter, motor systems, sensory systems, learning, and memory. Some discussion sections include dissections of preserved brains.
some aspects of invertebrate vision. Topics include the optics and anatomy of eyes, retinal neurophysiology, structure and function of higher visual centers, ocular motility, and ocular and visual system development.

BIONB 327(3270) Evolutionary Perspectives on Human Behavior
Fall. 3 credits. Prerequisites: BIONB 221 and permission of instructor. Letter grades only. M W 2:55-4:10. S. T. Emlen.
Sociobiologically oriented course dealing with evolutionary perspectives on human behavior. Topics include genes and behavior, the evolutionary environment of adaptation, the evolutionary function of emotions, human mating systems, parenting strategies, and cooperation and conflict within family-based societies. All students read and discuss primary papers and recent books. Each student is responsible for leading multiple discussions, writing an original paper, and peer-reviewing papers of other class members.

BIONB 328(3280) Biopsychology of Learning and Memory (also PSYCH 332(3320))
Spring. 3 credits. Limited to 60 students. Prerequisites: one year of biology and either a course or BIONB 222. S-U grades optional. Graduate students, see PSYCH 632. Lec, M W F 11:15. T. J. DeVoogd.
For description, see PSYCH 332.

BIONB 329(3290) Ecology of Animal Behavior (also BIOSM 329(3290))
Summer 4 credits. Prerequisite: one year introductory college biology. Recommended: ecology, psychology, or behavior course. S-U grades optional. Special two-week course offered at Shoaal Marine Laboratory (SML), located on an island off Portsmouth, N.H. For more details and an application, contact SML office, G14 Stimson Hall. Daily lec, lab, and fieldwork for two weeks. SML faculty. For description, see BIOSM 329.

BIONB 330(3300) Introduction to Computational Neuroscience (also PSYCH 330(3300))
Fall. 3 or 4 credits. 4 credits includes lab providing additional computer simulation exercises. Limited to 25 students. Prerequisites: BIONB 222 or permission of instructor. S-U grades optional. Lec, M W 2:55–4:10. Offered alternate years; not offered 2005–2006. C. Linster.
Covers the basic ideas and techniques involved in computational neuroscience. Surveys diverse topics, including neural dynamics of small networks of cells, neural coding, learning in neural networks and in brain structures, memory models of the hippocampus, sensory coding, and others.

BIONB 331(3310) Human Sociobiology
Spring. 3 credits. Prerequisite: BIONB 221 or PSYCH 223 or permission of instructor. Letter grades only. Lec, M W 2:55–4:10. P. Barclay.
Lecture-based course drawing on research in evolutionary biology and animal behavior to investigate various aspects of human social behavior. Findings are presented from areas such as evolutionary psychology, anthropology, human behavioral ecology, and evolutionary game theory. Topics may vary slightly from year to year, but include mating, cooperation (with kin and nonkin), conflict and aggression, parental behavior, costly signaling, and culture.

BIONB 369(3690) Chemical Ecology (also BIOEE/ENTOM 369(3690))
Spring. 3 credits. Prerequisites: one semester of introductory biology for majors or non-majors and one semester of introductory chemistry for majors or nonmajors or equivalents, or permission of instructor. S-U grades optional. Lec, M W F 11:15–12:15. A. Agrawal, G. Jander, A. Kessler, and J. Thaler.
For description, see BIOEE 369.

BIONB 392(3920) Drugs and the Brain
Fall. 4 credits. Prerequisites: BIONB 222 or equivalent course in neurobiology by permission of instructor. Recommended: knowledge of biochemistry. S-U grades optional. T R 10:10–11:25; disc, TBA. Offered alternate years. R. M. Harris-Warrick and L. M. Nowak.
Introduction to neuropharmacology, with an emphasis on the neural mechanisms of psychoactive drugs. Topics include a brief introduction to neuropharmacology and a discussion of the major neurotransmitter families. The rest of the course covers the major psychoactive drugs, including cocaine, heroin, psychedelics, marijuana, and alcohol, as well as pharmaceuticals for the treatment of anxiety, schizophrenia, and depression. Includes a term paper in the form of a grant proposal to study a current problem in neuropharmacology.

BIONB 394(3940) Circadian Rhythms (also BIOID/ENTOM/PL PA 394(3940))
Fall. 2 credits. Prerequisite: 200-level biology course. S-U grades optional. Lec, W 7:30–9:10 p.m. Even years, K. Lee; odd years, J. Ewer.
For description, see ENTOM 394.

BIONB 396(3960) Introduction to Sensory Systems (also PSYCH 396/696/S696(3960/6960))
Spring. 4 credits. Limited to 25 students. Prerequisites: introductory biology or biopsychology, plus second course in behavior biopsychology, cognitive science, neuroscience, or perception; knowledge of elementary physics, chemistry, and behavior. S-U grades optional. Lec, T R 10:10–11:25. Offered alternate years. B. P. Halpern.
For description, see PSYCH 396.

BIONB 413(4130) Molecules of Social Behavior and Emotion
Spring. 3 credits. Prerequisite: permission of instructor. Letter grades only. Lec, T R 10:10–11:25. D. P. McCobb.
Active-learning course with specific topics to be determined by students. Focuses on molecular, neural, and endocrine mechanisms underlying innate and learned behavior patterns, and their relationship to social, ecological, and evolutionary context. Neurotransmitters, hormones and receptors governing such behaviors as parental care, territoriality, cooperativity, courtship, and stress responses are examples of topics of interest. For major advanced undergraduates. Limited to 12 students.
For description, see PSYCH 413.

BIONB 415(4150) Neurobiology of Animal Behavior (also PSYCH 415/615(4150/6150))
Fall. 4 credits. Prerequisites: one year of calculus, course in probability or statistics, and permission of instructor. Advanced undergraduates and graduate students. S-U grades optional. Lec, T R 2:55–4:10; computer lab, one class period per week TBA. Offered alternate years; not offered 2005–2006. H. K. Reeve.
Intensive lecture and computer lab course on modeling strategies and techniques in the study of behavioral evolution. Population-genetic (including quantitative-genetic), static optimization, dynamic optimization, and game-theoretic methods are emphasized. These approaches are illustrated by application to problems in optimal foraging, sexual selection, sex ratio evolution, animal communication, and the evolution of cooperation and conflict within animal social groups. Students learn to critically assess recent evolutionary theories of animal behavior, as well as to develop their own testable models for biological systems of interest or to extend pre-existing models in novel directions. The Mathematica software program is used as a modeling tool in the accompanying computer lab (no prior experience with computers required).

BIONB 423(4230) Cognitive Neuroscience (also PSYCH 423/623(4230/6230))
Fall. 4 credits. Prerequisites: introductory biology, biopsychology or neurobiology (e.g., PSYCH 223 or BIONB 221), and introductory course in perception, cognition, or language (PSYCH 102, 209, 214, or 215 essential). S-U grades optional. Graduate students, see PSYCH 625. M W F 9:05–9:55. Offered alternate years. B. L. Finlay.
For description, see PSYCH 423.

BIONB 424(4240) Neuroethology (also PSYCH 424(4240))
Spring. 4 credits. Prerequisites: BIONB 221 or 222, or one year introductory biology for majors and permission of instructor. S-U grades optional. Lec, disc, R TBA. Offered alternate years; not offered 2005–2006. C. D. Hopkins.
Neuroethologists take a comparative and evolutionary approach to study the nervous system. They ask, how do brains of animals compare and how did they come about through the process of evolution? How are
neural circuits adapted to species-typical behavior? What is the hope and interest in the study of a large diversity of animals, compared to a specialized look at just a few mammalian species? Can we hope to understand how animals with specialized behaviors have specialized nervous systems? What is the significance of such diversity? What does it vary from species to species? These and other questions derive this introductory survey of neuroethology, including exotic senses, amazing motor programs, surprising integration.

BIONB 425(4250) Molecular Neurophysiology

Fall. 3 credits. Prerequisite: BIONB 222 or permission of instructor. S-U grades optional. Lect, T 2:55–4:10. Offered alternate years. D. P. McGobb.

Focuses on ion channels, the primary proteins generating cellular electrical signals in nerve cells and other excitable cells (e.g., muscle, heart, glands). Reviews the latest electrophysiological and molecular genetic experiments. Diversity of electrophysiology deriving from channel structure and expression patterns is considered in the contexts of behavior and behavioral plasticity (learning), neural development, and channel evolution. Format includes written and oral presentations, reviewing scientific literature in selected areas, and proposing new experiments.

BIONB 426(4260) Animal Communication

Spring. 4 credits. Prerequisite: BIONB 221. Letter grades only. T 2:55–4:10; disc, one hour each week TBA. Offered alternate years. J. Bradbury and S. L. Vehrencamp.

Integrated approach to animal communication, organized into three parts: (1) the physics and physiology of producing, transmitting, and receiving signals; (2) optimal strategies for encoding information, using information to make decisions, and designing signals; and (3) the behavioral ecology of signal evolution.

BIONB 427(4270) Animal Social Behavior

Fall. 4 credits. Limited to 30 students. Prerequisites: BIONB 221 and BIOEE 261 or 278, and permission of instructor. Letter grades only. Lect, T and disc, T 2:30–4:25. Offered alternate years; not offered 2005–2006. T. D. Seeley.

Writing-intensive advanced course for upper-division students interested in behavioral ecology and sociobiology. Lectures, discussions, and student presentations examine topics including adaptation, communication, mating systems, sexual selection, sex ratios, inbreeding and outbreeding, altruism, kin recognition, conflict and cooperation in animal societies, and Darwinian medicine.

BIONB 428(4280) Clinical Neurobiology

Fall. 3 credits. Prerequisites: two courses from BIONB 222, BIOGD 281, BIONB 330 or 351; co-registration in one of the two is acceptable by permission of instructor. Open to advanced undergraduates. S-U grades optional. M W 2:30–4:25. Offered alternate years. R. Booker.

The goal of this course is to provide students with an appreciation of the current challenges facing researchers studying neurodegeneration. The focus is on the etiology, epidemiology, cellular and molecular bases, and strategies for treating of a number of neurodegenerative diseases, including but not limited to Alzheimer's disease, Parkinson's disease, neural ischemia, depression, eating disorders, and AIDS-related dementia. The course is provided a health context that enriches the student's learning experience in other advanced courses in the biological sciences. Guest speakers include faculty from all of the schools on the campus of the Weill Cornell Medical College Departments of Neurology and Neuroscience.

BIONB 429(4290) Offaction and Taste: Structure and Function (also PSYCH 426(4260))

Spring. 3 or 4 credits. 4-credit option requires a research project or research project (research project can but does not need to study nonhuman vertebrates.) Priority provided to junior and senior psychology and biology majors and graduate students. Graduate students, see PSYCH 625. Prerequisite: one 300-level course in biopsychology or equivalent. Lect, T 10:10–11:25. Offered alternate years; not offered 2005–2006. B. P. Halpem.

For description, see PSYCH 429.

BIONB 430(4300) Experimental Molecular Neurobiology (also BIOBM 443(4430))

Spring. 4 credits. Limited to 12 students. Co-requisite: BIOBM 440 lab. Letter grades only. Disc, one hour each week on day other than lab day, lab, T all day. Offered alternate years. Not offered 2005–2006. D. L. Deitcher.

Experiments include PCR, cloning of DNA fragments, RNA purification, restriction digests, bacterial transformation, DNA sequencing, and protein purification. Experiments emphasize how molecular techniques can be applied to studying neurobiological problems.

BIONB 431(4310) Genes and Behavior

Our genes influence how we behave. This lecture course explores the current understanding of how genes influence the behavior of a variety of animals, including humans. Topics include the genetic basis of smell, hearing, touch, learning, memory, intelligence, sexual behavior, aggression, sleep, life span, and diseases of behavior. The focus is on the unprecedented insight that modern molecular and genetic tools are providing into the genetic basis of behavior.

BIONB 440(4400) Electronics in Neurobiology (also BME 440(4400))

Fall. 4 credits. Prerequisite: junior, senior, or graduate standing; calculus course. S-U grades optional. Lect, T R 8:40–9:55; lab, W 1:25–4:25. Offered alternate years. B. R. Land.

Emphasizes understanding of the electrical functioning of the nervous system and enables students to build instrumentation to study the nervous system. The course is taught by mathematicians and engineers, who are experts in the design and construction of circuit examples drawn from practical neurobiological instrumentation problems and the electronic basis of neurons.

BIONB 441(4410) Computer in Neurobiology (also BME 441(4410))

Fall. 4 credits. Prerequisite: junior, senior, or graduate standing; calculus course. S-U grades optional. Lect, T R 8:40–9:55; lab, W 1:25–4:25. Offered alternate years; not offered 2005–2006. B. R. Land.

Introduction to computer programming techniques and data reduction. Gives a basic foundation in the ADI, e.g., using a computer in a biological context. Includes techniques to convert raw data to scientific visualization. Includes some computer modeling examples drawn from practical neurobiological problems.

BIONB 470(4700) Biophysical Methods (also AEP/VEETM 470(4700))

Fall. 3 credits. Prerequisites: solid knowledge of basic physics and mathematics through sophomore level. Recommended: knowledge of cellular biology, graduate grades only. Lect, M W 2:55–4:10. M. Lindau.

For description, see AEP 470.

BIONB 491(4910) Principles of Neurophysiology (also BME 491(4910))

Spring. 4 credits. Limited to 20 students. Prerequisite: BIONB 222 or written permission of instructor. S-U grades optional for graduate students by permission of instructor. Lect, M W 10:10; lab, M or T 1:20–4:25. B. R. Johnson.

Laboratory-oriented course designed to teach the theory and techniques of modern cellular neurophysiology including computer acquisition and analysis of laboratory results. Lecture time is used to introduce laboratory exercises and discuss results, to supplement laboratory topics, and to discuss primary research papers. Extracellular and intracellular recording and voltage clamp techniques explore motor neuron and sensory receptor firing properties, and examine the cellular basis for pattern and action potentials and synaptic transmission. Invertebrate preparations are used as model systems. See instruct.cit.cornell.edu/courses/bionb491/index.html.

BIONB 492(4920) Sensory Function (also PSYCH 492/692(4920/6920))

Spring. 4 credits. Limited to 25 students. Prerequisite: 300-level course in biopsychology, or BIONB 222, or BIOAP 311, or equivalent. Knowledge of elementary physics, chemistry, and behavior. S-U grades optional. Graduate students, see PSYCH 692. Lect, M W F 10:10. Offered alternate years; not offered 2005–2006. B. P. Halpem and H. C. Howland.

For description, see PSYCH 492.

BIONB 493(4930) Developmental Neurobiology

Fall. 3 credits. Prerequisite: BIONB 222 or permission of instructor. S-U grades optional by permission of instructor. Lect, M W 2:55–4:10. Offered alternate years. R. Booker.

Lectures covering the development of the nervous system, taking examples from both vertebrates and invertebrates. Emphasis is on both cellular and molecular issues, that is, how do nerve cells differentiate both morphologically and biochemically? The role of cues such as hormones and development genes in neural development is discussed. Readings are taken from original journal articles.
BIOLOGICAL SCIENCES - 2005-2006

[BIONB 494(4940)] Brain Evolution and Behavior
Spring. 3 credits. Intended for juniors, seniors, and graduate students.
Prerequisite: BIONB 222 or equivalent.
A. H. Bass.
Organization and evolution of neuroanatomical pathways as substrates for species-typical vertebrate behaviors. The course is divided into three major sections: development, general principles of brain organization, and co-evolution of vertebrate brain and behavior.

[BIONB 495(4950)] Molecular and Genetic Approaches to Neuroscience
Fall. 3 credits. Prerequisites: junior, senior, or graduate standing. BIONB 222 and BIOMB 330 or 332. Letter grades only. Lect. T R 2:55-4:10. Offered alternate years; not offered 2005-2006. D. L. Deitcher.
Focuses on how different molecular and genetic approaches have led to major advances in neuroscience. Lectures, student presentations, and discussions examine original research articles. Topics include ligand-gated channels, potassium channels, voltage-gated sodium channels, development of the neuromuscular junction, neurotransmitter release, second messengers, learning and memory, and neurodiseases.

[BIONB 496(4960)] Bioacoustic Signals in Animals and Man
Fall. 3 credits. Limited to 12 students. Prerequisites: junior, senior, or graduate standing; one year introductory biology, PHYS 101-102 or 207-208, and permission of instructor. S-U grades optional. Lect. M W 9:05, lab TBA. Offered alternate years. C. W. Clark and R. R. Hoy.
Teaches the fundamental concepts and principles of animal acoustic signaling by introducing them to various animal acoustic systems. Presents the physical properties of sound, physiological mechanisms for sound production and hearing, and the behavioral contexts in which sounds are used. Acoustic techniques are provided in the laboratory where students learn how to record, synthesize, and analyze sounds with the aid of recorders and Mac and PC compatible software. Labs are designed around the lecture material and provide practical "real-world" exercises designed to stimulate discovery of fundamental principles described in lectures. Class research projects on a selected topic in bioacoustics are required. Engineering students with interests in music, audio analysis, digital signal processing, and computer science are encouraged.

[BIONB 600(6000)] Development of Sensory Systems (also BIOGD 600[6000])
Spring. 2 credits. Prerequisites: introductory biology (genetics, development, and neurobiology preferred, or permission of instructor). S-U grades only. T 7-8:40 p.m. Offered alternate years; not offered 2005-2006. K. Whitloch.
For description, see BIOGD 600.

BIONB 720(7200) Seminar in Advanced Topics in Neurobiology and Behavior
Fall or spring. Variable credit; may be repeated for credit. Prerequisite: graduate standing or permission of instructor. S-U grades optional. Sem TBA. Staff and students.
Designed to provide several study groups each semester on specialized topics. A group may meet for whatever period is judged adequate to enable coverage of the selected topics. Ordinarily topics are selected and circulated during the preceding semester. Discussion of current literature is encouraged. Suggestions for topics should be submitted by faculty or students to the chair of the Department of Neurobiology and Behavior.

BIONB 721(7210) Introductory Graduate Survey in Neurobiology and Behavior
Fall. 2 credits. Requirement for graduate students majoring in neurobiology and behavior. Concurrent registration in BIONB 221 and 222 not required. S-U grades only. Lect and disc. W 4-6 p.m. D. L. Deitcher and staff.
Lectures, readings, and discussion introduce first-year graduate students to the research activities of the faculty in the graduate field of neurobiology and behavior. Class meets weekly for two hours. Students also prepare a research proposal on a potential topic for their thesis research (in the format of an NSF or NIH grant). This proposal is prepared in consultation with one or more relevant faculty members.

Related Courses in Other Departments
Evolutionary Perspectives on Behavior (PSYCH 535)
Biopsychology of Normal and Abnormal Behavior (PSYCHNS 381)
Developmental Biopsychology (PSYCH 422)
Evolution of Human Behavior (PSYCH 326)
Topics in Biological Anthropology (ANTHR 490)
Primate Behavior and Ecology (ANTHR 390)
Teaching Experience (BIO G 498)
The Brain and Sleep (PSYCH 440/540)
Undergraduate Research in Biology (BIO G 499)
OTS Undergraduate Semester Abroad Programs
Shoals Marine Laboratory Program
Spider Biology (ENTOM 215)

PLANT BIOLOGY (BIOPL)

BIOPL 240(2400) Green World/Blue Planet
Focuses on helping individuals understand the economic importance of taxa, to the basic taxonomic literature, and to the elements of nomenclature. Those who register for an S-U grade may not use this course for nonmajors to satisfy biology distribution requirement. Prerequisites: one year introductory biology and/or BIONB 241. Co-requisite for plant science undergraduates (and highly recommended for other science majors). BIOPL 244.
Recommended: one year introductory chemistry. May not be taken after BIOPL 342 except by written permission of instructor. Lect. M W F 10-10; evening prelms, Feb. 23 and Mar. 30; Not offered 2005-2006. P. J. Davies.

BIOPL 241(2410) Introductory Botany
Fall. 3 credits. Lect. T R 9:05; lab, M T W or R 1:25-4:25, or M W 7:30-10:30 p.m. K. J. Niklas.
Introductory botany for those interested in the plant sciences. Emphasizes structure, reproduction, and classification of angiosperms and the history of life on earth. Laboratory emphasizes development of skills in handling plant materials, including identification. First and second weeks of laboratory are field trips, starting with the first day of classes. Those who register for an evening laboratory are still required to attend the afternoon field trips.

BIOPL 242(2420) Plant Function and Growth
Spring. 3 credits. S-U grades optional. Primarily for undergraduates in agricultural sciences but also for any biological sciences students wanting to know about plant function, suitable as second-level course for nonmajors to satisfy biology distribution requirement. Prerequisites: one year introductory biology and/or BIONB 244. Co-requisite for plant science undergraduates (and highly recommended for other science majors). BIOPL 244. Recommended: one year introductory chemistry. May not be taken after BIOPL 342 except by written permission of instructor. Lect. M W F 10-10; evening prelms, Feb. 23 and Mar. 30; Not offered 2005-2006. P. J. Davies.
How plants function and grow. Examples deal with crop plants or higher plants where possible, though not exclusively. Topics include cell structure and function, plant metabolism, including photosynthesis; light relations in crops; plant-water relations; water uptake, transport, and transpiration; irrigation of crops; sugar transport, mineral nutrition; growth and development—hormones, responses to light, flowering, fruiting, dormancy, and abscission; stress, tissue culture, and genetic engineering of plants.

BIOPL 243(2430) Taxonomy of Cultivated Plants (also HORT 243(2430))
Fall. 4 credits. Prerequisite: one year introductory biology or written permission of instructor. May not be taken for credit after BIOPL 248. Lect. M W F 10:10; lab, M or W 2-4:25. Offered alternate years; not offered 2005-2006. M. A. Luckow.
Study of ferns and seed plants, their relationships, and their classification into families and genera, emphasizing cultivated plants. Particular emphasis is placed on gaining proficiency in identifying and distinguishing families and in preparing and using analytic keys. Attention is also given to the economic importance of taxa, to the basic taxonomic literature, and to the elements of nomenclature.

BIOPL 244(2440) Plant Function and Growth, Laboratory
Experiments exemplify topics covered in BIOPL 242 and offer experience in a variety of biological and biochemical techniques, from the cellular to whole plant level.
BIOPL 245(2450) Plant Biology
Summer, six-week session. 3 credits.
Limited to 24 students. Lec, M-F 11:30-12:45; lab, M W 2-5 T. Silva.
Introductory botany, including plant identification. Emphasizes structure, reproduction, and classification of flowering plants. Much of the laboratory work is conducted outdoors taking advantage of several outstanding natural areas available for study. Those who lack college-level biology are expected to work closely with the instructor on supplemental instructional materials.

[BIOPL 247(2470) Ethnobotany]
Consideration of the principles, methods, and issues of ethnobotany. Emphasis is on the past and present ecological, evolutionary, economic, and cultural interrelationships of humans in traditional and lay societies with their plants and animals, as a means of understanding the place and future of humans in the biosphere. Traditional medicines, underutilized organisms, resource management, and ownership of nature, and methodology are among the topics covered.

BIOPL 248(2480) Taxonomy of Vascular Plants
Spring. 4 credits. Prerequisite: one year introductory biology. May not be taken for credit after BIOPL 243. S-U grades optional. Lec, M W F 9:05; lab, W or R 1:25-4:25. Offered alternate years. J. I. Davis.
Introduction to the classification of vascular plants, with attention to the goals of taxonomy, the processes of plant evolution, and the means of analyzing evolutionary relationships among plants. The laboratory concentrates on methods of plant identification and presents an overview of vascular plant diversity, with particular attention to the flowering plants.

BIOPL 340(3440) Methods in Biological and Biochemical Prospecting
Spring. 2 credits. Prerequisites: BIO G 101-104. Recommended: previous or concurrent enrollment in organic chemistry. Times TBA. Offered alternate years. E. Rodriguez.
Students learn theory and methodologies in ethnobotany, chemical ecology, and zoopharmacognosy as they apply in a multidisciplinary fashion to chemical prospecting. The use of techniques in the chemistry of natural products and biological assays in the discovery of chemicals and their role in nature is described. Classical examples of drug development, from quinine to taxol, in the course of chemical prospecting are discussed. An overall medicinal purpose in chemoprospecting is emphasized, with mention of specific worldwide spread of diseases pressing for new drugs.

BIOPL 342(3420) Plant Physiology, Lectures
Spring. 3 credits. Prerequisites: one year introductory biology. Co-requisite: BIOPL 344 or written permission of instructor. May not be taken for credit after BIOPL 242 unless concurrent permission obtained from instructor. Lec, T R 10:10-11:25. T. G. Owens.
Integrated and interdisciplinary study of the processes that contribute to the growth, competition, and reproduction of plants. Topics include, but are not limited to, plant-water relations, membrane properties and processes, photosynthesis, plant respiration, mineral and organic nutrition, stress physiology, control of growth, and development, and responses to the environment. Emphasis is on the relationship between structure and function from the molecular to the whole-plant level.

BIOPL 343(3430) Molecular Biology and Genetic Engineering of Plants
Spring. 2 credits. Prerequisite: one year general biology or permission of instructor. S-U grades optional. Lec, T R 11:15. M. E. Nasrallah.
Introduction to current studies involving recombinant DNA technology and its application to the improvement of plants. Emphasizes genetic transformation methodology, gene expression systems, and strategies for increasing productivity. The course is directed toward undergraduates who wish to become familiar with the theory and practice of plant biotechnology.

BIOPL 344(3440) Plant Physiology, Laboratory
Spring. 2 credits. Co-requisite: BIOPL 342. May not be taken for credit after BIOPL 244. Similar to BIOPL 244 but at more advanced level. Lab, R 1:25-4:25, disc, R 12:20. T. Silva.
Experiments exemplify concepts covered in BIOPL 342 and offer experience in a variety of biological and biochemical techniques, from the cellular to the whole-plant level, with emphasis on experimental design.

BIOPL 345(3450) Plant Anatomy
Fall. 4 credits. Limited to 15 students. Prerequisite: one year introductory biology or a semester of botany. Lec, M W 9:05; lab, M W 2-4:25. Offered alternate years. A. Gandolfo.
Descriptive course with equal emphasis on development and mature structure. Lecture, laboratory, and reading are integrated in a study guide. The laboratory offers the opportunity to develop the practical skills required to make anatomical diagnoses and to write anatomical descriptions.

BIOPL 347(3470) Laboratory in Molecular Biology and Genetic Engineering of Plants
Companion to BIOPL 343 with laboratory activities that focus on the practice of plant biotechnology. Students transfer genes to plants by a variety of methods and analyze their expression in the host genome by use of reporter gene assays and by the preparation and analysis of nucleic acids.

BIOPL 348(3480) The Healing Forest
Spring. 2 credits. Prerequisites: introductory biology or plant physiology or permission of instructor. Lec/disc, R 2:30-4:25. Offered alternate years. D. M. Bates and E. Rodriguez.
Ethnobotanical and ethnopharmacological consideration of the role of plants, fungi, and insects in traditional and western medicine. Studies of indigenous and lay societies illustrate the ecological, systematic, biochemical, and cultural aspects of herbal medicines and are placed in the broader context of such interdependent themes as the conservation of biological and cultural diversity, human health, bioprospecting, compensation for indigenous knowledge, and sustainable development.

[BIOPL 358(3590) Biology of Grasses]
Fall. 2 credits. Prerequisite: one year introductory biology or course in plant systematics or permission of instructor. S-U grades optional. Lec, T 1:25-2:15; lab, T 2:30-4:25. Offered alternate years; not offered 2005-2006. M. A. Areguillin.
Covers strategies and methodologies in chemotaxonomy, chemical ecology, and ethnobotany, as they are used in chemical prospecting for new pharmaceuticals. Discusses the biosynthesis and distribution of plant secondary metabolites, the use of techniques in isolation and structure elucidation of natural products, and biological assays in the discovery of chemicals with pharmacological activity.

BIOPL 404(4040) Crop Evolution, Domestication and Diversity (also PL BR/IR 404(4040))
Fall. 2 credits. Prerequisites: BIOGD 281 or PL BR 225 or permission of instructor. S-U grades optional. Lec, T R 9:05. S. Kresovich.
For description, see PL BR 404.

BIOPL 422(4220) Plant Development
Fall. 2 credits. Lec, T R 9:05-9:55. Prerequisites: coursework in molecular biology (e.g., BIOBM 330, 331, 332, or 333), or genetics (e.g., BIOGD 281), or permission of instructor. S-U grades optional. J. Hua.
Introduction to plant development, studying the mechanisms of morphogenesis and cell fate determination at the organismal, cellular, and molecular levels.

[BIOPL 440(4400) Phylogenetic Systematics]
Spring. 4 credits. Limited to 24 students. Prerequisite: introductory biology or permission of instructor. Lec, T R 10:10; lab, T R 2:4-4:25. Offered alternate years; not offered 2005-2006. K. C. Nixon.
Basic and advanced theory and methods of phylogenetic analysis. Introduces students to cladistic analysis using parsimony and gain experience with computer-aided analysis of taxonomic data, including both morphological and molecular data sources. Topics include applications of phylogenetic methods to biogeography and evolutionary studies.

BIOPL 442(4420) Current Topics in Ethnobotany

Fall. 2 credits. Limited to 12 students. Prerequisite: permission of instructor. S-U grades optional. D. M. Bates. Explores the interrelationships of plants and animals with humans from a wide range of perspectives. Topics considered are contemporary issues, theory, and methodology of ethnobotany and ethnobiology, and the role of plants and animals in human lives, in subsistence and exchange, and in thought.

BIOPL 443(4430) Topics and Research Methods in Systematics

Fall or spring. 1–2 credits, 1 credit per sec. Prerequisite: written permission of instructor. S-U grades optional. K. C. Nixon. Series of 1-credit modules on specialized topics in systematics. Topics and instructors vary each semester. May not be taught every semester. Topics and instructors are listed in the division’s catalog supplement issued at the beginning of the semester.

BIOPL 444(4440) Plant Cell Biology

Fall. 4 credits. Limited to 24 students. Prerequisite: one year introductory biology or permission of instructor. Lec: M W F 9:05; lab, M or W 12:25–4:25. R. O. Wayne. Uses evidence from microscopy, physiology, biochemistry, and molecular biology to try to unravel the mystery of the living cell. Studies the dynamics of protoplasm, membranes, and the various organelles. The mechanisms of cell growth and division, the relationship of the cytoskeleton to cell shape and motility, the interaction of the cell with its environment, and the processes that give rise to multicellular differentiated plants are investigated.

BIOPL 447(4470) Molecular Systematics

Fall. 3 credits. Prerequisites: BIOEE 278 or BIOGD 281 or BIOBM 330, or BIOBM 332, or written permission of instructor. Lec, T R 8:30–9:55. Offered alternate years. J. J. Doyle. Theory and practice of using molecular evidence, particularly DNA sequence data, for addressing diverse systematic and evolutionary questions. Emphasis is on phylogeny reconstruction, particularly in eukaryotic systems. The organization and evolution of nuclear and organelar genomes is described from the standpoint of their suitability for systematic and evolutionary studies.

BIOPL 448(4480) Plant Evolution and the Fossil Record

Spring. 3 credits. Prerequisite: BIOPL 241 or equivalent, or permission of instructor. Lec, T R 10:10–11:25. Offered alternate years; not offered 2005–2006. K. J. Niklas and W. L. Crepet. Introduction to evolution, surveying major changes in plants from the origin of life to the present. Emphasizes plant form and function, adaptations to particular ecoligic settings, and evolutionary theory as it relates to plants.

BIOPL 449(4490) Green Signals and Triggers—The Plant Hormones

Fall. 1 or 2 credits. Prerequisite: one year introductory biology and plant physiology (BIOPL 242 or 342 or permission of instructor. S-U grades optional. Lec, M W F 1:25–2:15. Offered alternate years. P. J. Davies. Study of plant hormones and how they regulate plant growth and development. Topics include the theory, role in growth and development, mode of action, and practical uses of the plant hormones auxin, gibberellins, cytokinins, abscisic acid, ethylene, and brassinosteroids.

BIOPL 452(4520) Systematics of Tropical Plants

Fall. 3 credits. Prerequisite: BIOPL 243 or 248. Letter grades only. Lec, M W F 12:25–4:25. Offered every three years; not offered 2005–2006. K. C. Nixon. The families of plants encountered solely or chiefly in tropical regions are considered in a phylogenetic context. Discussion, lectures, and laboratory, with the aim of providing basic points of recognition for, and an understanding of, diversity and relationships in these families.

BIOPL 453(4530) Principles and Practice of Historical Biogeography

Fall. 4 credits. Prerequisite: systematics course or permission of instructors. S-U grades optional. Lec, T R 10:10; lab, T 1:25–4:25. Offered alternate years; not offered 2005–2006. J. K. Liebherr and M. A. Luckow. Survey of techniques in historical biogeography and the development of modern biogeographic theory in the context of classical, ecological, and phylogenetic analytical methods. Presents geological and palaeontological aspects of biogeography, and discusses large-scale biogeographic patterns. Laboratories focus on computer applications and discussion of controversial issues.

BIOPL 454(4540) Systematics of Tropical Plants: Field Laboratory

Spring. 1 credit. Limited to 15 students. Prerequisite: BIOPL 452 or permission of instructor. Letter grades only. For more details and application, contact L. H. Bailey Hortorium, 467 Mann Library. Offered every three years; not offered 2005–2006. K. C. Nixon. Intensive orientation to families of tropical flowering plants represented in forests of the American tropics. Emphasis is on field identification, combined with laboratory analysis of available materials in a "whole-biology" context. Two-week field trip over winter break.

BIOPL 456(4560) Biomathematics of Plants

Fall. 3 credits. Prerequisites: upper-division undergraduate or graduate standing; completion of introductory sequence in biology and one year of calculus, or permission of instructor. S-U or letter grades. Lec, T R 11:15–12:05; disc, W 2:30–3:20. J. R. Land. Offered alternate years. K. J. Niklas. For description, see BEE 456.

BIOPL 462(4620) Plant Biochemistry

Spring. 3 credits. Prerequisites: BIOPL 242 or 342 or equivalent and BIOBM 330 or 331 or equivalent or permission of instructor. Letter grades only. Lec, M W F 9:05. J. Rose and K. Van Wijk.

Focuses on biochemistry of plant specific processes, with the aim to obtain an integrative overview of plant biochemistry. Examples include processes such as cell wall biochemistry, pigment biosynthesis and photomorphogenesis, secondary metabolism and senescence, defense mechanisms, amino acid biosynthesis, and small molecule transport. Genomics-based experimental tools such as proteomics and metabolomics are discussed.

BIOPL 641(6410) Laboratory in Plant Molecular Biology

Offered alternate years. Prerequisites: BIOGD 281 or equivalent, BIOBM 330 or 331 or equivalent, and permission of instructor. S-U grades by permission of instructor. Lab, T R 12:20–4:25. J. B. Nasrallah, M. R. Hanson, and H. Wang. Includes selected experiments on gene expression, gene transfer, and assay of reporter genes in plants. Emphasizes the application of molecular biology methodology to plant systems. Additional lab time is required to complete assignments.

BIOPL 642(6420) Plant Mineral Nutrition

Spring. 3 credits. Prerequisite: BIOPL 342 or equivalent. Lec, M W F 10:10. Offered alternate years. L. V. Kochian and R. M. Welch. Detailed study of the processes by which plants acquire and use mineral nutrients from the soil. Topics include the uptake, translocation, and compartmentation of mineral elements; root-soil interactions; the metabolism of mineral elements; the involvement of mineral nutrients in various physiological processes; and the nutrition of plants adapted to extreme environmental stresses (e.g., acid soils). Specific mineral elements are emphasized to illustrate these topics.

BIOPL 647(6470) Seminar in Systematic Botany

Fall or spring. 1 credit; may be repeated for credit. Prerequisite: for undergraduates, written permission of course coordinator. S-U grades optional. Sem, T 12:20. Bailey Hortorium staff. Lectures and discussions led by staff, visitors, and students on topics of current importance to systematic botany.

BIOPL 649(6490) Solute Transport in Plants

Offered alternate years. Prerequisites: BIOGD 281 or equivalent, or permission of instructor. S-U grades by permission of instructor. Lec, T R 11:15–12:05; disc, W 2:30–3:20. J. R. Land. Offered alternate years. K. J. Niklas. For description, see BEE 649.

BIOPL 651(6510) Water Transport in Plants

Fall. 2 credits. Letter grades only. Lec, T R 10:10. Offered alternate years. R. M. Spanwick. For description, see BEE 647.

BIOPL 652 Plant Molecular Biology II

Spring. 1-6 credits; 1 credit per sec. Prerequisites: BIOGD 281 and BIOBM 330 or 332, or equivalents. Recommended: BIOBM 331. S-U grades optional. Series of four-week modules on specialized topics. Coordinator: J. B. Nasrallah.
Sec 01 Molecular Plant-Pathogen Interactions I and II (also PL PA 662.1)

This course focuses on: (1) plant perception of microbial pathogens and the interplay of plant defenses and pathogen counterstrategies that result in resistance or susceptibility to disease production, with topics including the genetic nature of dominant and recessive resistance, induction of pathogen defense genes, apoptotic responses that limit infection, and RNA interference; and (2) the genetic and molecular mechanisms of microbial pathogenesis, with an emphasis on fungal and bacterial virulence proteins, toxins, and their deployment systems.

Sec 02 Molecular Plant-Microbe Interactions (also BIOMI 652, Sec 2, PL PA 664)

This course focuses on the interactions of Agrobacteria and Rhizobia with plants. Topics on Agrobacterium-plant interactions include plant-microbe recognition mechanisms, T-DNA transfer process, oncogenesis, and use of Agrobacterium to produce transgenic plants. Topics on Rhizobium-plant interactions include regulation of nitrogenase activity and expression control of the nitrogen fixation gene sym plasmid, nodule development, and plant genetics involved in plant-microbe interaction.

Sec 03 Light Signal Transduction in Plants

Introduces students to providing plants with energy for photosynthesis, light plays an essential role in the development of higher plants. Light quality and intensity are carefully monitored by the plant to avoid neighboring vegetation, set the circadian clock, and adjust photosynthesis rates. This course focuses on recent studies that have illuminated the molecular basis of light signal transduction networks in higher plants. Readings are assigned from current literature with an emphasis on those that use genomics tools such as microarray analysis to address fundamental questions in red/far-red and blue light signal transduction.

Sec 04 Plant Gene Evolution and Phylogeny

J. Doyle.

Practical applications of molecular systematics/evolution for plant molecular biologists and other non-systematists. The course focuses on two basic issues: methods and principles for inferring relationships among genes and the use of data to hypothesize relationships among plants. Evolutionary patterns and processes of genes and gene families are discussed, with a special focus on rates of sequence evolution, paralogy and orthology, the effects of recombination and concerted evolution of gene phylogenies, and the implications of using gene- and allele phylogenies to infer organismal evolutionary patterns.

Sec 05 Molecular Biology of Plant Organelles (also BIOMB 652.5)

In-depth examination of the molecular biology of plant mitochondria and plastids. Topics include the organization, evolution, and expression of organelle genomes, RNA editing, and the expression of nuclear genes encoding structural or regulatory organelle proteins. Special topics include mitochondrially encoded cytoplasmic male sterility, transformation and expression of foreign genes in chloroplasts, and the use of genetics to investigate nucleus-organellar interactions.

Sec 06 Plant Biotechnology (also PL BR 652, PL PA 662.2)

Deals with production and uses of transgenic plants for agricultural and industrial purposes. Topics include procedures for gene introduction and control of gene expression, as well as strategies for obtaining transgenic plants that are resistant to insects, diseases, and herbicides, produce useful products, or have improved nutritional and food processing characteristics. Regulatory and social issues relating to plant biotechnology are discussed.

Sec 07 Plant Cell Walls: Structure to Proteome

Examines the structure and function of plant cell walls, exploring their dynamic nature and fundamental contribution to numerous aspects of plant growth and development. Topics include wall biosynthesis, wall structure and composition; regulation of cell expansion and differentiation; defense against pathogens and signaling; the apoplast as a metabolically active subcellular compartment; and analytical techniques from biochemistry to proteomics.

BIOL 653 Plant Molecular Biology I

Prerequisites: BIODG 281 and BIOMB 330 or 332, or equivalents. Recommended: BIOMB 331. S-U grades optional.

The course is divided into three sections: (1) Gene discovery: covers genetic, molecular, and genomic approaches to the isolation of plant genes; (2) Gene characterization: covers DNA sequence analysis, assessment of gene expression, functional genomics approaches, and production of transgenic plants; (3) Analysis and characterization of proteins and metabolites: includes proteomics approaches to the analysis of plant proteins, protein-protein interactions, and metabolic profiling through emerging metabolic techniques. This course consists of two lectures and one day of discussion per week. Course material is coordinated with BIOLM 641 (lab). Emphasis is on understanding techniques and approaches appropriate for different experiments and objectives.

Sec 08 Proteomics in Plant Biology

Introduction to proteomics and mass spectrometry and its application in plant biology. Includes discussion of protein separation, protein tagging and visualization techniques, principles of biological mass spectrometry and interpretation of spectra; bioinformatics tools in proteomics; comparative proteomics; phosphorylation mapping. Discusses limitations and possibilities of proteomics on plants for which little genome information is available and experimental papers involving plant proteomics.

Sec 09 Plant Genome Organization and Function (also PL BR 653.3)
1 credit. Lec. M W F 10:10 (12 lec).

Offered alternate years. S. D. Tanksley.

Focuses on the molecular genetics of plant development with an emphasis on plant reproductive biology. Current approaches to the elucidation of the molecular signals and pathways that lead to the establishment of the differentiated state of floral cells and organs are discussed. Topics include cell-cell signalling in the establishment of pattern and differentiation of specialized cell types, and the control of developmental pathways by endogenous and external cues. The module is a companion to BIOMB 653 (Molecular Aspects of Plant Development I).

Sec 05 Molecular Breeding (also PL BR 653.6)

Application of DNA markers to the identification, manipulation, and isolation of genes important to plant and animal productivity using molecular genetic techniques. Students learn how to design and execute experiments to identify quantitative trait loci (QTLs), as well as how to apply molecular markers to plant and animal breeding programs.

Sec 06 Plant Senescence (also HORT 625.2)

Introduces molecular, genetics, and genomics approaches to plant senescence and postharvest research. Topics include gene expression, regulation, and function associated with physiological and biochemical changes in senescence, maintenance of老龄ing plants or parts. Genetic manipulation of senescence ripening processes are also discussed.
BIOPL 654(6540) Botanical Nomenclature
Fall. 1 credit. Prerequisite: written permission of instructor. S-U grades only. Lec and disc. TBA. Offered alternate years.
M. A. Luckow.

Analysis of the International Code of Botanical Nomenclature and its application to various plant groups.

BIOPL 656(6560) Topics in Plant Evolution
Spring. 1 credit. Prerequisite: BIOPL 448 or equivalent background in evolution, or written permission of instructor. Lab and disc. TBA. Offered alternate years.
K. J. Niklas.

Series of selected topics to provide a background in plant evolution, paleobotanical literature, and evolutionary theory. Among the topics discussed are the origin of a terrestrial flora, the evolution of the seed plants, and the origin and adaptive radiation of the angiosperms.

BIOPL 740(7400) Plant Biology Seminar
Fall and spring. 0 credits (no official registration). Requirement for graduate students doing work in plant biology. Sem. F 11:15. W. L. Crepet.

Lectures on current research in plant biology, presented by visitors and staff.

BIOPL 741(7410) Problems in Plant Cell and Molecular Biology
Spring. 2 credits. Prerequisite: first- and second-year graduate students in Plant Cell and Molecular Biology Program. Disc. TBA. Introduction to the research literature in plant molecular and cellular biology through weekly problem sets and discussions.

BIOPL 742(7420) Current Papers in Plant Biology
Fall or spring. 1 credit. Limited enrollment. Primarily for graduate students, with priority given to majors or minors in plant molecular biology. Prerequisite: for undergraduates, written permission of instructor. S-U grades only. Sem. one hour each week TBA. Staff.

Introduction for graduate students to the research being conducted by Cornell faculty in the Plant Cell and Molecular Biology Program.

BIOPL 743(7430) Faculty Research in Plant Cell and Molecular Biology
Fall. 1 credit. Prerequisite: graduate standing or written permission from member of Plant Cell and Molecular Biology Program or coordinator for undergraduates. Disc. TBA. Staff.

Introduction for graduate students to the research being conducted by Cornell faculty in the Plant Cell and Molecular Biology Program.

BIOPL 744(7440) Graduate Research in Plant Cell and Molecular Biology
Fall or spring. 1 credit. Requirement for, and limited to, second-, third-, and fourth-year graduate students in Plant Cell and Molecular Biology. Sem. R 12:20. Staff.

Each student presents one seminar per year on his or her thesis research and then meets with the thesis committee members for evaluation.

BIOPL 745(7450) Current Topics in Systematics
Fall. 1 credit. Prerequisite: graduate standing or permission of instructor. S-U grades optional. Disc. T 12:20. Bailey Hortorum staff.

Seminar with presentations and discussion by students of original research papers in systematic biology.

BIOPL 746(7460) Research Seminar in Systematic Botany
Spring. 1 credit. Prerequisite: graduate standing or permission of instructor. Disc. T 12:20. Bailey Hortorum staff.

Student-led seminar presentation based on his or her thesis research or a related topic.

BIOPL 749(7490) Graduate Research in Botany
Fall or spring. Variable credit; may be repeated for credit. S-U grades optional. Staff.

Similar to BIO G 499 but intended for graduate students who are working with faculty members on an individual basis.

Related Courses in Other Departments

Introductory Mycology (PL PA 309)

Marine Botany: Ecology of Marine Plants (BIOSM 449)

Phytochemistry (PL PA 649)

Physiological Plant Ecology, Lectures and Laboratory (BIOEE 466/468)

Phylogenetics Laboratory (PL PA 709)

Plant Ecology and Population Biology, Lectures and Laboratory (BIOEE 463/465)

Plant Ecology Seminar (BIO (BIO 469)

Plant Cytogenetics Laboratory (PL BR 446)

Teaching Experience (BIO G 498)

Undergraduate Research in Biology (BIO G 499)

COURSES IN MARINE SCIENCE

Cornell offers an extensive listing of undergraduate courses in marine science.

Undergraduates interested in pursuing studies in marine science are encouraged to explore the undergraduate specialization in marine biology offered through the Office of Undergraduate Disability, the undergraduate specialization in ocean sciences offered through the Science of Earth Systems Program, and the summer program of courses offered by the Shoals Marine Laboratory. Further information on these programs can be found at the Cornell Marine Programs Office, G14 Stimson Hall, or at www.sml.cornell.edu.

Undergraduate Specialization in Marine Biology and Oceanography

Biological sciences majors in the Ecology and Evolutionary Biology program of study have the option of specializing their program of study in the area of marine biology. This specialization is intended for students with interests in understanding the unique aspects of organismal biology in the marine environment. In addition to fulfilling the major and the ecology and evolutionary biology program of study requirements, students in marine biology are encouraged to enroll in the following courses:

1. BIOEE 154 The Sea: An Introduction to Oceanography
2. BIOSM 365 Field Marine Science or BIOSM 375 Field Marine Biology and Ecology and at least one 400-level BIOSM field course at the Shoals Marine Laboratory
3. BIOEE 462 Marine Ecology

Undergraduate Specialization in Ocean Sciences

Science of Earth Systems majors have the option of specializing their program of study in the area of ocean sciences. This interdisciplinary specialization is intended for students with interests in understanding the interaction of biological, chemical, geological, and physical processes in ocean systems. In addition to fulfilling the Science of Earth Systems general requirements (see the SES program description in Interdisciplinary Centers, Programs, and Studies section of catalog), students in ocean sciences are required to take four advanced courses from the following list to fulfill their major requirements:

1. BIOEE 375 Biology of the Marine Invertebrates
2. BIOEE 457 Limnology
3. BIOEE 462 Marine Ecology
4. BIOEE 478 Ecosystem Biology
5. BIOEE 490 Topics in Marine Biology
6. BIOSM 377 Diversity of Fishes
7. BIOSM 310 Marine Symbiosis
8. BIOSM 309 Climates and Ecosystems
9. BIOSM 320 Ecology of Animal Behavior
10. BIOSM 364 Field Marine Science
11. BIOSM 365 Underwater Research
12. BIOSM 374 Field Ornithology
13. BIOSM 375 Field Marine Biology and Ecology
14. BIOSM 413 Research in Marine Biology
15. BIOSM 418 Tropical Marine Science
16. BIOSM 449 Seaweeds, Plankton and Seagrass
17. BIOSM 376 Marine Invertebrate Zoology (Note: Not same as BIOEE 373)
18. BIOSM 477 Marine Vertebrates
19. EAS 375 Sedimentology and Stratigraphy
20. EAS 455 Geochimistry
21. EAS 475 Special Topics in Oceanography
22. EAS 479 Paleobiology
23. NTRES 306 Coastal and Oceanic Law and Policy

Sea Semester

BIOSM 366 SEA: Introduction to Oceanography
BIOSM 367 SEA: Introduction to Maritime Studies
BIOSM 368 SEA: Introduction to Nautical Science
BIOSM 369 SEA: Practical Oceanography I
BIOSM 370 SEA: Practical Oceanography II

Students in both marine science specializations are exposed to an integrated program of study, emphasizing a natural progression of formal course work combined with ample opportunities for practical field experience. These courses must be taken concurrently. Special program run by the Sea Education Association. Contact the Marine Programs office (255–3717) for more details.
The objective of the Shoals Marine Laboratory (SML) is to provide undergraduates and other interested adults a unique opportunity to explore marine sciences in an island setting noted for its biota, geology, and history. SML has established a national reputation for excellence and has become North America's largest marine field station focusing on undergraduate education.

The summer population of Appledore Island is limited to about one hundred people at any one time. Participants and faculty members can literally and figuratively immerse themselves in their explorations, free from distractions common to most academic institutions. Because SML is a residential facility, a sense of community develops that makes courses and seminars at SML outstanding educational and intellectual experiences. Participants learn from and exchange ideas with a wide range of specialists whose primary interests are marine but whose perspectives often differ, providing fertile ground for lively discussions.

Credit courses at Shoals Marine Laboratory are full-time, intensive learning experiences. Courses may be taken sequentially, but not concurrently. A typical day combines lecture sessions, laboratory and field work, field trips to nearby islands and the mainland, and collecting and research excursions aboard the laboratory's 47-foot research vessel, John M. Kingsbury, or the 36-foot research vessel, John B. Heiser. Field experience is an integral component of all courses, using Appledore's extensive intertidal and subtidal zones, wading bird rookeries, and seabird colonies. Faculty, drawn from Cornell University, the University of New Hampshire, and other leading academic institutions, are selected based not only on their academic excellence but also on their teaching ability in the field. In addition, there are numerous guest lecturers including engineers, coastal planners, and specialists from private industry, government, and the academic community.

The Ithaca campus functions of the Shoals Marine Laboratory are administered in the Cornell Marine Programs office, G14 Stimson Hall. The office serves as an advising center for students interested in the marine sciences, maintains a browsing library with updated information on graduate study and career opportunities as well as on marine programs at other institutions, and administers thefall Semester, a 17-credit academic community. The following marine sciences courses are currently administered by the Cornell Marine Programs office. For more details or an application, contact SML office, G14 Stimson Hall. Daily lec and fieldwork for two weeks.

BIO811(1610) Introduction to Marine Science

Summer. 4 credits. S-U grades optional. Special two-week course offered at Shoals Marine Laboratory (SML), located on an island off Portsmouth, N.H. For more details or an application, contact SML office, G14 Stimson Hall. Daily lec and fieldwork for two weeks.

BIO821(1620) Marine Environmental Science

Summer. 4 credits. Prerequisite: open to high school students who have successfully completed two high school science courses. Special 12-day course offered at Shoals Marine Laboratory (SML), located on an island off Portsmouth, N.H. For more details or an application, contact SML office, G14 Stimson Hall. Daily lec and lab, and fieldwork for 12 days.

BIO841(1640) Biological Illustration

Summer. 2 credits. Prerequisite: recommended background in microbiology or cell biology. S-U grades optional. Special two-week course offered at Shoals Marine Laboratory (SML), located on an island off Portsmouth, N.H. For more details or an application, contact SML office, G14 Stimson Hall. Daily lec and fieldwork for one week.

Introduction to concepts in marine microbiology, with emphasis on the microbial diversity in the ocean. The following topics are covered in depth: (1) abundance and distribution of Bacteria, Archaea, and single-celled eukaryotes in the marine environment, and the factors that influence their distribution, particularly within the water-column, (2) microbial food webs and their role in global nutrient cycling, and (3) methods to examine the diversity and activity of various marine microbial communities. Students will learn how to critically read the primary literature through group discussions of hallmark papers and short writing assignments. Laboratory exercises include field sampling on research cruises, classic microbial culturing techniques, and molecular biology methods to identify members of microbial communities.
of meteorology and the role of abiotic and biotic factors on the life of coastal and marine plants and animals including humans.

BIOSM 310(3100) Marine Symbiosis

Summer 4 credits. Prerequisite: one full year college-level biology. Recommended: background in microbiology or cell biology. S-U grades optional. Special two-week course offered at Shoals Marine Laboratory (SML), located on an island off Portsmouth, N.H. For more details or an application, contact SML office, G14 Stimson Hall. Daily lec and fieldwork for two weeks. SML staff.

Introduction to the concept of symbiosis as applied to marine organisms, with an emphasis on microbial symbioses. Students develop the ability to analyze symbioses using a comprehensive set of criteria, including duration, propagation speed, interactions, and modes of interaction. Morning lectures are followed by afternoons collecting, preparing and studying live specimens. Each student learns to use a variety of light microscopic techniques, through fieldwork and by written reports, to a comprehensive survey of symbiotic associations on and around Appledore Island.

BIOSM 329(3290) Ecology of Animal Behavior (also BIONB 329(3290))

Summer 4 credits. Prerequisite: one year introductory college biology. Recommended: course work in ecology, psychology, or behavior. S-U grades optional. Special two-week course offered at Shoals Marine Laboratory (SML), located on an island off Portsmouth, N.H. For more details or an application, contact SML office, G14 Stimson Hall. Daily lec and fieldwork for two weeks. SML staff.

The ecological significance of behaviors of coastal organisms, with emphasis on field and laboratory research methods, experimentation and readings address the major subareas of behavior (communication, orientation, social behavior, foraging, predator avoidance, and sensory mechanisms). Each student engages in short-term behavioral observation and prepares a research proposal for studying a problem within the course subject area.

BIOSM 364(3640) Field Marine Science (FMS)

Summer 6 credits. Prerequisite: one year college biology. S-U grades optional. Special four-week course offered twice each summer at Shoals Marine Laboratory (SML), located on an island off Portsmouth, N.H. Students may not take FMS after taking FMBE (BIOSM 375). For more details or an application, contact SML Office, G14 Stimson Hall. Daily lec, lab, and fieldwork for four weeks. Three core faculty members assisted by up to 15 visiting lecturers, including representatives of governmental agencies. SML faculty.

Designed for students who desires an initial overview of the marine sciences, this course emphasizes living material in natural habitats. Most of the course work is concerned with the biology of intertidal plants and animals, marine ichthyology, and fisheries. Attention is also given to introductory physical and chemical oceanography and marine geology. Marine ecology and the effects of human activity on the marine environment are included. Students apply this knowledge by conducting a transect study toward the end of the course. FMS places emphasis on ichthyology, fisheries biology, general oceanography (biological, physical, and chemical), and marine geology. FMBE (BIOSM 375) places an additional emphasis on ecology, especially in the intertidal zone; ecological, evolutionary and physiological adaptations of marine organisms; and field experiments.

BIOSM 365(3650) Underwater Research

Summer 4 credits. Prerequisites: one year college-level biology, recognized SCUBA certification, and medical exam. S-U grades optional. Special two-week course offered at Shoals Marine Laboratory (SML), located on an island off Portsmouth, N.H. For more details or an application, contact SML office, G14 Stimson Hall. Daily lec and fieldwork for two weeks. Team-taught by three faculty members with occasional guest lecturers. Not for recreational divers. Covers the philosophy of research, hypothesis testing and experimental design, sampling methods, various underwater techniques, diving physics and physiology, and use of dive tables. Emphasizes subtidal ecological field research and critical evaluation of several journal articles and production of a research proposal.

BIOSM 374(3740) Field Ornithology

Summer 4 credits. Prerequisite: one year college-level biology. S-U grades optional. Special two-week course offered at Shoals Marine Laboratory (SML), located on an island off Portsmouth, N.H. For more details or an application, contact SML office, G14 Stimson Hall. Daily lec and fieldwork for two weeks. SML staff.

Introduction to field ornithology focusing on the behaviors, identification, diet, and behavior of the avifauna on the Isles of Shoals. Focuses on fieldwork designed to observe and study many concepts frequently taught in the classroom setting including territoriality, courtship, biology, and survival. Students learn and apply numerous ornithological field methods including various census techniques, territory mapping, banding, behavioral observations, and creating a field notebook.

BIOSM 375(3750) Field Marine Biology and Ecology (FMBE)

Summer 6 credits. Prerequisites: one full year college-level biology. S-U grades optional. Four-week course offered at Shoals Marine Laboratory (SML), located on an island off Portsmouth, N.H. For more details or an application, contact SML Office, G14 Stimson Hall. Daily lec, lab, and fieldwork for four weeks. SML faculty.

Designed for students seeking an introduction to the marine sciences and marine ecology. FMBE emphasizes fieldwork in natural habitats. Examiners and studies of the physiology and ecology of marine organisms, including intertidal plants and invertebrates, fishes, marine mammals and birds, biological oceanography, and human impacts on the marine environment. FMBE places a special emphasis on the ecology of the intertidal zone and ecological, evolutionary, and physiological adaptations of marine organisms. Students may not take FMBE after taking FMS (BIOSM 364).

BIOSM 413(4130) Research in Marine Biology

Summer 4 credits. Prerequisite: one year college-level biology. Recommended: experience in ecology or physiology. S-U grades optional. Special three-week course offered at Shoals Marine Laboratory (SML), located on an island off Portsmouth, N.H. For more details or an application, contact SML office, G14 Stimson Hall. Daily lec, lab, and fieldwork for two weeks. Offered alternate years; not offered 2005. SML faculty.

Introduction to marine pollutants; their sources and control/treatment; the effects of marine pollution upon coastal ecosystems; and federal and state water pollution regulatory programs. Laboratory includes training in field collection of water samples, measurement and modeling of effluent plume dispersion, and measurement of microbial indicators of water quality, dissolved nutrients, BOD, dissolved oxygen, and toxicity.

BIOSM 421(4210) Research in Marine Biology

Summer 6 credits. Prerequisite: one full year college-level biology, one full year of field work or permission of instructor. S-U grades optional. Special three-week course offered at Shoals Marine Laboratory (SML), located on an island off Portsmouth, N.H. For more details or an application, contact SML office, G14 Stimson Hall. Daily lec, lab, and fieldwork for three weeks. Offered alternate years.
tolerance of tide-pool biota; and biological responses to competition and grazing. Field and laboratory exercises explore principles and procedures used to characterize the physical, chemical, and biotic environment of intertidal and shallow subtidal organisms, including determination of temperature, light, salinity, oxygen and nutrient levels, and in vitro functional analyses of metabolic phenomena. The process of scientific investigation is the predominant theme of the course.

Biology and ecology. TMS students have the opportunity to interact with the scientists and procedures used to characterize the physical, chemical, and biotic environment of intertidal and shallow subtidal organisms, including determination of temperature, light, salinity, oxygen and nutrient levels, and in vitro functional analyses of metabolic phenomena. The process of scientific investigation is the predominant theme of the course.

Section A: Independent Biological Research: Independent study with a member of the Shoals Marine Laboratory core faculty, based on student faculty interest and available facilities. A short proposal of research must be sent with application materials.

Research Experiences for Undergraduates (REU) 0 credits. The National Science Foundation (NSF) Research Experiences for Undergraduates (REU) program provides support for undergraduates to pursue supervised, indepedent projects at the Shoals Marine Laboratory. Nine students are selected from a competitive, national pool to participate in the eight-week summer program. For more information and an application, contact the SML office, G14 Stimson Hall, or view SML's web site at www.sml.cornell.edu.

Biology 418(4180) Tropical Marine Science
Summer. 6 credits. Limited to 15 students. Prerequisites: recognized SCUBA certification, medical exam. One full year college-level biology, and permission of instructors. Special four-week course offered in Akumal, Mexico. For more details, contact Shoals Marine Laboratory office, G-14 Stimson Hall, 255-3717. Designed for students interested in learning about coral reef ecology and conservation in an environment where these topics are of immediate concern. Students spend four weeks in Akumal, Mexico, a small resort town located about 60 miles south of Cancun on the Caribbean coast of the Yucatan Peninsula. Housing is provided by the Centro Ecologico Akumal, a local organization dedicated to the sustainable development of Akumal and the protection of its coral reefs. The major component of the course is studying basic coral reef ecology and learning the benthic fauna of the local reefs. During the remainder of the course, students participate in a reef-monitoring research project that aid in the establishment of a marine park in Akumal. Akumal is a developing center for research in coral reef biology and ecology. TMS students have the opportunity to interact with the scientists involved in this research.

Biology 449(4490) Seaweeds, Plankton, and Seagrass: The Ecology and Systematics of Marine Plants
Summer. 6 credits. Prerequisites: Biology 564 or one year introductory biology. S-U grades optional. Special two-week course offered at Shoals Marine Laboratory (SML), located on an island off Portsmouth, N.H. For more details or an application, contact SML office, G14 Stimson Hall. Daily lec, lab, and fieldwork for two weeks. SML faculty.

Overview of the major marine algal groups, including aspects of anatomy, morphology, development, life histories, physiology, and use. Laboratories and fieldwork emphasize relationships between distribution and major environmental parameters and involve student projects.

EAS 475(4750) Special Topics in Oceanography: Satellite Remote Sensing in Biological Oceanography
Summer. 6 credits. Prerequisites: one course in oceanography and/or marine biology or permission of instructor. Recommended: strong computer skills. S-U grades optional. Special four-week course offered at Shoals Marine Laboratory (SML), located on an island off Portsmouth, N.H., and Cornell campus. For more details or an application, contact SML office, G14 Stimson Hall. Daily lec, lab, and fieldwork for four weeks. Offered alternate years; not offered 2005. SML faculty.

Provides hands-on research experience in hydrologic optics and satellite remote sensing to advanced undergraduate and beginning graduate students. Four principal parts, each taught by a separate team of instructors at two different locations: Part 1 (two days) is conducted at SML and aboard the R/V Kingsbury in waters surrounding the Isles of Shoals. Part 1 is devoted to the theory and measurement of seawater optical properties, emphasizing the dependency of apparent optical property on chlorophyll and dissolved organic matter concentrations. Parts 2-4 (19 days) are conducted at the Science of Earth Systems' computer laboratory on the Cornell campus. Part 2 covers satellite remote sensing of the apparent optical properties of seawater with an emphasis on processing SeaWIFS data using SeaDAS software and IDL programming language. Part 3 addresses satellite remote sensing of physical oceanographic processes that influence ecosystem dynamics with an emphasis on AVHRR-derived sea-surface temperature and SSU/I-derived ocean winds. Part 4 is devoted to independent projects; students attempt to integrate SeaWIFS, AVHRR, and SSU/I data sets to generate biological-physical interactions.

Biology 477(4770) Marine Vertebrates
Summer. 6 credits. Prerequisites: vertebrate biology course. S-U grades optional. Special three-week course offered at Shoals Marine Laboratory (SML), located on an island off Portsmouth, N.H. For more details or an application, consult SML office, G14 Stimson Hall. Daily lec, lab, and fieldwork for three weeks. SML faculty.

Topics in marine vertebrate biology emphasizing laboratory studies, field collections or observations, and readings from the current literature. Topics include systematics of fishes of the Gulf of Maine; elasmobranch physiology, interpretation of life history and parameters from otolith microstructure; teleost skeleton-muscular structure and function; population biology and the contemporary Gulf of Maine fishery; Mesozooic marine reptiles; the biology of sea turtles in cold water; coloniality in sea birds; avian adaptations to life at sea; evolution and systematics of marine mammals; diving physiology, and ecology and conservation of existing marine mammal populations. Dissection of vertebrate animals is a part of one or more laboratory sessions.

Biology 495(4950) Research Methods in Marine Biology
Summer. 1 credit. Co-requisite: Biology 499 or permission of instructor. Primarily for undergraduates. Special eight-week course offered at the Shoals Marine Laboratory (SML), located on an island off Portsmouth, N.H. For more details or an application, contact SML office, G14 Stimson Hall. Weekly seminars for eight weeks. J. G. Morin and M. J. Shulman. Seminar course on research methodology, experimental design, statistical analyses, and scientific writing. The course is designed to assist students in the research they are conducting while enrolled in Biology 499.

Biology 499(4990) Research in Biology
Summer. Variable credit, 2 credits per seven days on site. For more details and an application, contact SML office, G14 Stimson Hall.

SHOALS MARINE LABORATORY 185
between land and sea studies yield thematic maps depicting topography, bedrock geology and structure, vegetation, and land use. From these, ecological characteristics, habitat definition and occupation of habitat between land and sea studies yield thematic responses and virus counterstrategies, and cell and systemic movement, host defense and virus replication strategies, cell-to-cell and systemic movement, host defense responses and virus counterstrategies, and engineered resistance.

BIOMI 650(6500) Molecular Plant Virology (also PL PA 608[6060])
Spring, first seven weeks of semester. 1 credit. Prerequisite: BIOMI 409, cell biology and virology. S-U grades optional. Lec, M W 11:15 Offered alternate years. S. G. Lazarowitz. Introduces students to the molecular biology of plant virus replication and interactions with the host to produce disease. Material covered includes virus replication strategies, cell-to-cell and systemic movement, host defense responses and virus counterstrategies, and engineered resistance.

BIOMI 651(6080) Genomics of Bacterium-Host Interactions (also PL PA 608[6080])
Fall, second half of semester. 1 credit. Prerequisite: BIOMI 290 or equivalent or permission of instructor. S-U grades optional. Lec, M W 9:05. Offered alternate years. A. Collmer and S. Winans. Introduction to genomic approaches, tools, and discoveries involving the study of bacterial interactions with plant and animal hosts. Topics include the TIGRE Comprehensive Microbial Resource, and Artemis tools, the pathogens Yersinia pestis, V. enterocolitica, Pseudomonas syringae, Ralstonia solanacearum, and Agrobacterium tumefaciens and the symbiont Sinorhizobium meliloti.

[NTRES 306(3060) Coastal and Oceanic Law and Policy]
Summer. 2 credits. Special one-week course offered at Shools Marine Laboratory (SML), located on an island off Portland, N.H. For more details or an application, contact SML office, G14 Stimson Hall. Daily lec and disc for one week. SML faculty. Intended for people interested in careers in management of marine or coastal resources or in the natural sciences. Subjects include law and policy related to ocean dumping, marine sanctuaries, environmental impact statements, water and air pollution, fisheries management, offshore gas and oil production, and territorial jurisdiction. Lectures on the status and history of law are accompanied by discussion of relevant policy and analysis of the efficacy of various legal techniques. A case study that requires extensive use of the laboratory's library and personnel is assigned. The week concludes with a mock hearing.

BIOSM 366-372(3660-3720) SEA Semester
In cooperation with the Sea Education Association (SEA), the Shools Marine Laboratory offers a semester-length sequence of courses designed to provide college undergraduates with a thorough academic, scientific, and practical understanding of the sea. This course sequence is repeated approximately once every two months throughout the year. Students spend the first half of SEA Semester (a six-week shore component) in Woods Hole, Massachusetts, in the study of oceanography, nautical science, and maritime studies. The second half of SEA Semester (a six-week sea component) is spent at sea aboard the SSV Robert C. Seamans or the SSV Corwith Cramer. Enrollment is open to both men and women judged capable of benefiting from SEA semester; a student must have successfully completed at least one college-level laboratory science course (or its equivalent) in order to be admitted to SEA Semester or SEA Summer Session. No prior sailing experience is necessary. Cornell students enrolled in the SEA Semester must take the entire sequence.

For more information, contact Shools Marine Laboratory office, G14 Stimson Hall, or call SEA directly at 800-552-3633. Program costs are to be paid in place of regular Cornell tuition and fees: tuition for the entire 17-credit SEA Semester, approximately $17,000, includes room and board at SEA. Instructors for the SEA Semester include faculty of the Sea Education Association and the Woods Hole Oceanographic Institution and others.

Shell Component (six weeks)
BIOSM 366(3660) SEA Introduction to Oceanography
3 credits. Co-requisites: BIOSM 367 and 368.
Survey of the characteristics and processes of the global ocean. Introduces oceanographic concepts and develops them from their bases in biology, physics, chemistry, and geology. Provides a broad background in oceanography with special attention to areas pertinent to the subsequent cruise. Guest lecturers from the Woods Hole Research community interpret current trends and activities in this rapidly evolving field. Students develop individual projects to be carried out at sea.

BIOSM 367(3670) SEA Introduction to Maritime Studies
3 credits. Co-requisites: BIOSM 366 and 368. Interdisciplinary consideration of our relationship with the marine environment. Covers the elements of maritime history, law, literature, and art necessary to appreciate our marine heritage and to understand the political and economic problems of contemporary maritime affairs.

BIOSM 368(3680) SEA Introduction to Nautical Science
3 credits. Co-requisites: BIOSM 366 and 367. An introduction to the technologies of operation at sea. The concepts of navigation (piloting, celestial and electronic), naval architecture, ship construction, marine engineering systems, and the physics of sail are taught from their bases in astronomy, mathematics, and physics. Provides the theoretical foundation for the navigation, seamanship, and engineering that students employ at sea.

Sea Component (six weeks)
Courses 369, 370, and 372 take place aboard the SSV Robert C. Seamans, a 134-foot steel auxiliary-powered brigantine schooner built in 2001, or the SSV Corwith Cramer, a 134-foot steel auxiliary-powered brigantine built in 1987 for SEA. Both ships normally put to sea with a ship's company of 34. The professional staff of nine includes the captain, the chief scientist, three science watch officers, three deck watch officers, an engineer, and a steward. In addition, one or more visiting investigators are frequently aboard. Up to 24 students round out the complement.

BIOSM 369(3690) SEA Practical Oceanography I
4 credits. Prerequisite: BIOSM 366. Theories and problems raised in the shore component are tested in the practice of oceanography at sea. Students are introduced to the tools and techniques of the practicing oceanographer. During lectures and watch standing, students are instructed in the operation of basic oceanographic equipment, in the methodologies involved in the collection, reduction, and analysis of oceanographic data; and in the attendant operations of a sailing oceanographic research vessel.

BIOSM 370(3700) SEA Practical Oceanography II
4 credits. Prerequisite: BIOSM 368 and 369. Building on the experience of Practical Oceanography I, students assume increasing responsibility for conducting oceanographic research and overseeing operations of the vessel. The individual student is ultimately responsible directly to the chief scientist and the master of the vessel for the safe and orderly conduct of research activities and related operations of the vessel. Each student undertakes an individual research project designed during the shore component.

BIOSM 372(3720) SEA Practical Oceanography III
Summer. 3 credits. Prerequisites: BIOSM 366, 367, and 368. Theories and problems raised in class are tested in the practice of oceanography at sea. During lectures and watch standing, students are instructed in the operation of basic oceanographic equipment, in the methodologies involved in the collection, analysis, and reduction of oceanographic data, and in the attendant operations of sailing an oceanographic research vessel. Group research projects are completed.

FACULTY FOSTER
New York State College of Agriculture and Life Sciences
Adler, Kraig K., Ph.D., U. of Michigan. Prof., Neurobiology and Behavior
Agrawal, Anurag, Ph.D., U. of California, Davis. Asst Prof., Ecology and Evolutionary Biology/Entomolgy
Alani, Eric E., Ph.D., Harvard U. Assoc. Prof., Molecular Biology and Genetics
Anderson, John M., Ph.D., U. of California, Berkeley. Prof., Ecology and Evolutionary Biology/Entomolgy
Bates, David M., Ph.D., U. of California, Los Angeles. Prof., Plant Biology (Bailey Hortorum)
Bemis, William E., Ph.D., U. of California, Berkeley. Prof., Ecology and Evolutionary Biology
Bruns, Peter J., Ph.D., U. of Illinois. Prof. Emeritus, Molecular Biology and Genetics
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cade, Thomas J., Ph.D., U.</td>
<td>California</td>
<td>Prof. Emeritus, Ecology and Evolutionary</td>
</tr>
<tr>
<td>Crepet, William L., Ph.D.,</td>
<td>Yale U.</td>
<td>Plant Biology</td>
</tr>
<tr>
<td>Clayton, Roderick K., Ph.D.</td>
<td>California Inst. of Technology</td>
<td>Prof. Emeritus, Plant Biology</td>
</tr>
<tr>
<td>Crepet, William L., Ph.D.,</td>
<td>Yale U.</td>
<td>Plant Biology</td>
</tr>
<tr>
<td>Davies, Peter J., Ph.D., U.</td>
<td>of Reading</td>
<td>Prof. Plant Biology</td>
</tr>
<tr>
<td>Davis, Jerrold I., Ph.D., U.</td>
<td>of Washington</td>
<td>Assoc. Prof., Plant Biology (Bailey Hortorum)</td>
</tr>
<tr>
<td>Dhondt, Andre A., Ph.D.,</td>
<td>Ghent U.</td>
<td>G. (Belgium)</td>
</tr>
<tr>
<td>Dooley, Jeffrey J., Ph.D.,</td>
<td>Indiana U.</td>
<td>Prof., Plant Biology (Bailey Hortorum)</td>
</tr>
<tr>
<td>Dress, William J., Ph.D.,</td>
<td>Cornell U.</td>
<td>Emeritus, Plant Biology (Bailey Hortorum)</td>
</tr>
<tr>
<td>Eisner, Thomas, Ph.D.,</td>
<td>Harvard U.</td>
<td>Jacob Gould Schurman Professor, Neurobiology</td>
</tr>
<tr>
<td>Enlen, Stephen T., Ph.D.,</td>
<td>Michigan U.</td>
<td>and Behavior</td>
</tr>
<tr>
<td>Feeny, Paul P., Ph.D.,</td>
<td>Oxford U.</td>
<td>Assoc. Prof., Microbiology</td>
</tr>
<tr>
<td>Fitzpatrick, John T., Ph.D.</td>
<td>Princeton U.</td>
<td>Assoc. Prof., Ecology and Evolutionary Biology*</td>
</tr>
<tr>
<td>Fleckier, Alexander S., Ph.D.</td>
<td>Maryland U.</td>
<td>Assoc. Prof., Ecology and Evolutionary Biology</td>
</tr>
<tr>
<td>Fox, Thomas D., Ph.D.,</td>
<td>Harvard U.</td>
<td>Molec. Biology and Genetics</td>
</tr>
<tr>
<td>Fu, Jianhua, Ph.D., U.</td>
<td>Pittsburgh</td>
<td>Assoc. Prof., Molecular Biology and Genetics</td>
</tr>
<tr>
<td>Gibson, Jane, Ph.D., U.</td>
<td>London (England)</td>
<td>Prof. Emeritus, Molecular Biology and Genetics</td>
</tr>
<tr>
<td>Gold, Michael L., Ph.D.,</td>
<td>Stanford U.</td>
<td>Prof., Molecular Biology and Genetics</td>
</tr>
<tr>
<td>Hanson, Maureen R., Ph.D.,</td>
<td>Harvard U.</td>
<td>Assoc. Prof., Molecular Biology and Genetics/Liberty Hyde, Prof., Plant Biology</td>
</tr>
<tr>
<td>Harrison, Richard G., Ph.D.,</td>
<td>Cornell U.</td>
<td>Assoc. Prof., Ecology and Evolutionary Biology</td>
</tr>
<tr>
<td>Harris-Warrick, Ronald M.,</td>
<td>Stanford U.</td>
<td>Assoc. Prof., Neurobiology and Behavior</td>
</tr>
<tr>
<td>Hay, Anthony, Ph.D., U.</td>
<td>California U.</td>
<td>Assoc. Prof., Microbiology</td>
</tr>
<tr>
<td>Helman, John H., Ph.D., U.</td>
<td>California</td>
<td>Prof., Molecular Biology and Genetics</td>
</tr>
<tr>
<td>Hopkins, Carl D., Ph.D.,</td>
<td>Rockefeller U.</td>
<td>Assoc. Prof., Neurobiology and Behavior</td>
</tr>
<tr>
<td>Howarth, Robert W., Ph.D.,</td>
<td>Massachusetts Inst. of Technology</td>
<td>Assoc. Prof., Neurobiology and Evolutionary Biology</td>
</tr>
<tr>
<td>Huang, Jian, Ph.D., U.</td>
<td>California</td>
<td>Assoc. Prof., Microbiology</td>
</tr>
<tr>
<td>Ingram, John W., Ph.D., U.</td>
<td>California</td>
<td>Prof., Plant Biology (Bailey Hortorum)</td>
</tr>
<tr>
<td>Jagendorf, Andre T., Ph.D.,</td>
<td>Yale U. Liberty</td>
<td>Hyde Bailey Plant Professor of Plant Physiology</td>
</tr>
<tr>
<td>Keesler, Andrew, Ph.D., U.</td>
<td>of Illinois</td>
<td>Assoc. Prof., Chemical and Evolutionary Biology</td>
</tr>
<tr>
<td>Kingsbury, John M., Ph.D.,</td>
<td>Harvard U.</td>
<td>Emeritus, Plant Biology (Bailey Hortorum)*</td>
</tr>
<tr>
<td>Kraus, W. Lee, Ph.D., U.</td>
<td>Illinois</td>
<td>Assoc. Prof., Plant Biology and Genetics</td>
</tr>
<tr>
<td>Lovejoy, B. John, Ph.D., U.</td>
<td>Pennsylvania</td>
<td>Assoc. Prof., Ecology and Evolutionary Biology/Laboratory of Ornithology</td>
</tr>
<tr>
<td>MacDonald, Robert, Ph.D.,</td>
<td>Michigan U.</td>
<td>Emeritus, Plant Biology (Bailey Hortorum)</td>
</tr>
<tr>
<td>Marks, Peter J., Ph.D.,</td>
<td>Yale U.</td>
<td>Assoc. Prof., Molec. Biology and Genetics</td>
</tr>
<tr>
<td>Marks, Eugene L., Ph.D.,</td>
<td>Cornell U.</td>
<td>Assoc. Prof., Microbiology</td>
</tr>
<tr>
<td>McCune, Amy R., Ph.D., U.</td>
<td>Illinois</td>
<td>Assoc. Prof., Polytechnic Inst. Prof., Microbiology</td>
</tr>
<tr>
<td>Moe, John T., Ph.D., U.</td>
<td>Texas A&M</td>
<td>Assoc. Prof., Plant Biology (Bailey Hortorum)</td>
</tr>
<tr>
<td>Moe, Thomas G., Ph.D.,</td>
<td>Cornell U.</td>
<td>Assoc. Prof., Plant Biology</td>
</tr>
<tr>
<td>Paolillo, Dominick J., Jr.,</td>
<td>California, Davis</td>
<td>Prof. Emeritus, Plant Biology</td>
</tr>
<tr>
<td>Panthirasathy, Mandayam V.,</td>
<td>Cornell U.</td>
<td>Assoc. Prof., Microbiology</td>
</tr>
<tr>
<td>Peters, Joseph, Ph.D., U.</td>
<td>Maryland U.</td>
<td>Assoc. Prof., Microbiology</td>
</tr>
<tr>
<td>Pettee, H. Kern, Ph.D., U.</td>
<td>Cornell U.</td>
<td>Assoc. Prof., Microbiology</td>
</tr>
<tr>
<td>Roberts, Jeff A., Ph.D.,</td>
<td>Harvard</td>
<td>Assoc. Prof., Microbiology</td>
</tr>
<tr>
<td>Rodriguez, Eloy, Ph.D., U.</td>
<td>Texas A&M</td>
<td>Assoc. Prof., Plant Biology (Bailey Hortorum)</td>
</tr>
<tr>
<td>Root, Richard B., Ph.D., U.</td>
<td>California</td>
<td>Prof. Emeritus, Ecology and Evolutionary Biology</td>
</tr>
<tr>
<td>Rose, Jocelyn, Ph.D., U.</td>
<td>California</td>
<td>Plants Biology of Ornithology</td>
</tr>
<tr>
<td>Russel, James D., Ph.D.,</td>
<td>California</td>
<td>Prof. Emeritus, Plant Biology</td>
</tr>
<tr>
<td>Seeley, Jr., John, Ph.D.,</td>
<td>Cornell U.</td>
<td>Assoc. Prof., Microbiology</td>
</tr>
<tr>
<td>Shallaway, David I., Ph.D.,</td>
<td>Massachusetts Inst. of Technology</td>
<td>Assoc. Prof., Microbiology</td>
</tr>
<tr>
<td>Shapleigh, James P., Ph.D.,</td>
<td>U. of Georgia</td>
<td>Assoc. Prof., Microbiology</td>
</tr>
<tr>
<td>Stinson, Harry T., Ph.D.,</td>
<td>Indiana U.</td>
<td>Prof. Emeritus, Molecular Biology and Genetics</td>
</tr>
<tr>
<td>Tye, Bisk-Woon, Ph.D., U.</td>
<td>Massachusetts Inst. of Technology</td>
<td>Assoc. Prof., Microbiology</td>
</tr>
<tr>
<td>Uhl, Charles H., Ph.D., U.</td>
<td>Cornell U.</td>
<td>Emeritus, Plant Biology</td>
</tr>
<tr>
<td>Uhl, Natalie W., Ph.D., U.</td>
<td>Cornell U.</td>
<td>Emeritus, Plant Biology</td>
</tr>
<tr>
<td>Van Wijck, Klaus J., Ph.D.,</td>
<td>Groningen U. (The Netherlands)</td>
<td>Assoc. Prof., Plant Biology</td>
</tr>
<tr>
<td>Vogt, Vincent M., Ph.D.,</td>
<td>Harvard U.</td>
<td>Emeritus, Molecular Biology and Genetics</td>
</tr>
<tr>
<td>Wacott, Charles D., Ph.D.,</td>
<td>Cornell U.</td>
<td>Prof., Neurobiology and Behavior</td>
</tr>
<tr>
<td>Wayne, Randy O., Ph.D., U.</td>
<td>of Massachusetts</td>
<td>Assoc. Prof., Plant Biology</td>
</tr>
<tr>
<td>Winans, Stephen C., Ph.D.,</td>
<td>Cornell U.</td>
<td>Assoc. Prof., Plant Biology</td>
</tr>
<tr>
<td>Winkler, William D., Ph.D.,</td>
<td>U. of California</td>
<td>Assoc. Prof., Plant Biology</td>
</tr>
<tr>
<td>Wu, Ray, Ph.D., U. of Pennsylvania, Assoc. Prof., Molecular Biology and Genetics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zahler, Stanley A., Ph.D., U.</td>
<td>of Chicago</td>
<td>Assoc. Prof., Molecular Biology and Genetics</td>
</tr>
<tr>
<td>Zinder, Stephen H., Ph.D.,</td>
<td>U. of Wisconsin</td>
<td>Assoc. Prof., Plant Biology</td>
</tr>
<tr>
<td>Other Teaching Personnel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blanken, James E., M.S., U.</td>
<td>Cornell U.</td>
<td>Prof. Molecular Biology and Genetics</td>
</tr>
<tr>
<td>Calvo, Rita A., Ph.D., Cornell U.</td>
<td>Lec.</td>
<td>Molecular Biology and Genetics</td>
</tr>
<tr>
<td>Ecklund, P. Richard, Ph.D., Oregon State U.</td>
<td>Lec.</td>
<td>Molecular Biology and Genetics</td>
</tr>
<tr>
<td>Ely, Susan, Ph.D., Tufts U.</td>
<td>Le.</td>
<td>Molecular Biology and Genetics</td>
</tr>
<tr>
<td>Land, Bruce P., Cornell U.</td>
<td>Sr. Le.</td>
<td>Molecular Biology and Genetics</td>
</tr>
<tr>
<td>Lorr, Nancy, Ph.D., U.</td>
<td>Oregon Le.</td>
<td>Physiology</td>
</tr>
<tr>
<td>McGuire, Betty A., Ph.D., U.</td>
<td>Massachusetts</td>
<td>Sr. Lec., Ecology and Evolutionary Biology</td>
</tr>
<tr>
<td>Mielke, Susan M., Cornell U.</td>
<td>Sr. Le.</td>
<td>Microbiology</td>
</tr>
<tr>
<td>Nivison, Helen T., Ph.D., U.</td>
<td>California</td>
<td>Sr. Lec., Molecular Biology and Genetics</td>
</tr>
<tr>
<td>Reihugler, Carole M. M.S., Cornell U.</td>
<td>Sr. Le.</td>
<td>Microbiology</td>
</tr>
<tr>
<td>Sacco, Tyson, Ph.D., U.</td>
<td>California, Los Angeles U.</td>
<td>Sr. Lec., Ecology and Evolutionary Biology</td>
</tr>
<tr>
<td>Silva, Thomas D., Cornell U.</td>
<td>Le.</td>
<td>Plant Biology</td>
</tr>
<tr>
<td>Southard, Laurel E., M.S.,</td>
<td>Tulane U.</td>
<td>Assoc., Ecology and Evolutionary Biology</td>
</tr>
<tr>
<td>Wrege, Peter H., Cornell U.</td>
<td>Sr. Res.</td>
<td>Undergraduate Biology</td>
</tr>
</tbody>
</table>

Joint Appointees		
Baldwin, Ian T., Adjunct Prof.	Max Planck Institute for Chemical Biology/Ecology and Evolutionary Biology	
Bloom, Stephen E., Prof.	Veterinary/Microbiology and Immunology	
Bradford, Jack, Ph.D., Rockefeller Prof.	Microbiology and Behavior/Library of Natural Sounds	
Brutnell, Thomas, Prof.	Plant Breeding/Plant Biology	
Foteo, Robert H., Jacob Gould Schurman Prof.	Emeritus, Animal Science/Physiology	
Faculty Roster		187
Giovanni, James G., Adjunct Asst. Prof., USDA Science and Education Administration/Plant Biology
Hanson, Maureen, Prof., Molecular Biology and Genetics/Plant Biology
Jaeger, Margaret M., Assoc. Prof., Plant Breeding/Plant Biology
Kochian, Leon V., Adjunct Prof., USDA Science and Education Administration/Plant Biology
Korf, Richard P., Prof. Emeritus, Plant Pathology/Plant Biology (Bailey Hortorium)
Kresovich, Stephen, Prof., Plant Breeding/Plant Biology
Liebert, James K., Assoc. Prof., Entomology/Plant Biology
McClure, Polley A., Prof., Information Technology/Ecology and Evolutionary Biology
McCough, Susan R., Assoc. Prof., Plant Breeding/Plant Biology
Pimentel, David, Prof. Emeritus, Entomology/Ecology and Evolutionary Biology
Rossman, Michael J., Adjunct Prof., Purdue U./Molecular Biology and Genetics
Stern, David B., Adjunct Prof., Boyce Thompson Institute/Plant Biology
Tanksley, Steven, Prof., Plant Breeding/Liberty Hyde White Plant Endowment
Thaler, Jennifer S., Asst. Prof., Entomology/Ecology and Evolutionary Biology
Thompson, John F., Adjunct Prof., USDA Science and Education Administration/Plant Biology
Vehterencamp, Sandra, Prof., Neurobiology and Behavior/Library of Natural Sounds

College of Arts and Sciences
Adkins-Regan, Elizabeth, Ph.D., U. of Pennsylvania. Prof., Neurobiology and Behavior/Psychology
Agard, Charles F., Ph.D., U. of Georgia. Prof., Molecular Biology and Genetics/Ecology and Evolutionary Biology
Bass, Andrew H., Ph.D., U. of Michigan. Prof., Neurobiology and Behavior
Blackler, Antonie W., Ph.D., U. of London (England). Prof., Molecular Biology and Genetics
Booster, Ronald, Ph.D., Princeton U. Assoc. Prof., Neurobiology and Behavior
Bretcher, Anthony P., Ph.D., Leeds U. (England). Prof., Molecular Biology and Genetics
Brown, William J., Ph.D., U. of Texas Health Science Center, Dallas. Prof., Molecular Biology and Genetics
Clark, Andrew G., Ph.D., Stanford U. Prof., Molecular Biology and Genetics/Ecology and Evolutionary Biology
Deitcher, David, Ph.D., Harvard Medical School. Assoc. Prof., Neurobiology and Behavior
Ellner, Stephen P., Ph.D., Cornell U. Prof., Ecology and Evolutionary Biology
Feigenson, Gerald W., Ph.D., California Inst. of Technology. Prof., Molecular Biology and Genetics
Fetcho, Joseph R., Ph.D., U. of Michigan. Prof., Neurobiology and Behavior
Finlay, Barbara, Ph.D., Massachusetts Inst. of Technology. Prof., Neurobiology and Behavior/Psychology
Geber, Monica A., Ph.D., U. of Utah. Prof., Ecology and Evolutionary Biology
Gibson, Quentin H., Ph.D./D.Sc., Queen's U. (Northem Ireland). Greater Philadelphia Professor Emeritus in Biological Sciences, Molecular Biology and Genetics
Goodale, Christine L., Ph.D., U. of New Hampshire. Asst. Prof., Ecology and Evolutionary Biology
Greene, Harry W., Ph.D., U. of Tennessee. Prof., Ecology and Evolutionary Biology
Hainstock, Nanci G., Ph.D., U. of Washington. Frank H. T. Rhodes Professor of Environmental Science, Ecology and Evolutionary Biology
Halpern, Bruce P., Ph.D., Brown U. Prof., Biomedical Sciences
Heppel, Lee A., Ph.D., U. of California, Berkeley. Prof. Emeritus, Molecular Biology and Genetics
Hess, George P., Ph.D., U. of California, Berkeley. Prof., Molecular Biology and Genetics
Hinkle, Peter C., Ph.D., New York U. Prof., Molecular Biology and Genetics
Howland, Howard C., Ph.D., Cornell U. Prof., Neurobiology and Behavior/Biomedical Sciences
Hoy, Ronald R., Ph.D., Stanford U. Merkxmaske Prof., Neurobiology and Behavior
Huffaker, Tim C., Ph.D., Massachusetts Inst. of Technology. Assoc. Prof., Molecular Biology and Genetics
Kennedy, Kenneth A. R., Ph.D., U. of California, Berkeley. Prof., Ecology and Evolutionary Biology
Lee, Siu Sylvia, Ph.D., Bailor Coll. of Medicine. Asst. Prof., Molecular Biology and Genetics
Leonard, Samuel L., Ph.D., U. of Wisconsin. Prof. Emeritus, Molecular Biology and Genetics
Lintner, Christine, Ph.D., Pierre and Marie Curie U. Asst. Prof., Neurobiology and Behavior
Liu, Jun Kelly, Ph.D., Cornell U. Asst. Prof., Molecular Biology and Genetics
MacDonald, June M. Fessenden, Ph.D., Tufts U. Assoc. Prof. Emeritus, Molecular Biology and Genetics/Program on Science, Technology, and Society
Nichols, Nicholas, Ph.D., Florida State U. Asst. Prof., Molecular Biology and Genetics
Power, Alison G., Ph.D., U. of Washington. Prof., Ecology and Evolutionary Biology/Science and Technology Studies
Provine, William B., Ph.D., U. of Chicago. Charles A. and Mildred T. Brumbaugh Professor of Biological Sciences, Ecology and Evolutionary Biology/History
Schimer, John C., Ph.D., U. of Cincinnati. Prof., Molecular Biology and Genetics/Seeley, Thomas D., Ph.D., Harvard U. Prof., Neurobiology and Behavior
Sherman, Paul W., Ph.D., U. of Michigan. Prof., Neurobiology and Behavior
Sparks, Joel P., Ph.D., Washington State U. Asst. Prof., Ecology and Evolutionary Biology
Tumbar, Tudorita, Ph.D., U. of Illinois, Urbana-Champaign. Assoc. Prof., Molecular Biology and Genetics/Turgeon, Robert, Ph.D., Carleton U. (Canada). Prof., Plant Biology
Wallace, Bruce, Ph.D., Columbia U. Prof. Emeritus, Molecular Biology and Genetics
Whitlock, Kathleen E., Ph.D., U. Washington, Seattle. Asst. Prof., Molecular Biology and Genetics
Wilson, David B., Ph.D., Stanford U. Prof., Biochemistry, Molecular Biology and Genetics
Wolfner, Mariana F., Ph.D., Stanford U. Prof., Molecular Biology and Genetics

Other Teaching Personnel
Eberhard, Carolyn, Ph.D., Boston U. Sr. Lect., Plant Biology
Johnson, Bruce R., Ph.D., Boston U. Sr. Lect., Neurobiology and Behavior

Joint Appointments
Levin, Simon A., Adjunct Prof., Princeton U. Ecology and Evolutionary Biology
Likens, Gene E., Adjunct Prof., Institute of Ecosystem Studies/Ecology and Evolutionary Biology

College of Veterinary Medicine
Alcaraz, Ana, D.V.M., Ph.D., Cornell U. Lect., Biomedical Sciences
Beyenbach, Klaus W., Ph.D., Washington State U. Prof., Biomedical Sciences
Bezuidenhout, Abraham, D.V.Sc., U. of Pretoria (South Africa). Sr. Lect., Biomedical Sciences
Buckles, Elizabeth, D.V.M., Ph.D., U. of Wisconsin. Asst. Prof., Pathology
Catalfano, James M., Ph.D., Union Coll. Sr. Res. Assoc., Population Medicine and Diagnostic Services
Cohen, Paula, Ph.D., U. of London (England). Asst. Prof., Genetics
Farnum, Cornelis E., D.V.M., Ph.D., U. of Wisconsin, Madison. Prof., Biomedical Sciences
Fortune, Joanne E., Ph.D., Cornell U. Prof., Biomedical Sciences
Gilmour, Robert F., Ph.D., SUNY Upstate Medical Center. Prof., Biomedical Sciences
Gleed, Robin, BVSc, MRCVS, U. of Liverpool (England). Assoc. Prof., Clinical Sciences
Gunn, Teresa M., Ph.D., U. of British Columbia (Canada). Asst. Prof., Biomedical Sciences
Hermanson, John W., M.S., Ph.D., U. of Florida Gainesville. Assoc Prof., Biomedical Sciences
Houpt, Katherine A., V.M.D., Ph.D., U. of Pennsylvania. Prof., Clinical Sciences
Kotlikoff, Michael I., Ph.D., U. of California, Davis. Prof., Biomedical Sciences
Lin, David, Ph.D., U. of California, Berkeley. Asst. Prof., Biomedical Sciences
Loew, Ellis R., Ph.D., U. of California, Los Angeles. Prof., Biomedical Sciences
Lorr, Nancy, Ph.D., U. of Oregon. Lect., Biomedical Sciences
Ludders, John D.V.M., Washington State U. Prof., Clinical Sciences
Maza, Paul, D.V.M., U. of St. Kitts (West Indies). Lect., Biomedical Sciences
McDonald, Sean, D.V.M., Ph.D., U. of Pennsylvania. Assoc. Prof., Biomedical Sciences
Minor, Ronald V.M.D., Ph.D., U. of Pennsylvania. Prof., Biomedical Sciences
Mizer, Linda, D.V.M., Ph.D., Ohio State U. Sr. Lect., Biomedical Sciences
Nikitin, Alexander Yu, M.D., Ph.D., Petrov Research Inst. of Oncology (Russia). Asst. Prof., Pathology
Noden, Drew M., Ph.D., Washington U. (St. Louis). Prof., Biomedical Sciences
O'Brien, Timothy, Ph.D., U. of Illinois. Prof., Biomedical Sciences
Oswald, Robert, Ph.D., Vanderbilt U. Prof., Molecular Medicine
Quaroni, Andrea, Ph.D., U. of Pavia (Italy). Prof., Biomedical Sciences
Roberson, Mark, Ph.D., U. of Nebraska. Assoc. Prof., Biomedical Sciences
Schimenti, John, Ph.D., U. of Cincinnati. Prof., Biomedical Sciences
Schlafer, Donald H., D.V.M., Ph.D., U. of Georgia. Prof., Biomedical Sciences
Shepard, Laura, D.V.M., Cornell U. Instr., Biomedical Sciences
Suarez, Susan, Ph.D., U. of Virginia. Prof., Biomedical Sciences
Summers, Brian, B.V.Sc., Ph.D., Prof., Biomedical Sciences
Travis, Alexander J., V.M.D., Ph.D., U. of Pennsylvania. Asst. Prof., Biomedical Sciences
Weiss, Robert S., Ph.D., Baylor Coll. of Medicine. Asst. Prof., Biomedical Sciences
Wooton, John F., M.S., Ph.D., Cornell U. Prof., Biomedical Sciences
Xin, Hong-Bo, Ph.D., Beijing Medical U. (People's Republic of China). Asst. Prof., Biomedical Sciences
Yen, Andrew, Ph.D., Cornell U. Prof., Pathology and Director, Graduate Studies in Environmental Toxicology, Biomedical Sciences

College of Engineering

Joint Appointees
Cisne, John L., Assoc. Prof., Geological Sciences/Biological Sciences
Webb, Watt W., Prof., Applied and Engineering Physics/Biological Sciences

Biological Sciences

Joint Appointees
Snedeker, Suzanne M., Asst. Prof., Center for the Environment/Biological Sciences

Division of Nutritional Sciences

Joint Appointees
Arion, William J., Prof., Nutritional Sciences/Molecular Biology and Genetics
Bensadoun, Andre, Prof., Nutritional Sciences/Physiology
Kazarinoff, Michael N., Assoc. Prof., Nutritional Sciences/Molecular Biology and Genetics
Wright, Lemuel D., Prof. Emeritus, Nutritional Sciences/Molecular Biology and Genetics

*Joint appointment with College of Arts and Sciences
†Joint appointment with College of Veterinary Medicine
‡Joint appointment with College of Agriculture and Life Science
§Joint appointment with College of Engineering
COMPUTING AND INFORMATION SCIENCE

FACULTY OF COMPUTING AND INFORMATION SCIENCE

Robert L. Constable, Dean for Computing and Information Science
John Abowd, Industrial and Labor Relations
William Arms, Computer Science
Graeme Bailey, Computer Science
Kavita Bala, Computer Science
Kenneth Birman, Computer Science
Claire Cardie, Computer Science
Richard Caruana, Computer Science
Ron Elber, Computer Science
K-Y Daisy Fan, Computer Science
Gerit Gay, Communication, CIS
Johannes Gehrke, Computer Science
Paul Ginsparg, Physics, CIS
Carla P. Gomes, Applied Economics and Management, CIS
Donald Greenberg, Architecture, Art, and Planning; Computer Science; Johnson Graduate School of Management
David Gries, Computer Science
John Guckenheimer, Mathematics
Joseph Halpern, Computer Science
Juris Hartmanis, Computer Science
John Hopcroft, Computer Science
Daniel Huttenlocher, Computer Science, Johnson Graduate School of Management
Thorsten Joachims, Computer Science
Jon Kleinberg, Computer Science
Dexter Kozen, Computer Science
Lillian Lee, Computer Science
Hod Lipson, Mechanical and Aerospace Engineering, CIS
Steve Marschner, Computer Science
N. David Mermin, Physics
Andrew Myers, Computer Science
Andrew Pershing, Earth and Atmospheric Sciences, CIS
Keshav Pingali, Computer Science
Stephen Pope, Mechanical and Aerospace Engineering
Mats Rooth, Linguistics, CIS
Radu Rugini, Computer Science
Fred Schneider, Computer Science
David Schwartz, Computer Science
Bart Selman, Computer Science
Phoebe Sengers, Science and Technology Studies, CIS
David Shalloway, Molecular Biology and Genetics, CIS

Jayavel Shanmugasundaram, Computer Science
David Shmoys, Computer Science, Operations Research and Industrial Engineering
Christine A. Shoemaker, Civil and Environmental Engineering
Gun Sirer, Computer Science
Buzz Spector, Art
Eva Tardos, Computer Science
William Thurston, Mathematics, CIS
Ken Torrance, Mechanical and Aerospace Engineering
Charles Van Loan, Computer Science
Stephen Vavasis, Computer Science
Martin Wells, Biological Statistics and Computational Biology, ILR Social Statistics
David P. Williamson, Operations Research and Industrial Engineering, CIS
Raman Zabih, Computer Science

INTRODUCTION

Computing and Information Science (CIS) offers courses and programs campuswide in various academic disciplines in which computing is integral. It is home to the Department of Computer Science, the Department of Statistical Science, the major in Information Science, and interdisciplinary programs in computational biology, computational science, and engineering. The faculty members associated with CIS programs hold joint appointments with CIS and another Cornell academic unit.

Computing and Information Science is a rapidly changing area. Please consult the CIS web site, www.cis.cornell.edu/, for the current news of programs and courses, or visit the CIS undergraduate office in 503 Upson Hall.

ACADEMIC PROGRAMS

Computing and Information Science offers the following academic programs through its corresponding colleges. See the departmental listings for details of the programs.

Computational Biology

The program of study in computational biology is part of the biological sciences major offered through the College of Agriculture and Life Sciences and the College of Arts and Sciences and is coordinated by the Office of Undergraduate Biology. It provides core training in biology and the supporting physical and information sciences. It is designed for students who want to emphasize basic biological science.

The concentration in computational molecular biology is offered by the Department of Computer Science to students enrolled in the College of Arts and Sciences and the College of Engineering. It provides core training in computer science and biology. It is designed for students who want to emphasize computational science.

Computational Science and Engineering

Computational science and engineering is an emerging CIS program. Numerous courses are taught throughout the university. Topics include numerical methods, modeling and simulation, and real-time computing and control. CIS sponsors several "tool-based" short courses for students who anticipate that their studies will have a strong computational component (CIS 401, 402, 403, 404). A course on data structures for computational science (CIS 409) is also offered.

Computer Science

All CIS programs have connections to computer science, the study of computation in all of its forms. The curriculum covers the theory of algorithms and computing and its many applications in science, engineering, and business. Students learn the algorithmic method of thinking and how to bring it to bear on a wide range of problems. They also study the elements of computing and information technology such as system design, problem specification, programming, system analysis and evaluation, and complex modeling. Research areas include programming languages, compilers, computing systems, artificial intelligence, natural language processing, computer graphics, computer vision, databases, networks, bioinformatics, the theory of algorithms, scientific computing, and computational logic.

The Department of Computer Science offers the computer science major to students in the College of Arts and Sciences and the College of Engineering, the computer science minor to students in the College of Engineering, and the master of engineering (M.Eng.) degree in computer science to students in the College of Engineering.

Information Science

Information science at Cornell is an interdisciplinary program that studies the design and use of information systems in a social context. It integrates the study of three aspects of digital information systems. First, information science studies computing systems that provide people with information content; this study overlaps with parts of computer science, stressing the design, construction, and use of large information systems such as the World Wide Web and other global information resources. The second aspect of information science examines how people engage these information resources and how they can be integrated into everyday life. This area is also called "human-centered systems" because it is concerned with systems that hundreds of millions of people will use in daily life. The
third aspect deals with understanding how information systems are situated in social, economic, and historical contexts. It explores the economic value of information, the legal constraints on systems, their social impact, and the cultural aspects of their construction. These are synergistic, and the next generation of scientists, scholars, business leaders, and government workers will need to understand them and how they relate.

Specific topics emphasized in the information science program include information networks, information discovery, knowledge organizations, interaction design, interface design and evaluation, collaboration within and across groups, communities, organizations, and society; computational linguistics; computational techniques in the collection, archiving, and analysis of social science data; information privacy; methods of collecting, preserving, and distributing information; information system design, cognition and learning; social informatics; and cultural studies of computation.

The Information Science (IS) major is offered by the College of Agriculture and Life Sciences and the College of Arts and Sciences. Students in the College of Engineering may major in information science, systems, and technology (ISST), which is offered jointly by the Department of Computer Science and the School of Operations Research and Industrial Engineering. For details about the IS and ISST majors, please refer to the respective colleges.

The minor/concentration in information science is available to students in all undergraduate colleges.

THE INFORMATION SCIENCE CONCENTRATION/MINOR

A concentration/minor in information science is available to students in the Colleges of Agriculture and Life Sciences (CALS); Architecture, Art, and Planning (AAP; available to Architecture and Planning students only); Arts and Sciences, Engineering; Human Ecology; and the Schools of Hotel Administration and Industrial and Labor Relations (ILR). Because of small differences in regulations between the colleges, the requirements may vary slightly, depending on a student's college and, in a few cases, a student's major. All students interested in pursuing the information science concentration/minor must initiate the process by sending an e-mail message with their name, college, year of study (e.g., second-semester sophomore), expected graduation date, and (intended) major to minor@infosci.cornell.edu. Students are also referred to www.infosci.cornell.edu/grad/concentrations.html for the most up-to-date description of the concentration and its requirements.

Information science is an interdisciplinary field covering all aspects of digital information. The program has three main areas: human-centered systems, social systems, and information systems. Human-centered systems studies the relationship between humans and information, drawing from human-computer interaction and cognitive science. Social systems examines information in its economic, legal, political, cultural, and social contexts. Information systems studies the computer science problems of representing, storing, manipulating, and using digital information.

The concentration/minor has been designed to ensure that students have substantial grounding in all three of these areas. To this end, the requirements for the undergraduate concentration/minor are as follows. All courses must be chosen from the course lists below. In addition, a letter grade of C or better is required; S-U courses are not allowed.

Note: Course credits from institutions other than Cornell may not be counted toward the IS minor. Engineering students must use ENGRD 270 or CEE 304. Hotel students must use H ADM 201.

- **Statistics**: one course.
- **Human-centered systems** (human-computer interaction and cognitive science): two courses (for all colleges except Engineering and Hotel); one course (Engineering and Hotel).
- **Social systems** (social, economic, political, cultural, and legal issues): one course.
- **Information systems** (primarily computer science): two courses for all colleges except Hotel. Hotel students need to take one course in this area. Engineering students may not use INFO 130. COM S 211 may not be used by students who are required to take it for their major.
- **Elective**: one additional course from any component area. Hotel students must take three courses in this category, from the following: H ADM 374, 574, and 476 or 575. (Engineering students and all Computer science majors must select a course from human-centered systems or social systems. Communication majors must select a course outside Communication. Students in other majors should check with their advisers to make sure there are no special departmental restrictions or requirements.)

Statistics

An introductory course that provides a working knowledge of basic probability and statistics and their application to analyzing data occurring in the real world.

Engineering students must take one of the following:

- ENGRD 270 Basic Engineering Probability and Statistics
- CEE 304 Uncertainty Analysis in Engineering

Hotel students must take:

- H ADM 201 Hospitality Quantitative Analysis

All other students can meet this requirement with any one of the following:

- MATH 171 Statistical Theory and Application in the Real World
- H ADM 201 Hospitality Quantitative Analysis
- AEM 210 Introductory Statistics
- PAM 210 Introduction to Statistics
- ENGRD 270 Basic Engineering Probability and Statistics
- BTRY 301 Statistical Methods I
- SOC 301 Evaluating Statistical Evidence
- CEE 304 Uncertainty Analysis in Engineering
- ILRST 312 Uncertainty Analysis in Engineering
- ECON 319 Applied Regression Methods
- ECON 358 Game Theory
- PSYCH 205 Perception
- INFO 214 Cognitive Psychology
- COMM 240 Introduction to Computer-Mediated Communication (can be used only if taken during or before 2003–2004 academic year)
- PSYCH 280 Introduction to Social Psychology
- INFO 345 Human-Computer Interaction Design
- PSYCH 347 Psychology of Visual Communications
- PSYCH 360 Social Cognition
- PSYCH 413 Information Processing: Conscious and Unconscious
- PSYCH 416 Modeling Perception and Cognition
- INFO 440 Advanced Human-Computer Interaction Design
- INFO 445 Seminar in Computer-Mediated Communication
- INFO 450 Language and Technology
- DEA 470 Applied Ergonomic Methods
- AEM 322 Technology, Information, and Society
- ECON 313 Intermediate Microeconomic Theory
- AEM 322 Technology, Information, and Business Strategy
- INFO 349 Media Technologies
- INFO 355 Computers: From the 17 C. to the Dot.com Boom
- INFO 356 Computing Cultures
- ECON 368 Game Theory
- INFO 387 The Automatic Lifestyle: Consumer Culture and Technology
- LAW 410 Limits on and Protection of Creative Expression—Copyright Law and Its Close Neighbors
- S&TS 411 Knowledge, Technology, and Property
COMPUTING AND INFORMATION SCIENCE (CIS) - 2005-2006

- ECON 419 Economic Decisions Under Uncertainty
- COMM 428 Communication Law
- OR&IE 435 Introduction to Game Theory*
- S&TS 438 Minds, Machines, and Intelligence
- INFO 447 Social and Economic Data
- ECON 476/477 Decision Theory I and II
- COMM 494 Special Topics in Communication: Copyright in the Digital Age
- INFO 515 Culture, Law, and Politics of the Internet
- H ADM 574 Strategic Information Systems

*Only one of ECON 301 and 313 can be taken for IS credit. Only one of OR&IE 435 and ECON 306 can be taken for IS credit. Only one of AEM 322 and H ADM 574 may be taken for IS credit.

Information Systems

- INFO 130 Introductory Design and Programming for the Web*
- INFO 172 Computation, Information, and Intelligence
- COM S 211 Computers and Programming*
- INFO 230 Intermediate Design and Programming for the Web*
- INFO 330 Applied Database Systems
- LING 424 Computational Linguistics
- INFO 430 Information Retrieval
- INFO 431 Web Information Systems
- COM S 432 Introduction to Database Systems
- COM S 465 Computer Graphics I
- COM S 472 Foundations of Artificial Intelligence
- LING 474 Introduction to Natural Language Processing
- OR&IE 474 Statistical Data Mining
- COM S 478 Machine Learning
- OR&IE 480 Information Technology
- OR&IE 481 Delivering OR Solutions with Information Technology
- OR&IE 483 Application of Operations Research and Game Theory in Information Technology
- COM S 501 Software Engineering
- ECE 562 Fundamental Information Theory
- COM S 578 Empirical Methods in Machine Learning and Data Mining

INFO 130 may not be taken for information science credit by Engineering students. Computer science majors may not use INFO 130 or 230. COM S 211 may not be taken for information science credit by majors for which it is a required course, e.g., Computer Science (COM S) and Operations Research and Industrial Engineering (OR&IE)

COMPUTING AND INFORMATION SCIENCE (CIS) COURSES

CIS 121(1211) Introduction to MATLAB (also EAS 121[1211])
Fall, spring, 2 credits. Corequisite: MATH 111, 191, or equivalent. No programming experience assumed.
Introduction to elementary computer programming concepts using MATLAB. Topics include problem analysis, development of algorithms, selection, iteration, functions, and arrays. Examples and assignments are chosen to build an appreciation for computational science. The goal is for each student to develop a facility with MATLAB that will be useful in other courses whenever there is a need for computer problem solving or visualization.

CIS 122(1002) Application of FORTRAN in the Earth and Environmental Sciences (also EAS 150[1500])
Spring. 2 credits. Prerequisite: CIS/EAS 121 or equivalent.
For description, see EAS 150.

CIS 165(1610) Computing in the Arts (also ART 175, COM S 165[1610], MUSIC 165[1650], PSYCH 165[1650])
Spring. 3 credits. For description, see COM S 165.

CIS 167(1620) Visual Imaging in the Electronic Age (also ART 170[1700], COM S/ENGRD 167[1620])
Spring. 3 credits. Not offered every year. For description, see ART 170.

CIS 191(1002) Media Arts Studio I (also ART 170[1700], FILM 391(3910])
Fall. 3 credits. Prerequisite: ART 171. Prerequisite: ART 171; ThETR 277, 377, MUSIC 120, or equivalent; junior standing; and permission of instructor. Lab fee: $50.
For description, see ART 171.

CIS 300(3000) Introduction to Computer Game Design
Fall, spring. 3 credits. Prerequisites: students generally choose one field (art, music, programming, writing), although working in multiple areas is encouraged; artists should have taken ART 251 or have equivalent experience; musicians should have programming experience (COM S 100, COM S/INFO 130 or equivalent) and MUSIC 120; programmers must have completed COM S/ENGRD 211 or CIS 409 and have experience with, or the ability to learn quickly, C++; writers should have programming experience (COM S 100, COM S/INFO 130 or equivalent) and ENGL 280/281 or equivalent experience.
Investigates the theory and practice of developing computer games from a blend of technical, aesthetic, and cultural perspectives. Technical aspects of game architecture include software engineering, artificial intelligence, game physics, computer graphics, and networking. Aesthetic and cultural aspects of design include art and modeling, sound and music, history of games, genre analysis, role of violence, gender issues in games, game balance, and careers in the industry. Programmers, artists, musicians, and writers collaborate to produce an original computer game.

CIS 401(4201) Introduction to Applied Scientific Computing with MATLAB
Fall, usually weeks 2-5. 1 credit.
Prerequisite: COM S 100 or equivalent programming experience. S-U grades only.
Introduction to the use of MATLAB as an aid to scientific research. Introduces the basic syntax and features of MATLAB and develops the background necessary for the more specialized courses. Covers basic MATLAB programming and vectorized operations, data input-output, and simple visualization. Emphasizes applied issues such as managing large data sets, simulation, and visualization but also introduces fundamental ideas in scientific computing such as floating point arithmetic and algorithm efficiency. Although the course uses MATLAB, the ideas and concepts covered are common to many computational environments.

CIS 402(4202) Scientific Visualization with MATLAB
Fall, usually weeks 6-10. 1 credit.
Prerequisite: COM S 100 or equivalent programming experience. Recommended: CIS 401. S-U grades only.
Survey of the advanced visualization features in MATLAB. Covers MATLAB's "handle graphics" paradigm, specialized graphics routines for vectors and fields, and introduces color mapping, lighting, and new features for controlling object transparency. Although the course is meant to introduce students to the capabilities of the MATLAB system, it also emphasizes the basic goal of visualization: producing an image that effectively communicates a scientific result.

[CIS 403(4203) Development of Scientific Computing Programs
Spring, usually weeks 1-4. 1 credit.
Prerequisite: COM S 100 or equivalent programming experience. S-U grades only.
Designed for graduate students who, in their research, will develop computer programs to solve scientific or engineering problems (e.g., in Fortran, C, or Java). Approaches and tools are presented that facilitate the development of good software. The course emphasizes the tools available in UNIX and Windows environments. Topics include compilers, debuggers, software design, and project management.)

[CIS 404(4204) Survey and Use of Software Libraries for Scientific Computing
Spring, usually weeks 5-8. 1 credit.
Prerequisite: COM S 100 or equivalent programming experience. Recommended: CIS 403. S-U grades only.
Many software packages and code libraries have been developed to solve standard problems in scientific computing. Examples of such libraries are LAPACK, IMSL, Numerical Recipes routines, MATLAB functions, and routines available in online repositories such as Netlib. This course discusses how to link to or compile standard library formats and considers the legal and ethical aspects of using other people's code (or having them use yours). The course also surveys some of the standard problems and the available libraries and discusses the issues that arise in their use (e.g., accuracy, robustness, and generality.)

CIS 405(4205) Effective Use of High-Performance Computing
Spring, weeks 1-8. 2 credits. Prerequisite: proficiency in C, C++, Fortran, or Fortran 90. S-U grades only.
Introduction to high-performance computing (HPC) for graduate students or advanced undergraduate students who will use HPC as a tool in their research. Various HPC architectural platforms are described, with a focus on computational clusters. Students learn how to identify and exploit the various types of parallelism in algorithms and legacy applications. Understanding how to measure speedup and efficiency and how various bottlenecks affect them is covered. Parallel programming with MPI, OpenMP, and task-farming techniques, such as the use of web services, is covered in detail. The goal of the course is for students to gain practical HPC experience for use in their specific fields of research.

CIS 409(4209) Data Structures and Algorithms for Computational Science (also M&AE 409(4090))
Fall. 4 credits. Prerequisite: COM S 211 or equivalent programming experience. Not offered every year.
Covers data structures and algorithms with emphasis on those useful for computational science. This course is intended for students outside of the Department of Computer Science whose work involves a significant amount of computing. Topics include basic data structures, as well as more advanced areas. Emphasis is placed on the use of abstract data types and on how best to select appropriate data structures.

CIS 490(4999) Independent Reading and Research
Fall, spring. 1–4 credits.
Independent research and research for undergraduates.

CIS 504(5040) Applied Systems Engineering (also CEE 504(5040), ECE 512(5120), M&AE 591(5910), OR&E 512(5120), SYSEN 510(5100))
Fall. 3 credits. Prerequisites: senior or graduate standing in engineering field; concurrent or recent (past two years) enrollment in group-based project with strong system design component approved by course instructor.
For description, see SYSEN 510.

CIS 505(5050) Systems Analysis Architecture, Behavior, and Optimization (also CEE 505(5050), ECE 513(5130), M&AE 592(5920), OR&E 513(5130), SYSEN 520(5200))
Spring. 3 credits. Prerequisite: Applied Systems Engineering (CEE 504, ECE 512, M&AE 591, OR&E 512, or SYSEN 510).
For description, see SYSEN 520.

CIS 565(5640) Computer Animation (also ART 273(2703), COM S 565(5640))
Fall. 4 credits. Prerequisite: none.
For description, see ART 273.

CIS 566(5642) Advanced Animation (also ART 372, COM S 566(5642))
Spring. 4 credits. Prerequisite: none.
For description, see ART 372.

CIS 572(5722) Heuristic Methods for Optimization (also CEE 508(5080), COM S 572(5722), OR&E 533(5340))
Fall. 3 or 4 credits. Prerequisite: COM S/ ENGRD 211 or 322, or CEE/ENGRD 241, or graduate standing, or permission of instructor.
For description, see CEE 509.

[CIS 576(5846) Decision Theory I (also ECON 476/676(4460/6760)]
Fall. 4 credits. Prerequisite: mathematical sophistication.

[CIS 577(5847) Decision Theory II (also ECON 477/677(4770/6770)]
Spring. 4 credits. Prerequisite: mathematical sophistication.

CIS 629(6229) Computation Methods for Nonlinear Systems (also PHYS 682(6782))
Fall. 4 credits. Enrollment may be limited. Labs TR afternoons. J. Sethna and C. Myers.
For description, see PHYS 682.

CIS 673(6724) Integration of Artificial Intelligence and Operations Research (also COM S 673(6724))
Spring. 3 credits.
For description, see COM S 673.

[CIS 750(7726) Evolutionary Computation and Design Automation (also COM S 750(7726), M&AE 650(6500)]
Fall. 4 credits. Prerequisite: programming experience or permission of instructor. Not offered every year.

CIS 790(7999) Independent Research Fall, spring. Variable credit. Prerequisite: permission of CIS faculty member. Independent research or master of engineering project.

CIS 797(7970) Topics in CIS/IGERT Seminars Fall, spring. 1 credit. S-U grades only.
Discusses diverse topics in nonlinear systems. The seminar is oriented to the requirements for the IGERT Program in Nonlinear Systems, a National Science Foundation supported graduate training program. Includes a mixture of student, faculty, and visitor presentations and development of plans for internships and student projects.

COMPUTER SCIENCE
The Department of Computer Science is affiliated with both the College of Arts and Sciences and the College of Engineering. Students in either college may major in computer science. The department is also part of CIS, and its courses are an integral part of its several educational programs.

COM S 099(1109) Fundamental Programming Concepts
Fall, summer. 2 credits. Prerequisite: freshman standing. Credit may not be applied toward engineering degree. S-U grades only.
Designed for students who intend to take COM S 100 but are not adequately prepared for that course. Basic programming concepts and problem analysis are studied. An appropriate high-level programming language is used. Students with previous programming experience and students who do not intend to take COM S 100 should not take this course.

COM S 100Q(1110) Introduction to Computer Programming
Fall, spring, summer. 4 credits. Assumes basic high school mathematics (no calculus) but no programming experience. Introduction to computer programming concepts using the Python programming language. Includes a two-week unit on MATLAB. Topics include algorithms, language concepts, object-oriented concepts, procedures and functions, arrays, and strings. Principles of software development, style, and testing are emphasized. Weekly lab sections provide students with guided practice on the computer, with staff present to help. COM S 100Q and 100M are equivalent courses, both should not be taken.

COM S 100M(1112) Introduction to Computer Programming
Fall, spring. 4 credits. Corequisite: MATH 111, 191, or equivalent. Assumes student is comfortable with mathematics (at level of one semester of calculus) but has no prior programming experience. Introduction to computer programming concepts using MATLAB (seven weeks) and Java (seven weeks). Emphasizes techniques of problem analysis and development of algorithms and programs. Topics include: iteration, functions, arrays, scientific graphics, and object-oriented concepts. Examples and assignments give the student an appreciation for computational science and engineering. COM S 100M and 100Q are equivalent courses, and either one provides adequate preparation for COM S/ENGJRD 211.

COM S 101(1710) Introduction to Cognitive Science (also COGST 101(1010), LING 170(1700), PHIL 191(1910), PSYCH 102(1020))
Fall, summer. 3 credits.
For description, see COGST 101.

COM S 113(2000) Introduction to C Fall, spring, usually weeks 1–4. 1 credit.
Prerequisite: COM S 100 or equivalent programming experience. Credit granted for both COM S 113 and 213 only if 113 taken first. S-U grades only.
Brief introduction to the C programming language and standard libraries. Unix accounts are made available for students wishing to use that system for projects, but familiarity with Unix is not required. (Projects may be done using any modern implementation of C.) COM S 213 (C++ Programming) includes much of the material covered in 113. Students planning to take COM S 213 normally do not need to take 115.

Prerequisite: COM S 100 or equivalent programming experience. Credit granted for both COM S 113 and 213 only if 113 taken first. S-U grades only.
Introduction to Unix, emphasizing tools for file management, communication, process control, managing the Unix environment, and rudimentary shell scripts. Projects assume no previous knowledge of Unix or expertise in any particular language.

COM S 130(1300) Introductory Design and Programming for the Web (also INFO 130(1300))
Fall. 3 credits. Prerequisite: none. No computer background necessary.
The World Wide Web is both a technology and a pervasive and powerful resource in our society and culture. To build functional and effective web sites, students need technical and design skills as well as analytical skills for understanding who is using the web, in what ways they are using it, and for what purposes. In this course, students develop skills in all three of these areas through the use of technologies such as XHTML, Cascading Stylesheets, and PHP. Students study how web sites are deployed and used, usability issues on the web, user-centered
design, and methods for visual layout and information architecture. Through the web, this course provides an introduction to the interdisciplinary field of information science. No computer background necessary.

COM S 165(1610) Computing in the Arts
(Also ART 175, CIS 165(1610), MUSIC 165[1465], PSYCH 165[1650], INFO 172[1700])
Spring. 3 credits. Recommended: good comfort level with computers and some of the arts.

Over the centuries, artists in a wide variety of media have employed many approaches to the creative process, ranging from the philosophical to the mechanical to the virtual. This course unravels some of the mysteries going on inside software used for art and music. It looks at ways of breaking things apart and sampling and ways of putting things together and resynthesizing, and explores ideas for creation. This course does not teach software packages for creating art and music. The course complements ART 171+ and MUSIC 120+.

COM S 167(1620) Visual Imaging in the Electronic Age
(Also ART 170[1700], CIS/ENGR 167[1620], INFO 172[1700])
Spring. 3 credits. For description, see ART 170.

COM S 172(1700) Computation, Information, and Intelligence
(Also COGST 172, ENGR/INFO 172[1700])
Fall. 3 credits. Prerequisites: some knowledge of differentiation; permission of instructor for students who have completed equivalent of COM S 100. Introduction to computer science using methods and examples from the field of artificial intelligence. Topics include game playing, search techniques, learning theory, compute-intensive methods, data mining, information retrieval, the web, natural language processing, machine translation, and the Turing test. This is not a programming course; rather, "pencil and paper" problem sets are assigned. Some calculus is required.

COM S 201(2710) Cognitive Science in Context Laboratory
(Also COGST 201, PSYCH 201[2010])
Spring. 4 credits. Limited to 24 students. Recommended: concurrent or prior registration in PSYCH 102, COGST/COM S 101, LING 170, or PHIL 191. Knowledge of programming languages not assumed. For description, see COGST 201.

COM S 211(2110) Computers and Programming
(Also ENGRD 211[2110])
Fall, spring, summer. 3 credits. Prerequisite: COM S 100 or equivalent course in Java or C++.

Intermediate programming in a high-level language and introduction to computer science. Topics include program structure and organization, object-oriented programming (class/sub-type), graphical user interfaces, algorithm analysis (asymptotic complexity, big "O" notation), recursion, data structures (lists, trees, stacks, queues, heaps, search trees, hash tables, graphs), simple graph algorithms. Java is the principal programming language.

COM S 212(2111) Java Practicum
Fall, spring. 1 credit. Pre- or corequisite: COM S/ENGRD 211. Letter grades only. Project course that introduces students to the ways of software engineering using the Java programming language. The course requires the design and implementation of several large programs.

Fall or spring. 2 credits. Prerequisite: COM S 100 or equivalent programming experience. Students who plan to take COM S 113 and 213 must take 113 first. S-U grades only. Not offered every year. Intermediate-level programming and the C++ programming language and the C/C++ standard libraries. Topics include basic statements, declarations, and types; stream I/O; user defined classes and types; derived classes, inheritance, and object-oriented programming; exceptions and templates. Recommended for students who plan to take advanced courses in computer science that require familiarity with C++ or C. Students planning to take COM S 213, normally do not need to take COM S 113; 213 includes most of the material taught in 113.

Spring, usually weeks 5–8. 1 credit. Prerequisite: COM S 114 or equivalent. S-U grades only. Focuses on Unix as a programming environment for people with a basic knowledge of Unix and experience programming in at least one language. Projects cover advanced shell scripts (sh, ksh, csh). Major topics include debugging and the debugging tools for C and other languages, and more modern scripting languages such as Perl and Python. Students with little or no experience with Unix should take COM S 114 first.

COM S 215(2004) Introduction to C#
Fall, spring, usually weeks 5–8. 1 credit. Prerequisite: COM S/ENGRD 211 or equivalent experience. S-U grades only. Introduces students to building applications in the .NET environment using the C# language.

COM S 230(2300) Intermediate Design and Programming for the Web
(Also INFO 230[2300])
Spring. 3 credits. Prerequisite: COM S 130 or equivalent knowledge. Web programming requires the cooperation of two machines: the one in front of the viewer (client) and the one delivering the content (server). COM S 230 concentrates almost exclusively on the client side. The main emphasis in COM S 230 is learning about server side processing. Students begin by looking at interactions with databases, learning about querying both on paper and via SQL, and then, through a succession of projects, learn how to apply this understanding to the creation of an interactive data-driven site via the use of an integrated web site development tool such as ColdFusion. Other topics include techniques to enhance security, privacy, and reliability and ways of incorporating other programs. Toward the end of the course, students are shown how these development tools are working. Design issues are emphasized. A major component of the course is the creation of a substantial web site.

COM S 231(3110) Numerical Methods in Computational Molecular Biology
(Also BIOBM 321[3210], ENGRD 321[3110])
Fall. 3 credits. Prerequisites: at least one course in calculus (e.g., MATH 106, 111, or 191) and linear algebra (e.g., MATH 221 or 294 or BTRY 417); COM S 100 or equivalent and some familiarity with iteration, arrays, and procedures; knowledge of discrete probability and random variables at the level of COM S 280. COM S majors and minors may use only one of the following toward their degree: COM S 321, 322, or 421. Offered odd-numbered years.

Introduction to numerical computing using MATLAB organized around five applications: the analysis of protein shapes, dynamics, protein folding, score functions, and field equations. Students become adept at plotting, linear equation solving, least squares fitting, and cubic spline interpolation. More advanced problem-solving techniques that involve eigenvalue analysis, the solution of ordinary and partial differential equations, linear programming, and nonlinear minimization are also treated. This year and the next year, students will develop a practical computational expertise with MATLAB and to build mathematical intuition for the problems of molecular biology.
COM S 322(3220) Introduction to Scientific Computation (also ENGRD 322[3220])

Spring, summer. 3 credits. Prerequisites: COM S 100 and MATH 221 or 294, knowledge of discrete numerical analysis and scientific computation. Topics include interpolation, quadrature, linear and nonlinear equation solving, least-squares fitting, and ordinary differential equations. The MATLAB computing environment is used. Vectorization, efficiency, reliability, and stability are stressed. Includes special lectures on computational statistics.

COM S 324(3740) Computational Linguistics (also COGST 424[4240], LING 424[4243])

Fall or spring. 4 credits. Prerequisites: LING 203. Recommended: COM S 114. Labs involve work in Unix environment. For description, see LING 424.

COM S 330(3300) Applied Database Systems (also INFO 330[3300])

Fall. 3 credits. Prerequisite: COM S/ENGRD 211. COM S majors may use only one of the following toward their degree: COM S/INFO 330 or COM S 433. Introduces students to modern database systems and three-tier application development with a focus on building web-based applications using database systems. Concepts covered include the relational model, relational query languages, data modeling, normalization, database tuning, three-tier architectures, Internet data formats and query languages, server- and client-side technologies, and an introduction to web services. Students build a database-backed web site.

COM S 381(3810) Introduction to Theory of Computing

Fall, summer. 3 credits. Prerequisite: COM S 280 or permission of instructor. Credit may not be given for both COM S 381 and 481; corrective transfers between COM S 381 and 481 (in either direction) encouraged during first few weeks of instruction. Introduction to the modern theory of computing: automata theory, formal languages, and effective computability.

COM S 382(3820) Introduction to Scientific Computation (also ENGRD 322[3220])

Spring, summer. 3 credits. Prerequisites: COM S 321 or permission of instructor; COM S 314. Corequisite: COM S 413. Introduction to the specification and implementation of modern compilers. Topics include lexical scanning, parsing, type checking, code generation and translation, an introduction to optimization, and the implementation of modern programming languages. The course entails a substantial compiler implementation project.

COM S 413(4121) Practicum in Compilers

Spring. 2 credits. Corequisite: COM S 412. Compiler implementation project related to COM S 412.

COM S 414(4410) Systems Programming and Operating Systems

Fall, spring, summer. 3 credits. Prerequisites: COM S 211, 212, 312 (or permission of instructor), and 314. Corequisite: COM S 415 in spring only. Introduction to the logical design of systems programs, with emphasis on multiprogramming and file systems. Topics include process synchronization, deadlock, memory management, input-output methods, information sharing, protection and security, and file systems. The impact of network and distributed computing environments on operating systems is also discussed.

COM S 415(4411) Practicum in Operating Systems

Fall, spring. 2 credits. Corequisite: COM S 414. Studies the practical aspects of operating systems through the design and implementation of an operating system kernel that supports multiprogramming, virtual memory, and various input-output devices. All the programming for the project is in a high-level language.

COM S 416(4420) Computer Architecture (also ECE 475[4750])

Fall. 4 credits. Prerequisites: ENGRD 230 and COM S/ECE 314. For description, see ECE 475.

COM S 419(4450) Computer Networks

Spring. 4 credits. Prerequisites: COM S 211, 212, 312 (or permission of instructor) and 314. Not offered every year. Introduction to computer networks with an emphasis on evolving Internet standards. A detailed introduction is given to networking protocols for reliable data transfer, flow control, congestion control, naming and addressing, routing, security, management, and application of layered protocols and techniques for protocol design and implementation are covered. The course is project oriented and requires substantial programming experience in Java or C.

COM S 421(4210) Numerical Analysis

Fall. 4 credits. Prerequisites: MATH 221 or 294 or equivalent, one additional mathematics course numbered 300 or above, and knowledge of programming. COM S majors and minors may use only one of the following toward their degree: COM S 321, 322, or 421. Modern algorithms for systems of linear equations, systems of nonlinear equations, numerical optimization, and numerical solution of differential equations. Some discussion of methods suitable for parallel computation. This course requires more mathematical sophistication than COM S 322.

COM S 426(4520) Introduction to Bioinformatics

Fall. 4 credits. Prerequisites: COM S/ENGRD 211, COM S 280. Overview of the goals, tools, and techniques used in bioinformatics, a field that applies ideas from computer science, mathematical modeling, and statistics to make sense of the huge datasets that typify modern biology. Topics include genome assembly, gene finding, gene regulation, gene rearrangements, phylogeny, and comparative genomics. Computational tools such as BLAST, Genscan and MEME are discussed, as are selected applications of Hidden Markov Models, expectation maximization, and dynamic programming. Underlying concepts from biology are provided as required.

COM S 428(4510) Introduction to Computational Biophysics

Fall. 3 credits. Prerequisite: COM S 100, CHEM 211 or equivalent, MATH 221, 293, or 294, PHYS 112 or 213, or permission of instructor. Recommended: BIOBM 350. Offered even-numbered years. Teaches the techniques used to simulate on the computer the structure, dynamics, and function of biological molecules. Computer models of water/protein/membrane systems and distributed computing environments on operating systems are also discussed.

COM S 431(4302) Web Information Systems (also INFO 431[4302])

Fall. 3 credits. Prerequisite: COM S 211 or equivalent. Studies the methods used to search for and discover information in large-scale distributed systems. The emphasis is on information retrieval applied to textual materials, but there is some discussion of other formats. The course includes techniques for searching, browsing, and filtering information and the use of classification systems and thesauri. The techniques are illustrated with examples from web searching and digital libraries.

COM S 433(4302) Web Information Systems (also INFO 431[4302])

Spring. 3 credits. Prerequisites: COM S 211 and some familiarity with web site technology. Examines the architecture of web information systems such as distributed digital libraries and electronic publishing systems. Many of the topics presented are the subject of current research and development at Cornell, other universities, and in standards organizations such as the World Wide Web Consortium. Course content mixes exploration of current tools for building web systems such as XML, XSLT, and RDF with broader concepts such as techniques for knowledge representation and description, object models for content representation, and legal and economic impacts of web usage. A theme that runs throughout the course is the relationship between traditional information
COM S 432(4320) Introduction to Database Systems
Fall. 3 credits. Prerequisites: COM S 312 (or COM S 211, 212, and permission of instructor).
Introduction to modern relational database systems. Concepts covered include storage structures, access methods, query languages, query processing and optimization, transaction processing, and database design theory. The course covers primarily the internals of database systems and includes SQL programming assignments in C++.

COM S 433(4321) Practicum in Database Systems
Fall. 2 credits. Prerequisite: COM S 432 or coregistration in COM S 452. COM S majors may use only one of the following toward their degree: COM S/INFO 330 or COM S 433.

COM S 465(4620) Computer Graphics I (also ARCH 374(3704))
Fall. 4 credits. Prerequisite: COM S/ENGRD 414 or equivalent. COM S majors may use only one of the following after COM S 417: Introduction to the principles of computer graphics in two and three dimensions. Topics include digital images, filtering and anti-aliasing, 2-D and 3-D affine geometry, ray tracing, perspective and 3-D viewing, the graphics pipeline, curves and surfaces, and human visual perception. Homework assignments require programming.

COM S 467(4630) Computer Graphics II
Spring. 3 credits. Prerequisite: COM S 465. Covers the principles of computer graphics including advanced topics such as the modern graphics hardware pipeline, transformations, materials and shading models, advanced texturing, shadow algorithms, hierarchical acceleration structures, global illumination, animation, and 3D surface modeling.

COM S 468(4631) Computer Graphics Practicum
Spring. 2 credits. Prerequisite: COM S 465. Corequisites: COM S 467. Provides COM S 467 students with hands-on experience in computer graphics programming on modern graphics hardware with a final 3D game project. Programming assignments cover 3D transformations, modeling, shading, rendering, animation, and user interfaces. The course uses Java, OpenGL, and Cg for code development.

COM S 472(4700) Foundations of Artificial Intelligence
Fall. 3 credits. Prerequisites: COM S/ENGRD 211 and COM S 280 (or equivalent). Challenging introduction to the major subareas and current research directions in artificial intelligence. Topics include knowledge representation, heuristic search, problem solving, natural-language processing, game-playing, logic and deduction, planning, and machine learning.

COM S 473(4701) Practicum in Artificial Intelligence
Fall. 2 credits. Corequisite: COM S 472. Project course. COM S 472. Topics include knowledge representation systems, search procedures, game-playing, automated reasoning, concept learning, reinforcement learning, neural nets, genetic algorithms, planning, and truth maintenance.

COM S 474(4740) Introduction to Natural Language Processing (also COGST 474, LING 474(4474))
Fall or spring. 4 credits. Prerequisite: COM S 211. Computational oriented introduction to natural language processing, the goal of which is to enable computers to use human languages as input, output, or both. Possible topics include parsing, grammar induction, information retrieval, and machine translation.

COM S 478(4780) Machine Learning
Spring. 4 credits. Prerequisites: COM S 280, 312, and basic knowledge of linear algebra and probability theory. Machine learning is concerned with the question of how to make computers learn from experience. The ability to learn is not only central to most aspects of intelligent behavior, but machine learning techniques have become key components of many software systems. For example, machine learning techniques are used to create spam filters, to analyze customer purchase data, and to explore new domains of science. This course introduces the fundamental set of techniques and algorithms that constitute machine learning as of today, including classification, decision trees and support vector machines, parametric Bayesian learning and hidden Markov models, as well as unsupervised learning and reinforcement learning. The course discusses algorithms and methods and provides an introduction to the theory of machine learning.

COM S 480(4870) Introduction to Cryptology (also MATH 335(3350))
Fall. Spring. 3 credits. Prerequisites: COM S 100 and MATH 222 or 294. Students who take this course may not receive credit for MATH 336. For description, see MATH 335.

COM S 481(4810) Introduction to Theory of Computing
Fall. 4 credits. Prerequisite: COM S 280 or permission of instructor. Credit not granted for both COM S 381 and 481; corrective transfers between COM S 481 and 381 (in either direction) encouraged during first few weeks of instruction. Faster-moving and deeper version of COM S 381.

COM S 482(4820) Introduction to Analysis of Algorithms
Spring, summer. 4 credits. Prerequisites: COM S 280 and 312. Develops techniques used in the design and analysis of algorithms, with an emphasis on problems arising in computing applications. Example applications are drawn from systems and networks, artificial intelligence, computer vision, data mining, and computational biology. This course covers four major algorithm design techniques (greedy algorithms, divide-and-conquer, dynamic programming, and network flow), computational complexity focusing on NP-completeness, and algorithmic techniques for intractable problems (including identification of structured special cases, approximation algorithms, and local search heuristics).

COM S 483(4832) Quantum Computation (also PHYS 481/881(4481/7881))
Spring. 2 credits. Prerequisite: familiarity with theory of vector spaces over complex numbers. Not offered every year. For description, see PHYS 481.

COM S 486(4860) Applied Logic (also MATH 486(4860))
Fall or spring. 4 credits. Prerequisites: MATH 222 or 294, COM S 280 or equivalent (e.g., MATH 332, 432, 434, 481), and some additional background in mathematics or theoretical computer science. Propositional and predicate logic, compactness and completeness by tableaux, natural deduction, and resolution. Equational logic. Automated theorem proving and unification. Rewrite rules and equational logic. Knuth-Bendix method, and the congruence-closure algorithm and lambda-calculus reduction strategies. Topics in Prolog, LISP, ML, or Nuprl. Applications to expert systems and program verification.

COM S 490(4989) Independent Reading and Research
Fall, spring. 1-4 credits. Independent reading and research for undergraduates.

COM S 501(5150) Software Engineering
Spring. 4 credits. Prerequisite: COM S 211 or equivalent experience programming in Java or C++. Introduction to the practical problems of specifying, designing, and building large, reliable software systems. Students work in teams on projects for real clients. This work includes a feasibility study, requirements analysis, object-oriented design, implementation, testing, and delivery to the client. Additional topics covered in lectures include professionalism, project management, and the legal framework for software development.

COM S 513(5430) System Security
Fall. 4 credits. Prerequisites: COM S 414 or 419 and familiarity with JAVA, C, or C# programming languages. Discusses security and survivability for computers and communications networks. Includes discussions of policy issues (e.g., the national debates on cryptography policy) as well as the discussions of the technical alternatives for implementing the properties that comprise "trustworthiness" in a computing system. Covers mechanisms for authorization and authentication as well as cryptographic protocols.

COM S 514(5410) Intermediate Computer Systems
Spring. 4 credits. Prerequisite: COM S 414 or permission of instructor. Focuses on practical issues in designing and implementing distributed software. Topics vary depending on instructor. Recent offerings have covered object-oriented software development methodologies and tools, distributed computing, fault-tolerant systems, and network operating systems or databases. Students undertake a substantial software project. Many students obtain additional project credit by co-registering in COM S 490, 515, or 790.

COM S 516(5420) Parallel Computer Architecture (also ECE 572(5720))
Spring. 4 credits. Prerequisite: ECE 475. For description, see ECE 572.

COM S 522(5220) Computational Tools and Methods for Finance
Spring. 4 credits. Prerequisites: COM S 211, 212. Topics include knowledge representation systems, search procedures, game-playing, automated reasoning, concept learning, reinforcement learning, neural nets, genetic algorithms, planning, and truth maintenance.
Provides a hands-on introduction to computational methods and tools used in finance. Students study both the underlying methods and efficient implementation. The MATLAB Financial Toolbox, along with additional MATLAB tools, are used extensively. The numerical techniques discussed include nonlinear least-squares procedures (regression), basic linear algebra, linear and nonlinear optimization, finite-difference methods for PDEs, quadratic programming (and linear complementarity problems), and specialized tree (and lattice) evaluation methods.

COM S 530(5300) The Architecture of Large-Scale Information Systems
(also INFO 530(5300))
Spring. 4 credits. Prerequisites: COM S/INFO 330 or COM S 452.
Deals with the architecture of large-scale information systems, with special emphasis on Internet-based systems. Topics include three-tier architectures, edge caches, distributed transaction services, workflows, performance scalability, and high-availability architectures. The course includes a substantial project in the context of three-tier architectures, involving web servers, application servers, and database systems. Students study and use technologies such as Web Services, .Net, J2EE, ASPs, Servlets, XML, and SOAP.

COM S 565(5640) Computer Animation
(also ART 273(2703), CIS 565(5640))
Fall. 4 credits. Prerequisites: none.
For description, see ART 273.

CIS 566(5642) Advanced Animation
(also ART 372(3702), COM S 566(5642))
Spring. 4 credits. Prerequisites: none.
For description, see ART 372.

COM S 572(5722) Heuristic Methods for Optimization
(also CEE 509(5090), CIS 572(5722), OR&IE 533(5340))
Fall. 3 or 4 credits. Prerequisites: COM S/ENGRD 211 or 522 or CIS/ENGRD 241, or graduate standing, or permission of instructor. Not offered every year.
For description, see CEE 509.

COM S 578(5780) Empirical Methods in Machine Learning and Data Mining
Fall. 4 credits. Prerequisites: COM S 280 and 312 or equivalent.
This implementation-oriented course presents a broad introduction to current algorithms and approaches in machine learning, knowledge discovery, and data mining and their application to real-world learning and decision-making tasks. The course also covers experimental methods for comparing learning algorithms, for understanding and explaining their differences, and for exploring the conditions under which each is most appropriate.

COM S 611(6110) Advanced Programming Languages
Fall. 4 credits. Prerequisites: graduate standing or permission of instructor.
Study of programming paradigms: functional, imperative, concurrent, and logic programming. Models of programming languages, including the lambda calculus. Type systems, polymorphism, modules, and other object-oriented constructs. Program transformations, programming logic, and applications to programming methodology.

COM S 612(6120) Compiler Design for High-Performance Architectures
Spring. 4 credits. Prerequisites: COM S 314 and 412 or permission of instructor.

COM S 614(6410) Advanced Systems
Fall or spring. 4 credits. Prerequisite: COM S 414 or permission of instructor.
Advanced course in systems, emphasizing contemporary research in distributed systems. Topics include communication protocols, consistency in distributed systems, fault-tolerance, knowledge-based protocols, performance, scheduling, concurrency control, and authentication and security issues.

COM S 615(6460) Peer-to-Peer Systems
Fall or spring. 4 credits. Recommended: COM S 414 or permission of instructor.
Peer-to-peer (P2P) is a new paradigm for distributed computing. P2P systems lack centralized servers and rely on self-organization and peer-to-peer resource sharing to accomplish their tasks. This course examines the peer-to-peer paradigm and peer-to-peer systems, and it discusses existing and new applications. Students are expected to perform an in-depth study of an existing approach or to develop new peer-to-peer systems and applications as part of the course project.

COM S 619(6450) Advanced Computer Networks
Fall. 4 credits. Prerequisite: COM S 419 or 519, or permission of instructor. Not offered every year.
Examines advanced computer network topics such as overlay and P2P networking, reliable multicast, mobility, voice over IP, header compression, security, and extreme networking environments (fast, slow, big, long). The emphasis is on both research and the latest standards. A project with research content is required.

COM S 621(6210) Matrix Computations
Fall. 4 credits. Prerequisites: MATH 411 and 431 or permission of instructor.
Stable and efficient algorithms for linear equations, least squares, and eigenvalue problems. Direct and iterative methods are considered. The MATLAB system is used extensively.

COM S 622(6220) Numerical Optimization and Nonlinear Algebraic Equations
Spring. 4 credits. Prerequisite: COM S 621.
Offered odd-numbered years.
Modern algorithms for the numerical solution of multidimensional optimization problems and simultaneous nonlinear algebraic equations. Emphasis is on efficient, stable, and reliable numerical techniques with strong global convergence properties: quasi-Newton methods, modified Newton algorithms, and trust-region procedures. Special topics may include large-scale optimization, quadratic programming, and numerical approximation.

COM S 624(6240) Numerical Solution of Differential Equations
Spring. 4 credits. Prerequisites: exposure to numerical analysis (e.g., COM S 421 or 621) and differential equations, and knowledge of MATLAB. Offered even-numbered years.
Finite difference methods for the solution of ordinary and partial differential equations. A fast-moving course that begins with a three-week survey of numerical methods for ODEs, then moves on to Fourier analysis and methods for PDEs, especially parabolic and hyperbolic equations. Other topics include numerical stability, finite element methods, Hamiltonian problems, and computational issues such as mesh generation and sparse matrix computation for PDES.

COM S 626(6510) Computational Molecular Biology
Spring. 4 credits. Prerequisites: familiarity with linear programming, numerical solutions of ordinary differential equations, and nonlinear optimization methods. Problems and algorithms in computational molecular biology. Topics include sequences (alignment, scoring functions, complexity of searches and alignment), secondary structure prediction, families, and function; the protein folding problem (lattice models, lattice searches, the HP model, chemical potentials, statistical potentials, funnels, complexity and model verification, global optimization, homology, threading); and the dynamics of complex biosystems (the Molecular Dynamics method, long-range forces, statistics of flexible systems, reduced models).

COM S 628(6522) Biological Sequence Analysis
Spring. 4 credits. Prerequisite: none.
Typically concentrates on one topic in biological sequence analysis, providing an in-depth analysis of the algorithmic and statistical challenges in that area. The selected topics vary from year to year.

COM S 630(6300) Representing and Accessing Digital Information
(also INFO 630(6300))
Spring. 4 credits. Prerequisites: basic knowledge of linear algebra and probability theory; basic programming skills.
Information retrieval has evolved from the problem of locating books in a library to a multitude of tasks ubiquitous in business, science, and personal life. Modern information systems automatically compose newspapers, extract facts from the web, and analyze usage patterns. This course covers the necessary techniques for representing, organizing, and accessing digital information that is in textual or semistructured form. Topics include information retrieval, natural language processing, and machine learning, with links to work in databases and data mining.

COM S 632(6320) Database Systems
Spring. 4 credits. Prerequisite: COM S 432/433 or permission of instructor.
Covers a variety of advanced issues ranging from transaction management to query processing to data mining, involving extensive paper reading and discussion. Development of a term project with research content is required.
COM S 633(6322) Advanced Database Systems
Spring. 4 credits. Covers advanced topics in database systems and data mining. The exact set of topics changes with each offering of the course.

COM S 664(6670) Machine Vision
Fall. 4 credits. Prerequisites: Introduction to computer vision, with an emphasis on discrete optimization algorithms and MATH 221 or equivalent. Introduction to computer vision, with an emphasis on discrete optimization algorithms and on applications in medical imaging. Topics include edge detection, image segmentation, stereopsis, motion and optical flow, active contours, and the Hausdorff distance. Students are required to implement several of the algorithms covered in the course and complete a final project.

COM S 665(6630) Physically Based Rendering
Fall or spring. 4 credits. Prerequisites: COM S 465 and 467 or equivalent and undergraduate-level understanding of algorithms, probability and statistics, vector calculus, and programming. Not offered every year.

COM S 678(6770) Advanced Artificial Intelligence
Spring. 4 credits. Prerequisites: COM S 672 or permission of instructor. Artificial intelligence (AI) provides many computational challenges. This course covers a variety of areas in AI, including knowledge representation, automated reasoning, learning, and planning, with an emphasis on computational issues. Specific topics include stochastic reasoning and search procedures, properties of problem encodings, issues of syntax and semantics in knowledge representation languages, and satisfaction methods and search procedures, and critically constrained problems and their relation to phase-transition phenomena. In addition, connections between artificial intelligence and other fields, such as statistical physics, operations research, and cognitive science are explored.

COM S 673(6724) Integration of Artificial Intelligence and Operations Research (also CIS 673(6724))
Spring. 3 credits. Covers topics on the integration of artificial intelligence (AI) and operations research (OR) techniques for solving combinatorial problems as they appear in AI and OR applications. Application domains include AI planning, scheduling, computational auctions, market mechanisms, and combinatorial designs.

COM S 674(6740) Natural Language Processing
Spring. 3 credits. Prerequisites: COM S 472 or permission of instructor. Not offered every year. Presents a graduate-level introduction to natural language processing, the primary concern of which is the study of human language use from a computational perspective. Covers syntactic analysis, semantic interpretation, and discourse processing, examining both symbolic and statistical approaches. Possible topics include information extraction, natural language generation, memory models, ambiguity resolution, finite-state methods, mildly context-sensitive formalisms, deductive approaches to interpretation, machine translation, and machine learning of natural language.

COM S 676(6764) Reasoning about Knowledge
Fall. 4 credits. Prerequisites: COM S 477 or COM S 478 or equivalent and undergraduate-level understanding of algorithms, programming, and vector calculus. Advanced course in realistic image synthesis, focusing on the computation of physically accurate images. Topics include radiometry, light transport and global illumination, Monte-Carlo rendering, rendering using the modern graphics pipeline, interactive global illumination, shadow algorithms, perception for rendering, and image-based rendering.

COM S 677(6766) Reasoning about Uncertainty
Fall. 4 credits. Prerequisites: COM S 472 or permission of instructor. Not offered every year. Emphasizes extending and complementing the range of probabilistic reasoning approaches to uncertainty, from statistical information to degrees of belief, and decision theory.

COM S 678(6780) Advanced Topics in Machine Learning
Spring. 4 credits. Prerequisites: COM S 478 or equivalent, or permission of instructor. Not offered every year. Extends and complements COM S 478 and 578, giving in-depth coverage of new and advanced methods in machine learning, in particular, techniques to answer research questions in machine learning, giving starting points for future work. The content of the course reflects an equal balance between learning theory and practical machine learning, making an emphasis on approaches with practical relevance. Topics include support vector machines, clustering, Bayes nets, boosting, model selection, learning orderings, and inductive transfer.

COM S 681(6820) Analysis of Algorithms
Fall. 4 credits. Prerequisite: COM S 482 or graduate standing. Methodology for developing efficient algorithms, primarily for graph theoretic problems. Understanding of the inherent complexity of natural problems via polynomial-time algorithms, randomized algorithms, NP-completeness, and randomized reducibilities. Also covers topics such as parallel algorithms and efficient data structures.

COM S 682(6810) Theory of Computing
Spring. 4 credits. Prerequisite: COM S 581 or equivalent, or permission of instructor. Covers topics such as parallel algorithms and efficient data structures.

COM S 683(6822) Advanced Design and Analysis of Algorithms
Spring. 4 credits. Prerequisite: COM S 681 or permission of instructor. Covers advanced topics in algorithm design and analysis.

COM S 684(6840) Algorithmic Game Theory
Fall or spring. 4 credits. Prerequisite: background in algorithms and graphs at level of COM S 482. No prior knowledge of game theory or economics assumed. Algorithmic game theory combines algorithmic thinking with game-theoretic or, more generally, economic concepts. This course focuses on problems arising from, and motivated by, the Internet and other decentralized computer networks. The most defining characteristic of the Internet is that it was not designed by a single central entity, but emerged from the complex interaction of many economic agents, such as network operators, service providers, designers, and users, in varying degrees of collaboration and competition. The course focuses on some of the many questions at the interface between algorithms and game theory that arise from this point of view. Topics include Nash equilibrium and general equilibrium, the price of anarchy, market equilibrium, social choice theory, mechanism design, and multistage pricing.

COM S 685(6850) The Structure of Information Networks (also INFO 685(6850))
Fall or spring. 4 credits. Prerequisite: COM S 482. Information networks such as the World Wide Web are characterized by the interplay between heterogeneous content and a complex underlying link structure. This course covers recent research on algorithms for analyzing such networks and models that abstract their basic properties. Topics include combinatorial and probabilistic techniques for link analysis, centralized and decentralized search algorithms, generative models for networks, and connections with work in the areas of social networks and citation analysis.

COM S 686(6860) Logics of Programs
Spring. 4 credits. Prerequisites: COM S 481, 682, and MATH 481 or MATH/COM S 486. Not offered every year.
COM S 709(7090) Computer Science Colloquium
Fall, spring. 1 credit. For staff, visitors, and graduate students interested in computer science. S-U grades only.
Weekly meeting for the discussion and study of important topics in the field.

COM S 711(7191) Seminar in Advanced Programming Languages
Fall, spring. 3 credits.

COM S 712(7491) Seminar in Systems and Methodology
Fall, spring. 4 credits. Prerequisites: graduate course employing formal reasoning (e.g., COM S 611, 613, 671), logic course, or permission of instructor. Not offered every year.
Discussion of contemporary issues in the design and analysis of computing systems. Emphasis is on the proper use of rigor, models, and formalism.

COM S 714(7410) Topics in Systems
Fall or spring. 3 credits. Prerequisite: permission of instructor.

COM S 715(7192) Seminar in Programming Refinement Logics
Fall, spring. 4 credits. Prerequisite: permission of instructor.
Topics in programming logics, possibly including type theory, constructive logic, decision procedures, heuristic methods, extraction of code from proofs, and the design of proof-development and problem-solving systems.

COM S 717(7430) Topics in Parallel Architectures
Fall. 4 credits. Prerequisite: COM S 612 or permission of instructor. Not offered every year.
Covers topics in parallel computers. Material includes: architectures of parallel computers, parallelizing compilers, operating systems for parallel computers, and languages (functional and logic-programming languages) designed for parallel computation.

COM S 718(7690) Computer Graphics Seminar
Fall, spring. 4 credits.

COM S 719(7910) Seminar in Programming Languages
Fall, spring. 4 credits. Prerequisite: COM S 611 or permission of instructor. S-U grades only.

COM S 721(7210) Topics in Numerical Analysis
Fall, spring. 4 credits. Prerequisite: COM S 621 or 622 or permission of instructor. Not offered every year.
Topics are chosen at instructor's discretion.

COM S 726(7590) Problems and Perspectives in Computational Molecular Biology (also PL BR 726[7260])
Fall, spring. 1 credit. Open to all from life sciences, computational sciences, and physical sciences. S-U grades only.
Weekly seminar series discussing timely topics in computational molecular biology. Addresses methodological approaches to sequence and structure analysis, function prediction, study of evolutionary relationships, and analysis of large biological systems. Statistical and deterministic computational approaches are covered, and specific and detailed biological examples are discussed. In each topic, one or two representative papers are selected that made significant advances in this field. The lectures are given by faculty and students. We try to bridge these disciplines by pairing students and faculty from complementary backgrounds.

COM S 732(7320) Seminar in Database Systems
Fall, spring. 4 credits. S-U grades only.

COM S 750(7726) Evolutionary Computation and Design Automation (also CIS 750[7726], M&AE 650[6500])
Fall. 4 credits. Prerequisite: programming experience or permission of instructor. Not offered every year.
Seminar course in evolutionary algorithms and their application to optimization and open-ended computational design. Genetic algorithms, genetic programming, co-evolution, arms races and cooperation, developmental representations, learning, and symbiosis are covered. Topics include artificial life, evolutionary robotics, and applications in a variety of domains in science and engineering. Suitable for students interested in computational techniques for addressing open-ended design problems and in computational models of evolutionary discovery.

COM S 754(7490) Systems Research Seminar
Fall, spring. 1 credit. S-U grades only.

COM S 772(7790) Seminar in Artificial Intelligence
Fall, spring. 4 credits. Prerequisite: permission of instructor. S-U grades only.
Informal weekly seminar in which current topics in natural language understanding and computational linguistics are discussed.

COM S 786(7860) Introduction to Kleene Algebra
Spring. 4 credits. Prerequisite: COM S 481. Recommended: COM S 482 or 681, COM S 682, elementary logic (MATH 481 or 681), algebra (MATH 427 or 527). Kleene algebra is an algebraic system that axiomatically captures the properties of a natural class of structures arising in logic and computer science. It has appeared in various guises in relational algebra, semantics and topology of programs, automata and formal language theory, and the design and analysis of algorithms. This course reviews the history of the development of Kleene algebra and Kleene algebra with tests (Kleene/Boolean algebra); studies models, compare axiomatizations, and derive completeness, expressiveness, and complexity results; and discusses various applications in program schematology, program verification, compiler optimization, and programming language semantics and logic.

COM S 789(7890) Seminar in Theory of Algorithms and Computing
Fall, spring. 4 credits. Prerequisite: permission of instructor. S-U grades only.

COM S 790(7999) Independent Research
Fall, spring. Prerequisite: permission of a computer science adviser. Independent research or master of engineering project.

COM S 990(9999) Thesis Research
Fall, spring. Prerequisite: permission of a computer science adviser. S-U grades only. Doctoral research.

INFORMATION SCIENCE (INFO)
INFO 130(1300) Introductory Design and Programming for the Web (also COM S 130(1300))
Fall. 3 credits.
For description, see COM S 130.

INFO 172(1700) Computation, Information, and Intelligence (also COGST 172, COM S 172[1700], ENGRG 172(1700))
Fall. 3 credits. Prerequisites: some knowledge of differentiation; permission of instructor for students who have completed equivalent of COM S 100.
For description, see COM S 172.

INFO 214(2140) Cognitive Psychology (also COGST/PSYCH 214[2140])
Fall. 3 credits. Limited to 175 students.
Prerequisite: sophomore standing.
Graduate students, see INFO/PSYCH 614, or COGST 501. Not offered 2005–2006.
For description, see PSYCH 214.

INFO 230(2300) Intermediate Design and Programming for the Web (also COM S 230[2300])
Spring. 3 credits. Prerequisite: COM S/INFO 130 or equivalent knowledge.
For description, see COM S 230.

INFO 245(2450) Psychology of Social Computing (also COMM 245[2450])
Fall. 3 credits.
For description, see COMM 245.

INFO 292(2921) Inventing an Information Society (also AM ST 292[2980], ECE/ENGRG 298[2980], HIST 292[2990], S&TS 292[2921])
Spring. 3 credits. May not be taken for credit after ECE/ENGRG 198.
For description, see ENGRG 298.

INFO 295(2950) Mathematical Methods for Information Science
Fall. 4 credits. Corequisite: MATH 231 or equivalent.
Teaches basic mathematical methods for information science. Topics include graph theory, discrete probability, Bayesian methods, finite automata, Markov models, and hidden Markov models. Uses examples and applications from various areas of information science such as the structure of the web, genomics, natural language processing, and signal processing.

INFO 330(3300) Applied Database Systems (also COM S 330[3300])
Fall. 3 credits. Prerequisite: COM S/ENGRI 211.
For description, see COM S 330.

INFO 345(3450) Human-Computer Interaction Design (also COMM 345[3450])
Spring. 3 credits.
For description, see COMM 345.

INFO 349(3491) Media Technologies (also COMM 349[3490], S&TS 349[3491])
Spring. 3 credits.
For description, see S&TS 349.

INFO 355(3551) Computers: From the 17 C. to the Dot.com Boom (also S&TS 355[3561])
Fall. 4 credits.
For description, see S&TS 355.

INFO 356(3561) Computing Cultures (also S&TS 356[3561])
Spring. 4 credits. Prerequisites: none.
For description, see S&TS 356.

[INFO 387(3871)] The Automatic Lifeline: Interaction Culture and Technology (also S&TS 387(3871))
For description, see S&TS 387.1

INFO 430(4300) Information Retrieval (also COM S 430(4300))
Fall. 3 credits. Prerequisite: COM S/ENGRO 211 or equivalent.
For description, see COM S 430.

INFO 431(4302) Web Information Systems (also COM S 431(4302))
Spring. 3 credits. Prerequisites: COM S 211 and some familiarity with web site technology.
For description, see COM S 431.

INFO 435(4350) Seminar on Applications of Information Science (also INFO 635(6350))
Spring. 3 credits. Prerequisites: background in computing, data structures, and programming at level of COM S 211 or equivalent, and experience using information systems. Undergraduates and master's students should register for INFO 453; Ph.D. students should register for INFO 635.
Examines the technological, sociological, legal, financial, and political aspects of information systems in the context of innovative applications. Designed as a series of case studies in information science, with occasional presentations from the people involved in designing or maintaining those systems. Examples include arXiv, NSDI, Nuprl, the Legal Information Institute, Protomap, Dspace, and others created or maintained at Cornell, as well as some representative exterior resources. The case studies are augmented by readings and discussions of recent articles on technical components of the information systems, including machine learning tools, link and network analysis, metadata standards, document formats and clustering, data integrity, and natural language processing. Aspects of human and social interactions with the information systems considered include copyright issues, privacy issues, public/private partnerships, and publishing models.

INFO 440(4400) Advanced Human-Computer Interaction Design (also COMM 440(4400))
Fall. 3 credits. Prerequisites: COMM/INFO 345 or permission of instructor.
For description, see COMM 440.

INFO 445(4450) Seminar in Computer-Mediated Communication (also COMM 445(4450))
Fall. 3 credits. Prerequisite: COMM/INFO 245.
For description, see COMM 445.

INFO 447(4470) Social and Economic Data (also ILRLE 447(4470))
Spring. 4 credits. Prerequisites: one semester of calculus, IS statistics requirement, and one upper-level social science course, or permission of instructor. Social and economic data drive decisions in public and private organizations, and quality decisions require quality data. This course focuses on data quality—conceptual fit, sampling and non-sampling error, timeliness, geographic detail, and dissemination—as well as legal and ethical issues in the data manufacturing process. Major emphasis is placed on public use microdata files of the U.S. Census Bureau and their role in the allocation of federal funds. These files include the Census of Population and Housing, Current Population Survey, American Housing Survey, Consumer Expenditure Survey, and American Community Survey. The course is appropriate for upper-level undergraduate, professional master's and doctoral students who will use the data of data products, from the public and private sectors, and/or producers of data products for their organizations, working with existing data products from public and proprietary sources, as well as administrative or survey data collected by their organization.

INFO 450(4500) Language and Technology (also COMM 450(4500))
Spring. 3 credits.
For description, see COMM 450.

INFO 490(4900) Independent Reading and Research
Fall. spring. 1–4 credits.
Independent reading and research for undergraduates.

INFO 491(4910) Teaching in Information Science, Systems, and Technology
Fall, spring. Variable credits.
Involves working as a T.A. in a course in the information science, systems, and technology major.

INFO 515(5150) Culture, Law, and Politics of the Internet
Fall. 4 credits.
Explores the culture, law, and politics of the Internet. Free speech concerns, Internet governance, domain naming, copyright, privacy, and security are highlighted as well as a variety of policy issues such as acceptable-use bandwidth usage on campuses, protocols for DMCA compliance, and the balance of classroom and distributed learning.

INFO 530(5300) The Architecture of Large-Scale Information Systems (also COM S 530(5300))
Spring. 4 credits. Prerequisite: COM S INFO 330 or COM S 432.
For description, see COM S 530.

[INFO 614(6140)] Cognitive Psychology (also COGST 614(6140), PSYCH 614(6140))
Fall. 5 credits. Not offered 2005-2006.
For description, see PSYCH 614.

INFO 630(6300) Representing and Accessing Digital Information (also COM S 630(6300))
Spring. 4 credits. Prerequisites: basic knowledge of linear algebra and probability theory; basic programming skills.
For description, see COM S 630.

[INFO 634(6341)] Information Technology in Sociocultural Context (also S&TS 634(6341))
Fall. 4 credits. Prerequisite: permission of instructor. Not offered 2005-2006.
For description, see S&TS 634.

INFO 635(6390) Seminar on Applications of Information Science (also INFO 435(4390))
Spring. 3 credits. Prerequisites: background in computing, data structures, and programming at level of COM S 211 or equivalent, and experience using information systems. Undergraduates and master's students should register for INFO 435; Ph.D. students should register for INFO 635.
For description, see INFO 435.

INFO 640(6400) Human-Computer Interaction Design (also COMM 640(6400))
Fall. 3 credits. Prerequisite: graduate standing or permission of instructor.
For description, see COMM 640.

INFO 645(6450) Seminar in Computer-Mediated Communication (also COMM 645(6450))
Spring. 3 credits.
For description, see COMM 645.

[INFO 648(6648)] Speech Synthesis By Rule (also LING 648(6648))
Spring. 4 credits. Prerequisite: LING 401, 419, or permission of instructor. Offered alternate years, most offered 2005-2006.
For description, see LING 648.

INFO 685(6850) The Structure of Information Networks (also COM S 685(6850))
Fall or spring. 4 credits. Prerequisite: COMM S 482.
For description, see COMM S 685.

[INFO 694(6940)] The Internet as a Social Phenomenon (also COMM 694(6940))
Fall. 3 credits. Prerequisite: graduate standing; seniors by permission of instructor. Not offered 2005-2006.
For description, see COMM 694.

INFO 747(7400) Social and Economic Data (GR-RDC) (also ILRLE 740(7400))
Spring. 4 credits. Prerequisite: Ph.D. and each master's student.
Teaches all the basics required to acquire and transform raw information into social and economic data. Covers legal, statistical, computing, and social science aspects of the data "production" process covered. Major emphasis is placed on U.S. Census data that are accessible from the Census Bureau's Research Data Center network. This version of the course has been specially prepared for graduate students who are planning to use RDC-based data or are seriously considering it. RDC-based data products covered include the new Longitudinal Employer-Household Dynamics (LEHD) micro data; the Longitudinal Business Database (LBD) and its predecessor the Longitudinal Research Database (LRD); internal versions of the Survey of Income and Program Participation (SIPP), Current Population Survey (CPS), American Community Survey (ACS), American Housing Survey (AHS), the 1990 and 2000 Decennial Census of Population and Housing; the Employer Business Register (BR and SSEL); the Censuses and Annual Surveys of Manufacturers, Mining, Services, Retail Trade, Wholesale Trade, Construction, Transportation, Communications, and Utilities; Business Expenditures Survey; Characteristics of Business Owners; and others. Students are introduced to the new NSF-sponsored Virtual Research Data Center. Core topics include: basic statistical principles of...
populations and sampling frames; acquiring data via samples, censuses, administrative records, and transaction logging; law, economics and statistics of data privacy and confidentiality protection; data linking and integration techniques (probabilistic record linking; multivariate statistical matching); data imputation techniques; and analytic methods for complex linked data sets.

[INFO 751(7002) Media Research and Critical Design]
Fall or spring. 4 credits. Prerequisites: graduate-level training in science and technology studies, philosophy, critical theory, communication, artificial intelligence, human-computer interaction, or equivalent, or permission of instructor. Not offered every year.

[INFO 790(7900) Independent Research]
Fall, spring. Variable credit. Prerequisite: permission of an information science faculty member. Independent research for M.Eng. students and pre-A exam Ph.D. students.

[INFO 990(9900) Thesis Research]
Fall, spring. Variable credit. Prerequisite: permission of an information science faculty member. Thesis research for post-A exam Ph.D. students.
CONTINUING EDUCATION

INFORMATION SERVICE

This service provides free information, counseling, and referral to adults who have been out of school for several years and want to resume their education. It also provides information about short courses, workshops, professional updates, and executive programs offered by the university to people inside and outside Cornell. For information, write to Continuing Education, B20 Day Hall, Ithaca, NY 14853-2801; call 255-4987; e-mail cusce@cornell.edu; or fax 255-9567.

CORNELL IN WASHINGTON

PROGRAM

Cornell in Washington offers undergraduates the opportunity to visit the strengths of Cornell with all of the best parts of living and learning in Washington, D.C. Students take courses in the fall, spring, or summer for credit, work as externs, and complete substantial research projects, all the while enjoying the rich opportunities available in the nation's capital. For information, write to Cornell in Washington, M101 McGraw Hall, Ithaca, NY 14853-4601; call 255-4090; e-mail cwash@cornell.edu; or visit www.ciw.cornell.edu.

DISTANCE LEARNING

Need a flexible schedule? Have a full-time job? Planning to travel during winter break or during the summer? Don't let any of these stop you from taking a class, earning credits, or learning something new. Wherever you are, whatever your schedule, Cornell distance learning courses are just a keyboard away. Distance learning courses may include a web-based component, videotapes, and/or CD-ROMs. Students interact with the instructor and other students by phone or e-mail. Most assignments and examinations are completed within a scheduled time frame, just as in on-campus courses, but students have the option of getting a head start on readings and lectures. For information, visit www.sce.cornell.edu/dl/.

For faculty members interested in developing credit or noncredit distance learning courses, the school offers a broad range of services, including determining technological needs, resolving copyright issues, creating a marketing plan, and fulfilling administrative duties related to the course. Services are tailored to individual needs and ongoing support is available. Visit www.sce.cornell.edu/dl/ to see what's possible.

CyberTower: Cornell at No Cost

Cornell's online CyberTower program is a great way to meet Cornell faculty and explore fascinating topics ranging from mastodons and wine appreciation to today's headline news, all at no cost. CyberTower features three online program series, with new offerings added every month:

- **Study Rooms** contain video-streamed lectures, links to specially selected web sites, reading lists, and discussion boards with Cornell faculty and fellow CyberTower users.
- **Forums** are informal video-streamed conversations with leading faculty members. Discussion boards enable you to trade comments and questions with each month's featured guest.
- **Views and Reviews** are brief, unabashedly opinionated commentaries by faculty members on books, films, articles, and topics in the news. The newest addition to this series is "SunSpots! Op-Eds from the writers of the Cornell Daily Sun."

To explore CyberTower, simply log on to cybertower.cornell.edu and follow the registration instructions. It's all free and is a great way to see what Cornell has to offer.

EXECUTIVE AND PROFESSIONAL PROGRAMS

The school presents short, high-level professional updates, both on and off campus, in study tours and in locations worldwide via distance learning. These courses are taught by Cornell faculty and senior research staff in many fields. Programs also can be designed to respond to the specific needs and interests of corporations, professional societies, and other groups. For information, call 255-7259; e-mail csup@cornell.edu; fax 255-8942; or visit www.sce.cornell.edu/exec/.

EXTRAMURAL STUDY

Cornell students whose studies have been interrupted may find it useful to take classes on a part-time basis. The school is also dedicated to offering part-time study to staff, faculty, "townies," and anyone else interested in taking courses at the university, improving their job skills, continuing their education, or simply having fun learning something new.

Thanks to the school's Extramural Study program, anyone may (with few exceptions) enroll in any course in the university during the fall and spring semesters if space is available. Part-time study at Cornell is a great opportunity to take fascinating courses and study with world-renowned faculty members. If you'd like to take advantage of Cornell's extensive course offerings but don't need

SCHOOL OF CONTINUING EDUCATION AND SUMMER SESSIONS

The School of Continuing Education and Summer Sessions (SCE) is dedicated to providing outstanding educational opportunities throughout the year for people of all ages and interests. Our programs are presented in a wide variety of formats and time frames and are offered on and off campus and via distance learning. Join us to prepare for your future, enhance your studies, improve your job skills, or simply have fun learning something new!

For information about the following programs, write B20 Day Hall, Ithaca, NY 14853-2801; call 255-4987; e-mail cusce@cornell.edu; or fax 255-9567; unless indicated otherwise below. You may also visit us on the web at www.sce.cornell.edu.

SCHOOL ADMINISTRATION

Glenn C. Altschuler, dean (on leave 7/05 to 6/06)
Charles W. Jermy, Jr., acting dean, and director, Cornell University Summer Session
Diane E. Sheridan, director, finance and administration
Diane M. Dutchie, assistant director, finance and administration

School Program Directors and Managers

Stuart M. Blumin, director, Cornell in Washington Program
Abby H. Eller, director, Summer College Programs for High School Students
Ralph Janis, director, Cornell's Adult University and CyberTower

School Support Services

Graham Dobson, manager, information technologies
Ann L. Morse, manager, media services
Cathy M. Pace, registrar, and coordinator, continuing education information service

CORNELL'S ADULT UNIVERSITY

Cornell's Adult University (CAU) offers weeklong noncredit courses on campus for adults and families during the summer. During the fall, winter, and spring, it offers weekend seminars, weeklong domestic, programs, and international study tours. Developed and led by distinguished members of the Cornell faculty, all programs are inspired by the belief that learning never ends and that one of the roles of a great university is to provide a bridge between traditional formal education and informal, noncredit study. For information, write Cornell's Adult University, 626 Thurston Avenue, Ithaca, NY 14850-2490; call 255-6260; e-mail cauinfo@cornell.edu; or visit www.cau.cornell.edu.

DISTANCE LEARNING

Need a flexible schedule? Have a full-time job? Planning to travel during winter break or during the summer? Don't let any of these stop you from taking a class, earning credits, or learning something new. Wherever you are, whatever your schedule, Cornell distance learning courses are just a keyboard away. Distance learning courses may include a web-based component, videotapes, and/or CD-ROMs. Students interact with the instructor and other students by phone or e-mail. Most assignments and examinations are completed within a scheduled time frame, just as in on-campus courses, but students have the option of getting a head start on readings and lectures. For information, visit www.sce.cornell.edu/dl/.

For faculty members interested in developing credit or noncredit distance learning courses, the school offers a broad range of services, including determining technological needs, resolving copyright issues, creating a marketing plan, and fulfilling administrative duties related to the course. Services are tailored to individual needs and ongoing support is available. Visit www.sce.cornell.edu/dl/ to see what's possible.

CyberTower: Cornell at No Cost

Cornell's online CyberTower program is a great way to meet Cornell faculty and explore fascinating topics ranging from mastodons and wine appreciation to today's headline news, all at no cost. CyberTower features three online program series, with new offerings added every month:

- **Study Rooms** contain video-streamed lectures, links to specially selected web sites, reading lists, and discussion boards with Cornell faculty and fellow CyberTower users.
- **Forums** are informal video-streamed conversations with leading faculty members. Discussion boards enable you to trade comments and questions with each month's featured guest.
- **Views and Reviews** are brief, unabashedly opinionated commentaries by faculty members on books, films, articles, and topics in the news. The newest addition to this series is "SunSpots! Op-Eds from the writers of the Cornell Daily Sun."

To explore CyberTower, simply log on to cybertower.cornell.edu and follow the registration instructions. It's all free and is a great way to see what Cornell has to offer.

EXECUTIVE AND PROFESSIONAL PROGRAMS

The school presents short, high-level professional updates, both on and off campus, in study tours and in locations worldwide via distance learning. These courses are taught by Cornell faculty and senior research staff in many fields. Programs also can be designed to respond to the specific needs and interests of corporations, professional societies, and other groups. For information, call 255-7259; e-mail csup@cornell.edu; fax 255-8942; or visit www.sce.cornell.edu/exec/.

EXTRAMURAL STUDY

Cornell students whose studies have been interrupted may find it useful to take classes on a part-time basis. The school is also dedicated to offering part-time study to staff, faculty, "townies," and anyone else interested in taking courses at the university, improving their job skills, continuing their education, or simply having fun learning something new.

Thanks to the school's Extramural Study program, anyone may (with few exceptions) enroll in any course in the university during the fall and spring semesters if space is available. Part-time study at Cornell is a great opportunity to take fascinating courses and study with world-renowned faculty members. If you'd like to take advantage of Cornell's extensive course offerings but don't need
college credit, you may register through the Visitor's Program and receive a 90 percent discount on tuition.

For information, write to Extramural Study, B20 Day Hall, Ithaca, NY 14853-2801; call 255-4987; e-mail cusce@cornell.edu; fax 255-9697; or visit www.sce.cornell.edu/exmu.

SPECIAL PROGRAMS

If you want to immerse yourself in a particular subject, consider enrolling in a special program. Programs are offered on and off campus, may include an internship, and may be combined with other courses. For information, call 255-7259; e-mail cusp@cornell.edu; fax 255-8942; or visit www.sce.cornell.edu/sp/.

On-Campus Special Programs Roster
AEM Certificate in Business Management
African Languages: Swahili
Architecture
Asian Studies Programs: Chinese, Japanese, Nepali, Sinhala, Tibetan
Biological Sciences Undergraduate Research Program
CMMR Institute for Chemistry Teachers (CICT)
CNS Institute for Physics Teachers
Cornell Institute for Biology Teachers
Education
Engineering Cooperative Education Program
English for International Students and Scholars
Freshman Summer Start
Industrial and Labor Relations: Strategic Corporate Research
Intensive Arabic Program
International Business Program
Landscape Architecture: Site Grading
Leadership Program for Veterinary Students
Nanobiotechnology Institute for Teachers
Prefresherman Summer Program
School of Hotel Administration Executive Education Programs
Teaching Writing
Telluride Association Summer Program

Off-Campus Special Programs Roster
Architecture
Art Studio and Creative Writing Workshop in Rome, Italy
Geologic Field Mapping in Argentina
Human Ecology: Urban Semester Program—The Culture of Medicine
Latin American Studies Summer Program in Brazil
Marine Science: Shoals Marine Laboratory, Maine
Satellite Remote Sensing Applications in Biological Oceanography
Summer in Washington
Tropical Field Ecology and Behavior in Kenya

Campus to Careers
The job market's tough. The economy's tight. You've been thinking it's time to get serious about your future. The School of Continuing Education and Summer Sessions invites you to join us for one of our highly regarded programs linking classroom and careers. No matter what your major is, you can:

• Expand your career opportunities
• Strengthen your résumé and skills
• Develop professional contacts
• Take focused, intensive classes
• Learn from distinguished professors, alumni, practitioners, and executives
• Study in Washington, D.C., New York City, or on the Cornell campus in Ithaca
• Enrich your personal, academic, and professional life

For more information, visit www.sce.cornell.edu/sp/.

Campus-to-Careers Programs Roster
AEM Certificate in Business Management
International Business Program
Practicing Medicine/Providing Health Care
Summer in Washington

SUMMER COLLEGE PROGRAMS FOR HIGH SCHOOL STUDENTS
Cornell's award-winning programs for high school students offer one-, three-, four- and six-week programs for talented sophomores, juniors, and seniors from around the world.
Participants live on our beautiful campus, take college classes with leading Cornell faculty, earn an average of 6 credits, and explore careers and academic majors.
The program is a wonderful opportunity for high school students to experience college life and make some great friends. At the end of the program, students often say it's been the best summer of their life.
For information, call 255-6203; e-mail summer_college@cornell.edu; fax 255-6665; or visit www.summercollege.cornell.edu.

WINTER SESSION
Cornell undergraduate and graduate students, as well as employees and area residents, can earn up to 4 credits between the fall and spring semesters by enrolling in the winter session. This quiet time on campus allows students to enjoy generally smaller classes and to concentrate on intensive study. Winter-session students may enroll in scheduled courses or design individualized study with a faculty member. For information, write to Winter Session, B20 Day Hall, Ithaca, NY 14853-2801; call 255-4987; e-mail cusce@cornell.edu; fax 255-9697; or visit www.sce.cornell.edu/wis/. If a course also is offered through distance learning, the course title will be followed by DL.

Winter Session Course Roster
AEBP 571 Biophysical Methods Advanced Laboratory Course
AEM 240 Marketing DL
AM ST 202 Popular Culture in the United States, 1945 to Present DL
AN SC 222 Canine Genetics DL
AN SC 497 Individual Study in Animal Science DL
AS & PC 131 Swahili (off campus)
BIOE 264 Tropical Field Ornithology (off campus)
COMM 120 Contemporary Mass Communication DL
COMM 263 Organizational Writing
COMM 272 Principles of Public Relations and Advertising DL
CRP 495 Special Topics: Introduction to Peace Science
ECON 101 Introductory Microeconomics DL
ECON 102 Introductory Macroeconomics
ECON 307 Introduction to Peace Science
ENGL 257 American Musical Theatre in New York City (off campus)
ENGL 280 Creative Writing
ENGL 288 Expository Writing
GOVT 161 Introduction to Political Philosophy DL
GOVT 314 Prisons: The Politics of Incarceration in America DL
MUSIC 257 American Musical Theatre in New York City (off campus)
NS 200 Vegetarian Nutrition: An Introduction DL
OR & IE 350 Financial and Managerial Accounting
THETR 257 American Musical Theatre in New York City (off campus)
Practicing Medicine/Providing Health Care (off campus)

CORNELL UNIVERSITY SUMMER SESSION
Summer at Cornell is an excellent time to get a world-class education while enjoying all of the pleasures of summer in the Finger Lakes.
Summer Session features open admissions and outstanding instructors, nearly all of whom are regular Cornell faculty members. Courses are offered on and off campus and by distance learning.
During our three-, six-, or eight-week sessions you can actually get to know your professors and are sure to be surrounded by intriguing people of all ages from all over the world. And, all with time left over for travel or a summer job.
Summer Session offers the practical benefits of fulfilling requirements, accelerating your degree, gaining personal and professional growth, or easing your fall/spring course load. It's also the perfect time to take advantage of the area's stunningly beautiful gorges, waterfalls, lakes, and parks. Hike, swim, sail, picnic, or enjoy a sunset concert on the Arts Quad.
The Cornell University Summer Session offers the university and the best of summer! For information, call 255-4987; e-mail cusce@cornell.edu; or visit our web site at www.summer.cornell.edu.

Summer Session Course Roster
The Cornell University Summer Session offers a wide variety of courses. The list that follows includes those courses that are usually offered every summer. The list is not exhaustive; many new courses or courses offered only occasionally are not listed. For complete information, contact the Summer Session office. Courses are posted on the web (www.summer.cornell.edu) in the fall as the roster is developed. If a course also is offered through distance learning, the course title will be followed by DL.

Africana Studies
AS&RC 131-132 Swahili
AS&RC 205 African Cultures and Civilizations
AS&RC 505 Teaching about Africa

American Studies
AM ST 104 Introduction to American History
AM ST 124 Democracy and Its Discontents: Political Traditions in the United States
AM ST 202 Popular Culture in the United States, 1945 to Present
AM ST 341 Recent American History, 1960 to the Present

Animal Science
AN SC 112 Sustainable Animal Husbandry

Anthropology
ANTHR 100 Introduction to Archaeology
ANTHR 101-102 Introduction to Anthropology

Applied Economics and Management
AEM 220 Introduction to Business Management
AEM 221 Financial Accounting
AEM 224 Principles of Finance
AEM 240 Marketing
AEM 320 Business Law I
AEM 323 Managerial Accounting
AEM 495 Undergraduate Special Topics in Applied Economics and Management

Archaeology
ARKEO 100 Introduction to Archaeology

Architecture
ARCH 110 Introduction to Architecture: Design Studio
ARCH 130 An Introduction to Architecture: Lectures
Consult the Department of Architecture office for a complete list of summer design offerings including foreign study opportunities.

Art
ART 121 Introductory Painting
ART 131 Introductory Intaglio
ART 141 Introductory Sculpture
ART 151-152 Drawing I and II
ART 159 Life and Still-Life Drawing
ART 161 Photography I
ART 168 Black-and-White Photography
ART 169 Color Photography
ART 171-172 Electronic Imaging in Art
ART 221 Painting II
ART 231 Intaglio II
ART 241 Sculpture II
ART 261 Photography II
ART 263 Color Photography
ART 361 Photography III

Asian Studies
ASIAN 225 Literature, Politics, and Genocide in Cambodia

Astronomy
ASTRO 105 An Introduction to the Universe
ASTRO 106 Essential Ideas in Relativity and Cosmology
ASTRO 107 An Introduction to the Universe

Biological and Environmental Engineering
BEE 299 Sustainable Development

Biological Sciences
Ecology and Evolutionary Biology
BIOEE 207 Evolution
BIOEE 261 Ecology and the Environment
BIOEE 467 Seminar in the History of Biology: Evolution, Ethics, and Meaning in Life

Microbiology
BIOM 290-291 General Microbiology

Molecular Biology and Genetics
BIO G 200 Special Studies in Biology
BIOG 281 Genetics
BIOM 333 Principles of Biochemistry: Proteins, Metabolism, and Molecular Biology
BIOM 432 Survey of Cell Biology
BIOM 440 Laboratory in Biochemistry and Molecular Biology

Neurobiology and Behavior
BIO G 107-108 General Biology
BIONB 221 Neurobiology and Behavior I: Introduction to Behavior

Plant Biology
BIOP 240 Green World/Blue Planet
BIOP 245 Plant Biology

Biology and Society
B&SOC 447 Seminar in the History of Biology: Evolution, Ethics, and Meaning in Life

Biometry and Statistics
BTRY 301/601 Statistical Methods

Chemistry and Chemical Biology
CHEM 206 Introduction to General Chemistry
CHEM 207-208 General Chemistry
CHEM 250 Introduction to Organic Chemistry
CHEM 257 Introduction to Organic and Biological Chemistry
CHEM 357-358 Organic Chemistry for the Life Sciences

Classics
Classical Civilization
CLASS 236 Greek Mythology
CLASS 263 The Comic Theater

Greek
CLASS 103 Intensive Greek

Latin
CLASS 107 Intensive Latin

Cognitive Studies
COG 101 Introduction to Cognitive Science

Communication
COMM 116 Communication in Social Relationships
COMM 120 Contemporary Mass Communication
COMM 201 Oral Communication
COMM 203 Argumentation and Debate
COMM 260 Science Writing for Public Information
COMM 263 Organizational Writing
COMM 272 Principles of Public Relations and Advertising

Comparative Literature
COM L 223 The Comic Theater
COM L 236 Greek Mythology

Computer Science
COM S 099 Fundamental Programming Concepts
COM S 100 Introduction to Computer Programming
COM S 101 Introduction to Cognitive Science
COM S 211 Computers and Programming
COM S 322 Introduction to Scientific Computation

Earth and Atmospheric Sciences
EAS 108 Earth in the News
EAS 154 The Sea: An Introduction to Oceanography

Economics and Management
AEM 220 Introduction to Business Management
AEM 221 Financial Accounting
AEM 224 Principles of Finance
AEM 240 Marketing
AEM 320 Business Law
AEM 323 Managerial Accounting
AEM 495 Undergraduate Special Topics in Applied Economics and Management

Art
ART 121 Introductory Painting
ART 131 Introductory Intaglio
ART 141 Introductory Sculpture
ART 151-152 Drawing I and II
ART 159 Life and Still-Life Drawing
ART 161 Photography I
ART 168 Black-and-White Photography
ART 169 Color Photography
ART 171-172 Electronic Imaging in Art
ART 221 Painting II
ART 231 Intaglio II
ART 241 Sculpture II
ART 261 Photography II
ART 263 Color Photography
ART 361 Photography III

Asian Studies
ASIAN 225 Literature, Politics, and Genocide in Cambodia

Astronomy
ASTRO 105 An Introduction to the Universe
ASTRO 106 Essential Ideas in Relativity and Cosmology
ASTRO 107 An Introduction to the Universe

Biological and Environmental Engineering
BEE 299 Sustainable Development

Biological Sciences
Ecology and Evolutionary Biology
BIOEE 207 Evolution
BIOEE 261 Ecology and the Environment
BIOEE 467 Seminar in the History of Biology: Evolution, Ethics, and Meaning in Life

Microbiology
BIOM 290-291 General Microbiology

Molecular Biology and Genetics
BIO G 200 Special Studies in Biology
BIOG 281 Genetics
BIOM 333 Principles of Biochemistry: Proteins, Metabolism, and Molecular Biology
BIOM 432 Survey of Cell Biology
BIOM 440 Laboratory in Biochemistry and Molecular Biology

Neurobiology and Behavior
BIO G 107-108 General Biology
BIONB 221 Neurobiology and Behavior I: Introduction to Behavior

Plant Biology
BIOP 240 Green World/Blue Planet
BIOP 245 Plant Biology

Biology and Society
B&SOC 447 Seminar in the History of Biology: Evolution, Ethics, and Meaning in Life

Biometry and Statistics
BTRY 301/601 Statistical Methods

Chemistry and Chemical Biology
CHEM 206 Introduction to General Chemistry
CHEM 207-208 General Chemistry
CHEM 250 Introduction to Organic Chemistry
CHEM 257 Introduction to Organic and Biological Chemistry
CHEM 357-358 Organic Chemistry for the Life Sciences

Classics
Classical Civilization
CLASS 236 Greek Mythology
CLASS 263 The Comic Theater

Greek
CLASS 103 Intensive Greek

Latin
CLASS 107 Intensive Latin

Cognitive Studies
COG 101 Introduction to Cognitive Science

Communication
COMM 116 Communication in Social Relationships
COMM 120 Contemporary Mass Communication
COMM 201 Oral Communication
COMM 203 Argumentation and Debate
COMM 260 Science Writing for Public Information
COMM 263 Organizational Writing
COMM 272 Principles of Public Relations and Advertising

Comparative Literature
COM L 223 The Comic Theater
COM L 236 Greek Mythology

Computer Science
COM S 099 Fundamental Programming Concepts
COM S 100 Introduction to Computer Programming
COM S 101 Introduction to Cognitive Science
COM S 211 Computers and Programming
COM S 322 Introduction to Scientific Computation

Earth and Atmospheric Sciences
EAS 108 Earth in the News
EAS 154 The Sea: An Introduction to Oceanography
Economics
ECON 101 Introductory Microeconomics DL
ECON 102 Introductory Macroeconomics
ECON 313 Intermediate Microeconomic Theory (calculus)
ECON 314 Intermediate Macroeconomic Theory (calculus)
ECON 362 International Monetary Theory and Policy
ECON 434 Financial Economics, Derivatives, and Risk Management

Education
EDUC 151 Engaging Diversity: Multicultural Issues in Education and Society

Engineering
Distribution Courses
ENGRD 211 Computers and Programming
ENGRD 221 Thermodynamics
ENGRD 270 Basic Engineering Probability and Statistics
ENGRD 322 Introduction to Scientific Computation
The Engineering Cooperative Education Program offers a number of other engineering courses. Contact that office for more information.

English
ENGL 131 FWS: Reading and Writing About... ?
ENGL 132 FWS: The Personal Essay
ENGL 227 Shakespeare
ENGL 280 Creative Writing
ENGL 288-289 Expository Writing
ENGL 328 The Bible in Literary and Cultural Perspective

English as a Second Language
ENGLF 101–102 English as a Second Language
ENGLF 211 English as a Second Language

English for Later Bilinguals
ENGLB 115 English for Later Bilinguals

Government
GOVT 111 Introduction to American Government and Politics
GOVT 131 Introduction to Comparative Government and Politics
GOVT 161 Introduction to Political Philosophy DL
GOVT 181 Introduction to International Relations
GOVT 393 Introduction to Peace Studies

History
HIST 124 Democracy and Its Discontents: Political Traditions in the United States
HIST 152 Introduction to Western Civilization
HIST 154 Introduction to American History
HIST 262 The Middle Ages: Introduction and Sampler
HIST 267 Evolution
HIST 340–341 Recent American History
HIST 415 Seminar in the History of Biology: Evolution, Ethics, and Meaning in Life

History of Art
ART H 202 Survey of European Art: Renaissance to Modern
ART H 261 Introduction to Art History: Modern Art

Horticulture
HORT 202 Organic Gardening

Human Development
HD 115 Human Development
HD 116 Human Development: Section
HD 216 Human Development: Adolescence and Youth

Industrial and Labor Relations
Collective Bargaining, Labor Law, and Labor History
ILRCB 100 Introduction to United States Labor History: 19th Century

Human Resource Studies
HLRHR 266 Personal Computer Basics
HLRHR 464 Business Strategy

International and Comparative Labor
ILRIC 333/333 Politics of the Global North

Labor Economics
ILRLE 240 Economics of Wages and Employment

Social Statistics
ILRST 212 Statistics DL

Linguistics
LING 111–112 American Sign Language I and II
LING 170 Introduction to Cognitive Science

Management
Common Core Courses
NCC 556 Managerial Finance

Management Elective Courses
NBA 666 Negotiations

Marine Science
Consult related department listings for summer offerings in marine science.

Mathematics
MATH 103 Mathematical Explorations
MATH 109 Precalculus Mathematics
MATH 111–112 Calculus
MATH 135 The Art of Secret Writing
MATH 171 Statistical Theory and Application in the Real World
MATH 191–192 Calculus for Engineers
MATH 293–294 Engineering Mathematics
MATH 336 Applicable Algebra

Mechanical and Aerospace Engineering
MAE 221 Thermodynamics

Music
MUSIC 102 Fundamentals of Music

Natural Resources
NTRES 100 Introduction to Environmental Studies

Nutritional Sciences
NS 200 Vegetarian Nutrition: An Introduction DL

Philosophy
PHIL 101 Introduction to Philosophy
PHIL 145 Contemporary Moral Issues
PHIL 191 Introduction to Cognitive Science
PHIL 213 Existentialism
PHIL 263 Religion and Reason

Physical Education
Consult the Physical Education office for a complete list of summer offerings for credit and recreation.

Physics
PHYS 101–102–103 General Physics
PHYS 112 Physics I: Mechanics
PHYS 213 Physics II: Heat/Electromagnetism
PHYS 214 Physics III: Optics, Waves, and Particles

Policy Analysis and Management
PAM 380 Human Sexuality

Psychology
PSYCH 101 Introduction to Psychology: The Frontiers of Psychological Inquiry
PSYCH 102 Introduction to Cognitive Science
PSYCH 128 Introduction to Psychology: Personality and Social Behavior
PSYCH 199 Sports Psychology
PSYCH 223 Introduction to Biopsychology
PSYCH 280 Introduction to Social Psychology
PSYCH 350 Statistics and Research Design

Religious Studies
RELST 262 Religion and Reason
RELST 265 The Middle Ages: Introduction and Sampler

Romance Studies
French Language
FRROM 209 Intermediate Composition and Conversation I

Spanish Language
SPANR 121 Elementary Spanish
SPANR 123 Continuing Spanish

SUMMER SESSION 205
Russian
RUSSA 121–122 Elementary Russian through Film

Science and Technology Studies
S&T 287 Evolution
S&T 447 Seminar in the History of Biology: Evolution, Ethics, and Meaning in Life

Sociology
SOC 101 Introduction to Sociology

Textiles and Apparel
TXA 114 Introduction to Computer-Aided Design

Theatre, Film, and Dance

Film Studies
FILM 324 Film Animation Workshop: Experimental and Traditional Animation on the Oxberry

Dance
DANCE 210 Beginning Dance Composition

Theatre
THETR 223 The Comic Theater

Visual Studies
VISST 211 Beginning Dance Composition

Theoretical and Applied Mechanics
T&AM 293–294 Engineering Mathematics

Writing
WRIT 134 An Introduction to Writing in the University

INDIVIDUALIZED STUDY

Can’t find the course you want? Take it independently! You’d like to study cosmic rays and high-energy electromagnetic radiation, protein structure and the nature of enzymatic catalysis, or American and European decorative arts of the Renaissance and the 19th century. Although there are no regularly scheduled summer courses in those areas or in other areas in which you may be interested, you may still be able to study your favorite subject. Courses that aren’t a part of the regular schedule may be offered for an individual or a group.

If you’re interested in such a course and can find a professor willing to supervise your study, pick up the application for individualized study (available on the web at www.summer.cornell.edu or from the Summer Session office). Also, please let the Summer Session office know if there are courses you would like to see offered next summer (call 255-4987 or e-mail cusce@cornell.edu).
FACILITIES AND SPECIAL PROGRAMS
Most of the academic units of the College of Engineering are on the Joseph N. Pew, Jr. Engineering Quadrangle. The School of Applied and Engineering Physics, the School of Chemical and Biological Engineering, the School of Civil and Environmental Engineering, the School of Electrical and Computer Engineering, the School of Industrial and Labor Relations, and the Materials Research Laboratory are located in Clark Hall on the College of Arts and Sciences campus, and the Department of Biological and Environmental Engineering is in Riley-Robb Hall on the campus of the New York State College of Agriculture and Life Sciences. Special university and college facilities augment the laboratories operated by the various engineering schools and departments, and special centers and programs contribute to opportunities for study and research.

Cornell programs and centers of interest in engineering include the following:

Center for Applied Mathematics. This cross-disciplinary center administers a graduate program.

Center for Nanoscale Systems in Information Technology. The mission of this National Science Foundation Nanoscale Science and Technology Center is to explore new methods for creating nanoscale devices for use in information technologies. The facilities for this center are distributed between Clark Hall and the Engineering Quadrangle, and especially in the new Duffield Hall.

Center for Radiophysics and Space Research. This interdisciplinary unit facilitates research in astronomy and the space sciences.

Center for Theory and Simulation in Science and Engineering. A supercomputer facility used for advanced research in engineering and the physical and biological sciences.

Cornell High Energy Synchrotron Source (CHESS). A high-energy synchrotron radiation laboratory operated in conjunction with the university's high-energy storage ring. Current research programs at CHESS are in areas of structural biology, chemistry, materials science, and physics.

Cornell Nanoscale Science and Technology Facility (part of the National Science Foundation-funded National Nanofabrication Users Network). This center provides equipment and services for research in the science, engineering, and technology of nanometer-scale structures for electronic, chemical, physical, and biological applications.

Cornell Waste Management Institute. This research, teaching, and extension program within the Center for Environmental Research addresses the environmental, technical, and economic issues associated with solid waste; one facility sponsored by the institute is the Combustion Simulation Laboratory in the Sibley School of Mechanical and Aerospace Engineering.

Institute for the Study of the Continents. This interdisciplinary organization promotes research on the structure, composition, and evolution of the continents.

W. M. Keck Foundation in Nanobiotechnology. Facilities of this program include tools for nanoscale diagnostics of biomaterials.

Laboratory of Plasma Studies. A center for research in plasma physics.

Cornell Center for Materials Research. An interdisciplinary facility, with substantial support from the National Science Foundation, providing sophisticated scientific measurement and characterization equipment for materials research.

National Astronomy and Ionosphere Center. The world's largest radio-telescope facility, operated by Cornell in Arecibo, Puerto Rico.

Multidisciplinary Center for Earthquake Engineering Research. A facility established by the National Science Foundation and a group of universities to study response and design of structures in earthquake environments.

Nanobiotechnology Center. The mission of this National Science Foundation Science and Technology Center is to develop nanoscale technologies and science applied to the life sciences. The facilities of this center are distributed between Clark Hall, Kimball Hall, and the Biotechnology Center.

National Institutes of Health/National Science Foundation Developmental Resource in Biophysical Imaging and Optoelectronics. This resource develops novel measurement and optical instrumentation for solving biophysical problems.

Network for Earthquake Engineering Simulation (NEES). A system of nationwide experimental facilities linked by high-performance Internet for laboratory and computational simulation of structures under earthquake loads.

Power Systems Engineering Research Center. A National Science Foundation cooperative center between university and industry in which research is centered on power systems and infrastructure networks.

Program of Computer Graphics. This interdisciplinary research center operates one of the most advanced computer-graphics laboratories in the United States.

Program on Science, Technology, and Society. This cross-disciplinary unit sponsors courses and promotes research on the interaction of science, technology, and society.

The programs listed above are sponsored by College of Engineering units, and several are industry affiliated.

DEGREE PROGRAMS
Cornell programs in engineering and applied science lead to the degrees of bachelor of science (B.S.), master of engineering (M.Eng.), master of science (M.S.), and doctor of philosophy (Ph.D.).

General academic information concerning the B.S. degree is given below under "Undergraduate Study." The student pursues the degree in one of 13 majors. The majors are described under "Engineering Majors."

Many students stay a fifth year in the College of Engineering to pursue a professional degree, the master of engineering (M.Eng.) degree. Joint enrollment in the B.S. and M.Eng. degrees is possible for students in their last semester who lack only 1 to 8 credits for the B.S.

M.Eng. degrees are awarded in most of the major areas. In addition, the following M.Eng. degrees are awarded: aerospace engineering, biomedical engineering, electrical engineering, engineering mechanics, nuclear engineering, operations research and industrial engineering, and systems engineering. For full details on M.Eng. degrees, see "Master of Engineering Degree Programs."

Programs leading to the M.S. and Ph.D. degrees are administered by the Graduate School. They are described in the special announcement Graduate School and the special announcement Graduate Study in Engineering and Applied Science.

UNDERGRADUATE STUDY
Students in the College of Engineering spend most of their first two years of undergraduate studies in the Common Curriculum, which is administered by the College Curriculum Governing Board (CCGB) through the associated dean for undergraduate programs and Engineering Advising. At the end of their third semester, they affiliate with one of these majors: * biological engineering (BE); chemical engineering (ChemE) civil engineering (CE); computer science (CS); electrical and computer engineering (ECE); engineering physics (EP); environmental engineering (EnvE)
geological sciences (GeoS)—with options in geoscience, atmospheric science, and science of earth systems

independent major (IM)

information science, systems, and technology (ISIST)—with options in information science and management science

materials science and engineering (MS&E)

mechanical engineering (ME)

operations research and engineering (ORE)

Criteria for affiliation with the majors are described under "Affiliation with a Major." The majors are described under "Undergraduate Engineering Majors."

Most of the majors have a corresponding minor or option, in which the student can pursue a secondary interest. In addition, there are minors in applied mathematics, biomedical engineering, civil infrastructure, engineering management, engineering statistics, industrial systems and information technology, and information science. There is one option, in bioengineering. See the main section, "Engineering Minors and Options."

"The majors biological engineering, chemical engineering, civil engineering, electrical and computer engineering, materials science and engineering, and mechanical engineering are accredited by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology (ABET)."

To major in biological engineering, students normally enroll in the College of Agriculture and Life Sciences for the first three years and jointly in that college and the College of Engineering for the final year. However, students initially enrolled in the College of Engineering may affiliate with the biological engineering major and complete the degree solely within Engineering.

There is no undergraduate major in nuclear science and engineering. Students who intend to enter graduate programs in this area are encouraged to begin specialization at the undergraduate level. This may be done by choice of electives within the major (e.g., engineering physics, materials science and engineering, chemical engineering, and the independent major). Contact one of the faculty members in the graduate field of nuclear science and engineering who are most directly concerned with the curriculum, including K. B. Cady, D. A. Hammer, R. W. Kay, and V. O. Kostroun.

Graduation Requirements

To receive the bachelor of science degree, students must meet the requirements of the common curriculum (outlined below) as set forth by the College of Engineering, including the requirements of their chosen major, as established by the school or department that administers the major. (Further explanation of the revised common curriculum and major flow charts are provided in the 2005-2006 edition of the Engineering Undergraduate Handbook.)

Course Category Credits
1. Mathematics 15-16
 2. Physics (major-specific) 8-12
 3. Chemistry (major-specific) 4-8

4. First-year writing seminar 6
5. Technical writing 3
6. Computer programming 4
7. Introduction to engineering (ENGRD) 3
8. Two engineering distributions (ENGRD) 6
9. Liberal studies distribution (6 courses min.) 18
10. Adviser-approved electives 6
11. Major program
 a. Major-required courses 30
 b. Major-approved electives 9
 c. Courses outside the major 9
12. Two semesters of physical education in the freshman year and demonstration of proficiency in swimming (university requirement)

From 123 to 133 credits are required for graduation, depending on the major (see "Engineering Majors").

"Technical writing courses may simultaneously fulfill another requirement.

Mathematics

The normal program in mathematics includes MATH 191 (or 190), 192, 293 or 294 (depending on the major), and a major-specific math course. At least C- must be attained in these courses; if not, the course must be repeated immediately before the next course in the sequence is taken. Failure to achieve at least C- the second time will generally result in withdrawal from the College of Engineering. Courses that are taken a second time to meet this requirement do not yield additional credit toward a degree.

Physics

The normal program in physics includes PHYS 112, 213, and 214 or the corresponding honors courses (PHYS 116, 217, and 218). Engineering students must attain at least C- in each math prerequisite of a physics course before taking the physics course (e.g., C- in MATH 191 before taking PHYS 112 and C- in MATH 192 before taking PHYS 213). Students in the majors ChE/M, CE/VS, GeoS (geoscience and SES options), ISST, and ORE may substitute CHEM 208 for PHYS 214. BE and EnE students may substitute CHEM 257 or 357 for PHYS 214.

Chemistry

CHEM 211 or 207 is required.

CHEM 211 is designed for students who do not intend further study in chemistry. Typically, CHEM 211 is taken during the freshman year, but students who wish to complete the physics program (PHYS 112, 213, and 214) first may postpone CHEM 211 until the sophomore year.

Students intending to affiliate with the following majors usually take CHEM 211: engineering physics; computer science; electrical and computer engineering; information science, systems, and technology; materials science and engineering; mechanical engineering; and operations research and engineering. Students considering chemical engineering must take CHEM 207 in the fall of their freshman year and CHEM 208 in the spring semester. Students considering the science-of-earth-systems option in geological sciences or a health-related career such as medicine should take the CHEM 207-208 sequence.

First-Year Writing Seminars

Each semester of their freshman year, students choose a first-year writing seminar from among more than 100 courses offered by over 30 different departments in the humanities, social sciences, and expressive arts. These courses offer the student practice in writing English prose. They also assure beginning students the benefits of a small class.

Technical Writing

Students can fulfill the upper-level technical-writing requirement using one of the six alternatives below. See www.engineering.cornell.edu/ECP/index.htm for more information about these alternatives.

1. ENGRD 350 or 355, taught by the Engineering Communications Program
2. The Writing-Intensive Co-op—an opportunity to combine work and academics. Some co-op students do a significant amount of writing on the job; under certain circumstances, this writing will satisfy the college's technical-writing requirement. More information is available at www.engineering.cornell.edu/ECP/Writing-IntensiveCoop.htm.
3. An officially designated Writing-Intensive (W-I) engineering course:
 • ENGRD/A&EP 264
 • CHEM 432
 • MS&E 403 and 404 (both)
 • MS&E 405 and 406 (both)
 • M&E 427
 • BEE 450 with co-registration in BEE 493
 • BEE 473 with co-registration in BEE 493
 • BEE 489
4. ENGRD 302, a 1-credit attachment to an engineering course that is not one of the officially designated W-I courses (see #3 above). An instructor may wish to extend the writing done in their course for a given semester so that it will fulfill the technical-writing requirement. With the approval of the CCGB's Subcommittee on Technical Writing, the instructor may have students co-register in ENGRD 302, which may be taken more than once with different courses by permission of the engineering instructor.
5. COMM 260, 263, or 352, taught by the Department of Communication (in the College of Agriculture and Life Sciences).
6. Petition. Occasionally, a student will be doing a significant amount and variety of technical writing elsewhere in the College of Engineering. It may be appropriate to petition the CCGB's Subcommittee on Technical Writing for permission to use this upcoming writing (not past writing) to meet the technical-writing requirement.

Computer Programming

COM S 100 Introduction to Computer Programming is normally taken in the freshman year to fulfill the computer programming requirement.
Before taking COM S 100, some students take COM S 099, Fundamental Programming Concepts, offered in the fall and summer. This 2-credit S-U course is meant for students with virtually no programming experience; students with previous programming experience may not enroll in it. Basic programming concepts and problem analysis are studied. COM S 099 may not be used as credit toward graduation.

Introduction to Engineering Course
An introduction to engineering course (designated ENGRD) must be taken during the freshman year. This course introduces students to the engineering process and provides a substantive experience in an open-ended problem-solving context. See the Introduction to Engineering course listing for current course offerings.

Engineering Distribution
Two engineering distribution (ENGRD) courses (6-8 credits) must be selected from two different categories listed below. A student may use any one of the possible substitutions described.

1. Scientific computing
 ENGRD 211 Computers and Programming
 ENGRD 241 Engineering Computation
 ENGRD 321 Numerical Methods in Computational Molecular Biology
 ENGRD 322 Introduction to Scientific Computation

2. Materials science
 ENGRD 261 Introduction to Mechanical Properties of Materials: From Nanodevices to Superstructures
 ENGRD 262 Electronic Materials for the Information Age

3. Mechanics
 ENGRD 202 Mechanics of Solids
 ENGRD 203 Dynamics
 Majors in Engineering Physics may substitute A&EPE 333 for ENGRD 203.

4. Probability and statistics
 ENGRD 270 Basic Engineering Probability and Statistics
 Majors in Electrical and Computer Engineering may substitute ECE 310 for ENGRD 270.
 Majors in Engineering Physics may substitute ECE 310 or MATH 471 for ENGRD 270.
 Majors in Civil Engineering and Biological Engineering may substitute CEE 304 for ENGRD 270.

5. Electrical sciences
 ENGRD 210 Introduction to Circuits for Electrical and Computer Engineers
 ENGRD 230 Introduction to Digital Logic Design
 ENGRD 264 Computer-Instrumentation Design

6. Thermodynamics and energy balances
 ENGRD 219 Mass and Energy Balances
 ENGRD 221 Thermodynamics

7. Earth and life sciences
 ENGRD 201 Introduction to the Physics and Chemistry of the Earth

 ENGRD 251 Engineering for a Sustainable Society
 ENGRD 260 Principles of Biological Engineering

8. Biology and chemistry
 ENGRD 252 A&EPE 252 The Physics of Life
 BIO G 101 and 103 Biological Sciences, Lec and Lab
 BIO G 105 Introductory Biology
 BIO G 107 General Biology (summer only)
 CHEM 389 Physical Chemistry

Some majors require a specific engineering distribution course as a prerequisite for the upper-class course sequence. These requirements are as follows:

- Biological Engineering: ENGRD 202
- Chemical Engineering: ENGRD 219
- Civil Engineering: ENGRD 202
- Computer Science: ENGRD 211 (co-enrollment in COM S 212 highly recommended)
- Electrical and Computer Engineering: ENGRD 230
- Environmental Engineering: ENGRD 202
- Geological Sciences: ENGRD 201
- Information Science, Systems, and Technology: ENGRD 270
- Materials Science and Engineering: ENGRD 261
- Mechanical Engineering: ENGRD 202
- Operations Research and Engineering: ENGRD 270

Some majors require additional distribution courses after the student affiliates.

Liberal Studies Distribution
The following liberal studies distribution requirements begin with the class entering in 2003. Students who entered before that may choose to use the new requirements.

Global and diverse societies require that engineers have an awareness of historical patterns, an appreciation for different cultures, professional ethics, the ability to work in multifaceted groups, and superior communications skills. Cornell has a rich curriculum in the humanities, arts, and social sciences, enabling every engineering student to obtain a true liberal education. At least six courses (totaling at least 18 credits) are required, and they should be chosen with as much care and foresight as courses from technical areas.

- The six courses must be chosen from at least three of the following six groups.
- At least two of the six courses must be at the 200 level or higher.

Besides courses classified as liberal studies distribution in Arts and Sciences, Engineering classes appropriate courses in other colleges as meeting the various categories. To view these courses, go to www.engineering.cornell.edu/student-services/academic-advising/index.cfm, which contains a complete listing of acceptable courses in each group. A list of courses is also available in Engineering Advising, 167 Olin Hall.

Group 1. Cultural Analysis (CA)
Courses in this area study human life in particular cultural contexts through interpretive analysis of individual behavior, discourse, and social practice. Topics include belief systems (science, medicine, religion), expressive arts and symbolic behavior (visual arts, performance, poetry, myth, narrative, ritual), identity (nationality, race, ethnicity, gender, sexuality), social groups and institutions (family, market, community), and power and politics (states, colonialism, inequality).

Group 2. Historical Analysis (HA)
Courses in this group interpret continuities and changes—political, social, economic, diplomatic, religious, intellectual, artistic, and scientific—through time. The focus may be on groups of people, dominant or subaltern, a specific country or region, an event, a process, or a time period.

Group 3. Literature and the Arts (LA)
Offerings in this area explore literature and the arts in two different but related ways. Some courses focus on the critical study of artworks and on their history, aesthetics, and theory. These courses develop skills of reading, observing, and hearing and encourage reflection on such experiences; many investigate the interplay among individual achievement, artistic tradition, and historical context. Other courses are devoted to the production and performance of artworks (in creative writing, performing arts, and media such as film and video). These courses emphasize the interaction among technical mastery, cognitive knowledge, and creative imagination.

Offerings in this area investigate the bases of human knowledge in its broadest sense, ranging from cognitive faculties shared by humans and animals such as perception, to abstract reasoning, to the ability to form and justify moral judgments. Courses investigating the sources, structure, and limits of cognition may use the methodologies of science, cognitive psychology, linguistics, or philosophy. Courses focusing on moral reasoning explore ways of reflecting on ethical questions that concern the nature of justice, the good life, or human values in general.

Group 5. Social and Behavioral Analysis (SBA)
Courses in this area examine human life in its social context through the use of social-scientific methods, often including hypothesis testing, scientific sampling techniques, and statistical analysis. Topics studied range from the thoughts, feelings, beliefs, and attitudes of individuals to interpersonal relations between individuals (e.g., in friendship, love, conflict) to larger social organizations (e.g., the family, society, religious or educational or civic institutions, the economy, government) to the relationships and conflicts among groups or individuals (e.g., discrimination, inequality, prejudice, stigmas, conflict resolution).

Group 6. Foreign Languages (not literature courses)
Courses in this area teach language skills, inclusive of reading, writing, listening, and spoken non-English languages, at beginning to advanced levels.
Electives

• **Adviser-approved electives**: 6 credits required (approved by the academic adviser). Because these courses should help develop and broaden the skills of the engineer, advisers generally accept the following as approved electives:
 1. One introduction to engineering course (ENGRI)
 2. Engineering distribution courses
 3. Courses stressing written or oral communication
 4. Upper-level engineering courses
 5. Advanced courses in mathematics
 6. Rigorous courses in the biological and physical sciences
 7. Courses in business, economics, or language (when they serve the student's educational and academic objectives)
 8. Courses that expand the major or another part of the curriculum (Note: No ROTC courses may be used as approved electives unless they are co-listed by an academic department.)

• **Major-approved electives**: 9 credits (approved by the major and faculty advisers in the major). Refer to the major curricula for descriptions of courses in this category.

• **Outside-the-major electives**: 9 credits of courses outside the major to ensure breadth of engineering studies

Social Issues of Technology

It is important for engineers to realize the social and ethical implications of their work. Consequently, in selecting their liberal studies distribution courses and approved electives, students are urged to consider courses listed in the "Science and Technology Studies" undergraduate area of concentration (see "Interdisciplinary Centers and Programs"). These courses may provide students with important perspectives on their studies and their future careers.

Engineering Advising

Entering first-year students are assigned a faculty adviser (who may or may not be in their intended major), who remains their adviser until affiliation with a major (normally during the fourth semester). The students are also under the administration of Engineering Advising in Olin Hall, which implements the academic policies of the College Curriculum Governing Board. Engineering Advising serves as the primary resource center for undergraduate students in the college, offering general advising and counseling. Also located in Olin Hall are the Engineering Learning Initiatives Program and Diversity Programs, which are primary resources for counseling, support, tutoring, and networking opportunities.

First-Year Requirements

During the first year, engineering students are expected to complete (or receive credit for) the following core requirements:

- MATH 191 (or 190) and 192
- Two of: CHEM 211, 207, 208, PHYS 112, 213, 214*
- COM S 100
- Two first-year writing seminars
- One introduction to engineering (ENGRI) course
- Two physical education courses
 - "Students with an interest in pre-med (or other health-related careers), chemical engineering, or the science-of-earth-systems option in geological sciences should enroll in the CHEM 207-208 sequence during their first year.

Affiliation with a Major

Students must apply for affiliation with a major during the first semester of their sophomore year, although earlier affiliation may be granted at the discretion of the major. This is done by visiting the undergraduate major office and completing the application for major affiliation form. To affiliate, students must (1) make good progress toward completing required courses in the common curriculum, (2) have a GPA ≥ 2.0, and (3) have satisfied the major's course and grade requirements as specified below:

(Majors may impose alternative affiliation requirements for students applying for affiliation later than the first semester of the sophomore year.)

<table>
<thead>
<tr>
<th>Major</th>
<th>Courses and Minimum Grade Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biological Engineering</td>
<td>At most one grade below C in math and science courses and BEE 151 or equivalent</td>
</tr>
<tr>
<td>Chemical Engineering</td>
<td>At most one grade below C in chemistry, math, physics, and chemical engineering courses. GPA ≥ 2.2 in math, science, and engineering courses</td>
</tr>
<tr>
<td>Civil Engineering</td>
<td>GPA ≥ 2.0 in engineering and science courses. At least C in ENGRD 202 (or CHEM 208, for students who do not take ENGRD 202 before affiliation)</td>
</tr>
<tr>
<td>Computer Science</td>
<td>At least C in completed COM S and math courses. GPA ≥ 2.5 in COM S 211, 212, and 280. GPA ≥ 2.5 in MATH 192 and COM S 280. Visit the CS undergraduate office or the CS undergraduate web site to learn about alternative criteria for affiliation.</td>
</tr>
<tr>
<td>Electrical and Computer Engineering</td>
<td>At least C+ in MATH 293, PHYS 213, and either ECE/ENGRD 210, ECE 220, or ENGRD 230. These courses must be taken for 4 credits. GPA ≥ 2.5 in (if completed): MATH 192, 293, 294, PHYS 213, ENGRD 211, 230, ECE/ENGRD 210, ECE 220.</td>
</tr>
<tr>
<td>Engineering Physics</td>
<td>At least B in required math and physics courses</td>
</tr>
<tr>
<td>Environmental Engineering</td>
<td>GPA ≥ 2.0 in engineering and science courses. At least C in ENGRD 202 or CHEM 257</td>
</tr>
</tbody>
</table>

Special Programs

Dual-Degree Program

The dual-degree program, intended for superior students, allows both a bachelor of science and either a bachelor of arts (B.A.) or bachelor of fine arts (B.F.A.) degree to be earned in about five years. Students registered in the College of Engineering, the College of Arts and Sciences, or the College of Architecture, Art, and Planning may apply and, after acceptance of their application, begin the dual-degree program in their second or third year. For information, contact the appropriate coordinators of dual-degree programs at 55 Goldwin Smith Hall (for Arts and Sciences), B-1 West Sibley Hall (for Architecture, Art, and Planning) and Engineering Advising, 167 Olin Hall.

Double Major in Engineering

The double-major option, which makes it possible to develop expertise in two allied engineering majors, generally requires at least one semester beyond the usual four years. Students affiliate with one major following normal procedures and then petition to enter a second major before the end of their junior year. All requirements of both majors must be satisfied. Further information is available from Engineering Advising, 167 Olin Hall, and the individual major offices.
Independent Major

Students whose educational objectives can be met by one of the regular majors may affiliate with the independent major. Often, the desired curriculum is in an interdisciplinary area.

This major consists of a primary area (2-32 credits), which may be any subject area offered by the schools or departments of the college, and an educationally related secondary area (2-16 credits), which may be in a second engineering subject area or in a logically connected nonengineering area. The combination must form an engineering education in scope and substance and should include engineering design and synthesis as well as engineering sciences. See the discussion of this major in "Undergraduate Engineering Majors."

Engineering Minors and Options

Most of the minors have a corresponding minor, requiring courses (18 credits), in which the student can pursue a secondary interest. Besides those minors, there are minors in applied mathematics, biomedical engineering, civil infrastructure, engineering management, engineering statistics, industrial systems and information technology, and information science. There is also the bioengineering option, which requires only four courses (12 credits) plus a seminar. See "Engineering Minors and Options."

Department of Biomedical Engineering

270 Olin Hall
The charge of the Department of Biomedical Engineering (BME) is to bridge engineering, biology, and medicine. Students are educated to convert basic discoveries in biology and medicine into medically useful devices and therapies to improve human health. Biomedical engineers also contribute to biological discovery. The 39 faculty in the biomedical engineering graduate field represent 12 departments and six colleges (including Weill Medical College). The BME field offers research opportunities in biomedical mechanics; biomaterials; drug delivery, design, production, and metabolism; biomedical instrumentation and diagnostics; and system computational biology.

The Department of BME administers the undergraduate minor in biomedical engineering, the biomedical engineering graduate field, the M.S./Ph.D. degree programs, and the M.Eng. (BME) degree.

Engineering Communications Program

424 Hollister Hall, 255-8588, www.engineering.cornell.edu/ECP
The Engineering Communications Program (ECP), created in 1987 at the urging of the College of Engineering faculty and employers of Cornell engineers, provides instruction in technical writing, oral presentation, and the use of graphics in both. The ECP is a recipient of the Engineering Dean's Prize in Excellence and Innovation in Teaching.

ECP courses give students experience with the difficult task of explaining technical information to audiences that have various levels of technical expertise. Students improve their writing style, become more comfortable with and effective at oral presentation, use standard forms and formats for presenting technical information, perform library and Internet research on engineering topics, and study real engineering situations in which ethics may have been breached.

Enrollment in ECP courses is 20 students per section; like writing seminars elsewhere at Cornell, those taught by the ECP are discussion classes. Students' work receives abundant written comments, and conferences are frequent.

ECP members are available to consult with the faculty teaching writing-intensive technical courses and anyone else interested in including writing in their courses. They oversee the communications component of the Writing-Intensive Co-op and occasionally give talks to alumni and student groups.

Diversity Programs in Engineering Office

146 Olin Hall, 255-0735

The Diversity Programs in Engineering Office (DPEO) operates programs at all levels to facilitate the recruitment and retention of women and minority students in Engineering. The DPEO supports student recruitment, career placement, undergraduate and graduate school preparation, and overall success of women and minority students.

The office participates in a university-wide pre-freshman summer program, and it also provides specialized instruction, in collaboration with Engineering Advising and Engineering Learning Initiatives, each semester in subjects such as math, computer science, and English composition.

Trips and recreational activities provide opportunities for getting a better understanding of how to navigate and adapt to the college. Seminars, lectures, and workshops provide a wide range of topics that are relevant to academic and extracurricular life in the university setting.

In addition, the DPEO sponsors a networking event in April and September that allows company representatives from all over the United States to meet students from historically underrepresented populations. Summer internships and permanent jobs frequently result from this event.

Engineering Learning Initiatives

The office of Engineering Learning Initiatives offers programs designed to enhance the undergraduate academic experience through peer education, cooperative learning, and research opportunities.

Academic Excellence Workshops (AEWs) offered through Engineering Learning Initiatives are taken in conjunction with core engineering courses in math, computer science, and chemistry. The 1-credit AEWs are weekly two-hour cooperative learning sessions. Designed to enhance student understanding, they feature peer-facilitated group work on problems at or above the level of course material.

Undergraduate Research Grants offered through Engineering Learning Initiatives provide opportunities for students to obtain hands-on research experience with a faculty mentor. Students and faculty may apply for funding to cover student stipend and expense costs for the fall, spring, and summer terms.

Tutors-on-Call, through Engineering Learning Initiatives, offers one-on-one peer tutoring free of charge for engineering students in many first- and second-year core courses, including math, chemistry, physics, computer science, and distribution courses.

Engineering Cooperative Education and Career Services

201 Carpenter Hall, 255-5006, www.engineering.cornell.edu/careerservices

This office assists engineering students (freshmen through Ph.D.) on issues related to career development and the job search through individual advising and group seminars. It also administers the Engineering Cooperative Education Program. Each year, more than 200 national employers typically visit the office to recruit technical students and graduates; additional job opportunities are posted electronically through CornellTrak. Both undergraduate and graduate students can use these resources to pursue permanent summer, or co-op employment; however, students seeking co-op opportunities must meet specific requirements.

The Engineering Cooperative Education Program (Co-op) provides an opportunity for students to gain practical experience in industry and other engineering-related enterprises before they graduate. By supplementing course work with carefully monitored, paid jobs, co-op students are able to explore their own interests and acquire a better understanding of engineering as a profession—and still graduate in four years.

To be eligible, a student must have been enrolled in the College of Engineering for four semesters. Students majoring in computer science or biological engineering, but not registered in the College of Engineering, are also eligible. In all cases a GPA ≥ 2.7 is required. Applicants interview with participating employers in February of the sophomore year. Those who receive offers and join the program usually complete their fifth-semester course work on campus during the summer after sophomore year, beginning the first co-op work term the following fall. They return to Cornell to complete the sixth semester with their classmates, and then return to work the following summer with the same employer (but not necessarily in the same department or location) to complete a second work term. Students then spend the senior year back on campus, graduating on schedule with their class. Students who are ahead in their course curriculum may prefer to complete one eight-month spring/summer or summer/fall co-op work term during the junior year.

International Programs

An international perspective, sensitivity to other cultures, and the ability to read and speak a second language are increasingly important for today's engineers. In keeping with the university goal of transnationalizing the curriculum, the College of Engineering encourages students to study or work abroad during their undergraduate years. For information on these and other opportunities to fulfill an international dimension to your undergraduate education, visit Engineering Advising, 167 Olin Hall. For information on an
international co-op work experience, visit the Engineering Cooperative Education and Career Services office, 201 Carpenter Hall.

Students who plan to study abroad apply through Cornell Abroad; please see the introductory section of Courses of Study.

Cooperative Program with the Johnson Graduate School of Management

Undergraduates may be interested in a cooperative program at Cornell that leads to both master of engineering and master of business administration (M.B.A.) degrees. See “Master of Engineering Degrees” for details.

Lester Knight Scholarship Program

The Lester Knight Scholarship Program is designed to assist and encourage Cornell Engineering students and alumni interested in combining their engineering education with a business degree. See “Master of Engineering Degrees” for details.

ACADEMIC PROCEDURES AND POLICIES

Advanced Placement Credit

The College of Engineering awards a significant amount of advanced placement (AP) credit to entering first-year students who demonstrate proficiency in the subject areas of introductory courses. Students can earn AP credit by receiving qualifying scores on any of the following:

1. Advanced placement examinations given and scored by the College Entrance Examination Board (CEEB);
2. General Certificate of Education (GCE) Advanced (“A”) Level Examinations;
3. International Baccalaureate (IB) Higher Level Examinations, or
4. Cornell’s departmental placement examinations, given during orientation week before the beginning of fall-semester classes.

Advanced placement credit is intended to permit students to develop more challenging and stimulating programs of study. Students who receive AP credit for an introductory course may use it in three different ways.

- enroll in a more advanced course in the same subject right away;
- substitute an elective course from a different area;
- enroll in fewer courses, using the AP credit to fulfill basic requirements.

Acceptable Subjects and Scores for CEEB or Cornell Departmental AP Exams

The most common subjects for which AP credit is awarded in the College of Engineering, and the scores needed on qualifying tests, are listed below. AP credit is awarded only for courses that meet engineering curriculum requirements.

Mathematics: MATH 191 (or 190), 192 are required.

First-semester math (MATH 191). AP credit may be earned by:
- a score of 4 or 5 on the CEEB BC exam, or
- a passing score on the Cornell departmental exam for first-semester math.

First-year math (MATH 192). AP credit may be earned by:
- a passing score on the Cornell departmental exam for first-year math.

PHYSICS: PHYS 112 and 213 are required.

PHYSICS 112. AP credit may be earned by:
- a score of 4 or 5 on the mechanics portion of the CEEB C exam, or
- a score of 5 on the CEEB B exam with successful completion of a high-school-level calculus course, or
- a passing score on the Cornell departmental exam for PHYS 112.

Note: MATH 293 is a prerequisite for PHYS 214.

PHYSICS 213. Students receiving a 5 on the Electricity and Magnetism portion of the AP C exam may choose to accept AP credit for PHYS 213 or to enroll in PHYS 213 with no AP credit.

PHYSICS 116, 217, and 218 (honors sequence). This sequence is designed for students with strong experience in physics and calculus, e.g., a 5 on one or both Physics C AP tests and the equivalent of at least one semester of university calculus. Students interested in PHYS 217 or 218 are strongly advised to start with PHYS 116. Even for a student with a 5 on both Physics C AP tests, 116 will not be boring. Students may not simultaneously receive credit for PHYS 116 and AP credit for PHYS 112 or AP credit for PHYS 217 and AP credit for PHYS 213. For advice or more information, contact the departmental representative at 255-6016.

CHEMISTRY: CHEM 207 or 211 is required.

CHEM 207 or 211. AP credits may be earned by:
- a score of 5 on the CEEB AP exam, or
- a passing score on the Cornell departmental exam for chemistry.

Note: Students who obtain AP credit for CHEM 207 and who are considering a major in chemical engineering or materials science and engineering should consider enrolling in CHEM 215. Those who are offered AP credit for CHEM 207 and then elect to take CHEM 215 will also receive academic credit for CHEM 207. Students may want to discuss this option with their faculty adviser.

Computing: COM S 100 is required. AP credit may be earned by:
- a score of 5 on the CEEB A or a score of 4 or 5 on the AB exam, or
- a passing score on the Cornell departmental exam for COM S 100.

Biology: Biology is not required as part of the core curriculum, although it is a popular elective, especially for students who intend to pursue health-related careers. AP credit may be earned as follows:
- 8 credits will be offered to students who receive a 5 on the CEEB AP exam;
- 6 credits will be offered to students who receive a 4 on the CEEB AP.

Those who want to study more biology should contact the Office of Undergraduate Biology, 200 Stimson Hall, to discuss proper placement.

First-year writing seminar: Two first-year writing seminars are required.

AP credit for one first-year writing seminar may be earned by a score of 5 on either of the CEEB AP English exams.

Students who earn a score of 4 on the AP English Literature and Composition exam or the AP English Language and Composition exam will be offered 3 credits, which may be applied toward the Literature and Arts (LA) category of the Liberal Studies distribution requirement.

Liberal studies distribution: Six courses beyond two first-year writing seminars are required. Students may earn AP credit toward the liberal studies distribution by taking College Entrance Examination Board (CEEB) AP tests. AP credit earned in the liberal studies distribution cannot be used to fulfill the “upper-level” liberal studies requirements.

Modern languages: Students may earn AP credit for competence in a foreign language by taking the College Entrance Examination Board (CEEB) AP test or by taking the Cornell Advanced Standing Examination (CASE). Those who score 4 or 5 on the CEEB AP test are entitled to 3 credits. To qualify for the CASE exam, the student must score at least 65 on a college placement test (taken either in high school or at Cornell during Orientation Week). A passing score on the CASE entitles the student to 3 credits. Modern language AP credits may be used to satisfy part of the foreign language category of the liberal studies distribution or may meet an approved elective requirement, contingent on discussions with the faculty adviser.

Advanced Placement and Credit for International Credentials

Students who have successfully completed either a General Certificate of Education (GCE) Advanced (“A”) Level Examination or an International Baccalaureate (IB) Higher Level Examination may be eligible for advanced placement credit in the College of Engineering as follows.

General Certificate of Education Advanced Level Examination (GCE “A”)

Hong Kong Advanced Level examinations and the joint examination for the Higher School Certificate and Advanced Level Certificate of Education in Malaysia and Singapore—principal passes only—are considered equivalent in standard to GCE “A” Levels.

Subject Marks Credit

<table>
<thead>
<tr>
<th>Subject</th>
<th>Marks</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biology</td>
<td>A or B</td>
<td>8 credits</td>
</tr>
<tr>
<td>Chemistry</td>
<td>A</td>
<td>8 credits (CHEM 207 and 208)</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>4 credits (CHEM 207)</td>
</tr>
<tr>
<td>Mathematics A, B, or C</td>
<td>4 credits (MATH 191/190)</td>
<td></td>
</tr>
</tbody>
</table>
The general policies in the College of Engineering governing awards of AP credit are as follows:

1. AP credit will not be offered in any subject area without a documented examination.

2. All AP examinations are normally taken and scored before fall-semester classes begin. Students who take CEEB AP tests in high school should have an official report of their scores sent directly to Cornell as soon as possible. Students who have completed either GCE "A" Level or IB Higher Level Examinations must present the original or a certified copy of their examination certificate to Engineering Advising, 167 Olin Hall. Those who wish to take departmental examinations should do so during Orientation Week; permission to take these tests after the start of the fall-semester classes must be requested in a written petition to the college’s Committee on Academic Standards, Petitions, and Credit (ASPAC).

A more detailed description of the college’s policies concerning advanced placement credit and its use in developing undergraduate programs may be found in the pamphlet Advanced Placement and Transfer Credit for First-Year Engineering Students, which may be obtained from Engineering Advising, 167 Olin Hall.

Transfer Credit for First-Year and Continuing Students

Undergraduate students who have completed courses at recognized and accredited colleges may, under certain conditions, have credits for such courses transferred to Cornell. Such courses must represent academic work in excess of that required for the secondary school diploma and must be documented as such in writing by the secondary institution. Courses deemed acceptable for transfer credit must be equivalent in scope and rigor to courses at Cornell. Transfer credit will not be awarded for courses taken during a semester in which the student is enrolled at Cornell.

- To apply for transfer credit, submit a transfer credit form (one form for each request), accompanied by a course description. Forms are available from Engineering Advising or the Registrar’s office and should be submitted before enrollment in the course to be transferred. An official transcript from the offering institution (bearing the institutional seal and Registrar’s signature) must be sent to the Engineering Registrar’s office before official transfer credit will be awarded.

- Applications for transfer credit to satisfy requirements in math, science, engineering courses, or first-year writing seminars require approval from the department offering an equivalent course at Cornell. Each department may require curriculum materials, textbooks used, etc., in addition to the course description before approving the course.

- Departmental approval is not required for transfer credit that satisfies liberal studies distribution requirements. The course will be reviewed for approval by a representative of the Committee on Academic Standards, Petitions, and Credit (ASPAC) in Engineering Advising.

- Cornell does not award credit for courses in which a student has earned a grade less than C; schools and departments may stipulate a higher minimum grade.

- College courses completed under the auspices of cooperative college and high school programs will be considered for advanced placement credit only if students demonstrate academic proficiency by taking the appropriate AP or Cornell departmental placement examination (CASE), as described in the “Advanced Credit” section.

- Following matriculation, students may apply up to 18 credits of transfer and/or Cornell extramural credit toward B.S. degree requirements.

- At most 72 total transfer credits (taken both before and after matriculation) may be used to meet graduation requirements.

- Summer session courses taken at Cornell are not considered transfer credit.

A more detailed description of the college’s regulations governing transfer credit may be found in the pamphlet Advanced Placement and Transfer Credit for First-Year Engineering Students as well as the Engineering Undergraduate Handbook, both available from Engineering Advising, 167 Olin Hall.

Transfer Credit for Transfer Students

Transfer students may transfer up to 36 credits for each year spent in full-time study at another institution, provided that the courses are acceptable for meeting graduation requirements. Transfer credit awards are determined by the majors/departments.
earn Dean's List status retroactively if they meet these criteria after making up incomplete grades. Students who earn Dean's List status receive certificates from the engineering registrar's office, and the honor is noted on the transcript.

Graduating with Distinction and Honors

Graduating with Distinction

Meritorious students graduating with a B.S. degree from the College of Engineering may also be designated cum laude, magna cum laude, or summa cum laude:

- Cum laude will be awarded to engineering students with a GPA ≥ 3.5. Cum laude will also be awarded to engineering students who received a semester GPA ≥ 3.5 in each of the last four semesters at Cornell; in each of these semesters, at least 12 letter-graded credits must be taken with no failing, unsatisfactory, missing, or incomplete grades. If the student is an engineering co-op student, then the engineering co-op summer term will count as one of the last four. Students who were approved for prorated tuition in their final semester will be awarded cum laude if they received a semester GPA ≥ 3.5 in their last semester and meet the conditions above in the prior four semesters.

- Magna cum laude will be awarded to engineering students with a GPA ≥ 3.75 (based on all credits taken at Cornell).

- Summa cum laude will be awarded to engineering students with a GPA ≥ 4.0 (based on all credits taken at Cornell).

Note: All GPA calculations are minimums and are not rounded.

Major Honors Program

To be eligible for major honors, a student must enter a major with and maintain a cumulative GPA ≥ 3.5. If the major has an approved honors program and both the GPA and program requirements are fulfilled, the faculty of the major may recommend that a student graduate with the additional diploma and transcript notation of “With Honors.” For more information, see “Engineering Majors.”

S-U Grades

Many courses may be taken either for a letter grade or for an S-U (satisfactory or unsatisfactory) grade designation. Under the S-U option, students earning the letter grade equivalent of at least C- in a course will receive a grade of S; those earning less than C- receive U. A course in which a U grade is received does not count toward graduation requirements.

Engineering students may choose to receive an S-U grade option under the following conditions:

- The course in question must be offered with an S-U option.
- The student must previously have completed at least one full semester of study at Cornell.
- The proposed S-U course must count as either a liberal studies distribution or an adviser-approved elective in the engineering curriculum.

- Students may enroll S-U in only one course each semester in which the choice between letter grade and S-U is an option. (Additional courses offered “S-U grades only” may be taken in the same semester as the elected S-U course.)

The choice of grading option for any course is made initially during the pre-enrollment period. Grading options may be changed, however, by submitting a properly completed add/drop form to the engineering registrar by the end of the third week of classes. After this deadline, the grading option may not be changed, nor will a student be permitted to add a course in which he or she was previously enrolled (in the current semester) under a different grade option.

Prorated Tuition in Final Semester

Engineering undergraduate students who have 9 or fewer credits to complete their degree requirements may apply for prorated tuition no later than the third week of the semester in which they want to prorate. If approved, students pay per credit after paying a fixed university administration fee. The application form for prorated tuition is available in the engineering Registrar's office (158 Olin Hall). Students may not exceed the number of credits approved or full tuition will be charged. No refunds will be allowed if fewer credits than the number applied for are taken. All the eligibility guidelines must be met, and exceptions are not permitted or petitionable.

Applicants for prorated tuition should be made aware of the possible impact that this enrollment status may have on financial aid, student loans, scholarships, health insurance programs, athletic eligibility, visa status, etc. It is the responsibility of the student to resolve and rectify these situations before submitting this petition. For questions, please contact Raymond Thorpe (167 Olin Hall) or Duncan Bell (158 Olin Hall).

Residence Requirements

Candidates for an undergraduate degree in engineering must spend at least four semesters or an equivalent period of instruction as full-time students at Cornell, including at least three semesters affiliated with an engineering major.

Students on a voluntary leave of absence may register for courses extramurally only with the approval of their major (or the college, for unaffiliated students). No more than 18 credits earned through extramural study or acquired as transfer credit (or a combination thereof) after graduation may be used to satisfy the requirements for the B.S. degree in engineering. Students may not complete their last semester extramurally.

Degree candidates may spend periods of time studying away from the Cornell campus with appropriate authorization. Information on programs sponsored by other universities and on procedures for direct enrollment in foreign universities is available at the Cornell Abroad office, 474 Uris Hall. Programs should be planned with the staff of Engineering Advising, who can provide information on credit-evaluation policies and assist in the petitioning process.

Transferring within Cornell

It is not uncommon for students to change their academic or career goals after matriculation in one college and decide that their needs would be better met in another college at Cornell. While transfer between colleges is not guaranteed, efforts are made to assist students in this situation.

The Internal Transfer Division office is responsible for assisting students with the transfer process. Students who wish to transfer out of the College of Engineering to another college at Cornell should consult initially with Engineering Advising.

Students who wish to transfer into the College of Engineering may apply at Engineering Advising—application forms are available in 167 Olin Hall. It is preferred that students apply in the semester in which they are completing affiliation criteria for the desired major. Students who would enter the college as a second-semester sophomore or later must be accepted by a major as part of the admission process. Students who would enter as a second-semester freshman or first-semester sophomore may be accepted into the college without the requirement of major affiliation but must be sponsored by a major.

Students who wish to transfer into engineering should take courses in math, chemistry, computer science, physics, and engineering that conform to the requirements of the Common Curriculum. Students should discuss their eligibility with an adviser in Engineering Advising, 167 Olin Hall.

Leaves of Absence

A leave of absence may be voluntary, medical, or required. A description of each follows:

Voluntary leave: Students sometimes find it necessary to suspend their studies. To do this, they must petition for a leave of absence for a specified period of time and receive written approval.

Affiliated students request leave through their majors. Unaffiliated students request leave through Engineering Advising. The first step is an interview to establish conditions for the leave and subsequent return. Those who take a leave before affiliating with a major and while not in good standing may be given a "conditional leave." This requires them to meet specific conditions, established at the time the leave is granted, before they will be reinstated.

A leave of absence generally is not granted for more than two years. A leave of absence granted during a semester goes into effect on the day it is requested and lasts for a minimum of six months. If a leave is requested after the 12th week of a semester, the courses in which the student was registered at the time of the request are treated as having been dropped (i.e., a “W” will appear on the transcript for each course). Students who owe money to the university are ineligible for a leave of absence. If courses taken during a leave are to satisfy Cornell degree requirements, they must be approved in advance through a formal transfer petition. (See previous section, "Transfer Credit," for details.)

Students who intend to take a leave of absence should check with the Office of Financial Aid and Student Employment to discuss financial implications; this is especially
true for those who have taken out educational loans. Medical insurance eligibility may also be affected.

To return after a leave of absence, the conditions established when the leave was granted must be satisfied, and the college must be notified in writing at least six weeks before the beginning of the semester in which the student plans to return.

Medical leave: Medical leaves are granted by the college only upon recommendation by a physician or therapist from Gannett Health Center. Such leaves are granted for at least six months and up to two years. The student is required to withdraw from the college for the semester in which the medical leave is requested during the semester. If the leave extends beyond the semester in which the leave was requested, the student is required to withdraw from the College of Engineering advising and specify the courses the student intends to return. The letter should describe the student's academic standing will also be subject to review both at the time the leave is granted and upon the student's return.

Required leave: A required leave of absence is imposed in cases in which the academic progress of a student is so poor that continuing into the next semester does not appear prudent. An example of this might be failure in key engineering courses in a semester. Unless the student is ahead in the curriculum, returning later to repeat the semester makes better academic sense than continuing without the necessary background. In many cases, the leave is dictated by courses that are offered only in the fall or spring semester. Leaves are given when the probability of success is increased substantially by deferring the student's return by one semester (or, in unusual circumstances, one year).

Rejoining the College

Students wishing to rejoin the college who have not yet affiliated with a major should request permission to register in a letter to Engineering Advising; affiliated students should contact their major office. This must be done at least six weeks before the beginning of the semester in which the student wishes to return. The letter should describe the student's activities while away from Cornell, detail any academic work completed during this time, and specify the courses the student intends to take upon return.

Withdrawal from the College

A withdrawal from the College of Engineering may be voluntary or required. Following is a description of each:

Voluntary withdrawal: Students who wish to withdraw should do so through Engineering Advising. Affiliated students should contact their major office. If a withdrawal is requested during the semester, courses in which the student is enrolled must be dropped in accordance with applicable regulations. A student who fails to register in the first three weeks of the semester, without benefit of a leave of absence or permission for study in absentia, will be deemed to have withdrawn.

Students who withdraw from the College of Engineering are eligible to apply for admission to one of the other six colleges at Cornell. The intradivisional transfer process should be followed. A student who has withdrawn and subsequently wishes to return must make a formal application for readmission. This is rarely granted. It is subject to a review of the student's academic background and depends on available space in the college and in the student's major.

Required withdrawal: Students are required to withdraw from the college only when their overall record indicates that they are either incapable of completing the program or not sufficiently motivated to do so. This action withdraws them from the College of Engineering and does not, in and of itself, adversely affect their ability to transfer and complete a degree in one of the other colleges in the university.

ENGINEERING MAJORS

This section describes the majors in the College of Engineering: the programs in which an undergraduate can study to obtain a B.S. degree. A basic requirement of any major is a GPA ≥ 2.0. Most majors have a higher GPA requirement and may have other requirements.

Honors Program within Majors

Many of the engineering majors supplement the major with an honors program.

Eligibility

The B.S. degree with honors is granted to engineering students who, in addition to having completed the requirements for a B.S. degree in a major, satisfactorily complete the honors program in the major and are recommended for the degree by the honors committee of that major. An honors program student must enter with and maintain a cumulative GPA ≥ 3.5. If the GPA drops below 3.5, the student is dropped from the honors program.

Courses taken to satisfy the honors requirement may not be used to satisfy B.S. degree requirements. At least 12 credit hours are required, and a student must be in the program for at least two semesters before graduation. No research, independent study, or teaching for which the student is paid may be counted toward the honors program.

Procedures

An applicant to the honors program in a major must have an honors adviser, a faculty member from that major who will supervise the honors program and direct the research or project. The honors adviser need not be the student's adviser in the major.

The application for the honors program should be a letter from the student that describes the proposed honors program in detail and includes the explicit approval of the honors adviser.

Students must complete a written application no later than the beginning of the first semester of their senior year. If they are encouraged to make arrangements with the honors adviser during the second semester of their junior year. Each major may place further constraints on timing.

Major-Specific Information

Each major defines the content of the honors program and may also place other requirements on the program, in terms of timing, content, and procedures. Information is given within the description of the individual majors.

BIological ENGINEERING

Offered by the Department of Biological and Environmental Engineering

Contact: 207 Riley-Robb Hall, 255-2173, www.bee.cornell.edu

This major is accredited by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology (ABET).

Biological and environmental engineering (BEE) addresses three great challenges facing humanity today: ensuring an adequate and safe food supply in an era of expanding world population; protecting and remediating the world's natural resources, including air, water, soil, air, biodiversity, and energy; and developing engineering systems that monitor, replace, or intervene in the mechanisms of living organisms. The biological engineering (BE) major has a unique focus on biological systems, including the environment, which is realized through a combination of fundamental engineering sciences, biology, engineering applications and design courses, and liberal studies.

An option in environmental engineering is discussed further below.

Students interested in the BE major should have a strong aptitude for the sciences and math and an interest in the complex social issues that surround technology. Students take courses in math, statistics, computing, physics, chemistry, basic and advanced biology, fundamental engineering sciences (mechanics, thermodynamics, fluid mechanics, and transport processes), and engineering applications. Students select upper-level engineering courses in subjects that include bioprocessing, soil and water management, biotechnology applications, bioinstrumentation, engineering aspects of animal physiology, environmental systems analysis, and waste treatment and disposal. Students may further strengthen their programs by completing a minor or a second engineering major. Students planning for medical school also take additional lab-based courses in biology, biochemistry, and organic chemistry. Throughout the curriculum, emphasis is placed on communications and teamwork skills, and all students complete a capstone design project.

Career opportunities cover the spectrum of self-employment, private industry, public agencies, educational institutions, and graduate and professional programs in engineering and science, as well as professional fields like medicine, business, and law. In recent years, graduates have developed careers in environmental consulting, biotechnology, the pharmaceutical industry, biomedical engineering, management consulting, and international development.
The living world is all around us and within us. The biological revolution continues, and it has given rise to a growing demand for engineers and technical people who have studied biology and the environment, who have strong math and science skills, who can communicate effectively, and who are sensitive to the needs of people and interested in the challenges facing society. This major is designed to educate the next generation of engineers to meet these challenges.

The major program requirements for students affiliating with the program in 2005–2006 are outlined below.

Basic Subjects

<table>
<thead>
<tr>
<th>Subject</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 191 or 190, 192, 293, 294</td>
<td></td>
</tr>
<tr>
<td>Calculus for Engineers and Engineering Mathematics</td>
<td>16</td>
</tr>
<tr>
<td>PHYS 112, 213</td>
<td>8</td>
</tr>
<tr>
<td>General Chemistry (207 or 211 or 215)*</td>
<td>4</td>
</tr>
<tr>
<td>Organic Chemistry (257 or 357)*</td>
<td>3</td>
</tr>
<tr>
<td>BEE 151 Introduction to Computing or COM S 100M</td>
<td>4</td>
</tr>
<tr>
<td>Biological Sciences*</td>
<td>15</td>
</tr>
<tr>
<td>Introductory (BIO G 101-104 recommended)</td>
<td>8</td>
</tr>
<tr>
<td>Biochemistry or Microbiology</td>
<td>3-4</td>
</tr>
<tr>
<td>Biological science course(s) at or above 200 level</td>
<td>3</td>
</tr>
</tbody>
</table>

Major-required courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEE 200 The BEE Experience or ENGRG 150</td>
<td>1</td>
</tr>
<tr>
<td>ENGRG 202 Mechanics of Solids</td>
<td>4</td>
</tr>
<tr>
<td>BEE 251 or 260, ENGR I</td>
<td>3</td>
</tr>
<tr>
<td>BEE, 360 or CEE 351, ENGR II</td>
<td>3</td>
</tr>
<tr>
<td>BEE 350 Biological and Environmental Transport Processes</td>
<td>3</td>
</tr>
<tr>
<td>BEE 222 or ENGRD 221 Thermodynamics</td>
<td>3</td>
</tr>
<tr>
<td>Engineering Statistics and Probability (ENGRD 270 or CEE 304)</td>
<td>3-4</td>
</tr>
<tr>
<td>Fluid Mechanics (CEE 331 or M&AE 323 or CHEM 323)</td>
<td>3-4</td>
</tr>
<tr>
<td>Upper-level BEE courses (three courses numbered 450-489)</td>
<td>9</td>
</tr>
</tbody>
</table>

Major-approved electives and electives outside the major (200 level or above; at least one must be an approved laboratory experience course; at least one must be a BEE capstone course)

<table>
<thead>
<tr>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>12-15</td>
</tr>
</tbody>
</table>

Liberal studies (two first-year writing seminars and six liberal studies electives) 24

Adviser-approved electives 6

Total (minimum) 126

*Bias accredited curriculum. Specializations (options or preprofessional study) may be accommodated by selecting additional courses in the indicated area(s).

Biological Engineering Honors Program

The B.S. degree with honors is granted to engineering students who satisfy the requirements given at the beginning of the section "Engineering Majors" as well as the following requirements.

The 9 credits beyond the B.S. degree requirements shall be drawn from the following, with at least 6 credits in the first category:

1. A significant research experience or honors project under the supervision of a BEE faculty member using BEE 495 BE Honors Research. A written senior honors thesis must be submitted as part of this component.

2. A significant teaching experience under the direct supervision of a faculty member or as part of a regularly recognized course in the department under BEE 498 Undergraduate Teaching.

3. Advanced or graduate courses. These additional courses must be technical in nature, i.e., in engineering, math, biology, chemistry, and physics at the 400+ and graduate level.

Option in Environmental Engineering

The environmental engineering option provides BE majors the opportunity to follow a structured environmental engineering concentration. Students complete a prescribed program of courses within the framework of the BE curriculum.

Chemistry/microbiology: Students must take at least two semesters of chemistry (CHEM 211/257 or 207/208). They must also satisfy the BE organic chemistry requirement either by taking organic chemistry as one of the two required chemistry courses (i.e., CHEM 257) or by taking CEE 451. The microbiology requirement of the Environmental Engineering option can also be met by taking CEE 451.

Chemistry: CHEM 211/257 or 207/208

Organic Chemistry: CHEM 257 or CEE 451

Microbiology: CEE 451 or BIOMI 290

Fluid Mechanics: CEE 331

Probability and Statistics: CEE 304

Environmental Quality Engineering: CEE 351

Environmental Engineering Lab: BEE 427 or CEE 453

Environmental Engineering: BEE 473 or 475

Watershed Engineering or Environmental Systems Analysis

CHEMICAL ENGINEERING

Offered by the School of Chemical and Biomolecular Engineering

Contact: 120 Ohlin Hall, 255-8656, www.cheme.cornell.edu

This major is accredited by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology (ABET).

The undergraduate major in chemical engineering comprises a coordinated sequence of courses beginning in the sophomore year and extending through the fourth year. Students who plan to enter the major take CHEM 208 during the freshman year. The program for the last three years is as follows:

Semester 3

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 293 Engineering Mathematics</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 213 Physics II, Heat/Electromagnetism</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 389 Physical Chemistry I (engineering distribution)</td>
<td>4</td>
</tr>
<tr>
<td>ENGRD 219 Mass and Energy Balances (engineering distribution)</td>
<td>3</td>
</tr>
<tr>
<td>Humanities or social sciences</td>
<td>3</td>
</tr>
</tbody>
</table>

Semester 4

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 294 Engineering Mathematics</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 323 Fluid Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 39I Physical Chemistry II (major)</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 290 Introductory Physical Chemistry Laboratory (major)</td>
<td>6</td>
</tr>
<tr>
<td>Biology elective*</td>
<td>3</td>
</tr>
<tr>
<td>Humanities or social sciences</td>
<td>3</td>
</tr>
</tbody>
</table>

Semester 5

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 357 Organic Chemistry for the Life Sciences</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 251 Introduction to Experimental Organic Chemistry</td>
<td>2</td>
</tr>
<tr>
<td>CHEME 313 Chemical Engineering Thermodynamics</td>
<td>3</td>
</tr>
<tr>
<td>CHEME 324 Heat and Mass Transfer</td>
<td>3</td>
</tr>
<tr>
<td>Humanities or social sciences</td>
<td>3</td>
</tr>
</tbody>
</table>

Semester 6

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced science elective**</td>
<td>3</td>
</tr>
<tr>
<td>CHEME 301 Nonresident Lectures</td>
<td>1</td>
</tr>
<tr>
<td>CHEME 332 Analysis of Separation Processes</td>
<td>3</td>
</tr>
<tr>
<td>CHEME 372 Introduction to Process Dynamics and Control</td>
<td>2</td>
</tr>
<tr>
<td>CHEME 390 Reaction Kinetics and Reactor Design</td>
<td>3</td>
</tr>
<tr>
<td>Humanities or social sciences</td>
<td>3</td>
</tr>
</tbody>
</table>

Semester 7

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEME 452 Chemical Engineering Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>Electives***</td>
<td>9</td>
</tr>
<tr>
<td>Humanities or Social Sciences</td>
<td>3</td>
</tr>
</tbody>
</table>

Semester 8

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEME 462 Chemical Process Design</td>
<td>4</td>
</tr>
<tr>
<td>Humanities or social sciences</td>
<td>3</td>
</tr>
<tr>
<td>Electives***</td>
<td>3</td>
</tr>
<tr>
<td>Approved elective</td>
<td>3</td>
</tr>
</tbody>
</table>

*Every student must complete one of the five following options for the biology elective: (1) advanced placement: a score of 5 on the CEEB AP exam or a score of 7 on the IB Higher Level exam. (2) 4 credits of a pre-med biology sequence: BIO G 101 Biological Sciences, Lec (fall, 2 credits) and BIO G 103 Biological Sciences, Lab (fall, 2 credits). BIO G 102 Biological Sciences, Lec (spring, 2 credits) and BIO G 104 Biological Sciences, Lab (spring, 2 credits). BIO 105 Introductory Biology (fall, 4 credits). BIO G 106 Introductory Biology (spring, 4 credits). BIO G 107 General Biology (summer, first half of eight-week session, 4 credits) or BIO G 108 General Biology (summer, second half of eight-week session, 4 credits). (3) 3 credits of microbiology: BIOMI 290 General
Microbiology (fall, spring, or summer six-week session, 3 credits). (4) 4 credits of biochemistry: BIOBM 330 Principles of Biochemistry, Individual Instruction (fall or spring, 4 credits) or BIOBM 333 Principles of Biochemistry: Proteins, Metabolism, and Molecular Biology (summer six-week session, 4 credits). (5) 5 credits of biochemistry: BIOBM 331 Principles of Biochemistry: Proteins and Metabolism (fall, 3 credits) and BIOBM 332 Principles of Biochemistry: Molecular Biology (spring, 2 credits).

**Advanced science electives include BIOI 290 General Microbiology Lectures; BIOBM 330, 331, 332, and 333 Principles of Biochemistry; BME 301 (CHEME 401) Molecular Principles of Biomedical Engineering; BME 302 (CHEME 402) Cellular Principles of Biomedical Engineering; CEE 451 Microbiology for Environmental Engineering; CEE 654 Aquatic Chemistry; CHEM 470 Process Control Strategies; CHEM 472 Feedback Control Systems, CHEM 480 Chemical Processing of Electronic Materials; CHEM 481 Biomedical Engineering; CHEM 484 Microchemical and Microfluidic Systems; CHEM 520 Chemical, Polymer, Biomedical, and Electronic Materials Processing; CHEM 543 Bioprocess Engineering; CHEM 651 Engineering Principles for Drug Delivery; CHEM 660 Polymeric Materials; CHEM 661 Air Pollution Control; FD SC 417 Food Chemistry I; HIST 412 Intermediate Fluid Dynamics; MS&E 202 Atomic and Molecular Structure of Matter; MS&E 305 Electronic, Magnetic, and Dielectric Properties of Materials; MS&E 512 Properties of Solid Polymers; MS&E 524 Materials Chemistry of Synthetic Polymeric Materials; MS&E 531 Introduction to Ceramics; MS&E 541 Nanofabrication; T&AM 310 Advanced Engineering Analysis I; T&AM 511 Advanced Engineering Analysis II; any A&EP course numbered 333 or above, any CHEM course numbered 301 or above, any PHYS course numbered 300 or above.

**The electives in semesters 7 and 8 comprise 6 credits of major-approved electives and 6 credits of advanced CHEM electives. Advanced CHEM electives include any CHEM course above 400 level except CHEM 490, 491, 492, 499, 520, and 572.

CIVIL ENGINEERING

Offered by the School of Civil and Environmental Engineering

Contact: 221 Hollister Hall, 255-5412, www.cee.cornell.edu

This major is accredited by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology (ABET).

While it is not necessary to do so, students may concentrate in environmental engineering, fluid mechanics and hydrology, geotechnical engineering, structural engineering, transportation, or water resource systems.

Admission Requirements

Students planning to affiliate with this major must complete ENGRD 202 Mechanics of Solids and PHYS 112 (or for students following the Environmental Concentration, CHEM 207 General Chemistry and CHEM 257 Organic Chemistry) with at least a C-. It is strongly recommended that ENGRD 202 be taken as an engineering distribution course during the first semester of the sophomore year.

Engineering Distribution Courses

 Majors are required to take ENGRD 202 Mechanics of Solids as an engineering distribution course. For the second engineering distribution course, one of the following is recommended:

ENGRD 261 Introduction to Mechanical Properties of Materials for students interested in structural engineering and geotechnical engineering.

ENGRD 241 Engineering Computation* for students interested in environmental engineering.

ENGRD 221 Thermodynamics for students interested in fluid mechanics and hydraulics/hydrology.

ENGRD 211 Computers and Programming for students interested in transportation.

Other good choices include ENGRD 219, or BIO G 101, or 103, 105, 107.

Major Program

Students may substitute CHEM 208 for PHYS 214. The following nine courses are required in addition to those required for the Common Curriculum. (Students interested in the Environmental Concentration should follow the course requirements for the Environmental Engineering Major.)

Core Courses Credits

ENGRD 203 Dynamics or CEE 478 Structural Dynamics 3

ENGRD 241 Engineering Computation* 3

CEE 304 Uncertainty Analysis in Engineering 4

CEE 323 Engineering Economics and Management 3

CEE 331 Fluid Mechanics 4

CEE 341 Introduction to Geotechnical Engineering and Analysis 4

CEE 351 Environmental Quality Engineering** 3

CEE 361 Introduction to Transportation Engineering** 3

CEE 371 Structural Modeling and Behavior 4

Additional requirements include a set of two major-approved electives and three design electives from a list of approved courses that is available in the school office. In addition, students must complete one technical communications course from among the courses designated ENGR or approved communications courses. If the technical communications course is taken as an expressive art, then an additional approved elective must be taken.

*ENGRD 241 can be used to satisfy a major requirement. If a student elect to use this course as a distribution course, the student must take an additional major-approved elective to fulfill the core course requirements.

**ENGRD 270 may be accepted (by petition) as a substitute for CEE 304 in the major, but only if ENGRD 270 is taken before affiliation, or in some special cases where co-op or study abroad programs necessitate such a substitution.

Studen who complete either CEE 473 or 474. However, CEE 372 or CEE 471 then counts as a core course only and not as one of the required five CEE design courses and major-approved electives.

Civil Engineering Honors Program

The B.S. degree with honors is granted to engineering students who satisfy the requirements given at the beginning of the section "Engineering Majors" as well as the following requirements.

The 9 credits beyond the B.S. degree requirements shall be drawn from the following components (with no fewer than 2 credits in any selected component):

1. A significant research experience or honors project under the direct supervision of a CEE faculty member using CEE 400 Senior Honors Thesis (1-6 credits per semester). A significant written report or senior honors thesis must be submitted as part of this component. Letter grades only.

2. A significant teaching experience under the direct supervision of a faculty member or as part of a regularly recognized course in the College of Engineering, i.e., ENGRD 470 Peer Teaching in Engineering or CEE 401 Undergraduate Teaching in CEE (1-3 credits per semester).

3. Advanced or graduate courses at the 500 level or above.

Procedures

Application to the program shall be a registration form for CEE 400 and a letter from the student describing the specific proposed honors program and including the explicit approval of the major adviser and the honors adviser. The program must be approved by the CEE Curriculum Committee, although the committee may delegate approval authority to the associate director for all but unusual proposals.

COMPUTER SCIENCE

Offered by the Department of Computer Science

Contact: 303 Upson Hall, 255-0982, www.cs.cornell.edu

The Department of Computer Science is affiliated with both the College of Arts and Sciences and the College of Engineering. Students in either college may major in computer science.

Computer science majors take courses in algorithms, data structures, logic, programming languages, scientific computing, systems, and theory. Electives in artificial intelligence, computer graphics, computer vision, databases, multimedia, and networks are also possible. Requirements include:

• MATH 191, 192, and 294
• two semesters of introductory computer programming (COM S 100 and ENGRD 211)
• a 1-credit project (COM S 212)
• a seven-course computer science core (COM S 280, 312, 314, one of 321, 322, 421, or 428, 381, 414, and 482)
• two 400+ level computer science electives, totaling at least 6 credits (COM S 490 not allowed)
• a computer science project course (COM S 413, 415, 419, 433, 468, 473, 501, 514, or 664)
• a math elective course (e.g., ENGRD 270, MATH 293, MATH 300+, TRAM 310)
• two 300+ level courses (major-approved electives) that are technical in nature and total at least 6 credits
• a three-course specialization in a topic area other than computer science, all numbered 300 level or greater

All the major electives described above must be courses of at least 3 credits, with the exception of the COM S project course, which is at least 2 credits.

The program is broad and rigorous, but it is structured in a way that supports in-depth study of outside areas. Intelligent course selection can set the stage for graduate study or employment in any technical area or any professional area such as business, law, or medicine. With the adviser, the computer science major is expected to put together a coherent program of study that supports career objectives and is true to the aims of a liberal education.

Computer Science Honors Program

The B.S. degree with honors is granted to engineering students who satisfy the requirements given at the beginning of the section “Engineering Majors” with a set of coherent courses and research activities that satisfy the following requirements:

1. at least one COM S course (at least 3 credit hours) at or above the 500 level with at least A- (no seminars)
2. at least two 3-credit semesters of COM S 490 (independent research), with at least
 A- each semester

Honors determinations are made during the senior year. Students wanting to be considered for the honors program should notify the undergraduate office in the Department of Computer Science at ugrad@cs.cornell.edu. The subject line for this message should read “HONORS TRACK.” Address related questions to the same e-mail address; call or stop by 303 Upson Hall, 255-0982; or visit www.cs.cornell.edu/ugrad for more information on eligibility.

Board for Engineering and Technology (ABET).
The Electrical and Computer Engineering major (ECE), leading to a B.S. degree, provides a foundation that reflects the broad scope of this engineering discipline. Concentrations include computer architecture and organization, digital systems and computer vision; power systems, control, optimization, numerical and state-space methods; communications, computer networks, information theory and coding, signal processing; electronic circuits, VLSI, solid state physics and devices, MEMs, nanotechnology, lasers and optoelectronics; electromagnetics, radiophysics, space sciences, plasmas.

Students planning to affiliate with ECE must take ENGRD 230 as an engineering distribution course. Prospective majors are encouraged, but not required, to take ENGRD 211 as the other engineering distribution course. The major normally begins in the spring of the sophomore year. Of the courses listed below, only ENGRD/ECE 210, ECE 220, ENGRD 230, ECE 314 or CS 314, and ECE 315 are taught in both the fall and spring semesters.

Course	**Credits**
Major-required courses |
ECE/ENGRD 210 Introduction to Circuits for Electrical and Computer Engineers | 4
ENGRD 230 Introduction to Digital Logic Design | 4
ECE 220 Signals and Information | 4
ECE 303 Electromagnetic Fields and Waves | 4
ECE/COM S 314 Computer Organization | 4
ECE 315 Introduction to Microelectronics | 4
ECE 320 Systems and Networks | 4

Major-approved electives (32-credit minimum in the following categories)

1. Advanced ECE electives (six lecture courses)
2. Outside ECE electives: 9 minimum credits
3. Total minimum major credits: 53
4. ECE 310 should be taken to satisfy the college application of probability and statistics requirement. Alternatively, a student may take either ENGRD 270 or TRAM 310.

These electives must include two 400-level Electrical and Computer Engineering culminating design experience (CDE) courses and at least two additional courses at the 400 level or above. The remaining electives may not include independent project courses, such as ECE 391, 392, 491, or 492, and must be at the 300 level or above in Electrical and Computer Engineering.

Courses that meet the CDE requirement are described in the Engineering Undergraduate Handbook. The list is dynamic and changes frequently. An updated list of courses that meet the CDE requirements will be posted each semester on the bulletin board outside 222 Phillips Hall. All courses must have a college-level prerequisite.

Must include one course at the 300 level or above (see Electrical and Computer Engineering Web Handbook for details).

Undergraduate concentration is achieved through the various Electrical and Computer Engineering elective courses, as well as other courses in related technical fields within engineering, math, the physical sciences, and the analytical biological sciences. The School of Electrical and Computer Engineering offers more than 30 courses that are commonly taken as electives by undergraduates.

Academic Standards

Majors in Electrical and Computer Engineering are expected to meet the following academic standards:

1. GPA ≥ 2.3 every semester.
2. At least C- in all courses used to satisfy degree requirements in the major or that serve as a prerequisite for a subsequent Electrical and Computer Engineering course.
3. Satisfactory completion of MATH 294, PHYS 214, and two of ENGRD/ECE 210, ECE 220, and ENGRD 230 by the end of the sophomore year and adequate progress toward the degree in subsequent semesters.

Electrical and Computer Engineering Honors Program

The B.S. degree with honors is granted to engineering students who satisfy the requirements given at the beginning of the section “Engineering Majors” as well as the following requirements:

- Students must apply during the first three weeks of the sixth semester. They must achieve a B or better in the three required courses taken for honors designation.

Honors Seminar

Prospective honors students must take an honors seminar in the spring semester of their junior year, for a letter grade. The 2-credit honors seminar consists of a weekly series of introductory research lectures by ECE faculty members. Each honors seminar enrollee will write two short papers on topics covered in the lecture series. Many ECE faculty members will give a lecture or short series of lectures as part of the honors seminar.

Honors Project

A student in the honors program is required to accumulate at least 3 credit hours from a senior year honors project with an ECE faculty member, consisting of either design, research, or directed reading at the 400 level. All honors projects emphasize the development of communication skills. Design- and reading-oriented honors projects explicitly require a written submission summarizing and concluding the project.

Additional Course Work

At least 3 credit hours are required of advanced (senior level) ECE course work that has at least a 300-level prerequisite. These credit hours are in addition to any credit hours required as part of the ECE major. The requirement for at least 9 credits over and above the 128 credits required for a B.S. degree means that an honors degree requires 137 credit hours.

ELECTRICAL AND COMPUTER ENGINEERING

Offered by the School of Electrical and Computer Engineering.

Contact: Student Services Office, 223 Phillips Hall, 255-4309, www.ece.cornell.edu

This major is accredited by the Engineering Accreditation Commission of the Accreditation
ENGINEERING PHYSICS
Offered by the School of Applied and Engineering Physics
Contact: 212 Clark Hall, 255-5198, www.aep.cornell.edu

The engineering physics (EP) major is designed for students who want to pursue careers of research or development in applied science or advanced technology and engineering. Its distinguishing feature is a focus on the physics and math fundamentals, both experimental and theoretical, that are at the base of modern engineering and research and have a broad applicability in these areas. By choosing areas of concentration within this major, students may combine this physics base with a good background in a conventional area of engineering or applied science.

The industrial demand for EP B.S. graduates is high, and many students go directly to industrial positions where they work in a variety of engineering or developmental areas that either combine, or are in the realm of, various more conventional areas of engineering. Examples include bioengineering, computer technology, electronic-circuit and instrumentation design, energy conversion, environmental engineering, geological analysis, laser and optical technology, microwave technology, nuclear technology, software engineering, solid-state-device development, technical management, and financial consulting. A number of EP graduates go on for advanced study in all areas of basic and applied physics as well as in a diverse range of areas in advanced science and engineering. Examples include applied physics, astrophysics, atmospheric sciences, biophysics, cell biology, computer science and engineering, electrical engineering, environmental science, fluid mechanics, geotechnology, laser optics, materials science and engineering, mathematics, mechanical engineering, medical physics, medicine, nuclear engineering, plasma physics, and physics.

The major can also serve as an excellent preparation for medical school, business school, or specialization in patent law.

The EP major fosters this breadth of opportunity because it both stresses the fundamentals of science and engineering and gives the student direct exposure to the application of these fundamentals. Laboratory experimentation is emphasized, and ample opportunity for innovative design is provided. Examples are ENGRD/A&EP 110 Lasers and Photonics; ENGRD/A&EP 102 Introduction to Nanoscience and Nanoengineering; ENGRD 242/A&EP 252 Physics of Life; ENGRD/A&EP 264 Computer-Instrumentation Design (a recommended sophomore engineering distribution course); A&EP 330 Modern Experimental Optics (a junior/senior course); A&EP 363 Electronic Circuits (a sophomore/junior course); PHYS 410 Advanced Experimental Physics; and A&EP 438 Computational Engineering Physics (a senior computer laboratory).

Students who plan to affiliate with the EP major are advised to arrange their common curriculum with their developing career goals in mind. They are encouraged to take PHYS 112 or 116 during their freshman year, to complete A&EP 363 (taking ECE 210 and 230, 4 credits each, can satisfy A&EP 363. Count ECE 210 as an approved elective and ECE 250 as A&EP 363) in the spring semester of the sophomore year. Students with one semester of advanced placement in math and who have received at least A– in MATH 192 may wish to explore accelerating their math requirements so as to enroll in A&EP 321 and 322 in the sophomore year. For advice on this option, consult with the A&EP associate director.

In addition to the requirements of the Engineering Common Curriculum,* the major requirements are as follows:

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>A&EP 333 Mechanics of Particles and Solid Bodies</td>
<td>4</td>
</tr>
<tr>
<td>A&EP 355 Intermediate Electromagnetism</td>
<td>4</td>
</tr>
<tr>
<td>A&EP 356 Intermediate Electrodynamics</td>
<td>4</td>
</tr>
<tr>
<td>A&EP 361 Introductory Quantum Mechanics</td>
<td>4</td>
</tr>
<tr>
<td>A&EP 363 Electronic Circuits</td>
<td>4</td>
</tr>
<tr>
<td>A&EP 423 Statistical Thermodynamics</td>
<td>4</td>
</tr>
<tr>
<td>A&EP 434 Continuum Physics</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 410 Advanced Experimental Physics</td>
<td>4</td>
</tr>
<tr>
<td>A&EP 321 Mathematical Physics I; or MATH 421 (applied mathematics)</td>
<td>4</td>
</tr>
<tr>
<td>A&EP 322 Mathematical Physics II; or MATH 422 (applied mathematics)</td>
<td>4</td>
</tr>
</tbody>
</table>

Six major-approved electives (18–23 credits), of which five must be technical upper-level courses (300 or above). Total major credits = 58 credit hours minimum.

*The Engineering Common Curriculum suggests that freshmen take only four courses each semester. This course load is fully consistent with the requirements of the EP major, but freshmen with strong preparation are encouraged to consider taking an additional course during one or both semesters so that they may have additional flexibility in developing a strong, individualized educational program in their later years and for allowing options such as a semester or year abroad or early graduation.

Two of the 4 credits of PHYS 410 required for the B.S. degree in EP can be satisfied by completing A&EP/PHYS 330 or ASTRO 410. The remaining 2 credits of PHYS 410 can then be satisfied by taking PHYS 400 for 2 credits, provided that the experiments completed in PHYS 400 do not overlap with those in A&EP/PHYS 330 or ASTRO 410. (A list of experiments that are not appropriate will be prepared by A&EP faculty and made available in the A&EP office.) If a student chooses this option, A&EP/PHYS 330 or ASTRO 410 may also count as a technical elective, provided the remaining three technical electives are 4 credits each.

Choosing elective courses. The EP major provides the students with a strong opportunity to develop individualized programs of study for particular educational and career goals. These can include the pursuit of a dual major or the development of a broad expertise in a number of advanced technical and scientific areas.

With at least seven electives in the sophomore, junior, and senior years, EP majors are encouraged to work closely with their adviser to develop a coherent academic program that is consistent with those goals. For students who plan to work toward an industrial position after graduation, the electives should be chosen to widen their background in a specific area of practical engineering. A different set of electives can be selected as preparation for medical, law, or business school. For students who plan on graduate studies, the electives provide an excellent opportunity to explore upper-level and graduate courses and to prepare for graduate study in any one of a number of fields. Various programs are described in a special brochure available from the School of A&EP, Clark Hall. Students are advised to consult with their EP adviser, a professor active in their area of interest, or with the associate director of the school.

Electives need not be all formal course work; qualified students are encouraged to undertake independent study under the direction of a member of the faculty (A&EP 490). This may include research or design projects in areas in which faculty members are active.

The variety of course offerings and many electives provide flexibility in scheduling. If scheduling conflicts arise, the school may allow substitution of courses nearly equivalent to the listed required courses.

Academic Standing
Students are expected to pass every course in which they are registered, to earn at least C– in specifically required courses, and to attain a semester GPA ≥ 2.3 each semester.

Engineering Physics Honors Program
The B.S. degree with honors is granted to engineering students who satisfy the requirements given in the section “Engineering Majors” as well as the following requirements:

1. At least 8 credits of major-approved electives at the 400 level or higher with at least A– in each, not counting credits given for 2.
2. Two semesters of A&EP 490 or an equivalent course, with at least 2 credits the first semester and 4 credits the second. The student will complete an independent research project or senior thesis under the supervision of an engineering or science faculty member. The level of work required for successful completion is to be consistent with the amount of academic credit granted.

Procedures
Before enrolling in A&EP 490 or the equivalent, the honors candidate must submit a brief proposal outlining the topic and scope of the project or thesis and an honors adviser's written concurrence to the associate director for undergraduate studies. This proposal will be reviewed by the A&EP Honors Committee and either approved or returned to the candidate to correct deficiencies. The proposed project or thesis is to consist of a research, development, or design project and a literature search. The final steps in completing the honors project are a written and oral...
Environmental Engineering

Contact: 221 Hollister Hall, 255-3142; www.cee.cornell.edu, or 207 Riley-Robb Hall, 255-2173, www.bee.cornell.edu

Environmental Engineering is the study and practice of analyzing, designing, and managing natural and engineered systems in ways consistent with the maintenance or enhancement of environmental quality and sustainability. It requires the ability to predict multiple interactions and impacts among natural and engineering-system components at various spatial and temporal scales in response to alternative design and management policies. It requires a thorough understanding of the interactions among the natural environment, the constructed environment, and human activities.

Students wishing to major in Environmental Engineering are encouraged to double major in Civil Engineering or Biological Engineering to ensure that they receive an accredited degree.

The School of Civil and Environmental Engineering and the Department of Biological and Environmental Engineering each offer a concentration in environmental engineering. With appropriate course selection, students taking these concentrations can double major in Environmental Engineering with minimal additional course requirements (as defined in the BEE and CEE undergraduate handbooks).

The major requires a GPA ≥ 2.0 in engineering and science courses and at least a C- in ENGRD 202, CHEM 257, or ENGRD 251.

Students matriculating in the College of Engineering (COE) may affiliate with this major in their second year. Students matriculating in the College of Agriculture and Life Sciences (CALS) may enroll in this major in their first semester. Students planning to affiliate with this major should take the following courses:

Mathematics-science requirements

- MATH 191, 192, 293, 294
- PHYS 112, 213
- CHEM 207, 257
- COM S 100 or BEE 151* (computer programming)

Introduction to engineering

BEE 200* The BEE Experience (required for students matriculating in CALS)
ENGRI 113 recommended

Engineering distribution courses†

- ENGRD 251 Engineering for a Sustainable Society
- ENGRD 202, 241, or 221 are recommended (other good choices include ENGRD 201, 219, or BIO G 101 and 103, 103, 107).

Major-required courses

<table>
<thead>
<tr>
<th>Major Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO G 10X Introductory Biology**</td>
<td>3-4</td>
</tr>
<tr>
<td>(BIO G 101/103, 102/104 recommended, other good choices include 105, 107, or 110)</td>
<td></td>
</tr>
<tr>
<td>ENGRD 202 Mechanics of Solids**</td>
<td>4</td>
</tr>
<tr>
<td>ENGRD 241 Engineering Computation**</td>
<td>3</td>
</tr>
<tr>
<td>ENGRD 221 Thermodynamics**</td>
<td>3</td>
</tr>
<tr>
<td>CEE 304 Uncertainty Analysis in Engineering</td>
<td>4</td>
</tr>
<tr>
<td>CEE 331 Fluid Mechanics</td>
<td>4</td>
</tr>
<tr>
<td>Earth Science (one from the following list):</td>
<td>3-4</td>
</tr>
<tr>
<td>CEE 341 Introduction to Geotechnical Engineering and Analysis</td>
<td>4</td>
</tr>
<tr>
<td>FAS 201 (ENGRD 201) Introduction to the Physics and Chemistry of the Earth**</td>
<td>4</td>
</tr>
<tr>
<td>FAS 321 Introduction to Biogeochemistry</td>
<td>4</td>
</tr>
<tr>
<td>CSS 365 Environmental Chemistry: Soil, Air, and Water</td>
<td>4</td>
</tr>
<tr>
<td>or BEE 371 Physical Hydrology Ecosystems</td>
<td>3</td>
</tr>
<tr>
<td>or CEE 351 Environmental Quality Engineering</td>
<td>3</td>
</tr>
<tr>
<td>or CEE 451 Microbiology for Environmental Engineering††</td>
<td>3</td>
</tr>
</tbody>
</table>

(Continue in the next column...)

* Students must complete two ENGRD courses.
† Students planning graduate-level study in Environmental Engineering may take BIOM 290 (Biology for Microbiology) or BIOM 291 (Microbiology for Environmental Engineering) as a second engineering distribution course.
††Students must complete two ENGRD courses.

TOTAL CREDITS MINIMUM: 128

Students using BEE 200 to satisfy the ENGRI requirement must make up the 2-credit difference with engineering course work.

Environmental Engineering Honors Program

Students interested in pursuing an honors program should contact the undergraduate program director of Biological and Environmental Engineering or the associate director of Civil and Environmental Engineering for information on the program requirements.

Geological Sciences

Offered by the Department of Earth and Atmospheric Sciences

Contact: 2124 Snee Hall, 255-5466, www.eas.cornell.edu

We live on a planet with finite resources and a finite capacity to recover quickly from human-induced environmental stresses. It is a naturally powerful planet, with natural hazards such as earthquakes, hurricanes, and volcanic eruptions that alter the course of history with little prior warning. As the
human population grows, understanding the earth and its resources becomes progressively more important to both future policymakers and ordinary citizens, who must find new sources of energy and sustain the quality of our environment. Because the human need to understand the earth is so pervasive and the earth system is so multifaceted, the major has three options, which cover the spectrum of modern earth sciences.

The three options are the geoscience option, the atmospheric science option, and the science of earth systems (SES) option. The geoscience option prepares students for advanced volcanic eruptions, and mountain building. Topics of study also include the fundamental processes responsible for earthquakes, volcanism, and mountain building. This option prepares students for advanced study in geology, geophysics, geochemistry, and geobiology and for careers in energy and mineral industries or in water and contaminant investigation (environmental geology). The option is also valuable for a pre-law or pre-med program or in preparation for a career in K–12 education.

The geoscience option stresses a balanced overview of geology with considerable flexibility and a degree of specialization achieved by choice of major-approved electives. Students must take ENGRD/EAS 201 as an engineering distribution course. For students interested in geology or paleontology, BIO G 101-103 (or BIO G 109-110) is recommended. CHEM 208 may be substituted for PHYS 214. Learning through direct observation of the natural system is highly valued, akin to design projects in other engineering majors.

The geoscience option requires these courses: the introductory outdoor field course EAS 210 and the five core courses EAS 326, 355, 356, 375, and 388. Two additional EAS major-required courses and at least one major-approved elective must be EAS 300 through 600-level courses. The core courses may be taken in any sequence, except that EAS 355 (fall course) should be taken before EAS 356 (spring course). EAS 326, 355, 356, and 375 should be taken relatively early in the program.

There are four alternatives for completing the required 4-credit advanced outdoor field experience: (1) EAS 411 Field Mapping in Argentina (3 credits) and EAS 491–492 (1 credit based on field observations), (2) EAS 457 Geophysical Field Methods (3 credits) plus at least 1 credit of EAS 491 or 492 using geophysical techniques from EAS 457; (3) EAS 491–492 Undergraduate Research (2 credits each) with a significant component of fieldwork; (4) a pre-approved outdoor advanced field course taught by another college or university (≥ 4 credits).

A selection of major-approved electives may provide specializations in geophysics, geochemistry (including petrology and mineralogy), geobiology (palaeontology), and geology applied to mineral and petroleum industries, environmental problems, hydrology, and civil engineering. Students who want a more general background or want to remain uncommitted with regard to specialty instruction may choose their major-approved electives from the same department or school. The major-approved electives outside the major may be chosen from offerings in other science or engineering areas or the liberal arts at the 300 level or above. Students may request substitution of EAS 491 and 492, Undergraduate Research, for a fourth-year major-approved elective but not if it is being used to fulfill the outdoor field requirement.

In addition to course work, students learn by involvement in projects. Facilities include equipment for processing seismic signals and digital images of the Earth's surface, instruments for highly precise isotope and element analyses, and extensive libraries of earthquake records, satellite images, and exploration seismic records. Undergraduates have served as field assistants for faculty members and graduate students in South America, Europe, Asia, Canada, the USA, and several ocean islands. Undergraduates are encouraged to participate in research activities, frequently as paid assistants.

Geoscience Option

The geoscience option reveals Earth's turbulent history from the formation of our solar system, through glacial cycles and ice ages that dominate Earth's present behavior. That history is highlighted by the co-evolution of life and the Earth system—from the origin of life to the modern industrial phase during which our species has proliferated and become able to alter the chemical and physical environment. Topics of study also include the fundamental processes responsible for earthquakes, volcanism, and mountain building. This option prepares students for advanced study in geology, geophysics, geochemistry, and geobiology and for careers in energy and mineral industries or in water and contaminant investigation (environmental geology). The option is also valuable for a pre-law or pre-med program or in preparation for a career in K–12 education.

The geoscience option stresses a balanced overview of geology with considerable flexibility and a degree of specialization achieved by choice of major-approved electives. Students must take ENGRD/EAS 201 as an engineering distribution course. For students interested in geology or paleontology, BIO G 101-103 (or BIO G 109-110) is recommended. CHEM 208 may be substituted for PHYS 214. Learning through direct observation of the natural system is highly valued, akin to design projects in other engineering majors.

The geoscience option requires these courses: the introductory outdoor field course EAS 210 and the five core courses EAS 326, 355, 356, 375, and 388. Two additional EAS major-required courses and at least one major-approved elective must be EAS 300 through 600-level courses. The core courses may be taken in any sequence, except that EAS 355 (fall course) should be taken before EAS 356 (spring course). EAS 326, 355, 356, and 375 should be taken relatively early in the program.

There are four alternatives for completing the required 4-credit advanced outdoor field experience: (1) EAS 411 Field Mapping in Argentina (3 credits) and EAS 491–492 (1 credit based on field observations), (2) EAS 457 Geophysical Field Methods (3 credits) plus at least 1 credit of EAS 491 or 492 using geophysical techniques from EAS 457; (3) EAS 491–492 Undergraduate Research (2 credits each) with a significant component of fieldwork; (4) a pre-approved outdoor advanced field course taught by another college or university (≥ 4 credits).

A selection of major-approved electives may provide specializations in geophysics, geochemistry (including petrology and mineralogy), geobiology (palaeontology), and geology applied to mineral and petroleum industries, environmental problems, hydrology, and civil engineering. Students who want a more general background or want to remain uncommitted with regard to specialty instruction may choose their major-approved electives from the same department or school. The major-approved electives outside the major may be chosen from offerings in other science or engineering areas or the liberal arts at the 300 level or above. Students may request substitution of EAS 491 and 492, Undergraduate Research, for a fourth-year major-approved elective but not if it is being used to fulfill the outdoor field requirement.

In addition to course work, students learn by involvement in projects. Facilities include equipment for processing seismic signals and digital images of the Earth's surface, instruments for highly precise isotope and element analyses, and extensive libraries of earthquake records, satellite images, and exploration seismic records. Undergraduates have served as field assistants for faculty members and graduate students in South America, Europe, Asia, Canada, the USA, and several ocean islands. Undergraduates are encouraged to participate in research activities, frequently as paid assistants.

Atmospheric Science Option

Atmospheric science is the study of the atmosphere and the processes that shape weather and climate. The curriculum emphasizes the scientific study of the behavior of weather and climate, and applications to the important practical problems of weather forecasting and climate prediction. Students develop skills in the analysis and interpretation of atmospheric processes and acquire skill and experience in the analysis, interpretation, and forecasting of meteorological events. This option satisfies both the curricular guidelines of the American Meteorological Society and the educational requirements of the National Weather Service for employment as a meteorologist, which also qualifies graduates for positions in private-sector forecasting and environmental consulting firms. The option also provides excellent preparation for graduate work in atmospheric science and related fields.

The atmospheric science option requires ENGRD 270 as an engineering distribution course as well as introductory courses in atmospheric science (EAS 151 and 133) and EAS 250 Observations and Instrumentation. Many of the upper-division major courses require EAS 341 Atmospheric Thermodynamics and Hydrostatics and EAS 342 Atmospheric Dynamics and Research which are normally taken in the junior year. The additional required major courses are EAS 331 Climate Dynamics, EAS 352 Synoptic Meteorology I, EAS 451 Synoptic Meteorology II, EAS 455 Statistical Methods in Meteorology, and EAS 447 Physical Meteorology. Major-approved electives may be chosen from EAS courses and selected upper-division courses in other departments.

Science of Earth Systems (SES) Option

The SES option provides an integrated view of Earth processes critical to the understanding of our environment. This scientific understanding is the primary foundation used to determine to what degree human societies can modify or adapt to future change. The option is for students interested in careers or graduate study in any of the Earth system sciences or a future in environmental law, environmental engineering, or environmental policy. The option is part of the multidisciplinary, intercollege program in the Science of Earth Systems. Collaborations with other departments provide breadth and depth to the program.

The SES option emphasizes a strong preparation in basic math and sciences and an integrated approach to the study of the Earth system including the lithosphere, biosphere, hydrosphere, and atmosphere.

Students are required to take a second semester of chemistry (CHEM 260), two semesters of biology (BIO G 101-102 or 104-105), and two semesters of general chemistry (EAS 131 and 133) and physical chemistry (EAS 132). Major-approved electives from the same department are required. The program in the Science of Earth Systems is required. ENGRD 210 Physics and Chemistry of the Earth is recommended as an engineering distribution course. The option requires a set of three core courses, normally taken in the junior or senior years that provide breadth and integration. Five additional intermediate to advanced courses are selected—with the adviser's approval—to provide depth and a degree of specialization, and an additional major-approved elective is selected. These courses permit the student to specialize in such areas as climate dynamics, biogeochemistry, ocean sciences, environmental geosciences, ecological systems, hydrological sciences, and soil sciences.

Two of the specialization courses will count as major-required courses and the third as a major-approved elective. At least three of the major-approved electives must be non-EAS courses. The three SES core courses are: EAS 302 Evolution of the Earth System—spring, 4 credits; EAS 321 Biogeochemistry (also NTRES 321)—fall, 4 credits; EAS 331 Climate Dynamics (also ASTRO 351)—fall, 3 credits.

See www.eas.cornell.edu for possible specializations.

Excellent opportunities for learning through direct observation of the natural systems exist in either the spring "Environmental Semester in Hawaii," through a summer field course in geology operated in Argentina (EAS 417), or through campus-based field courses.

Field Study in Hawaii

Field study is a fundamental aspect of earth system science. Students who hope to increase their field experience may fulfill some of the requirements for the SES major by off-campus study through the Cornell Earth and Environmental Semester program (EES). The EES program, offered during the spring semester, emphasizes field-based education and research. It is based on the island of Hawaii, an outstanding natural laboratory for earth and environmental sciences. Courses
that may be applied to the SES major include EAS 240, 322, and 351. EAS 322 and 351 may also be used to fulfill requirements of the Geological Sciences major. The EES program also offers opportunities for internships with various academic, nonprofit, and government organizations. Typically, students participate in the EES program during their junior year, although exceptions are possible. For further information, see www.eas.cornell.edu/geology/classes/hawaii/course.html.

Geological Sciences Honors Program
The B.S. degree with honors is granted to engineering students who satisfy the requirements given at the beginning of the section "Engineering Majors" as well as the following requirements.

1. Acceptance of the written proposal of the honors project by the faculty adviser, the honors adviser, and the director of undergraduate studies.
2. An honors thesis involving research (EAS 491-492 or 499, 2 or more credits each) of breadth, depth, and quality.

INDEPENDENT MAJOR
Offered by the Independent Major Committee
Contact: Associate Dean for Undergraduate Programs, 167 Olin Hall, 255-8240

The independent major is designed for students whose educational objectives cannot be met by one of the regular majors. With the exception of certain faculty-sponsored programs, this major consists of an engineering primary area (approx. 32 credits) and an educationally related secondary area (approx. 16 credits). The primary area may be in any subject area offered by schools or departments of the college; the secondary area may be in a second engineering subject area or a logically connected nonengineering area. The combination must form an engineering education in scope and substance and should include engineering design and synthesis as well as engineering sciences. Each program includes the normally required common-curriculum requirements and approved electives.

Students should apply to the independent major during the sophomore year. A student should seek assistance in developing a coherent program from professors in the proposed primary and secondary areas (an adviser in each area is required). The program must also be approved by the Independent Major Committee. If approved, the program is the curricular contract to which the student must adhere.

Because no single standardized curriculum exists, the independent major is not accredited. Independent major students who intend to seek legal licensing as a Professional Engineer should be aware that this nonaccredited degree program will require additional education, work, and/or experience to qualify for eligibility to take the Fundamentals of Engineering examination and may affect acceptance into engineering graduate programs.

INFORMATION SCIENCE, SYSTEMS, AND TECHNOLOGY
Offered jointly by the Department of Computer Science and the School of Operations Research and Industrial Engineering

Digital information technologies have become pervasive in science, engineering, manufacturing, business, finance, culture, law, and government, dramatically changing the way people work and live. The proliferation and significance of these new technologies demands a new focus in engineering education—one that remains rigorous and technically oriented but is simultaneously devoted to integrating engineering design, theory, and practice within the social and organizational contexts in which these complex digital information systems are employed.

The information science, systems, and technology (ISTS) major studies the design and management of complex information systems. Just as structural engineers and nanofabricators use physics at radically different scales, so also there is a scale difference between the focus of the ISTS major and the more traditional, look-under-the-hood majors in computer science and operations research and industrial engineering. Rather than focusing on the computing and communication technologies that underlie digital information systems, the ISTS major emphasizes information systems engineering in broad application contexts, where issues at the confluence of information science, technology, and management are the primary concerns.

The ISTS major has two options. The management science option educates students in methods for quantitative decision making and their application to information technology as well as the broader role that information technology plays in making these methods effective. Students in the information science option will obtain advanced training in broad application contexts, where issues at the confluence of information science, technology, and management are the primary concerns.

The ISTS major has two options. The management science option educates students in methods for quantitative decision making and their application to information technology as well as the broader role that information technology plays in making these methods effective. Students in the information science option will obtain advanced training in broad application contexts, where issues at the confluence of information science, technology, and management are the primary concerns.

Area I. Mathematical Models in Management Science

ORIE 360 Financial and Managerial Accounting
ORIE 361 Introductory Engineering Stochastic Processes I
ORIE 480 Information Technology Management Solutions (Area II)
Area II. Information Systems

COM S 419 Computer Networks
INFO 430 Information Retrieval
INFO 431 Web Information Systems
COM S 432 Introduction to Database Systems
COM S 465 Computer Graphics I
COM S 472 Foundations of Artificial Intelligence
COM S 474 Introduction to Natural Language Processing
COM S 501 Software Engineering
INFO 530 Architecture of Large-Scale Information Systems
COM S 578 Empirical Methods in Machine Learning and Data Mining

Requirements for the information science option:
1. Three courses from Information Systems (Area II below).
2. One course from Mathematical Modeling in IT (Area III).
3. Three electives, all from either Human-Centered Systems (Area V) or Social Systems (Area VI).
4. Two electives from any of the six areas (INFO 490 may be used to fulfill one of these electives).

Requirements for the management science option:
1. Four courses from Mathematical Models in Management Science (Area I).
2. Three electives, one from each of:
 - Information Systems (Area II)
 - Mathematical Modeling in IT (Area III)
 - Information Technology Management Solutions (Area IV)
3. Two electives from any of the six areas (INFO 490 may be used to fulfill one of these electives).
Area III. Mathematical Modeling in IT
OR&IE 431 Discrete Models
OR&IE 464 Extreme Value Analysis with Applications to Finance and Data Communications
OR&IE 474 Statistical Data Mining I
COM S 478 Machine Learning
OR&IE 483 Applications of Operations Research and Game Theory to IT
EC& 562 Fundamental Information Theory
OR&IE 574 Statistical Data Mining II

Area IV. IT Management Solutions
OR&IE 481 Delivering OR Solutions with Information Technology
OR&IE 518 Supply Chain Management

Area V. Human-Centered Systems
PSYCH/COGST 342 Human Perceptions: Applications to Computer Graphics, Art, Visual Display*
INFO 345 Human-Computer Interaction Design
PSYCH 347 Psychology of Visual Communications
PSYCH 380 Social Cognition*
PSYCH 413 Information Processing: Conscious and Unconscious
PSYCH/COGST 416 Modeling Perception and Cognition*
INFO 440 Advanced Human-Computer Interaction Design
COMM 445 Seminar in Computer-Mediated Communication
INFO 450 Language and Technology
DEA 470 Applied Ergonomic Methods

*Students who take PSYCH 342 or 416 may also count their prerequisite, PSYCH 205 or 214. Students who take PSYCH 380 may also count PSYCH 280. At most one of these 200-level prerequisites can be counted.

Area VI. Social Systems
SOC 304 Social Networks and Social Processes
AEM 322 Technology, Information, and Business Strategy*
INFO 349 Media Technologies
INFO 355 Computers: From the 17 C. to the Dot.com Boom
S&TS/INFO 356 Computing Cultures
ECON 368 Game Theory (formerly ECON 467)*
INFO 387 The Automatic Lifestyle: Consumer Culture and Technology
LAW 410 Limits on and Protection of Creative Expressions—Copyright Law and Its Close Neighbors
S&TS 411 Knowledge, Technology, and Property
ECON 419 Economic Decisions Under Uncertainty
COMM 428 Communication Law
INFO 435 Seminar on Applications in Information Science
OR&IE 435 Introduction to Game Theory*

MATERIALS SCIENCE AND ENGINEERING

S&TS 438 Minds, Machines, and Intelligence
INFO 447 Social and Economic Data
ECON 476/477 Decision Theory I and II
COMM 494 Special Topics in Communication: Copyright in the Digital Age
INFO 515 Culture, Law, and Politics of the Internet
H ADM 574 Strategic Information Systems*

*Only one of ECON 368 and OR&IE 435 may be taken for ISST credit. Only one of AEM 322 and H ADM 574 may be taken for ISST credit.

Information Science, Systems, and Technology Honors Program

The B.S. degree with honors is granted to engineering students who satisfy the requirements given at the beginning of the section "Engineering Majors" as well as the following requirements.

1. 8 credit hours of ISST course work at or above the 500 level (no S-U courses; no seminars or 2-credit courses).
2. 6 credit hours of INFO 490 independent study and research with an ISST faculty member, spread over at least two semesters, with at least A- each semester or
3. 3 credit hours of INFO 490 independent study and research with an ISST faculty member and 3 credit hours of INFO 491 teaching experience, both with grades of at least A-.

The ISST research is expected to result in a programming project or a written report (or both).

Any 500- or 600-level course taken to fulfill the honors requirements may be counted toward fulfillment of the associated primary or secondary option requirements.

Procedures

Each program must be approved by the appropriate co-director of the ISST major, and any changes to the student's program must also be approved.

MATERIALS SCIENCE AND ENGINEERING

Offered by the Department of Materials Science and Engineering

Contact: 214 Bard Hall, 255-9159, www.mse.cornell.edu

This major is accredited by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology (ABET).

Prospective majors are required to take ENGRD 261 or 262 before affiliating with the major. It is highly recommended that the course be taken as an engineering distribution during the sophomore year. The major program develops a comprehensive understanding of the physics and chemistry underlying the unique properties of modern engineering materials and processes.

Students are required to complete a series of electives to develop knowledge of materials, such as biomaterials, ceramics, polymers, and semiconductors. Application-related courses include the areas of biotechnology and life science, energy and environment, materials for information science, nanotechnology, and technology management and ethics. These requirements are satisfied through a series of technical electives taken mainly in the senior year, selected from various engineering and science departments. Optional research involvement courses provide undergraduates with the opportunity to work with faculty members and their research groups on current projects.

The major requirements for a B.S. degree in materials science and engineering are:

1. ENGRD 261 Mechanical Properties of Materials: From Nanodevices to Superstructures or ENGRD 262 Electronic Materials for the Information Age
2. 12 required major courses:
 - MS&E 204 Materials Chemistry
 - MS&E 206 Atomic and Molecular Structure of Matter
 - MS&E 302 Mechanical Properties of Materials, Processing, and Design
 - MS&E 305 Thermodynamics of Condensed Systems
 - MS&E 304 Kinetics, Diffusion, and Phase Transformations
 - MS&E 305 Electronic, Magnetic, and Dielectric Properties of Materials
 - MS&E 307 Materials Design Concepts I
 - MS&E 311 Junior Lab I
 - MS&E 312 Junior Lab II
 - MS&E 405/406 Senior Materials Lab I or Senior Thesis I
 - MS&E 404/406 Senior Materials Lab II or Senior Thesis II
 - MS&E 407 Materials Design Concepts II
3. Two materials-related electives covering two groups of different materials
4. Three application-related electives in at least two different types of applications
5. Two of the application-related electives must be taken from outside MS&E
6. One additional technical elective outside MS&E

Materials Science and Engineering Honors Program

The B.S. degree with honors is granted to engineering students who satisfy the requirements given at the beginning of the section "Engineering Majors" as well as the following requirements:

1. The 9 credits (giving a total of 140) of additional courses must be technical in nature, i.e., in engineering, math, chemistry, and physics at the 400 and graduate level, with selected courses at the 300 level. The courses must be approved by the major adviser.
2. Senior honors thesis (MS&E 405/406) with a grade of at least A.
MECHANICAL ENGINEERING
Offered by the Sibley School of Mechanical and Aerospace Engineering
Contact: 108 Upson Hall, 255-3573, maeg@cornell.edu, www.mae.cornell.edu
This major is accredited by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology (ABET).
This major is designed to provide a broad background in the fundamentals of the discipline as well as to offer an introduction to the many professional and technical areas with which mechanical engineers are concerned. The program covers both major streams of mechanical engineering. Mechanical systems, design, and materials processing is concerned with the design, analysis, testing, and manufacture of machinery, vehicles, devices, and systems. Other topics covered are computer-aided design, vibrations, control systems, and dynamics. Particular areas of concentration are mechanical systems and design, vehicle engineering, biomechanics, and engineering materials.

Engineering of fluids, energy, and heat transfer systems is concerned with the efficient conversion of energy, aerospace and surface transport, and the thermal design of mechanical equipment. The environmental impact of engineering activity (including pollutants and noise), aeronautics, and the experimental and theoretical aspects of fluid flow, heat transfer, thermodynamics, and combustion. Specific areas of concentration include aerospace engineering and thermo-fluids engineering.

During the fall semester, sophomores who plan to affiliate with the mechanical engineering major take ENGRD 202 (also T&M 202) as an engineering distribution course. ENGRD 221/M&AE 221 is required for the major and is recommended as the second engineering distribution course. The Sibley School supports students who have unusual requirements, but delays or substitutions must be discussed with and receive approval of their major adviser.

The major requires 13 courses (beyond ENGRD 202 already mentioned) and five major-approved elective courses.

Required courses
M&AE 212 Mechanical Properties and Selection of Engineering Materials
ENGRD 221 Thermodynamics
M&AE 225 Mechanical Synthesis
ENGRD 203 Dynamics
M&AE 378 Mechatronics or ENGRD 210, Introduction to Electrical Circuits, Electrical and Computer Engineering, or PHYS 360, Electronic Circuits
M&AE 323 Introductory Fluid Mechanics
M&AE 324 Heat Transfer
M&AE 325 Analysis of Mechanical and Aerospace Structures
M&AE 326 System Dynamics
M&AE 327 Mechanical Property and Performance Laboratory
M&AE 427 Fluids/Heat Transfer Laboratory
M&AE 428 Seminar on Engineering Design
M&AE 429 Supervised Senior Design Experience

Electives
Students should use the flexibility provided by the major-approved electives, adviser-approved electives, and humanities, arts, and social sciences electives to develop a program to meet their specific goals.

Major-approved electives
The major includes five major-approved electives. At least three of these courses must be upper-level (300+ or 400-level) M&AE courses. Of these three, two must be a concentration of M&AE's upper-level courses providing breadth in a specific subject area. Standard concentrations are shown below, but students may petition for approval of two other related courses to form a custom concentration.

The standard concentrations are:
- Biomechanics, M&AE 463, 464, 466, 565
- Engineering materials, M&AE 312, 313, 455, 464, 470, 513
- Mechanical systems and design, M&AE 378*, 409, 415, 417, 435, 470, 477, 478, 479, 514
- Thermo-fluids engineering, M&AE 423, 449, 453, 501, 543

*Students who took M&AE 378 as a required course (see above) may not use it again as a major-approved elective.

A Senior Design Experience is required for the B.S. M.E. This is satisfied with M&AE 428, Seminar on Engineering Design and M&AE 429, Supervised Senior Design Experience. In M&AE 429, students sign up for a section that is offered in conjunction with a Senior Design Elective (M&AE 386, 400, 423, 425, 435, 470, 479) or that is directed by a faculty member as an individual or a team design exercise.

One of the courses must be an approved upper-level math course taken after MATH 214. The course must include some statistics. Currently, the approved courses are T&M 310, ENGRD 270, CEE 304, and ENGRD 241.

Technical elective
One of the major-approved electives may be any course at an appropriate level, chosen from engineering, math, or science (physics, chemistry, or biological sciences). Appropriate level is interpreted as being at a level beyond the required courses of the college curriculum. Courses in economics, business, and organizational behavior are not accepted. Advisers may approve such courses as adviser-approved electives.

Adviser-approved electives
To maximize flexibility (i.e., the option for study abroad, COOP, internships, pre-med, and flexibility during the upper-class years), the Sibley School faculty recommends that students delay use of adviser-approved (AA) electives until after the third semester. Students must seek adviser approval before taking an AA elective. Advanced placement credit may not count as an AA elective, nor may Reserve Officer Training Corps (ROTC) courses unless they are co-listed in an academic department. Students must document AA electives approved before M&AE affiliation within a month of registration as an M&AE student. The faculty encourages students to consider the following as possible AA electives:
- an engineering distribution course
- courses stressing oral or written communications
- courses stressing the history of technology
- rigorous courses in the physical sciences (physics, biology, chemistry)
- courses in information science (mathematics, computer science)
- courses in methodologies (modeling, problem solving, synthesis, design)
- courses in technology (equipment, machinery, instruments, devices, processes)
- courses in business enterprise operations (e.g., economics, financial, legal)
- courses in organizational behavior
- courses in cognitive sciences

Other considerations
It is recommended that humanities, arts, and social sciences electives include studies in:
- history of technology
- societal impacts of technology
- history
- foreign languages
- ethics
- communications
- political science
- aesthetics
- economics
- architecture

The Sibley School encourages its students to spend a junior year abroad at foreign universities with which the college has an exchange agreement, such as the Ecole Centrale de Paris.

The technical-writing requirement of the common curriculum is satisfied by M&AE 427.

A limited set of third-year courses is offered each summer under the auspices of the Engineering Cooperative Program.

Preparation in Aerospace Engineering
There is no separate undergraduate accredited program in aerospace engineering, but students may prepare for a career in this area by majoring in mechanical engineering and taking courses from the aerospace engineering concentration. Students may prepare for the graduate program in aerospace engineering by majoring in mechanical engineering, in other appropriate engineering specialties such as electrical engineering or engineering physics, or in the physical sciences. Other subjects recommended as preparation for graduate study include thermodynamics, fluid mechanics, applied mathematics, chemistry, and physics.
OPERATIONS RESEARCH AND ENGINEERING
Offered by the School of Operations Research and Industrial Engineering
Contact: 202 Rhodes Hall, 255-5088, www.orie.cornell.edu

This major provides a broad education in the techniques and modeling concepts needed to analyze and design complex systems and an introduction to the technical and professional areas with which operations researchers and industrial engineers are concerned. The major prepares students for a wide range of careers including operations research, industrial engineering, entrepreneurship, information technology, operations management, consulting, financial engineering, financial services, and management.

The foundation of the major is the development of basic skills in calculus, statistics, probability, mathematical optimization, and computer science. Required courses in manufacturing systems, control, and simulation build on these skills and provide engineering design experiences. In the senior year the curriculum is quite flexible. Students take OR&IE electives to broaden and deepen their expertise in applied probability and statistics, industrial systems, optimization, information technology, or financial engineering.

Because of the wide range of career goals among ORE students, the major is designed with a minimum of required courses and a large number of required electives. Students should consult with their major advisers to select electives that best meet their future goals.

Exceptional students interested in pursuing graduate studies are encouraged to speak with their faculty advisers concerning an accelerated program of study.

A student who intends to affiliate with the major in operations research and engineering should take ENGRD 270 Basic Engineering Probability and Statistics after completing MATH 192, MATH 294 should be completed before or concurrently with ENGRD 270. ORE affiliates are required to complete MATH 191, 192, and 294 (or their subject matter equivalents.) Either MATH 293, COM S 280, or MATH 304 can be used to satisfy the fourth-semester mathematics requirement. Students should discuss with their advisers which of these three courses is most appropriate to their future program of study in ORE. The following considerations should be borne in mind.

1. MATH 293 (differential equations) is essential for advanced study in financial engineering. Also, MATH 293 is a prerequisite for PHYS 214, thus students who do not take MATH 293 must plan to take CHEM 208.
2. COM S 280 provides an introduction to discrete structures and algorithms of broad applicability in the field of operations research, particularly for fundamental models in the areas of optimization, production scheduling, inventory management, and information technology; it is also a prerequisite for certain upper-class Computer Science courses in the areas of information technology and algorithmic analysis.
3. MATH 304 covers fundamentals of formal proof techniques; this material is strongly recommended for students who intend advanced (PhD-level) study in Operations Research or a related field.

Early consultation with a faculty member or the associate director for undergraduate studies can be helpful in making appropriate choices.

The required courses for the ORE major and the typical terms in which they are taken are as follows:

<table>
<thead>
<tr>
<th>Semester</th>
<th>Credits</th>
<th>Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>2, 3, or 4</td>
<td>3</td>
<td>ENGRD 211 Computers and Programming</td>
</tr>
<tr>
<td>2, 3, or 4</td>
<td>3</td>
<td>ENGRD 270 Basic Engineering Probability and Statistics</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>OR&IE 320 Optimization I</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>OR&IE 350 Financial and Managerial Accounting</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>OR&IE 360 Engineering Probability and Statistics II</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>Humanities/social sciences elective</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>Major-approved elective</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>OR&IE 310 Industrial Systems Analysis (may be taken in semester 4)</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>OR&IE 321 Optimization II</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>OR&IE 361 Introductory Engineering Stochastic Processes I</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>Behavioral science (organizational behavior)</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>Humanities/social sciences elective</td>
</tr>
</tbody>
</table>

The behavioral science requirement can be satisfied by any of several courses, including the Johnson Graduate School of Management (JGSM) course NCC 554 (offered only in the fall), which is recommended for those contemplating the pursuit of a graduate business degree, ILROB 170, 171, and 175, H ADM 115, ENGRG 335 (which also satisfies the technical writing requirement), and others.

The basic senior-year program, from which individualized programs are developed, consists of the following courses:

<table>
<thead>
<tr>
<th>Minimum credits</th>
<th>Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>OR&IE 580 Simulation Modeling and Analysis</td>
</tr>
<tr>
<td>4</td>
<td>Three upper-class OR&IE electives as described below</td>
</tr>
<tr>
<td>4</td>
<td>Three major-approved electives (at least 3 credits must be outside OR&IE)</td>
</tr>
<tr>
<td>6</td>
<td>Two humanities/social sciences electives</td>
</tr>
<tr>
<td>6</td>
<td>Two adviser-approved electives</td>
</tr>
<tr>
<td>6</td>
<td>Available OR&IE electives are as follows: Manufacturing and distribution systems: OR&IE 416, 451, 480, 481, 483, 518, 524, 525, and 562 and JGSM MBA 641 Optimization methods: OR&IE 431, 432, 434, 435, 436, and 533</td>
</tr>
<tr>
<td>6</td>
<td>Applied probability and statistics: OR&IE 462, 464, 474, 476 (2 credits), 561, 563, 574, 575 (2 credits), 576 (2 credits) and 577</td>
</tr>
<tr>
<td>6</td>
<td>Financial engineering: OR&IE 467, 469, 473, and 568</td>
</tr>
</tbody>
</table>

Academic Standing
The student in the major should obtain a passing grade in every course; at least C- in ENGRD 211 and 270, OR&IE 310, 320, 321, 350, 360, 361 and 580; a GPA of 2.0 each semester; a GPA of 2.0 for ORE major courses; and satisfactory progress toward completion of the degree requirements. Each student's performance is reviewed at the conclusion of each semester.

If at least C- is not earned in a required course, the course must be repeated within one year before the next course in the sequence may be taken (OR&IE 321 and 361, in particular). Failure to achieve at least C- in the second attempt will generally result in withdrawal from the major.

Operations Research and Engineering Honors Program
The B.S. degree with honors is granted to engineering students who satisfy the requirements given at the beginning of the section "Engineering Majors" as well as the following requirements.

The 9 additional credits of course work shall be from one or more of the following, with at least 4 credits in the first category:

1. Advanced courses in OR&IE at the 500 level or above.
2. A significant research experience or honors project under the direct supervision of an OR&IE faculty member using OR&IE 499 OR&IE Project. A significant written report must be submitted as part of this component.
3. A significant teaching experience under the direct supervision of a faculty member in OR&IE using OR&IE 490 Teaching in OR&IE or ENGRG 470 Undergraduate Engineering Teaching.

Procedures
Each program must be approved by the associate director of undergraduate studies, and any changes to a program must be approved by the associate director.

ENGINEERING MINORS AND OPTIONS
The engineering minor is a supplement to the B.S. degree majors in the college, including the independent major. It recognizes formal study of a particular subject area in engineering normally outside the major. Students undertaking a minor are expected to complete the requirements during the time of their continuous undergraduate enrollment at Cornell. Completing the requirements for an engineering minor (along with a major) may require more than the traditional eight semesters at Cornell. In many cases, however, courses that fulfill minor requirements may also satisfy other degree requirements (e.g., distribution courses, adviser-approved, or major-approved electives), and completion within eight semesters is possible.

An engineering minor or option requires:

- successful completion of all requirements for a B.S. degree in engineering.
- enrollment in an engineering major that approves participation in the minor or option.
• satisfactory completion of six courses (at least 18 credits) in a college-approved minor (or four courses and a seminar (at least 13 credits) in the option).

Students may apply for certification of an engineering minor at any time after the required course work has been completed in accordance with published standards. An official notation of certification of a minor or option appears on the Cornell transcript following graduation.

The College of Engineering offers minors and one option in the following areas (offering units are indicated in parentheses):

Applied Mathematics (T&AM)

Biological Engineering (BEE)

Bioengineering Option (Bioengineering Program)

Biomedical Engineering (BME)

Civil Infrastructure (CEE)

Computer Science (COM S)

Electrical and Computer Engineering (ECE)

Engineering Management (CEE)

Environmental Statistics (OR&IE)

Environmental Engineering (BEE/CIE)

Geological Sciences (EAS)

Industrial Systems and Information Technology (OR&IE)

Information Science (INFO)

Materials Science and Engineering (MS&E)

Mechanical Engineering (M&AE)

Operations Research and Management Science (OR&IE)

Additional information on specific minors can be found below, in the [Engineering Undergraduate Handbook](http://www.tam.cornell.edu/Undergrad.html), in the undergraduate major office of the department or school offering the minor or option, and in Engineering Advising.

MINOR: APPLIED MATHEMATICS

Offered by the Department of Theoretical and Applied Mathematics

Contact: Richard Rand, 207 Kimball Hall, 255-7145, rhr2@cornell.edu, www.tam.cornell.edu/Undergrad.html

All engineering undergraduates are eligible to participate in this minor.

Academic standards: At least C in each course1.**

Requirements

At least six courses beyond MATH 294, to be chosen as follows:

a. At most one course from any one of the groups 1, 2, 3, or 4.

b. At least three courses from groups 5 and 6.

c. At most one 200-level course.

d. At most one course that is offered by the student’s major department.

1. **Analysis**

 T&AM 310 Advanced Engineering Analysis I

 MATH 321 Manifolds and Differential Forms

 MATH 420 Differential Equations and Dynamical Systems

 A&EP 321 Mathematical Physics I

2. **Computational methods**

 COM S/ENG 322 Introduction to Scientific Computation

 CEE/ENG 241 Engineering Computation

 OR&IE 320 Optimization I

 BEE 449 Computational Tools for Engineers

 COM S 421 Numerical Analysis

3. **Probability and statistics**

 OR&IE/ENG 270 Basic Engineering Probability and Statistics

 OR&IE 360 Engineering Probability and Statistics II

 ECE 310 Introduction to Probability and Random Signals

 CEE 304 Uncertainty Analysis in Engineering

 MATH 471 Basic Probability

4. **Applications**

 A&EP 333 Mechanics of Particles and Solid Bodies

 CHEM 323 Fluid Mechanics

 CEE 331 Fluid Mechanics

 CEE 371 Modeling of Structural Systems

 COM S 280 Discrete Structures

 ECE 425 Digital Signal Processing

 MS&E 303 Thermodynamics of Condensed Systems

 M&AE 323 Introductory Fluid Mechanics

5. **Advanced courses**

 Only one of these three:

 T&AM 311 Advanced Engineering Analysis II

 MATH 422 Applied Complex Analysis

 A&EP 322 Mathematical Physics II

 Only one of the following two:

 ECE 411 Random Signals

 OR&IE 361 Introductory Engineering Stochastic Processes I

 Only one of these two:

 COM S 381 Introduction to Theory of Computing

 COM S 481 Introduction to Theory of Computing

 Only one of these two:

 M&AE 571 Applied Dynamics

 T&AM 570 Intermediate Dynamics

 Any number of these:

 COM S 482 Introduction to the Design of Algorithms

 OR&IE 321 Optimization II

 OR&IE 431 Discrete Models

6. **Mathematics courses**

 Any 300+ level course offered by the Mathematics Department in algebra, analysis, probability/statistics, geometry, or logic, with the following exceptions:

 a. MATH 323 or 420, if any course from group 1 is chosen

 b. MATH 471, if any course from group 3 is chosen

 c. MATH 422, if T&AM 311 or A&EP 322 is chosen from group 5

 d. Only one of the following may be chosen:

 MATH 352 Algebra and Number Theory

 MATH 355 Introduction to Cryptology

 MATH 356 Applicable Algebra

Note: ENGRG 605-606 and M&AE 604 are graduate courses with limited enrollment. First preference is given to graduate students.

MINOR: BIOLOGICAL ENGINEERING

Offered by the Department of Biological and Environmental Engineering

Contact: 207 Riley-Robb Hall, 255-2173, www.bee.cornell.edu

Students in all majors except biological engineering may participate. Students may participate in only the bioengineering option, the biological engineering minor, or the biomedical engineering minor.

Students should meet with the BE program director as soon as they decide to pursue the minor. They will receive a BEE faculty adviser, who will assist them in completing their minor.

Biological engineering is the application of engineering to living systems. Examples of engineering efforts in this field include the development of new biosensor technologies, study and control of biologically based matter transformation systems, and development of engineered devices to study and regulate fundamental biological processes. The biological engineering minor is an opportunity for students to further their understanding of living systems and to increase their knowledge of the basic transport processes that occur within these systems. Courses in the minor provide opportunities to analyze and manipulate living systems at the molecular, cellular, and system levels.

Academic standards: At least C in each course in the minor.

Requirements

At least six courses (≥ 18 credits), as follows:

BEE 350 Biological and Environmental Transport Processes (3 credits)
1. Analysis: Two (2) of these:
 - MS&E 304 Kinetics, Diffusion, and Phase Transformations (3 credits)
 - CHEM 313 Chemical Engineering Thermodynamics (3 credits)
 - CHEM 390 Reaction Kinetics and Reactor Design (3 credits)
 - CEE 437 Experimental Methods in Fluid Dynamics (3 credits)
 - BEE 685 Biological Engineering Analysis (4 credits)

2. Application: Two (2) of these:
 - BEE 450 Bioinstrumentation (4 credits)
 - BEE/M&AE 453 Computer-Aided Engineering Applications to Biomedical Processes (3 credits)
 - BEE 454 Physiological Engineering (3 credits)
 - BEE 459 Biosensors and Bioanalytical Techniques (4 credits)
 - BEE 655 Thermodynamics and Its Applications (3 credits)
 - CHEM 543 Bioprocess Engineering (3 credits)

3. Basic Sciences: One (1) of these:
 - BIOBM 233 Introduction to Biomolecular Structure (3 credits)
 - BIOMI 290 General Microbiology (3 credits)
 - BIOBM 330-333 Principles of Biochemistry (2-4 credits)
 - BIOBM 434 Applications of Molecular Biology (3 credits)
 - BIONB 470 Biophysical Methods (3 credits)

OPTION: BIOENGINEERING

Offered by the Bioengineering Program

Contact: 270 Olin Hall, 255-7577

Students in all majors, except biological engineering, may participate. Students may participate in only one of the following bioengineering option, biological engineering minor, or biomedical engineering minor.

The purpose of the option is to provide students with a guided, coherent, individualized plan of exploration in bioengineering. Bioengineering consists of subjects that fall at the interface between engineering and life science. It involves bioprocesses, bioenvironmental engineering, biomedical devices, biomaterials, biomolecular engineering, systems biology, and more.

Students are asked to enroll after affiliation and before the beginning of the sixth semester. Enrollment requires selecting a bioengineering adviser (in addition to the major adviser), who will help select appropriate bioengineering-related courses and provide advice on careers in bioengineering.

Academic standards: S in the bioengineering seminar and at least C- in the other courses and a 2.0 GPA in all bioengineering courses.

Requirements

At least 12 credit hours consisting of two to three bioengineering courses, one to two biological sciences courses, and 1 credit of BME 501 Bioengineering Seminar. A list of approved courses can be found in 167 Olin Hall.

MINOR: BIOMEDICAL ENGINEERING

Offered by the Department of Biomedical Engineering (BME)

Contact: 120 Olin Hall, 255-1489, www.bme.cornell.edu/

All engineering majors are eligible to participate in this minor. Students may participate in only one of the bioengineering option, the biological engineering minor, or the biomedical engineering minor.

Educational Objectives: Biomedical engineering is the application of engineering principles and methods to a wide array of problems associated with human health. The field includes the design of biocompatible materials, prostheses, surgical implants, artificial organs, controlled drug-delivery systems, and wound closure devices. Diagnosing diseases and determining their biological origins depend upon increasingly sophisticated instrumentation and the use of mathematical models. This minor allows students in the College of Engineering to gain exposure to the breadth and depth of biomedical engineering offerings at Cornell, to prepare for advanced studies in biomedical engineering, and to obtain transcript recognition for their interest and capability in biomedical engineering.

Students are asked to complete a form declaring their interest in the minor with the biomedical engineering minor coordinator (120 Olin Hall). On the form the student will be asked to choose a BME faculty adviser that he or she can consult about the BME minor plan.

Academic standards: At least C- in each course in the minor. GPA ≥ 2.0 for all courses in the minor.

Required course: BME 501 Bioengineering Seminar (1 credit)

Category 1. Introductory biology (maximum of 4 credits and one course)

- BIO G 110 and ENGRH 101 Biological Principles and Introduction to Biomedical Engineering Analysis
- BIO G 101, 102, 103, and 104 Biological Sciences
- BIO G 105 and 106 Introductory Biology

Category 2. Advanced biology

- BIOBM 330 Principles of Biochemistry, Individualized Instruction
- BIOBM 333 Principles of Biochemistry, Proteins, Metabolism, and Molecular Biology
- BIOBM 331 Principles of Biochemistry, Proteins and Metabolism
- BIOBM 332 Principles of Biochemistry, Molecular Biology
- BIOAP 311 Introductory Animal Physiology Lectures
- BIOGD 281 Genetics
- BIONB 222 Introduction to Neurobiology
- BIOMI 290 General Microbiology Lectures
- BIOGD 389 Embryology

Category 3. Molar and cellular biomedical engineering

- BME 301/CHM 401 Molecular Principles of Biomedical Engineering
- BME 302/CHM 402 Cellular Principles of Biomedical Engineering
- A&EP 252 The Physics of Life
- BEE 360 Molecular and Cellular Bioengineering

Category 4. BME analysis of physiological systems

- BME 401/CHM 401 Molecular Engineering of Metabolic and Structural Systems
- BME 402* Electrical and Chemical Physiology
- M&AE 464 Orthopaedic Tissue Mechanics
- M&AE 465 Neuromuscular Biomechanics
- BEE 454 Physiological Engineering
- CHEM 481 Biomedical Engineering
- BIONB 330 Introduction to Computational Neuroscience
- BIONB 491 Principles of Neurophysiology

Category 5. Biomedical engineering applications

- A&EP 470 Biophysical Methods
- BEE 365 Properties of Biological Materials
- BEE 450 Bioinstrumentation
- BEE 453 Computer-Aided Engineering: Applications to Biomedical Processes
- BEE 459 Biosensors and Bioanalytical Techniques
- COM S 321 Numerical Methods in Computational Molecular Biology
- COM S 426 Introduction to Computational Biology
- COM S 428 Introduction to Computational Biophysics
- ECE 402 Biomedical System Design
- ECE 356 Nanofabrication
- ECE 578 Computer Analysis of Biomedical Images
- BIONB 440 Electronics in Neurobiology
- BIONB 441 Computers in Neurobiology
MINOR: CIVIL INFRASTRUCTURE

Offered by the School of Civil and Environmental Engineering

Contact: 221 Hollister Hall, 255-3412, www.cee.cornell.edu

Students affiliated with all majors except civil engineering are eligible to participate in this minor.

The minor in civil infrastructure is intended to introduce engineering undergraduates to the engineering methodologies of mechanics, materials, analysis, design, and construction and to show how these are used in solving problems in the development, maintenance, and operation of the built environment that is vital for any modern economy.

Academic standards: At least C in each course in the minor

Requirements

At least six courses (≥ 18 credits), chosen as follows:

1. Required course: ENGRD 202 Mechanics of Solids
2. Additional courses: choose any five (groupings are for information only)*

Geotechnical engineering

CEE 541 Introduction to Geotechnical Engineering and Analysis
CEE 440 Foundation Engineering
CEE 441 Retaining Structures and Slopes
CEE 444 Environmental Site and Remediation Engineering

Structural engineering

CEE 371 Structural Modeling and Behavior
CEE 372 Structural Analysis and Mechanics
CEE 471 Fundamentals of Structural Mechanics
CEE 472 Finite Element Analysis of Solids and Structures
CEE 473 Design of Concrete, Masonry, and Steel Structures
CEE 474 Design of Metal Structures
CEE 478 Structural Dynamics and Earthquake Engineering

Other related courses

CEE 595 Construction Planning and Operations

*Other CEE courses may be approved by petition in advance

MINOR: COMPUTER SCIENCE

Offered by the Department of Computer Science

Contact: 303 Upson Hall, 255-9220, www.cs.cornell.edu

Students affiliated with all engineering majors except Computer Science are eligible to participate in this minor. This minor is for students who anticipate that computer science will play a prominent role in their academic and professional career.

Academic standards: At least C in each course in the minor.

Requirements

At least six courses (≥ 18 credits) chosen as follows:

1. Required courses
 - COM S/ENGRD 211 Computers and Programming
 - One of the following:
 - COM S 321 Numerical Methods in Computational Molecular Biology
 - COM S/ENGRD 322 Introduction to Scientific Computing
 - COM S 421 Numerical Analysis
 - COM S 428 Introduction to Computational Biophysics
 - COM S/ECE 314 Computer Organization

2. Additional courses
 - Three COM S courses numbered 280 or higher (excluding seminars and COM S 490).

Computing courses offered by other departments cannot be applied toward the computer science minor, with the exception of ECE 314. All qualifying courses should be taken at Cornell for a letter grade. No substitutions allowed.

MINOR: ELECTRICAL AND COMPUTER ENGINEERING

Offered by the School of Electrical and Computer Engineering

Contact: 223 Phillips Hall, 255-4309, www.ece.cornell.edu

Students affiliated with all engineering majors are eligible to participate in this minor.

This minor focuses on giving engineering students a basic understanding of engineering economics, accounting, statistics, project management methods, and analysis tools necessary to manage technical operations and projects effectively. The minor provides an important set of collateral skills for students in any engineering discipline.

Academic standards: At least C in each course in the minor.

Requirements

At least six courses (≥ 18 credits), chosen as follows:

1. Required courses (3):
 - CEE 541 Introduction to Circuits for Electrical and Computer Engineers (4 credits)
 - ECE 220 Signals and Information
 - ENGRD 230 Introduction to Digital Logic Design

2. Two of the following:
 - ECE 303 Electromagnetic Fields and Waves
 - ECE/COM S 314 Computer Organization
 - ECE 315 Introduction to Microelectronics
 - ECE 320 Networks and Systems

3. One other ECE course at the 300 level or above (3-credit minimum)

4. One other ECE course at the 400 level or above (3-credit minimum)

MINOR: ENGINEERING MANAGEMENT

Offered by the School of Civil and Environmental Engineering

Contact: 221 Hollister Hall, 255-3412, www.cee.cornell.edu

Students affiliated with all majors are eligible to participate in this minor.

This minor focuses on giving engineering students a basic understanding of engineering economics, accounting, statistics, project management methods, and analysis tools necessary to manage technical operations and projects effectively. The minor provides an important set of collateral skills for students in any engineering discipline.

Academic standards: At least C in each course in the minor.

Requirements

At least six courses (≥ 18 credits), chosen as follows:

1. Required courses (3):
 - CEE 323 Engineering Economics and Management
 - or OR&IE 451 Economic Analysis of Engineering Systems
 - or OR&IE 350 Financial and Managerial Accounting
 - CEE 304 Uncertainty Analysis in Engineering
 - or ENGRD 270 Basic Engineering Probability and Statistics
 - or ECE 310 Introduction to Probability and Random Signals

2. Additional courses—choose any three:
 - CEE 406 Civil Infrastructure Systems
 - CEE 490 Management Practice in Project Engineering
 - CEE 492 Engineers for a Sustainable World: Engineering in International Development
 - CEE 593 Engineering Management Methods: Data, Information, and Modeling
 - CEE 594 Economic Methods for Engineering and Management
MINOR: ENGINEERING STATISTICS
Offered by the School of Operations Research and Industrial Engineering
Contact: 207 Rhodes Hall, 255-5068, www.orie.cornell.edu

Students affiliated with all majors except operations research and engineering are eligible to participate in this minor.

The goal of the minor is to provide the student with a firm understanding of statistical principles and engineering applications and the ability to apply this knowledge in real-world situations.

Academic standards: At least C- in each course in the minor. GPA ≥ 2.0 for all courses in the minor.

Requirements
At least six courses (≥ 18 credits), chosen as follows:

1. Required courses:
 - ENGRD 270 Basic Engineering Probability and Statistics
 - OR&IE 360 Basic Engineering Probability and Statistics II or ECE 310 Introduction to Probability and Random Signals

2. Four of these (≥ 11 credits) *
 - OR&IE 361 Introductory Engineering Stochastic Processes I or ECE 411 Random Signals in Communications/Signal Processing
 - OR&IE 476 Applied Linear Statistical Models
 - OR&IE 576 Regression
 - OR&IE 563 Applied Time Series Analysis
 - OR&IE 575 Experimental Design
 - OR&IE 577 Quality Control
 - OR&IE 580 Simulation Modeling and Analysis
 - MATH 472 Basic Probability or BTRY 409 Theory of Statistics
 - BTRY 602 Statistical Methods II
 - BTRY 603 Statistical Methods III or ILRST 411 Statistical Analysis of Qualitative Data

* Other course options approved by petition in advance. Some of these courses require others as prerequisites. All these courses are cross-listed under the Department of Statistical Science.

MINOR: ENVIRONMENTAL ENGINEERING
Offered jointly by the Department of Biological and Environmental Engineering and the School of Civil and Environmental Engineering

Students affiliated with all majors except environmental engineering are eligible to participate in this minor. Students majoring in biological engineering or civil engineering are eligible if they are not following the environmental concentration offered by those majors.

A fundamental challenge for the engineering profession is development of a sustainable society and environmentally responsible industry and agriculture reflecting an integration of economic and environmental objectives. We are called upon to be stewards for the resources of our nation's future, the air in our cities, and water in our aquifers, streams, estuaries, and coastal areas. This minor encourages engineering students to learn about the scientific, engineering, and economic foundations of environmental engineering so that they are better able to address environmental management issues.

Academic standards: At least C- in each course in the minor. GPA ≥ 2.0 for all courses in the minor.

Requirements
At least six courses (≥ 18 credits), chosen from the following groups, with at least one course from each group.

Group A. Environmental engineering processes

- BEE 251 Engineering for a Sustainable Society
- CEE 351 Environmental Quality Engineering
- CEE 451 Microbiology for Environmental Engineering
- CEE 452 Water Supply Engineering
- CEE 453 Laboratory Research in Environmental Engineering
- CEE 454 Sustainable Small-Scale Water Supplies
- BEE 476 Solid Waste Engineering
- BEE 478 Ecological Engineering
- CEE 444 Environmental Site and Remediation Engineering
- BEE 651 Bioremediation
- CEE 653 Water Chemistry for Environmental Engineering

- ILRST 310 Statistical Sampling
- ILRST 314 Graphical Methods for Data Analysis
- ILRST 410 Techniques of Multivariate Analysis

Group B. Environmental systems

- ENGR/CU. 113 Water Treatment Design
- BEE 475 Environmental Systems Analysis
- CEE 597 Risk Analysis and Management
- CEE 623 Environmental Quality Systems Engineering

Group C. Hydraulics, hydrology, and environmental fluid mechanics

- CEE 331 Fluid Mechanics (CHEM 323 or M&AE 323 may be substituted for CEE 331)
- CEE 332 Hydraulic Engineering
- BEE 371 Physical Hydrology for Ecosystems
- CEE 432 Hydrology
- CEE 436 Case Studies in Environmental Fluid Mechanics
- CEE 437 Experimental Methods in Fluid Dynamics
- BEE 473 Watershed Engineering
- BEE 474 Water and Landscape Engineering Applications
- CEE 631 Computational Simulation of Transport in the Environment
- CEE 633 Flow in Porous Media and Groundwater
- CEE 655 Transport, Mixing, and Transformation in the Environment
- BEE 671 Analysis of the Flow of Water and Chemicals in Soils
- BEE 672 Drainage

MINOR: GEOLOGICAL SCIENCES
Offered by the Department of Earth and Atmospheric Sciences
Contact: 2124 Snee Hall, 255-5466, www.eas.cornell.edu

Students affiliated with all majors except geological sciences are eligible to participate.

Some of the major problems facing mankind in this century involve earth science, especially the generation of new energy sources for a growing world population, and engineers will be challenged to solve these problems. This minor will prepare engineering students to understand the natural operating systems of Earth and the tools and techniques used by Earth scientists to understand and monitor these solid and fluid systems.

Academic standards: At least C- in each course in the minor. GPA ≥ 2.0 for all courses in the minor.

Requirements
At least six courses (≥ 18 credits), chosen as follows:

- CEE 656 Physical/Chemical Process
- CEE 657 Biological Processes
- CEE 658 Microbial Biodegradation and Biocatalysis Lab
1. At least one or two of these courses:
 ENGRD 201 Introduction to the Physics and Chemistry of the Earth
 EAS 210 Introduction to Field Methods in Geological Sciences
 EAS 220 The Earth System

2. At least two of these courses:
 EAS 302 Evolution of the Earth System
 EAS 321 Introduction to Biogeochemistry
 EAS 326 Structural Geology
 EAS 331 Climate Dynamics
 EAS 355 Mineralogy
 EAS 356 Petrology and Geochemistry
 EAS 375 Sedimentology and Stratigraphy
 EAS 388 Geophysics and Geoelectronics

3. Additional EAS courses at the 300 level or higher. These may include, e.g.,
 additional courses from the above lists, undergraduate research courses, and
 outdoor field courses.

MINOR: INDUSTRIAL SYSTEMS AND INFORMATION TECHNOLOGY
Offered by the School of Operations and Industrial Engineering
Contact: 202 Rhodes Hall, 255-5088, www.orie.cornell.edu
Students affiliated with all majors except operations research and engineering are
eligible to participate in this minor.

The aim of this minor is to provide an indepth education in the issues involved in
the design and analysis of industrial systems, and the tools from information technology
that have become an integral part of the manufacturing process. Students will become
familiar with the problems, perspectives, and methods of modern industrial engineering and
be prepared to work with industrial engineers in designing and managing manufacturing
and service operations. That is, rather than providing a comprehensive view of the range
of methodological foundations of operations research, this minor is designed to give the
student a focused education in the application area most closely associated with these
techniques.

Academic standards: At least C- in each course in the minor. GPA ≥ 2.0 for all courses in
the minor.

Requirements
At least six courses (≥ 18 credits), chosen as follows:

1. At least three of the following:
 ENGRD 270 Basic Engineering Probability and Statistics
 OR&IE 310 Industrial Systems Analysis
 OR&IE 320 Optimization I
 OR&IE 480 Information Technology

2. The remaining courses chosen from:
 OR&IE 350 Financial and Managerial Accounting
 OR&IE 416 Design of Manufacturing Systems
 OR&IE 451 Economic Analysis of Engineering Systems
 OR&IE 525 Production Planning and Scheduling Theory and Practice
 OR&IE 577 Quality Control
 OR&IE 580 Simulation Modeling and Analysis

MINOR: INFORMATION SCIENCE
Offered by the Department of Computer Science
Contact: Undergraduate Programs Office, 303 Upson Hall, 255-9837, www.infosci.cornell.edu
Students affiliated with any major except

• Elective: one additional course from either
 • Social systems (social, economic, political,
 and cultural) or
 • Human-centered systems (human
 centered, or cognitive science)
 • Information systems (primarily computer
 science) and
 • Statistics (one course (must be ENGRD
 270 or CEE 304))

The interdisciplinary field of information science covers all aspects of digital information. The program has three
main areas: information systems, human-centered systems, and social systems. Information systems studies the computer
science problems of representing, storing, manipulating, and using digital information. Human-centered systems studies the
relationship between humans and information, drawing from human-computer interaction and cognitive science. Social systems
examines information in its economic, legal, political, cultural, and social contexts.

The minor has been designed to ensure that students have substantial grounding in all three areas in addition to having a working
knowledge of basic probability and statistics necessary for analyzing real-world data.

Academic standards: At least C in all courses in the minor; S-U courses are not allowed.

Requirements
Note: These requirements apply to students in the College of Engineering. Students who are
not in the College of Engineering should refer to the IS minor requirements listed in the CIS
section of this publication.

At least six courses (18 credits) chosen as follows:

• Statistics: one course (must be ENGRD 270 or CEE 304)
• Information systems (primarily computer science): two courses
• Human-centered systems (human computer interaction and cognitive science): one course
• Social systems (social, economic, political, cultural, and legal issues): one course
• Elective: one additional course from either human-centered systems or social systems

Statistics
An introductory course that provides a working knowledge of basic probability and statistics and their application to analyzing
real-world data.

ENGRD 270 Basic Engineering Probability and Statistics
CEE 304 Uncertainty Analysis in Engineering

Information Systems

OR&IE 451 Economic Analysis of Engineering Systems
OR&IE 525 Production Planning and Scheduling Theory and Practice
OR&IE 577 Quality Control
OR&IE 580 Simulation Modeling and Analysis

INFO 172 Computation, Information, and Intelligence
COM S 211 Computers and Programming*
INFO 230 Intermediate Design and Programming for the Web*
INFO 330 Applied Database Systems
LING 424 Computational Linguistics
INFO 430 Information Retrieval
INFO 431 Web Information Systems
COM S 432 Introduction to Database Systems
COM S 465 Computer Graphics I
COM S 472 Foundations of Artificial Intelligence
LING 474 Introduction to Natural Language Processing
OR&IE 474 Statistical Data Mining
CM S 478 Machine Learning
OR&IE 480 Information Technology
OR&IE 481 Delivering OR Solutions with Information Technology
OR&IE 483 Applications of Operations Research and Game Theory in Information Technology
COM S 501 Software Engineering
ECE 562 Fundamental Information Theory
COM S 578 Empirical Methods in Machine Learning and Data Mining

*Computer science majors may not use INFO 230. COM S 211 cannot be used by majors for
which it is a required course, e.g., computer science and operations research and industrial
engineering.

Human-centered systems

COGST 101 Introduction to Cognitive Science
PSYCH 205 Perception
INFO 214 Cognitive Psychology
COMM 240 Introduction to Computer-Mediated Communication (may be used only if taken during or before 2003-2004
academic year)
INFO 245 Psychology of Social Computing
PSYCH 280 Introduction to Social Psychology
PSYCH 342 Human Perception: Applications to Computer Graphics, Art, and Visual Display
INFO 345 Human-Computer Interaction Design
PSYCH 347 Psychology of Visual Communications
PSYCH 380 Social Cognition
PSYCH 413 Information Processing: Conscious and Unconscious
PSYCH 416 Modeling Perception and Cognition
INFO 440 Advanced Human-Computer Interaction Design
COMM 445 Seminar in Computer-Mediated Communication
INFO 450 Language and Technology
DEA 470 Applied Ergonomics Methods
MINOR: OPERATIONS RESEARCH AND MANAGEMENT SCIENCE
Offered by the School of Operations Research and Industrial Engineering
Contact: 202 Rhodes Hall, 255-5088, www.orie.cornell.edu
Students affiliated with all majors except operations research and engineering are eligible to participate in this minor.
Operations research and management science aims to provide rational bases for decision making by seeking to understand and model complex situations and to use this understanding to predict system behavior and improve system performance. This minor gives the student the opportunity to obtain a wide exposure to the core methodological tools of the area, including mathematical programming, stochastic and statistical models, and simulation. The intent of this minor is to give a broad knowledge of these fundamentals, rather than to train the student in a particular application domain. With this preparation, students can adjust their advanced courses and pursue either methodological or application-oriented areas of greatest interest and relevance to the overall educational goals of their program.

Academic standards: At least C- in each course in the minor. GPA ≥ 2.0 for all courses in the minor.

Requirements
At least six courses (≥ 18 credits), chosen as follows:
1. Any OR&IE courses at the 300 level or above.
2. Any OR&IE courses at the 400 level or above.
3. Three electives chosen from:
 - OR&IE 435 Introduction to Game Theory*
 - Integrated Systems 574 Decision Theory I and II
 - OR&IE 505 Simulation Modeling and Analysis

MINOR: MECHANICAL ENGINEERING
Offered by the Sibley School of Mechanical and Aerospace Engineering
Contact: 108 Upson Hall, 255-3573, www.mae.cornell.edu

Students affiliated with all majors except mechanical engineering are eligible to participate in this minor. Students intending to earn a minor in mechanical engineering should seek advice and pre-approval of their minor academic program from the associate director of undergraduate affairs in mechanical engineering before taking courses toward the minor.

Academic standards: At least C- in each course in the minor.

Requirements
At least six courses (≥ 18 credits) from among the following:
- ENGRD 261 Mechanical Properties of Materials: From Nanodevices to Superstructures, or ENGRD 262 Electronic Materials for the Information Age
- OR&IE 204 Materials Chemistry
- OR&IE 206 Atomic and Molecular Structure of Matter
- OR&IE 302 Mechanical Properties of Materials, Processing, and Design
- OR&IE 303 Thermodynamics of Condensed Systems
- OR&IE 304 Kinetics, Diffusion, and Phase Transformations
- OR&IE 305 Electronic, Magnetic, and Dielectric Properties of Materials

MINOR: MATERIALS SCIENCE AND ENGINEERING
Offered by the Department of Materials Science and Engineering
Contact: 214 Bard Hall, 255-9159, www.mse.cornell.edu

Students affiliated with all majors except materials science and engineering are eligible to participate in this minor.

Material properties are the foundation of many engineering disciplines including mechanical, civil, chemical, and electrical engineering. This minor provides engineers in related areas with a fundamental understanding of mechanisms that determine the ultimate performance, properties, and processing characteristics of modern materials.

Academic standards: At least C in each course in the minor.

Requirements
At least six courses (≥ 18 credits), chosen as follows:
1. At least two courses must be numbered above 300.
2. At least one course must be either (i) numbered above 500 or (ii) numbered above 326 and have as a prerequisite ENGRD 202, 203, or a M&AE course.
3. Each course must be worth at least 3 credits.
4. All courses used to satisfy the M&AE minor must be M&AE courses, ENGRD 202 or 203. No substitutions will be accepted from other departments at Cornell or elsewhere. Transfer credit may not be used to satisfy the M&AE minor.

Office of Research, Graduate Studies, and Professional Education (ORGSPE), 222 Carpenter Hall, www.engineering.cornell.edu/grad

The following one-year (30-credit) professional master of engineering (M.Eng.) degrees are offered (giving also the administering unit)

M.Eng. (Aerospace): mechanical and aerospace engineering
M.Eng. (Agricultural and Biological): biological and environmental engineering
M.Eng. (Biomedical): biomedical engineering
M.Eng. (Chemical): chemical and biomolecular engineering
M.Eng. (Civil and Environmental): civil and environmental engineering
M.Eng. (Computer Science): computer science
These degrees are discussed below because:

M.Eng. (Systems): science and engineering

The following M.Eng. options are offered:

- **Requirements include:**
 - In general, the standard M.Eng. application
 - Requirements for admission vary by program.
 - earning an M.Eng. degree, although the
 - the curricula are integrated with the
 - engineering management
 - M.Eng. (Geological Sciences): earth and atmospheric sciences
 - M.Eng. (Materials): materials science and engineering
 - M.Eng. (Mechanical): mechanical and aerospace engineering
 - M.Eng. (Nuclear): graduate field of nuclear science and engineering
 - M.Eng. (OR&IE): operations research and industrial engineering
 - M.Eng. (Systems): systems engineering

These degrees are discussed below because the curricula are integrated with the undergraduate programs. Many Cornell baccalaureate engineering graduates spend a fifth year at Cornell, earning an M.Eng. degree, although the program is also open to qualified graduates of other schools.

Requirements for admission vary by program. In general, the standard M.Eng. application requirements include:

- Statement of purpose
- Complete transcripts from each college or university attended
- At least two letters of recommendation
- Graduate Record Examination (GRE) scores — may not be required by all M.Eng. programs

Many M.Eng. programs waive the GRE requirement and one of the letters of recommendation for students with Cornell Engineering B.S. degrees. Check with the appropriate office for specific program requirements. A list of links and general admission information is posted on www.engr.cornell.edu/grad.

Superior Cornell students who will have between 1 and 8 credits remaining in their last undergraduate semester may petition for early admission to the M.Eng. program. They spend the last semester in both programming, finishing up their B.S. degree and also doing their first semester of the M.Eng. program.

Master of Engineering Options

The following M.Eng. options are offered:

- bioengineering
- financial engineering
- manufacturing
- engineering management
- systems engineering

Cooperative Program with the Johnson Graduate School of Management

Undergraduates may be interested in a cooperative program at Cornell that leads to both master of engineering and master of business administration (M.B.A.) degrees. With appropriate curriculum planning, such a combined B.S./M.Eng./M.B.A. program can be completed in six years at Cornell, with time out for work experience. For undergraduates from other schools, it may be feasible to complete the M.Eng./M.B.A. program in two years, possibly with an intervening summer or time out for work experience if they do not already have it on coming to Cornell. This accelerated program often incorporates the Twelve-Month M.B.A. Program of the Johnson Graduate School of Management (JGSM).

Because 95 percent of the students in the JGSM have work experience, there will typically be a gap for work experience between the M.Eng. and M.B.A. portions of the program for students who do not already have it when beginning the M.Eng. portion.

For further details, go to Engineering Advising (167 Oliphant Hall), the M.Eng. office (222 Carpenter Hall), the JGSM office in Sage Hall, or the office of your intended undergraduate major.

Lester Knight Scholarship Program

The Lester Knight Scholarship Program is designed to assist and encourage Cornell Engineering students and alumni interested in combining their engineering education with a business degree. The program offers three options or categories of financial support:

- Alumni Knight Scholarship
- Undergraduate Knight Scholarship
- Six-Year Knight Scholarship

Each program has different qualifications and is open to Cornell engineering students and alumni at different stages of their educational or professional career. Participation in the program requires admission by each respective college (M.Eng. M.B.A.) as well as an application to participate in the Knight Scholarship Program.

Contact ORGSPE or refer to the Knight Scholarship web site (www.engr.cornell.edu/grad/knight) for program specifics.

MASTER OF ENGINEERING (AEROSPACE)

Offered by the Sibley School of Mechanical and Aerospace Engineering

Contact: 107 Upson Hall, 255-2520, www.mae.cornell.edu

This M.Eng. (Aerospace) program provides a one-year course of study for those who wish to develop a high level of competence in engineering science, current technology, and engineering design.

The program is designed to be flexible so that candidates may concentrate on any of a variety of specialty areas. These include aerodynamics, acoustics and noise, turbulent flows, nonequilibrium flows, combustion, dynamics and control, and computational fluid dynamics.

A coordinated program of courses for the entire year is agreed upon by the student and the faculty adviser. This program and any subsequent changes must also be approved by the chair of the M&AE Master of Engineering committee. An individual student's curriculum includes a 4- to 6-credit design course, a minimum of 12 credits in aerospace engineering or a closely related field, and sufficient technical electives to meet the total degree requirement of 30 credits (of which at least 28 credits must have letter grades).

Design projects must have an aerospace engineering design focus and have the close supervision of a faculty member. The projects may arise from individual faculty and student interests or from collaboration with industry.

All courses must be of true graduate nature. In general, all courses must be beyond the level of those required in an undergraduate engineering program; credit may be granted for an upper-level undergraduate course if the student has done little or no previous work in that subject area, but such courses must have the approval of the M&AE master of engineering chair.

Check with the M&AE graduate field office (107 Upson Hall) for additional degree requirements.

Students enrolled in the M.Eng. (Aerospace) degree program may take courses that also satisfy the requirements of the bioengineering, engineering management, or systems engineering options.

MASTER OF ENGINEERING (AGRICULTURAL AND BIOLOGICAL)

Offered by the Department of Biological and Environmental Engineering

Contact: 207 Riley Robb Hall, 255-2173, www.bee.cornell.edu

This degree is intended primarily for students who plan to enter engineering practice. The program is planned as an extension of an undergraduate major in biological and environmental engineering but can accommodate graduates of other engineering disciplines. The required 30 credits of courses are intended to strengthen the students' fundamental knowledge of engineering and develop their design skills. Of the 30 credits, 3 to 9 are earned for an engineering design project that culminates in a written and oral report.

Students may concentrate in one of the following areas: biological engineering, energy, environmental engineering, environmental management, food processing engineering, international agriculture, local roads, machine systems, soil and water engineering, and structures and environment. Elective courses are chosen from among engineering subject areas relevant to the student's interests and design project. Courses in technical communication, math, biology, and the physical sciences may also be taken as part of a coherent program. Students can qualify for the Dean's Certificate in energy manufacturing, or bioengineering by choosing their design project and a number of electives from the designated topic areas.
MASTER OF ENGINEERING (BIOMEDICAL)
Offered by the Department of Biomedical Engineering
Contact: 361 Olin Hall, 255-2573, www.bme.cornell.edu

Our mechanistic understanding of biology has increased rapidly over the past 20 years, and many expect biology to drive engineering and technology in the next 50 years in much the same way that physics drove them in the 20th century. As biology has become more mechanistic, the opportunities to apply engineering approaches have increased enormously. Simultaneously, humanitarian needs and economic opportunities for the application of engineering to improve health care have increased significantly.

Engineers who understand biology and can apply their knowledge and skills to improve human health are increasingly in demand. A professional degree in BME will prepare students to fill this increasing critical need.

The breadth and depth of knowledge needed in biomedical engineering makes a four-year B.S. degree program impractical. By combining the M.Eng. in BME with a strong B.S. program, a student can obtain the knowledge and skills necessary to be an effective professional biomedical engineer.

Students will acquire an in-depth knowledge of an essential area of biomedical engineering as well as a broad perspective of the biomedical engineering discipline that complements their undergraduate education in engineering or science. Graduates will be equipped to design biomedical devices and develop therapeutic strategies within the bounds of health care economics, the needs of patients and physicians, the regulatory environment for medical devices and pharmaceuticals, and stringent ethical standards.

Students will acquire depth by extending undergraduate concentrations, by selecting one of three areas for concentrated study, and by completing a design project in their area of concentration. The areas are biomedical mechanics and materials; bioinstrumentation/diagnostics; delivery and cellular tissue engineering. Design projects will be carried out in teams to take advantage of the diversity of student backgrounds and, when possible, projects will be done in collaboration with industrial or clinical partners.

Students from a wide variety of backgrounds in engineering and science are encouraged to apply. They are expected to have completed two semesters of calculus-based physics, at least three semesters of math, starting with calculus, and introductory computer science.

A knowledge of molecular- and cellular-base biomedical engineering and engineering analysis of physiological systems at the level of BME 301, 302, 401, and 402 is highly recommended. This knowledge can be demonstrated through appropriate undergraduate course work (at least C in each class) or by passing a diagnostic exam. Students lacking the appropriate background will need to complete additional courses (beyond the normal 30 credits) to demonstrate appropriate knowledge in these two subject areas.

MASTER OF ENGINEERING (CHEMICAL)
Offered by the School of Chemical and Biomolecular Engineering
Contact: 358 Olin Hall, 255-4550, www.cheme.cornell.edu

This degree is awarded at the end of one year of graduate study with successful completion of 30 credits of required and elective courses in technical fields including engineering, math, chemistry, physics, and business administration. Courses emphasize design and optimization based on the economic factors that affect design alternatives for processes, equipment, and plants. General admission and degree requirements are described at the beginning of the section "Master of Engineering Degrees."

Specific requirements include
1. 12 credits in CHEM courses distributed among chemical and biomolecular engineering fundamentals (CHEM 711, 731, and 751) and chemical and biomolecular engineering applications (partial list: CHEM 480, 481, 484, 520, 543, 572, 651, 640, and 661).
2. A minimum of 3 credits of an individual or group project, CHEM 565.
3. Knowledge of business practices and techniques for pollution abatement and control. This knowledge may have already been acquired by students as undergraduates. If not, then CHEM courses (e.g., CHEM 572 and 661) or other courses covering these topics are required.

MASTER OF ENGINEERING (CIVIL AND ENVIRONMENTAL)
Offered by the School of Civil and Environmental Engineering
Contact: 219 Hollister Hall, 255-7560, www.cee.cornell.edu

The master of engineering degree is a course work and project-oriented program. It is normally completed in nine months of intensive study. Thirty credit hours consisting of course work in major and supporting areas and a project are required.

Master of engineering students in civil and environmental engineering may focus their studies in one of the following major subject areas: civil engineering materials, civil infrastructure systems, structural engineering, geotechnical engineering, environmental engineering, environmental fluid mechanics and hydrology, environmental and water resource systems engineering, and transportation systems engineering. For the M.Eng. program in civil and environmental engineering, each program typically consists of course work in a major concentration and supporting areas as well as a project. Some concentrations require a course in professional practice or management. Courses in supporting areas come from many disciplines, including microbiology, materials science, operations research, computer science, economics, architecture, historic preservation, and engineering management to name just a few.

MASTER OF ENGINEERING (COMPUTER SCIENCE)
Offered by the Department of Computer Science
Contact: 4126 Urisson Hall, 255-8593, www.cs.cornell.edu/grad/meng

The M.Eng. program in computer science can be started in either the fall or spring semester. This program is designed to develop expertise in system design and implementation in many areas of computer science, including computer networks, Internet architecture, fault-tolerant and secure systems, distributed and parallel computing, high-performance computer architecture, databases and data mining, multimedia systems, computer vision, computational tools for finance, computational biology (including genomics), software engineering, programming environments, and artificial intelligence.

A typical program includes several upper-division and graduate courses and a faculty-supervised project. The flexible requirements allow students to build up a program that closely matches their interests. In fact, slightly under half the courses may be taken outside the computer science department (many students choose to take several business administration courses). Project work, which may be done individually or in a small group, can often be associated with ongoing research in the Department of Computer Science in one of the areas listed above.

Cornell seniors may use the early admission option to effectively co-register for the M.Eng. program while completing the undergraduate degree. This option can be started in either the fall or spring semester. It applies to students who have 1 to 8 credits remaining to complete their undergraduate program. All remaining undergraduate degree requirements must be satisfied by the end of the first semester the student is enrolled in the M.Eng. "early admit" program.

Undergraduates majoring in computer science may be interested in a program that can lead, in the course of six years, to B.S., M.Eng. (computer science), and M.B.A. degrees. See "Master of Engineering Degrees."

MASTER OF ENGINEERING (ELECTRICAL)
Offered by the School of Electrical and Computer Engineering

The M.Eng. (Electrical) degree program prepares students either for professional work in Electrical and Computer Engineering and closely related areas or for further graduate study in a doctoral program. The M.Eng. degree differs from the master of science degree mainly in its emphasis on professional skills, engineering design, and analysis skills rather than basic research.

The program requires 30 credits of advanced technical course work beyond that expected in a typical undergraduate program, including at least four graduate-level courses in Electrical and Computer Engineering. The
required Electrical and Computer Engineering design project may account for 3 to 8 credits of the M.Eng. program. Occasionally, students take part in very extensive projects and may petition to increase the project component to 10 credits. Students with special career goals, such as engineering management, may apply to use up to 11 credits of approved courses that have significant technical content but are taught in disciplines other than engineering, math, or the physical sciences.

Although admission to the M.Eng. (Electrical) program is highly competitive, all well-qualified students are urged to apply. Further information is available at the web site listed above.

MASTER OF ENGINEERING (ENGINEERING MANAGEMENT)
The M.Eng. program in Engineering Management is aimed at engineers who want to stay in a technical environment but advance to managerial roles. Students learn to identify problems, formulate and analyze models to understand these problems, and interpret the results of analyses for managerial action.

A student's program of study is designed individually in consultation with an academic adviser and then submitted to the school's Professional Degree Committee for approval. For the M.Eng. program in Engineering Management, the requirements are:

1. Four core courses: These include: CEE 590 Project Management, CEE 593 Engineering Management Methods, and CEE 591 Management Project.
2. Two focus courses, including at least one of CEE 594, CEE 597, or CEE 598.
3. Two managerial breadth courses.
4. Three disciplinary or functional electives.

The School of Civil and Environmental Engineering cooperates with the Johnson Graduate School of Management in a joint program leading to both master of engineering and master of business administration degrees. See the beginning of the section “Master of Engineering Degrees.”

MASTER OF ENGINEERING (ENGINEERING MECHANICS)
Offered by the Department of Theoretical and Applied Mechanics

Contact: 212 Kimball Hall, 255-0988, www.tam.cornell.edu/meng1.html

This two-semester professional degree program stresses applications of Engineering Mechanics and Applied Mathematics and Modeling. The centerpiece of the program is a project, either single or team-based on important real-world problems.

Engineering Mechanics: Students in this program will deepen and broaden their knowledge of mechanics as applied to different material systems. The course work centers on additional study of solid mechanics, fracture mechanics, materials and computational methods widely used in industries such as the finite element method. Potential employers are companies interested in computer modeling of mechanical systems and failure and reliability analysis.

Applied Mathematics and Modeling: Students in this program do course work in mathematical modeling and computational methods. They will have great flexibility in their choice of studies. Students who graduate from this program are in a good position to pursue higher degrees or work for financial or informational organizations.

Labs: T&AM has many laboratories related to research areas and courses of study for the M.Eng. program:
- Ultrasonic and Materials Characterization Laboratory—Wolfgang Sachse
- Bio-robotics and Locomotion Laboratory—Andy Ruina
- Granular Flow Research Laboratory—Jim Jenkins
- Composites Laboratory—Leigh Phoenix and Petra Patirna
- Fracture Mechanics Laboratory—Alan Zehnder
- Dynamics Laboratory—Dan Mittler
- Mechanics of Solids Laboratory—Dan Mittler
- Biological Fluid Dynamics Laboratory—Jane Wang

Course Work:
(please 10-12 credit hours)

Current Interesting Projects

1. Animal, Human and Robotic Locomotion—Andy Ruina
2. Dynamical Systems—Richard Rand
3. Stress Rupture Testing of High-Performance Fibers and Yarns—S. Leigh Phoenix
4. Mathematics of Finance (capital budgeting, economic analysis Scholes—Black Diffusion Theory)—K. Bingham Cadby
5. Fracture and Reliability—Hui Phoenix, Zehnder
6. Response Theory—K. Bingham Cadby
7. Nuclear Reactor Theory—K. Bingham Cadby

Engineering Mechanics
Fall semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T&AM 663</td>
<td>Solid Mechanics I</td>
<td>4</td>
</tr>
<tr>
<td>T&AM 570</td>
<td>Intermediate Dynamics</td>
<td>3</td>
</tr>
<tr>
<td>or</td>
<td>Methods of Applied Mathematics I</td>
<td></td>
</tr>
<tr>
<td>T&AM 610</td>
<td>Methods of Applied Mathematics I</td>
<td>3</td>
</tr>
<tr>
<td>T&AM 800</td>
<td>Seminar</td>
<td>1</td>
</tr>
</tbody>
</table>

Spring season

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEE 786</td>
<td>Fracture Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>T&AM 713</td>
<td>Fracture</td>
<td>3</td>
</tr>
<tr>
<td>T&AM 655</td>
<td>Composite Materials</td>
<td>4</td>
</tr>
<tr>
<td>MS&E 582</td>
<td>Mechanical Properties of Material Processing and Design</td>
<td>4</td>
</tr>
<tr>
<td>M&E 570</td>
<td>Finite Element Analyses for Mechanical and Aerospace Design</td>
<td>4</td>
</tr>
<tr>
<td>T&AM 800</td>
<td>Seminar</td>
<td>1</td>
</tr>
</tbody>
</table>

Applied Mathematics and Modeling
Fall semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T&AM 610</td>
<td>Methods of Applied Mathematics II</td>
<td>3</td>
</tr>
<tr>
<td>T&AM 570</td>
<td>Intermediate Dynamics</td>
<td>3</td>
</tr>
<tr>
<td>CEE 771</td>
<td>Stochastic Mechanics in Science and Engineering</td>
<td>3</td>
</tr>
<tr>
<td>T&AM 800</td>
<td>Seminar</td>
<td>1</td>
</tr>
</tbody>
</table>

Spring semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T&AM 611</td>
<td>Methods of Applied Mathematics II</td>
<td>3</td>
</tr>
<tr>
<td>T&AM 578</td>
<td>Nonlinear Dynamics and Chaos</td>
<td>3</td>
</tr>
<tr>
<td>T&AM 671</td>
<td>Hamiltonian Dynamics</td>
<td>3</td>
</tr>
<tr>
<td>T&AM 674</td>
<td>Nonlinear Vibrations</td>
<td>3</td>
</tr>
<tr>
<td>M&E 570</td>
<td>Finite Element Analyses for Mechanical and Aerospace Design</td>
<td>4</td>
</tr>
<tr>
<td>or</td>
<td>CEE 672 Finite Element Analysis of Solids and Structures</td>
<td>3</td>
</tr>
<tr>
<td>T&AM 800</td>
<td>Seminar</td>
<td>1</td>
</tr>
</tbody>
</table>

MASTER OF ENGINEERING (ENGINEERING PHYSICS)
Offered by the School of Applied and Engineering Physics

Contact: 212 Clark Hall, 255-5198, www.aep.cornell.edu

The M.Eng. (Engineering Physics) degree may lead directly to employment in engineering design and development or may be a basis for further graduate work. Students have the opportunity to broaden and deepen their preparation in the general field of applied physics, or they may choose the more specific option of preparing for professional engineering work in a particular area such as laser and optical technology, nanostructure
science and technology, device physics, materials characterization, or software engineering. Wide latitude is allowed in the choice of the required design project. Students plan their program in consultation with the program chair. The objective is to provide a combination of a good general background in physics and introductory study in a specific field of applied physics. Candidates may enter with an undergraduate preparation in physics, engineering physics, or engineering. Those who have majored in physics usually seek advanced work with an emphasis on those who have majored in an engineering discipline generally seek to strengthen their physics base. Candidates coming from industry usually want instruction in both areas. Students granted the degree will have demonstrated competence in an appropriate core of basic physics. If this has not been accomplished before entering the M.Eng. program, undergraduate classes in electricity and magnetism, classical mechanics, and quantum mechanics may be required in addition to the classes taken to satisfy the M.Eng. requirements.

The degree requires 30 credits of graduate-level courses or their equivalent, with at least C- in each course, and distributed as follows:

1. a design project in applied science or engineering with a written final report (6 to 12 credits)
2. an integrated program of graduate-level courses, as discussed below (17 to 23 credits)
3. a required special-topics seminar course (1 credit)

The design project, which is proposed by the student and approved by the program chair, is carried out on an individual basis under the guidance of a member of the university faculty. It may be experimental or theoretical in nature; if it is not experimental, a laboratory physics course is required.

The individual program of study consists of a compatible sequence of courses focused on a specific area of applied physics or engineering. Its purpose is to provide an appropriate combination of physics and physics-related courses (applied math, statistical mechanics, applied quantum mechanics) and engineering electives (e.g., courses in biophysics, chemical engineering, electrical engineering, materials science, computer science, mechanical engineering, or nuclear engineering). Additional science and engineering electives may be included. Some courses at the senior level (400) are acceptable for credit toward the degree; other undergraduate courses may be required as prerequisites but may not be credited toward the degree.

MASTER OF ENGINEERING (GEOLICAL SCIENCES)
Offered by the Department of Earth and Atmospheric Sciences
Contact: 2124 Snee Hall, 255-5466, www.eas.cornell.edu

The M.Eng. (Geological Sciences) degree program is a one-year course of study that provides future professional geologists or engineers with the geological and engineering background they will need to analyze and solve engineering problems that involve geological variables and concepts. Individual programs are developed within two established options: geohydrology and environmental geophysics.

In coming students are expected to have a strong background in mathematics, the physical sciences, and chemistry and have a strong interest and substantial background in the geological sciences. The 30-hour M.Eng. program is intended to extend and broaden this background to develop competence in four subject categories. Typical categories for the geohydrology option are porous media flow, geology, geochemistry, and numerical modeling. Typical categories for the environmental geophysics option are geophysics, geology, porous media fluid flow, and computer methods. The courses a student selects in a category will vary depending on the student's background. No courses may be required in some categories, and the categories may be adjusted to the student's interests and needs. Alternatives to numerical modeling in the geohydrology option could be economics or biochemistry, for example. To count toward the 30-credit degree requirement, courses must be at a graduate or advanced undergraduate level.

At least 10 of the 30 hours in the program must involve engineering design. Much of this requirement is normally met through a design project, which can account for over a third of the program (12 of 30 credits) and must constitute at least 3 credits. The design project must involve a significant geological component and lead to concrete conclusions or recommendations of an engineering nature. The project topic can be drawn from a student's nonacademic work experience but carried out or further developed with advice from a Cornell faculty member with expertise in the project area selected by the student. A design project in geohydrology would normally involve groundwater flow and mass transport. A design project in environmental geophysics might involve implementation of a field survey using seismological, geological, or ground-penetrating radar methods to map suburface stratigraphic or structural features that control groundwater flow or contamination at a site. Projects are presented both in written form and orally in a design seminar at the end of the year.

MASTER OF ENGINEERING (MATERIALS SCIENCE AND ENGINEERING)
Offered by the Department of Materials Science and Engineering
Contact: 214 Bard Hall, 255-9159, www.mse.cornell.edu

Students who have completed a four-year undergraduate program in engineering or the physical sciences can be considered for admission into the M.Eng. (Materials) program. This 30-credit program includes course work and a master's design project. The project, which requires additional effort and initiative, is carried out under the supervision of a faculty member. Twelve credits are devoted to the project, which is normally experimental in nature, although computational or theoretical projects are also possible.

Courses for the additional 18 credits are selected from the graduate-level class in materials science and engineering and from other related engineering fields approved by the faculty. Typically half of the courses are from MS&E. One 3-credit technical elective must include one of the following (modeling, computer application, or computer modeling), beyond the MS&E undergraduate requirements.

MASTER OF ENGINEERING (MECHANICAL)
Offered by the Sibley School of Mechanical and Aerospace Engineering
Contact: 107 Upson Hall, 255-5250, www.mae.cornell.edu

The M.Eng. (Mechanical) degree program provides a one-year course of study for those who wish to develop a high level of competence in engineering science, current technology, and engineering design. Candidates may concentrate on any of a variety of specialty areas, including biomechanical engineering, combustion, propulsion and power systems, fluid mechanics, heat transfer, materials and manufacturing engineering, and mechanical systems and design.

A coordinated program of courses for the entire year is agreed upon by the student and the faculty adviser. This program and any subsequent changes must also be approved by the chair of the M&AE Master of Engineering committee. An individual student's curriculum includes a 4- to 8-credit design course, a minimum of 12 credits in mechanical engineering or a closely related field, and sufficient technical electives to meet the total degree requirement of 30 credits (of which at least 28 credits must have letter grades).

The design projects may arise from individual faculty and student interests or from collaboration with industry. All projects must have a mechanical engineering design focus and have the close supervision of a faculty member. All courses must be of true graduate nature. In general, all courses must be beyond the level of those required in an undergraduate engineering program; credit may be granted for an upper-level undergraduate course if the student has done little or no previous work in that subject area, but such courses must have special approval of the M&AE master of engineering chair.

The technical electives may be courses of appropriate level in math, physics, chemistry, or engineering; a maximum of 3 credits may be taken in areas other than these if the courses are part of a well-defined program leading to specific professional objectives. Students are expected to use technical electives to develop proficiency in math beyond the minimum required of Cornell engineering undergraduates if they have not already done so before entering the program. Courses in advanced engineering math or statistics are particularly recommended.
Check with the M&AE graduate field office (107 Upson Hall) for additional degree requirements.

Students enrolled in the M.Eng. (Mechanical) degree program may take courses that also satisfy the requirements of the bioengineering, engineering management, or systems manufacturing programs leading to special dean's certificates in those areas.

MASTER OF ENGINEERING (NUCLEAR)

Offered by the Nuclear Engineering Program

Contact: 312 Rhodes Hall, 255-1453, www.gradschool.cornell.edu/academics_research/fields/nuc-sci.html

The two-semester curriculum leading to the M.Eng. (Nuclear) degree is intended primarily for individuals who want a terminal professional degree, but it may also serve as preparation for doctoral study in nuclear science and engineering. The course of study covers the basic principles of nuclear reactor systems with a major emphasis on reactor safety and radiation protection and control.

The interdisciplinary nature of nuclear engineering draws students to enter from a variety of undergraduate concentrations. The recommended background is (1) an accredited baccalaureate degree in engineering, physics, or applied science; (2) physics, including atomic and nuclear physics; (3) math, including advanced calculus; and (4) thermodynamics. Students should see that they fulfill these requirements before beginning the program. In some cases, deficiencies in preparatory work may be made up by informal study during the preceding summer. General admission and degree requirements are described in the college's introductory section.

The following courses, or equivalents, are included in the 30-credit program:

Fall semester

- NS&E 509 Nuclear Physics for Applications
- Technical elective

Spring semester

- NS&E 545 Energy Seminar
- Technical elective

Engineering design project

Mathematics or physics elective

Note: Engineering electives should be in a subject area relevant to nuclear engineering, such as energy conversion, radiation protection and control, feedback control systems, magnetohydrodynamics, controlled thermonuclear fusion, and environmental engineering. The list below gives typical electives.

A&EP 606/ECE 581 Introduction to Plasma Physics (fall, 4 credits)

A&EP 607 Basic Plasma Physics (spring, 4 credits)

A&EP 661 Microcharacterization (fall, 3 credits)

ECE 457 Silicon Device Fundamentals (fall, 4 credits with lab)

M&AE 478/CHME 372 Feedback Control Systems (fall, 4 credits)

MASTER OF ENGINEERING (OPERATIONS RESEARCH AND INDUSTRIAL ENGINEERING)

Offered by the School of Operations Research and Industrial Engineering

Contact: 201 Rhodes Hall, 255-9128, www.orie.cornell.edu

This two-semester professional degree program stresses applications of operations research and industrial engineering. The centerpiece of the program is a team-based project on a significant real-world problem. The course work centers on additional study of analytical techniques, with particular emphasis on engineering applications, especially in the design or improvement of systems in manufacturing, finance, and nonprofit organizations.

General admission and degree requirements are described in the introductory "Degree Programs" section. The M.Eng. (OR&IE) program is intended for three groups of students: graduates of the undergraduate major in OR&IE who wish to expand their practical knowledge of the field; Cornell undergraduates in other math-based area who wish to broaden their exposure to OR&IE; and qualified non-Cornellians with strong backgrounds from other programs in the United States and abroad.

Undergraduates majoring in operations research and engineering may be interested in a program that can lead, in the course of six years, to B.S., M.Eng. (Operations Research and Industrial Engineering), and M.B.A. degrees. See "Master of Engineering Degrees." To ensure completion of the program in two semesters, the entering student should have completed courses in probability and statistics and in computer science, as well as four semesters of mathematics, through differential equations, linear algebra, and multivariate calculus.

Program requirements include a core of OR&IE courses plus technical electives chosen from a broad array of offerings. The choice of a particular elective sequence plus a specific project course results in completion of one of several options within the program. These include the applied operations research option, the manufacturing option, the financial engineering option, the systems engineering option, the information technology concentration, and the Semester in Manufacturing. These options are offered jointly with various other Cornell departments and schools and they provide the opportunity to interact on projects and in class with specialists in other engineering fields and in business. Many students select the applied operations research option, offered only by OR&IE, which has project teams made up entirely of OR&IE M.Eng. students and offers the broadest choice of elective courses and career alternatives, in business and elsewhere. Students interested in an option other than the applied operations research option should obtain further information from the following: manufacturing option, Center for Manufacturing Enterprise, 291 Granum Hall, 255-5545; financial engineering option, systems engineering option, and information technology option, 201 Frank H. T. Rhodes Hall, 255-9128; semester in manufacturing option, 304 Sage Hall, 255-4691. For students lacking an undergraduate degree in operations research, the financial engineering option, which is highly specialized, may entail additional prerequisites or more than two semesters.

1. For matriculants with preparation comparable to that provided by the undergraduate major in operations research and engineering:

 Fall semester
 - OR&IE 516 Case Studies 1
 - OR&IE 893 Applied OR&IE Colloquium 1
 - M.Eng. project 1
 - Technical electives 12

2. For matriculants from other majors who minimally fulfill the prerequisite requirements (students who have the equivalent of OR&IE 520, 523, and 560 who will take other OR&IE electives in their place):

 Fall semester
 - OR&IE 560 Engineering Probability and Statistics II 4
 - OR&IE 520 Optimization I 4
 - OR&IE 522 Topics in Linear Optimization 1
 - OR&IE 516 Case Studies 1
 - OR&IE 580 Simulation Modeling and Analysis 4
 - OR&IE 893 Applied OR&IE Colloquium 1
 - M.Eng. project 1

 Spring semester
 - OR&IE 523 Introduction to Stochastic Processes I 4
 - OR&IE 894 Applied OR&IE Colloquium 1
 - M.Eng. project minimum of 4
 - Technical electives 10

For both of the above pro forma schedules, at least 12 credit hours of the specified electives must be chosen from the list of courses offered by the School of Operations Research and Industrial Engineering. For scheduling reasons, some options may require an additional summer, depending on the student's preparation.

The project requirement can be met in a variety of ways. Common elements in all project experiences include working as part of a group of three to five students on an engineering design problem, meeting with a faculty member on a regular basis, and oral and written presentation of the results.
obtained. Most projects address problems that actually exist in manufacturing firms, financial firms, and service organizations such as hospitals.

Additional program requirements are described in the Master of Engineering Handbook. For further details, see the contact information at the beginning of this section.

As part of their undergraduate OR & IE major or M.Eng. (OR&IE) curriculum, students may study several subjects that are required for the Johnson Graduate School M.B.A. This early start on business degree requirements may make it possible to get both the M.Eng. and the M.B.A. in two years, rather than the usual three. For details, see "Cooperative Program with the Johnson Graduate School of Management" under "Master of Engineering Degrees," and contact the OR&IE M.Eng. office, 201 Rhodes Hall.

MASTER OF ENGINEERING (SYSTEMS)
Offered by the System Engineering Program
Contact: 203 Rhodes Hall. 254-8998, www.systemseng.cornell.edu

Today's engineering environment is uncertain. Due in part to emerging technologies and globalization, engineers must think in terms of integrated, globally optimized solutions to devise designs that address the complexity of the real world. Success in this environment requires a comprehensive understanding of systems engineering.

The Systems Engineering Program emphasizes the fundamentals of requirements analysis, systems architecture, product development, project management, optimization, simulation, and systems analysis. The program's strength in these areas helps promote an understanding of the systems process throughout an organization and prepares students to transition from designing and managing independent engineering projects to creating integrated solutions that meet customer needs.

The M.Eng. (Systems) program is designed for students who want to specialize in Systems Engineering. It requires a minimum of 30 credit hours. Students must complete the following required courses.

Applied Systems Engineering (3 credits)
Systems Architecture, Behavior, and Optimization (3 credits)
Project Management (4 credits)
Systems Engineering Project (6-8 credits)

Approved electives account for the remaining credits to reach the minimum of 30 credits required for the degree and are to be chosen from the following areas:

Systems Modeling and Analysis (at least one course)
Courses that enrich the understanding of general methods to design and analyze systems including courses in simulation, feedback and control, decision-making, or risk analysis.

Systems Applications
Courses that provide depth in the design and operation of specific systems such as power, communication, software, manufacturing, or transportation.

Systems Management (at most one course)
Courses that enhance student understanding of the management activities and processes which are necessary to successfully design and operate systems.

In addition to the Master of Engineering degree in Systems, the Systems Engineering Program offers a second course of study: the Option in Systems Engineering. The SE Option is designed for students who want Systems Engineering as part of the Master of Engineering degree in another engineering discipline.

ENGINEERING COURSES
Courses offered in the College of Engineering are listed under the various departments and schools.

Courses are identified with a standard abbreviation followed by a three-digit number.

Engineering Communications ENGRC
Engineering Distribution ENGRD
Engineering General Interest ENGRG
Introduction to Engineering ENGRI
Biological and Environmental Engineering BEE
Applied and Engineering Physics A&EP
Chemical and Biomolecular Engineering CHEME
Civil and Environmental Engineering CEE
Computer Science COM S
Earth and Atmospheric Sciences EAS
Electrical and Computer Engineering ECE
Information Science INFO
Materials Science and Engineering MS&E
Mechanical and Aerospace Engineering M&AE
Nuclear Science and Engineering NS&E
Operations Research and Industrial Engineering OR&IE
Theoretical and Applied Mechanics T&AM

ENGINEERING COMMON COURSES

Engineering Communications Courses
Courses in this category, offered by the Engineering Communications Program (ECP), develop writing and oral-presentation skills needed by engineers.

ENGRC 334/3340 Independent Study in Engineering Communications
3 credits, variable. Letter grades. TBA with instructor.

Members of the ECP occasionally give independent (also called "directed") studies in engineering communications, typically with students who are ready for advanced work in technical writing. A student doing a directed study works one-on-one with an ECP instructor to pursue an aspect of professional communications in more depth than is possible in the ECP's regular courses. Various types of projects are possible, e.g., studying forms of technical documentation, creating user manuals, analyzing and producing technical graphics, reading and writing about problems in engineering practice, and writing about technical topics for the public.

ENGRD 201/2010 Introduction to the Physics and Chemistry of the Earth
Fall. 3 credits. Prerequisite: PHYS 112 or 207. J. Philippe Morgan
Covers the formation of the solar system; accretion and evolution of the earth; the rock
cycle: radioactive isotopes and the geological time scale, plate tectonics, rocks and minerals, earth's dynamics, mantle plumes, the hydrologic cycle: runoff, floods and sedimentation, groundwater flow, contaminant transport; and the weathering cycle: chemical cycles, CO₂ (weathering), controls on global temperature (CO₂ or ocean currents), oil and mineral resources.

ENGRD 202(2020) Mechanics of Solids *(also T&AM 202(2020))*

Fall, spring. 4 credits. Prerequisite: PHYS 112, co-registration in MATH 192, or permission of instructor.

Covers principles of statics, force systems, and equilibrium: frameworks; mechanics of deformable solids, stress, strain, statically indeterminate problems; mechanical properties of engineering materials; axial force, shearing force, bending moment, plane stress, bending and torsion of bars.

ENGRD 203(2030) Dynamics *(also T&AM 203(2030))*

Fall, spring. 3 credits. Prerequisite: ENGRD 202, prerequisite in MATH 293, or permission of instructor. Newtonian dynamics of a particle, systems of particles, a rigid body: Kinematics; motion relative to a moving frame: Impulse, momentum, angular momentum, energy. Rigid-body kinematics, angular velocity, moment of momentum, the inertia tensor. Euler equations, the gyroscope.

ENGRD 210(2100) Introduction to Circuits for Electrical and Computer Engineers *(also ECE 210(2100))*

Fall, spring. 4 credits. Corequisites: MATH 293 and PHYS 213. All students must take a lab and a section. Fall, J. C. Belina and M. C. Kelley; spring, C. E. Seyler and M. C. Kelley.

First course in electrical circuits and electronics that establishes the fundamental properties of circuits with application to modern electronics. Topics include circuit analysis—basic amplifiers, basic filter circuits, and elementary transistor principles. The laboratory experiments are coupled closely with the lectures.

ENGRD 211(2110) Computers and Programming *(also COM S 211(2110))*

Fall, spring, summer. 3 credits. Prerequisite: ENGRD 202 or equivalent course in Java or C++.

Intermediate programming in a high-level language and introduction to computer science. Topics include program structure and organization, object-oriented programming (classes, objects, types, sub-typing), graphical user interfaces, algorithm analysis (asymptotic complexity, big "O" notation), recursion, data structures (lists, trees, stacks, queues, heaps, search trees, hash tables, graphs), simple graph algorithms. Java is the principal programming language.

ENGRD 219(2190) Mass and Energy Balances *(also CHEM E 219(2190))*

Fall. 3 credits. Corequisite: physical chemistry course or permission of instructor.

Engineering problems involving material and energy balances. Batch and continuous reactive systems in the steady and unsteady states. Introduction to phase equilibrium for multiphase systems. Examples from a variety of chemical and biological processes.

ENGRD 221(2210) Thermodynamics *(also M&AE 221(2210))*

Fall, spring. May be offered summer. 3 credits. Prerequisites: MATH 192, Calculus for Engineers, and PHYS 112, Physics I. Mechanics.

Presents the definitions, concepts, and laws of thermodynamics. Topics considered include applications to ideal and real gases, vapor and gas power systems, refrigeration, and heat pump systems. Examples and problems are related to contemporary aspects of energy and power generation and broader environmental issues.

ENGRD 230(2300) Introduction to Digital Logic Design

Introduction to the design and implementation of practical digital circuits. Topics include transistor network design, Boolean algebra, combinational circuits, sequential circuits, finite state machines and analog and digital converters. Design methodology using both discrete components and hardware description languages is covered in the weekly laboratory portion of the course.

ENGRD 241(2410) Engineering Computation

Spring. 3 credits. Prerequisites: COM S 100 and MATH 293. Corequisite: MATH 294.

Recommended: completion of MATH 294.

C. A. Shoemaker.

Introduction to numerical methods, computational mathematics, and probability and statistics. Topics include computer programming and graphics proficiency with MATLAB and spreadsheets. Topics include: Taylor-series approximations, numerical errors, condition numbers, operation counts, convergence, and stability; probability distributions, hypothesis testing. Included are numerical methods for solving engineering problems that entail roots of functions, simultaneous linear equations, statistics, regression, interpolation, numerical differentiation and integration, and solution of ordinary and partial differential equations, including an introduction to finite difference methods. Applications are drawn from different areas of engineering. There is a group project using these methods on a realistic engineering problem.

ENGRD 251(2510) Engineering for a Sustainable Society *(also BEE 251(2510))*

Fall. 3 credits. S. Sasa.

Examines the mechanical properties of materials (e.g., strength, stiffness, toughness, ductility) and their physical origins. The relationship of the elastic, plastic, and fracture behavior to microscopic structure in metals, ceramics, polymers, and composite materials is explored. Effects of time and temperature on materials properties are discussed. This course emphasizes considerations for design and optimal performance of materials and engineered objects.

ENGRD 253(2530) Thermodynamics *(also M&AE 253(2530))*

Fall, spring. 3 credits. Prerequisite: MATH 192. Corequisite: PHYS 213 or permission of instructor.

Examines the basic principles of thermodynamics and their physical origins. The mechanical, chemical, and electrical properties of materials are discussed. This course emphasizes the integration of biological systems with engineering, math, and physical sciences. Students learn how to formulate and solve problems related to contemporary aspects of energy and power generation and broader environmental issues.

ENGRD 254(2540) Computer-Instrumentation Design *(also A&EP 254(2540))*

Fall, spring. 3 credits. Prerequisite: COM S 100, permission of instructor for seniors.

The experiments and devices investigated include: analog to digital converters (ADC), digital to analog converters (DAC), digital input/output (I/O), computer systems, parallel port communications, digital temperature control, error analysis, nonlinear least squares fitting of experimental data, viscosity of fluids, a robot arm, and thermal diffusion. Both C++ programming and graphical programming with LabVIEW™ are used for computer interfacing to hardware. A second goal of the course is to

ENGRD 255(2550) The Physics of Life *(also A&EP 255(2550))*

Fall. Prerequisites: MATH 192, CHEM 207 or 211, and co-registration in or completion of PHYS 213. L. Pollack.

Introduces the physics of biological macromolecules (e.g., proteins, DNA, RNA) to students of the physical sciences or engineering who have little or no background in biology. The macromolecules are studied from three perspectives. First, the physical role or function of each class of macromolecules is considered. Second, a quantitative description of the physical interactions that determine the behavior of these systems is provided. Finally, techniques are presented to probe these systems, with an emphasis on current research, are discussed.
ENGRG 270(2700) Basic Engineering Probability and Statistics
Fall; spring, summer. 3 credits. Prerequisites: MATH 191 and MATH 294 should be completed before or concurrently with ENGRG 270.

These courses may also include seminar or tutorial type courses.

ENGRG 270(2700) Basic Engineering Probability and Statistics
Fall; spring, summer. 3 credits. Prerequisites: MATH 191 and MATH 294 should be completed before or concurrently with ENGRG 270.

Gives students a working knowledge of basic probability and statistics and their application to engineering. Includes computer analysis of data and simulation. Topics include random variables, probability distributions, expectation, estimation, testing, experimental design, quality control, and regression.

ENGRG 321(3510) Numerical Methods in Computational Molecular Biology (also BIOBM 321(3510), COM S 321(3510))
Fall. 3 credits. Prerequisites: at least one calculus course (e.g., MATH 106, 111, or 191) and one linear algebra course (e.g., MATH 221 or 294 or BTRY 417); COM S 100 or equivalent and some familiarity with iteration, arrays, and procedures; knowledge of discrete probability and random variables at the level of COM S 280. COM S majors and minors may use only one of the following toward their degree: COM S 321, 322, or 421. Offered even-numbered years.

An introduction to numerical computing using MATLAB organized around five applications: the analysis of protein shapes, dynamics, protein folding, score functions, and field equations. Students become adept at plotting, solving linear equations, least squares fitting, and cubic spline interpolation. More advanced problem-solving techniques that involve eigenvalue analysis, the solution of ordinary and partial differential equations, linear programming, and nonlinear minimization are also treated. The goal of the course is to develop a practical computational expertise with MATLAB and to build mathematical intuition for the problems of molecular biology.

ENGRG 222(3220) Introduction to Scientific Computation (also COM S 322(3220))
Spring, summer. 3 credits. Prerequisites: MATH 100 and MATH 221 or 294; knowledge of discrete probability and random variables at the level of COM S 280. COM S majors and minors may use only one of the following toward their degree: COM S 321, 322, 421.

An introduction to elementary numerical analysis and scientific computation. Topics include interpolation, quadrature, linear and nonlinear equation solving, least-squares fitting, and ordinary differential equations. Uses the MATLAB computing environment. Stresses vectorization, efficiency, reliability, and stability. Special lectures cover computational statistics.

Courses of General Interest

Courses in this category are of general interest and cover technical, historical, and social issues relevant to the engineering profession. These courses may also include seminar or tutorial type courses.

ENGRG 100J(1000J) Cooperative Workshop for COM S 100J(1000J)
Fall, spring. 1 credit. Corequisite: COM S 100J. S-U grades only.

Academic Excellence Workshop for COM S 100J. Weekly two-hour cooperative learning sessions. Peer-facilitated group works on problems at or above the level of course material, designed to enhance understanding of core concepts in COM S 100J.

ENGRG 100M(1000M) Cooperative Workshop for COM S 100M(1000M)
Fall, spring, 1 credit. Corequisite: COM S 100M. S-U grades only.

Academic Excellence Workshop for COM S 100M. Weekly two-hour cooperative learning sessions. Peer-facilitated group works on problems at or above the level of course material, designed to enhance understanding of core concepts in COM S 100M.

ENGRG 150(1050) Engineering Seminar
Fall. 1 credit. Prerequisite: freshman standing, S-U grades only.

First-year engineering students meet in groups of 15 to 20 students weekly with their faculty advisor to discuss a range of engineering topics. Discussions may include the engineering curriculum and student programs, what different types of engineers do, the character of engineering careers, active research areas in the college and in engineering in general, and study and examination skills useful for engineering students. Groups may visit campus academic, engineering, and research facilities.

ENGRG 160(1060) Exploration in Engineering Seminar
Summer. 1 credit. Designed for junior and senior high school students. Introduction to several engineering fields, such as: bioengineering, chemical engineering, civil engineering, computer science, earth sciences, electrical and computer engineering, engineering physics, materials science, mechanical engineering, operations research. Hands-on experience in weekly labs, as well as design projects to introduce concepts of the engineering design process.

ENGRG 190(1090) Cooperative Workshop for MATH 190(1090)
Fall. 1 credit. Corequisite: MATH 190. S-U grades only.

Academic Excellence Workshop for MATH 190. Weekly two-hour cooperative learning sessions. Peer-facilitated group works on problems at or above the level of course material, designed to enhance understanding of core concepts in MATH 190.

ENGRG 191(1091) Cooperative Workshop for MATH 191(1091)
Fall. 1 credit. Corequisite: MATH 191. S-U grades only.

Academic Excellence Workshop for MATH 191. Weekly two-hour cooperative learning sessions. Peer-facilitated group works on problems at or above the level of course material, designed to enhance understanding of core concepts in MATH 191.

ENGRG 192(1092) Cooperative Workshop for MATH 192(1092)
Fall, spring. 1 credit. Corequisite: MATH 192. S-U grades only.

Academic Excellence Workshop for MATH 192. Weekly two-hour cooperative learning sessions. Peer-facilitated group works on problems at or above the level of course material, designed to enhance understanding of core concepts in MATH 192.

ENGRG 210(1010) Cooperative Workshop for COM S 211(2110)
Fall, spring. 1 credit. Corequisite: COM S 211. S-U grades only.

Academic Excellence Workshop for COM S 211. Weekly two-hour cooperative learning sessions. Peer-facilitated group works on problems at or above the level of course material, designed to enhance understanding of core concepts in COM S 211.

ENGRG 211(1011) Cooperative Workshop for CHEM 211(2110)
Fall, spring. 1 credit. Corequisite: CHEM 211. S-U grades only.

Academic Excellence Workshop for CHEM 211. Weekly two-hour cooperative learning sessions. Peer-facilitated group works on problems at or above the level of course material, designed to enhance understanding of core concepts in CHEM 211.

ENGRG 250(2500) Technology in Society (also ECE/HIST 250(2500), S&T 250(2501))
Fall. 3 credits. Humanities elective for engineering students. Offered alternate years; not offered 2005–2006. R. R. Kline. Investigates the history of technology in Europe and the United States from ancient times to the present. Topics include the economic and social aspects of industrialization; the myths of heroic inventors like Morse, Edison, and Ford; the government's regulation of technology; the origins of mass production; and the spread of the automobile and microelectronics cultures in the United States.

ENGRG 293(1093) Cooperative Workshop for MATH 293(2930)
Fall, spring. 1 credit. Corequisite: MATH 293. S-U grades only.

Academic Excellence Workshop for MATH 293. Weekly two-hour cooperative learning sessions. Peer-facilitated group works on problems at or above the level of course material, designed to enhance understanding of core concepts in MATH 293.

ENGRG 294(1094) Cooperative Workshop for MATH 294(2940)
Fall, spring. 1 credit. Corequisite: MATH 294. S-U grades only.

Academic Excellence Workshop for MATH 294. Weekly two-hour cooperative learning sessions. Peer-facilitated group works on problems at or above the level of course material, designed to enhance understanding of core concepts in MATH 294.

ENGRG 298(2980) Inventing an Information Society (also ECE 298(2980), AM ST 292(2980), HIST 292[2920], S&T 292[2921])
Spring. 3 credits. Approved for humanities distribution. R. R. Kline. Explores the history of information technology from the 1830s to the present by considering the technical and social history of telecommunications, the electric-power industry, radio, television, computers, and the Internet. Emphasis is placed on the changing relationship between science and technology, the economic aspects of innovation, gender and technology, and other social relations of this technology.
ENGR 323(3230) Engineering Economics and Management (also CEE 323[3230])
Spring, usually offered in summer for Engineering Co-op Program. 3 credits. Primarily for juniors and seniors. Students must have taken ENGR 322 D P trucks. Introduction to engineering and business economics and to project management. Intended to give students a working knowledge of money management and how to make economic comparisons of alternative engineering design or projects. The impact of inflation, taxation, depreciation, financial planning, economic optimization, project scheduling, and legal and regulatory issues are introduced and applied to economic investment and project-management problems.

ENGR 357(3570) Engineering in American Culture (also AM ST 356(3570), S&T 357[3571], HIST 357[3570])
Fall. 4 credits. Approved for humanities distribution. Offered alternate years. B. J. Klippel.
The history of engineering in the United States from 1800 to the present. Investigates the education of engineers, how engineering changed from a masculine profession to one more open to women, the building of monumental projects, public images of the engineer, enthusiasm and disasters, and engineering in a global setting.

ENGR 360(3600) Ethical and Social Issues in Engineering (also S&T 360[3611])
Spring. 3 credits. Open to sophomores. P. Doing.
Studies major ethical and social issues involved in engineering practice. The issues include responsibility for designing products that do not harm public health, safety, and welfare; rights of engineers in large corporations; risk analysis and the principle of informed consent; conflict of interest; whistling blowing; trade secrets; and broader concerns such as environmental degradation, cost of health care, computer ethics, and working in multinational corporations. Codes of ethics of the professional engineering societies, ethical theory, and the history and sociology of engineering are introduced to analyze these issues.

ENGR 461(4610) Entrepreneurship for Engineers (also M&A 461[4610], OR&E 452[452])
Fall. 3 credits. Prerequisite: upper-class engineers or permission of instructor. For description, see M&A 461.

ENGR 678(6780) Teaching Seminar
Fall, spring. 1 credit. S-U grades only. All graduate students in the College of Engineering. Participants must be concurrently fulfilling a TA assignment. Requirements include participation in the College of Engineering's TA Development Program, consisting of an initial one and one-half day training session, followed by one evening microteaching session early in the semester. Participation in the TA midterm evaluation process, followed by a formal feedback session with program staff; and completion of a reflective journal on teaching experiences. All components are designed to provide TAs with the opportunity to process their understanding of teaching and learning through the formulation of questions, concepts, and theories related to their experiences.

Introduction to Engineering Courses
Courses in this category are freshman-level courses intended to introduce students to various aspects of engineering. They have no prerequisites and are always cross-listed with a department.

ENGR 101(1010) Introduction to Biomedical Engineering Analysis (also BME 101[1010])
Spring. 1 credit. Corequisite: BIO G 110. Lec and lab. D. Grubb and S. D. Archer. Integrated with BIO G 110 to provide examples of engineering analysis of biological topics described in BIO G 110, graphical, molecular, cellular, and physiological systems.

ENGR 102(1020) Introduction to Nanoscience and Nanoengineering (also A&E 102[1020])
Fall, spring. 3 credits. Lecture/laboratory course designed to introduce freshmen to some of the ideas and concepts of nanoscience and nanotechnology. Topics include nanoscience and nanotechnology—what they are and why they are of interest; atoms and molecules; the solid state; surfaces; behavior of light and material particles when confined to nanoscale dimensions; scanning tunneling microscopy (STM), atomic force microscopy (AFM), microelectromechanical systems (MEMS) design, basic microfabrication and chemical synthesis methods; i.e., "top-down" and "bottom-up" approaches to nanofabrication; how to manipulate structures on the nanoscale; physical laws and limits they place on the nanoworld; some far-out ideas. In the laboratory, students use an AFM to record atomic resolution images, use a MEMS computer-aided design software package to model the entire manufacturing sequence of a simple MEMS device, examine the simulated behavior of the device and compare it with real behavior, construct a simple STM and learn through hands on experience the basic workings of the device.

ENGR 110(1100) Lasers and Photonics (also A&E 110[1100])
Fall. 3 credits. A. Gaeta.
Laser has had an enormous impact on communications, medicine, remote sensing, and material processing. This course reviews the properties of light that are essential to understanding the underlying principles of lasers and these photonic technologies. There also is a strong, hands-on laboratory component in which the students build and operate a nitrogen laser and participate in several demonstration experiments such as holography, laser cutting, and microwave materials, optical tweezers, and fiber optics.

ENGR 111(1110) Nanotechnology (also M&A 111[1110])
Fall. 3 credits. E. Giannelis.
Nanotechnology has been enabling the Information Revolution with the development of even faster, and more powerful devices for manipulation, storing, and transmitting information. In this hands-on course students learn how to design and manipulate materials to build devices and structures in applications as far reaching as computers to telecommunications to biotechnology.

ENGR 112(1120) Introduction to Chemical Engineering (also CHEM E 112[1120])
Fall. 3 credits. Prerequisite: freshman standing. T. M. Duncan.
Design and analysis of processes involving chemical change. Students learn fundamentals for design, such as creative thinking, conceptual blockbusting, and re-definition of the design goal, in the context of contemporary chemical and biomolecular engineering. Includes methods for analyzing designs, such as mathematical modeling, empirical analysis by graphics, and dynamic scaling through dimensional analysis, to assess product quality, economics, safety, and environmental issues.

ENGR 113(1130) Water Treatment Design (also CEE 113[1130])
Spring. 3 credits. M. J. Webster-Shirk.
Students learn how to design: reservoirs to provide water during droughts, aqueducts to transport water, and water treatment plants to prevent waterborne diseases. The course includes field trips, building a computer-controlled miniature water treatment plant, and exploring new technologies for making safe drinking water.

ENGR 115(1101) Engineering Applications of Operations Research
Fall, spring. 3 credits. Not open to OR&E upper-class majors. Introduction to the problems and methods of operations research and industrial engineering focusing on problem areas (including inventory, network design, and resource allocation), the situations in which these problems arise, and several standard solution techniques. In the computational laboratory, students encounter problem simulations and use some standard commercial software packages.

ENGR 116(1160) Modern Structures (also CEE 116[1160])
Fall. 3 credits. M. L. Lastone.
Introduction to structural engineering in the 21st century—the challenges structural engineers face and the innovative approaches they are using to address them. Using case studies of famous structures, students learn to identify different structural forms and understand how various forms carry load—using principles of statics, mechanics, and material behavior. In addition, the historical, economic, social, and political context for each structure is discussed. Case studies of failures are used to explain how structures fail in earthquakes and other extreme events, and students are introduced to analytical and experimental approaches (shake table and wind tunnel testing) to quantifying loads on structures subjected to extreme events. Types of structures considered include skyscrapers, bridges, aircraft, and underground structures.

ENGR 117(1170) Introduction to Mechanical Engineering (also M&A 117[1170])
Fall. 3 credits. 2 lec and 1 lab per week. Introduction to fundamentals of mechanical and aerospace engineering. The lectures cover basic topics of mechanics and aerospace engineering. Students learn and understand materials characteristics, the behavior of materials, and material selection for performing engineering function. They also learn fundamentals of fluid mechanics, heat transfer, automotive engineering, engineering design and product development, patents and intellectual property, and engineering ethics.
There is a final project in which students use the information learned to design and manufacture a product.

ENGRI 118(1180) Engineering Design: Making Digital Audio and Video Work (also T&M 118(1180))
Spring. 3 credits. W. Sachse.
This course examines the broad range of systems and engineering technologies required to build today's remarkable music/data and video sources. Students will be introduced to elements of mechanical, electrical, materials, manufacturing, and computer engineering as they relate to CD/DVD/MP3 players and media. Subsystems will be examined from the view of the basic science, the engineering disciplines primarily responsible, and the issues of integration with other subsystems of these devices. Laboratory sessions, demonstrations, homework and a digital audio (Exploreratorium) are used to illustrate the principles of design.

ENGRI 119(1190) Biomaterials for the Skeletal System (also MS&E 119(1190))
Fall. 3 credits. C. G. Ober.
Biomaterials are at the intersection of biology and engineering. This course explores natural structural materials in the human body, their properties and microstructure, and their synthetic and semi-synthetic replacements. Bones, joints, teeth, tendons, and ligaments are used as examples, with their metal, plastic, and ceramic replacements. Topics include strength, corrosion, toxicity, wear, and bio-compatibility. Case studies of design lead to consideration of regulatory approval requirements and legal liability issues.

ENGRI 122(1120) Earthquake! (also EAS 122(1120))
Spring. 3 credits. L. D. Brown.
Explores the science of natural hazards and strategic resources. Covers techniques for locating and characterizing earthquakes, and assesses the damage they cause; methods of using sound waves to image the earth's interior to search for strategic materials; and the historical importance of such resources. Includes a poster on camps to probe for groundwater, the new critical environmental resource.

ENGRI 124(1240) Designing Materials for the Computer (also MS&E 124(1240))
Spring. 3 credits. Staff.
Introduces the materials, processes, and properties of the semiconductors, polymers, ceramics, and metals used in the microelectronics industry to form integrated circuits, electronic devices, and displays. Examines lithographic processing, metalization, implantation, oxidation, and other processes used in fabricating electronic devices and their packages. Discusses the technology of displays, including liquid crystal displays and light-emitting devices.

ENGRI 126(1260) Introduction to Signals and Telecommunications
Spring. 3 credits. D. F. Delchamps.
Introduces the concepts that underlie wired and wireless communication systems. Students achieve a rudimentary understanding of basic ideas such as coding and data compression; frequency content, bandwidth, and filtering; sampling and reconstruction; and time- and frequency-division multiplexing. Discussions of practical applications focus on areas such as the public switched telephone network, ISDN, ATM, and TCP/IP. Students also develop an appreciation for the historical development of the field. The course includes both lectures and laboratory demonstrations.

ENGRI 127(1270) Introduction to Entrepreneurship and Enterprise Engineering (also M&AE 127(1270))
Spring. 3 credits. Open to all Cornell students regardless of major. Prerequisites: none.
Provides a solid introduction to the entrepreneurial process to students in engineering. The main objective is to identify and to begin to develop skills in the engineering work that occurs in high-growth, high-tech ventures. Basic engineering management issues, including the entrepreneurial perspective, opportunity recognition and evaluation, and gathering and managing resources are covered. Technical topics such as the engineering design process, product realization, and technology forecasting are discussed.

ENGRI 165(1610) Computing in the Arts (also ART 175, CIS 165(1610), COM S 165(1610), PSYCH 165(1650))
Fall. 3 credits. Complements ART 171 and MUSIC 120. S/U grades optional.
For description, see COM S 165.

ENGRI 167(1670) Visual Imaging in the Electronic Age (also CIS 167(1620), COM S 167(1620))
Spring. 3 credits.
S/U grades optional.
For description, see ART 170.

ENGRI 172(1700) Computation, Information, and Intelligence (also COGIST 172, COM S/INFO 172(1700))
Fall. 3 credits. Prerequisites: some knowledge of dataflow; permission of instructor for students who have completed equivalent of COM S 100. An introduction to computer science using methods and examples from the field of artificial intelligence. Topics include game playing, search techniques, learning theory, compute-intensive methods, data mining, information retrieval, the web, natural language processing, machine translation, and the Turing test. This is not a programming course; rather, "pencil and paper" problem sets are assigned. Some calculus required.

APPLIED AND ENGINEERING PHYSICS

A & E P 102(1020) Introduction to Nanoscience and Nanoengineering (also ENGR 102(1020))
Spring. 3 credits.
Course in Introduction to Engineering series. For description, see ENGR 150.

A & E P 110(1110) Lasers and Photonics (also ENGR 110(1110))
Fall. 3 credits. A. Gaeta.
Course in Introduction to Engineering series. For description, see ENGR 110.
A&EP 330(3330) Modern Experimental Optics (also PHY 330[3300])
Fall. 4 credits. Limited enrollment. Prerequisite: PHYS 214 or equivalent.
E. Bodenschatz.
Practical laboratory course in basic and modern optics. The various projects cover a wide range of topics from geometrical optics to classical wave properties such as interference, diffraction, and polarization. Each experimental setup is equipped with standard, off-the-shelf optics and opto-mechanical components to provide the students with hands-on experience in practical laboratory techniques currently employed in physics, chemistry, biology, and engineering. Students are also introduced to digital imaging and image processing techniques.

A&EP 321(3230) Mechanics of Particles and Solid Bodies
Fall, summer. 4 credits. Prerequisites: PHYS 112 or 116 and co-registration in A&EP 321 or equivalent or permission of instructor. Covers Newton’s mechanics; constants of motion; mathematical systems; linear oscillations; variational calculus; Lagrangian and Hamiltonian formalism for generalized coordinates; non-inertial reference systems; central-force motion; motion of rigid bodies; small vibrations in multi-mass systems; nonlinear oscillations; and basic introduction to relativistic mechanics. Emphasis is on mathematical treatments, physical concepts, and applications. (At the level of Classical Dynamics by Marion and Thornton.)

A&EP 355(3550) Intermediate Electrodynamics
Fall, summer. 4 credits. Prerequisites: PHYS 214 or 217 and co-registration in A&EP 321 or equivalent, or permission of instructor. Topics include vector calculus, electrostatics, analytic and numerical solutions to Laplace’s equation in various geometries, electric and magnetic multipoles, electric and magnetic materials, energy in fields, quasistatics, and magnetic circuit design. Emphasis is on developing proficiency with analytical and numerical solution techniques in order to solve real-world design problems.

A&EP 356(3560) Intermediate Electrodynamics
Spring. 4 credits. Prerequisite: A&EP 335 and co-registration in A&EP 322 or equivalent, or permission of instructor. Topics include electromagnetic waves, waveguides, transmission lines, dispersive media, radiation, special relativity, interference phenomena. Emphasis is on physical concepts and developing ability to design analyze microwave circuits and antenna arrays.

A&EP 361(3610) Introductory Quantum Mechanics
Spring. 4 credits. Prerequisites: A&EP 333 or PHYS 318. Corequisite: A&EP 322 or equivalent; A&EP 356 or PHYS 326. First course in the systematic theory of quantum phenomena. Topics include wave mechanics, the Dirac formalism, angular momentum, the hydrogen atom, and perturbation theory.

A&EP 363(3630) Electronic Circuits (also PHYS 360[3360])
Fall, spring. 4 credits. Prerequisites: PHYS 208 or 213 or permission of instructor. No previous experience with electronics assumed; however, course moves quickly through introductory topics such as basic DC circuits. Fall semester usually less crowded. 1 lab, 2 labs. Fall: E. Kirkland; spring: J. Alexander.

Students analyze, design, build, and experimentally test circuits used in scientific and engineering instrumentation (with discrete components and solid-state IC’s). Topics include: amplifiers, operational amplifiers (op-amps) with feedback, filters, diodes, and transistors. Digital circuits: combinational (gates) and sequential (flip-flops, counters, shift registers) logic. Computer interfacing introduced and used to investigate digital to analog (DAC) and analog to digital conversion (ADC) and signal averaging.

A&EP 423(4230) Statistical Thermodynamics
Fall. 4 credits. Prerequisite: introductory three-semester physics sequence and one year junior-level mathematics.
Quantum statistical basis for equilibrium thermodynamics, microcanonical, canonical and grand canonical ensembles, and partition functions for classical and quantum ideal gases, paramagnetic and multiple-soft systems. Maxwell-Boltzmann, Fermi-Dirac, and Bose-Einstein statistics and applications. Introduction to systems of interacting particles. At the level of Statistical Physics by K. Huang.

A&EP 434(4340) Continuum Physics
Spring. 4 credits. Prerequisites: A&EP 333 and 356 or equivalent.

A&EP 438(4380) Computational Engineering Physics
Spring. 3 credits. Prerequisites: COM S 100, A&EP 321, 333, 355, 361, or equivalent, or permission of instructor; co-registration in PHYS 361 permitted.
Numerical computation (e.g., derivatives, integrals, differential equations, matrices, boundary-value problems, relaxation, Monte Carlo methods) is introduced and applied to engineering physics problems that cannot be solved analytically (e.g., three-body problem, electrostatic fields, quantum energy levels). Computer programming required (in C or optionally FORTRAN, or Pascal). Some prior exposure to programming assumed but no previous experience with C assumed.

A&EP 440(4440) Quantum and Nonlinear Optics
Spring. 4 credits. Prerequisites: A&EP 356, 361, or equivalent.
Introduction to the fundamentals of the interaction of laser light with matter. Topics include the propagation of laser beams in bulk media and guided-wave structures, the origins of optical nonlinearities, harmonic generation, self-focusing, optical bistability, propagation of ultrashort pulses, solitons, optical phase conjugation, optical resonance and two-level atoms, atom cooling and trapping, multiphoton processes, spontaneous and stimulated scattering, and ultra-intense laser-matter interactions.

A&EP 450(4500) Introductory Solid State Physics (also PHYS 454[4454])
Fall. 4 credits. Highly recommended: some exposure to quantum mechanics at level of PHYS 443, A&EP 361, or CHEM 793. Introduction the physics of crystalline solids. Covers crystal structures; electronic states; lattice vibrations; and metals, insulators, and semiconductors. Combinatorics of the dynamics of electrons and ions in solids. Covers optical properties, magnetism, and superconductivity as time allows. The majority of the course addresses the foundations of the subject, but time is devoted to modern and/or technologically important topics such as quantum size effects. At the level of Introduction to Solid State Physics by Kittel or Solid State Physics by Ashcroft and Mermin.

A&EP 470(4700) Biophysical Methods (also BIOL 470(4700))
Fall. 5 credits. Prerequisites: solid knowledge of basic physics and mathematics through sophomore level. Recommended: some knowledge of cellular biology. Letter grades only. Overview of the diversity of modern biophysical experimental techniques used in the study of biophysical systems at the cellular and molecular level. Topics include methods that examine both structure and function of biological systems, with emphasis on the applications of these methods to biological membranes. The course format includes assigned literature reviews by the students on specific biophysics topics and individual student presentations on these topics. The course is intended for students of the engineering, physics, chemistry, and biological disciplines who seek an introduction to modern biophysical experimental methods.

A&EP 484(4840) Introduction to Controlled Fusion: Principles and Technology (also ECE/M&E 484[4840], M&AE 484[4840]) Spring. 3 credits. On demand. Prerequisites: PHYS 112, 213, and 214, or equivalent background in electricity and magnetism and mechanics, and permission of instructor. Intended for seniors and graduate students. For description, see NSE 484.

A&EP 490-491(4900-4910) Independent Study in Engineering Physics
Fall, spring. Credit TBA. Laboratory or theoretical work in any branch of engineering physics under the direction of a member of the faculty. The study can take a number of forms; for example, design of laboratory apparatus, performance of laboratory measurements, computer simulation or software development, theoretical design and analysis. Details TBA with respective faculty member.

Spring. 3 credits. Prerequisites: A&EP 356, 361, 423, 450 or equivalent. Directed at students who have had an introductory course in solid state physics at the level of Kittel. Concentrates on the application of the quantum mechanical theory of solid state physics to semiconductor...
materials, solid state electronic devices, solid state detectors and generators of electro-magnetic radiation, superconducting devices and materials, the nonlinear optical properties of solids, ferromagnetic materials, nanoscale devices, and mesoscopic quantum mechanical effects. The course stresses the basic, fundamental physics underlying the applications rather than the applications themselves. At the level of Introduction to Applied Solid State Physics by Dalven.

A&E 571(5710) Biophysical Methods Advanced Laboratory
Spring, first three weeks of Jan. or TBA during spring semester. 3 credits. Prerequisite: A&E 470 highly recommended but qualified students who have not taken A&E 470 also accepted. Letter or S-U grades. M. Lindau. Offered to students in the engineering, physics, chemistry and biological disciplines who are interested in research at the interface between physical sciences/engineering and life sciences. In groups of two, participants perform five experiments in research laboratories on state-of-the-art equipment. Lab training sessions are arranged individually in January and throughout the spring semester. Typically each experiment is two days in the lab for analysis and report writing. The course is intended for students who seek hands-on introduction to modern biophysical experimental methods.

A&E 607(6070) Advanced Plasma Physics (also ECE 582(5820))
Spring. On demand. 4 credits. Prerequisites: ECE 581 and A&E 606. For description, see ECE 582.

A&E 633(6330) Nuclear Reactor Engineering (also NS&E 633(6330))
Fall, 4 credits. Prerequisite: introductory course in nuclear engineering. Offered on demand. K. B. Cady. For description, see NS&E 633.

A&E 661(6610) Nanocharacterization
Fall. 3 credits. Prerequisites: Fourier transforms, basic electromagnetism, and undergraduate quantum mechanics or chemistry. Undergraduates should consult with instructor before enrolling. Graduate-level introduction to the tools used to image and probe optical, electronic, chemical, and mechanical properties at the nanoscale and below. Discussion centers on the physics of the interaction processes used for characterization, quantification, and interpretation of the collected signals, common artifacts, the engineering trade-offs made in constructing the actual instruments, and the fundamental detection limits for each method. Topics include the interaction of electrons, ions, and photons with materials; scanned probe and force microscopy; scanning and transmission electron microscopy; x-ray microanalysis; electron energy loss spectroscopy; and a brief survey of non-imaging methods such as RBS, XPS, and SMM.

A&E 662(6620) Micro/Nano-fabrication and Processing
Spring. 3 credits. Introduction to the fundamentals of micro- and nano-fabricating and patterning thin-film materials and surfaces, with emphasis on electronic, biological materials, micro-mechanics, and other applications. Vacuum and plasma thin-film deposition processes.

Photon, electron, X-ray, and ion-beam lithography. Techniques for pattern replication by plasma and ion processes. Emphasis is on understanding the physics and materials science that define and limit the various processes. At the level of Brodie and Muray.

A&E 663(6630) Nanobiotechnology (also BIO G 663(6630), NS&E 563(5630))
Spring. 3 credits. Letter grades only. C. Batt. Upper-level undergraduate and graduate-level course that covers the basics of biology and the principles and practice of microfabrication techniques. The course focuses on applications in biomedical and biological research. A team design project that stresses interdisciplinary communication and problem solving is one of the course requirements. The course meets twice weekly with 75-minute classes. All lectures are teleconferenced to NBTC associate institutes.

A&E 711(7110) Principles of Diffraction (also NS&E 671(6710))
Fall. 3 credits. Letter grades only. J. D. Brock. Graduate-level introduction to diffraction/ scattering phenomena in the context of solid-state and soft condensed-matter systems. The primary topic is using the scattering and absorption of neutron, electron, and X-ray beams to study physical systems. Particular emphasis is placed on issues related to synchrotron X-ray sources. Specific topics that are covered in the course include: elastic and inelastic scattering; diffraction from two- and three-dimensional periodic lattices; the Fourier representation of scattering centers and the effects of thermal disorder and disorder; diffraction, reflectivity, or scattering from surface layers; diffraction or scattering from gases and amorphous materials; small angle scattering; X-ray absorption spectro-scopy; resonant (e.g., magnetic) scattering; novel techniques using coherent X-ray beams; and a survey of dynamical diffraction from perfect and imperfect lattices.

A&E 751(7510) M.Eng. Project
Fall, spring, 6-12 credits TBA. Requirement for M.Eng. (engineering physics) students. Independent study under the direction of a member of the university faculty. Students participate in an independent research project through work on a special problem related to their field of interest. A formal and complete research report is required.

A&E 753(7530) Special Topics Seminar in Applied Physics
Fall. 1 credit. Requirement for M.Eng. (engineering physics) students; recommended for seniors in engineering physics. Prerequisite: undergraduate physics.

Special topics in applied science, with focus on areas of applied physics and engineering that are of current interest. Subjects chosen are researched in the library and presented in a seminar format by the students. Effort is made to integrate projects within selected subject areas such as atomic, biological, computational, optical, plasma, and solid-state physics, or microfabrication technology, as suggested by the students and coordinated by the instructor.

A&E 781(7810) Advanced Plasma Physics II: Cosmic Plasma Physics
Fall. 3 credits. Not offered 2005-2006. R. Lovelace.

Uses Cosmic Plasma Physics by Somov and covers the following topics: charged particles and EM fields, statistical description of plasma, distribution functions and the Vlasov equation, propagation of particles, motion of particles in given fields, wave particle interactions, Coulomb collisions, hydrodynamic description of plasmas, magnetohydrodynamic description of plasmas, and cosmic plasma flows.

A&E 782(7820) Advanced Plasma Physics (also ECE 682(6820))
Spring. 3 credits. Prerequisite: ECE 581. C. E. Seyler.

For description, see ECE 682.

BIOLOGICAL AND ENVIRONMENTAL ENGINEERING

For complete course descriptions, see "Biological and Environmental Engineering" under "College of Agriculture and Life Sciences" or visit the department web site, www.bee.cornell.edu.

BEE 102(1102) Introduction to Microcomputer Applications
Fall, spring. 3 credits. Graduating seniors guaranteed admittance. All students must attend first lec to guarantee admittance and select a lab sec.

BEE 110(1030) Introduction to Metal Fabrication Techniques
Spring. 3 credits. Limited to 20 students per lab.

BEE 132(1040) Introduction to Wood Construction
Fall. 3 credits. Limited to 16 students per lab.

BEE 151(1510) Introduction to Computer Programming
Fall. 4 credits. Limited to 22 students per lab and rec. Pre- or corequisite: MATH 191 or equivalent.

BEE 200(2000) The BEE Experience
Spring. 1 credit.

BEE 222(2220) Bioengineering Thermodynamics and Kinetics
Spring. 3 credits. Prerequisites: MATH 192, BIO G 110, PHYS 213, and chemistry course.

BEE 251(2510) Engineering for a Sustainable Society (also ENGRD 251(2510))
Fall. 3 credits. Corequisite: MATH 293.

BEE 260(2600) Principles of Biological Engineering (also ENGRD 260(2600))
Spring. 3 credits. Corequisite: MATH 292.

BEE 299(3299) Sustainable Development: A Web-Based Course
Spring, summer. 3 credits. Prerequisite: at least sophomore standing. S-U grades optional.
BEE 305(3050) Principles of Navigation
Fall. 4 credits.

BEE 310(1050) Advanced Metal Fabrication Techniques
Spring. 1-2 credits. Prerequisite: BEE 110 or permission of instructor.

BEE 325(3250) Environmental Management
Fall. 3 credits.

BEE 350(3500) Biological and Environmental Transport Processes
Fall. 3 credits. Pre- or corequisites: MATH 293 and fluid mechanics course.

BEE 360(3600) Molecular and Cellular Bioengineering (also BME 360[3600])
Spring. 3 credits. Prerequisite: biochemistry course or A&EP 252 or permission of instructor.

BEE 365(3650) Properties of Biological Materials
Spring. 3 credits. Pre- or corequisite: ENGRD 202.

BEE 368(3680) Biotechnology Applications: Animal Bioreactors
Fall. 3 credits. Prerequisite: biochemistry course or permission of instructor.

BEE 371(3710) Physical Hydrology for Ecosystems
Spring. 3 credits. Prerequisite: MATH 192 or permission of instructor.

BEE 401(4010) Renewable Energy Systems
Spring. 3 credits. Prerequisite: college physics.

BEE 427(4270) Water Sampling and Measurement
Fall. 3 credits. Prerequisites: soils and/or fluids or hydrology courses and MATH 191.

BEE 435(4350) Principles of Aquaculture
Spring. 3 credits. Prerequisite: at least junior standing.

BEE 450(4500) Bioinstrumentation
Spring. 4 credits. Prerequisites: MATH 294, BEE 151, PHYS 215, or permission of instructor.

BEE 453(4530) Computer-Aided Engineering: Applications to Biomedical Processes (also M&AE 453[4530])
Spring. 3 credits. Prerequisite: heat and mass transfer course (BEE 350 or equivalent).

BEE 454(4540) Physiological Engineering
Fall. 3 credits. Corequisite: fluid mechanics course.

BEE 466(4660) Biomechanics of Plants (also BIOPL 466[4660])
Fall. 3 credits. Prerequisites: upper-division undergraduate or graduate standing, completion of introductory sequence in biology, and one year of calculus, or permission of instructor. S-U grades optional. Not offered 2005-2006.

BEE 495(4950) Biosensors and Bioanalytical Techniques
Spring. 4 credits. Prerequisite: biochemistry course or permission of instructor. Not offered 2005-2006.

BEE 497(4970) Individual Study in Biological and Environmental Engineering
Fall, spring. 1-4 credits. Prerequisite: written permission of instructor and adequate ability and training for work proposed. Normally reserved for seniors in upper two-fifths of their class. Students must register using independent study form (available in 140 Roberts Hall). S-U grades optional.

BEE 498(4980) Undergraduate Teaching
Fall, spring. 1-4 credits. Prerequisite: written permission of instructor. Students must register using independent study form (available in 140 Roberts Hall).

BEE 499(4990) Undergraduate Research
Fall, spring. 1-4 credits. Prerequisites: written permission of instructor; adequate training for work proposed. Normally reserved for seniors in upper two-fifths of their class. Students must register using independent study form (available in 140 Roberts Hall).

BEE 501(5010) Bioengineering Seminar (also BME 501[5010])
Fall, spring. 1 credit. Prerequisite: junior, senior, or graduate standing.

BEE 520(5900) M.P.S. Project
Fall, spring. 1-6 credits. Requirement for all M.P.S. candidates in field.

BEE 551(5950) Master of Engineering Design Project
Fall, spring. 3-6 credits. Prerequisites: admission to M.Eng. (agricultural and biological) degree program.

BEE 625(6250) Environmental Management
Fall. 3 credits. Prerequisite: graduate standing.

BEE 647(6470) Water Transport in Plants (also BIOPL 651[6510])
Fall. 2 credits. Offered alternate years.

BEE 651(6510) Bioremediation: Engineering Organisms to Clean Up the Environment
Spring. 3 credits. Prerequisites: BIOMI 290 or 398 or 331 or permission of instructor.

BEE 655(6550) Thermodynamics and Its Applications
Fall. 3 credits. Prerequisite: MATH 293 or equivalent. Offered alternate years.

BEE 695(6950) Biosensors and Bioanalytical Techniques
Spring. 4 credits. Prerequisites: biochemistry course and permission of instructor. Not offered 2005-2006.

BEE 671(6710) Analysis of the Flow of Water and Chemicals in Soils
Fall. 3 credits. Prerequisites: four calculus courses and fluid mechanics course. Offered alternate years; not offered 2005-2006.

BEE 672(6720) Drainage
Spring. 4 credits. Prerequisite: BEE 471 or 473. S-U grades optional.
BEE 673(6730) Sustainable Development Seminar (also NBA 573[5730])
Spring. 1-3 credits. Prerequisite: upper-division undergraduate or graduate standing or permission of instructor.

BEE 685(6850) Biological Engineering Analysis
Spring. 4 credits. Prerequisite: T&AM 510 or permission of instructor.

BEE 687(6870) The Science and Engineering Challenge to the Development of Sustainable Bio-Based Industries
Fall. 1 credit. Prerequisite: graduate standing.

BEE 694(6940) Graduate Special Topics in Agricultural and Biological Engineering
Fall, spring. 1-4 credits. S-U grades optional.

BEE 697(6970) Graduate Individual Study in Agriculture and Biological Engineering
Fall, spring. 1-6 credits. Prerequisite: graduate standing or permission of instructor.

BEE 700(7010) General Seminar
Fall. 1 credit. S-U grades only.

BEE 740(6430) Veterinary Perspectives on Pathogen Control in Animal Manure (also VTMED 740(6430), BIOMI 740(6430))
Spring. 2 credits. Prerequisite: graduate standing or permission of instructor.

BEE 750(7000) Orientation to Graduate Study
Fall. 1 credit. Prerequisite: newly joining graduate students. S-U grades only.

BEE 754(7540) Watershed Management
Spring. 2-3 credits. Prerequisite: graduate standing or permission of instructor.

BEE 765(7650) Nucleic Acid Engineering (also BME 760[7600])
Spring. 2 credits. Prerequisite: BEE 360 or permission of instructor.

BEE 771(7710) Soil and Water Engineering Seminar
Fall, spring. 1-3 credits. Prerequisite: graduate standing or permission of instructor. S-U grades optional.

BEE 781(7810) Structures and Related Topics Seminar
Spring. 1 credit. Prerequisite: graduate standing or permission of instructor. S-U grades only.

BEE 785(7850) Biological Engineering Seminar
Spring. 1 credit. Prerequisite: graduate standing or permission of instructor. S-U grades only.

BEE 787(7870) Industrial Ecology of Agriculturally Based Bioindustries
Spring. 3 credits. Prerequisites: one year calculus, MATLAB, BEE 687, graduate standing.

BEE 788(7880) Biomass Conversion of Energy and Chemicals
Fall. 3 credits. Prerequisites: one year college calculus and chemistry; minimum of one course in thermodynamics and computer programming.

BEE 800(8090) Master's-Level Thesis Research
Fall, spring. 1-15 credits. Prerequisite: permission of adviser. S-U grades only.

BEE 900(9900) Doctoral-Level Thesis Research
Fall, spring. 1-15 credits. Prerequisite: permission of adviser. S-U grades only.

BIOMEDICAL ENGINEERING

M. L. Shuler, director; D. L. Bartel, associate director; W. L. Olbricht, director of graduate studies; L. J. Bonassar, D. A. Putnam, Y. Wang, W. R. Zipfel. Senior lecturers: S. D. Archer, D. Lipson

BME 101(1010) Introduction to Biomedical Engineering Analysis (also ENGR 101[1010])
For description, see ENGR 101.

BME 301(3010) Molecular Principles of Biomedical Engineering (also CHEM 411[4110])
Fall. 3 credits. Prerequisite: BIO G 110, BIOM 290 or equivalent. Lec and lab. M. P. DeLisa and S. D. Archer.
Introduction to genomics, proteomics, bioinformatics, and computational biology with an emphasis on the engineering challenges for these areas. Covers cytoskeletal and motor proteins and their relationship to nano- and micro-machines and nanobiotechnology. Existing and emerging technologies and instrumentation critical to molecular-level analysis in biomedical engineering.

BME 302(3020) Cellular Principles of Biomedical Engineering (also CHEM 402(4020))
Spring. 3 credits. Prerequisite: BME 301 or course work in BIO G 110, BIOM 350. BIOM 290 or equivalent plus mathematics through differential equations (e.g., MATH 221 or 294), or permission of instructor. Lec and lab. D. A. Putnam and S. D. Archer.
Integration of mammalian cell biology with engineering modeling principles, put into the context of medical pathology and disease states. Consists of three modules: (1) cell culture techniques/receptor ligand interactions, (2) cellular trafficking, and (3) signal transduction.

BME 330(3300) Introduction to Computational Neuroscience (also BIONB/PSYCH/COGST 330[3300])
Fall. 3 or 4 credits. 4 credits includes lab providing additional computer simulation exercises. Limited to 25 students. Prerequisites: BIONB 222 or permission of instructor. S-U grades optional. Lec, MW 2:55-4:10. Offered alternate years. C. Linster.
For description, see BIONB 330.

BME 360(3600) Molecular and Cellular Biomechanics (also BEE 360[3600])
Spring. 3 credits. Prerequisite: biochemistry course or A&EP 252.
For description, see BEE 360.

BME 401(4010) Biomedical Engineering Analysis of Metabolic and Structural Systems (also M&AE 466[4660])
Fall. 3 credits. Prerequisite: basic biology course work. Highly recommended: solid mechanics and fluid mechanics courses.
lec and lab. L. Bonassar and S. D. Archer.
Presents the quantitative biology of the renal, respiratory, cardiovascular, and musculoskeletal systems. Includes mathematical modeling of physiological processes involving mechanics and transport in solid and fluid organs.

BME 402(4020) Electrical and Chemical Physiology
Spring. 3 credits. Prerequisite: BME 301, 302, or 401 or biology background or permission of instructor. Lec and lab. L. Lipson and S. D. Archer.
Focuses on understanding how circulating agents and bioterrorism activities involving agents and bioterrorism activties comprise inter-organ and central nervous system communication, and control of the human body. Additional emphasis includes examining medical devices involved in the treatment of human disease.

BME 404(4040) Biomedical System Design (also ECE 404[4040])
For description, see BIONB 441.

BME 441(4410) Computer in Neurobiology (also BIONB 441[4410])
Fall. 4 credits. Prerequisite: junior, senior, or graduate standing; calculus course. S-U grades optional. Lec. T R 8:40-9:55, lab, W 1:25-4:25. Offered alternate years. B. R. Land.
For description, see BIONB 441.

BME 463(4630) Neuromuscular Biomechanics (also M&AE 463[4630])
Spring. 3 credits. Prerequisite: ENGRD 202 and 203 or permission of instructor. Offered alternate years.
For description, see M&AE 463.

BME 464(4640) Orthopaedic Tissue Mechanics (also M&AE 464[4640])
Spring. 3 credits. Prerequisites: ENGRD 202 and M&AE 325 or permission of instructor. Offered alternate years.
For description, see M&AE 464.

BME 481(4810) Biomedical Engineering (also CHEM 481[4810])
Spring. 3 credits. Prerequisites: CHEM 324 or equivalent or permission of instructor. W. L. Olbricht.
For description, see CHEM 481.

BME 491(4910) Principles of Neurophysiology (also BIONB 491[4910])
Spring. 4 credits. Limited to 20 students. Prerequisite: BIONB 222 or written permission of instructor. S-U grades optional for graduate students by permission of instructor. Lec. M W 10:10; lab. M or T 12:20-4:25. B. R. Johnson.
For description, see BIONB 491.
BME 501(5010) Bioengineering Seminar [also BEE 501(5010)]
Fall, spring. 1 credit. Prerequisite: junior, senior, or graduate standing. Staff.
A broad survey of all aspects of bioengineering, including biomedical, bioprocess, biological, and bioenvironmental engineering and aspects of biotechnology. Sessions may be technical presentations or discussions. Sessions may occasionally be held outside of scheduled times.

BME 539(5390) Biomedical Materials and Devices for Human Body Repair (also TXA 439(4390))
Spring. 2-3 credits. Prerequisites: college natural science requirement (chemistry or biology). C. C. Chu.
For description, see TXA 439. Extra project required; same lectures as TXA 439.

BME 550(5500) Product Engineering and Design in Biomedical Engineering
Spring. 3 credits. Prerequisite: graduate standing; requirement for M.Eng. students majoring in BME. D. Lipson.
A beginning to a cornerstone understanding of engineering, regulatory business, and individual issues for new medical product development. Student background and interests may be highly varied. To accommodate these varied perspectives, the initial focus of the class is on the engineering perspectives of design and development, enabling those undertaking projects (BME 591) to have timely exposure to key enabling concepts.

BME 565(5650) Biomechanical Systems—Analysis and Design (also M&AE 565(5650))
Spring. 3 or 4 credits. Prerequisites: undergraduate courses in dynamics and strength of materials (e.g., T&AM/ENGRD 202 and 203); senior or graduate standing or permission of instructor.
For description, see M&AE 565.

BME 570(5700) Biophysical Methods (also BIONB/AND&EP 470(4700))
Fall. 3 credits. Prerequisites: solid knowledge of basic physics and mathematics through sophomore level. Recommended: some knowledge of cellular biology. Letter grades only.
For description, see A&EP 470.

BME 578(5780) Computer Analysis of Biomed Images (also ECE 578(5780))
Spring. 4 credits. Prerequisite: permission of instructor. A. P. Reeves.
For description, see ECE 578.

BME 591(5910) Design Project
Fall, spring. 3-6 credits. Requirement for M. Eng. students majoring in BME. Students encouraged to register for two semesters as continuing course. Design and economic evaluation of a biomedical engineering device or therapeutic strategy. Team projects are encouraged.

BME 607(6070) Principles of Magnetic Resonance Imaging (MRI)
Fall. 3 credits. Prerequisite: graduate standing; knowledge of basic physics, electricity, magnetism, and Fourier transforms or permission of instructor. Y. Wang.
Physical principles and engineering techniques of MRI. Applications in human medicine. Co-taught with Weill Medical College.

BME 631(6310) Engineering Principles for Drug Delivery (also CHEM 631(6310))
Fall. 3 credits. Prerequisites: graduate standing and background in organic and polymer chemistry or permission of instructor. D. Putnam.
Applications of engineering design principles to problems in drug formulation and delivery. Specific topics include traditional drug formulation, mechanisms and kinetics of pharmaceutical stability, stimuli-sensitive systems, controlled release devices, produgs, targeted drug delivery, biomaterials, gene therapy, and governmental regulatory issues.

BME 663(6630) Advanced Topics in Neuromuscular Biomechanics (also M&AE 663(6630))
Spring. 3 credits. Prerequisite: permission of instructor. F. Valero-Cuevas.
For description, see M&AE 663.

BME 664(6640) Mechanics of Bone (also M&AE 664(6640))
Spring. 3 credits. Prerequisite: graduate standing or permission of instructor. Offered alternate years.
For description, see M&AE 664.

BME 665(6650) Principles of Tissue Engineering (also M&AE/MS&E 665(6650))
Spring. 3 credits. Prerequisite: graduate standing or permission of instructor. L. Bonassar.
Covers introductory concepts in tissue engineering, including polymeric biomaterials used for scaffolds, mechanisms of cell-biomaterial interaction, biocompatibility and foreign body response, cell engineering, and tissue biomechanics. This knowledge is applied to engineering of several body systems, including the musculoskeletal system, cardiovascular tissues, the nervous system, and artificial organs. These topics are discussed in the context of scale-up, manufacturing, and regulatory issues.

BME 703(7030) Graduate Student Teaching Experience
Fall, spring. Variable credit. S-U grades optional. Staff.
Guided individual experience in laboratory instruction and/or lecture/recitation instruction. Provides a preparatory teaching experience for graduate students considering an academic career.

BME 711(7110) Fundamentals of Biomedical Engineering Research I
Fall. 3 credits. Prerequisite: graduate standing; priority given to M.S. Ph.D. and M.Eng. students majoring in BME. Offered 2005-2006. Staff.
A one-semester introduction to research-based seminars. May meet with other seminar series as appropriate.

BME 716(7160) Immersion Experience in Medical Research and Clinical Practice
Fall and spring. 6 credits. Prerequisite: Ph.D. students in BME. D. L. Bartel and Y. Wang.
Six-week immersion at Weill Medical College. Students participate in lectures, rounds, and seminars, observe surgeries, and solve medical problems presented by the staff.

BME 731(7310) Advanced Biomedical Engineering Analysis of Biological Systems
Fall. 3 credits. Prerequisite: graduate standing; priority given to M.S. Ph.D. and M.Eng. students majoring in BME. Not offered 2005-2006. Staff.
Covers the fundamentals of quantitative analysis of biological systems. Illustrates analytical methods applicable to a variety of biological systems, ranging from molecular to cellular to organ to application of whole-body systems.

BME 760(7600) Nucleic Acid Engineering (also BEE 760(7600))
Spring. 3 credits. Prerequisite: BEE 360 or permission of instructor. For description, see BEE 760.

BME 790(7900) Biomedical Engineering Seminar
Fall, spring. 1 credit. Prerequisite: graduate standing. M. L. Shuler.
Research-based seminars. May meet with other seminar series as appropriate.

BME 890(8999) M.S. Thesis Research
Fall, spring. Variable credit. Thesis research for the M.S. degree in BME.

BME 990(9999) Ph.D. Thesis Research
Fall, spring. Variable credit. Thesis research for the Ph.D. degree in BME.

CHEMICAL AND BIOMOLECULAR ENGINEERING

CHEM 112(1120) Introduction to Chemical Engineering (also ENGG 112(1120))
Fall. 3 credits. Prerequisite: freshman standing. T. M. Duncan.
Course in the Introduction to Engineering series. For description, see ENGR 112.

CHEM 219(2190) Mass and Energy Balances (also ENGR 219(2190))
Fall. 3 credits. Corequisite: physical or organic chemistry course or permission of instructor. W. L. Olbricht.
For description, see ENGRD 219.
CHEMICAL AND BIOMOLECULAR ENGINEERING

CHEM 520(5200) Chemical, Polymer, Biomedical, and Electronic Materials Processing
Fall, spring. 4 credits. Prerequisite: CHEM 324.

CHEM 531(5310) Materials Science and Engineering
Fall. 3 credits. Prerequisite: CHEM 324.

CHEM 532(5320) Advanced Materials Processing
Fall. 3 credits. Prerequisite: CHEM 323.

CHEM E 481(4810) Introduction to Biomedical Engineering
Fall, second third of semester. 1 credit.

CHEM E 484(4840) Microchemical and Microfluidic Systems
Fall. 3 credits. Prerequisite: CHEM E 390 or permission of instructor. J. R. Engstrom.

Chemistry and Biochemistry

CHEM 402(4020) Cellular Principles of Biomedical Engineering (also BME 302(3020))
Spring. 3 credits. D. A. Putnam.

For description, see BME 302.

CHEM 432(4320) Chemical Engineering Laboratory
Fall. 4 credits. Prerequisites: CHEM 323, 324, 332, and 390. A. M. Center and staff.

Laboratory experiments in fluid dynamics, heat and mass transfer, separations, other operations. Correlation and interpretation of data. Technical report writing.

CHEM 462(4620) Chemical Process Design
Spring. 4 credits. Prerequisite: CHEM 432.

A. M. Center and staff.

Students prepare a full-scale feasibility study of a chemical process including product supply and demand forecasts, process design including reaction system design, separations scheme development, heat integration via application of pinch technology, and economic analysis of the process. Students develop presentation and teamwork skills through weekly presentations.

CHEM 470(4720) Process Control and Materials Science and Engineering

CHEM 472(4720) Feedback Control Systems (also ECE 472(4720), M&AE 478(4780))
Fall. 4 credits. Prerequisites: CHEM 372, ECE 220, M&AE 326, or permission of instructor.

For description, see M&AE 478.

CHEM 480(4800) Chemical Processing of Electronic Materials
Spring. 3 credits. A. B. Anton.

Introduction to chemical processing of semiconductor materials for the manufacture of microelectronic devices, with specific emphasis on thermodynamics, transport phenomena, and kinetics. Topics include semiconductor properties and behavior, microelectronic device operation, and statistical process control.

CHEM 481(4810) Biomedical Engineering (also BME 481(4810))
Spring. 3 credits. D. A. Archer.

Special topics in biomedical engineering, including cell separations, blood flow, design of artificial devices and artificial organs, biomaterials, image analysis, biological transport phenomena, pharmacokinetics and drug delivery, tissue engineering, and analysis of physiological processes such as adhesion, mobility, secretion, signaling, and growth.

CHEM 484(4840) Microchemical and Microfluidic Systems
Fall. 3 credits. Prerequisite: CHEM 390 or permission of instructor. J. R. Engstrom.

Principles of chemical kinetics, thermodynamics, and transport phenomena applied to microchemical and microfluidic systems. Applications in distributed chemical production, portable power, microreactors, separations, and chemical and biological sensing and analysis. Fabrication approaches (contrasted with microelectronics), transport phenomena at small dimensions, modeling challenges, system integration, case studies.

CHEM 490(4900) Undergraduate Projects in Chemical Engineering
Fall, spring. Variable credit.

Research or studies on special problems in chemical engineering.

CHEM 498(4980) Senior Seminar
Fall, spring. 1 credit. Prerequisite: CHEM seniors. Staff.

Students attend seminars of their selection and write one-page summaries. Eligible seminars include all listings at “Colloquia and Seminars in Physics and Related Fields” which includes the weekly seminars in, for example, Chemical and Biomedical Engineering, Chemistry and Chemical Biology, Earth and Atmospheric Sciences, History and Ethics of Engineering, and Materials Science and Engineering.

CHEM 520(5200) Chemical, Polymer, Biomedical, and Electronic Materials Processing
Fall, spring. 4 credits. Prerequisite: CHEM 324.

A. M. Center.

Chemical and Biochemical Engineering

CHEM 401(4010) Molecular Principles of Biomedical Engineering (also BME 301(3010))
Fall. 3 credits. Prerequisite: BIO G 110 or BIOM 350. M. P. DeLisa.

For description, see BME 301.
CHEM 543(5430) Bioprocess Engineering
Fall. 3 credits. Prerequisite: CHEM 390 or permission of instructor. No prior background in biological sciences required. M. L. Shuler. Discusses principles involved in using microorganisms, tissue cultures, and enzymes for processing. Primary emphasis is on production of biopharmaceuticals, but biological waste treatment and medical systems are also considered.

CHEM 565(5650) Design Project
Fall, spring. 3 or 6 credits. Requirement for M.Eng. (chemical) students. Design study and economic evaluation of a chemical processing facility, alternative methods of manufacture, raw-material preparation, food processing, waste disposal, or some other aspect of chemical processing.

CHEM 572(5720) Managing New Business Development
Fall. 3 credits. Prerequisites: graduate standing or permission of instructor. A. M. Center. Case study approach introducing the typical fundamental factors driving a business venture, examines how to develop implementation strategies for the venture, and teaches the project management skills necessary to successfully implement the venture.

CHEM 590(5999) Special Projects in Chemical Engineering
Fall, spring. Variable credit. Prerequisite: graduate standing. Nonthesis research or studies on special problems in chemical engineering.

CHEM 631(6310) Engineering Principles for Drug Delivery (also BME 631[6310])
Fall. 3 credits. Prerequisite: graduate standing or permission of instructor. For description, see BME 631.

CHEM 640(6400) Polymeric Materials
Fall. 3 credits. C. Cohen. Covers chemistry and physics of the formation and characterization of polymers; principles of fabrication.

CHEM 661(6610) Air Pollution Control

CHEM 675(6750) Synthetic Polymer Chemistry (also MS&E 622[6220], CHEM 671[6710])
Spring. 4 credits. Prerequisites: CHEM 359-360 or equivalent or permission of instructor. For description, see CHEM 671.

CHEM 711(7110) Advanced Chemical Engineering Thermodynamics
Fall. 3 credits. Prerequisite: CHEM 389-390 and CHEM 315 or equivalent. A. B. Anton. Molecular thermodynamics of gases, lattices, and liquids, including special applications to problems in chemical engineering.

CHEM 713(7130) Chemical Kinetics and Transport
Spring. 5 credits. Prerequisite: CHEM 390 or equivalent. F. A. Escobedo and A. D. Stroock. Topics include microscopic and macroscopic viewpoints; connections between phenomenological chemical kinetics and molecular reaction dynamics; reaction cross sections, potential energy surfaces, and dynamics of bimolecular collisions; molecular beam scattering, transition state theory. Unimolecular reaction dynamics; complex chemically reacting systems: reactor stability, multiple steady states, oscillations, and bifurcation; reactions in heterogeneous media; and free-radical mechanisms in combustion and pyrolysis.

CHEM 731(7310) Advanced Fluid Mechanics and Heat Transfer
Fall. 3 credits. Prerequisites: CHEM 323-324 or equivalent. Y. L. Joo. Topics include derivation of conservation equations; conductive heat transfer; low Reynolds number fluid dynamics; lubrication theory; inviscid fluid dynamics; boundary layer theory; forced convection; and introduction to non-Newtonian fluid mechanics (polymeric liquids and suspensions), microfluidics, stability analysis, and turbulent flow.

CHEM 741(7410) Selected Topics in Biochemical Engineering
Fall, spring. 1 credit; may be repeated for credit. Prerequisite: permission of instructor. K. H. Lee, D. A. Putnam, and M. P. DeLisa. Discussion of current topics and research in biochemical engineering for graduate students.

CHEM 745(7450) Physical Polymer Science I
Fall. 3 credits. Corequisite: CHEM 711 or equivalent. Offered alternate years; next offered 2005-2006. L. A. Archer.

CHEM 751(7510) Mathematical Methods of Chemical Engineering Analysis
Fall. 4 credits. D. L. Koch. Application of advanced mathematical techniques to chemical engineering analysis. Mathematical modeling, scaling, regular, and singular perturbations, multiple scales, asymptotic analysis, linear and nonlinear ordinary and partial differential equations, statistics, data analysis, and curve fitting.

[CHEM 753(7530) Analysis of Nonlinear Systems: Stability, Bifurcation, and Continuation
Fall. 3 credits. Prerequisite: CHEM 751 or equivalent. Offered alternate years; next offered 2005-2007. P. H. Steen.]

CHEM 790(7900) Seminar
Fall, spring. 1 credit each semester. Requirement for all graduate students in field of chemical and biomolecular engineering. General chemical engineering seminar.

CHEM 890(8999) Thesis Research
Fall, spring. Variable credit. Thesis research for the M.S. degree in chemical engineering.

CHEM 990(9999) Thesis Research
Fall, spring. Variable credit. Thesis research for the Ph.D. degree in chemical engineering.

CIVIL AND ENVIRONMENTAL ENGINEERING

Courses in the School of Civil and Environmental Engineering are offered in three broad mission areas: Civil Infrastructure, Environment, and Engineering Systems and Management. Within each mission area are several areas of specialization. The following are the course numbers and titles listed by specialization within each mission area. Some courses are listed in two or more mission areas because the course content is relevant to multiple areas. The school also offers a number of general courses that are not unique to one mission area. Full course descriptions follow in the subsequent section and are listed in numerical order.

General
CEE 113 Water Treatment Design (also ENGRG 113) (S,5)
CEE 116 Modern Structures (also ENGRG 116) (F,3)
CEE 304 Uncertainty Analysis in Engineering (F,4)
CEE 308 Introduction to CADD (F,1)
CEE 309 Special Topics in Civil and Environmental Engineering (F,5,Var.)
CEE 523 Engineering Economics and Management (also ENGRG 523) (S,3,Var.)
CEE 400 Senior Honors Thesis (F,Var.)
CEE 401 Undergraduate Engineering Teaching in CEE (F,Var.)

Civil Infrastructure
See also: CEE 116, 241, 304, 308, 503, and 595 Geotechnical Engineering

CEE 341 Introduction to Geotechnical Engineering and Analysis (S,4)
CEE 440 Foundation Engineering (F,3)
CEE 441 Retaining Structures and Slopes (S,3)
CEE 444 Environmental Site and Remediation (S,3)
CEE 501/502 Design Project in Geotech/Structures (F,5,3)

Geotechnical Engineering

CEE 341 Introduction to Geotechnical Engineering and Analysis (S,4)
CEE 440 Foundation Engineering (F,3)
CEE 441 Retaining Structures and Slopes (S,3)
CEE 444 Environmental Site and Remediation (S,3)
CEE 501/502 Design Project in Geotech/Structures (F,5,3)
CIVIL AND ENVIRONMENTAL ENGINEERING 249

CEE 602 Seminar—Civil Infrastructure (f,s,1)
CEE 640 Foundation Engineering (f,3)
CEE 641 Retaining Structures and Slopes (s,3)
CEE 644 Environmental Applications of Geotechnical Engineering (s,3)
CEE 649 Special Topics in Geotechnical Engineering (f,s,var.)
CEE 740 Engineering Behavior of Soils (f,3)
CEE 741 Rock Engineering (f,3)
CEE 744 Advanced Foundation Engineering (s,2)
CEE 745 Soil Dynamics (s,3)
CEE 746 Embankment Dam Engineering (s,2)
CEE 749 Research in Geotechnical Engineering (f,s,var.)
CEE 840 Thesis—Geotechnical Engineering (f,s,var.)

Structural Engineering
CEE 116 Modern Structures (f,3)
CEE 371 Structural Modeling and Behavior (s,4)
CEE 372 Structural Analysis and Mechanics (f,4)
CEE 471 Fundamentals of Structural Mechanics (f,4)
CEE 472 Finite Element Analysis of Solids and Structures (s,3)
CEE 473 Design of Concrete, Masonry, and Steel Structures (f,4)
CEE 474 Design of Metal Structures (f,3)
CEE 475 Introduction to Composite Materials (s,3)
CEE 477 Concrete Materials and Construction (s,3)
CEE 478 Structural Dynamics and Earthquake Engineering (s,3)
CEE 479 Collaborative Distance Design of Structural Systems (f,s,8)
CEE 481 LRFD-Based Engineering of Wood Structures (s,3)
CEE 501/502 Design Project in Structural Engineering (f,s,3)
CEE 602 Seminar—Civil Infrastructure (f,s,1)
CEE 671 Structural Mechanics (f,3)
CEE 672 Finite Element Analysis of Solids and Structures (s,3)
CEE 673 Design of Concrete, Masonry, and Steel Structures (f,4)
CEE 675 Concrete Materials and Construction (s,3)
CEE 677 Engineering Analysis (f,3)
CEE 678 Structural Dynamics and Earthquake Engineering (s,3)
CEE 679 Evaluation and Failure of Structures (s,3)
CEE 697 Special Topics in Structural Engineering (f,s,var.)
CEE 770 Engineering Fracture Mechanics (f,3)
CEE 771 Stochastic Mechanics (f,3)
CEE 772 Random Vibration (f,3)
CEE 773 Structural Reliability (f,3)
CEE 774 Advanced Structural Concrete (f,3)
CEE 775 Nonlinear Finite Element Analysis in Solid Mechanics (f,3)
CEE 776 Advanced Topics in Stability (f,3)
CEE 777 Computational Solids and Structural Mechanics (s,4)
CEE 781 National Disaster Risk Assessment and Management (s,3)
CEE 783 Civil and Environmental Engineering Materials Project (f,s,var.)
CEE 785 Research in Structural Engineering (f,s,var.)
CEE 880 Thesis—Structural Engineering (f,s,var.)

Environment
See also CEE 113, 241, and 504

Environmental Engineering
CEE 113 Water Treatment Design (s,3)
CEE 351 Environmental Quality Engineering (s,3)
CEE 451 Microbiology for Environmental Engineering (f,3)
CEE 452 Water Supply Engineering (s,3)
CEE 453 Laboratory Research in Environmental Engineering (s,3)
CEE 454 Sustainable Small-Scale Water Supplies (f,3)
CEE 501/502 Design Project in Environmental Engineering (f,s,3)
CEE 601 Seminar—Water Resources and Environmental Engineering (f,1)
CEE 653 Water Chemistry for Environmental Engineering (f,3)
CEE 654 Aquatic Chemistry (s,3)
CEE 655 Transport, Mixing, and Transformation in the Environment (f,3)
CEE 656 Physical/Chemical Process (f,3)
CEE 657 Biological Processes (s,3)
CEE 658 Microbial Biodegradation and Biocatalysis Lab (s,3)
CEE 659 Seminar—Environmental Quality Engineering (s,3)
CEE 750 Research in Environmental Engineering (f,s,3)
CEE 759 Special Topics in Environmental Engineering (f,s,var.)
CEE 850 Thesis—Environmental Engineering (f,s,3)

Environmental Systems
See Engineering Systems and Management for a listing of courses in Environmental and Public Systems.

Environmental Fluid Mechanics and Hydrology
CEE 331 Fluid Mechanics (f,su,4)
CEE 332 Hydraulic Engineering (s,4)
CEE 431 Introduction to Groundwater Hydrology (also EAS 445, BEE 471) (s,3)
CEE 432 Hydrology (s,3)
CEE 435 Coastal Engineering (s,3)
CEE 436 Case Studies in Environmental Fluid Mechanics (s,4)
CEE 437 Experimental Methods in Fluid Dynamics (s,3)
CEE 601 Seminar—Water Resources and Environmental Engineering (f,1)
CEE 631 Computational Simulation of Transport in the Environment (s,3)
CEE 632 Hydrology (s,3)
CEE 633 Flow in Porous Media and Groundwater (f,3)
CEE 634 Boundary Layer Meteorology (f,3)
CEE 635 Small and Finite Amplitude Water Waves (s,3)
CEE 636 Environmental Fluid Mechanics (s,3)
CEE 637 Experimental Methods in Fluid Dynamics (s,4)
CEE 638 Seminar—Hydraulics (f,s,4)
CEE 639 Special Topics in Hydraulics (f,s,var.)
CEE 655 Transport, Mixing, and Transformation in the Environment (f,3)
CEE 735 Research in Hydraulics (f,s,var.)
CEE 850 Thesis—Fluid Mechanics and Hydrology (f,s,3)

Engineering Systems and Management
See also CEE 303

Engineering Management
CEE 490 Management Practice in Project Engineering (f,3)
CEE 492 Engineers for a Sustainable World (f,3)
CEE 590 Project Management (f,s,4)
CEE 591/592 Engineering Management Project (f,s,3)
CEE 593 Engineering Management Methods: Data, Information, and Modeling (f,3)
CEE 594 Economic Methods for Engineering and Management (s,4)
CEE 595 Construction Planning and Operations (f,3)
CEE 596 Management Issues in Forensic Engineering (f,3)
CEE 597 Risk Analysis and Management (s,3)
CEE 598 Introduction to Decision Analysis (f,3)
CEE 692 Special Topics in Engineering Management (f,s,var.)

Environmental and Public Systems
CEE 323 Engineering Economics and Management (also ENGRG 323) (s,su,3)
CEE 501/502 Design Project in Environmental or Water Resource Systems (f,s,3)
CEE 597 Risk Analysis and Management (s,3)
CEE 620 Water Resources Systems Engineering (s,3)
CEE 621 Stochastic Hydrology (s,3)
CEE 622 Water Resources Systems Engineering (f,3)
CEE 628 Seminar—Environmental and Water Resources Systems Analysis (s,1)
CEE 635 Case Studies in Environmental Fluid Mechanics (s,4)
CEE 722 Environmental and Water Resources Systems Analysis Research (f,s,var.)
CEE 729 Special Topics in Environmental and Water Resources Systems Analysis (f,s,4)
CEE 820 Thesis—Environmental and Water Resources Systems (f,s,4)

Remote Sensing
CEE 411 Remote Sensing: Resource Inventory Methods (also CSS 411) (s,3)
CEE 610 Remote Sensing Fundamentals (f,3)
CEE 615 Digital Image Processing (s,3)
CEE 617 Special Topics—Remote Sensing (f,s,4)
CEE 710 Research—Remote Sensing (f,s,4)
CEE 810 Thesis—Remote Sensing (f,s,4)

Systems Engineering
CEE 406 Civil Infrastructure Systems (f,3)
CEE 504 Applied Systems Engineering (also M&AE 591, ECE/ORIE 512, SYSEN 510, COM S 504) (f,3)
CEE 505 Systems Architecture, Behavior, and Optimization (also M&AE 592, ECE/ORIE 513, SYSEN 520, COM S 505) (s,3)
CEE 509 Heuristic Methods for Optimization (also COM S 574, CIS 572, OR&IE 533) (f,3—4)
CEE 513(519) Heuristic Methods for Optimization (also M&AE 592, ECE/ORIE 513, SYSEN 520, COM S 505) (s,3)
CEE 513(519) Systems Architecture, Behavior, and Optimization (also M&AE 591, ECE/ORIE 512, SYSEN 510, COM S 504) (f,3)
CEE 603 Seminar—Engineering Systems and Management (f,s)
CEE 606 Civil Infrastructure Systems (f,3)

Transportation
CEE 361 Introduction to Transportation Engineering (s,4)
CEE 463 Transportation and Information Technology (f,3)
CEE 464 Transportation Systems Design (s,3)
CEE 501/502 Design Project in Transportation Engineering (f,s,3)
CEE 661 Urban Transportation Planning and Modeling (fall, 3 credits)
CEE 662 Urban Transportation Network and Design (f,3)
CEE 663 Network Flows and Algorithms (s,3)
CEE 668 Seminar—Transportation (f,s,1)
CEE 762 Practicum in Modeling Transportation Systems (f,3)
CEE 764 Special Topics in Transportation (f,s,4)
CEE 860 Thesis—Transportation Engineering (f,s,4)

CEE 113(1130) Water Treatment Design
(also ENGRG 113) (1130)
Spring. 3 credits. Students must register under ENGRG 113. M. L. Weber-Shirk.
Course in Introduction to Engineering series. For description, see ENGRG 113.

CEE 116(1160) Modern Structures
(also ENGRG 116) (1160)
Fall. 3 credits. Students must register under ENGRG 116. M. Sansaloni.
Course in Introduction to Engineering series. For description, see ENGRG 116.

CEE 304(3040) Uncertainty Analysis in Engineering
Fall. 4 credits. CEE Engineering co-op students may substitute summer ENGRD 270. Prerequisite: first-year calculus. Staff.
Introduction to probability theory and statistical techniques, with examples from civil, environmental, biological, and related disciplines. Covers data presentation, commonly used probability distributions describing natural phenomena and material properties, parameter estimation, confidence intervals, hypothesis testing, simple linear regression, and nonparametric statistics. Examples include structural reliability, wind speed/flood distributions, pollutant concentrations, and models of vehicle arrivals.

CEE 363(3080) Introduction to CADD
Fall, spring. 1 credit. Students should enroll in only one sec. Preenrollment limited to CEE students. All other students by permission of instructor and only after first meeting of courses. Course begins second full week of classes. Staff.
Students learn to employ computer-aided design and drafting (CADD) to construct 2D drawings and 3D models using a variety of AutoCAD 2004 techniques. Alternative software tools for 3D visualization and solid modeling are introduced. Course meets in ACCEL once per week for 12 weeks, and grades are based on attendance, weekly exercises completed in class, and a semester project.

CEE 309(3090) Special Topics in Civil and Environmental Engineering
Fall, spring. 1 credit. Supervised study by individuals or groups of upper-division students on an undergraduate research project or on specialized topics not covered in regular courses.

CEE 323(3230) Engineering Economics and Management
(also ENGRG 323) (3230)
Spring, usually offered in summer for Engineering Co-op Program. 3 credits. Primarily for juniors and seniors. D. P. Loucks.
For description, see ENGRG 323.

CEE 331(3310) Fluid Mechanics
Fall, usually offered in summer for Engineering Co-op Program. 4 credits. Prerequisite: ENGRD 202. Staff.
Covers hydrostatics, the basic equations of incompressible fluid flow, potential flow and dynamic pressure forces, viscous flow and shear forces, steady pipe flow, turbulence, dimensional analysis, laminar and turbulence boundary layer, flows around obstacles, and open-channel flow. Includes small-group laboratory assignments.

[CEE 332(3320) Hydraulic Engineering]
Spring. 4 credits. Prerequisite: CEE 351. Offered alternate years. M. L. Weber-Shirk.

CEE 341(3410) Introduction to Geotechnical Engineering and Analysis
Spring. 4 credits. Prerequisites: ENGRD 202, CEE 331 (or equivalent), or permission of instructor. Letter grades only. H. E. Stewart.
Fundamentals of geotechnical engineering. Topics include origins and descriptions of soil and rock as engineering materials, subsurface exploration methods, principles of effective stresses, stress distribution, and ground settlements from surface loads, steady-state and time-dependent subsurface fluid flow, soil strength and failure criteria, geoenvironmental applications, and introduction to hazardous waste containment systems.

CEE 351(3510) Environmental Quality Engineering
Spring. 3 credits. J. J. Bisogni.
Introduction to engineering aspects of environmental quality control. Quality parameters, criteria, and standards for water and wastewater. Elementary analysis pertaining to the modeling of pollutant reactions in natural systems, and introduction to design of unit processes for wastewater treatment.

CEE 361(3610) Introduction to Transportation Engineering
Spring, usually offered in summer for Engineering Co-op Program. 3 credits. A. H. Meyburg and J. Mbwana.
Introduction technological, economic, and social aspects of transportation. Emphasizes design and functioning of transportation systems and their components. Covers supply-demand interactions, system planning, design, and management; traffic flow, intersection control and network analysis; institutional and energy issues; and environmental impacts.

CEE 371(3710) Structural Modeling and Behavior
Introduction to the structural engineering enterprise including aspects of design, loads, behavior, form, modeling, mechanics, materials, analysis, and construction/manufacturing. Case studies involve different scales and various materials. Topics include analytical and finite-element computational modeling of structural systems, including cables, arches, trusses, beams, frames, and 2-D continua; deflections, strains, and stresses of structural members, systems, and 2-D continua by analytical and work-energy methods, with a focus on linear elastic behavior, the foundations of matrix structural analysis; and the application of finite-element software.

CEE 372(3720) Structural Analysis and Mechanics
Fall. 4 credits. Prerequisites: MATH 294, CEE 371. K. D. Papoulia.
Builds upon the prerequisites to create a strong foundation in mechanics and analysis for advanced courses in structural design, behavior, materials, or mechanics and in geotechnical, mechanical, or aerospace engineering. Intermediate topics in structural mechanics include shear, bending deformation in beams, effect of temperature changes and initial strains, complex loading on members, plane stress and strain, and modeling of linear and nonlinear material behavior. The theory, formulation, and application of matrix analysis, particularly finite-element displacement analysis, of structural systems such as trusses, frames, and continua, are covered. Special topics include symmetry in structural analysis, the force method in FEA and matrix analysis, and introductory material and geometric nonlinear analysis.

CEE 400(4000) Senior Honors Thesis
Fall, spring. 1–6 credits. For students admitted to CEE Honors Program. Staff. Supervised research, study, and/or project work resulting in a written report or honors thesis.

CEE 401(4010) Undergraduate Engineering Teaching in CEE
Fall, spring. 1–3 credits. Prerequisite: permission of instructor. Staff. Methods of instruction developed through discussions with faculty and by supervised work with the instruction of undergraduates under the supervision of faculty.
CIVIL AND ENVIRONMENTAL ENGINEERING

CEE 406(4060) Civil Infrastructure Systems
Spring. 3 credits. Prerequisites: probability and statistics (CEE 304 or equivalent) and engineering economics (CEE 323 or equivalent). Corequisite: CEE 251. L. K. Nozik.

Introduction to the framing and solution of civil infrastructure problems using a systems engineering approach. Systems tools, such as optimization, life-cycle cost analysis, decision analysis, simulation, and risk analysis are examined through case studies related to civil infrastructure.

CEE 411(4110) Remote Sensing: Resource Inventory Methods (also CSS 411[4110])
Spring. 3 credits. Prerequisite: permission of instructor. A. Lembo.

For description, see CSS 411.

[CCEE 432(4320) Hydrology

Covers the following topics: review of hydrodynamics; small-amplitude wave theory; wave statistics; wave-structure interactions; coastal processes.

[CCEE 436(4360) Case Studies in Environmental Fluid Mechanics
Spring. 4 credits. Prerequisite: CEE 351 or equivalent. Next offered 2006–2007. E. A. Cowen.

Same as CEE 657 but no project required. For description, see CEE 657.

CEE 440(4400) Foundation Engineering
Fall. 3 credits. Prerequisite: CEE 341. F. H. Kulhawy.

Covers soil exploration, sampling, and in-situ testing techniques; bearing capacity; stress distribution, and settlement; design of shallow and deep foundations; compaction and site preparation; and seepage and dewatering of foundation excavations.

CEE 441(4410) Retaining Structures and Slopes
Spring. 3 credits. Prerequisite: CEE 341. T. D. O'Rourke.

Covers earth pressure theories, design of rigid, flexible, and locked-in structures; bracing, tie-backs, bracing, and reinforced soil structures; stability of excavation, cut, and natural slopes; and design problems stressing application of course material under field conditions of engineering practice.

CEE 444(4440) Environmental Site and Remediation Engineering
Spring. 3 credits. Prerequisite: CEE 341. T. D. O'Rourke.

Covers the principles of hydrogeology, contaminant migration, and remediation technologies related to geotechnical and environmental engineering. Emphasizes environmental site assessment, site feasibility studies, selection of remediation procedures, and engineered landfills. Design problems are based on real projects and involve visits from practicing engineers.

CEE 451(4510) Microbiology for Environmental Engineering
Fall. 3 credits. Prerequisites: two semesters of college chemistry; organic chemistry or permission of instructor. R. E. Richardson.

Introduction to the fundamental aspects of microbiology and biochemistry that are pertinent to environmental engineering and science. Provides an overview of the characteristics of bacteria, Archaea, unicellular Eukaryotes (protozoa, algae, fungi), and viruses. Includes discussions of cell structure, bioenergetics and metabolism, and microbial genetics. Focus is then applied to topics pertinent to environmental engineering: pathogens; disease and immunity; environmental influences on microorganisms; roles of microbes in the carbon, nitrogen, and sulfur cycles; enzymes; molecular microbiology; and microbial ecology. This is an introductory course and is inappropriate for those who have taken BIOMG 290 or equivalent.

CEE 452(4520) Water Supply Engineering
Fall. 3 credits. Prerequisite: CEE 351. J. J. Bisogni.

Analysis of contemporary threats to human health from water supplies. Covers criteria and standards for potable-water quality, water-quantity control theory; design of water supply facilities.

CEE 453(4530) Laboratory Research in Environmental Engineering
Fall. 3 credits. Prerequisite: CEE 351 or permission of instructor. M. L. Weber-Shirk.

Laboratory investigations of reactor flow characteristics, acid rain/late chemistry, contaminated soil-site assessment and remediation; and wastewater treatment. Design of laboratory experiments, data analysis, computerized process control, and model development are emphasized.

CEE 472(4720) Finite Element Analysis of Solids and Structures
Spring. 3 credits. Prerequisites: CEE 371, 372, and 471. W. Aguino.

Covers the formulation of the finite element method in 2-D and 3-D continuum, basic 2-D and 3-D continuum isoparametric elements, plate and shell elements, and the programming aspects of the finite element method, and static and transient problems. A large part of the course is devoted to understanding element formulations, testing elements (patch test), and addressing problems such as shear and volumetric locking, among others. Emphasis is placed on understanding fundamental aspects of the method for making intelligent use of commercial software. Requires a strong background for moving to further study and research. Problems are drawn primarily from structural and solid mechanics.

CEE 473(4730) Design of Concrete, Masonry, and Structures
Fall. 4 credits. K. C. Hover.

Centered on the design of a multi-story building that is initially planned with masonry bearing walls and precast-pressed concrete floors. The masonry walls are then replaced with steel beams and columns. In the next phase the precast concrete is replaced with cast-in-place reinforced concrete. Finally, the structural steel elements will be replaced with a reinforced concrete framing system. The course explore gravity loads, wind loads, and earthquake loads, and the behavior of individual members and the structure as a whole.

[CCEE 474(4740) Design of Metal Structures
Spring. 4 credits. T. Pelczar.

CEE 475(4750) Concrete Materials and Construction
Spring. 3 credits. K. C. Hover.

Covers the materials science, structural engineering, and construction technology involved in the materials aspects of the use of concrete. Topics include cement chemistry and physics, mix design, admixtures, engineering properties, testing of fresh and hardened concrete, and the effects of construction techniques on material behavior.

CEE 476(4760) Evaluation and Failure of Structures
Spring. 3 credits. Prerequisites: ENGRD 202, 261, and 203; CEE 371 and 473. Offered alternate years. M. J. Sansalone.

CEE 477(4770) Introduction to Composite Materials (also M&AE/ T&AM 455[4550], M&AE 555[5550])
Spring. 3 credits. L. Phoenix.

For description, see T&AM 455.

CEE 478(4780) Structural Dynamics and Earthquake Engineering
Spring. 3 credits. M. D. Grigoriu.

Covers modal analysis, numerical methods, and frequency-domain analysis. Introduction to earthquake-resistant design.
[CEE 479(4790) Collaborative, Distance Design of Structural Systems (also M&E 491(4910)]
Fall, spring. 4 credits. Offered 2006-2007. [Staff.]

[CEE 481(4791) LRFD-Based Engineering of Wood Structures (also BEE 481(4791)]
Spring. 3 credits. Prerequisite: ENGRD 202. For description, see BEE 481 under "College of Agriculture and Life Sciences."

[CEE 490(4900) Management Practice in Project Engineering]
Fall. 3 credits. Prerequisite: permission of instructor. Next offered 2007-2008. K. C. Hover. Introduction to the principles of project management. Covers planning, organizing, communicating, scheduling, and controlling of engineering work done in project teams.

[CEE 492(4920) Engineers for a Sustainable World: Engineering in International Development]
Fall. 3 credits. R. A. Davidson and P. Diving. Engineering-based group service projects offer real-life engineering research and design experience, from problem formulation through implementation. They may be international or local, and may relate to any kind of engineering. Students work on interdisciplinary teams with a project supervisor and a partner community organization. Course readings and a writing assignment cover the relationship between engineering and international development, the philosophy and politics of technology, and ethics in engineering practice.

[CEE 501-502 Design Project]
Fall, spring. 3 credits each semester. Requirement for students in M.Eng. (civil and environmental) program. Staff CEE design projects present students with an exemplary design experience that reflects those carried out in the course of professional practice. Projects are typically performed by student design groups, and the topics reflect the diverse specialty areas of the civil and environmental engineering field as described below.

[CEE 501-502(5021-5022) Project in Environmental and Water Resources Systems]
CEE 501-502(5041-5042) Project in Geotechnical Engineering Design of major geotechnical engineering project. Planning and preliminary design during fall semester; final design completed in January intersession.
CEE 501-502(5071-5072) Project in Structural Engineering T. Pekoz. Design of a major civil engineering project. Planning and a preliminary design are completed during the fall semester, the final design is completed in the January intersession.

[CEE 501-502(5081-5082) Project in Civil Infrastructure Systems]

[CEE 505(5252) System Architecture, Behavior, and Optimization (also COM S 505[5060], ECE/ORIE 513[5130], OR&IE 513[5142], M&E 591[5910], SYSEN 510[5100])]
Spring. 3 credits. Prerequisite: CEE/COM S 504, ECE/ORIE 512, M&E 591, or SYSEN 510. For description, see SYSEN 510.

[CEE 509(5290) Heuristic Methods for Optimization (also COM S/CIS 572[5720], OR&IE 533[5330])]
Fall. 3 or 4 credits. Prerequisites: graduate standing or COM S, ENGRD 211 or 521; ENGRD 241 or permission of instructor. C. A. Shoemaker. Teaches heuristic search methods including simulated annealing, tabu search, genetic algorithms, derandomized evolution strategy, and random walk developed for optimization of combinatorial- and continuous-variable problems. Application project options include wireless networks, protein folding, job shop scheduling, partial differential equations, satisfiability, or independent projects. Techniques and methods are presented for comparing algorithm results. Advantages and disadvantages of heuristic search methods for both serial and parallel computation are discussed in comparison with other optimization algorithms.

[CEE 590(5800) Project Management]
Fall, spring. 4 credits. Prerequisite: permission of instructor. F. R. Wayne. Core graduate course in project management for people who will manage technical or engineering projects. Focuses both on the "technical" tools of project management (e.g., methods for planning, scheduling, and control) and the "human" side (e.g., forming a project team, managing performance, resolving conflicts), with somewhat greater emphasis on the latter.

[CEE 591(5910) Engineering Management Project]
Fall. 3 credits. Prerequisite: permission of instructor. Staff. Intensive evaluation of the management aspects of a major engineering project or system. Most students work on a large group project in the area of project management, but students may also work singly or in small groups on an engineering management topic of special interest to them.

[CEE 594(5940) Economic Methods for Engineering Management (also ECON 494[4940])]
Fall. 4 credits. Prerequisite: calculus, probability, and statistics; economics course; or graduate standing or permission of instructor. R. E. Schuler. Introduces economic concepts and uses them to select, calibrate, and apply proper analytic decision tools in engineering design and management. Topics include market analysis and pricing strategies; production choices and cost estimation; input acquisition and employee motivation; project evaluation and the cost of capital; decision-making in risky and uncertain environments; industry structure, bidding strategies and game theory; and the regulatory and ethical consequences of overall managerial strategies.

[CEE 595[5950] Construction Planning and Operations]
Fall. 3 credits. K. C. Hover. Covers the fundamentals of construction planning and organization of the work site, construction planning, scheduling, and cost estimation: bidding; temporary structures; contract documents and the relationships among owners, designers, contractors, suppliers, and developers.

[CEE 596(5960) Management Issues in Forensic Engineering]
Fall. 3 credits. P. G. Carr.

[CEE 597(5970) Risk Analysis and Management (also TOX 597[5970])]
Spring. 3 credits. Prerequisite: introduction to probability and statistics (e.g., CEE 304, ENGRD 270, ILRST 210, BTRY 261, or AEM 210); two semesters of calculus; senior or graduate standing or permission of instructor. J. R. Studinger. Develops a working knowledge of risk terminology and reliability engineering, analytic tools and models used to analyze environmental and technological risks, and social and psychological risk issues. Discussions address life risks in the United States historical accidents, natural hazards, threat assessment, transportation risks, industrial accidents, waste incineration, air pollution modeling, public health, regulatory policy, risk communication, and risk management.

[CEE 598(5980) Introduction to Decision Analysis]
Fall. 3 credits. Prerequisite: introduction to probability and statistics (e.g., CEE 304, ENGRD 270, ILRST 210, BTRY 261 or AEM 210), senior or graduate standing or permission of instructor. R. A. Davidson.
Framework to structure the way we think about uncertain situations that are complicated by uncertainty, complexity, and competing objectives. Specific decision analysis concepts and tools, such as decision trees, sensitivity analysis, value of information, and utility theory, are applied to all areas of engineering and life. Includes a group project to analyze a real-world decision.

CEE 601(6020) Seminar—Water Resources and Environmental Engineering
Fall. 1 credit. Staff. Presents topics of current interest.

CEE 602(6070) Seminar—Civil Infrastructure
Fall. Spring. 1 credit. Requirement for first-year graduate students. Staff. Presents topics of current interest.

CEE 603(6080) Seminar—Engineering Systems and Management
Fall. Spring. 1 credit. Staff. Presents topics of current interest.

CEE 605(6050) Seminar—Issues in Risk Analysis (also NTRES 605(6050))
Fall. 1 credit. S-U grades optional. Staff. Discussion of current issues and ongoing research on risk analysis issues from many perspectives with an emphasis on environmental risk analysis. Speakers address problem formulation, quantitative/qualitative methods in assessment of risk, communication issues, and challenges to risk assessment methodologies. Some sessions held jointly with other seminar series. Enrollment in seminar requires short reports and participation in two required discussion meetings for class members designed to integrate the issues raised during the semester.

CEE 606(6460) Civil Infrastructure Systems
Fall. 3 credits. Prerequisites: probability and statistics course (CEE 304 or equivalent) and engineering economics course (CEE 323 or equivalent). Letter or S-U grades. L. K. Nozik. Introduction to the framing and solution of civil infrastructure problems using a systems engineering approach. Systems tools, such as optimization, life-cycle cost analysis, decision analysis, simulation, Markov modeling, and risk analysis, are examined through case studies related to civil infrastructure.

CEE 610(6100) Remote Sensing Fundamentals (also CSS 660(6100))
Fall. 3 credits. Prerequisite: permission of instructor. Next offered 2006–2007. W. D. Philpot.

CEE 615(6150) Digital Image Processing
Spring. 3 credits. Prerequisite: facility with algebra, trigonometry, and basic statistics or permission of instructor. Next offered 2006–2007. W. D. Philpot.

CEE 617(6015) Special Topics—Remote Sensing
On demand. 1–6 credits. W. D. Philpot. Students may elect to undertake a project in remote sensing. The work is supervised by a professor in this subject area.

CEE 620(6200) Water-Resources Systems Engineering
Spring. 3 credits. Prerequisites: CEE 323 and MATH 593 or BE 165. D. P. Loucks. Development and application of deterministic and stochastic optimization and simulation models for water-resources planning and management. Covers river-basin modeling, including reservoir design and operation, irrigation planning and operation, hydropower-capacity development, flow augmentation, flood control and protection, and water-quality prediction and control.

CEE 621(6210) Stochastic Hydrology
Spring. 3 credits. Prerequisites: CEE 304 or permission of instructor. J. R. Stedinger.

CEE 623(6230) Environmental Quality Systems Engineering
Fall. 3 credits. Prerequisites: MATH 294, optimization, and graduate standing or permission of instructor. C. A. Shoemaker.

CEE 628(6021) Seminar—Environmental and Water Resources Systems Analysis
Spring. 1 credit. Prerequisite: permission of instructor. C. A. Shoemaker. Graduate students and faculty members give informal lectures on various topics related to ongoing research in environmental or water resources systems planning and analysis.

CEE 631(6310) Computational Simulation of Flow and Transport in the Environment
Spring. 3 credits. Prerequisites: MATH 294 or equivalent, ENGRD 241 or experience in numerical methods and programming, and elementary fluid mechanics. P. L.-F. Liu.

CEE 632(6320) Hydrology
Spring. 3 credits. Prerequisite: CEE 331. W. H. Brutsaert.

CEE 633(6330) Flow in Porous Media and Groundwater
Fall. 3 credits. Prerequisite: CEE 331. W. H. Brutsaert.

CEE 634(6340) Boundary Layer Meteorology
Fall. 3 credits. Prerequisite: CEE 331 or permission of instructor. W. H. Brutsaert.

CEE 635(6350) Small and Finite Amplitude Wave Waves
Spring. 3 credits. P. L.-F. Liu. Reviews linear and nonlinear theories of ocean waves. Discusses the applicability of different wave theories to engineering problems.

CEE 636(6360) Environmental Fluid Mechanics
Spring. 3 credits. Staff. Covers analytic and modeling perspectives of environmental flows, mechanics of layered and continuously stratified fluids: internal waves, density currents, baroclinic motions, and turbulence; jets and plumes and their behavior in the environment; turbulent diffusion, shear flow dispersion, and wave-induced mixing processes; and applications to mixing processes in rivers, lakes, estuaries, and the coastal ocean.

CEE 637(6370) Experimental Methods in Fluid Dynamics (also M&AE 627[6272])
Spring. 4 credits. Pr- or corequisites: CEE 351 or equivalent and CEE 304 or equivalent. E. A. Cowen. Introduction to experimental data collection and analysis, in particular as they pertain to fluid flows. Covers computer-based experimental control, analog and digital data acquisition, discrete sampling theory, digital signal processing, uncertainty analysis. Also covers analog transducers, acoustic and laser Doppler velocimetry, full-field (2-D) quantitative imaging techniques. Includes laboratory experiments and a project.

CEE 638(6303) Seminar—Hydraulics
Spring. 1 credit. Requirement for graduate students majoring in hydraulics or hydraulic engineering. Open to undergraduates and graduates. Staff. Topics of current interest in fluid mechanics, hydraulic engineering, and hydrology.

CEE 639(6035) Special Topics in Hydraulics
On demand. 1–6 credits. Staff. Special topics in fluid mechanics, hydraulic engineering, or hydrology.

CEE 640(6400) Foundation Engineering
Fall. 3 credits. Prerequisite: CEE 541. F. H. Kulhawy.

CEE 641(6410) Retaining Structures and Slopes
Spring. 3 credits. Prerequisite: CEE 541. T. D. O'Rourke.

CEE 645(6450) Environmental Site Investigation and Remediation Engineering
Spring. 3 credits. Prerequisite: CEE 341 or equivalent or permission of instructor. T. D. O'Rourke.

CEE 649(6045) Special Topics in Environmental Engineering
Spring. 1 credit. Requirement for undergraduates and graduates. Staff. Topics of current interest in environmental engineering.

CEE 650(6500) Environmental Site Investigation and Remediation Engineering
Spring. 4 credits. Prerequisites: CEE 649 or equivalent. T. D. O'Rourke.

CEE 653(6530) Water Chemistry for Environmental Engineering
Fall. 3 credits. Prerequisite: one semester of college chemistry or permission of instructor. L. W. Lion.

CEE 654(6540) Special Topics in Geotechnical Engineering
On demand. 1–6 credits. Staff. Supervised study of special topics not covered in the formal courses.

CEE 655(6550) Water Chemistry for Environmental Engineering
Spring. 3 credits. Prerequisite: CEE 653 or equivalent.

CEE 656(6560) Water Chemistry for Environmental Engineering
Spring. 3 credits. Prerequisite: CEE 653 or equivalent.

CEE 657(6570) Water Chemistry for Environmental Engineering
Spring. 3 credits. Prerequisite: CEE 653 or equivalent.

CEE 658(6580) Water Chemistry for Environmental Engineering
Spring. 3 credits. Prerequisite: CEE 653 or equivalent.

CEE 659(6590) Water Chemistry for Environmental Engineering
Spring. 3 credits. Prerequisite: CEE 653 or equivalent.

CEE 660(6600) Water Chemistry for Environmental Engineering
Spring. 3 credits. Prerequisite: CEE 653 or equivalent.

CEE 661(6610) Water Chemistry for Environmental Engineering
Spring. 3 credits. Prerequisite: CEE 653 or equivalent.

CEE 662(6620) Water Chemistry for Environmental Engineering
Spring. 3 credits. Prerequisite: CEE 653 or equivalent.

CEE 663(6630) Water Chemistry for Environmental Engineering
Spring. 3 credits. Prerequisite: CEE 653 or equivalent.

CEE 664(6640) Water Chemistry for Environmental Engineering
Spring. 3 credits. Prerequisite: CEE 653 or equivalent.

CEE 665(6650) Water Chemistry for Environmental Engineering
Spring. 3 credits. Prerequisite: CEE 653 or equivalent.

CEE 666(6660) Water Chemistry for Environmental Engineering
Spring. 3 credits. Prerequisite: CEE 653 or equivalent.

CEE 667(6670) Water Chemistry for Environmental Engineering
Spring. 3 credits. Prerequisite: CEE 653 or equivalent.
[CEE 654(6540)] Aquatic Chemistry
Spring. 3 credits. Prerequisite: CEE 653 or CHEM 287-288. J. J. Bisogni.
Applies concepts of chemical equilibria to natural aquatic systems. Topics include acid-base reactions, buffer systems, mineral precipitation, coordination and redox reactions, Eh-pH diagrams, adsorption phenomena, humic acid chemistry, and chemical-equilibria computational techniques. In-depth coverage of topics covered in CEE 653.

[CEE 655(6550)] Transport, Mixing, and Transformation in the Environment
Fall. 3 credits. Prerequisite: CEE 351. Staff.
Application of fluid mechanics to problems of transport, mixing, and transformation in the water environment. Introduction to advective, diffusive, and dispersive processes in the environment. Boundary interactions: air-water and sediment-water processes. Introduction to chemical and biochemical transformation processes. Applications to transport, mixing, and transformation in rivers, lakes, and coastal waters.

[CEE 656(6560)] Physical/Chemical Process
Fall. 3 credits. Prerequisite: CEE 655 or permission of instructor. J. J. Bisogni.
Theoretical and engineering aspects of chemical and physical phenomena and processes applicable to the removal of impurities from water, wastewater, and industrial wastes and to their transformation in the environment. Analysis and design of treatment processes and systems.

[CEE 657(6570)] Biological Processes
Spring. 3 credits. Prerequisite: introductory microbiology and CEE 656, or permission of instructor. J. M. Gossett.
Theoretical and engineering aspects of biological phenomena and processes applicable to the removal of impurities from water, wastewater, and industrial wastes and to their transformation in the environment. Bioenergetics analysis, stoichiometry, biokinetic, and design of biological treatment process.

[CEE 658(6580)] Microbial Biodegradation and Biocatalysis Lab
Spring. 3 credits. Prerequisites: CEE 451 or BIOMI 290 or equivalent; CEE 351 or CHEM 350 or permission of instructor. R. E. Richardson.
Students explore the use of microbes in biodegradation and biocatalysis as well as the molecular techniques (i.e., analysis of DNA, RNA, and proteins) commonly used in these applications. Lectures cover enzyme classes and kinetics, selective isolation of organisms with desired biocatalysis capabilities, effects of environmental parameters and cell-to-cell communication on gene expression, methods in microbial molecular biology, and contemporary case studies in biodegradation and biocatalysis. Laboratory sessions give students hands-on experience in molecular and analytical techniques. Students design and perform experiments to understand microbial metabolism and biocatalysis, and they construct a bioreactor employing their own environmental isolates that degrade a selected contaminant or produce a desired compound.

[CEE 659(6051)] Seminar—Environmental Quality Engineering
Spring. 1 credit. Prerequisite: graduate students in environmental engineering. R. E. Richardson.
Presentation and discussion of current research in environmental engineering.

[CEE 661(6610)] Urban Transportation Planning and Modeling
Fall. 3 credits. Prerequisite: CEE 361 or permission of instructor. Offered alternate years. A. H. Meyburg.
Covers modern transportation planning practice and the analytical tools that are necessary to engage in this field. Emphasizes passenger transportation in the urban context. The legislative, political, and economic contexts of urban transportation planning (UTP) are discussed. The course presents the travel demand estimation process and the associated models and approaches and provides insights in travel survey data acquisition.

[CEE 662(6620)] Urban Transportation Network Design and Analysis
Fall. 3 credits. Prerequisite: CEE 361 or permission of instructor. L. K. Nozick.
Covers the development and use of mathematical models for the design and analysis of urban transportation networks, including formulations and solution procedures based on user equilibrium and stochastic user equilibrium. Students apply these tools to a substantive real-world case study.

[CEE 663(6630)] Network Flows and Algorithms
Spring. 3 credits. Prerequisite: CEE 662 or permission of instructor. Offered alternate years. M. A. Tarnow.
Algorithms for network flow problems encountered in transportation systems modeling, including shortest path, multi-objective shortest path, minimum cost flows, multi-commodity flows and generalized flows, are presented. Applications to vehicle routing, dynamic vehicle allocation, and network design are included.

[CEE 668(6060)] Seminar—Transportation System Engineering
Fall, spring. 1 credit. Staff.
Presents topics of current interest.

[CEE 671(6710)] Fundamentals of Structural Mechanics
Fall. 3 credits. Prerequisites: ENGRD 202, MATH 294, M. D. Grigoriu.
Topics include beam bending, beams on elastic foundation, stability analysis for columns and beam-columns, linear elasticity, numerical solutions for linear elasticity problems, and applications including stress concentration, torsion, and plates.

[CEE 672(6720)] Finite Element Analysis of Solids and Structures
Spring. 3 credits. Prerequisites: CEE 371, 372, and 471. W. Aquino.
Covers the use of the finite element method in 2-D and 3-D continuum, basic 2-D and 3-D continuum isoparametric elements, plate and shell elements, modeling and programming aspects of the finite element method, and the development of user elements. A large part of the course is devoted to understanding element formulations, testing elements (patch test), and addressing problems such as shear and volumetric locking, among others. Emphasis is placed on understanding fundamental aspects of the method for making intelligent use of commercial software and obtaining a strong background for moving to further study and research. Problems are drawn primarily from structural and solid mechanics.

[CEE 673(6730)] Design of Concrete Structures
Fall. 4 credits. Prerequisite: CEE 371 or permission of instructor. K. C. Hover.
Centered on the design of a multi-story building that is initially planned with masonry bearing walls and precast prestressed concrete floors. The masonry walls are then replaced with cast-in-place reinforced concrete. Finally, the structural steel elements are replaced with a reinforced concrete framing system. The course explores gravity loads, wind loads, and earthquake loads, and the behavior of individual members and the structure as a whole.

[CEE 674(6740)] Design of Metal Structures
Spring. 4 credits. Prerequisite: CEE 371 or permission of instructor. Staff.

[CEE 675(6750)] Concrete Materials and Construction
Spring. 3 credits. K. C. Hover.
Covers the materials science, structural engineering, and construction technology involved in the materials aspects of the use of concrete. Topics include cement chemistry and physics, mix design, admixtures, engineering properties, testing of fresh and hardened concrete, and the effects of construction techniques on material behavior.

[CEE 677(6770)] Engineering Analysis
Fall. 3 credits. Prerequisite: permission of instructor. M. D. Grigoriu.

[CEE 678(6780)] Structural Dynamics and Earthquake Engineering
Spring. 3 credits. M. D. Grigoriu.
Covers modal analysis, numerical methods, and frequency-domain analysis. Introduces earthquake-resistant design.

[CEE 679(6760)] Evaluation and Failure of Structures
Spring. 3 credits. M. J. Sansalone.
Teaches material and structural evaluation through the lens of failure. Builds upon and integrates what students have learned in courses in physics, mechanics, dynamics, materials science, structural modeling, and design. In addition, the course teaches the physics of methods used for condition assessment of structures (e.g., stress wave propagation, electromagnetic wave propagation, heat flow), introduces students to structural damage and assessment of damage caused by earthquake/wind loads on structures, and introduces students to blast impact loadings on structures.

[CEE 692(6095)] Special Topics in Engineering Management
On demand. 1-6 credits. Staff.
Individually supervised study of one or more specialized topics not covered in regular courses.

[CEE 697(6075)] Special Topics in Structural Engineering
On demand. 1-6 credits. Staff.
Individually supervised study or independent design or research in specialized topics not covered in regular courses. Occasional
offering of such special courses as Shell Theory and Design, and Advanced Topics in Finite Element Analysis.

CCE 710(7010) Research—Remote Sensing
On demand. 1-6 credits. W. D. Philpot. For students who want to study one particular area in depth. The work may take the form of laboratory investigation, field study, theoretical analysis, or development of design procedures.

CCE 722(7020) Environmental and Water Resources Systems Analysis Research
On demand. 1-6 credits. Prerequisite: permission of instructor. Preparations must be suitable to investigation to be undertaken. Staff. Investigations of particular environmental or water resources systems problems.

CCE 729(6025) Special Topics in Environmental and Water Resources Systems Analysis
Offered on demand. 1-6 credits. Staff. Supervised study, by individuals or small groups, of one or more specialized topics not covered in regular courses.

CCE 735(7030) Research in Hydraulics
On demand. 1-6 credits. Staff. The student may select an area of investigation in fluid mechanics, hydraulic engineering, or hydrology. The work may be either experimental or theoretical in nature. Results should be submitted to the instructor in charge in the form of a research report.

CCE 740(7400) Engineering Behavior of Soils
Fall. 3 credits. Prerequisite: CEE 341. H. E. Stewart. Detailed study of the physicochemical nature of soil. Stress states due to geostatic loading and stress-history effects. In-depth evaluation of stress-strain-strength, compressibility, and hydraulic conductivity of natural soils.

CCE 741(7410) Rock Engineering
Fall. 3 credits. Prerequisite: CEE 341 or permission of instructor. Recommended: introductory geology, T. D. O'Rourke. Geologic and engineering classifications of intact rock, discontinuities, and rock masses. Includes laboratory and field evaluation of properties. Covers stress states and stress analysis; design of foundations on, and openings in, rock masses; and analysis of the stability of rock slopes.

CCE 744(7440) Advanced Foundation Engineering
Spring. 2 credits. Prerequisite: CEE 640. F. H. Kulhawy. Continuation of CEE 640, with detailed emphasis on special topics in soil-structure interaction. Typical topics include lateral and pullout loading of deep foundations, pile group behavior, foundations for offshore structures, foundations for special structures.

CCE 745(7450) Soil Dynamics
Spring. 3 credits. Prerequisite: permission of instructor. H. E. Stewart. Study of soil behavior under dynamic loading conditions. Foundation design for vibratory loadings. Introductory earthquake engineering including field and laboratory techniques for determining dynamic soil properties and liquefaction potential. Covers design of embankments and retaining structures under dynamic loading conditions.

CCE 746(7460) Embankment Dam Engineering
Spring. 2 credits. Prerequisites: CEE 641 and 741, or permission of instructor. F. H. Kulhawy. Principles of analysis and design for earth and rockfill dams. Materials, construction methods, internal and external stability, seepage and drainage, performance monitoring, abutment and foundation evaluation. Introduction to tailings dams.

CCE 749(7040) Research in Geotechnical Engineering
On demand. 1-6 credits. Staff. For students who want to pursue a particular geotechnical topic in considerable depth.

CCE 750(7050) Research in Environmental Engineering
On demand. 1-6 credits. Staff. For students who want to study a particular area in depth. The work may take the form of laboratory investigation, field study, theoretical analysis, or development of design and analysis procedures.

CCE 759(6055) Special Topics in Environmental Engineering
On demand. 1-6 credits. Staff. Supervised study in special topics not covered in formal courses.

CCE 762(7620) Practicum in Modelling Transportation Systems
Fall. 3 credits. Prerequisites: CEE 661, 662, and 663. Next offered 2006-2007. L. K. Nozick.

CCE 764(6065) Special Topics in Transportation
On demand. 1-6 credits. Staff. Advanced subject matter not covered in depth in other regular courses.

CCE 770(7700) Engineering Fracture Mechanics
Fall. 3 credits. Prerequisite: CEE 672 or 772 (M&AE 680 and T&M 666) and T&M 753, or permission of instructor. Offered alternate years. A. Inglesfield. Computational and physical modeling of crack growth processes. Finite and boundary element-based simulation of brittle fracture initiation and propagation, fatigue crack growth, and elasto-plastic and cohesive approaches to inelastic crack growth. Element formulation, meshing and remeshing, interactive steering. Case studies across scales from geomechanics to micromechanics, and including metals, ceramics, and polymers. Laboratory techniques for fracture toughness, crack growth rate, and trajectory testing.

CCE 771(7710) Stochastic Mechanics in Science and Engineering
Fall. 3 credits. Prerequisite: permission of instructor. M. D. Grigoriu.

CCE 772(7720) Random Vibration
Fall. 3 credits. Prerequisites: M&AE 326 and CEE 661 or equivalent, and permission of instructor. M. D. Grigoriu. Reviews random-process theory, simulation, and first-passage time. Linear random vibration: second-moment response descriptors and applications from fatigue; seismic analysis; and response to wind, wave, and other non-Gaussian load processes. Nonlinear random vibration: equivalent linearization, perturbation techniques, Fokker-Planck and Kolmogorov equations, Itô calculus, and applications from chaotic vibration, fatigue, seismic analysis, and parametrically excited systems.

CCE 773(7730) Structural Reliability
Fall. 3 credits. Prerequisite: permission of instructor. M. D. Grigoriu.

CCE 774(7740) Advanced Structural Concrete
Fall. 3 credits. Staff. Covers the fundamental aspects of the mechanical behavior of concrete subjected to axial and multiaxial stresses of rate, rate effects, time-dependent deformations, and multiscale modeling. Includes the behavior of reinforced concrete membrane elements subjected to plane states of stress, torsion, limit analysis, and gives an introduction to finite element modeling of reinforced concrete structures.

CCE 775(7750) Nonlinear Finite Element Analysis in Solid Mechanics
Fall. 3 credits. W. Aquino. Covers fundamental aspects of nonlinear finite element analysis including geometric and material nonlinearity. Also covers total and updated Lagrangean formulations, implementation of constitutive models, numerical solutions of global nonlinear systems of equations, and regularization techniques for softening materials.

CCE 776(7760) Advanced Topics in Stability
Fall. 3 credits. Prerequisite: CEE 374 or equivalent. T. Peizó.

CCE 777(7770) Computational Solid and Structural Mechanics
Spring. 3 credits. K. D. Papoulia.

CCE 781(7810) Natural Disaster Risk Assessment and Management
Spring. 3 credits. Offered alternate years. R. A. Davidson. Explores ways to define, measure, and manage natural disaster risk using systems engineering, civil engineering, and social science perspectives and analysis tools. Considers multiple hazards and multiple viewpoints (local, international, individual, public sector, private sector).

CCE 783(7073) Civil and Environmental Engineering Materials Project
On demand. 1-3 credits. Staff. Individual projects or reading and study assignments involving engineering materials.

CCE 785(7070) Research in Structural Engineering
On demand. 1-6 credits. Staff. Pursues a branch of structural engineering beyond what is covered in regular courses. Theoretical or experimental investigation of suitable problems.

CCE 810(8100) Thesis—Remote Sensing
Fall. Spring. 1-12 credits. Students must register for credit with professor at start of each semester. W. D. Philpot. The student selects a thesis research topic with the advice of the faculty member in charge and pursues it either independently or in conjunction with others working on the same topic.
ENGINEERING - 2005-2006

CEE 820(8200) Thesis—Environmental and Water Resource Systems
Fall, spring. 1-12 credits. Students must register for credit with professor at start of each semester. Staff. The student selects a thesis research topic with the advice of the faculty member in charge and pursues it either independently or in conjunction with others working on the same topic.

CEE 830(8300) Thesis—Environmental Fluid Mechanics and Hydrology
Fall, spring. 1-12 credits. Students must register for credit with professor at start of each semester. Staff. The student selects a thesis research topic with the advice of the faculty member in charge and pursues it either independently or in conjunction with others working on the same topic.

CEE 840(8400) Thesis—Geotechnical Engineering
Fall, spring. 1-12 credits. Students must register for credit with professor at start of each semester. Staff. The student selects a thesis research topic with the advice of the faculty member in charge and pursues it either independently or in conjunction with others working on the same topic.

CEE 850(8500) Thesis—Environmental Engineering
Fall, spring. 1-12 credits. Students must register for credit with professor at start of each semester. Staff. The student selects a thesis research topic with the advice of the faculty member in charge and pursues it either independently or in conjunction with others working on the same topic.

CEE 860(8600) Thesis—Transportation Systems Engineering
Fall, spring. 1-12 credits. Students must register for credit with professor at start of each semester. Staff. The student selects a thesis research topic with the advice of the faculty member in charge and pursues it either independently or in conjunction with others working on the same topic.

CEE 880(8700) Thesis—Structural Engineering
Fall, spring. 1-12 credits. Students must register for credit with professor at start of each semester. Staff. The student selects a thesis research topic with the advice of the faculty member in charge and pursues it either independently or in conjunction with others working on the same topic.

CEE 890(8800) Thesis—Civil Infrastructure Systems
Fall, spring. 1-12 credits. Students must register for credit with professor at start of each semester. Staff. The student selects a thesis research topic with the advice of the faculty member in charge and pursues it either independently or in conjunction with others working on the same topic.

COMPUTER SCIENCE

The Department of Computer Science is part of the College of Arts and Sciences, Computing and Information Science (CIS), and the College of Engineering. For complete course descriptions, see the Computer Science listing in the CIS section.

COM S 099(1109) Fundamental Programming Concepts
Fall, summer. 2 credits. Pre-requisite: freshman standing. Credit may not be applied toward engineering degree. S-U grades only.

COM S 100J(1110) Introduction to Computer Programming
Fall, spring, summer. 4 credits. Assumes basic high school mathematics (no calculus), but no programming experience.

COM S 100M(1112) Introduction to Computer Programming
Fall, spring. 4 credits. Corequisite: MATH 111, 119, or equivalent. Assumes student is comfortable with mathematics (at level of one semester of calculus) but has no prior programming experience.

COM S 101(1710) Introduction to Cognitive Science (also COGST 101[1010], LING 170[1700], PHIL 191[1910], PSYCH 102[1020])
Fall, summer. 3 credits. For description, see COGST 101.

COM S 113(2000) Introduction to C
Fall, spring, usually weeks 1-4. 1 credit. Pre-requisite: COM S 100 or equivalent programming experience. Expected for both COM S 113 and 213 only if 113 taken first. S-U grades only.

COM S 114(2006) Unix Tools
Fall, usually weeks 5-8. 1 credit. Pre-requisite: COM S 100 or equivalent programming experience. Recommended knowledge of at least one programming language. S-U grades only.

COM S 120(1300) Introductory Design and Programming for the Web (also INFO 130[1300])
Fall 3 credits. Pre-requisite: none. No computer background necessary.

COM S 155(1610) Computing in the Arts (also ART 175, CIS 155[1610], MUSIC 165[1650], PSYCH 165[1650])
Spring, 3 credits. Recommended. Good comfort level with computers and some of the arts.

COM S 167(1620) Visual Imaging in the Electronic Age (also ART 170[1700], CIS 167[1620], ENGR1 167[1670])
Spring, 3 credits. For description, see ART 170.

COM S 172(1700) Computation, Information, and Intelligence (also COGST 172, ENGR1 172[1700], INFO 172[1700])
Fall. 3 credits. Pre-requisite: some knowledge of differentiation; permission of instructor for students who have completed equivalent of COM S 100.

COM S 201(2100) Cognitive Science in Context Laboratory (also COGST 201[2010], PSYCH 201[2010])
Spring. 4 credits. Limited to 24 students. Recommended: concurrent or prior registration in PSYCH 102/COGST 101. COM S 101 required. Knowledge of programming languages not assumed.

For description, see COGST 201.

COM S 211(2110) Computers and Programming (also ENGRD 211[2110])
Fall, spring, summer. 3 credits. Pre-requisite: COM S 100 or equivalent course in Java or C++.

COM S 212(2111) Java Practicum
Fall, spring. 1 credit. Pre- or corequisite: COM S/ENGRD 211. Letter grades only.

Fall or spring. 2 credits. Pre-requisite: COM S 100 or equivalent programming experience. Students who plan to take COM S 113 and 213 must take 113 first. S-U grades only. Not offered every year.

Spring, usually weeks 5-8. 1 credit. Pre-requisite: COM S 114 or equivalent. S-U grades only.

COM S 215(2004) Introduction to C
Fall, spring, usually weeks 5-8. 1 credit. Pre-requisite: COM S/ENGRD 211 or equivalent experience. S-U grades only.

COM S 230(2300) Intermediate Design and Programming for the Web (also INFO 230[2300])
Spring. 3 credits. Pre-requisite: COM S 130 or equivalent knowledge.

COM S 280(2800) Discrete Structures
Fall, spring. 3 credits. Pre- or corequisite: COM S 100 or permission of instructor.

COM S 312(3110) Data Structures and Functional Programming
Fall, spring. 4 credits. Pre-requisite: COM S 211-212 or equivalent programming experience. Should not be taken concurrently with COM S 314.

COM S 314(3420) Computer Organization (also ECE 314[3440])
Fall, spring. 4 credits. Pre-requisite: COM S 211 or ENGRD 250. Should not be taken concurrently with COM S 314.

COM S 321(3510) Numerical Methods in Computational Molecular Biology (also BIOBM 321[3510], ENGRD 321[3510])
Fall. 3 credits. Pre-requisite: at least one course in calculus (e.g., MATH 106, 111, or 191) and a course in linear algebra (e.g., MATH 221 or 294 or BTRY 417), COM S 100 or equivalent and some familiarity with iteration, arrays, and procedures; knowledge of discrete probability and random variables at the level of COM S 260. COM S majors and minors may use
COM S 322(3220) Introduction to Scientific Computation (also ENGRD 322[3220])
Spring, summer. 3 credits. Prerequisites: COM S 100 and MATH 221 or 294; knowledge of discrete probability and random variables at the level of COM S 280. COM S majors and minors may use only one of the following toward their degree: COM S 321, 322, or 421.

COM S 324(3740) Computational Linguistics (also COGST 424[4240], LING 424[4242])
Fall, spring. 4 credits. Prerequisites: LING 203. Recommended: COM S 114. Labs involve work in Unix environment. For description, see LING 424.

COM S 330(3300) Applied Database Systems (also INFO 330[3300])
Fall. 3 credits. Prerequisite: COM S/ENGRD 211. COM S majors may use only one of the following toward their degree: COM S/INFO 330 or COM S 433.

COM S 381(3810) Introduction to Theory of Computing
Fall. 3 credits. Prerequisite: COM S 280 or permission of instructor. Credit not granted for both COM S 381 and 481; corrective transfers between COM S 381 and 481 (in either direction) encouraged during first few weeks of instruction. For description, see ENGRD 374.

[COM S 401(410) The Science of Programming
Fall. 3 credits. Prerequisite: COM S 211. Not offered every year.]

[COM S 411(4110) Programming Languages and Logics
Fall. 4 credits. Prerequisite: COM S 312 or permission of instructor. Not offered every year.]

COM S 412(4120) Introduction to Compilers
Spring. 3 credits. Prerequisites: COM S 312 (or permission of instructor) and COM S 314. Corequisite: COM S 413.

COM S 413(4121) Practicum in Compilers
Spring. 2 credits. Corequisite: COM S 412.

COM S 414(4410) Systems Programming and Operating Systems
Fall, spring, summer. 3 credits. Prerequisite: COM S 211, 212, 312 (or permission of instructor), and 314. Corequisite: COM S 415 in spring only.

COM S 415(4411) Practicum in Operating Systems
Fall, spring. 2 credits. Corequisite: COM S 414.

COM S 416(4420) Computer Architecture (also ECE 475[4750])
Fall. 4 credits. Prerequisites: ENGRD 230 and COM S/ ECE 314. For description, see ECE 475.

COM S 419(4450) Computer Networks
Spring. 4 credits. Prerequisite: COM S 211, 212, 312, and 314. Not offered every year.

COM S 421(4210) Numerical Analysis
Fall. 4 credits. Prerequisites: MATH 221 or 294 or equivalent, one additional mathematics course numbered 300 or above, and knowledge of programming. COM S majors and minors may use only one of the following toward their degree: COM S 321, 322, or 421.

COM S 426(4520) Introduction to Bioinformatics
Fall. 5 credits. Prerequisites: COM S/ ENGRD 211, COM S 280.

[COM S 428(4610) Introduction to Computational Biophysics
Fall. 3 credits. Prerequisite: COM S 100, CHEM 211 or equivalent, MATH 221, 293 or 294, PHYS 112 or 213, or permission of instructor. Recommended: BIOMB 330. Offered even-numbered years.]

COM S 430(4300) Information Retrieval (also INFO 430[4300])
Fall. 3 credits. Prerequisite: COM S 211 or equivalent.

COM S 431(4302) Web Information Systems (also INFO 431[4302])
Spring. 3 credits. Prerequisites: COM S 211 and some familiarity with web site technology.

COM S 432(4320) Introduction to Database Systems
Fall. 3 credits. Prerequisites: COM S 312 (or COM S 211-212 and permission of instructor).

COM S 432(4321) Practicum in Database Systems
Fall. 2 credits. Prerequisite: COM S 432 or coregistration in COM S 432. COM S majors may use only one of the following toward their degree: COM S/INFO 330 or COM S 433.

COM S 465(4620) Computer Graphics I (also ARCH 374[3740])
Fall. 4 credits. Prerequisite: COM S/ENGRD 211. May not be taken after COM S 417.

COM S 467(4630) Computer Graphics II
Spring. 3 credits. Prerequisite: COM S 465.

COM S 468(4631) Computer Graphics Practicum
Spring. 2 credits. Prerequisite: COM S 465. Corequisite: COM S 467.

COM S 472(4700) Foundations of Artificial Intelligence
Fall. 3 credits. Prerequisites: COM S/ENGRD 211 and COM S 280 or equivalent.

COM S 473(4701) Practicum in Artificial Intelligence
Fall. 2 credits. Corequisite: COM S 472.

COM S 474(4740) Introduction to Natural Language Processing (also COGST 474[4740], LING 474[4747])
Fall or spring. 4 credits. Prerequisite: COM S 211.

COM S 478(4780) Machine Learning
Spring. 4 credits. Prerequisites: COM S 280, 312, and basic knowledge of linear algebra and probability theory.

COM S 480(4870) Introduction to Cryptology (also MATH 335[3350])
Fall. Spring. 3 credits. Prerequisites: COM S 100 and MATH 222 or 294. Students who take this course may not also receive credit for MATH 335. For description, see MATH 335.

COM S 481(4810) Introduction to Theory of Computing
Fall. 4 credits. Prerequisite: COM S 280 or permission of instructor. Credit not granted for both COM S 381 and 481; corrective transfers between COM S 481 and 381 (in either direction) encouraged during first few weeks of instruction.

COM S 482(4820) Introduction to Analysis of Algorithms
Spring, summer. 4 credits. Prerequisites: COM S 280 and 312.

COM S 483(4812) Quantum Computation (also PHYS 481[4811], 481[4811])
Spring. 2 credits. Prerequisite: familiarity with theory of vector spaces over complex numbers. Not offered every year.
For description, see PHYS 481.

COM S 486(4860) Applied Logic (also MATH 486[4860])
Fall or spring. 4 credits. Prerequisites: MATH 222 or 294, COM S 280 or equivalent (e.g., MATH 332, 432, 434, 481), and some additional course in mathematics or theoretical computer science.

COM S 490(4999) Independent Reading and Research
Fall, spring. 1–4 credits.

COM S 501(5150) Software Engineering
Spring. 4 credits. Prerequisite: COM S 211 or equivalent experience programming in Java or C++.

COM S 513(5430) System Security
Fall. 3 credits. Prerequisites: COM S 414 or 419 and familiarity with Java, C, or C++ programming languages.

COM S 514(5410) Intermediate Computer Systems
Spring. 4 credits. Prerequisite: COM S 414 or permission of instructor.

COM S 516(5420) Parallel Computer Architecture (also ECE 573[5720])
Spring. 4 credits. Prerequisite: ECE 475. For description, see ECE 572.

[COM S 502(5220) Computational Tools and Methods for Finance
Spring. 4 credits. Prerequisites: programming experience (e.g., C, FORTRAN, or MATLAB), some knowledge of numerical methods, especially numerical linear algebra. Not offered every year.]

COM S 530(5300) The Architecture of Large-Scale Information Systems (also INFO 530[5300])
Spring. 4 credits. Prerequisite: COM S/INFO 330 or 432.

COM S 565(5640) Computer Animation (also ART 273[2703], CIS 565[5640])
Fall. 4 credits. Prerequisite: none.
For description, see ART 273.

COM S 566(5642) Advanced Animation (also ART 372, CIS 566[5642])
Spring. 4 credits. Prerequisite: none.
For description, see ART 372.

COM S 572(5722) Heuristic Methods for Optimization (also CEE 509[5090], CIS 572[5722], OR&E 533[5340])
Fall. 3 or 4 credits. Prerequisites: COM S/ENGRD 211 or 322 or CEE/ENGRD 241, or graduate standing, or permission of instructor. Not offered every year.
For description, see CEE 509.
COM S 786(7860) Introduction to Kleene Algebra
Fall. 4 credits. Prerequisite: COM S 461. Recommended: COM S 482 or 681, COM S 682, elementary logic (MATH 461 or 681), algebra (MATH 432).

COM S 789(7890) Seminar in Theory of Algorithms and Computing
Fall, spring. 4 credits. Prerequisite: permission of instructor. S-U grades only.

COM S 790(7999) Independent Research
Fall, spring. Prerequisite: permission of computer science adviser. Independent research or master of engineering project.

COM S 990(9999) Thesis Research
Fall. Prerequisite: permission of computer science adviser. S-U grades only. Doctoral research.

EARTH AND ATMOSPHERIC SCIENCES

EAS 101(1101) Introductory Geological Sciences
Fall. 3 credits. Staff.

EAS 102(1102) Evolution of the Earth and Life (also BIOG 170) (1700)
Spring. 3 credits. J. L. Cisne.

EAS 108(1108) Earth in the News
Summer. 3 credits. S. L. Losh.

EAS 109(1109) Dinosaurs
Fall. 1 credit. J. L. Cisne.

EAS 111(1110) To Know the Earth
Fall. 3 credits. Not offered 2005–2006.

EAS 121(1121) Introduction to MATLAB (also CIS 121) (1121)
Fall, spring. 2 credits. Prerequisites: MATH 111, 191, or equivalent. D. Schwartz.

EAS 122(1220) Earthquakes! (also ENGR 122) (1220)
Spring. 3 credits. L. D. Brown.
Course in Introduction to Engineering series. For description, see ENGR 122.

EAS 131(1310) Basic Principles of Meteorology
Fall. 3 credits. 1-credit lab is EAS 135. M. W. Wysocki.

EAS 133(1330) Basic Meteorology Lab

EAS 150(1500) Fortran Applications in Earth Science (also CIS 122) (1123)
Spring. 2 credits. Prerequisite: CIS/EAS 121 or equivalent. Letter grades only. A. J. Pershing.

EAS 154(1540) Introductory Oceanography (also BIOEE 154) (1540)
Fall, summer. 3 credits. Lec. Optional 1-credit lab in EAS/BIOEE 155. B. Monger and C. Greene.

EAS 155(1550) Introductory Oceanography Lab (also BIOEE 155) (1550)

Fall. 3 credits. Prerequisites: PHYS 112 or 207. J. Phipps Morgan.

EAS 203 Fundamental Principles of Earth Science
Fall. 3 credits. Recommended: modest science background. Letter grades only. J. Phipps Morgan.

EAS 210(2100) Introduction to Field Methods in Geological Sciences
Fall. 3 credits. Prerequisites: EAS 101 or 201, or permission of instructor. 1 lec, 5 field trips. Staff.

EAS 213(2130) Marine and Coastal Geology
Summer. 4 credits. Prerequisite: introductory geology or ecology or permission of instructor. Staff.

EAS 290(2900) The Earth System
Fall. 3 credits. Letter grades only. Staff.

EAS 292(2920) Seminar—Hawaii's Environment
Fall. 1 credit. S-U grades only. A. Moore and L. Derry.

EAS 240(2400) Field Study of the Earth System
Spring. 5 credits. Prerequisites: enrollment in Cornell Abroad Earth and Environmental Sciences Semester in Hawaii; one semester of calculus (MATH 190, 191, 192, or 111, 112) and two semesters of any of the following: PHYS 207/208 or 112/213; CHEM 207/208; BION 101/102/104 or 105/106 or 109/110; or equivalent course work. A. Moore.

EAS 250(2500) Meteorological Observations and Instruments
Fall. 4 credits. Prerequisite: EAS 131. M. W. Wysocki and B. Monger.

EAS 266(2680) Climate and Global Warming
Spring. 3 credits. Prerequisite: basic college math. A. T. DeGaetano.

EAS 296(2960) Forecast Competition
Fall and spring. 1 credit. Prerequisite: sophomore standing in atmospheric science or permission of instructor. S-U grades only. D. S. Wilks.

EAS 302(3020) Evolution of the Earth System
Spring. 4 credits. Prerequisites: MATH 112 or 192 and CHEM 207 or equivalent. W. M. White, W. D. Allmendinger, and B. L. Isacks.

EAS 315(3150) Geomorphology
Fall. 4 credits. Prerequisite: geology, hydrology, or soil science course. Two 5 field trips. B. L. Isacks.

EAS 321(3210) Introduction to Biogeochemistry (also NTRES 321) (3210)
Fall. 4 credits. Prerequisites: CHEM 207, MATH 112, plus a biology and/or geology course, L. A. Derry and J. Yavitt.

EAS 322(3220) Biogeochemistry of the Hawaiian Islands
Spring. 4 credits. Prerequisite: EAS 240. Recommended: college-level chemistry. L. Derry.

EAS 326(3260) Structural Geology
Spring. 4 credits. Prerequisite: one semester of calculus plus an introductory geology course or permission of instructor. One weekend field trip. R. W. Allmendinger.

EAS 331(3310) Climate Dynamics (also ASTRO 331) (3331)
Fall. 3 credits. Prerequisites: two semesters of calculus and one semester of physics. K. H. Cook.

EAS 334(3340) Microclimatology

EAS 341(3410) Atmospheric Thermodynamics and Hydrostatics
Fall. 3 credits. Prerequisites: one year of calculus and one semester of physics. M. W. Wysocki.

EAS 342(3420) Atmospheric Dynamics (also ASTRO 342) (3342)
Spring. 3 credits. Prerequisites: one year each of calculus and physics. K. H. Cook and P. J. Gierasch.

EAS 350(3500) Dynamics of Marine Ecosystems (also BIOEE 350) (3500)
Fall. 3 credits. Prerequisites: one year of calculus and a semester of oceanography (e.g., EAS 154), or permission of instructor. C. H. Greene and R. W. Howarth.

EAS 351(3510) Marine Ecosystems Field Course (BIOEE 351) (3510)

EAS 352(3520) Synoptic Meteorology I

EAS 355(3550) Mineralogy
Fall. 4 credits. Prerequisites: EAS 101 or 201 and CHEM 207/211 or permission of instructor. S. Mahlburg Kay.

EAS 356(3560) Petrology and Geochemistry
Spring. 4 credits. Prerequisite: EAS 355. R. W. Kay.

EAS 375(3750) Sedimentology and Stratigraphy
Fall. 4 credits. Prerequisite: EAS 101, 102, or 201. J. L. Cisne.
EAS 388(3880) Geophysics and Geotectonics
Spring. 4 credits. Prerequisites: MATH 192 (or 112) and PHYS 208 or 213. B. L. Isacks.

EAS 401(4010) Fundamentals of Energy and Mineral Resources
Spring. 3 credits. L. Cathles.

EAS 404(4040) Geodynamics
Spring. 3 credits. Prerequisite: calculus and calculus-based physics course or permission of instructor. Offered alternate years. J. Phipps Morgan.

EAS 405(4050) Active Tectonics
Spring. 3 credits. Recommended: mechanical background equivalent to EAS 326/388. Grading optional. M. Pritchard.

EAS 417(4170) Field Mapping in Argentina
Summer. 3 credits. Prerequisites: EAS 210 and 342. Recommended: knowledge of Spanish. S. Mahlburg Kay.

EAS 425(4250) European Discovery of Impacts and Explosive Volcanism
2 credits. Prerequisite: junior, senior, or graduate students with background in geology and permission of instructor. One two-hour meeting per week plus field trip during spring break. J. Phipps Morgan.

[EAS 434(4340) Reflection Seismology
Fall. 3 credits. Prerequisites: MATH 192 and PHYS 208. B. L. Isacks.

EAS 435(4350) Statistical Methods in Meteorology and Climatology
Fall. 3 credits. Prerequisites: introductory statistics (e.g., AEM 210) and calculus course. D. S. Wilks.

EAS 437(4370) Geophysical Field Methods (also ARKEO 437[4370)
Fall. 3 credits. Prerequisites: PHYS 213 or 208 and permission of instructor. L. D. Brown.

EAS 447(4470) Physical Meteorology
Fall. 3 credits. Prerequisites: one year each of calculus and physics. A. T. DeGaetano.

EAS 451(4510) Synoptic Meteorology II
Fall. 3 credits. Prerequisites: EAS 341 and 342. S. J. Colucci.

EAS 453(4530) Advanced Petrology
Fall. 3 credits. Prerequisite: EAS 356. R. W. Kay.

[EAS 454(4540) Advanced Mineralogy
Spring. 3 credits. Prerequisite: EAS 355 or permission of instructor. Offered alternate years. S. M. Kay.

EAS 455(4550) Geochemistry
Fall. 4 credits. Prerequisites: CHFM 207 and MATH 192 or equivalent. Recommended: EAS 350. W. M. White.

EAS 456(4560) Mesoscale Meteorology
Spring. 3 credits. Prerequisites: EAS 341 and 342 or permission of instructor. S. J. Colucci.

[EAS 457(4570) Atmospheric Air Pollution
Fall. 3 credits. Prerequisites: EAS 341 or thermodynamics course, and one semester of chemistry, or permission of instructor. Next offered 2006–2007. M. W. Wysocki.

[EAS 458(4580) Volcanology
Fall. 3 credits. Prerequisite: EAS 356 or equivalent. Offered alternate years. R. W. Kay and W. M. White.

[EAS 460(4600) Late Quaternary Paleoclimatology
Fall. 4 credits. M. Goman.

[EAS 462(4620) Marine Ecology (also BIOEE 462[4620)
Fall. 3 credits. Limited to 75 students. Prerequisite: BIOEE 261. Offered alternate years; not offered 2005–2006. C. D. Harvell and C. H. Greene.

EAS 470(4700) Weather Forecasting and Analysis
Spring. 3 credits. Prerequisites: EAS 352 and 451. M. W. Wysocki.

EAS 471(4710) Introduction to Groundwater Hydrology (also BEE 471[4710)
Spring. 3 credits. Prerequisites: MATH 204 and ENGRD 202. L. Cathles.

EAS 475(4750) Special Topics in Oceanography
Fall, spring. 2–6 credits, variable. Prerequisites: one semester of oceanography and permission of instructor. Spring: M. J. Greene; summer: B. C. Monger.

[EAS 476(4760) Sedimentary Basins: Tectonics and Mechanics
Fall. 3 credits. Prerequisite: EAS 375 or permission of instructor. Offered alternate years; not offered 2005–2006. T. E. Jordan.

[EAS 478(4780) Advanced Stratigraphy
Fall. 3 credits. Prerequisite: EAS 375 or permission of instructor. Offered alternate years; not offered 2005–2006. T. E. Jordan.

[EAS 479(4790) Paleobiology (also BIOEE 479[4790)
Fall. 4 credits. Prerequisite: one year introductory biology and either BIOEE 274 or 373 or EAS 375, or permission of instructor. Offered alternate years; not offered 2005–2006. W. A. Allmendinger.

[EAS 483(4830) Environmental Biophysics
Spring. 3 credits. Offered alternate years; next offered 2006–2007. S. J. Riha.

EAS 487(4870) Introduction to Radar and Remote Sensing (also ECE 487[4870)
Fall. 3 credits. Prerequisites: PHYS 208 or 213 or equivalent or permission of instructor. D. L. Hysell.

EAS 498(4980) Teaching Experience in Earth and Atmospheric Sciences
Fall, spring. 1–4 credits. Students must register using independent study form. S-U grades only. Staff.

EAS 499(4990) Undergraduate Research in Atmospheric Science
Fall, spring. Credit TBD. Students must register using independent study form. S-U grades only. Staff.

EAS 500(5000) Design Project in Geohydrology
Fall, spring, 3–12 credits. Alternative to industrial project for M.Eng. students choosing geohydrology option. May continue over two or more semesters. L. M. Cathles.

EAS 502(5020) Case Histories in Groundwater Analysis
Fall, 4 credits. L. M. Cathles.

[EAS 622(6220) Advanced Structural Geology I
Spring. 3 credits. Prerequisites: EAS 326 and permission of instructor. Offered alternate years. R. W. Allmendinger.

EAS 624(6240) Advanced Structural Geology II
Spring. 3 credits. Prerequisites: EAS 326 and permission of instructor. Offered alternate years. R. W. Allmendinger.

EAS 628(6280) Geology of Organic Belts
Spring. 3 credits. Prerequisite: permission of instructor. Not offered 2005–2006. Staff.

[EAS 641(6410) Analysis of Biogeochemical Systems
Spring. 3 credits. Prerequisite: MATH 295 or permission of instructor. Offered alternate years. L. A. Derry.

[EAS 651(6510) Atmospheric Physics (also ASTRO 651[6510)
Fall. 3 credits. Prerequisite: good background in undergraduate calculus and physics. Offered alternate years; next offered 2006–2007. B. L. Isacks, P. J. Gierz, and S. J. Colucci.

[EAS 652(6520) Advanced Atmospheric Dynamics (also ASTRO 652[6520)
Spring. 3 credits. Prerequisites: EAS 341 and 342 or equivalent. Offered alternate years; next offered 2006–2007. S. J. Colucci and P. J. Gierz.

[EAS 656(6560) Isotope Geochemistry
Spring. 3 credits. Open to undergraduates. Prerequisite: EAS 455 or permission of instructor. Offered alternate years. W. M. White.

[EAS 666(6660) Applied Multivariate Statistics
Spring. 3 credits. Prerequisites: multivariate calculus, matrix algebra, and two statistics courses. Offered alternate years; next offered 2006–2007. D. S. Wilks.

EAS 675(6750) Modeling the Soil-Plant-Air System (also CSS 675[6750)
Spring. 3 credits. Prerequisite: EAS/CS 483 or equivalent. S. J. Riha.

EAS 692(6920) Special Topics in Atmospheric Science
Fall, spring. 1–6 credits. S-U grades optional. Staff.
EAS 693(6930) Special Topics in Geological Sciences
Fall or spring. 1–3 credits, variable. Grading optional. Staff.

EAS 700-799(7000-7990) Seminars and Special Work
Fall, spring. 1–3 credits. Prerequisite: permission of instructor. Staff.

EAS 701-702(7010-7020) Thesis Research
701, fall; 702, spring. 1–15 credits, variable. Grading optional. Staff.

EAS 711(7110) Upper Atmospheric and Space Physics
Fall or spring. 1–6 credits. D. L. Hysell.

EAS 722(7220) Advanced Topics in Structural Geology
R. W. Allmendinger.

EAS 731(7310) Planetary Geodynamics, Active Tectonics, Volcanology, Earthquakes, and Geodesy
M. Pritchard.

EAS 733(7330) Advanced Topics in Geodynamics
Spring. J. Phipps Morgan.

EAS 751(7510) Petrology and Geochemistry
R. W. Kay.

EAS 755(7550) Advanced Topics in Tectonics and Geochemistry
Fall. 3 credits. J. Phipps Morgan.

EAS 757(7570) Current Research in Petrology and Geochemistry
S. Mahlbub Kay.

EAS 762(7620) Advanced Topics in Paleobiology
W. D. Allmon.

EAS 771(7710) Advanced Topics in Sedimentology and Stratigraphy
T. E. Jordan.

EAS 773(7730) Paleobiology
J. L. Cisne.

EAS 775(7750) Advanced Topics in Oceanography
C. H. Greene.

EAS 780(7800) Earthquake Record Reading
Fall. M. Barazangi.

EAS 781(7810) Geophysics, Exploration Geophysics, Ground-Penetrating Radar
L. D. Brown.

EAS 783(7830) Advanced Topics in Geophysics
B. L. Isacks.

EAS 789(7890) Lithospheric Seismology
L. D. Brown.

EAS 793(7930) Andes-Himalaya Seminar

EAS 795(7950) Low-Temperature Geochemistry
1–3 credits. S-U grades only. L. A. Derry.

EAS 796(7960) Geochemistry of the Solid Earth
W. M. White.

EAS 797(7970) Fluid-Rock Interactions
L. M. Cathles.

EAS 799(7990) Soil, Water, and Geology Seminar
Spring. L. M. Cathles and T. S. Steenhuis.

EAS 850(8500) Master's-Level Thesis Research in Atmospheric Science
Fall, spring. Credit TBA. S-U grades only. Times TBA. Graduate faculty.

EAS 950(9500) Graduate-Level Dissertation Research in Atmospheric Science
Fall, spring. Credit TBA. S-U grades optional. Times TBA. Graduate faculty.

EAS 951(9510) Doctoral-Level Dissertation Research in Atmospheric Science
Fall, spring. Credit TBA. S-U grades optional. Times TBA. Graduate faculty.

EAS 105(1050) Special Work in Geology
Fall, spring. 1-15 credits, variable. Grading optional. Staff.

ENGINEERING

ECE 210(2100) Introduction to Circuits for Electrical and Computer Engineers (also ENGRD 210(2100))
Fall, spring. 4 credits. Corequisites: MATH 293 and PHYS 213. All students must enroll in a lab and a section. Fall, J. C. Belina and M. C. Kelley; spring, C. E. Seyler and M. C. Kelley.

For description, see ENGRG 210.

ECE 220(2200) Signals and Information
Fall, spring. 4 credits. Prerequisite: MATH 293. Fall, S. S. Hemami; spring, A. W. Bojanczyk.

Introduction to signal processing. Topics include frequency-based representations: Fourier series and discrete Fourier transform; discrete time linear systems: input/output relationships, filtering, spectral response; analog-to-digital and digital-to-analog conversion; continuous time signals and linear time invariant systems: frequency response and continuous-time Fourier transform.

ECE 250(2500) Technology in Society (also ENGRG 250(2500), HIST/S&T 250(2500))
Fall. 3 credits. Humanities elective for engineering students. Students meet in a lab and a section. Fall, Z. J. Haas.

ECE 298(2980) Inventing an Information Society (also AMST 292(2980), HIST 292(2920), S&T 292(2921), ENGRG 298(2980))
Spring. 3 credits. Approved for humanities distribution.

For description, see ENGR 298.

ECE 303(3030) Electromagnetic Fields and Waves
Fall. 4 credits. Prerequisites: grades of C or better in PHYS 213, 214, and MATH 294. F. Rana and staff.

Maxwell's equations in differential form; wave equation; plane electromagnetic waves; phase and group velocities; Poynting's theorem, complex dielectric constant; wave reflection and transmission; guided waves on transmission lines; transient pulse propagation, and elementary dipole antenna; analysis of wireless communication links.

ECE 306(3060) Fundamentals of Quantum and Solid-State Electronics
Spring. 4 credits. Prerequisites: PHYS 214 and MATH 294. C. L. Tang.

Introductory quantum mechanics and solid-state physics necessary for modern solid-state electronic devices. Topics include the formalism and methods of quantum mechanics, the hydrogen atom, the structure of simple solids, energy bands, Fermi-Dirac statistics, and the basic physics of semiconductors. Applications include quantum wells and the p-n junction.

ECE 310(3100) Introduction to Probability and Random Signals
Spring. 4 credits. Prerequisite: MATH 294. May be used in place of ENGRD 270 to help satisfy engineering distribution requirements. Z. J. Haas.

Introduction to the theory of probability as a basis for modeling random phenomena and signals, calculating the response of systems, and making estimates, inferences, and decisions in the presence of chance and uncertainty. Applications are given in such areas as communications, and device modeling, probability, and characteristic functions; nonlinear transformations of data; expectation and correlation; and the central limit theorem.

ECE 311(3110) Electrical and Computer Engineering Honors Seminar
Spring. 1 or 2 credits. Staff.

Students registered for this course are required to attend all of the colloquia lectures. Summary papers are required. Honors students must take the seminar for letter grade and are required to write two summary papers for 2 credits. Nonhonors students must take the seminar pass/fail and are required to write one summary paper for 1 credit. Each summary paper reviews a topic presented during the semester.
ECE 314(3140) Computer Organization (also COM S 314[3420])
Fall, spring, 4 credits. Prerequisites: COM S/ENGRD 211 or ENGRD 230. ECE majors must enroll for letter grade. Fall, COM S staff; spring, S. A. McKee and D. L. Long. Spring: basic computer organization. Topics include: performance metrics, data formats, instruction sets, addressing modes, computer arithmetic, instruction scheduling and pipelined datapath design, memory hierarchies including caches and virtual memory, I/O devices, bus-based I/O systems. Students learn assembly language programming and design a simple pipelined processor. For fall description, see COM S 314.

ECE 315(3150) Introduction to Microelectronics
Fall, spring, 4 credits. Prerequisite: ECE/ENGRD 210. Fall, E. C. Kan; spring, M. G. Spencer.
Design of digital and analog electronic circuits in the context of modern integrated circuit technology. Includes the building blocks of integrated circuits: introductory physics of semiconductors, MOS and junction transistors; digital electronics—inverters, logic circuits, memory, and analog circuits—multi-stage and differentiator amplifiers.

ECE 320(3200) Networks and Systems
Spring, 4 credits. Prerequisites: ECE 220 and MATH 294. S. B. Wicker.
Students develop a working understanding of the analytical and computational tools used in the design and representation of complex networks and systems. Topics include: state-space techniques, finite state machines, graph-theoretic approaches to network design and analysis, complexity, phase transitions in complex systems, and scalability.

ECE 381-382(3910-3920) Junior Electrical and Computer Engineering Independent Project
Fall, spring, 1-4 credits. Limited to juniors in engineering.
Individual study, analysis, and, usually, experimental tests in connection with a special engineering problem chosen by the student after consultation with the faculty member directing the project. An engineering report on the project is required. Students must make individual arrangements with a faculty sponsor and submit an independent project form to the Student Services Office, 223 Phillips Hall.

ECE 402(4020) Biomedical System Design (also BIEN 402[4040])
Spring, 4 credits. Culuminating design experience (CDE) course. Co- or prerequisites: at least one of: ECE 425, 476, 455, J. C. Belina.
Introduces techniques of measuring and conditioning low-level (biological) signals. Topics include special signal to noise improvement circuits for analog signals, techniques to remove common-mode and correlated noise, and computer-aided techniques for analyzing sampled data. Final six or seven weeks devoted to designing/prototyping a safe and effective ambulatory microprocessor-controlled blood pressuremonitor. Formal design document is required.

ECE 411(4110) Random Signals in Communications and Signal Processing
Fall, 4 credits. Prerequisite: ECE 310 or equivalent. S. Servetto.
Introduction to models for random signals in discrete and continuous time: Markov chains, Poisson process, queuing processes, power spectral densities, Gaussian random process. Response of linear systems to random signals. Elements of estimation and inference as they arise in communications and digital signal processing systems.

ECE 413(4130) Introduction to Nuclear Science and Engineering
Fall, 3 credits. Prerequisites: PHYS 214 and MATH 294. K. B. Cady.
Introduces statistical signal processing. Signal processing systems to the micrometer/nm-scale, material issues, and the integration of microelectronic structures and actuators with simple electronics. This is an interdisciplinary course drawing content from mechanics, materials, structures, electronic systems, and the disciplines of physics and chemistry.

ECE 437(4370) Fiber and Integrated Optics
Spring, 4 credits. Project. Culuminating design experience (CDE) course. Prerequisite: ECE 303 or equivalent.
M. Lipson.
Physical principles of optical waveguides. Wave equation solutions to the mode structure in waveguides, numerical analysis, mode coupling, dispersion and bandwidth limitations, optical materials, photonic band gap structures. Project design of planar optical components.

ECE 446(4460) Digital Communications Over Packet-Switched Networks
Fall, 4 credits. Culuminating design experience (CDE) course. Prerequisites: ECE 314/COM S 314 and probability course. S. Servetto.
Basic course in networking covering the design and performance analysis of communications systems operating over packet-switched networks. Aims to bridge the gap between a classical networking course and a classical digital communications course. The course is lab oriented, with a strong emphasis on programming assignments (both C and MATLAB). Topics include data compression, error control in networks, and network algorithms.

ECE 451(4510) Electric Power Systems I
Fall, 4 credits. Prerequisite: ECE 320 or equivalent. H. Chiang.
Acquaints students with modern electric power system analysis and control. Stresses analysis techniques appropriate for the structured industry and advanced protection and control systems. Topics include transmission line models, transformers and per-unit system, generator models,
network matrices, power flow, system protection, computer relaying, and GPS-based measurement and control systems.

ECE 452[4520] Electric Power Systems II
Spring. 4 credits. Prerequisite: ECE 451 or permission of instructor. R. J. Thomas. Acquaints students with modern electric power system operation and control. Explores aspects of the restructuring of the industry and its implications for planning and operation objectives and methods. Topics include unit commitment, economic dispatch, optimal power flow, control of generation, system security and reliability, state-estimation, analysis of system dynamics, and system protection.

ECE 453[4530] Analog CMOS
Fall. 4 credits. Cumulating design experience (CDE) course. Prerequisite: ECE 315 or equivalent. Recommended: ECE 457 as corequisite. A. B. Apsel. Overview of devices available to analog integrated-circuit designers in modern CMOS and BiCMOS processes: resistors, capacitors, MOS transistors, and bipolar transistors. Basic building blocks for linear analog integrated circuits: single-stage amplifiers, current mirrors, and differential pairs. Transistor-level design of linear analog integrated circuits, such as operational amplifiers and operational transconductance amplifiers. Layout techniques for analog integrated circuits. Throughout the course, emphasis is placed on design-oriented analysis techniques.

ECE 457[4570] Silicon Device Fundamentals
Spring. 4 credits. Cumulating design experience (CDE) course. Prerequisites: ECE 315 and 306 or MSE 262 or AE/EE 450. E. C. Kan. Semiconductor carrier statistics, band diagrams, transport and their applications in diodes, MOSFET, and IGBT. Emphasis is put on the CMOS operations for advanced VLSI technology. Six labs cover device measurements and design by simulation. By using the combined simulation and measurement tools, the course culminates in a comprehensive design project dealing with technical concerns in current VLSI industry as well as its economical, environmental, and social impacts.

ECE 467[4670] Digital Communication Receiver Design
Spring. 4 credits. Prerequisite: ECE 220. A. Scaglione. Introduction to broadband digital receiver design. Topics include PAM and QAM modulation and down-conversion, pulse-shaping, matched filtering, carrier frequency and phase recovery, baud-timing synchronization, packet marker synchronization, adaptive linear equalization, and coding. Course project: composition and testing of a MATLAB-based software receiver.

ECE 468(4680) Telecommunication Systems
Spring. 4 credits. Prerequisite: ECE 467 or permission of instructor. Recommended: ECE 411. Not offered 2005–2006. Fundamentals of digital communications. Topics include digital source coding, Huffman coding, sampling, quantization, analog source coding, optimum receivers for digital transmission through additive white Gaussian noise (AWGN) channels, matched filters, channel capacity and error control coding, digital transmission through bandlimited AWGN channels, inter-symbol interference (ISI), equalization techniques, phase-locked loops (PLL), trellis-coded modulation (TCM), and spread-spectrum communication systems.

ECE 472[4720] Feedback Control Systems (also CHEM 472[4720], M&AEE 478[4780])
Fall, spring. 4 credits. Prerequisites: CHEM 572, ECE 220, M&AEE 526, or permission of instructor. Staff. For description, see M&AEE 478.

ECE 473[4730] Optimizing Compilers
Fall. 4 credits. Prerequisite: ECE 514. COM S 514, M. Burtscher. Covers compiler optimizations for high-performance microprocessors as well as how software interacts with hardware and the operating system. The projects involve designing, testing, and evaluating an optimizing compiler backend that generates executables for a UNIX workstation. Lecture topics include three-address code, static single assignment form, many code optimizations, code tuning case studies, feedback optimizations, machine instruction formats, system calls, and executable formats.

ECE 474(4740) Digital VLSI Design
Fall and spring. Students must enroll both semesters. 5 credits. Cumulating design experience (CDE) course. Prerequisites: ENGRD 250 and ECE/COM S 514. Students receive an R grade until they test their chips. K. T. Kornegay. Introduction to digital VLSI design. Topics include basic transistor physics, switching networks and transistors, fundamental knowledge, and sequential logic. The course also includes an introduction to asynchronous design.

ECE 475(4750) Computer Architecture (also COM S 416[4420])
Fall. 4 credits. Cumulating design experience (CDE) course. Prerequisites: ENGRD 250 and ECE 314/COM S 314. J. F. Martinez. Topics include instruction set principles, advanced pipelining, data and control hazards, multi-cycle instructions, dynamic scheduling, out-of-order execution, speculation branch prediction, instruction-level parallelism, and high-performance memory hierarchies. Students learn the issues and tradeoffs involved in the design of modern microprocessors. Labs involve the design of a processor and cache subsystem at the RTL level.

ECE 476(4760) Digital Systems Design Using Microcontrollers
Spring. 4 credits. Cumulating design experience (CDE) course. Prerequisite: ECE 314/COM S 314. ECE 315 is highly recommended. R. Baber. Design of real-time digital systems using microprocessor-based embedded controllers. Students working in pairs design, debug, and construct several small systems that illustrate and employ the techniques of digital system design acquired in previous courses. The content focuses on the laboratory work. The lectures are used primarily for the introduction of examples, description of specific modules to be designed, and instruction in the hardware and high-level design tools to be employed.

ECE 482(4820) Plasma Processing of Electronic Materials (also MS&E 492[4920])
Spring. 3 credits. Prerequisites: PHYS 213 and 214 or equivalents. Offered if sufficient demand. D. A. Hammer. Fundamental principles that govern partially ionized, chemically reactive plasma discharges and their applications to processing electronic materials. Topics include simple models of low pressure, partially ionized plasmas, collision phenomena, diffusive processes, plasma chemistry and surface processes. Examples and applications to electronic materials processing are discussed in detail.

ECE 484(4840) Introduction to Controlled Fusion Principles and Technology (also M&AEE 459(4590), NS&E 484[4840])
Spring. 3 credits. Prerequisites: PHYS 112, 213, and 214 or equivalent background in electricity and magnetism and mechanics. Intended for seniors and graduate students in engineering and physical sciences. D. A. Hammer. For description, see NS&E 484.

ECE 486(4860) Electromagnetic Waves and Communication
Spring. 3 credits. Prerequisite: ECE 303. D. L. Hysell. Recommended for students who wish to obtain a greater understanding of the fundamentals of guided waves, high data rate electronics and wireless communication. Topics include vector and scalar potentials, transmission lines, waveguides, fiber optics, antenna arrays, and propagation in different environments including interference and diffraction.

ECE 487(4870) Introduction to Radar and Remote Sensing (also EAS 487[4870])
Fall. 3 credits. Prerequisites: ECE 220 and 486 (or grade of B or better in ECE 303). D. L. Hysell. For description, see EAS 487.

ECE 488(4880) Radio Frequency (RF) Circuits and Systems
Spring. 4 credits. Cumulating design experience (CDE) course. Prerequisites: ECE 315 or equivalent. W. E. Schwartz. Basic RF circuits and applications. Receivers, transmitters, modulators, filters, detectors, transmission lines, oscillators, frequency synthesizers, low-noise amplifiers. Applications include communication systems, radio and television broadcasting, radar, radio, and radar astronomy. Computer-aided circuit analysis. Five laboratory sessions.

ECE 491-492(4910-4920) Senior Electrical and Computer Independent Engineering Project
Fall, spring. 491: spring. 492. 1-8 credits. Limited to seniors in engineering. Individual study, analysis, and, usually, experimental tests in connection with a special engineering problem chosen by the student after consultation with the faculty member directing the project. An engineering report on the project is required. Students must make individual arrangements with a faculty sponsor.
transmissions and processing. Interference channels and equalization techniques. Performance analysis including bit error rate calculation and bounds, cutoff rate and channel capacity. Applications in wireless and digital subscriber loops (DSL).

ECE 568(5680) Mobile Communication Systems
Spring. 4 credits. Prerequisites: ECE 411 and 467. Corequisite: ECE 468. Not offered 2005-2006. Theory and analysis of mobile communication systems, with an emphasis on understanding the unique characteristics of these systems. Topics include cellular planning, mobile radio propagation and path loss, characterization of multipath and fading channels, modulation and equalization techniques for mobile radio systems, source coding techniques, multiple access alternatives, CDMA system design, and capacity calculations.

ECE 572(5720) Parallel Computer Architecture
(also COM S 516(5722))
Spring. 4 credits. Co- or prerequisite: ECE 475 J. R. Martz.
Principles and tradeoffs in the design of parallel architectures. Emphasis is on latency, bandwidth, and synchronization in parallel machines. Case studies illustrate the history and techniques of shared-memory, message-passing, datalow, and data-parallel machines. Additional topics include memory consistency models, cache coherence protocols, and interconnection network topologies. Architectural studies presented through lecture and some research papers.

ECE 574(5740) Advanced Digital VLSI Design
Fall. 4 credits. Prerequisites: ECE 474, 475. Not offered 2005-2006. Top-down approach to asynchronous design and the relation between computer architecture and VLSI design. For the asynchronous design component: high-level synthesis, design by program transformations, and correctness by construction. Topics include delay-insensitive design techniques, description of circuits as concurrent programs, circuit compilation, and electrical optimizations. Students complete a group project of the design of a pipelined microprocessor. The processor can be clocked, asynchronous, or a combination of the two.

ECE 575(5750) High-Performance Microprocessor Architecture
Spring. 4 credits. Prerequisite: ECE 473 or 475. M. Burtscher.
Provides in-depth coverage of some of the advanced architectural features of current high-performance microprocessors. Lecture topics include trace caches, branch predictors, value predictors, confidence estimators, finite state machines, multi-threading, predication, software speculation, RISC, EPIC, case studies of modern high-end microprocessors, and research ideas. The projects involve writing simulators to evaluate architectural components on large programs that execute billions of instructions.

ECE 579(5790) Computer Analysis of Biomedical Images
Spring. 4 credits. Prerequisite: instructor permission. Open to students with engineering, biomedical, or biology background. A. P. Reveses. Powerful imaging modalities with attending computer image processing methods are evolving for the evaluation of health and the detection of disease. This course focuses on the quantitative analysis of such images and Computer Aided Diagnosis (CAD), i.e., the automatic identification and classification of abnormalities by the computer.

ECE 579(5790) Radio Frequency (RF) Integrated Circuit Design
Fall and spring. Students must enroll both semesters. 6 credits. Prerequisites: ECE 433, 453, and 488. K. T. Korngay. Conveys practical knowledge of advanced concepts related to the design radio-frequency (RF) integrated circuits in state-of-the-art silicon germanium (SiGe) technology. Emphasis is on the circuit architecture, design, trade-offs, optimization, and layout of RF integrated circuits for use in wireless applications. Special attention is devoted to the most important challenges facing RF circuit designers today, such as the impact of noise, power distribution, and consumption. Low noise amplifier, voltage-controlled oscillator (VCO), phase-lock loop, and high-performance mixer design are emphasized. The basic transceiver building blocks are covered, and students learn how to design and assemble them to form single-chip wireless systems.

ECE 581(5810) Introduction to Plasma Physics (also A&EP 606(6060))
Fall. 4 credits. Prerequisite: ECE 305 or equivalent. First-year graduate-level course; open to exceptional seniors. D. A. Hammer. Topics include plasma state, motion of charged particles in fields; drift-orbit theory; coulomb scattering, collisions; ambipolar diffusion; elementary transport theory; two-fluid and hydrodynamic equations; plasma oscillations and waves, CMA diagram; hydrodynamic stability; and elementary applications to space physics, plasma technology, and controlled fusion.

ECE 582(6820) Advanced Plasma Physics
Fall. 4 credits. Prerequisites: ECE 581 or A&EP 606. C. E. Seyler. Boltzmann and Vlasov Equations; waves in hot-magnetized plasma; Landau and cyclotron damping; micro-instabilities; low-frequency waves and instabilities; Nonlinear phenomena: solitons, nonlinear waves, tearing, and reconnection.

ECE 587(5870) Energy Seminar I
(also NSSE 545(5450), M&AE 545(5450))
Fall. 1 credit. D. A. Hammer. Energy resources, their conversion to electricity or mechanical work, and the environmental consequences of the energy cycle are discussed by faculty members from several departments in the university and by outside experts. Examples of topics surveyed include: energy resources and economics; coal-based electricity generation; nuclear reactors; solar power; energy conservation by users; and air pollution control.

ECE 588(5880) Energy Seminar II
(also M&AE 546(5460))
Spring. 1 credit. D. A. Hammer. See description for ECE 587; however, different speakers and/or topics are discussed in ECE 588.

ECE 593-599(5930-5990) Advanced Topics in Electrical and Computer Engineering
Fall, spring. 1-4 credits. Staff. Seminar, reading course, or other special arrangement agreed on by the students and faculty members concerned.

ECE 608(6080) Multi-Access Communication Theory
Spring. 4 credits. Prerequisites: ECE 310, 411 and 507 or 562 or permission of instructor. L. Tong. Graduate-level course on theory and techniques in multi-access wireless communications. Channel division multiple access (TDMA, CDMA, FDMA) techniques. Random access protocols and analysis. Multi-user detection and estimation. Multi-user information theory. Multi-access in ad hoc networks.

ECE 662(6620) Network Information Theory
Fall. 3 credits. Prerequisite: ECE 562. S. Servetto, T. Berger. Second course in information theory, focusing on multiterminal aspects, as covered in the textbooks of Yeung and Csiszar/Koerner.

ECE 691-692(6910-6920) Electrical and Computer Engineering Colloquium
Fall, spring. 1 credit each semester. For students in the graduate field of Electrical and Computer Engineering. Fall, D. H. Albonesi and S. A. McKee; spring, S. Servetto. Lectures by staff, graduate students, and visiting authorities. A weekly meeting for the presentation and discussion of important current topics in the field. Reports required.

ECE 693-694(6930-6940) Master of Engineering Design
Fall, spring. 6 credits. 1-8 credits. For students enrolled in the M.Eng (Electrical) degree program. Uses real engineering situations to present fundamentals of engineering design. Each professor is assigned a section number. To register, see roster for appropriate six-digit course ID numbers.

ECE 695-699(6950-6990) Graduate Topics in Electrical and Computer Engineering
Fall, spring. 1-4 credits. Staff. Seminar, reading course, or other special arrangement agreed on by the students and faculty members concerned.

ECE 791-792(7910-7920) Thesis Research
791, fall, 792, spring. 1-15 credits. For students enrolled in the master's or doctoral program. Each professor is assigned a section number. To register, see roster for appropriate six-digit course ID numbers.

ECE 793-794(7930-7940) Advanced Graduate Topics in Electrical and Computer Engineering
Fall, spring. 1-4 credits. Staff. Seminar, reading course, or other special arrangement agreed on by the students and faculty members concerned.
INFORMATION SCIENCE, SYSTEMS, AND TECHNOLOGY

For complete descriptions, see the INFO listing in the CIS section.

INFO 130 (1300) Introductory Design and Programming for the Web (also COM S 130 (1300))
Fall. 3 credits.

INFO 172 (1700) Computation, Information, and Intelligence (also COGST 172, COM S 172 (1700), ENGRI 172 (1700))
Fall. 3 credits. Prerequisite: some knowledge of differentiation; permission of instructor for students who have completed equivalent of COM 100.

INFO 214 (2140) Cognitive Psychology (also COGST 214, PSYCH 214 (2140))
Fall. 3 credits. Limited to 175 students. Prerequisite: sophomore standing. Graduate students. see INFO-PSYC 614 or COGST 501. Not offered 2005–2006.

INFO 230 (2300) Intermediate Design and Programming for the Web (also COM S 230 (2300))
Spring. 3 credits. Prerequisite: COM S/INFO 130 or equivalent.

INFO 245 (2450) Psychology of Social Computing (also COMM 245 (2450))
Fall. 3 credits.

INFO 292 (2921) Inventing an Information Society (also AM ST 292 (2980), ECE/ENGRI 298 (2980), HIST 292 (2920), S&TS 292 (2921))
Spring. 3 credits. May not be taken for credit after ECE/ENGRI 198.

INFO 295 (2950) Mathematical Methods for Information Science
Fall. 4 credits. Corequisite: MATH 231 or equivalent.

INFO 330 (3300) Applied Database Systems (also COM S 330 (3300))
Fall. 3 credits. Prerequisite: COM S/ENGRD 211.

INFO 345 (3450) Human-Computer Interaction Design (also COMM 345 (3450))
Spring. 3 credits.

INFO 349 (3491) Media Technologies (also COMM 349 (3490), S&T S 349 (3491))
Spring. 3 credits.

INFO 355 (3551) Computers: From the 17 C. to the Dot.com Boom (also S&T S 355 (3551))
Fall. 4 credits.

INFO 356 (3561) Computing Cultures (also ST&S 356 (3561))
Spring. 4 credits.

INFO 387 (3871) The Automatic Lifestyle: Consumer Culture and Technology (also S&T S 387 (3871))

INFO 430 (4300) Information Retrieval (also COM S 430 (4300))
Fall. 3 credits. Prerequisite: COM S/ENGRD 211 or equivalent.

INFO 431 (4302) Web Information Systems (also COM S 431 (4302))
Spring. 3 credits. Prerequisites: COM S 211 and some familiarity with web site technology.

INFO 435 (4350) Seminar on Applications of Information Science (also INFO 635 (6390))
Spring. 3 credits. Prerequisites: background in computing, data structures, and programming at level of COM S 211 or equivalent; experience using information systems. Undergraduate and master's students should register for INFO 435; Ph.D. students should register for INFO 635.

INFO 440 (4400) Advanced Human-Computer Interaction Design (also COMM 440 (4400))
Fall. 3 credits. Prerequisite: COMM/INFO 345 or permission of instructor.

INFO 445 (4450) Seminar in Computer-Mediated Communication (also COMM 445 (4450))
Fall. 3 credits. Prerequisite: COMM/INFO 245.

INFO 447 (4470) Social and Economic Data (also ILRLE 447 (4470))
Spring. 4 credits. Prerequisites: one semester of calculus, IS statistics requirement, one upper-level social science course, or permission of instructor.

INFO 450 (4500) Language and Technology (also COMM 450 (4500))
Spring. 3 credits.

INFO 490 (4900) Independent Reading and Research
Fall, spring. 1–4 credits.

INFO 491 (4910) Teaching in Information Science, Systems, and Technology
Fall, spring. Variable credit.

INFO 515 (5150) Culture, Law, and Politics of the Internet
Fall. 4 credits.

INFO 530 (5300) The Architecture of Large-Scale Information Systems (also COM S 530 (5300))
Spring. 4 credits. Prerequisite: COM S/INFO 330 or COM S 432.

INFO 614 (6140) Cognitive Psychology (also COGST 614 (6140), PSYCH 614 (6140))
Fall. 5 credits. Consists of two components: PSYCH 214 (3 credits) and COGST 501 (2 credits). Intended for graduate students; undergraduates opting for 5 credits should enroll simultaneously in PSYCH 214 and COGST 501. Not offered 2005–2006.

INFO 620 (6300) Representing and Accessing Digital Information (also COM S 630 (6300))
Spring. 4 credits. Prerequisite: basic knowledge of linear algebra and probability theory; basic programming skills.

INFO 634 (6341) Information Technology in Sociocultural Context (also S&T S 634 (6341))
Fall. 4 credits. Prerequisite: permission of instructor. Not offered 2005–2006.

INFO 635 (6390) Seminar on Applications of Information Science (also INFO 435 (4350))
Spring. 3 credits. Prerequisites: background in computing, data structures, and programming at level of COM S 211 or equivalent; experience using information systems. Undergraduates and master's students should register for INFO 435; Ph.D. students should register for INFO 635.

INFO 640 (6400) Human-Computer Interaction Design (also COMM 640 (6400))
Fall. 3 credits. Prerequisite: graduate standing or permission of instructor.

INFO 645 (6450) Seminar in Computer-Mediated Communication (Also COMM 645 (6450))
Spring. 3 credits.

INFO 685 (6850) The Structure of Information Networks (also COM S 685 (6850))
Fall or spring. 4 credits. Prerequisite: COM S 482.

INFO 694 (6940) The Internet as a Social Phenomenon (also COMM 694 (6940))
Fall. 3 credits. Prerequisite: graduate standing; seniors by permission of instructor. Not offered 2005–2006.

INFO 747 (7400) Social and Economic Data (GR-RDC) (also ILRLE 740 (7400))
Spring. 4 credits. Prerequisite: Ph.D. and research master's students.

INFO 751 (7002) Media Research and Critical Design
Fall or spring. 4 credits. Prerequisites: graduate-level training in science and technology studies, philosophy, critical theory, communication, artificial intelligence, human-computer interaction, or equivalent, or permission of instructor. Not offered every year.

INFO 790 (7900) Independent Research
Fall, spring. Variable credit. Prerequisite: permission of an information science faculty member.
Independent research for M.Eng. students and pre-A exam Ph.D. students.

INFO 990 (9900) Thesis Research
Fall, spring. Variable credit. Prerequisite: permission of an information science faculty member.
Theis research for post-A exam Ph.D. students.

MS&E 303(3030) Thermodynamics of Condensed Systems (also MS&E 583[5830])
Fall. 4 credits. Prerequisites: PHYS 214 and MATH 294. M. O. Thompson.
Introduces the three laws of thermodynamics as the fundamental basis for thermal and chemical equilibrium, coupled with statistical mechanical interpretations for entropy and specific heat capacities. Applies these principles to understanding phase equilibria and phase diagrams, heterogeneous reactions, solutions, surfaces, and defects. Introduces electrochemistry and fuel-power cells.

MS&E 304(3040) Kinetics, Diffusion, and Phase Transformation (also MS&E 584[5840])
Spring. 4 credits. Prerequisite: MS&E 303 or permission of instructor. R. Dieckmann.
Topics include phenomenological and atomistic theories of diffusion; diffusion in metals, alloys, and nonmetals, including polymers; diffusion in the presence of driving forces; fast diffusion paths; thermo- and electrotransport; interfaces and microstructure; nucleation and growth; growth of product layers (parabolic and linear kinetics); solidification of alloys; diffusional and diffusionless transformations in solids; glass transition.

MS&E 305(3050) Electronic, Magnetic, and Dielectric Properties of Materials (also MS&E 585[5850])
Spring. 4 credits. Prerequisite: MS&E 206 or permission of instructor. R. B. van Dover.

MS&E 307(3070) Materials Design Concept I
Fall. 2 credits. Staff.
For description, see MS&E 407.

MS&E 311(3110) Junior Laboratory I
Fall. 1 credit. C. C. Umbach.
Practical laboratory covering the analysis and characterization of materials and processing. Labs are based on courses in thermodynamics of condensed systems and electronic, magnetic, and dielectric properties of materials.

MS&E 312(3120) Junior Laboratory II
Spring. 1 credit. C. C. Umbach.
Practical laboratory covering the analysis and characterization of materials and processing. Labs are based on courses in thermodynamics of condensed systems and electronic, magnetic, and dielectric properties of materials.
concepts and materials properties critical to conversion as well as to sensors used for monitoring the emission of pollutants. The course is concerned with materials and technologies of primary importance, but depending on the use of the biomedical material, mechanical, optical, and transport properties may also be vital. After a general introduction to biomedical materials, much of the course is taken up with case studies where a physiological system is considered, then the design of artificial parts and the materials now chosen are investigated. Constraints such as methods of production, economics, regulatory approval, and legal liabilities are included in the case study. Examples may include dialysis, contact and intra-ocular lenses, heart valves, and the artificial pancreas. Every student is involved in a presentation to the class about a case study.

MS&E 481(4810) Technology Management (also MS&E 587[5870])
Spring. 3 credits. E.-P. Giannelis. Designed to provide students in engineering and the sciences with the knowledge and analytical skills to manage RD for a strategic competitive advantage. Most organizations recognize the critical importance of RD management in becoming and remaining world-class competitors. The course uses a combination of case studies, readings, discussions, and outside lectures. Topics include technology evaluation, RD portfolio, intellectual property portfolio and management, technology transfer, and technology, policy, and society.

MS&E 487(4870) Ethics and Technology
Spring. 1 credit. Staff. Ethics influences all decisions made by a technologist. This course discusses those factors that must be considered in reaching a decision involving technology, ranging from legal impact to consideration of community expectations.

MS&E 489(4980) Colloids and Colloid Assemblies for Advanced Materials Applications (also MS&E 589[5890])
Fall. 3 credits. C. Liddell. Recent global developments in the synthesis, modification, organization, and utilization of fine particles in nanotechnology and biotechnology fields. Underlying principles for control of particle characteristics such as size, shape, composition, internal homogeneous structure, layering, porous, and heterostructure functions. Methods for the formation of ordered and patterned particle arrays employed in advanced materials based on latex, ceramic colloids, metal nanoparticles, semiconductor quantum dots, nanocapsules, and mimensions. Applications in photonics, biolabeling, biological screening, drug delivery, catalysis, and magnetic recording.

MS&E 491-492(4910-4920) Research Involvement IVA and IVB
Fall. 3 credits each semester. Prerequisite: departmental approval. A. Ruoff. For description, see MS&E 291. May be continuation or a one-semester affiliation with a research group.

MS&E 495(4950) Undergraduate Teaching Involvement
Fall, spring. Variable credit. Staff. Gives credit to students who help in the laboratory portions of select MS&E courses. The number of credits earned is determined by the teaching load and is typically 1-3.

MS&E 512(5120) Mechanical Properties of Thin Films (also M&E AE 513[5130])
Spring. 3 credits. Offered alternate years. S. P. Baker.

MS&E 521(5210) Properties of Solid Polymers

[MSE 523(5230) Physics of Soft Materials]
Fall. 3 credits. Offered alternate years. U. B. Wiesner.

[MSE 524(5240) Materials Chemistry of Synthetic Polymeric Materials]
Fall. 3 credits. Prerequisite: MSE 521 or permission of instructor. Offered alternate years. Staff.

[MSE 525(5250) Organic Optoelectronics]
Fall. 3 credits. Offered alternate years. G. G. Malliaras.

MS&E 531(5310) Introduction to Ceramics
Spring. 3 credits. C. Liddell. Covers ceramic processes and products, structure of ceramic crystals, structure of glasses, structural defects (point defects, dislocations), surfaces, interfaces, and grain boundaries. Properties of ceramic materials (atomic and phenomenological approach, relationships between diffusion and point defect structure), ceramic phase diagrams, phase transformations. Emphasizes physicochemical aspects of the different topics.

MS&E 532(5330) Materials for Energy Production, Storage, and Conversion (also MS&E 433[5330])
Fall. 3 credits. R. Dieckmann. For description, see MSE 453.

MS&E 541(5410) Nanofabrication (also ECE 336[3660]/5360[5360]) for M.Eng.
Spring. 3, 4, or 5 credits. Students enrolled in MS&E 541 must enroll in advanced topic, 1-credit sec. Enrollment in advanced credit section optional for students registered in ECE 336. Staff. The previous material science course in microprocessing has been combined with ECE 336 and is taught jointly with ECE. The course consists of a two-lecture, 3-credit core course providing an introduction to the materials and processes used to fabricate integrated circuits and microelectromechanical systems. An optional extension is a hands-on, 1-credit lab, in which students fabricate transistors, simple integrated circuits, and MEMS structures. The recommended textbook is The Science and Engineering of Microelectronic Fabrication by Campbell. Course notes available to registered students on a password-protected web site.

MS&E 542(5420) Materials Design in Electronic Packaging
Spring. 3 credits. C. K. Ober. Design, materials, and manufacturing needs for packaging technologies from chip to board. Principles involved in key areas of materials science and other engineering disciplines. Packaging materials to be discussed include metals, ceramics, and polymers.

MS&E 543(5430) Thin-Film Material Science
Fall. 3 credits. Offered alternate years. R. B. van Dover. Provides fundamental information on the deposition, properties, reaction, and evaluation of thin films. Topics include deposition techniques, surface energies, stress in thin films, surface kinetics, homoeopitaxy, heteroepitaxy and superlattices, electrical and optical properties, Schottky barriers, solid phase regrowth, interdiffusion, thin film reactions, and electromigration. The recommended textbook is Electronic Thin Film Science for Electrical Engineers and Material Scientists by Tu, Mayer, and Feldman.

MS&E 545(5450) Magnetic and Ferroelectric Materials
Fall. 3 credits. Prerequisites: PHYS 213 and 214 or equivalent. Offered alternate years. R. B. van Dover.

MS&E 546(5460) Solar Cells: Energy from the Environment
Fall. 2 or 3 credits. Limited to 10 students per lab. Lec, 2 credits; lab, 1 credit. D. G. Ast. Discusses the physics, design, manufacturing, testing, applications, and long-term reliability of solar cells. Topics include the energy distribution of the solar spectrum, physics of converting light into electricity, theoretical conversion efficiency of solar cells, optimal solar cell design, low cost solar cells, testing and government regulations, and the lifetime of solar cell arrays. The course covers mostly solid state solar cells but provides an introduction to emerging competing technologies such as solar polymer, nano-composites, and organic dyes. In the laboratory, students fabricate and test a solar cell. Special recitations, as needed, are offered for students lacking a semiconductor background but interested in the subject of solar cells. The recommended textbook is Solar Cells, Operating Principles, Technology and Systems Applications by Green.
Graduate Core Courses

MS&E 601(6010) Thermodynamics of Materials Fall. 3 credits. Prerequisite: thermodynamics course at level of MS&E 303. J. M. Blakely.
Topics include basic statistical thermodynamics, partition functions and thermodynamic state functions, distributions, laws of thermodynamics, free-energy functions and conditions of equilibrium, chemical reactions, statistics of electrons and ions, heat capacity, heterogeneous systems and phase transitions, and lattice models of 1-, 2-, and 3-dimensional interacting systems. Also covers: statistical thermodynamics of alloys, free-energy and phase diagrams, order-disorder phenomena, point defects in crystals, and statistical thermodynamics of interfaces.

[MS&E 602(6020) Elasticity, Plasticity, and Fracture Spring. 3 credits. Offered alternate years; not offered 2005–2006.]

MS&E 603(6030) Analytical Techniques for Materials Science (also MS&E 571(5710)) Spring. 3 credits. Offered alternate years. S. Sass.
For description, see MS&E 571.

Related Course in Another Department

Introductory Solid-State Physics (PHYS 454, A&EPP 450)

Further Graduate Courses

MS&E 610 (6100) Physical Metallurgy and Applications (also MS&E 410[4100]) Spring. 3 credits. Prerequisites: MS&E 206, 303, 304 or permission of instructor. S. Baker.
For description, see MS&E 410.

MS&E 621(6210) Advanced Inorganic Chemistry III: Solid-State Chemistry (also CHEM 657[6570]) Fall. 3 credits. Prerequisite: CHEM 605 or permission of instructor. S. Lee.
For description, see CHEM 607.

MS&E 622(6220) Synthetic Polymer Chemistry (also CHEME 675[6750], CHEM 671[6710]) Spring. 4 credits. Prerequisites: CHEM 359–360 or equivalent or permission of instructor. J. Blakely.
For description, see CHEM 671.

[MS&E 631(6310) Solid-State Reactions Fall. 3 credits. Offered alternate years; not offered 2005–2006. R. Dieckmann.]

[MS&E 632(6320) Solid-State Electrochemistry Fall. 3 credits. Prerequisite: MS&E 631 or permission of instructor. Not offered 2005–2006. R. Dieckmann.]

MS&E 655(6550) Composite Materials (also M&E&TAM 655[6550]) Spring. 4 credits. Staff.
For description, see TAM 655.

Specialty Courses

MS&E 800(8000) Research in Materials Science Fall, spring. Credit TBA. Staff.
Independent research in materials science under the guidance of a member of the staff.

MS&E 801(8010) Materials Science and Engineering Colloquium Fall and spring. 1 credit each semester. Credit limited to graduate students. Staff.
Lectures by visiting scientists, Cornell staff members, and graduate students on subjects of interest in materials sciences, especially in connection with new research.

MS&E 802(8020) Materials Science Research Seminars Fall, spring. 2 credits each semester. Prerequisite: graduate students involved in research projects. Staff.
Short presentations on research in progress by students and staff.

MECHANICAL AND AEROSPACE ENGINEERING

For description, see TAM 489.

MS&E 555(5550) Introduction to Composites (also MS&E&TAM 455[4550]) Spring. 3 credits.
For description, see TAM 455.

MS&E 563(5630) Nanobiotechnology (also A&EPP/BIO G 663[6630]) Spring. 3 credits.
For description, see A&EPP 663.

MS&E 571(5710) Analytical Techniques for Material Science (also MS&E 603[6030]) Spring. 3 credits. Offered alternate years. S. Sass.
Survey of modern analytical techniques used to determine composition and structure of near-surface and bulk materials. Interaction of ions, electrons, and photons with solids; characteristics of the emergent radiation. Techniques covered include ion scattering, Auger electron spectroscopy, nuclear activation, secondary ion mass spectroscopy, UV and X-ray photoelectron spectroscopies, and X-ray techniques. Selection and design of experiments.

[MS&E 572(5720) Computational Materials Science Spring. 3 credits. Prerequisite: MS&E 303 or equivalent or permission of instructor. N. Thompson.]
General and Required Courses

Spring. 3 credits.
For description, see NAVS 202.

M&AE 117(1170) Introduction to Mechanical Engineering (also ENGR 117(1170))
Fall. 3 credits. 2 lab and 1 lab per week.
Course in Introduction to Engineering series.
For description, see ENGR 117.

M&AE 127(1270) Introduction to Entrepreneurship and Enterprise Engineering (also ENGR 127(1270))
Spring. 3 credits. Open to all Cornell students regardless of major. Prerequisites: none.
For description, see ENGR 127.

M&AE 212(2120) Mechanical Properties and Selection of Engineering Materials
Spring. 3 credits. Prerequisites: ENGRD/ T&AM 202 (Statics) with minimum of C- (strictly enforced). Software fee.
Mechanics of deformable bodies and a reinforcement of the concept of "simple engineering elements" for mechanical analysis associated with design. Introduction to the broad range of properties and behaviors of engineering materials as they relate to mechanical performance. Emphasis is placed on general states of stress and strain, on elasticity and combined loading effects. Failure criteria including yielding, buckling, fracture, fatigue and environmental effects are developed. A general introduction to the function/constraint/objectives approach to material selection associated with mechanical design is provided with candidate material systems coming from metals, polymers, ceramics and/or composites. A general overview of material processing is presented within this context of material selection.

M&AE 221(2210) Thermodynamics (also ENGRD 221(2210))
Fall, spring, may be offered in summer. 3 credits. Prerequisites: MATH 192 and PHYS 112 or permission of instructor.
For description, see ENGRD 221.

M&AE 225(2250) Mechanical Synthesis
Spring. 4 credits. Prerequisite: ENGRD 202. Pre- or corequisites: ENGRD 203 and 221. Lab fee.
Hands-on introduction to the mechanical design process. Basic prototyping skills developed using machine tools. Mechanical dissection used to demonstrate successful product design and function. Design projects provide experience from conceptualization through prototype construction and testing. Basic instruction on CAD and technical sketching.

M&AE 323(3230) Introductory Fluid Mechanics
Fall, usually offered in summer through Engineering Cooperative Program. 4 credits. Prerequisites: ENGRD 202 and ENGRD 203 and pre- or co-registration in ENGRD 221, or permission of instructor.
Topics include physical "elements" for properties of fluids, hydrostatics, conservation laws using control volume analysis and using differential analysis, Bernoulli's equation, potential flows, simple viscous flows (solved with Navier-Stokes equations), dimensional analysis, pipe flows, boundary layers. Introduction to compressible flow.

M&AE 324(3240) Heat Transfer
Spring; usually offered in summer through Engineering Cooperative Program. 3 credits. Prerequisite: M&AE 323 or permission of instructor.
Topics include discussion of steady and unsteady heat conduction, forced and free convection, external and internal flows; radiation heat exchange; and heat exchangers and boiling.

M&AE 325(3250) Analysis of Mechanical and Aerospace Structures
Fall; usually offered in summer through Engineering Cooperative Program. 3 credits. Prerequisites: ENGRD 202 and M&AE 212 (strictly enforced).
Topics in mechanics of materials applied to analysis and design of structural components encountered in mechanical, aeronautical and aerospace systems. Including: torsion and bending of nonsymmetric or curved members, elastic stability, stress concentration, and contact stresses, statically indeterminate structures, buckling theories for collapse of structures, applications to composite and semi-monocoque structures.

M&AE 326(3260) System Dynamics
Spring; usually offered in summer through Engineering Cooperative Program. 4 credits. Prerequisite: MATH 294, ENGRD 203. Junior standing required.
Dynamic behavior of mechanical systems: modeling, analysis techniques, and applications: vibrations of single- and multi-degree-of-freedom systems; feedback control systems. Computer simulation and experimental studies of vibration and control systems.

M&AE 327(3272) Mechanical Property and Performance Laboratory
Spring. 2 credits. Prerequisites: M&AE 212, 325 (strictly enforced).
This course provides an introduction to the experimental methods, instrumentation, and data analysis associated with material property determination and mechanical performance of materials. Emphasis is placed on integration of theory and analysis with experimental methods.

M&AE 427(4272) Fluids/Heat Transfer Laboratory
Fall. 3 credits. Fulfills technical-writing requirement. Prerequisites: M&AE 323, 324. Laboratory exercises in fluid mechanics and the thermal sciences. Measurements of flame temperature, pressure, heat transfer, viscosity, thermal fluid flow; rate, effects of turbulence, air foil stall, flow visualization, and spark ignition engine performance. Instrumentation, techniques and analysis, and interpretation of results. Biweekly written assignments with extensive feedback.

M&AE 429(4280) Seminar on Engineering Design
Fall. 2 credits. Prerequisite: senior standing or permission of instructor.
This course is offered to illustrate and practice the design "process." It consists of formal lectures and invited seminars by industrial and academic practitioners of design. Case studies are presented in weekly invited lectures from a wide range of disciplines, including thermo-fluid processes, manufacturing, energy, mechanical design, aerospace, and biological sciences. The invited lectures are supplemented by one or more design "projects" in the semester.

M&AE 429(4291) Supervised Senior Design Experience
Fall or spring. Minimum of 1 or 3 credits depending on section chosen. Prerequisite: senior standing or permission of instructor, taken concurrently or after M&AE 428 (4280). Letter grades only.
Substantial design experience based on the knowledge and skills acquired in earlier coursework and incorporating engineering standards and realistic constraints that include most of the following considerations: economic; environmental; sustainability; manufacturability; ethical; health and safety; social; and political. Engineering design is the process of devising a system, component, or process to meet desired needs. It is a decision making process (often iterative), in which the basic sciences, mathematics, and the engineering sciences are applied to convert resources optimally to meet these stated needs. Sections of this course satisfy the BS ME senior design requirement. They are offered in conjunction with a course designated as "Senior Design Elective" (M&AE 490, 492, 425, 435, 470, 479, or are directed by a faculty member as an individual or a team design exercise. Consult www.mae.cornell.edu for enrollment details.

M&AE 591(5910) Applied Systems Engineering (also CEE 504(5040), CIS 504(5050), ECE 512(5120), ORIE 512(5123), SYSEN 510(5100)
Fall. 3 credits. Prerequisites: senior or graduate standing in engineering field; concurrent or recent (past two years) enrollment in a group-based project with a strong system design component that is approved by course instructor.
For description, see SYSEN 510.

M&AE 592(5920) System Architecture, Behavior, and Optimization (also CEE 505(5050), CIS 505(5050), ECE 513(5133), ORIE 513(5142), SYSEN 532(5323), SYSEN 550(5500))
Spring. 3 credits. Prerequisites: senior or graduate standing and completion of Applied Systems Engineering I (CEE 504, CIS 504, ECE 512, ORIE 512, M&AE 591, or SYSEN 510) or permission of instructor.
For description, see SYSEN 520.

Mechanical Systems, Design, Materials Processing, and Precision Engineering

M&AE 103(1030) Introduction to Computer-Aided Manufacture (CAM)
Fall, spring, approx. eight weeks (total 15 hrs. of instruction and 15 hrs. of lab). 1 credit. Limited enrollment. Prerequisites: M&AE 225 or equivalent experience and completion of Emerson Lab Product Realization Facility's CNC seminars: An Introduction to CNC Machining and CNC Programming, or permission of instructor. Completes the introduction to the fundamentals of computer-aided manufacture (CAM) seminars through the use of computer numerical control (CNC) programming. The course is the hands-on component of the three-part series on CAM. Provides practical applications of the use of G codes and solid modeling software, CNC mill and/or lathe setup, tool selection, and operation. The course is required for students wishing
to use the CNC equipment in the Emerson Lab's Product Realization Facility for team or research projects. May not be used to fulfill any M&AE requirement.

M&AE 312(3120) Mechanical Properties of Materials, Processing, and Design (also M&AE 302 and 592(5820))
Spring. 4 credits.
For description, see M&AE 302.

M&AE 313[3130] Atomic and Molecular Structure of Matter (also M&AE 206[2060], M&AE 581[5810])
Spring. 4 credits.
For description, see M&AE 206.

M&AE 378(3780) Mechatronics
Fall. 4 credits. Prerequisite: MATH 294, PHYS 213, or permission of instructor. At the intersection of mechanical and electrical engineering, Mechatronics involves technologies necessary to create automated systems. This course introduces students to the functional elements of modern controlled dynamical systems. Topics include analog circuits (both passive and active components); filter design; transistors; diodes; MOSFETs and power amplification; transduction mechanical and electro-mechanical devices such as electronics. Topics include: geometric and shape memory material transduction; gear trains; pulse width modulation; optical encoders; discretization; aliasing; and microprocessors and programming. Laboratory experiments culminate in the design and programming of a microprocessor-controlled robotic vehicle.

M&AE 409(4090) Data Structures and Algorithms for Computational Science (also CIS 409[4090])
Fall. 4 credits. Prerequisite: COM S 100 or programming experience in any language. Not offered every year. For description, see CIS 409.

M&AE 415(4150) CPS: Theory and Design (also ECE 415[4150])
Fall. 4 credits. Prerequisites: 300-level engineering course with advanced math content (e.g., ECON 301 or M&AE 326).
For description, see ECE 415.

M&AE 417(4170) Introduction to Robotics: Dynamics, Control, Design
Spring. 3 credits. Prerequisites: engineering math at level of MATH 293 and MATH 294 (Engineering Mathematics); some course in dynamics at level of T&AM/ENGRD 205 (Dynamics); familiarity with control concepts typical of M&AE 326 (System Dynamics).
Introductory course in the analysis and control of mechanical manipulators and related robotic systems. Topics include spatial descriptions and transformations, manipulator kinematics and inverse kinematics, differential relationships and static forces, manipulator dynamics, trajectory generation, sensors and actuators, trajectory control, and compliant motion control. Simulation and design using MATLAB and multi-body codes are used. Co-meets with M&AE 517.

M&AE 425(4251) FSAE Automotive Design Project
Fall, spring. Usually 3 credits: 3 for team electromagnetic systems leader.
Prerequisite: M&AE or ECE juniors and seniors or permission of instructor.
Project course to research, design, build, develop, and compete with a Formula SAE car for intercollegiate competition. Students work in interdisciplinary teams using concurrent engineering and systems engineering principles applied to complex mechanical, electromechanical, and electronic systems. "Senior Design Elective" if students sign up for the corresponding section of M&AE 429.

M&AE 435(4351) Advanced Mechatronics-Systems Engineering Project
Fall, spring. 7 credits over two semesters. Must be taken for two semesters. Prerequisite: CHEM E 372 or M&AE 326. By permission only. Enrollment limited to M&AE seniors satisfying their senior design elective requirement. Co-registration required for one semester in the corresponding section of M&AE 429. Supervised Senior Design Experience. Co-meets with M&AE 535.
For description, see M&AE 535.

M&AE 455(4550) Introduction to Composite Materials (also CEE 477[4770], M&AE 555[5550], T&AM 455[4550])
Spring. 4 credits.
For description, see T&AM 455.

M&AE 461(4610) Entrepreneurship for Engineers (also ENGRG 461[4610], ORIE 452[4520])
Fall. 3 credits. Limited enrollment. Prerequisite: enrollment open to upper-class engineers or permission of instructor. Develops skills necessary to identify, evaluate, and begin new business ventures. Topics include intellectual property, competition, strategy, business plans, technology forecasting, finance and accounting, and sources of capital. A rigorous, quantitative approach is stressed throughout, and students create financial documents and plans, analyze human resource models, and work with sophisticated valuation methods, complicated equity structures, and legal and business documents. As such, this course represents the "red meat" of entrepreneurship, and the soft skills are left for other courses. Course work consists of discussions, assignments, and the preparation and presentation of a complete business plan.

M&AE 463(4630) Neumuscular Biomechanics (also BME 463[4630])
Spring. 3 credits. Prerequisites: ENGRG 202 and ENGRG 203 or permission of instructor. Offered alternate years; not offered 2005–2006. Modeling and simulation of biomechanical systems using mechanics, dynamics, and control principles. Physiology of neurons and muscles introduced and related to the production of force and movement in biological systems. Representation of neuromuscular systems as simultaneous equations. Exploration of the muscular redundancy problem using optimization methods and generating noise languages (such as Mathematica or MATLAB); selected clinical applications.

M&AE 464(4640) Orthopaedic Tissue Mechanics

M&AE 466(4660) Biomedical Engineering Analysis of Metabolic and Structural Systems (also CHEM E 401[4010], ORIE 452[4520])
Fall. 3 credits. Prerequisites: ENGRG 202 Mechanics of Solids and previous course work in biology or permission of instructor.
For description, see M&AE 570.

M&AE 470(4701) Finite Element Analysis for Mechanical and Aerospace Design
Spring. 3 credits. Fullfills senior design requirement for M&AE students. Limited enrollment. Prerequisite: senior standing or permission of instructor. Evening exams. Introductory to linear finite element static and dynamic analysis for discrete and distributed mechanical and aerospace structures. Prediction of load, deflection, stress, strain, and temperature distributions. Major emphasis on understanding finite element numerical and numerical methods. Introduction to computational aspects via educational and commercial software (such as MATLAB and ANSYS). Selected mechanical and aerospace applications.
"Senior Design Elective" if students sign up for the corresponding section of M&AE 429. Co-meets with M&AE 570.

M&AE 477(4770) Engineering Vibrations
Spring. 3 credits. Pre- or corequisite: M&AE 326 or permission of instructor. Lumped element, distributed parameter, and mixed structural vibratory systems are examined. Equations of motion are derived from Newton’s law and Lagrange’s equations. Eigen analysis, free and forced responses, and frequency/time domain solutions are considered. Vibration absorbers, isolators, and vibration suppression control systems using feedback approaches also are investigated. Co-meets with M&AE 577.

M&AE 478(4780) Feedback Control Systems (also CHEM E 472[4720], ECE 472[4720])
Fall. 4 credits. Prerequisites: CHEM E 372 or M&AE 326 or permission of instructor. Analysis techniques, performance specifications, and analog-feedback-compensation methods for single-input, single-output, linear, time-invariant systems. Laplace transforms and transfer functions are the principal mathematical tools. Design techniques include root-locus and frequency response methods. Includes laboratory that examines modeling and control of representative dynamic processes. Co-meets with M&AE 578.

M&AE 479(4791) Modeling and Simulation of Mechanical and Aerospace Systems
Fall. 3 credits. Limited enrollment. Prerequisite: seniors in engineering or permission of instructor. Evening exams. Not offered 2005–2006. F. Valero-Cuevas, Analysis and simulation of linear and nonlinear systems. Representation of discrete and distributed dynamical systems by state-variables models. Time- and frequency-domain simulation via general-purpose languages (such as MATLAB or Mathematica) and special-purpose simulation software (such as...
Simulink). Selected applications from diverse fields. Term project. "Senior Design Elective" if students sign up for the corresponding section of M&E 429. Co-meets with M&E 579.1

M&E 513(5130) Mechanical Properties of Thin Films (also MS&E 512(5120))
Spring. 3 credits. Offered alternate years; not offered 2005–2006.
For description, see MS&E 512.1

M&E 514(5140) Design for Manufacture and Assembly
Fall or spring. 3 credits. Prerequisites: two and a half years of engineering mathematics through probability and statistics; some knowledge of mechanical design and manufacturing processes; good visualization and sketching skills; some experience with MATLAB and a CAD system, or permission of instructor. Nominal DFMA (design for manufacture and assembly) and variational DFMA are covered in two parallel streams. The nominal stream is based on readings in a popular text that surveys the role of manufacturing and assembly processes in part and product design. The second stream, covered mainly through lectures, addresses dimensional variability and its control through parametric and geometric tolerances, dimensional metrology, and statistical quality and process control.

M&E 517(5170) Introduction to Robotics: Dynamics, Control, and Design
Spring. 3 credits. Graduate version of M&E 417. Co-meets with M&E 417. For description, see M&E 417.

M&E 521(5210) Theory of Linear Systems (also ECE 521(5210))
Fall. 3 credits. Prerequisites: M&E 326, ECE 320 (may be taken as a corequisite), or permission of instructor; a strong background in linear algebra at the level of MATH 294, and differential equations at the level of MATH 293 is required. For description, see ECE 521.

M&E 535(5350) Advanced Mechatronics—Systems Engineering Project
Fall, spring. 4 credits each semester; may be taken for 8 credits. Prerequisite: CHEM 372 or M&E 326 or permission of instructor.
Project-based introduction to systems engineering with a focus on system design, systems and technology integration, and systems analysis. Approximately 30 students from the various engineering disciplines design, construct, and fully test several teams of fully autonomous, mobile robots. These teams engage in head to head competitions at the end of the spring semester. There are approximately six lectures per semester and weekly group meetings with the instructor. The project involves vehicle design, real-time feedback control and trajectory generation, microprocessor design and implementation, wireless communication, computer vision, and artificial intelligence. M. E. seniors using this course to fulfill the senior design requirement should enroll in M&E 435. Co-meets with M&E 435.

M&E 565(5650) Biomechanical Systems—Analysis and Design (also BME 565(5650))
Spring. 3 or 4 credits. Prerequisites: undergraduate courses in dynamics and strength of materials (e.g., ENGRD 202 and ENGRD 203), or graduate standing or permission of instructor.
Mechanics and design in musculoskeletal systems. Emphasizes the modeling and analysis of bones and joints and the analysis and design of bone-implant systems for fracture fixation and joint replacement. Selected topics from the study of human musculoskeletal system as a mechanical system. Emphasizes the modeling and analysis of bones and joints, and the analysis and design of biomechanical systems frequently encountered in orthopaedic engineering, including bone-implant systems.

M&E 570(5700) Finite Element Analysis for Mechanical and Aerospace Design
Spring. 3 credits. Prerequisites: graduate standing or permission of instructor.
Evening exams: Term project. Graduate version of M&E 470. Co-meets with M&E 470. For description, see M&E 470.

M&E 571(5710) Applied Dynamics
Fall. 3 credits. Prerequisites: graduate standing, seniors with ENGRD/T&AM 203, M&E 326 or permission of instructor.
Introduces multibody dynamics; dynamics of rigid bodies; Newton-Euler methods, Lagrangian dynamics, principle of virtual power (Kane nodes), and applications to robotics, space dynamics of satellites, electro-mechanical systems. Introduction to multibody simulation using Working Model.

M&E 577(5770) Engineering Vibrations
Spring. 3 credits. Prerequisite: graduate standing or permission of instructor.
Graduate version of M&E 477. Co-meets with M&E 477. For description, see M&E 477.

M&E 578(5780) Feedback Control Systems
Fall. 4 credits. Graduate version of M&E 478. Co-meets with M&E 478. For description, see M&E 478.

M&E 579(5790) Modeling and Simulation of Mechanical and Aerospace Systems
Fall. 3 credits. Limited enrollment.
Prerequisite: graduate standing or permission of instructor. Evening exams. Not offered 2005–2006. Graduate version of M&E 479. Term project. Co-meets with M&E 479. For description, see M&E 479.1

M&E 655(6550) Composite Materials (also T&AM 655(6550), MSE 655(6550))
Spring. 4 credits..course, Co-T&AM 655. For description, see T&AM 655.

M&E 663(6630) Neural Control (also BME 663(6630))
Spring. 3 credits. Prerequisite: permission of instructor. Offered alternate years; not offered 2005–2006. F. Valero-Cuevas.
Advanced course on modeling and simulation of biomechanical systems using mechanics, dynamics, and control principles. Review of current literature on neuromuscular principles of control of vertebrate, posture, locomotion, and manipulation. Mathematical representation of the functional interactions among neurons, muscles, and skeletal structures. Numerical prediction of force and movement in biological systems, and projects exploring model control approaches consistent with identified models. Both theory and application are presented.

M&E 664(6640) Mechanics of Bone (also BME 664(6640))
Spring. 3 credits. Prerequisite: graduate standing or permission of instructor.
Offered alternate years; not offered 2005–2006.
Covers current methods and results in skeletal research, focusing on bone. Topics include skeletal anatomy and physiology, experimental and analytical methods for determination of skeletal behavior, mechanical behavior of bone tissue, and skeletal functional adaptation to mechanics.

M&E 665(6650) Principles of Tissue Engineering (also BME 665(6650), MS&E 665(6650))
Spring. 3 credits. Prerequisite: graduate standing or permission of instructor.
L. Bonassar.
For description, see BME 665.

M&E 675(6750) System Identification and Control
Fall. 3 credits. Prerequisites: (M&E 478, ECE 471, CHEM 472), (M&E 521, ECE 521), or equivalent. Not offered 2005–2006.
Identification of linear uncertain and nonlinear models, and their connections to control. Primary topics include black box methods, such as subspace methods, and model tuning approaches, such as recursive parameter estimation. Connections to control include the development of model uncertainties and bounds, and control approaches consistent with identified models. Discussion of current trends in model identification for control. Other state of the art topics, such as hybrid models, are presented given enough time.

M&E 676(6760) Model-Based Estimation
Fall. 4 credits. Prerequisites: linear algebra, differential equations, and MATLAB programming. Open to M.S., Ph.D. students or permission of instructor. Offered alternate years.
Covers a variety of ways in which models and experimental data can be used to estimate model quantities that are not directly measured. The two main estimation methods that are presented are least-squares estimation for general problems and Kalman filtering for dynamic systems problems. Techniques for linear models are taught as are techniques for nonlinear models. Both theory and application are presented.

M&E 678(6780) Multivariable Control Theory
Spring. 3 credits. Prerequisites: M&E 478 or 578 or ECE 472 (Feedback Control Systems) and M&E 521 (Theory of Linear Systems), or permission of instructor. A strong background in classical control, linear algebra, and state space models is required. Not offered 2005–2006.
Introduction to multivariable feedback control theory in both time and frequency domain. Primary topics include state space methods, model based compensators, performance and
robustness of multivariable systems, model reduction, Linear Quadratic and H-infinity optimal control, and random processes and Kalman filtering for control. Additional topics at the discretion of the instructor include uncertainty management and robust control, discrete time control, optimal control, and nonlinear control.

M&E 712(7120) Mechanics of Materials with Oriented Microstructures
Spring. 4 credits. Prerequisites: T&AM 603 or equivalents; second-year standing in M.S./Ph.D. program. Offered alternate years. The focus of this course is the evaluation of mechanical properties from knowledge of the material microstructure, with attention to anisotropic elastic and plastic behaviors. Topics include mathematical and mechanics preliminaries, mathematical foundations of orientations, including parameterizations, symmetries, and fibers; construction and sampling of orientation distributions; hypotheses used to link macro and micro length scales; methods for evaluation of effective elastic and plastic moduli; evolution of orientations and orientation distributions with deformation. Applications to polycrystalline solids (metal alloys and minerals), composite materials, biomaterials (soft tissues), and polymers.

Energy, Fluids, and Aerospace Engineering

M&E 305(3050) Introduction to Aerospace
Fall. 3 credits. Prerequisite: T&AM/ENGRD 203; upperclass engineer or permission of instructor.

M&E 306(3060) Spacecraft Engineering
Spring. 3 credits. Prerequisite: junior or senior M&E or ECE students or permission of instructor.
Introduction to spacecraft engineering from satellite design through launch to orbital operation. Topics covered include space missions, space environment, orbital mechanics, systems engineering, and satellite design. Most spacecraft subsystems are introduced including rocket theory, attitude determination and control, thermal design, and communications. Earth-orbiting and interplanetary satellites are considered. Discussions of current problems and trends in spacecraft operation and development.

M&E 400(4001) Components and Systems: Engineering in a Social Context (also S&T 400(4001))
Spring. 3 credits. Prerequisites: upperclass standing, two years of college physics. Offered alternate years; not offered 2005–2006.
This course addresses, at a technical level, broader questions than are normally posed in the traditional engineering or physics curriculum. Through the study of individual cases such as the Strategic Defense Initiative (SDI), the National Missile Defense, supersonic transport, and the automobile and its effect on the environment, the course investigates interactions between the scientific, technical, political, economic, and social forces that are involved in the development of engineering systems. "Senior Design Elective" if students sign up for the corresponding section of M&E 429. Co-meets with M&A 500.

M&E 423(4231) Intermediate Fluid Dynamics
Spring. 3 credits. Prerequisite: M&E 323 (Introductory Fluid Mechanics).
This course builds on the foundation of M&E 323. Emphasis is placed on both the fundamental principles and numerical calculation of real flows (both engineering and environmental) using a computational fluid dynamics package. Topics covered include some exact solutions to the Navier-Stokes equations, boundary layers, wakes and jets, separation, conjugation, stratified and rotating flows, fluid instabilities, and turbulence. "Senior Design Elective" if students sign up for the corresponding section of M&E 429. Co-meets with M&A 523.

M&E 449(4490) Combustion Engines and Fuel Cells
Spring. 3 credits. Permission of: Prerequisites: ENGRD 221 and M&E 323.
Introduction to reciprocating combustion engines and fuel cells, with emphasis on the application of thermodynamic and fluid-dynamic principles affecting their performance. Chemical equilibrium and kinetics, electrochemistry, thermodynamic limits on performance, deviations from ideal processes, engine breathing, combustion, knock: Formation and control of undesirable exhaust emissions.

M&E 453(4530) Computer-Aided Engineering: Applications to Biomedical Processes (also BEE 453(4530))
Spring. 3 credits. Fulfills technical elective requirement for M&E students.
Prerequisite: Heat and Mass Transfer (BEE 350 (Biological and Environmental Transport Processes)), CHEMF 324 (Heat and Mass Transfer), M&A 524 (Heat Transfer), or equivalent.
For description, see BEE 453.

M&E 459(4590) Introduction to Controlled Fusion: Principles and Technology (also ECE 484(4840), AEP 484(4840))
Spring. 3 credits. Prerequisites: PHYS 112, 213, and 214 or equivalent background in electricity and magnetism and mechanics. Intended for seniors and graduate students in engineering and the physical sciences. Offered alternate years.
For description, see ECE 484.

M&E 486(4861) Automotive Engineering
Spring. 3 credits. Prerequisite: M&E 325 or permission of instructor.
Selected topics in the analysis and design of vehicle components and vehicle systems. Emphasis on automobiles. Engines, transmissions, suspension, brakes, and aerodynamics will be discussed. The course uses first principles and applies them to specific systems. The course is highly quantitative, using empirical and analytical approaches. "Senior Design Elective" if students sign up for the corresponding section of M&E 429.

M&E 500(5000) Components and Systems: Engineering in a Social Context
Spring. 3 credits. Prerequisites: graduate standing or permission of instructor, two years of college physics. Offered alternate years; not offered 2005–2006.
Co-meets with M&A 400. For description, see M&A 400.

M&E 501(5010) Future Energy Systems
Spring. 3 credits. Prerequisites: ENGRD 221 (Thermodynamics) or equivalent. Recommended: M&E 323 (Introductory Fluid Mechanics), M&E 324 (Heat Transfer), or equivalents, open to graduate or upperclass standing or permission of instructor.
Critically examines the technology of energy systems that will be acceptable in a world faced with global climate change, local pollution, and declining supplies of oil. The focus is on renewable energy sources (wind, solar, biomass), but other non-carbon-emitting sources (nuclear) and lowered-carbon sources (co-generative gas turbine plants, fuel cells) also are studied. Both the devices and the overall systems are analyzed.

M&E 508(5080) Aerospace Propulsion Systems
Spring. 3 credits. Prerequisite: M&E 323 (Introductory Fluid Mechanics) and 305 (Introduction to Aeronautics) or permission of instructor. Offered alternate years.

M&E 509(5090) Dynamics of Flight Vehicles
Spring. 3 credits. Prerequisites: M&E 305 (Introduction to Aeronautics) and M&E 323 (Introductory Fluid Dynamics) and M&E 526 (System Dynamics), concurrently or permission of instructor. Offered alternate years; not offered 2005–2006.

M&E 523(5230) Intermediate Fluid Dynamics
Spring. 4 credits. Prerequisite: graduate standing or permission of instructor. Intended for M.Eng. students who wish to take a single fluid dynamics course. Students desiring more intensive treatment should consider M&E 601 and one or more of M&E 636, 756, and 737. In addition to the normal requirements for M&E 423, this course includes a 1-credit CFD design project due at the end of the semester. Co-meets with M&E 423. For description, see M&E 423.

M&E 524(5240) Physics of Micro-and Nanoscale Fluid Mechanics and Heat Transfer
Spring. 3 credits. Prerequisite: undergraduate fluid or continuum mechanics (e.g., M&E 323) or permission of instructor. Offered every year.
Introduction to fluid mechanics (2/3) and heat transfer (1/3) in micro- and nanofabricated devices. Fluids: physicochemistry; hydrodynamics, electrokinetic effects, capillarity, continuum breakdown, micro- and nanofluidic applications in chemistry and life sciences. Heat transfer: electron-
turbulent flames, fuel cells, or combustion of solids. Analyses and discussions of a wide range of specific flows and flow regimes characterized by high Reynolds numbers are provided. Laminar and turbulent flows. Internal and external boundary layers. Laminar premixed and non-premixed flames, turbulent jets, turbulence modeling, and PDF models of non-premixed turbulent combustion. A knowledge of combustion at the level of M&AE 543, Combustion Processes, is useful but not required.

M&AE 645(6540) Turbulent Reactive Flow
Spring. 4 credits. Prerequisite: graduate standing or permission of instructor. Offered alternate years; not offered 2005–2006.

Large turbulent reactive flows occur in combustion devices, the chemical process industry, the atmosphere, oceans, and elsewhere. In the last decade, substantial progress has been made in the understanding of these flows, through both experimental and computational approaches. This course focuses on turbulent combustion and describes the different phenomena involved, the basic processes and governing equations, experimental techniques and observations, and a range of modeling approaches. Class meets, on average, twice per week.

M&AE 651(6510) Conduction and Radiation Heat Transfer Fall, weeks 1–7. 2 credits. Prerequisite: graduate standing; undergraduates by permission of instructor.

An intermediate treatment of heat conduction and thermal radiation. The conduction transport equation, steady, transient, and some multidimensional conduction; the radiative transport equation, various models, and radiative exchange between surfaces and volumes. At the level of, but extends beyond, Heat Transfer by Bejan.

M&AE 652(6520) Convection Heat Transfer Fall, weeks 8–14. 2 credits. Prerequisite: graduate standing; undergraduates by permission of instructor.

M&AE 714(7140) Computational Sensing: Information Technologies for Complex Continuum Systems Fall. 4 credits. Prerequisites: exposure to computational mathematics; some background in continuum systems and processes such as fluid flow, thermal transport and/or deformation of materials/structures. Not offered 2005–2006. N. Zabaras.
Examples of industrial control of continuum systems; mathematical preliminaries; finite element approach to partial differential equations; inverse problems and inverse problem solving; optimal control problems; numerical analysis of distributed control problems; reduced-order models for continuum systems; feedback laws for continuum systems; robust control and uncertainty; data mining of continuum systems and models; data compression and transformation techniques; advanced adaptive sensing and actuation of continuum fields.

M&AE 733(7330) Stability of Fluid Flow
Fall, on demand. 4 credits. Prerequisite: graduate standing or permission of instructor. S-U grades only.

M&AE 734(7340) Analysis of Turbulent Flows

M&AE 737(7370) Computational Fluid Mechanics and Heat Transfer
Fall. 4 credits. Prerequisites: graduate standing; advanced course in continuum mechanics, heat transfer, or fluid mechanics; and some MATLAB, C++, or other programming experience.Numerical methods are developed for the elliptic and parabolic partial differential equations that arise in fluid flow and heat transfer when convection and diffusion are present. Finite-difference, finite-volume, and some spectral methods are considered, together with issues of accuracy, stability, convergence, and conservation. Current methods are reviewed. Emphasis is on steady and unsteady, essentially incompressible flows. Assigned problems are solved on a digital computer.

M&AE 737(7370) Computational Fluid Mechanics and Heat Transfer
Fall. 4 credits. Prerequisites: graduate standing; advanced course in continuum mechanics, heat transfer, or fluid mechanics; and some MATLAB, C++, or other programming experience. Numerical methods are developed for the elliptic and parabolic partial differential equations that arise in fluid flow and heat transfer when convection and diffusion are present. Finite-difference, finite-volume, and some spectral methods are considered, together with issues of accuracy, stability, convergence, and conservation. Current methods are reviewed. Emphasis is on steady and unsteady, essentially incompressible flows. Assigned problems are solved on a digital computer.

Special Offerings

M&AE 490(4900) Special Investigations in Mechanical and Aerospace Engineering
Fall, spring. Credit TBA. Prerequisite: undergraduate standing and permission of instructor. Intended for an individual student or a small group of students who want to pursue a particular analytical or experimental investigation outside of regular courses or for informal instruction supplementing that given in regular courses.

M&AE 545(5459) Energy Seminar I (also ECE 587[5870], NSE 545[5450])
Fall. 1 credit. For description, see ECE 587.

M&AE 546(5469) Energy Seminar II (also ECE 588[5880])
Spring. 1 credit. For description, see ECE 588.

M&AE 594(5949) Enterprise Engineering Colloquium (also OR&IE 893-894[8930-8940])
Fall, spring. 1 credit each semester. Usually S-U grades.

M&AE 690(6901) Special Investigations in Mechanical and Aerospace Engineering
Fall, spring. Variable credit. Prerequisite: candidacy for the M.Eng. degree in mechanical or aerospace engineering or approval of faculty member offering project. Project-based course in the area of mechanical or aerospace engineering under the guidance of a faculty member.

M&AE 695(6950) Special Topics in Mechanical and Aerospace Engineering
Fall, spring. Credit TBA. Prerequisites: graduate standing and permission of instructor. Special lectures by faculty members on topics of current research.

M&AE 791(7910) Mechanical and Aerospace Research Conference
Fall, spring. 1 credit each semester. For graduate students involved in research projects. S-U grades only. Presentations on research in progress by faculty and students.

M&AE 791(7910) Mechanical and Aerospace Research Conference
Fall, spring. 1 credit each semester. For graduate students involved in research projects. S-U grades only. Presentations on research in progress by faculty and students.

Nuclear Science and Engineering
Faculty members in the graduate field of nuclear science and engineering who are most directly concerned with the curriculum include K. B. Cady, D. A. Hammer, R. W. Kay, and V. O. Kostroun.

NS&E 484(4840) Introduction to Controlled Fusion Principles and Technology (also A&EP/ECE 484[4840], M&AE 495[4950])
Spring. 3 credits. Prerequisites: PHYS 112, 213, and 214, or equivalent background in electricity and magnetism and mechanics; and permission of instructor. Intended for seniors and graduate students. D. A. Hammer. Introduction to the physical principles and various engineering aspects underlying power generation by controlled fusion. Topics include fuels and conditions required for fusion power, and basic fusion-reactor concepts, fundamental aspects of plasma physics relevant to fusion plasmas, and basic engineering problems for a fusion reactor; and an engineering analysis of proposed magnetic and/or intertial confinement fusion-reactor designs.

NS&E 545(5450) Energy Seminar (also ECE 587[5870], M&AE 545[5450])
Fall, spring. 1 credit may be taken for credit both semesters. D. A. Hammer. For description, see ECE 587.

NS&E 590(5900) Independent Study
Fall, spring. 1-4 credits. Letter or S-U grades. Staff. Independent study or project under guidance of a faculty member.

NS&E 591(5910) Project
Fall, spring. 1-6 credits. Staff. Master of engineering; or other project under guidance of a faculty member.
This second course in probability and statistics provides a rigorous foundation in theory combined with the methods for modeling, analyzing, and controlling randomness in engineering problems. Probabilistic ideas are used to construct models for engineering problems, and statistical methods are used to test and estimate parameters for these models. Specific topics include random variables, probability distributions, density functions, expectation and variance, multidimensional random variables, and important distributions including normal, Poisson, exponential, hypothesis testing, confidence intervals, and point estimation using maximum likelihood and the method of moments.

[OR&IE 436](4360) A Mathematical Examination of Fair Representation
Spring. 3 credits. Prerequisites: MATH 222 or 294 or permission of instructor. Not offered 2005-2006.
Covers the mathematical aspects of the political problem of fair apportionment. The most recognizable form (in the United States) of apportionment is the determination of the number of seats in the U.S. House of Representatives awarded to each state. The constitution indicates that the apportionment should reflect the relative populations, but it does not prescribe a specific method. At first blush it appears that there is a straightforward approach that must lead to a fair, or fairest, apportionment, for any fixed house size and known populations. However, indivisibility of seats leads us to interesting mathematical questions and a long, rich, and fractious political history involving many famous figures. The basic ideas extend beyond apportionment of legislatures (in both federal systems and proportional representation systems) to some other realms where indivisible resources are to be allocated among competing constituencies.

[OR&IE 451](4510) Economic Analysis of Engineering Systems
Spring. 4 credits. Prerequisites: OR&IE 320 and 350.
Topics include financial planning, including cash-flow analysis and inventory flow models; engineering economic analysis, including discounted cash flows and taxation effects; application of optimization techniques, as in equipment replacement or capacity expansion models; and issues in designing manufacturing systems. Includes a student group project.

[OR&IE 452](4512) Entrepreneurship for Engineers (also M&A/ENG/ENGRG 461(4610))
Fall. 3 credits. Prerequisite: upperclass engineers or permission of instructor.
For description see M&A/ENG 461.

[OR&IE 462](4520) Introductory Engineering Stochastic Processes II
Spring. 4 credits. Prerequisites: OR&IE 320 or OR&IE 361 or equivalent. Not offered 2005-2006.
Topics include stationary processes, martingales, random walks, and gambler's ruin problems, processes with stationary independent increments, Brownian motion and other cases, branching processes, renewal and Markov-renewal processes, reliability theory, Markov decision processes, optimal stopping, statistical inference from stochastic models, and stochastic comparison methods for probability models. Applications to population growth, spread of epidemics, and other models.

[OR&IE 464](4540) Extreme Value Analysis with Applications to Finance and Data Communications
Spring. 3 credits. Prerequisites: undergraduate and M.Eng. students; stochastic processes course at level of OR&IE 361; statistics course. Not offered 2005-2006.
Covers the basic models of extreme events used in hydrology, finance, insurance, environmental science (pollution controls), reliability, risk management. The basic models contain parameters that must be estimated, and graphical and analytical estimation methods are discussed. Extreme quantities and very small exceedence probabilities need to be estimated, and usually the part of a distribution tail that is way beyond the range of the data needs to be considered. This
leads to discussion of estimation needed for VAR (value-at-risk) calculations. The course material intersects the related field of heavy tailed modeling and the implications of heavy tails in insurance and data networks.

OR&IE 467(4620) Credit Risk: Modeling, Valuation, and Management
Credit risk refers to losses due to changes in the credit quality of a counter party in a financial contract. The course is an introduction to the modeling and valuation of credit risks. Emphasis is on credit derivative instruments used for hedging credit risks, including credit swaps, swap options, and collateralized debt obligations.

OR&IE 469(4610) Financial Engineering with Stochastic Calculus II
Building on the foundation established in OR&IE 468/568, this course presents no-arbitrage theories of complete markets, including models for equities, foreign exchange, and fixed-income securities, in relation to the main problems of financial engineering: pricing and hedging of derivative securities, portfolio optimization, and risk management. Other topics include model calibration and incomplete markets.

Spring. 3 credits. Prerequisites: engineering math through MATH 294 and OR&IE 270 and 360. No previous knowledge of finance required.
Introduction to the applications of OR techniques, e.g., probability, statistics, and optimization, to finance and financial engineering. First reviews probability and statistics and then surveys assets returns, ARIMA time series models, portfolio selection, regression, CAPM, option pricing, GARCH models, fixed-income securities, resampling techniques, and behavioral finance. Also covers the use of MATLAB, MINITAB, and SAS for computation.

OR&IE 474(4740) Statistical Data Mining I
Fall. 3 credits. Prerequisites: OR&IE 360 and MATH 294 or equivalent; or permission of instructor.
Examines the statistical aspects of data mining, the effective analysis of large data sets. The first half of the course covers the process of building and interpreting statistical models in a variety of settings including multiple regression and logistic regression. The second half connects these ideas to techniques being developed to handle the large data sets that are now routinely encountered in scientific and business applications. Assignments are done using one or more statistical computing packages.

OR&IE 476(4710) Applied Linear Statistical Models
Spring. weeks 1–7; 2 credits. Prerequisite: ENGRD 277.
Topics include multiple linear regression, diagnostics, model selection, inference, one and two factor analysis of variance, Theory and applications both treated. Use of MINITAB stressed.

OR&IE 480(4800) Information Technology
Fall. 4 credits. Pre- or corequisites: COM/S/ENGRD 211, plus either OR&IE 310 or 350.
Project course that encompasses various aspects of information technology related to operations research and industrial engineering. Topics include the design of databases and information systems, the World Wide Web, the economics and industrial organization of IT goods and services, electronic markets, and agent-based interactions.

OR&IE 481(4810) Delivering OR Solutions with Information Technology
Spring. 3 credits. Prerequisite: OR&IE 480.
Study of ways information technology is used to deliver operations research methodology in real applications, including decision support systems, embedded operations research techniques, packaged software, and web-based techniques. Several actual applications are investigated. Labs introduce Visual Basic for Applications (VBA) for decision support.

OR&IE 483(4850) Applications of Operations Research and Game Theory to Information Technology
Spring. 3 credits. Prerequisites: OR&IE 321, 361, or permission of instructor. Not offered 2005–2006.
Covers a variety of operations research and game theoretic applications in information technology. Examples include web searching, network routing and congestion control, online auctions, and trust and reputations in electronic interactions.

OR&IE 490(4990) Teaching in OR&IE
Fall, spring. Variable credit. Prerequisite: permission of instructor.
Involves working as a TA in an OR&IE course. The instructor assigns credits (the guideline is 1 credit per four hours per week of work with a limit of 3 credits).

OR&IE 499(4999) OR&IE Project
Fall, spring. Variable credit. Prerequisite: permission of instructor.
Project-type work, under faculty supervision, on a real problem existing in some firm or institution. Opportunities in the course may be discussed with the associate director.

OR&IE 512(5140) Applied Systems Engineering (also CEE/CIS 504[5040], ECE 512[5120], M&AE 591[5910])
Fall. 3 credits. Prerequisite: permission of instructor.
For description, see SYSN 510.

OR&IE 513(5142) Systems Analysis Architecture, Behavior, and Optimization (also CEE/CIS 505[5050], ECE 513[5130], M&AE 592[5920])
Spring. 3 credits. Prerequisite: CEE/CIS 504, ECE/OR&IE 512, or M&AE 592.
For description, see SYSN 520.

OR&IE 515(5100) Design of Manufacturing Systems
Fall. 4 credits. Prerequisite: graduate students in engineering and business school; permission of instructor.
For description, see OR&IE 416.

OR&IE 516(5110) Case Studies
Fall. 1 credit. Prerequisite: M.Eng. students in OR&IE.
Provides students with an unstructured problem that simulates a real-world situation. Students work in project groups to formulate mathematical models, perform computer analyses of the data and models, and present oral and written reports.

OR&IE 518(5126) Supply Chain Management
Spring. 3 credits. Prerequisite: one of the following: OR&IE 310, 416, or 562. Not offered 2005–2006.
A supply chain is the scope of activities that convert raw materials (e.g., wheat) to finished products delivered to the end consumer (e.g., a box of cereal at the local P&C), usually spanning several corporations. Supply chain management focuses on the flow of products, information, and money through the supply chain. An overview of issues, opportunities, tools, and approaches. Emphasis is on business processes, system dynamics, control, design and structure of supply chains. The relationship between the supply chain and the company's strategic position relative to its clients and its competition. Considers dimensions of inter-organizational partnerships, including decision-making, incentives, and risk.

OR&IE 519(5130) Service System Modeling and Design
Spring. 3 credits. Prerequisites: OR&IE 320, 321, 360, 361; ability to program simple algorithms in some appropriate environment (e.g., VisualBasic, MATLAB). Recommended: OR&IE 580. No instruction in programming given.
Today's economy is dominated by service industries. These systems differ from manufacturing industries in many ways, but primarily in the level of interaction with the customer. Examples of service systems include contact centers (aka call centers), airlines, and hospitals. This course covers various techniques that are useful in the analysis of service systems. It is structured around a number of cases that drive the need for the theory. The emphasis is on modeling and solving the models. Both operational and strategic decisions are covered through appropriate examples.

OR&IE 520(5300) Operations Research I: Optimization I
For description, see OR&IE 320.

OR&IE 521(5310) Optimization II
For description, see OR&IE 321.

OR&IE 522(5311) Operations Research I: Topics in Linear Optimization
Spring. 1 credit. Prerequisite: M.Eng. students in OR&IE. OR&IE 520. Not open to students who have already taken OR&IE 521 or 522.
Extension of OR&IE 520 that deals with applications and methodologies of dynamic programming, integer programming, and large-scale linear programming.

OR&IE 523(5510) Operations Research II: Introduction to Stochastic Processes I
For description, see OR&IE 361.

OR&IE 524(5102) Design of Manufacturing Systems II
Spring, weeks 8–14; 2 credits. Prerequisites: OR&IE 562, 516; or permission of instructor. Not offered 2005–2006.
Project course focusing on the design and analysis of a global corporation's operations. Working in teams, students examine issues pertaining to a prototype company on the following topics: information system design,
marketing, strategy, location of facilities, organization design, manufacturing capacity, planning logistics, production planning, scheduling, inventory control, and financial analysis. Meetings between project teams and faculty are substituted for some lectures or laboratories. Analytical methods appropriate for conducting analysis are discussed in lectures.

[OR&IE 525(5120) Production Planning and Scheduling Theory and Practice]
Fall. 4 credits. Corequisites: OR&IE 320, 360. Not offered 2005–2006. Topics include production planning, including MRP, linear programming, and related concepts. Scheduling and sequencing work in manufacturing systems. Job release strategies and control of work in process inventories. Focus is on set up time as a determinant of plans and schedules.

[OR&IE 528-529(5190-5191) Selected Topics in Applied Operations Research]
Fall, spring. Variable credit. Prerequisite: permission of instructor. Current topics dealing with applications of operations research.

[OR&IE 533(5340) Heuristic Methods for Optimization (also CEE 508/5090), COM S/CIS 572(5720)]
Fall. 3 or 4 credits. Prerequisite: graduate standing or COM S/ENGRD 211, 321 or CEE/ENG 241 or permission of instructor. For description, see CEE 509.

[OR&IE 551(5150) Economic Analysis of Engineering Systems]
Spring. 4 credits. Prerequisites: OR&IE 320 and 350. Lectures concurrent with OR&IE 451. For description, see OR&IE 451.

[OR&IE 560(5500) Engineering Probability and Statistics II]
For description, see OR&IE 360.

[OR&IE 561(5560) Queuing Systems: Theory and Applications I]
Fall. 3 credits. Prerequisite: OR&IE 361 or permission of instructor. Covers basic queuing models, delay and loss systems; finite source, finite capacity, balkling, reneging; systems in series and in parallel; FCFS versus LCFS; busy period problems; output; design and control problems; priority systems; queuing networks: the product formula; time sharing; server vacations; and applications to equipment maintenance, computer operations and flexible manufacturing systems.

[OR&IE 562(5122) Inventory Management]
Fall. 3 credits. Prerequisite: OR&IE 321, 361, or permission of instructor. The first portion of this course is devoted to the analysis of several deterministic and probabilistic models for the control of single and multiple items at one of many locations. The second portion is presented in an experiential learning format. The focus is on analyzing and designing an integrated production and distribution system for a global company. Applications are stressed throughout.

[OR&IE 563(5550) Applied Time-Series Analysis]
Fall. 3 credits. Prerequisites: OR&IE 361 and ENGRD 270 or permission of instructor. Not offered 2005–2006. The first part of this course treats regression methods to model seasonal and nonseasonal data. After that, Box-Jenkins models, which are versatile, widely used, and applicable to nonstationary and seasonal time series, are covered in detail. The various stages of model identification, estimation, diagnostic checking, and forecasting are treated. Analysis of real data is carried out. Assignments require computer work with a time-series package.

[OR&IE 564(5520) Introductory Engineering Stochastic Processes II]
Spring. 4 credits. Prerequisite: OR&IE 361 or equivalent. Lectures concurrent with OR&IE 462. For description, see OR&IE 462.

[OR&IE 565(5590) Applied Financial Engineering]
Spring. 4 credits. Project satisfies M.Eng. project requirement. Prerequisite: M.Eng. students. This course has two components: a sequence of lectures and a project. The lectures are given by the faculty for the course and by invited speakers from the financial industry.

[OR&IE 566(5540) Extreme Value Analysis with Applications to Finance and Data Communications]
Spring. 3 credits. For description, see OR&IE 464.

[OR&IE 567(5620) Credit Risk: Modeling, Valuation, and Management]
Spring. 4 credits. Prerequisite: OR&IE 361. Not offered 2005–2006. For description, see OR&IE 467.

[OR&IE 568(5600) Financial Engineering with Stochastic Calculus I]
Fall. 4 credits. Prerequisite: knowledge of probability at level of OR&IE 360. Introduction to continuous-time models of financial engineering and the mathematical tools required to use them, starting with the Black-Scholes model. Driven by the problem of derivative pricing and hedging. In this model, the course develops a practical knowledge of stochastic calculus from an elementary standpoint, covering topics including Brownian motion, martingales, the Ito formula, the Feynman-Kac formula, and Girsanov transformations.

[OR&IE 569(5610) Financial Engineering with Stochastic Calculus II]
Spring. 4 credits. Prerequisite: OR&IE 468. Not offered 2005–2006. For description, see OR&IE 469.

[OR&IE 574(4741) Statistical Data Mining II]
Spring. 3 credits. Prerequisites: OR&IE 360 and 474, MATH 294. Not offered 2005–2006. Continuation of OR&IE 474 covering more advanced techniques such as clustering with applications to market segmentation, discriminant analysis, artificial neural networks, support vector machines, additive models, radial basis function and spline models, principal components, model assessment, bagging, and boosting. Applications to business problems such as quantitative marketing and credit scoring are presented.

[OR&IE 575(4711) Experimental Design]
Spring. weeks 8–14 (alternates with 576). 2 credits. Prerequisite: OR&IE 476. Covers randomization, blocking, sample size determination, factorial designs, 2/p full and fractional factorials, response surfaces, Latin squares, split plots, and Taguchi designs. Engineering applications. Computing in MINITAB or SAS.

[OR&IE 576(4712) Regression]

[OR&IE 577(5770) Quality Control]
Fall. 3 credits. Prerequisite: ENGRD 270. Not offered 2005–2006. Covers concepts and methods for process and acceptance control; control charts for variables and attributes; process capability analysis; acceptance sampling; continuous sampling plans; life tests; and use of experimental design and Taguchi methods for off-line control.

[OR&IE 580(4580) Simulation Modeling and Analysis]
Fall. 4 credits. Prerequisite: OR&IE 360 (may be taken concurrently) and computing experience, or permission of instructor. Introduction to Monte Carlo and discrete-event simulation. Emphasizes tools and techniques needed in practice. Random variate generation, input and output analysis, modeling using a discrete-event simulation package.

[OR&IE 589(5940) Systems Engineering Project]
Fall. For description, see OR&IE 360. Project course coordinated by Center for Manufacturing Enterprise.

[OR&IE 590(5910) Master of Engineering Manufacturing Project]
Fall, R grade only; spring, 5 credits. Prerequisite: M.Eng. students enrolled in manufacturing option. Project course coordinated by Center for Manufacturing Enterprise.

[OR&IE 595(5900) Project]
Fall, R grade only; spring, 5 credits. Prerequisite: M.Eng. students. Identification, analysis, design, and evaluation of feasible solutions to some applied problem in the OR&IE field. A formal report and oral defense of the approach and solution are required.

[ORIE 625(6335) Scheduling Theory]
Fall. 3 credits. Scheduling and sequencing problems, including single-machine problems, parallel-machine scheduling, and shop scheduling. The emphasis is on the design and analysis of polynomial time optimization and
approximation algorithms and on related complexity issues.

[OR&IE 625(6122) Advanced Production and Inventory Planning]
Spring. 4 credits. Not offered 2005–2006. Introduction to a variety of production and inventory control planning problems, the development of mathematical models corresponding to these problems, and a study of approaches for finding solutions.

[OR&IE 627(6127) Computational Issues in Large Scale Data-Driven Models]
Fall. 3 credits. Pr- or corequisites: OR&IE 630, 650, and 670. Availability of massive datasets such as weblogs and point-of-sale transactions raises new modeling and computational issues. This course provides an introduction to this emerging research area. Topics include data-driven models in operation management, asymptotic statistics, uniform convergence of empirical process, and efficient computational methods. There is discussion of applications in engineering, economics, and marketing, along with current open research problems.

[OR&IE 629(6350) Foundations of Game Theory and Mechanism Design for Engineering Applications]
Spring. 3 credits. Prerequisite: basic knowledge of operations research at level of OR&IE 630 and 650. No prior knowledge of game theory or computer networks assumed. Not offered 2005–2006. Provides a rigorous foundation for the applications of mechanism design and game theory to problems in engineering such as data networks and computer science. The goal is to develop the theory and computational techniques of linear programming and its extensions, including formulation, duality theory, algorithms; sensitivity analysis; network flow problems; and algorithms; theory of polyhedral convex sets, systems of linear equations and inequalities, Farkas’ Lemma; and exploiting special structure in the simplex method and computational implementation.

[OR&IE 630(6300) Mathematical Programming I]
Fall. 4 credits. Prerequisites: advanced calculus and elementary linear algebra. Rigorous treatment of the theory and computational techniques of linear programming and its extensions, including formulation, duality theory, algorithms; sensitivity analysis; network flow problems; and algorithms; theory of polyhedral convex sets, systems of linear equations and inequalities, Farkas’ Lemma; and exploiting special structure in the simplex method and computational implementation.

[OR&IE 631(6310) Mathematical Programming II]
Spring. 4 credits. Prerequisite: OR&IE 630. Continuation of OR&IE 630. Introduces nonlinear programming, interior-point methods for linear programming, complexity theory, and integer programming. Includes some discussion of dynamic programming and elementary polyhedral theory.

[OR&IE 632(6320) Nonlinear Programming]
Fall. 3 credits. Prerequisite: OR&IE 630. Not offered 2005–2006. Necessary and sufficient conditions for unconstrained optimization. Topics include the duality theory, computational methods for unconstrained problems (e.g., quasi-Newton algorithms), linearly constrained problems (e.g., active set methods), and non-linearly constrained problems (e.g., successive quadratic programming, penalty, and barrier methods).

[OR&IE 633(6330) Combinatorial Optimization]
Spring. 3 credits. Topics in combinatorics, graphs, and networks, including matching, matroids, polyhedral combinatorics, and optimization algorithms.

[OR&IE 634(6334) Graph Theory and Network Flows]
Spring. 3 credits. Prerequisite: permission of instructor. Not offered 2005–2006. Topics include directed and undirected graphs; bipartite graphs; hamilton cycles and Euler tours; connectedness, matching, and coloring; flows in capacity-constrained networks; and maximum flow and minimum cost flow problems.

[OR&IE 635(6325) Interior-Point Methods for Mathematical Programming]
Fall. 3 credits. Prerequisites: MATH 411 and OR&IE 630, or permission of instructor. Interior-point methods for linear, quadratic, and semidefinite programming and, more generally, for convex programming. Discusses the basic ingredients: barrier functions, central paths, and potential functions—that go into the construction of polynomial-time algorithms and various ways of combining them. Emphasizes recent mathematical theory and the most modern viewpoints.

[OR&IE 636(6370) Integer Programming]
Fall. 3 credits. Prerequisite: OR&IE 630. Not offered 2005–2006. Topics include discrete optimization. Linear programming in which the variables must assume integral values; theory, algorithms, and applications of integer plane and enumerative methods, with additional topics drawn from recent research in this area.

[OR&IE 637(6327) Semidefinite Programming]
Spring. 2 credits. Pr- or corequisite: OR&IE 630. Not offered 2005–2006. Covers linear optimization over the cone of positive semidefinite symmetric matrices; applications to control theory, eigenvalue optimization, and strong relaxations of combinatorial optimization problems; duality; computational methods, particularly interior-point algorithms.

[OR&IE 638(6328) Convex Analysis]

[OR&IE 650(6500) Applied Stochastic Processes]
Fall. 4 credits. Prerequisite: one-semester calculus-based probability course. Introduction to stochastic processes that presents the basic theory together with a variety of applications. Topics include Markov processes, renewal theory, random walks, branching processes, Brownian motion, stationary processes, martingales, and point processes.

[OR&IE 651(6510) Probability]
Spring. 4 credits. Prerequisite: real analysis at level of MATH 413; one-semester calculus-based probability course. Covers sample spaces, events, sigma fields, probability measures, set induction, independence, random variables, expectation, review of important distributions and transformation techniques, convergence concepts, laws of large numbers and asymptotic normality, and conditioning.

[OR&IE 662(6540) Advanced Stochastic Processes]
Fall. 3 credits. Prerequisite: OR&IE 651 or equivalent. Not offered 2005–2006. Topics include Brownian motion, martingales, Markov processes, and topics selected from: diffusions, stationary processes, point processes, weak convergence for stochastic processes and applications to diffusion approximations, Levy processes, regenerative phenomena, random walks, and stochastic integrals.

[OR&IE 665(6560) Storage and Data Communication Models]
Fall. 3 credits. Not offered 2005–2006. Covers a selection of topics including queues, storage, insurance risk, dams, and data communication. The basic assumptions of the underlying models are discussed with emphasis on their common features. The overall objective is the study of the stochastic processes that arise from these models. The approach is based on the fluctuation theory of random walks, Levy processes, and Markov-additive processes. Further topics for discussion include stochastic comparisons and statistical inference from the models with particular emphasis on data communication models. Current research is in network models with discrete and fluid inputs is discussed.

[OR&IE 670(6700) Statistical Principles]
Fall. 4 credits. Corequisite: OR&IE 650 or equivalent. Topics include review of distribution theory of special interest in statistics: normal, chi-square, binomial, Poisson, t, and F test; introduction to statistical decision theory; sufficient statistics; theory of minimum variance unbiased point estimation; maximum likelihood and Bayes estimation; basic principles of hypothesis testing, including Neyman-Pearson Lemma and likelihood ratio principle; confidence interval construction; and introduction to linear models.

[OR&IE 671(6710) Intermediate Applied Statistics]
Fall. 3 credits. Prerequisite: OR&IE 670 or equivalent. Not offered 2005–2006. Topics include statistical inference based on the general linear model; least-squares estimators and their optimality properties; likelihood ratio tests and corresponding confidence regions; and simultaneous inference. Applications in regression analysis and ANOVA models. Covers variance components and mixed models. Use of the computer as a tool for statistics is stressed.

[OR&IE 673(6630) Empirical and Computational Issues in Finance]
Spring. 3 credits. Prerequisites: stochastic processes course at level of OR&IE 650; statistics course at level of OR&IE 670; or permission of instructor. Not offered 2005–2006. Designed to introduce students to existing empirical work in finance and to demonstrate the use of statistical, econometric, and numerical methods in the analysis of financial data. Topics include linear and nonlinear time series analysis, high-frequency data and market microstructure; continuous-
time models, extreme values and quantile estimation, volatility models, and MCMC methods. Numerous applications using market data are presented. MATLAB programming skills are useful.]

[ORIE 674(6740) Statistical Learning Theory for Data Mining
Fall. 3 credits. Prerequisites: probability course at level of ORIE 651, statistics course at level of ORIE 670. Not offered 2005–2006. Provides a thorough grounding in probabilistic and computational methods for statistical data mining. Covers a subset of the following topics from supervised and unsupervised data mining: the framework of learning. Performance measures and model selection. Methodology, theoretical properties and computing algorithms used in parametric and nonparametric methods for regression and classification. Frequentist and Bayesian methods.]

[ORIE 677(6720) Sequential Methods in Statistics
Spring. 3 credits. S-U grades only. Not offered 2005–2006. The statistical theory of sequential design and analysis of experiments has many applications, including monitoring data from clinical trials in medical studies and quality control in manufacturing operations. This course covers classical sequential hypothesis tests, Wald's SPRT, stopping rules, Kiefer-Weiss test, optimality, group sequential methods, estimation, repeated confidence intervals, stochastic curtailment, adaptive designs, and Bayesian and decision theoretic approaches.]

[ORIE 678(6780) Bayesian Statistics and Data Analysis
Spring. 3 credits. Prerequisites: ORIE 670 and some knowledge of measure theoretic probability (e.g., co-registration in ORIE 650). Not offered 2005–2006. Prior's, posterior's, Bayes factors, credible regions, hierarchical models, computational methods (especially MCMC), empirical Bayes methods, Bayesian robustness. Includes data analysis and MCMC computation. UCLA, UCSD, and possibly other languages such as MATLAB.]

[ORIE 680(6850) Simulation
Fall. 4 credits. Prerequisite: computing experience and ORIE 650 or equivalent, or permission of instructor. Introduction to Monte Carlo and discrete-event simulation. Emphasizes underlying theory. Random variate generation, input and output analysis, variance reduction, selection of current research topics.

ORIE 728-729(7190-7191) Selected Topics in Applied Operations Research
Fall, spring. Credit TBA. Current research topics dealing with applications of operations research.

ORIE 739-739(7290-7291) Selected Topics in Mathematical Programming
Fall, spring. Credit TBA. Current research topics in mathematical programming.

ORIE 769-769(7590-7591) Selected Topics in Applied Probability
Fall, spring. Credit TBA. Topics are chosen from current literature and research areas of the staff.

ORIE 779-779(7790-7791) Selected Topics in Applied Statistics
Fall, spring. Credit TBA. Topics are chosen from current literature and research of the staff.

ORIE 790(7900) Special Investigations
Fall, spring. Credit TBA. For individuals or small groups. Study of special topics or problems.

ORIE 793(9999) Thesis Research
Fall, spring. Credit TBA. For individuals doing thesis research for master's or doctoral degrees.

ORIE 891(9000) Operations Research Graduate Colloquium
Fall, spring. 1 credit. Staff. Weekly one and one-half hour meeting devoted to presentations by distinguished visitors, by faculty members, and by advanced graduate students on topics of current research in the field of operations research.

ORIE 893-894(9100-9101) Enterprise Engineering Colloquium (also M&AE 594[5940])
893, fall; 894, spring. 1 credit each semester. Usually upper division.

Weekly meeting for master of engineering students. Discussion with industry speakers and faculty members on the uses of engineering in the economic design, manufacturing, marketing, and distribution of goods and services.

SYSTEMS ENGINEERING

SYSEN 500(5000) Core Practices in Systems Engineering

SYSEN 501(5010) Core Practices in Systems Engineering
Fall, spring, summer. 1.5 credits. Intended for off-campus students. Overview of Systems Engineering Technical Process and its value in assuring successful systems design. Systems Engineering and the Corporate Product Development Process. Systems Engineering as an organizing discipline for any level of responsibility. Fundamental concepts, language, notation, and tools of systems engineering. Case-based application of tools to a systems engineering problem. Choice of integrative cases from different industries. Including aerospace, medical instruments, automotive, and e-business, and more. Designed for technical managers responsible for system requirements, design, development, test, support, and disposition, but who do not have the time to invest in certificate programs.

SYSEN 510(5100) Applied Systems Engineering (also CEE/COM S 504[5040], ECE/ORIE 512[5120], M&AE 591[5910])
Fall. 3 credits. Prerequisites: senior or graduate standing in an engineering field; concurrent or recent (past two years) enrollment in group-based project with strong system design component approved by course instructor. A. R. George, M. Peck, and R. Roundy. Fundamental ideas of systems engineering, and their application to design and development of various types of engineered systems. Defining system requirements, creating effective project teams, mathematical tools for system analysis and control, testing and evaluation, economic considerations, and the system life cycle.

SYSEN 511(5110) Applied Systems Engineering
Fall. 3 credits. Intended for off-campus students. Prerequisites: senior or graduate standing in engineering field; concurrent or recent (past two years) enrollment in group-based project with strong system design component approved by course instructor. Staff.

For description, see SYSEN 510.

SYSEN 520(5200) Systems Analysis
Architecture, Behavior, and Optimization (M&AE 592[5920], CEE/CIS 505[5050], ECE 513[5130], ORIE 513[5142])
Spring. 3 credits. Prerequisite: Applied Systems Engineering M&AE 591, CEE/CIS 504, ECE/ORIE 512, SYSEN 520 or 521, or permission of instructor.

This is an advanced course in the application of the systems engineering process to the design and operation of complex systems. Topics include techniques for design, simulation, optimization, and control of complex systems. Case studies and system simulations in diverse contexts provide context for the application of these techniques. Students majoring in Systems Engineering enroll in SYSEN 520. Students taking the Option in Systems Engineering enroll in M&AE 592, CEE 505, CIS 505, ECE 513, or ORIE 513. Students in Continuing Education enroll in SYSEN 521. Lectures are identical for all versions.

SYSEN 521(5210) Systems Analysis
Architecture, Behavior, and Optimization
Spring. 3 credits. Intended for off-campus students. Prerequisites: Applied Systems Engineering or permission of instructor. Staff.

For description, see SYSEN 520.

SYSEN 570(5700) Special Topics in Systems Engineering
On demand. 1–4 credits. Staff. Supervised study by individuals or small groups of one or more specialized topics not covered in regular courses.

SYSEN 571(5710) Practicum in Systems Engineering
On demand. 3 credits. Staff. Supervised study by individuals or small groups of one or more specialized topics not covered in regular courses.
Basics in Engineering Mathematics and Mechanics

T&AM 118(1180) Engineering Design: Making Digital Audio and Video Work (also ENGR 118(1180)) Spring. 3 credits. Course in Introduction to Engineering series. For description, see ENGR 118.

T&AM 202(2020) Mechanics of Solids (also ENGRD 202(2020)) Fall, spring. 4 credits. Prerequisite: PHYS 112, co-registration in MATH 192, or permission of instructor. For description, see ENGRD 202.

T&AM 203(2030) Dynamics (also ENGRD 203(2030)) Fall, spring. 3 credits. Prerequisite: T&AM 202, registration in MATH 293, or permission of instructor. For description, see ENGRD 203.

Engineering Mathematics

T&AM 191(1910) Calculus for Engineers (also MATH 191(1910)) Fall. 4 credits. Prerequisite: three years of high school mathematics, including trigonometry. For description, see MATH 191.

T&AM 192(1920) Calculus for Engineers (also MATH 192(1920)) Fall, spring, or summer. 4 credits. Prerequisite: MATH/T&AM 191. For description, see MATH 192.

T&AM 293(2930) Engineering Mathematics (also MATH 293(2930)) Fall, spring. 4 credits. Prerequisite: MATH/T&AM 192 plus knowledge of computer programming equivalent to that taught in COMP 100. For description, see MATH 293.

T&AM 294(2940) Engineering Mathematics [also MATH 294(2940)] Fall, spring. 4 credits. Prerequisite: MATH/T&AM 293. For description, see MATH 294.

T&AM 310(3100) Advanced Engineering Analysis I Fall, spring. 3 credits. Prerequisites: MATH/T&AM 293 and 294. Course topics include boundary value problems and eigenvalue problems in ordinary differential equations. Course covers special functions, partial differential equations. This is an introduction to the solution of problems which are of interest in science and technology. Use of computers to solve problems is emphasized.

T&AM 311/511(3110/5110) Advanced Engineering Analysis II Spring. 3 credits. Prerequisite: MATH/T&AM 294 or equivalent (T&AM 311 can be taken independently of 310). Mathematical modeling of physical and biological systems. Examples range from molecular diffusion, bacteria swimmers, chemotaxis, and physiological flows, to bird flight. The mathematics necessary to understand these phenomena is discussed in depth. They include probability theory, PDEs, stability analysis, complex variable analysis, and numerical analysis. Students from all fields are encouraged to take the course.

T&AM 610(6100) Methods of Applied Mathematics I Fall. 3 credits. Intended for beginning graduate students in engineering and science. Intensive course requiring more time than normally available to undergraduates (see T&AM 310-311) but open to exceptional undergraduates by permission of instructor. Emphasis is on applications. Course covers linear algebra, calculus of several variables, vector analysis, series, ordinary differential equations, and complex variables.

T&AM 611(6110) Methods of Applied Mathematics II Spring. 3 credits. Prerequisite: T&AM 610 or equivalent. Emphasis is on applications. Course covers partial differential equations, transform techniques, tensor analysis, and calculus of variations.

T&AM 612(6120) Methods of Applied Mathematics III Spring. 3 credits. Prerequisite: T&AM 610 and 611 or equivalent. Course topics include: integral transform, methods, Wiener-Hopf technique, solutions of integral equations and partial differential equations. Emphasis is drawn from electromagnetics, elasticity, fluid mechanics, heat transfer, and acoustics.

T&AM 613(6130) Methods of Applied Mathematics IV Spring. 3 credits. Prerequisite: T&AM 610-611 or equivalent. Not offered 2005-2006.

T&AM 617(6170) Advanced Mathematical Modeling: Biological and Fluid Dynamics Spring. 3 credits. Course topics include ciliary propulsion (biology); Eulerian realm: fish swimming, bird flight, etc.; review of potential flows; two-dimensional theory of lunate tails; unsteady airfoil theory; Weisfogh mechanism of insect flight.

T&AM 455(4550) Introduction to Composite Materials (also CEE 477(4770), MAE 455(4550), MAE 555(5550)) Spring. 3 credits. Course topics include introduction to composite materials; varieties and properties of fiber reinforcements and matrix materials; micromechanics of stiffness and stress transfer in discontinuous fiber/matrix arrays; orthotropic elasticity as applied to parallel fibers in a matrix and lamina; theory of stiffness (tension, bending, torsion) and failure of laminates and composite plates, including computer software for design; and manufacturing methods and applications for composites. There is a group component design and manufacturing project required, and a group laboratory on laminated component fabrication.

T&AM 511(5110) Master of Engineering Design Project I Fall. 3-12 credits. Variable. M. Eng. (mechanics) project related to the master of engineering in mechanics.

T&AM 655(6550) Composite Materials (also MAE/MS&E 655(6550)) Spring. 4 credits. Taught jointly with T&AM 455 using same lecture material, but also includes more advanced material and homework through additional lectures. Additional material includes shear-lag models of stress transfer around arrays of fiber breaks, including viscoelastic effects, statistical theories of composite strength and failure; stress distributions around holes and cuts in composite laminates; and compressive strength of composites. Laboratory on effects of holes and notches in composites.

T&AM 663(6630) Solid Mechanics I Fall. 4 credits. Rigorous introduction to solid mechanics emphasizing linear elasticity: tensors; deformations, rotations and strains; balance principles; stress, small-strain theory; linear elasticity, anisotropic and isotropic; basic theorems of elastostatics; and boundary-value problems, e.g., plates, St. Venant's solutions.

T&AM 664(6640) Solid Mechanics II Spring. 4 credits. Prerequisites: MATH 610 and T&AM 663 or equivalent. Preparation for advanced courses in solid mechanics. Topics include singular solutions in linear elasticity; plane stress, plane strain, anti-plane shear, airy stress functions; linear viscoelasticity; cracks and dislocations; classical plasticity; thermoelasticity; and three-dimensional elasticity.

T&AM 718(7180) Topics in Bifurcation Theory Spring. 3 credits. Offered every third year; not offered 2005-2006.

T&AM 752(7520) Nonlinear Elasticity

T&AM 753(7530) Fracture
Spring. 3 credits. Prerequisites: T&AM 610 or 611; and 663 and 664 or equivalents. Course covers fundamentals of linear elastic fracture mechanics. K, small-scale yielding, solutions of elastic crack problems, energy concepts, J-integral. Also covers nonlinear, rate-independent, small-scale deformation fracture mechanics: plastic fracture, J-integral, small-scale yielding, fields for stationary and growing cracks; failure mechanisms of polymers, ceramics, composites, and metals; void growth, load transfer between fibers, crazing; fracture testing, fatigue testing; computation of stress intensity factors; and plate theory and fracture.

T&AM 754(7540) Topics in Continuum Mechanics

T&AM 757(7570) Inelasticity
Spring. 3 credits. Offered alternate years; not offered 2005–2006.

T&AM 759(7590) Boundary Element Methods
Fall. 4 credits. Offered alternate years.

T&AM 796(7960) Mechanics in Terrestrial Locomotion

Dynamics and Space Mechanics

T&AM 570(5700) Intermediate Dynamics
Fall. 3 credits.
Topics include Newtonian mechanics; motion in rotating coordinate systems; introduction to analytical mechanics; virtual work, Lagrangian mechanics; Hamilton's principle; small vibration and stability theory. Newtonian-Eulerian mechanics of rigid bodies, and gyroscopes.

T&AM 578(5780) Nonlinear Dynamics and Chaos
Spring. 3 credits. Prerequisite: MATH/T&AM 293 or equivalent. Introduction to nonlinear dynamics, with applications to physics, engineering, biology, and chemistry. Emphasizes analytical methods, concrete examples, and geometric thinking. Topics include one-dimensional systems; bifurcations; phase plane; nonlinear oscillators; and Lorenz equations, chaos, strange attractors, fractals, iterated mappings, period doubling, renormalization.

T&AM 671(6710) Hamiltonian Dynamics

T&AM 672(6720) Celestial Mechanics (also ASTRO 579[679])

T&AM 673(6730) Mechanics of the Solar System (also ASTRO 571[675])

T&AM 674(6740) Applied Multi-body Dynamics

T&AM 675(6750) Nonlinear Vibrations
Fall. 3 credits. Prerequisite: T&AM 578 or equivalent. Offered alternate years. Quantitative analysis of weakly nonlinear systems in free and forced vibrations, perturbation methods, averaging method. Applications to problems in mechanics, physics, and biology. Additional topics may include Hopf bifurcation, Invariant manifolds, coupled oscillators, vibrations in continuous media, normal forms, and exploitation of symmetry.

T&AM 768(7680) Elastic Waves in Solids
Fall. 3 credits. Theory and equipment. Forward and Inverse Problems.

T&AM 776(7760) Applied Dynamical Systems (also MATH 717[7170])
Spring. 4 credits. For description, see MATH 717.

T&AM 796(7960) Mechanics in Terrestrial Locomotion

Special Courses, Projects, and Thesis Research

T&AM 491-492 (4910–4920) Project in Engineering Science
491, fall; 492, spring. 1–4 credits TBA. Projects for undergraduates under the guidance of a faculty member.

T&AM 796-800 (7960–8000) Topics in Theoretical and Applied Mechanics
Fall, spring. 1–3 credits TBA. Special lectures or seminars on subjects of current interest. Topics are announced when the course is offered.

T&AM 890(8900) Master's Degree Research in Theoretical and Applied Mechanics
Fall, spring. 1–15 credits TBA. Thesis or independent research at the Ph.D. level on a subject of theoretical and applied mechanics. Research is under the guidance of a faculty member.

T&AM 990(9900) Doctoral Research in Theoretical and Applied Mechanics
Fall, spring. 1–15 credits TBA. Thesis or independent research at the Ph.D. level on a subject of theoretical and applied mechanics. Research is under the guidance of a faculty member.

FACULTY ROSTER

Abel, John F., Ph.D., U. of California, Berkeley. Prof., Civil and Environmental Engineering, Emeritus
Ahner, Beth A., Ph.D., Massachusetts Inst. of Technology. Assoc. Prof., Biological and Environmental Engineering
Albonesi, David H., Ph.D., U. of Massachusetts. Assoc. Prof., Electrical and Computer Engineering
Albright, Louis D., Ph.D., Cornell U. Prof., Biological and Environmental Engineering
Allmendinger, Richard, Ph.D., Stanford U. Prof., Earth and Atmospheric Sciences
Aneshansley, Daniel J., Ph.D., Cornell U. Prof., Biological and Environmental Engineering
Anton, A. Brad, Ph.D., California Inst. of Technology. Assoc. Prof., Chemical and Biomolecular Engineering
Apanasovich, Tatiana, Ph.D., Texas A&M U. Asst. Prof., Operations Research and Industrial Engineering
Apel, Alyssa B., Ph.D., Johns Hopkins U. Clare Boothe Luce Assistant Professor of Electrical and Computer Engineering
Aquino, Wilkins, Ph.D., U. of Illinois. Asst. Prof., Civil and Environmental Engineering
Arch, Lynden A., Ph.D., Stanford U. Prof., Chemical and Biomolecular Engineering
Arms, William, Ph.D., U. of Sussex (England). Prof., Computer Science
Ast, Dieter G., Ph.D., Germany. Asst. Prof., Biological and Environmental Engineering
Bailey, Gruene, Ph.D., U. of Birmingham (England). Prof., Computer Science
Baker, Jewell A., Ph.D., Stanford U. Assoc. Prof., Materials Science and Engineering
Bala, Kavita, Ph.D., Massachusetts Inst. of Technology. Asst. Prof., Computer Science
Barazangi, Abbas, Ph.D., Columbia U. Prof., Earth and Atmospheric Sciences
Bartel, Donald L., Ph.D., U. of Iowa. Prof., Mechanical and Aerospace Engineering and Biomedical Engineering
Bartsch, James A., Ph.D., Purdue U. Assoc. Prof., Biological and Environmental Engineering
Bartlett, William A., Ph.D., Cornell U. Prof., Electrical and Computer Engineering
Bhate, Sunil, Ph.D., U. of California, Berkeley. Asst. Prof., Electrical and Computer Engineering
Bird, John M., Ph.D., Rensselaer Polytechnic Inst. Prof. (Emeritus), Earth and Atmospheric Sciences
Birman, Kenneth F., Ph.D., U. of California, Berkeley. Prof., Computer Science
Bisogni, James J., Ph.D., Cornell U. Assoc. Prof., Civil and Environmental Engineering
Blackley, John M., Ph.D., Glasgow U. (U.K.). Herbert Fisk Johnson Professor of Engineering, Materials Science and Engineering
Bland, Robert G., Ph.D., Cornell U. Prof., Operations Research and Industrial Engineering
Bloom, Arthur L., Ph.D., Yale U. Prof. (Emeritus), Earth and Atmospheric Sciences
Bojanczyk, Adam W., Ph.D., Polish U. of Warsaw (Poland). Assoc. Prof., Electrical and Computer Engineering
Bonassar, Lawrence J., Ph.D., Massachusetts Inst. of Technology. Assoc. Prof., Mechanical and Aerospace Engineering and Biomedical Engineering
Booher, John F., Ph.D., Cornell U. Graduate School Prof. (Emeritus). Mechanical and Aerospace Engineering
Brock, Joel D., Ph.D., Massachusetts Inst. of Technology. Director and Prof., Applied and Engineering Physics
Brown, Larry D., Ph.D., Cornell U. Prof., Earth and Atmospheric Sciences
Bruins, Wilfried, Ph.D., U. of California, Davis. Prof., Civil and Environmental Engineering
Buhman, Robert A., Ph.D., Cornell U. John Edson Sweet Professor of Engineering, Applied and Engineering Physics
Burns, Joseph A., Ph.D., Cornell U. Irving Porter Church Professor of Engineering, Theoretical and Applied Mechanics, Astronomy
ADMISTRATION

Alison G. Power, dean
J. Ellen Gainor, associate dean
Terry D. Plater, associate dean
Sarah S. Hale, assistant dean

Students interested in professional and research master's and doctoral degrees at Cornell pursue their graduate studies through the Graduate School, which administers 94 graduate fields, ranging from aerospace engineering to zoology. Programs leading to degrees in law (J.D. and LL.M.) are administered by the Cornell Law School; the doctor of medicine (M.D.) is administered by Cornell's Weill Medical College in New York City; the doctor of veterinary medicine (D.V.M.) is administered by the College of Veterinary Medicine; and the master of business administration (M.B.A.) is earned through the Johnson Graduate School of Management.

THE GRADUATE SCHOOL

The graduate program at Cornell permits an unusual degree of accommodation to the needs and interests of the individual student. Degree requirements are kept to a minimum. There are no specific course or credit requirements for the advanced general degrees of master of arts, master of science, and doctor of philosophy but only such general requirements as best accomplish the aim of graduate study: a period of study in residence, mastery of one subject, adequate knowledge of allied subjects, oral examinations to establish competency for presentation of a dissertation or thesis, and a satisfactory dissertation or thesis. Certain advanced professional degree programs have specific course or credit requirements that are determined by the faculty of the professional school or college in which the degrees are offered.

A close working relationship between the student and faculty members is essential to the graduate program at Cornell. Under the Special Committee system the student is guided by, and works with, at least two or three faculty members chosen by the student to represent his or her major and minor subjects. The major subject representative is the chair of the Special Committee, who usually has the primary responsibility for directing the student's thesis or dissertation research.

REQUIREMENTS FOR ADMISSION

A successful applicant to the Graduate School must:

1. hold a baccalaureate degree or its equivalent granted by a faculty or university of recognized standing;
2. have adequate preparation for graduate work in the chosen field of study;
3. have fluent command of the English language;
4. present evidence of promise in advanced study and research; and
5. take the Graduate Record Examinations (GRE) General Test or other specific examinations required by the various fields of study.

Additionally, international applicants whose native language is not English must provide proof of competency in English as part of the admissions process. Proof can be one of the following:

1. a score of at least 213 on the Test of English as a Foreign Language (TOEFL) taken before September 1, 2005. Applicants who take the new four-part TOEFL after that date must meet the following minimum scores: writing, 20; listening, 15; reading, 20; and speaking, 22. Individual fields of study may set higher minimums.

2. evidence of at least two years of study in a college or university in a country where English is both the native language and the language of instruction.

Information about the TOEFL exam and the GRE—including examination times, dates, locations, and application forms—is available online from the Educational Testing Service (www.ets.org) or by postal mail at ETS, Princeton, NJ 08541, U.S.A.

DEADLINES

Each graduate field of study has specific deadlines for fall and spring admission. The earliest deadline is December 1; many deadlines fall in mid-January. Applications should be received no later than those published dates, which are available in the application booklet or online at catalog.gradschool.cornell.edu.

INQUIRIES

Applicants should contact the fields of study for answers to specific questions about admission to their graduate programs. Contacts in the fields of study also can answer questions about facilities for advanced study and research, special requirements, and opportunities for fellowships and assistantships. Phone numbers, e-mail addresses, and other contact information are available in the application booklet or online at catalog.gradschool.cornell.edu.

General questions about graduate study can be directed to Graduate School Student Services, 255-9820, or gradschool@cornell.edu or www.gradschool.cornell.edu or by writing to Graduate School, 143 Caldwell Hall, Cornell University, Ithaca, NY 14853-2602.

FOR MORE INFORMATION

Detailed information about the admissions process, academic programs, financial aid, and student services is available in the application booklet and at the Graduate School website, www.gradschool.cornell.edu. The site features links to the Graduate School's online application (apply.gradschool.cornell.edu), printable forms, and links to sites of interest to graduate applicants.
SCHOOL OF HOTEL ADMINISTRATION

ADMINISTRATION
Sheryl E. Kimes, dean
Leo Renaghan, associate dean for academic affairs
Margaret Haley Ferguson, associate dean for business administration
Steven A. Carvell, assistant dean
Gary M. Thompson, executive director, Center for Hospitality Research
Jan de Roos, Richard J. and Monene P. J. Willard Marriott Executive Education Center, director of information technologies
Timothy J. Durnford, director of the Hotel School/Culinary Institute of America Alliance
TBA, director of enrollment services
Lisa M. Shaffer, director of student services
Brad Walp, director of enrollment management
Neoma Mullens, associate director of admissions
Walter C. Williams, director of alumni affairs and development
Christine Natios, director of alumni affairs
Edward A. Evans, director, Center for Entrepreneurship
Nestle Library
Dina Kristof, registrar

DEGREE PROGRAMS

Hotel and Restaurant Administration

Degree
B.S.
M.M.H.
M.S.
Ph.D.

FACILITIES

Statler Hall
Statler Hall is a unique building designed expressly to meet the needs of the faculty and students of the School of Hotel Administration. The building serves both practical and theoretical instruction, houses classrooms, lecture rooms, laboratories, a library, a computer center, a beverage management center, a newly refurbished auditorium, and the Statler Hotel and J. Willard Marriott Executive Education Center. Statler Hall and the Statler Hotel were designed expressly for the school's academic and executive education programs, providing students with training and work experience in facilities similar to those in which they will work after graduation. In the fall of 2004, the school opened the Robert A. and Jan M. Beck Center, a $50 million addition to Statler Hall. This $16.2 million expansion provides state-of-the-art classroom and meeting spaces, a computer laboratory, and teaching technologies that facilitate an interactive teaching style.

The School of Hotel Administration's Nestle Library has the largest single collection of hospitality-related materials in the United States. The collection contains approximately 23,000 books, 2,000 videotapes, and more than 600 journals, magazine, newsletter, and newspaper subscriptions. Materials on lodging, foodservice, travel and tourism, real estate, and general hospitality business topics comprise the collection. Among the library's special features are numerous computerized information resources, including Business Source Premier, Proquest, Hotel Outlook, Mintel Marketing Intelligence, and the Hospitality and Tourism Index, a unique index to hospitality articles. Information resources and services for the hospitality industry are available for a fee through the library's HOSTLINE service. More detailed information about the Nestle Library can be found at www.nestlelib.cornell.edu. In addition to offering an excellent collection of materials and access to extensive electronic resources, the Hotel School library provides instruction and research support to every student.

Statler Hotel and J. Willard Marriott Executive Education Center

The Statler Hotel comprises 150 guest rooms, an executive education center, restaurants, and a lounge, and the university's faculty and staff club. It demonstrates the very finest in hospitality and hospitality education practices. The Statler is an independent, self-sustaining teaching hotel that provides quality food, beverage, meeting, and lodging services to the local community and campus visitors, including parents and those who visit Cornell as part of the application process. In addition, the hotel is a practice management facility for the local community and campus visitors, including parents and those who visit Cornell as part of the application process. In addition, the hotel is a practice management facility for the local community and campus visitors, including parents and those who visit Cornell as part of the application process. The Statler School of Hotel Administration's Nestle Library has the largest single collection of hospitality-related materials in the United States. The collection contains approximately 23,000 books, 2,000 videotapes, and more than 600 journals, magazine, newsletter, and newspaper subscriptions. Materials on lodging, foodservice, travel and tourism, real estate, and general hospitality business topics comprise the collection. Among the library's special features are numerous computerized information resources, including Business Source Premier, Proquest, Hotel Outlook, Mintel Marketing Intelligence, and the Hospitality and Tourism Index, a unique index to hospitality articles. Information resources and services for the hospitality industry are available for a fee through the library's HOSTLINE service. More detailed information about the Nestle Library can be found at www.nestlelib.cornell.edu. In addition to offering an excellent collection of materials and access to extensive electronic resources, the Hotel School library provides instruction and research support to every student.

Statler Hotel and J. Willard Marriott Executive Education Center

The Statler Hotel comprises 150 guest rooms, an executive education center, restaurants, and a lounge, and the university's faculty and staff club. It demonstrates the very finest in hospitality and hospitality education practices. The Statler is an independent, self-sustaining teaching hotel that provides quality food, beverage, meeting, and lodging services to the local community and campus visitors, including parents and those who visit Cornell as part of the application process. In addition, the hotel is a practice management facility for the local community and campus visitors, including parents and those who visit Cornell as part of the application process. In addition, the hotel is a practice management facility for the local community and campus visitors, including parents and those who visit Cornell as part of the application process. The Statler School of Hotel Administration's Nestle Library has the largest single collection of hospitality-related materials in the United States. The collection contains approximately 23,000 books, 2,000 videotapes, and more than 600 journals, magazine, newsletter, and newspaper subscriptions. Materials on lodging, foodservice, travel and tourism, real estate, and general hospitality business topics comprise the collection. Among the library's special features are numerous computerized information resources, including Business Source Premier, Proquest, Hotel Outlook, Mintel Marketing Intelligence, and the Hospitality and Tourism Index, a unique index to hospitality articles. Information resources and services for the hospitality industry are available for a fee through the library's HOSTLINE service. More detailed information about the Nestle Library can be found at www.nestlelib.cornell.edu. In addition to offering an excellent collection of materials and access to extensive electronic resources, the Hotel School library provides instruction and research support to every student.

The Statler Hotel comprises 150 guest rooms, an executive education center, restaurants, and a lounge, and the university's faculty and staff club. It demonstrates the very finest in hospitality and hospitality education practices. The Statler is an independent, self-sustaining teaching hotel that provides quality food, beverage, meeting, and lodging services to the local community and campus visitors, including parents and those who visit Cornell as part of the application process. In addition, the hotel is a practice management facility for the local community and campus visitors, including parents and those who visit Cornell as part of the application process.

Requirements for Graduation
Regularly enrolled undergraduate students in the School of Hotel Administration are candidates for the degree of bachelor of science. The requirements for that degree are:

1. completion of eight semesters in residence for those who entered as freshmen; semesters of residence for transfer students are determined by the amount of transfer credit awarded;

2. completion, with a minimum cumulative grade point average (GPA) of 2.0 (including a GPA of 2.0 in a full-time schedule of courses on campus in the final semester), of 120 required and elective credits, as set forth in the table on the following page;

3. qualification in one language other than English. This requirement may be met by any one of the following: (a) three years of high school study of one foreign language; (b) score of 550 on Cornell Placement Test; (c) passing language course level 121 and 122 (8 credits) or the equivalent, and attaining a minimum grade of at least C- or "Satisfactory" in each (C- or above for transfer credit from other institutions); or (d) passing language course level 123 or the equivalent;

4. completion of two units of practice credit and

5. completion of the university requirement in physical education.

Suggested course programs appear on the following pages. The core courses account for 60 of the 120 credits needed for graduation, the hotel school electives account for 12 credits, and 10 credits are allotted for distributive electives. The remaining 21 credits may be earned in courses chosen from the offerings of any college of the university, provided that the customary requirements for admission to such courses are met.

Students in the School of Hotel Administration who plan to attend summer school at Cornell or any other four-year college or university, with the expectation that the credit earned will be counted toward the Cornell degree in hotel administration, must obtain the approval of the school in advance. Without advance approval, such credit may not count toward the degree.

Credit earned in military science, aerospace studies, or naval science courses may be counted in the 21-credit group of free electives. No credit toward the degree is allowed for "00"-level courses, such as EDUC 005.

Transfer Credit Policy
Transfer students are required to complete all degree requirements with at least 60 credits at Cornell University. In the core, transfer credit may be allowed against basic courses only (e.g., H ADM 121, 106). Others generally are waived, and an upper-level course in the area substituted. For instance, if H ADM
243 were waived, another marketing course would be required in its place. The communication courses (H ADM 165 and 365) are tailored specifically to the School of Hotel Administration and, thus, communication courses taken elsewhere generally are not accepted against core courses.

Hotel elective courses may not transfer, except from the Culinary Institute of America. Eighteen credits in distributive electives may transfer, and 21 credits in free electives may transfer.

Concentration
While completing the hotel school elective courses, undergraduates in the school may select a concentration.

Before selecting a field of concentration, students should consult the coordinator of instruction in that area during the sophomore year to plan the sequence of courses that will best fit their program.

Upon completion, the concentration will be noted on the transcript, provided a cumulative GPA of 3.0 in the concentration was attained.

Foreign Languages
Mastery of a foreign language is particularly desirable for students who are planning careers in the hospitality industry and, hence, the second language requirement for graduation. Further information on foreign language courses at Cornell, and placement in language courses, may be found under "Modern Languages, Literature, and Linguistics" and under "Advanced Placement for Freshmen" in the College of Arts and Sciences section of this catalog.

Independent Study and Research
Students may conduct independent study or research projects in any academic area of the school under the direction of a resident faculty member. Credit is arranged on an individual basis. To enroll in an independent study or research project, students must obtain written permission from the school before the add deadline. See H ADM 497, 498, 499, or 699 for more details.

Practice Credit Requirement
As part of the degree requirements, undergraduates enrolled in the School of Hotel Administration must fulfill the practice credit requirement and submit verification thereof. Further details are set forth in the Practice Credit Handbook for Undergraduates in the School of Hotel Administration, available in the school's student services office. 180 Statler Hall.

Management-Intern Program
Hotel school juniors and seniors have a unique opportunity to gain invaluable knowledge and experience in the hospitality industry through the management-intern program. Students receive 12 free elective credits and 1 practice credit. While on the internship, tuition is reduced and students receive a salary from the sponsoring organization. Positions are available in the United States and internationally. Sponsors include, but are not limited to, hotels, restaurants, casinos, corporate offices, consulting firms, and clubs. Application should be made one semester in advance. Information meetings are held at the beginning of each semester and are open to all students. See H ADM 493 and 494 for more details. More information about the management-intern program also is available in the student services office. 180 Statler Hall.

Study Abroad
All students planning to study abroad apply through Cornell Abroad; please see the Cornell Abroad program description in the introductory section of this catalog.

The hotel school represents the international aspects of the hospitality industry in many ways—from the large number of international students in its programs, to career opportunities throughout the world. To prepare for the global nature of the industry, students are encouraged to consider studying abroad in either the fall or spring semesters (or, in some cases, both). While abroad, students have the opportunity to learn about other cultures, become more proficient in a second (or perhaps third) language and, in those programs where internships are offered, work in an international environment.

Students should start the process of investigation early, including consultation with the hotel school study abroad adviser, 180 Statler Hall, as well as with the staff in the Cornell Abroad office, 300 Caldwell Hall. Requirements for college approval include a GPA of 3.0 or higher, good academic standing, registered full-time student status, and not being in one's final semester. Credits earned abroad are considered transfer credits, and, as such, they would count against the maximum of 60 transfer credits allowed. A maximum of 15 credits may be transferred from study abroad, and students should plan on taking no less than 15 credits while abroad. Courses typically transfer into distributive and free electives. Credit for study abroad will be awarded on a Cornell grade of C or higher of the semester abroad and receipt of the official transcript by the college.

For further details on the application process and deadlines, see the "Cornell Abroad" section of this catalog or view the Cornell Abroad web site at www.cuabroad.cornell.edu.

Culinary Institute of America Alliance
The School of Hotel Administration has an alliance with the Culinary Institute of America, which is located in Hyde Park, N.Y. Among other opportunities, hotel school juniors and seniors are encouraged to apply for the Culinary Institute of America immersion program in January and during the summer. More information is available in the student services office, 180 Statler Hall.

Part-Time Study
Generally, part-time study is not allowed. Exceptions may be made for employee degree candidates, students who have medical reasons for a reduced schedule, or in other very extenuating circumstances. In no event shall a student be allowed to enroll on a part-time basis during the last semester of study. Further details on part-time study may be found in the school's student handbook (available in 180 Statler Hall).

Grading System
Letter grades ranging from A+ to F are given to indicate academic performance in each course. These letter grades are assigned a numerical value for each semester average as follows: A is equivalent to 4.0; B to 3.0; C to 2.0; D to 1.0; F to 0. For good standing, the student must maintain a minimum average of 2.0. A maximum of 4 credits each semester may be taken on a "satisfactory-unsatisfactory" (S-U) basis. Students should be aware that a satisfactory grade equals C- or above and an unsatisfactory grade equals D+ or lower.

Students whose semester averages are at least 3.3 and who took at least 12 credits of letter grades with no unsatisfactory or incomplete grades are honored by being placed on the Dean's List.

Course Requirements for the Bachelor of Science Degree
Note: The curriculum was revised during the 2003-2004 academic year, and the following requirements are for students entering the program in the fall of 2004 or later. Students who enrolled before the fall of 2004 should check their individual graduation requirements with the student services office, 180 Statler Hall.

Required courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operations: H ADM</td>
<td>105, 106, 201, 301, 305</td>
</tr>
<tr>
<td>Management and Organizational Behavior: H ADM 115</td>
<td>3</td>
</tr>
<tr>
<td>Human Resources Management: H ADM 211</td>
<td>3</td>
</tr>
<tr>
<td>Finance/Accounting: H ADM 121, 221, 322, 321</td>
<td>12</td>
</tr>
<tr>
<td>Food and Beverage Management: H ADM 236</td>
<td>4</td>
</tr>
<tr>
<td>Marketing, Tourism, and Strategy: H ADM 243, 441</td>
<td>6</td>
</tr>
<tr>
<td>Facilities Management, Planning, and Design: H ADM 255, 355</td>
<td>6</td>
</tr>
<tr>
<td>Managerial Communication: H ADM 165, 365, first-year writing seminar</td>
<td>9</td>
</tr>
<tr>
<td>Information Systems: H ADM 174, 275</td>
<td>6</td>
</tr>
<tr>
<td>Law: H ADM 387</td>
<td>3</td>
</tr>
<tr>
<td>Economics: H ADM 141</td>
<td>3</td>
</tr>
<tr>
<td>Specifically required credits</td>
<td>69</td>
</tr>
<tr>
<td>Hotel electives</td>
<td>69</td>
</tr>
<tr>
<td>Distributive electives</td>
<td>18</td>
</tr>
<tr>
<td>Free electives</td>
<td>21</td>
</tr>
</tbody>
</table>

Total credits required for graduation | 120 |
Freshman Year
Typically, a freshman schedule will consist of 15 to 16 credits each semester, to include the following:

<table>
<thead>
<tr>
<th>Required courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>H ADM 105 Introduction to Hotel Operations</td>
<td>2</td>
</tr>
<tr>
<td>H ADM 106 Introduction to Food Service Operations</td>
<td>2</td>
</tr>
<tr>
<td>H ADM 115 Organizational Behavior and Interpersonal Skills</td>
<td>3</td>
</tr>
<tr>
<td>H ADM 121 Financial Accounting</td>
<td>3</td>
</tr>
<tr>
<td>H ADM 141 Microeconomics for the Service Industries</td>
<td>3</td>
</tr>
<tr>
<td>H ADM 165 Managerial Communication I</td>
<td>3</td>
</tr>
<tr>
<td>H ADM 174 Microcomputing</td>
<td>3</td>
</tr>
<tr>
<td>First-year writing seminar</td>
<td>3</td>
</tr>
<tr>
<td>Electives</td>
<td>6</td>
</tr>
</tbody>
</table>

| Total Freshman Credits | 28 |

Sophomore Year

<table>
<thead>
<tr>
<th>Required courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>H ADM 201 Hospitality Quantitative Analysis</td>
<td>3</td>
</tr>
<tr>
<td>H ADM 211 Human Resources Management</td>
<td>3</td>
</tr>
<tr>
<td>H ADM 221 Managerial Accounting</td>
<td>3</td>
</tr>
<tr>
<td>H ADM 222 Finance</td>
<td>3</td>
</tr>
<tr>
<td>H ADM 236 Culinary Theory and Practice</td>
<td>4</td>
</tr>
<tr>
<td>H ADM 243 Principles of Marketing</td>
<td>3</td>
</tr>
<tr>
<td>H ADM 255 Hotel Development and Planning</td>
<td>3</td>
</tr>
<tr>
<td>H ADM 275 Introduction to Information Systems Management</td>
<td>3</td>
</tr>
<tr>
<td>Electives</td>
<td>6</td>
</tr>
</tbody>
</table>

| Total Sophomore Credits | 31 |

Junior Year

<table>
<thead>
<tr>
<th>Required courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>H ADM 301 Service Operations Management</td>
<td>3</td>
</tr>
<tr>
<td>H ADM 305 Restaurant Management</td>
<td>4</td>
</tr>
<tr>
<td>H ADM 321 Hospitality Financial Management</td>
<td>3</td>
</tr>
<tr>
<td>H ADM 355 Hospitality Facilities Operations</td>
<td>3</td>
</tr>
<tr>
<td>H ADM 365 Managerial Communication II</td>
<td>3</td>
</tr>
<tr>
<td>H ADM 387 Business and Hospitality Law</td>
<td>3</td>
</tr>
<tr>
<td>Electives</td>
<td>12</td>
</tr>
</tbody>
</table>

| Total Junior Credits | 31 |

Senior Year

<table>
<thead>
<tr>
<th>Required courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>H ADM 441 Strategic Management</td>
<td>3</td>
</tr>
<tr>
<td>Electives</td>
<td>24</td>
</tr>
</tbody>
</table>

| Total Senior Credits | 27 |

GRADUATE CURRICULUM
The school’s programs for advanced degrees include those of Master of Management in Hospitality, Master of Science, and Doctor of Philosophy. For further information on graduate programs, contact the student services office, 180 Statler Hall, 255-7245.

<table>
<thead>
<tr>
<th>Required Program for Master of Management in Hospitality Degree</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>H ADM 110 Dean’s Distinguished Lecture Series</td>
<td>1</td>
</tr>
<tr>
<td>H ADM 700 Master Class</td>
<td>1</td>
</tr>
<tr>
<td>H ADM 703 Operations Management</td>
<td>3</td>
</tr>
<tr>
<td>H ADM 711 Organizational Behavior</td>
<td>3</td>
</tr>
<tr>
<td>H ADM 712 Human Resources Management</td>
<td>3</td>
</tr>
<tr>
<td>H ADM 725 Corporate Finance</td>
<td>3</td>
</tr>
<tr>
<td>H ADM 744 Competitive Strategies for the Hospitality Industry</td>
<td>3</td>
</tr>
<tr>
<td>H ADM 751 Property Development and Planning</td>
<td>3</td>
</tr>
<tr>
<td>H ADM 761 Managerial Communication</td>
<td>3</td>
</tr>
<tr>
<td>H ADM 772 Information Systems Management</td>
<td>3</td>
</tr>
<tr>
<td>H ADM 781 Professional Development III</td>
<td>0.5</td>
</tr>
<tr>
<td>H ADM 782 Professional Development IV</td>
<td>1</td>
</tr>
<tr>
<td>H ADM 783 Professional Development I</td>
<td>0.25</td>
</tr>
<tr>
<td>H ADM 784 Professional Development II</td>
<td>0.25</td>
</tr>
<tr>
<td>H ADM 790 Externship</td>
<td>1</td>
</tr>
<tr>
<td>H ADM 793 Hospitality Industry Leadership Development Institute</td>
<td>1</td>
</tr>
</tbody>
</table>

| Total credits required for the master of management in hospitality program | 48 |

Course Schedule Information
For up-to-date information about course scheduling, and to obtain a course supplement, contact the hotel school student services office, 180 Statler Hall, 255-3076.

ORGANIZATIONAL MANAGEMENT, COMMUNICATION, AND LAW

Management and Organizational Behavior

<table>
<thead>
<tr>
<th>H ADM 110(1110) Distinguished Lectures in Hospitality Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall. 1 credit. Elective. New dean TBA.</td>
</tr>
</tbody>
</table>

The Dean’s Distinguished Lecture Series is a long-standing hotel school tradition that provides a unique opportunity for successful industry leaders to share their experiences with Cornell students. In its 40-year history, the Dean’s Distinguished Lecture Series has hosted the most influential and accomplished leaders from every segment of the hospitality industry. Speakers share their views about successful management styles, possible career paths, critical industry-related issues, and qualities conducive to successful business leadership. Students have an unparalleled opportunity to learn and question how hospitality leaders view the current and future status of the industry.

<table>
<thead>
<tr>
<th>H ADM 115(1115) Organizational Behavior and Interpersonal Skills</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall, spring. 3 credits. Required.</td>
</tr>
</tbody>
</table>

J. Brownell, T. Simons, and K. Walsh. Focuses on managing people in the workplace. Students develop theoretic lenses for understanding people and organizations, and practical tools for accomplishing personal and organizational goals. Topics include: individual differences, conflict management, problem-solving, power influence, motivation, leadership, coaching and counseling, and group process. Students learn through case studies, self-assessments, experiential exercises, readings, discussions, papers, and group activities.

<table>
<thead>
<tr>
<th>H ADM 310(3310) Statler Leadership Development Program</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall and spring. 1 credit. Elective.</td>
</tr>
</tbody>
</table>

Prerequisite: one semester (200 hours) of employment in Statler Hotel. The SLDP is a partnership among Hotel School faculty, Statler Hotel management, and industry executives, who together teach and guide students to become tomorrow’s leaders. The program enables students to progress through five different paid employment phases in the Statler Hotel, from entry level to student manager. Students who progress to the level of student manager become Statler Fellows and will travel to a major city for an all-expense-paid trip that includes forums with industry leaders, site visits of leading industry facilities, and cultural activities. Each phase requires approximately 200 hours of paid employment at the Statler Hotel and is completed through a certification process. Weekly Friday afternoon sessions (2:30-4:00 P.M.) with Statler Hotel managers include discussions, performance reflection, training sessions, and industry forums with hospitality leaders.

<table>
<thead>
<tr>
<th>H ADM 314(3314) High-Performance Leadership</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall. 3 credits. Elective. Limited to 30 students. Prerequisite: hotel school juniors and seniors; H ADM 115. Graduate students should enroll in H ADM 614. T. Simons. Explor...</td>
</tr>
</tbody>
</table>

Explores the nature of leaders and leadership from a variety of perspectives. Discussion of current articles in leadership prepares participants to be thoughtful leaders and
discriminating consumers of leadership ideas. Topics include charismatic leadership, leadership change, the exercise of power, symbolic communication, gender challenges, and related themes. Leadership is examined from the individual, small group, and organizational perspectives. Case studies further illustrate the application of course material. Students assess their own leadership style and engage in leadership development activities. Class members have opportunities to interact with hospitality leaders and to gain a better understanding of the dynamics of leadership behavior.

H ADM 410(4410) Hospitality Management Seminar
Fall. 1 credit. Elective. Limited to 30 students. Prerequisite: hotel seniors and graduate students. Co-requisite: H ADM 110 or equivalent. Designed for students wishing to add course who do not attend first class and fail to notify secretary in 146 Statler Hall of their absence before first class automatically are moved to instructor's waiting list. Students permitted to take course will have until F, Sept. 2, 2005, to add it. Failure to do so will result in their being dropped from course. New dean TBA.

Components H ADM 110 by giving students the opportunity to interact with guest speakers, and to participate in roundtable discussions on issues relating to the hospitality industry. The dialog can give students a better understanding of industry trends, challenges, and opportunities.

[H ADM 411(4411) Negotiations in the Hospitality Industry
Spring. 3 credits. Elective. Limited to 30 students. Prerequisite: undergraduate standing, H ADM 115 or equivalent. Not offered 2005-2006. T. Simons. Negotiation is a critical factor in business success. This course provides hands-on experience in negotiation in the hospitality context. Through role-play exercises, discussion, and writing, students develop into tough negotiators with whom people will want to continue doing business. Students become more comfortable with negotiations, and develop their own personal negotiating style. Students also learn how to adjust their negotiating style to respond appropriately to others' different personalities and negotiation tactics.

[H ADM 414(4414) Quality Planning in the Hospitality Industry
Spring. 3 credits. Elective. Limited to 25 students. Prerequisites: senior or graduate standing; all required hotel school undergraduate courses at 100, 200, and 300 levels. Not offered 2005-2006. T. Hinkin. Covers the analysis of work processes and examines organizations from three perspectives: the external customer, the internal customer, and management. This course is designed to provide students with a systematic approach to identifying, prioritizing, and improving key job functions and work processes. Students learn the tools of quality management including cost of quality, flowcharting, statistical process control, and collecting, organizing, and presenting data. A major component of the course is HOTs, an interactive hotel simulation that is conducted as a group activity. This is a seminar course, requiring active participation in discussion of readings and case studies.

H ADM 415(4415) Managerial Leadership in the 21st Century
Spring. 3 credits. Elective. Owing to popularity of class, priority is given in following order: seniors/second-semester juniors/first-semester students, nonemployees, extramural students, sophomores, freshmen, and Cornell employees. Space permitting, class may be added up to first day, but absolute deadline for dropping course is 12 noon F, Feb. 10, F Feb. 10 (1-8 P.M.), 5. Jan. 28 (9 A.M.-6 P.M.), Sun, Feb. 12 (9 A.M.-5 P.M.), 2006, in Statler Auditorium. Attendance mandatory for credit. Fee for required notebook (charged to student's bursar bill; notebook distributed on first day of class). $35. K. Blumard. Helps students become participant observers in their own lives through studying the field of applied behavioral science. Students will be able to use what they learn about human beings and how they function best in groups and organizations on a day-to-day basis to develop high-quality relationships between themselves and the people they support and depend upon (their boss, staff, peers/associates, and customers). When high-quality relationships exist, organizations tend to be characterized by high levels of integrity, customer satisfaction, employee empowerment, and organizational effectiveness. Students learn also how students create quality friendships and family relationships. A final paper is due three weeks after the last day of class.

H ADM 611(6611) Negotiations in the Hospitality Industry
Spring. 3 credits. Elective. Limited to 30 students. Prerequisites: graduate standing; seniors by permission of instructor. H ADM 710 or equivalent. Not offered 2005-2006. T. Simons. Negotiation is a critical factor in business success. This course provides hands-on experience in negotiation in the hospitality context. Through role-play, discussion, and writing, students develop into tough negotiators with whom people will want to continue doing business. Students become more comfortable with negotiations, and develop their own personal negotiating style. Students also learn how to adjust their negotiating style to respond appropriately to others' personalities and negotiation tactics.

H ADM 614(6614) High-Performance Leadership
Fall. 3 credits. Elective. Limited to 30 students. Prerequisite: H ADM 710; hotel graduate students. Juniors and seniors should enroll in H ADM 314. Not offered 2005-2006. J. Brownell. For description, see H ADM 314.

H ADM 711(7711) Organizational Behavior
Fall. 3 credits. M.M.H. requirement. Prerequisite: M.M.H. students or written permission of instructor in advance of preenrollment. J. Brownell. Teaches how to analyze and develop groups, and organizations interact within a complex, globalized service environment. Students develop interpersonal skills and gain a greater awareness of how their personal style influences leadership and decision-making. They learn to motivate others, negotiate ethical decisions, manage teams, and lead organizations through change.

Human Resources Management
H ADM 211(2211) Human Resource Management
Fall, spring. 3 credits. Required. Limited to 50 students per lec. Not open to freshmen or graduate students. Prerequisite: H ADM 115. M. Sturman and B. Tracey. Provides students with a broad yet in-depth overview of the policies, practices, and procedures that can be used to attract, select, develop, and retain quality employees. A number of factors are considered that high influence HRM policies and practices and provide opportunities to apply course topics to substantive situations that students will face as future hospitality professionals. Lectures, discussions, case studies, and videos.

H ADM 712(7712) Human Resource Management
Spring. 3 credits. M.M.H. requirement. Prerequisite: M.M.H. students or written permission of instructor in advance of preenrollment. M. Sturman and B. Tracey. Covers the strategies that enable companies to attract, develop, and retain high-quality employees, focusing on selection, compensation, performance appraisal, and career management. In each of these areas the focus is on the return on the human-resource investment.

Managerial Communication
H ADM 165(1165) Managerial Communication I
Fall. 3 credits. Elective. Required. Limited to 18 students per lec. (Students required to take this course generally may not delay it. If extenuating circumstances exist, student must petition to drop course by end of first week of class. Course must be taken within first two semesters in hotel school, including any semesters in Internal Transfer Division (ITD). Add/drop and sec exchange must be approved by chairperson.) Priority given to hotel students. N. Dahl, D. Johnson, D. Lennox, A. Newman, and C. Snow. Introduction to the role and importance of effective communication in managerial work, especially in the hospitality industry. Development of abilities to think quickly, think clearly, and express thought. The process of planning, preparing, and executing professional communications with an emphasis on written documents. Students write a series of business documents and give oral presentations.

H ADM 364(3364) Advanced Business Writing
Spring. 3 credits. Elective. Limited to 20 students per lec; priority given to hotel students. Prerequisite: junior, senior, or graduate standing or written permission of instructor; for hotel undergraduates H ADM 165 or waiver; for non-hotel undergraduates, completion of their college's writing requirement. A. Newman. Focuses on communicating challenging messages in business contexts. Written assignments emphasize delivering persuasive messages, working with tone and style, and developing different types of documents in professional contexts. Different kinds of assignments are offered from semester to semester. Assignments often include business letters and memos written for various contexts, procedures and policy statements, promotional materials, negative messages, and analytical reports requiring research.
H ADM 365(3365) Managerial Communication II
Fall, spring. 3 credits. Required. Limited to 22 students per lec; priority given to hotel students. Prerequisite: junior or senior standing. For hotel undergraduates, H ADM 165 and 115. N. Dahl, D. Lennox, and A. Newman.

Broad study of communication in a managerial context emphasizes the significant role of communication in developing work relationships that enable managers to achieve their goals. Presents the theories and principles of persuasive communication that allow managers to influence professional audiences. Students increase their individual communication abilities by applying these concepts in a variety of managerial contexts, including interacting one-to-one, working in groups, and formally developing and presenting ideas to larger audiences.

H ADM 462(4462) Communication and the Multicultural Organization
Spring. 3 credits. Elective. Priority given to hotel students. D. Lennox.

Designed to help managers develop proficiency communicating among and between people who do not share some of their own cultural assumptions. Students can expect to learn communication variables that differ among cultural groups, including the use of eye contact, body language, personal space, hierarchy, and time. Additional topics include persuasion and negotiation across cultures, and the ethics of communication in international business. A blend of theory and practice. Activities include lectures, guided discussions, group projects, student and guest speaker presentations, and analysis of specific cross-cultural managerial challenges, with emphasis on the service industry.

H ADM 761(7761) M.M.H. Managerial Communication
Yearlong. 3 credits. Elective. Prerequisite: M.M.H. students or written permission of instructor in advance of preenrollment. D. Lennox and C. Snow.

Managers use communication strategies that involve written and oral messages to solve problems and accomplish professional goals within the workplace. The chief goal of this course is to help students become competent, confident, and versatile communicators. Each student prepares clear and powerful messages—reports, oral presentations, letters, and memos—and learns to approach problems analytically and make thoughtful communication choices, some of which are situation-specific.

Law

H ADM 385(3385) Business Law I
Fall, spring. 3 credits. Elective. Open to hotel school juniors, seniors, and graduate students and non-hotel students. D. Wagner.

Provides students with a presentation of three substantive areas of business law: contracts, intellectual property, and business organizations. Students read judicial opinions, learn to identify issues, and analyze the issues by applying legal principles.

H ADM 387(3387) Business and Hospitality Law
Fall, spring. 3 credits. Required. Prerequisite: junior, senior, or graduate standing. D. Sheway.

Provides students with an integrated presentation of employment discrimination, tort, and contract concepts as they apply to the legal aspects of hospitality management. Examines relevant federal and state cases and statutes. The overall objective is to enable students to recognize, analyze, and evaluate legal issues for the purpose of making and articulating appropriate decisions in the workplace.

H ADM 485(4485) Employment Discrimination Law and Union-Management Relations
Spring. 3 credits. Elective. Prerequisites: junior, senior, or graduate standing. H ADM 387 or permission of instructor. D. Sheway.

Anti-discrimination statutes and union-management relations are two of the most pervasive legal issues affecting the hospitality industry. Managers must take these issues into account while making personnel-related decisions. This course provides students with an understanding of the discrimination law, a framework for complying with law, a method using the law to maintain positive employment relations, and an understanding of how to negotiate and administer a union contract.

H ADM 487(4487) Real Estate Law
Fall, spring. 3 credits. Elective. Prerequisite: junior, senior, or graduate standing. Recommended: completion of H ADM 387. A. Klausner.

Provides students with an understanding of the legal issues surrounding the ownership, transfer, and use and development of real estate. Students learn to recognize and evaluate legal issues to inform the decision-making process with respect to real estate, whether as a business executive, an entrepreneur, or in personal life.

H ADM 489(4489) The Law of the Internet and e-Commerce
Fall. 3 credits. Elective. Prerequisite: junior, senior, or graduate standing. A. Klausner.

The Internet has changed how business is done in the hospitality industry. The change has raised numerous legal issues that courts and legislatures are trying to decide on or enact. The purpose of this course is to allow students to identify and understand the rapid developments of the law of e-commerce. Topics are: how the Internet works; consumer protection; privacy; intellectual property (patent, trademark, and copyright); personal jurisdiction in cyberspace; and online contracts and legal claims. This course introduces students to emerging areas of the law and enables them to identify issues so that they can seek counsel intelligently and understand the law as it continues to evolve.

HOSPITALITY FACILITIES AND OPERATIONS

H ADM 236(2236) Culinary Theory and Practice
Fall, spring. 4 credits. Required. Prerequisite: H ADM 106. Because this course is laboratory-based, students may not drop after second full week of classes; during last week of classes, students may drop only with permission of instructor and/or academic dean. T. O'Connor, R. Spies, and R. White.

Introduces the student to food and beverage operations through three major components: fundamental food composition and properties, food products and preparation, and food safety. Students prepare recipes, menus, and production schedules. Students develop the ability to recognize properly prepared foods by preparing, tasting, and evaluating them. They also are involved in a project where they create menus, develop and standardize recipes, and complete a plan for a dining event. Completion of a five-hour practicum experience in the Statler Hotel back-of-the-house is a required course activity.

H ADM 334(3334) Wine and Food Pairing Principles and Promotion
Fall. 2 credits. Elective. Limited to 20 students. Prerequisite: hotel school juniors, seniors, and graduate students; H ADM 430. G. Pezzotti.

Focuses on the pairing and creative marketing of wine and food. Students develop an understanding of regional and varietal wine styles, how food flavors can change a wine's flavor, and the promotion of wine and food. Topics include wine and food pairing principles, cuisines and their flavor components, food trends in restaurant and in the home, special event planning, and wine list development. Students design and present wine and food tastings to industry guests.

H ADM 339(3339) Wine in Culture and History—I
Fall. 2 credits. Elective. Note: Students may not add course after secondlec. Not offered 2005-2006. Faculty: Klausner, D.; and others.

This course covers wine andChampagne. Through lectures, videos, guided discussions, and readings (but not tastings!), students examine the history, people, culture, and production of wine in the world's great wine regions. Also covered are wine and health issues, wine and food pairing, and retail wine buying and storage strategies. Different regions are covered in the fall and spring (H ADM 439), so the course may be taken both semesters in either sequence. Students should be enrolled in 204 and 439 for the other.

H ADM 430(4430) Introduction to Wines
Fall, spring. 2 credits. Elective. Prerequisite: hotel juniors and seniors; seniors and graduate students in other colleges. Hotel students strongly encouraged to enroll in fall semester. Students are exempt from 21-year-old age requirement under Section 65 of New York State law. Preregistered students who do not attend first class and fail to notify secretary in 274 Statler Hall of their absence before first class are automatically dropped from instructor's records. However, students
still must drop course officially with their own college. Because of high demand for this course and because a product is consumed, absolute drop deadline in fall for all students is F, Sept. 9, 2005, and drop deadline for spring is F, Feb. 3, 2006. Fee (includes cost of wine glass and tasting kit): $30. No auditors. S. Mutkoski. Introduction to the major wine-producing regions of the world, and what the consumer needs to know when wine are retail outlets and in a restaurant setting. Topic include flavor components in wine, pairing wine and food, responsible drinking, selecting quality and value wine, and wine etiquette. Samples from a variety of countries, regions, and vineyards are evaluated.

H ADM 432(4432) Contemporary Healthy Foods
Fall. 3 credits. Elective. Prerequisite: H ADM 305 or equivalent. Priority given to 20 seniors and graduate students; others may enroll; space permitting. Cost of required field trip: $75. M. Tahchachi. Designed to build a greater awareness and understanding among nutrition and foodservice professionals of the origins and manifestations of today’s health conscious and responsible foodservice patron. Addresses the marriage of nutrition and the imaginative, flavorful cuisine demanded by today’s consumer. Emphasis is on the use of fresh produce, lean meats, and lack of fabricated diet foods. Creativity and nutrient density of foods served are very important components of menu design in this course. Key topics include the preparation, marketing, merchandising, and selling of healthy menus in the Statler Hotel.

H ADM 435(4435) Selection, Procurement, and Supply Management
Fall, first seven weeks of semester. 2 credits. Limited to 20 students. Prerequisite: hotel school junior, seniors, and graduate students or permission of instructor. Add/ drop deadline Sept. 2, 2005. R. Spies. Deals with contemporary management issues related to the procurement activities of the hospitality industry. Focuses on both the food distribution chain and the hospitality industry so that students understand the role the distributor plays in the movement of food and supplies from the producer to the hospitality operator, and how the creation of distributor partnerships serve to improve efficiency and reduce costs. Topics include distribution channels and intermediaries in the supply chain, food distributor financial statement analysis, evaluation and selection of suppliers, developing buying strategies, purchase time and inventory management, the emerging role of the Internet, and e-procurement service providers.

H ADM 436(4436) Beverage Management
Spring. 2 credits. Elective. Limited to 25 students. Prerequisites: hotel juniors, seniors, and graduate students or permission of instructor. H ADM 430 (coregistered, not allowed). S. Mutkoski. Designed for students who intend to pursue food and beverage management as a career. Deals specifically with the management of beverage operations cover: damage shop liability; staff training and responsible customer service; beverage pricing; food and wine pairings; wine list development; purchasing, storage, and service; wine regions; cost controls and loss prevention; and creative beverage merchandising. Guest lectures highlight industry trends and outlooks.

H ADM 437(4437) Anheuser Busch Seminar in Quality Brewing and Fine Beer
Fall, spring, first seven weeks of semester. 2 credits. Prerequisite: H ADM 430. Elective. G. Pezzotti. Designed for upper-level students who intend to pursue food and beverage careers. Serves to advance one’s knowledge about beers in terms of managing such products in a restaurant setting or other service outlet. Lecture topics include the brewing process, sensory aspects of beer, international beer styles and types, marketing malt products, purchasing and distribution, storage and service, beer and food pairings, staff training and education, cost controls, and third-party liability issues. There is one required local field trip, no fee.

H ADM 438(4438) Seminar in Culture and Cuisine
Fall. 3 credits. Limited to 20 students. Prerequisites: H ADM 165 and 290/236 or permission of instructor. Elective. R. Spies. Explores various cuisines in terms of history, lifestyle, and foods peculiar to a culture. Through readings, research, and meal preparation, students explore various cuisines in depth. The goal of the course is to develop an awareness of several international cuisines enabling students to make comparisons and draw relationships among foodways of different cultures. Possible incorporation of each cuisine into restaurant menus is discussed as well. Each student is involved in doing research reports, oral presentations, and designing and orchestrating the preparation of menus.

H ADM 439(4439) Wine in Culture and History—II
Spring. 2 credits. Elective. Students may not add course after second sec. Not offered 2005–2006. Faculty. Regions: Bordeaux, Burgundy, and California. Provides students with a cultural and historical perspective on wine and its place in society. Through lectures, videos, guided divinity, and readings students examine the history, people, culture, and production of wine in the world’s great wine regions. Also covered are wine and health issues, wine and food pairing, and retail wine buying and storage strategies.

H ADM 631(6631) Growth Strategies for the Restaurant Industry
Spring, first seven weeks of semester. 2 credits. Elective. Deadline to drop seven-week course is mid-point of course. Prerequisite: graduate standing, seniors only by permission of instructor. A. Suskind. Through a series of directed readings, case studies, and roundtable discussions with industry leaders, this course focuses on the strategic issues in the food and beverage industry that affect the growth and development of multi-unit restaurant companies. In addition to the weekly scheduled class content, students are required to attend two additional receptions to honor the roundtable speakers. Class students critically evaluate selected research papers related to multi-unit management to serve as the basis for class discussion and the fostering of a broader understanding

of leadership and growth strategies in the multiunit restaurant business.

Operations
H ADM 105(1105) Introduction to Hotel Operations
Fall, spring. 2 credits. Required. Prerequisite: hotel or ITD students. Co-requisite: H ADM 106. Students enrolled in Lec 1 of H ADM 105 take Lec 1 of H ADM 106 in same semester, and vice versa. R. McCarthy.

Designed to introduce students to the scope of the hotel industry in addition the organizational structure and operational mechanics of how the departments within the rooms division of an individual hotel operate. Understanding the scope of the industry involves understanding who the major players are and what market segments their brands serve. Students gain an understanding of how work is performed and how activities are coordinated within and between hotel departments.

H ADM 106(1106) Introduction to Food Service Operations
Fall, spring. 2 credits. Required. Limited to 30 students per sec. Prerequisite: hotel students. Co-requisite: H ADM 105. Students enrolled in Lec 1 of H ADM 106 take Lec 1 of H ADM 105 in same semester, and vice versa. B. Lang.

Introduction to the principles of food and beverage management, beginning with an overview of the foodservice industry at large. Attention is focused on major industry segments, business practices, and trends. Subsequently, detailed consideration is given to the components of the foodservice system: marketing, menu planning, logistical support, production, service, and quality assurance. Product and systems differentiation and manifestations of today’s health insurance. Product and systems differentiation and manifestations of today’s health insurance. Product and systems differentiation and manifestations of today’s health insurance. Product and systems differentiation and manifestations of today’s health insurance. Product and systems differentiation and manifestations of today’s health insurance. Product and systems differentiation and manifestations of today’s health insurance. Product and systems differentiation and manifestations of today’s health insurance. Product and systems differentiation and manifestations of today’s health

H ADM 201(2201) Hospitality Service Operations
Fall, spring. 3 credits. Required. Limited to 60 students per sec. Prerequisite: hotel students. R. Lloyd.

Introductory statistics course taught from the perspective of solving problems and making decisions within the hospitality industry. Students learn some introductory probability and how to gather data, evaluate the quality of data, graphically represent data, and apply some fundamental statistical methodology. Statistical methods covered include estimation and hypothesis testing relating to one- and two-sample problems of means, simple linear regression, and multiple regression. Problems involving multiple means (one way ANOVA) are covered as a special case of multiple regression, time allowing. Minitab is used as the statistical computing software.

H ADM 301(3301) Service Operations Management
Fall, spring. 3 credits. Required. Limited to 60 students per sec. Prerequisite: hotel students. M. Pullicino.

Introduces statistical and operations research methods appropriate for the hospitality industry. The goal of the course is to provide students with the skills and understanding necessary for decision making using quantitative data. Students use computer spreadsheet software extensively. A key
requirement of the course is an ability to communicate the results of the analyses in a clear manner. Topics include: probability, decision analysis, modeling, forecasting, quality management, process design, waiting lines, and project management.

H ADM 303(3303) Club Management
Fall, second seven weeks; spring, first seven weeks. 2 credits. Elective. Deadline to drop seven-week course is midpoint of course. Limited to 35 students in fall; open enrollment in spring. Prerequisites for fall: no freshmen; hotel juniors and seniors; completion of H ADM 105 or equivalent. R. James.

Study of private membership clubs and the leadership role in club administration. The application of current management principles in a not-for-profit environment is discussed and club management is compared to other areas of the hospitality industry and other not-for-profit organizations. Topics include: tournament, facility, and recreation management; legal, financial, and legislative issues; human resource considerations; and marketing, pricing policies, and quality standards.

H ADM 305(3305) Restaurant Management
Fall, spring. 4 credits. Required. Limited to 27 students per lab. Prerequisites: hotel students; H ADM 106 and 236. Cost of lab manual, certification for alcohol service, utensils for front and back of house: approx. $85.00. Because this is a group course, absolute deadline to drop course is Sept. 1, 2005, and in spring is Jan. 31, 2006. A. Susskind.

Offers the opportunity to synthesize the skills, concepts, and theories students have learned in other classes and apply them practically in an actual restaurant setting. Lecture topics cover pertinent issues and principles relevant to the industry at large and then, as a class, the principles are incorporated into actions that occur in the student-run operation.

H ADM 401(4401) Restaurant Entrepreneurship
Fall, spring. 3 credits. Elective. Limited to 20 students. Prerequisites: completion of H ADM 106 and 216; permission of instructor. Max. cost of five required field trips: $350.

P. Pizzicotti.

Designed for students who have a strong interest in food and beverage operations and who may be considering a career as an entrepreneur. Under the supervision of the instructor and using student-developed case studies, the students visit and analyze various independently owned restaurant operations. Analysis covers, but is not limited to: the restaurant's concept (market), organization, ownership, management, physical structure, staff, front-of-the-house operations, back-of-the-house operations, and fiscal integrity. Readings relative to current topics in the restaurant industry are required. Classes alternate weekly between field trip (2:30 P.M. through dinner hour) and seminar/case presentation.

H ADM 402(4403) Specialty Food and Beverage Operations: Guest Chefs
Spring. 3 credits. Elective. Limited to 40 students. Prerequisite: junior or senior standing. Cost of field trips: approx. $250.

R. McCarthy.

Designed for students focusing in food and beverage preparation. Students considering a career in the hotel or restaurant food and beverage environment or those who anticipate interacting with present-day culinary trends find the course especially beneficial. Over the course of the semester, the students, working in groups, are responsible for the marketing, organization, planning, production, service, financial analysis, and accounting relative to three guest-chef specialty production nights. The chef is selected to recommend the evening's menu reflecting his or her culinary background and work with the class in producing the meal for the Cornell community using the hotel facility. A required final project analyzes the relative degree of success experienced during each guest-chef event. The analysis considers consumer reaction as well as proper application of food and beverage management principles.

H ADM 404(4404) Catering and Special Events Management
Fall. 3 credits. Elective. Limited to 30 students. Prerequisites: H ADM 236 or permission of instructor. Cost of required field trip to New York City: approx. $250. R. Spies.

The catering and special events industries are among the fastest-growing segments of the hospitality industry. This course focuses on off-premise and on-premise catering for social and business functions, and the management of large-scale independent events, such as sporting events, artistic performances, and product launches. Topics include: organizational structure, legal aspects of catering and special events management, product and service development, marketing and sales, catered function and special event planning and execution, staff recruitment and training, post-event analysis, financial analysis of catering, and special events businesses.

H ADM 405(4405) Principles of Timeshare and Vacation Ownership
Spring, first seven weeks of semester. 2 credits. Elective. Deadline to drop seven-week course is midpoint of course. Prerequisites: for graduate students, completion of graduate core; for undergraduates, H ADM 321 and 387. J. Dekker.

Provides an intense introduction to the rapidly growing timeshare and vacation ownership industry. Students learn how the four major business disciplines of financial management, real estate development, marketing and sales, and resort operations are specifically applied to the industry. The course is taught by industry professionals. A project gives students the opportunity to study the nuances and challenges of these businesses. Each week, guest lecturers from Marriott Vacation Club International present a different perspective of this growing industry segment.

H ADM 407(4407) Seminar in Hotel Operations
Spring. 3 credits. Elective. Limited to 40 students. Prerequisite: junior or senior standing. Cost of field trips: approx. $250.

R. McCarthy.

Students develop their leadership abilities through a series of hands-on projects for the Statler and Watkins hotels. They gain experience by identifying the requirements and challenges of a project, creating a plan, and carrying out the leadership responsibilities that will result in others successfully implementing their recommendations.

Drawing on their specific knowledge and skills in all the academic disciplines, students gain a broader perspective on the hotel as a business organization. They investigate the combination of human and technical forces that make a hotel run. M. Falls, students are able to evaluate issues and formulate cogent strategies for managing hotel operations.

H ADM 408(4080) Introduction to Casino Operations
Fall. 2 credits. Elective. Prerequisite: hotel students. Cost of required field trip to Atlantic City: approx. $250. R. McCarthy.

A vital part of the hospitality industry, casino gaming is one of the most exciting and fastest-growing industries. This course focuses primarily on the operation and ownership of commercial casinos and the hotels attached to them. It is designed to introduce students to the internal and external casino environment. It looks at the historical development of gaming in America to understand how the industry has evolved to its present form. Students learn the organizational structure of a casino hotel, how it operates, and how it makes money. Students also gain an understanding of the different companies that own casino hotels and the current issues facing these companies. Topics include: casino marketing strategies and player rating systems; the social and economic impact of gaming and the various regulatory environments within which casinos operate; and how common casino games are played and the mathematics of the various games. Students build on their food and beverage and hotel knowledge to better understand the specific challenges facing casino hotel operators.

H ADM 602(6602) Spa and Spa Hotel and Resort Development and Management
Fall, spring. 3 credits. Elective. Limited to 33 students. Prerequisite: hotel seniors and graduate students; others may enroll, space permitting. Cost of two required field trips: approx. $120.

M. McCarthy.

Emphasizes the development, management and marketing of spas, spas in hotels and resorts, and spa restaurants. Day spas, resort spas, and destination spas are studied in depth. The feasibility of success for new spas and marketing research necessary to establish new spas is discussed. The design of menus, mental and physical fitness programs, stress management, spa medical treatments, complementary medical treatments, and other spa programs are all considered. Personnel required, safety, legal, and ethical issues regarding spas are an important part of the course. The integration of menu items into restaurant menus and their marketing and merchandising is studied. Guest speakers from spas are an integral part of the course.

H ADM 604(6604) Service Operations Management
Fall. 3 credits. Elective. Limited to 25 students of the course. Prerequisite: graduate standing; H ADM 775 or equivalent. Not offered 2005–2006. G. Thompson.

Improves the understanding of the operations function of service organizations. Focused
Students solve problems based on real-life scenarios and present their solutions to industry leaders and the Hotel School faculty members who accompany them. A final paper is due in the spring semester immediately following the seminar.

H ADM 703(7703) Operations Management
Summer. 3 credits. M.M.H. requirement. Prerequisite: M.M.H. students or permission of instructor, G. Thompson. Based on principles of scientific management, concerns itself with how work is done. Gives students an understanding necessary for decision-making using quantitative and qualitative data. Students use computer spreadsheet software extensively for "number-crunching" analyses and learn to communicate the results of their analyses in a clear manner. Students are provided with a "tool kit" of sophisticated Excel models for solving service operations problems.

Facilities Management, Planning, and Design

H ADM 455(2255) Hospitality Development and Planning
Fall, spring. 3 credits. Required. Limited to 24 students per sec. Prerequisite: sophomore, junior, or senior standing. S. Robson.

Introduction to the issues and opportunities inherent in the development and planning of hospitality facilities, specifically hotels and restaurants. Course components include the project development sequence, conceptual and space planning design criteria, construction management, and the interpretation of architectural design and consultant drawings. The emphasis is on setting appropriate facilities requirements, understanding industry practice, and implementing properties decisions within a balanced design, operations, and financial framework.

H ADM 355(3355) Hospitality Facilities Design
Fall. 4 credits. Elective. Limited to 36 students. Prerequisite: H ADM 251 or 751, or permission of instructor, R. Penner. This intensive studio course provides the graphic skills important for design, and experience in applying these skills in hospitality planning and design situations. Students prepare design projects using both hand drafting and computer-aided design (CAD) software. These assignments cover basic graphic skills and layouts for typical hotel spaces including guestroom suite, lobby and lobby bar, and full-service restaurant or specialty coffee retail outlet.

H ADM 352(3352) Hotel Planning and Interior Design
Spring. 3 credits. Elective. Limited to 24 students. Prerequisites: H ADM 351 or permission of instructor. Cost of required field trip: min. $250; cost of presentation materials: min. $150. R. Penner. Helps students understand how to manage the design process—how to establish the scope of work, contracts, and budgets. Builds on earlier courses to give students experience in planning and designing guestrooms, lobby, food and beverage, function, and fitness spaces. The studio course focuses on a semester-long project, in which student teams prepare the interior design for an actual hotel development. The class visits a northeastern city, tours the project site and competitive hotels, meets with an architect or designer, and establishes an integrated concept for the hotel. Students design all the interior spaces, modifying the architectural plan as necessary, lay out furniture and fixtures, select finishes and FF&E, and prepare a full design presentation.

H ADM 355(3355) Hospitality Facilities Operations
Fall, spring. 3 credits. Required. Prerequisite: H ADM 251. D. Zemke.

Overviews the operation of hospitality facilities, including operating costs for various types of facilities, types and characteristics of major building systems, and the responsibilities of the engineering maintenance department. The renovation needs of hospitality facilities are examined and key managerial aspects of renovations considered.

H ADM 455(4451) Restaurant Development
Fall. 3 credits. Prerequisites: hotel seniors or graduate students; juniors by permission of instructor; for undergraduates, H ADM 255, 243, and 305; for graduate students, H ADM 702 and 751. Students who wish to develop design skills for restaurant concepts are encouraged to enroll in the following spring. S. Robson.

Exposes students to the process, challenges, and rewards of developing a restaurant concept from idea to the construction of the first step. Specific emphasis on the operations of hospitality facilities, including operating costs for various types of facilities, types and characteristics of major building systems, and the responsibilities of the engineering maintenance department. The renovation needs of hospitality facilities are examined and key managerial aspects of renovations considered.

H ADM 452(4452) Sustainable Development and the Global Hospitality Industry
Spring. 3 credits. Elective. Prerequisite: junior, senior, or graduate standing. Cost of required overnight field trip: approx. $100 for lodging and transportation; meals additional. D. Stipanuk.

Multidimensional course introducing the global sustainability and environmental movements, their impact on the hospitality industry, and responses to and opportunities associated with sustainability. Readings are drawn from the environmental, sustainability, and hospitality literature. Students should be prepared to encounter conflicting views in the readings and in classroom discussions. The course attempts to portray a variety of viewpoints regarding issues of contemporary importance to society and the business community. Discussion of these issues is a key component of the course.
H ADM 453(4453) Foodservice Facilities Design
Spring. 3 credits. Elective. Limited to 12 students per sec. Pre- or co-requisites: H ADM 351, 305, and 451 (other commercial food production experience acceptable) or permission of instructor; hotel seniors; juniors by permission of instructor. S. Robson.

Introduction to the basic concepts of foodservice facilities design and planning with an emphasis on restaurants. Students determine space allocations for the front and back of house areas, develop production workflow in the preparation and service area, and select equipment using standards and codes. Students also use studio time for planning, designing, and writing specifications for a modest-size restaurant kitchen.

H ADM 457(4457) Hotel Development
Spring. 3 credits. Elective. Prerequisite: senior or graduate standing; juniors by permission of instructor. Cost of required overnight field trip: approx. $100 for lodging and transportation; meals additional. D. Stipanuk.

Focuses on the management structure and systems, laws and regulations, and industry practices that most influence the successful development of hospitality real estate, including lodging and eating facilities. Topics include: market studies, franchise requirements, governmental approvals, design construction contracts, the construction process, scheduling, budgeting, and emerging issues and opportunities. Guest speakers present case studies of actual development projects.

H ADM 751(7751) Properties Development and Planning
Fall. 3 credits. M.M.H. requirement. Limited to 30 students per sec. Prerequisite: M.M.H. students or written permission of instructor in advance of pre-enrollment. R. Penner.

Overview of hospitality project development and planning from the perspective of an owner and developer. Students learn about the role of the development team, feasibility studies, space programming, and construction management, and about functional and design criteria for hotels and restaurants. Teams prepare program documentation for a new hotel or restaurant or one undergoing major repositioning.

H ADM 441(4441) Strategic Management
Fall, spring. 3 credits. Required. Prerequisite: senior standing; at least one course in each of accounting, finance, marketing, operations, economics, and information systems. Because students work in groups, absolute drop deadline is two weeks after first day of class. A. Kalinich.

Students learn to evaluate firms, industries, and the broader environments in which they exist. Since this is a capstone course, a part of this analysis processes involves integrating material learned in all of the functional disciplines. Students also evaluate specific firm strategies and their impact on competitiveness and performance. Using all of this information, students are trained to select strategies for firms and develop plans for implementing them. Topics include environmental analysis, firm resource analysis, competitive analysis, strategy formulation, strategy implementation, international strategy, and strategic control.

H ADM 442(4442) Strategic Marketing
Fall. 3 credits. Elective. Prerequisite: senior standing; marketing course. C. Dev.

Offers innovative, practical, and profitable knowledge and insights to improve revenue, profit, and customer loyalty. Concepts include underlying strategic marketing principles and tactics in a realistic marketing environment. Brands whose marketing strategies are examined include Hilton, Marriott, Accor, Choice, Four Seasons, Club Med, Harrah's, Shangri-La, Yum Brands, Starbucks, Disney, and Southwest Airlines. Learning is assessed via in-class contributions, written analysis of cases, a midterm, and a final exam.

H ADM 343(3343) Marketing Research for Decision Makers
Fall. 3 credits. Prerequisite: H ADM 243. M. Lynn.

Helps students become better consumers of marketing research. Topics include issues involved in designing, conducting, and interpreting focus groups, depth interviews, surveys, experiments, and choice models. Special emphasis is placed on what each method should and should not be used for and why.

H ADM 347(3347) Consumer Behavior
Fall, spring. 3 credits. Elective. Limited to 45 students. Prerequisite: junior or senior standing; H ADM 243. M. Lynn.

Helps students become better at understanding, predicting, and influencing consumer behavior. Topics include motivation, perception, learning, decision making, attitudes, nonverbal communication, persuasion, demographics, and psychographics. The practical implications of psychological principles are emphasized. Specific applications involve such areas as guest frequency programs, menu design, promotional mixes, sales, and marketing planning, and marketing research. Class time is used for discussions and application exercises as well as for the presentation of relevant information.

H ADM 424(4244) Distribution Strategies
Spring. 3 credits. Elective. Prerequisites: H ADM 341 and 243. B. Carroll.

Provides a framework for managing distribution strategies. Presents and analyzes the structure and interrelationships among distribution channels within the travel and hospitality industry. Theories of marketing distribution are examined and applied and strategies and the context of that system. Topics include dimensions of hospitality marketing distribution, economics of the major hospitality distribution segments, managing hospitality distribution strategies, and the role of convention and visitor bureaus, national tourist organizations, and associations in distribution management.

H ADM 465(6645) Services Marketing
Fall. 3 credits. Elective. Prerequisite: graduate standing; marketing course or permission of instructor. R. Kwortnik.

The main goal is to develop critical analytic skills and Knowledge needed to implement service strategies for competitive advantage. Topics include key differences in goods versus services marketing and service gaps analysis, services marketing and service delivery, service quality, relationship marketing, service recovery, service design (including analysis of service as theater), service blueprinting and the "servicescape," and services demand management, pricing, promotion, and distribution. Lectures, discussion of current services research, case analyses, and guest-speaker presentations. Also used are a variety of group and individual written projects and presentations, including a services-marketing audit.
H ADM 724(7742) Creating and Managing for Service Excellence
Fall. 3 credits. M.M.H. requirement. Prerequisite: M.M.H. students or written permission of instructor in advance of preenrollment. Last offering fall 2005. M. Pullman.

How do you maintain profitability in an increasingly competitive environment? One approach is to manage for value, deliver the quality level the customer is willing to pay for, and price at a cost that allows a firm to prosper. This course covers the concepts, complexity, and management practices necessary to deliver consistent value in the hospitality industry (determining customer expectations; integrating marketing into operations; managing customer satisfaction; and measuring and controlling costs). Case studies, lectures, discussion, and industry experts are used, but the emphasis is on translating the strategic understanding of value into management practice.

H ADM 743 (7743) Marketing
Summer. 3 credits. M.M.H. requirement. Prerequisite: M.M.H. students or permission of instructor. L. Klein-Pearo.

Covers the fundamental concepts of marketing management. The techniques, analyses, and frameworks for solving marketing-management problems. Explores theories and conceptual frameworks that draw on customer, competitor, and core-capability analyses in marketing planning and implementation. Students develop decision-making capabilities in product/service development, pricing, advertising and promotions, and distribution policies. The capstone of the course is team development of a marketing plan for a new hospitality business.

H ADM 744(7440) Competitive Strategies for the Hospitality Industry
Spring. 3 credits. M.M.H. requirement. Prerequisite: M.M.H. students or permission of instructor. C. Enz.

Strategic management considers the total enterprise, the industry, and the competitive environment in which firms operate. This integrative capstone course focuses on how firms formulate, implement, and evaluate strategies. Key concepts are integrated throughout the course. The goal is for students to develop a mastery of the tools necessary to design and implement competitive strategies to sustain a firm's competitive advantage while generating superior value for customers.

Information Systems
H ADM 174(1174) Microcomputing
Fall. spring. 3 credits. Required. Limited to 30 students per sec. Prerequisite: fall, hotel school freshmen and transfer students; spring, open enrollment. P. Clark, M. McCarthy, and M. Talbert.

Provides a foundation in information technology (IT) and how it relates to everyday hospitality business. Covers basic IT concepts during lectures and reinforces these concepts in practical lab sessions using current standards of business computing. Topics include fundamental IT concepts, proficiency in Microsoft Office, and understanding the issues of tool selection, standardization, and efficiency, integration of applications, and recognizing the importance of good computer management.

H ADM 274(2274) Microcomputing
Spring. 3 credits. Elective. Limited to 30 students per lec. Prerequisite: non-hotel students. P. Clark.

Introduction to business computing to develop functional computer fluency. Students develop their skills in the areas of keyboard, Microsoft Office applications, presentation and file management, and web site management. The course is entirely lab-oriented and students work using Windows 2000. Software used is the latest in word processing, presentation, database management, and web design.

H ADM 275(2275) Introduction to Information Systems Management
Fall. spring. 3 credits. Required. Prerequisite: hotel students; H ADM 174. G. Piccoli and E. Wagner.

Explores the fundamental concepts of information systems; understand and be able to clearly articulate the difference between information technology and information systems; link concepts and technical jargon to the real-world uses of information technology; and learn the information-systems fundamentals needed throughout hospitality careers. Designed for students who will work within hospitality organizations as end users, user-managers, leaders, and information professionals. This is not a course for technologists but rather for the general-management student. Provides the essential information that all hospitality management students should know about information systems.

H ADM 374(3374) Fundamentals of Database Management and Data Analysis
Fall. 3 credits. Elective. Limited to 30 students. E. Wagner.

Prepares students to create and manage information in a knowledge-based organization. The design and use of database and spreadsheet functionality are used to perform analyses and make decisions. Students gain a conceptual foundation and then practice applying these ideas through teamwork and course readings. Topics include information and management in organizations; fundamentals of relational database design and implementation; SQL queries; how to use common tools such as Access, Excel, and InfoPath; and how to leverage IT for particular business goals. Course articulates the difference between information and knowledge that can be leveraged for particular business goals; the conversion of data into information; and Excess; the conversion of data into information and knowledge that can be leveraged for particular business goals; the conversion of data into information and knowledge that can be leveraged for particular business goals; and data management opportunities in the hospitality industry.

H ADM 375(3375) Internet Technologies for the Entrepreneur
Spring. 3 credits. Elective. Prerequisite: H ADM 174 or equivalent. Owing to capacity restraints in Binnenkor lab, attendance at first class is mandatory; no-show students are dropped from course to make room for stand-by students; students may not drop course after second week of class. M. Talbert.

Introduces students to the technical underpinnings of the Internet, with an emphasis on the World Wide Web. Students survey many of the key technologies that form the mechanism of the web, including HTML, DHTML, XML, JavaScript, VBScript, Java, Style Sheets, Browsers, Servers, ActiveX, and Active Server Pages. The goal is a managerial familiarity with a broad range of important technologies, rather than proficiency in any single technology. This is an implementation course; in other words, programming. Students should expect a considerable demand on outside time for practice necessary to gain programming fluency in the languages introduced.

H ADM 474(4474) Strategic Information Systems
Spring. 3 credits. Elective. G. Piccoli.

Targeted to students contemplating careers in general management and operations, marketing, or information systems. Managerial in nature, this seven-week course is midpoint of course; in other words, programming. Provides students with practical skills in decision support in organizations, and decision process, and how information is used for decision support in organizations. Provides students with practical skills in developing spreadsheet computer models using Microsoft Excel. Topics include business planning and forecasting, numerical
methods, advanced formulas and functions, user-interface design, data protection and validation, importing external data, and output presentation.

H ADM 772(7720) Information Systems Management
Fall, 3 credits. M.M.H. requirement.
Prerequisite: M.M.H. students or written permission of instructor. G. Piccolli.
Information technologies (IT)-based systems information are important to almost all organizations. They are a primary means for ensuring efficient operations and effective decision-making, and they offer the potential to increase a firm’s competitiveness when appropriately planned and used. Students become comfortable with all aspects of information systems decision-making, including systems analysis and design, systems selection and purchasing, and the risks in IT investments. They become familiar with the systems found in hospitality operations. The course is not overly technical, but it is expected to be computerized and discussing information technologies.

FINANCE AND REAL ESTATE

Finance/Accounting

H ADM 120(1120) Personal Financial Management
Fall, spring. 2 credits. Elective. Limited to 50 non-hotel students. L. Hensley and E. Cornell.
Overview of personal financial planning including money management, tax planning, use of credit, insurance, investing, retirement planning, and estate planning.

H ADM 121(1121) Financial Accounting
Fall, spring. 3 credits. Required.
Prerequisite: hotel students. D. Dittman.
Introduction to the basic principles of accounting, involving transaction analysis, flow of accounting data to the financial statements, and careful consideration of accounting for revenues, expenses, assets, liabilities, and owner’s equity.

H ADM 221(2221) Managerial Accounting
Fall. 3 credits. Required. Prerequisites: H ADM 121 and 174 or equivalents. G. Potter and J. Hesford.
Focuses on the use of accounting information for management decision making and control. Topics include product costing, budgeting, management decision making, and control systems. There is one common exam at the end of the semester.

H ADM 222(2222) Finance
Fall and spring. 3 credits. Required.
Prerequisites: hotel students or permission of instructor; H ADM 121, 221, or equivalents, or permission of instructor. L. Canina and S. Carvell.
Provides students with accounting cash flow information for financial planning, capital structure decisions, capital budgeting evaluation, and short- and long-term financial decision-making. Topics include current asset management, short-term financing, capital budgeting, long-term financing, cost of capital, and problems in international finance.

H ADM 223(2223) Financial Accounting Principles
Fall, spring. 3 credits. Elective. Prerequisite: non-hotel students. P. Streem.
In-depth introduction to the principles of financial accounting, involving transaction analysis, flow of accounting data to the financial statements, and careful consideration of accounting for revenues, expenses, assets, liabilities, and owner’s equity.

H ADM 225(2225) Finance
Fall, spring. 3 credits. Elective. Prerequisite: undergraduate non-hotel students. Faculty.
Students are exposed to a wide variety of corporate finance topics, including: time value of money, risk and return, valuation models, cost of capital, capital budgeting, capital structure, and dividend policy.

H ADM 321(3321) Hospitality Financial Management
Fall, spring. 3 credits. Required. Limited to 54 students per sec. Prerequisites: hotel students; H ADM 121, 221, and 222, or permission of instructor: A. N. Geller.
Integrates the areas of financial statements, managerial accounting, and finance, and applies the interpretive and analytical skills of each to hospitality industry situations. Topics provide an understanding of: the analysis and interpretation of financial statements and operating reports, the budgeting and forecasting process, the application of C-V-P and other decision models to hospitality operations, operating agreements, capital investment analysis, financial feasibility, project and general financing, valuation techniques, and measuring value for important stakeholders.

H ADM 421(4421) Internal Control in Hospitality Operations
Fall. 3 credits. Elective. Limited to 30 students. Prerequisites: H ADM 321, 722, or equivalent. A. N. Geller.
Deals primarily with operations. Generally, hotel and restaurant operations are analyzed from the perspective of preventing fraud and embezzlement. Specifically, the design and distribution of production, accounting, information systems, and supervisory tasks are studied in a manner that ensures effective internal control and verifiable audit trail. The course relies heavily on case studies of actual frauds perpetrated in hotel and restaurant operations.

H ADM 422(4422) Taxation and Management Decisions
Fall. 3 credits. Elective. Limited to 75 students. Prerequisite: junior, senior, or graduate standing. L. Hensley.
Introduction to tax advantages and disadvantages of various organizational structures, including: corporations, partnerships, subchapter S corporations; financial information reporting to tax authorities and shareholders; and how these reports differ; use of depreciation methods to achieve tax reductions; and syndication techniques and the role the tax laws play in promoting private investments and development.

H ADM 429(4429) Investment Analysis and Portfolio Management
Fall, spring. 3 credits. Elective.
Prerequisites: non-hotel students; H ADM 125 or 222. Students with background in economics and finance and computers are advised to consider H ADM 424. Graduate students should enroll in H ADM 629. C. Chang.
Covers basic institutional and analytical aspects of investment management. Topics include: financial markets, sources of investment information, risk-return analysis, bond and stock valuation, behavior of security prices, portfolio analysis and portfolio management, asset allocation, and mutual fund investment. While students are exposed to investment management commonly believe that investing is about how to make money in the markets, this course instead focuses on identifying and managing to reasonable and feasible investment objectives in current and in today’s highly competitive investment markets. To that end, students are required to apply concepts and tools to managing a simulated investment portfolio (the Investment Management Game) during the course of the semester.

H ADM 624(6624) Reporting and Analysis of Financial Statements
Fall, spring. 3 credits. Elective. Limited to 60 students. Prerequisite: junior, senior, or graduate standing. G. Potter.
Designed to provide understanding of the basic accounting model, the underlying concepts, and income measurement, and the accounting rules for the valuation of assets, liabilities, and owners’ equity. Emphasis is placed on understanding the economic substance of the transactions and implications of using alternative accounting methods in the resulting numbers, especially in assessing the “earnings quality.” Focus is from an outsider’s view of the company, and students should be able to evaluate and interpret the published financial information, specifically in the context of valuation, debt and compensation contracts, and credit assessment.

FINANCE AND REAL ESTATE 297
H ADM 626(6626) Advanced Corporate Finance
Fall. 3 credits. Elective. Prerequisite: H ADM 321, graduate standing. Faculty. For description, see H ADM 426.

H ADM 627(6627) Multinational Finance and International Risk Management
Spring. 3 credits. Elective. Prerequisites: H ADM 121, 221, 222, or equivalents. Undergraduates should enroll in H ADM 427. C. Chang.

For description, see H ADM 427.

H ADM 629(6629) Investment Analysis and Portfolio Management
Fall, spring. 3 credits. Elective. Prerequisites: H ADM 125 or 122. C. Chang.

For description, see H ADM 429.

H ADM 721(7721) Financial Economics
Fall. 3 credits. M.M.H. requirement. Prerequisite: M.M.H. students or written permission of instructor in advance of preenrollment. L. Canina.

Integrates corporate finance with the framework of value maximization and the competitive analysis of product and factor markets in the hospitality industry. Topics include short-term asset management, strategic valuation, capital budgeting analysis, capital structure decisions, leasing, and international financial management.

H ADM 722(7722) Hospitality Financial Management
Spring. 3 credits. M.M.H. requirement. Prerequisite: M.M.H. students or written permission of instructor in advance of preenrollment. G. Potter.

Covers both managerial accounting and financial management as they are practiced in the hospitality industry. Topics include hospitality accounting systems, financial analysis, operational analysis, cost behavior, budgeting and forecasting, pricing, and feasibility analysis.

H ADM 723(7723) Corporate Finance
Summer. 3 credits. M.M.H. requirement. Prerequisite: M.M.H. students or permission of instructor L. Canina.

Builds on the prerequisite courses in financial accounting and financial reporting. Topics include applications of discounting techniques, evaluation of capital expenditures, estimating cost of capital, bond and stock valuation, portfolio theory, asset-pricing models, and capital-structure decisions. The course emphasizes valuation skills as a means to bring together the cost of capital, financing, and operating issues faced by a firm. Students come to understand the financial impact of managerial decisions, know how to differentiate decisions that increase the value of a firm, and know how to properly evaluate investment, financing, and payout decisions. They also learn standard techniques of financial analysis, such as discounted cash flow valuation, capital budgeting, risk analysis, and estimating the cost of debt and equity.

H ADM 724(7724) Managerial Accounting
Summer. 3 credits. M.M.H. requirement. Prerequisite: M.M.H. students or permission of instructor J. Hesford.

This introduction to managerial accounting, which is the use of accounting information for decision-making and control, covers cost behavior, cost classification, cost-volume-profit analysis, product costing, budgeting, variance analysis, cost estimation, cost allocations, customer-profitability analysis, managerial control systems, and performance measurement.

Real Estate Development
H ADM 420(4420) Principles of Real Estate
Fall, spring. 3 credits. Elective. Limited to 50 students. Prerequisites: H ADM 222 or equivalent; junior or senior standing. Graduate students must enroll in H ADM 620. J. deRoos.

This course surveys real estate from four perspectives: investment, market, mortgage finance, and legal. Understanding these perspectives will help students to better investment and financing decisions, use real estate resources wisely, understand public policy issues, and be prepared for additional courses in real estate investment, finance, and development.

H ADM 422(4422) Hospitality Real Estate Finance
Fall. 3 credits. Elective. Prerequisite: H ADM 321 or equivalent; junior or senior standing. Graduate students must enroll in H ADM 621. D. Quan.

Focuses on real estate financing for hospitality-oriented projects. Addresses the following topics: methods of measuring rates of return; feasibility and appraisal processes; equity and debt financing vehicles to include joint ventures, limited partnerships, construction mortgages, participating, convertible, and seller-financed mortgages; forms of operating agreements to include management contracts, leases, and franchises; and trends in international hotel franchising. Presentations by hospitality industry real estate practitioners tie course material to current industry practices.

H ADM 620(6620) Principles of Real Estate
Fall, spring. 3 credits. Elective. Prerequisite: graduate standing; H ADM 721 or equivalent. J. Corgel.

For description, see H ADM 420. Includes much of the material in H ADM 420 plus special topic sessions that feature guest speakers from industry, faculty from other colleges, and case studies.

H ADM 621(6621) Hospitality Real Estate Finance
Fall. 3 credits. Elective. Prerequisite: H ADM 722 or equivalent; graduate standing. J. de Roos.

Focuses on real estate financing for hotel and restaurant projects. Methods of measuring rates of return; feasibility and appraisal processes; equity and debt financing vehicles to include participating, convertible, and seller-financed mortgages; forms of operating agreements to include management contracts, leases, and franchises; and trends in international hotel franchising. Presentations by hospitality industry real estate practitioners tie course material to current industry practices.

H ADM 622(6622) Hospitality Asset Management
Spring. 3 credits. Elective. Prerequisite: for undergraduates; H ADM 321 and completion of H ADM 420 highly recommended; for graduate students, H ADM 722 and completion of H ADM 620 highly recommended. J. deRoos.

Hotel asset management is the fiduciary responsibility of managing the hospitality investment to meet the specific objectives of ownership. The asset manager's role in building value is analyzed at both the portfolio and property levels. Lectures, assignments, cases, and guest speakers introduce the latest techniques in asset management and provide insights into current lodging-market and emerging trends. Topics include management contracts, managing the manager, benchmarking property performance, and the capital improvements decision.

H ADM 623(6625) Securitization and Structured Financial Products
Fall, spring. 3 credits. Limited to 40 students. Prerequisites: H ADM 222 or 721, and 427 or permission of instructor; junior or senior standing. D. Quan.

Deals with the structure and analysis of securitized financial products with an emphasis on residential and commercial mortgage-backed securities (MBS). The course is intended for those who wish to acquire a working knowledge in the analysis of such securities (e.g., collateralized mortgage obligations, commercial MBS, auto loan, and credit card backed securities) and an understanding of the securitization process. The course's subject matter necessitates a highly analytic and quantitative approach, and students are required to have a strong background in finance and economics. Students who have questions about preparation or background should see the instructor.

H ADM 628(6628) Real Estate Finance and Investments
Spring. 3 credits. Elective. Limited to 40 students. Prerequisites: H ADM 325 or 621, 450 or 651; graduate standing. J. Corgel.

Promotes sound real estate investment and finance decision-making, use of advanced theory, and techniques in financial economics. Real estate investment decisions are made through applications of an extended version of the after-tax discounted cash flow model, and other valuation models including option pricing models and regression models. Financing decisions are made using the techniques of modern financial analysis. A wide array of financing options are considered including participating and accrual mortgages. Securitization of equity and debt claims to real estate also are extensively covered. All types of residential and nonresidential real estate are analyzed, including hospitality properties.

OTHER
H ADM 290(2290) Introduction to Culinary Arts
Spring. 2 credits. Elective. Limited to 28 non-hotel students; priority given to seniors and graduate students. Fee (includes cost of uniform and cleaning): $75. Preregistered students who do not attend first class are automatically dropped from instructor's record. Absolute drop deadline for this course is W of second week of classes. Students on wait list will be selected through a lottery system. All lottery participants must attend first week's class. T. O'Connor.

Study of food groups and their methods of preparation, cooking, and presentation. The
course is designed specifically for non-hotel students who are interested in learning the professional approach to food preparation and service with hands-on practice. Students are involved in food product identification, preparation and service methods, and learning the professional language of food and cooking.

H ADM 490(4900) Housing and Feeding the Homeless
Spring. Variable credit. Elective. T. O'Connor. Explores public and private sector approaches to addressing hunger and homelessness. Through lectures, class discussions, research, community service work, and a field placement practicum, students explore the economic, social, and political issues of our country's concern with housing and feeding disenfranchised and homeless people. This is a service learning course centered on community work experience. Students must choose one of three options: (1) 4 credits. Students work in pairs or small groups with a local area agency that provides services for homeless or disadvantaged people. This field practicum comprises approximately 60 credits of work during this semester, half of which is in direct contact with the agency and its clientele. (2) 4 credits. Students participate in an alternative spring break in an agency(ies) in Washington, D.C., or New York City. Students work five full days in an agency that serves homeless, hungry, or disenfranchised people. Housing and transportation are arranged. This option may cost students up to $100. Students interested in this option must see the instructor at pre-registration time. (3) 3 credits. Students do community work in the Ithaca area with an agency that serves homeless, hungry, incarcerated, or disenfranchised people. Students work on a regular weekly basis for a minimum of 30 credits during this semester.

H ADM 491(4491) Hotel Ezra Cornell (H.E.C.)
Fall and spring. Variable credit. 2-3 in fall and 3-4 in spring. Elective. Prerequisite: hotel juniors, seniors, and second-year M.M.H. students; permission of instructor. Cost of required field trip to Nov. hotel show in NYC. approx. $200. R. McCarthy. Student-elected board members of Hotel Ezra Cornell (H.E.C.) may receive up to 3 credits in hotel electives for their participation in the planning, organizing, staffing, directing, and controlling of H.E.C. '06 to be held April 7-10, 2006. Additional credit would be in free electives only. Next year's board will continue to implement the business plan developed by the previous H.E.C. board of directors: "To establish Hotel Ezra Cornell as the premier interactive setting. Board positions are experience to industry leaders and students through lectures, class discussions, research, community service work, and a field placement practicum, students explore the economic, social, and political issues of our country's concern with housing and feeding disenfranchised and homeless people. This is a service learning course centered on community work experience. Students must choose one of three options: (1) 4 credits. Students work in pairs or small groups with a local area agency that provides services for homeless or disadvantaged people. This field practicum comprises approximately 60 credits of work during this semester, half of which is in direct contact with the agency and its clientele. (2) 4 credits. Students participate in an alternative spring break in an agency(ies) in Washington, D.C., or New York City. Students work five full days in an agency that serves homeless, hungry, incarcerated, or disenfranchised people. Housing and transportation are arranged. This option may cost students up to $100. Students interested in this option must see the instructor at pre-registration time. (3) 3 credits. Students do community work in the Ithaca area with an agency that serves homeless, hungry, incarcerated, or disenfranchised people. Students work on a regular weekly basis for a minimum of 30 credits during this semester.

H ADM 492(4493) Management Intern Program I—Operations
Fall, spring. 6 credits. Elective. Prerequisites: H ADM 105 or 115, 201, 211, 121, 221, 222, 106 or 236, 243, 255, 165, 171, or 175 recommended; H ADM 321, 305, 355, and 365. Additional course work may be required for applicants considering specialized internships. Students must submit detailed plan for completion of all remaining academic requirements before acceptance into the program. Limited to juniors and seniors in the hotel school with approval of the Management-Intern Program (MIP) faculty committee. The application process begins the semester before the planned internship. An MIP information meeting is held at the beginning of each semester. Students accepted to MIP enroll in both H ADM 493 and 494. Students enrolled in H ADM 493 receive academic credit in free electives as well as practical experience in the hospitality field. Six performance evaluations are used to determine this grade. Students must be in good academic standing and have a GPA of at least 2.0 in the preceding semester. Further information is available in the student services office, 180 Statler Hall.

H ADM 494(4494) Management Intern Program II—Academic
Fall, spring. 6 credits. Elective. Faculty. Limited to juniors and seniors in the hotel school with approval of the Management Intern Program (MIP) faculty committee. The application process begins the semester before the planned internship. An MIP information meeting is held at the beginning of each semester. Students accepted into MIP enroll in both H ADM 493 and 494. Students enrolled in H ADM 494 receive academic credit in free electives for submission of a goals and objectives statement, four management reports, six journal entries which focus on insights gained through analysis of events occurring in the workplace, and four Hospitality Management Checklist summaries. Upon return to campus, each intern completes a debriefing and an oral presentation to fulfill the academic component of the internship. Students must be in good academic standing and have a GPA of at least 2.0 in the proceeding semester. Further information is available in the student services office, 180 Statler Hall.

H ADM 495(4495) Implementing Strategies for Tying Wellness Practices to Company Profit
Spring. 3 credits. Elective. Priority given to juniors, seniors, and graduate students; others may enroll, space permitting. M. Tabacchi. There is increasing evidence linking job-induced stress to overall health and happiness or lack thereof. Adding to workplace stress are the needs of its diverse and changing population. These stresses affect the financial health of the corporation as well as the psychological and physical health of the individual. The purpose of this course is to encourage future managers to evaluate the work environment and to enhance opportunities for increased worker productivity, which can sharpen the corporation's competitive edge. The emerging fields of complementary and alternative medicines are explored as preventive and cost-effective methods of improving workers' health. Business models for encouraging workplace wellness, systems for implementation, reward, and accountability of managers and corporate officers are introduced in this course. Only a few corporations overtly reward managers and corporate officers for the well-being and concomitant enhanced performance and productivity of their employees.

H ADM 497(4970) Undergraduate Research
Fall, spring. Variable credit. Elective. Faculty. Outstanding students may conduct independent research under faculty supervision. Each student is expected to review pertinent literature, prepare a project outline, conduct the research, and prepare a report. Students make two presentations coordinated by the Center for Hospitality Research (CHR): one at a preliminary stage and one at project completion. Students submit the completed report to the CHR, which will be available online through the CHR web site.

H ADM 498(4980) Undergraduate Independent Study
Fall, spring. Variable credit. Elective. Faculty. Can be taken only by students conducting two independent studies in one semester. For more details, see H ADM 499.

H ADM 499(4990) Undergraduate Independent Study
Fall, spring. Variable credit. Elective. Faculty. Students have the option of conducting an independent study project in any academic area. The number of credits for which students may register are arranged on an individual basis. Note: Students commit themselves to a certain number of credits of independent academic work per week per credit hour if they choose to do an independent study project, and the work must be performed in the semester for which the student is enrolled in the independent study. The usual add/drop policy applies, and selective credit for work commenced after an academic semester has ended is not allowed. Projects are conducted under the direction of a faculty member, and regular, frequent consultations are mandatory. Also, a written report must be completed and made available to all faculty members and students of the school after its submission to the supervising faculty member. Credit for independent study projects may not count toward the hotel school elective requirement, but, rather, toward free electives. Students cannot earn academic credit for independent study when the equivalent material is offered in a regular course, and credit is not earned for teaching a course. Students should consider all aspects of their situation before committing themselves to an independent study project. Enrollment forms are available in the student services office, 180 Statler Hall.

H ADM 698(6980) Graduate Independent Research
Fall, spring. Elective. Faculty. Each student must have in mind a project and obtain agreement from an individual faculty member to oversee and direct the study. Written permission is required before course enrollment. Permission forms are available in the hotel school graduate office, 180 Statler Hall.
H ADM 699(6990) Graduate Independent Research
Spring. 2 credits. Elective. Faculty. Each student must have in mind a project and obtain agreement from an individual faculty member to oversee and direct the study. Written permission is required before course enrollment. Permission forms are available in the hotel school graduate office, 180 Statler Hall.

H ADM 790(7790) Externship
Winter. 1 credit. M.M.H. requirement. Prerequisite: M.M.H. students or permission of instructor. Faculty.

H ADM 791(7791) Professional Development III
Fall. 0.5 credits. M.M.H. requirement. Prerequisite: M.M.H. students or permission of instructor. Faculty. Seminar format, varies week to week.

H ADM 792(7792) Professional Development IV
Spring. 1 credit. M.M.H. requirement. Prerequisite: M.M.H. students or permission of instructor. Faculty. Seminar format, varies week to week.

H ADM 793(7793) Professional Development I
Summer. Fall. 0.25 credits. M.M.H. requirement. Prerequisite: M.M.H. students or permission of instructor. Faculty. Seminar format, varies week to week.

H ADM 794(7794) Professional Development II
Summer. 0.25 credits. M.M.H. requirement. Prerequisite: M.M.H. students or permission of instructor. Faculty. Seminar format, varies week to week.

H ADM 797(7797) Hospitality Industry Leadership Development Institute
Summer. 1 credit. M.M.H. requirement. Prerequisite: M.M.H. students or permission of instructor. Faculty. A dozen or more senior executives from the hospitality industry visit the campus to evaluate students as individuals and as part of a team. They assess how well the students are able to lead, take direction, work with others, present ideas, and listen to other ideas. At the end of the class, one or more of them meet with students individually, and in teams, to evaluate performance. This centerpiece of the orientation process is designed to outline some of the personal and career goals students will want to work toward in the coming year.

H ADM 890(8890) M.S. Thesis Research
Fall, spring. Required. Faculty.

H ADM 990(9990) Ph.D. Thesis Research
Fall, spring. Required.

FACULTY ROSTER
Brownell, Judith, Ph.D., Syracuse U. Prof.
Canina, Linda, Ph.D., New York U. Assoc. Prof.
Carvell, Steven A., Ph.D., SUNY Binghamton. Assoc. Prof. and Asst. Dean
Chang, Charles S., Ph.D., U. of California, Berkeley. Asst. Prof.
Clark, Preston, M.S., Syracuse U. Lec.
Corgel, John, Ph.D., U. of Georgia, Prof.
Cullen, Thomas, Ph.D., Cornell U. Assoc. Prof.
deRoois, Jan A., Ph.D., Cornell U. Hospitality Valuation Services Professor of Hotel Finance and Real Estate, Richard J. and Monene P. Bradley director of graduate studies
Dev, Chekitan S., Ph.D., Virginia Polytechnic Inst. and State U. Assoc. Prof.
Dittman, David A., Ph.D., Ohio State U. Herbert E. Westfall Professor of Accounting
Enz, Cathy A., Ph.D., Ohio State U. Prof. and Lewis G. Schaeneman, Jr. Professor of Innovation and Dynamic Management
Geller, A. Neal, Ph.D., Syracuse U. Robert A. Beck Prof. of Hospitality Financial Management
Hesford, James, Ph.D., U. of Southern California. Asst. Prof.
Hinkin, Timothy, Ph.D., U. of Florida. Prof.
Jameson, Daphne A., Ph.D., Harvard U. Asst. Prof.
Kalten, Jan, Ph.D., U. of Michigan. Assoc. Prof.
Kimes, Sheryl E., Ph.D., U. of Texas. Prof. and Dean
Kwontnik, Robert, Ph.D., Temple U. Asst. Prof.
Lang, Barbara, B.S., Cornell U. Lec.
Lloyd, Russell, Ph.D., Cornell U. Sr. Lec.
Lyne, Wm. Michael, Ph.D., Ohio State U. Assoc. Prof.
McCarthy, Mark, M.M.H., Cornell U. Teaching Support Specialist
McCarthy, Renata, M.P.S., Cornell U. Lec.
Milkoski, Stephen A., Ph.D., Cornell U. Banfi Vintners Professor of Wine Education and Management
Penner, Richard H., M.S., Cornell U. Prof.
Piccoli, Gabriele, Ph.D., Louisiana State U. Asst. Prof.
Quan, Daniel W. C., Ph.D., U. of California, Berkeley. Assoc. Prof.
Renaghan, Leo M., Ph.D., Pennsylvania State U. Assoc. Dean for Academic Affairs
Robson, Stephani, M.S., Cornell U. Sr. Lec.
Scherwyn, David, J.D., Cornell U. Asst. Prof.
Siguaw, Judy, D.B.A., Louisiana Technical U. Assoc. Prof.
Simons, Tony L., Ph.D., Northwestern U. Assoc. Prof.
Snow, Craig, Ph.D., Purdue U. Sr. Lec.
Spies, Rupert, Studienassessor. Sr. Lec.
Sturman, Michael, Ph.D., Cornell U. Assoc. Prof.
Susskind, Alex, Ph.D., Michigan State U. Assoc. Prof.
Tabacchi, Mary H., Ph.D., Purdue U. Assoc. Prof.
Talbert, Mark, M.P.S., Cornell U. Lec.
Thompson, Gary M., Ph.D., Florida State U. Assoc. Prof. and Executive Director, Center for Hospitality Research
Tracey, J. Bruce, Ph.D., SUNY Albany. Assoc. Prof.
Walsh, Kate, Ph.D., Boston Coll. Asst. Prof.
White, Robert, A.O.S., Culinary Inst. of America. Teaching Support Specialist
Zemke, Dina, Ph.D., University of Nevada, Las Vegas. Asst. Prof.
DEGREE PROGRAMS
Cornell programs in Human Ecology lead to the degrees of bachelor of science (B.S.), master of arts (M.A.), master of science (M.S.), master of professional studies in human ecology (M.P.S.), master of health administration (M.H.A.), and doctor of philosophy (Ph.D.).

General academic information concerning the bachelor of science degree is given here under "Undergraduate Study." Curricula for major studies are described under the various academic areas.

Programs leading to master and doctoral degrees are administered by the Graduate School. They are described in the Announcement of the Graduate School and in announcements published by the individual field offices (Design and Environmental Analysis, Human Development, Nutritional Sciences, Policy Analysis and Management, and Textiles and Apparel). For information regarding the Sloan Program in Health Services Administration, contact the Department of Policy Analysis and Management.

UNDERGRADUATE DEGREES
Bachelor of science (B.S.) degrees are offered in the following areas:
- Biology and society
- Design and environmental analysis
- Human biology, health, and society
- Human development
- Individual curriculum
- Nutritional sciences
- Policy analysis and management
- Textiles and apparel

UNDERGRADUATE AFFAIRS
Persons interested in undergraduate study in human ecology should contact the admissions office, 170 MVR (255-5471). Those interested in graduate study should contact the graduate field representative identified among the faculty of each department. Department faculty members are listed at the beginning of the course descriptions for each department.

Counselors in the Office of Admission, Student, and Career Services (172 MVR) can provide information of interest to mature students. Mature students are permitted to extend their residency beyond the normal eight semesters. To find out about qualifying for prorated tuition, mature students must see the college registrar during the course enrollment period in the preceding semester.

SPECIAL STUDENTS
Students eligible for special status are those visiting from other institutions and interested in particular programs in the college, those with a bachelor's degree who are preparing for graduate study or jobs and careers in human ecology-related fields, or those who have interrupted their education and are considering completing degree programs.

Students accepted in the nondegree status of special student may enroll for a maximum of 12 credits without petitioning for permission and also are permitted to extend their residency beyond the normal eight semesters. To find out about qualifying for prorated tuition, mature students must see the college registrar during the course enrollment period in the preceding semester.

THE STUDENT BODY
The College of Human Ecology undergraduate enrollment is 1,325. Roughly 400 students graduate each year; last year 265 freshmen and 115 transfer students matriculated. Ninety faculty members serve as advisers to undergraduates.

The college's undergraduate admissions committee selects applicants who are academically well prepared and appear most likely to profit from the college's various curricula. Admission is highly selective. Approximately two-thirds of the student body comes from New York State, with the remainder coming from other parts of the United States and abroad. In 2004, 30 percent were identified as members of minority groups. Members of the college faculty chair the special committees of approximately 200 graduate students.

MATURE STUDENTS
The college recognizes that students who interrupted their formal education and are returning to school have needs different from those of younger undergraduates. To facilitate the education of mature students, defined as those 24 years old or older at first matriculation, the college has adopted certain procedures specifically for that group. Counselors in the Office of Admission, Student, and Career Services (172 MVR) can provide information of interest to mature students. Mature students are permitted to enroll for as few as 6 credits without petitioning for permission and also are permitted to extend their residency beyond the normal eight semesters. To find out about qualifying for prorated tuition, mature students must see the college registrar during the course enrollment period in the preceding semester.

THE FACILITIES
The college is housed in Martha Van Rensselaer (MVR), Savage, and Kinkelberg Halls. The buildings include administrative and faculty offices, classrooms, auditoriums, galleries, and lecture halls; wet chemistry and biochemistry laboratories for nutrition, food science, and textile science; experimental food laboratories; design studios and computer-aided design laboratories; woodworking shops; experimental observation rooms with one-way vision screens and sound-recording equipment; human factors and infant research facilities; and an audiovisual classroom for distance learning. Also included are learning resource centers for career planning, field and international study, a historical costume collection, a human metabolic research unit, an animal research facility, cold rooms, a constant temperature and humidity laboratory, and an early childhood research and care program.

Specialized equipment for teaching and research includes biochemical and chemical instruments for spectroscopy, chromatography, radioisotope analysis, electrophoresis, microscopy, and ultracentrifugation, physical testing equipment, and cameras, videotape, and sound recording equipment.
Empire State Students
Occasionally a student who is completing requirements for a degree through the Empire State College program is interested in taking a human ecology course. This can be done by registering through the Division of Summer Session, Extramural Study, and Related Programs (B20 Day Hall, 255-4987). All rules of the extramural division apply, and registrations will be accepted only on a space-available basis and with the written approval of the course instructor. At the time of registration, Empire State College students must provide the extramural division with a completed copy of Empire State College's notification of cross-registration (form number SA-22, F-031) to verify enrollment in Empire State College. Such students will be charged 25 percent of the standard extramural tuition per credit.

Transfer Students
Students may be considered transfer students once they complete 12 college credits after high school graduation. An external transfer student is one who transfers to Human Ecology from an institution outside of Cornell University. Liberal arts credits from other institutions transfer residually, but students must earn a minimum of 60 Cornell credits to graduate. Internal transfer students are admitted to Human Ecology from one of Cornell's other six undergraduate units. Students transferring internally should take special care to learn the policies of Human Ecology, because rules at the various Cornell colleges often differ. Before admission, both internal and external transfer candidates should contact the Office of Admission (170 MVR, 255-5471) to discuss credit transfer. Upon matriculation, admitted transfer students should attend the orientation and contact the Human Ecology registrar's office (145 MVR, 255-2235) to discuss how transfer credits will apply to their specific degree program.

MAJORS
The college requires students to fulfill requirements for a major to graduate. Students must declare a major by the end of the sophomore year. It is common for students to change interests during their undergraduate careers. Counselors in the Office of Admission, Student, and Career Services (172 MVR), academic advisers, and directors of undergraduate study in each of the academic departments can help students to consider their options and engage in academic planning. All changes of major require submission of the change of major form and are processed through the college registrar's office, 145 MVR. Change of major will trigger re-evaluation of all academic credit and assignment of a new faculty adviser.

DESIGN AND ENVIRONMENTAL ANALYSIS
The Department of Design and Environmental Analysis (DEA) is concerned with planning, designing, and managing the built environment and its effects on human behavior, experience, and the environment itself. The processes for creating, managing, and maintaining the built environment, and the implications for how we live our lives face enormous challenges. These include frequent social and organizational change, technological advances, new building methods, and finite resources. The program in DEA is dedicated to graduates who can help individuals, groups, and organizations meet these challenges.

Diverse faculty backgrounds and teaching approaches help students to develop multidisciplinary problem-solving and creative abilities, aesthetic judgment, and analytical thinking. Students explore concepts for the design and management of interior environments through laboratory, shop, studio, and computer facilities. The relationship between people and their physical surroundings is explored through a combination of academic courses, field experience, and applied research. Examples of student class projects and faculty work are frequently on display in the MVR gallery. The DEA resource center includes books, journals, newsletters, and material samples for student use.

Options
The department offers undergraduate education in three areas: interior design, facility planning and management, and human factors and ergonomics. The interior design option is accredited by the Foundation for Interior Design Education Research (FIDER). The Facility Planning and Management Program at Cornell is an IFMA recognized program that meets the standards for recognition of programs established by the International Facility Management Association.

To take full advantage of the course sequences and electives, it is important to select an option as early as possible. This is particularly true in the interior design option. Transfer students in the interior design option should plan on a minimum of six semesters at Cornell to complete the program.

Option I: Interior Design
This option prepares students for professional careers in interior design. The program emphasizes a design process in which innovative solutions are based on research-derived knowledge of human behavior, values, and attitudes. Students develop an understanding of design theory and methods, design history, behaviorally based programming, and post-occupancy evaluation. They learn about design communication, building systems, furnishings, materials, and finishes, and professional practice. Students may use their elective courses to develop a specialization in areas such as design history, historic preservation, theory and criticism, design leadership, interactive multimedia, design sustainability, and behavior-based design.

This program also serves as an excellent preparation for graduate study in interior design, facility management, architecture, and industrial design.

Option II: Facility Planning and Management
This option prepares students for professional careers in facility management. The program focuses on the planning, design, and management of facilities for large, complex organizations such as corporations, health care institutions, research and development laboratories, and universities. Facility planning and management is a basic management function that coordinates and integrates information and expertise from areas such as planning and design, engineering, business administration with human factors, ergonomics, environmental psychology, telecommunications, and building operations for the purpose of developing and managing facilities that support individual and organizational effectiveness.

Excellent career opportunities exist in the facility management divisions of private companies, institutions, the health care industry, and with private consulting firms offering facility management services. The program is also a good preparation for graduate study in business, planning, or one of the design disciplines and for advanced study in facility planning and management.

Option III: Human Factors and Ergonomics
This option focuses on the interaction between people and their physical surroundings. The program seeks to expand understanding of how the environment affects human perception, cognition, motivation, performance, health, safety, and social behavior. This knowledge is then used to help architects, planners, interior and product designers, and facility managers to plan, design, and manage safe and effective environments. The effect of human capabilities or characteristics such as family structure, lifestyle, social class, and stage-in-life cycle on environmental needs and requirements is also a focus of the program. Career opportunities are available in design firms and in urban planning and other public agencies as well as in the facility management and product design division of private companies. Human factors and ergonomics is good preparation for graduate study leading to a Ph.D. degree in the social sciences and in academic or other research-oriented settings in either the public or private sector. It can also serve as the basis for graduate study in an environmental planning or design discipline such as architecture, facility management, interior design, landscape architecture, or city and regional planning. Electives in the social sciences and in research methods and statistics are encouraged.

Academic Advising
All DEA majors are matched with a faculty adviser during their first semester by the director of undergraduate studies, Professor Jan Jennings, E219 MVR. Consultation with faculty advisers about future goals, departmental requirements, sequences of courses, and electives inside or outside the college helps students develop their programs. Students majoring in interior design, especially, must begin early to plan and collect materials for a portfolio of their work, which is necessary for many positions and for application to graduate schools. Faculty advisers can make recommendations on what to include. Students are free to change advisers. Although advisers must approve a student's schedule during course enrollment each semester, it is the student's responsibility to keep track of his or her courses and to make sure that they meet graduation requirements for their major and college.
Ownership and Exhibition of Student Work
All design work done in studios as part of an academic program is the property of the department until it has been released by the instructor. The department is not responsible for loss or theft of student work.

HUMAN BIOLOGY, HEALTH, AND SOCIETY
The human biology, health, and society (HBHS) program permits students to combine their interests in the biological sciences while exploring human health issues from the perspectives of both the biological and behavioral sciences. This program allows students to select the courses they want to explore in detail. The program is designed to address the broad range of factors that influence human well-being. Issues that can be explored include biology and behavior; metabolism, genetics, and health; biology, growth, and development; and food and health policy and health promotion. Most students in this program will proceed to programs of advanced study in professional fields related to health. This major is offered by the Division of Nutritional Sciences. More information about this program can be found in a separate section of the catalog that describes the division’s programs.

HUMAN DEVELOPMENT
Human development majors explore the psychological, social, cultural, and biological development of people from conception to old age, focusing on the processes and mechanisms of growth and change over the life course. A wide range of issues are included in the study of human development, including biological, cognitive, and emotional development; the role of family, neighborhood, workplace, and culture in development; and the influence that developing humans have on their environment. The human development major provides an excellent foundation for many careers, such as medicine (particularly family medicine, pediatrics, and psychiatry), clinical psychology and other mental health professions, law, business (especially human resources), child and family advocacy, and education (from preschool and elementary through doctoral levels). Students interested in exploring human development in more depth may enroll in the Cornell Abroad program in Washington, D.C., to explore human development at a governmental level.

The major prepares students for academic careers as professors in human development, psychology, or sociology departments. Learning about human development also helps students understand more clearly their own development and the development of those around them.

The faculty of the Department of Human Development comes from several disciplines, including developmental and clinical psychology, sociology, and education. The diversity of faculty expertise results in a wide-ranging view of human development. The research of the department’s faculty is extensive. It includes basic research on issues such as the neurobiology of personality, the role of childhood attachments in the development of adult romantic relationships, the acquisition of language in infants, and the effects of environmental stressors on children’s cognitive development. It also includes applied research useful for the creation of public policy, such as studies of the causes and consequences of child maltreatment and studies of the efficacy of reading programs for Head Start preschoolers, apprenticeship programs for high school students, and support programs for aging adults in community and congregate settings.

Curriculum
Human development is the most flexible major in the College of Human Ecology. While all students learn the fundamentals of human development, each student can focus on one or more areas of particular interest. The flexibility of the major also allows students ample opportunity to meet the requirements for admission to many professional schools, including medical, dental, law, and business schools.

Requirements specified by the College of Human Ecology make up part of each student’s credit. These include courses in the social and natural sciences, humanities, writing, and communication. In addition, there are requirements for the human development major. Students in this major can choose up to 14 elective courses from the broad range of offerings across the Cornell campus.

Special Opportunities
Beyond formal course work, students have many other opportunities that involve ongoing individual work with Cornell faculty or other professionals. Academic credit can be earned through all of them. These opportunities include the following:

Field Placements. Human development majors can arrange internships with Urban Semester in New York City, Cornell in Washington, and Cornell Abroad programs and in local agencies. These have included hospital, psychiatric hospital, juvenile detention centers, senior housing, and the department’s on-campus Early Childhood Program. Students have also participated in projects with the Tompkins County Office of Aging, the Tompkins County Youth Bureau, and the Law Guardian’s Office of Tompkins County.

Faculty Research. Many students work as research assistants on faculty projects. Students use research techniques ranging from laboratory procedures to family observations to large surveys. They assist in study design, data collection, and data analysis. Participation in faculty research provides the type of experience that many graduate and professional school applicants expect from their top applicants. Recent projects have included the study of parent-infant interactions, the transition of high school students into the world of work, evaluation of pre-kindergarten programs, and the impact of poverty on stress responses in children and teens.

Independent Research. Under faculty supervision, some advanced students complete an honors thesis in an area of personal interest by designing a study and collecting and analyzing data. Recent thesis topics have included developmental research that adopt school-age children, connections between speed of visual processing in infants and later scores on intelligence tests, ethnic variation in exposure to stressors in adolescence, and the relationship of religious beliefs to well-being.

Undergraduate Teaching Assistant. Advanced students can serve as undergraduate teaching assistants. This requires close work with the professor teaching the course as well as with students taking the course.

Teaching Certification. A cooperative education program exists between the Department of Human Development and Wells College. This program requires careful planning and course scheduling. It enables students to graduate with a Cornell bachelor’s degree and New York State Certification to teach nursery school through sixth grade. This certification is honored by most other states.

The program requires a minimum of a three-semester commitment. Cornell HD students take four courses at Wells College and student teach their last semester at Cornell. Although there is van transportation between Cornell and Wells College, it is important for students to have access to a car, especially while student teaching. Students will be registered at Cornell during the entire undergraduate program and usually maintain Ithaca housing. Wells College courses count as Cornell courses and are used as electives but are not included in a student’s GPA. The one-semester student teaching experience is typically based in the Ithaca area, though not necessarily within the city of Ithaca.

This program is open to HD majors only. Students must have a cumulative GPA of 3.0, and maintain a cumulative GPA upon application and must maintain a 3.0 GPA to qualify for student teaching and to complete the program. For more information, contact Judith Ross-Bernstein in G56 MVR at 255-0826.

NUTRITIONAL SCIENCES
A major in nutritional sciences (NS) focuses on the complex interrelationships of food patterns, nutritional status, and health. This field draws upon chemistry, biology, and the social sciences to understand relationships such as: How are nutrients used by the body? What factors influence human food choices? What nutrients and dietary patterns are recommended to maintain growth, maintain health, or reduce the risk of chronic disease? Students in this program may also fulfill the courses required for didactic training in dietetics toward registration as a dietitian (R.D.), which will enable them to be employed as nutrition counselors, clinical nutritionists, sports nutritionists, or administrators of food and nutrition services.

Students also may prepare for medical school and other types of advanced degree programs. Undergraduate Teaching Assistant. Undergraduate Teaching Assistant. Undergraduate Teaching Assistant.

Credit is earned for Ithaca College and any course taken outside the college. Students may take four courses at Wells College and student teach their last semester at Cornell. Although there is van transportation between Cornell and Wells College, it is important for students to have access to a car, especially while student teaching. Students will be registered at Cornell during the entire undergraduate program and usually maintain Ithaca housing. Wells College courses count as Cornell courses and are used as electives but are not included in a student's GPA. The one-semester student teaching experience is typically based in the Ithaca area, though not necessarily within the city of Ithaca.

This program is open to HD majors only. Students must have a cumulative GPA of 3.0, and maintain a cumulative GPA upon application and must maintain a 3.0 GPA to qualify for student teaching and to complete the program. For more information, contact Judith Ross-Bernstein in G56 MVR at 255-0826.

NUTRITIONAL SCIENCES
A major in nutritional sciences (NS) focuses on the complex interrelationships of food patterns, nutritional status, and health. This field draws upon chemistry, biology, and the social sciences to understand relationships such as: How are nutrients used by the body? What factors influence human food choice? What nutrients and dietary patterns are recommended to maintain growth, maintain health, or reduce the risk of chronic disease? Students in this program may also fulfill the courses required for didactic training in dietetics toward registration as a dietitian (R.D.), which will enable them to be employed as nutrition counselors, clinical nutritionists, sports nutritionists, or administrators of food and nutrition services.

Students also may prepare for medical school and other types of advanced degree programs through this major. The requirements for this program are outlined in the “Nutritional Sciences” section of this catalog.

Special Opportunities
Dietetics and Clinical Nutrition
Interested students should complete the academic requirements for the didactic program in Dietetics, approved by the American Dietetic Association (ADA). Courses in foods, nutrition and human nutrition, microbiology, management, statistics, and economics are added to the core curriculum (specific requirements). Evaluation of academic credentials to qualify for a didactic internship should be completed before graduation. Seniors should initiate this academic evaluation process in March if they
will graduate in January or in September if they will graduate in May. All students who will complete the academic requirements by graduation should participate in the evaluation process while at Cornell. Students who meet most but not all of the academic requirements are encouraged to have their academic work evaluated while they are at Cornell so that deficiencies can be identified and documented.

Advisers in the dietetics program can also help students plan to meet the experience or supervised practice component required for active membership and/or eligibility to sit for the dietetic registration exam. For additional information about meeting ADA requirements, contact the DNS academic affairs office, 335 MVR, 255-4410.

Exercise Science Minor

Students can complete the applied exercise science concentration at Ithaca College, which includes courses in fitness measurements, exercise physiology, and biomechanics of human movement. Nutrition courses of special interest relate to growth and development, regulation of body weight, and community nutrition and health. For information about the applied exercise science concentration, contact the DNS academic affairs office, 335 MVR, 255-4410.

Policy Analysis and Management

The policy analysis and management (PAM) major produces graduates skilled in policy analysis and program evaluation and possessing management skills applicable in the public, nonprofit, and private sectors. In addition, the PAM graduate will have concentrated knowledge in one of three policy areas: family/social welfare, health, or consumer policy. Graduates are well-qualified for a wide variety of public, not-for-profit, and private sector employment emphasizing either policy analysis and evaluation or management. The major also attracts large numbers of pre-law, pre-M.B.A., and program evaluation, and management. The major also attracts large numbers of pre-law, pre-M.B.A., and students intending to pursue graduate education in public affairs and policy analysis programs. The potential exists to pursue a five-year program resulting in a B.S. and a master of health administration.

The PAM major combines theoretical understandings from economics, sociology, psychology, and government to critique and analyze our society's values, laws, policies, and programs. It also gives students the knowledge to build management skills for use in public, not-for-profit, and for-profit settings. Ideas of social justice, equity, and economic efficiency will be studied. Research methods, statistics, and planning and evaluation concepts will be learned and used to direct and inform policy analysis, program evaluation, and management.

In addition to learning basic policy analysis and management skills, the student will be expected to apply these skills within a particular concentration area—social welfare/family, health, or consumer policy. Social work/families includes a panorama of governmental and private sector income maintenance, social, and human service delivery programs and policies that range from child abuse and child abuse policies and antipoverty programs to policies and programs that impinge on or regulate marriage, divorce, and fertility. Health programs and policies include such politically sensitive programs as health care, Medicare, Medicaid, long-term care, managed care, public health issues, and substance abuse policies. Consumer programs and policies include regulations and laws governing such issues as product safety, food and drug safety, nutrition policies, consumer credit, insurance, telecommunications, mortgage, housing, and public utility markets, and also deal with issues such as the invasion of privacy, Internet, and television. A specific focus in the consumer concentration is the role of marketing and its relationship to consumer well-being and consumer behavior.

In addition to meeting college requirements, all PAM majors are expected to take the following core courses: Introduction to Management, Introduction to Policy Analysis, Research Methods, Multivariate Statistics, Intermediate Microeconomics, and Public Sector Economics. Students also will be expected to develop a concentration of three courses in either social welfare/family, health, or consumer policy. Finally, all PAM majors are required to complete an integrative capstone experience, which may involve an experiential learning program such as Cornell in Washington, the Capital Semester, or Urban Semester, or an honors thesis. Please check with the undergraduate advising coordinator, Professor Rick Geddes, for further details.

Textiles and Apparel

The Department of Textiles and Apparel (TXA) focuses on the use of textiles and fibrous materials for apparel, composites, biomaterials, residential and contract interiors, geotechnical and other applications. Programs in the department, in keeping with the overall mission of the College, stress the need to emphasize the use of materials to meet human needs. The undergraduate curriculum focuses on the development of design skills, an understanding of the properties of textile materials, marketing, and the use of technology in the industry.

Practical problem-solving skills are developed in the department's studios and laboratories. Academic coursework is further enhanced by field and international experiences. Gallery space provides the setting to display design work. In addition, the Cornell University Costume Collection, housed in the department, provides a valuable resource; items from the collection are made available to students for classroom and special study use.

Academic Advising

All TXA majors are matched with a faculty adviser by the director of undergraduate studies, Professor Amil Ettavali, 201 MVR. Students are strongly urged to discuss their goals, course selection and sequence, electives, and career plans with their faculty adviser. Students in apparel design must begin working with their advisers early to develop a professional portfolio of their work. Students are free to change advisers; changes must be recorded with the director of undergraduate studies. Although advisers must provide the PIN number to lock in courses during course enrollment each semester, it is the student's responsibility to keep track of his or her courses and to make sure that the program meets graduation requirements for his or her major and college.

Ownership and Exhibition of Student Work

All apparel design work done as part of the academic program is the property of the department until it has been released by the instructor. Certain exceptional work may be retained by the department to exhibit for academic purposes. The department is not responsible for the loss or theft of student work.

Course Fees

No grade will be given in a course unless the course fee has been paid and equipment returned by the last week of classes.

Options

Students may select options in apparel design, apparel/textile management, or fiber science. The curriculum is based on manipulation of fiber, color, and the physical characteristics and structures of fabric to solve aesthetic and functional apparel problems; the application of economic and marketing principles to consumer and industry problems in the textile-apparel sector; and the study of chemical, physical, and engineering properties of fibrous structures and polymers. Most transfer students will need at least one extra semester to fulfill the requirements of the major. Transfers in the design option should plan on two additional semesters.

Option I: Apparel Design

The apparel design major integrates design, technology, physical sciences, the humanities, and social sciences in the study of clothing, its materials, and its functions. Using a problem-solving approach, the design process is studied and applied in the creation and critique of fashion and functional apparel. The relationships between fiber, color, and designs are studied within the context of the meaning of dress. The materials and technologies used in apparel design and the product interface with the consumer are also integral to the major. The themes of technological innovation, cultural transmission, innovation by consumers and designer, and geopolitical change are stressed as topics of engagement.

Option II: Apparel/Textile Management

Apparel and textile management combines the fields of apparel and textiles with those of economics, business management, and organizational policy. Students combine theory with case studies to find solutions to everyday problems. Course work is drawn from many interrelated disciplines, including textiles, apparel, product development, economics, business management, and communication, as well as practical field experiences. This provides students with the experience of working with professionals from a wide variety of disciplines. Students often combine this option with either Option I (apparel design) or III (fiber science).
Option III: Fiber Science

Applications for textile structures include advanced engineering composites, protective clothing for industrial and military environments, and biomedical materials, as well as the more traditional applications found in apparel and home furnishings. The fiber science option provides a strong base in mathematics and the physical sciences combined with supporting courses in engineering, consumer economics, and the social sciences.

Career Opportunities

Graduates of programs in the Department of Textiles and Apparel have found challenging employment within the textile and apparel sector, in independent and government-sponsored research, and in community organizations. Recent graduates are working in the fields of design, management, new product development, engineering, communications, and marketing. In addition, the program prepares students for graduate or professional study in fiber and polymer science, textile marketing, apparel design, textiles, or business and management.

INTERDEPARTMENTAL MAJOR IN BIOLOGY AND SOCIETY

Biology and society is a multidisciplinary program for students with special interests in such problems as genetic engineering, environmental quality, food and population, the right to medical care, and the relation between biology, society, and ethics. The program offers concentrations in biology, social sciences, and mathematics. In addition, majors take core courses in biology and society, a set of electives, and a special seminar. Course work in the College of Human Ecology may be selected from concentrations in human development, health, or public policy and human services. The other basic requirements of the college must also be met. Programs incorporating those required courses are designed in consultation with a faculty adviser to accommodate each student's individual goals and interests. For further information on the major, including courses of related interest, specific course requirements, and application procedures, see Nancy Breen, director of undergraduate studies, in 205 MVR.

INDIVIDUAL CURRICULUM

A student who has educational and professional objectives that cannot be met satisfactorily within the framework of existing majors in the College of Human Ecology may petition to develop an individual curriculum. To be approved, the curriculum must be interdisciplinary in design, include at least 40 credits in human ecology courses, and not exceed the normal number of credits allowed in the endowed divisions. A student develops an individual curriculum in consultation with faculty advisers from at least two subject matter fields and the program coordinator, Patti Papapietro, Office of Admission, Student and Career Services (172 MVR).

Such a program of study should encompass a substantial part of the student's undergraduate education and must include at least three semesters. For this reason, a request to follow an individual curriculum should be made after the freshman year and must be made before the second semester of the junior year.

If an individual curriculum seems advisable, the individual curriculum coordinator will provide direction in developing a formal program of study. Although the coordinator must approve the course enrollment schedule during the course enrollment period each semester, it is the student's responsibility to follow the curriculum as planned or to have any necessary revision approved in writing by his or her adviser and the program coordinator before the program changes are made.

SPECIAL OPPORTUNITIES

Study Abroad

Each year over 75 Human Ecology students spend a semester or more off campus in places spanning the globe, such as Australia and Zaire. There they supplement their Cornell studies with a wide range of cross-cultural and academic experiences. Study abroad opportunities are available through Cornell-sponsored programs and other U.S. college-sponsored programs as well as by direct enrollment at foreign universities.

Residency Requirements

All study abroad students must meet college study abroad requirements and remain registered at Cornell during the overseas study. Credits earned count toward the 60 Cornell credits required for graduation (in unusual circumstances some credits earned abroad may be considered as transfer credit). Study abroad credits do not count toward the maximum number of endorsed credits that Human Ecology students are permitted to earn.

Requirements for College Approval

1. GPA of 3.0 or higher, good academic standing, and well-articulated goals for students' study abroad semester.
2. Completion of the Cornell application; applications from individual programs also must be submitted to Cornell.
3. Completion of the equivalent of 15 semester credits per semester while abroad.
4. Courses taken for a letter grade (unless course is offered with only an S-U option).
5. Submission of a petition by second-semester seniors going abroad.

Application Process

Typically, students considering study abroad begin their planning at least a year before the semester abroad. Students should carefully consider what they hope to get out of a study abroad experience (academically and culturally) when investigating program options. Resources can be found in the Cornell Abroad office (300 Caldwell Hall), through the Human Ecology study abroad adviser (170 MVR), or in the Human Ecology Coordinator's office (162 MVR). Applications may be found through these resources or in the Human Ecology registrar's office (145 MVR). Completed applications must be submitted to the Human Ecology registrar's office by the following dates:

- Fall and year deadlines: February 1
- Spring deadline: September 15

Some programs will be filled by these dates. Use of the early deadlines is greatly recommended. These are:

- Fall and year deadlines: December 15
- Spring deadline: May 1

Approved applications will be signed and forwarded to the respective programs through the Cornell Abroad office.

Credits Abroad and Transfer of Credit

Most study abroad courses are transferred to the Cornell degree program as electives or liberal arts distribution credit. Study abroad credit awarded toward one's major is much less common and must be approved via signature of the student's department advising coordinator on the Cornell application. Credit for study abroad will be awarded only after successful completion of the semester abroad (marks equivalent to a Cornell grade of C or higher) and receipt of the official transcript by the college. Official transcripts should be sent to the Cornell Abroad office, which will process and forward them to the Human Ecology registrar.

Courses must be pre-approved before the student's departure. Any variances must be cleared with Human Ecology. Students must include a foreign language course in the country's native language if studying in a country where English is not the native language. All courses taken abroad and grades received will appear on the Cornell transcript. Grades earned do not, however, become part of the Cornell GPA. Students should save all written work from all classes until courses are officially transferred.

Independent Research

Research opportunities for undergraduates are extensive and valued as an important part of the learning experience. The opportunity to engage in substantive research with some of the leading scientists in their fields is so compelling that approximately half of the college's undergraduates conduct research projects. Students may become involved in research with the guidance of faculty members by conducting research assigned in a class, joining a faculty member's research group, completing an independent study research project, or carrying out an honors program project.

For further information, students should contact individual faculty members or the director of undergraduate studies (DUS) in their department.

Honors Programs

Students interested in college honors programs that lead to the degree "bachelor of science
with honors" usually apply to the appropriate honors committee no later than the end of the first semester of their junior year. A minimum GPA of 3.3 and demonstrated potential for honors-level research is required. Students take approved courses in research methodology and evaluation, attend honors seminars, complete a written thesis, and defend it in an oral examination.

In addition to the college honors program, special programs are offered by the Department of Human Development and the Division of Nutritional Sciences. Students who are interested in the honors program should contact the director of undergraduate studies (DUS) in their department or division for information and guidelines.

Field Study and Internships

Field study and internships provide experiential learning opportunities in real-life circumstances where classroom knowledge is tested and applied. Students are able to master new skills, develop and implement plans of action, solve problems, interact in multicultural situations, and build networks for future professional opportunities. By applying techniques of research methods, critical thinking, and self-directed learning, students learn to think conceptually while becoming agents of change.

Check with the director of undergraduate studies for major specific information. The Career Development Center (162 MVR) and career counselors in 172 MVR also can provide resources and assistance in finding internships and other experiential opportunities.

Concentration/Certificate in Gerontology

For students interested in pursuing study related to aging, the College of Human Ecology, under the auspices of the Bronfenbrenner Life Course Center, offers the option of completing an undergraduate concentration in gerontology. This program is designed to develop an understanding of and competence in dealing with the processes and issues of aging. Study in gerontology enriches the practical experience of students and prepares them for professional work in this area. The program draws on the resources of several departments and colleges at Cornell and Ithaca College to shape a curriculum suited to each student's professional goals and interests.

The concentration is available in combination with any major offered by the university. Twelve credit hours of course work must be completed, with 9 of these taken in the College of Human Ecology. The courses explore aging through biology, psychology, sociology, economics, and design.

Experiential learning opportunities are strongly recommended as a complement to classroom work. With faculty sponsorship, students can participate in experiences in the Ithaca area, the Urban Semester in New York City, Cornell-in-Washington, the Capital Semester in Washington, D.C., and in a placement arranged more individually.

Both Cornell and Ithaca College offer courses that incorporate a service-learning component into their curriculum. Cornell's course Environments for Elders (DEA 472) involves service in local agencies (e.g., local nursing homes, Office of Aging, assisted-living facilities), where students gain valuable experience. Students may also join the "Elderly Partnership" through the Cornell Public Service Center to participate in local visits to elders. There also are opportunities for undergraduates to become involved in research projects examining topics such as residential changes and adjustments in the later years, nutrition and elders, social security, and design for people with dementia. In addition, senior students can apply to work as a teaching assistant for a gerontology course. Departments and programs have designated academic advisors for the gerontology concentration who will help students plan the sequences of courses and electives needed to complete both a major and the gerontology concentration. Because many gerontology courses have prerequisites, early and careful planning is essential.

Specific program requirements may be obtained in the Human Ecology registrar's office (145 MVR, 255-2235) or from Nancy Wells, Bronfenbrenner Life Course Center (E220 MVR, 254-6330).

Concentrations

The College of Human Ecology formally recognizes concentrations in computer information sciences and international relations (both administered by the College of Arts and Sciences) and the previously described concentration in gerontology (administered by the College of Human Ecology). The college also offers a minor in education. Students interested in pursuing these concentrations should inquire with the college department offering them. If successfully completed before graduation, these concentrations will be posted as part of the student's official transcript.

Students may develop an unofficial concentration in additional fields taught at Cornell by taking 12 credits in an approved area. Africana studies, communications, and business administration are examples of concentrations that are possible. While these unofficial concentrations are not part of a student's transcript, students may choose to publicize these concentrations on their personal resumes.

THE URBAN SEMESTER PROGRAM IN NEW YORK CITY

Multicultural Issues in Urban Affairs

Sam Beck, Ph.D., director

The Urban Semester Program is a set of courses spanning the entire year. Students choose either fall or spring semester and enroll in three courses focusing on the opportunities and barriers that a multicultural society presents and their relationship with professional, community, or public policy settings and the Cultural Capital (15-credit residential program). They also intern three days each week in placements of their choosing. One day each week, students carry out community service in an inner city school (pre-K to high school). One day each week, students participate in site visits. Seminars are incorporated into these activities. All students reside in the Olin Hall dormitory of the Weil Medical College of Cornell University.

In the eight-week summer semester (1 to 2 credits), students carry out internships in various medical settings. Students work with the program staff to locate internship placements. For information, contact the Urban Semester Program staff at 162 MVR, 255-1846, or the Urban Semester Program in New York City at 212-746-2273.

New York City offers a wide variety of internship settings. Many bilingual and bicultural internship settings are available in Chinese, Spanish, Creole, Russian, Yiddish, and other languages. Examples of internships follow:

Health and medicine— New York Presbyterian Hospital/New York Well Cornell Medical Center, Queens Medical Center for Women and Children, and Harlem Hospital Center for Children and Families, Memorial Sloan Kettering Hospital, Hospital for Special Surgery, Montefiore Hospital, Bellevue Hospital, Our Lady of Mercy Hospital

Private and public law— NOW Legal Defense and Education Fund, Agenda for Children Tomorrow, NOW Action Alliance, NYC Commission on the Status of Women, NYC Dept. of Consumer Affairs, The Center for Puerto Rican Studies, Manhattan Borough President's office, Central Park Wildlife Center, Attorney General's office, The Parks Dept., Health Dept.

Public and public schools— Beginning with Children, Harlem Children's Zone, Harlem Health School, Harlem School at Exodus House, The Hetrick Martin Institute, Nuestros Niños, The Theodore Roosevelt High School, The Choir Academy of Harlem, El Puerco, Genesis RKF Center, River East School, MS 118, Mont Hazan Village

Design and arts organizations— Harlem Textiles Works, TADA!, NY Theater Workshop, Cynthia Rowley, Inc., Perry Ellis International, Museum of African Art, SOHO2O Gallery
Lower East Side Tenement Museum, Tommy Hilfiger, Polo, The Gap, Liz Claiborne

Other Off-Campus Programs

Capital Semester
William Rosen, Ph.D., director
Combine a full semester of 15 Cornell credits with a paid internship and a reduction in tuition. Students intern directly for a New York State legislator (Senate or Assembly) in Albany to explore their policy interests in greater depth. Interns attend hearings and legislative sessions, meet with lobbyists and constituents, write reports for legislation and possible publication, and generally help coproduce the work of the legislation. All Cornell students, regardless of major, are encouraged to apply. The program is available during the spring semester only, and it is open to sophomores, juniors, and seniors. Interns benefit greatly when subsequently applying for future employment, law school, graduate school, or business school. Information is available from the Career Development Center (162 MVR), and applications and further information can be obtained from William Rosen (259 MVR, wr14@cornell.edu)

Cornell in Washington
Students take courses from Cornell faculty, conduct individual research projects, and work as externs while taking advantage of the rich resources of the nation’s capital. For more information, visit the program office (471 Hollister Hall).

Courses at Ithaca College and Wells College
Full-time undergraduate students at Cornell may petition to enroll in courses at Ithaca or Wells College. Students pay regular full tuition to Cornell and only special fees to either Ithaca or Wells where applicable. Students are allowed to register for one course per semester and a maximum of 12 credits in four years. Exceptions will be granted to Cornell students enrolled in methods and practice teaching courses at Ithaca and Wells, and those students pursuing a concentration in exercise science through a specially arranged program with Ithaca College. Cornell students are eligible to register only for Ithaca and Wells College courses that are relevant to their program and that do not duplicate Cornell courses. Ithaca and Wells College credit counts as Cornell credit but not as Human Ecology credit. Students are accepted on a space-available basis. Participation in this program is not guaranteed, and both Ithaca and Wells have the right to accept or reject students for any reason deemed appropriate. The program is available only during the fall and spring semesters. For further information, contact the college registrar (145 MVR, 255-2235).

Double-Registration Programs
Cornell undergraduates from PAM and other fields across the college and campus are eligible to enroll in the Sloan Program in their junior year for a five-year accelerated B.S./M.P.S. degree in health administration. In their senior year, these students will take the first-year Sloan courses, which will be counted both toward undergraduate as well as graduate requirements. At the end of their senior year, students will graduate with a B.S. degree. Students whose grades are competitive will be notified during the spring semester that they are invited to continue for the final year of Sloan as a graduate student. Those students accepted for the five-year program will participate in a health care administrative internship during the summer after earning their B.S. degree and following the first year of Sloan academic course work. The following graduate year they will complete the second year of required Sloan courses and electives and will earn a professional degree, with Cornell certifying completion of the requirements for a graduate degree in health administration.

Students applying to the accelerated M.P.S. program need to complete the initial application to the Sloan five-year program through PAM in their junior year. In general, at the time of application, most of their undergraduate requirements will have been met. This application must include the GRE general test score, along with recommendations from the faculty advisor and at least one other source, as well as transcripts and the statement of purpose. During their final senior undergraduate year they also will have to submit a formal application to the graduate school. A sample schedule of the two-year curriculum for Sloan can be viewed at www.human.cornell.edu/pam/sloan/2005curric.cfm.

Double-Registration Program for Law
A small number of highly qualified applicants may be admitted to the Cornell Law School after only three years of undergraduate education. The requirements for admission under these circumstances are more stringent than for acceptance after four years of undergraduate study. Applicants must present outstanding qualifications and strong professional motivation. The junior year applicant follows the ordinary application procedures for Cornell Law School admission.

Interested students should contact the Law School director of admissions (Myron Taylor Hall, 255-5141) to discuss the admissions criteria. Because students accepted to this program will be spending their senior year away from Human Ecology, they need to plan ahead to ensure that distribution and major requirements for the B.S. degree will be met. Successful applicants need the approval of the college registrar in Human Ecology.

ACADEMIC ADVISING AND STUDENT SERVICES

Faculty Advisers
Students who choose to major in a particular department are assigned an adviser whose special interests match their need. Students may change advisers as their own interests change by working with the director of undergraduate studies (DUS).

Faculty advisers are available to discuss course requirements and sequences, useful electives inside or outside the college, as well as future goals and career opportunities. Although advisers must provide the adviser key number (PIN) during course enrollment each semester, it is the student’s responsibility to make sure that his or her course selections meet graduation requirements for the major, the college, and the university. Directors of undergraduate studies in each department are available to answer questions about advising the advising system and the undergraduate major. Students who are exploring alternative majors should work closely with college counselors in the Office of Admission, Student, and Career Services.

Office of Admission, Student, and Career Services
The Office of Admission, Student, and Career Services (ASCS) (170-172 MVR) is a center for undergraduate freshman and transfer admission activities, academic advisement, career advising; study abroad; and multicultural student programs.

Personal counseling, including exploration of problems or concerns of a personal nature, is available to all students. These ASCS counselors, however, are not psychiatrists or therapists; they are available to help students understand and navigate the Cornell system, and to offer support, assistance, and referral. Discussions are completely confidential. Appointments may be made through the receptionist in ASCS or by calling 255-2532.

In addition, ASCS provides support for several student organizations, including Human Ecology Ambassadors, the Mature Students Association, the Association for Students of Color, the Pre-professional Association toward Careers in Health, the Pre-Law Society, the Orientation Committee, and Human Ecology Voices. Primary responsibilities of the office are listed below:

Academic advisement. This service is provided to all students as an adjunct to faculty advising. Counselors can assist in course scheduling, academic planning, selection of a major, graduation requirements, and related issues.

Undeclared majors. Students who have not yet declared a major are urged to work closely with student services staff to plan their program of study. For the period a student is undeclared, counselors will provide assistance during course enrollment.

Career counseling. Career counseling is designed to help students clarify the relationship between personal skills, abilities, and career goals. Services are offered on an individual or group basis. Counselors assist in identifying career outcomes of the majors, developing networking skills, suggesting course work appropriate to various career goals, and assisting students in their general internship and job searches.

Post-graduate advisement. Material pertaining to graduate and professional schools, graduate entrance examinations, courses of study, and career outcomes is readily available.
Students with disabilities. The college is committed to assisting students with disabilities. Students who have special needs are urged to contact Student Disability Services (420 CCC) when they arrive on campus.

Financial aid. Students who encounter financial difficulty or anticipate running short of funds may discuss their needs with a counselor. Complete information is available from the Office of Financial Aid, 203 Day Hall.

The Human Ecology Alumni Association Cash Award Fund. This fund provides small emergency grants to students in the college who have unexpected financial problems. Applications may be made through ASCS.

Office of the Registrar
The Office of the University Registrar (B7 Day Hall) maintains the official academic records for the university and provides students with their official university transcripts. Additional information is available on the university registrar's web site: www.sws.cornell.edu/our. The college registrar (145 MVR) maintains students' official academic records, including the audit of progress toward the degree. The college registrar also provides services such as adding and dropping courses, correcting student records, and approving the transfer of credit from other institutions. Additional information is available on the HE registrar's web site: www.human.cornell.edu/registrar.

Multicultural Programs
The College of Human Ecology at Cornell University believes that a diverse community enriches the educational process for all members of the college community. Consequently, the college focuses particular efforts on a broad range of services for students of color. This includes not only recruitment but also services for students already on campus. Additionally, the college collaborates with university and New York State programs to ensure that Human Ecology students have access to the vast array of services available here.

The professional staff of Human Ecology's Office of Admission, Student, and Career Services includes a director of multicultural programs who assists in the recruitment, admission, and enrollment of the most qualified and appropriate EOP (a program for New York State residents), African American, Native American, Hispanic American, and Asian American students to the college. All EOP students are invited to a special pre-freshman summer program that introduces accepted students to the Cornell campus and its classrooms. Services for current EOP students include advice and counseling, recommendation letters for employment or graduate school, and advising and support for student activities and programs.

The Human Ecology Partnership Program provides mentorship through a network of faculty and upperclass students to all incoming students of color, particularly during their first year. In addition, this office serves as a liaison to the Office of Minority Educational Affairs (COSEP), State Programs (EOP), and the Learning Strategies Center. Students are also encouraged to visit the college's Career Development Center to enhance personal career exploration and decision making.

Selected programs include the following:
BBMTA (Black Biomedical and Technical Association). A university organization that provides enrichment activities for minority students interested in pursuing medical careers. For more information, contact Janice Turner (55 Goldwin Smith Hall, 255-9497).
ASC (Association for Students of Color). With the motto "Yesterday's vision, today's reality, and tomorrow's hope," the ASC is created to bring together Human Ecology students to provide a supportive foundation for enrollment, retention, graduation, and career placement for students of color. The goals of the ASC are to increase communication between students of color, administration, and faculty; assist in increasing enrollment of students of color in Human Ecology; and assist in increasing the retention of students of color in Human Ecology and in their selected majors. ASC's two committees are recruitment/retenion and career development. For more information, contact Verdene Lee (172 MVR, 255-2532).
Human Ecology Peer Partnership Program helps incoming students of color transition to the college and university. Small groups of freshmen, usually 6 to 8 students, are paired with faculty and upperclass students. They meet weekly for discussions, guidance, and explorations of the Cornell campus and the Ithaca community. For more information, contact Verdene Lee (172 MVR, 255-2532); or Gary Evans (E306 MVR, 255-4775); or Lorraine Maxwell (E310 MVR, 255-1998), both in the Department of Design and Environmental Analysis.

CSTEP. The Collegiate Science and Technology Entry Program is the New York State program that provides enrichment activities for pre-med and pre-law New York State residents. Services are targeted at populations who are historically underrepresented in scientific, technical, health-related, or licensed professions and/or who are economically disadvantaged and who demonstrate interest in, and potential for, a CSTEP-targeted profession. For more information, contact Verdene Lee (172 MVR, 255-2532).

Multicultural Education
Multicultural education broadens understanding of the world's many different societies as well as the various cultures of this country. Students take courses in the Cornell programs listed below that may be used to meet degree requirements. The college encourages students to incorporate courses from these cultural programs and from study abroad experiences in their degree programs. See information on study abroad opportunities.

Africana Studies and Research Center
American Indian Program
Asian American Studies Program
East Asia Program
Feminist, Gender, and Sexuality Studies Program
Gender and Global Change
Institute for European Studies
Languages and Linguistics
Latin American Studies Program
Latino Studies Program
Peace Studies Program
Program for Contemporary Near Eastern Studies
Program in Jewish Studies
Religious Studies
South Asia Program
Southeast Asia Program

International Students
The International Students and Scholars Office (ISSO, B50 Caldwell Hall, 255-5243) provides a broad range of services to international students. All international students should maintain contact with the ISSO. Counselors in ASCS are also available for assistance.

International students in the College of Human Ecology are encouraged to meet with the college registrar to discuss any questions or concerns that they have about their academic record.

Career Planning, Graduate and Professional School, and Job Search Services
Counseling. The Office of Admission, Student, and Career Services (ASCS, 172 MVR, 255-2532) provides career counseling and resources to help students explore career options through employment and internships, opportunities and professional and graduate school advising. Individual assistance is available as well as group programming, workshops, panels, and field trips. Career development is strongly supported, including skill development in resume writing, networking, and interviewing. Students also are instructed in the use and protocol of online résumé submissions and on-campus recruiting. The office works in conjunction with Cornell Career Services (103 Barnes Hall, 255-5221) to facilitate access to university-wide programs.

The Career Development Center (CDC, 162 MVR) is a starting point for students looking for career information. Selected resources about career planning and job search techniques, general directories to begin job or graduate school searches, and information for alumni networking are housed there. Also available are Cornell Career Services handouts and registration forms, graduate and professional school testing booklets and registration packets, study abroad, and Urban Semester program materials. Computers provide access to web-based information regarding internship and employment opportunities, as well as graduate/professional schools.

The CDC is open weekdays during the regular school semester. Student career assistants are available to provide resume and cover letter critiques, conduct mock interviews on video, and help navigate the library resources. Final critiques can be provided by a career counselor once the student review has been completed.

Former Urban Semester Program participants comprise a portion of the CDC student staff and are available daily to answer questions about the program and its application process.

Selected services are listed below. They will help students investigate their interests, skills, and values as they relate to career options,
provide useful information and tips for a successful summer or full-time job search, and provide access to employment opportunities. In addition, please refer to the college’s career services web site: www.human.cornell.edu/student.

Pre-law or Pre-med. Students who consider themselves pre-law or pre-med are encouraged to join a student group affiliated with ASCS. Those interested in a law career can join PLUS (PreLaw Undergraduate Society), which provides information on applying to law school, preparing for the LSAT, and examining career opportunities in law. Students interested in pursuing a health-related career are welcome to join PATCH (Pre-professional Association Toward Careers in Health), which serves as a link to the university health careers network and provides guidance as students prepare for the MCAT, apply to medical school, and explore the various specialties of medicine.

External Program. Students can spend one day to one week over winter break shadowing an alum in a career field of their choice. They observe day-to-day activities, discuss specific jobs and careers, and sometimes obtain limited hands-on experience. This service is available to sophomores, juniors, and seniors.

Fresh Program. This service is similar to the External Program but is available to freshmen only. Students can spend one day to one week over spring break shadowing an alum in a career field of their choice. In addition to career explorations, the Extern and Fresh programs provide excellent networking opportunities.

Internship and Employer Files. The CDC keeps files of more than 300 internships and hundreds of potential employers for student review.

Student Jobs and Internships. This is an electronic listing of information about internships and career-related summer and academic year employment that is exclusive to Cornellians.

Alumni Career Presentations. Alumni from the college come back to campus throughout the year to discuss their postgraduate or professional experiences. These meetings are ideal for exploring career outcomes of specific majors.

AlumNet. Students have access to Human Ecology alumni who can provide information on their careers and offer suggestions on a job search in their particular field or location. Students can query alumni on a host of variables and review selected alumni resumes to learn more about specific careers.

Job Search Workshops. The college hosts approximately 10 workshops every semester. These workshops are designed to help students market themselves for either summer or full-time job opportunities. Students learn how to conduct an effective job search, write a resume and cover letter, and interview successfully.

InterviewTRAK. This service provides access to on-campus interviews with employers interested specifically in Cornell students. Interviews occur primarily in banking and financial services, retail sales and management, facilities planning and management, and consulting, along with a few nonprofit organizations.

New York Recruiting Consortium. Available exclusively to Human Ecology and Arts and Sciences students, the New York Recruiting Consortium happens in New York City over winter break. It offers interviews for full-time employment with employers involved in banking and financial services, retail sales/management, advertising, law, health care, and consulting.

NFP in New York City and NFP in Washington, D.C. Speak with representatives from dozens of New York City or Washington, D.C., not-for-profit/public service agencies about work or internship opportunities in health, education, advocacy, government, and more (held only during the spring semester).

Communications Consortium. Interview with organizations in advertising, public relations, film and radio, and print media. National organizations come to Syracuse, N.Y., to meet with students for individual appointments. During the spring semester, a job fair is held the evening before.

GRADUATION REQUIREMENTS AND POLICIES

It is important for students to track their graduation progress by comparing their current transcript with an appropriate curriculum sheet. Official transcripts may be obtained at the Office of the University Registrar (807 Day Hall). Curriculum sheets are available in the Human Ecology registrar’s office (145 MVR). Students are responsible for planning course selections to ensure that graduation requirements are fulfilled in eight semesters. Transfer students are allowed fewer semesters based on the number of transferable credits granted at admission. Students requiring additional semesters to fulfill their graduation requirements must meet with a Human Ecology counselor (172 MVR) and request to petition for an extension.

Grade Point Average (GPA) Requirement for Graduation

- Students must earn a minimum cumulative GPA of 2.0 (C) or better to graduate. Note: Students matriculating before spring 2004 may continue to follow the older cumulative GPA standard of a 1.7 (C-) or better.

Cornell Credit Requirements

- To graduate, a student must earn a minimum of 120 academic credits. Physical education credits and "00" courses do not count toward the 120 required credits. An unlimited number of credits may be taken in Cornell's statutory colleges.
- Of the 120 credits required to graduate, at least 60 credits must be earned at Cornell University (applicable to transfer students).
- As of fall 2003, students who matriculate as freshmen may apply a maximum of 15 non-Cornell credits earned before matriculation (including AP, IB, and college credits) toward the 120 credits required for graduation. For all students, an additional pre-approved 15 in absentia credits earned after matriculation may be applied. AP, IB, and transfer courses may be applied toward fulfillment of specific requirements regardless of whether the credit is transferred (i.e., required courses may be waived). Refer to "Advanced Placement Credit" for full details.
- No college credit earned before matriculation and used to meet Cornell’s minimum admission requirements may be counted in the 120 credits required for graduation. This policy does not apply to transfer students.
- Courses taught by a college in the high school setting or counted toward high school graduation are not allowed to count for either credits or fulfillment of requirements (i.e., Syracuse Project Advance).
- Cornell extramural credit (defined below) is limited to 15 credits toward the 120 required.
- Strict limitations exist on the number of credits that can be applied toward the 120-credit minimum for special studies courses (400, 401, 402), for 603 courses, and for courses taken with an optional S-U grade. Details follow.

Human Ecology Credit Requirements

- The college divides the 120 minimum required academic credits into four general categories. (Students should refer to curriculum sheets for their major for specific details on course selections. These sheets are available in the Office of the Registrar (145 MVR) and in the Office of Admissions, Student, and Career Services (172 MVR) as well as on the college web site at www.human.cornell.edu.)
 a. Category I—College distribution requirements
 b. Category II—Quantitative and analytical courses (math and statistics)
 c. Category III—Elective credits
 d. Category IV—Physical education

These categories are detailed below.

- Students must complete 40 Human Ecology (HE) credits from Categories II and III. (HE credits from Category I may not be applied toward this requirement.) A maximum of 3 credits from the 401-403 special studies series courses may be used toward this requirement. Additional course-specific rules are listed below.

S-U grading rules for this requirement are as follows:
1. If a course is a requirement in Category I or II, the course may not be taken for an S-U grade (unless it is the only grade option offered for the course).

2. Courses used to count toward Category III (electives) that are taken for an S-U grade may also count toward the 40-credit requirement.

3. Students should refer to the section on S-U grading rules for full S-U grading details.

- **Students must complete 9 Human Ecology (HE) credits from outside their major department from Categories I, II, or III.** Note: Biology and society majors are exempt from this requirement. A maximum of 5 credits from the 400-402 special studies series may be applied to this requirement. Other course-specific rules for this requirement are listed below:

S-U grading rules for this requirement are as follows:

1. If a course counting toward the 9-credit outside-the-major requirement is also a requirement in Category I or II, the course may not be taken for an S-U grade unless it is the only grade option offered for the course.

2. Courses used to count toward Category III (electives) that are taken for an S-U grade may also count toward the 9-credit outside-the-major requirement.

3. Students should refer to the section on S-U grading rules for full S-U grading details.

Course-specific rules that apply to both the 40 Human Ecology credit requirement and the 9 Human Ecology credit outside-the-major requirement:

1. Effective fall 2004, Human Ecology (prefix "HE") courses below the 300 level (e.g., HE 100, 101, 120, and 201) do not count toward either the 40-credit requirement or the 9-credit outside-the-major requirement. These HE-prefix courses that are below 300 level may be used as elective credit.

2. ECON 101 and 102 are considered Human Ecology credit courses and may be used to fulfill Human Ecology's 40- and 9-credit outside-the-major requirements. If either or both courses are taken to fulfill a Category I or II requirement, they must be taken for a letter grade.

3. Experiential credit is applied to Human Ecology's 40- and 9-credit outside-the-major requirements as follows:
 a. Urban Semester (HE 470, 480, 490/495). Effective fall 2004, students in all Human Ecology majors earn:
 - 15 Human Ecology credits and 6 credits toward the 9-credit outside-the-major requirement.
 b. Capital Semester (PAM 392). Effective fall 2004, PAM majors earn:
 - 15 Human Ecology credits and 7 credits as PAM credits.
 c. Cornell in Washington (PAM 406). For this entire semester, PAM majors earn:
 - 8 credits toward the 40-credit requirement, which also count as 8 PAM credits.
 d. Non-PAM majors earn:
 - 88 credits toward the 40-credit requirement, which also count as 8 credits toward the 9-credit outside-the-major requirement. The remainder of the credits counts as elective credit.

Elective Credits

Students have individual objectives in choosing courses beyond the minimum requirements of the major. The University is diverse; the departments, centers, and special programs numerous; the fields of study almost unlimited. Counselors and faculty advisers are available to discuss which courses may interest students and best round out their education.

Students should consult the index in this catalog to learn where different subjects are taught in the University. Some subjects are taught in more than one division. Elective credits can be earned in the endowed and statutory divisions of Cornell.

Endowed Colleges

Africana Studies and Research Center
Johnson Graduate School of Management

Statutory Colleges

College of Agriculture and Life Sciences
College of Human Ecology
College of Industrial Relations
College of Veterinary Medicine

An unlimited number of credits may be taken in the statutory colleges of Cornell.

Human Ecology students will be billed for courses taken as endowed electives if credits taken exceed the following limits:
 - Students are allowed 21 credits of endowed courses in their major (category I or II) or as electives (category III); they may take more than 21 but then will be billed at the endowed rate of tuition for the extra credits (even if the endowed courses are required for the major).
 - To the extent possible, courses taken in the endowed colleges will be counted to meet distribution requirements in category I. More than 40 endowed credits taken in category I, however, will count against the 21 allowed endowed elective credits.
 - Elective credits in category III earned in Cornell's endowed divisions during summer session, study abroad credits, in absentia credits, and transfer credits do not count against the 21 credits allowed in the endowed divisions.
 - Required credits listed in the requirements charts for categories I and II are the minimums; credits taken in excess of those minimums count toward the additional credits required in category III to make a total of 120 credits (00 courses and physical education courses do not count toward this 120-credit requirement). Students may choose to take additional courses and graduate with more than 120 credits.

Physical Education Requirements for Graduation

1. Students must earn 2 credits of physical education within their first two semesters. These 2 credits do not count as part of the 60 Cornell credits, or as part of the 120 total credits required for a degree, or toward full-time status. Students who matriculate at Cornell with 12 or more credits must complete only 1 credit of physical education. Students who transfer more than 25 credits (excluding AP credits) are not required to take physical education at Cornell, regardless of whether they took physical education at their previous college.

2. Students must pass the university's swim test. Students who transfer more than 25 credits (excluding AP credits) are exempt. Refer to "University Requirements for Graduation—Physical Education—Swim Test" in this catalog for specifics.

Minimum Semester Requirements

1. Students enrolling in the college as freshmen must complete at least 12 credits of Human Ecology courses by the end of the fourth semester, and at least 5 credits of Human Ecology courses must be taken in each of the freshman and sophomore years (ECON 101 and 102 may be used to fulfill this requirement).

2. Students must carry 12 credits each semester, excluding physical education, to be matriculated as full-time students. Mature students must carry 6 credits each semester (see "Mature Student Guidelines" for details).

3. In special cases, a student may petition to carry between 8 and 12 credits. Forms for petitioning this exception and advice on how to proceed are available in the Office of Admission, Student, and Career Services (172 MVR).

Special Studies

- Students may use only 12 credits of 400, 401, 402, or 403 courses toward graduation.
- Additional credits of 400, 401, 402, or 403 courses can be taken but will not be applied toward graduation.

University Requirements for freshmen must complete at least 12 credits of Human Ecology courses by the end of the fourth semester, and at least 5 credits of Human Ecology courses must be taken in each of the freshman and sophomore years (ECON 101 and 102 may be used to fulfill this requirement).

“00” Courses

- "00" courses do not count toward graduation requirements but do count toward full-time semester status.

Requirements for Majors

- Students must fulfill the requirements specified for a major that are in effect at the time of their matriculation or thereafter. The requirements are detailed in curriculum sheets that are maintained for each academic year.

S-U Grade Options

- The S-U grading option may not be used for courses in category I or required
courses in category II unless it is the only grade option offered for those courses. S-U grades may be used for the 9 credits of Human Ecology course work outside of one's major and for electives in category III.

- Students may apply no more than 12 credits of S-U toward the 120 credits required for graduation. If a required course is offered only S-U, it will not count toward this limit. Also, Honors Research 499 taken S-U does not count against the minimum limit. Students may take more S-U if they choose, but the additional credit may not be applied toward graduation.

First-Year Writing Seminars

In each of their first two semesters of matriculation at the College of Human Ecology, students are required to take a Knight Program First-Year Writing Seminar. This policy also applies to transfer students. One or more of the seminars may be waived for transfer students if the college registrar grants credit for equivalent course work taken before matriculation at Cornell.

Those who do not fulfill this requirement on time will be referred to the Committee on Academic Status. Refer to "Criteria for Good Standing" for specifics on warning statutes that the committee applies to students who do not complete this requirement.

First-year writing seminars must be taken at Cornell and may not be taken in absentia. Students who receive a score of 5 on either the English Literature and Composition or English Language and Composition Advanced Placement (AP) exam can be exempt from one semester of their first-year writing seminar requirements. No other AP scores will allow a student this exemption (even if a lower score allows the student to use the course as elective credit toward graduation.) Students should be aware that the add/drop period for first-year writing seminars may be shorter in duration than the add/drop period for most Cornell classes.

Wells, Ithaca College, and Study Abroad Credits

Any credits earned with the Wells or Ithaca College exchange program are considered Cornell credits for the Refer to "Cornell Credit Requirements" for details on how many advanced placement (AP) credits can be applied toward the 120 credits needed for graduation.

purpose of fulfilling the 60 Cornell credit graduation requirement. They may not be used for Human Ecology credit. Study abroad courses may also count as Cornell credit (but not for Human Ecology credit).

Advanced Placement Credit

Students can earn advanced placement credit from one of the following:

1. The requisite score on a departmental examination at Cornell (usually given during orientation week) or on a College Entrance Examination Board (CEEB) achievement test. The requisite scores for the CEEB exams are determined by the relevant department at Cornell, vary by subject, and are listed in the beginning of this catalog. College-specific rules apply toward many AP courses such as biology, English literature, English composition, and statistics. Details may be found at http://human.cornell.edu/registrar/regdata/ap.cfm.

2. A regular course taught at an accredited college to college students and approved by the relevant department at Cornell. Some departments have delegated the review of courses to college staff according to guidelines they have formulated. Some departments review each request individually. Some departments accept credit from virtually all accredited colleges; some do not.

3. Credit from the International Baccalaureates (IB) is evaluated individually.

4. Refer to "Cornell Credit Requirements" for details on how many Advanced Placement (AP) credits can be applied toward the 120 credits needed for graduation.

Note: Cornell does not accept credit for courses sponsored by colleges but taught in high schools to high school students, at colleges if enrollment is targeted at high school students, or if the course was used toward high school credit. This is true even if the college provides a transcript of the work. These courses also may not be used to fulfill college requirements. Students who have taken such courses may, however, take the appropriate CEEB test to qualify for credit as in paragraph 1 above. For further information and limitations on Advanced Placement credit, see the front pages of this catalog and the Human Ecology registrar's web site (www.human.cornell.edu/registrar/ap.cfm).

Foreign Language Study and Placement

Students who studied a foreign language before coming to Cornell and who want to continue must take either the CEEB test in that language or a Cornell departmental language placement test. The latter is given during orientation week in September and again in December, January, and May. Human Ecology students who plan to work with non-English-speaking people in this country or abroad often find it necessary to be proficient in another language. Many study abroad programs in non-English-speaking countries require the equivalent of two years of college-level language study.

Extramural Credit

Extramural credit is administered by the Office of Continuing Education and Summer Sessions (B20 Day Hall, 255-4987). Extramural credit is charged by the credit hour at the endowed tuition rate. Students may count only 15 credits of extramural credit toward their degree requirements. A student may enroll for extramural credit during the fall or spring semester only if he or she is not registered in the College of Human Ecology. For example, some students enroll for extramural credit before matriculating at Cornell.

An exception to this rule is credit earned in the Ithaca College or Wells College exchange programs. Students enrolled in these programs simultaneously maintain their status as students registered in the College of Human Ecology.

Humanities

Only certain classes will count for Category I, Humanities. To determine eligibility the college uses the following definition: "The humanities include the study of literature, history (including art and design history), philosophy, religion, and archaeology. Critical, historical, and theoretical studies of the arts and design are considered humanities. Languages and creative or performing arts such as the writing of fiction or poetry, painting, sculpting, designing, composing or performing music, acting, directing, and dance are not considered humanities." Additionally, social science courses such as sociology, government, anthropology, and psychology are not considered humanities.

Specifically, courses in the following list will count as humanities:

Africana Studies (literature and history)
Archaeology
Asian American Studies
Asian and Near Eastern Studies (literature and history)
Classics (literature and history)
Comparative Literature
Development Sociology 175, 318
English (literature only)
History
History of Art/History of Architecture
Landscape Architecture 282
Music and Theatre Arts (theory, literature, and history only)
Natural Resources 407, 411
Philosophy
Policy Analysis and Management 631, 634, 652
Religious Studies

Procedures

Registration and Course Enrollment

Registration Requirements

University registration is the official recognition of a student's relationship with the university and is the basic authorization for a student's access to services and education. Completion of registration is essential to enable the university to plan for and provide services and education, guided by the highest standards for efficiency and safety. Unauthorized, unregistered persons who use university services and attend classes have the potential to use university resources inappropriately and to displace properly registered students. In addition, the university assumes certain legal responsibilities for persons who participate as students in the university environment. For example, policy states that New York State health requirements must be satisfied. Because these requirements are intended to safeguard the public health of students, the university has a responsibility to enforce the state regulations through registration procedures.
The policy on university registration is intended to describe clearly the meaning of and the procedures for registration so that students can complete the process efficiently and be assured of official recognition as registered students. With the clear communication of the steps for registration, it is hoped that compliance will occur with a minimum of difficulty.

To become a registered student at Cornell University, a person must complete course enrollment according to individual college requirements; settle financial accounts including current semester tuition; satisfy New York State health requirements; and have no holds from the college, the Office of the Judicial Administrator, Gannett Health Center, or the Bursar’s office.

Individuals must become registered students by the end of the third week of the semester. Cornell University does not allow persons who are not registered with the university in a timely manner to attend classes. The university reserves the right to require unauthorized, unregistered persons who attend classes or in other ways seek to exercise student privileges to leave the university premises.

Verification of Registration

Many insurance companies or scholarship funds require verification of full-time registration at Cornell. Should students need such verification, they should use the official university verification service at http://certification.cornell.edu or request an official letter from the Office of the University Registrar (B120 Day Hall). Students who need letters of good standing should contact the Human Ecology registrar’s office (145 MVR).

Bursar Bill

A bursar bill is sent to each student over the summer and winter breaks; it summarizes what is owed to the university. The bursar bill can also be viewed through Just the Facts. Any questions regarding the bursar bill can be directed to the Bursar’s office (260 Day Hall, 255-2396). Initial New York State residency eligibility is determined during the admissions process, but the Bursar’s office will handle any request for a status change after matriculation.

Late University Registration

A student clearing her or her financial obligations after the deadline date on the bursar’s bill is considered late. Late registrants are assessed a finance charge on the bursar’s bill starting from the due date. According to university policy, all students must be registered before the end of the third week of classes. If for any reason a student registers after that time, the Bursar’s office will charge a late fee.

Students who fail to register by the end of the third week of the semester may be withdrawn from the university. Human Ecology students who do not arrange payment agreements satisfactory to the university bursar by the last day of classes for a semester will be withdrawn from the university. Furthermore, credit for any classes attended for the semester will not be awarded regardless of the letter grade received for a course. Should withdrawn students wish to return, they must reapply through the college admissions office.

Proration of Tuition

Except for mature students, it is seldom possible to have tuition prorated if a student carries fewer than 12 credits during a semester. See the college registrar (145 MVR) or counselors (Office of Admission, Student, and Career Services, 172 MVR) for more information. Students of mature status may carry 6 to 11 credits without petitioning but must request that their tuition be prorated. Prorated tuition will be considered only for requests of between 3 and 10 credits. All requests should be made to the college registrar (145 MVR) by the end of the pre-enrollment period in the prior semester.

Course Enrollment

Initiating the Process

“CoursEnroll” selections are only “requests” for seats in classes. Between the end of the course enrollment period and the beginning of the next semester, course requests are evaluated by the offering college department. Students can determine if their requests have been successful when final schedules are published after the add/drop period. Students are expected to make course requests for the semester during a specified time in the current semester. Those dates are advertised publicly and available on the University Registrar’s web site (www.sws.cornell.edu/our). “CoursEnroll” takes place electronically, using software available through Just the Facts. During this time, each student must meet with his or her faculty adviser to discuss academic plans and to obtain the advising PIN code required for finalizing course requests. A student may enter and hold requests for courses before entering his or her PIN. Once the PIN number is entered, however, the schedule is locked and it is not possible to change until the add/drop period of the next semester. Important: students who fail to finalize the CoursEnroll process by not entering their PIN code by published deadlines will lose all course requests.

Information on courses is readily available in this catalog and in the Course and Time Roster for each semester. Both of these publications can be accessed through CUInfo. Incoming students will receive tentative schedules upon their arrival to campus, and will meet with faculty advisers during the orientation period.

Course Loads

Full-time matriculated students must carry at least 12 credits (exclusive of physical education courses) to maintain full-time status. Refer to the preceding section, “Minimum Semester Requirements,” for details. The normal course load in the college ranges from 12 to 18 credits, although there is no limit to the number of statutory credits a student may take each semester. Nonetheless, students should avoid planning excessive workloads. The time required to keep abreast of courses tends to increase as the semester progresses. Students may not withdraw from courses after the seventh week of classes without petitioning and by substantiating extenuating circumstances. Students should avoid the need to drop courses by taking on a reasonable workload and using the drop period to make changes in their program.

Late Course Enrollment

Students who do not complete course enrollment during the CoursEnroll period usually must wait until the beginning of the next semester’s add/drop period to enroll. Extensions are rarely granted and usually only for documented illness.

Students who do not meet the deadline for any reason should see the college registrar in 145 MVR as soon as possible. The college registrar can explain available options and course enrollment procedures under such circumstances.

Note: Students can review their course schedule via computer using Just the Facts. Students are responsible for checking their course schedule, for accuracy of course numbers, credit hours, grade options, and other data. Errors must be corrected immediately. Procedures for correcting enrollment errors as well as for making any other changes are described in the following section.

Course Enrollment Changes

It is to the student’s advantage to make any necessary course enrollment changes as early in the semester as possible. Adding new courses early makes it easier for the student to keep up with course work. Dropping a course early makes room for other students who may need it for their academic programs.

Ideally, students evaluate their course load carefully at the beginning of the semester. If, in the first week or two, the instructors do not discuss the amount of material to be covered and the extent of student, assignments, students need to ask about course requirements.

In addition to the procedures listed below for course enrollment changes, all add/drop forms for nutritional science majors must be signed by a faculty adviser.

Deadlines for Add/Drop and Grade Option Changes

Note: Brief add/drop periods exist for five-year writing seminars and half-semester courses.

1. During the first three weeks of the semester, courses may be added, dropped, or the grade option changed. Special status courses (400, 401, 402) may be added through the 11th week of classes. 403 Teaching Apprentice courses must be added during the first three weeks of the semester.

2. From the fourth through the seventh week of the semester, courses may be dropped. Grade option changes may not be made at this point, regardless of instructor’s permission.

3. After the seventh week of the semester, any requests for course changes must be made through the petition process. Students should request an appointment with an Admission, Career and Student Services counselor in 172 MVR to initiate the process.

4. After the seventh week of the semester, any student granted permission to drop a course after petitioning will automatically receive a grade of W (Withdrawn), and the course and grade will remain on the official transcript even if repeated in a later semester.
Within the published deadlines. Because requests to the college registrar. The faculty adviser to submit the course selections with a PIN number. The day that pre-enrollment begins; thus, students wait for the faculty adviser can then e-mail them to students. The students do not have to finalize the student's faculty adviser for approval; to the student's faculty adviser for permission. To explore whether a petition is appropriate, the petition process permits students to request exceptions to existing regulations. Petitions are considered individually, weighing the unique situation of the petitioning student with the intent of college and university regulations. In most cases, existing circumstances are needed for a petition to be approved if it involves waiving a deadline. These are situations beyond a student's control, such as a documented medical emergency. Students can avoid the necessity to petition by carefully observing the deadlines that affect their academic program. See "Course Enrollment Changes" above for some of the important deadlines. If unsure of a deadline, contact the college registrar's office (145 MVR) or with the staff in the college registrar's office (145 MVR). A general petition may be needed to carry fewer than 12 credits, withdraw from a class after the seventh-week deadline, add a course after the third-week deadline, change a grade after the seventh-week deadline, add a course during the official course drop period. To register for a special studies course, a student must receive the required signatures, the student completes a special studies form and obtains signatures from the instructor, faculty adviser, and department chair before submitting the form to the college registrar's office (145 MVR). Special studies forms are available in 145 MVR or in departmental offices. Semester credits for special studies courses are determined by the number of contact hours the student has with the supervising faculty member (or a person designated by the faculty member). To earn 1 credit, a student must have the equivalent of three to four hours of contact time per week for 15 weeks (a total of 45 contact hours). For additional credit, multiply the number of credits to be earned by 45 to determine the number of contact hours needed for the course. Strict limitations exist on the number of special studies credits that can apply toward graduation and how these credits may be applied toward Category II requirements in the major. Refer to "Human Ecology Credit Requirements" for details. To register in a special studies course taught in a department outside the college, follow the procedures established by that department.
In Absentia Study

Under certain conditions, credit toward a Cornell degree may be given for in absentia study, that is, study done at an accredited institution away from Cornell after the student matriculates in the College of Human Ecology. In absentia study may be done during any semester: fall, winter, spring, or summer. First-year writing seminars may not be taken in absentia. To be eligible for in absentia study, a student must be in good academic standing and must receive permission in advance from the college registrar. A student not in good academic standing who wishes to finish their degree in absentia must seek pre-approval from the college's Committee on Academic Status via the general petition process. In some cases, students may petition for in absentia credit after the work has been completed, but there is no guarantee that such credit will be awarded without advance approval.

Requests for leave of absence received after the first seven weeks of the semester, or requests for a leave of absence from students who have already had two semesters' leave of absence, will be referred for action to the Committee on Academic Status. The committee may grant or deny such requests, attaching conditions to the leave as it deems necessary. Leaves of absence after the first seven weeks are generally granted only when there are compelling reasons why a student is unable to complete the semester, such as extended illness.

Under certain documented medical circumstances a student may be granted a medical leave of absence. Medical leaves are initiated by the student with Gannett Health Center. If Gannett Health Center recommends a medical leave for the student, the college registrar may grant the leave. A medical leave is for an indeterminate period of time not to exceed five years. Students who are granted a medical leave of absence should maintain contact with a counselor in the Office of Admission, Student, and Career Services (172 MVR) to arrange their return to campus. The counselor will advise the student on procedures to obtain a recommendation from Gannett Health Center to the college registrar for the student's return. Students should plan sufficiently in advance to assure time for Gannett Health Center and the college registrar to consider their request.

Withdrawal

A withdrawal is a termination of student status at the university. Students may withdraw voluntarily at any time by notifying a counselor in the Office of Admission, Student, and Career Services and filing a written notice of withdrawal in the Human Ecology registrar's office. A student considering such an action is urged to first discuss plans with a counselor in the Office of Admission, Student, and Career Services (172 MVR, 255-2532) to arrange their return to campus. The counselor will advise the student on procedures to obtain a recommendation from Gannett Health Center to the college registrar for the student's return. Students should plan sufficiently in advance to assure time for Gannett Health Center and the college registrar to consider their request.
on Academic Status (CAS) for consideration, and that committee may stipulate criteria under which the student may be readmitted to the college.

GRADES AND EXAMINATIONS

Grade Definitions and Equivalents

The official university grading system uses a system of letter grades ranging from A+ to D-, with F denoting failure. An INC grade is given for incomplete work and is given at the end of the first semester of a two-semester course. If a student is given permission to withdraw from a course after the seventh week of the semester a "W" is automatically assigned.

Students can view their grades on Just the college's web site. Courses listed as SX-UX are available only on an S-U basis and SX, U, UX and W should not be included in any GPA calculations. A grade of F has no quality points, but the credits are counted, thereby lowering the average. A cumulative GPA is simply the sum of all semester products divided by all credits taken. Refer to "Repeating Courses" for details on how GPA is affected if a student repeats a course.

For further help on calculating GPA ask at the college's registrar's office (145 MVR).

These are the quality point equivalents:

- A+ = 4.3
- A = 4.0
- A- = 3.7
- B+ = 3.3
- B = 3.0
- B- = 2.7
- C+ = 2.5
- C = 2.0
- C- = 1.7
- D+ = 1.3
- D = 1.0
- D- = 0.7
- F = 0.0

Repeating Courses

Students are allowed to register a second time for a course they have already passed or in which they received an F. If a student has previously passed a course he or she is taking a second time, the second registration will not count toward the degree requirements, and the grade received will not be included in the cumulative GPA.

If a student enrolls in a course in which he or she previously received an F, the credits from the second registration will count toward the graduation requirements and the grade will be included in the cumulative GPA. The F will also remain on the record and will be included in the GPA.

S-U Grades

Some courses in the college and in other academic units at Cornell are offered on an S-U basis (see course descriptions in this book and on the Cornell web site). Courses listed as SX-UX are available only on an S-U basis and may not be taken for a letter grade. University regulations concerning the S-U system require that a grade of S be given for work equivalent to a C- or better; for work below that level, a U must be given. No grade point assignment is given to a grade of S, and S or U grades are not included in the computation of semester or cumulative averages.

A course in which a student receives a grade of S is, however, counted for credit. No credit is received for a U. Both the S and U grades appear on a student's record. A student wishing to qualify for the semester's Dean's List must take at least 12 credits of course work graded non-S-U. See "Awards and Honors" for more details about the Dean's List.

No more than 12 S-U credits will count toward a student's 120-credit graduation requirement. However, a student may take more than one S-U course in any one semester. S-U courses may be taken only as electives or in the 9 credits required in the college outside the major unless the requirements for a specific major indicate otherwise. Freshmen enrolled in ENGL 137 and 138 (offered for S-U grades only) are permitted to apply those courses to the first-year writing seminar requirement. If a required course is offered only S-U, it will not count toward the 12-credit limit.

To take a course for an S-U grade, a student must check the course description to make sure that the course is offered on the S-U basis; then either sign up for S-U credit during course enrollment, or obtain and file an add-drop form at the Human Ecology registrar's office before the end of the third week of the semester. After the third week of the semester, students cannot change grade options.

Grades of Incomplete

A grade of incomplete may remain on a student's official transcript for a maximum of two semesters and one summer after the grade is given, or until the awarding of a degree, whichever is the shorter period of time. The instructor has the option of setting a shorter time limit for completing the course work.

If the work is completed within the designated time period, the grade of incomplete will be changed to a regular grade on the student's official transcript. If the work is not completed within the designated time period, the grade of incomplete automatically will be converted to an F.

When a student wants to receive a grade of incomplete, the student should arrange a conference with the instructor (preferably before classes end and the study period begins) to work out the agreement. A form, called Explanation for Reporting a Final Grade of F or Incomplete, which must be signed by both the instructor and the student, needs to be submitted by the instructor to the Human Ecology registrar's office. This form is submitted with the final grade sheets whenever a grade of incomplete is given. This form is for the student's protection, particularly in the event that a faculty member with whom a course is being completed leaves campus without leaving a record of the work completed in the course. If circumstances prevent a student from being present to consult the instructor, the instructor may, if requested by the student, initiate the process by filing the form without the student's signature and turning the form in to the Human Ecology registrar's office with the grade sheet. Before a student will be allowed to register for succeeding semesters, he or she must go to the Human Ecology registrar's office to fill out and sign the remainder of the form.

If the work is completed satisfactorily within the required time, the course appears on the student's official transcript with an asterisk adjacent to the final grade received for the semester in which the student was registered for the course. A student who completes the work in the required time and expects to receive a grade must take the responsibility for checking with the Human Ecology registrar's office (about two weeks after the work has been handed in) to make sure that the grade has been received. Any questions should be discussed with the course instructor.

Grade Disputes

Students who find themselves in disagreement with an instructor over grades have several options:

1. Meet with the Instructor and try to resolve the dispute.
2. Meet with the chair of the department in which the instructor has their appointment.
3. Meet the associate dean for undergraduate studies of the college in which the course was taught.
4. Meet with the university ombudsman (118 Stimson Hall, 255-4521). A student may also seek advice from his or her faculty adviser or with a counselor in the Office of Admission, Student, and Career Services (172 MVR).

Examinations

Both the preliminary and final examination schedules are printed every semester in the Course and Time Roster. The current exam information is also available on the university registrar's web page at www.sws.cornell.edu/our.

Final Examinations

The following is quoted from the Cornell University Faculty Handbook, 1990, pages 66-67.

"The University Faculty long ago established, and has never reversed, the policy that each course should require a final examination or some equivalent exercise (e.g., a term paper, project report, final critique, oral presentation, or conference) to be conducted or due during the period set aside for final examinations. Although not specifically prohibited, it is University policy to discourage more than two examinations for a student in one 24-hour time period and especially on any one day. It is urged that members of the faculty consider student requests for a make-up examination, particularly if their course is the largest of the three involved and thus has the strongest likelihood of offering a makeup for other
valid reasons, e.g., illness, death in the family, etc.

Legislation of the University Faculty governing study period and examinations is as follows:

1. No final examinations can be given at a time other than the time appearing on the official examination schedule promulgated by the Registrar's Office without prior written permission of the Dean of the Faculty.

2. No permission will be given, for any reason, to schedule final examinations during the last week of classes or the designated study period preceding final examinations.

3. Permission will be given by the Dean of the Faculty to reschedule examinations during the examination period itself if requested in writing by the faculty member, but only on condition that a comparable examination also be given for those students who wish to take it at the time that the examination was originally scheduled. The faculty member requesting such a change will be responsible for making appropriate arrangements for rooms or other facilities in which to give the examination. This should be done through the Registrar's Office.

4. No tests are allowed during the last week of scheduled classes unless such tests are part of the regular week-by-week course program and are followed by an examination (or the equivalent) in the final examination period.

5. Papers may be required of students during the study period if announced sufficiently far in advance that the student did not have to spend a significant segment of the study period completing them.

6. Faculty can require students to submit papers during the week preceding the study period.

7. Take-home examinations should be given to classes well before the end of the regular semester and should not be required to be submitted during study period but rather well into the examination period.

Students have a right to examine their corrected exams, papers, and the like, in order to be able to question their grading. They do not, however, have an absolute right to the return thereof. Exams, papers, etc., as well as grading records, should be retained for a reasonable time after the end of the semester preferably until the end of the following semester, to afford students such right of review.

Preliminary Examinations

The following is quoted from the *Cornell University Faculty Handbook* (1990), pages 65-66:

"Preliminary examinations are those given at intermediate times during a course. It is common to have three of these in a semester to encourage review and integration of major segments of the course, to provide students with feedback on how well or poorly they are progressing, and to contribute to the overall pattern for a subsequent final grade.

The most convenient times and places for "prelims" are the normal class times and classrooms. But many courses, particularly large ones with multiple sections, choose to examine all the sections together at one time and to design an examination that takes more than one class period to complete. In such cases the only alternative is to hold the prelim in the evening. This practice creates conflicts with other student activities, with evening classes and laboratories, and among the various courses that might choose the same nights.

To eliminate direct conflicts, departments offering large-enrollment courses with evening prelims send representatives annually to meet with the dean of the University Faculty to lay out the evening prelim schedule a year in advance. Instructors of smaller courses work out their own evening prelim schedules, consulting their students to find a time when all can attend. Room assignments are obtained by the faculty member through the contact person in his or her college or the Central Reservations Coordinator.

The policy governing evening examinations is as follows:

1. Evening examinations may be scheduled only on Tuesday and Thursday evenings and only after 7:30 P.M. without prior permission from the Office of the University Faculty.

2. Permission from the Office of the University Faculty to schedule on evenings other than Tuesdays and Thursdays or at a time before 7:30 P.M. will be granted only on the following conditions:
 a. Conditions such as the nature of the examination, room availability, large number of conflicts, etc., justify such scheduling.
 b. An alternate time to take the exam must be provided for those students who have academic, athletic, or employment conflicts at the time scheduled.

3. If there is a conflict between an examination listed on the schedule developed at the annual evening prelim scheduling meeting and an examination not on the schedule, the examination on the schedule shall have a priority, and the course note on the schedule must provide an alternate time to take the examination for those students faced with the conflict.

4. If there is a conflict between examinations, both of which are on the schedule developed at the annual evening prelim scheduling meeting or both of which are not on the schedule, the instructors of the courses involved must consult and agree on how to resolve the conflict. Both instructors must approach this resolution process with a willingness to provide an alternative or earlier examination.

5. Courses using evening examinations are strongly urged to indicate this in the course description listed in Courses and must notify students of the dates of such examinations as early as possible in the semester, preferably when the course outline is distributed."

ACADEMIC STANDING

Criteria for Good Standing

The College of Human Ecology has established a set of *minimum academic standards* that all students must meet each semester. These standards are as follows:

1. A student must maintain a semester and cumulative grade point average of 2.0 or higher.

2. A student must successfully complete at least 12 credits per semester, excluding physical education courses. Mature students must carry at least 6 credits each semester, also excluding physical education.

3. Students enrolling in the college as freshmen must complete at least 12 credits of Human Ecology courses by the end of the fourth semester. Mature students must complete at least 5 credits by the end of the second semester (ECON 101 and 102 may be used to fulfill this requirement).

4. A student must be making "satisfactory progress" toward a Human Ecology bachelor's degree.

5. All students must complete their requirements for first-year writing seminars (FWS) during their first two semesters at Cornell. Students who do not take a required first-year writing seminar in the first semester that they matriculate at the College of Human Ecology will be placed on a warning status.

Students who have completed the second or subsequent semesters of matriculation at the college who have not taken both of the required writing seminars will be placed on a severe warning with danger of being withdrawn status. In these cases, if the student has not pre-enrolled for a FWS for the upcoming semester, a hold will be placed on the student's semester registration status until he or she is actually enrolled in an FWS. If this requirement is not completed by the end of that semester, the student will be withdrawn from the college.

At the end of each semester, the Committee on Academic Status (CAS) reviews each student's academic record to ensure that the minimum academic standards listed above are met. The committee then takes appropriate action for students whose academic achievement is considered unsatisfactory as defined by these criteria. CAS considers each case individually before deciding on a course of action. In an effort to support every student's success, the committee may take any of the following actions:

1. Place a hold on a student's university registration status for the current or upcoming semester.
2. Withdraw the student permanently from the college and Cornell University.
3. Require the student to take a leave of absence for one or more semesters.
4. Issue a warning to the student at one of the following levels:
 a. Severe warning with danger of being withdrawn
 b. Severe warning
 c. Warning
 These imply that if the student does not show considerable improvement during
 the semester, the committee may withdraw the student.
5. Add the student's name to a review list, and students with this status are monitored by
 the committee throughout the semester.
6. Return the student to good standing.
 Students placed on a required leave must appeal to CAS to return. This appeal occurs at
 the end of the required leave period. Students who have been withdrawn may appeal
 the decision before the committee during the pre-
 semester appeals meeting. Students who have been placed on a warning status owing
 to incomplete or missing grades may request that
 their status be reviewed for possible updating to
 good standing once the grade records reflect the updates or corrections. These
 requests should be made using the general petition process and submitted to the college
 registrar.
 All students with an academic warning status automatically will be reviewed for
 specific criteria at the end of the subsequent semester. In most cases, students put on
 warning, severe warning, or severe warning with danger of being withdrawn status will
 be informed of conditions that they are expected to fulfill to return to good standing.
 In general, these conditions are that a student must earn a minimum semester GPA of 2.0,
 complete 12 credits (exclusive of physical education), and not have any incomplete,
 missing, F, or U grades on his or her most recent semester record.
 If a student who has been previously placed on a required leave wishes to return to the
 college, they must submit a plan of study to the committee before being rejoined.
 Students who have been withdrawn from the college by CAS may request that they be
 readmitted. Such students have three years from the date they were withdrawn to make
 this appeal with assistance from a counselor in the Office of Admission, Student and
 Career Services (172 MVR). After three years, a former student must apply for readmission
 through the college's Office of Admission. A student applying for readmission should
 discuss his or her situation with a counselor in the Office of Admission, Student and
 Career Services. The student also should also talk with others who may be able to help—faculty
 advisers, instructors, or a member of the university medical staff. Any information
 given to the committee is held in the strictest
 confidence.

 Academic Integrity
 Academic integrity is a critical issue for all students and professors in the academic
 community. The University Code of Academic Integrity states that (1) a student assumes
 responsibility for the content and integrity of the academic work he or she submits, such
 as papers, examinations, or reports and (2) a student shall be guilty of violating the code
 and subject to proceedings under it if he or she:
 a. Knowingly represents the work of others
 b. Uses or obtains unauthorized assistance in any academic work.
 c. Gives fraudulent assistance to another student.
 d. Fabrics data in support of laboratory or field work.
 e. Forges a signature to certify completion or approval of a course assignment.
 f. Uses an assignment for more than one course without the permission of the
 instructor involved.
 g. Uses computer hardware and/or software to abuse, misappropriate, or destroy
 property, ownership, or user
 h. In any manner violates the principle of absolute integrity.
 The college's Academic Integrity Hearing
 Board, which consists of a chairperson, three
 faculty members, and three students, hears
 appeals from students who have breached the code. It also deals with cases brought directly
 to it by members of the faculty.

 Academic Records
 Students may obtain their Cornell academic record in several ways. The Cornell
 transcript, which is the official record of the courses, credits, and grades a student has earned
 can be ordered with no charge at the Office of the University Registrar (B7 Day Hall) or online at
 http://transcript.cornell.edu. For more information, call 255-4232. Students may also access their
 grades and course schedules electronically using Just the Facts. Students should be in the habit
 of checking Just the Facts by the second
 week of every semester to confirm that
 their schedule and grade options are correct. Adjustments must be made before
 published enrollment deadlines.
 The college also maintains a graduation
 progress worksheet for each student showing progress toward the degree. At the
 beginning of fall semester continuing students should check their updated worksheet
 at http://human.cornell.edu/student. It is important to check this document and
 bring any errors to the attention of the staff in the college registrar's office (145 MVR).
 Disclaimer: These worksheets are unofficially used by the college registrar and in
 no way substitute for a student's responsibility for tracking the progress toward completing
 degree requirements as outlined in the curriculum sheet for each major.

 Access to Records
 The Family Educational Rights and Privacy Act of 1974 assures students of privacy of their
 records. The law also assures students' access to their records. Information concerning
 student's relationship with the university is considered restricted and may be released
 only at the student's specific written request. Restricted information includes the courses
 elected, grades earned, class rank, academic-
 and disciplinary actions by appropriate faculty,
 student, or administrative committees; and
 financial arrangements between the student and the university. Letters of recommendation
 are restricted information unless the student has specifically waived right of access.

 Students who want additional information on access to their records may contact the
 Office of the College Registrar (145 MVR) or the Office of the University Registrar (B7 Day Hall). An inventory of those student records
 maintained by Cornell University offices in
 Ithaca, their location, and cognizant officer are available in the Office of the Dean of Students
 (401 Willard Straight Hall).
 For specific information, refer to the
 university's policy "Access to Student Information" at www.univco.cornell.edu/
 policy/ASL.html, or talk with the college
 registrar.

 ACADEMIC HONORS AND AWARDS
 The college encourages high academic achievement and recognizes outstanding
 students in several ways.

 Honors
 Dean's List. Excellence in academic achievement is recognized each semester
 by placing on the Dean's List the names of students who have completed satisfactorily
 at least 12 credits of letter grades and who have a semester GPA of 3.7 or above. No student
 who has received an F or U in an academic course will be eligible.
 Kappa Omicron Nu seeks to promote graduate study and research and to stimulate
 scholarship and leadership toward the well-
 being of individuals and families. As a chapter of a national honor society in the New York
 State College of Human Ecology, it stimulates and encourages scholarly inquiry and action
 on significant problems of living—at home, in
 the community, and throughout the world.
 Students are eligible for membership if
 they have attained junior status and have a cumulative average of B or higher. Transfer
 students are eligible after completing one year in this institution with a B average.
 Current members of Kappa Omicron Nu elect new members. No more than 10
 percent of the junior class may be elected to membership and no more than 20 percent of
 the senior class may be elected. Graduate students nominated by faculty members
 may be elected. The president of Kappa
 Omicron Nu has the honor of serving as First
 Degree Marshall for the college during May
 commencement.
 Bachelor of science with honors recognizes outstanding scholastic achievement in an
 academic field. Programs leading to a degree
 with honors are offered to selected students
 by the Department of Human Development
 and the Division of Nutritional Sciences.
 Information about admission to the programs
 and their requirements may be obtained from
 the appropriate department or division.
 Students in other departments who wish to
 qualify for honors should contact the Office of
 Admission, Student, and Career Services
 (172 MVR) during their sophomore year or
 the first semester of their junior year.
 Honors candidates must have a minimum GPA of 3.3 and have demonstrated potential
for honors-level research. To graduate with honors a student must take approved courses in research methodology and evaluation, attend honors seminars, complete a written thesis, and successfully defend it in front of a committee.

Bachelor of science with distinction recognizes outstanding scholarly achievement. Distinction is awarded to students in the top 10 percent of the graduating class based on the last 60 credits earned at Cornell. The graduating class includes students who will complete requirements for bachelor of science degrees in January or May of the same academic year or the prior August. Names of seniors who meet these requirements are presented to the faculty of the college for approval.

The primary objectives of the honor society, Phi Kappa Phi, are to promote the pursuit of excellence in higher education and to recognize outstanding achievement by students, faculty, and others through election to membership. Phi Kappa Phi is unique in that it recognizes scholarship in all academic disciplines. To be eligible for membership students must rank in the top 10 percent of the senior class, or in the top 5 percent of the junior class. Provisions also exist for the election of faculty members and graduate students whose work merits recognition.

Awards
The Elsie Van Buren Rice Award in Oral Communication is awarded for original oral communication projects related to the college’s mission by undergraduate students in the College of Human Ecology. The contest is held each year in February and awards prizes totaling $1,500.

The Flora Rose Prize is given biennially to a Cornell junior or senior whom, in the words of the donor, “shall demonstrate the greatest promise for contributing to the growth and self-fulfillment of future generations.” The recipient receives a cash prize of $500.

The Florence Halfpenny Award is named for the noted psychologist, Dr. Florence Halpern, in recognition of her lifelong interest in “innovative human service, which betters the quality of life.” In that spirit the award is presented to an undergraduate in the College of Human Ecology who has demonstrated, through supervised fieldwork or community service, creativity in the search for solutions to human problems. The award carries a $500 cash prize.

COLLEGE COMMITTEES AND ORGANIZATIONS

Student Groups and Organizations
Following are brief descriptions of some of the organizations that offer valuable experiences to human ecology students. Information about many other student activities on campus may be obtained from the Office of the Dean of Students (401 Willard Straight Hall).

The Cornell Design League was formed to give students interested in apparel a chance to express their creativity outside of the classroom by producing a fashion show every spring. It has become concerned with all aspects of a professional presentation. Consequently, it also provides a creative outlet for those interested in graphics, photography, illustration, or theater production. Although many of its designers are part of the Department of Industries of Apparel, the Design League welcomes people of all majors and schools.

Students have opportunities to work throughout the community in a variety of service capacities. They volunteer in day care centers, youth programs, health-related agencies, service for elderly people and people with disabilities, as well as nutrition programs, arts organizations, and Ithaca schools. For further information, contact the Public Service Center (200 Barnes Hall). Call 255-1148 for information about Volunteer work or 255-1107 for information about work-study arrangements.

The Human Ecology Ambassadors is a group of Human Ecology undergraduates who assist the Office of Admission in the area of new student recruitment and yield. Ambassadors participate in group conferences with prospective students to provide information from a student’s perspective, conduct high school visits, assist with on-campus programs for high school students and potential transfer students, and help with prospective student phonathons and letter writing. In addition, ambassadors attend regular meetings and serve as coordinators for activities in the Office of Admission.

For information, contact the Office of Admission, Student, and Career Services (172 MVR, 255-5471).

The mission of the Human Ecology Voices is to build unity among students, faculty, and staff in the College of Human Ecology. Membership consists of all representatives of all other Human Ecology student organizations and other interested students. Patti Papapietro in the Office of Admission, Student, and Career Services (172 MVR, 255-2532), serves as Voices adviser.

The Human Ecology Mature Students Association is an organization of students who are 24 years of age or older at the time of matriculation. Many mature students need to balance family, work, and other responsibilities with their academic efforts. The Mature Students Association strives to help by providing a forum for resource exchange and referral, support, socializing, and special projects depending upon expressed interest. These goals are pursued through seminars and informational meetings, the mature students listerv, supplementary orientation activities, liaison with other university offices, and the encouragement of informal networking. For more information, contact Patti Papapietro in the Office of Admission, Student, and Career Services (172 MVR).

Students interested in the relationship between the physical environment and human behavior may join the Human-Environment Relations Students Association (HERSA). For more information on how to become a member, contact Patti Papapietro in the Office of Admission, Student, and Career Services (172 MVR).

The Association for Students of Color (ASC) unites Human Ecology students of color to provide a supportive foundation for their enrollment, retention, graduation, and career placement. ASC members work toward these goals by:
1. participating in admissions hosting programs and conducting high school visitsations.
2. sponsoring presentations on career and graduate school outcomes of a Human Ecology education.
3. providing volunteer services to the Cornell and Ithaca communities.
4. attending regular meetings and hosting annual fall and spring forums.

For more information, contact Verdene Lee in the Office of Admission, Student, and Career Services (172 MVR, 255-2532).

The PreLaw Undergraduate Society (PLUS) is sponsored by Human Ecology and welcomes members from the Cornell community. Meetings provide information and support for students considering careers in law. Programs include information on the law school admission process, law school applications, and LSAT preparations. Additionally, PLUS organizes social events including dinners at the Cornell Law School and information panels with current law students. Guest speakers include practicing attorneys, law faculty, and current law school students. For more information, contact Kelly Deasy in the Office of Admission, Student, and Career Services (172 MVR, 255-2532).

The Preprofessional Association Toward Careers in Health (PATCH) provides support, advising, and up-to-date information to students pursuing careers in health care. Programs include academic advising, guest speakers from allopathic and alternative medicine, information on medical school admissions, exposure to complementary health care career options, MCAT preparation tips, information on research and internship opportunities, and a visit to a local medical school. This student-run organization is sponsored by Human Ecology and is open to the Cornell community. For more information, contact Paula Jacobs in the Office of Admission, Student, and Career Services (172 MVR, 255-2532).

The Orientation Committee consists of students and advisers interested in planning and implementing programs to acquaint new students with the College of Human Ecology. The committee is particularly active at the beginning of each semester and is always eager for new members. For more information, contact Patti Papapietro in the Office of Admission, Student, and Career Services (172 MVR, 255-2532).

Membership in the Sloan Student Association is open to students interested in health care and related fields. For more information, contact the president of the association (122 MVR, 255-7772).

The Students for Gerontology (SFG) is composed of students from a wide variety of majors who are interested in career and internship opportunities that contribute to the well-being of our aging population. Programs sponsored by this organization focus on developing linkages with community organizations and other student gerontology
groups. SFU meets monthly. For more information, contact Nancy Wells, faculty adviser, Bronfenbrenner Life Course Center (E220 MVR, 254-6330).

The Health and Nutritional Undergraduate Society (Health NUTS) promotes nutritional well-being through education, communication, and research. Members of the student chapter organize programs such as Food and Nutrition Day in March, and host on-campus speakers in nutrition and health-related fields. The student chapter is open to all students interested in nutrition education. For more information, contact Gail Canterbury (335 MVR, 254-2628).

Committees and Councils
Several official organizations exist within the college to deal with matters of policy and to provide leadership in college planning. Most include elected student and faculty representatives, the actions of these various groups affect all students directly or indirectly.

The Educational Policies Committee (EPC) has two student members, one graduate and one undergraduate, who vote along with the faculty members on all matters relating to college academic policy. Recommendations are submitted to this committee regarding revisions in degree requirements, new curriculum changes, and new course approval.

Students also have the opportunity to serve on the Admissions Policy Subcommittee, and the Academic Integrity Hearing Board.

The Selection Committee for the Chancellor’s Award for Excellence in Teaching or Professional Service handles the nomination and selection process for this prestigious yearly award. The committee consists of three teaching faculty members, one professional staff member, and three undergraduate members.

The Human Ecology Alumni Association Board of Directors includes two student board members—one junior and one senior. One student is selected each spring to begin a two-year term as student representative. The two students co-chair the board’s Student Activities Committee, which works to increase the visibility of the Alumni Association among the student body by funding a variety of activities. The student members also bring an important perspective to board deliberations about programming and annual goals.

The Committee on Academic Status does not include student representatives but does have a faculty representative from each department. This committee is responsible for upholding the academic standards of the college and takes action when appropriate. The committee also hears appeals regarding student petitions and requests to be readmitted to the college.

INTERDEPARTMENTAL COURSES

HE 100(1000) Critical Reading and Thinking

Fall, spring, or summer. 2 credits. Limited enrollment. Prerequisite: freshman or sophomore standing; juniors and seniors by permission of instructor. Letter or S-U grades.

Enables students to increase critical reading and thinking abilities. Examines theory and research associated with a wide range of reading, thinking, and learning skills. Emphasis is placed on developing and applying analytical and evaluative skills. Laboratory instruction is individualized and provides the opportunity to focus intensively on increasing comprehension, reading rate, and vocabulary.

HE 101(1010) College Achievement Seminar

Summer, six-week session. 2 credits. Prerequisite: Pre-freshman Summer Program students. Letter or S-U grades. Improves the learning skills of incoming freshmen. Emphasis is placed on acquisition of skills necessary to achieve academic success. Topics include time management, note-taking, mapping, textbook comprehension, preparation, and exam strategies. The application of theory to the demands of Cornell course work is stressed. In addition, students are introduced to library and computing resources through hands-on projects.

HE 201(2010) Collaborative Leadership

Spring. 3 credits. Includes required retreat beginning Fri. afternoon, Aug. 26, and ending when bus returns to campus about 4 P.M. Sun., Aug. 28. Priority given to sophomores and juniors. Letter grades only. Lec and sec, T R 8:40-9:55.

B. Bricker.

Introduces the principles of leadership theory and practice of leadership. Serves as the introduction to leadership for a new leadership certificate but is also appropriate for students who simply want to understand leadership better. Assignments are very diverse, including individual and group projects, journaling, the creation of case studies, an in-depth team project, several presentations, and a variety of other activities. More information on this course is available at the Courses of Study web site: http://cuinfo.cornell.edu/Academic/Courses/. Complete syllabus available on request.

HE 406(4060) Monitoring for Advanced Leadership

Spring and fall. 2 credits. Capstone course for Leadership Certificate Program. Prerequisite: permission of instructor. Letter grades only. Times TBA. B. Bricker.

Supports advanced leadership students through critical months of their junior-senior project development. Taught in a small seminar format. Emphasizes reflection on the leadership experience and planning for individual projects. Reviews leadership themes and competencies. With carefully selected readings and assignments, students learn to write effective grant proposals, to design evaluation programs appropriate for their leadership programs, write press releases, and that may assist for successful lobbying for policy change. Students work together to provide critical feedback and support for one another through important challenges in their own leadership development.

HE 407(4070) Multicultural Issues in Urban Affairs

Fall and spring. 3 credits. Students must take course during semester they participate in Urban Semester Program. Uses New York City as a classroom. The landscapes, built environments, and people in them are the texts. In the beginning, students study the formation of this multicultural city by traversing lower Manhattan and imagining New Amsterdam as it became New York City. Then they investigate a number of neighborhoods and speak with local leaders about diversity issues in context, in practice, and in use, to learn how multicultural issues are experienced by people and how they make sense of them.

HE 480(4800) Communities in Multicultural Practice

Fall and spring. 6 credits. Students must take course during semester they participate in Urban Semester Program; which is appropriate depends on student’s placement and is determined by Urban Semester director.
Students explore the intersection of organizational culture with issues of diversity. They investigate the nature of organizational culture and how it engages and includes or does not include diversity. Students report back in seminars their understanding and analysis of their internship organizations and their industry's role in creating conditions and environments of inclusion or exclusion. The course explores the conditions and processes that have brought about inclusion or exclusion.

HE 495(4950) Culture, Medicine, and Professional Practice in a Diverse World
Fall and spring. 6 credits. Students must take either HE 490 or 495 during semester they participate in Urban Semester, which is appropriate depends on student's placement and is determined by Urban Semester director.

Students participate in several experiential learning environments related to medicine over the course of the semester. Students rotate in a four-week unit, supported by Pastoral Care and ER, as well as several other choices through the semester. Medical and health-related practitioners make presentations throughout the semester.

DESIGN AND ENVIRONMENTAL ANALYSIS
Note: A minimal charge for photocopy course handouts may be required.

Note: Class meeting times are accurate at the time of publication. If changes occur, the department will provide new information as soon as possible.

DEA 4+1 Master's Degree Program
Outstanding students who complete their four-year undergraduate degree in DEA may apply for a master of arts/M.A. (interior design) or a master of science/M.S. (human environment relations) degree that typically requires one additional year of graduate study.

Through careful planning by the beginning of their junior year, many of the courses required in the M.A. or M.S. programs can be taken during the undergraduate years, creating an opportunity to focus the fifth year of study on completing graduate courses and thesis requirements. Typically, students will take four to five courses in their fall semester as a graduate student, and two to three courses plus their thesis research in the spring semester. Students should expect to complete their thesis by the end of the summer term of their fifth year.

Admission to the 4+1 Master's program is not automatic. Students must meet with their adviser early in their undergraduate programs to plan carefully for this possibility. In the fall of the senior year, interested students must submit an application to the Graduate School. The GRE exam and a portfolio are not required for admission, but students must submit a statement of intent, letters of reference, and transcripts. Students who have compiled a strong undergraduate record in their department are usually good candidates for admission into the graduate program in Design and Environmental Analysis.

DEA 101(1010) Design Studio I
Fall. 3 credits. Limited to 20 students per sec. Prerequisite: DEA majors or permission of instructor; priority given to interior design majors. Option I majors must take DEA 101 in fall of first year. Must receive B- or higher and complete INC in DEA 101 to register for DEA 102 and 115. Cost of materials: approx. $200. T R 10:10–1:10. J. Elliot.

Introduces the fundamental vocabulary and principles of two- and three-dimensional design. Students experiment with the development of image and form through problem-solving activities. Visit http://instruct11.cit.cornell.edu/courses/dea101/

DEA 102(1020) Design Studio II
Spring. 3 credits. Prerequisite: Option I DEA majors or Option II DEA majors or Option II DEA majors. Must complete INC in DEA 101 to register for DEA 201. Cost of materials: approx. $200; shop fee: $10. T R 1:25–4:25. P. Eshelman.

Studio course in three-dimensional design with an interior design emphasis. Explores problems in spatial organization through drawings and models.

DEA 111(1110) Making a Difference: By Design
Fall. 3 credits. Limited to 150 students. Lab fee: $25. M W F 11:15–12:05; evening exams. S. Danko.

Students from any academic area may examine how design affects their daily lives and future professions. This course focuses on issues of leadership, creative problem-solving, and risk-taking through case study examination of leaders in business, education, medicine, human development, science, and other areas who have made a difference using design as a tool for positive social change. Using a micro to macro framework, students explore the impact of design from the person to the planet. Additional topics include nurturing innovation, visual literacy, design criticism, popular culture, semiotics, proactive/reflective decision making, and ecological issues.

DEA 115(1150) Design Graphics and Visualization

Introduces computer-used techniques. Emphasizes orthographic and perspective drawing and formal and conceptual presentation methods, using both manual and digital means. Reinforces graphic and visual communication through projects, readings, and field trips. Visit http://instruct11.cit.cornell.edu/courses/dea115

DEA 150(1500) Introduction to Human-Environment Relations
Spring. 3 credits. M W F 12:20–1:10; evening exams. G. Evans.

Analyzes the physical environment and human behavior. Examines the interface of social and environmental sciences with application for the design and management of built and natural habitats. Topics include environmental effects of human activities, performance, interpersonal relationships, and organizational effectiveness as well as the ecological consequences of human attitudes and behaviors. Hands-on discussion sections and two projects plus exams. Visit our web site at http://instruct11.cit.cornell.edu/courses/dea150.

DEA 201(2010) Design Studio III
Fall. 4 credits. Prerequisites: Option I DEA students; DEA 101, 102, and 115 (minimum grades of B-). Co-requisite: DEA 251. Recommended: DEA 111 and 150. Minimum cost of materials: $150; lab fee: $40; required field trip: approx. $130. M W 12:20–4:25. J. Jennings.

Third semester in the studio sequence of eight semesters. The theme and objectives focus on design as critical thinking, introducing means by which students can think, draw, write, and build their way critically through design. Taken concurrently with DEA 251, the course applies historical theory to contemporary design projects. Also to health, aesthetics, creative project with a professor and students from another design discipline. Visit http://instruct11.cit.cornell.edu/courses/dea201

DEA 202(2020) Design Studio IV
Spring. 4 credits. Prerequisites: Option I DEA students; DEA 201 and 203. Pre-corequisite: DEA 204. Must complete INC in this course before taking DEA 301. Minimum cost of materials: $120; diazo machine fee: $8; field trip fee. T R 12:20–4:25. R. Gilmore.

Based on programmatic criteria from real clients, students learn how to design several types of interior environments, from health care facilities to local nonprofit agencies. Emphasis is on space planning, lighting design, construction of custom light fixtures, field trips to local architectural firms, and service learning, where students use design to transform the facilities of social service agencies in the community.

DEA 203(2030) Digital Communications
Fall. 2 credits. Limited to 27 students. Priority given to DEA majors. Lab fee: $10. T R 11–1. W. J. Elliott.

Digital information technologies for designers of the built environment. Students explore issues in relation to text and image through analysis and composition of form and content. Through a series of weekly projects the students work toward the development of a professional web-based portfolio of self-promotional materials. The primary objective is to reinforce principles of visual communications while learning the rudiments of vector, raster, and html graphic software. Visit http://instruct11.cit.cornell.edu/courses/dea203.

DEA 204(2040) Introduction to Building Technology

Introduction to building technology for interior designers and facility managers. Emphasizes the basic and practical aspects of building technology, including structural systems, construction materials and methods, HVAC systems, plumbing, electrical, lighting, fire, and security systems; and telephone, computer, and
Sustainable approach to the evaluation and selection of materials, finishes, and furnishings for the built environment has the potential to protect our planet. This course provides an introduction to sustainable sources and asks students to manipulate materials and understand performance testing, use building codes, create a life-cycle cost analysis, and complete interior specifications. Field trips provide an overview of the manufacturing process, and group projects culminate in the presentation of research on current "green" products and resources.

DEA 305(3050) Construction Documents and Detailing

Continuous dialogue between the idea for an interior space and the reality of its final built form is contained within construction documents also known as working drawings and specifications. Students study the history of architectural documentation; the organization of construction drawings, schedules, and specifications; and the detailing of interior elements. They also learn interior construction methods by touring a local millwork shop. Each student completes a comprehensive set of construction documents for the renovation of an existing conference facility located on the Cornell campus.

DEA 325(3250) Human Factors: Engineering-Anthropometries

Fall. 3 credits. Recommended: DEA 150. Undergraduate sec of DEA 651; shares lecture but meets for an additional hour. DEA 651 has additional readings and projects. T R 8:40-9:55. A. Hedge.

Implications of human physical and physiological characteristics and limitations on the design of settings, products, and tasks. An introduction to engineering anthropometry, biomechanics, control/display design, work physiology, and motion performance. Includes practical exercises and field project work. Visit http://ergo.human.cornell.edu

DEA 350(3500) Human Factors: The Ambient Environment

Spring. 3 credits. Recommended: DEA 150. Undergraduate sec of DEA 652; shares lecture but meets for an additional hour. DEA 652 has additional readings and projects. T R 8:40-9:55. A. Hedge.

Introduces human-factor considerations in lighting, acoustics, noise control, indoor air quality and ventilation, and the thermal environment. Views the ambient environment as a support system that should promote human efficiency, productivity, health, and safety. Emphasizes the implications for planning, design, and management of settings and facilities. Includes a field project. Visit http://ergo.human.cornell.edu

DEA 354(3540) Special Studies for Undergraduates

Fall or spring. Credit.TBA. S-U grades optional. DEA faculty.

For advanced independent study by an individual student or for study on an experimental basis with a group of students in a field of DEA not otherwise provided through course work in the department or elsewhere at the university. Students prepare a multiplicity description of the study they want to undertake on a form available from the department office. This form must be signed by the instructor directing the study and the head of the department, is filed at course registration or during the change-of-registration period.

DEA 360(3600) Introduction to Professional Practice of Interior Design

Spring. 1 credit. Limited to 18 students. Prerequisite: Option 1 DEA students. F 12:20-2:15. A. Basinger.

Introduction to organizational and management principles for delivery of interior design and facility management services. Covers basic organizational structures and basic management of space within interior design and facility management organizations, work flow and scheduling, business practices, legal and ethical responsibilities and concerns, contracts, basic contract documents such as working drawings and specifications, supervision of construction and installation, and cost estimation.

DEA 370(3700) History of Theory of the Interior

Fall. 3 credits. Limited to 35 students. Priority given to DEA majors. M W 8:40-9:55. J. Jennings.

A historic study of interior architecture and design with an emphasis on the concepts of design theory. Overarching themes encompass several time periods from the classical to the 20th century and isolate cultural patterns, spatial ideas, design, design elements, and theories. Reading, discussion, analytical exercises, essays, and a field trip are included. Visit http://instruct1.cit.cornell.edu/courses/dea251/

DEA 390(3900) Social Behavior

DEA 394(3940) Facility Planning and Management Studio

For advanced undergraduates interested in facility planning and management. Purpose is to provide basic technical, theoretical, and practical concepts useful in planning, designing, and managing facilities for large, complex organizations. Covers strategic and tactical planning for facilities. Organizing to deliver facility management services, project management, space forecasting, space allocation policies, programming, relocation analysis, site selection, building assessment, space planning and design, furniture specifications, and moves. Considers sociopsychological, organizational, financial, architectural, and legal factors. Visit http://courseinfo.cit.cornell.edu/courses/dea454_654.

DEA 400-401-402-403(4000-4010-4020-4030) Directed Readings

For study that predominantly involves data collection and analysis or laboratory or studio projects.

DEA 401(4010) Empirical Research

For study that predominantly involves library research and independent reading.

DEA 402(4020) Supervised Fieldwork

For study that involves both responsible participation in a continuing field of work and additional field experience. Students must have demonstrated a high level of performance in the subject to be taught and in the overall academic program.
DEA 407(4070) Design Studio VII
Fall. 5 credits. Prerequisites: DEA 302, 303, 304, and 305. Must complete INC in this course before registering for DEA 408. Minimum cost of materials: $150; field trip: $50. T R 12:20-4:25. R. Gilmore. Comprehensive intensive hands-on studio course in which students complete each phase of the adaptive reuse of a structure within New York City. Working with real buildings and real clients, students research the market, complete a building assessment, and then design new uses for older structures. Lecture topics range from professional practice strategies, to the history of preservation, to the secretary of the interior’s Standards for Rehabilitation. Components of the work include program document, code compliance, concept development, schematic design, and construction documents.

DEA 408(4080) Design Studio VIII
Spring. 5 credits. Prerequisites: DEA 301, 302, 303, and 304. Minimum cost of materials: $150. M W 12:20-4:25. S. Danko. Design problem-solving experiences involving completion of advanced interior design projects. Problems are broken into five phases: problem framing, design investigation, development of design strategies, to the history of preservation, to the secretary of the interior’s Standards for Rehabilitation. Components of the work include program document, code compliance, concept development, schematic design, and construction documents.

DEA 422(4220) Ecological Literacy and Design (formerly ARCH 461C/461J)
Spring. 3 credits. Prerequisite: junior or senior standing. Letter grades only. Cost of field trips: approx. $25. T R 10:10-12:05. J. Elliott.

Lecture/seminar course for advanced undergraduates interested in learning about the effects of designing the built environment of the biophysical world. Course objectives are to develop sensitivities to environmental issues, construct conceptual frameworks for analysis, and demonstrate how ecological knowledge can be applied to the practice of design through participatory approaches to learning. Visit http://instruct1.cit.cornell.edu/courses/dea422/.

DEA 423(4230) Restaurant Design Charrette
Spring. 1 credit. Limited to 18 students. Prerequisite: permission of instructor. Letter grades only. Minimum cost of materials: $50. Four class meetings on F 6-10 P.M. (week 1); one complete weekend (week 2) F 6-10 P.M., Sat 9 A.M.-10 P.M., and Sun 10 A.M.-8 P.M. R. Gilmore and S. Robson. This intensive weekend-long course pushes the boundaries of current restaurant design by developing a concept plan for an innovative new restaurant in a nontraditional setting. Students work in teams to develop design solutions and prepare design presentations for review by course instructors and visiting design professionals.

DEA 430(4300) Furniture as a Social Art
Spring. 3 credits. Limited to 15 students. Prerequisite: permission of instructor. Cost of building materials: $150. (Students also must sign up for two hours of DEA shop time each week for model building.) M W 9:05-11. Not offered 2005-2006. P. Eshelman.

DEA 451(4510) Introduction to Facility Planning and Management
Fall. 1 credit. Letter grades only. T 3:35-4:25. F. Becker. Introduction to the field of facility planning and design new uses on how the planning, design, and management of an organization’s physical facilities can help it meet its business objectives. Topics include the history of the field, strategic planning, space planning and design, project management, building operations, workplace change management, real estate, and computer-aided facility management systems.

DEA 453(4530) Planning and Managing the Workplace
Fall. 3 credits. Prerequisite: junior or senior standing. M W 2:55-4:10. F. Becker. Focuses on key issues related to workplace planning, design, and management of the workplace. These issues include understanding the factors that lead organizations to develop and implement the workplace strategies they do, the nature of these different workplace strategies, and their effects on individuals, teams, and the organization as a whole.

DEA 455(4550) Research Methods in Human-Environment Relations
Fall. 3 credits. Prerequisite: DEA majors or permission of instructor; statistics course. M W 1:25-2:40. N. Wells. Develops students’ understanding and competence in the use of research and analytical tools to study the relationship between the physical environment and human behavior. Emphasizes selection of appropriate methods for specific problems and the policy implications derived from research. Topics include research design, unobtrusive and obtrusive data-collecting tools, the processing of qualitative and quantitative data, and effective communication of empirical research findings.

DEA 459(4590) Programming Methods in Design
Fall. 3 credits. Letter grades only. Minimum cost of materials: $100. T R 10:10-11:25. L. Maxwe. Introduction to environmental programming. Emphasizes formulation of building requirements from user characteristics and limitations. Covers diverse methods for determining characteristics that will enable a particular environmental setting to support desired behaviors of users and operators. Methods include systems analysis, soft system, behavior circuit, behavior setting, and user characteristic approaches. Emphasizes selection of appropriate methods to suit problems and creation of new methods or techniques. Visit http://instruct1.cit.cornell.edu/courses/dea459._560.

DEA 460(4600) Design City
Fall. 1 credit; may be repeated for credit. Prerequisite: DEA majors. Not open to freshmen for credit. Students must take this course to participate in field study trip to a major city. Required fee for hotel and charter bus: approx. $115 (billed to student’s bursar account). S-U grades only. Fll all day, both days. K. Gibson and J. Jennings. Field study of historic and contemporary cities with guided tours to architectural and interior design firms, installations, exhibits, and showrooms in New York City, Toronto, or other major cities. Topics and themes change yearly. Visit http://instruct1.cit.cornell.edu/courses/dea460.

DEA 470(4700) Applied Ergonomic Methods
Spring. 3 credits. Prerequisite: DEA 325. Undergraduate sec of DEA 670; shares lectures but meets for an additional hour. DEA 670 has additional readings and projects. T R 2:55-4:10. A. Hedge.

Covers ergonomics methods and techniques and their application to the design of modern work environments. Emphasizes understanding key concepts. Covers conceptual frameworks for ergonomic analysis, systems methods and processes, a repertoire of ergonomics methods and techniques for the analysis of work activities and work systems.

DEA 472(4720) Environments for Elders: Housing and Design for an Aging Population
Fall. 3 credits. Field trip fee: $20. T 1:25-4:25. N. Wells.

Through seminars, lectures, field trips, and service learning opportunities, students examine the relationships between older adults and the physical environment. Students gain understanding of the relevance of design characteristics to the well-being of older people; an appreciation of late-life social, cognitive, and physiological changes, as well as familiarity with a variety of housing options for late life. Visit http://instruct1.cit.cornell.edu/courses/dea472.

DEA 499(4990) Senior Honors Thesis
Fall or spring. Variable credit. Prerequisite: permission of thesis adviser and DEA director of undergraduate studies. Letter grades only. Opportunity for DEA majors to undertake original research and scholarly work leading to the preparation of a thesis. Students work closely with their thesis adviser on a topic of interest.

DEA 600-603(6000-6030) Special Problems for Graduate Students
Fall or spring. Variable credit. Prerequisite: Graduate or advanced undergraduate standing; for undergraduates, credit FRA. S-U grades optional. Department faculty.

Independent advanced work by graduate students recommended by their special committee chair and approved by the head of the department and instructor.

600(6000): Special Problems. For study of special problems in the areas of interior design, human environment relations, or facilities planning and management.

601(6010): Directed Readings. For study that predominantly involves library research and independent study.

602(6020): Graduate Empirical Research. For study that predominantly involves collection and analysis of research data.

603(6030): Graduate Practicum. For study that predominantly involves field experiences in community settings.

DEA 645(6450) Dancing Mind/Thinking Heart: Creative Problem-Solving Theory and Practice
Spring. 3 credits. Limited to 24 students. Prerequisite: graduate or advanced undergraduate standing; for undergraduates, permission of instructor. M 4:30-7:30. S. Danko.

Focuses on thinking processes and techniques that support creative problem-solving.
solving. Examines theories of creative behavior and critical thinking. The course is highly participatory and experiential by design. Weekly discussions include hands-on applications of theories on short problems tailored to the backgrounds of the students. The primary goal is to demonstrate perceptual, emotional, intellectual, cultural, and environmental blocks to creative thinking and expand the student’s repertoire of creative problem solving strategies for use in day-to-day professional practice. Case studies of creative individuals and organizations from a variety of fields are presented.

DEA 648(6480) Advanced Applications in Computer Graphics
Fall. Variable credit; max. 4. Limited to 15 students. Prerequisite: graduate or advanced undergraduate standing; for undergraduates, DEA 302 or permission of instructor. Minimum cost of materials: $150; lab fee: $35. T R 9:05–12:05. K. Gibson.

Advanced use of computer technology to create and analyze interior environments. Emphasizes the use of 3-D modeling, animation, photorealistic rendering, and emerging technologies to investigate dynamic design issues.

DEA 650(6500) Programming Methods in Design
Fall. 4 credits. T R 10:10–11:25. L. Maxwell. Intended for graduate students who want a more thorough introduction to environmental programming methods than is provided by DEA 499. Each student is required to attend DEA 499 lectures, meet with the instructor and other graduate students for an additional class each week, and complete additional readings and projects. For more detail, see DEA 499. Visit http://instruct.cornell.edu/courses/dea499-650.

DEA 651(6510) Human Factors: Ergonomics-Athropometrics
Fall. 4 credits. Recommended: DEA 150 and 3-credit statistics course. T R 8:40–9:55. A. Hedge.

Intended for graduate students who want a more thorough grounding in human factors than is provided by DEA 325. Each student is required to attend DEA 325 lectures, meet with the instructor and other graduate students for an additional class each week, and complete additional readings and projects. For more detail, see DEA 325.

DEA 652(6520) Human Factors: The Ambient Environment

Intended for graduate students who want a more thorough grounding in human factors considerations than is provided by DEA 350. Each student is required to attend DEA 350 lectures, meet with the instructor and other graduate students for an additional class each week, and complete additional readings and projects. For detailed description, see DEA 350.

DEA 653(6530) Planning and Managing the Workplace
Fall. 4 credits. Prerequisite: graduate standing. Letter grades only. M W 2:55–4:10. F. Becker.

Focuses on key issues related to the planning, design, and management of the workplace. These issues include understanding the factors that lead organizations to develop and implement the workplace strategies they do; the nature of these different workplace strategies; and their efforts as individuals, teams, and an organization. Includes an additional one-hour discussion section each week for graduate students.

DEA 654(6540) Facility Planning and Management Studio

For description, see DEA 354.

DEA 656(6560) Research Methods in Human-Environment Relations
Fall. 4 credits. Prerequisite: DEA majors or permission of instructor; statistics course. M W F 1:25–2:15. N. Wells.

Intended for graduate students who want a more thorough understanding of the use of research to study the relationship between physical environment and human behavior. Students are expected to attend DEA 455 lectures, meet with the instructor and other graduate students for an additional class each week, and complete additional readings and projects. For more detail, see DEA 455.

DEA 659(6590) Introduction to Facility Planning and Management
Fall. 1 credit. For graduate students interested in careers in facility planning and management. Letter grades only. T 3:35–4:25. F. Becker.

Introduction to the field of facility planning and management. Focuses on how the planning, design, and management of an organization’s physical facilities can help it meet its business objectives. Topics include the history of the field, strategic planning, space planning and design, project management, building operations, workplace change management, real estate, and computer-aided facility management systems.

[DEA 660(6660) The Environment and Social Behavior

DEA 661(6610) Environments and Health
Spring. 4 credits. W 1:30–4:30. N. Wells.

Examines the impact of the physical environment on human health and well-being through the life course. Environmental factors examined include characteristics of the built and natural environment, housing, and neighborhood as well as sprawl, the dominance of the automobile, and patterns of American landscape development. Health outcomes include physical health, obesity, mental health, and cognitive functioning. Working within the life course perspective, the course focuses particularly on environmental factors that may act as either protective mechanisms fostering the long-term resilience of individuals or risk factors contributing to long-term vulnerability.

[DEA 668(6680) Design Theory and Criticism Seminar

DEA 670(6700) Applied Ergonomics Methods

Intended for graduate students who want a more thorough understanding of applied ergonomics methods than is provided by DEA 455. Each student is required to attend DEA 455 lectures, meet with the instructor and other graduate students for an additional class each week, and complete additional readings and projects. For further detail, see DEA 455.

[DEA 691(6910) Poverty over the Life Course and Public Policy

DEA 899(8990) Master's Thesis and Research
Fall or spring. Credit TBA. Prerequisite: permission of graduate committee chair and instructor. S-U grades optional. DEA graduate faculty.

HUMAN DEVELOPMENT

NOTE: Class meeting times are accurate at the time of publication. If changes occur, the department will provide new information as soon as possible.

HD 115(1150) Human Development
Fall or summer. 3 credits. S-U grades optional. M W F 1:25–2:15. J. Garbarino.

Provides a broad overview of theories, research methods, and current knowledge of human development from conception into adulthood. Covers infancy, childhood, and adolescence. Topics include biological, intellectual, linguistic, social, and emotional development as well as the cultural, social, and interpersonal contexts that affect the developmental processes and outcomes of these domains.

HD 120(1200) Exploring Human Development
Fall. 1 credit. Prerequisite: HD freshmen. Letter grades only. Disc, one hour each week; times TBA. HD faculty.

Series of small group discussions with HD freshmen and an HD faculty member. Each faculty member sets the topics and style of discussion. No exams are given. Grading is based on attendance, participation, and short written assignments.

HD 216(2160) Human Development: Adolescence and Youth
Spring. 3 credits. Prerequisite: HD 115 or PSYCH 101 or permission of instructor. S-U grades optional. T R 11:40–12:55. Staff. Broad overview of theories, research, and issues in the study of human development from early to late adolescence (youth). Focuses on the major biological, cognitive, and social changes during adolescence; the
psychosocial issues of adolescence, including identity, autonomy, intimacy, sexuality, achievement, and problems, and the contexts in which adolescent development occurs, particularly families, peer groups, schools, work, and popular culture. Discusses empirical research and theories, case studies of the lives of real adolescents, and, to a lesser degree, public policies.

HD 218(2180) Human Development: Adulthood and Aging
Spring. 3 credits. Prerequisite: HD 115. S-U grades optional. T R 11:40-12:55. S. Cornelius
General introduction to theories and research in adult development and aging. Discusses psychological, social, and biological changes from youth through late adulthood. Emphasizes both individual development within generations and differences among generations.

HD 220(2200) The Human Brain and Mind: Biological Issues in Human Development (also COGST 220(2200))
Fall. 3 credits. Prerequisite: HD 115 or PSYCH 101. S-U grades optional. T R 2:55-4:10. E. Temple
Introduces the biology that underlies human behavior and cognitive processes such as language, reasoning, decision making, and emotion. Begins by laying fundamental concepts in neurobiology and neuroanatomy, then explores a variety of topics, including how our brain underlying our perception, thought, language, emotions, memories, and desires. Relevant human clinical disorders are discussed throughout.

HD 230(2300) Cognitive Development (also COGST 230(2300))
Spring. 3 credits. Prerequisite: HD 115 or PSYCH 101. Letter grades only. T R 2:55-4:10. Q. Wang
Surveys current theory and research on various aspects of cognitive development across the life span, with emphasis on infancy and early childhood. Topics include perception, representation and concepts, reasoning and problem solving, social cognition, metacognition, language and thought, and academic skills. Students develop a broad understanding of the mechanisms, processes, and current issues in cognitive development and learn to critically assess developmental research. The course is a combination of lecture, seminar, and fieldwork.

HD 233(2330) Children and the Law
Spring. 3 credits. Prerequisites: HD 115 and introductory statistics course. T 2:42-2:57. S. Ceci
Examines psychological data and theories that shed light on the practical issues that arise when children enter the legal arena. Attempts to integrate theories, research, and methodology from several areas of psychology, including developmental, cognitive, social, and clinical. Also attempts to examine the degree to which basic research can (and should) be used to solve applied issues. Selected topics include memory development, suggestibility, theory of mind, childhood amnesia, expectancy formation, symbolic representational ability, and finally, what can (or should) an expert witness tell the court. Several actual cases involving child witnesses are presented to illustrate the application of scientific data to the courtroom.

Because of the heavy use of case materials, video and textual coverage of actual trials, it is expected that students will devote more than the usual number of hours to this course.

HD 234(2340) The Growth of the Mind
Spring. 4 credits. Recommended: course in human experimental psychology, statistics, or HD 115 or equivalent, or permission of instructor. S-U grades optional. T R 2:55-4:10. B. Lust
Introduces the fundamental issues of cognition. Students are asked to consider several questions. What is the nature of human intelligence? How are knowledge and understanding acquired and represented in the human mind? What is the nature of mental representation? What are the cognitive characteristics of the mind at birth? What is the relation of the acquisition of knowledge and understanding to their final representation? What are the relations between language and thought? In the study of those issues, how can epistemological and experimental psychology be related through the experimental method? Basic debates within the study of cognition are introduced and discussed throughout. The course analyzes Piaget's comprehensive theory of cognitive development and experimental results. Current research in cognitive development is contrasted.

HD 238(2380) Thinking and Reasoning (also COGST 2380)
Fall. 3 credits. Prerequisite: HD 115 or PSYCH 101. T R 2:55-4:10. B. Koslowski
Examines problem solving, transfer, and creativity; pre-causal and causal reasoning; models of good thinking based on formal logic, pragmatism, and probability theory; expert-novice differences; cognition and attitudes; extra-rational and magical beliefs; and putative rational and social class differences in intelligence. Two general themes run through the course: (1) the extent to which children and adults approximate the sorts of reasoning that are described by various psychological models; (2) the extent to which various models accurately describe the kind of thinking that is required by the problems and issues that arise and must be dealt with in the real world.

HD 242(2420) Participation with Groups of Young Children
Fall or spring. 4 credits. Limited to 20 students (depending on availability of placements and of supervision). Prerequisites: HD 115 and permission of instructor. S-U grades optional. W 2:30-4:25. J. Ross-Bernstein
Designed to integrate developmental theories with supervised experience in local care and educational contexts for young children, the intention being to enhance the student's abilities to understand and to relate effectively to young children. Involves participation, observation, reflection, reading, writing, and sharing of viewpoints. Places are in local nursery schools, day care centers, Head Start programs, and kindergartens.

HD 250(2500) Families and the Life Course (also SOC 250(2500))
Spring. 3 credits. S-U grades optional. M W F 1:25-2:25. E. Wethington
Introduction to social scientific research on family roles and functions in American society. Topics include the history of the family, changes across the life course, and the influence of cultural and economic forces on families.

HD 251(2510) Social Gerontology: Aging and the Life Course (also SOC 251(2510))
Analyzes the social aspects of aging in contemporary American society from a life course perspective. Topics include (1) an introduction to the field of gerontology, its history, theories, and research methods; (2) a brief overview of the physical and psychological changes that accompany aging; (3) an analysis of the contexts (e.g., family, friends, social support, employment, volunteer work) in which individual aging occurs, including differences of gender, ethnicity, and social class; (4) and the influences of society on the aging individual.

HD 260(2600) Introduction to Personality (also PSYCH 275(2750))
Spring. 3 credits. Limited to 600 students (300 HD 260, 300 PSYCH 275).
Recommended: introductory psychology or human development course. T R 1:25-2:40. Staff
Introduction to theory and research in the area of personality psychology, with special emphasis on personality development. Covers the major influences—including genetic, environmental, and gene-environment interactions—and involves in-depth study of the major theories. Examines and compares assumptions and models of human behavior that form the basis of each theoretical orientation, and reviews and evaluates the relevant empirical evidence. In addition, basic psychometric concepts and the methods for measuring and assessing personality are covered, as are the major related debates and controversies.

HD 261(2610) The Development of Social Behavior
Spring. 3 credits. Highly recommended: HD 115 or PSYCH 128. T R 1:25-2:40. Staff
Views issues in the development of social behavior from the perspective of theory and research. Likely topics include bases of social behavior in infancy and early childhood, the role of parents, siblings, and peers, the development of prosocial and aggressive behavior, the development of and functioning of emotion, norms, and social behavior, and the influence of social and cultural factors on the development of social behavior.

HD 266(2660) Emotional Functions of the Brain
Spring. 3 credits. Prerequisites: HD 220, PSYCH 223(460), or BIOL 420. Letter grades only. T R 10:10-11:25. R. Deupree
After an overview of the gross anatomy of the brain, this course focuses on networks of brain regions that are organized around the integration of processes related to emotion and motivation. First, general features of the brain in relation to emotional evaluation and expression processes are discussed, and then the brain organization related to particular types of emotional systems is presented, including incentive-reward motivation, social bonding, fear versus anxiety and affective aggression. Emotion, memory, and conscious awareness of emotion are also discussed. Neurobiological modulation of emotional processes by neurotransmitters and neuropeptides of wide distribution in the brain are detailed as well. The latter lay the
groundwork for understanding the nature of individual differences in much of our social and emotional behavior as explored in HD 360.

HD 282(2820) Community Outreach (also PSYCH 282[2820])
Fall. 2 credits. Prerequisites: HD 115 or PSYCH 101. Students may not register concurrently with HD 327/PSYCH 327 or 328. Letter grades only. T 11:40-12:55.
H. Segal.
For description, see PSYCH 282.

HD 284(2840) Gender and Sexual Minorities (also FGSS 285[2850])
Fall. 3 credits. Prerequisite: social science course. S-U grades optional. M 7:30-10 P.M. K. Cohen.
Introduces students to theories, empirical scholarship, public policies, and current controversies regarding lesbian, gay, bisexual, transgender, sexually questioning, and other gender and sexual minority populations.

The major focus is on sexual development, lifestyles, and communities with additional emphasis on ethnic, racial, and gender issues. Videos supplement readings and lectures.

HD 313[3130] Problematic Behavior in Adolescence (also PSYCH 313[3130])
Explores several problematic behaviors of adolescence, including depression, drug abuse, eating disorders, and delinquency. Presents various psychological, sociological, and biological explanations for the behavior. Reviews appropriate research; explores treatment and prevention strategies. Lectures are supplemented by several novels and movies that focus on troubled adolescents.

HD 320(3200) Human Developmental Neuropsychology
Spring. 3 credits. Prerequisites: HD 220 or PSYCH 223 or BIONB 222. S-U grades optional. Offered alternate years; not offered 2005-2006. T R 1:25-4:40.
E. Temple.
Human neuropsychology explores the relationship between the brain and mind with a focus on the effects of disease, disorder, and injury. As a discipline, neuropsychology seeks to gain an understanding of not only specific disorders but also the nervous system through analysis of the effects of these disorders. This course takes that approach as well, exploring issues from both perspectives. It also explores the developmental neurobiology of different human diseases, clinical disorders, disabilities, and injuries. Topics include learning disabilities, autism, ADHD, Tourette’s syndrome, Down syndrome, mental illnesses, Alzheimer’s disease, Parkinson’s disease, and epilepsy.

HD 327(3270) Field Practicum I (also PSYCH 327[3270])
Fall. 3 credits. Limited to 30 students. Must commit to taking HD 328 in spring semester. Prerequisites: HD 370 or PSYCH 325 and permission of instructor. Letter grades only. M W 8:40-9:55.
H. Segal.
For description, see PSYCH 327.

HD 328(3280) Field Practicum II (also PSYCH 328[3280])
Spring. 3 credits. Limited to 30 students. Prerequisites: HD 327/PSYCH 327 taken the previous semester, PSYCH 325 or HD 570 and permission of instructor. Letter grades only. M W 11:40-12:55.
For description, see PSYCH 328.

HD 336(3360) Connecting Social, Cognitive, and Emotional Development
Fall. 3 credits. Prerequisites: HD 115 or PSYCH 101 and HD 260 and either HD 260 or HD 261. Unit grades optional. T R 11:40-12:55. M. Casasola.
Provides an integrated view of development from infancy through middle childhood. Students gain an understanding of how aspects of social, emotional, and cognitive abilities interact and play integral roles in each other's development.

HD 337(3370) Language Development (also COGST 436[4360], PSYCH 436[4360], LING 436[4436])
Spring. 4 credits. Open to undergraduate and graduate students. Supplemental lab course available (HD 437/PSYCH 437, COGST/LING 450). Graduate students also should enroll in HD 633/LING 700, supplemental graduate seminar. Prerequisite: at least one course in developmental psychology, cognitive psychology, cognitive development, neuropsychology, biology, or linguistics. S-U grades optional. T R 2:25-4:40. Not offered 2005-2006. B. Lust.
Surveys basic issues, methods, and research in the study of first-language acquisition. Considers major theoretical positions in the field in the light of experimental studies in first-language acquisition of phonology, syntax, and semantics from infancy on. The fundamental issues of relationships between language and thought are discussed, as are the fundamental linguistic issues of “Universal Grammar” and the biological foundations for language. The acquisition of communication systems in nonhuman species such as chimpanzees is addressed, but major emphasis is on the child.

HD 344(3440) Infant Behavior and Development
Fall. 3 credits. Limited to 60 students. Not open to freshmen. Prerequisites: HD 115, biology course, and statistics course. M W F 1:25-2:15. S. Robertson.
Examines behavior and development from conception through the first two years of life in traditional areas (e.g., perception, cognition, socioemotional theory, language, motor function). Strongly emphasizes the fundamental interconnectedness of these aspects of development as well as their relation to the biology of fetal and infant development. Emphasizes topics with implications for general theories of development (e.g., the functional significance of early behavior, the nature of continuity and change, and the role of the environment in development). Also describes conditions that put infants at risk for poor development (e.g., premature birth, exposure to environmental toxins, maternal depression) and topics with current social, ethical, or political implications (e.g., infant daycare, fetal rights). Research methodology in the study of early behavior and development is emphasized throughout the course.

HD 346(3460) The Role and Meaning of Play
Fall. 3 credits. Limited to 45 students. Prerequisite: junior or senior standing; HD 115. M 7:30-10 P.M. J. Ross-Bernstein.
Examines the play of children ages three through seven. Through seminar discussions, workshops, videos, and individualized research students explore the meaning and validity of play in the lives of young children, the different ways that children play and the value of each, and the effect of the environment in enhancing and supporting play.

HD 347(3470) Human Growth and Development: Biological and Behavioral Interactions (also B&SOC 347[3471], NS 347[3470])
Spring. 4 credits. Limited to 150 students. Prerequisites: BIO G 101 or 109 or equivalent, and HD 115 or PSYCH 101. M W F 1:25-2:15. Offered alternate years; not offered 2005-2006. S. Robertson and J. Haas.
Concerned with the interrelationships of physical and psychological growth and development in humans during infancy. Considers intrinsic and extrinsic causes of variations in growth and development in nonhuman species for language acquisition. Also examines the consequences of early growth and its variations for current and subsequent behavioral, psychological, and physical development are examined. The interaction between physical and behavioral or psychological factors is emphasized throughout the course.

HD 348(3480) Advanced Participation with Children
Supervised field-based course designed to help students deepen and consolidate their understanding of children. Students are expected to define their own goals and assess progress with supervising teachers and the instructor; to keep a journal; and to plan, carry out, and evaluate weaving activities for children within their placement. Conference groups and readings focus on the contexts of development and on ways to support children’s personal and interpersonal learning. Each student is expected to do a presentation and paper on a self-selected topic within the scope of the course. Participation is in settings that serve typical and/or special needs children from three to eight years of age and provide education, care, or special-purpose interventions for them.

HD 353(3530) Risk and Opportunity Factors in Childhood and Adolescence
Fall. 3 credits. Limited to 100 students. Prerequisites: HD 115 and 250. S-U grades optional. M 7:30-10 P.M. J. Garfinkel.
Examines the meaning of risk and opportunity in the lives of children and youth. Begins with understanding risk accumulation and resilience as they relate to social policy, professional practice, and community development. The concept of “social toxicity” is a central theme of the course. Assignments include writing research-based editorials and participating in a simulated public policy debate.
HUMAN ECOLOGY - 2005-2006

[HD 362(3620)] Human Bonding
Fall. 3 credits. Limited to 600 students.
Covers the science of interpersonal relationships. Examines the basic nature of human affective bonds, including their functions and dynamics. Covers such topics as interpersonal attraction and mate selection, intimacy and commitment, love and sex, jealousy and loneliness, the neurobiology of affiliation and attachment, and the role of relationships in physical and psychological health.

[HD 366(3660)] Psychobiology of Temperament and Personality
Fall. 3 credits. Limited to 20 students.
Prerequisite: HD 260 (no substitutions and no exceptions); permission of instructor.
R. Depue
For students who have an interest in the neurobiology of behavior, in general, and in temperament and personality, in particular. The course material is presented within an evolutionary biology perspective, where the development of nervous systems as a means of adapting to critical stimuli is explored as the basis of emotional traits in humans. The nature of temperament and personality is explored from psychometric, social, genetic, and biological points of view. There is a focus on the general role played by the biogenic amines (dopamine, norepinephrine, and serotonin), corticotropic hormone and opiates in determining individual differences in temperament and personality. Implications for modeling several forms of personality disorders and psychopathology are also discussed. Finally, the manner in which environmental influences across the life span may be coded in the brain and influence the development of personality is explored.

[HD 368(3680)] Children's Development in Different Cultures
Spring. 3 credits. Prerequisites: HD 115 or PSYCH 101 and college-level statistics course. Letter grades only. Times TBA. Not offered 2005-2006. Staff.
Examines the influence of ecological, cultural, and ethnic factors on the social and cognitive development of children in different cultures. Gives particular attention to research methodologies that guide us in making comparisons about parent-child development across cultures. Topics include family origin and universality, parental roles, child-family interaction, patterns of kinship, and economic and health issues.

[HD 370(3700)] Adult Psychopathology (also PSYCH 325, 3260)
Spring. 3 credits. Prerequisites: sophomore, junior, or senior standing; any course in psychology or human development. T R 10:10-11:25. H. Segal.
For description see PSYCH 325.

[HD 371(3710)] Child Development and Psychopathology (also PSYCH 371, 3710)
Fall. 3 credits. Limited to 120 students. Priority given to HD and psychology majors. Prerequisites: HD 115 or PSYCH 200; HD 220 or PSYCH 223; HD 260 or PSYCH 275. Letter grades only. T R 1:25-2:40. J. Haugard.
Explores the development and process of mental, emotional, and behavioral disorders in children such as mental retardation, autism, depression, and attention deficit disorder.
Topics include (1) the classification of mental disorders; (2) current psychological, and sociological theories regarding the development and maintenance of mental disorders; (3) prevalence and etiology of childhood mental disorders; and (4) therapeutic and preventive interventions. If there is sufficient enrollment, an optional discussion section will be available to students who would like an opportunity to discuss readings and lecture material in greater depth.

[HD 382(3820)] Research Methods in Human Development
Students learn about a variety of research methodologies and gain experience in conducting a research project. Students design and conduct one descriptive and one experimental study. They also gain experience in using statistical software to analyze data.

[HD 400-401-402-403(4000-4010-4020-4030)] Special Studies for Undergraduates
Fall or spring. Credit TBA, 1-4.
Prerequisite: permission of instructor. S-U grades optional.
For advanced independent study by an individual student or for study on an experimental basis with a group of students in a field of HD not otherwise provided through course work in the department or elsewhere at the university. Students prepare a multiplicity of description of the study they want to undertake, on a form available from the department office in G77 MVR. This form must be signed by the instructor directing the study and the student's faculty advisor and submitted to G77 MVR, the Office of Undergraduate Education. After the form is approved, the student takes it to the college registrar's office, 145 MVR, along with an add/drop slip. To ensure review before the close of the period, early submission of the special studies form is necessary. Students must have completed an introductory course in adulthood and aging and wish to pursue such issues in more depth. Class time is devoted primarily to discussion of assigned readings.

[HD 418(4180)] Aging: Contemporary Issues
Fall. 3 credits. Limited to 20 students.
Prerequisites: junior or senior standing; HD 218, 250, or 251 or permission of instructor. Letter grades only. T R 2:55-4:10. S. Cornelius.
Seminar addressing major issues and controversies in the field of aging. Designed for upper-level students who wish to pursue an in-depth analysis of concepts such as "successful" aging and wisdom, as well as controversies surrounding issues of generational equity and the right to die. Although these issues are addressed primarily from a psychological viewpoint, interdisciplinary perspectives are considered and incorporated in both readings and discussions. Also designed for undergraduates who have completed an introductory course in adulthood and aging and wish to pursue such issues in more depth. Class time is devoted primarily to discussion of assigned readings.

[HD 419(4190)] Midlife Development
Fall. 3 credits. Limited to 20 students.
Prerequisites: junior or senior standing; HD 218, 250, or 251 or permission of instructor. Letter grades only. T R 2:55-4:10. Offered alternate years; not offered 2005-2006. S. Cornelius.
This seminar-style course examines the burgeoning research literature on adult development during midlife. Focuses on research and theory examining psychological changes during middle adulthood such as relational and dialectical thinking, personality, identity, and sense of control. Also considers the social and physical changes that occur at this time of life especially regarding issues such as empty nest anxiety, divorce, career transitions, menopause, and cardiovascular disease. Oral presentations, class participation, and an integrative paper are required.

[HD 431(4310)] Mind, Self, and Emotion
Fall. 3 credits. Limited to 20 students.
Prerequisites: upperclass undergraduate or graduate standing; HD 115 or PSYCH 101. Letter grades only. T R 1:25-2:40. Offered alternate years; not offered 2005-2006. Q. Wang.
Examines current data and theory concerning memory, self, and emotion from a variety of perspectives and at multiple levels of analysis, particularly focusing on the interconnections among these fields of inquiry. The "scale of observation" is viewed as occurring within the person (brain mechanisms, including genetics), at the level of the person (e.g., content—goals, beliefs, desires), and between persons (relationship, and group interaction—including culture).

[HD 432(4320)] Cognitve, Social, and Developmental Aspects of Scientific Reasoning
Spring. 3 credits. Limited to 20 students.
Prerequisites: junior or senior standing; HD 115 or PSYCH 101 or permission of instructor. S-U grades optional. T R 2:55-4:10. B. Koslowski.
Examines the cognitive precursors of scientific reasoning, the way the precursors develop over time, and the way that the social context
affects whether, and if so how, scientific inquiry is carried out.

HD 433(4330) Developmental Cognitive Neuroscience
Spring. 3 credits. Limited to 20 students. Prerequisites: junior or senior standing; HD 220 or PSYCH 223, BIOL 222. S-U grades optional. T R 1:25–2:40. Offered alternate years; E. Temple.

What are the brain mechanisms underlying human behavior and cognition? How do those underlying brain mechanisms develop? These are the questions that developmental cognitive neuroscience tries to address and those explored in this course. The course explores methods used in the field (including brain imaging techniques), recent findings on the development of brain mechanisms underlying human behaviors such as, language, attention, and memory, as well as the brain mechanisms that may underlie various developmental disorders such as developmental dyslexia, autism, and attention deficit (hyperactive) disorder (AD(H)D). Emphasis is on reading primary research literature and acquiring the skills to understand, critique, discuss, and write about primary research. The format includes lecture and discussion.

HD 437(4370) Lab Course: Language Development (also COGST/LING 450(4500), PSYCH 437(4370))

For description, see COGST 450.

HD 440(4440) Internship in Educational Settings for Families
Fall or spring. 8–12 credits. Prerequisites: HD 115, 242 and 348; permission of instructor. Recommended: HD 346. S-U grades optional. J. Ross-Bernstein.

Offers an opportunity to integrate theory with practice at an advanced level and to further develop understanding of children ages 2 to 10 and their families. Interns function as participants in varied settings and participate in curricular planning, evaluation, staff development, home visits, parent conferences, and parent meetings. Supervision by head teacher and instructor. Students are expected to define their own goals and to assess their progress, to do assignments that reflect readings, and to keep a critical incident journal.

HD 451 Nontraditional Families and Troubled Families
Spring. 3 credits. Limited to 20 students. Prerequisites: HD juniors and seniors; HD 115 or PSYCH 209, HD 260 or PSYCH 275. Letter grades only. T R 8:40–9:55. Offered alternate years; J. Haugaard.

Advanced course designed to explore the functioning of families. The first part of the course examines family system theory and how it relates to our understanding of all families. The second part examines four types of families: two nontraditional families (e.g., adoptive families) and two troubled (e.g., families with a chronically ill child).

HD 452(4520) Culture and Human Development (also COGST 452(4520))
Fall. 3 credits. Limited to 20 students. Prerequisite: HD 115 or PSYCH 101. Open to undergraduate and graduate students. Letter grades only. T R 1:25–2:40. Offered alternate years; Q. Wang.

This seminar takes an interdisciplinary approach to address the central role of culture in human development. It draws on diverse theoretical perspectives, including psychology, anthropology, education, ethnography, and linguistics, to understand human difference, experience, and complexity. It takes empirical reflections upon major developmental topics such as cultural aspects of physical growth and development; culture and cognition, culture and language; culture, self, and personality; cultural construction of emotion; culture issues of sex and gender; and cultural differences in pathology.

HD 456(4560) Families and Social Policy
Spring. 3 credits. Limited to 20 students. Prerequisite: junior or senior standing; one course in the family or sociology. U grades optional. Hours TBA. Not offered 2005–2006. Staff.

Examines the intended and unintended family consequences of governmental policies, using case studies in areas such as social welfare, day care, and health care. Also considers the policy implications of changes in the structure and composition of families.

HD 457(4570) Health and Social Behavior (also SOC 457(4570))
Fall. 3 credits. Limited to 20 students. Prerequisites: junior or senior standing; statistics course. R 10:10–11:25. Offered alternate years; not offered 2005–2006. E. Wethington.

Critically examines sociological and empirical research on the relationships among social group membership, social status, and physical and mental health. Lectures focus on social stress, social support, and socioeconomic status, all of which are associated with variations in physical health, mental health, and health maintenance behaviors. Students are expected to read widely from current literature in medical sociology, health psychology, public health, and epidemiology.

HD 458(4580) Parent-Child Development in African American Families

Examines parent-child relationships in African American families. Topics include historical influences on contemporary parenting behaviors, the impact of societal forces on African American families’ socialization practices, and the influence of parental child rearing beliefs, strategies, and practices on African American children’s development. Particular attention is given to the relevance of mainstream theoretical formulations of African Americans’ parental and familial functioning.

HD 464(4640) Adolescent Sexuality (also FGSS 467(4670))

Covers topics selected by students regarding theoretical, research, and applied issues on adolescent sexuality. In the second half of the course, students lead a class that focuses on a research topic of their choosing. The success of the course depends on students feeling personally engaged and committed to the course content. Students are expected to participate fully in class discussions. Because of the multidisciplinary nature of the course, students from a variety of backgrounds in academic disciplines, gender, sexual orientation, ethnicity, race, class, and religious affiliation attend.

HD 468(4680) Stress in Childhood and Adolescence

Advanced seminar that reviews research related to the nature and consequences of stressful experiences in childhood and adolescence, particularly those arising in the family. Topics represent common stressors in the lives of children (e.g., divorce of parents) that have potentially damaging consequences for development (e.g., child abuse). Also covers topics in which Cornell faculty members have conducted significant research (e.g., children’s memory for stressful events). In addition to considering the negative effect of stress on development, also considers issues of individual differences in stress reactivity, including the effects of coping and resilience. These topics lead naturally into discussions of practice and policy.

HD 478(4780) Attention Deficit/Hyperactivity Disorder in Children
Spring. 3 credits. Limited to 15 students. Prerequisites: HD 115 or equivalent, introductory biology, statistics course. S-U grades optional. Offered alternate years; not offered 2005–2006. Hours TBA. S. Robertson.

This seminar examines in detail the nature, diagnosis, epidemiology, causes, and treatment of ADHD through a critical evaluation of the recent scientific and medical literature. Also considers implications for families, schools, and society.

HD 483(4830) Early Care and Education in Global Perspective
Fall. 3 credits. Limited to 20 students. Prerequisites: junior or senior standing; HD 115 and 250. S-U grades optional. T R 2:55–4:10. M. Cochran.

Examines American child care and early education policies and programs, broadly defined, in the context of policies and programs in Africa, Asia, Europe, and Latin America. Comparison and analysis are guided by several complementary conceptual frameworks. Gives particular attention to the synthesis of child care with early intervention and family support. Policy-related topics include parental leave, developmentally appropriate practices, universal pre-kindergarten, cultural diversity, parent involvement, teacher preparation, and financing the ECE system. Students specialize in the child care policies and programs of another country, work in teams to analyze a contemporary policy issue, and apply course content to an ECE issue of their choice in a final paper.

HD 498(4980) Senior Honors Seminar
Fall and spring. 1 credit. Requirement for and limited to seniors in HD honors program. S-U grades only. M 12:20–1:10. S. Cornelius.

Discussion and presentation of honors theses being completed by HD seniors.
HD 499(4990) Senior Honors Thesis
Fall or spring. Credit TBA. Prerequisite: permission of thesis adviser and coordinator of honors program. S-U grades optional. HD faculty.

The Graduate Program
HD 620(6200) First-Year Proseminar in Human Development
Yearlong. 1 credit. Prerequisite: first-year HD graduate students. S-U grades only. F 2:40-4:10. C. Hazan.
Designed as an orientation to the department and advanced graduate study. Activities include attendance at research presentations, visits to departmental research laboratories, relevant informational sessions (e.g., University Committee on Human Subjects, College Grants), and guidance in preparing a public research presentation to be made at the end of spring semester.

HD 631(6310) Proseminar on Cognitive Development
Designed to help students develop a broad understanding of the mechanisms, processes, and current issues in cognitive development and learn to do critical, in-depth analyses of developmental research. Discusses how children's thinking evolves over the course of development and evaluates psychological theories and research on various aspects of cognitive development. Topics include perception, representation and concepts, reasoning, spatial and number cognition, memory, metacognition, language and thought, and academic skills.

HD 632(6320) Cognitive Neuroscience Seminar: Applications of Brain Science to Behavioral Research
Spring. 3 credits. Limited to 25 students. Prerequisite: doctoral students; master's students and undergraduate students who are actively doing research by permission of instructor. S-U grades optional. W 7:30-10:30 P.M. E. Temple.
Graduate students the opportunity to learn about current methods of cognitive neuroscience and explore the ways cognitive neuroscience methods and current findings may affect their field of research. Initial meetings include foundational lectures on the fundamentals of cognitive neuroscience. Subsequent meetings cover current topics in cognitive neuroscience that vary year to year depending on the research fields of the graduate students enrolled. Sample topics include cognitive neuroscience of false memory formation, sexual orientation, effects of trauma, and bilingualism. Students do not need to have had previous course work in neurobiology or cognitive neuroscience but rather to be actively engaged in planning or implementing their thesis research. Class format is graduate seminar with reading and discussion of research, student presentations, and papers.

HD 634(6340) Judgment, Decision Making, and Scientific Reasoning
Fall. 3 credits. Prerequisite: human development or psychology course. Letter grades only. T R 2:55-4:10. B. Koslowski.
Seminar based on selected chapters from The Cognitive Basis of Science, ed. by Carruthers, Stich, and Uegens (Cambridge U. Press, 2002), an anthology that resulted from a conference of the same name. Most of the authors treat scientific reasoning very broadly, as an instance of good thinking in general. The book addresses issues of innateness and cross-cultural commonalities, modularity, the role of cognition in science, social and emotional factors in science and scientific thinking, and the role of the broader social context in scientific reasoning. Appropriate course for someone interested in current cross-disciplinary thinking about scientific reasoning as an instance of good reasoning.

HD 636(6360) Connecting Social, Cognitive, and Emotional Development
Opportunity for graduate students to explore several current areas of research from both a cognitive and a social-emotional perspective. Although the traditional approach to the study of development has centered on studying cognitive development as separate from social and emotional development, the current course focuses on how cognitive and socio-emotional development are integrated and how each influences the 'development of the other. Thus the course is intended to provide a more integrated view of development. As one example, language acquisition, which traditionally has been viewed as a cognitive achievement, depends not only on social interactions but also on achievement in social understanding and awareness. Likewise, acquiring language that describes emotional states plays an important role in developing children's understanding of others' emotional states. Topics are determined by the interests of the graduate students who enroll.

HD 637(6370) First-Language Acquisition
This seminar supplements the survey course with more advanced discussion of central issues and current research. Graduate students who are taking HD 337/337T (or who have taken it or an equivalent previously) should also enroll for this seminar.

HD 640(6400) Infancy
Examines developmental changes in infancy through a critical review of key research and theory in selected aspects of neurobehavor, perception, cognition, language, emotion, and social relationships. Theoretical issues considered. Relevant research on experiences in early development, sensitive periods, continuity and discontinuity in development, and the functional significance of early behavior. Some of the conditions that put infants at risk for poor development are also considered, such as premature birth, perinatal medical complications, and exposure to environmental toxins. Combines perspectives from developmental psychology and psychobiology.

HD 660(6600) Social Development
This seminar examines literature relevant to early childhood determinants and developmentally old emotional-motivational systems that help us to adapt to critical stimuli in the environment. Neurobiological development of emotional processes by several neurotransmitters of wide distribution in the brain is detailed. The manner in which emotion influences learning and memory concludes the discussion. There are two take-home essay exams.

HD 691(6910) Poverty, the Life Course, and Public Policy [also DEA 691/6910]
Fall. 3 credits. Limited to 15 students. Prerequisite: graduate standing. Letter grades only. M 4:30-7:30 P.M. G. Evans.
For description, see DEA 691.

HD 692(6920) Seminar in Translational Developmental Science
Provides graduate students with the knowledge and opportunities to translate developmental research into practical, real-world applications and positions. A secondary goal is to provide graduate students with essential information about professional activities that are related to translational research, such as publishing in journals and applying for grants.

HD 711(7110) Psychological Expert Testimony in the Courts [also LAW 711]
Fall. 3 credits. Prerequisite: permission of instructor. S-U or letter grades. M 6:05-8:05 P.M. J. Hagaard and A. Mooney.
The goals of this course include (1) providing law students and graduate students with the opportunity to work together on a case in which expert testimony from a psychologist will be given, (2) increasing law students'...
understanding of the strengths and limitations of psychological research, psychological testing, and clinical interviewing. (3) increasing graduate students’ understanding of the limits that are imposed on psychological research, testing, and interviewing when it is presented in court, (4) providing law students the opportunity to conduct an examination and a cross-examination of a psychologist expert witness, and (5) providing graduate students with the opportunity to act as an expert witness.

Individualized Special Instruction

HD 700-806(7000-8060): Special Studies for Graduate Students.
Fall or spring. Credit TBA; 1-15 (3 hours work per week per credit). S-U grades at discretion of instructor. Times TBA.
Independent advanced work by graduate students recommended by their special Committee chair with permission of the instructor.

HD 706(7000): Directed Readings.
For study that predominantly involves library research and independent study.
For study that predominantly involves collection and analysis of research data.
HD 702(7020): Practicum.
For study that predominantly involves field experience in community settings.
HD 703(7030): Teaching Assistantship.
For students assisting faculty with instruction. Does not apply to work for which students receive financial compensation.
HD 704(7040): Research Assistantship.
For students assisting faculty with research. Does not apply to work for which students receive financial compensation.
HD 705(7050): Extension Assistantship.
For students assisting faculty with extension activities. Does not apply to work for which students receive financial compensation.
HD 706(7060): Supervised Teaching.
4 credits. For advanced students who assume major responsibility for teaching a course. Supervision by a faculty member is required.
HD 806(8060): Teaching Practicum.
4 credits. For advanced graduate students independently to develop and teach an undergraduate topics course under the supervision of a faculty member.

HD 899(8990): Master’s Thesis and Research.
Fall or spring. Credit TBA; 1-15 (3 hours work per week per credit). Prerequisite: permission of thesis adviser. S-U grades only.

HD 999(9990): Doctoral Thesis and Research.
Fall or spring. Credit TBA; 1-15 (3 hours work per week per credit). Prerequisite: permission of thesis adviser. S-U grades only.

POLICY ANALYSIS AND MANAGEMENT

Note: Class meeting times are accurate at the time of publication. If changes occur, the department will provide new information as soon as possible.

Fall or spring. 4 credits. Prerequisite: ECON 101 or equivalent. Students must enroll in a sec: J. Cawley, R. Geddes, W. Rosen, and staff.
Topics include theory of demand and consumer behavior including classical and indifference curve analyses; theories of production and cost; models for the following markets—competitive, monopoly, monopolistic competition, oligopoly, and inputs; general equilibrium; welfare economics; public goods; and risk.

PAM 204(2040) Economics of the Public Sector.
Fall or spring. 3 credits. Prerequisite: PAM 200. S-U grades optional. D. Kenkel and staff.
The public sector now spends nearly two out of every five dollars generated as income in the U.S. economy. A thorough knowledge and understanding of this important sector is an essential part of training in policy analysis and management. This course provides an overview of the public sector of the U.S. economy, the major categories of public expenditures, and the main methods used to finance those expenditures. The principles of tax analysis and cost-benefit analysis are presented with a focus on the role of public policy in improving economic efficiency, promoting the goals of equity and social justice, and improving equity by altering the distribution of wealth and income.

PAM 210(2100) Introduction to Statistics.
Fall or spring. 4 credits. K. Joynier, L. O’Neill, R. Swisher, and staff.
Introduces students to descriptive and inferential statistics. Topics include hypothesis testing, analysis of variance, and multiple regression. To illustrate these topics, this course examines applications of these methods in studies of child and family policy.

PAM 215(2150) Research Methods.
Fall or spring. 3 credits. Prerequisite: PAM 210 or equivalent. Sec: TBA. J. Kuder and M. Waller.
Students learn the logic and methods of social science research, as well as how to create researchable questions out of their issues of interest. Readings, written assignments, and in-class exercises focus on stating hypotheses, designing studies and samples to test hypotheses, measuring variables, and simple statistical analysis. Practicing researchers should take this course no later than their junior year.

PAM 220(2200) Introduction to Management: Principles and Differences Among Sectors.
Spring. 3 credits. D. Tobis.
Basic introduction to major management and related concepts of planning, organizing, controlling, and leadership, and special topics within five major management contexts, including individual/personal, groups/families, firms, not-for-profit organizations, and governments/communities.

PAM 222(2220) Controversies about Inequality (also PHIL 195[1950], SOC 222[2220])
Spring. 1-3 credits. Staff.
For description, see SOC 222.

PAM 223(2230) Consumer Marketing
Fall. 4 credits. Offered alternate years: not offered 2005-2006. R. Avery.
Focuses on the structure and functioning of consumer markets. The major players in these markets are producers, consumers, and market monitoring agents (government, the media, and other independent groups). The primary focus is on the actions and activities of producers in product and service markets. Also covers the mechanisms whereby producers make their product, price, promotion, and distribution decisions. Also studies the U.S. market in terms of its demographic (target market) structure and consumption patterns.

PAM 230(2300) Introduction to Policy Analysis
Fall. 4 credits. R. Avery.
Policy analysis is an interdisciplinary field that uses theories, concepts, and methods from disciplines such as economics, sociology, and political science to address substantive issues in the public policy arena. Students are introduced to the functions of and interactions between the major institutions (public and private) at the national, state, and local level involved in the policy-making process. The course focuses on public policy analysis in the consumer, health, and family/social welfare areas and also includes an introduction to the technical skills required to undertake policy analysis.

Fall. 3 credits. R. Swisher.
Considers the social policy implications of research on the effects of geographic inequalities (e.g., neighborhood poverty) on individual and family welfare across the life course. Emphasizes the consequences of neighborhood poverty in adolescence, explores the long-term effects of these early experiences for outcomes later in the life course, and contrasts them to those of working-class, middle-class, and more advantaged youth. Policy implication discussions include welfare reform, housing policy, racial and class segregation, the Moving to Opportunity demonstration program, school vouchers, and neighborhood programs aimed at promoting social capital and community policing.
of the corporate form of organization. The legal institutions defining the corporation, such as limited liability and shareholder voting, are analyzed along with regulations governing these institutions. A particular focus is placed on how these institutions control the behavior of managers. Those mechanisms include hostile takeovers, insider trading, and executive compensation plans. Additional topics include the role of advocacy organizations, litigation, and restructuring.

[PAM 305(3050) Introduction to Multivariate Analysis] Spring or Fall, 4 credits. Prerequisite: PAM 100 or equivalent. Provides an introduction to multivariate statistical methods.

Focuses on the economic evaluation of health and safety policy. The first third of the course covers the economic costs of illness; the World Health Organization's global risk assessment; and the burden of disease. The second half covers theories and concepts from psychology, sociology, and economics to explain the behavior of consumers in the in-store environment.

Focuses on the cognitive, behavioral, and environmental factors that drive consumer behavior. The course examines how theories and concepts from psychology, sociology, and economics are applied to understand consumer decision making.

[PAM 334(3340) Corporations, Shareholders, and Policy] Fall. 3 credits. Enrolled subjects must have knowledge of economic evaluation methods in practice.

Examines the experiences and challenges of low-income families in the contemporary United States as documented in qualitative data.

[PAM 336(3360) Economics of Social Security] Fall. 3 credits. Enrolled subjects must have knowledge of economic evaluation methods in practice.

[PAM 337(3370) Social Institutions and Social Science] Fall. 3-5 credits. Offered alternate years.

Examines the importance of a social science perspective on social policy issues. The course covers the social policies of poverty, health, and social services.

[PAM 338(3380) Social Institutions and Social Science] Fall. 3-5 credits. Offered alternate years.

Examines the importance of a social science perspective on social policy issues. The course covers the social policies of poverty, health, and social services.

Policy. Focuses primarily on the Old-Age, Survivors, and Disability Insurance Program but also discusses other programs such as the Supplemental Security Income and mandates, for example, the Americans with Disabilities Act, that affect the aged and those with disabilities.

Deals with the history of women in medicine and the historical and cultural treatment of women's health problems. Also addresses health care research and the exclusion of women from research trials and protocols. Reproductive issues, alternative approaches to treatment, and mental health issues are discussed.

Examines the demographic perspective on social policy issues. The course covers the social policies of poverty, health, and social services.

Provides an understanding of the interactions and interrelationships of human behavior that influence sexual development and behavior. Focuses on the evolution of sexual norms, cross-cultural customs, legislation within changing sociopolitical systems, and delivery of services related to social issues, needs, and/or problems.

Examines the philosophical and historical orientation to social welfare policy, programs, and services. Examines the social, political, and economic contexts within which social welfare policies have evolved in the United States. Analyzes the ideological, political, and social processes through which public policy is formed. Focuses on the significance of social justice, social and economic disparities, and the process by which public policies are translated into social welfare programs.

The importance of a global perspective is emphasized in the context of present program
design, public concerns, interrelationships, and human need.

PAM 392(3920) New York State Government Affairs: Capital Semester in Albany
Spring: 15 credits; for HE students, 5 credits count toward outside-the-major requirement; for PAM majors, credits satisfy capstone requirement and 7 additional PAM credits. Prerequisite: permission of instructor; sophomores, juniors, and seniors. Students participate in either the New York State Assembly or New York State Senate Intern Programs. Internships include research on legislation, support for legislator initiatives and public hearings, work on constituent and interest group issues, and other tasks. Students also participate in one "in-residence" course, and Cornell students also participate in a seminar conducted by W. Rosen. Students earn $3,500 stipend.

PAM 400-401-402-403(4000-4010-4020-4030) Special Studies for Undergraduates
Fall and spring. Credit TBA. S-U grades optional. Staff.
For advanced independent study by an individual student, or a study on an experimental basis with a group of students not otherwise provided through course work in the department or elsewhere at the university. Students prepare a multipage description of the study they want to undertake on a form available from the department field office. This form must be signed by the instructor directing the study, the student's faculty advisor, and the department head and filed at course registration or within the change-of-registration period in the college registrar's office. 145 MVR. To ensure review before the close of the course registration or change-of-registration period, early submission of the special studies form to the department chair is necessary. Students, in consultation with their faculty supervisor, should register for one of the following subdivisions of independent study.

PAM 400(4000): Directed Readings
For study that predominantly involves library research and independent reading.

PAM 401(4010): Empirical Research
For study that predominantly involves data collection and analysis.

PAM 402(4020): Supervised Fieldwork
For study that involves both responsible participation in a community setting and reflection on that experience through discussion, reading, and writing. Academic credit is awarded for this integration of theory and practice.

PAM 403(4030) Teaching Apprenticeship
Prerequisite: course (or equivalent) in which student is assisting and has demonstrated high level of performance. For study that includes assisting faculty with instruction.

PAM 406(4998) Politics and Policy: Theory, Research, and Practice [also GOVT 500(4998), ALS 500(4998), AM ST 501(4998)]
Fall, spring. Taught in Washington, D.C. For description, see GOVT 500.

PAM 420(4200) Management Information Systems for the Public Sector

PAM 422(4230) Risk Management and Policy
Fall. 3 credits. Prerequisite: ECON 101 and statistics course. S. Tennyson. Provides students with a broad understanding of risk management problems and solutions, a greater appreciation of the importance of risk and risk regulation in our society, and increased comprehension of the complexities of making decisions about risk. Topics include alternative ways to define and measure risk, the importance of risk-tradeoffs, and models of decisions making under risk. With this background, alternative approaches to risk management are analyzed. The impact on risk management of the legal liability system and government programs, laws, and policies is also considered.

PAM 435(4350) The U.S. Health Care System
Fall. 3 credits. R. Battistella. Introduction to the health care delivery systems in the United States. Covers the interrelatedness of health services, the financing of health care, and the key stakeholders in health care delivery, including regulators, providers, health plans, employers, and consumers. Describes the history and organization of health care; behavioral models of utilization; issues of health care reform and current trends. Provides an overview of the key elements of the field including ambulatory care services, mental health services, hospitals and clinics, insurers, the role of public health organizations, and the politics of health care in the United States.

PAM 437(4370) Economics of Health Policy
Spring. 3 credits. Prerequisite: ECON 101 or equivalent. S-U grades optional. K. Simon.
Uses the economic tools of policy analysis to understand health care system and critically evaluate current policy debates. In the past decade, some of the most controversial policies considered by state and federal governments have involved issues that have been studied by health economists and health services researchers. The United States as its main institutional framework but also pays attention to health care topics of international concern, such as the AIDS epidemic.

PAM 440(4400) Critical Perspectives
Fall. 3 credits. J. Allen.
Presents an overview of different perspectives on U.S. social policies and programs with an emphasis on health, education, social welfare, family, and consumer issues. Analyzes and contrasts historical, social, scientific, and personal perspectives. Students explore the inevitability and legitimacy of diverse perspectives on social conditions, policies, and programs. Students also gain knowledge about the social contexts, conditions, policies, and programs presented; critically analyze them; employ the conceptual frameworks presented; and evaluate policy debates by applying these insights.

PAM 441(4410) Evidence-Based Practice
Spring. 3 credits. Prerequisite: PAM seniors. W. Trochim.
Focuses on the integration of science and practice, and on some of the most intensely debated and important issues currently being addressed in policy analysis and management. This integrative capstone course is designed to help students synthesize their undergraduate course work and link it with a real-world practice experience. It introduces students to this cutting edge field, has them work with an agency or organization to identify a critical research-relevant practice issue, gather and systematically synthesize the available research on that issue, report and present findings to practitioners, and suggest how to improve the relationship between practitioner and researcher.

PAM 444(4440) Violence against Women: Policy Implications and Gender Perspectives (also FGSS 448(4480))
Fall. 3 credits. Offered alternate years; not offered 2005-2006. A. Parrot.
Focuses on the historical and current reasons for and impact of the alarming rate of violence against women both domestically and internationally. Considers the impact of legislative, public, social, or religious policies on the incidence of such violence. Considers rape, child sexual abuse, spousal violence, battering, hate crimes, gay bashing, kidnapping, ethnic cleansing, war crimes, forced prostitution, female genital mutilation, honor killings, public beating, lashing, stoning, torture, female infanticide, trafficking of women, forced abortions, acid attacks, sexual slavery, and sati (self-immolation). Each student is required to evaluate the impact of one current policy and critique the potential value of one pending policy relating to violence against women.

PAM 457(4570) Innovation and Entrepreneurship in the Health Care Industry
Fall. 3 credits. Offered alternate years; not offered 2005-2006. J. Kuder.
Designed for students interested in the management, financing, and development of innovation in the health services industry. The unique features of the health delivery system are emphasized as students learn about developing creative approaches to health services problems. Approaches to managing change are taught with case studies from a wide range of industries. Students are taught tools for critically evaluating and implementing new business concepts in for-profit and not-for-profit firms. Both the creation of new start-up companies and innovation within exiting firms are explored!

PAM 461(4610) Public Policy and Women: Policy Implications and Gender Perspectives

PAM 462(4620) The Welfare of America's Children
Spring. 3 credits. J. Allen.
Provides an informed and critical look at child and family well-being in America and in the global context. Examines cultural, social, economic, political, and ecological perspectives in addition to public policies that have evolved in this country and in the international arena. Emphasizes empowerment, advocacy, and social justice in addition to the consequences of social and economic disparities. Topics include economic security for families and children; early childhood education and child care; primary and secondary education; domestic violence, abuse and neglect, protective services; foster
hospitals and their staff and personnel for injuries to patients; medical records and disclosure of information; consent to medical and surgical procedures; responsibility for patients' personal property; collection of bills; medical staff privileges; and confidential communications.

PAM 556(5560) Managed Health Delivery Systems: Primary–Ambulatory Care
Fall. 3 credits. Prerequisite: PAM 557 or permission of instructor. J. Kuder.

Explores the concept of primary care to enhance understanding of the direction and purpose of ongoing changes in health services organization and financing. Examines pressures on traditional indemnity insurance and solo fee-for-service medicine in the context of the transition from unmanaged to managed delivery systems. The course is divided into two parts. Part one examines the development of health maintenance organizations and related forms of managed care against the backdrop of larger public policy concerns. Part two centers on administrative-financial topics associated with the design, marketing, and operation of managed delivery in highly competitive markets. Considerable attention is given to the relationship between physicians and management with respect to such subjects as medical practice styles, productivity, quality assurance, and outcome measurement. Many of the managerial topics are highlighted with field trips and visiting speakers.

PAM 557(5570) Health Care Organization
Fall. 3 credits. Limited to 30 students. Prerequisite: Sloan students or permission of instructor. R. Battistella.

Graduate-level introduction to the organization of health services. The United States, the interrelationships of health services and the major sources and methods of paying for care. Describes how health services are structured in the United States and how these different services interact along the continuum of care. Describes and analyzes organization, delivery, and financing issues from a variety of perspectives using specific performance criteria (e.g., equity, quality, efficiency). Also presents innovative public and private sectors in the delivery and reimbursement of health care.

PAM 558(5580) Field Studies in Health Administration and Planning
Fall or spring. Fall, 1 credit; spring, 3 credits. Not offered 2005-2006. J. Allen.

Introduces microeconomic theory and its application to decision making in the management and policy arenas. Places special emphasis on the microeconomic environment of health care organizations and the problems faced by managers in this environment.

PAM 559(5590) Epidemiology, Clinical Medicine, and Management Interface Issues
Spring. 3 credits. Staff.

Explores, from an empirical and analytical framework, the relationships between epidemiology, clinical medicine, and management. Reviews the epidemiology, policy issues, and treatment of selected diagnoses accounting for a significant percentage of utilization and cost of health care services. In addition, students have an opportunity to explore issues of resource allocation and continuous quality improvement. The format is lecture, discussion, and case analysis.

PAM 561(5610) Economics of Health and Medical Care
Fall. 3 credits. Not offered 2005-2006. J. Kuder.

Designed for graduate students who seek an understanding of the tools, vocabulary, and means of thinking about economics as it applies to decision making in health services delivery, management, and policy. Examines the special features of medical care as a commodity, the demand for health and medical care services, the economic explanations for the behavior of providers, the functioning of insurance markets, health policy issues, federal health care programs, and regulation. The emphasis is on applying economic ways of thinking to critically analyze and evaluate both health system policies and the performance of health care firms.

PAM 562(5620) Health Care Financial Management I
Spring. 3 credits. S. Nicholson.

Provides a framework for evaluating how a firm should make investment and financing decisions to create value for its shareholders and stakeholders. Most of the course focuses on profit-maximizing firms, although it also discusses whether and how the investment and financing decisions are different for nonprofit firms that are prevalent in the health care industry. The course primarily a course on general corporate finance. Specifically, the course discusses why the net present value (NPV) of discounted cash flows is the best investment criterion; calculate NPVs; derive appropriate discount rates to evaluate the value of bonds, stocks, and options; and determine the optimal amount a firm should borrow. To understand how firms make investment and financing decisions, it considers how financial markets function and how investors in those markets should make decisions.

PAM 563(5630) Health Care Financial Management II
Spring. 3 credits. Prerequisite: PAM 562 or other financial management course. S. Nicholson.

Focuses on the financial analyses that managers in the health care industry use to make strategic and operating decisions. Begins by examining how health insurers design and price their products and manage enrollees' medical expenditures. Next reviews two different methods of valuing a medical product/service, and two methods of estimating the value of a company. The four valuation methods covered are: net present value of future cash flows, decision tree analysis/real options, multiples, and the venture capital method. Seven cases allow students to apply these skills to examine decisions/situations such as: determining why a Medicare HMO is losing money and recommending a redesigned benefit and reimbursement structure; estimating a health system's profitability by product line; valuing a pharmaceutical company; determining whether a medical device company should go public and how it should price its products.

PAM 564(5640) Information Resources Management in Health Organizations
Spring. 3 credits. Prerequisite: strong basic computer skills. S-U grades optional. L. O'Neill.
PAM 566(5650) Strategic Management and Organizational Design of Health Care Systems
Fall. 3 credits. Staff.
Examines strategy and design issues faced by health care organizations. Topics include analysis of market conditions, organizational culture issues, development of an organizational mission and management strategy, the management of professionals, and the importance of roles, structure, and inter- and intra-institutional relationships within organizations. Taught via a case study approach.

PAM 567(5670) Health Policy
Spring. 3 credits. Prerequisite: Slon MHA students. Ph.D. students, or permission of instructor. K. Simon.
Addresses major health policy issues and the critical processes that influence them. Focuses primarily on the United States, with some coverage of health policy in other countries. Topics include Medicare, Medicaid, the uninsured, public health, the effect of welfare policy on health care, managed care development and regulation, state and federal health care reform, and many others. The course analyzes the politics of health policy in terms of legislative and executive processes; the forces involved including economic, social, ethical, and political factors; and key players in health policy, such as special interest groups, public agencies, and elected officials.

PAM 569(5690) Regression Analysis and Managerial Forecasting
Fall. 3 credits. Prerequisite: at least one statistics course. L. O'Neill.
Teaches various statistical methods for managerial decision making, with a particular emphasis on regression and forecasting. Other topics include ANOVA, correlation, confounding, interaction, and statistical process control. Emphasizes applications to health care organizations.

PAM 570(5700) Health Care Accounting
Fall. 4 credits. Core course for Sloan MHA students. N. Roufaiel.
Introduces the basic concepts of financial and managerial accounting with emphasis on health care applications. Explains the measurement system of business operations, business valuation, financial reporting, cost analysis, service and product costing, and special reports for managerial use. Ethical and international issues are integrated throughout the course materials with real world applications. At the conclusion of the course, students should be able to read, understand, and analyze the annual financial reports of an organization. Collaborative learning, cases, discussions, readings, researches, presentation, speakers, problem solving, simulations, and lectures are used as teaching pedagogy.

PAM 571(5710) Organizational Development/Human Resource Management in Health Care Organizations
Fall. 3 credits. N. Fabrizio.
Explores (1) the theoretical foundation of organizational theory, research, and human resource management with an emphasis on implementation; (2) real-world problems while analyzing, exploring, and discussing varied interpretations of selected cases; (3) the building blocks of managerial activity; internal organizational issues; performance issues related to organization design; and strategic issues. Key organizational change and development concepts enhance students' perspectives on how the theories, strategies, and practices relate to today's organizations. The course serves as a framework to establish the theory and both the conceptual and competency foundations necessary for applying interventions.

PAM 572(5720) Economic Evaluations in Health Care
Covers economic evaluation methods used for decisions in the health care sector and health policy. Economic evaluations include cost analysis, cost-effectiveness analysis, and cost-utility analysis. Discusses how to measure opportunity costs, monetary benefits, and health outcomes such as quality-adjusted life years. Actual economic evaluations for pharmaceuticals, health care and public health interventions, and health and safety policy are reviewed and critiqued.

PAM 578(5780) Not-for-profit Health Care Management and Reporting
Spring. 3 credits. N. Roufaiel.
Provides students with broad financial and managerial knowledge and skills needed to understand the challenges facing the complex environment in managing a not-for-profit health care organization. Builds sound management practices, financial and nonfinancial, that are tailored specifically to the nonprofit sector. Covers topics unique to not-for-profit organizations, e.g., business formation, tax implications, documenting and financial reporting, budgeting, securing financial resources and their allocation, management stewardship function and compliance responsibilities, marketing process, and motives and implications behind fast moving trend of the conversion from not-for-profit to profit organizations in the U.S. health care industry. Format includes lectures, class exercises, practical cases and discussions, and professional speakers who discuss their managerial experience in not-for-profit health care management.

PAM 579(5790) Financial Fraud, Abuse, and Compliance in Health Care
Spring. 3 credits. N. Roufaiel.
Hands-on course on financial fraud with a special application to the health care industry. Identifies and analyzes in occupational fraud and abuse in their relation to rules and regulations in the health care field. Covers a general introduction of fraudulent financial transactions and their investigation, prevention, and deterrence and managing health care compliance. Emphasizes on fraud-prevention techniques, evaluating fraud complaints, fraud resolution, understanding legal and financial aspects of fraud, and the impact of fraud on organizational culpability, disciplinary mechanism, and ethical standards. Collaborative learning, case analysis, group discussion, readings, class presentation, and research are basic teaching methodologies. To enhance students' understanding of the concurrent issues in health care fraud, students are required to access and use materials and resources available on the web, watch videotapes, and examine professional journals for related topics.

PAM 600(6000) Special Problems for Graduate Students
Fall and spring. Credit TBA. S-U grades optional. Staff.
Independent advanced work by graduate students recommended by their chair and approved by the department chair and the instructor.

PAM 601(6010) Policy Process and Theory
Fall. 3 credits. Not offered 2005-2006. R. Swisher.
Introduces students to the policy process model, of goal setting and problem formulation, identification of policy alternatives, cost-benefit analysis and policy selection, implementation, monitoring, and feedback. At each stage, students read and discuss theoretical frameworks and empirical research from across the social sciences and political philosophy that help to contextualize and "socially embed" this mainstream, microeconomics-driven model. Such contributions include notions of bounded-rationality, satisficing, incrementalism, and muddling-through from organizational behavior; heuristics and biases from social psychology; theories of justice from political philosophy; habits and other pragmatic logics from anthropology; and concepts such as bureaucracy, power, status, symbolic interaction, and social learning from sociology and psychology.

PAM 603(6030) Experimental, Quasi-Experimental, and Economic Evaluation Methods
Spring. 3 credits. Prerequisite: recommended background in statistics (e.g., BTRY 601 or equivalent) and microeconomics (e.g., PAM 200, PAM 547, or ECON 639). E. Peters.
Focuses on quantitative methods of policy analysis and program evaluation, with an emphasis on those programs and policies that are related to health, family, and consumer issues. The first part of the course covers experimental design and methods of making causal inferences from non-experimental data. The second part covers benefit-cost analysis, explicitly incorporating both equity and efficiency considerations. Throughout the course attention is paid to the role of economic modeling in program evaluation, including the role of structural theoretical models and general equilibrium analysis.

PAM 604(6040) Qualitative, Survey, and Mixed-Method Approaches to Policy Research
Spring. 3 credits. Prerequisite: Ph.D. students. Highly recommended: previous course in social science research methods. M. Waller.
Introduces students to theories and methods of data collection techniques such as indepth interviews, ethnography, focus groups, and surveys as well as mixed method approaches used in policy and evaluation research. Addresses the strengths and
weaknesses of various methods and the design of qualitative and mixed-method studies. Covers epistemology, ethics, induction and deduction, measurement, validity, and triangulation. Also discusses more concrete issues such as gaining access to a field site, developing a qualitative interview guide and survey questionnaire, conducting a qualitative interview, managing data, and assessing data quality.

PAM 605(6050) Economics of Family Policy
Fall. 3 credits. Prerequisite: PAM 639 or ECON 609 or permission of instructor. S-U grades optional. Not offered 2005-2006. E. Peters.
Examines household decision making in both single- and multiple agent (e.g., game theoretic or bargaining) frameworks. The first half of the course focuses on fertility; household production; time allocation models of behavior—decisions that are usually modeled in a single-agent framework. The second half looks at labor markets, family formation and dissolution; bargaining models of resource allocation within the household; and intergenerational transfers across households. Empirical applications of the theoretical frameworks are presented for both developed and developing countries. Implications for family policies such as child care subsidies, divorce laws, family planning, government subsidies to education, and social security are also discussed.

PAM 606(6060) Demographic Techniques (also D SOC 608[6080])
Fall. 3 credits. S-U grades optional. D. Gurak and K. Joyner.
For description, see D SOC 608.

PAM 608(6080) Economics of Consumer Demand (also AEM 670[6700])
Fall. 3 credits. Prerequisite: PAM 200, ECON 313, or concurrent enrollment in one of those, and two semesters of calculus. S-U grades optional. C. Ranney.
For description, see AEM 670.

PAM 611(6110) Social Demography
Spring. 3 credits. Prerequisites: STTTRY 601, SOC 505, or equivalent. Not offered 2005-2006. K. Joyner.
Considers demographic behavior from a sociological perspective. Topics include: fertility, cohabitation, marriage, divorce, inequality, immigration, and health. Close attention is paid to the effects of social policies on demographic behavior. To a lesser extent, this course addresses the effects of social policies and demographic behavior on individual well-being. Although a background in demographic methods is not required, some of the assigned articles are based on these methods.

PAM 631(6310) Ethics, Public Policy in American Society
Fall. 3 credits. Prerequisite: senior or graduate standing. J. Ziegler.
Explores current issues of ethics and public policy against a background of theories of ethical behavior. Examines questions of how public officials and managers of public and nonprofit agencies and private enterprises act. How do standards of ethical behavior in the professions get established? How are public policy decisions with ethical implications resolved? Readings are drawn from political philosophy, contemporary social science, and imaginative writing. Class participation is essential.

PAM 632(6320) The Intergovernmental System: Analysis of Current Policy Issues
Fall. 3 credits. Prerequisite: graduate students or seniors who have had course in American government. Not offered 2005-2006. J. Ziegler.
Offers advanced policy analysis of current political/social/economic issues in the context of the intergovernmental system. Pays particular attention to how certain policy and human service issues are played out at the federal, state, and local levels of government, and to the formulation of federal and state budget policy. Considers general public administration theory. Students work in teams on a policy/administrative research project and report to the class.

PAM 633(6330) Seminar in Pharmaceutical Policy Issues
Exposes students to, and fosters critical thinking about, consumer and health policy issues related to pharmaceuticals and the pharmaceuticals industry. A key component of the seminar is invited presentations from practitioners and researchers in pharmaceutical policy. Specific topics vary and depend in part on the interests of the invited speakers. Students are required to write critiques of invited papers and a literature review on a selected topic in pharmaceutical policy.

PAM 639(6390) Microeconomics for Policy Analysis
Fall. 4 credits. Prerequisites: intermediate economics and calculus course; Ph.D. students; undergraduates by permission of instructor. Not offered 2005-2006. J. Cawley.
The goal of this comprehensive course is to train graduate students in the use of the tools of microeconomics in order to prepare them to conduct health policy research in the social sciences. Covers microeconomic theory and its application to public policy analysis. Topics include consumer decision-making, the theory of the firm, general equilibrium, welfare economics, microeconomic applications, and market imperfections.

PAM 650(6500) Consumers, Information, and Regulatory Policy
Spring. 3 credits. Prerequisites: PAM 639 or calculus and intermediate microeconomics. Not offered 2005-2006. R. Geddes.
Examines information problems in markets and how they affect consumers, focusing on market mechanisms and regulatory actions that address those information problems. Major theoretical topics include price and quality uncertainty, moral hazard, adverse selection, and principal-agency theory. The course gives an overview of market mechanisms that deal with information issues such as marketing, advertising, warranties, third-party certification, licensing, and self-regulation; the major regulatory institutions that govern consumer policy including the Food and Drug Administration and the Federal Trade Commission; and the way the legal system provides consumer protection. The market for pharmaceuticals is a particular focus. Primary reading material is drawn from economics and policy journals, and papers from the *Journal of Public Policy and Marketing*.

PAM 691(6910) Health Economics I (also ECON 691[6910])
Spring. 3 credits. First course in Ph.D.-level health economics sequence. Prerequisites: Ph.D.-level courses in microeconomic theory and econometrics. J. Cawley.
Comprehensive course covering microeconomic theory and its application to health and health care markets. Topics include consumer demand making, the theory of the firm, welfare economics, monopolies and oligopolies, and market imperfections. Applications in health economics include the demand for health; rationing, the industrial organization of health care, cost-effectiveness analysis, price discrimination by health care providers, how consumers respond to information about health care; adverse selection in health insurance, and the moral hazard created by physician compensation strategies. Students write a research paper, testing predictions from microeconomic theory by acquiring suitable data and estimating the appropriate econometric model, and presents his or her findings in a research seminar.

PAM 692(6920) Health Economics II
Fall. 3 credits. Prerequisites: Ph.D.-level courses in microeconomic theory and econometrics. D. Kenkel.
Covers microeconomic theory and its applications to health and health care markets. Topics include consumer demand for health and health behaviors, the supply side of health promotion, the industrial organization of health care, and cost-benefit and cost-effectiveness analysis of health interventions. Second course in Ph.D.-level health economics sequence, but the courses may be taken in any order.

PAM 760(7600) Challenges and Trends in the Health Services Industry
Fall and spring. 1 credit. S-U grades only. Staff.
Provides students with information and exposure to current and emerging issues in the health services industry. Topics may include financial management of health care facilities, human resource management, information systems, cost-effective clinical decision making, quality measurement and outcomes, public health, and entrepreneurship in the health services industry.

PAM 899(8990) Master's Thesis and Research
Fall and spring. Credit TBA. Prerequisite: permission of graduate committee chair and instructor. S-U grades optional.

PAM 999(9990) Doctoral Thesis and Research
Fall and spring. Credit TBA. Prerequisite: permission of graduate committee chair and instructor. S-U grades optional.

TEXTILES AND APPAREL
TXA 114(1140) Introduction to Computer-Aided Design
Fall, summer (six-week session). 3 credits. Limited to 14 students per sec. Priority given to TXA students; S-U grades optional.

Minimum cost of materials: $80. A. Racine.

Studio course that explores the creative potential of microcomputers. Uses AutoCAD software program as a design tool for generating drawings of a variety of visual images. Introduces basic Photoshop software commands. Includes daily hands-on demonstrations and studio work. Students develop two- and three-dimensional designs based on historical, cultural, and museum sources for portfolios and display.

TXA 117(1170) Fashion Graphics (Drawing the Clothed Figure)
Spring. 3 credits. Limited to 21 students. Priority given to apparel design students.

Prerequisite: basic drawing course. Letter grades only. Minimum cost of supplies: $25; lab fee: $75. C. Jirousek.

Introduction to the visual arts and design that explores aesthetic and cross-cultural dimensions of visual experience. Augmented by slide presentations, artifacts, video, and an Internet-based electronic textbook, lectures emphasize the varieties of visual expression seen in works of art and design. Discusses social, cultural, and historic interpretations of visual expression.

TXA 125(1250) Art, Design, and Visual Thinking
Fall. 3 credits. S-U grades optional.

C. Jirousek.

Introduction to the visual arts and design that explores aesthetic and cross-cultural dimensions of visual experience. Augmented by slide presentations, artifacts, video, and an Internet-based electronic textbook, lectures emphasize the varieties of visual expression seen in works of art and design. Discusses social, cultural, and historic interpretations of visual expression.

TXA 135(1350) Fibers, Fabrics, and Finishes
Spring. 3 credits. S-U grades optional. M. Frey.

Introduction to fibers, fibrous materials, and dyes and colorants. Emphasizes special emphasis on the use of fibrous materials in apparel, residential and contract interiors, and industrial applications. Topics include fiber properties, fabric structure, coloration of fibrous materials, dimensional stability, flammability, property specifications, and performance standards.

TXA 136(1360) Fiber and Yarn Analysis Laboratory

Consists of one laboratory session, in which students learn techniques to identify and test fibers and yarns. A midterm and final exam are based on using the methods learned to identify an unknown fiber (midterm) and an unknown bi-component yarn (final).

TXA 145(1450) Introduction to Apparel Design
Spring. 4 credits. Limited to 30 students; 15 per lab. Priority given to TXA students. Prerequisite: TXA 114. Letter grades only.

Project-based course in which students explore the relationship between technology and design. Students learn computer-aided patternmaking, grading, manufacturing technologies, communication of technical details, flat specifications, and costing of garments and how those factors affect design. Designs are developed to various stages from conceptual work to final garment.

TXA 300(3000) Special Studies for Undergraduates
Fall or spring. Credit TBA. Staff.

Special arrangement for course work to establish equivalency for courses not transferred from a previous major or institution. Students prepare a multiplicity description of the study they want to undertake. Students meet with the college registrar's office. The form, signed by both the instructor directing the study and the department chair, is filed at course registration or during the change-of-registration period.

TXA 325(3250) Color and Surface Design of Textiles
Fall. 4 credits. Was TXA 225. Limited to 18 students. Priority given to TXA apparel design majors. Recommended: TXA 114 and 135. Minimum cost of materials: $100; lab fee: $75. C. Jirousek.

Explores the application of technical fabric design with an emphasis on woven and knitted fabrics. Topics include structure of woven and knitted fabrics, openness, manufacturability, equivalence, and color effects.

TXA 264(2640) Draping
Fall. 4 credits. Limited to 30 students; 15 per lab. Prerequisites: TXA 125 and 145. Recommended: drawing course. Letter grades only. Minimum cost of materials: $250; lab fee: $10. S. Ashdown.

This studio course examines the process of creating a three-dimensional garment from the two-dimensional fabric. The principles and processes of draping, advanced flat pattern making, and fitting are studied through projects. Draping exercises focus on the communication of three-dimensional garments in two-dimensional sketches. Assigned problems require students to make judgments regarding the design process, the nature of materials, body structure, function, and fashion.

TXA 265(2650) Apparel Patternmaking
Spring. 3 credits. Limited to 30 students. Prerequisites: TXA 114, 117, 125, 145, and 135 (may be taken concurrently). Letter grades only. Minimum cost for fabrics, studio, and portfolio supplies: $250. A. Racine.

The goal of this apparel studio course is to expand student competencies in flat pattern design and analysis and fitting techniques. Students generate original design concepts using fashion sources from historic to contemporary times. The Cornell Costume Collection is used extensively for inspiration and instruction. Full-scale samples in various levels of completion, from paper patterns to muslins to finished garments, include detailed technical drawings for portfolios.

TXA 266(2660) Apparel Design: Product Development
Spring. 3 credits. Prerequisites: TXA 114, 117, 125, 145, and 135 and 147. Letter grades only. Minimum cost of materials: $250; lab fee: $10. S. Ashdown.

Project-based course in which students explore the relationship between technology and design. Students learn computer-aided patternmaking, grading, manufacturing technologies, communication of technical details, flat specifications, and costing of garments and how those factors affect design. Designs are developed to various stages from conceptual work to final garment.

TXA 267(2670) Structural Fabric Design
Fall. 3 credits. Prerequisite: TXA 135. Recommended: college algebra. S-U grades optional. M. Frey.

Introduces the treatment of fibrous materials, dimensional stability, flammability, product specifications, and manufacturing processes. Topics include structure of woven and knitted fabrics. Topics include structure of woven and knitted fabrics, openness, manufacturability, equivalence, and color effects.

TXA 268(2680) Apparel Design: Technical Fabric Design
Spring. 3 credits. Limited to 30 students; 15 per lab. Prerequisites: TXA 125 and 145. Recommended: drawing course. Letter grades only. Minimum cost of materials: $250; lab fee: $10. S. Ashdown.

This studio course examines the process of creating a three-dimensional garment from the two-dimensional fabric. The principles and processes of draping, advanced flat pattern making, and fitting are studied through projects. Draping exercises focus on the communication of three-dimensional garments in two-dimensional sketches. Assigned problems require students to make judgments regarding the design process, the nature of materials, body structure, function, and fashion.

TXA 325(3250) Color and Surface Design of Textiles
Fall. 4 credits. Was TXA 225. Limited to 18 students. Priority given to TXA apparel design majors. Recommended: TXA 114 and 135. Minimum cost of materials: $100; lab fee: $75. C. Jirousek.

Explores the application of technical fabric design with an emphasis on woven and knitted fabrics. Topics include structure of woven and knitted fabrics, openness, manufacturability, equivalence, and color effects.

TXA 264(2640) Draping
Fall. 4 credits. Limited to 30 students; 15 per lab. Prerequisites: TXA 125 and 145. Recommended: drawing course. Letter grades only. Minimum cost of materials: $250; lab fee: $10. S. Ashdown.

This studio course examines the process of creating a three-dimensional garment from the two-dimensional fabric. The principles and processes of draping, advanced flat pattern making, and fitting are studied through projects. Draping exercises focus on the communication of three-dimensional garments in two-dimensional sketches. Assigned problems require students to make judgments regarding the design process, the nature of materials, body structure, function, and fashion.

TXA 265(2650) Apparel Patternmaking
Spring. 3 credits. Limited to 30 students. Prerequisites: TXA 114, 117, 125, 145, and 135 (may be taken concurrently). Letter grades only. Minimum cost for fabrics, studio, and portfolio supplies: $250. A. Racine.

The goal of this apparel studio course is to expand student competencies in flat pattern design and analysis and fitting techniques. Students generate original design concepts using fashion sources from historic to contemporary times. The Cornell Costume Collection is used extensively for inspiration and instruction. Full-scale samples in various levels of completion, from paper patterns to muslins to finished garments, include detailed technical drawings for portfolios.

TXA 266(2660) Apparel Design: Product Development
Spring. 3 credits. Prerequisites: TXA 114, 117, 125, 145, and 135 and 147. Letter grades only. Minimum cost of materials: $250; lab fee: $10. S. Ashdown.

Project-based course in which students explore the relationship between technology and design. Students learn computer-aided patternmaking, grading, manufacturing technologies, communication of technical details, flat specifications, and costing of garments and how those factors affect design. Designs are developed to various stages from conceptual work to final garment.
requirement of functionality and emphasizes pattern cutting as a way of realizing design ideas.

TXA 369(3690) Style, Fashion, and the Apparel Industry
Fall. 2 credits. Was TXA 269. Limited to 30 students. Not open to freshmen.
Prerequisites: TXA 125, 135, and 237. Priority given to TXA majors. Letter grades only. A. Racine.
Illustrated lectures focus on changes in the U.S. apparel industry and fashion from the 19th century to the present day resulting from social forces, technological developments, and shifting demographics. The Cornell Costume Collection is used for discussion. Students write a term paper on issues relating to the fashion industry.

TXA 370(3700) History of Color and Design in Textiles
Spring. 3 credits. Prerequisite: TXA 125 or permission of instructor. S-U grades optional. Offered alternate years.
C. Jirousek.
Explores color theory principles, color trends, science and technology of color measurement, color and design in the construction and embellishment, design use of pigments and dyes, and history of textile design as a designer resource. Students complete hands-on exercises, two exams, and a paper.

TXA 400-401-402-403(4000-4010-4020-4030) Special Independent Studies for Undergraduates
Fall, summer, or spring. Credit TBA. S-U grades optional. Staff.
For advanced independent study by an individual student or for study on an experimental basis with a group of students in a field of TXA not otherwise provided through course work in the department or elsewhere at the university. Students prepare a multiplicity description of the study they want to undertake on a form available from the department office. This form must be signed by the instructor directing the study and the department chair and filed at course registration or within the change-of-registration period after registration along with an add/drop slip in the college registrar’s office (145 MVR). To ensure review before the close of the course registration or change-of-registration period, early submission of the special-studies form to the department chair is necessary. Students, in consultation with their supervisor, should register for one of the following subdivisions of independent study.

TXA 400(4000). Directed Reading
For study that predominately involves library research and independent reading.

TXA 401(4010). Empirical Research
For study that predominately involves data collection and analysis, or laboratory or studio projects.

TXA 402(4020). Supervised Fieldwork
S-U grades only. For study that involves both responsible participation in a community setting and reflection on that experience through discussion, reading, and writing. Academic credit is awarded for this integration of theory and practice.

TXA 403(4030). Teaching Apprenticeships
Fall or spring. 2-4 credits. Prerequisites: upperclass standing, demonstrated high level of performance in subject to be taught and in overall academic program, and permission of instructor and department chair. S-U grades optional. Staff. Apprenticeship includes both a study of teaching methods in the field and assisting the faculty with instruction.

TXA 431(4310) Apparel Production and Management
Spring. 3 credits. Limited to 40 students.
Prerequisites: ECON 101 and 102 and upper-division coursework in either apparel or textiles. S-U grades optional. S. Loker.
Introduction to the global textile and apparel industry, particularly the technical and economic aspects of apparel production. Includes analysis of specific apparel manufacturing and management issues such as international sourcing, Quick Response, mass customization, production and information technology, labor, and logistics.

TXA 432(4320) Product Quality Assessment
Spring. 3 credits. Limited to 36 students in lec; 18 per lab. Prerequisites: TXA 135 and statistics course. Lab fee: $15. N. Breen.
Covers evaluation of fibers, yarns, fabrics, and garments, with emphases on the meaning of standards, testing methodology, quality control, and statistical analysis. Discusses day-to-day tests done in the textile and apparel industry. Laboratory sections introduce students to various test methods, data generation for analysis, and evaluation.

TXA 436(4360) Fiber Chemistry
Spring. 3 credits. Prerequisite: senior or first-year graduate standing. S-U grades optional. Offered alternate years.
C. C. Chu.
Discusses the chemical and physical structure of several commercially important fibers, such as cotton, wool, silk, polyesters, nylon, polyacrylic, polyolefins and spandex, and their polymerization processes. Discusses degradation reactions for certain fibers such as polyolefins and acrylics.

TXA 439(4390) Biomedical Materials and Devices for Human Body Repair (also BME 539(5390))
Spring. 2-3 credits; 2 credits meets T only; 3 credits meets T and R. Prerequisites: junior or senior standing; college: natural science requirement (chemistry or biology). S-U grades optional for 2 credits, letter grades only for 3 credits. C. C. Chu.
Surveys materials and devices for repair of injured, diseased, or aged human tissues/ organs. Includes properties of synthetic and biological materials, wound healing processes, medical devices for repair of wounds, blood vessels, hearts, joints, bones, nerves, muscle impotence, vision/hearing/voice, and drug control/release.

TXA 444(4440) Apparel/Textile Retailing and Distribution
Fall. 3 credits. Prerequisites: junior or senior standing; TXA 135 and marketing course. S-U grades optional. N. Breen.
Overview of the business of design, manufacturing, distribution, and merchandising of apparel and related products from a management perspective. Includes the organization and structure of both domestic and international retailers along with pricing strategies, merchandising planning, inventory management, and sales promotion. New uses of computer systems and information technologies are emphasized throughout.

TXA 466(4660) Textiles, Apparel, and Innovation
Fall. 3 credits. Prerequisite: TXA 237. Recommended: TXA 432. S-U grades optional. Cost of field trip: $100. Offered alternate years; next offered 2006-2007.
S. Ashdown.
Designed for students in all TXA options. Explores the relationship between materials and design with a concentration on the use of innovative textile materials in apparel. Both aesthetic and functional issues are addressed. The course consists of a combination of lecture, discussion of readings, oral reports, a research paper, and project work. There is a one-day field trip to New York City.

TXA 470(4700) Fashion Presentation: Portfolio Development
Fall. 3 credits. Limited to 25 students.
Prerequisites: TXA 117, 264, 265, and 346. Minimum cost of materials: $250.
V. D. Lewis.
Students gain an understanding of presentation methods currently used by fashion designers, runway illustrative journalists, forecasting artists and fashion editorial illustrators. Skills in fashion illustration, image manipulation and photography are developed. To satisfy personal philosophies of fashion, students discover and adopt current presentation techniques with new and original effects. Students must bring all past project work for possible inclusion in the portfolio.

TXA 499(4990) Honors Thesis Research
Fall and spring. 1-6 credits; max. 6 credits for graduation. Prerequisite: TXA students admitted to college honors program. S-U grades optional. Staff.
Independent research leading to the honors thesis. Students must follow college honors program guidelines.

TXA 600(6000) Special Problems for Graduate Students
Fall or spring. Credit TBA. S-U grades optional. Staff.
Independent advanced work by graduate students recommended by their chair and approved by the department chair and instructor.

TXA 620(6200). Physical Properties of Fiber-Forming Polymers and Fibers
Spring. 3 credits. Prerequisite: permission of instructor. Offered alternate years; next offered 2006-2007.
A. Netravali.
Covers formation and properties of fiber-forming polymers, rubber, glassy, and crystalline states and their interconnection. Discusses fiber structure, relationship between chemical structure and physical properties of manufactured and natural fibers, mechanical, thermal, and viscoelastic properties of fibers, and testing methods.

TXA 626(6260). The Chemistry of Textile Finishes and Dyeing
Spring. 3 credits. Prerequisites: TXA 336 or equivalent and organic chemistry course or permission of instructor. S-U optional. Offered alternate years; next offered 2006-2007.
C. C. Chu.
Discusses chemical aspects of textiles with emphasis on finishes and dyeing. Studies industrially important textile chemicals used for dyeing and enhancing fiber and fabric properties, such as durable press, anti-soiling, water repellency. Emphasizes the correlation of the observed effect with chemical structure.
end-use influences, interaction with fabric and fibers, sources, and synthetic routes. Briefly discusses the environmental effect of these textile chemicals and current federal regulation.

TXA 637(6370) Research Seminars in Apparel Design

Fall and spring. 1 credit; repeat of course each semester encouraged for all apparel design graduate students. Prerequisites: permission of individual instructor for advanced undergraduates. S-U grades only. Apparel Design faculty.

TXA 639(6390) Mechanics of Fibrous Assemblies

Fall. 3 credits. Prerequisite: solid mechanics course or permission of instructor. Offered alternate years. S-U grades optional. Staff.

Studies the mechanics of fiber assemblies: idealized yarn and fabric models, statistical bundle theories; deformation of yarns and fabrics in tensile, shear, and compressive stress; bending and buckling; and the mechanical behavior of nonwoven textile materials.

TXA 664(6640) Human Factors: Anthropometrics and Apparel Analysis

Spring. 3 credits. Open to advanced undergraduates. Prerequisites: statistics course and permission of instructor. S-U grades optional. Offered alternate years. S. Ashdown.

Seminar course focusing on the human form and its relationship to clothing. Includes discussion of quantification of body sizes and human variation; historical, cultural, and aesthetic concepts of fit, apparel sizing techniques; national and international sizing systems and standards; impact of sizing systems on various populations (e.g., elderly, disabled).

TXA 666(6660) Fiber Formation: Theory and Practice

Spring. 3 credits. Prerequisites: organic chemistry, college physics. TXA 450, 620, or permission of instructor. S-U grades optional. Offered alternate years. M. Frey.

Covers the practical and theoretical analysis of the chemical and physical principles of the conversion of bulk polymer to fiber, rheology; melt, drawing, and wet polymer spinning; fiber drawing; heat setting; and general theory applied to unit processes.

TXA 670(6700) Fashion Theory

Spring. 3 credits. Limited to 25 students. Prerequisite: TXA 346 for undergraduates or similar course for graduates. Letter grades only. Offered alternate years. Minimum cost of materials: $250. V. D. Lewis.

Provides students with the theoretical tools that will enable them to conduct debates and create strategy about the design of fashion. Debates support visual outcomes, conceptual foundations, and methodologies that are unequivocal in practice, criticism, education, management, and the cultural context of fashion design.

TXA 675(6750) Aesthetics and Meaning in World Dress

Spring. 3 credits. Prerequisites: TXA 125 or course in history of art, costume history, or other history. S-U grades optional. Offered alternate years; next offered 2006-2007. C. Jirousek.

Examines the aesthetic and social/psychological relationship between body and clothing in the context of various cultures. Students develop a research topic to be presented orally and in a term paper, and they participate in the development of an exhibition.

TXA 699(9999) Master's Thesis and Research

Fall or spring. Credit TBA. Prerequisite: permission of graduate committee chair and instructor. S-U grades optional. Staff.

TXA 999(9990) Doctoral Thesis and Research

Fall or spring. Credit TBA. Prerequisite: permission of graduate committee chair and instructor. S-U grades optional. Staff.

FACULTY ROSTER

- **Allen, Josephine A., Ph.D., U. of Michigan.** Assoc. Prof., Policy Analysis and Management
- **Ashdown, Susan, Ph.D., U. of Minnesota.** Assoc. Prof., Textiles and Apparel
- **Avery, Rosemary J., Ph.D., Ohio State U. Prof. and Chair, Policy Analysis and Management**
- **Battistella, Roger M., Ph.D., U. of Michigan.** Prof., Policy Analysis and Management
- **Becker, Franklin D., Ph.D., U. of California, Davis. Prof. and Chair, Design and Environmental Analysis**
- **Brainard, Charles, Ph.D., Michigan State U. Prof., Human Development**
- **Branon, Patsy, Ph.D., Cornell U. Prof., Nutritional Sciences**
- **Brumberg, Joan P., Ph.D., U. of Virginia. Prof., Human Development**
- **Burkhauser, Richard, Ph.D., U. of Chicago. Prof., Policy Analysis and Management**
- **Cassolas, Martinella, Ph.D., U. of Texas, Austin. Asst. Prof., Human Development**
- **Cawley, John, Ph.D., U. of Chicago. Asst. Prof., Policy Analysis and Management**
- **Ceci, Stephen J., Ph.D., U. of Exeter (England). Prof., Human Development**
- **Chu, Chih-Chang, Ph.D., Florida State U. Prof., Textiles and Apparel**
- **Cochar, Monica, Ph.D., U. of Michigan. Prof., Human Development**
- **Cornelius, Steven W., Ph.D., Pennsylvania State U. Prof., Human Development**
- **Danko, Sheila, M.D., Rhode Island School of Design. Assoc. Prof., Design and Environmental Analysis**
- **Depe, Richard, Ph.D., U. of Oklahoma. Prof., Human Development**
- **Dunin, Rachel, Ph.D., Northwestern U. Asst. Prof., Policy Analysis and Management**
- **Eckenrode, John J., Ph.D., Tufts U. Prof., Human Development**
- **Elliott, John, M.E., Des. U. of Calgary (Canada). Asst. Prof., Design and Environmental Analysis**
- **Evans, Gary, Ph.D., U. of Massachusetts. Amherst. Prof., Design and Environmental Analysis**
- **Frey, Margaret, Ph.D., North Carolina State U. Asst. Prof., Textiles and Apparel**
- **Garbarino, James, Ph.D., Cornell U. Prof and Co-Director, Family Life Development Center**
- **Geedes, Raymond R., Ph.D., U. of Chicago. Assoc. Prof., Policy Analysis and Management**

Gerner, Jennifer L., Ph.D., U. of Wisconsin. Prof., Policy Analysis and Management

Gibson, Kathleen J., M.A., Ohio State U. Assoc. Prof., Design and Environmental Analysis

Hamilton, Stephen F., Ed.D., Harvard U. Prof., Human Development, Co-Director, Family Life Development Center

Haugaard, Jeffrey, Ph.D., U. of Virginia. Assoc. Prof., Human Development

Hazan, Cindy, Ph.D., U. of Denver. Assoc. Prof., Human Development

Hedge, Alan, Ph.D., U. of Sheffield (England). Prof., Design and Environmental Analysis

Jennings, Jan M.S., Oklahoma State U. Assoc. Prof., Design and Environmental Analysis

Jirousek, Charlotte, Ph.D., U. of Minnesota. Assoc. Prof., Textiles and Apparel

Joyner, Kara, Ph.D., U. of Chicago. Asst. Prof., Policy Analysis and Management

Kenkel, Donald, Ph.D., U. of Chicago. Prof., Policy Analysis and Management

Koslowski, Barbara, Ed.D., Harvard U. Assoc. Prof., Human Development

Kuder, John, Ph.D., U. of Michigan. Assoc. Prof., Policy Analysis and Management

Laquatra, Joseph Jr., Ph.D., Cornell U. Assoc. Prof., Design and Environmental Analysis

Lemley, Ann T., Ph.D., Cornell U. Prof. and Chair, Textiles and Apparel

Lewis, Van Dyrk, Ph.D., U. of Central England, Birmingham. Asst. Prof., Textiles and Apparel

Loker, Suzanne, Ph.D., Kansas State U. Prof., Textiles and Apparel

Lust, Barbara C., Ph.D., City U. of New York. Prof., Human Development

Mathios, Alan, Ph.D., U. of Pennsylvania. Prof., Policy Analysis and Management; Assoc. Dean

Maxwell, Lorraine E., Ph.D., City U. of New York. Assoc. Prof., Design and Environmental Analysis

Moen, Phyllis, Ph.D., U. of Minnesota. Prof. and Director, Bronfenbrenner Life Course Center

Nextravali, Anil, Ph.D., North Carolina State U. Assoc. Prof., Textiles and Apparel

O'Neill, Liam, Ph.D., Pennsylvania State U. Asst. Prof., Policy Analysis and Management

Obendorf, Sharon K., Ph.D., Cornell U. Prof., Textiles and Apparel, Assoc. Dean

Parrot, Andrea, Ph.D., U. of Oklahoma. Prof., Policy Analysis and Management

Peters, H. Elizabeth, Ph.D., U. of Chicago. Prof., Policy Analysis and Management

Pillen, Karl A., Ph.D., Brandeis U. Prof., Human Development

Pollak, Patricia B., Ph.D., Syracuse U. Assoc. Prof., Policy Analysis and Management

Reyna, Valerie, Ph.D., Rockefeller U. Prof., Human Development

Robertson, Steven S., Ph.D., Cornell U. Prof., Human Development

Rodriguez, Eunice, Ph.D., U. of California, Berkeley. Asst. Prof., Policy Analysis and Management

Savin-Williams, Ritch C., Ph.D., U. of Chicago. Prof. and Chair, Human Development

Simon, Kosali, Ph.D., U. of Michigan. Prof., Policy Analysis and Management

Sims, William R., Ph.D., Massachusetts Inst. of Technology. Prof., Design and Environmental Analysis

Swisher, Raymond, Ph.D., U. of North Carolina, Chapel Hill. Asst. Prof., Policy Analysis and Management

Temple, Elise, Ph.D., Stanford U. Asst. Prof., Human Development
Tennyson, Sharon, Ph.D., Northwestern
U. Assoc. Prof., Policy Analysis and Management
Tobias, Donald J., Ph.D., Michigan State
U. Assoc. Prof., Policy Analysis and Management
Trochim, William M. K., Ph.D., Northwestern
U. Prof., Policy Analysis and Management
Waller, Maureen R., Ph.D., Princeton U. Asst. Prof., Policy Analysis and Management
Wang, Q. I., Ph.D., Harvard U. Asst. Prof., Human Development
Wells, Nancy, Ph.D., U. of Michigan. Asst. Prof., Design and Environmental Analysis
Wethington, Elaine, Ph.D., U. of Michigan. Assoc. Prof., Human Development
White, William, Ph.D., Harvard U. Prof., Policy Analysis and Management
Williams, Wendy M., Ph.D., Yale U. Assoc. Prof., Human Development

Lecturers
Basinger, Annette, B.A., Michigan State U. Lec., Design and Environmental Analysis
Beck, Sam N., Ph.D., U. of Massachusetts. Sr. Lec., Urban Semester
Breen, Nancy, Ph.D., Syracuse U. Lec., Textiles and Apparel
Gilmore, Rhonda, M.A., Cornell U. Lec., Design and Environmental Analysis
Meneley, Jason, M.S. U. of Kentucky. Lec., Design and Environmental Analysis
Racine, Anita, Ph.D., Cornell U. Sr. Lec., Textiles and Apparel
Ross-Bernstein, Judith, M.Ed., Northwestern U. Sr. Lec., Human Development
Roufaiel, Nazik, Ph.D., Cairo U. (Egypt). Lec., Policy Analysis and Management
Segal, Harry, Ph.D., U. of Michigan. Sr. Lec., Human Development
ADMINISTRATION
Harry C. Katz, dean
Robert Smith, associate dean, academic affairs
Gordon Law, librarian
Allan Lentini, director, administrative services
Martin Wells, director, research
Christopher Crooker, director, external relations
Laura Lewis, director, office of student services
John Bunge, graduate faculty representative
Tove Hammer, editor, Industrial and Labor Relations Review

DEGREE PROGRAMS

<table>
<thead>
<tr>
<th>Degree Programs</th>
<th>Degree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Industrial and Labor Relations</td>
<td>B.S.</td>
</tr>
<tr>
<td></td>
<td>M.I.L.R.</td>
</tr>
<tr>
<td></td>
<td>M.P.S.</td>
</tr>
<tr>
<td></td>
<td>M.S.</td>
</tr>
<tr>
<td></td>
<td>Ph.D.</td>
</tr>
</tbody>
</table>

THE SCHOOL

The School of Industrial and Labor Relations (ILR) is a small school within a large university. It tries to maintain the small-college atmosphere expected of an institution that has about 780 undergraduates and approximately 200 graduate students, even as ILR students participate fully in the activities of the larger Cornell community.

ILR students study in modern, technologically advanced lecture halls, seminar rooms, and libraries. Almost half of the school's typical freshman class comes from the greater New York City area. Another 30 percent live in other parts of New York State. Students from other states and a few from foreign countries make up the rest of the class. Women constitute about 50 percent of entering classes, and minority students comprise about 25 percent of freshmen and transfer students.

Students enrolled in the School of Industrial and Labor Relations at Cornell may take a substantial number of courses in the other six undergraduate colleges and schools of the university, including the College of Arts and Sciences. Cornell students have access to all of the libraries and other services of the university.

The school operates in four areas: (1) resident instruction, (2) extension and public service, (3) research, and (4) publications. It provides instruction to undergraduates and graduate students who are preparing for careers in industrial and labor relations, as well as to men and women already engaged in industrial relations activities and the general public through its Extension and Public Service Division.

The school's Conference Center, part of the extension division, initiates and hosts conferences covering the full scope of industrial and labor relations. The center provides continuing education and information to practitioners and scholars.

The Research Division develops materials for resident and extension teaching and originates studies in industrial and labor relations. The Publications Division publishes and distributes the research results.

GRADUATE DEGREES

More than 200 students on the Cornell campus are enrolled in graduate study in industrial and labor relations, one of the largest graduate fields in the university. Students may work toward the degrees of master of industrial and labor relations, master of professional studies, master of science, and doctor of philosophy. For further information on graduate programs, contact the Graduate Office, School of Industrial and Labor Relations, Cornell University, 214 Ives Hall, Ithaca, NY 14853-3901.

DEPARTMENTS OF INSTRUCTION

Courses in the school are organized into six departments:

<table>
<thead>
<tr>
<th>Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collective Bargaining, Labor Law, and Labor History</td>
</tr>
</tbody>
</table>

In the study of workers, employers, and the government policies affecting them, members of this faculty concentrate on subjects of industrial and labor relations best understood by reliance on the fields of administration, economics, history, and law. Courses explore subjects within the framework of American society, stress fundamental forces of change, and analyze texts and empirical data with methods drawn from the social sciences, the humanities, and the legal professions.

Human Resource Studies

The Department of Human Resource Studies consists of world-class faculty members engaged in research, teaching and practice. These faculty members play integral roles in the administration of the Center for Advanced Human Resource Studies (CAHRS), an ILR-based research center funded by over 50 corporations, and the ILR Executive Education Program, which offers advanced training to HR practitioners. The goal in teaching is to balance a rigorous academic research approach with a real-world practice orientation. In this way students are provided with state-of-the-art knowledge relevant to managing human resources in organizations.

International and Comparative Labor

The Department of International and Comparative Labor is concerned with industrial and labor relations systems and labor markets in other parts of the world. The world-renowned faculty members are authorities on the labor markets of Western Europe, Asia, Latin America, South America and Africa and bring this knowledge to bear on the courses they teach as they prepare their students to understand the global marketplace.

Labor Economics

The Department of Labor Economics deals with labor markets, that is, the institutional arrangements, terms, and conditions under which workers supply their labor and under which firms demand their labor. Faculty members are especially concerned with understanding the workings of labor markets and the effects of various public policies. The topics dealt with in courses and research include analysis of the labor force, employment and unemployment, wages and related terms of employment, income distribution, income security programs, health and safety in industry, retirement, pensions and social security, economic aspects of collective bargaining, and economic demography.

Organizational Behavior

The psychologists and sociologists in the Department of Organizational Behavior use discipline-based theoretical perspectives to examine an array of empirical workplace phenomena. Their teaching and research focus on the impact of environmental, technological, and interpersonal relationships on work group and organizational dynamics.

Social Statistics

Faculty members in the Department of Social Statistics conduct research in the field of economic and social statistics. In applying their research results to their teaching, they provide their students with cutting-edge training in the principles of statistical reasoning, statistical methods, and the application of statistical tools of analysis.

A full list of required and elective courses is available from the Office of Student Services, 146 Ives Hall.

RESIDENT INSTRUCTION

This division conducts the on-campus programs leading to the degrees of bachelor of science, master of industrial and labor relations, master of professional studies, master of science, and doctor of philosophy from Cornell.

Office of Student Services

Staff members from the Office of Student Services, 146 Ives Hall, work closely with faculty members and faculty committees to
administer degree programs for the school and many of the school's support services. The office's responsibilities include admitting and orienting new students, maintaining students' personal and academic records, and counseling students on personal and academic problems. The office also works closely with seniors who are planning graduate study.

Counseling and Advising

New students are advised on orientation, academic procedures, and course registration by counselors in the Office of Student Services.

Each of the school's academic departments names faculty members to serve as advisers for students who wish to consult with them regarding career possibilities in the field, postgraduate programs, or similar matters. Questions or issues related to graduation requirements, course registration, and related academic procedures should be directed to counselors in the Office of Student Services.

Minority Programs

The School of Industrial and Labor Relations values diversity and is responsive to the unique social, academic and cultural contributions and needs of minority students. The School is committed to providing students with support that will enhance academic achievement, career development, and personal growth. The associate director of minority education in the Office of Student Services works in conjunction with many university programs to provide services that ensure academic success and an enjoyable quality of life for ILR minority students. For more information, see the Minority Affairs web site: www.ilr.cornell.edu/studentservices/ac/minority.html.

STUDY OPTIONS

Several study options are open to ILR undergraduates, making it possible to tailor a program to fit special circumstances.

One such option is the five-year ILR master's degree. With early planning, some students may earn the M.S. degree in the fifth year. Some students elect to spend a semester in New York City, Albany, or Washington, D.C., with a chance to observe actual labor problems solving as interns in congressional offices, labor organizations, personnel offices, and state and federal agencies. For more information, see "Special Academic Programs" below.

Study abroad options are also available at a number of foreign universities. Qualified students may spend a semester or a full year studying abroad.

A number of ILR courses deal directly with today's problems and involve fieldwork in the Ithaca area and elsewhere in New York State.

The ILR program allows juniors and seniors who want to conduct their own research to receive course credit for individually directed studies if the program is supervised by a faculty member.

Study in Absentia

Registration in absentia enables a student to seek admission in another American institution for a semester or a year and transfer credit toward completion of the Cornell degree. This study option requires the development of a plan of study, a statement of appropriate reasons for study away from the university (e.g., availability of courses not offered at Cornell), good academic standing, approval of the plan by the director of student services, and payment of a special in absentia registration fee.

Leaves of Absence or Withdrawal

Students who desire to withdraw or take a leave of absence from the university should schedule an interview with a counselor in the Office of Student Services. Counselors will assist students in petitioning for approval of a leave of absence and in contacting the appropriate offices or departments of the university.

REQUIREMENTS FOR GRADUATION

To earn the Cornell bachelor of science degree in industrial and labor relations, a student must successfully complete 120 credits. This requires eight semesters for an average of 30 credits a year although some students accelerate their studies.

New Curriculum effective Fall 2005

First Year

FALL

First-year writing seminar* 3
ILR colloquium (introduction to ILR School, ILRID 150)** 1
Introduction to Micro Organizational Behavior and Analysis (ILROB 170)** 3
History of American Labor (ILRCB 100)** 3
Introductory Microeconomics (ECON 101)* 3
Elective (3)
PE (university requirement)

SPRING

First-year writing seminar* 3
Introduction to Macro Organizational Behavior and Analysis (ILROB 171)** 3
Introductory Macroeconomics (ECON 102)* 3
Electives (6)
PE (university requirement)

Sophomore Year

FALL

Statistical Reasoning (ILRST 212)** 4
Labor and Employment Law (ILRCB 201)** 3
Human Resource Management (ILRHR 260)** 3
Electives (6)

SPRING

Collective Bargaining (ILRBC 205)** 3
Economics of Wages and Employment (ILRLE 240)** 3
Western Intellectual Tradition**, 3
Cultural Perspectives**, 3
Elective (3)

Junior and Senior Years

Advanced Writing* 3
Science and Technology* 3
ILR Elective courses—40 credits

• Must include at least one course from an approved list in each of the following three areas: International and Comparative elective, Labor History elective and Economic Policy elective

• Minimum of 24 credits of ILR course work, including 495 Honors, 499 Independent Study—with a maximum of 16 credits for non-ILR courses at Cornell as approved in ILR departments.

• Maximum of 12 credits from foreign language or advanced math

• May include up to 9 credits for one semester abroad or 15 credits for a full year abroad

• Maximum of 12 credits in a credit internship program

Additional general elective credits (in addition to distribution requirements) 12

Minimum total credits required for graduation 120

*Required courses usually taken in the College of Arts and Sciences

**Required courses taken in the ILR School

| Distribution credits (courses you choose that satisfy requirements in certain categories) |
| Physical Education credit does not count toward the 120 credits |

Students who take more than 50 credits in the endowed colleges (the College of Architecture, Art, and Planning; the College of Arts and Sciences; the Johnson Graduate School of Management; the College of Engineering; the School of Hotel Administration, and the Law School) must pay for each credit taken in excess of 50, whether or not the courses are passed. For the precise fee per credit, students should call the Office of the Bursar.

The number of credits that may be taken in the endowed colleges at no additional cost to the student may be changed at any time by official action of the school.

ILR Math Requirement

A student who took AP calculus in high school and scored a 3 or better on the AB exam or subscore of BC exam has fulfilled the ILR math requirement. If AP calculus wasn't completed, or if the scores noted above were not achieved, the student is expected to take and pass the ILR Math Assessment before registering for required courses in Statistics and Labor Economics. The Math Assessment is based on materials covered in New York State Regents Exams for Courses 2 and 3. (Calculus is not covered in those courses.)

The ILR Math Assessment is scheduled in August, January, and May. Those who do not pass in the first attempt are expected to register in an appropriate math course and pass the assessment before the beginning of their third semester in the school. Any student who cannot meet the requirement by the beginning of the third semester is enrolled for a terminal semester and is expected to leave the school thereafter.
Transfer students are expected to meet the same standards in math: either present the score required by Cornell University for AP calculus (AB or BC) credit or pass the ILR Math Assessment before being permitted to register in ILRST 212 or ILRLE 240 with a terminal semester possible after failing the assessment given at the beginning of a third semester as an ILR student.

SCHEDULING AND ATTENDANCE

Schedule Changes
Occasionally it may be necessary for a student to request changes in his or her course schedule either before a semester begins or during the semester. Such requests must be directed to the Office of Student Services to avoid possible loss of academic credit.

Class Attendance
It is each student's responsibility to attend all scheduled classes unless excuses have been approved by the faculty members. In some courses an instructor may permit a maximum number of class absences without a grade penalty or dismissal from the course. An explanation for absence from class may occasionally be secured from the Office of Student Services in advance of the expected absence. An approved absence may be warranted by:
1. participation in authorized university activities such as athletic events, dramatic productions, or debates;
2. medical problems supported by a record of clinic or infirmary treatment;
3. serious illness or death in the immediate family;
4. other circumstances beyond the student's control.

A request for explanation of an absence should, when possible, be made to the Office of Student Services before the date of expected absence. A reported and explained absence does not relieve a student from fulfillment of academic requirements during the period of absence. The course instructor has the authority to determine what work must be completed. The office can only confirm the explanation for absence. Students should inform the Office of Student Services of any problems they have meeting course requirements.

STANDING AND GRADES

Academic Integrity
In 1987 the faculty of the School of Industrial and Labor Relations approved a revised code of academic integrity. This code, while based on the Cornell University code, varies somewhat. Absolute integrity is expected of all Cornell students in all academic undertakings. They must in no way misrepresent their work, fraudulently or unfairly advance their academic status, or be a party to another student's failure to maintain academic integrity. The code specifically prohibits:

1. knowingly representing the work of others as one's own;
2. using or obtaining unauthorized assistance in any academic work;
3. fabricating data in laboratory or field work;
4. giving fraudulent assistance to others;
5. fabricating data in support of laboratory or field work.

Full details on the applications of those prohibitions to course work, term papers, examinations, and other situations are listed in the code. Copies are available from the Office of Student Services, 146 Ives Hall.

Dean's List
A Dean's List is compiled for each of the four undergraduate classes each semester on the seventh day following receipt of final grades from the registrar. Eligibility for the Dean's List is determined by applying all of the following criteria:
1. achievement of a semester average for freshmen of 3.5 or better, for sophomores of 3.4 or better, and for juniors and seniors of 3.6 or better;
2. a minimum course load for the semester of 12 letter-graded credits;
3. completion of all courses registered for at the beginning of the semester;
4. satisfaction of all good-standing requirements.

Academic Standing
Good standing requires that all of the following criteria be met at the end of each semester:

1. an average of C- (1.7) for the semester's work, including a minimum of 6 completed and letter-graded credits;
2. no failing grades in any course, including physical education;
3. a cumulative average of C- (1.7) for all completed semesters.

If at the end of any semester a student fails to maintain good standing, or if overall academic performance is so marginal as to endanger the possibility of meeting school and university degree requirements, his or her record is reviewed by the Committee on Academic Standards and Scholarships. The committee may issue a written warning to the student at that time. If a student who does not improve after the written warning, he or she may be denied permission to register for the next semester.

Involuntary Separation from the School for Academic Reasons
A student may be denied permission to reregister at the end of any semester when he or she has failed:
1. to establish good standing after a semester on warning;
2. to maintain an average of 1.7 in any semester after a previous record of warning;
3. to achieve good standing after being on warning any two previous semesters;
4. two or more classes in one semester or has a semester average of 1.0 or below.

The Academic Standards and Scholarship Committee may decide to permit a student to remain on warning more than one semester if there has been significant improvement even though the cumulative average is still below 1.7.

S-U Grading Policy
An undergraduate may register to receive a final grade of S (Satisfactory) or U (Unsatisfactory) in courses that offer this option—either in the school or in other divisions of the university—subject to the following conditions:

1. the S-U option may be used in ILR and in out-of-college course electives only, not in directed studies;
2. students are limited to registering in two S-U courses a semester;
3. S-U registration is limited to 4 credits for each course;
4. students registering for S-U grades must be in good standing;
5. students must fulfill the graduation requirement of 105 letter-graded credits.

ILR faculty members assign a grade of U for any grade below C- and a grade of S for any grade of C- or better. A grade of U is considered equal to an F in determining a student's academic standing, although it is not included in the cumulative average.

No change of grading (from letter to S-U or from S-U to letter) may be made after the first three weeks of class. There are no exceptions to this restriction, and appeals will not be accepted.

Grades of Incomplete
A grade of incomplete (INC) is assigned when a course has not been completed for reasons that are acceptable to the instructor. It is understood that the work will be completed later and credit given. Instructors may grant a grade of incomplete for a limited number of clearly valid reasons, but only to students with substantial equity in a course. A firm and definite agreement on the conditions under which the work may be made up must be made with the instructor. The school's policy allows a maximum of two full semesters of residence for removal of a grade of incomplete. If it is not made up within this time, the grade automatically becomes an F.

SPECIAL ACADEMIC PROGRAMS
To meet the special academic objectives of some students, the school's faculty has established several special academic programs. For additional information, students should contact a counselor in the Office of Student Services. Counselors will explore the program with students to help them decide if it suits their interests.

Five-Year Master of Science Degree Program
With early planning it is possible to earn the M.S. degree in a fifth year of study. This program is designed specifically for those who wish concentrated study in an area of specialization.
in the school for a master of science degree. Students considering this program should consult a counselor in the Office of Student Services after their freshman year.

Internships
Many ILR students decide to participate in the ILR Credit Internship Program, working in cities all over the country, typically during the junior year. Most sponsors expect that interns will have completed the introductory required courses before coming to work with them, so the junior year is the earliest opportunity to test out what's been learned in the classroom. The majority of ILR interns are located in either New York City, Washington, D.C., or the ILO in Geneva, Switzerland. Contact ILR's Off-Campus Programs office and visit Professor Clete Daniel's ILR Credit Internship web site at www.ilr.cornell.edu/creditinternships/.

Summer Internships
What is a summer internship? During the summer, a student who works in a job that is related to industrial and labor relations may find that the employer refers to that job as an internship. Their terminology differs from that used by ILR and Cornell to refer to credit-bearing internships. ILR considers an internship to be a learning experience engaged in during the academic year, for which students earn academic credit, are supervised by a faculty member, are evaluated, have a grade recorded, and pay tuition. With very few exceptions (the Clem Miller Scholarship, Saul Wallen internship, Chaim and Ida Miller Scholarship, all of which are summer support provided to selected ILR students), summer employment has little in common with the semester credit internship program. Approval is required in advance. Some companies tell students that they cannot be employed unless they receive academic credit for a summer internship. Cornell does not grant credit unless a student is registered, pays tuition, has a faculty supervisor, and is in a position approved for internship credit.

Programs in Washington
Two Washington programs are available to ILR students: the ILR Credit Internship Program and the Cornell in Washington program, sponsored through the College of Arts and Sciences.

ILR Credit Internship Program: Interns work approximately 30 hours per week for the 15 weeks of the semester in ILR-related organizations approved by the ILR faculty. They also work on a research project related to their internship, which is graded by their ILR faculty supervisor. The credit hours that they earn are ILR elective credits. Internships are available in New York City and Washington, D.C., as well as other locations. Cornell in Washington interns find placement in practically any and every operation in Washington, work there about 20 hours per week, and attend Cornell classes taught in Washington by Cornell faculty members. Interns are expected to complete a major thesis project that is related to their course work and internship and for which they receive a grade.

Selecting a program: Most ILR students who wish to be interns in Washington, D.C., apply to the ILR Credit Internship Program. Occasionally, an ILR student identifies an interest that cannot be met by the ILR program. The student may then apply to the Cornell in Washington program but will be expected to secure ILR faculty approval of his or her plans and academic eligibility before applying to the Cornell in Washington program.

Application procedure: Interested students are expected to discuss the program with Professor Daniel, ILR's academic coordinator for internships, before proceeding with applications.

Honors Program
Undergraduates who are ranked in the top 20 percent of their class at the end of the junior year may propose a two-semester research project, an honors thesis, for review by the Committee on Academic Standards and Scholarships. When approved, the candidate for graduation with honors works for two semesters (for 4 credits each semester) to research, write, and then defend the thesis.

Study Abroad
Students in ILR who plan to study in another country usually do so in the junior year, occasionally in the senior year. They may study in one of the programs that is sponsored by Cornell, in one sponsored by another institution and endorsed by Cornell, or in an approved externally sponsored program. Information about study abroad is available in OSS (146 Ives Hall) or the Cornell Abroad office (300 Caldwell Hall).

Students are expected to register for a full course load, the equivalent of 15 credit hours in a semester or 30 hours in a year, when they study abroad. Some courses will be the equivalent of general elective credit or distribution credit, but others may be accepted as ILR elective credit if evaluated and approved by the relevant ILR department chairs. A student may satisfy up to 9 hours of the ILR elective requirement in a single semester abroad and up to 15 hours in a year of foreign study.

Application for foreign study requires that the student meet the schedules of the program of interest and Cornell's schedule. Applications include tentative class schedules, recommendations from faculty members, approval of the application by an ILR faculty committee, essays, and transcripts. After being approved in ILR, the application is sent to the Cornell Abroad office and then to the program for which the student is applying. For more information, contact Kevin Harris, ILR study abroad coordinator, 146 Ives Hall, 255-2225, kdh4@cornell.edu, or the Cornell Abroad office, 300 Caldwell Hall, 255-2224, CornellAbroad@cornell.edu, www.cubroad.cornell.edu/.

COLLECTIVE BARGAINING, LABOR LAW, AND LABOR HISTORY

ILRCB 100(1100) Introduction to U.S. Labor History
Fall and spring. 3 credits. J. Cowie, C. Daniel, I. DeVault, and N. Salvatore. Introductory survey covering the major changes in the nature of the American workforce, and the institutions involved in industrial relations from the late 19th century to the present.

ILRCB 201(2010) Labor and Employment Law
Fall and one sec in spring. 3 credits. M. Gold, J. Gross, R. Lieberwitz, and K. Stone. Survey and analysis of the law governing labor relations and employee rights in the workplace. The first half of the course examines the legal framework in which collective bargaining takes place, including union organizational campaigns, negotiations for and enforcement of collective bargaining agreements, and the use of economic pressure. The second half surveys the laws against discrimination based on race, religion, sex, national origin, age, and disability. Also serves as an introduction to judicial and administrative systems.

ILRCB 205(2050) Collective Bargaining
Fall and spring. 3 credits. M. Cook, H. Katz, D. Lipsky, S. Kuruvilla, R. Seeber, and L. Turner. Comprehensive introduction to industrial relations and collective bargaining in the United States, the negotiation, scope, and day-to-day administration of contracts; the major substantive issues in bargaining, including their implication for public policy, industrial conflict; the major challenges facing unions and employers today, U.S. industrial relations in international and comparative perspective.

ILRCB 301(3010) Labor Union Administration
Fall. 4 credits. Staff. Study and analysis of the structure and operations of American unions, including the complicated internal life of the organizations; the varied environments in which unions develop and grow or decline; the relationship of national unions, local unions, and members in the many different sections of internal union government; the ways in which unions are set up to handle organizing, collective bargaining, contract administration, and political activity; and the widespread movement toward merger and consolidation of unions that began in the sixties and continues today. All of these involve a study of union constitutions and other primary documents, in addition to secondary readings. Attention is given to relevant legislation, current problems of unions, and the eternal problems of attaining union democracy.

ILRCB 302(2030) Strangers and Citizens: Immigration and Labor in U.S. History
Fall or spring. 4 credits. I. DeVault. Explores immigrant workers' experiences in the 19th and 20th centuries from different perspectives. Students examine what it meant to the immigrants themselves to arrive as
strangers in the United States while also examining the ways in which preexisting American groups defined these immigrants as "strangers." Similarly, students look at U.S. citizens in their roles as greeters of immigrants, distinguishing between preconceptions of immigrants, and as models for the aspirations of immigrants. The main examples are taken from the industrial and union realms.

ILRCB 303(3030) Working-Class America in Mass Media and Popular Culture
Spring. 4 credits. J. Cowie
Examine a variety of representations of working people found in commercial popular culture throughout the 20th century as a means to explore the ways in which history, memory, and politics are shaped through popular discourse. Uses sources as diverse as popular music, Hollywood movies, the mainstream press, and television sitcoms to understand the ideological and political influences on our preconceptions of workers, and how those forces influence our notions of authenticity, the historical experience, and the politics of social class.

ILRCB 304(3040) Seminar in American Labor and Social History
Fall or spring. 4 credits. Prerequisite: permission of instructor. J. Cowie, C. Daniel, I. DeVault, and N. Salvatore
Undergraduate seminar whose topic changes depending on semester and instructor.

ILRCB 305(3050) Introduction to Labor Arbitration and Alternative Dispute Resolution
Fall. 4 credits. J. Gross
Introductory survey that focuses on the U.S. labor arbitration process in the private and public sectors (legal issues, discipline and discharge, contract language interpretation, remedies, and procedures) and on alternative dispute resolution systems in the United States and other countries. Student participation in class discussion is expected, and assignments include an original research paper.

ILRCB 306(3060) Recent History of American Workers: From the 60s through the 90s
Fall. 4 credits. J. Cowie
Focuses on one aspect of contemporary American workers and the role of organized labor in American life since the 1960s. Course themes often center on the complexities of social class in the United States. Topics include the transformations of liberalism, the civil rights and black power movements, the Vietnam War, the rise and fall of the New Left, industrial restructuring, the rise of neoconservatism, changes in civic identity, and sources of cultural conflict. Course ends with an examination of globalization, changes in the major political parties, the future of work, and prospects for social change.

ILRCB 307(3070) U.S. Business History Since the Civil War
Spring. 4 credits. R. Applegate
Surveys the history of U.S. business enterprise since the establishment of a nationally unified political economy. Focuses on the corporation’s emergence as the dominant form of business organization in the context of changing government-business relations. Students examine distinctive features of American business development—such as the preeminence of “big business,” corporate governance by managerial hierarchies, and the multinational scope of corporate operations—by exploring the circumstances of their creation, the private-sector limits of their reach, and their consequences for economic development and industrial relations.

ILRCB 384(3840) Women and Unions (also FGSS 384(3840))
Fall or spring. 4 credits. Not offered 2005-2006. I. Devault
Explores women’s participation in the United States labor movement in the 19th and 20th centuries. Issues covered include women workers’ relations with male-dominated union movements, cross-class alliances of women in organizing working women, interactions with radical parties and organizations, problems faced by women union leaders and activities, and others.

ILRCB 385(3850) African American Social History, 1865 to 1910: The Rural and Urban Experience
Fall. 4 credits. N. Salvatore
Examines the experience of black Americans from Emancipation through the experience of the first generation born after slavery. Topics include the changing nature of work; political organization and the rise of Jim Crow; protest, accommodation, and separatism; and the continued evolution of black social and cultural expression after slavery.

ILRCB 386(3860) African American Social History, 1910 to the Present: Race, Work, and the City for All
Spring. 4 credits. N. Salvatore
Examines the experience of black Americans from the start of the Great Migration just before World War I. Topics include the effects of migration on work experiences and unionization patterns, the impact of depression and two world wars on black social structure and economic status, the growth of the Civil Rights movement, and the impact of migration and urbanization on a variety of social and cultural institutions.

ILRCB 400(4000) Union Organizing
Spring. 4 credits. Prerequisites: ILRCB 201 and 205, 500 and 501. K. Bronfenbrenner
Explores various aspects of unions’ attempts to organize workers: including why some workers join unions and others do not; strategy and tactics implemented by unions and their organizing campaigns; present status of labor law as it affects organizing; creative approaches to union organizing; and the organizing model of unionism.

ILRCB 404(4040) Contract Administration
Fall. 4 credits. Prerequisites: ILRCB 205 and 201 or 500 and 501. K. Bronfenbrenner
Focuses on the practice of, and challenges of union representation under collective bargaining agreements. Working with union contracts, constitutions, and bylaws from a diversity of national and local public and private sector agreements, the course examines how U.S. unions represent their members in different industries and different collective bargaining environments. Issues addressed will also include representative steward rights and responsibilities, contract enforcement structures and practice, access to information, new work systems, hours of work and scheduling, contingent staffing arrangements, workplace discrimination, health and safety, promotional opportunities, downsizing, leadership development, membership involvement and commitment, internal organizing, community coalition building, and decertification campaigns. Students practice hands-on work in interpreting contract language and preparing and presenting grievances and unfair labor practices.

ILRCB 407(4070) Contemporary Trade Union Movement
Spring. 4 credits. Prerequisites: undergraduates, ILRCB 100; graduate students, ILRCB 502. R. Seiber and R. Hud
Examination of contemporary trade union issues, including union power, political action, collective bargaining approaches, and organizing efforts. Covers structural, functional, and strategic aspects of contemporary unions. Speakers from the union movement address the class.

ILRCB 482(4820) Ethics at Work
Fall or spring. 4 credits. Prerequisite: junior or senior standing or permission of instructor. M. Gold
Examines major theories of ethics, then applies them to issues in the employment relationship such as gender screening of job applicants, random drug testing of employees, affirmative action, discipline for off-duty conduct, whistle-blowing, worker safety and cost/benefit analysis, comparable worth, strikes by employees providing crucial services, and crossing a picket line.

ILRCB 488(4880) Liberty and Justice for All
Fall or spring. 4 credits. Prerequisite: junior or senior standing or permission of instructor. M. Gold
Examines major theories of ethics, then applies them to contemporary issues such as affirmative action and reverse discrimination, the right to life (from abortion to capital punishment), comparable worth, and constitutional rights such as freedom of speech.

ILRCB 495(4950) Honors Program
Fall and spring (yearlong). 4 credits each semester. Students are eligible for ILR senior honors program if they (1) are the in upper 20 percent of their class at end of junior year; (2) propose an honors project, entailing research leading to completion of a thesis, to an ILR faculty member who agrees to act as thesis supervisor; and (3) submit the project approved by the proposed faculty sponsor, to Committee on Academic Standards and Scholarships. Accepted students embark on a two-semester sequence. The first semester consists of determining a research design, familiarization with germane scholarly literature, and preliminary data collection. The second semester involves completion of the data collection and preparation of the honors thesis. At the end of the second semester, the candidate is examined orally on the completed thesis by a committee consisting of the thesis supervisor, a second faculty member designated by the appropriate department chair, and a representative of the Academic Standards and Scholarship Committee.
programs. Upon approval of the internship, the Office of Student Services will register each student for 497, for 4 credits graded A- to F for individual research, and for 498, for 8 credits graded S-U, for completion of a professional or student research experience, which is graded by the faculty sponsor.

ILRCB 498(4990) Directed Studies
Fall and spring. 4 credits.
For individual or group research projects conducted under the direction of a member of the ILR faculty, in a special area of labor relations not normally covered by regular course offerings. Sophomores, juniors, and seniors with a preceding semester of 3.0 semester average are eligible to submit projects for approval by the Academic Standards Committee. Students should consult with a counselor in the Office of Student Services at the time of CourseEnroll to arrange for formal submission of their directed study.

ILRCB 500(5000) Collective Bargaining
Fall. 3 credits. Prerequisite: graduate standing. Recommended: previous or concurrent enrollment in ILRCB 501. M. Cook, H. Katz, S. Kuruvilla, and L. Turner.
Comprehensive introduction to the industrial relations system of the United States. Covers the negotiation, scope, and day-to-day administration of contracts; union and employer bargaining structures; implications of industrial relations issues for U.S. competitiveness and public policy; industrial conflict; and U.S. industrial relations in international and comparative perspective.

ILRCB 501(5010) Labor and Employment Law
Fall. 3 credits. Prerequisite: graduate standing. L. Compa, M. Gold, and R. Lieberman.
Survey and analysis of the law governing labor relations and employee rights in the workplace. The first half of the course examines the legal framework in which collective bargaining takes place, including union organizational campaigns, negotiations for and enforcement of collective bargaining agreements, and the use of economic pressure. The second half surveys additional issues of rights in employment, including such topics as employment discrimination, the developing law of "unjust dismissal," and union democracy. Also serves as an introduction to judicial and administrative systems.

ILRCB 502(5020) History of Industrial Relations in the United States since 1865
Fall or spring. 3 credits. Prerequisite: graduate standing. J. Cowie, C. Daniel, I. DeVault, and N. Salvatore.
Introductory survey course emphasizing historical developments in the 20th century. Special studies include labor union struggles over organizational alternatives and such other topics as industrial conflicts, working-class lifestyles, radicalism, welfare capitalism, union democracy, and the expanding authority of the federal government.

ILRCB 504(5040) The U.S. Industrial Relations System
4 credits. Offered in New York City for M.P.S. program. Staff.
Examines the development, operation, and outcomes of the U.S. industrial relations system in a comparative context. Specifically, the course contrasts the American experience with industrial relations institutions and outcomes with the experience of several other countries in Europe and Asia. Students look at the proliferation of union formation, the practice of collective bargaining at different levels, the methods of dispute resolution, and the legal regime germane to industrial relations. The course also focuses on both processes and outcomes of different country systems, focusing on the degree of collaboration or conflict, wage levels and wage inequality, and practices in different industries and firms. Finally, the role played by industrial relations and human resource policy in economic and social development in these nations is addressed.

ILRCB 602(6020) Arbitration
Fall and spring. 4 credits. Limited to 21 students. Prerequisites: ILRCB 201, 205, 500, 501. J. Gross and R. Lieberwitz.
Study of arbitration in the field of labor-management relations, including an analysis of principles and practices, the law of arbitration, the handling of materials in briefs or oral presentation, the conduct of a mock arbitration hearing, and the preparation of arbitration opinions and post-hearing briefs.

ILRCB 603(6030) The Economics of Collective Bargaining in Sports
Fall or spring. 4 credits. L. Kahn.
Surveys economic and industrial issues in the sports industry. Topics include salary determination, including free agency, salary caps, salary arbitration, competitive balance and financial health of sports leagues; antitrust issues in sports; labor disputes, union history, and contract administration issues in sports leagues; discrimination in sports; and performance incentives.

ILRCB 605(6050) Readings in the History of Industrial Relations in the United States
Fall. 4 credits. Prerequisite: senior or graduate standing. C. Daniel and N. Salvatore.
Intensive seminar covering original printed sources and scholarly accounts for different periods in American history.

ILRCB 606(6060) Theories of Industrial Relations Systems
Fall or spring. 4 credits. Prerequisite: senior or graduate standing; ILRCB 100, 201, 205, 500, 501. H. Katz.
Traces the evolution of theory and research on industrial relations. Topics include theories of the labor movement, institutional models and evidence regarding what unions do; the origins of internal labor markets and their relationship with models of strikes; empirical assessments of arbitration; research on union decline; and empirical evidence of the impacts of new technology.

ILRCB 607(6070) Values in Law, Economics, and Industrial Relations
Fall and spring. 4 credits. Limited to 21 students. Prerequisites: ILRCB 201, 205, 500, 501. J. Gross.
Examination of the often hidden values and assumptions that underlie the contemporary U.S. systems of employment law, work and business, and industrial relations. Classroom discussions and student research projects use novels and short stories (as well as the literature of industrial and labor relations) to focus on issues such as discrimination, law, economics, and the state; work and business; power, conflict, and protest; and rights and justice.

ILRCB 608(6080) Sex Discrimination and the Law
Fall or spring. 4 credits. Prerequisites: ILRCB 201, 501, or permission of instructor. R. Lieberman.
Lec 01—Examines various legal issues relevant to discrimination on the basis of sex. Problems analyzed include sexual harassment, pornographic, reproductive rights, prostitution, work-family conflict, inequality in employment opportunities, gay and lesbian rights, welfare rights, and affirmative action.

ILRCB 609(6090) Collectively Bargaining
Simulation
Fall. 4 credits. Limited to 18 students. Prerequisite: junior, senior, or graduate standing; recommended: previous or concurrent enrollment in collective bargaining theory and labor law course.
Attendance at first class mandatory. Up to two required evening extended bargaining sessions. H. Kranzler.
Lec 04—Students prepare for and participate in a simulated negotiation between a hypothetical corporation and a hypothetical union in a typical big company with mid-size single site bargaining unit context. Students are assigned, usually in line with preferences, to either a management or union bargaining team. The course stresses the negotiation process over settlement or substantive outcomes. Negotiation problems are as real life as possible, constrained by student time needs and with attention given to dynamic legal, political, economic, and communications concerns as well as power, information, and time factors. Participants plan for negotiations, reach agreements in principle and negotiate, language, bargain wages, pensions, health care and noneconomic items in the context of a company and union with an established contract, policies, and culture. This is a hands-on program with active participation essential.

ILRCB 610(6011) Negotiation: Theory and Practice
Fall or spring. 4 credits. Prerequisites: ILRCB 201, 205, 502, 505. L. Compa.
Lec 05—Immigrant workers have surged into the U.S. labor force in recent years, creating new problems and new agendas for the labor law system. This course examines labor and employment law developments affecting documented and undocumented immigrant workers. Because labor economics and immigration policy obviously set the framework for legal developments, some early classes and assignments address these issues. Most of the course is then devoted to federal and state legislation and case law on immigrant workers, focusing on labor and employment matters rather than immigration law as such.

ILRCB 611(6011) Negotiation: Theory and Practice
Fall or spring. 4 credits. Prerequisites: ILRCB 205 or 500, 502, and 505. Offered in economics and social sciences, or permission of instructor. D. Lipsky and R. Seeler.
Deals with negotiation and bargaining, focusing on process, procedure, and strategies. Focuses on the use of negotiation and bargaining to resolve conflicts and disputes between organizations and groups. Discusses various
ILRCB 611(6012) Managing and Resolving Conflict
Fall or spring. 4 credits. Prerequisites: ILRCB 205, 500, background in economics and social sciences, or permission of instructor. D. Lipsky and R. Sebeeb.
Deals principally with managing and resolving workplace conflicts but also covers conflict resolution outside the workplace: Does not focus on the use of mediation and arbitration within collective bargaining but examines the use of these techniques and others outside collective bargaining and in nonunion settings. Covers two related topics: (1) third-party dispute resolution, including alternative dispute resolution. Among the dispute resolution techniques discussed are mediation, arbitration, fact-finding, facilitation, mini-trials, early neutral evaluation, peer review, and ombuds function; (2) conflict management in organizations, including the recent development of conflict management systems. The course reviews the factors that have caused the growth of ADR and conflict management systems in the workplace, and it explores the implications of these recent developments for our system of justice.

ILRCB 650(6013) Service Work and Workers in Historical Perspective
Fall or spring. 4 credits. I. DeVault.
Takes a historical perspective on the development of a service economy in the United States. Readings include general and theoretical works, but the main focus is recent historical scholarship on specific occupations and situations in the "nonproductive" workforce. Students explore primary sources for research on the subject and write research papers.

ILRCB 651(6014) Industrial Relations in Transition
Spring. 4 credits. Prerequisite: senior or graduate standing. H. Katz.
Considers whether recent developments such as concession bargaining, worker participation programs, and the growth of nonunion firms represent a fundamental transformation in industrial relations practice. Reviews recent research and new theories arguing that such a transformation is occurring, including the work of Piore and Sabel, Bluestone and Harrison, and Kochan, McKersie, and Katz. Also reviews the counterarguments and evidence put forth by those who believe no such transformation is underway. Course material focuses on industrial relations practice in the private sector in the United States, although some attention is paid to developments in Western Europe, the United Kingdom, and Japan.

ILRCB 655(6014) Employment Law I
Fall. 4 credits. Prerequisites: ILRCB 201, 501, or permission of instructor.
Attendance and participation mandatory. May be taken either before or after ILRCB 501. L. Alt.
Takes a similar approach to ILRCB 650, but the subject matter differs. Topics include employment at will and its exceptions; the role of the Constitution in the U.S. workplace; the law of employment at will; the law of discrimination; the right to privacy at work; and the slowly evolving rights of contingent workers in the old and new economies. One study reviews primarily federal and state court decisions and focuses upon the way that employees' rights are advanced or constrained by law. There are considerable reading responsibilities.

ILRCB 656(6016) Employment Law II
Spring. 3 credits. Prerequisites: ILRCB 201, 501, or permission of instructor.
Attendance and class participation mandatory. May be taken either before or after ILRCB 501. L. Alt.
Takes a similar approach to ILRCB 655, but the subject matter differs. Topics include the meaning and validity of preemployment arbitration agreements; the critical distinctions in the standards and thus the rights of employees, independent contractors, and contingent workers; what rights the working poor, the homeless, and workforce individuals have on the "job;" and the origin and application of the law of employees' compensation laws that apply when people are injured or contract disease from their work. One study reviews primarily federal and state court decisions and focuses on the way that employees' rights are advanced or constrained by the law. There are considerable reading responsibilities.

ILRCB 661(6810) International Labor Law
Fall or spring. 4 credits. Prerequisites: undergraduates, ILRCB 201; graduate students, ILRCB 501. Fulfills ILRIC distribution requirement for ILR students. L. Gradl.
Examines labor rights and labor standards in a world economy regulated by bilateral and multilateral trade agreements, in a context of sharp competition among countries and firms. Readings focus on the intersections of labor, human rights, and international trade law and policy in this new global economic context. A prior course in a related topic may be helpful but is not required—the first classes are meant to establish a foundation in each area. While labor law is a unifying theme, the course is more policy-oriented than legalistic. After the introductory classes on labor rights, human rights, and trade, the focus turns to a series of topics that reflect the links between labor rights and trade.

ILRCB 683(6830) Research Seminar in the History of Industrial Relations
Fall or spring. 4 credits. Prerequisites: ILRCB 100, 502. J. Cowie, C. Daniel, I. DeVault, and N. Salvatore. Areas of study are determined each semester by the instructor offering the seminar.

ILRCB 684(6840) Employment Discrimination and the Law
Fall or spring. 4 credits. Prerequisite: ILRCB 201/501 or equivalent. M. Gold and R. Lieberwitz.
Examines the laws against employment discrimination based on race, color, religion, sex, national origin, age, and disability.

ILRCB 685(6860) Collective Bargaining in the Public Sector
Fall or spring. 4 credits. Prerequisites: ILRCB 205 and 201; 500 and 501. H. Katz.
Examination of the development, practice, and current situation in the area of collective bargaining between federal, state, and local governments and their employees. Considers the variety of legislative approaches to such matters as representation rights, unfair practices, scope of bargaining, impasse procedures, and the strike against government along with implications for collective bargaining for public policy and its formulation.

ILRCB 687(6870) Introduction to Labor Research
Spring. 4 credits. Limited to 20 students. K. Bronfenbrenner.
Designed to provide students interested in the labor field with the skills necessary to understand and use social science research as it relates to the labor movement. The course's four major goals are to (1) develop the skills to critically evaluate a wide variety of research relating to unions and the workplace; (2) introduce a number of both quantitative and qualitative research techniques used by unions and those who study the labor movement; (3) familiarize students with the broad range of library and computer resources that can be used for labor and corporate research; and (4) provide students with an opportunity to design and conduct a research project for a national or local union.

ILRCB 688(6880) Constitutional Aspects of Labor Law
Fall or spring. 4 credits. R. Lieberwitz.
In-depth analysis of the Supreme Court decisions that interpret the United States Constitution as it applies in the workplace. Focuses on the First Amendment, Fifth Amendment, Fourteenth Amendment, and Commerce Clause, with issues including freedom of speech and association, equal protection, due process, and other issues in the area of political and civil rights. The course entails a substantial amount of student participation in class discussion, and assignments include a research paper.

ILRCB 703(7030) Qualitative Research Methods in Industrial Relations and Human Resources
Spring. 4 credits. Prerequisite: M.S. and Ph.D. students; ILRCB 500. Recommended: statistics course beyond level of ILRST 510. S. Kuruvilla.
Advanced doctoral seminar that focuses on the philosophy of inquiry, generally, as well as the various paradigms governing research on work. The course further focuses on selected qualitative research methods used in research in industrial relations, human resource management, and organizational behavior.

ILRCB 705(7050) The Economics of Collective Bargaining
Spring. 3 credits. Prerequisites: ILRCB 500, ILRLE 540 or equivalents and an understanding of multiple regression analysis, or permission of instructor. Staff.
Focuses on both the calculation of the value of unions and collective bargaining in our economy and the economic forces that affect collective bargaining. The method is
to identify and conceptualize the structural determinants of relative bargaining power. On this basis, the course examines both the economic outcomes of collective bargaining and current bargaining trends in a variety of industries. Tentative theoretical analyses of unionism (and what is non-unionism) are compared. The statistical techniques and empirical results of research on the union effect on economic outcomes (wages, prices, inflation, profits, productivity, earnings inequality) are also evaluated. The effect of technology, corporatist structures, and public policy on union bargaining power is outlined, and a number of case studies of collective bargaining in the private sector are reviewed. A term paper is required.

ILRCB 706(7060) Labor in Global Cities
Fall. 3 credits. L. Turner
Examines urban and labor literature, targeting selected cities to assess union influence and strategies in local politics, organizing, and coalition building. Each student chooses a city of particular interest and becomes an expert on that city's key unions, political actors, and corporations. The idea is to develop overall pictures of new union vitality (if and where it exists) based not only on particular unions, industries, and nations but also on regions, coalitions, and local politics.

ILRCB 708(7080) Negotiations in Practice
Fall. 3 credits. S. Kuruvilla.
Provides opportunities for students to develop their negotiating abilities for use in organizational and other settings. The course is premised on the assumption that negotiating concepts can be best learned through practice that is grounded in rigorous analysis and reflection. While theoretical principles and concepts from various reference disciplines (e.g., social psychology, sociology, and economics) are presented through lectures and readings, this course focuses primarily on improving practical skills. Participants learn not only to enhance their individual abilities in dyadic and group situations but also to analyze group strategies for the most effective application of these skills.

ILRCB 783(7801) Seminar in American Labor History (also HIST 682/6830)
3 credits. Prerequisite: graduate standing and permission of instructor. N. Salvatore.
Explores the relationship of scholarly biographical writing to the field of American social history. More and more historical biographies look to incorporate social analyses at the center of their biographical structures. Students read, discuss, and analyze the varied strengths and weaknesses of a number of these efforts. The author's understanding of the play between biographical subject and the larger social context, and its meaning for the structure of the book, are a point of inquiry that encourages numerous approaches and interpretations. In addition to short writing assignments and a final paper, the professional standards of research are required.

ILRCB 796(7900) ILR M.P.S. Program
Fall and spring. 1–9 credits. Staff.
Supervised research only for those enrolled in the ILR M.P.S. program.

ILRCB 798(7900) Internship
Fall and spring. 1–3 credits.
Designed to grant credit for individual research under direction of a faculty member by graduates who have been selected for an internship. All requests for permission to register for ILRCB 798 must be approved by the faculty member who will supervise the project.

ILRCB 799(7990) Directed Studies
Fall and spring. Credit TBA.
For individual research only, conducted under the direction of a member of the faculty.

ILRCB 980(9800) Workshop in Collective Bargaining, Labor Law, and Labor History
Fall and spring. 2 credits. Prerequisite: M.S. and Ph.D. candidates in department. S-U grades.
Provides a forum for the presentation of current research being undertaken by faculty members and graduate students in the Department of Collective Bargaining, Labor Law, and Labor History, and by invited guests. All M.S. and Ph.D. candidates in the department who are at work on their theses are strongly urged to enroll. Each student is expected to make at least one presentation during the year, focusing on the Normanative design, execution, and results of his or her thesis research.

HUMAN RESOURCE STUDIES

L. Dyer, chair (393 Ives Hall, 255-8805);
R. Batt, B. Bell, J. Bishop, V. Briggs,
C. Collins, K. Hallock, J. Hausknecht, L. Nishii,
Q. Roberson, S. Snell, W. Wasmuth, P. Wright

ILRHR 260(2600) Human Resource Management
Fall. 3 credits. Prerequisite: ILR students or permission of instructor. Staff.
Intended to introduce students to the field of human resource management (HRM). Students learn theories and applications involved in effectively managing people in organizations. In addition, this course covers current topics in HRM that have resulted from environmental and organizational challenges, e.g., technology, globalization, legislation, restructuring, work-life balance, changing labor markets, and so on. Emphasis is placed on developing relevant problem solving and critical thinking skills, as the basic concepts of HRM and the skills developed in this course are applicable to all types of organizations and jobs in which students will eventually work.

ILRHR 362(3620) Career Development: The Sociology of Work
Fall, spring, and summer. 2 credits. Limited enrollment. C. Homrichhouse.
Provides skills in the use of personal computers that run the Windows operating system. Covers the basics and time-saving techniques of Microsoft Excel, Access, and PowerPoint. Emphasizes hands-on experience and development of PC-based solutions by using examples that address human resource and other practical real-world issues. The skills developed in this course are useful prerequisites for several elective courses in human resource management and essential in the 21st-century workplace.

ILRHR 367(3670) Employee Training and Development
Fall. 4 credits. Prerequisite: ILRHR 260 or equivalent. L. Nishii.
Introduces how culture contexts affect the structure and implementation of HR practices. The first part focuses on comparative human resource management, and the second part focuses on analyzing American HRM practices with those in East Asia and a secondary focus on Western European HRM practices. Class readings and discussions are grounded in theories of cultural variation. The second part focuses on HRM, and the final session focuses on the HRM issues facing multinational corporations. Topics include expatriation and repatriation, global leadership, compensation, and training.

ILRHR 456(4600) International Human Resource Management
Fall. 4 credits. Prerequisite: ILRHR 260 or equivalent. L. Nishii.
Illustrates how cultural contexts affect the structure and implementation of HR practices. The first part focuses on comparative human resource management, and the second part focuses on analyzing American HRM practices with those in East Asia and a secondary focus on Western European HRM practices. Class readings and discussions are grounded in theories of cultural variation. The second part focuses on HRM, and the final session focuses on the HRM issues facing multinational corporations. Topics include expatriation and repatriation, global leadership, compensation, and training.

ILRHR 461(4610) Working in the New Economy: The Sociology of Work
Fall and spring. 4 credits. R. Batt.
Seminar that draws on qualitative studies of the workplace to examine how workers and managers are affected by changes in technologies, business strategies, labor markets, and other external factors. What dilemmas and conflicts emerge, how are they managed, and what are their outcomes?
Readings cover firsthand accounts of people's experiences in a wide range of occupations and industries, including professional, service, and factory workers.

ILRHR 462(4620) Staffing Organizations
Spring. 4 credits. C. Collins and J. Hauskneth.
Seminar designed to provide an overview of the processes by which organizations staff positions with both internal and external applicants. Through a combination of lectures, cases, and projects, the course covers theory, research, and legal foundations that inform organizational staffing actions. Topics include staffing strategy and context, measurement of staffing effectiveness, job/competency analysis, human resource planning, recruitment and job choice, retention, and internal and external selection practices.

ILRHR 463(4630) Diversity and Employee Relations
Fall. 4 credits. Q. Roberson.
Designed to provide an opportunity for students to understand both the importance of, and develop competencies for, promoting organizational justice and building inclusive work environments. The first half of the course focuses on identifying differences and similarities in the experiences, needs, and beliefs of people from diverse backgrounds as well as assisting students in developing sensitivity to such differences. The second half focuses on stimulating critical thinking regarding the management of diversity and employee relations in organizations in addition to increasing students' knowledge of HR policies and practices. Students manage these issues effectively. To achieve these goals, the course uses an experiential design that includes readings, exercises, cases, and class discussion.

ILRHR 464(4640) Business Strategy
Fall. 4 credits. C. Collins.
Integrative course focusing on strategic management. The main purpose is to provide an opportunity for students to study and analyze issues associated with strategic thinking in complex business situations, top management decision making, and the functions of corporations as a whole. Allows students to bring together all of the functional skills they have learned in other business or related classes (e.g., marketing, accounting, finance, human resources) and to apply this knowledge to business problems faced by top management in existing organizations. Class format includes lectures and case studies.

ILRHR 465(4650) Globalization at Work
Spring. 4 credits. R. Batt.
Seminar that examines how firms are responding to globalization and compares the strategies and outcomes of restructuring in manufacturing and service enterprises. While globalization has been a continuing phenomenon in manufacturing, recent changes in multilateral agreements, advances in information technology, and market deregulation have led to a process of globalization in service activities as well.

ILRHR 466(4660) Staffing Organizations
Fall, seven weeks. 2 credits. Limited to 30 students. Prerequisite: C. Collins and J. Hauskneth.
Seminar designed to provide an overview of the processes by which organizations staff positions with both internal and external applicants. Through a combination of lectures, cases, and projects, the course covers theory, research, and legal foundations that inform organizational staffing actions. Topics include staffing strategy and context, measurement of staffing effectiveness, job/competency analysis, human resource planning, recruitment and job choice, retention, and internal and external selection practices.

ILRHR 469(4690) Immigration and the American Labor Force
Spring. 4 credits. V. Briggs.
Assesses the role that immigration policy plays as an instrument of human resource development in the United States. Places immigration policy in an evolutionary context but gives primary attention to the post-1965 revival of mass immigration. In addition to legal immigration, policies pertaining to illegal immigration, border communities, "maquiladoras," refugees, asylees, and nonimmigrant workers are examined.

Comparisons are also made with immigration systems of other nations.

ILRHR 495(4950) Honors Program
Fall and spring (yearlong). 4 credits each semester.
For description, see "Collective Bargaining, Labor Law, and Labor History."

ILRHR 497-498(4970-4980) Internship
Fall and spring. 4 and 8 credits.
For description, see "Collective Bargaining, Labor Law, and Labor History."

ILRHR 499(4990) Directed Studies
For description, see "Collective Bargaining, Labor Law, and Labor History."

ILRHR 560(5600) Human Resource Management
Fall and spring. 3 credits. Prerequisite: ILRHR 463 or equivalent.
Survey course covering the major areas of the management of human behavior in work organizations. Consideration is given to aspects of strategic human resource management, such as organizing, training and development, performance management, compensation, and employee relations. Emphasis is on exploring these issues from both strategic and tactical levels to increase organizational effectiveness.

ILRHR 564(5640) Human Resources Management in Effective Organizations
Fall or spring. 4 credits. Offered only in New York City for M.P.S. program. Staff.
Offers students the opportunity to become better prepared to make effective decisions about human resources. Successful organizations depend on people, their human resources. The first module examines strategic human resource management and the effects of HR decisions on organization success and fair treatment of people. The second module focuses on alternative systems used to staff and develop people. The third module focuses on compensating and rewarding people. The fourth module includes employee relations and alternative work systems. Case and field studies are used throughout the course.

ILRHR 652(6601) Research on Education Reform and Human Resource Policy
Spring. 4 credits. J. Bishop.
State and local efforts to improve K-12 education are employing a variety of (sometimes contradictory) reform strategies. This research seminar critically examines the case that is made for (and against) each of the major reform proposals and review studies that provide objective evidence on their effectiveness. The education reform strategies considered include charter schools, small schools, career academies, direct instruction versus discovery learning, extending the school day and year, better preparation and selection of new teachers, better professional development, ending tenure, merit pay, state standards and school accountability, ending social promotion, and externally set end-of-course examinations.

ILRHR 654(6602) Introduction to HR Information Systems
Fall and spring (yearlong). 4 credits each.
For description, see "Collective Bargaining, Labor Law, and Labor History."

ILRHR 660(6600) HR Leadership: Views from the Top
Fall. 4 credits. Limited to 30 students. Prerequisites: ILRHR 260 or equivalent, senior or graduate standing; permission of instructor. L. Dyer.
Hands-on course offering students a unique opportunity to learn about strategic business and human resource issues from the perspectives of senior HR executives. A Five chief human resource officers (CHROs) from major corporations meet with the class for lively give-and-take sessions on subjects of strategic and topical interest to their organizations. Before their visits, teams prepare background papers on the speakers, their companies, and their topics. Students discuss these papers before the visits to assure readiness to address the issues at hand when the CHROs arrive. During the visits the teams host the CHROs and usually have an opportunity to interact informally with them. After the visits, the teams revise their background papers into white papers that reflect insights gleaned from their research and discussions. Subsequently, all first white papers are assembled in a book that is shared with the CHROs and others.

ILRHR 661(6610) Applied Personal and Organization Development
Fall. 4 credits. Prerequisite: senior or graduate standing; permission of instructor. L. Dyer.
Experiential course that deals with OD and its role in the organizational change process. Combines the opportunity for hands-on practice in a workshop setting. Students

HUMAN RESOURCE STUDIES 347
are responsible for researching and writing a paper that examines a specific method, technique, or topic; preparing an in-class demonstration/presentation illustrating applications of a chosen subject; and completing a final project requiring a comprehensive proposal that describes an appropriate and logically supported rationale, approaches to pursuing marketplace strategy, and human resource planning, recruitment and selection. Topics include staffing strategy and context, measurement of staffing effectiveness, job/competency analysis, human resource planning, recruitment and job choice, and internal and external selection processes.

ILRHR 659(6560) Managing Compensation
Fall. 4 credits. Limited to 30 students. Prerequisites: ILRHR 260/560 or permission of instructor. R. Nishii. Provides a comprehensive overview of the complexities associated with international human resource management. The central theme of the course is to identify whether and in what ways HRM practices need to be adapted across cultures to be effective. Course material reflects a focus on comparing American HRM practices with those in East Asia and Western Europe. In addition, the major topic areas of concern to IHRM managers are covered, including the selection, training, compensation, and performance management of international managers (expatriates), coordination across subsidiaries of a company, the development and tracking of global leaders, and cross-cultural communication and negotiation.

ILRHR 690(6900) Comparative Human Resource Management
Fall. 4 credits. Prerequisites: ILRHR 260/560 or permission of instructor. L. Dyer. And additional course work in business and human resource strategy. L. Dyer. Increasingly, dynamic external environments are encouraging active experimentation with new (i.e., nonbureaucratic) organizational paradigms. One such paradigm is the agile enterprise. This course explores the dynamics of the agile enterprise with particular emphasis on underlying justification and rationale, approaches to pursuing marketplace agility, and infrastructure designs and human resource strategies, as well as new approaches to leadership. Understanding about the agile enterprise is one thing, learning to operate and live in one is another. Thus this course is mostly experiential and is conducted as much like an agile enterprise as is possible in an academic setting. In pursuit of a vision and armed with a few basic principles, students learn to self-organize and function autonomously, albeit with accountability, and to use their experiences to enhance their and others’ learning about the pluses and minuses of life in an agile enterprise.

ILRHR 669(6630) Training and Development in Organizations
Spring. 4 credits. Prerequisite: ILRHR 260/560 or equivalent. B. Bell. Acquaints students with aspects of learning and human resource development and training and development functions. Topics include how learning is linked to organizational strategy, how to determine that training is needed, issues regarding the design of training programs, current training techniques, evaluation strategies, and management development practices.
ILRHR 658(6580) Education, Technology, and Productivity
Fall. 4 credits. J. Bishop.

This seminar investigates the nexus between the education and training in schools and at the workplace and the technological progressiveness, productivity, and competitiveness of individuals, and nations. Students investigate how technological progress is changing the nature of work and what this implies for reform of education and training. How education and training contribute to growth and competitiveness; why educational achievement has declined; and how the responsibility for education and training should be apportioned among individuals, firms, private nonprofit organizations, and government.

ILRHR 696(6960) Knowledge Management
Fall. 4 credits. Prerequisite: senior or graduate standing. S. Snell.

Designed to acquaint students with the systems and strategies used to manage a firm's intellectual capital. Focuses on foundation concepts and frameworks related to intellectual capital (human, social, and organizational), knowledge management, and HRM. Discussions cover both the point of view of the organization (e.g., competitive challenges, core competencies) and the employees (e.g., psychological contracts, employment relationships). Ultimately, the goal is to integrate these views to develop a framework of how both the organization and the individual maximize value. The course also explores the processes that drive knowledge management. In particular, students focus on how firms create, transfer, and integrate knowledge to support learning and innovation. Discusses the managerial methods that support knowledge processes and cover various models and frameworks for integrating elements of knowledge management and intellectual capital.

ILRHR 697(6970) Special Topics in Resource Studies
Fall or spring. 4 credits. Staff.

Areas of study are determined each semester by the instructor offering the seminar.

ILRHR 698(6980) International Human Resource Policies and Institutions
Spring. 4 credits. J. Bishop.

Comparative study of human resource policies and institutions in Western Europe, North America, Japan, and East Asia (with special emphasis on math and science education) and of the effects of these institutions on productivity, growth, and equality of opportunity. The institutions studied include primary and secondary education, apprenticeship, employer training, and higher education. Data on the consequences of policies are presented and an effort made to understand how the human resource policies and institutions have contributed to the rapid growth and low levels of inequality in Europe and East Asia. An important focus of the course is understanding the causes of the low levels of achievement among American high school students relative to their counterparts abroad.

ILRHR 699(6990) Advanced Desktop Applications
Spring. 1 credit. Prerequisite: ILRHR 260 or significant experience (two to four years) using office applications. Letter grades only. C. Homminghouse.

Explores advanced topics for common desktop applications including Windows, Word, Excel, Access, PowerPoint, and basic HTML. The course is designed based on student input and instructor recommendations, covering those subjects that students feel would be most useful and relevant in the job market. Examples of areas include working with tables, columns, or sections in Word; pivot tables in Excel; taking a PowerPoint presentation "on the road"; and using join tables to create relationships in Access.

ILRHR 760(7600) Seminar in Human Resource Studies
Fall or spring. 3 credits. Prerequisites: ILRHR 560, ILRST 510/511, and ILRHR 669 and permission of instructor. Staff.

"Floating" seminar designed to give faculty and students an opportunity to pursue specific topics in detail, with an emphasis on theory and research. Topics vary from semester to semester. Interested students should consult current course announcements for details.

ILRHR 763(7630) Interdisciplinary Perspectives on the Organization of Work
Fall or spring. 4 credits. R. Batt.

Ph.D. seminar examining the theoretical and empirical literature on the organization of work. Topics include studies of group effectiveness, teams, social capital, and recent critical and international research. Draws on alternative perspectives from psychology, sociology, engineering, organization studies, economics, and international relations.

ILRHR 790(7900) ILR M.P.S. Program
Fall and spring. 1-9 credits.

Supervised research only for those enrolled in the ILR M.P.S. program.

ILRHR 798(7980) Internship
For description, see "Collective Bargaining, Labor Law, and Labor History."

ILRHR 799(7990) Directed Studies
For description, see "Collective Bargaining, Labor Law, and Labor History."

ILRHR 960(9600) Workshop in Human Resource Studies
Fall and spring. 2 credits. Prerequisite: M.S. and Ph.D. candidates. S-U grades only.

Staff.

Provides a forum for the presentation and critical discussion of current research being undertaken by graduate students, faculty members, and invited guests in the field of human resource studies. All M.S. and Ph.D. candidates in the Department of Human Resource Studies are urged to enroll; candidates in other departments are cordially invited. Each participant has an opportunity to benefit from the collective wisdom of the others in the formulation, design, and execution of his or her research, as well as to become current on the latest developments in the field.

ILRHR 961(9610) Doctoral Research Seminar in Human Resource Management
Fall or spring. 3 credits. Prerequisite: Ph.D. candidates.

Aimed at reading, understanding, and conducting research in HRM. Students should obtain thorough understanding of the current research in traditional areas of HRM such as validation, job analysis, EEO, selection, performance appraisal, compensation, and training and should develop the skills necessary to evaluate, criticize, and contribute to the literature on HRM.

ILRHR 962(9620) Doctoral Research Seminar in Strategic Human Resource Management
Fall or spring. 3 credits. Prerequisite: Ph.D. candidates.

Aimed at reading, understanding, and conducting research in SHRM. The course should enable students to obtain a thorough understanding of the current research in SHRM and to develop the skills necessary to evaluate, criticize, and contribute to the literature on SHRM.

ILRHR 963(9630) Research Methods in HRM/Strategic Human Resource Management
Fall and spring. 3 credits. Prerequisite: Ph.D. candidates.

Designed to build social science research skills, particularly in the area of human resource studies (HRS). Topics include measurement reliability, construct validity, design of studies, external validity, meta-analysis, critiquing/reviewing HRS research, publishing HRS research, and applications of statistical models of HRS issues.

INTERNATIONAL AND COMPARATIVE LABOR

G. Fields, chair (250 Ives Hall 255-4561);

J. Abowd, R. Batt, J. Bishop, F. Blau, G. Boyer,

V. Briggs, M. Cook, I. DeVault, L. Kahn,

H. Katz, S. Kuruvilla, L. Turner

ILRIC 333(4330) Politics of the Global North
Fall. 4 credits. L. Turner.

Covers current global debates, comparative political economy of Europe, the United States, and Japan, with a focus on labor and environmental coalitions for domestic reform and global justice.

ILRIC 339(3390) The Political Economy of Mexico

M. Cook.

Explores the range of challenges affecting contemporary Mexican politics, society, and economic development—from democratization to immigration to NAFTA. Provides both an introduction to Mexican political economy for those with no prior background and an opportunity for students with more knowledge of Mexico to explore a research topic in greater depth.

ILRIC 499(4990) Directed Studies
For description, see "Collective Bargaining, Labor Law, and Labor History."

ILRIC 533(6330) Politics of the Global North
Fall. 4 credits. Prerequisite: graduate standing. L. Turner.

For description, see ILRIC 333. Graduate students also submit an analytical term paper at the end of the semester.

ILRIC 630(6331) Special Topics
Fall. 4 credits. M. Cook.

Devoted to new topics in the field. The specific content and emphasis vary depending upon the interests of the faculty member teaching the course.
ILRIC 631(4310) Comparative Labor Movements in Latin America
Fall. 4 credits. M. Cook.
Examines the historical development of labor movements in Latin America, their role in national political and economic development, and the impact of economic liberalization, authoritarianism, and democratization on contemporary labor organizations in the region. Countries examined include, but are not limited to, Mexico, Brazil, Argentina, Chile, Peru, and Guatemala.

ILRIC 632(6320) Revitalizing the Labor Movement: A Comparative Perspective
Spring. 4 credits. Prerequisite: graduate students, seniors by permission of instructor. L. Turner.
Graduate seminar examining contemporary efforts in the United States and Fall. 4 credits. Prerequisite: permission of instructor. S. Kuryuva. to revitalize unions and reform industrial relations. The first half of the course examines contemporary reform efforts in the United States. The second half covers Britain, Germany, Italy, Spain, the "Europeanization" of labor, and/or related topics depending on student interest.

ILRIC 633(6331) Labor, Industry, and Politics in Germany
Fall. 4 credits. Prerequisite: graduate standing, seniors by permission of instructor. Not offered 2005-2006. L. Turner.
Is the successful postwar 'social partnership' model of organized capitalism in the Federal Republic of Germany viable in the 21st century? To answer this question, this course looks at the major German union federations and labor and government relations system, with an emphasis on current events and the new challenges facing the United States and Germany posed by German unification and European integration.

ILRIC 635(4350) Labor Markets and Income Distribution in Developing Countries
Spring. 4 credits. Prerequisite: ILRLE 240/540 or ECON 313 or permission of instructor. Not offered 2005-2006. G. Fields.
Analyzes who benefits and how much from economic growth in developing countries and how income distribution would be affected by various public policies. Topics include poverty, inequality, economic mobility, and social welfare; poverty profiles, earnings functions, and decompositions; employment, unemployment, wages, and labor markets; and an introduction to public economics and development policy.

ILRIC 636(6360) Comparative History of Women and Work (also FGSS 636/6360)
Spring. 4 credits. Prerequisite: permission of instructor. J. Devault.
Explores the similarities and differences between different cultures' assumptions about the work of women as well as women's experiences in varying work circumstances throughout history. Beginning with theoretical pieces and overviews of the history of women and work, most of the course consists of in-depth examinations of specific work situations or occupations across time and geography. Comparative examples are taken from the United States, Europe, and the Third World.

ILRIC 637 Labor Relations in Asia
Fall. 4 credits. Prerequisite: permission of instructor. M. Cook.
Comparative survey of the industrial relations systems of selected Asian nations such as Japan, South Korea, Thailand, Malaysia, Singapore, Hong Kong, China, and several others. Emphasizes economic development strategies and industrial relations policies in these countries. Industrial relations practices, the extent of union organization, and labor force demographics of these countries are examined. The primary objective is to provide students with an introduction to industrial relations systems in Asia. The countries chosen are representative but not exhaustive.

ILRIC 638(6380) Labor, Free Trade, and Economic Integration in the Americas
Fall. 4 credits. Limited enrollment. Prerequisite: senior or graduate standing; juniors by permission of instructor. Not offered 2005-2006. M. Cook.
Analyzes the contemporary movements toward free trade and economic integration in the Western Hemisphere. Special attention is paid to labor's role and to transnational movements in the region. Examines the origins and implications of the North American Free Trade Agreement (NAFTA) and looks at integration schemes in South America (Mercosur), Central America, and the Caribbean and at hemisphere-wide initiatives. A research paper is required.

ILRIC 639(6390) Building a "Social Europe": Regional Integration in the Global Economy
Spring. 4 credits. Limited enrollment. Prerequisite: graduate standing; seniors by permission of instructor. L. Turner.
Seminar addresses questions such as, what have the European Union and its member nations done to develop and reform the social dimension since the 1990s? How are the major actors—labor, government, and business—positioned to influence social policy and industrial relations reform, and what strategies are they pursuing? Are the prospects for "social Europe" in an increasingly deregulated global economy?

ILRIC 730(7300) Research Seminar on Labor Markets in Comparative Perspective
Fall and spring. 3 credits. Prerequisite: M.S. and Ph.D. students. G. Fields.
Research seminar for students writing theses or dissertations on economic aspects of labor markets in comparative perspective. Addresses research questions, methodologies, and contributions in the areas of employment and unemployment, income and earnings, educational and human resource development, welfare economics, and economic growth. Presentations and written papers are required.

ILRIC 731(7313) Industrial Relations in Latin America
Faced with the competitive pressures brought on by globalization, employers and governments throughout the region are transforming practices, laws, policies, and institutions that shape the industrial relations arena. This course analyzes and compares the extent and character of these changes, the responses and strategies of trade unions and other political and social actors, and the implications of industrial relations changes in the region for economic development, political stability, and democracy. The aim is to introduce students to the key issues in contemporary Latin American industrial relations and, through individual research papers, to enable students to become familiar with a specific country or sector theme in two or more countries of the region.

ILRIC 737(7370) Special Topics: Labor, Democracy, and Globalization in the South
Labor movements in developing countries face distinct challenges from those in advanced industrial countries. This course examines two of the most important recent changes to affect countries in the developing "South" in recent years: democratization and the adoption of market-oriented economic reforms. It focuses on how these "dual transitions" affect workers and labor organizations in developing countries and on labor's responses to political and economic change. Central issues examined are labor's role in political democratization, factors driving market reform and labor responses, the effects of economic liberalization on labor, national versus industry analyses of change, labor law and policy reform, national protections for labor rights and international labor standards, global trade and Southern country alliances, and issues in North-South labor relations.

ILRCHR 739(7390) The Political Economy of Mexico
Spring. 4 credits. M. Cook.
For description, see ILRIC 339. Graduate students attend ILRIC 339 lectures, meet with the professor, and write a research paper.

ILRCHR 790(7900) ILR M.P.S. Program
Fall and spring. 1-9 credits. Supervised research only for those enrolled in the ILR M.P.S. program.

ILRCHR 799(7990) Directed Studies
For description, see "Collective Bargaining, Labor Law, and Labor History."

Other courses approved to fulfill the ILR distribution requirement
ILRCB 304/3040 Latin American Labor History
Fall. J. Cowie.
For description, see "Collective Bargaining, Labor Law, and Labor History."

ILRCB 681(6810) International Labor Law
Spring. L. Compa.
For description, see "Collective Bargaining, Labor Law, and Labor History."

ILRCB 706(7060) Labor in Global Cities
Fall. Prerequisite: graduate standing. L. Turner.
For description, see "Collective Bargaining, Labor Law, and Labor History."

ILRHR 456(4600) International Human Resource Management
Spring. Staff.
For description, see "Human Resource Studies."

ILRHR 461(4610) Working in the New Economy: The Sociology of Work
Spring. R. Batt.
For description, see "Human Resource Studies."
ILRHR 465(4850) The Globalization at Work
Spring. R. Batt.
For description, see “Human Resource Studies.”

ILRHR 469(4690) Immigration and the American Labor Force
Spring. V. Briggs.
For description, see “Human Resource Studies.”

ILRHR 690(6900) Comparative Human Resource Management
Fall. L. Nishi.
For description, see “Human Resource Studies.”

ILRHR 698(6980) International Human Resource Policies and Institutions
Spring. J. Bishop.
For description, see “Human Resource Studies.”

ILRLE 444(4440) The Evolution of Social Policy in Britain and America (also ECON 444(4440))
Fall, spring. G. Boyer.
For description, see “Labor Economics.”

ILRLE 446(4460) Economy History of British Labor (also ECON 459(4590))
Spring. G. Boyer.
For description, see “Labor Economics.”

ILRLE 448(4480) Topics in 20th-Century Economic History: The Economics of Depression and the Rise of the Managed Economy (also ECON 450(4580))
Fall. G. Boyer.
For description, see “Labor Economics.”

ILRLE 642(6420) Economic Analysis of the Welfare State (also ECON 460(4600))
Fall. 4 credits. R. Hutchens.
For description, see “Labor Economics.”

ILRID 150(1500) Freshman Colloquium
Fall. 1 credit. Prerequisite: ILR freshmen. S-U grades only. Staff.
Acquaints first-year students with issues and disciplines in the field of industrial and labor relations and to establish acquaintanceship among members of the ILR faculty and small, randomly assigned groups of students. Includes a plant visit and several meetings early in the semester designed to introduce issues encountered in studying the employment relationship.

ILRID 250(2500) Diversity in the Workplace
Spring. 1 credit. Limited to 30 students. Prerequisite: ILR sophomores. Attendance at all sessions mandatory, as is participation in group discussions and completion of written work. S-U grades only. E. Lawler. Not offered 2005–2006. Exposes students to issues of diversity and discrimination in corporate, union, and legal environments. The purpose is to understand, analyze, and discuss the experience of being part of a culturally and ethnically diverse workplace. The goals of the course are to sensitize students to the subtle ways that prejudice and discrimination can arise in the workplace; to bring students into direct contact with practitioners in corporations, labor unions, and law firms to familiarize students with current practices for addressing the opportunities and challenges of racial, ethnic, gender, and other forms of diversity in the workplace; and to analyze and discuss with practitioners ways to reduce prejudice and discrimination in workplaces.

ILRID 450(4500) Workplace Diversity: Stepping into the 21st Century
Spring. 1 credit. Limited to 30 students; priority given to seniors. Prerequisite: ILRHR 260, ILR students. S-U grades only. P. Henderson and S. Woods.
Provides an orientation to diversity in the workplace and to the expectations and challenges presented for science workplace leadership. With an emphasis on hands-on experiential learning, the course begins by familiarizing class participants with current practitioner approaches to diversity awareness training and competency building. Course focus then shifts to examine diversity as an issue of organizational change. Students consider the range of policies, practices and procedures being used to create workplaces that are both diverse and inclusive. Dialogues and case study presentations with invited workplace diversity leaders offer participants an opportunity to learn from an insider's perspective about the experiences, successes, and challenges of managing diversity. Students are required to complete a "case study" of an organization.

ILRID 451(4510) Science, Technology, and the American Economy
Spring. 4 credits. V. Briggs.
The industrial revolution did not begin in the United States, but the nation became the world's first society. Attention is given to the evolutionary confluence of science, technology, mathematics, religion, and capitalism in the formation of the U.S. economy, its institutions, and its labor force. Primary attention is given to pre-WW II economic developments. The vantage point is the linkage with employment, unemployment, income, and productivity considerations. Public policy issues (e.g., the employment impact of the computer, research and development policy, national defense influences, the "agricultural revolution," savings and investment rates, and labor force preparedness) are explored. Critical concerns pertaining to environmental impacts, work polarization, and consumerism are also examined.

ILRID 566(5660) Public Policy
Spring. 4 credits. Offered only in New York City for M.P.S. program. Staff.
The government's influence on the workplace and the role of public policy in the use and preparation of the nation's human resources for employment is assessed. Areas of study include the government's historical role in the labor market and the effect of efficiency, price stability and economic growth, equity, and immigration policy and its market implications.

ILRHR 790(7900) ILR M.P.S. Program
Fall and spring. 1–9 credits.
Supervised research only for those enrolled in the ILR M.P.S. program.

LABOR ECONOMICS
L. Kahn, chair (264 Ives Hall, 255-0510);
J. Abowd, F. Blau, G. Boyer, J. DeVaro,
R. Ehrenberg, G. Fields, R. Hutchens,
G. Jakubson, R. Smith

ILRLE 240(2400) Economics of Wages and Employment
Fall and spring. 3 credits. Prerequisites: ECON 101–102 or permission of instructor. Applies the theory and elementary tools of economics to the characteristics and problems of the labor market. Considers both the demand (employer) and supply (employee) sides of the market to gain a deeper understanding of the effects of various government programs and private decisions targeted at the labor market. Topics include employment demand, basic compensation determination, education and training, benefits and the structure of compensation, labor-force participation and its relation to household production, occupational choice, migration, labor-market discrimination, and the effects of unionization.

ILRLE 440(4400) Labor Market Analysis (also ECON 343(3430))
Spring. 4 credits. Note: ILR students can substitute ILRLE 440 for 240 by permission of instructor. J. DeVaro.
For description, see ILRLE 240. Designed for ECON majors with calculus.

ILRLE 441(4410) Income Distribution (also ECON 455(4550))
Spring. 4 credits. Prerequisite: ILRLE 240 or ECON 341. Students who have taken PAM 370 may not receive credit for 441.
R. Hutchens.
Explores income distribution in the United States and the world. Topics include functional and size distributions of income, wage structure, income-generating functions and theories, discrimination, poverty, public policy and income distribution, and changing income distribution and growth.

ILRLE 442(4420) The Economics of Employee Benefits (also ECON 456(4560))
Fall. 4 credits. Prerequisite: ILR 240 or equivalent. Not offered 2005–2006. Staff.
In-depth treatment of the economics and financial management and administration of all employee benefits: health care, insurance, retirement income, family-care benefits, executive incentive plans, and other compensation provided as a service or contingent financial package to employees. Includes detailed international comparisons of health care and retirement systems are included.

ILRLE 443(4430) Compensation, Incentives, and Productivity (also ECON 443(4430))
Fall. 4 credits. Prerequisite: ILRLE 240 or equivalent. J. DeVaro.
Examines topics in labor economics of particular relevance to individual managers and firms. Representative topics include recruitment, screening, and hiring strategies; compensation (including retirement pensions and other benefits); training, turnover, and the theory of human capital; incentive schemes and promotions, layoffs, downsizing, and buyouts; teamwork; and internal labor markets. Focuses on labor-related business problems using the analytic tools of economic theory and should appeal to students contemplating careers in general business,
consulting, and human resource management as well as in economics.

ILRLE 444(4440) The Evolution of Social Policy in Britain and America (also ECON 444(4440))
Fall and spring. 4 credits. Prerequisite: ILRLE 240 or equivalent. G. Boyer.
Surveys the history of social policy in Great Britain and the United States from 1800 to the advent of the British welfare state after World War II. Topics include the role of poor relief in the early 19th century; the changing relationship between public relief and private charity; the adoption of social insurance programs and protective labor legislation for children and women; government intervention in the Great Depression; and the beginnings of the welfare state.

ILRLE 445(4450) Women in the Economy (also ECON 457(4570), FGSS 446(4460))
Fall. 4 credits. Prerequisite: ILRLE 240 or equivalent. Not offered 2005–2006. Staff.
Examines the changing economic roles of women and men in the labor market and in the family. Topics include a historical overview of the changing gender roles; the determinants of the gender division of labor in the family; trends in female and male labor force participation; gender differences in occupations and earnings; the consequences of women's employment for the family; and a consideration of women's status in other countries.

ILRLE 446(4460) Economic History of British Labor 1750 to 1940 (also ECON 459(4590))
Fall or spring. 4 credits. Prerequisite: ILRLE 240 or equivalent. G. Boyer.
Examines various aspects of British labor history from the beginning of the Industrial Revolution until World War II. Specific topics include monitory and nonmonitory changes in workers' living standards, internal migration and emigration; the London labor market; the extent of poverty and the evolution of the welfare state; Luddism and Chartism; and the development of trade unions.

ILRLE 447(4470) Social and Economic Data (also ILRLE 740(7400), INFO 447(4470))
Spring. 3 credits. Prerequisites: one semester of calculus, IS statistics requirement, at least one upper-level social science course, or permission of instructor. J. Abowd.
Teaches the basics required to acquire and transform raw information into social and economic data. Graduate students are drawn from several countries, the course emphasizes methods for creating and certifying administrative records, and transaction logging; the law, economics, and social science aspects of the data "manufacturing" process are treated. The formal U.S., Eurostat, OECD, and UN statistical infrastructure is covered as are major private data sources. Topics include basic statistical principles of populations and sampling frames; acquiring data via samples, censuses, administrative records, and transaction logging; the law, economics, and statistics of data privacy and confidentiality protection; data linking and integration techniques (probabilistic record linking; multivariate analytical methods in the social sciences. Grading is based on a group term project.

ILRLE 448(4480) Topics in 20th-Century Economic History: The Economics of Depression and the Rise of the Managed Economy (also ECON 458(4580))
Spring. 4 credits. Prerequisite: ILRLE 240 or ECON 314. G. Boyer.
Examines the anatomy of the Great Depression through the experiences of the two most important economies of the time: the United States and Great Britain. Also examines the development of macroeconomic policy in the United States and Britain in the 1920s and 1930s and its evolution in the postwar world, culminating with the decline of Keynesian macroeconomic policy under Reagan and Thatcher.

ILRLE 498(4980) Honors Program
Fall and spring (yearlong). 4 credits each semester.
For description, see "Collective Bargaining, Labor Law, and Labor History."

ILRLE 497(4970)-4980 Internship
Fall and spring. 4 and 8 credits.
For description, see "Collective Bargaining, Labor Law, and Labor History."

ILRLE 499(4990) Directed Studies
For description, see "Collective Bargaining, Labor Law, and Labor History."

ILRLE 540(5400) Labor Economics
Fall. 3 credits. Requirement for M.L.R. candidates. Prerequisites: ECON 101-102 or equivalent. G. Fields.
Course in labor market economics for prospective managers in the corporate, union, and governmental sectors. Begins with demand in labor markets, presenting the tools of decision analysis for workers and firms. It then goes on to consider various topics for managers including deciding on the optimal mix of capital and labor to employ; attracting and retaining talent; pay and productivity; hiring and training investments; and pensions and retirement. The final section of the course covers other important labor market issues including unemployment, poverty, and inequality, and analysis of public policies.

ILRLE 544(5440) Labor Market and Personnel Economics
Fall. 4 credits. Offered only in New York City for M.P.S. program. Not offered 2005–2006. Staff.
Four-module course in which the first module covers the basic elements of supply and demand in the labor market, the second and third modules cover the "new personnel economics" (emphasizing economic issues in a firm that relate to selecting, training, assigning, monitoring and compensating workers), and the final module covers key institutions and economic security issues (including unemployment, pensions, disability, discrimination, and unions). The goals of this course are for students to learn to analyze both business and public policy problems, taking into account both basic principles of economic theory and the relevant institutional environments.

ILRLE 642(6420) Economic Analysis of the Welfare State (also ECON 460(4600))
Fall. 4 credits. R. Hutchens.
Uses the tools of public economics to analyze modern welfare states. Although examples are drawn from several countries, the course focuses on the United States, Canada, and Sweden. What are the rationales for the level of government intervention in these states, and how do these rationales square with notions of market failure? What are the economic costs and benefits of taxes, transfers, and regulations in these states? Can voting models explain the growth and operation of welfare states? The possible answers to these questions are discussed.

ILRLE 648(6480) Economic Analysis of the University (also ECON 342(3420))
Fall. 4 credits. Staff.
Seeks to illustrate the complexity of decision making in a nonprofit organization and to show how microeconomic analysis in general, and labor market analysis in particular, can usefully be applied to analyze resource allocation decisions at universities. Topics include the notion of natural monopoly vs. competition; collective bargaining, resource allocation across and within departments, undergraduate versus graduate education, research costs, libraries, athletics, and "socially responsible" policies. Lectures and discussions of the extensive readings are supplemented by presentations by Cornell administrators and outside speakers who have been engaged in university resource allocation decisions or have done research on the subject.

ILRLE 740(7400) Social and Economic Data (GR RDC) (also INFO 447(4470))
Spring. 4 credits. J. Abowd.
Teaches the basics required to acquire and transform raw information into social and economic data. Graduate students emphasize methods for creating and certifying laboratories in which data privacy and confidentiality concerns can be controlled and audited. Legal, statistical, computing, and social science aspects of the data "manufacturing" process are treated. The formal U.S., Eurostat, OECD, and UN statistical infrastructure is covered as are major private data sources. Topics include basic statistical principles of populations and sampling frames; acquiring data via samples, censuses, administrative records, and transaction logging; the law, economics, and statistics of data privacy and confidentiality protection; data linking and integration techniques (probabilistic record linking; multivariate statistical matching); analytic methods in the social sciences. Graduate students are assumed to be interested in applying these techniques to original research in an area of specialization, and are required to do individual projects.

ILRLE 741(7410) Applied Econometrics I (also ECON 748(7480))
Fall. 4 credits. G. Jakubson.
A graduate core sequence in econometrics or permission of instructor. S-U or letter grades.
Focuses on both estimation and specification testing of these models. Students consider how these statistical models are linked to underlying theories in the social sciences. Course coverage includes panel data methods (e.g., fixed, random, mixed effects models) factor analysis, measurement error models, and general moment structure methods.
ILRLE 742(7420) Applied Econometrics II (also ECON 749(7492))
Spring. 4 credits. Prerequisite: ILRLE 741 or permission of instructor. Letter or S-U grades. G. Jakubson.
Continues from ILRLE 741 and covers statistical methods for models in which the dependent variable is not continuous. Covers truncation (e.g., the response variable is only logit); various types of censoring and truncation (e.g., the response variable is only observed when it is greater than a threshold); and sample selection issues. Includes an introduction to duration analysis. Covers not only the statistical issues but also the links between behavioral theories in the social sciences and the specification of the statistical model.

(ILRLE 743(7430) Applied Econometrics III
Spring. 4 credits. Prerequisites: ILRLE 741-742 or permission of instructor. ILRLE 741, 742, and 744 constitute Ph.D.-level sequence in applied microeconometrics. Letter grades only. Not offered 2005-2006. G. Jakubson.
Covers topics not covered in ILRLE 741-742, including further development of duration analysis, panel data methods for nonlinear models, quantile regression and related techniques, and an introduction to nonparametric and semiparametric methods. Additional topics as suggested by their use in applied areas of social science. Covers not only the statistical issues but also the links between behavioral theories in the social sciences and the specification of the statistical model. Also develops a general framework for the techniques covered in the ILRLE 741-742-743 sequence.

ILRLE 745(7450) Seminar in Labor Economics I (also ECON 742(7420))
Fall. 3 credits. Note: ILRLE 744, 745, and 746 constitute Ph.D.-level sequence in labor economics. Includes reading and discussion of selected topics in labor economics. Stresses applications of economic theory and econometrics to the labor market and human resource areas.

ILRLE 746(7460) Seminar in Labor Economics II (also ECON 743(7430))
Spring. 4 credits. Note: ILRLE 744, 745, and 746 constitute Ph.D.-level sequence in labor economics. Includes reading and discussion of selected topics in labor economics. Stresses applications of economic theory and econometrics to the labor market and human resource areas.

ILRLE 747(7470) Economics of Education (also ECON 647(7470))
Spring. 4 credits. Prerequisite: economics and labor economics Ph.D. students or permission of instructor. Not offered 2005-2006. R. Ehrenberg.
Survey of the econometric research on a wide variety of higher education issues. Topics at the higher education level include public and private funding, financial aid and tuition policies, faculty labor markets, and Ph.D. production. Topics at the elementary and secondary level include school finance policies, the class-size debate and teacher labor markets.

ILRLE 748(7480) Economics of Employee Benefits
Fall. 4 credits. Not offered 2005-2006. Staff. Students attend the lectures in ILRLE 442 (see description for 442) but have additional course requirements. If enrollment warrants, they also meet separately at a time TBA for discussion of topics in 442 and additional topics.

ILRLE 749(7490) Economics of Development (also ECON 772(7720))
Spring. 4 credits. Prerequisites: first-year graduate economic theory and econometrics. Staff.
Takes analytical approaches to the economic problems of developing nations. Topics include old and new directions in development economics thinking; the welfare economics of poverty and inequality; empirical evidence on who benefits from economic development; labor market models; project analysis with application to the economics of education; and development policy.

ILRLE 790(7900) ILM. M.P.S. Program
Fall and spring. 1-9 credits. Supervised research only for those enrolled in the ILM. M.P.S. program.

ILRLE 798(7980) Internship
For description, see "Collective Bargaining, Labor Law, and Labor History."

ILRLE 798(7980) Directed Studies
For description, see "Collective Bargaining, Labor Law, and Labor History."

ILRLE 940(9400) Workshop in Labor Economics
Fall and spring. 3 credits. Intended for Ph.D. students who have started to write their dissertations.
Presentation of completed papers and work in progress by faculty members, advanced graduate students, and speakers from other universities. Focuses on the formulation, design, and execution of dissertations.

ORGANIZATIONAL BEHAVIOR
P. Tolbert, chair (379A Ives Hall, 255-9527); S. Bacharach, J. Goncalo, M. Haas, T. Hammer, E. Lawler, M. Lounsbury, W. Sonnenstuhl

ILROB 170(1700) Introduction to Micro Organizational Behavior and Analysis: The Social Psychology of the Workplace
Fall. 3 credits. Staff.
Introductory (survey) course considering the basic individual and group processes in the workplace. At the individual level, students study personality, motivation, perception, attitude formation, and decision making. On the group level, group dynamics, leadership, power and influence, and culture are emphasized.

ILROB 171(1710) Introduction to Macro Organizational Behavior and Analysis
Spring. 3 credits. Staff.
Discusses the relationship between industry and the economy as a whole and its implications for other social institutions in American society (including stratification, politics, and American values). The course moves from classical sociological theory to the analysis of complex organizations. The central focus is the study of industrial organizations and of complex organizations in general, emphasizing authority relations, goals, the division of labor, bureaucracy, and organizational design.

ILROB 175(1750) Behavior, Values, and Performance
Fall and spring. 3 credits. Not open to ILR students. Staff.
Examines the modern technology-based organization as a workplace. With global competitive dynamics as a backdrop, the course explores how organizational structures, processes, and practices have evolved to meet environmental challenges and will define the behavioral implications of those changes for practicing engineers and designers and managers who work with them. Interpreting such changes and building a capacity for professional effectiveness in this environment requires students to develop a working familiarity with an array of social and behavioral science literature, dealing with such matters as personal identity, motivation, and job design, creativity and the organizational enablers to innovation, group dynamics and project effectiveness, perception, communication, and cross-cultural understanding; and ethical decision making in a high-stress environment. The teaching cases/situations used reflect the orientation of the course toward technology-based organizations.

ILROB 320(3200) The Psychology of Industrial Engineering
Fall. 4 credits. T. Hammer.
Study of the human factors in the industrial engineering of work, workplaces, tools, and machinery. Examines the psychological aspects of individual and social psychology that operate in the work setting and that should be taken into account in the design of jobs. These include limitations of the human sensory system; individual differences in skills, abilities, motives, and needs; group dynamics; intrinsic motivation; job satisfaction; and conflict.

ILROB 321(3210) Group Solidarity (also SOC 311(3110))
Fall. 4 credits. M. Macy.
What is the most important group that you belong to? What makes it important? What holds the group together, and how might it fall apart? How does the group recruit new members? Make and enforce rules? Do some members end up doing most of the work while others get a free ride? This course explores these questions from an interdisciplinary perspective, drawing on sociology, economics, and social psychology. Alternative theories of group solidarity are applied to a series of case studies such as urban gangs, spiritual communities, the civil rights movement, pro-life activists, athletic teams, work groups, and college fraternities.

ILROB 322(3220) Service Learning (also SOC 323(3230))
Fall. 4 credits. M. Lounsbury.
Course-based, credit-bearing educational experience in which students participate in organized service that contributes to community well-being. Students reflect on the service to gain further understanding of course content, a broader appreciation of the discipline, and an enhanced sense of civic responsibility. The course includes a service-learning requirement that is designed to involve students in projects at local governmental and community organizations. Students draw on sociological
readings to examine the relationship between organizations, society, and social change. Theoretical perspectives learned in class complement field-based activity; students develop a richer understanding of how organizations and their members are connected to society.

ILROB 329(3290) Organizational Cultures
Fall or spring. 4 credits. Prerequisite: one or more courses in OB and/or sociology. W. Sonnenstuhl. Reviews the concept of culture as it has evolved in sociology and anthropology, applying it to formal organizations in workplaces such as corporations and unions. The course first examines the nature of ideologies as sense-making definitions of behavior, concentrating on the cultural forms that carry these cultural messages, rituals, symbols, myths, sagas, legends, and organizational stories. Considerable attention is given to rites and ceremonies as a cultural form in organizational life that consolidates many of these culturally defined forms into one. The course examines types of ceremonial behavior such as rites of passage, rites of enhancement, and rites of degradation, including the role of language, gestures, physical settings, and organizational behavior. The presence of subcultures and countercultures in organizational behavior also receive attention, especially the part played by occupational subcultures in formal organizations.

ILROB 370(3700) The Study of Work Motivation
Fall. 4 credits. Prerequisite: junior or senior standing. T. Hammer. Designed to acquaint students with the basic concepts and theories of human motivation with implications for job design and organizational effectiveness. Focuses on theories of worker motivation and on research approaches and results as they apply to the performance of individuals and groups in formal organizations. Readings are predominantly from the field of organizational psychology and behavior. Contributions by relevant authors from experimental and social psychology. Each student designs, executes, and analyzes a research study of his or her own.

ILROB 420(4200) Contemporary Organizational Behavior Applications
Fall or spring. 4 credits. Prerequisites: ILROB 170 and 171. L. Gasser. Explores current practical applications of OB theory in organizations. Using a range of contemporary resources, students sit through practitioner articles and research; manage discussions; meet with managers, consultants, and employees; and explore organizational issues and problems from micro and macro perspectives in a political and legal context. Students also develop a toolbox of knowledge and skills to effectively carry out several organizational interventions or development initiatives. Choice of topics may differ to focus on contemporary issues such as emotional intelligence, organizational climate and morale, engaging strategic planning processes, managing large-scale participative techniques, using job or workplace design concepts, applying SWOT analysis, developing effective teamwork, managing diversity, and applying quality management tools.

ILROB 422(4220) Organizations and Deviance
Fall or spring. 4 credits. Limited to 20 students. W. Sonnenstuhl. Focuses on the deviant actions of organizations involving such behaviors as price fixing, environmental pollution, illegal campaign contributions, and discrimination in hiring and promotion. Examines the origins of such behaviors in organizations, the processes by which they become institutionalized, and the processes by which they become defined as deviant organizational actions. Within this context, the course examines such contemporary cases as Exxon's Valdez oil spill, Iran-Contragate, drug testing, and the federal savings and loan scandal. These events raise troubling questions about what it means to live and work in an organizational society, and they cannot be dismissed as incidents of a few individuals gone bad.

ILROB 425(4250) Seminar in Organizational Culture
Spring. 4 credits. Limited to 20 students. Prerequisite: ILROB 329 (3290) and permission of instructor. W. Sonnenstuhl. Expands on the theoretical ideas developed in the earlier course through more focused readings, intensive paper writing, and seminar on the research projects for ILROB 329 and work with the professor to develop a more detailed reading list and more focused data collection strategy for expanding upon their earlier projects. The seminar also is taught as an intensive writing experience.

ILROB 426(4260) Managing Creativity
Fall. 4 credits. J. Goncalo. Although most people can agree that creativity is an important concept, there is often very little agreement about what creativity is and how we can achieve it. This course surveys basic theories of creativity with the goal of applying this knowledge to the management of creativity in organizations. It focuses primarily on (1) cognitive theories about creative thought and (2) quality theories about exceptionally creative individuals (3) social-psychological theories about creative groups, and (4) the points at which these approaches interact. The course concludes by questioning whether, given the costs involved, anyone would willingly follow the path of a creative individual or implement the practices of the most innovative firms.

ILROB 427(4270) The Professions: Organization and Control
Fall. 4 credits. Prerequisite: permission of instructor. P. Tolbert. Focuses on the sources of power and control exercised by professional groups in contemporary society. A number of issues are examined in this context, including the role of professions in society, processes through which an occupational group becomes defined as a profession, sources of control that professional associations have over their members, relations between professionals and the local communities, and the relationship between unionization and professionalization of occupations.

ILROB 428(4280) Blue-Collar Work in America
Spring. 4 credits. Prerequisites: ILROB 170, 171, S. Bacharach and W. Sonnenstuhl. Although America is often described as a post-industrial society in which service jobs predominate, the term "blue collar" remains relevant for understanding workplace relationship and their consequences. This course examines the nature of blue-collar work in the 21st century. It takes an in-depth look at a number of blue-collar occupations to understand workers experiences. Special attention is paid to the way management exercises control over blue-collar workers, the strategies workers use to gain greater discretion over their work, and the social and psychological consequences that follow from this struggle. This course uses lectures, readings, and interviews/discussions with blue-collar workers to illuminate workers' experiences. It uses long-distance learning technology to bring New York city-based blue-collar workers into the Ithaca classroom.

ILROB 429(4290) Organizational Politics and Institutional Change
Spring, seven weeks. 2 credits. Prerequisite: junior or senior standing; permission of instructor. Students should see instructor before first class. Not offered 2005-2006. S. Bacharach. Examines the market, cultural, political, and structural forces that shape the organizational "rules of the game," how these changes affect individuals and organizations, and the distortions that occur as individuals and organizations attempt to adjust to a new, unstable order. Issues examined include power, corruption, dealmaking, rationality, uncertainty, and competition. Course requirements include completing a major research paper and leading a class discussion.

ILROB 470(4700) Group Processes
Fall. 4 credits. Prerequisites: ILROB 170 and 171 or equivalent; permission of instructor. Not offered 2005-2006. E. Lawler. Review of theoretical approaches and selected research on group phenomena, including the formation of groups, the structure of group relations, and group performance. Specific topics include conformity and obedience, status and power relations, tactics of influence, solidarity and commitment, the management of emotion, the emergence and change of microcultures, and the role of groups in networks and organizations.

ILROB 472(4720) Applied Organizational Behavior
Fall. 4 credits. Prerequisites: ILROB 170 and 171. Not offered 2005-2006. S. Bacharach. Introduces students to intermediate theory of organizational behavior. Concentrates specifically on teaching students to use organizational theories for analytical and applied purposes. Topics include organizational structure, work processes, organizational politics, organizational design, job design, incentive systems, and quality-of-work life programs.

ILROB 489(4950) Honors Program
Fall and spring (yearlong). 3 credits each semester. For description, see "Collective Bargaining, Labor Law, and Labor History."

ILROB 497-498(4970-4980) Internship
Fall and spring. 4 and 8 credits. For description, see "Collective Bargaining, Labor Law, and Labor History."

ILROB 499(4990) Directed Studies
For description, see "Collective Bargaining, Labor Law, and Labor History."
Survey of concepts, theories, and research and power, group formation, perception, and attitudes, motivation, performance, leadership and power, group formation, perception, and organizational climate. A preliminary course for advanced work in organizational behavior.

ILROB 520(5200) Organizational Behavior and Analysis
Fall or spring. 3 credits. Staff.
Survey of concepts, theories, and research from the fields of organizational and social psychology as these relate to the behavior of individuals and groups in organizations. Job attitudes, motivation, performance, leadership and power, group formation, perception, and organizational climate. A preliminary course for advanced work in organizational behavior.

ILROB 525(5250) Organizational Behavior
Fall, spring. 4 credits. Offered only in New York City for M.P.S. program. Staff.
Applies theories and methods from the behavioral sciences to the analysis of behavior in organizations. Areas of study include classical and modern theories of organization and their underlying assumptions of human nature, the relationship between organizations and their environment, the role of power, politics, and decision-making in organizations, industrial history, and leadership culture.

ILROB 622(6220) Sociology of Markets
4 credits. M. Lounsbury.
Since World War II, the diffusion of markets in Asia, Eastern Europe, and Latin America as well as changes in the structure of Western economies has reinvigorated questions about how market-driven structures are functionally linked. Drawing on the literature in economic sociology, this course explores the social, cultural, economic, and political factors that shape the emergence and dynamics of markets. Among the issues addressed are the social organization of markets, market discrimination, the cooperative aspects of market formation and functioning, the role of government and other institutional arrangements, the relationship of economic change to broader social forces such as social movements, and the shift toward globally market-oriented economies.

ILROB 624(6240) Dynamics of the Social Sector
Fall. 4 credits. M. Lounsbury.
Over the past couple of decades, the social sector has been undergoing a transformation. Standard solutions to social problems offered by public agencies and nonprofit organizations increasingly are being reconfigured by the entrance of new social enterprises that focus more on revenue generation than service provision. The emergence of this social entrepreneurship has been motivated by a combination of factors including the devolution of social services and related responsibilities from the federal government to state and local governments, as well as a general increase in financial pressures on public agencies and nonprofits. This course aims to provide students with a broad perspective on the historical evolution of the nonprofit sector, introduce students to the changing nature of the contemporary social sector, and explore the phenomenon of social entrepreneurship by examining a variety of new and creative ways in which social problems are being addressed.

ILROB 625(6250) Conflict, Power, and Negotiation
Fall. 4 credits. Limited enrollment.
Prerequisite: senior or graduate standing, permission of instructor. Not offered 2005-2006. E. Lawler.
Theoretical seminar that adopts a power perspective on bargaining and conflict resolution. Examines how power relations and power processes affect tactics in bargaining and also when power relations inhibit or promote conflict resolution. "Power" is viewed in the course as a capability, embedded in a social structure, and tactics are the action based on perceptions of power. The seminar gives an overview of several theoretical approaches to conflict and bargaining (e.g., rational choice, cognitive, social exchange) and places the power perspective in this context.

ILROB 626(6260) Organizations and Social Inequality
Spring. 4 credits. P. Tolbert.
Examines the central role that organizations in industrial societies play in allocating income, status, and other resources to individuals. A variety of theoretical explanations of social inequality are examined, and the social policy implications of each are considered.

ILROB 627(6270) Leadership in Organizations
Spring. 4 credits. Prerequisite: graduate standing; seniors by permission of instructor.
Examination of theories and research findings from the behavioral sciences that are relevant to leadership and the influence process in groups and organizations. Discusses personality, situational factors, intergroup processes, interpersonal perception as well as the motivation to both lead and follow. Explores the implications for leadership training, organization development, and action research.

ILROB 679(6790) Methods of Observation and Analysis of Behavior
Fall or spring. 4 credits. Limited to 25 students. Prerequisite: permission of instructor. W. Sonnenstuhl.
Focuses on qualitative methods and emphasizes learning by doing. Examines different approaches to the collection and analysis of data. Students learn a variety of data collection techniques for understanding individual and collective behavior, including participant observation, in-depth interviews, and working with archival materials. The course also emphasizes the constant comparative method as a basic technique for data analysis. This technique is the basis of such qualitative computer programs as Ethnograph and Nudist. Students conduct their own research projects. Students who wish to use qualitative methods either for a senior honors thesis, master's thesis, or doctoral dissertation are encouraged to take this course.

ILROB 721(7210) Advanced Micro Organizational Behavior
Spring. 3 credits. Staff.
Examines the historical development of psychological theories of organizational behavior and contemporary issues in micro organizational research. Emphasizes reading and analysis of primary source material.

ILROB 722(7220) Advanced Macro Organizational Behavior
Fall. 3 credits. Prerequisite: ILROB 520. Staff.
Examines the historical development of sociological theories of organizations and contemporary issues in macro organizational research. Emphasizes reading and analysis of primary source material.

ILROB 724(7240) Managing Social Influence
Fall. 3 credits. J. Goncalo.
Survey of basic theories of social influence and how they are applied (and sometimes misapplied) to managing people in organizations. Theories covered include social facilitation, social norms, group polarization, conformity and minority influence. Emphasizes the evaluation of certain management techniques in light of social influence processes.

ILROB 725(7250) Analysis of Published Research in Organizational Behavior
Fall. 3 credits. Prerequisites: ILROB 520 and one year of statistics. Staff.
Advanced research methods course that critically examines published research papers in the field of organizational behavior in terms of research design and method as well as theory.

ILROB 726(7260) Selected Topics in Organizational Behavior
Fall. 3 credits. Prerequisites: ILROB 520 and permission of instructor. Staff.
Advanced proseminar that seeks to develop an interdisciplinary perspective on selected topics in organizational behavior. The topics themselves change from year to year depending on participants' interests. Course is designed to allow students and the instructor to jointly pursue significant scholarly inquiry into one or more arenas of organizational theory. Emphasis is placed on exploring the relevance of tradition in related disciplines (e.g., anthropology, linguistics, philosophy, sociology) that may enrich our understanding of organizational life.

ILROB 728(7280) Theories of Motivation and Leadership
Spring. 4 credits. Prerequisite: ILROB 520. T. Hammer.
Introduction to basic concepts of human motivation in general, with particular emphasis on the theories that explain and predict work motivation. Students examine the empirical research that tests the validity of the theories and show how and under what conditions different motivation models can be used for practice in work organizations. Several current microtheories of leadership and power and related research are examined. The disciplinary perspective is social organizational psychology, and the level of analysis emphasized is action and experience of individuals in groups.

ILROB 729(7290) Organizational Change and Intervention
Fall. 3 credits. Prerequisite: graduate standing.
Seminar concerned with planned and unplanned change in organizations. It is designed to analyze theory in practice. Particular attention is paid to the role of individuals and external change agents. Students are encouraged to analyze contemporary changes such as mergers and acquisitions and workforce reductions. Participants submit weekly workforce journals.

ILROB 772(7720) The Social Construction of Economic Life
Spring. 3 credits. M. Lounsbury.
Drawing on the literature in economic sociology, this course emphasizes how economic activities are constituted and shaped by the social, cultural, and historical contexts in which they are situated. It surveys
various empirical and theoretical approaches used to study the genesis and influence of broader-scale organizational and institutional arrangements. Provides students with an opportunity to formulate and refine their own research questions and perspectives.

ILRST 712(7120) Globalization and Its Discontents: The Organizational Implications of Global Competition
Fall. 4 credits. Core course in master of engineering/manufacturing option degree program. Staff. Aimed at helping students develop an understanding of organizations as complex social systems, and at helping them understand the behavioral implications of new manufacturing initiatives. Uses case studies to study the introduction of a variety of innovations in contemporary manufacturing firms, including manufacturing cells and teams, concurrent engineering, total quality management, and just-in-time material flow. Analyses emphasize the impact of such innovations on individuals' roles, definitions and relationships, organizations' communication requirements and patterns, group dynamics, leadership behaviors, labor relations, and human resource management systems.

ILRST 770(7780) Solidarity in Groups (also SOC 778(7780))
Fall. 3 credits. Not offered 2005-2006. E. Lawler.
Examines sociological and social psychological theories about how social solidarity or a "sense of community" comes about and is maintained in groups and organizations. Distinguishes emotional, normative, and instrumental bases for social solidarity and shows how these promote or inhibit subgroup formation in organizations, commitment of individuals to organizations, and organizational citizenship behavior.

ILRST 790(7900) ILR M.P.S. Program
Fall and spring. 1-9 credits. Supervised research only for those enrolled in the ILR M.P.S. program.

ILRST 798(7980) Internship
For description, see "Collective Bargaining, Labor Law, and Labor History."

ILRST 799(7990) Directed Studies
For description, see "Collective Bargaining, Labor Law, and Labor History."

ILRST 920(9200) Organizational Behavior Workshop
Fall. 2 credits. Prerequisite: M.S. and Ph.D. candidates in department. All M.S. and Ph.D. candidates in department at work on their theses are strongly urged to enroll. S-U grades only. Staff.

This workshop was designed to provide a forum for the presentation of current research undertaken by faculty members and graduate students in the Department of Organizational Behavior. By invited guests. Each student is expected to present at least one presentation during the year, focusing on the formulation, design, execution, and results of his or her thesis research.

SOCIAL STATISTICS
T. DiCiccio, chair (358 Ives Hall, 255-8643); J. Bunge, P. Velleman, M. Wells

ILRST 212(2120) Statistical Reasoning
Fall and spring. 4 credits. Prerequisite: ILR undergraduate. P. Velleman and staff. Introduction to basic statistical concepts and data analysis applications, particularly to the social sciences. Focuses on descriptive methods, normal theory models, and inference procedures for univariate, bivariate, and multivariate data. Basic statistical designs, an introduction to probability, and applications of the Binomial and Normal distributions are considered. Estimation, confidence intervals, and tests of significance are introduced and discussed in detail for means and proportions of a single population and for differences between means and proportions of two populations. Also covers inference in the contexts of two-way contingency tables, correlations, and simple and multiple linear regression models. A statistics computer package is used throughout the course, both in class and for weekly homework assignments.

ILRST 310(3100) Statistical Sampling
Fall. 4 credits. Prerequisite: two semesters of statistics. J. Bunge.
Theory and applications of statistical sampling, especially in regard to sample design, cost, estimation of population quantities, and error estimation. Assessment of nonsampling errors. Discussion of applications to social and biological sciences and to business problems. Includes an applied project.

ILRST 311(3110) Practical Matrix Algebra
Fall or spring. 4 credits. Not offered 2005-2006. Staff.
Matrix algebra is necessary for statistics courses such as regression and multivariate analysis and for other research methods courses in various other disciplines. One goal of this course is to provide students in various fields of knowledge with a basic understanding of matrix algebra in a language they can easily understand. Topics include special types of matrices, matrix calculations, linear dependence and independence, vector geometry, matrix reduction (trace, determinant, norms), matrix inversion, linear transformation, eigenvalues; matrix decompositions, ellipsoids and distances, and some applications of matrices.

ILRST 312(3120) Applied Regression Methods
Fall and spring. 4 credits. Prerequisite: ILRST 212 or equivalent. M. Wells and P. Velleman.
Reviews matrix algebra necessary to analyze regression models. Covers multiple linear regression, analysis of variance, nonlinear regression, and linear logistic regression models. For these models, least squares and maximum likelihood estimation, hypothesis testing, model selection, and diagnostic procedures are considered. Illustrative examples are taken from the social sciences. Computer packages are used.

ILRST 410(4100) Techniques of Multivariate Analysis
Spring. 4 credits. Prerequisite: ILRST 312 or equivalent; some knowledge of matrix notation. P. Velleman.
Discusses techniques of multivariate statistical analysis and illustrates them using examples from various fields. Emphasizes application, but theory is not ignored. Deviation from assumptions and the rationale for choices among techniques are discussed. Students are expected to learn how to thoroughly analyze real-life data sets using computer-packaged programs. Topics include multivariate normal distribution, sample geometry and multivariate distances, inference about a mean vector, comparison of several multivariate means, variances, and covariances; detection of multivariate outliers; principal component analysis; factor analysis; canonical correlation analysis; discriminant analysis; and multivariate multiple regression.

ILRST 411(4110) Statistical Analysis of Qualitative Data
Spring. 4 credits. Prerequisite: two statistics courses or permission of instructor. T. DiCiccio.
Advanced undergraduate and beginning graduate course. Includes treatment of association between qualitative variables; contingency tables; log-linear models; binary and ordinal and multinomial regression models; and limit dependent variables.

ILRST 499(4990) Directed Studies
For description, see "Collective Bargaining, Labor Law, and Labor History."

ILRST 510(5100) Statistical Methods for the Social Sciences I
Fall. 3 credits. Staff.
First course in statistics for graduate students in the social sciences. Covers descriptive statistics, probability and sampling distributions, estimation, hypothesis testing, simple linear regression, and correlation. Students are instructed on the use of a statistics computer package at the beginning of the semester and use it for weekly assignments.

ILRST 511(5110) Statistical Methods for the Social Sciences II
Fall and spring. 3 credits. Prerequisite: ILRST 510 or equivalent introductory statistics course. T. DiCiccio. Second course in statistics that emphasizes applications to the social sciences. Topics include simple linear regression; multiple linear regression (theory, model building, and model diagnostics); and the analysis of variance. Computer packages are used extensively.

ILRST 515(5150) Statistical Research Methods
Fall or spring. 4 credits. Offered only in New York City for M.P.S. program. Staff. Students learn basic skills for conducting qualitative and survey research. They work through an introductory review course at home on their own time. After passing an exam, they attend a two-week immersion course in Ithaca taught by the on-campus faculty in July. Topics include an introduction to surveys and discrete analysis, basic regression, and integration of qualitative and quantitative research methods.

ILRST 715(7150) Likelihood Inference
Fall. 3 credits. Prerequisite: ILRST 710 and 671. Not offered 2005-2006. Staff.
In most statistical models, exact distribution theory for testing hypotheses or constructing confidence intervals is either unavailable or
ILR EXTENSION 357

computationally cumbersome. Inferences are routinely performed by using large-sample approximations to the distributions of test statistics. This course provides a survey of some recent higher-order asymptotic approximations for likelihood-based methods of inference.

ILRST 717(7170) Analysis of Longitudinal Data Spring. 3 credits. Prerequisites: extensive knowledge of SAS; advanced linear models; probability and statistics (at level of text by Casella and Berger). Staff. Comprehensive introduction to the analysis of longitudinal data. Involves three major components: a modeling component, an analysis component, and a diagnostic component. Linear and nonlinear mixed effects models are used for the modeling portion; likelihood and estimating function methodology are used for the analysis portion. Diagnostic tools for testing the validity of various assumptions are also developed. Modeling and methodology for the analysis of missing data are also incorporated in the curriculum. SAS is used extensively.

ILRST 799(7990) Directed Studies For description, see "Collective Bargaining, Labor Law, and Labor History."

ILR EXTENSION

Statewide

The following courses are open to participants in the Extension Division's statewide credit programs in labor studies and management studies. Extension offices are based in Buffalo, Albany, Rochester, Ithaca, New York City, and Long Island. These courses are not open to undergraduate or graduate students matriculated in the Ithaca ILR programs. Courses and course credits earned in the Extension Division certificate programs are not automatically accepted as transfer credits or as a basis of admission to the resident ILR undergraduate and graduate programs in Ithaca. Student applications for course transfer are evaluated by the ILR school on an individual basis.

204(2040) Managing Conflict Fall or spring. 3 credits. Staff. Provides students with opportunities to apply conflict resolution theory to specific situations, based on real-life problems that require resolution. Students examine situations, analyze the facts and perceptions driving the actors, and engage in applying communication, negotiation, and mediation techniques to reduce or eliminate the conflict.

205(2050) Oral Skills for Conflict Management Fall or spring. 3 credits. Staff. Emphasizes development of oral communications skills required to successfully manage conflict both as a party to a dispute and as a third party who is charged with helping to resolve a dispute. Presents simulations to help the participants practice their skills.

206(2060) The Nature of Conflict Fall or spring. 3 credits. Staff. Provides students with the conceptual foundation to engage in further study of conflict management and conflict resolution.

209(2090) Leadership in Unions Fall or spring. 3 credits. Staff. What role does leadership play in the viability of the labor movement? Is there a crisis of leadership in contemporary unions? Does the political context of a democratic membership organization affect the quality of leadership? Will changing workforce demographics create a demand for increased leadership opportunities by women and minorities in their unions? This course examines theories of leadership including a comparison of leadership styles and skills in the context of changing needs of the labor movement. The dynamic relationship of leaders and followers is examined in regard to emerging internal union organizing strategies that aim to increase membership and to activate current members.

212(2120) Labor, Technology, and the Changing Workplace Fall or spring. 3 credits. Staff. Technological changes are having a profound impact on both work and society. But what do these changes mean for workers and their unions? Is resisting technological change equivalent to obstructing progress? What can we do to influence how work is shaped and performed? These and other questions are the central concerns of this course. The course is divided into three sections: Skills, Technology, and the Labor Process; Industrial Change and Worker Responses; Four Historical Case Studies: Unions, Technology, and the Future of Work.

240(2400) Union Organizing Fall or spring. 3 credits. Staff. Students learn which unions are organizing successfully today and how workers are joining unions. Through case studies, discussion, and in-class exercises, they learn about targeting, house calls, building rank and file organizing committees, how to talk union, inoculating against anti-union campaigns, the legal aspects of organizing, and innovative ways to organize outside of government-run certification elections.

241(2410) Arbitration Fall or spring. 3 credits. Staff. Study of the place and function of arbitration in the field of labor-management relations, including an analysis of principles and practices, the law of arbitration, the handling of materials in briefs or oral presentation, the conduct of an arbitration hearing, and the preparation of an arbitration opinion.

242(2420) Public Sector Collective Bargaining Fall or spring. 3 credits. Staff. Introduction to collective bargaining in the public sector. Examines the historical development of bargaining in public employment, the evolution of state and federal and bargaining theory and practices, as well as impasse resolution techniques frequently found in this sector. Special emphasis is given to developing an understanding of the similarities and differences between public and private sector bargaining and how they have affected tactics and strategies employed by the parties.

245(2450) Public Sector Labor Law Fall or spring. 3 credits. Staff. Survey and analysis of the New York State and Public Employees Fair Employment Act and compares it with other state laws covering public employees. Examines the extent to which the law protects and regulates concerted actions by employees in the public sector. The intent is to study and understand the law as written but more important to understand how it has been interpreted by the courts of New York State in its application. Major emphasis is on employee and employer rights, including recognition and certification, improper practices, strikes, grievances, and disciplinary procedures of the New York State Public Employment Relations Board.

247(2470) Labor and the American Economy Fall or spring. 3 credits. Staff. Helps students understand how economic theories relate to the economic problems confronting the American citizen in general and the American union member in particular. Emphasis is placed on contemporary economic theories and how their proponents attempt to solve American economic problems.

248(2480) Employment Practices Law Fall or spring. 3 credits. Staff. Considers laws and regulations that directly affect managers and employers. Students examine issues and laws such as Equal Employment Opportunity, Employee Retirement Income Security Act, Federal Wage and Hour Laws, Occupational Safety and Health Act, unemployment laws, and other topics. Students focus on the practical application of laws and their impact on the workplace.

250(2500) New York Workers' Compensation Law for Trade Unionists and Injured Workers Fall or spring. 3 credits. Staff. There is a collective perception that the workers' compensation system in New York compounds an injured person's predicament with Byzantine responses that lead to despair. Unions and injured workers' organizations believe that, if properly empowered, they can be just as effective as lawyers in looking after their injured colleagues' claims. This course is structured to meet both of these realities. Students delve into every nook and cranny of New York Workers' Compensation law. The course is entirely practical. Skills teaching, how to present a case, decorum, ethics, and persuasiveness are built into the course. Experts on how the system really works are used.

251(2510) Principles and Practices of Management Fall or spring. 3 credits. Staff. Presents the theory and processes of management with an emphasis on supervision. Includes management functions of planning, organizing, staffing, and evaluating. Presents concepts and theories and analyzes case studies. Emphasizes motivating people, exercising leadership, and effectively developing employees.
evolution of relationships inside the labor movement.

264(2640) Contemporary Labor Problems
Fall or spring. 3 credits. Staff.
Survey of the major challenges that confront the American labor movement. Students are briefed on the background of each problem and discuss and analyze a broad range of solutions proposed by the experts.

267(2670) Safety and Health in the Workplace
Fall or spring. 3 credits. Staff.
Provides basic education and training in workplace safety and health. Focuses on applicable federal and state laws, standards for safety and health, industrial hygiene, and such health concerns as asbestos, radon, and AIDS. Practical experience is provided through workplace walk-through safety and health inspections and in use of industrial hygiene equipment to measure noise, temperature, humidity, airflow, and airborne toxins.

Faculty Roster

Abowd, John M., Ph.D., U. of Chicago. Edmund Ezra Day Prof. of Industrial and Labor Economics
Applegate, Ronald, Ph.D., SUNY Binghamton. Lec., Collective Bargaining, Labor Law, and Labor History
Baharak, Samuel, Ph.D., U. of Wisconsin. Jean McKelvey-Alice Grant Prof. of Labor Management Relations, Organizational Behavior
Batt, Rosemary, Ph.D., Massachusetts Inst. of Technology. Alice Cook Professorship in Women and Work, Assoc. Prof., Human Resource Studies
Bell, Bradford, Ph.D., Michigan State U. Asst. Prof., Human Resource Studies
Bishop, John H., Ph.D., U. of Michigan. Assoc. Prof., Human Resource Studies
Blau, Francine D., Ph.D., Harvard U. Francis Perkins Prof. of Industrial and Labor Relations, Labor Economics
Boyer, George R., Ph.D., U. of Wisconsin. Prof., Labor Economics
Briggs, Vernon M., Jr., Ph.D., Michigan State U. Prof., Human Resource Studies
Bunge, John A., Ph.D., Ohio State U. Assoc. Prof., Industrial and Labor Relations, Labor Economics
Carpenter, Charles, Ph.D., U. of Maryland. Prof., Social Statistics
Cassell, James, Ph.D., U. of California, Berkeley. Prof., Collective Bargaining, Labor Law, and Labor History
Chen, Henry C., Ph.D., U. of California, Berkeley. Prof., Collective Bargaining, Labor Law, and Labor History
Cowan, Peter, Ph.D., U. of Wisconsin. Assoc. Prof., Collective Bargaining, Labor Law, and Labor History
Cook, Maria L., Ph.D., U. of California, Berkeley. Assoc. Prof., Collective Bargaining, Labor Law, and Labor History
Cook, Mary L., Ph.D., U. of California, Berkeley. Prof., Collective Bargaining, Labor Law, and Labor History
Dane, Cletus E., Ph.D., U. of Washington. Prof., Collective Bargaining, Labor Law, and Labor History
DeVan, Jed, Ph.D., Stanford U. Asst. Prof., Labor Economics
DiCicco, Thomas J., Ph.D., U. of Waterloo (Canada). Assoc. Prof., Social Statistics
Dyer, Lee D., Ph.D., U. of Wisconsin. Prof., Human Resource Studies
Ehrenberg, Ronald, Ph.D., Northwestern U. Irving M. Ives Professor of Industrial and Labor Relations and Economics, Labor Economics
Fields, Gary S., Ph.D., U. of Michigan. Prof., Labor Economics, and International and Comparative Labor
Goncalo, Jack, Ph.D., U. of California, Berkeley. Asst. Prof., Organizational Behavior
Haas, Martine, Ph.D., Harvard Business School. Assoc. Prof., Organizational Behavior
Hallock, Kevin, Ph.D., Princeton U. Assoc. Prof., Human Resource Studies
Hammer, Tove H., Ph.D., U. of Maryland. Prof., Organizational Behavior
Hausknecht, John P., Ph.D., Penn State U. Asst. Prof., Human Resource Studies
Homrighouse, Christina, B.S., Ithaca Coll. Lee., Human Resource Studies
Hurd, Richard W., Ph.D., Vanderbilt U. Prof., Extension and Public Service
Hutchens, Robert M., Ph.D., U. of Wisconsin. Prof., Labor Economics
Jakabson, George H., Ph.D., U. of Wisconsin. Assoc. Prof., Labor Economics
Katz, Gary C., Ph.D., U. of California, Berkeley. Jack Sheinkman Prof. in Collective Bargaining, Labor Law, and Labor History
Kuruvilla, Sarosh C., Ph.D., U. of Iowa. Prof., Collective Bargaining, Labor Law, and Labor History
Lawler, Edward J., Ph.D., U. of Wisconsin, Madison. Martin S. Catherwood Prof., Organizational Behavior
Lipsky, David B., Ph.D., Massachusetts Inst. of Technology. Prof., Collective Bargaining, Labor Law, and Labor History
Lipphardt, Quinta, Ph.D., U. of Maryland. Asst. Prof., Human Resource Studies
Lomax, Nicholas D., Ph.D., U. of California, Berkeley. Prof., Collective Bargaining, Labor Law, and Labor History
Lennon, Ronald L., Ph.D., U. of Illinois. Assoc. Prof., Extension
Smith, Robert S., Ph.D., Stanford U. Prof., Labor Economics
Snell, Scott, Ph.D., Michigan State U. Prof., Human Resource Studies
Sonnenstuhl, William J., Ph.D., New York U. Assoc. Prof., Extension and Organizational Behavior
Tolbert, Pamela S., Ph.D., U. of California. Prof., Organizational Behavior
Vellman, Paul F., Ph.D., Princeton U. Assoc. Prof., Social Statistics
Vidyashankar, Anand, Ph.D., Iowa State U. Assoc. Prof., Statistical Science and Social Statistics
Wells, Martin T., Ph.D., U. of California, Santa Barbara. Prof., Social Statistics
Wrigley, Patrick M., Ph.D., Michigan State U. Prof., Human Resource Studies
ADMINISTRATION

Robert J. Swieringa, dean
L. Joseph Thomas, associate dean for academic affairs
Cathy S. Dove, associate dean for M.B.A. Program and administration
Richard A. Shafer, associate dean for corporate relations
Thomas B. Hambury, director of executive programs
Daniel Szpir, director of Boardroom Executive M.B.A. Program
Natalie M. Grinblatt, director of admissions
Karin S. Ash, director of career services
Rhonda H. Velazquez, director of student activities and special events
Ann W. Richards, financial aid director and associate director of admissions
Kerwin-Michael Smith, college registrar

The Johnson Graduate School of Management prepares men and women for managerial careers in business. The school offers course work in many disciplines to provide potential managers with an understanding of the complexities of the professional world in which they operate and of the organizations of which they will become a part.

A bachelor's degree or its equivalent is required for admission to the two-year program leading to the master of business administration (M.B.A.) degree. Nearly half of the students have a background of undergraduate studies in arts and sciences, and about one-quarter in engineering. Five percent of the students begin their graduate training immediately after receiving their bachelor's degrees and the remaining 95 percent following work experience.

Combined degree programs allow highly qualified Cornell students to co-register in the school during their senior year, thereby earning a master's degree in less than the usual time.

The doctoral program, administered through the Graduate School, provides an advanced level of education in business for those who seek careers in teaching and research at leading universities.

More detailed information about these programs is available from the Office of Admissions and Student Affairs, Johnson Graduate School of Management, 111 Sage Hall.

Students in other graduate programs and undergraduate students registered with the university are welcome in most classes. See the Johnson School web site: www.johnson.cornell.edu/currentstudents for information on enrollment and a complete course roster.

UNDERGRADUATE ONLY

NBA 300(3000) Entrepreneurship and Enterprise
Fall, spring. 3 credits. Prerequisite: non-Johnson School students. Johnson School students, see NBA 504. D. BenDaniel.
Uses Cornell-developed case studies and lectures on entrepreneurial management in start-up ventures and new-business development in existing companies. Topics include valuation of business, planning, obtaining resources, management of growth, and cashing out. Guest lecturers speak on specialized topics such as corporate and patent law, bankruptcy and workouts, leveraged buyouts, and valuations of businesses. Students team up to write and present business plans. The course attempts to integrate marketing, finance, operations, and human-resource topics in the context of high-growth business ventures.

NBA 471(4710) Cornell Management Simulation
Fall. 3 credits. Highly recommended: previous courses in accounting, finance, and marketing. S. Smith.
Provides experience in managing a company and an investment portfolio in a realistic business environment. After initial training, small teams of students make periodic marketing, production, and finance decisions for one of five firms in the same industry (meeting at their convenience). At the beginning of the simulation, each team writes a strategic intent paper. Before the last decision is made, each team presents an analysis of its performance and strategy at a "board of directors" (BOD) meeting. The management component of the grade is based primarily on the stock market performance of the team's firm (relative to others in the industry). The team's strategic intent paper, its performance at the BOD meeting, and the contribution of team members are also considered. Each student actively manages stock portfolios of companies in two investment performances compared with performances of passive benchmark portfolios in the same industries.

COURSES FOR NON-JOHNSON SCHOOL STUDENTS

NBA 507(5070) Entrepreneurship for Scientists and Engineers
Fall, spring. 3 credits. Prerequisite: M.Eng., Ph.D., and M.S. students; priority given to seniors as undergraduates. J. Nesheim and G. Schneider.
Designed for mentored independent study, this course uses streaming video, guest speakers, distance learning, and special lectures/tutorials. There is no homework and few required class meetings. Work is focused on one project. Students form a start-up team, choose a technical business idea, and develop and find a business that can attract venture investors. Tutorial sessions with instructors apply lessons to the team business plan. Students learn how high-technology ideas are converted into world-class businesses in venture-backed start-up companies and in new business development in existing companies. Slides take the student from idea to initial public offering. Grading is based on a final exam focusing on the video lectures, a written business plan, and its final presentation to a judging panel.

NBA 553(5530) Accounting and Financial Analysis for Managers
Spring. 3 credits. Prerequisite: non-Johnson School students. J. D'Souza.
Focuses on basic financial and managerial accounting and the economic and financial concepts that have a bearing on managerial decisions. The goals are to (1) give students a working knowledge of the accounting process and the value and limitations of the data that come out of the accounting information system; (2) familiarize students with key concepts in managerial accounting and the application of cost information to pricing and operating decisions; (3) promote an understanding of the use of economic theory in the evaluation of capital investment projects. The teaching methods consist of lectures and cases. Students are evaluated on the basis of exams.

NCC 550(5500) Financial Accounting
Fall, spring. 3 credits. Prerequisite: non-Johnson School students. Similar in content to M.B.A. core course NCC 500. Staff.
Introduction to accounting course that examines the subject from the viewpoint of users external to the organization. Topics include transaction analysis; the accounting cycle; financial-statement preparation, use, and analysis; revenue recognition and cost measurement; present value; and problems in financial-accounting disclosure.

NCC 553(5530) Marketing Management
Fall, spring. 3 credits. Prerequisite: non-Johnson School students. Similar in content to M.B.A. core course NCC 503. Staff.
Addresses controllable and uncontrollable marketing variables that managers in multiproduct firms face in today's business environment. Topics include customer behavior, product planning, distribution, advertising and promotion, pricing, and competitive strategy.

NCC 554(5540) Management and Leading in Organizations
Fall, spring. 3 credits. Prerequisite: non-Johnson School students. Similar in content to M.B.A. core course NCC 504. Staff.
Takes a resource-based approach to management by arguing that organizations should link their strategy to their internal resources and capabilities. Develops this theme by addressing (1) the strategic value of internal resources and capabilities; (2) the role of human resources and organizational behavior in formulating and implementing strategy; and (3) the importance of structure and the design of organizations in formulating and implementing strategy.
Topics include how firms create sustainable competitive advantage through internal resources and capabilities; best practices for managing people; effects of best practices on attitudes and behaviors; why putting the customer first is not necessarily best practice from a resource-based perspective; why organizational culture is central to organizational effectiveness; why the formal organizational chart and structure of an organization are important; how organizations innovate; how organizations change through re-architecture and re-engineering; what firms gain and lose through pursuing core competencies; and what firms gain through strategic alliances and networking. The course makes extensive use of case materials.

NCC 556(5560) Managerial Finance

Fall, spring. 3 credits. Prerequisite: non-Johnson School students. Similar in content to M.B.A. core course NCC 506. Letter grades only. Staff.

Introduces business finance through theory and case studies. Topics include stock and bond valuation, the capital budgeting decision, portfolio theory, the asset-pricing models, raising capital, capital structure, mergers and acquisitions, costs of capital, option pricing, and risk management. International applications are considered within each topic area. Grading is based on an exam, group case reports, homework, and class participation.

IMMERSIONS

Only the Johnson School offers learning immersion courses in manufacturing, managerial finance, investment banking, brand management, and entrepreneurship. Immersions offer a semester of continuous focus, real-world problem solving, and site visits to dozens of companies.

MFI—Managerial Finance Immersion

Prerequisite: NCC 506 with grade of B or better.

Specifically designed for students planning to pursue finance careers. Some students interested in nonfinance careers (including consulting) may wish to consider this course, but they should recognize that it is not specifically designed for this purpose. A major objective is to help students make more informed choices about how to launch their finance careers.

NBA 500(5000) Intermediate Accounting

3 credits.

NBA 504(5040) Managing and Leading in Organizations

2.5 credits.

IBI—Investment Banking Immersion

Prerequisite: NCC 506 with grade of B or better.

Specifically designed for students planning to pursue careers in investment banking. Inappropriate for students interested in following a finance career in nonfinancial industry or nonfinance careers (including consulting).

This course is designed to meld the practical and the theoretical aspects of the field. A great deal of interaction and discussion is expected between students, participating faculty, and visiting practitioners. While the course is designed to make its students more attractive as candidates for employment in the investment banking profession, and it is expected that some of the participating firms will be using their visits to identify candidates for summer internships, obtaining relevant summer internships remains the responsibility of the students.

SBM—Immersion in Brand Management

Limited enrollment. Prerequisites: NCC 500, 501, 502, 503, and 506; permission of instructor.

Full-time program for the semester; students are not able to take other courses concurrently. The course objective is to begin developing students to think and act like brand managers, some of the best trained and most upwardly mobile professionals in industry. It provides students with a unique opportunity to begin internalizing the concepts, principles, and tools necessary to achieve success in brand management. While the course focuses on managing traditional consumer brands, high-tech products, services, and global branding are also addressed. In-class methods consist of (1) academic and industry lectures; (2) on-site visits with marketing and manufacturing professionals; (3) case and project discussions and presentations; and (4) a brand management simulation. Course requirements consist of (1) discussion of readings; (2) individual case write-ups and presentations; (3) group projects and presentations (including a capstone simulation); and (4) in-class exams. There is considerable off-campus travel for field study.

NBA 520(5200) Managerial Cost Accounting

3 credits.

NBA 506(5060) Financial Statement Analysis

1.5 credits.

NBA 549(5490) Managerial Finance Practicum

1.5 credits.

NBA 558(5580) Corporate Financial Policy

1.5 credits.

NBA 565(5650) Corporate Governance

1.5 credits.

NBA 566(5660) Valuation Principles

1.5 credits.

RS&T—Research, Sales, and Trading Immersion

Prerequisite: NCC 506 with grade of B or better.

Specifically designed for students planning to pursue careers in research (both buy-side and sell-side), sales, and trading, either at Wall Street firms (sell-side) or at buy-side firms such as mutual funds. Melds the practical and theoretical aspects of the field. A great deal of interaction and discussion is expected between students, participating faculty, and visiting practitioners. While the course is designed to make its students more attractive as candidates for employment in the investment management profession, and it is expected that some of the participating firms will use their visits to identify candidates for summer internships, obtaining relevant summer internships remains the responsibility of the students.
NCC 508(5080) Managing Operations
2.5 credits.

NCC 504(5040) Managing and Leading in Organizations
2.5 credits.

SIM—Semester in Manufacturing
Limited enrollment. Prerequisite: NCC 501 and 504(5040) Managing and Leading in Organizations
2.5 credits.

NCC 500(5000) Financial Accounting
Fall. 2.5 credits. Johnson School core course. Limited enrollment. R. Libby. Introductory accounting course that examines the subject from the viewpoint of users external to the organizations. Topics include transaction analysis; the accounting cycle; financial-statement preparation, use, and analysis; revenue recognition and cost measurement; present value; and problems in financial-accounting disclosure.

NCC 501(5010) Statistics for Management
Fall. 2.5 credits. Johnson School core course. Limited enrollment. J. McClain. Introduction to decision making under conditions of uncertainty. Topics include descriptive statistics, probability theory, classical statistics, statistical decision theory, and simple and multiple regression analysis. Applications in finance, marketing, and operations management are discussed.

NCC 502(5020) Microeconomics for Management
Fall. 2.5 credits. Johnson School core course. Limited enrollment. R. Hilton. Introduces microeconomic theory and applies it to problems faced by managers. Topics include supply and demand, consumer behavior, pricing when a firm has market power, and the role of contracts. The course employs a lecture format and emphasizes problem solving. Grading is based on a midterm and a final exam.

NCC 503(5030) Marketing Management
Fall. 2.5 credits. Johnson School core course. Limited enrollment. D. Stayman and E. Eisenstein. Designed to convey the key concepts of marketing and how they fit into the larger context of management strategy and decisions. Presents both the practical "how" and the fundamental "why" of marketing activities in the light of contributions from behavioral science, economics, and statistics. The goals are to provide sufficient understanding for those who need only to interact with the marketing function, as well as communication concepts and developing processes that can provide the foundation for further course work and future experience in marketing. The course makes extensive use of case materials.

NCC 504(5040) Managing and Leading in Organizations
2.5 credits.

E&PE—Entrepreneurship and Private Equity Immersion
Comprehensive course that integrates the technical, strategic, and economic aspects of entrepreneurship; is the student's full course load for the semester. David J. BenDaniel, the Don and Marge Berens Professor of Entrepreneurship at the Johnson School, leads the faculty team for this immersion.

NBA 502(5020) Managerial Cost Accounting
3 credits.

NBA 519(5190) Responsible Entrepreneurship
1.0 credit.

NBA 532(5320) Due Diligence in Private Equity Investments
0.5 credit.

NBA 535(5350) Special Readings in Private Equity
0.5 credit.

NBA 559(5590) Venture Capital Industry
0.5 credit.

NBA 564(5640) Entrepreneurship and Private Equity—Practicum
3 credits.

NBA 653(6530) Strategic Alliances
1.0 credit.

NBA 656(6560) Valuation Principles
1.5 credits.

NCC 508(5080) Managing Operations
2.5 credits.

This course has two goals: (1) to make students appreciate the complexity of the issues that often arise in organizations, and (2) to develop and refine students' analytical story-telling abilities. To achieve these goals, the course is taught by the case-study method, an efficient way to expand the student's experience base with respect to such issues as motivation, power, leadership, ethics, structure, design, and change. Students learn how to make good inferences about what will and won't work in particular situations, and how to learn from their own experiences and those of others.

NCC 506(5060) Managerial Finance
Fall. 2.5 credits. Johnson School core course. Limited enrollment. Letter grades.

Introduces students to the basic concepts of finance. In particular, the course addresses what type of investments firms and individuals should take on and how these investments should be financed. Understanding these concepts is essential to financial management and professional investors and has important applications to many aspects of financial decisions all of us have to make on a daily basis (e.g., is getting an M.B.A. a good investment?). These issues involve capital budgeting, dividend policies, stock and bond valuation, how to assess and account for risk through the capital asset pricing model (CAPM), option pricing, capital structure and cost of capital, and market efficiency. Grading is based on exams, quizzes, group case reports, homework, and class participation.

NCC 508(5080) Managing Operations
Spring. 2.5 credits. Johnson School core course. Limited enrollment. Prerequisite: NCC 501 or permission of instructor.

Focuses on managing processes: actions that convert inputs into outputs. Almost any business function can be modeled as a network of processes. The first part of the course examines processes, both individually and as part of a larger system; students learn that good process design reflects both the volume and the variety of the product. A common course theme is the deleterious effect of variability (in demand, supply, quality, or capacity) in complex systems. Queueing theory and simulation are particularly helpful for analyzing process capabilities. The second part analyzes how goods and services are produced. After describing the strategic role of operations, it examines forecasting systems, inventory management, and just-in-time and logistic management. Constrained optimization models provide information about managing with finite resources. The final part examines process improvement through quality and productivity management and corporate learning.

NCC 509(5090) Strategy
Fall. 2.5 credits. Johnson School core course. Limited enrollment. V. Kadluyev and J. Johnson.

Among the critical tasks facing any senior manager are the creation, implementation, and evaluation of a business unit's strategy. This course seeks to provide the management student with the tools and frameworks essential to carrying out these tasks. Many of these tools and frameworks are based on recent advances in game theory, industrial organization, and organization theory, although the course also draws from the...
older business policy tradition. Students who successfully complete this course are able to analyze industries, identify areas of strategy advantage and disadvantage, and devise strategies that exploit advantages and remedy disadvantages.

NBA MANAGEMENT ELECTIVE COURSES

Accounting

NBA 500(5000) Intermediate Accounting
Spring. 3 credits. Prerequisite: NCC 500 or equivalent. M. Nelson. Based on the essential concepts and terminologies of financial accounting introduced in the accounting core course. Students learn to evaluate financial statements through the use of case studies drawn from actual corporate financial reports.

NBA 502(5020) Managerial Cost Accounting
Fall, spring. 3 credits. Prerequisites: NCC 500, 501, and 502, or equivalent. R. Hilton and R. Bloomsfield. Designed both for those responsible for internal accounting information and those who use such information for decision making. Topics include budgeting, accumulating costs for product costing, activity-based costing, standard costs, the analysis of cost variances, cost estimation and prediction, cost-price-volume decisions, performance in measurement, nonmanufacturing cost analysis, cost allocation, and transfer pricing. Instruction is a mixture of lecture and case discussion. Student evaluation is based on a midterm exam, a final exam, a project, and class participation.

NBA 503(5030) Strategic Cost Management
1.5 credits. R. Hilton. Focuses on the role of cost management and related issues in helping a firm compete successfully in the global market. Topics include activity-based costing, activity-value management, value chain analysis, the lean enterprise, confronting competition in an industry dominated by lean enterprises, re-engineering, process value analysis, identification of non-value-added activities and costs, target costing, Kaizen costing, continuous improvement, time-based competition, cost versus quality, and benchmarking. The course is based almost entirely on cases, many of them lean enterprises, re-engineering, process flow analysis, and cost value analysis. Information is updated regularly throughout the semester.

NBA 506(5060) Financial Statement Analysis
Spring. 1.5 credits. Prerequisite: NCC 506, NBA 500 (or concurrent enrollment), or permission of instructor. Not open to students who have completed 3-credit version of NBA 506. S. Bhurjraj. Builds on the core financial analysis skills developed in NBA 506. Topics include equity valuation, residual income models, quality of earnings assessments, earnings manipulation detection, market efficiency issues, fairness opinions in M&As, and large sample stock screening strategies. The overall focus is on using accounting-based information to make investment decisions. Emphasis is on practical applications, and special attention is given to cultivating analytical and communication skills. Features both lectures and cases. There is a group term project but no final exam.

NBA 511(5110) Financial Modeling
Fall, spring. 1.5 credits. Prerequisites: NBA 506 or permission of instructor; mastery of basic Excel skills. P. Hribar. Financial modeling is the art and science of constructing spreadsheet models of firms' future financial statements. This course builds on the brief introduction to financial modeling in NBA 506 by modeling the effect on the income statement, balance sheet, and statement of cash flows of more complicated financial transactions such as leveraged buyouts, mergers and acquisitions, and corporate reorganizations. The class meets in the state-of-the-art Parker Center computer lab, and active student participation is emphasized.

Economics

NBA 524(5240) Macroeconomics and International Trade
Fall. 3 credits. Prerequisite: NCC 502 or equivalent permission of instructor. I. Aziz. Applies basic macroeconomic theory to such problems as inflation, unemployment, economic growth, and productivity and examines how these problems interact with international trade and finance. Students learn to be informed observers of national and international economic policies and discerning users of economic analyses and forecasts. Uses a lecture/discussion format.

NBA 527(5270) Applied Price Theory
Spring. 4 credits. R. Frank. Emphasizes how economic analysis can help firms and individuals make the most of their opportunities. Of special interest to managers and consultants is the focus on examples that illustrate how faulty economic reasoning leads to inefficient outcomes. Also emphasizes strategic thinking and instructs students in the art of "economic naturalism"—the use of economic reasoning to understand and explain everyday patterns of individual and firm behavior.

Entrepreneurship

NBA 519(5190) Sustainable Business—The Challenge of the 21st Century
Fall, spring. 1 credit. F. Keller. Gives students an overview of the emerging sustainable business model. By examining current writings and comparing them to the actual experiences of the lecturer's own business, students draw conclusions about how this business model could be employed in their individual career paths. Students learn that, in addition to traditional financial analysis, business decisions can be made from considering the impacts of social and ecological capital. This so-called "triple bottom line" of sustainable business is so new that most information on the subject has been written in the last few years. Students read about actual cases and the logic of how this model has been constructed. There is dialogue about the advantages as well as the barriers and challenges of applying sustainable principles.

NBA 521(5210) Investing in Distressed Corporations
Fall. 1 credit. J. Rubin, R. Symington, and J. Hass. Focuses on the burgeoning practice of investing in distressed companies. Once a backwater, this $680 billion (face amount) field of finance is now "hottest in virtually all institutional portfolios. In 2001 alone, $63 billion of additional defaults entered this universe, with continued high inflows projected for the next few years. Corporate reorganization finance techniques are now necessary tools for individuals in a variety of other disciplines, as it is now highly likely that finance professionals and managers encounter distressed situations in their careers. Using a "bottom-up" approach, the course first seeks to develop the building blocks of this field: research, valuation, legal issues, and strategies. Issues such as target capital structure location, control/payout strategies, value creation through reorganizations/liquidations and new/old money plans are explored. These principles are then applied to real-world situations using case studies.

NBA 525(5250) Social Entrepreneurship
Spring. 1 credit. Not offered 2005-2006. M. Lounsbury. Social entrepreneurship involves blending and-for-profit logic to address problems in the social sector in novel ways. The emergence of social entrepreneurship has been motivated by factors including the devotion of social services and related responsibilities from the federal government to state and local governments, as well as a general increase in financial pressures on public agencies and nonprofits. Once perceived as part of the problem, business is increasingly embraced for its dynamism, market discipline, focus on efficiency, and as a source of innovation to reinvent how socially important goods and services are organized and delivered. This course aims to introduce students to social entrepreneurship by examining a variety of ways in which social problems are being addressed in new and creative ways. To encourage practical application, students are expected to participate actively in real-world case discussions.

NBA 530(5300) Entrepreneurship Lab
Fall. 3 credits. Prerequisites: M.B.A. students, NBA 564 or concurrent enrollment or permission of instructor. G. Schneider. Students team up with entrepreneurs in the greater Ithaca area on defined projects that are integral to the companies' operations, such as production planning, new product launches, or assessing organizational structure.
Students gain first-hand exposure to the application of functional knowledge in a start-up setting, while bringing real value to the host company.

NBA 531(5310) Venture Start-up
Spring, eight lec over two weeks. 1 credit.
D. BenDaniel
Short course by Professor Rob Ryan, founder of Ascend Communications and of Entrepreneur America, a boot camp for start-ups. Uses Ryan's book Smartups. The lectures contain analyses of various styles of entrepreneurship, ways of determining the viability of technical businesses and hints for negotiation with venture capital sources, among other important topics.

NBA 535(5350) Special Readings in Private Equity
Spring, four meetings. 0.5 credit.
D. BenDaniel
Covers the transformation of a public corporation to private equity to increase value. Discusses the advantages and disadvantages of private equity but focuses on financial models. These models show the economic advantages of private equity as well as how to achieve that status.

NBA 557(5570) Case Studies in Venture Investment and Management
Fall. 1.5 credits. F. Beste and Y. Hochberg.
Consists of a series of cases that focus on the venture capital investment process and the subsequent management of such ventures. The primary perspective is that of the entrepreneur in assembling and evaluating information, preparing forecasts, assessing risks, developing and negotiating investment structure and terms, and deciding whether to invest. Cases also focus on the legal and financial problems and on policy issues and the relationship between venture capitalists and entrepreneurs. The secondary perspective is that of the entrepreneur and the techniques and skills employed in managing growing enterprises. Presentations by venture capitalists and entrepreneurs supplement student discussion and analysis of cases. Grades are based on written reports, quality of classroom participation, and a final paper.

NBA 559(5590) The Venture Capital Industry and Private Equity Markets
Spring. 0.5 credit. D. BenDaniel.
Focuses on the industry from the practitioners' perspective. Topics include (1) an introduction to the private equity market focusing on the transactions that define the industry, its structure, participants, history, and trends; (2) institutional private equity investing—now an increasingly important and dynamic part of the asset allocation mix; and (3) issues in private equity investing such as concentration in fewer, larger funds and the critical role of a new class of gatekeeper/consultants for limited partners. Involves four lectures and a final paper.

NBA 563(5630) The IPO Process and Deal Structure Alternatives
Fall, spring. 3 credits. Z. Shulman.
Gives students an in-depth look at initial public offerings and deal structures from a practitioner's point of view. With respect to initial public offerings, the course covers the applicable statutory framework, pre-offering corporate preparations, the due diligence process, the implementation of corporate governance policies appropriate for a public company, the offering registration process, liability under federal securities laws, the Securities and Exchange Commission review process, underwriting arrangements, and selection of a trading forum. Regarding deal structures, the course explores choosing an appropriate transaction structure, deal financing alternatives, due diligence, public company transaction issues, and crucial legal aspects of the acquisition, such as caps/ collars, letter of intent, successor liability, continuity of employees, and noncompetition agreements.

NBA 564(5640) Entrepreneurship and Private Equities
Fall, spring. 3 credits. D. BenDaniel.
Uses Cornell-developed case studies and lectures to address entrepreneurial management in start-up ventures and new-business development in existing companies. Topics include valuation of business, planning, obtaining resources, management of growth, and cashing out. Guest lecturers speak on specialized topics such as corporate and patent law, bankruptcy and workouts, leveraged buy-outs, and valuations of businesses. Students team up to write and present business plans. The course attempts to integrate marketing, finance, operations, and human-resource topics in the context of high-growth business ventures.

NBA 653(6530) Strategic Alliances
Spring. 1 credit. J. Suwinski.
A wide variety of strategic alliances are being used today as companies try to leverage their resources for competitive advantage. This course gives an overview of the spectrum of alliances, examining the strategic rationale and pros and cons of each major type of alliance. The primary focus is on joint ventures as a specific form of strategic alliance, where the success rate is less than 50 percent. The course develops a set of principles that have contributed to success for Corning Incorporated. The course is taught from the perspective of the general manager of a major business unit.

NBA 678(6780) Lectures on the Venture Capital Industry
Spring. 1.5 credits. J. Bartlett.
A broad overview of the venture capital industry, including the problems and issues facing emerging growth companies as they progress from early stage, start-up status to mature public companies. Emphasizes practical skills needed for examining, for example, how deals are negotiated and valuations arrived at, the principal focus being the so-called Series A, or first professional, round of financing. Views the early stage space from three perspectives: (1) the entrepreneur, or founder, (2) the professional investors, or VCs, and (3) the key executives, i.e., the major players in emerging growth finance. Reviews economics, finance, tax, securities, corporate and employment law considerations, and custom and usage in the industry.

NBA 689(6890) Law for High-Growth Businesses
Fall, spring. 3 credits. Z. Shulman.
In-depth analysis of key issues that an emerging high-growth business must consider and address, including (1) choosing type of business entity, (2) protecting confidential information and inventions, (3) sources of capital (in both bull and bear market environments), (4) understanding capitalization structures (e.g., common stock, preferred stock, warrants), (5) using stock options as employee incentives, (6) fundamental financial practices, (7) proper establishment and use of boards of directors and advisory boards, (8) technology licensing and commercialization, (9) negotiating relationships with distributors, resellers, and customers, (10) the Foreign Corrupt Practices Act, and (11) dealing with creditors.

finance

NBA 512(5120) Applied Portfolio Management
Fall, spring. 3 credits each semester. Limited enrollment. Students must commit to taking course in fall and spring semesters. Priority given to second-year M.B.A.s who successfully completed either NBA 506 or finance immersion. Students must apply formally; if number of applicants exceeds 12, admission is competitive and merit-based.
B. Swaminathan.
Focuses on the management of an investment fund. For full description, see Charles Lee.

NBA 529(5290) Securities Analysis
Spring. 1.5 credits.

NBA 539(5390) Essentials of Corporate Finance
Fall. 1.5 credits. Not offered 2005-2006.
H. Bierman.
Designed for students who want to understand the essential elements of corporate finance; at the same time lays the foundation for those who want to follow a career in corporate finance. Topics include preferred stock (PERCS) and MIPS), cost of common stock equity, convertible debt, capital structure, the use of debt to add value, distribution policy, mergers and acquisitions, corporate restructuring, and private equity.

NBA 540(5400) Advanced Corporate Finance
Fall. 1.5 credits. Prerequisite: NBA 539.
H. Bierman.
Relevant for both investment banking and the treasurer's activities of an operating corporation. Most class sessions are lecture-discussion, but there may be several corporate finance cases. Topics include debt securities (duration, convexity, inverse floaters, bond refunding, term structure), interest rate and other types of swaps, exotic new securities, financial strategies, and the buy versus lease decision. Investigates corporate financial policy decisions from a normative-quantitative point of view and develops skills in formulating financial models and evaluating models. Uses basic mathematics. The goal is to develop an approach to analyzing corporations' financial decisions.

NBA 542(5420) Investment and Portfolio Management
Fall, spring. 3 credits. Prerequisites: NCC 501, 502, and 506; comfort with quantitative methods. H. Li.
Deals with several important issues pertaining to investments in securities markets. Covers (1) portfolio diversification theory, asset allocation, asset pricing models (e.g., CAPM and APT), and empirical anomalies such as size effect and January effect, (2) the issue of evaluating portfolio performance and mutual fund performance, (3) investment strategies based on patterns in historical security
returns (may be loosely considered technical analysis); (4) investment strategies based on publicly available information related to accounting and other market statistics and the use of them (may be considered as fundamental analysis); (5) friction to trading imposed by the institutional structure of securities markets. The goal of this course is to train students in the latest tools and techniques in portfolio theory and familiarize them with the latest developments in securities market research and applications. This is a highly quantitative course involving extensive analysis of security market data using computer programs and other statistical tools. Grades are based on midterm and final exams, cases, a project, and a trading game.

NBA 543(5430) Financial Markets and Institutions

Fall, spring. 3 credits. Prerequisite: NCC 506 (finance core). M. O'Hara.
Applies principles of finance to understand modern financial markets. Central themes are the structure of financial markets, their pricing function, the interaction between financial markets and macroeconomic conditions, and the processes of innovation and regulation in these markets. Students look at the workings of a variety of markets and develop an understanding of the different problems that different types of markets address. The course includes ideas and evidence from academic research along with historical, institutional, and international perspectives. Recent events are used to illustrate concepts and develop analytic skills. Spreadsheet assignments and a term project requiring data analysis develop research skills and illustrate academic concepts. Exams consist of computational, short answer, and short essay questions.

NBA 555(5550) Fixed-Income Securities and Interest Rate Options

Fall. 3 credits. Prerequisites: NCC 506 (finance core), NCC 501 (statistics core). R. Jarrow.
Designed to study the pricing, hedging, and risk management of fixed-income securities and interest rate derivatives. Topics include the term structure of interest rates, interest rate swaps (caps, floors, collars), the risk structure of interest rates, credit risk spreads, and corporate bond valuation. The method of instruction is lectures and discussion, and computer illustrations are an integral part of the course content.

NBA 558(5580) Corporate Financial Policy

Fall, spring. 1.5 credits. Prerequisite: NCC 506 (finance core). Y. Grinstein.
Provides an understanding of the financial decisions of corporations. Discusses the factors that affect corporate financial decisions and how they determine firms' financing, investment, and hedging policies. These factors include taxes, transaction costs, contracting (between managers and shareholders and between shareholders and other claimholders such as bondholders), asymmetric information. Much of the material is presented using examples and cases designed to demonstrate how financial decisions create, destroy, or modify value.

NBA 655(6550) Advanced Valuations

Spring. 1.5 credits. Prerequisites: IBI immersion or written permission of instructor. B. Swaminathan.
Builds on the valuation principles course. Applies discounted cash flow (DCF) valuation and valuation by multiples using comparables to multinational contexts. Considers mergers and acquisitions, and multinational project and firm valuations, from the viewpoint of a U.S. manager. Discusses issues such as differences in parent and project cash flows, accounting differences, exchange risks, political risks, and valuation in developing countries. Examines case studies of valuation issues and techniques with emphasis on valuation approach, with emphasis on flexibility in managerial decision-making. Focuses on the valuation of strategic options, growth options, and flexibility in capital investments using traditional and nontraditional option pricing techniques. Discusses valuation of growth options, expansion options, natural resource investments, land development, R&D, young-high-growth companies, etc., using the Black-Scholes option pricing model and its variants. Grading is based on cases, a valuation project involving a foreign company, and a final exam.

NBA 656(6560) Valuations Principles

Spring. 1.5 credits. D. Weinbaum.
Deals with the principles of valuation for publicly traded firms, divisions of publicly traded firms, or private firms that have publicly traded comparables, using discounted cash flow (DCF) valuation. The definitions of cash flow and discount rate depend on whether we want to value the entire firm or one segment only, including how to compute free cash flows based on historical income statements and balance sheets; (2) the concept of value drivers and economic value added (economic profits or residual income); (3) operating risk and financial risk; the relation between financial leverage and cost of capital, the leveraging and unlevering of equity betas, capital asset pricing model, computing cost of equity, cost of debt, cost of preferred stock, weighted average cost of capital, divisional cost of capital, etc. These concepts are applied; (4) computing cost of capital. Introduces valuation by multiples using comparables and discusses its applications to valuing divisions of multibusiness firms.

NBA 673(6730) Introduction to Derivatives, Part 1

Fall, spring. 1.5 credits. Prerequisite: NCC 506 (finance core) or permission of instructor. X. Zhang.
Introduces students to the pricing and hedging of derivative securities. Briefly covers forward contracts, futures contracts, and swaps. The primary emphasis is on option contracts. Underlying assets include stocks, currencies, and commodities.

NBA 674(6740) Introduction to Derivatives, Part 2

Fall, spring. 1.5 credits. Prerequisite: NCC 506 (finance core) or permission of instructor. X. Zhang.
For description, see NBA 673.

General Management

[NBA 537(5370) Information in Markets
Spring. 1.5 credits. Not offered 2005-2006. R. Bloomfield.]
NBA 538(5380) Inclusive Leadership
Spring. 1.5 credits. P. Stepp
Prepares students for leadership in diverse organizations of today and the future. Uses discussions and readings about accountability, fairness, stereotyping, mentoring, networking, and the impact of assignments to help students become aware of ways they may discriminate against, judge, or exclude people, and to help students initiate and develop relationships with people different from themselves. The primary teaching methods are case studies, group activities, a diversity awareness profile, and written assignments that require students to reflect critically on situations where they felt excluded.

NBA 544(5440) Labor Economics for Managers
Spring. 1.5 credits. G. Fields
Covers labor market economics in the corporate and nonprofit sectors. Begins with demand and supply in labor markets, production tools and decision analysis for workers and firms. Considers various topics for managers, including hiring the right quantity and types of workers; identifying, attracting, and retaining top talent; individual labor supply decisions; and strategic budget constraints.

NBA 550(5500) Risk Management
Fall. 1.5 credits. R. Jarrow
Studies advanced topics in derivatives and risk management. The first part of the course covers topics in derivatives and develops the tools necessary for analysis, and the second part covers their application to risk management.

NBA 560(5600) Business Law I (also AEM 320[3200])
Fall. 3 credits. Requirement for students intending to be professional accountants. Highly recommended for finance students. Prerequisite: junior, senior, or graduate standing. D. Grossman
Introduces the basic tenets of law as they apply to businesses and their operations. Topics include personal property, contracts, agency, real property, and landlord-tenant concerns. Uses text readings and case studies.

NBA 561(5610) Business Law II (also AEM 321[3210])
Spring. 3 credits. Prerequisite: NBA 560 or permission of instructor. D. Grossman
The first portion of this course examines legal issues in the formation and operation of business enterprises, particularly partnerships, corporations, and limited-liability companies. The second portion covers selected topics in business law, such as employment discrimination, secured transactions, product liability, unfair competition, and international business law.

NBA 562(5620) Estate Planning (also AEM 422[4220])
Fall, 14 sessions. 1 credit. Prerequisite: junior, senior, or graduate standing. D. Grossman
Covers law and use of trusts, the law of wills, federal and New York State estate and gift taxes, and probate procedures.

NBA 567(5670) Management Writing
Fall. spring. 1.5 credits. Priority given to M.B.A. students. Open to other graduate students and employee degree candidates if room. B. Mink, A. Pike, and C. Rosen.

Students learn to write clearly and effectively by focusing on the writing process as well as the finished product. Topics include audience perspective, style, organization, strategy, and persuasion. There is a writing assignment every week. Students receive instructor and peer feedback.

NBA 568(5680) Oral Communication
Fall, spring, seven weeks. 1.5 credits. Priority given to M.B.A. students; open to other graduate students and employee degree candidates if room. B. Mink, A. Pike, and C. Rosen
Focuses on growing presentation skills of management students. Covers speaking formats (prompt, extemporaneous, manuscript), delivery, organization, visual aids, and question/answer. Student speeches constitute the bulk of class time, with each student presenting seven or eight speeches. The small class size allows for significant individual attention. Students receive feedback from classmates and the instructor, and have the opportunity to review and critique the videotapes of most of their presentations.

NBA 569(5690) Management Consulting
Fall, spring. 3 credits. A. McAdams
Case study-oriented course focusing on strategic consulting. Objectives are to (1) provide students with the opportunity to understand the role of the consultant and for them to gain indirect experience in that role through dealing with a broad range of practical and real-world issues; (2) help students improve their analytic skills through practice with case studies; (3) provide students with early appreciation that they are unlikely to gain in other courses, as well as experience in making group presentations and evaluating them. Students are required to write a comprehensive analytic term paper.

NBA 570(5700) Leadership in Management
Spring, five full-day training sessions. 1 credit. Attendance required at each day of course to receive credit. Prerequisite: M.B.A. students. E. Mannix, RPW Executive Development, and other Johnson School faculty. Partnership with RPW Executive Development to provide M.B.A. students with the self-awareness and interpersonal skills required to be effective leaders (the general principles of leadership course is NBA 608). The first two days focus on self-awareness and employ several experiential exercises and self-assessment instruments, including the Campbell Leadership Index (CLI), Myers-Briggs Type Indicator (MBTI), the Fundamental Interpersonal Relations Orientation-Behavior (FIRO-B), the Kirtou Adaptation/Innovation inventory (KAI), and the Ambiguity Preference Scale (APS). Students are also trained in giving 360-degree feedback from the faculty adviser and/or CIR also meet as needed with the client, other team members, and the client's three 360-degree feedback from the faculty adviser, CIR, the client, and other team members.

NBA 571(5710) Cornell Management Simulation
Fall. 1.5 credits. Prerequisite: second-year M.B.A. students. Not open to students who have completed NBA 549. Letter grades only. S. Smidt.

This computer-based simulation is played by self-selected teams of four students who make marketing, production, and finance decisions for one of five companies operating competitively in the same industry. After the first week, during which the rules of the simulation are explained and the software used by each team is demonstrated, the teams make periodic decisions (meeting at their own convenience). At the beginning of the simulation, each team writes a strategic intent paper and, before the results of the last decision are revealed, each student in the team writes an in-depth analysis of its performance and its strategy for the future in a "board of directors" (BOD) meeting. Grades are based on the value created for the company's shareholders (relative to other firms in the industry), the team's strategic intent paper, and the instructor's evaluation of the team's performance at the BOD meeting. Meetings are periodic throughout the semester.

NBA 572(5720) Environmental Management Policy
Fall. 1.5 credits. D. Chapman
The seminar assists students in remaining current with the rapidly evolving state of the art in the analysis and management of environmental policy and practice in enterprises. Although it focuses on the private sector, it also gives an understanding of the economic basis for government's role in environmental protection. Another focus is the analysis of the operational significance of the concepts of sustainability, ecoefficiency, and market-based environmental policies. Seminar speakers from finance, marketing, electricity, forest products, construction, and other businesses with environmental responsibilities meet with the class. Readings and Harvard Business School (HBS) case studies are distributed throughout the semester. Each student makes a case study of an individual enterprise or organization.

NBA 573(5730) Seminar in Sustainable Development
Spring. 1–3 credits, variable. A. McAdams. Involves readings and discussion of issues related to environmental management and features four significant outside speakers on the subject of environmental management. (Students interested in doing consulting projects in environmental management are accommodated in NBA 575 Management Projects.)

NBA 575(5750) Management Projects
Fall, spring (yearlong). 3 credits. A. McAdams, J. Thomas, and R. Allen. Designed to apply consulting processes to real business projects. Students form consulting teams focused on specific strategic, process improvement, or operational problems in companies. A faculty member and the consultant in residence (CIR) advisers, are closely engaged in the teams' work. The teams meet with the faculty advisers weekly. Sessions focus on cross-team learning about the application of the consulting process to a variety of consulting engagements. The faculty adviser and/or CIR also meet as needed with each team to work through present problems and issues presented by each consulting project. Projects include local small-business clients, not-for-profits, Big Red Incubator, and large national and multinational companies. At the end of the project, each student and team receive a 360-degree feedback from the faculty adviser, CIR, the client, and other team members.
NBA 578(5780) Consulting Process
Fall, spring, half semester. 1.5 credits. R. Allen.
Focuses on understanding and applying the basic consulting process by covering the elements of a consulting engagement, including selling the engagement, scoping the project, contracting with the client, forming the consulting team, creating consultant/client work teams, defining deliverables, developing a work plan, conducting analysis, creating a management recommendation plan, managing the project, overcoming resistance and barriers, developing recommendations, presenting the deliverables, implementation plan, and developing potential follow-on work. The case-based interviews, real client engagements, and real client engagement, examining the consulting process from the perspective of the case. Several guest speakers from the consulting engagement add both client and consulting perspectives. The course is intended for students with no or limited consulting experience who have an interest in exploring consulting as a career or who want to sharpen their analytical and organizational skills.

NBA 579(5790) Cases in Business Strategy
Fall. 1.5 credits. Prerequisite: second-year M.B.A. students. J. Suwinski.
Focuses on the process of effective strategy formulation from the perspective of the general manager of a business unit. Discusses corporate strategy and its interaction with business unit strategies; tools for industry and company analysis; and situational analysis. Complements the core strategy course, with emphasis on understanding and practicing frameworks that are useful in case-based interviews. Draws heavily on the instructor's experience developing strategy for numerous businesses at Conning Incorporated. Guest speakers from industry and strategy consulting firms and from industry present their approaches to strategy and discuss the analytical tools they find most effective in working on business strategy. Students gain experience, via assigned cases, in analyzing business problems/opportunities, using the strategic models to formulate effective business strategies, and in presenting their recommendations in written and oral form. A major case write-up and presentation in a mock board environment at the end of the course. Each student an opportunity to play the role of a strategy consultant working on a real case.

International Management
NBA 524(5240) Macroeconomics and International Trade
Spring. 3 credits. I. Azis.
Applies basic macroeconomic theory to such problems as inflation, unemployment, economic growth, and productivity and examines how these problems interact with international trade and finance. Students learn to be informed observers of national and international policies and the economic analyses and forecasts.
NBA 548(5480) International Political Risk Management
Spring. 1.5 credits. E. Iankova.
When investments remain domestic political risks are easier for executives to understand and manage. International business opens executives to new forms of risk and to risks that are less well understood. New political cultures, government instability, unpredictability in local tax and regulation regimes, corruption, civil unrest, globalization of trade and economic integration, increasing power of transnational social movements, and international terrorism have raised new challenges. M.K. has demanded new management strategies.
The aim of this course is to introduce students to the political risks involved in international business operations and to develop strategies useful in understanding the field of international political risk analysis and management. The course focuses on the various techniques used by risk assessment agencies in their attempt to assess and analyze political risk on a global scale, and the various strategies used by foreign investors in their attempt to manage political risks.
Through a combination of readings, lectures, and case discussions, the course further intends to develop practical skills in evaluating and assessing political risk on a global scale.

NBA 576(5760) World Geopolitical Environment of Business
Fall. 3 credits. J. Katz.
The geopolitical face of the world is changing at a pace that few could have envisioned even five years ago. The unification of Germany, the fall of the Berlin Wall, the dissolution of sweeping economic restructuring in the former Soviet Union, the move toward democracy with market economies in eastern Europe, the movement of Europe toward a unified economy, and the transitions in reform and its implications in China are just a few examples of the changing world environment of business. Topics include developments in western and eastern Europe, the former Soviet Union, the Pacific Rim, China, and South America, and the Middle East and the role and fate of developing countries in the world economy. Guest speakers include leading scholars from Cornell and other universities and leaders in business and government.

NBA 580(5800) Strategies for Global Companies
Fall, spring. 3 credits. Can be used to fulfill strategy requirement. A. McAdams.
Initially, students explore the role of government in several private-market industrialized nations: the U.S., Japan, France, Germany, the United Kingdom, and Italy—for lessons the United States might learn and use. Students investigate the impact of each of those countries of government policies on the global competitiveness of the country's firms. Special emphasis is given to differential policies appropriate to each of a range of industrial sectors from the mature to the high tech (including computers, telecommunications, and electronics), and to stages of development in each economy. Possible lessons are then tested for less developed countries that might include Venezuela and Malaysia and newly emerging countries such as Singapore. Classes are run in a discussion format.

NBA 584(5840) International Competitive Strategy
Fall and spring. 1.5 credits. J. Katz.
Focuses on the development of competitive strategies in the global environment—including the identification of internationally relevant strategic groups, the movement and use of resources to gain competitive advantage, and strategies to confront competitors, both domestic and multinational.

NBA 586(5860) Cross-National Management
Fall. 1.5 credits. J. Katz.
Focuses on the differences in managerial style across countries and develops skills to deal with these differences. The material is applicable to all countries, though two specific countries are highlighted each semester.

NBA 587(5870) International Mergers and Acquisitions
Spring. 1.5 credits. J. Hanks.
Addresses the principal business and legal issues in cross-border mergers and acquisitions, including forms and techniques of combining two businesses, negotiation, pricing and other economic terms, due diligence, issuance of securities, antitrust, duties of managers, and the resolution of the transition economies in their complexity. A graded work is a written proposal for an M&A transaction between two existing companies in different countries prepared by small teams. Proposals are based on publicly available financial, business, and/or other documents and data and any other information obtained. The goal of the written work is to simulate the process in which business people, investment bankers, and lawyers work together to structure transactions across national borders.

NBA 590(5900) Business in Transition Economies
Fall. 1.5 credits. E. Iankova.
Explores business development and strategy in the transition economies of central and eastern Europe, Russia and the Commonwealth of Independent States, and China. Trace the divergence in the processes of political democratization and economic restructuring, with a special emphasis on marketization, liberalization, and privatization issues. Specifically examines the emergence and institutionalization of new business organizations in the course of economic restructuring, as well as foreign investment trends and foreign investors strategies in various transition economies. More specific issues of entrepreneurship, management and marketing, enterprise employment relations and human resource management, as well as the impact of culture are also discussed. To understand better the pressures for change in these organizations and ventures operating in different transition countries and sectors of the economy.

NBA 592(5920) Experience in International Management
Fall, spring. 1.5 credits. Fee charged for required faculty-approved study trip. J. Katz.
Combines classroom sessions and international experience with an increased awareness of business environments outside the United States. On trips, students visit local businesses, subsidiaries of foreign multinationals, government officials, local business school students, and others. Students also must attend two pre-trip meetings (1 1/4 hours each) and two Saturday meetings during spring semester (2 1/2 hours each). Those meetings are used to present information on international business conditions, industrial structures,
management styles, and also to develop cross-cultural skills. A final paper, integrating the material learned in the classroom with their experiences, is required.

NBA 593(5930) International Entrepreneurship
Spring. 1.5 credits. M. Goldman. Venture capital firms, corporate venture funds, and "angels" have understood the financing of high-growth start-up activities outside of their countries of origin. This course provides an overview of the diffusion of entrepreneurship institutions outside of the United States vis-à-vis traditional forms of start-up finance (i.e., family backing, intrapreneurship). It also focuses on the process of selecting, financing, managing, and exiting venture capital deals abroad. The course is designed to provide practical insights through the participation of guest speakers involved in various stages of international entrepreneurship activities (e.g., European venture capital funds in the United States, venture capital firms in Europe, U.S.-based venture capital, and "angel" initiatives investing abroad).

NBA 595(5950) Economics of Financial Crises
Spring. 1.5 credits. I. Aziz. Familiarizes students with the analysis of the causes, nature, and consequences of financial crises, and equips them with tools of analysis to better understand the economics of financial instability and alternative strategies for dealing with them. The first part of the course concentrates on financial instability/crisis by way of explaining the empirical episodes of the crisis in various emerging market countries, and elucidating the relevant theoretical concepts in each of the cases. The second part is devoted to discussions of post-crisis episodes, emphasizing the different paths of recovery and major policy responses to the crisis. The latter includes financial and monetary policies and the unsettled relationship between interest rates and exchange rates.

NBA 599(5990) Business in the European Union
Fall, full semester. 1.5 credits. E. Iankova. Explores the impact of the process of European integration on business organization and strategy. The foundations, institutions, and common policies of the European Union are discussed first. The course further examines how the establishment of the Economic and Monetary Union and the 2004 enlargement to the east are shaping the strategies of multinational corporations with operations in Europe. To understand better the pressures for change in a "deepening" and "widening" European Union in their complexity and entirety, students become personally involved in problem-solving through issue and case discussions, such as determinants and policy implications for businesses, markets, and public institutions, and the general public. Electronic commerce involves a wide variety of cooperating technologies (e.g., communications, networks, expert systems, and multimedia) and affects a wide variety of managerial issues. It created a new emphasis on information technologies and systems in management, led to the development of new technologies and new combinations of existing technologies to support management; and occasionally radically altered business practices and the role of management. Students in this course learn to conduct economic transactions and manage businesses on the Internet. All major technical and managerial issues are covered through computer exercises on the Internet and case studies and examples of businesses on the Internet.

NBA 608(6080) The Business of Biotechnology: Taxonomy and Analysis
Spring. 1.5 credits. B. Ganem. Breakthrough scientific discoveries in biotechnology will continue to drive medical advances in the new millennium. As it now enters the post-genomic era, the field of biotechnology comprises some 1,400 U.S. companies having $13 billion in worldwide sales and $10 billion in research expenditures. This broad spectrum of biotech businesses presents numerous challenges to professional securities analysts attempting to track progress and map future growth in this sector. This course introduces GSOM students to the main scientific advances in modern biotechnology and life sciences research, with the dual goals of developing new organizational models of this corporate sector and helping students perform financial and business evaluations of current and emerging technologies more effectively.

NBA 612(6120) Disruptive Technologies
Fall. 3 credits. Priority given to students with technology of science backgrounds. Prerequisite: working knowledge of computers. D. Greenberg. Begins by presenting historical technological advances that created major paradigm shifts for communications. Presents advances in computer technology emphasizing the fundamentals behind the increases in processing power, video and computer graphics capabilities, speech recognition, and networking transmission. The second half of the course covers the effect of these scientific advances on many discipline-specific areas including photography, the film industry, the entertainment and animation industry, television broadcasting, publishing, and the computer industry itself. Sessions are devoted to the social and legal issues rising from the rapid changes in telecommunications. In attempting to predict the disruptive changes of the future, it is best to understand the technologies themselves. The course is especially tailored to a business school
and industrial concerns and has interactive live demonstrations at the state-of-the-art laboratory of the Program of Computer Graphics. No prior knowledge of computer science is required.

Management and Organizations

NBA 522(5220) Negotiations: The Global Perspective
Spring. 3 credits. Students must attend first class and all classes in which they are enrolled. W. Adair.
Covers all the topics in NBA 666 with a focus on issues particular to an international setting. These include culture (e.g., its effect on strategy, goals, communication), government at the table, currency issues, and ethics. The capstone exercise is a two-party cross-cultural team negotiation matching a student's native culture with that of his or her classmates.

NBA 538(5380) Inclusive Leadership
Prepares students for the organizations of today and the future. Includes readings, discussions, and activities that explore diversity, barriers for nontraditional employees, and what is needed to change them. Assignments prepare students for inclusive leadership to address systemic barriers on organizational and personal levels. Students have the opportunity to work with major companies such as Lincoln Financial, Shell, Citigroup, Merck, JP Morgan Chase, IBM, General Mills, Sun Microsystems, BMS, and Johnson & Johnson to explore these issues.

NBA 663(6630) Managerial Decision Making
Fall. 3 credits. J. Russo.
Presents practical concepts from the behavioral sciences that can serve as guides to managerial action. Uses lectures, cases, and exercises to acquaint students with new perspectives on decision making, critical thinking, problem solving, and group processes. Taken together, these perspectives offer a trouble-shooter's guide to the uncertainty, complexity, and conflict in the business world.

NBA 666(6660) Negotiations
Fall, spring. 3 credits. Staff.
Judgment is the art and science of transforming perception into thought or opinion. Negotiation is the art and science of securing agreements between two or more interdependent parties. The purpose of this course is to understand the theory and processes of negotiation as it is practiced in a variety of settings. It is designed to complement the technical and diagnostic skills learned in other courses. A basic premise is that while a manager needs analytical skills to develop optimal solutions to problems, he or she also needs a broad array of negotiation skills for these solutions to be accepted and implemented. The course highlights the components of an effective negotiation and teaches students to analyze their own behavioral patterns. It is largely experiential, giving students an opportunity to develop their skills by participating in negotiations and integrating their experiences with the principles presented in the assigned readings and course discussions.

NBA 668(6680) Leading Teams and Organizations
Fall. 3 credits. Priority given to M.B.A.s. M. Thomas-Hunt.
Focuses on general principles for successfully leading teams and organizations. The personal development course is NBA 570. Draws on the latest research in team decision making and organizational leadership to address questions such as: what is the difference between leadership and management? how does a leader negotiate trust and commitment to an organization? and how do leaders transform organizations? Consists primarily of case studies of leaders but also includes some experiential and group activities. Grading is based on class participation, group case analyses, and a final individual case analysis. Priority is given to MBAs.

NBA 670(6700) Perspectives on Leadership
Fall. 1.5 credits. D. Radcliffe.
What is leadership? What are its recognized styles? What are the attributes associated with these leadership styles? How are leadership traits and abilities manifested in different organizations and social environments? This course considers these and other perspectives on leadership. Most class sessions are discussions of cases comprising excerpts from classic texts in literature, politics, and philosophy. Each case also includes both a contemporary article exemplifying themes found in the classic work and a brief review of relevant leadership theory. The course begins by examining Louis Gerstner's leadership in IBM's major turnaround in the early 1990s. This case serves as a springboard for examining two recent contributions to leadership studies: Daniel Goleman's research on emotional intelligence and Howard Gardner's cognitive approach to leadership. The final paper invites students to work out their own views on leadership.

NBA 671(6710) Business Ethics
Fall, spring. 1.5 credits. D. Radcliffe.
Poor moral judgment can ruin a manager's career or even sink a company. In general, an organization cannot survive without the trust of numerous stakeholders, and ethical lapses destroy trust and threaten vital stakeholder relationships. In today's volatile and fiercely competitive business environment, a manager must be able to identify and effectively resolve ethical issues that inevitably arise in the pursuit of business (and career) objectives. This course is designed to enhance students' skills in moral reasoning as it applies to managerial decision-making. It begins by examining normative concepts and principles that typically underlie moral reasoning, then uses those concepts and principles to analyze cases. Discussions seek to understand the moral issues confronting the decision makers in the cases and explore how those issues might be addressed in an ethically responsible way.

NBA 672(6720) Goal Setting and Coaching for Leadership Success
Fall. 1.5 credits. P. Stepp.
Designed as a follow-up to NBA 570 Leadership Assessment for Managers. Provides structured support for personal change through personal learning plans, learning and development strategies, and feedback and coaching support from peers. Includes a workshop on establishing a personal values statement to help guide personal learning plans and align them with career aspirations. Employs a web-based, follow-through support system to facilitate further leadership growth by prompting students regularly to assess and document their progress. Learning coaching strategies and feedback strategies, while guided by environmental conditions, also seek to anticipate, exploit, and sometimes shape changes in the
The successful introduction of new products requires careful planning and systematic screening and testing. This course covers methods and models that are useful to managers in the development and marketing of new products. Heavy emphasis is placed on the measurement of consumer preferences. Students are required to complete a group project, consisting of a measurement instrument, data collection (from at least 30 respondents), and data analysis, for a self-chosen product category. The method of instruction consists of a combination of lectures and discussion of cases and articles. Performance is evaluated primarily based on exams and the group project.

NBA 626/6260 Consumer Behavior
3 credits. Staff.
Topics include factors that influence response to advertising of various kinds, purchase decisions, product perceptions, response to promotion, consumer satisfaction, and the basic methodologies for understanding consumer behavior.

NBA 633/6330 Marketing and E-Commerce
3 credits. Y. Park.
Explores the effect of the Internet on marketing. Topics include an overview of the online industry, business models for the Internet, advertising on the Internet, marketing research on the Internet, loyalty programs for Internet marketing, and disintermediation or channel conflict resulting from Internet distribution. The course comprises industry speakers from Conduit, CSC, NetaCentives, H-P, 1st USA, Catalina marketing, Bausch and Lomb, and others. Course requirements include write-ups on a subset of speakers, and a final report and presentation on an Internet marketing issue of the student's choice. NBA 638/6380 is restricted to M.B.A. II's because the same information is available for M.B.A. I's in the strategy core.

NBA 639/6390 Data-Driven Marketing
3 credits. S. Gupta.
Deals with the use of data to make marketing decisions. Introduces concepts, methods, and applications of decision modeling to address marketing issues such as segmentation, targeting, positioning, promotions, advertising, and sales teller decisions. Unlike marketing courses that focus on conceptual material, this course provides skills to translate conceptual understanding into specific operational plans—a skill in increasing demand in organizations today. The course is particularly valuable to students planning careers in management consulting, marketing, and market research. It is designed for students who have some background in quantitative methods and have a willingness to deal with mathematical concepts.

NBA 692/6920 Economics of Pricing
1.5 credits. J. Johnson.
One of the most common and important decisions for a manager to make is the pricing decision. This course provides an economic perspective on the pricing decision. The goal is for students to learn to think rigorously about a variety of pricing issues. Specific topics include price discrimination, peak-load pricing, channel pricing, and durable goods pricing.

Operations Management
NBA 641/6410 Business Logistics Management
Spring. 3 credits. Prerequisite: NCC 508, ORIE 410, or permission of instructor. L. J. Thomas.
Covers supply-chain integration, which involves strategic management of the value chain from the perspective of the customer. Students discuss operations strategy issues that are important to both manufacturing and service. The course emphasizes written and oral communication skills. About a fourth of the classes are spent on case studies that are analyzed by small groups. There is one midterm exam, but the majority of the grade is evaluated based on projects and class participation. There is an option of replacing some assignments with a "live case," a project with a local company.

NBA 643/6430 Managerial Spreadsheet Modeling
Fall, spring. 1.5 credits. L. Robinson.
The goal of this hands-on, lab-style course, taught in the Parker Center, is to develop proficiency in quantitative modeling within the environment of Microsoft Excel. Students develop and use spreadsheets to analyze a variety of business problems. The course has two principal components: spreadsheets and modeling techniques. The techniques include principles of good spreadsheet design, the effective presentation of information through spreadsheets (including graphical controls like sliding bars), and advanced Excel features (e.g., data validation, conditional formatting, scenarios). Modeling topics include the art of finding the appropriate level of modeling detail, practice in dealing with vague and unstructured problems, sensitivity analysis, and working with incomplete and unreliable data.

NBA 647/6470 Advanced Spreadsheet Modeling
Fall. 1.5 credits. L. Robinson.
The goal of this hands-on lab course, taught in the Parker Center, is to develop proficiency with Excel's quantitative tools of Solver (for optimization) and Goal Seek (for simulation). Building on their brief introduction in the Managing Operations core course, students use these advanced tools to analyze problems and cases in finance, marketing, and operations. Although the bulk of this course is devoted to case analysis, occasional lectures introduce some advanced features of these two powerful modeling tools, including integer and nonlinear programming and sensitivity analysis, regression and correlation, and correlated random variables, scenario analysis, and valid statistical analysis within simulation.
technical details of various techniques for analyzing data; (2) expose students to "hands-on" use of various computer programs for carrying out statistical data analyses; (3) ask students to propose a model of consumer/ market behavior that potentially constitutes a contribution to the literature.

NRE 523(5230) Doctoral Seminar in International Business
Spring. 3 credits. A. Un.
Provides an overview of the evolution of the field of international management: its domain and professional organization, the key issues and how they have changed over time, and the evolving links between the approaches of this field and related disciplines. Readings focus on the classics of the field and some more recent work that both extends and challenges the established approaches. The seminar is organized in three parts that reflect the interdisciplinary character of international management research. The first and second parts review the existence of MNEs from the perspective of economics/political economy and sociology/organization studies. The third part reviews selected topics on the management of firms across different institutional environments and the impact of the transformation of those environments on firms.

FACULTY ROSTER
Adair, Wendi, Ph.D., Northwestern U. Asst. Prof., Management and Organizations
Bailey, Warren B., Ph.D., U. of California, Los Angeles. Assoc. Prof., Finance
BenDaniel, David J., Ph.D., Massachusetts Inst. of Technology. Don and Margi Berens Professor of Entrepreneurship
Bhojraj, Sanjeev, Ph.D., U. of Florida. Asst. Prof., Accounting
Bierman, Harold, Jr., Ph.D., U. of Michigan. Nicholas H. Noyes Professor of Business Administration
Bloomfield, Robert J., Ph.D., U. of Michigan. Assoc. Prof., Accounting
Botti, Simona, Ph.D., U. of Chicago. Asst. Prof., Marketing
D'Souza, Julia, Ph.D., Northwestern U. Assoc. Prof., Accounting
Dyckman, Thomas R., Ph.D., U. of Michigan. Ann Whitney Olin Professor of Accounting
Farahat, Amr A., Ph.D., Massachusetts Inst. of Technology. Asst. Prof., Operations Management
Frank, Robert, Ph.D., U. of California, Berkeley. Prof., Economics
Gavirneni, Srinagesh (Nagesh), Ph.D., Carnegie Mellon U. Asst. Prof., Operations Management
Greenberg, Ronald F., Ph.D., Cornell U. Prof., Management Information Systems
Grinstein, Yanim, Ph.D., Carnegie Mellon U. Asst. Prof., Finance
Gupta, Sachin, Ph.D., Cornell U. Assoc. Prof., Marketing
Hart, Stuart, Ph.D., U. of Michigan. Samuel C. Johnson Chair in Sustainable Global Enterprise; Prof., Management
Hass, Jerome E., Ph.D., Carnegie-Mellon U. Prof., Finance and Business Strategy
Hilton, Ronald W., Ph.D., Ohio State U. Prof., Accounting
Hochberg, Yael V., Ph.D., Stanford U. Asst. Prof., Entrepreneurship and Finance
Hribar, S. Paul, Ph.D., U. of Iowa. Asst. Prof., Accounting
Hutterenlocher, Daniel P., Ph.D., Massachusetts Inst. of Technology. John F. and Rilla Neasey Professor Computing and Information Systems and Business
Ilsen, Alice M., Ph.D., Stanford U. S. C. Johnson Professor, Marketing
Jarow, Robert A., Ph.D., Massachusetts Inst. of Technology. Ronald P. and Susan F. Lynch Professor of Investment Management; Prof., Finance and Economics
Johnson, Justin, Ph.D., Massachusetts Inst. of Technology. Asst. Prof., Economics
Kadiyali, Venda, Ph.D., Northwestern U. Assoc. Prof., Marketing and Economics
Lee, Charles M. C., Ph.D., Cornell U. Prof., Accounting and Finance, Henrietta Johnson Louis Professor of Management; Director, The Park Center for Investment Research
Libby, Robert, Ph.D., U. of Illinois. David A. Thomas Professor of Management, Prof., Accounting and Behavioral Science
Macey, Jonathan R., Ph.D., Yale U. J. DuPrau White Professor of Law, Prof., Business Administration
Mannix, Elisabeth, A., Ph.D., U. of Chicago. Assoc. Prof., Management and Organizations
McAdams, Alan K., Ph.D., Stanford U. Prof., Managerial Economics
McClain, John O., Ph.D., Yale U. Prof., Operations Management
Michaela, Roni, Ph.D., New York U. Prof., Finance
Nelson, Mark W., Ph.D., Ohio State U. Prof., Accounting
O'Connor, Kathleen, Ph.D., U. of Illinois. Assoc. Prof., Management and Organizations
O'Hara, Maureen, Ph.D., Northwestern U. Robert W. Purcell Professor, Management, Prof., Finance
Orman, Levent V., Ph.D., Northwestern U. Prof., Management Information Systems
Park, Young-Hoon, Ph.D., U. of Pennsylvania. Assoc. Prof., Marketing
Rao, Vithala R., Ph.D., U. of Pennsylvania. Deane W. Malott Professor of Management; Assoc. Prof., Marketing and Quantitative Methods
Robertson, Lawrence W., Ph.D., U. of Chicago. Assoc. Prof., Operations Management
Sine, Wesley, Ph.D., Cornell U. Asst. Prof., Management and Organizations
Smith, Seymour, Ph.D., U. of Chicago. Nicholas H. Noyes Professor of Economics and Finance; Director, Leadership Skills Program
Stayman, Douglas M., Ph.D., U. of California, Berkeley. Assoc. Prof., Marketing
Swaminathan, Bhaskaran, Ph.D., U. of California, Los Angeles. Assoc. Prof., Finance
Thomas, L. Joseph, Ph.D., Yale U. Nicholas H. Noyes Professor of Manufacturing; Assoc. Dean, Academic Affairs
Thomas-Hunt, Melissa, Ph.D., Northwestern U. Asst. Prof., Management and Organizations
Un, Annique, Ph.D., Massachusetts Inst. of Technology. Asst. Prof., Management and Organizations
Waldman, Michael, Ph.D., U. of Pennsylvania. Prof., Economics; Charles H. Dyson Professor, Management

Weinbaum, David, Ph.D., New York U. Asst. Prof, Finance
Zhang, Xiaoyan, Ph.D., Columbia U. Asst. Prof., Finance

Lecturers
Katz, Jan, Ph.D., Massachusetts Inst. of Technology. Sr. Lec., International Business and Marketing
Mink, Barbara E., M.A., Cornell U. Sr. Lec., Management Communications
Rosen, Charlotte, Ph.D., Cornell U. Sr. Lec., Coordinator, Management Communications
Shulman, Zachary J. D., Cornell U. Thomas Clark Senior Lecturer of Entrepreneurship and Personal Enterprise, Sr. Lec., Entrepreneurship

Adjunct and Visiting Faculty
Grossman, Dale A., J.D., American U. Sr. Lec., Tax and Business Law
Schuler, Richard E., Ph.D., Brown U. Prof., Economics, Prof. Civil and Environmental Engineering
The Law School prepares attorneys for both public and private practice. Graduates are trained to provide the highest-quality professional services to their clients and to contribute to the development and reform of law and legal institutions. The curriculum is designed to prepare students for admission to the bar in all American states and territories. Students who pursue the three-year Doctor of Law degree (J.D.) must have a bachelor's degree or equivalent. Students wishing to concentrate in international law may be admitted to a program leading to the J.D. "with specialization in international legal affairs."

The Law School also offers a limited number of students an opportunity to earn both a J.D. degree and an LLM. (Master of Laws) degree in international and comparative law.

Students may pursue combined graduate degree programs with the Johnson Graduate School of Management; the Department of City and Regional Planning of the College of Architecture, Art, and Planning; the School of Industrial and Labor Relations; the graduate divisions in economics, history, and philosophy of the College of Arts and Sciences; the Université de Paris I (Pantheon-Sorbonne); l'Institut d'Etudes Politiques de Paris; and Humboldt University.

Each year a limited number of students from abroad pursue the LL.M. degree (Master of Laws) and the J.S.D. degree (Doctor of the Science of Law). A small number of law graduates also may be admitted as special students, to pursue advanced legal studies without seeking a degree. Students in other graduate programs and qualified undergraduate students registered with the university are welcome in many classes with the permission of the instructor. In addition, highly qualified undergraduates in the College of Arts and Sciences may register in the Law School during their senior year.

For further information, refer to the Law School web site, or contact the Office of the Registrar, Myron Taylor Hall. Course descriptions are current as of June 2005. For updated law descriptions visit: www.lawschool.cornell.edu

FIRST-YEAR COURSES

LAW 500(5001) Civil Procedure
- Full year. 6 credits. S-U option unavailable.

An introduction to civil litigation, from commencement of an action through disposition on appeal, studied in the context of the federal procedural system. Also, a detailed consideration of federalism and ascertainment of applicable law; jurisdiction, process, and venue; and former adjudication.

LAW 502(5021) Constitutional Law
- Fall. 4 credits. S-U option unavailable.

A study of basic American constitutional law, including judicial review, some structural aspects of the Constitution as developed particularly in light of the passage of the Civil War amendments, and certain of its rights provisions.

LAW 504(5041) Contracts
- Full year. 6 credits. S-U option unavailable.
- R. A. Hillman, R. S. Summers.

An introduction to the nature, functions, and processes of exchange, contract, and contract law. The course focuses on the predominant rules and principles governing contract and related obligation, including the substantive reasons underlying the rules and principles.

LAW 506(5061) Criminal Law
- Spring. 4 credits. S-U option unavailable.
- S. P. Garvey, T. W. Morrison.

An introductory study of the criminal law, including theories of punishment, analysis of the elements of criminal liability and available defenses, and consideration of specific crimes as defined by statute and the common law.

LAW 508(5081) Lawyering
- Full year. 4 credits. S-U option unavailable.

Introduces first-year students to lawyering skills, with primary emphasis on legal writing, analysis, and research. In the context of a law office, students create some of the essential legal writings that lawyers produce. Students determine and investigate the essential facts to support their client's case by interviewing or deposing various witnesses. Students may also write a client letter, using plain English to explain to their client the law and the merits of the case, and advise the client on the best course of conduct. Finally, students develop their oral and written advocacy skills and start thinking about litigation strategy by researching and writing persuasive memoranda or legal briefs for a trial or appellate court. At the end of the year, students orally argue their case. Instruction occurs not only in class meetings but also in individual conferences. Each student receives extensive editorial and evaluative feedback on each written assignment.

LAW 512(5121) Property
- Spring. 4 credits. S-U option unavailable.

Course in basic property law covering acquisitions of rights in property, estates in land, concurrent ownership, landlord/tenant relations, and regulation of land use.

LAW 515(5151) Torts
- Fall. 4 credits. S-U option unavailable.

An introduction to the principles of civil liability in the tort field: intentional wrongs, negligence, and strict liability. Attention is also given to the processes by which tort disputes are handled in our legal system.

GRADUATE COURSES

LAW 607(6071) Advanced Legal Research—U. S. Legal Research for LL.M. Students
- Fall, first 6 1/2 weeks of semester. 1 credit. Graduate program grading—H, S, U. Limited to graduate students. Limited enrollment. P. G. Court.

Introduces LL.M. students to basic legal research in U.S. materials that are valuable to them in their course work at Cornell and in practice. The focus is on understanding and finding primary legal sources, including statutory codes, session laws, administrative regulations, and court decisions, as well as explanatory materials, such as law reviews and treatises. To a large extent, instruction uses online materials that are most likely to be available to the students in their future careers. There are short introductory lectures, as well as hands-on computer lab and Reading Room sessions. Students complete five assigned exercises using the resources learned in class, and there is no final exam. The final grade is based on the five assigned exercises (20% each).

LAW 622(6221) Contracts in a Global Society
- Fall. 4 credits. Graduate program grading—H, S, U. Limited to graduate students. T. Allen.

Designed for foreign-trained lawyers who are familiar with basic contract law in their own country. It surveys the Anglo-American common law of contracts and related civil obligations. The pedagogic approach focuses on the case method and is Socratically based, similar to the traditional first-year course in Contracts. Graduate students who wish to study contract law are generally expected to take this one-semester course. They are free to enroll instead in the first-year Contracts course, but if they do so, they must take that course for the full year.

LAW 676(6761) Principles of American Legal Writing
- Fall, spring. 2 credits. Graduate program grading—H, S, U. Limited enrollment. Limited to graduate students. I. Knight.

Introduces foreign-trained lawyers to the American legal system and essential principles of legal writing in the U.S. Students have an opportunity to practice some of the forms of writing common to American legal practice, by drafting documents such as client letters, memoranda, briefs, and pleadings, in the context of representing hypothetical clients.
LAW 899(8991) Thesis
Fall, spring. 5 credits. Graduate program grading—H, S, U; J.D./LL.M. program: S-U option unavailable. Limited to graduate students and students completing the joint J.D./LL.M. program. Arrangements for a master's thesis are made by the student directly with a faculty member, who may require the student to submit a detailed outline of the proposed thesis, as well as a summary of previous writing on the subject or other appropriate information. The work is completed during the academic year under the supervision of a law faculty member.

LAW 990(9901) Graduate Research
Fall, Spring. Limited to J.S.D. students.

UPPERCLASS COURSES

LAW 600(6001) Accounting for Lawyers
Spring. 2 credits. S-U option available. R. A. Sarachan.
An introduction to the basic concepts and fundamentals of financial accounting. The focus is on (1) accrual accounting concepts, principles and conventions, (2) presentation of financial statements, (3) interpretation and analysis of financial statements, and (4) use and misuse of accounting information. The goal of the course is to enable students to critically review a company's financial statements. It is intended primarily for students with little or no prior background in bookkeeping or accounting and is limited to students who have had no more than 6 credit hours of accounting (or its equivalent) or permission of instructor.

An introduction to the constitutional and other legal issues posed by the modern administrative state. Topics include: procedural due process, separation of powers, procedural modes of administrative policymaking, judicial review of agency action; and the oversight and control relationships between agencies and Congress or the President. The course provides a working familiarity with the fundamentals of administrative procedure, as well as a larger inquiry into the role of agencies in our constitutional system—and the effect of legal doctrine on shaping that role.

LAW 606(6061) Advanced Legal Research—International and Foreign Law
Fall. 2 credits. S-U option available. Limited enrollment. J. Mills.
Globalization has led to the internationalization of the practice of law. This course provides an overview of research resources, methods, and strategies for international and foreign law. Topics include both public and private international law, the European Union, and the United Nations. The course includes lectures followed by computer lab and library training sessions. Selected readings are available online and on reserve; there is no required textbook. There are seven assignments of equal weight on material covered in class, but no final exam.

LAW 610(6101) Antitrust Law
Fall. 3 credits. S-U option unavailable. G. A. Hay.
The antitrust laws of the U.S. protect competitive markets and limit the exercise of monopoly power. Topics include: price fixing, boycotts, and market allocation agreements among competitors; agreements between suppliers and customers; joint ventures; monopolization; and mergers.

LAW 612(6121) Bankruptcy
Spring. 3 credits. S-U option unavailable. Not open to students who have taken Debtor-Creditor Law. T. Eisenberg.
Selected topics in the law of bankruptcy. An overview of the various bankruptcy chapters and a detailed study of the bankruptcy provision of most general applicability. The relationship between the rights of an Article 9-secured creditor and the bankruptcy trustee's power to avoid liens. Related topics in the enforcement of money judgments and the law of fraudulent conveyance.

LAW 613(6131) Business Organizations (formerly Corporations)
Fall, Spring. 4 credits. S-U option available. Limited enrollment. R. C. Hockett, M. A. Perino.
An introduction to the legal rules and principles, as well as some of the economic factors, that shape the productive enterprise in the U.S. The principal focus is on the large, publicly traded corporation that dominates much of the U.S. business environment—in particular, its financing, its control, and the conflicting interests that the form must mediate. Legal topics include shareholder and executive compensation, basic fiduciary obligations, shareholder voting rights, shareholder suits, corporate action, and control transactions. We also devote some attention to partnerships, closely held corporations, and other business forms, and take note of particular industries' and divergent (generally, non-American) jurisdictions' dominant forms of productive organization, to place what is distinctive about the principal American form into broader relief. No prior background in business law or economics is assumed.

LAW 615(6151) Chinese Law
Spring. 3 credits. S-U option available. J. Grimheden.
An examination of the law and practice in contemporary PRC. After a brief overview of Chinese legal history and legal development, the course covers specific sections devoted to the overall legal reform, the status and reform of legal actors, and various aspects of commitment and compliance with international human rights standards. A section also deals with Chinese law in a comparative perspective—how it is and has been viewed in China and outside. Much of the course material consists of academic articles as well as various reports by for example the United Nations. Chinese case law, statutes and other documents are also examined. The course ends with a discussion of possible scenarios on the future of legal development in China.

LAW 615(6154) Comparative Law: Asian Legal Systems
Spring. 3 credits. S-U option available. A. Riles.
A consideration of elements and motifs of (1) legal systems of the Asia Pacific region; and (2) the discipline of comparative law—its aims, tradition, methods and achievements. The course uses materials and problems from the Asia Pacific region reflexively and programmatically on a disciplinary project that traditionally defines itself in predominantly Euro-American terms. The course also aims to provide students with a prism for thinking about legal questions in their own traditions through the comparison of other cultures and conceptions of law. Each student writes a 12- to 15-page paper the aim of which is to provide an interesting reading of the materials for the week that develops the methodological, disciplinary, and substantive problems of the discipline of comparative law. The paper is due Monday of the week's readings that it addresses and counts for 30% of the final grade. There also is a final take-home examination of not more than 12 typed, double-spaced pages. Ten percent of the final grade depends on class participation.

LAW 616(6161) Comparative Law: The Civil Law Tradition
Spring. 3 credits. S-U option available. M. Lasser.
An introduction to the institutional and conceptual organization of "civil law" legal systems (which govern most of Western and Eastern Europe and Latin America, as well as significant portions of Africa and Asia). The course thus provides a broad survey of "civilian" private law and procedure, criminal procedure, administrative law, and constitutional law. The course is particularly interested in the differences between common law and civil law under both historically and in comparison of the relationship between law-making, legal interpretation, and the judiciary.

LAW 619(6191) Conflict of Laws
Spring. 3 credits. S-U option available. G. J. Simon.
Focuses primarily on the choice-of-law methods used by courts in the U.S. to decide the applicable law in cases that, in their parties or events, involve more than one state or country. The course examines in detail the nature, logic, and constitutionality of such methods. In addition, the course devotes substantial attention to recognition and enforcement of judgments and, in particular, to the obligation imposed by the Constitution's Full Faith and Credit Clause to respect the judgments of other states' courts.

LAW 620(6201) Constitutional Law II: The First Amendment
Spring. 3 credits. S-U option available. S. H. Shiffrin.
A comprehensive discussion of freedom of speech, press, and association. The free-exercise-of-religion clause and the establishment clause of the First Amendment are treated less extensively.
LAW 624(6241) Corporate and White Collar Crime
Fall. 3 credits. S-U option available.
S. P. Garvey.

An examination of some of the principal statutes used to prosecute corporate and white collar crime. Theories of liability we consider include traditional white collar offenses like mail and wire fraud, insider trading, false statements to procurement, and obstruction of justice. They also include more recent entries into the field such as RICO, money laundering, and laws enacted to combat government contract fraud. In addition the course provides an introduction to key leading the workings of the Federal Sentencing Guidelines.

LAW 626(6261) Criminal Procedure I
Fall. 3 credits. S-U option available.
J. H. Blume.

A survey of the law of criminal procedure, with emphasis on the constitutional constraints that regulate the pretrial stage of the criminal process. More specifically, the course focuses on the law of interrogations and confessions, the admissibility of evidence, and the right to counsel throughout all stages of the criminal process.

LAW 626(6262) Criminal Procedure II
Spring. 3 credits. S-U option available.
Students may enroll in Criminal Procedure II who have not previously taken Criminal Procedure I.
S. D. Clymer.

Covers federal constitutional and statutory rules that govern the criminal justice process from the post-arrest court appearance through trial and sentencing. Topics include bail and pretrial detention; the charging decision; discovery, including the prosecutor's obligation to disclose exculpatory evidence; plea-bargaining and guilty pleas; the defendant's right to speedy indictment and trial; jury selection; the defendant's right to remain silent at trial; the defendant's right to present evidence and confront witnesses; and sentencing.

LAW 630(6301) Directed Reading
Fall, spring. 1 or 2 credits. S-U option only. Arrange directly with instructor. Registration form available from registrar's office or instructor's office.

An examination of a topic through readings selected by arrangement between the instructor and an individual student or group of students (not exceeding eight).

LAW 631(6311) Education Law
Spring. 3 credits. S-U option available.
P. S. Gavre.

Focuses on selected legal issues that arise in the public and private education context, with emphasis on the elementary and secondary school setting. Topics include the legal and policy dimensions of the rights of students, parents, educators, and the state with respect to such issues as access to, control over, and regulation of the education setting and institutions. Issues germane to equal education opportunity, school finance, and school governance and regulation receive particular attention.

LAW 632(6321) Employment Discrimination and the Law [also ILRCB 664]
Fall. 3 credits. S-U option available.
R. Lieberwitz.

A study of laws against employment discrimination based on race, religion, sex, national origin, age, and disability.

LAW 633(6331) Employment Law
Spring. 3 credits. S-U option available.
A. Hyde.

A survey of common law doctrines and selected federal statutes affecting the employer-employee relationship, but not including union formation and collective bargaining. Common law topics include: the "employment at will" rule and its exceptions; employee duties of loyalty, trade secrets, covenants not to compete, and other post-termination obligations; and employee reputation and privacy interests. Constitutional topics include free speech and privacy rights of public employees. Federal statutory topics include hiring obligations to the Employee Retirement Income Security Act, and other federal antidiscrimination law or the Occupational Safety and Health Act.

LAW 636(6361) Environmental Law
Spring. 3 credits. S-U option unavailable.

A survey of the major environmental laws, with a primary focus on federal statutes. The various sources of liability to both individuals and corporations from common law, statutory provisions, administrative regulation and enforcing or mass media. Corporate successor liability through mergers and acquisitions is included, including the increasing importance of performing a full range due diligence review for environmental conditions in such transactions. Special attention is paid to the economic, social, and political obstacles to efficient regulation of the environment.

LAW 640(6401) Evidence
Fall, spring. 3 credits. S. D. Clymer. S-U option available. Limited enrollment. F. E. Ross.

The rules of evidence in civil and criminal cases with emphasis on relevance, hearsay, authentication, witnesses, and experts. The course focuses on the Federal Rules of Evidence, with some attention to how they diverge from the common law.

LAW 642(6421) Family Law
Fall. 3 credits. S-U option available.
R. Graycar.

An examination of data around the organization of families and evaluation of assumptions and beliefs about the appropriateness of several current laws regulating families. We examine the evolution of our society's understanding of and expectations for marriage, as well as shifts over the past several decades in the nature of and justification for state regulation of that institution. Substantial attention is devoted to the social and legal consequences of marriage-dissolution. Other topics include: definitions, policy, and trends in American family law; the legal significance of marriage rights and obligations; private ordering within the marital context; and non-marital relationships and their regulation.

LAW 643(6431) Federal Courts
Spring. 4 credits. S-U option available.
Prerequisite: Constitutional Law and second semester of Civil Procedure. Students without such background should consult the instructor. C. R. Farina.

An examination of the various constitutional and judge-made doctrines that control access to the federal courts to vindicate federal rights. It is particularly valuable for those planning a career in public interest or the public sector, anyone else expecting to litigate extensively in federal court, and students who have or hope to obtain a judicial clerkship. Topics include: case or controversy limitations, including standing; constitutional statutory limits on jurisdiction; causes of action for constitutional and statutory rights, including 42 U.S.C §1983 and Bivens actions; bars to such actions, including the various abstention doctrine and the emerging law on 11th Amendment and sovereign immunities.

LAW 644(6441) Federal Income Taxation
Fall, spring. 4 credits. S-U option available. Limited enrollment. R. A. Green, T. Seto.

A basic course designed to develop understanding of tax concepts and ability to work effectively with the Internal Revenue Code, regulations, cases, and other tax materials.

LAW 646(6461) Financial Institutions [formerly Banking Law]
Fall. 4 credits. S-U option available. Not open to students who have taken Banking Law and Regulation. R. C. Hockett.

An introduction to the regulatory structures, as well as some of the economic and technological factors, that pattern the conduct of financial intermediation in the U.S. The principal focus is on commercial banks, and to a slightly lesser extent investment companies, insurance companies, pension funds and securities firms in so far as these institutions discharge a common set of economic functions and give rise to a common set of systemic economic risks. We also devote some attention to "alternative" financial service providers and take note both of divergent jurisdictions' dominant modes of financial intermediation and of the "globalization" of finance, both to place what is distinctive about the dominant American forms into bolder relief and better to understand the forces operating behind recent and still unfolding changes to the American (and global) financial and finance-regulatory environments. No prior background in financial law or economics is assumed.

LAW 647(6471) Health Law
Fall. 2 credits. S-U option available. H. R. Beresford.

Considers legal aspects of the organization, financing, and distribution of health care in the U.S. Emphasizes issues of privatization, costs, and quality, and addresses the use of regulation, litigation and market-driven strategies to confront emerging problems. Readings are from a health law casebook, supplemented by occasional handouts of current materials. The goal is to convey an appreciation of the challenges involved in providing health care to those in need and of the role of law and lawyers in meeting these challenges.

LAW 648 (6481) The History of the Common Law in England and America
Spring. 3 credits. S-U option available.
B. Meyler.

An examination of the history and theory of the common law with the aim of demonstrating its continuing relevance. Three principal themes run through the course: (1) the different components of the common law, (2) the construction of legal rules, and (3) the nature of the legal order. The first traces the substantive and procedural evolution of the common law from its early English roots and roots to its role in the American legal system today, with particular emphasis on the 16th through 17th centuries. Another thread emphasizes conceptions of
the common law, including both historical accounts derived from the writings of Sir Edward Coke, Jeremy Bentham, and Oliver Wendell Holmes, and more recent theoretical contributions by Guido Calabresi and Ronald Dworkin among others. Finally, the course examines certain central institutions of the common law, including the judge who follows precedent and the jury, and compares common law modes of adjudication with the alternative methods employed by the Chancellor in equity and judges in the civil law system. Source materials include historical cases and documents as well as secondary articles.

LAW 649(6491) The IPO Process and Deal Structure Alternatives (also NBA 563)
Fall. 3 credits. S-U option available. Prerequisite: Corporations/Business Organizations. Limited enrollment. J. Nozell

An in-depth look at initial public offerings and deal structures from a practitioner’s point of view. In addition to initial public offerings, the course covers: the applicable statutory framework, pre-offering corporate preparations, due diligence process, implementation of corporate governance policies appropriate for a public company, the offering registration process, liability under federal securities laws, Securities and Exchange Commission review process, underwriting arrangements, selection of a trading forum, and the role of securities analysts. Regarding deal structures, the course explores: choosing an appropriate transaction structure, deal financing alternatives, due diligence, public company transaction issues, and crucial aspects of the acquisition, such as caps/collars, letters of intent, successor liability, continuity of employees, and noncompetition agreements and reacting to hostile bids.

LAW 650(6501) Insurance Law
Fall. 3 credits. S-U option available. M. Heyn

Provides a working knowledge of basic insurance law governing insurance contract formation, insurance regulation, property, life, health, disability, and liability insurance and claims processes. The emphasis throughout the course is on the links between insurance theory, doctrine, and modern ideas about the functions of private law.

LAW 651(6511) Intellectual Property
Spring. 3 credits. S-U option available. R. A. Pottinge

An introduction to the domestic and international context of intellectual property law with a review of state and federal law relating to intellectual property, principally copyright, patent, and trademark law. Intellectual property issues raised by new information technologies are emphasized throughout the course.

LAW 652(6521) International Business Transactions
Fall. 2 credits. S-U option available. L. M. Brennan

Overview of different commercial legal systems. Analysis of private and public law aspects of international business transactions, and the legal rules governing such transactions. Private international law transactions would include international sale of goods, international business documents. Selection of appropriate mechanism for international business.

Overview of Foreign Direct Investment, Debt Financing, and technology transfers. Review of the applicable dispute resolution mechanisms including issues such as governing law, choice of forum, and applicable treaties. Analysis of international complications of US law including US Foreign Corrupt Practices Act and US antitrust law.

LAW 653(6531) International Commercial Arbitration
Fall. 3 credits. S-U option available. Students who have taken the international commercial arbitration course in the Paris program need credit 1; all others receive 3 credits.) J. J. Barceló III.

A study of arbitration as a dispute resolution process for international trade and business disputes. The course analyzes institutional and ad hoc arbitration, the authority of arbitral panels, enforcement of agreements to arbitrate, challenging arbitrators, procedure and choice of law in arbitral proceedings, and enforcement of international arbitral awards. The course deviates from the international convention on the recognition and enforcement of international arbitral agreements and awards (New York Convention) and the UNCITRAL (U.N. Commission on International Trade Law) arbitral rules and model law. It focuses on commercial arbitration as an international phenomenon and not on arbitration under any particular national system.

LAW 656(6561) International Organizations and International Human Rights
Fall. 3 credits. S-U option unavailable. M. B. N'diolo

Comprises two segments: (a) international organizations and (b) International Human Rights. In the first segment, the course aims to provide a comprehensive legal analysis of problems concerning membership, the structure of the UN organization, and its functions in the context of the UN Charter. It also covers the applicable law of the UN, with specific reference to the UN Charter. The course further considers the structure, jurisdiction and functions of the International Court of Justice. The second segment, introduces the theory, norms, and institutions of international human rights, and the legal rights legal regime. The course explores the emergence and enforcement of international human rights norms, the international machinery for the protection of human rights in the world community including the UN Human Rights Committee, European Court of Human Rights, Inter-American Court of Human Rights, and International Criminal Court. Relevant decisions of these courts and of municipal courts are studied as well as basic documents.

LAW 658(6582) International Taxation
Fall. 3 credits. S-U option available. Prerequisite: Federal Income Taxation. T. Seto

An exploration of the U.S. tax treatment of aliens and foreign corporations that invest and earn income abroad and the U.S. tax treatment of aliens and foreign corporations which invest and work in the U.S.

LAW 659(6592) Labor Law
Fall. 3 credits. S-U option available. A. Hyde

This course focuses on federal law regulating employer collective action and labor unions. Topics include union organizational campaigns, strikes and other economic weapons, and the negotiation and enforcement of collective agreements. The course also considers issues involving employee group action without formal organization, or through organizations other than labor unions.

LAW 660(6601) Land Use and Zoning
Fall. 2 credits. S-U option available. S. Brock

An examination of the various legal tools used to control the environment in which people live and work. Zoning techniques are examined, including use districts, special use permits, planned developments, and variances. Private tools such as nuisance litigation are also considered. The course also explores constitutional limits on land use controls in many contexts.

LAW 614(6141) Law and Ethics of Business Practice
Spring. 3 credits. U option available. Pre- or co-requisite: Corporations/Business Organizations or (for graduate students) an equivalent course elsewhere. Satisfies professional responsibility requirement. Enrolling in this course does not prohibit enrollment in another professional responsibility course. J. Schwab.

Each week a distinguished guest lecturer from the business world would present a business-law problem. The problems cover a wide variety of topics, such as reincorporating a business from a foreign jurisdiction into Delaware, or complying with the Sarbanes-Oxley audit requirements. Students are assigned to teams. Over the course of the semester, each student wrote two-four 5-page papers on a particular week's topic and provide written comments on other student papers in the other weeks, as well as participate in class discussions. No final examination.

LAW 662(6621) Law and Social Change: International Experience
Spring. 3 credits. S-U option available. M. E. Greenberg

Intended for students interested in law reform and international development. This course draws from an international base of experience while focusing on national laws in the context of socioeconomic change. Issues are illustrated by case studies drawn from Eastern Europe, Asia, Latin America, and Africa. Social change topics range from women's rights, gender and the family, to democracy-building and environmental protection. Requirements are two short "think pieces" (2-3 pages) and a final analytical paper of 10-15 pages on a student-selected topic.

LAW 663(6631) Law for High Growth Companies (also NBA 689)
Fall. 3 credits. S-U option only. Limited enrollment. First-year FRIR students in both colleges. J. Shulman.

An in-depth analysis of key issues that an emerging high growth business must consider and address, including: (i) choosing type of business entity, (ii) proper use of information and inventions, (iii) sources of capital, (iv) understanding capitalization structures, (v) use of stock options as employee incentives, (vi) raising capital, (vii) fair employment practices, (viii) proper establishment and utilization of Boards of Directors and Advisory Boards, (ix) technology licensing and commercialization, (x) negotiating with distributors, resellers and customers, (x) the Federal Corrupt Practices Act, and (xi) dealing with creditors and lawyers.
LAW 664(6641) The Law Governing Lawyers
Spring. 3 credits. S-U option unavailable. Satisfies professional responsibility requirement. Prerequisite: Limited enrollment. W. B. Wendel. A comprehensive overview of the law governing lawyers in a variety of practice settings, including transactional, counseling, and civil and criminal litigation. The course is not focused merely on the ABA's Model Rules, but draws extensively from judicial decisions in all jurisdictions. The course explores the development and the new Restatement of the Law Governing Lawyers, and other sources of law. A major theme is the relationship between state bar disciplinary rules and the generally applicable law of tort, contracts, agency, procedure, and crimes. Another significant theme is the prevention of attorney discipline and malpractice liability through advance planning.

LAW 665(6651) Law of Branding and Advertising: Trademarks, Trade Dress, and Unfair Competition
Fall. 2 credits. S-U option available. N. D. St. Landau. Fundamental trademark, trade dress, and false advertising laws are examined in the context of assisting clients to execute branding and marketing strategies. Special focus is given to branding as it relates to: "consumer products companies," the impact of e-business and the internet on branding strategies and acquisitions; and complex proof issues in trademark and domain name litigation. Marketing strategies embody fundamental and long-established principles of the trademark laws. The Lanham Act is used to address issues ranging from confusingly similar words and designs, to false and unsubstantiated advertising claims, and public appropriation—and misappropriation—of long-established corporate icons in today's e-commerce world. This course examines the basics of this rapidly changing body of law.

LAW 666(6661) The Law of the European Union
Fall. 3 credits. S-U option available. M. Laser. Introduction to the law and institutions of the European Union. The course examines the composition, organization, functions and powers of the Union's governing bodies; analyzes the Union's governing treaties and constitutional law; and studies the Union's decision-making processes. The course also explores broader questions of political, economic and legal integration, such as the proper relation between the Union's law and the domestic law of the Union's Member states, and the desirability and feasibility of using the E.U. as a model on which to pattern other transnational agreements.

LAW 667(6672) Law Practice Technology
Spring. 1 credit. S-U option available. Course meets first 6 1/2 weeks of term. Limited enrollment. J. M. Jones. Technological advances are dramatically altering the lives of practicing attorneys. This course introduces to a variety of technologies and software applications they use in the practice of law, integrated with advanced legal research strategies. Focus is on both present and future trends, and the resultant alteration of the legal landscape. Topics include law practice management, the "paperless" law office, e-discovery, courthouse technology, and underlying ethical issues.

LAW 668(6681) Legal Aspects of Foreign Investment in Developing Countries
Spring. 3 credits. S-U option unavailable. M. B. Nduko. Studies legal aspects of foreign investments in developing countries. The course seeks to identify legal problems that are likely to affect a commercial investment in a developing country. Inter alia, it deals with the public international law principles and rules governing the establishment by foreign businesses of various factors of production (persons and capital) on the territory of other states and the protection of such investments. The course includes a discussion of economic development and foreign capital; obstacles to the flow of investments to developing countries; guarantees to investors and investment codes; bilateral treaties; nationalization; joint ventures; project financing; transfer of technology; arbitration; investment insurance; unification of trade law; and the settlement of investment disputes.

LAW 673(6731) Dispute Resolution
Fall. 2 credits. S-U option available. Limited enrollment. S. Yusem. Explores the characteristics of negotiation, mediation and arbitration, as well as the ethical concerns inherent in them, employing not only Socratic dialogue but also interactive and videotape dispute simulations, enabling the student to engage as a negotiator, dispute resolution advocate and a neutral.

LAW 675(6751) Partnership Taxation
Spring. 2 credits. S-U option available. R. A. Green. An introduction to the taxation of partnerships and limited liability companies. The course focuses on the tax issues arising upon the formation, operation, and liquidation of a partnership or LLC.

LAW 678(6781) Products Liability
Spring. 3 credits. S-U option available. J. A. Henderson, Jr. Applications of products-liability doctrine and theory to a variety of problems drawn from or closely approximating actual litigation. An overview of the relevant case law, statutes, and administrative regulations, including the new Restatement Third of Torts: Products Liability.

LAW 681(6811) Secured Transactions
Fall. 2 credits. S-U option available. A. Shapiro. A study of the law regarding security interests in personal property, primarily Article 9 of the Uniform Commercial Code. Topics include the creation of security interests, the rules for determining priorities among secured creditors and other claimants to property, and creditors' remedies and debtors' rights upon default. We use a practical, problem-oriented approach.

LAW 682(6821) Securities Regulation
Spring. 3 credits. S-U option available. M. A. Pedino. Focuses on the regulation of two key aspects of the capital markets in the U.S. the primary markets for the raising of capital from public investors governed by the 1933 Securities Act (33 Act), and the trading of securities in the secondary market governed by the 1934 Securities Exchange Act (34 Act). The course covers extensive discussion of the complex substantive and financial disclosure obligations required under US federal securities laws. Throughout, students also are asked to consider the role and development of the Securities and Exchange Commission (SEC), first authorized under the 33 Act, as a significant actor in the rise of the modern regulatory state.

LAW 683(6831) Social Security Law
Spring. 3 credits. S-U option available. Online course. P. W. Martin. Focuses especially on how Social Security's benefit rules relate to employment, families, and household composition and how its procedures address the challenge of adjudicating the massive numbers of benefit claims that arise each year. It introduces the general features of the Social Security Act's entitlement, benefit formulae, and procedural rules; highlights those greatest difficulty to administrators and advocates; and surveys current proposals for change.

LAW 684(6841) Sports Law
Spring. meets for 10 weeks. 2 credits. S-U option available. Recommended prerequisites: Antitrust Law and Labor Law. Traces the development of sports law in the U.S. Particular attention is given to the relationship of sports with antidrug and labor law. Contemporary issues involving arbitration, collective bargaining, amateur athletics, agents, franchise movement, and constitutional law are also covered.

LAW 685(6851) Supervised Teaching
Fall. Spring. 1 or 2 credits. S-U option only. Arrange directly with instructor. Registration form available from registration site or registrar's office.

LAW 687(6871) Supervised Writing
Fall. Spring. 1, 2, or 3 credits. S-U option only. Arrange directly with instructor. Registration form available from registration site or registrar's office.

LAW 688(6881) Supervised Teaching and Supervised Writing—Lawyering Program Honors Fellows
Full year. 4 credits. S-U option only. Prerequisite: application process. Registration form available from registration site or registrar's office. Lawyering Program Honors Fellows serve for the full year as teaching assistants in the Lawyering course. With training and guidance from the Lawyering faculty, the Fellows work one-on-one with the first-year students on the various writing projects. Fellows may help design writing and research assignments, prepare model memoranda, participate in role-playing exercises during mock interviewing or negotiating sessions, judge oral arguments, and assist the librarians with research training. The Fellows are also responsible for teaching and holding classes on the Bluebook. Additionally, Fellows may serve as mentors to entering students to help them make the most of the foundational first year of law school. The Fellows may hold workshops on basic law school skills and, during the spring semester, under the direction of the Dean of Students, a small group of Fellows may tutor first-year law students.

LAW 689(6891) Taxation of Corporations and Shareholders
Fall. 3 credits. S-U option available. Prerequisite: Federal Income Taxation. R. A. Green. Examines the federal income taxation of corporate transactions, including incorporations, dividends, redemptions, liquidations, and reorganizations.
LAW 690(6901) Terrorism and the Law
Spring. 3 credits. Availability of S-U option TBA at first class. S. D. Clymer. Focuses on the legal responses in the U.S. to the threat of terrorism. Topics likely include: legal aspects of planning and the process of designating "Foreign Terrorist Organizations"; constitutional challenges and legislative fixes to the material support prohibition; detention of enemy combatants; use of the material witness provision to investigate terrorism; terrorist financing; changes in immigration laws in response to terrorism concerns; the USA Patriot Act.

LAW 692(6921) Trial Advocacy
Spring. 4 credits. S-U option available. Pre- or co-requisite: Evidence. Limited enrollment. G. G. Galbreath. The study of the trial. Fundamental skills are taught in the context of challenging procedural and substantive law problems. Each stage of the trial is examined. In addition to exercises every week on a particular segment of the trial, the student does a full-day jury trial at the end of the course. Video equipment is used to teach and critique student performance. Occasional written assignments; class attendance is mandatory.

LAW 694(6941) Trusts and Estates
Fall. 4 credits. S-U option available. G. S. Alexander. A survey of the basic law of succession to property, including wills and intestate succession, and the law of trusts. This is not a course on estate taxation as such, rather a survey course that introduces the student to aspects of estate planning. While tax aspects of wealth succession are not studied in detail, they are mentioned from time to time.

LAW 698(6981) WTO and International Trade Law
Spring. 3 credits. S-U option available. J. J. Barcelo III. The law of the World Trade Organization (WTO), including international trade theory, the basic WTO rules and principles, and conflict settlement process. A study of national (U.S.) rules and policies within the WTO framework. Consideration also is given to non-trade values within the WTO system.

PROBLEM COURSES AND SEMINARS
All problem courses and seminars satisfy the writing requirement. Limited enrollment. Admission to all problem courses and seminars determined by lottery.

LAW 700(7002) Advanced Civil Procedure
Spring. 3 credits. S-U option unavailable. Limited enrollment. Satisfies writing requirement. K. M. Clermont. A complement to the first-year civil procedure course. Topics normally not touched on in the first year are studied in greater depth. Students working in groups produce a short paper every other week on assigned problems. This year's topics are trial and appeal.

LAW 702 (7021) Advanced Criminal Procedure
Spring. 3 credits. Limited enrollment. Satisfies writing requirement. S-U option available. P. Warth. This seminar provides an in-depth analysis of specific advanced areas of criminal law and procedure. Students analyze and discuss several topics, including: the vast discretion afforded prosecutors in charging and plea bargaining decisions and the limits on prosecutorial discretion; the right to effective assistance of counsel as it pertains to counseling criminal clients about plea bargaining; the reach of the Confrontation Clause after the U.S. Supreme Court's landmark decision in Crawford v. Washington. Students read and analyze decided cases and will prepare a brief (including a written and oral presentation). They are required to write and present papers on self-selected topics or write a motion advocating a new rule with regard to police interrogations, identification procedures, or any other topic related to the areas of law addressed during the seminar. Students meet individually with the professor at the beginning of the seminar to discuss possible paper topics and again toward the end after completing an initial draft of their paper.

LAW 703(7031) Advanced Legal Research
Spring. 3 credits. S-U option unavailable. Prerequisite: Lawyering. Limited enrollment. Satisfies writing requirement. P. G. Court. This seminar teaches cutting-edge research techniques and strategies that students are taught in the office of the future. It focuses on desktop electronic legal research and covers U.S., international, and foreign law, as well as multidisciplinary research. It is designed to teach students to begin their research in a period of information transition, how to handle traditional and electronic sources and formats and make efficient choices.

LAW 705(7051) Advanced Persuasive Writing
Spring. 3 credits. S-U option available. Limited enrollment. Satisfies writing requirement. C. Grumbach. Students master persuasive writing and the rhetoric of law by studying examples of persuasive writing and by writing briefs. We read and critique U.S. Supreme Court briefs and other persuasive writings to assess why they work or fail. Students prepare short critical papers each week, commenting on the writing to be discussed that week. Additionally, students produce their own persuasive writing: first, revising a brief, and then writing from scratch, perhaps writing a reply to, or devising a hypothetical amicus brief for, a brief we critiqued. Students present for the class a portion of the revised brief and critique and peer-edit a portion of a colleague's original work. We consider devices taught in the first-year Lawyering course: hone in on advanced principles of rhetoric; pay good deal of attention to how legal writers tailor their writing for a specific audience; determine whether good briefs comport with received wisdom about legal writing and attempt to develop best practices as well as a rule of thumb for when artistic license should trump conventional legal writing approaches; discuss interesting writing or writing-related questions.

LAW 708(7081) Appellate Advocacy
Fall. 3 credits. S-U option unavailable. Limited enrollment. Satisfies writing requirement. B. R. Bryan. Combines theory and practice to give students the experience needed to write a highly effective appellate brief and deliver a highly persuasive oral argument. The professor emphasizes "switching sides" with the court, and asks how a given point or technique are perceived by the audience. Students write a brief in one or more oral argument sessions, with one-on-one critiques of each section and a written critique of the final brief. Students also critique the briefs of the professor and judicial opinions. Both federal and state procedures are taught. Students prepare multiple practice oral arguments, judged by both a professor and student panel, and a final oral argument judged by a professor. Guest speakers include former federal prosecutors, appellate specialists, and judges of the New York Court of Appeals and the U.S. Court of Appeals for the Second Circuit. Importance of professionalism and ethics is stressed through the course.

LAW 709(7091) Biblical Law
Spring. 3 credits. S-U option available. Limited enrollment. Satisfies writing requirement. C. M. Egan-McDaniel. Analysis of law and narrative in the Bible from the perspective of ancient law and legal history. Topics include the nature of the law codes, legal issues in the narratives, law and morality, law and religion, and the role of extralegal relations into legal ones, legal interpretation in antiquity, social factors in legal development, and aspects of criminal, family, and private law.

LAW 710(7101) Central Topics in Jurisprudence and Legal Theory
Fall. 3 credits. S-U option unavailable. Limited enrollment. Satisfies writing requirement. R. S. Summers. This seminar addresses four related topics that arise within all discrete law school courses: (1) the overall forms and complementary material or other components of the main functional legal units of a system of law, including those that are institutional such as legislatures and courts, preceptual such as rules and principles, and enforced such as sanctions and remedies; (2) the distinctive bearing of various concepts of justice on the make-up and operation of functional legal units and other phenomena of law, (3) the special and extensive nature of the resources of metaphysics and anti-metaphysics in the law, and (4) the major facets of the "legal positivism vs. natural law" debate. Assigned materials include a forthcoming book by the instructor, selected jurisprudential readings, judicial opinions, statutes, and other primary sources. There is extensive opportunity for discussion. The grade is based on a paper and class discussion.
LAW 711(7111) Children at the Intersection of Law and Psychology
Fall. 3 credits. S-U option available. Limited enrollment. Satisfies writing requirement. J. J. Haugaard, A. J. Mooney.
Focuses on the interplay of legal and social science research in cases involving conflicts between the rights of children and the rights of either their parents or the state. The first part of the course includes discussions of social science research in the courts, including arguments for limiting its use or expanding it. In the second part, law students and psychology graduate students work together to prepare appellate briefs challenging an actual or hypothetical court decision in which social science research played an important role. Each group prepares one petitioner's brief and one respondent's reply brief and argue their briefs before a mock court.

LAW 713(7131) Comparative Civil Procedure
Fall. Meets for 6 1/2 weeks during term. 3 credits. S-U option available. Limited enrollment. Satisfies writing requirement. J.D. students electing this course must also enroll in a minimum of 12 credits hours for the semester. S. Goldstein.
The seminar concentrates on the primary structural similarities and differences between common law and civil law procedural systems, as well as within each procedural family, both in terms of first instance proceedings and the appellate process. Current efforts to "harmonize" the different procedural systems are examined in this regard. The seminar also is concerned with comparative aspects of current and historical form the processes of civil procedure. In addition, it deals with the comparative aspects of some specific procedural mechanisms. All participants are expected to prepare the reading assignments and participate actively in all discussions. Each student must prepare a paper on a topic of his or her choice and make an oral presentation based on a preliminary draft of the paper, which is circulated to all participants before the seminar. The seminar grade is based primarily on the final draft of the paper, but it may be altered upwards or downwards by one or two steps of a gradation based on the oral presentation and performance in the seminar discussions.

LAW 714 (7141) Comparative Constitutional Law
Fall. 3 credits. S-U option unavailable. Limited enrollment. Satisfies writing requirement. M. Lasser.
This seminar examines the rapidly changing face of Continental European constitutional law. It begins by examining national constitutional/governmental structures, federalism regimes, mechanisms for judicial and administrative review of executive and legislative action, and modes of civil rights protection. Next it analyzes the increasingly important role played by transnational European legal institutions in these areas. Finally, the seminar addresses the complex relationship between the national constitutional orders and the European Union's ongoing constitutional convention.

LAW 715(7151) Constitutional Law and Political Theory
Exploration of theories of freedom of speech and theories of equality. How are the ideas of freedom, equality, association, and community linked in doctrine, and how should they be linked? Neoliberal, conservative, liberal, radical, feminist, and Marxist writings are considered.

LAW 717(7171) Corruption Control
Spring. 3 credits. S-U option available. Limited enrollment. Satisfies writing requirement. R. C. Goldstock.
Analysis of the types of corruption that exist in both the public and private sectors, the means by which a variety of criminal and non-criminal laws are used to control the frequency and impact of corrupt activities, and the constitutional and statutory problems implicated by such approaches.

LAW 719(7191) eLaw
Fall. 3 credits. S-U option unavailable. Limited enrollment. Satisfies writing requirement. P. W. Martin.
An exploration of the impact of the digital information and communication technology on how core activities of the "law" are carried out. The seminar traces the rapid spread of electronic systems of creation, storage, and dissemination of primary legal information, beginning with the emergence of viable commercial online systems in the 1980s. It looks at the current state of and issues raised by electronic self-publication on the part of legislative bodies, courts, judges, and administrative bodies and investigate other issues of law and practice generated by the transformation of a paper and print-based legal system to one based on nearly ubiquitous access to computers and electronic communication. Among the latter are questions of copyright, citation practice, "official publisher" designation, the role of the commercial sector and NGOs like Cornell's Legal Information Institute in the dissemination of legal information and law. Post-release editorial revision, the privacy interests of those involved in legal proceedings, filing formats, and adjudicative procedures. While the course focuses initially on these phenomena, these are playing out within the U.S., student projects may pursue any of these topics from a comparative perspective.

LAW 720(7201) Empirical Studies of Leading Civil Rights Issues
Fall. 3 credits. S-U option unavailable. Limited enrollment. Satisfies writing requirement. T. Eisenberg.
This seminar focuses on empirical studies of selected topics, including the death penalty and punitive damages.

LAW 722(7221) Ethical Issues in Criminal Practice
Fall. 3 credits. S-U option available. Limited enrollment. Satisfies the professional responsibility requirement and writing requirement. C. G. Grumbach.
Using simulated cases, the seminar explores the ethical duties and practical quandaries faced by prosecutors and defense attorneys. We examine the context of hypothetical and famous trials that involve such issues as coaching, playing the race card, and blaming the victim, or arrests based upon racial profiling or planted evidence. The writing requirement is the form of persuasive trial memoranda prepared on behalf of or to prosecute simulated clients.

At the end of the semester we hold mock hearings based upon these simulated cases.

LAW 726(7261) Feminist Jurisprudence
Fall. 3 credits. S-U option unavailable. Limited enrollment. Satisfies writing requirement. R. Graycar.
This seminar examines the role of law, and more generally, the role of the state, in perpetuating and fighting against women. We study several paradigmatic feminist legal theories, including equality, difference, dominance, and various anti-essentialist theories. Among the questions considered are: How does the law help to construct gender? In what ways does it interact with cultural images and assumptions regarding women to perpetuate women's disadvantaged status in society? To what extent can a set of institutions implicated in women's marginalization be used to remedy it? Can a legal system predicated on the liberal assumption of a unitary, autonomous individual self-accommodate feminist accounts of social construction, constrained choice, or decentralized subjects?

LAW 728(7281) First Amendment Theory
Fall. 3 credits. S-U option available. Limited enrollment. Satisfies writing requirement. S. H. Shifrin.
Examination of competing theories about the scope and justification of freedom of speech, freedom of press, and freedom of religion. The seminar considers free speech theories focused on liberty, formal equality, self-government, public morality, dissent, and anti-domination; the relationship of various conceptions of democracy to freedom of press; and various conceptions regarding the optimal relationship between church and state. Among the more specific topics at issue in some of the readings are commercial speech, pornography, flag burning, subsidies to the arts, campaign finance, the structure of the mass media, government involvement with religious symbols, and vouchers to religious schools.

LAW 729(7291) Global and Regional Economic Integration: The WTO, EU, and NAFTA
Spring. 3 credits. S-U option available. Limited enrollment. Satisfies the writing requirement. J. J. Barceló III.
A study of the process of international economic integration occurring both globally and regionally. The seminar takes up a basic introduction to WTO law and selected problems. In the regional context it takes up a basic introduction to the European Union, including the institutional and lawmaking processes, the direct effect and supremacy of EU law, and the development of the four freedoms (goods, services, persons, and capital). A basic introduction to NAFTA is also included. Student papers may deal with issues arising within any of the three regimes. Comparative studies are encouraged.

LAW 730(7301) Habeas Corpus
Fall. 3 credits. S-U option unavailable. Limited enrollment. Satisfies writing requirement. T. W. Morrison.
This seminar examines habeas corpus from three perspectives: (1) the origins and development of habeas in English and American legal history; (2) the contemporary role of habeas in providing federal judicial review of executive detention, especially in immigration cases; and post-9/11 cases involving the alleged "enemy combatants"; (3) the contemporary role of habeas in providing
federal judicial review of state criminal convictions, especially in capital cases. The second and third parts of the seminar are an opportunity to think about specific habeas-related issues against the backdrop of broader constitutional principles of separation of powers and federalism.

LAW 731(7311) Immigration and Refugee Law

Fall. 3 credits. Prerequisite: Constitutional Law. Limited enrollment. Satisfies writing requirement. S. W. Yale-Lower.

Explores the evolving relationship between U.S. immigration policy and our national purposes. Immigration plays a central role in contemporary American life, significantly affecting our foreign relations, human rights posture, ethnic group relations, labor market conditions, welfare programs, public services, and domestic politics. The course addresses some of the most basic problems that our legal system must address, including the rights of insular minorities, the concepts of nationality, justice, equity, fair treatment of competing claimants for scarce resources, the imperative of mass administrative justice, and pervasive discrimination. The course draws on diverse historical, judicial, administrative, and policy materials.

LAW 737(7371) Introduction to Islamic Law

Spring. 3 credits. Prerequisite: Constitutional Law. Limited enrollment. Satisfies writing requirement. D. S. Powers.

The seminar examines the questions surrounding international criminal law as a separate discipline and the sources of and basic principles underlying the subject. Particular attention is paid to the question of jurisdiction over international crimes. It considers international crimes, the treatment of criminal law and the jurisdictions in post-conflict situations, and procedural aspects of international criminal law and the forums that deal with international crimes. The format is class discussions of assigned readings. Final assessment is based on participation in discussions and a written paper on a subject falling within the themes of the seminar. Paper topics must be submitted to the instructor for review no later than the third week of class. Each student is expected to give a class presentation based on his or her paper.

LAW 734(7341) International Environmental Law

This seminar aims to analyze and assess the various principles and rules of international law that have been developed to deal with problems of global environmental import, including the processes by which they have been drafted, implemented, and enforced. Specific topics may include control of air and water pollution, environmental disasters, disposal of hazardous wastes and trade in hazardous chemicals, ozone depletion, climate change, conservation of natural resources and biological rights, and recent development of international rivers, and the relationship between environmental protection and economic development.

LAW 734(7343) International Human Rights Seminar

Spring. 3 credits. S-U option available. Prerequisite: Constitutional Law. Limited enrollment. Satisfies the writing requirement. J. Grenngheden.

This seminar examines aspects of law and practice in international human rights law. After an overview of global and regional instruments and actors, more detailed studies follow on various aspects of international human rights law: substantive areas representing the full spectrum of rights such as fair trial and the right to education, procedural solutions such as the United Nations Human Rights Committee and the European Court of Human Rights, the intersection between law and politics as regards for example the work and possible reform of the United Nations Commission on Human Rights, and the relationship between developments related to regional mechanisms in Europe and Asia. Course material largely consists of academic writings.

LAW 740(7401) Law and Violence Against Women

Spring. 3 credits. S-U option available. Limited enrollment. Satisfies writing requirement. E. A. Sussman.

This seminar examines violence against women from theoretical and practical perspectives. We begin with a general introduction to various legal theories, including positivism, difference feminism, dominance feminism, anti-essentialism and postmodernism. We examine these theories to provide us with frameworks for analyzing concrete manifestations of violence against women in society. The seminar seeks to apply theories to practice and uses the issues that arise in legal practice to further cultivate/refine the theories. By focusing on both theory and practice, students collectively work toward developing legal strategies for responding to violence against women. This seminar encourages students to critique existing frameworks and to assume the role of social movement lawyers.
Students write a substantial research paper focusing on a substantive problem related to violence against women.

LAW 756(7561) Legal Aspects of Commercial Real Estate Development
Spring. 3 credits. S-U option unavailable. Limited enrollment. Satisfies writing requirement. J. E. Feth.

Through the use of several written memoranda and one oral presentation, this seminar addresses considerations basic to commercial real estate development. It focuses on purchase agreements, options, rights of refusal, and memoranda thereof; representations and warranties; disclosure required of brokers and sellers; attorneys as brokers; notarial misconduct; conveying of surveys; commercial leases; conventional financing; conflicts between commercial tenants and institutional lenders; alternatives to conventional financing; title insurance; attorney opinion letters; and choice of real estate law. The semester is devoted to commercial leases, conventional financing, and alternatives to conventional financing.

LAW 756(7563) The Legal Construction of Indian Country: Interdisciplinary Studies in American Indian Law
Spring. 3 credits. S-U option unavailable. Limited enrollment. Satisfies the writing requirement. E. Cheyfitz.

While its focus is the historical development of U.S. federal Indian law, this course will also address fundamental theoretical issues implicit in this development, such as the cultural limits of Western law, and the situation of indigenous peoples in a postcolonial context.

LAW 757(7571) Legal Narratives

An in-depth look at the factual, legal, and social background of notable legal decisions. The seminar is based on a recently published series of texts presenting the "stories" behind well-known first year cases. After reading and discussing a selection of cases from these sources, each student prepares and presents a case history of a case selected by the student, working from briefs, related legal material, secondary sources, and, if possible, contacts with lawyers and parties. Grades are based on papers and presentations.

LAW 758(7581) Making the Punishment Fit the Criminal

This seminar begins with an investigation into the moral psychology of wrongdoing and its relationship to the justification of punishment. We then take the insights of that investigation and apply them to various issues and controversies arising within the substantive criminal law. In this connection we examine among other topics the defense of provocation, depraved heart murder, negligent homicide, duress, hate crimes, and imperfect self-defense. We also ask whether and how an offender's punishment should depend on the fact that his or her conduct actually resulted in harm, and whether an offender's punishment should depend on the motives with which he or she commits the crime.

LAW 759(7591) Mergers and Acquisitions
Spring. 3 credits. S-U option available. Satisfies writing requirement. M. I. Greene.

Develops the lawyering skills required by an attorney advising a client who is selling or acquiring a business. Individual drafting exercises and a mock negotiation and acquisition transactions.

LAW 760(7601) Organized-Crime Control
Fall. 3 credits. S-U option available. Limited enrollment. Satisfies writing requirement. R. C. Goldstock.

This seminar explores the challenges organized crime poses to society and the traditional law enforcement techniques. Students undertake a simulated investigation using physical and electronic surveillance, the analysis of documentary evidence, and the examination of recalcitrant witnesses before the grand jury. The grand jury statute is explored in detail as well as a variety of non-criminal remedies including forfeiture and court-imposed trusteeships.

LAW 761(7611) Philosophical Foundations of Legal Ethics
Fall. 3 credits. S-U option unavailable. Limited enrollment. Satisfies writing requirement. W. B. Wendel.

This seminar examines legal ethics from the standpoint of moral and political philosophy. We examine the relationship between ordinary morality and professional obligations; whether professionals may be blamed morally for their clients' ends or for activities taken pursuant to professional roles, and the relationship between legal and political institutions and moral values. In addition to reading classic and recent articles, we apply theoretical models to the sorts of practical ethical dilemmas faced by lawyers. No background in philosophical ethics is presumed. We begin with a brief introduction to the subject through Bernard Williams's short book *Ethics* This seminar satisfies the law school and ABA professional responsibility requirements. It is not intended as preparation for the MPRE or as an introduction to the law governing lawyers.

LAW 763(7631) Pretrial Practice, Litigation Strategies, and Remedies in Commercial Litigation
Spring. 3 credits. S-U option available. Prerequisite: Contracts or Contracts in a Global Society. Limited enrollment. Satisfies writing requirement. S. P. Garvey.

This seminar explores the strategies of complex commercial litigation, focusing on case development in the pretrial period. It addresses pretrial discovery and remedies in the context of difficult and unclear legal issues. Damages and related issues are also explored, as are the use of litigation to achieve business goals. Hardball litigation techniques as well as ethical considerations are considered. Actual litigated cases are discussed. Since 80% of commercial cases settle before trial, this seminar is a real life presentation of the commercial litigation process.
and to contribute to building the rule of law. We compare the South African experience with that in Latin America, where the room for maneuver of truth commissions has been more limited. We conclude by examining the increasing role of international human rights tribunals, such as the International Criminal Court and the UN Criminal Tribunals on Rwanda and the former Yugoslavia. Course requirements: leading in-class discussions on readings (30% of grade), 15- to 20-page final term paper (50%). Drafts of the papers are due for class discussion for session 13. Each student presents a critique of another student's paper (10%). Oral summaries of papers (10%) and critiques are presented in sessions 13 and 14.

CLINICAL COURSES AND EXTERNSHIPS

All clinical courses and externships have limited enrollment. Admission to all clinic courses is instructor selected.

LAW 780(7801) Asylum and Convention Against Torture Appellate Clinic

Spring, 4 credits. S-U option available. Limited enrollment. E. M. McKee, S. W. Yale-Loehr. Students write appellate briefs to the Board of Immigration Appeals on behalf of clients who have petitioned to remain in the U.S. because they fear persecution or torture in their home countries. These clients have represented themselves pro se in Immigration Court. During the first part of the semester students learn substantive and procedural asylum and Convention Against Torture (CAT) law. Classes may also cover practical knowledge needed for effective representation, such as advanced research and writing skills. During the second part, students work in teams of two on appellate briefs that not only entail serious legal analysis, but may also require sociocultural and political research, so that the students can effectively write about the conditions of the client’s home country. Students communicate with clients during this time. Students may also locate expert and other witnesses, draft affidavits and motions. The students’ cases provide a basis for more in-depth substantive learning, as well as practical skills and attorney-client issues. In class, each team also discusses the legal and practice issues that arise in their case, so that all students can benefit from and as.

LAW 781(7811) Capital Punishment Clinic: Post-Conviction Litigation

Spring, 4 credits. S-U option available. Prerequisite: permission of instructor; Criminal Procedure or criminal law experience preferred. Limited enrollment. J. H. Blume. Death penalty post-conviction litigation: investigation and the preparation of petitions, memoranda, and briefs. Students work on two or three capital cases. Case selection depends on both pedagogical factors and litigation needs of the inmates. Students read the record and research legal issues. Some students are involved in investigation, while others assist in the preparation of papers. All students are included in discussions regarding the necessary investigation, research, and strategy for the cases.

LAW 783(7832) Criminal Defense Trial Clinic

Spring, 4 credits. S-U option available. Prerequisite: Evidence recommended or permission of instructor. Limited enrollment. L. Salisbury. Students represent defendants in non-felon, non-jury criminal cases. The course has a classroom and courtroom component. The classroom component focuses on all aspects of handling a criminal case, including criminal law and procedure, trial strategy, plea bargaining and trials. The courtroom component involves attending court proceedings, including pre-trial conferences. Each student interviews clients and witnesses, prepares pre-trial briefs and works with trial attorneys. The course includes handling of a broad conceptual understanding of a complex and controversial area of law and public policy is developed, and a live client clinical experience, in which those concepts can be applied in solving actual client problems. The substantive component provides an introduction to government benefits law by examining various social insurance and need-based benefit programs. Case handling involves the representation of clients in government benefits cases in state and federal administrative hearings. The course also includes a lawyering skills classroom component, Clinical Skills 1 or Clinical Skills 2. See Public Interest Clinic 1 or 3 for a description of these classes.

LAW 784(7841-3) Government Benefits Clinic

Spring, 6 credits. S-U option available. Limited enrollment. B. Strome. The course has a substantive component, in which a broad conceptual understanding of a complex and controversial area of law and public policy is developed, and a live client clinical experience, in which those concepts can be applied in solving actual client problems. The substantive component provides an introduction to government benefits law by examining various social insurance and need-based benefit programs. Case handling involves the representation of clients in government benefits cases in state and federal administrative hearings. The course also includes a lawyering skills classroom component, Clinical Skills 1 or Clinical Skills 2. See Public Interest Clinic 1 or 3 for a description of these classes.

LAW 785(7851-3) Government Benefits Clinic/Neighborhood Legal Services Externship 1 or 3

Spring, 6 credits. S-U option available. Limited enrollment. B. Strome. A combination of the Government Benefits Clinic and the Neighborhood Legal Services Externship and either Clinical Skills class 1 or 3. The course is the same as Government Benefits except that the case handling component involves handling cases for the ithaca office of Neighborhood Legal Services. See that description for additional details.

LAW 786(7861) Judicial Externship

Fall, Spring, 4 credits; 6-credit option possible if student and placement are willing to have student there two days a week. S-U option available. Limited enrollment. G. G. Galbreath. Students work with a trial court judge. Work involves courtroom observation, conferences with the judge, research, drafting legal memoranda, and drafting decisions. The emphasis is on learning about judges, judicial decision-making process, and trials. There are weekly class meetings with readings and discussions of topics related to the externship experience. While the primary focus is the student’s work at the placement, each student also does class presentations, weekly journal entries, provides written work samples and meets individually with the faculty member.

LAW 787(7871) Labor Law Clinic

Spring, 4 credits. S-U option available. Limited enrollment. G. G. Galbreath. Provides students a practical opportunity to learn labor law, while making meaningful contributions to the labor movement and working people. This clinic combines a substantive component with practical experience. Students (1) advise labor unions on a variety of legal issues that surface during the semester and may have the opportunity to represent unions in different forums; (2) communicate directly with union representatives and are required to sort through the facts, research the issues, and provide information and advice; (3) draft legal memoranda, prepare and file pleadings and briefs as required; (4) may have the opportunity to represent unions at hearings, mediation or arbitration. Effort is made to expose students to the nature of collective bargaining. A small number of students have the opportunity to dedicate their clinical time to international labor law. Interested students can support the ongoing work of the International Commission for Labour Rights, which has several country-specific projects. Student contribution in this area is likely to be research oriented.
LAW 78R/78Q | Law Guardian Externship
Fall, Spring. 4 credits. S-U option available.
Students are placed at the Tompkins County Law Guardian office, where they assist the attorneys in the representation of children in abuse and neglect and juvenile delinquency proceedings, and PINS (Person in Need of Supervision) cases. Students also may have their own cases, in which they assume primary responsibility for the representation. Duties may include interviewing, investigation, drafting memoranda and motions, and trial preparation. There are several meetings with the instructor during the semester. Bi-weekly journals are also required.

LAW 79O/79O1 | Legislative Externship
Fall. 3 credits. S-U option available.
Students selected by Assemblywoman Lifton. Limited enrollment. B. Strom.
Students work with the local New York State Member of Assembly. Work involves drafting legislation, tracking legislation for constituents, legal research and writing, and responding to constituent requests that particularly require legal research of an explanation of law. The emphasis is on learning about legislative process, drafting of legislation, understanding the reasons for statutory ambiguity, and development of a writing style. There are several informal meetings with the faculty supervisor related to the externship experience.

LAW 791/7911-2-3 | Neighborhood Legal Services Externship 1, 2 or 3
Fall, Spring. 4 credits. S-U option available.
Limited enrollment. B. Strom.
Classroom component is provided by Criminal Skills 1, 2 (Fall), or 3 (Spring) depending on whether the student has previously been enrolled in a course in which Criminal Skills 1 was a component. Cases involve the representation of clients of a legal services office, the Ithaca office of Neighborhood Legal Services (NLS). Along with case handling, this externship includes a classroom component, provided by Criminal Skills 1, 2, or 3. The classes are devoted to the development of lawyer/client questions that particularly relate to professional responsibility and the role of an attorney. In addition, each student meets periodically with the faculty supervisor for review of the placement experience.

LAW 792/7921 | Prosecution Trial Clinic
Fall. 4 credits. S-U option available.
Prerequisite: Evidence or permission of instructor. Limited enrollment. R. A. Sarachan.
An opportunity for students to prosecute non-felony non-jury trials in Ithaca City Court. The course has two components: (1) The classroom component involves lecture, discussion, and trial simulation exercises. Topics include criminal law and procedure, prosecution ethics, trial strategy and preparation, trial conduct including direct and cross-examination, plea-bargaining and professional judgment; (2) the courtroom component involves regular attendance at Ithaca City Court's non-jury trials. Students observe and critique trials and prosecute offenses. Each student is expected to conduct multiple trials, depending on docket volume. Students also are expected to prepare witnesses, conduct plea-bargaining negotiations and negotiate cases, investigate, respond to discovery demands, and engage in motion practice and appellate practice as needed.

LAW 793/7931 | Public Interest Clinic 1
Fall. 4 credits. S-U option available.
Limited enrollment. J. Miner, B. Strom.
Students handle civil cases for low-income clients of the Public Interest Clinic under the supervision of clinic faculty. Students interview and counsel, investigate and analyze facts; interrelate substantive and procedural law with facts in the context of actual representation; develop strategies to handle clients' problems; identify and resolve substantive and procedural issues; do legal writing; negotiate and settle cases; and represent clients in hearings. Classroom component is provided by the Clinical Skills I class, in which students develop interviewing, counseling, and advocacy skills through the use of readings, videotapes, discussions, and simulation exercises.

LAW 793/7932 | Public Interest Clinic 2
Fall. 4 credits. S-U option available.
Prerequisite: Public Interest Clinic 1 or a clinic course that included the Clinical Skills 1 classroom component. Limited enrollment. J. Miner, B. Strom.
Students handle civil cases, participate in a classroom component, Clinical Skills 2, and help supervise participants in Public Interest Clinic 1. Cases are handled as described in the course description for Public Interest Clinic 1. Students represent the clinic's clients in both federal and state courts. Clinical Skills 2 builds on the skills taught in Clinical Skills 1.

LAW 793/7933 | Public Interest Clinic 3
Spring. 4 credits. S-U option available.
Prerequisite: Public Interest Clinic 1 or a clinic course that included the Clinical Skills 1 classroom component. Limited enrollment. G. G. Galbreath.
Students handle civil cases, participate in a classroom component, Clinical Skills 3, and help supervise participants in Public Interest Clinic 1. Cases are handled as described in the course description for Public Interest Clinic 1. Students represent the clinic's clients in both federal and state courts. Clinical Skills 3 builds on the skills taught in Clinical Skills 1 and 2.

LAW 795/7951-2 | US Attorney's Office Clinic I or II
Fall, Spring. 6 credits. S-U option available.
Limited enrollment. C. E. Roberts.
A program in which law students work 12-15 hours per week for the U.S. Attorney's Office in Syracuse, N.Y. Each student is assigned to work for an Assistant U.S. Attorney. Students perform research and writing and trial assistance as needed. Students may qualify to appear in court under the supervision of their attorney and are encouraged to observe court proceedings in the U.S. Courthouse. Students also attend a class once a week at Cornell that focuses on writing in practice, including critiques of briefs, motions, and a petition for certiorari. Additional topics include federal criminal and civil practice, prosecutorial discretion, and habeas corpus. Guest speakers may include judges, a special prosecutor, and U.S. Department of Justice officials.

LAW 796(7961) | Water Law in Theory and Practice
Fall. 4 credits. S-U option available.
Limited enrollment. K. S. Porter.
This course is designed for students interested in theory and in practice. It will provide students practical opportunities to learn water law, and to experience its multiple aspects through meaningful contribution.

LAW 313 Government (3131) | The Nature, Functions, and Limits of Law
Spring. 4 credits. S-U option unavailable.
Undergraduates only. R. A. Hillman.
A general-education course for students at the sophomore and higher levels. Law is presented not as a body of rules but as a set of techniques for resolving conflicts and dealing with social problems. The course analyzes the roles of courts, legislatures, and administrative agencies in the legal process, considering also constitutional limits on their power and practical limits on their effectiveness. Assigned readings consist mainly of judicial and administrative decisions, statutes and rules, and commentaries on the legal process.

LAW 402(4021) | Competition Law and Policy
Spring. 3 credits. S-U option available.
No legal training or background required. ECON 101 (Elementary Microeconomics) or its equivalent is a prerequisite; no advanced mathematics is used.
Undergraduates only. G. A. Hay.
Intended for non-law students; interested law students should take the Antitrust Law course. An examination of issues that arise when a country attempts to implement and maintain a "competition policy" as a way of promoting economic growth and efficiency. The basic reading material starts with actual cases and uses those cases to probe the legal, economic, and broad policy issues that the cases raise.

LAW 405(4051) | The Death Penalty in America
Fall. S-U option available: 3 credits.
Undergraduates only. J. H. Blume, S. L. Johnson.
A survey of the legal and social issues that arise in the administration of the death penalty. The reading is largely reported death penalty cases, but is augmented by other sources, including empirical studies of the death pen. Although the focus is on capital punishment as practiced in the U.S., we also consider international and comparative perspectives, and debates among speakers provide a range of views, and law students with experience working on capital cases lead discussion sections.

LAW 408(4081) Law, Science, and Sustainability
Spring. 3 credits. S-U option available.
Undergraduates only. D. A. Kysar.
Concerns empirical, philosophical, and legal dimensions of the emerging sustainability paradigm—i.e., society's efforts to promote human development and economic growth while maintaining the collective impact of human activity within environmentally sustainable parameters. Topics include: the nature of environmental risk and how it is assessed by both experts and the public; international and national dimensions of sustainable development; the moral status of future generations; and, most important, the variety of legal tools that have been or could be used to promote sustainability. These theoretical topics are examined in conjunction with case studies of specific global environmental issues. Intended for students from a variety of fields and adopts a broadly interdisciplinary approach; no prior study in law is required.
ADMINISTRATION
Stewart J. Schwab, dean and professor of law
Barbara J. Holden-Smith, associate dean for academic affairs and professor of law
Claire M. Germain, law librarian and professor of law
Richard D. Geiger, associate dean and dean of admissions and financial aid
Anne Lukenbleal, associate dean and dean of students
Richard F. Robinson, associate dean for administration and finance
Karen V. Comstock, assistant dean for public service
Charles D. Cranton, assistant dean for graduate legal studies
John R. DeRosa, assistant dean for student services
Nan A. Colvin, registrar

FACULTY ROSTER
Alexander, Gregory S., J.D., Northwestern U.
Barcelo, John J. III, S.J.D., Harvard U.
Nelson Cromwell Professor of International and Comparative Law
Blume, John H., J.D., Yale U. Assoc. Prof.
Clément, Kevin M., J.D., Harvard U. James and Mark Flanagan Professor of Law
Clymer, Steven D., J.D., Cornell U. Cornell
Cornell, Angela B., J.D., U. of Washington.
Lec. in Law
Eisenberg, Theodore, J.D., U. of Pennsylvania.
Henry Allen Mark Professor of Law
Farina, Cynthia R., J.D., Boston U. Prof.
Garvey, Stephen P., J.D., Yale U. Prof.
Edward Cornell Law Librarian and Professor of Law
Goldstein, Stephen, J.D., Georgetown U.
Visiting Prof.
Graycar, Reg, LLM, Harvard U. Visiting Prof.
Green, Robert A., J.D., Georgetown U. Prof.
Visiting Asst. Prof.
Hans, Valerie P., Ph.D., U. of Toronto. Prof.
Hay, George A., Ph.D., Northwestern U.
Edward Cornell Professor of Law and Professor of Economics, College of Arts and Sciences
Heise, Michael, Ph.D., Northwestern U. Prof.
Henderson, James A., Jr., LL.M., Harvard U.
Fank B. Ingersoll Professor of Law
Hillage, Robert A., J.D., Cornell U. Edwin H. Woodruff Professor of Law
Hockett, Robert C., J.S.D., Yale U. Asst. Prof.
Holden-Smith, Barbara J., J.D., U. of Chicago. Prof.
Hyde, Alan S., J.D., Yale U. Visiting Prof.
Johnson, Sheri L., J.D., Yale U. Prof.
Kades, Eric A., J.D., Yale U. Visiting Prof.
Kysar, Douglas A., J.D., Harvard U. Prof.
Lasser, Mitchel, Ph.D., Yale U. Prof.
Lehman, Jeffrey S., J.D., U. of Michigan. Prof. of Law
Martin, Peter W., LL.B., Harvard U. Jane M. G. Foster Professor of Law
Meyler, Bernadette A., Ph.D., U. of California Davis. Asst. Prof.
Morrison, Trevor W., J.D., Columbia U. Asst. Prof.
Ndulo, Muna B., D. Phil., Trinity C. Prof.
Perino, Michael A., LLM, Columbia U. Visiting Prof.
Portage, Robert Alain, LLM, London School of Economics and Political Science.
Rachlinski, Jeffrey J., Ph.D., Stanford U. Prof.
Riles, Annelle, Ph.D., U. of Cambridge. Prof. and Prof. of Anthropology, College of Arts and Sciences
Rossi, Faust F., J.D., Cornell U. Samuel S. Leibowitz Professor of Trial Techniques
Schwab, Stewart J., Ph.D., U. of Michigan. Prof.
Seto, Theodore P., J.D., Harvard U. Visiting Prof.
Sherwin, Emily L., J.D., Boston U. Prof.
Shiffman, Steven H., J.D. Loyola U. of Los Angeles. Prof.
Siliciano, John A., J.D., Columbia U. Vice Provost and Provost
Simson, Gary J., J.D., Yale U. Prof.
Taylor, Winnie F., LLM, U. of Wisconsin. Prof.
Wendel, W. Bradley, J.S.D., Columbia U. Assoc. Prof.
Wippman, David, J.D., Yale U. Prof.
Legal Aid Clinic
Galbreath, Glenn G., J.D., Case Western Reserve U. Sr. Lec.
Miner, JoAnne M., J.D., U. of Connecticut. Sr. Lec. and Director
Strom, Barry, J.D., Cornell U. Sr. Lec.
The Lawyering Program
Anderson, Paige S., J.D. Cornell U. Sr. Lec.
Atlas, Joel, J.D., Boston U. Sr. Lec.
Ciani-Dausch, Jessica J., Georgetown U. Lec.
Dole, Joseph C., J.D., Yale U. Visiting Lec.
Grumbach, Carol J., J.D., Cornell U. Director of Lawyering Program and Sr. Lec.
McKee, Estelle M., J.D., Columbia U. Lec.
Mooney, Andrea J., J.D., Cornell U. Lec.
Schut, Anthony B., J.D., U. of Nebraska. Visiting Lec.
Academic Library Staff
Callihan, Jean, Head of Research Services and Lec. in Law
Court, Pat, Associate Law Librarian and Lec. in Law
Finger, Charlie, Collection Development, Research Attorney, and Lec. in Law
Germain, Claire M., LL.B., U. of Paris. Edward Cornell Law Librarian and Professor of Law
Gillespie, Janet M., M.S., Cornell U. Administrative Supervisor/Access Service
Jones, Julie, Research Attorney and Lec. in Law
Mills, Tom, Research Attorney and Lec. in Law
Morris, Matt, Research Attorney and Lec. in Law
Pajerek, Jean M., M.L.S., SUNY-Albany. Head of Technical Services

Members of Other Faculties

Members of Other Faculties Associated with the Law School
Carmichael, Calum M., B. Lith., Oxford U. Prof., College of Arts and Sciences
Cheyfitz, Eric, Ph.D., Johns Hopkins U. Ernest I. White Professor of American Studies and Humanities
Haugard, James J., Ph.D., U. of Virginia. Asst. Prof., College of Human Ecology
Isbell, Billie Jean, Prof. Emeritus, College of Arts and Sciences
Lieberson, Risa L., J.D., U. of Florida. Assoc. Prof., School of Industrial and Labor Relations
Porter, Keith S., LLM, De Montford U., U.K. Director of N.Y.S. Water Resources Institute
DIVISION OF NUTRITIONAL SCIENCES

ADMINISTRATION
Cutherto Garza, director
J. Thomas Brenna, director of undergraduate studies
Charles McCormick, associate director of undergraduate studies
Christine Olson, director of graduate studies, field of nutrition

THE DIVISION
Nutritional science draws upon the chemical, biological, and social sciences to understand the complex relationships between human health, nutritional status, food and lifestyle patterns, and social and institutional environments. Understanding these relationships includes the study of the metabolic regulation and function of nutrients, nutrient requirements throughout the life span, the role of diet in reducing risk of chronic disease, the nutritional quality of foods, and interventions and policies designed to promote the nutritional health of individuals, communities, and populations.

The focus of this broad field of study at Cornell is the Division of Nutritional Sciences, which brings together specialists from many disciplines. Faculty members are involved in undergraduate and graduate teaching, research, and extension of research-based knowledge throughout New York State, the nation, and the world.

The division is affiliated with both the College of Human Ecology and the College of Agriculture and Life Sciences. The undergraduate program in Nutritional Sciences is offered to students enrolled in both colleges. The undergraduate program in Human Biology, Health, and Society is offered through the College of Human Ecology. A program of study in nutrition for biological sciences majors is offered in collaboration with the undergraduate program in biology. Graduate study in the field of nutrition is administered by faculty members throughout the university.

FACILITIES
Most of the faculty members of the division work in Savage Hall, Kienelberg Hall, and Martha Van Rensselaer (MVR) Hall. In addition to housing offices, classrooms, and seminar rooms, these buildings contain research facilities, specialized laboratories, a human metabolic research unit, and computer facilities. Savage Hall also has a graduate reading room.

UNDERGRADUATE PROGRAMS
The Division of Nutritional Sciences (DNS) offers three programs leading to a B.S. degree:

Nutritional Sciences (NS), College of Human Ecology: this program provides students with a strong foundation in the broad field of nutritional sciences as well as thorough training in chemistry and biology. Students may pursue a variety of career interests, including medicine and other health careers, fitness and sports nutrition, nutrition counseling, clinical nutrition, dietetics, nutritional biochemistry, community nutrition, and nutrition education.

Nutritional Sciences (NS), College of Agriculture and Life Sciences: this program is for students who want strong training in human nutrition combined with supportive course work in agriculture and the life sciences. Strong preparation in biology, chemistry, and math is required. Students in the Nutrition, Food, and Agriculture program supplement the nutrition curriculum with courses in areas such as food science, animal science, plant science, advanced biology, business and economics, education, and communication.

Human Biology, Health, and Society (HBHS), College of Human Ecology: established in 1997, this program gives students a strong foundation in biology. It then goes on to explore human health issues from the perspectives of both biology and the social sciences. Students complete a rigorous curriculum in the natural sciences and then, choosing from a wide array of courses offered in the College of Human Ecology, focus their studies on health issues of their choice. Students can explore such topics as gene expression and metabolism related to disease states, biological and social aspects of growth and development, and policies and programs influencing health.

The division also offers the Program of Study in Human Nutrition for biological sciences majors who may be enrolled in the College of Agriculture and Life Sciences or College of Arts and Sciences. The Program of Study in Human Nutrition offers biology majors courses on the nature and biochemical function of essential and nonessential nutrients, nutrient requirements, the role of nutrients in gene expression, and the role of diet in both risk of chronic disease and treatment of existing disease states. Students in this program of study are encouraged to complete a diverse set of advanced courses that afford a perspective on current knowledge of nutrient requirements and function and how this knowledge can be put to use. With the exception of a core course in the structure and function of nutrients, the course requirements are unspecified.

Faculty advisers work with individual students to develop a curriculum that fits the students' interests. As part of their program, students are encouraged to obtain laboratory experience either through course work or research. Students completing the program in nutrition most often choose to continue their education in medical or graduate school and pursue careers in the applied aspects of nutrition or in laboratory-based or epidemiological research.

THE CURRICULUM
Undergraduate students in these programs complete the requirements of their colleges as well as the courses required by the program of their specific interest.

Both the NS and HBHS programs require a rigorous sequence of courses in chemistry and biology, including introductory chemistry and biology, organic chemistry, biochemistry, and physiology. A minimum competency in college algebra is required with an additional math and/or statistics requirement for some programs and career paths. Students in the HBHS major also complete a course in physics and two additional courses in advanced biology.

All students complete the introductory course NS 115 Nutrition, Health, and Society. The NS program requires the completion of four other core courses: NS 245 Social Science Perspectives on Food and Nutrition; NS 345 Nutritional and Physicochemical Aspects of Foods; NS 331 Physiological and Biochemical Bases of Nutrition; and NS 332 Methods in Nutritional Sciences. Students in these programs also must select a minimum of 9 credits in advanced courses in the nutritional sciences.

The HBHS major requires a minimum of 6 credits from courses that integrate biology and the social sciences as they examine health issues. In addition, students must complete 9 credits of advanced electives in courses focused on human biology, health, and society.

Undergraduate students in these programs have a faculty adviser with whom they meet at least twice a year. Advisers help students plan their course schedules and can suggest opportunities for individual study or experience outside the classroom.

In both undergraduate programs the correct sequencing of biology, chemistry, and/or nutrition courses is very important. Students considering these programs should obtain detailed information about course requirements from the division's Academic Affairs office, 335 MVR. This office offers a wide range of advising materials to help students develop a program of study that matches their interests and needs.

CAREER OPTIONS AND COURSE PLANNING
Requirements for the programs are the minimum set of courses necessary for a bachelor's degree in these fields. Students should supplement their requirements with elective courses and other learning experiences that will prepare them for entry-level jobs or advanced study in their field(s).
of interest. A summary of suggested electives for different career interests follows.

Medicine and Other Health Careers:
Recommended courses for pre-med students include calculus and two semesters of physics. Specific information about medical school admissions requirements can be obtained from the university's Health Careers office, 203 Barnes Hall. Students interested in other health careers should acquire specific information about those requirements.

Courses of interest may include those related to the biological and social determinants of health, growth, development, and behavior through the life course; interpersonal communications; advanced biology; sociology; psychology; and ethics.

Dietetics:
Students who wish to work in the areas of clinical nutrition, nutrition counseling, sports nutrition, community nutrition, or food and nutrition management should complete the academic requirements for The American Dietetic Association (ADA). Courses in foods, nutrition and disease, microbiology, management, statistics, and nutritional care are added to the courses required for the nutrition programs. For more information about meeting ADA requirements, contact the DNS Academic Affairs office, 335 MVR.

Exercise, Nutrition, and Health Promotion:
Students should complete a course in physiology and a course in anatomy after introductory biology. Students can complete the Applied Exercise Science Concentration at Ithaca College, which includes courses in kinesiology, exercise physiology, and biomechanics. Students who wish to apply to graduate schools to study physical therapy should complete a year of introductory physics, a course in statistics, a course in ethics, and three courses in psychology. Students should check the specific requirements of their schools of interest. For information about the Applied Exercise Science Concentration, contact the DNS Academic Affairs office, 335 MVR.

Biomedical Research/Nutritional Biochemistry:
Recommended electives include calculus, physics, genetics, advanced biology and chemistry, toxicology, and nutritional sciences courses related to the physiology, biochemistry, and metabolism of different nutrients and disease states.

Public Health and Community Nutrition:
Suggested electives include courses in communications, education, human development, human services, nutrition and management, maternal and child nutrition, geriatric nutrition, nutrition and disease, and food economics.

Nutrition, Food, and Business:
Recommended electives include courses in management, marketing, economics, communications, hotel administration, and food science.

Nutrition and Agriculture:
Recommended electives include courses in food science, animal science, plant sciences, international agriculture, agricultural economics, biological sciences, and rural sociology.

International Nutrition:
Recommended electives include courses in language, anthropology, agricultural economics, policy, economics, rural sociology, international agriculture, and nutritional sciences related to maternal and child health and problems of developing nations.

Biology and Behavior:
Recommended electives include courses in psychology, human development, and neurobiology.

Food, Nutrition, and Health Policy:
Recommended electives include courses in economics, sociology, government, policy analysis, and management.

SPECIAL EXPERIENCES
Undergraduates can enhance their experiences by participating in structured field experiences or study abroad. Academic credit can be earned for field experience in a community agency, health care facility, or business. The Urban Semester in the College of Human Ecology provides students with an opportunity to study and gain field experience in New York City. All students intending to spend a semester off-campus in field experience or study abroad must plan their courses well in advance to be sure that all program requirements can be met.

INDEPENDENT STUDY ELECTIVES
Independent study courses (NS 400, 401, 402) can be used to obtain credit for more diverse or intensive experience than the classroom can offer. Whether this involves laboratory work, library research, or field study. Any student interested in independent study should obtain the sponsorship of a faculty adviser and the approval of the associate director for academic affairs or consider applying to the honors program.

HONORS PROGRAM
The honors program, which leads to a B.S. degree with honors in the College of Human Ecology or a B.S. degree with distinction in research in the College of Agriculture and Life Sciences, gives official recognition to students who have demonstrated excellence in their academic work and their capacity for independent study. In addition to fulfilling the requirements for a major, students in the honors program take seminars in designing and evaluating research, complete an original piece of research (at least 6 credits of NS 499), and prepare an honors thesis. The honors project may be laboratory or field research or deal with policy and program development. For more information, students should contact Professor J. Thomas Brenna, 138 Savage Hall, or Professor Carole Bisogni, 328 MVR.

COURSES RECOMMENDED FOR NONMAJORS
Courses in nutritional sciences can strengthen programs of study in biological sciences, biology and society, communications, food science, human development, human services, and other fields.

NS 115 Nutrition, Health, and Society is open to all students. After NS 115, nonmajors with limited backgrounds in chemistry and biology may elect NS 245 Social Science Perspectives on Food and Nutrition; NS 247 Food for Contemporary Living; NS 275 Human Biology and Evolution; NS 306 Nutritional Problems of Developing Nations; NS 315 Obesity and the Regulation of Body Weight; NS 347 Human Growth and Development: Biological and Behavioral Interactions, NS 450 Public Health Nutrition; NS 451 Epidemiology and Health of Human Communities. Nonmajors with strong backgrounds in chemistry and the biological sciences may consider NS 331 Physiological and Biochemical Bases of Human Nutrition, as well as many advanced nutritional sciences courses, such as NS 343 Nutritional and Physicochemical Aspects of Foods; NS 431 Mineral Nutrition and Chronic Disease; NS 441 Nutrition and Disease; NS 455 Nobel Prizes in Biomedical Research; and NS 475 Mechanisms Underlying Mammalian Development Defects.

GRADUATE PROGRAMS
Graduate study is administered by the field of nutrition, a group of faculty members from throughout the university who have a common interest in nutritional problems. In the M.S. and Ph.D. degree programs, students may specialize in molecular and biochemical nutrition, human or animal nutrition, clinical nutrition, or international nutrition. Research is emphasized in all graduate programs. Field experience may be an important component of concentrations in community, international, and public health nutrition and nutrition education. Teaching experience and participation in the graduate student seminar (NS 703) are important aspects of graduate training.

The specialties and interests represented by faculty in the field of nutrition provide almost unlimited opportunity for graduate study. Cornell's extensive laboratory and agricultural facilities ensure that students interested in experimental nutrition have exceptional choices and thorough training. As the largest faculty in the country devoted to the study of human nutrition, the field includes specialists in biochemical, metabolic, epidemiological, and sociocultural research. Opportunities to work with community and federal agencies are available to students interested in applied nutrition and public policy. Students in international nutrition are expected to conduct their thesis research abroad.

For more information about the graduate program, students should write for the brochure Graduate Study in Nutrition, available from the director of graduate studies, field of nutrition, Cornell University, 335 MVR, Hall, Ithaca, NY 14853-4401, 255-2628, nutrition_gr@cornell.edu, or www.nutrition.cornell.edu/grad.html.

COURSES

NS 115(1150) Nutrition, Health, and Society
Fall. 3 credits. S-U grades optional. M W F 1:25. D. Levitsky. Discusses the facts and fallacies concerning the role that nutrition, exercise, and other health behaviors play in preventing disease, maintaining good health, and maximizing athletic performance. Prereq: understanding the biological mechanisms through which good nutrition and regular exercise affect psychological and physical health.
NS 116(1160) Personalized Concepts and Controversies
Fall. 1 credit. Limited to 10 students per sec. Prerequisite: freshman or transfer standing. Co-requisite: NS 115. S-U grades only. Provides personalized assistance in various skills including utilizing computerized methods for analyzing diets, finding and using scientific references, understanding course enrollment and writing scientific articles, and reviewing material presented in lectures.

NS 120(1200) Nutrition and Health: Issues, Outlooks, and Opportunities
Spring. 1 credit. Limited to 120 students. Prerequisite: freshman, sophomore, or junior standing or permission of instructor. An introductory nutrition course for nonmajors. S-U grades only. W 12:20. DNS staff.

For students interested in exploring careers in the broad fields of food, nutrition, and health. Exploiting different areas of discussion for each course, focusing on current issues and trends as well as the requisite knowledge and skills. This course introduces many of the disciplines that are drawn upon in addressing human problems related to food, diet, and health. Students explore career opportunities through a variety of assignments.

NS 222(2220) Maternal and Child Nutrition
Fall. 3 credits. Limited to 25 students. Prerequisites: NS 115 and college biology or permission of instructor. Students must preregister in 335 MVR Hall. S-U grades optional. Some Sat classes required. R 12:20 or 1:25. C. Garza and P. Brannon.

Focuses on the biological bases of nutritional requirements in pregnancy, lactation, infancy, and childhood through adolescence. Stresses critical analyses of beneficial and adverse outcomes of diverse nutrient intakes and dietary patterns, assessment of nutritional status, and the integration of nutrition, other life-style, and social conditions in understanding nutritional needs during these life stages. Topics include oral contraception and health, relationships between maternal and pregnancy outcomes; breast- and formula feeding; food and adolescent obesity; and the nutritional needs of young children and adolescents.

NS 230(2300) Sophomore Seminar: Functional Foods; Where Food Science and Nutrition Meet (also FD SC 230 [2300])
Spring. 2 credits. Limited to 15 students; priority given to sophomores who have completed two first-year writing seminars and an introductory course in either food science or nutritional sciences. W 230–4:25. S. J. Mulvany and R. Parker. Functional foods are foods whose nutrient composition has been modified to achieve targeted health outcomes. This course explores the interface where nutritional science and food science can work together to design and produce foods to meet certain health goals using a case study approach. Each case study involves interdisciplinary discussion and a writing assignment that integrates both technical (e.g., scientific basis for diet-health claims) and nontechnical (e.g., personal experience and opinions related to functional foods) content.

Program. Seminars offer discipline-intensive study within an interdisciplinary context. While not restricted to sophomores, the seminars aim at initiating students into the discipline’s outlook, discourse community, modes of knowledge, and ways of articulating that knowledge. Special emphasis is given to strong thinking and writing and to personalized instruction with top university professors.

NS 245(2450) Social Science Perspectives on Food and Nutrition
Fall. 3 credits. Prerequisite: NS 115. S-U grades optional. T 10:10–11:25. C. Bisogno and J. Sobal. Uses theories, concepts, and methods from the social sciences to examine food, eating, and nutrition. Uses the food choice process as a conceptual model for examining the scope of social science aspects of nutrition.

NS 247(2470) Food for Contemporary Living

During this laboratory course, the understanding of food ingredients and techniques of food preparation is applied to positive nutritional practices and health promotion goals. Course content includes food science principles, nutrition principles, food safety and sanitation, sensory evaluation, and social-cultural influences on food choices. The course explores basic food science principles through food preparation, recipe modification, and sensory evaluation (taste testing required). The course introduces students to basic cooking skills and techniques and recipe modification. Each student prepares assigned recipes during each lab. Assignments and projects introduce students to the nutrition and health factors involved in meeting nutritional requirements while restricted to a budget. Lab performance and a lab practical factor into final student evaluation; thus attendance at all labs is expected.

NS 275(2750) Human Biology and Evolution (also BIOEE/ANTHR 275[2780])
Fall. 3 credits. S-U grades optional by permission of either instructor. M W F 10:10; disc, M; lec, W and F; occasional lec, M. Offered alternate years; not offered 2005–2006. K. A. R. Kennedy and J. D. Haas.

For description, see BIOEE 275.

NS 300(3000) Special Studies for Undergraduates
Fall or spring. Prerequisite: permission of instructor. S-U grades optional. DNS faculty. Special arrangements can be made to establish equivalency for courses not transferred from a previous major or institution. Students prepare a description of the study they want to undertake using a form available from the college registrar’s office, signed by both the instructor directing the study and the associate director for academic affairs, is filed at course registration or during the change-of-registration period.

NS 306(3060) Nutritional Problems of Developing Nations

Students gain an overview of the most important nutrition problems facing developing countries today and an in-depth understanding of the nutrition problems of one country, chosen as a case study for the course. The course uses the health/care/nutrition framework to analyze the causes of these nutrition problems. Instruction is through lectures and readings. Evaluation is through individual assignments, a group project, and exams.

NS 315(3150) Obesity and the Regulation of Body Weight (also PSYCH 613[3150])
Spring. 3 credits. Prerequisites: junior or senior standing, NS 115, PSYCH 101. S-U grades optional. Offered alternate years. T 12:25–3:00. D. Levitsky.

Multidisciplinary discussion of the causes, effects, and treatments of human obesity. Topics include the biopsychological aspects of eating behavior, the genetics of obesity, the role of activity and energy metabolism, the psychosocial determinants of obesity, anorexia nervosa, therapy and its effectiveness, and social discrimination.

NS 320(3200) Introduction to Human Biochemistry
Fall. 4 credits. Prerequisites: one year college biology; one year college general chemistry; and CHEM 257 or 357–358; or permission of instructor. S-U grades optional. M W F 10:10, sec, T 1:25. P. Stover.

Presents the principles of biochemistry within the context of human health and disease. Teaches the metabolism of carbohydrates, lipids, proteins, and selected micronutrients from a perspective that emphasizes their role in supporting the structure and physiological functions of the major organs of the body. Incorporates the concepts of enzyme catalysis, enzyme regulation, hormone action, and bioenergetics within this framework. Covers the fundamental concepts of eukaryotic DNA structure, function, and gene expression with reference to their importance in regulating metabolism and the impact of a changing nutrient environment.

NS 331(3310) Physiological and Biochemical Bases of Human Nutrition
Spring. 4 credits. Prerequisites: BIOBM 330 or 331, or NS 320, or equivalent. S-U grades optional. Lec, M W F 10:10; disc, W 12:20 or R 8:00. C. McCormick.

Examines the biochemical and physiological bases of human nutritional requirements. Uses an integrated approach to cover the digestion and metabolism of nutrients (carbohydrates, proteins, lipids, vitamins, and minerals). Metabolic and chronic diseases related to nutrition are discussed throughout the semester. The discussion sections and problem sets provide an opportunity to examine in greater depth selected topics from lecture.

NS 332(3320) Methods in Nutritional Sciences
Fall. 3 credits. Limited to 18 students per sec. Prerequisites: NS 345, NS 331 preferred or concurrent registration. Students must preregister for lab in 335 MVR during course preregistration. Lec, M
12:20-2 h, M W 1:25-4:25 or T R 10:10-1:10, one evening prelim. M. N. Kazarnovitch. Laboratory introduction to principles and analytical techniques of nutritional research. Emphasizes analytical concepts and skills required to determine nutrient function and nutritional status of individuals. Topics include methods of nutrient, metabolite, and enzyme analysis in body fluids; methods for assessing individual food intake and nutritional status; and methods for assessing the composition of foods.

NS 341(3410) Human Anatomy and Physiology
Spring. 4 credits. Limited to 18 students per lab. Prerequisite: college biology. Recommended: NS 115. Students must complete lab permission forms in 335 MVR during course enrollment period. Attendance required at first lab or placement forfeited. For further information, go to 335 MVR. Letter grades only. Lect. M W F 11:15; lab. W 2:30-4:25 or R 9:05-11:00 or R 2:30-4:25. V. Utermohlen.

Introduces human anatomy and physiology with particular emphasis on aspects of relevance to the nutritional sciences and medicine. Covers all major organ systems. Laboratories emphasize location, recognition, and description of anatomical structures. Testing of physiological functions focuses on tests with nutritional and medical relevance.

NS 345(3450) Nutritional and Physicochemical Aspects of Foods—Laboratory
Spring. 3 credits. Prerequisite: college organic chemistry or biochemistry. S-U grades optional. T R 1:25-2:40. B. Parker and B. Lewis.

Studies the nutritional, physical, and chemical properties of foods including composition, food structure, enzymic and nonenzymic phenomena, processing/preparation, and how these relate to food quality. Also discusses issues related to food safety and regulation.

NS 346(3460) Introduction to Physicochemical Aspects of Foods—Laboratory
Spring. 1 credit. Limited to 18 students per sec. Prerequisites: dietetics students in DNS; NS 345 or concurrent registration; college organic chemistry and permission of instructor during course registration. Students must obtain permission of instructor forms from and return them to 335 MVR. Letter grades only. M 12:20-3:20 or T 9:05-12:05. B. Parker and B. Lewis.

Laboratory exercises are designed to illustrate principles related to food quality and ingredient functionality and to introduce students to the analytical methodology associated with food evaluation.

NS 361(3610) Biology of Normal and Abnormal Behavior (also PSYCH 361(3610))
Spring. 3 credits. Limited to 40 students. Prerequisites: junior or senior standing; BIOG 101-102 and PSYCH 101 or permission of instructor; fundamental knowledge of biology and psychology. S-U grades optional. M W F 9:05. B. Stropp. Serves as a critical evaluation of biological factors thought to influence behavior and/or cognitive functioning. Biological, psychological, and sociological influences are integrated. Topics include nutrition and behavior, psychiatric disorders, developmental exposure to environmental toxins and abused drugs, biopsychology of learning, memory, intelligence, and related cognitive disorders.

NS 398(3980) Research in Human Nutrition and Health
Fall. 1 credit. Requirement for students in honors research program sponsored by DNS. Open only to students. S-U grades only. Not offered spring 2006. M 2:30 J. T. Brenna and C. Bisogni.

Lecture course focusing on the structures and practice of professional research conducted in human nutrition, a field that encompasses questions ranging widely from subcellular components to population-level issues. Introduces the various approaches and methods used by researchers and addresses the topics of ethics and research controls. Describes the structure of scientific literature, preparation of research proposals, roles of scientific organizations, and funding sources. Students are required to attend and report on research seminars on campus.

NS 400-401-402-403-4000-4010-4020-4030 Special Studies for Undergraduates
Fall or spring. Credit TBA. S-U grades optional. DNS faculty. For advanced independent study by an individual or group of students who want to study a field of nutritional sciences not otherwise provided through course work in the division or elsewhere in the university. Students prepare a description of the study they want to undertake on a form to be signed by the instructor directing the study and the associate director for academic affairs. The form, available from the division office, is filed at course registration or within the change-of-registration period along with an add/drop slip in the Human Ecology registrar's office. To ensure review before the close of the course registration or change-of-registration period, students should submit the special-studies form to the associate director for academic affairs as early as possible.

NS 400(4000) Directed Readings
Study that predominantly involves library research and independent reading.

NS 401(4010) Empirical Research
Study that predominantly involves data collection and analysis or laboratory or studio projects.

NS 402(4020) Supervised Fieldwork
Study that involves both responsible participation in a community setting and reflection on that experience through discussion, reading, and writing. Academic credit is awarded for this integration of theory and practice.

NS 403(4030) Teaching Apprenticeship
Study that includes assisting faculty with instruction.

NS 421(4210) Nutrition and Exercise
Spring. 3 credits. Limited to 12 students per sec. Prerequisites: BIOAP 311 or NS 341 and NS 115 or 331; nutrition majors or permission of instructor; priority given to seniors. S-U grades optional. Lec. T R 11:15; sec. T or R 8:00-9:55. S. Travis. Examines the interaction between nutrition, exercise, and athletic performance. Topics include the biological, psychological, and sociological aspects of nutrition as they relate to exercise performance. Lectures cover current research on nutritional needs in response to exercise, including fluids, energy nutrient requirements and caloric distribution, supplementation, ergogenic aids, pre-/post-event recommendations. Makes applications to various sports. Critical thinking skills are enhanced by critiques of studies on sports nutrition-related topics and the evaluation of popular sports nutrition claims. Students learn educational strategies for communicating with the recreational and professional athlete, coach, and trainer.

NS 425(4250) Nutrition Communications and Counseling
Spring. 3 credits. Limited to 20 students. Prerequisites: NS 115, 245; junior or senior standing; dietetics/nutrition majors preferred. Letter grades only. Lect. M 1:25; sec. W 1:25-3:15 or F 8:00-9:55. S. Travis. Students learn the theoretical basis of effective health promotion communications and develop effective nutrition communication skills through application in a variety of settings. The course provides hands-on experiences in counseling, educational program development, and oral and written communications.

NS 431(4310) Mineral Nutrition and Chronic Disease
Fall. 3 credits. Prerequisite: NS 331 or permission of instructor. S-U grades optional. T R 10:10. C. McCormick. Students evaluate the evidence from primary literature that dietary calcium, sodium, and iron play an important role in the development of osteoporosis, hypertension, and anemia, respectively. An additional goal of the course is to review the molecular processes that are involved in the homeostasis of each mineral and the recommendations for daily nutrient intakes. Class discussion of key research articles is conducted and evaluated.

NS 441(4410) Nutrition and Disease
Fall. 4 credits. Prerequisites: NS 331 and human physiology course. S-U grades optional. M W F 10:10, F 8:00. V. Utermohlen.

Studies the anatomical, physiological, and metabolic abnormalities in acute and chronic illness and the role of nutritional therapy in their prevention and care. Topics include nutritional assessment, nutritional pharmacology, starvation, infection, trauma, cancer, diabetes mellitus, and renal, cardiovascular, pulmonary, skeletal, neurological, liver, and gastrointestinal disorders.
NS 442(4420) Implementation of Nutrition Care
Fall. 3 credits. Prerequisites: NS 115, 247, concurrent registration in NS 441 (or equivalent background in either course). S-U grades optional. M W F 9:05; evening prelim. E. Gier.
Develops skills necessary to implement medical nutrition therapy (MNT). Emphasizes the clinical setting, although long-term care and outpatient settings are addressed. Students develop a working knowledge of the nutrition care planning process and an understanding of the application of appropriate nutrition principles and interventions in the clinical nutrition practice involving acute and chronic disease conditions. Course content includes principles of MNT, menu planning for disease states, the role of other allied health practitioners in assuming nutritional health, and reimbursement and legislation in dietetics practice. Students have the opportunity to perform basic nutrition assessment skills in a local clinical and/or long-term care setting.

NS 450(4500) Public Health Nutrition
Spring. 3 credits. Prerequisites: NS 115 and one course dealing with population-level epidemiology (e.g., NS 290, H 260, PAM 201/305, D SOC 101/200). Students must complete section forms in 335 MVR during course enrollment period. M W F 11-15; disc. TBA. K. Rasmussen and D. Pelletier. Public health nutrition is the major professional career track for nutritionists outside of dietetics. It deals with efforts to improve the diets and nutritional status of whole populations by working at the community, state, and national levels. This course helps prepare students to work in public health nutrition by describing methods used in the assessment of nutrition problems, the development of nutrition-related policies, and the delivery of health, nutrition, and food assistance programs.

NS 451(4510) Epidemiology and Health of Human Communities
Fall. 3 credits. Prerequisite: one semester of statistics. Intended for advanced undergraduates and graduate students interested in health, human biology, nutrition, or epidemiology. M W F 1:25. E. Frongillo.
Examines through a series of case studies the role of epidemiological investigation in understanding, assessing, and improving the health and nutrition of human communities and populations. Students read and discuss scientific research and public policy literature on specific topics of current interest. Emphasis is on the conceptualization of epidemiology as an ecological science that studies the interdependence and interaction of humans with their social, cultural, and physical environment.

NS 452(4520) Molecular Epidemiology and Dietary Markers of Chronic Disease
Spring. 3 credits. Prerequisites: upper-level biology course, introductory statistics (can be taken concurrently), or permission of instructor. S-U grades optional. T R 1:25—4:40. P. Soloway.
Introduces chronic disease epidemiology and covers the natural history of the major chronic diseases affecting the U.S. population. Focuses on the use of biological markers in understanding the etiology of cardiovascular disease, cancer, and lung disease. Integrates biological and epidemiological information as well as public health considerations and concepts related to the prevention of disease. Topics include gene-nutrient interaction in relation to cardiovascular risk, micronutrient and cancer risk, and nutritional influences on the immune system in relation to asthma risk. The course provides a health context that enriches the learning experience in other advanced courses, particularly in biology and nutrition.

NS 455(4550) Nobel Prizes in Biomedical Research
Spring. 3 credits. Prerequisites: college biochemistry and/or cell biology (e.g., BIOM 330, 331–352, 342, NS 320). Times TBA. S-U grades optional. D. Manor.
Covers in detail key topics in biomedical research through discussions of selected Nobel prizes. For each specific biomedical problem addressed, the discussion encompasses detailed analysis of the relevant experiments and ensuing data, evaluation of the impact of the findings on public health, and retrospective assessment in view of present-day knowledge. The course focuses mainly on breakthroughs associated with two major public health issues: infectious diseases and cancer. Other topics discussed include vitamins, lipid metabolism, priions, and technical breakthroughs such as DNA synthesis, mutagenesis, and PCR.

NS 457(4750) Economics of Hunger and Malnutrition (also ECON 474[4740])
Spring. 3 credits. Prerequisites: ECON 101 and introductory statistics, or permission of instructor. S-U grades optional. M W F 9:05. D. Sahin.
Focuses on the analysis of global hunger and malnutrition. Students explore the dimensions, causes, and solutions to hunger and malnutrition, particularly in developing countries. Grades are based on a midterm and a final exam, a term paper, and class participation.

[NS 475(4750)] Mechanisms Underlying Mammalian Developmental Defects (also BIOAP 478[4750])
Spring. 3 credits. Prerequisites: BIOM 330, 331–332 or 333 (may be taken concurrently). Lec: M W 9:05; lab: R 2:00. Offered alternate years; next offered 2006–2007. D. Noden and D. P. Stover.
Developmental defects are present in nearly 5 percent of humans. Drawing upon current research, this course explores the causes of birth defects, emphasizing the interplay between genetic and environmental factors in the regulation of developmental processes. Emphasis is on nutritional disruptors, teratogens, and regulatory gene networks that are well characterized through animal studies and more associated with morphological, physiological, reproductive, or behavioral abnormalities in humans.

NS 488(4880) Applied Dietetics in Food Service Systems
Spring. 3 credits. Limited to 27 students. Prerequisites: food service management course, BIOM 201/202 and C 110. S-U grades only. T R 2:00–4:00. C. C. McCormick.
Introduction to nutrition and dietetics, with emphasis on the development of nutrition-related policies, and the delivery of health, nutrition, and food assistance programs. Focuses on the use of biological markers in understanding the etiology of cardiovascular disease, cancer, and lung disease. Integrates biological and epidemiological information as well as public health considerations and concepts related to the prevention of disease. Topics include gene-nutrient interaction in relation to cardiovascular risk, micronutrient and cancer risk, and nutritional influences on the immune system in relation to asthma risk. The course provides a health context that enriches the learning experience in other advanced courses, particularly in biology and nutrition.

NS 490(4900) Manipulating the Mouse Genome (also BIOG 490[4900])
Fall. 1 credit. Prerequisites: BIOGD 280, 281, or 282 and BIOM 330, 331–332, or NS 320. S-U grades optional. M 1:25. P. Soloway.
Functional genomic analysis has benefited enormously from experimental manipulation of the genome of many organisms. The mouse has been the model of choice for such studies in mammals. This course explores the tools available for experimental manipulation of the mouse genome, including transgenesis, gene targeting, gene trapping, chemical mutagenesis, and cloning. It also discusses recombination and nuclear transplant. Also discussed are use of recombinant inbred mice for complex trait analysis. Readings from the scientific literature focus on seminal applications of these methods.

NS 499(4990) Honors Problem
Fall and spring. Credit TBA. Prerequisite: acceptance into honors research program. Students who have been accepted into the honors research program work on their projects under the guidance of their faculty mentors. Honors research students must complete a minimum of 6 credits of NS 499, typically spread over two or more semesters. The student and the mentor determine the appropriate number of credits for each semester. Research activities may include reviewing the literature, writing a proposal, developing research methods, collecting data in the field or laboratory, analyzing data, and writing the honors thesis.

NS 600(6000) Special Problems for Graduate Students
Fall or spring. Credit TBA. Prerequisite: graduate students recommended by their chair and approved by instructor in charge. S-U grades optional. DNS faculty. Emphasizes independent advanced work. Experience in research independent laboratories in the division may be arranged.

NS 602(6020) Lipids (also BIOAP 419[4190])
Fall. 2 credits. T R 11:15. A. Bensadoun. Advanced course on the molecular aspects of lipid transport. Topics include plasma lipoproteins, molecular biology of lipoprotein receptors, transcriptional regulation of cholesterol homeostasis, lipid transfer factors, lipolytic enzymes, and molecular aspects of atherosclerosis.

[NS 603(6030)] Mineral Nutrition: Metabolic, Health, and Environmental Aspects (also AN SC 603[6030])
Fall. 2 credits. Prerequisites: biochemistry, physiology, and nutrition courses. Letter grades only. T 2:00–4:00. Offered alternate years; next offered 2006–2007. X. G. Lei and C. C. McCormick.
Advanced course that emphasizes metabolism, gene regulation, antioxidation, and genetic defects related to mineral nutrition. Team-taught lectures cover topics ranging from single-gene mutation to social and environmental aspects of mineral nutrition and mineral-related disorders. Effective approaches to improve global mineral nutrition by agriculture and food systems are discussed.

NS 605(6050) Nutritional Biochemistry Colloquium
Fall and spring. 1 credit. S-U grades only. R 12.20. Nutritional biochemistry faculty. Graduate seminar series that focuses on recent advances in biochemical nutrition. Weekly presentations are made by faculty members, postdocs, and graduate students and are based on the primary literature. The presentations are followed by a discussion involving all participants.

NS 607(6070) Nutrition as an Integrating Discipline: Concepts and Paradigms
Fall. 3 credits. Prerequisite: course work or experience in nutrition or permission of instructor. M W F 10:10. M. N. Kazaninoff, R. Parker, and DNS faculty. Overview course for beginning graduate students that introduces them to the full breadth of nutritional science disciplines, including quantitative and qualitative sciences. Also suitable for seniors as an integrating 3 credits. The course presents concepts and paradigms of molecular biology, biochemistry, clinical nutrition, epidemiology, anthropology, economics, program planning and administration, policy development, and ethics. The course uses vitamin A as the example. Emphasis is placed on the integration of factual and conceptual knowledge to solve nutrition problems in human societies.

NS 608(6080) Epigenetics (also BIOGD 608(6080))
Fall. 3 credits. Prerequisite: BIOGD 281 and BIOBM 330, 332, or 333 or NS 320. Letter grades only. W F 11:15. P. Soloway. Epigenetic effects refer to reversible alterations in chromatin structure that can stably and heritably influence gene expression. These changes include modifications that do not cause changes in DNA itself or to proteins bound to DNA as well as noncovalent remodeling of chromatin. This course examines selected epigenetic phenomena described in several eukaryotes, mechanisms regulating these effects, and their phenotypic consequences when normal regulation is lost. Reading materials are from current literature, and participation in class discussion is required.

NS 611(6110) Molecular Toxicology (also TOX 611(6110))
Spring. 3 credits. Prerequisite: TOX 610 or permission of instructor. Offered alternate years; not offered 2005--2006. T R 10:10. S. Bloom, R. Dietert, D. Muscarella, and B. Strupp. Focuses on the metabolism of drugs and environmental toxicants to reactive forms that can modify DNA and proteins and induce target organ toxicity as well as mutations and cancer. Also emphasizes factors and pathways that can mediate toxic effects, including polymorphic drug-metabolizing enzymes, stress-activated signal transduction, and DNA repair. Discusses the uses of molecular and cellular stress markers for assessment of toxicant exposure and health risks.

NS 614(6140) Topics in Maternal and Child Nutrition
Fall. 3 credits. Prerequisites: for undergraduates only; NS 331, 222 or 347, BIOAP 311 or NS 34, and permission of instructor. R. K. Rasmussen. Advanced course on the role of nutrition during pregnancy and lactation. The feeding and growth of infants and children in health and disease is considered. Critical evaluation of current literature is emphasized via lecture, discussions, and a term paper.

NS 615(6150) Nuclear Hormone Receptors
Spring. 2 credits. S-U grades only. W 7:30 P.M. N. Noy. Focuses on hormone-gene interactions mediated by the superfamily of ligand-lecturing, preparation of exams, efficiency grading, and so on. Optional videotaping provides opportunities for practice and analysis.

NS 617(6170) Teaching Seminar
Fall or spring. 0 credits. Prerequisite: DNS graduate students or permission of instructor. S-U grades only. DNS staff and W. D. Way. Provides individualized instruction focusing on the development of teaching skills for guiding learning in lecture, discussion, and laboratory setting, and reflection on the impact of these skills on teaching and learning. Students identify the aspects of the specific teaching assignments they wish to develop and work with instructors on independent learning projects that may include preparation for certification exams, efficient grading, and so on. Optional videotaping provides opportunities for practice and analysis.

NS 618(6180) Teaching Experience
Fall or spring. 0 credits. Prerequisite: DNS graduate students or permission of instructor. S-U grades only. DNS staff and W. D. Way. Provides individualized instruction focusing on the development of teaching skills for guiding learning in lecture, discussion, and laboratory setting, and reflection on the impact of these skills on teaching and learning. Students identify the aspects of the specific teaching assignments they wish to develop and work with instructors on independent learning projects that may include preparation for certification exams, efficient grading, and so on. Optional videotaping provides opportunities for practice and analysis.

NS 619(6190) Field of Nutrition Seminar (also AN SC 619(6190))
Fall or spring. 0 credits. S-U grades only. M 4:00. Faculty and guest lecturers. Lectures on current research in nutrition.

NS 620(6200) Food Carbohydrates (also FD SC 620(6200))
Spring. 2 credits. Prerequisite: BIO BM 330 or equivalent. Letter grades only. T R 10:10. Offered alternate years; not offered 2006-2007. J. Brady and B. Lewis. Considers the chemistry of carbohydrates, including sugars and complex carbohydrates (starches, pectins, and hemicelluloses, gums, cellulose, and glycoconjuguates). Emphasizes intrinsic chemistry, functionality in food systems, and changes occurring during food processing and storage.

NS 625(6250) Community Nutrition in Action
Fall. 3 credits. Prerequisite: dietetic interns. M 1:00-3:30. S. Travis. Provides students enrolled as dietetic interns with supervised, in-depth experiences in a community nutrition program and fosters the integration of research, theory, and practice. Through placements in community programs, students gain experience in program administration and in assessing, designing, implementing, and evaluating food and nutrition programs for targeted populations through public and private organizations. In weekly seminars (and other seminars and observations as arranged) students integrate theory and practice, reflect upon their placement experience, learn about community nutrition research, and explore the many issues facing community food and nutrition practitioners.

NS 626(6260) Special Topics in Food
Fall. 2 credits. Times TBA. B. Lewis. Provides a discussion of current research on specific topics related to functional foods and nutraceuticals.

NS 630(6300) Anthropometric Assessment
Fall. 0 credits. Prerequisite: enrollment in Cornell Dietetic Internship Program or equivalent background and research placement. M 10:00. C. Bisogni. Introduces the principles of anthropometry, statistical analysis and presentation of anthropometric data, references standards and interpretation, measurement techniques of anthropometry, and body composition assessment.

NS 635(6350) Introduction to Community Nutrition Research for Dietetic Interns
Fall. 2 credits. Prerequisites: enrollment in Cornell Dietetic Internship Program or equivalent background and research placement. M 10:00. C. Bisogni. Introduces the principles of anthropometry, statistical analysis and presentation of anthropometric data, references standards and interpretation, measurement techniques of anthropometry, and body composition assessment.
Covers the meta-analysis, design, measurement, and analytic issues involved in developing, implementing, and analyzing studies of field interventions with nutritional implications.

NS 640(6400) Social Science Theories in Nutrition

Fall. 3 credits. Limited to 20 students.
Social science theories from sociology, psychology, anthropology, economics, political science, geography, and history that contribute to understanding food, eating, and nutrition are discussed to understand how paradigms, theories, and models apply to nutrition topics, issues, and problems.

NS 642(6420) Globalization, Food Security, and Nutrition (also AEM 652(6520))

Fall. 2 credits. Prerequisites: permission of instructor, graduate standing, and basic understanding of economics and nutrition. Letter grades only. W 11:15-12:05. P. Pinstrup-Andersen.
Directed readings course with a weekly one-hour discussion session. The course is aimed at graduate students in nutrition, agricultural economics, and other relevant fields, who wish to explore how globalization may affect poverty, food security, and nutrition in developing countries and how national policies and international agreements and institutions may influence the outcome. The discussion sessions are based on assigned readings for each week.

NS 644(6440) Community Nutrition Seminar

Fall and spring. 1 credit. S-U grades only. Fall M 11:15, spring M 12:20. A. Gillespie.
Sponsored by the Cornell Community Nutrition Program. Graduate students and faculty learn about current research in the program and related fields within and outside Cornell and about community nutrition theories and research methodologies. The seminar also provides a forum to discuss participants' own research and current issues in community nutrition.

NS 646(460) Seminar in Physicochemical Aspects of Food

Spring. 1-3 credits. Prerequisite: college organic chemistry or biochemistry. S-U grades optional. T R 1:25-2:40. B. Parker and B. Lewis.
Introduces physicochemical aspects of food to graduate students who have had limited or no work in this area. Uses the lectures of NS 645 as a basis for supplementary readings and critical review of research on selected topics.

NS 650(6500) Assessing Food and Nutrition Interventions: The Social Context

Fall. 4 credits. Prerequisite: social sciences course. Letter grades only. T R 1:25-2:40. D. Pelletier and G. Pelto.
Food and nutrition problems in developed and developing countries may manifest themselves in biological or functional terms, but their causes and solutions ultimately are rooted in the sociopolitical world. This course provides multidisciplinary perspectives and some policy analytic frameworks needed to assess and analyze the social context of nutrition problems. The course is relevant to developed and developing countries and to research and practice related to community nutrition as well as nutrition policy.

NS 660(6660) Special Topics in Nutrition

Fall or spring. 3 credits max. each semester; because topics change, may be repeated for credit. Prerequisite: permission of instructor. DNS faculty.
Desired for students who want to become informed in any specific topic related directly or indirectly to nutrition. The course may include individual tutorial study, experience in research laboratories, a lecture series on a special topic selected by a professor or a group of students, and/or selected lectures of another course already offered.

NS 680(6800) International Nutrition Problems, Policy, and Programs

Spring. 3 credits. Prerequisite: permission of instructor. T R TBA. Offered alternate years.
International Nutrition faculty.
Designed for graduate students who want to learn about the major international nutritional problems of developing countries. The major forms of malnutrition relate to poverty and their underlying causes are discussed. Emphasis is placed on programs and policies that can help poor countries and communities improve their nutritional and health status.

NS 685(6850) Empirical Methods for the Analysis of Household Survey Data: Applications to Nutrition, Health, and Poverty (also ECON 771(7711))

Spring. 3 credits. Prerequisites: intermediate microeconomics, intermediate statistics or econometrics (through multiple regression and limited dependent variable models), or permission of instructor. M W TBA. D. Sahin.
Focuses on empirical methods for the analysis of household survey data. Students examine a series of measurement and modeling issues focused on health and nutrition, education, and poverty. In addition, they explore methods to evaluate social programs. Course readings and data that are used for hands-on empirical exercises are largely from Africa and Asia.

NS 690(6900) Trace Element and Isotopic Analysis (also CHEM 628(6280))

Spring. 3 credits. Prerequisite: CHEM 208 or 390, 302 or CHEM 208 and MATH 112, or permission of instructor. Primarily for graduate students and advanced undergraduates. S-U grades optional. T R 11:15. Offered alternate years; not offered 2006-2007. J. T. Brenna.
Survey course in modern high-precision isotope ratio mass spectrometry (IRMS) techniques and trace/surface methods of analysis. Topics include dual inlet and continuous flow IRMS, thermal ionization MS, inductively coupled plasma MS, atomic absorption, ICP-MS, ICP-ES, X-ray and electron microspectroscopy, and biological and environmental applications. The first five weeks focus on IRMS instrumentation and are offered as a separate 1-credit special topics course (NS 660).
Dollahite, Jamie, Ph.D., U. of Texas. Assoc. Prof. and EFNEP Leader
Frongillo, Edward, Jr., Ph.D. Cornell U. Assoc. Prof.
Garza, Cutberto, M.D., Baylor Coll.; Ph.D., Massachusetts Inst. of Technology. Prof. and Director
Gillespie, Ardyth, Ph.D., Iowa State U. Assoc. Prof.
Haas, Jere D., Ph.D., Pennsylvania State U. Nancy Schlegel Meinig Professor in Maternal and Child Nutrition
Habicht, Jean-Pierre, Ph.D., Massachusetts Inst. of Technology. James Jamison Professor of Nutritional Epidemiology
Kazarinoff, Michael N., Ph.D., Cornell U. Assoc. Prof., Nutritional Sciences/Biochemistry, Molecular and Cell Biology
Levitsky, David A., Ph.D., Rutgers U. Prof.
Lewis, Bertha A., Ph.D., U. of Minnesota. Assoc. Prof.
Manor, Danny, Ph.D., Albert Einstein Coll. of Medicine. Asst. Prof.
McCormick, Charles, Ph.D., North Carolina State U. Assoc. Prof. and Asst. Dir., Undergraduate Studies
Noy, Noa, Ph.D., Tel-Aviv U. (Israel). Prof.
Olson, Christine M., Ph.D., U. of Wisconsin. Prof. and Dir., Graduate Studies
Parker, Robert S., Ph.D., Oregon State U. Assoc. Prof.
Pearson, Thomas, Ph.D., Johns Hopkins U. Adjunct Prof.
Pelletier, David, Ph.D., Pennsylvania State U. Assoc. Prof.
Pelto, Gretel, Ph.D., U. of Minnesota. Prof.
Rasmussen, Kathleen M., Sc.D., Harvard U. Prof.
Rivera, Juan, Ph.D., Cornell U. Adjunct Asst. Prof.
Sahn, David, Ph.D., Massachusetts Inst. of Technology. Prof.
Sobal, Jeffery, Ph.D., U. of Pennsylvania. Assoc. Prof.
Soloway, Paul, Ph.D., Princeton U. Assoc. Prof.
Stipanuk, Martha H., Ph.D., U. of Wisconsin. Prof.
Stoltzhus, Rebecca, Ph.D., Cornell U. Assoc. Prof.
Stover, Patrick, Ph.D., Medical Coll. of Virginia. Assoc. Prof.
Strupp, Barbara, Ph.D., Cornell U. Assoc. Prof.
Travis, Susan, M.S., Colorado State U. Lec.
Utermohlen, Virginia, M.D., Columbia U. Assoc. Prof., Nutritional Sciences/Biochemistry, Molecular and Cell Biology

Other Teaching Personnel
Gier, Emily, M.B.A., Binghamton U. Lec.
Swanson, Joy, Ph.D., Cornell U. Res. Assoc.

Joint Appointees
Bauman, Dale, Prof., Animal Science/Nutritional Sciences
Miller, Dennis, Prof., Food Science/Nutritional Sciences
Military instruction began at Cornell University in 1868 under the provisions of the Morrill Act of 1862. Since that time, officer education has been highlighted by the construction of Barton Hall in 1914 and the establishment of a formal Reserve Officers Training Corps (ROTC) unit in 1917. The program evolves to keep pace with the latest military changes and emphasizes the development of leadership and managerial skills.

The Officer Education Programs prepare students for a commission as an officer in either the United States Army, Navy, Air Force, or Marine Corps. Each service program is headed by a senior military officer who also serves as a full professor on the Cornell faculty.

MILITARY SCIENCE

Lieutenant Colonel Glenn Reisweber, Artillery, United States Army, Professor of Military Science and Commanding Officer

Major Dean Swartwood, Engineer, United States Army Reserves

Major Richard Brown, Engineer, United States Army Reserves

Captain Kurt Belawke, Aviation, United States Army

United States Army ROTC Program

The primary objective of the Army Officer Education Program at Cornell is to commission the future officer leadership of the United States Army. Intermediate objectives are to provide students with an understanding of the fundamentals of responsibility, integrity, and self-discipline, as well as an appreciation of the citizen's role in national defense. The application of the decision-making process to a variety of situations is given major emphasis as a valuable aid in developing leadership potential. These objectives are achieved through a program normally covering four years. A two-year program is available for those who qualify. The program includes specific courses in military science, more general academic subjects that assure a well-rounded education, practical training in leadership through participation in the Cadet Corps (including attendance at one five-week summer camp at Ft. Lewis, Wash.), and the opportunity to participate in a number of extracurricular activities. This combination prepares the student for commissioning and effective performance in the many branches of the Army. The student's academic major, academic performance, leadership ability, personal desires, and the needs of the Army determine the branch of the Army into which the student is commissioned upon graduation.

Requirements for Enrollment

Applicants must be citizens of the United States and be able to obtain a Secret level security clearance before being commissioned as lieutenants. (Noncitizens may enroll in selected portions of the program.) Students must meet Army medical requirements. Overall sound mental and physical condition is essential; students are required to undergo periodic physical fitness tests. Enrollment and continuation in the program is subject to the approval of the Professor of Military Science. Enrollment in specific courses by students not formally enrolled in the program must be approved by course instructors. Contracted students must register for letter-grade military science classes and leadership laboratories for the purpose of commissioning into the United States Army.

Four-Year Program

The Four-Year Program is open to students in their freshman year or, with the approval of military and university authorities, to sophomores in a five-year degree program. Veterans of the Armed Forces of the United States and students entering Cornell with AROTC credit from secondary or military schools (Junior Division AROTC) may receive advanced standing, if qualified. Under the Four-Year Program students enroll in the Basic Course (MIL S I and II) during the first two years, and the Advanced Course (MIL S III and IV) during the next two years. A total of 12 credits of military subjects are taken. In addition, academic enrichment courses are required in such fields as written communications, computer science, and military history. All cadets attend a five-week camp, with pay, between their junior and senior years. All cadets participate in physical fitness training three days per week. Each year selected cadets are sent to the Army Airborne School, Winter Survival School, and Air Assault Course, depending upon availability and student standings within the ROTC program.

Scholarships

Scholarships are awarded on the basis of merit and may be available for two, three, or four years. AROTC scholarships are awarded each year to entering freshmen and students in the freshman and sophomore classes. Scholarship cadets pay up to full tuition and mandatory fees. Scholarship cadets and enrolled juniors and seniors also receive between $250 and $400 a month for up to 10 months a year. Scholarship cadets also receive $900 per year toward the cost of textbooks.

Service Obligations

ROTC graduates may serve on active duty, in the Army Reserve, or in the National Guard, depending upon the needs of the Army and the leadership abilities of the cadet. Officers beginning active duty attend the Officer Basic Course (normally 10 to 16 weeks) of their assigned branch. Upon completion, officers are assigned to a unit and location determined by the desires of the individual and the requirements of the Army. Officers selected for reserve duty attend the Officer Basic Course, after which they are released to reserve status.

Graduate Study

Active duty deferments, or educational delays, may be granted to individuals who want to attend graduate school at their own expense. Requests will be considered on the basis of the needs of the service. Admission to graduate school is the student's responsibility.

Military Science Courses

All cadets take one course and a leadership laboratory each semester in military science. The number of hours a week spent in the classroom varies from semester to semester, as does the credit received for each course.

Freshman Year (MIL S I)

MIL S 101(1101) Foundations of Officership

Fall. 1 credit. Required. Captain Belawke

MIL S 102(1102) Basic Leadership

Spring. 1 credit. Required. Captain Belawke

Allows students to develop a basic understanding and appreciation of theories of social and organizational psychology and behavior as they apply to the military setting. Attention is given to leader types, the source and exercise of authority, and the impact of varying styles of leadership, resource management, motivation, and organizational effectiveness. The student is instructed in the concepts of integrity, ethics, and professionalism. Classes on historical events and strategy are also presented.

Sophomore Year (MIL S II)

MIL S 201(2201) Individual Leadership Studies/Teamwork

Spring. 1 credit. Required. Prerequisite: MIL S 102 or permission of instructor. Instructor TBD.

Students learn the basic principles of group dynamics at the level of the smallest military unit, the squad. Troop-leading procedures are introduced through case studies and role-playing exercises. Leadership theories introduced in MIL S 102 are examined in a variety of realistic settings. The practical application of behavioral theories is explored in the context of small military organizations. The course also provides practical knowledge of the various forms of topographic representation. Students use maps to
in terrain association and land navigation. Knowledge of topography is complemented by an orientation on significant environmental influences of physical, social, and climatic factors. Portions of the course offer experience in land navigation and orienteering.

MIL S 321(3321) Armed Conflict In Society
Fall. 2 credits. Required. Captain Brown. Provides practical knowledge in American military history. It is primarily an overview course designed to provide an understanding of the art and nature of warfare and particularly how warfare has affected the United States. The course consists of three primary areas of instruction with an emphasis on American military history. The first area of instruction addresses the art and theory of modern warfare. It analyzes America's first attempt at war, the American Revolution, and ends with the development of modern warfare under Napoleon Bonaparte. The second phase focuses on America at war in the 19th century. It places particular emphasis on the American Civil War and the strategy of annihilation versus the strategy of attrition. The final phase looks at warfare in the 20th century and focuses with an analysis of the future of warfare for the military of the United States.

Junior Year (MIL S III)

MIL S 301(3301) Leadership and Problem Solving
Fall. 2 credits. Required. Captain Brown. After an initial introduction to techniques of presenting briefings, students are provided with a broad understanding of the principles and application of teamwork in military organizations. Particular emphasis is given to the leadership responsibilities of the commander as the team coordinator. This course helps students develop an understanding of the roles and contributions of the various branches of the Army in support of the military team.

MIL S 302(3302) Leadership and Ethics
Spring. 2 credits. Required. Prerequisite: MIL S 301. Takes on the nature of decision making and the tactical application of the military team. Through the use of conferences and extensive practical exercises, students develop familiarity with the factors influencing a leader's decisions and the process of planning, coordinating, and directing the operations of military units through operation plans and orders.

Senior Year (MIL S IV)

MIL S 401(4401) Leadership and Management
Fall. 2 credits. Required. Lieutenant Colonel Reisweber. Provides an overview of the functions, responsibilities, and interrelationships among small-unit leaders, the commander, and the staff. Discussions focus on actions of small-unit leaders, communication skills, army operations, the logistical support of the army in the field, and the army training system. The course focuses on the dynamics of leadership in battle through the detailed analysis of a series of case studies. Just war theory, ethics, and professionalism are also addressed in a seminar fashion.

MIL S 402(4402) Officership
Spring. 2 credits. Required. Lieutenant Colonel Reisweber. A continuation of MIL S 401. Conferences and seminars examine the techniques of effective military leadership with special attention given to professionalism and ethical considerations in the armed forces during both peacetime and conflict. Army operations and basic doctrine are also discussed. This is a capstone course designed to prepare the student for commissions.

Practical Leadership Training

All Army Officer-Education Students

No credit is given for leadership training, but participation is required for successful completion of the AROTC program. Students receive physical education credit for the laboratory. Each semester, cadets register for the appropriate leadership laboratory, consisting of physical fitness training three times per week, two hours of military training each week, and one or two weekend training exercises per semester.

MIL S I Leadership Laboratory I
Fall. 0 credits. S-U. MIL S 151(111) MIL S 152(111) MIL S I cadets meet for two hours each week to learn a variety of military skills including rappelling, first aid, drill and ceremonies, weapons familiarization, and physical fitness training.

MIL S II Leadership Laboratory II
Fall. 0 credits. S-U. MIL S 251(221) MIL S 252(221) Cadets meet for two hours each week as members of the cadet organization to participate in practical leadership exercises. Types of practical activities include rifle marksmanship, orienteering, drill and ceremonies, signal communications, physical fitness training, first aid, tactics, and field exercises.

MIL S III Leadership Laboratory III
Fall. 0 credits. MIL S 351(331) MIL S 352(331) Cadets meet for two hours a week and occasional weekends to prepare for a five-week summer camp that follows their junior year. Emphasis is placed on the development of individual practical and leadership skills. Cadets rotate through leadership positions to practice applying decision-making skills in a myriad of situations.

MIL S IV Leadership Laboratory IV
Fall. 0 credits. MIL S 451(441) MIL S 452(441) Senior cadets plan and operate the leadership laboratory programs for MIL S I-III cadets. The development of planning and supervisory skills is emphasized. Cadets have an opportunity to practice leadership skills developed during previous ROTC training and summer camp experiences. Includes two to three hours a week devoted to physical fitness.

Professional Military Education (PME) Requirements

In addition to the ROTC classes and leadership laboratories listed above, a number of courses are required as part of the contracted student's academic program. These courses are offered by the university and round out the student's professional education. The PME component of the ROTC program requires at least one college course in each of the following areas: communication skills, military history, and an introduction to computers. These courses must be completed before graduation and commissioning. Courses that meet these requirements are approved by the Professor of Military Science.

NAVAL SCIENCE

Captain C. Klyne, United States Navy, Professor of Naval Science and Commanding Officer, Naval ROTC Unit
Lieutenant Colonel Terry Stautberg, United States Marine Corps
Lieutenant Garland Buchanan, United States Navy
Lieutenant Jon Leisner, United States Navy
Lieutenant W. Towcimak, United States Navy

The objective of the Naval Officer Education Program is to prepare students for service as commissioned officers in the United States Navy or United States Marine Corps; this is done by supplementing undergraduate education with instruction in essential concepts of naval science and by fostering qualities of leadership, integrity, and dedication to country. The program is compatible with most undergraduate major fields of study, including five-year baccalaureate degree programs.

The program covers four years and combines specific courses in naval science and specified academic subjects. These courses supplement weekly professional development sessions in which the practical aspects of naval science and leadership procedures are stressed. It also includes at least one summer-at-sea period.

Though the Navy-Marine Corps Program has been designed to prepare future officers, naval science courses are open to all students at Cornell as space limitations allow.

Requirements for Enrollment

An applicant for the Naval ROTC program at Cornell must be a citizen of the United States. Applicants must have reached their 17th birthday by June 30 of the entering year and be less than 27 years of age on June 30 of the calendar year in which they are commissioned. Waivers of the upper age limit may be available for applicants who have prior active duty military service. Applicants must also meet physical and medical requirements. Interested students can visit the Naval ROTC Unit in Barton Hall or contact their local officer recruiter.

Programs

There are two programs: the Scholarship Program and the College Program. The two programs differ primarily in benefits given to the student.
Scholarship Program
The Scholarship Program provides approximately 1,000 scholarships in more than 70 universities nationwide to selected students who want to serve in the Navy or Marine Corps. Financial support is provided to students during college preceding the award of the baccalaureate degree.

Benefits
The program offers scholarships that provide full tuition and are not need-based. While on scholarship, students also receive money for instructional fees, textbooks, nonconsumable supplies, and a stipend of $250-$400 a month for a maximum of 40 months.

Successful completion of the Scholarship Program leads to a commission in the Navy or Marine Corps Reserve. At Cornell University, over 50 percent of NROTC students have a scholarship. Students entering NROTC without a prior scholarship award are entitled to compete for two- or three-year scholarships controlled by the Chief of Naval Education and Training.

Entering the Scholarship Program
There are three ways to enter the Scholarship Program:

1. by applying to the national competition each year. This process entails filling out and submitting an appropriate application; being interviewed; having a physical examination; and applying to, and being accepted by, one of the colleges or universities throughout the country that offers an NROTC program.

2. by enrolling in the College Program at Cornell and being recommended by the Professor of Naval Science for a scholarship after at least one semester in the program.

3. by entering through the Two-Year Scholarship Program.

College Program
Two College Programs are available. Both lead to a commission in the Naval or Marine Corps Reserve.

Starting in the junior year, each of these programs provides textbooks for naval science courses, uniforms, and a subsistence allowance of $350-$400 a month.

The regular College Program is four years long. Academic requirements for students in this program are somewhat fewer than those for scholarship students, as noted in the curriculum section of this book.

The Two-Year College Program begins the summer before the junior year; students attend a required program, with pay, at the Naval Science Institute in Newport, R.I.

Summer Training
Each summer, students in the Scholarship Program spend approximately four to six weeks on a Navy ship, or participate in a naval activity that may take place anywhere in the world, for on-the-job training. College Program students attend one summer training session of the same duration between the junior and senior years.

Active Duty Requirements
Scholarship midshipmen commissioned in the Navy or Marine Corps Reserve serve on active duty for a minimum of four years. College program midshipmen commissioned in the Navy or Marine Corps Reserve serve a minimum of three years. In some cases, following commissioning, specialized training such as aviation or nuclear power will add additional active duty requirements.

Choice of Assignment
Graduates have the opportunity to request the duty they prefer upon graduation. These requests are given careful consideration, and every effort is made to assign newly commissioned officers to their duty of choice.

Among the assignments available are duties in naval aviation as either a pilot or naval flight officer, on submarines, and on surface ships. Other specialties, such as special warfare or medical service corps, may be available on a limited basis.

Marine Corps Options
The United States Marine Corps is an integral part of the Naval Services and is commanded by the Commandant of the Marine Corps.

One-sixth of the NROTC scholarship students may be Marine selectees who will be designated Marine-option midshipmen. Upon successful completion of the program they will be appointed second lieutenants in the United States Marine Corps Reserve.

Marine-option midshipmen follow the same program as other NROTC midshipmen for the first two years. Beginning with the junior year, Marine-option midshipmen are taught Marine-oriented courses by a Marine Officer Instructor. For First Class summer training (after the junior year), Marine-option students travel to Quantico, Va., where they undergo six weeks of intensive training known as the USMC Officer Candidate School. Upon commissioning the following year as second lieutenants, they are assigned to the Basic School at Quantico, Va. After the Basic School, the marine officer is assigned duty in a variety of occupational fields. Among the duties available are infantry, aviation, artillery, tracked vehicles, engineering, communications, electronics, supply, administration, and computer science. The officer may serve on board naval vessels or at shore installations of the Marine Corps or Navy, either in this country or overseas.

The Marine Corps has a postgraduate training system similar in objectives and organization to that of the Navy. Marine officers selected for aviation receive flight training at the Naval Air Station, Pensacola, Fla., along with their Navy counterparts.

Curriculum
A student has three categories of requirements to fulfill as a midshipman. The first of these requirements is a weekly naval professional development session each semester. The second requirement is a naval science course each semester. The last set of requirements consists of further courses prescribed by the Navy to meet the growing need for more and better technically educated junior officers.

Naval Professional Laboratories
NAV S 141-142, 241-242, 341-342, or 441-442(1141, 2241, 3341, 4441)
All students in the program participate in a two-hour professional development session each semester. The session is held from 2:30 until 4:30 on Wednesday afternoons and consists of both drill and professional information briefings. Students gain experience in actual leadership situations and learn the fundamentals of seamanship, military formations, movements, commands, discipline, courtesies, and honors. During information briefings, special emphasis is given to applied leadership as it relates to the administrative and managerial aspects of a Navy or Marine Corps officer's duties.

Naval Science Courses
All Navy and Marine midshipmen take one naval science course each semester during their freshman and sophomore years. Navy-option students continue to take a naval science course each semester during their junior and senior years. Marine-option students have slightly different curriculum requirements for their junior and senior years.

Freshman Year (Navy and Marines)
NAV S 101(1101) Fundamentals of Naval Science
Fall. 0 credits. G. Buchanan and W. Towneck.
Involves an introduction to the elements of the physical science of naval science and includes lectures, reading assignments, films, and discussions of their relation to the military and national defense policy.

NAV S 102(1102) Sea Power and Maritime Affairs
Spring. 3 credits. G. Buchanan.
Discussions examine the history of the Navy as a force in diplomacy and an instrument of U.S. foreign policy. Relationships between Congress and the military for determining the national defense policy are also explored. An integrated examination of current events and issues lends historical perspective throughout the course.

NAV S 157(1480) Small Boat Sailing (also PE 1480)
Fall and spring. Physical education credit.
TBA
This is a course of instruction in basic sailing skills and safety principles. Students sail small boats on Cayuga Lake. Focus is on U.S. Navy Class B inshore skipper certifications.

Sophomore Year (Navy and Marines)
NAV S 201(2201) Leadership and Management I
Fall. 3 credits. C. Klyne.
The theme of the course is the "evolving role of the manager, organizational decision maker, and leader." The course begins by briefly covering the theoretical principles of management and progresses through practical skills used by managers and leaders. Lectures, reading assignments, films, and discussions provide students with an excellent opportunity to consider complex managerial and leadership issues. The goal of this course is for students to begin to develop a sound personal leadership philosophy that will
enable them to more effectively accomplish
the assigned responsibilities of leading men
and women in today's demanding and high-
tech naval environment.

**NAV S 202(2201) Naval Ship Systems I
(also M&E 201[2010])**
Spring. 3 credits. W. Towczumak.
Introduces primary ship-systems and their
interrelationships. Basic principles of
thermodynamics, propulsion, mechanical
operation, internal communications,
electronics, ship structure, and other marine
systems are covered.

Junior Year (Navy)

**NAV S 301(3050) Principles of Navigation
(also BEE 305[3050])**
Fall. 4 credits. J. Leisner.
Introduces the fundamentals of marine
navigation emphasizing piloting and celestial
navigation procedures. Covers coordinate
systems, chart projections, navigational aids,
instruments, compass observations, time, star
identification, use of the nautical almanac,
and study of tides and currents. Electronic
navigation systems are discussed.

NAV S 302(3302) Naval Operations
Spring. 3 credits. J. Leisner.
Covers the application of the nautical rules
and maneuvering board in order to avoid
collisions at sea. Other aspects of naval
surface ship operations that are introduced
include visual and electronic communications
methods, tactical disposition of forces, ship
handling theory, and deck seamanship topics.

Senior Year (Navy)

**NAV S 401(4401) Naval Ships Systems II
(Weapons)**
Fall. 3 credits. G. Buchanan.
Examines the principles and theories used in
the development of naval weapons systems.
Initially, extensive study is made of detection
systems, especially radar and sonar, followed
discussions of ancillary systems for
computing, stabilizing, tracking, and weapons
control and delivery.

NAV S 402(4402) Leadership and Ethics
Spring. 3 credits. C. Klyne.
Reviews a variety of topics important to
the naval officer for both professional and
managerial development. The material is
designed to provide the midshipman with an
understanding and appreciation of leadership
and ethics in preparation for assignments in
the naval service. Through the use of lectures,
case studies, and role-playing, the student
learns various aspects of naval leadership
and ethical decision making. Marine-option
students may also take this course.

Junior or Senior Year (Marine Options)

NAV S 310(3310) Evolution of War
Spring. 3 credits. T. Stauthberg.
A study of warfare that examines the
relationship of military strategy to geography,
economics, sociology, technology, and
national political realities. This course includes
study of the evolution of warfare, including
principles of war, weapons, and associated
equipment, and the effects of nuclear
weapons and guerrilla warfare on traditional
concepts of national strategy.

NAV S 410(4410) History of Amphibious Warfare
Spring. 3 credits. T. Stauthberg.
The history of amphibious warfare, with special
emphasis placed on amphibious operations
from 400 BC to the present. Special
emphasis is placed on amphibious operations
conducted in the central Pacific during World
War II and on the future of amphibious operations.

Other Required Courses

Naval-Option Scholarship Program
To be eligible for a commission in the United States Navy, midshipmen must
successfully complete all the requirements for
a baccalaureate degree in any field of study
offered by Cornell University, and complete
courses in the following subjects (specified
courses to be approved by the Professor of
Naval Science):

- American military affairs or national security policy (one semester)
- English (one year)
- calculus (one year)
- calculus-based physics (one year)
- computer science (one semester)

The calculus requirement must be satisfied
by the end of the sophomore year and the
physics requirement by the end of the junior year.

Although free choice of academic majors
is permitted, students are encouraged to
pursue majors in engineering and the physical
sciences so that they may be best prepared
to meet the technological requirements of the
modern Navy.

Navy-Option College Program
Navy-option College Program students must
complete one year of college-level study in
mathematics, physical science, and English
as a prerequisite for commissioning. The
mathematics course must be completed by the
end of the junior year; the physical science
course by the end of the senior year. In
addition, one semester of computer science
is required. College Program students who
wish to enter into the Navy-option Scholarship
Program must complete all of the requirements
applicable to Navy-option scholarship students
if they wish to be eligible for a scholarship
controlled by the Chief of Naval Education and Training.

Marine Option
Any midshipman, either in the Scholarship Program or the College Program, who
completes all of Cornell University's degree
requirements in any academic major, is
eligible for a commission in the U.S. Marine Corps or U.S. Marine Corps Reserve.
Midship students take the same naval science
courses and naval professional laboratories
as Navy-option students for the freshwater
and sophomore years. During the junior and
senior years, Marine-option students have
slightly different naval science course
requirements than their Navy-option
counterparts. Two semesters of courses (a
minimum of 12 credits each) in the area of
American Military Affairs or National Security Policy are required. One semester of a
modern foreign language must be completed.

Extracurricular Activities
The NROTC midshipman at Cornell is offered
a broad range of activities, including sail
training and a comprehensive intramural
sports program. Midshipmen participate in a
myriad of social events, including the annual
Navy/Marine Corps Birthday Ball.

DEPARTMENT OF AEROSPACE STUDIES
The objective of the Air Force Officer Education Program at Cornell is to prepare
men and women for positions as officers in
the United States Air Force. The program
is designed to teach students about the
mission and organization of the Air Force,
the historical development of airpower,
leadership, and management. Students study
national security policy and the role of the
military in a democratic society. This program
includes specific courses in aerospace studies
and practical leadership laboratories.

Requirements for Enrollment
The Air Force Officer Education Program
is open to any qualified undergraduate or
graduate student enrolled in any major field
of study. An applicant must be a United States
citizen to become a commissioned officer.
Noncitizens may enroll and will receive
certificates acknowledging completion of the
course but cannot receive a commission.

All applicants receive physical examinations
at no cost and must meet certain physical
requirements to be accepted. Students
who are interested in qualifying for flying
categories (pilot, navigator, or air battle
manager) must meet more stringent physical
requirements. In addition, students enrolled
in the commissioning program must meet
specified physical fitness requirements.

Though the program is designed to prepare
future Air Force officers, academic courses in
the Department of Aerospace Studies are open
to all students at Cornell.

Four-Year Program
The Four-Year Program is open to all qualified freshmen. Sophomores may also enter
a condensed version of the four-year program
in coordination with the AFROTC staff.

Veterans of the U.S. armed forces and students
entering Cornell from military schools may
receive advanced standing, subject to approval
by the Professor of Aerospace Studies.

The Four-Year Program consists of General
Military Courses (GMC) and Professional
Officer Courses (POC). For four-year
scholarship cadets, the first year of the GMC
carries no military commitment, and students
may withdraw at any time. For nonscholarship
cadets, both years of the GMC carry no
military commitment, and students may
withdraw at any time.
General Military Course

Students in General Military Courses (GMC) take a 1-credit Aerospace Studies course each semester. During the freshman year, the student examines the organization and mission of the United States Air Force and the environment of the Air Force officer. In the sophomore year, the student studies the history and development of American air power. In both years, officerhip and professionalism within the United States Air Force are emphasized.

Students also spend two hours a week in a leadership laboratory. Leadership laboratories provide cadets with an opportunity to put into practice the skills they have learned in their aerospace studies classes. These laboratories focus on the development of officer qualities through such activities as drill and ceremonies, group leadership problems, confidence-building exercises, and guest lecturers. In addition, all students participate in summer field training for four weeks between their sophomore and junior years.

Professional Officer Course

The Professional Officer Courses (POC) provide a two-year advanced program of instruction. Students who are accepted for the POC must have successfully completed or validated the basic course and must meet academic and physical standards. Each cadet accepted into the POC must sign an agreement to complete the program and accept, if offered, a commission in the United States Air Force upon graduation.

Classroom study in the POC is a 3-credit course each semester. In the junior year, cadets study Air Force leadership and management at the junior officer level. During the senior year, cadets study the elements of national security and the military's role in American society. Leadership laboratory requires two hours a week in the junior and senior years. In leadership laboratory, cadets are exposed to advanced leadership experiences and apply principles of leadership learned in the classroom.

Two-Year Program

The Two-Year Program consists of the last two years (Professional Officer Courses) of the regular Four-Year Program plus a five-week summer training course.

The Two-Year Program is open to all qualified students with two years of academic study remaining at Cornell (graduate or undergraduate) or at schools supported under a crosstown agreement.

One- and One and One-Half-Year Program(s)

There are limited opportunities for students to enter a one-year program. Call 255-4004 for more details and current availability.

Scholarships

The Air Force offers three- and four-year scholarships to high school seniors and one-, two-, and three-year scholarships to college students. Four-year scholarships are offered on a competitive basis to high school seniors. Scholarship information can be obtained from a high school guidance counselor, from Air Force ROTC officers at Cornell (AFROTAC phone number is 255-4004), from a local Air Force recruiter via the web at www.afrotc.com, or from the Air Force ROTC scholarship section, Maxwell AFB, AL 36112-6106, 334-955-2869. The deadline for submitting a four-year scholarship application is December 1 of the year preceding the academic year in which a student wants to enter the program. Students should apply early.

Scholarships for two and three years.

Applications for these scholarships should be made to the Professor of Aerospace Studies during the freshman, sophomore, or junior years of college. All selections are based on the student's major, scores achieved on the Air Force Officer Qualifying Test, the student's overall grade point average, and the recommendation of the Professor of Aerospace Studies. Scholarships include amounts ranging from $3,000 per year to full tuition and fees. There is a monthly $250-$400 non-taxable allowance during the school year. A $600 per year textbook allowance is included in every scholarship. Scholarships do not include the cost of room and board.

Benefits

All cadets in the advanced program (POC)—whether they are on scholarship or not—receive a $250-$400-a-month, non-taxable subsistence allowance and travel allowance during the academic year. During the four- or five-week summer field training (see below), each cadet receives a pay allowance plus an allowance for travel to and from the field site. Textbooks and supplies required for Department of Aerospace Studies courses are provided.

All cadets are eligible to participate in AFROTAC-sponsored field trips made to Air Force bases throughout the country as well as voluntary summer programs for professional development. Scholarship and advanced cadets (POC) are entitled to space-available travel on Air Force aircraft flying within the continental United States.

Field Training

Two types of field training are available: a four-week course for cadets in the Four-Year Program and a six-week course for Two-Year Program applicants.

Field training is designed to stimulate the development of military leadership skills through meaningful experiences. The curriculum consists of aircraft, aircrew, and survival orientation; junior officer training; physical training; small arms training; a social-actions program; and supplemental training. The six-week training program includes 60 hours of Air Force ROTC academic course work that substitutes for the freshman and sophomore Aerospace Studies courses.

Cadets may also volunteer for one of many Advanced Training Programs. These programs include but are not limited to the Air Force Academy Free-Fall Parachute Training, Research and Development Experiences, the Academy Soaring Program, and Army Airborne Training.

Commissioning Obligations

All students who successfully complete the AFROTC advanced program (POC) are awarded a baccalaureate degree, tendered a commission, and enter the Air Force as second lieutenants.

Second lieutenants commissioned in nonflying categories are required to serve on active duty for four years. Pilots are required to serve on active duty for 10 years after completing flying training. Navigators and Air Battle Managers serve six years after completing training.

Air Force Careers

The Air Force assigns new officers to a career field based on mission requirements, educational background, and officers' preferences. Students in the engineering-scientific category may be assigned to practice in their specialty in research and development, communications, electronics, aeronautics, astronautics, the biological sciences, computer design and maintenance, meteorology, space, or other engineering and scientific fields. Graduates in the nontechnical category can anticipate assignments in manpower management, information management, logistics, law enforcement and investigation, intelligence, personnel, transportation, accounting and finance, and other career fields.

Any undergraduate major is suitable for those who are qualified and interested in entering the space and missile career fields or in becoming pilots, navigators, or air battle managers. After completion of flying training, personnel are assigned to a specific type of aircraft.

Curriculum

Students in the Four-Year Program are required to take all courses listed below. Students in the Two-Year Program are required to take all of the courses listed for the junior and senior years. There are no prerequisites for any Aerospace Studies courses.

Freshman Year

AIR S 161(1161) The Foundations of the United States Air Force I
Fall. 1 credit. Major R. B. Breese.

This is a survey course designed to introduce students to the United States Air Force and Air Force Reserve Officer Training Corps. Featured topics include: mission and organization of the Air Force, officerhip and professionalism, military customs and courtesies, Air Force officer opportunities, group leadership problems, and an introduction to communication skills. Leadership Laboratory is mandatory for AFROTC cadets and complements this course by providing cadets with followership experiences.

AIR S 162(1162) The Foundations of the United States Air Force II
Spring. 1 credit. Major R. B. Breese.

Continuation of AIR S 161.

Sophomore Year

AIR S 211(2211) The Evolution of USAF Air and Space Power I
Fall. 1 credit. Colonel P. Gray.

This course is designed to examine general aspects of air and space power through a historical perspective. The course covers
a time period from the first balloons and dirigibles to the role of air power in Afghanistan. Historical examples are provided to illustrate the development of Air Force capabilities and functions to demonstrate the evolution of what has become today's USAF air and space power. The course examines several fundamental truths associated with war in the third dimension, and provides students with an understanding of the general element and employment of air and space power from an institutional, doctrinal, and historical perspective. In addition, students continue to discuss the importance of the Air Force core values.

AIR S 212(2212) The Evolution of USAF Air and Space Power II
Spring. 1 credit. Colonel P. Gray. Continuation of AIR S 211.

Junior Year

AIR S 331(3331) Air Force Leadership Studies I
Fall. 3 credits. Major R. B. Breeze. This course is a study of leadership required of an Air Force junior officer; it has applicability to any entry-level professional as a junior executive. The course investigates theories and styles of leadership, power and influence, the meaning and function of followership in the military context, critical thinking, problem solving and team building, group conflict management, situational leadership, and management functions and principles. Film and case studies are used for analysis of theories and principles studied. Students receive instruction and practice effective writing (e.g., background and position papers) and briefing skills (e.g., informative and advocacy briefings) for professional communications; students practice both modes of communication. The course also provides professional officer education in terms of defining professional and unprofessional relationships, working with civilian personnel, and the profession of arms. The course is open to any student. For officer candidates, a mandatory leadership laboratory complements this course.

AIR S 332(3332) Air Force Leadership Studies II
Spring. 3 credits. Open to any student. Major R. B. Breeze. A continuation of AIR S 331. The course investigates advanced skills in leadership: dynamic subordinacy; effective supervision; essentials of counseling; corrective supervision; authority, responsibility, and accountability. The course also investigates the meaning and application of ethical and moral leadership, professional officer ethics, military ethics in joint operations, and the Core Values of the USAF. Film and case studies are used for analysis of course content. Written and briefing practice continues. For officer candidates, a mandatory leadership laboratory complements this course.

Senior Year

AIR S 401(4401) National Security Affairs/Preparation for Active Duty I
Fall. 3 credits. Major T. A. Higgins. This course is concerned with the national security process, regional studies, advanced leadership ethics, and Air Force doctrine. Other topics include the military as a profession, officership, military justice, civilian control of the military, preparation for active duty, and current issues affecting military professionalism. Continued emphasis is given to refining communication skills. A mandatory leadership laboratory complements this course by providing advanced leadership experiences, giving students the opportunity to apply the leadership and management principles described in this course.

AIR S 402(4402) National Security Affairs/Preparation for Active Duty II
Spring. 3 credits. Major T. A. Higgins. Continuation of AIR S 401.

Leadership Laboratory Courses
All Air Force cadets spend two hours a week throughout the academic year in a leadership laboratory, for which no academic credit is given. Occasionally laboratories are held at times other than the normally scheduled period. All cadets are expected to participate in a formal dinner and to meet minimum physical fitness and weight standards each semester. Leadership lab is open to students qualified to compete for an Air Force commission.

AIR S 141-142(1141) Initial Military Experiences
Fall and spring. 0 credits. Required. S-U grades.
Introduction to the responsibilities, life, and work of an Air Force officer. Basic knowledge of drill and ceremonies, military courtesies, and the wearing of the uniform. This course includes a field trip to a local military installation.

AIR S 241-242(2241) Intermediate Military Experiences
Fall and spring. 0 credits. Required. S-U grades.
Designed to help students develop skill in giving commands for drill and ceremonies. Students are also introduced to the Air Force base environment in which the officer functions. Career areas available based on academic majors are described. Students participate in military drills and ceremonies and go on a field trip to a local military installation.

AIR S 341-342(3341) Junior Officer Leadership Experiences
Fall and spring. 0 credits. Required. S-U grades.
Cadets assume leadership responsibilities similar to those of a junior officer. Emphasis is on the importance of applying effective human relations skills in dealing with superiors, peers, and subordinates. Cadets also gain insight into the general structure and progression patterns of selected Air Force officer career fields.

AIR S 441(4441) Advanced Leadership Experiences
Fall. 0 credits. Required. S-U grades.
Cadets assume command leadership responsibilities to operate a military organization. Cadets apply effective leadership and managerial techniques with individuals and groups and participate in self-analysis of leadership and managerial abilities.

AIR S 442(4442) Precommissioning Laboratory
Spring. 0 credits. Required. S-U grades.
Factors that facilitate transition from civilian to military life are reviewed. The need for military security, base services and activities, personal finances, travel regulations, and social obligations are introduced.
DEPARTMENT OF PHYSICAL EDUCATION AND ATHLETICS

ADMINISTRATION
Alan E. Gantert, director

COURSES
The courses and fees described in this catalog are subject to change or cancellation at any time by official action of Cornell University. For current fee information on physical education courses, call 255-4286; for outdoor education courses, call 255-6183 or visit www.coe.cornell.edu.

Enrollment in any course is limited by the space available. Other restrictions are included in the course description. Most courses are coeducational. The specific time and place of class meetings, as well as information about fees, are available at the physical education course registration or may be found on "Bear Access," a package of software for accessing a variety of network services at Cornell. Course fees are billed through the Office of the Bursar.

Additional course offerings may be listed at registration, as the curriculum is frequently reviewed and changed. Drop deadlines for outdoor education courses are earlier than university deadlines, and often earlier than physical education deadlines. Cornell Outdoor Education (COE) courses may be added any time by calling 255-6183, or registering at www.coe.cornell.edu.

Aquatic Courses

PE 1100 Swimming, Introduction to
Fall, spring, and summer (six weeks). Instruction and practice in skills leading to passing the basic swimming proficiency test.

PE 1101 Swimming, Advanced Beginning
Spring. Ideal for all who have taken one semester of Beginning Swimming, regardless of whether the test was successfully completed. Areas of special emphasis are the crawl stroke and rotary breathing, back crawl, elementary backstroke, diving, treading water, and underwater swimming. The primary objective is to strengthen the student's confidence and competence.

PE 1102 Swimming, Intermediate
Fall and spring. Practice of basic skills and five basic strokes: front crawl, back crawl, elementary backstroke, breaststroke, sidestroke.

PE 1103 Swimming, Advanced
Fall and spring. Practice of nine strokes: front crawl, back crawl, elementary backstroke, breaststroke, inverted breaststroke, sidestroke, overarm sidestroke, trudgen, and butterfly.

PE 1104 Swimming Conditioning
Fall and spring. Prerequisite: reasonable swimming ability. Introduction to, and practice of, different training methods. Final objective: to swim 2,500 yards during class period. Primarily a conditioning and not an instructional course.

PE 1110 Lifeguard Training
Fall and spring. Fee charged. Prerequisite: swimming test consisting of 500 yards, demonstrating three strokes, treading water without the use of hands, and retrieving a brick from 7 feet of water. Three classes per week.

American Red Cross certification course. Practice and execution of lifeguarding first aid and CPR skills and techniques. Certification is awarded in lifeguarding, first aid, O2, AED, and CPR upon satisfactory completion of the course.

PE 1111 Lifeguard Training Instructor
Spring. Fee charged. Prerequisite: current Red Cross ICT or instructor card, written and skill tests in lifeguarding, first aid, and CPR techniques. Students must not miss first class. 2 classes a week.

American Red Cross lifeguarding instructor and CPR-FPR certifications are awarded upon successful completion.

PE 1120 Water Safety Instructor
Spring. Fee charged. Prerequisite: passing of written and skill water tests given on first day.

American Red Cross water safety instructor certification is awarded upon satisfactory completion of the course. This is not a course for a casual participant. Approximately 45 hours of work is required.

PE 1121 Scuba, Open-Water
Fall, spring, and summer (six weeks). Fee charged.

Program includes classroom work, skill training in a pool, and open-water training in Cayuga Lake. P.A.D.I. open-water certification awarded upon successful completion.

PE 1131 Scuba, Advanced Open-Water
Fall and spring. For those who have completed open-water course. Fee charged.

Advanced-level open-water training in Cayuga Lake.

PE 1132 Rescue Diver
Fall and spring. For those who have completed Advanced Open-Water Scuba certification. Fee charged.

Advanced course for scuba divers interested in learning rescue and safety techniques.

PE 1133 Dive Master
Fall and spring. Open only to those who have completed Rescue Diver course. Fee charged.

Advanced-level scuba course. Note: This is a long, time-consuming course, which requires the student to be in good physical and swimming shape.

PE 1134 Specialty Scuba Diving
Fall and spring. Fee charged.

Courses offered in the following specialty diving areas: navigation, search and recovery, night diving, deep diving, underwater photography, wreck, multi-level, boat, tropical fish identification and buoyancy control, and underwater naturalist.

PE 1135 Scuba Diving Trips
Spring, offered during spring intersession period. Fee charged.

Scuba trips to various destinations such as the Bahamas. Locations change from year to year. See the information sheet at the registration table.

Bowling Courses

PE 1300 Bowling
Fall and spring. Fee includes shoe rental. For the beginning and intermediate bowler.

PE 1301 Intermediate Bowling
Fall and spring. Fee charged. For players with previous bowling experience (e.g., bowling classes, yaba, tournament). Skills emphasized are timing, balance, and release.

Dance Courses

Develop flexibility, coordination, and the ability to perceive and reproduce phrases of dance movement with rhythmic accuracy, clarity of body design, and fullness of feeling. Auditions are required for admission to all advanced courses, since they require the mental and physical ability to perform more complex phrases in various styles.

PE 1150 Ballroom Dancing
Fall, spring, and summer. Fee charged. Students and their partners must sign up at course registration.

Includes instruction in the waltz, swing, cha cha, calypso, tango, and others.

PE 1155 Belly Dancing I
Fall and spring. Fee charged. Belly dancing is an exciting Middle Eastern folk art that can help in the development of flexibility, body awareness, and overall body tone. The class begins with warm-ups and continues with basic movements and rhythms, then puts them together in a dance to music of the Middle East.

PE 1156 Belly Dancing II
Spring. Fee charged.

Advanced belly dance movements and combinations that include putting basic and advanced movements to the Beledi, Masmououli, and Karasina dance rhythms of the Middle East. A drum solo, taqsim (fluid, graceful movements of the arms and hands), floor work (level changes with the dance), and techniques in playing finger cymbals are also a part of this class.

PE 1160 Latin Dance
Fall and spring. Fee charged.

Partner sign-in required. This is an introductory course that teaches salsa, mambo, Latin, and merengue. Emphasis on listening, feeling, and expressing Latin rhythms with precise detail and technique.

PE 1161 Latin-Israeli Dance
Fall and spring.

Covers some of the hundreds of dances that make up Latin-Israeli dancing and the thousands of dances that make up Israeli dancing, with a clear emphasis on the dances of the past 10 years.
physical education and athletic

First Aid/CPR Courses

PE Emergency Response
- **Fall. Fee charged.**
 - This advanced-level first aid course is the most comprehensive available without NYS certification. Sixty hours of training includes CPR for the Professional Rescuer and oxygen administration, as well as many of the first aid skills taught in a basic EMT class. American Red Cross certification is valid throughout the United States and is accepted by many states as a Certified First Responder equivalent. Certification is valid for three years. This certification would be appropriate for camp medical directors and those who work closely with pre-hospital medical staff.

PE 1210 NYS Emergency Medical Technician—Basic
- **Two-semester course. Fee charged.**
 - Intensive 130-hour course taught throughout both the fall and spring semesters. Includes training in CPR for the Professional Rescuer, oxygen administration, airway management, fracture management, bleeding control, expanded patient assessment, spinal immobilization, medical anti-shock trousers, and defibrillation. Students qualify for the NYS EMT Certification Exam upon successful completion of this course. Rigid attendance and participation requirements are strictly enforced.

PE 1211 NYS Emergency Medical Technician—Critical Care
- **Two-semester course. Prerequisite: current certification as NYS EMT. Fee charged.**
 - Intensive 160-hour course taught throughout both fall and spring semesters. Includes training in CPR for the Professional Rescuer, oxygen administration, airway management, fracture management, bleeding control, expanded patient assessment, spinal immobilization, medical anti-shock trousers, manual defibrillation, EKG interpretation, pharmacology, and IV administration. Clinical rotations, in the field and hospital, are also required. Students qualify for the New York State AEMT-CRITICAL CARE certification exam upon successful completion of the course. Attendance and participation requirements are strictly enforced.

Fishing Courses

PE 1310 Introduction to Freshwater Angling
- **Fall. Fee charged.**
 - Acquaints the student with freshwater spinning, casting, and fly fishing equipment; tackle; and techniques through on-the-water experiences. It also seeks to promote an awareness of the fishing opportunities that exist close to Cornell and in the Finger Lakes region of New York. The course consists of an orientation and outings to various locations around the area such as Cayuga Lake and the Susquehanna River.

PE 1311 Fly Fishing and Basic Flaying Techniques, Level I
- **Fall and spring. Fee charged.**
 - Learn the art of tying several of your own artificial flies while you learn the art of fly casting. Students must have a valid NYS fishing license and their own wader boots. All other materials provided.

Fitness Courses

PE 1129 Cardio Combo
- **Fall, spring, and summer (six weeks). Fee charged.**
 - Dance program designed to keep the cardiovascular system in top shape by making the body demand increased amounts of oxygen.

PE 1130 Cardio Crazy
- **Fall and spring. Fee charged.**
 - Designed to acquaint the student with the various types of indoor aerobic training equipment, rowing machines, tread mills, stair machines, exercycles, and Nordic Tracks, and to teach them to design a personal fitness program incorporating the equipment.

PE 1231 Aerobic Instructor
- **Fall. Fee charged.**
 - Helps prepare the student to teach aerobics and prepares them for the AFPA Primary Aerobic Instructor or Step Certification. Topics include the theory behind all basic components of a good class, applications, and practical uses in the class settings.

PE 1233 Bootcamp
- **Fall and spring. Fee charged.**
 - Designed as a modern military-style workout program with an emphasis on both aerobic and anaerobic fitness.

PE 1234 Athletic Performance Enhancement
- **Fall and spring. Fee charged.**
 - Train like an athlete! Workouts are designed to enhance all aspects of athletic performance—strength, power, speed, balance, force application, dynamic flexibility, anaerobic, and aerobic conditioning.

PE 1235 8 O’Clock Rock
- **Fall and spring. Fee charged.**
 - Combines the best of the principles of weight training and cardio training.

PE 1240 Pilates Mat Work
- **Fall and spring. Fee charged.**
 - Conditioning program designed to increase body awareness, improve alignment and breathing, and build endurance, flexibility, coordination, and strength through a highly focused flow of movement.

PE 1245 Spinning
- **Fall and spring. Fee charged.**
 - Indoor stationary cycling class that combines basic cycling movements with motivational coaching, breathing awareness, and heart rate training.

PE 1246 Spinning Instructor
- **Fall. Fee charged.**
 - Prepares students for the Johnny G spinning Certification. The course is intended to provide the fundamental theoretical knowledge and the practical skills necessary to assume the role of a certified spinning program instructor.

Equitation Courses

PE 1270 Jogging
- **Fall and spring.**
 - Covers running and stretching techniques. It comprises a conditioning program with the objective to develop the capacity to run 3 miles after 12 weeks of training.

PE 1305 Basic, Intermediate, Advanced
- **Fall, spring, and summer (six weeks). Fee charged.**
 - Designed for the intermediate runner who can run an average of 3 miles in 30 minutes. Most tours are 3–4 miles long and go through campus and nearby countryside.

PE 1275 Triathlon
- **Fall and spring.**
 - Designed to acquaint students with the components of, and conditioning for, triathlon (running, swimming, and bicycling).

Golf Courses

PE 1320 Golf, Introduction to
- **Fall and spring. Fee charged. Equipment furnished.**
 - PGA program of instruction geared to all levels of experience and ability. The objective is to give beginners enough skill to play, and to give more advanced players direction in their thinking, practice, and play, through a thorough understanding of fundamentals.
PE 1321 Golf, Recreational
Fall and spring. Prerequisite: experienced golfers. Fee covers a semester's membership. Students must provide clubs. Students must play a minimum of 10 rounds of nine holes to receive credit.

Gymnastics Courses
PE 1290 Introduction to Gymnastics
Fall and spring. Open to both male and female participants. Deals with a majority of the Olympic events. Focuses on beginner-level skills.

Ice Skating Courses
PE 1540 Introduction to Skating
Fall and spring. For beginning to intermediate skaters. Fee charged; students provide skates or rent them at Lynah Rink. Covers forward and backward skating, turns, and stops.

PE 1546-1547 Figure Skating, Beginning, Intermediate, and Advanced Levels
Fall and spring. Fee charged; students provide skates or rent them at Lynah Rink. Instruction and practice in basic figure-skating techniques: forward, backward, crossovers, turns, and spirals.

Martial Arts—Self-Defense Courses
PE 1345-1346 Boxing, Introduction to, Intermediate
Fall and spring. Fee charged. Covers the basic skills of footwork, defensive, and offensive techniques. Skipping rope, shadow boxing, and heavy bag work are taught as methods for individual aerobic conditioning.

PE 1350 Chi Gong
Fall and spring. Chi Gong, or "the art of breathing," is an ancient Taoist exercise system from China. Like Tai Chi, Chi Gong is an internal martial art that links movement, breathing, and visualization to enhance physical strength and mental clarity. In ancient times, this gentle system was used by warriors preparing for battle. They believed it would make their bodies impervious to weapons of the day. The movements used in Chi Gong are generally less complex than those of Tai Chi and can be learned more quickly. Meditation is an important element of the practice.

PE 1355 Judo, Introduction to
Fall and spring. Fee charged. Conditions and increases suppleness. Continues to develop skills in the two parts of judo: standing techniques (throws and trips) and mat techniques.

PE 1356 Judo, Intermediate
Fall and spring. Fee charged. Conditions and increases suppleness. Continues to develop skills in the two parts of judo: standing techniques (throws and trips) and mat techniques.

PE 1360 Jun Fan Jeet Kune Do
Fall and spring. Fee charged. Blended system of martial arts. Developed by the late Bruce Lee and taught to his personal apprentice at the time, Dan Inosanto, Jun Fan Gou Ji Fu is the foundation from which Jeet Kune Do eventually evolved. The system emphasizes footwork and agility, economy of motion, counter ability, and strong practical self-defense. This realistic, modern training approach cultivates strong physical, mental, and emotional development in the student.

PE 1365 Karate, Introduction to
Fall and spring. Fee charged. Beginning course taught by professional black-belt instructors. Involves mastery of basic blocks, kicks, and punches.

PE 1366 Karate, Advanced
Fall and spring. Fee charged. Open to those who have taken basic karate or the equivalent.

PE 1370 Kung Fu
Fall and spring. Fee charged. Includes warm-up exercises and offensive and defensive moves.

PE 1375 Tae Kwon Do, Introduction to
Fall and spring. Fee charged. Korean martial art distinguished by emphasis on high and powerful kicks. Basic kicking, punching, and blocking emphasized.

PE 1376 Tae Kwon Do, Intermediate
Fall and spring. Fee charged. Korean martial art distinguished by its emphasis on high and powerful kicks. Intermediate-level kicking, punching, and blocking are emphasized.

PE 1377 Tae Kwon Do, Advanced
Fall and spring. Fee charged. A Korean martial art distinguished by its emphasis on high and powerful kicks. Advanced-level kicking, punching, and blocking are emphasized.

PE 1380-1381 T'ai Chi Chuan, Introduction to, and Intermediate
Fall and spring. Fee charged. Introduction to T'ai Chi, a system of graceful exercises that aims at nurturing relaxation, deep breathing, and improved circulation.

PE 1385 Thai Boxing
Fall and spring. Fee charged. Martial art system developed from the unique culture of Thailand that is a blend of art, science, and sport.

PE 1390 Self-Defense and Empowerment for Women
Fall and spring. Fee charged. Basic methods of physical protection for women.

PE 1395 Self-Defense and Personal Safety in the Modern World
Fall and spring. Fee charged. Provides students an opportunity to learn a system of practical, proven self-defense techniques and educates the individual in the strategies of personal safety and awareness.

PE 1520 Fencing, Introduction to
Fall and spring. Fee charged. Equipment furnished. Includes warm-up exercises and offensive and defensive moves.

PE 1521 Fencing, Intermediate
Spring. Prerequisite: Introduction to Fencing or equivalent. Fee charged. Equipment furnished. Interclass competition is stressed.

PE 1522 Fencing, Classical
Fall and spring. Fee charged. Martial art that uses the practice of the sword to cultivate self-mastery.

PE 1526 Renaissance Fencing
Fall and spring. Prerequisite: Introduction to Fencing or permission of instructor. Fee charged. Focuses on the fundamental techniques of 16th- to 17th-century fencing with an emphasis on safety, balance, line, focus, and distance.

Outdoor Education Program
For further information, class schedules, or to register at any time, call 255-6183 or visit www.coe.cornell.edu.

Climbing Courses
OUTED 1640 Basic Rock Climbing
Fall, spring, and summer. Fee charged. Six indoor climbing sessions at the Lindseth Climbing Wall.

OUTED 1642 Basic Rock Climbing for Women
Fall, spring. Fee charged. Six indoor climbing sessions at the Lindseth Climbing Wall taught by and for women.

OUTED 1643 High Adventure
Fall, spring. Fee charged. Six sessions combining classes at the Lindseth Climbing Wall and the Hoffman Challenge Course.

OUTED 1644 Basic Outdoor Rock Climbing
Fall. Fee charged. Includes fall break trip. Two indoor classes and a four-day climbing trip to the Shawangunks introduce basic safety, techniques, equipment, and methods for outdoor rock climbing.

OUTED 1645 Basic Rock Climbing for 24 and Over
Fall. Fee charged. Noncredit course. Four indoor climbing sessions at the Lindseth Climbing Wall for people age 24 and older.

OUTED 1646 Wellness Rock Climbing
Fall, spring. Fee charged. Noncredit course. Nine one-hour climbing sessions at the Lindseth Climbing Wall for Wellness Program members only.

OUTED 1650 Performance Rock Climbing
Fall, spring. Fee charged. Six indoor sessions at the Lindseth Climbing Wall that introduce and practice more advanced climbing techniques.

OUTED 1651 Intermediate Outdoor Rock Climbing
Fall, spring. Fee charged. Two indoor classes and two weekend trips to the Shawangunks introduce intermediate-level climbing techniques and systems for top-roping anchors.

OUTED 1652 Shawangunks Rock Climbing
Fall, spring. Fee charged. Includes fall-break or senior-week trip. Two indoor classes and a four-day advanced climbing camp at the Shawangunks introduce advanced climbing techniques and systems for outdoor multi-pitch rock climbing.

OUTED 1654 Ice Climbing
Spring. Fee charged. Basic top-roping ice climbing instruction, including a weekend trip.

OUTED 1655 Gunks Bouldering
Fall. Fee charged. In recent years bouldering, or climbing near the ground without ropes or harnesses, has
become a sport unto itself. Bouldering is easy to learn, requires very little gear, and is amazingly addictive. Gunks Bouldering will introduce you to the basics of climbing low locations, spotting, safety, and all those hard-earned climbing tips and tricks that make the impossible possible. We will spend one day at the climbing wall, then head out for a weekend of climbing and camping. Reserve the following weekend in case of rain!

OUTED 1657 Tree Climbing
Fall. Fee charged. All equipment is included in the course fee. No experience necessary. Whether you are a rain forest canopy researcher, an arborist, or just a kid at heart, everyone loves to climb trees. Recall the excitement and your sense of adventure when you first crawled into the branches to look inside a bird's nest. Then you swung from limb to limb without a thought of ropes and harnesses. But what about that big tree down the street you always wanted to climb, but couldn't reach the first branch? Cornell Outdoor Education's Tree Climbing course will teach you how to get up into the canopy of any tree, to move around, even to climb from one tree to another without touching the ground.

Backpacking Courses

OUTED 1606 Trail Maintenance
Fall, spring. Free with 100 percent attendance, otherwise fee charged. Free charged for personal rental equipment. Learn basic trail construction and outdoor living skills on local outings and overnight trips. Projects may include designing and creating new trails, switchback construction, bridge building, water bar construction, and erosion control. Course includes day outings and one weekend trip.

OUTED 1610 Backpacking the Finger Lakes
Fall, spring. Free with 100 percent attendance, otherwise fee charged. Escape from campus on day outings and two weekend trips to explore the glens, forests, waterfalls, vases, and trails in the local area. This fantastic introduction to backpacking skills covers basic outdoor living skills, including hiking, navigation, camping, equipment selection and use, backcountry cooking, and safety. No experience necessary. Fee charged for personal rental equipment.

OUTED 1611 Southwest Backpacking
Spring. Fee charged. Includes spring break trip.

OUTED 1612 Women's Backpacking
Fall. Fee charged for personal rental equipment. Explore the local trails, glens, forests, and waterfalls in the company of other women. From limb to limb without a thought of ropes and harnesses, you'll develop your own mountain bike skills. Explore local bike trails and develop off-road riding skills. Course covers essential cycling skills for riding single track, managing steep terrain, and negotiating obstacles, as well as hike repair, riding etiquette, navigation, and outdoor safety.

OUTED 1665 Mountain Biking in Vermont
Fall. Includes fall break trip. Fee charged. Participants provide own mountain bike and helmet. Develop and hone skills for riding a variety of trails, ranging from moderate fire roads to technical single track.

Canoeing Courses

OUTED 1670 Adirondack Canoe Camping
Fall. Fee charged. Includes fall break trip. Learn basic canoeing and wilderness camping skills. Experience the blazing Adirondack autumn foliage as this fall-break trip explores lakes and rivers of upstate New York.

OUTED 1684 River Canoeing
Spring. No prerequisites. Fee charged. Explore local rivers by canoe. Learn skills to safely navigate quick-moving currents and class I to easy class II water. Course covers strokes, braces, eddy turns, peels, ferrying, river dynamics, self-rescue, and river safety. Culminates with a weekend river trip.

Caving Courses

OUTED 1630 Caving
Fall, spring. Fee charged. Learn about the basic safety, techniques, and equipment for caving, finishing with a weekend caving trip.

Hiking Courses

OUTED 1605 Day Hiking
Fall, spring. Fee charged. Hike and explore Ithaca's spectacular gorges, state forests, and extensive trail system. Course covers planning and packing for a hike, dressing for the outdoor, map reading, outdoor safety, navigation, and natural history of the area.

OUTED 1607 Snowshoeing
Spring. Fee charged. Outings in the local state forests build skills and confidence in the winter. Learn winter safety, snowshoe history, equipment selection, care, and use; navigation; and natural history—all while enjoying a great workout.

OUTED 1608 Trail Running
Fall, spring. Fee charged. Covers stretching, basic trail-running techniques, navigation, injury prevention, training tips, and a scenic tour of local trails. Develop a training plan, learn to stay found, set running goals. Prerequisite: ability to jog two consecutive miles easily.

OUTED 1609 Snowshoeing, for 24 and Over
Spring. Fee charged. Noncredit course. Learn basic winter travel and snowshoe skills while exploring some local winter hiking destinations.

OUTED 1612 Wilderness Survival Skills
Fall. Fee charged. Hands-on course covers principles of survival, shelter building, navigation, fire starting, and water procurement as well as nature observation skills and local natural history. Evening and weekend outings.

Kayaking Courses

OUTED 1674 Sea Kayak Touring
Fall, spring. Fee charged. Learn basic sea kayaking skills and enjoy a weekend trip to the Adirondacks. Course covers equipment, safety, paddling techniques, rescues, trip planning, navigation, considerations for overnight trips, and camping and travel skills.

OUTED 1680 Pool Paddling
Fall, spring. Free with 100 percent attendance, otherwise fee charged. Learn a broad range of kayaking skills in the warm comfort and calm waters of the pool. Course introduces whitewater kayaking, canoe, and sea kayaks, while covering strokes, levers, braces, effective boat-handling skills, kayak Eskimo rolls, and rescues. Pool games, slalom gate courses, and video taping are used to hone an understanding of skills and refine techniques.

OUTED 1681 Whitewater Kayaking
Fall, spring, summer. Prerequisite: ability to swim with comfort in deep water without a flotation aid. Fee charged. Basic kayaking techniques and equipment use, culminating in a full weekend of whitewater paddling. Pool sessions and local outings develop skills to read water, scout, ferry, brace, power stroke, and execute eddy turns, peels out, and Eskimo rolls.

OUTED 1682 1,000 Islands Sea Kayaking
Fall. Fee charged. Includes fall break trip. International travel documentation to Canada required. Learn fundamental sea kayak touring skills in the Thousand Islands region of the St. Lawrence River. Course covers equipment, safety, paddling techniques, rescues, trip planning, navigation, considerations for overnight trips, camping, cooking, and travel skills.

OUTED 1683 Sea Kayaking in Georgian Bay, Canada
Summer. Fee charged. Located in Lake Huron, the Georgian Bay harbors a stunning archipelago of rugged granite shorelines, expansive open bays, and windswept sand dune islands. This weeklong kayaking course includes hands-on introduction to basic paddling techniques, equipment selection and care, deep water rescues, trip planning, natural history, navigation, camping, cooking, and touring skills.

OUTED 1685 Kayak Rolling Seminar
Fall, spring. Noncredit course. Fee charged. Learn kayak rolling techniques in two evening sessions. Classes take place at the Helen Newman pool.
OUTED 1686 Introduction to Sea Kayaking Seminar
Fall, spring, summer. Fee charged.
Noncredit course.
Class covers equipment, basic paddling techniques, deep water rescues, and considerations for day trips.

OUTED 1687 Introduction to Slalom Racing Seminar
Spring. Noncredit course. Prerequisite: comfortable maneuvering in class II water or completion of COE whitewater class. Fee charged.
Covers slalom racing introduction and whitewater techniques for effectively navigating slalom courses.

OUTED 1688 Paddle to the Sea (A Shoals Marine Lab Program)
Fall. Fee Charged. Noncredit course.
On Appledore Island you can follow your dreams and expand your horizons while discovering the magic of the Isles of Shoals. Join our team of instructors from Cornell Outdoor Education and the Shoals Marine Laboratory and become an amateur naturalist and paddler. Kayaking excursions around Appledore and neighboring islands (weather permitting!) will include visits to Duck Island’s harbor seal colony and White Island’s common tern restoration project site. As you travel along inlets and coves you will become familiar with the flora and fauna of the Isles of Shoals while learning the art of paddling a sea kayak. Personalized kayaking instruction will include an introduction to basic strokes, safety practices, and travel skills. This program will be as varied and unique as the subjects we will study—you will learn what makes an island community special, and discover a new side of yourself! The total cost of this program includes all gear and supplies.

Outdoor Leadership and Teambuilding Courses

OUTED 1618 Outdoor Leadership
Fall, spring. Prerequisite: backpacking and camping experience. Fee charged. Includes fall or spring break trip.
Learn and practice the skills of outdoor leadership and education. Focus is on refining wilderness skills, outdoor judgment, group facilitation, decision making, and teaching skills. Course culminates in a fall- or spring-break trip where participants plan and lead portions of the trip.

First Aid Courses

OUTED 1620 Wilderness First Aid
Fall, spring, summer. Fee charged.
Full weekend of wilderness first aid. Includes CPR certification.

OUTED 1621 Wilderness First Responder
Fall, spring. Offered in Jan., over winter break; offered late May-early June. Fee charged.
Eight days of instruction and practical application of backcountry first aid. Participants earn nationally recognized CPR and Wilderness First Responder certifications. Taught by Wilderness Medical Associates.

Skiing Courses

OUTED 1690 Cross-Country Skiing
Spring. Fee charged.
Four sessions learning basic cross-country skiing skills and exploring trails.

OUTED 1691 Cross-Country Skiing, for 24 and Over
Spring. Noncredit course. Fee charged. Four sessions learning basic cross-country skiing skills and exploring local trails.

OUTED 1693 Basic Telemark Skiing
Spring. Fee charged. Four classes at Song Mountain Ski Area.

OUTED 1694 Intermediate Telemark Skiing
Spring. Fee charged. Four classes at Song Mountain Ski Area.

OUTED 1695 Weekend Massage Workshop
Fall and spring. Fee charged.
This introductory course in massage is taught in an intensive, weekend workshop format. It includes sessions on Friday evening and Saturday and Sunday during the day. Students are introduced to massage skills and techniques and then practice on each other in a structured and supervised format. Basics of touch awareness, palpation skills, and techniques from Swedish and oriental (shiatsu) massage are taught. Students learn to massage the back, shoulders, neck, legs, arms, and hands to reduce stress. Professional massage tables are used.

Personal Growth Courses

PE 1400 Body-Mind
Fall and spring.
Activities are drawn from ancient Eastern practices as well as modern Western psychology, and are designed to give the student first-hand experience of the interaction between their own bodies and minds.

PE 1401 Mindful Group Movement and Process
Fall and spring. Fee charged.
Teaches students to use the wisdom of the body, movement, and voice. Each class provides an opportunity to increase mindfulness of the present moment. By cultivating openness and respect, students provide the necessary foundation for working with others. Students practice processing and exploring spontaneous experiences of their own and others with precision, gentleness, and curiosity.

PE 1405 Living Routines
Fall and spring.
Provides the opportunity to explore a variety of ancient and modern methods designed to bring one to the state of meditation.

PE 1410 Introduction to Massage
Fall, spring, and summer. Fee charged.
Provides an experiential introduction to several types of massage. Included are Swedish, shiatsu, and sports massage. Class members participate in group exercises and practice on each other during class time. All exercises and techniques can be done while wearing street clothing.

PE 1411 Shiatsu Massage
Fall and spring. Fee charged.
Gain an experimental understanding of your body and learn certain shiatsu massage techniques.

PE 1412 Swedish Massage
Fall, spring, and summer. Fee charged.
Learn to give a relaxing, stress-reducing Swedish massage. Students master the basic strokes of Swedish massage and learn about their application to the different parts of the body. Students use oils and lotions as a part of their training.

PE 1413 Swedish Massage II
Fall and spring. Fee charged.
Students build on skills learned in Swedish massage as they participate in instruction practice sessions every week. Additional massage techniques and applications are added to basic skills. Some techniques from other types of massage are also introduced.

PE 1414 Thai Massage
Fall and spring. Fee charged.
Thai massage is a holistic, intuitive style of healing from the East. It encourages the flow of energy through the receiver's body that promotes good health. The person giving Thai massage uses his or her hands and feet supported by body weight to apply pressure along the energy channels that run through the receiver's body.

PE 1415 Weekend Massage Workshop
Fall and spring. Fee charged.
Provides the opportunity to explore a variety of ancient and modern methods designed to bring one to the state of meditation. The methods serve to evoke the deep relaxation from which heightened awareness and creativity arise.

PE 1420 Introduction to Meditation
Fall and spring. Fee charged.
Introduction to basic relaxation techniques for the reduction of everyday stress. Teaches techniques that can be used in normal everyday living situations.

PE 1422 Meditation and Relaxation
Fall and spring. Fee charged.
Designed to assist students in learning to meditate, or to deepen an existing practice. As students learn to practice meditation and relaxation exercises, they find that as little as 15 minutes a day can benefit physical, mental, emotional, and spiritual health.

PE 1425 The Winning Mindset
Fall and spring. Fee charged.
Contains a wealth of knowledge and experience to guide athletes of all levels and abilities to achieve outstanding levels of performance. Students learn the principles to help them achieve success, whether it be tapping inner strength or overcoming the obstacles that limit performance.

PE 1430 Yoga, Introduction to
Fall, spring, and summer (six weeks). Fee charged.
Fundamentals of hatha yoga. Covers basic postures, breathing techniques, and deep relaxation. Introduces chanting.

Racquet Sports Courses

PE 1440 Badminton, Introduction to
Fall and spring. Helen Newman Hall.
Fundamental shots, scoring, and general play.

PE 1441 Badminton, Intermediate
Fall and spring. Helen Newman Hall.
Review of fundamental shots, scoring, and general play.
Physical Education and Athletic 005-2006

PE 1445 Tennis, Introduction to
Fall, spring, and summer. Fee charged.
Basic skills taught include forehand, backhand, serve, and volley. Scoring methods taught.

PE 1446 Tennis, Intermediate
Fall, spring, and summer. Fee charged.
Review basic strokes plus topspin and underspin. Doubles strategy emphasized.

PE 1447 Tennis, Advanced
Fall, spring. Fee charged.
Advanced strokes and doubles play emphasized. Recommended for tournament players or those with previous team experience.

PE 1453 Tennis, Indoor-Recreational
Fall and spring. Fee charged. Prerequisite: high school or college tournament experience or a rating of 3.5 or higher from USTA. NO BLACK-SOLED SHOES ALLOWED ON COURTS!
Play is conducted at the new Reis Tennis Center. Matches are played in both doubles and singles. Equipment furnished.

PE 1480 Racquetball, Introduction to
Fall, spring, and summer. Fee charged; equipment furnished. Protective eyewear required.
Instruction for beginners.

PE 1485-1486 Squash, Introduction to, Intermediate
Fall, spring, and summer. Fee charged.
Equipment furnished. Protective eyewear required.
Classes for appropriate level of play.

Sailing Courses
PE 1488 Small-Boat Sailing, Introduction to
Fall, spring, and summer (six weeks). Fee charged.
Learn basic skills necessary to sail small sailboats and basic keelboats safely.

PE 1491 Small-Boat Sailing, Competitive
Fall and spring. Fee includes one-year membership in university sailing team program.
Vanguard 420 sailboat used for the course.
USYRA Rules Book used as a text for the course.

PE 1500 Archery, Introduction to
Fall and spring. Fee charged. Two classes a week.
Instruction in the care of equipment; seven basic steps for shooting; scoring; practice shooting at 20, 30, and 40 yards.

PE 1515 Handgun Safety, Introduction to
Fall, spring, and summer (six weeks).Fee charged.
Instruction in use of pistol in the three modes of 50-foot competitive target shooting—slow fire, timed fire, and rapid fire. Emphasis on safety and responsibility while firing.

PE 1510 Riflery
Fall and spring. Fee charged.
Instruction and practice in the techniques of target riflery from various shooting positions.

PE 1505 Trap and Skeet
Fall, spring, and summer (six weeks). Fee charged. Guns and shells furnished.
Includes lectures and shooting at the Tompkins County Rod and Gun Club range.

Team Sports Courses
PE 1550 Ice Hockey, Introduction to
Fall and spring. Prerequisite: basic skating ability. Fee charged. Students provide own skates and sticks; all other equipment furnished.
Stick handling, passing, and shooting are stressed. Some scrimmaging.

PE 1551 Ice Hockey, Intermediate
Fall and spring. Fee charged. Prerequisite: beginning hockey or previous participation in organized hockey.
This course is designed for the intermediate hockey player. Advanced techniques taught include positioning, power play, penalty killing, and offensive and defensive attack. Each session emphasizes game situations and scrimmaging. Skates and hockey sticks must be supplied by the participants.

PE 1560 Basketball
Fall and spring.
Fundamental drills in passing, shooting, and dribbling. Scrimmages each class session.

PE 1565 Soccer
Fall and spring. Introduction to the game. Includes basic individual skills (passing, trapping, shooting) and team play and strategy.

PE 1570 Volleyball, Introduction to
Fall and spring.
Fundamentals of ball handling, serves, defensive blocks, and position play are stressed. Classes scrimmages.

PE 1571 Volleyball, Intermediate
Fall and spring.
Passing and blocking strategy; scrimmages in class.

PE 1572 Volleyball, Advanced
Fall and spring.
Offensive and defensive team strategy is emphasized in class scrimmages.

Weight Training Courses
PE 1480 Principles of Weight Training
Fall and spring. Fee charged.
Introduces the proper use of Olympic weights for improving physical condition and muscular strength. Instruction with focus on the relation between high-rep light weight lifting, low-rep heavy lifting, and the development of bulk, strength, and endurance.

Independent Study
PE 1999 Independent Study
Fall and spring.
Designed for those who have difficulty fitting any of the regularly scheduled courses into their academic program. Class activities are based on personal fitness programs. A term paper is required. Permission to enter this program must be granted by the program director.

Skiing and Snow Boarding
PE 1330, 1331 Downhill Skiing and Snowboarding
Spring. Fee charged.
Transportation, instruction, ski-lift fees, and skiing time are offered in a package deal. Greek Peak and Song Mountain personnel are present at registration to explain the program and accept fees. Bus transportation to Greek Peak is provided six afternoons a week for six weeks.

Cross-Country Skiing—See Outdoor Program.

Skiing and Snow Boarding
PE 1330, 1331 Downhill Skiing and Snowboarding
Spring. Fee charged.
Transportation, instruction, ski-lift fees, and skiing time are offered in a package deal. Greek Peak and Song Mountain personnel are present at registration to explain the program and accept fees. Bus transportation to Greek Peak is provided six afternoons a week for six weeks.

Cross-Country Skiing—See Outdoor Program.

Skiing and Snow Boarding
PE 1330, 1331 Downhill Skiing and Snowboarding
Spring. Fee charged.
Transportation, instruction, ski-lift fees, and skiing time are offered in a package deal. Greek Peak and Song Mountain personnel are present at registration to explain the program and accept fees. Bus transportation to Greek Peak is provided six afternoons a week for six weeks.

Cross-Country Skiing—See Outdoor Program.

Skiing and Snow Boarding
PE 1330, 1331 Downhill Skiing and Snowboarding
Spring. Fee charged.
Transportation, instruction, ski-lift fees, and skiing time are offered in a package deal. Greek Peak and Song Mountain personnel are present at registration to explain the program and accept fees. Bus transportation to Greek Peak is provided six afternoons a week for six weeks.

Cross-Country Skiing—See Outdoor Program.
Applications must be filed approximately one year before the proposed matriculation date. The competition for admission is keen, since there are many more qualified applicants than can be admitted.

Graduate programs in veterinary research and postdoctoral training in clinical specialties are open to doctors of veterinary medicine and some highly qualified holders of baccalaureate degrees and lead to the degree of master of science or doctor of philosophy.

More detailed information is available at the College of Veterinary Medicine web site, www.vet.cornell.edu.

Note: 500- and 600-level courses are open only to veterinary students except by written permission from the instructor.

The College of Veterinary Medicine's professional curriculum comprises courses (designated with the prefix "VTMED") in two categories: foundation courses and distribution courses.

The Professional Curriculum

FOUNTION COURSES

Foundation courses are interdisciplinary and represent approximately 70 percent of the professional curriculum. In Foundation courses I, III, and IV (VTMED 510, 530, 540), students work in small groups under the guidance of a faculty tutor. Case-based exercises are used to facilitate the understanding of basic science concepts within the context of clinical medicine. In some courses, three two-hour tutorial sessions are scheduled each week. These are complemented by lectures, laboratories, and discussion sessions or other organized learning opportunities specific to the individual course. Faculty are available to respond to questions that arise as a result of the case-based exercises.

Tutorial sessions and all other organized learning programs are scheduled primarily during the mornings, thereby reserving time in the afternoon for independent study. By learning in a clinical context, students are better able to integrate material from the basic and clinical sciences and are encouraged to develop an understanding of the clinical reasoning process from the beginning of the curriculum. The tutorial-based educational format creates an atmosphere that requires students to be involved actively in their learning and allows them to develop skills in communication, information retrieval, and analysis.

Note: Courses listed in brackets [] are approved courses that are not offered during the 2005–2006 academic year.

VTMED 510 (5100) The Animal Body (Foundation Course I)

Fall. 12 credits. Prerequisite: first-year veterinary students. Letter grades only.

A. J. Bezuidenhout and staff.

Designed to enable students to understand the principles of veterinary anatomy at the gross, microscopic, and ultrastructural levels. Emphasizes developmental anatomy to the extent that it reflects determination of adult form and species differences. Radiologic and related imaging techniques are used throughout the course to assist in the understanding of normal structural anatomy. Understanding of the anatomic basis of common surgical procedures is achieved during the various dissection procedures. The course is based on tutorials with significant emphasis on practical laboratories. Lectures and modules complement student learning.

VTMED 517(5701) Animals, Veterinarians, and Society: Part A (Foundation Course VII)

Fall. 1.5 credits. Prerequisite: first-year veterinary students. Letter grades only. Fee charged for course guide. Live animals used in course instruction. N. L. Izby.

Complements and augments material learned in VTMED 510 (Foundation Course I—The Animal Body). The class is divided into small groups and each group meets for four to five hours each week during the first 11 weeks of the fall semester. Using live dogs, cats, horses, and cows as models for learning how to perform a physical examination, this laboratory course teaches the skills of observation, auscultation, palpation, and percussion as well as related basic diagnostic procedures. The body systems are examined sequentially and follow the order of study in Foundation Course I.

VTMED 520(5200) Cell Biology and Genetics (Foundation Course II)

Fall and spring. 8 credits. Prerequisite: first-year veterinary students; VTMED 510.

Letter grades only. R. A. Levine and staff.

Designed to develop an appreciation of the molecular and cellular basis of animal health and disease. Students gain an understanding of the molecular mechanisms that regulate cell function, the molecular signaling processes that form the basis of integrated function and the response to disease, and the mechanisms underlying inherited traits and genetic disease. Emphasis is placed on defining and characterizing normal cell function and on understanding how mutations in specific genes promote disease. Students become familiar with the common molecular procedures being used to develop new diagnostic and therapeutic tools to maintain health and combat disease. The course is divided into two parts separated by a midterm exam. The first part is made up of three sections: Principles of Cell Biology, Cell Signaling, and Medical Genetics. The second half builds on and expands these principles, using examples from veterinary medicine including wound repair and cancer. In both parts, clinical cases are used to illustrate the concepts presented.

VTMED 532(5220) Neuroanatomy

Spring. 1 credit. Prerequisite: first-year veterinary students. Letter grades only. Faculty TBA.
Designed to give students the necessary background for the understanding of neurophysiology and clinical neurology. Students will gain a basic understanding of the gross anatomy of the Central Nervous System (CNS), pathways involved in somatosensory and motor systems, as well as some exposure to modern imaging of the CNS (CT and MRI) correlates with gross coronal sections of the CNS.

VTMED 527(5702) Animals, Veterinarians, and Society: Part B (Foundation Course VIlb) Last part of fall semester through end of winter session. 1.5 credits. Prerequisite: first-year veterinary students; VTMED 517. Letter grades only. Fee charged for course guide. Live animals used in course instruction. N. L. Irby.

Consists of both lectures and laboratory sessions intended to complement materials learned in VTMED 520 (Foundation Course II—Cell Biology and Genetics) but for the most part focus primarily on veterinary medical ethical issues related to animal use, animal welfare, genetics counseling, and clinical day-to-day ethics. The laboratory reviews basic equine and bovine husbandry skills and the small-animal physical examination.

VTMED 530(5300) Function and Dysfunction: Part I (Foundation Course Illa) Spring. 9 credits. Prerequisite: first-year veterinary students; VTMED 520. Letter grades only. Live animals used on limited basis for demonstration or noninvasive procedures. R. Rawson and staff.

Designed to develop students’ understanding of how an animal maintains itself as a functional organism; how the maintenance of function is achieved through the integration of different organ systems; how tissue structure relates to tissue function; how injury alters structure and leads to dysfunction, manifested as clinical signs; how organ function can be assessed; and how organ function can be modulated pharmacologically. The course incorporates aspects of physiology, biochemistry, cell biology, histology, pathology and histopathology, clinical pharmacology, and pathology.

VTMED 531(5310) Function and Dysfunction: Part II (Foundation Course Illb) Fall. 7 credits. Prerequisite: second-year veterinary students; VTMED 530. Letter grades only. R. Rawson and staff.

Continuation of VTMED 530 Function and Dysfunction: Part I.

VTMED 537(5703) Animals, Veterinarians, and Society: Part C (Foundation Course VIlc) Spring. 1 credit. Prerequisite: first-year veterinary students; VTMED 527. Letter grades only. Fee charged for course guide. Live animals used in course instruction. N. L. Irby.

Introduces students to medical record keeping and to the communication skills and techniques necessary for effective communication with clients. In addition, students will learn the human-animal bond and its implications for veterinary medicine, animal death, and grief counseling. This course gives students the opportunity to practice interviewing clients while refreshing their physical exam skills. The opportunity to gain an appreciation of the role of animal husbandry in veterinary medicine is provided through a milking experience at the college’s dairy barn.

VTMED 540(5400) Host, Agent, and Disease: Part IV (Foundation Course VIlb) Fall. 12 credits. Prerequisite: second-year veterinary students; VTMED 531. Letter grades only. D. Bowman (course leader) and others.

Divided into six sections: the host response; intracellular environment, extracellular environment, somatic environment, external environment, and surrounding environment. Using this approach, students develop an understanding of how the host responds to insults, a familiarity with groups of important pathogens, an understanding of how pathogens manipulate the host and how the host defends itself against attacks, and an understanding of the roles played by the external environment and human intervention in the epidemiology of infectious organisms.

VTMED 541(5410) Veterinary Parasitology Spring. 2.5 credits. Prerequisite: second-year veterinary students. Letter grades only. D. D. Bowman.

Provides a basic introduction to animal parasites of veterinary importance, concentrating mainly on the biology, control, and diagnosis of protozoan and metazoan parasites. Emphasizes parasites representative of significant disease processes or of significant clinical importance to veterinarians. Elaborates on the biology and pathogenesis of these major pathogens with the ultimate goal being to maximize the recognition of the major disease manifestations induced by the different groups of organisms. Laboratories stress certain aspects of some important parasite groups.

VTMED 547(5704) Animals, Veterinarians, and Society: Part D (Foundation Course Vlld) Fall. 1 credit. Prerequisite: second-year veterinary students; VTMED 537. Letter grades only. Fee charged for course guide. Live animals used in course instruction. N. L. Irby.

Complements and augments material learned in VTMED 540 (Foundation Course IV—Host, Agent, and Defense). Emphasizes veterinary public health. Topics include animal bites, routes of disease transmission, rabies control programs, zoonotic diseases, and preventive health care programs including vaccination protocols in large and small animals. One rotation in the Community Practice service and small group discussions are required of each student.

VTMED 550(5500) Animal Health and Disease: Part I (Foundation Course V) Spring. 10 credits. Prerequisite: second-year veterinary students; VTMED 540. Letter grades only. R. Hackett.

Integrates the clinical sciences of medicine, surgery, anesthesiology, radiology, and theriogenology, which are themselves integrated subjects, with systems pathology and relevant aspects of applied pharmacology. The course is presented on a systems basis, to strategies for diagnosis and treatment. Specific examples are used to establish a cognitive framework and knowledge of the most important diseases. This course provides a sound foundation for clinical rotations in Foundation Course VI. It builds on the strengths developed in earlier courses by an increased exposure to case examples in a more directed way, taking advantage of the diversity of skills and special knowledge of both faculty and students. A variety of educational techniques are used, including lectures in which interaction is encouraged, laboratories, demonstrations, case discussions, and autotutorials.

VTMED 551(5510) Animal Health and Disease: Part II (Foundation Course V, continued) Fall. 20 credits. Prerequisite: third-year veterinary students; VTMED 550. Letter grades only. R. Hackett and staff.

Continuation of VTMED 550 Animal Health and Disease: Part I.

VTMED 552(5520) Veterinary Clinical Oncology Spring. 1 credit. Prerequisite: VTMED 540; third- and fourth-year veterinary students. Letter grades only. K. M. Rassnick.

Presents the common cancers affecting small and large animals. Emphasizes biological behavior and patient management. Discusses surgery, chemotherapy, and radiation therapy as important methods to treat cancers in veterinary patients. Course format includes lectures. Attendance is required.

VTMED 553(5530) Veterinary Diagnostic Imaging Spring. 1.5 credits. Prerequisite: VTMED 540; third- and fourth-year veterinary students. Letter grades only. P. Scrivani.

Designed to emphasize the relevance of a solid foundation in veterinary anatomy as it is clinically applied to diagnostic imaging. Additionally, the course is designed to provide students with an understanding of the strengths and limitations of diagnostic imaging by discussing interpretation principles, pitfalls and interpretaries, and measurements obtained through lectures, laboratory exercises, weekly quizzes, and reading assignments. Integration of these objectives culminates in weekly laboratory exercises where students must make or evaluate decisions regarding patient management based on evaluation of clinical signs and imaging examinations. The “Roentgen-Sign” approach to diagnostic imaging interpretation is used as a model.

VTMED 557(5705) Animals, Veterinarians, and Society: Part E (Foundation Course Vlle) Spring. 1 credit. Prerequisite: second-year veterinary students; VTMED 547. Letter grades only. Fee charged for course guide. Live animals used in course instruction. N. L. Irby.

Laboratory course that provides a basic instruction to clinical skills students will need when they start their clinical rotations in the Cornell University Hospital for Animals. Includes a brief review of the physical examination of the dog, horse, and cow. Clinical procedures include but are not limited to ear examination and treatment, IM and SQ injections, fluid administration, naso- and orogastic tube placement, urinary catheterization, and IV catheterization.
VTMED 558(5706) Animals, Veterinarians, and Society: Part F (Foundation Course VIII)
Fall. 1.5 credits. Prerequisite: third-year veterinary students; VTMED 557. Letter grades only. Fee charged for course guide. Live animals used in course instruction. N. L. Irby.

Complements material learned in VTMED 551 Foundation Course V—Animal Health and Disease. Examines governmental regulation of the veterinary profession, including proper drug usage, extra label drug use (FDA), controlled substances (DEA), professional liability and malpractice insurance, professional and unprofessional conduct, hazardous materials in the workplace (OSHA), and environmental issues (EPA). Also includes sessions relating to the control and prevention of the spread of animal diseases and the role of USDA and specifically APHIS in these regulatory functions. The laboratory component consists of one night in the Equine and Farm Animal Hospital and one independent study exercise.

VTMED 560(5600) Ambulatory and Production Medicine
Fall, winter, spring, and summer. 2 credits. Required component of Clinical Rotations (Foundation Course VI). First- and second-year veterinary students encouraged to take one week early if slots available; those who take two weeks total get at least one week at end of curriculum after large-animal classes. Letter grades only. M. E. White and staff.

Clinical service rotation in which students accompany ambulatory clinicians on farm and stable calls and learn the skills and procedures necessary for operation of a modern veterinary practice offering primary care to large animal clients. Routine herd health visits are conducted for cattle, horses, sheep, goats, and swine. Reproductive evaluations (including pregnancy and fertility examinations), nutritional evaluation, and disease prevention are stressed. Herd health protocols are provided and necessary diagnostic procedures are reviewed. Students participate in the operating room and, with house-officer supervision, are responsible for patients undergoing elective ovariohysterectomy or castration. Client communications and the basics of efficient practice are emphasized.

VTMED 563(5602) Small-Animal Medicine
Fall, spring, winter, and summer. 2 credits. Required component of Clinical Rotations (Foundation Course VI). Letter grades only. S. C. Barr, S. A. Gentile, J. F. Randolph, K. W. Simpson, and R. Goldstein.

Structured to provide supervised clinical experience in the practice of companion small-animal medicine. The course is conducted in the Companion Animal Hospital of the Cornell University Hospital for Animals. Students interact directly with clients presenting their pets for primary or referral medical care. Under the supervision of the clinical faculty and staff, the students are expected to formulate and carry out plans for the diagnostic evaluation and medical management of these patients.

VTMED 564(5603) Small-Animal Soft Tissue Surgery Service
Fall, winter, spring, and summer. 2 credits. Required component of Clinical Rotations (Foundation Course VI). Letter grades only. H. J. Harvey and small animal surgery faculty.

Clinical service rotation that exposes the student to the practice of surgery under hospital conditions. Students participate in the diagnostic techniques; planning of therapy, and daily care of dogs, cats, and exotic species under the direction of a faculty veterinarian. Students assist experienced surgeons in the operating room and, with house-officer supervision, are responsible for patients undergoing elective ovariohysterectomy or castration. Client communications and the basics of efficient practice are emphasized.

VTMED 566(5604) Large-Animal Medicine
Fall, winter, spring, and summer. 2 credits. Required component of Clinical Rotations (Foundation Course VI). Letter grades only. W. H. Miller and D. W. Scott.

Clinical service rotation structured to provide supervised clinical experience in the practice of large-animal surgery. Students work in various capacities in the diagnostic, surgical treatment, and care of patients presented to the Equine and Farm Animal Hospital. Training through patient care is supplemented by formal rounds and didactic instruction.

VTMED 567(5605) Large-Animal Soft Tissue Surgery Service
Fall, winter, spring, and summer. 2 credits. Required component of Clinical Rotations (Foundation Course VI). Letter grades only. A. J. Nixon and staff.

Clinical rotation structured to provide supervised clinical experience in the practice of large-animal surgery. Under the direction of faculty and house staff, students participate in the diagnosis, surgical treatment, and care of patients presented to the Equine and Farm Animal Hospital. Training through patient care is supplemented by formal rounds and didactic instruction.

VTMED 568(5606) Anesthesiology Service
Fall, winter, spring, and summer. 2 credits. Required component of Clinical Rotations (Foundation Course VI). Letter grades only. R. D. Gleed, J. W. Ludders, L. P. Posner, A. A. Smith, and staff.

Designed to provide clinical experience in the use of anesthetics in small companion animals, horses, and some food animals. Students participate in selecting suitable anesthetic techniques for patients in the Cornell University Hospital for Animals and then implement those techniques under the supervision of faculty and residents. The goal is for students to learn the skills and thought processes necessary to perform safe anesthesia in a modern veterinary practice.

VTMED 569(5607) Dermatologic Service
Fall, winter, spring, and summer. 2 credits. Required component of Clinical Rotations (Foundation Course VI). Letter grades only. W. H. Miller and D. W. Scott.

During this clinical rotation, students participate in the diagnosis and management of skin disorders in small and large animals. Patients are examined by appointment and through consultation with other hospital services.

VTMED 570(5608) Ophthalmologic Service
Fall, winter, spring, and summer. 2 credits. Required component of Clinical Rotations (Foundation Course VI). Letter grades only. R. C. Riis, T. Kern, and N. Irby.

Combines clinical experience with beginning skills in diagnostic ophthalmology. Students learn how to apply the ophthalmic diagnostic tests. A competent ocular examination is the goal of this rotation. Confidence in using direct and indirect ophthalmoscopes, slit lamps, tonometers, gonioscopes, conjunctival cytology, and surgery comes with the practice provided by this rotation. Students are required to review the introductory orientation videotapes in the autotutorial center titled Ocular Examination I and II before the start of the rotation. This rotation provides surgical experience and consultations. A high percentage of the consultations are referral
cases that usually challenge the service. Adequate routine case material is presented to prepare most students for practice.

VTMED 571(5609) Pathology Service
Fall, winter, spring, and summer. 2 credits. Required component of Clinical Rotations (Foundation Course VI). Letter grades only. S. P. McDonough and staff. Involves the hands-on diagnostic necropsies of a wide variety of mammalian species that are presented to the Section of Anatomic Pathology necropsy service. Students work in groups of three to five for the two-week rotation. Necropsies are performed under the guidance of pathology faculty and residents. Students prepare written reports of necropsies performed, review microscopic hematology and cytology slides, perform unnalyses, and discuss case studies.

VTMED 572(5610) Radiology Service
Fall, winter, spring, and summer. 2 credits. Required component of Clinical Rotations (Foundation Course VI). Letter grades only. N. L. Dykes and staff. Two-week clinical experience in the imaging section of the Cornell University Hospital for Animals. Students use radiographic, ultrasonographic, CT, MRI, and nuclear medicine imaging techniques to evaluate animal patients under treatment in the Cornell University Hospital for Animals. Students obtain and interpret radiographic studies with guidance from radiology faculty and technical staff. Autotutorial teaching films are used to familiarize students with radiographic examples of common diseases of large- and small-animal species. Small-group discussions are scheduled to present and discuss the teaching files and current cases. The safe use of X-ray-producing equipment and radiotopics is discussed.

VTMED 573(5612) Fourth-Year Seminar
Fall and spring. 1 credit. Required component of Clinical Rotations (Foundation Course VI). First-, second-, and third-year students and all staff members also invited and encouraged to attend. S-U grades only. F. H. Fox, chair of Service Year Committee. Gives the student the responsibility and opportunity of selecting and studying disease entity on the basis of a case or series of cases, or to conduct a short-term, clinically oriented research project under the direction of a faculty member. In either case, an oral report is presented at a weekly seminar. A written report is also submitted at the time of the seminar. All participants are encouraged to foster an atmosphere in which discussion, exchange of ideas, and the airing of controversial opinions might flourish.

DISTRIBUTION COURSES
Distribution courses comprise 30 percent of the curriculum and are usually scheduled during the first half of each spring semester. During the first two years, many of the distribution courses are oriented to the basic sciences. During years three and four, students have additional distribution course offerings from which to choose. Some emphasize clinical specialties, whereas others integrate basic science disciplines with clinical medicine and are co-taught by faculty representing both areas. Students from different classes have the opportunity to take many of these courses together. Grading options for distribution courses are either letter or S-U.

VTMED 601(6100) Anatomy of the Carnivore
Spring. 3 credits. Prerequisite: VTMED 510; first-, second-, third-, and fourth-year veterinary students or permission of instructor. Letter grades only. P. S. Maza. Studies carnivore anatomy by detailed systematic and regional dissection of the cat, with comparison to the dog. Student dissection is supplemented with projections, radiographs, palpation of live cats, and exercises focusing on surgical approaches. There are opportunities to dissect other carnivors, such as the ferret and the fox, depending on availability of specimens. The lectures augment the laboratory dissection and introduce the student to functional morphological comparative features in the Order Carnivore. Students do an independent project on the cat, dog, or choice and give an oral presentation on this to the class.

VTMED 602(6101) Anatomy of the Horse
Spring. 3 credits. Prerequisite: VTMED 510; first-, second-, third-, and fourth-year veterinary students or permission of instructor. Letter grades only. A. J. Bezuidenhout. Organized as a traditional anatomy course that relies primarily on students learning the anatomy of horses through hands-on dissection laboratories augmented by lectures and highlighted by clinical correlations. An understanding of anatomy that provides the foundation for surgery and is directly relevant to clinical practice is emphasized in the regional approach to dissection. Most lectures emphasize structures useful in diagnosis and treatments that are unique or important in the horse. Microscopic anatomy is integrated into the course in selected areas to lay a foundation for the later study of pathology or when it reinforces concepts and function that are difficult to understand by study of the gross anatomy alone (i.e., hoof). Student dissection cadavers are supplemented by skeletal materials, radiographs, models, preserved predessected specimens, and fresh specimens when available.

VTMED 603(6102) Anatomy of the Ruminant
Spring. 3 credits. Prerequisite: VTMED 510 or permission of instructor; first-, second-, third-, and fourth-year veterinary students or permission of instructor. Letter grades only. L. A. Mizer. Covers the regional anatomy of several ruminant species using dissection laboratories, lectures, and large-group discussions. Emphasizes the functional consequences of structural modifications and anatomical features relevant to clinical practice. Correlates microscopic anatomy with gross anatomy when appropriate to relate structure to function. Intends to provide a foundation for later study in pathology. Student dissection material is supplemented by skeletal materials, radiographs, models, predicedsected specimens, and postmortem specimens. Students are required to complete an independent study project on a relevant subject of their choice. Assessment includes written and practical exam.

VTMED 605(6103) Comparative Anatomy: Pattern and Function
Spring. 3 credits. Prerequisite: VTMED 510; first-, second-, third-, and fourth-year veterinary students or permission of instructor. Letter grades only. J. Hermanson. The goal of this course is to study anatomical variability among amniote (mammals, birds, and reptiles) and amniote (amphibian and fish) species. This is accomplished by relating the anatomy of major organ systems in each species to a common basic pattern and considering the differences in a functional perspective. Five major systems are explored (integumentary, locomotor, cardiorespiratory, digestive, and urogenital) in a variety of species as available.

VTMED 606(6520) Advanced Clinical Neurology
Spring. 1 credit. Prerequisite: VTMED 521; third- and fourth-year veterinary students. Letter grades only. F. H. Fox, chair of Clinical Year Committee. Furthers the experience and confidence of the student in the diagnosis and understanding of clinical neurological disorders. Continues the student's correlation of anatomy, physiology, and pathology in the diagnosis of diseases of the nervous system and the understanding of their pathogenesis. Neurological disorders that are not covered in the foundation course are considered here. The course is based entirely on case examples presented on videotapes and slides.

VTMED 607(6720) The Literature and Subject Matter of Natural History
Spring. 1 credit. Minimum enrollment 10; maximum 30. Prerequisite: third- and fourth-year veterinary students. S-U grades only. H. E. Evans. Introduces natural history literature. Shows and discusses materials relating to the earth sciences and the biology of plants and animals from around the world. Students are required to show and discuss a book that concerns natural history in a country of their choice and submit a one-page book report for duplication. (A recommended reference text is The Cambridge Illustrated Dictionary of Natural History by G. A. Boxshall, 1990.) Golden Guides for mammals, birds, reptiles, fishes, insects, and plants are given to participants.

VTMED 609(6120) Anatomy and Histology of Fish
Spring. 2 credits. Minimum enrollment 4; maximum 6. Prerequisite: first-, second-, third-, and fourth-year veterinary students or written permission of instructor. S-U grades optional. P. R. Bowser. Provides an overview of the diversity of anatomy and histology of fish. Students participate in lecture, discussion, and laboratory exercises to review the major organ systems. Extensive use of library resources for assigned readings is expected. Each student prepares a term project and makes one oral presentation.

VTMED 610(6721) Avian Biology: Veterinary Aspects of Avian Anatomy
Spring. 1.5 credits. Minimum enrollment 10; maximum 60. Prerequisite: first-, second-, third-, and fourth-year veterinary students or permission of instructor. Letter grades only. V. W. Fox, chair of Clinical Year Committee. Introduction to avian biology for veterinary students. Includes lectures and laboratories involving avian anatomy, physiology, and...
natural history. One laboratory involves live birds to demonstrate physical examination. The course emphasizes the development of a strong foundation in avian biology that is applied in VTMED 628 Avian Medicine and Surgery. VTMED 616(6252) Diseases of Birds

Spring. 2 credits. Minimum enrollment 10; maximum 80. Prerequisite: second-, third-, and fourth-year veterinary students. Letter grades only. G. V. Kollas and staff. Designed to introduce second-, third-, and fourth-year veterinary students to a basic and practical knowledge of the most common infectious and noninfectious diseases affecting a variety of avian species. Emphasizes the latest diagnostic and control approaches. The course format is a combination of didactic lectures and discussions.

[VTMED 617(6523) Basic Nutrition for Veterinary Students

Fall. 1 credit. Prerequisite: Foundation Course IV. S-U grades only. F. A. Kalfelz, J. J. Wakslag, and K. J. Hurley.

Introduction to nutrition, including basic concepts of the need for and metabolism of energy, protein, fat, and vitamins in domestic animals. Discusses the functions of essential nutrients, including differences between nutrients needed in herbivores, carnivores, and omnivores. Includes identification and use of various forages and concentrates for large animal feeding.]

VTMED 622(6420) Foreign Infectious Diseases of Animals

Spring. 1 credit. Minimum enrollment 20. Prerequisite: second-, third-, and fourth-year veterinary students. Letter grades only. A. Torres.

Describes the etiology, pathogenesis, clinical signs, gross pathology, differential diagnosis, methods of spread, reservoir hosts, and control of foreign animal diseases that present serious economic problems in the United States. The format is student-seminar presentations with each student responsible for presenting one seminar or writing a paper on the cause and outcome of a foreign animal disease outbreak. The spread of FMD, avian flu virus, and BSE emphasizes the importance of these diseases to producers, consumers, and practicing veterinarians. Several foreign animal diseases are also important zoonoses affecting public health.

VTMED 624(6524) Feline Infectious Diseases

Spring. 1 credit, two 50-min. lec each week for eight weeks. Minimum enrollment 10; maximum 80. Prerequisite: second-, third-, and fourth-year veterinary students. Letter grades only. S. C. Barr. Emphasizes clinical and pathologic aspects of feline infectious diseases common to cats in North America and complements knowledge acquired in Foundation Courses IV and V. The overall emphasis is to provide details about specific infectious diseases. A future small-animal practitioner may need to know about to effectively diagnose and treat diseases. Topics include epidemiology, pathogenesis, clinical findings, diagnosis, treatment, therapy, prevention, and public health considerations. Most lectures are presented from a clinician’s point of view, and therefore the material is oriented toward practical skills in managing clinical cases. Grades are based entirely on the result of a written exam (usually multiple-choice format) given in the final period.

VTMED 625(6525) Canine and Feline Osteoarthritis

Spring. 1 credit. Minimum enrollment 8; maximum 30. Prerequisite: graduate and second-, third-, and fourth-year veterinary students. Letter grades only. G. Lust. Provides a basis for the molecular, cellular, and tissue levels for understanding the function of mammalian diarthrodial joints, including a description of a diarthrodial joint and the composition and metabolism of articular cartilage, subchondral bone, ligaments, meniscus, capsule, and synovium. Considers the interrelationships of synovial, synovial fluid, articular cartilage, joint lubrication, biomechanical considerations, and enervation are considered. Canine hip dysplasia is a focus during the early class sessions. The osteoarthritics associated with canine hip dysplasia serves as a basis for discussion of the etiopathogenesis of the disease. Canine osteoarthritis is emphasized, but the disease in animal models such as mice, guinea pigs, rabbits, and sheep is mentioned. Therapies such as nonsteroidal anti-inflammatory drugs, glucocorticoids, and others may be discussed.

VTMED 626(6421) Epidemiology of Infectious Diseases

Spring. 1 credit. Minimum enrollment 8. Prerequisite: second-, third-, and fourth-year veterinary students. Letter grades only. H. Mohammed and staff. Introduces the epidemiologic methods used in infectious disease investigations. Also discusses the importance of surveillance systems in detecting modern epidemics and in the development of effective disease prevention and control strategies. Emphasizes understanding the relationships between the host, the agent, and the environment as they relate to disease transmission. Explores contemporary epidemiologic methods applicable to old diseases that remain real or potential problems, newly emerging infectious diseases, and nosocomial infections. Selected diseases are discussed to clarify the role of epidemiology in understanding the pathogenesis of infectious processes in individuals and groups of animals. Students have the opportunity to apply methods learned to actual disease problems and write an epidemiologic report that might lead to a publication in a peer-reviewed scientific journal.

VTMED 628(6320) Clinical Pathology

Spring. 2 credits. Minimum enrollment 25; maximum 75. Prerequisite: second-, third-, and fourth-year veterinary students. Letter grades only. T. W. French. Addresses a range of issues related to laboratory medicine and interpretation of laboratory results. General topic areas include hematology, clinical chemistry and immunology, and urinalysis. The primary mode of instruction is student-driven small-group (unmented) exploration of case materials followed by faculty-modulated large-group discussions. Selected lectures and laboratory sessions supplement and expand on issues generated by the case discussions. This course builds on concepts previously addressed in Foundation Courses III and IV and provides additional experiences in...
practical clinical pathology procedures and microscopy.

VTMED 630(6422) Clinical Biostatistics for Journal Readers
Spring. 1 credit. Minimum enrollment 3; maximum 12. Prerequisite: first-, second-, third-, and fourth-year veterinary students or permission of instructor. Letter grades only. H. N. Erb.

Students become familiar with the statisti-cal methods commonly used in veterinary clinical articles, learn to recognize obvious misuse of those methods, and become able to interpret the statistical results.

VTMED 631(6423) Clinical Diagnostic Parasitology
Fall and spring. 0.5 credits for attending eight one-hour parasitology sessions; student usually can easily obtain 2 hours on each of the five participating rotations (Ambulatory, Community Practice Service, Dermatology, Pathology, and Wildlife). Prerequisite: VTMED 551; third- and fourth-year veterinary students. S-U grades only. Times TBA. M. K. Froncillo and T. D. Bowman.

Gives students experience in diagnosing parasitic infections. Students perform appropriate parasitological testing methods on clinical samples from patients on their rotations. They also evaluate the test results in terms of treatment or management of the infections. If clinical specimens are not available, appropriate materials are provided for study and evaluation. Ambulatory students typically qualitative and quantitative flotations on samples from large animal cases they have encountered that week. In OVS, one hour is spent testing samples from current dog and cat patients, while a second hour is devoted to a discussion of the treatment of common endo- and ecto-parasites. Pathology students typically examine and identify intact parasites they retrieved from various organs at necropsy. This course is considered to be a logical extension to Foundation Course IV, Host, Agent, and Defense, and is expected to build on the didactic material presented in Large and Small Animal Parasitology.

VTMED 632(6724) Senior Seminar
Fall and spring. 1 credit. Does not fulfill 1-credit Set VII minimum. Prerequisite: first-, second-, and third-year veterinary students. Must be completed in two consecutive semesters (either fall to spring or spring to fall). S-U grades only. R. O. Gilbert.

Attendance at 14 of the senior seminar sessions presented during the academic year constitutes acceptable completion of this course.

VTMED 635(6726) Introduction to the Professional Literature
Spring. 1 credit. Minimum enrollment 6; maximum 20. Prerequisite: first-, second-, third-, and fourth-year veterinary students. Letter grades only. S. Whitaker.

Introduces veterinary students to the professional and biomedical literature, including development of critical reading skills. Students become familiar with the broad range of professional and biomedical literature and are encouraged to develop a rigorous approach to journal and scientific article review. Secondary emphasis is on developing skills in library and bibliographic search techniques and strategies for personal information management, as well as exploring the use of veterinary-related online information.

VTMED 637(6727) Introduction to Community Practice Service
Fall, winter, spring, and summer. 1 credit. Prerequisite: first- and second-year veterinary students, permission of instructor, and consent optional. W. E. Hornbuckle.

Introduces veterinary students to primary care small-animal clinical practice through direct exposure to the Community Practice Service of the Cornell University Hospital for Animals. Students observe and assist with restraint, examination, and routine treatment of pets and communication with clients. Successful completion requires satisfactory participation during 10 half-days of clinical service.

VTMED 638(6526) Veterinary Nutrition
Spring. 2 credits. Minimum enrollment 10; maximum 90. Prerequisite: second- and third-year veterinary students or permission of instructor. Recommended for second- and third-year veterinary students. Letter grades only. P. A. Kalf. The first half of this course provides information on the requirements for and metabolic uses of the essential nutrients of large and small animals as well as on formulation and evaluation of practical rations for species of veterinary interest. These concepts are applied in discussion of life stage nutritional needs, including growth, adult maintenance, gestation, lactation, aging, performance, and production. The second half covers quantitative and qualitative aspects of nutritional deficiency and excess, including obesity, as well as the role of nutrition in the management of diseases of the various organ systems—e.g., renal, lower urinary tract, cardiac, G-I, hepatic, and musculoskeletal system disease. Other topics include the role of nutrition in managing cancer and hypersensitivity disorders and in critical care, including enteral and parenteral nutrition. The course also includes an introduction to nutrition for exotic and zoo animals.

VTMED 640(6527) Veterinary Aspects of Captive Wildlife Management
Spring. 2 credits. Minimum enrollment 10; maximum 40. Prerequisite: first-, second-, third-, and fourth-year veterinary students. Letter grades only. G. V. Kollias.

Concentrates on principles of captive wildlife management, both clinical and nonclinical. Students are challenged to learn and integrate a variety of disciplines that are essential to managing wildlife successfully in a captive or semi-free-ranging environment. These disciplines include but are not limited to species-specific (1) behavior and behavioral requirements, (2) nutritional requirements and problems, (3) natural history, (4) zoological and toxicological problems, (5) manual restraint and anesthesia, (6) preventive medicine, and (7) medical and legal ethics. In even-numbered years the course emphasizes non-North American wildlife species (e.g., African, Asian, Australian, and Central and South American species), and in odd-numbered years it focuses more on the North American (native) wildlife species.

VTMED 641(6424) Approaches to Problems in Canine Infectious Diseases
Spring. 1 credit. Minimum enrollment 10; maximum 80. Prerequisite: second-, third-, and fourth-year veterinary students. Letter grades only. S. C. Barr.

Emphasizes the clinical aspects of the more common canine infectious diseases. Overall objective is to provide details about specific infectious diseases a future small-animal practitioner may need to know to effectively diagnose and treat these diseases. Clinical signs, presentation, clinicopathologic data, diagnostic choices, treatment plans, and prevention are emphasized. Most lectures are presented by clinical faculty and therefore the material is oriented toward practical skills in managing clinical cases. Grading is based entirely on the result of a written exam (usually multiple-choice format) given in the final period.

VTMED 642(6321) Management of Fluid and Electrolyte Disorders
Spring. 2 credits. Minimum enrollment 20; maximum 80. Prerequisite: second-, third-, and fourth-year veterinary students. Letter grades only. R. Rawson.

Students focus on clinical manifestations and the pathophysiologic mechanisms associated with fluid, electrolyte, and metabolic acid-base disturbances in domestic animals. The course is divided into segments dealing with salt and water imbalances, potassium abnormalities, metabolic acidosis, metabolic alkalosis, and mixed acid-base disturbances.

VTMED 644(6528) Equine Surgical and Anesthetic Techniques
Winter, one-week period over winter intersession. 1 credit. Minimum enrollment 3; maximum 21. Enrollment by lottery. Prerequisite: VTMED 602; third- and fourth-year veterinary students. S-U grades only. S. Fubini (coordinator) and other large-animal surgeons.

Consists of five laboratories performing surgical procedures on ponies and cadaver specimens. It is the intent of this course not to make the students proficient in these procedures but to familiarize them with some specialized surgical techniques and to make them more enlightened referring practitioners. The course, therefore, is intended for students anticipating equine practice after graduation.

VTMED 645(6529) Food-Animal Surgical and Anesthetic Techniques
Winter, one-week period over winter intersession. 1 credit. Minimum enrollment 6; maximum 21. Enrollment by lottery. Prerequisite: VTMED 603; third- and fourth-year veterinary students. S-U grades only. S. Fubini and other large-animal surgeons.

Consists of five laboratories performing surgical procedures on sheep, calves, cadaver specimens, and adult cattle. It is the intent of this course not to make the students proficient in these procedures but to familiarize them with surgical techniques and to make them more enlightened referring practitioners. The course, therefore, is intended for students anticipating food-animal practice after graduation.
VTMED 646(6530) Llama Tutorial
Fall, spring, summer. 1 credit. Prerequisite: VTMED 540; second-semester second-, third-, and fourth-year veterinary students. S-U grades only. Independent study. M. C. Smith.

Autotutorial or group tutorial course covering common problems of llamas and alpacas. Participants are provided with study guides consisting of brief case descriptions and sample study questions. Reference is made to textbooks, journal articles, videotapes, and (if available) a teaching llama or alpaca to assist students in finding the answers to the questions efficiently. Grading is based on an oral exam.

VTMED 647(6531) Poisonous Plants
Fall. 1 credit. Prerequisite: first-, second-, third-, and fourth-year veterinary students or permission of instructor; S-U grades only. M. C. Smith.

Field trips demonstrate toxic plants growing in natural or cultivated settings. Lectures address economically important poisonous plants native to the United States. Information presented includes plant identification, natural habitat, toxic principles, clinical signs of toxicity, and treatment and prevention of poisoning in animals. Some of the major toxic principles found in plants and considered in detail in the course are nitrates, cyanide, oxalates, photodyagenic agents, alkaloids, and mycotoxins.

VTMED 648(6728) Clinical Management of Native Wildlife
Fall, spring, summer (credit given in fall). 1 credit. Maximum enrollment: 30 students per semester. Prerequisite: first-, second-, third-, and fourth-year veterinary students. Letter grades only. G. V. Kollias and staff.

Introduces veterinary students to primary care for native wildlife and to wildlife issues that practicing veterinarians face on a daily basis. Students are responsible for the assessment, physical examination, and medical care of native wildlife presented to the Cornell University Hospital for Animals by the public and local wildlife rehabilitators. Student activities are directly supervised and assessed by faculty and residents on a daily basis. Successful completion of the course requires 40 hours of didactic lecture and laboratory supervised participation per semester in the clinic. Clinic times are appropriately scheduled throughout the semester. Students are required to submit two case summaries, or alternatives approved by the course leader, before the end of the semester and a log of their clinical hours.

VTMED 649(6729) Introduction to Equine Practice
Spring. 0.5 credit. Maximum enrollment: 30. Prerequisite: first- and second-year veterinary students. Intended for students with little or no experience working with horses. Letter grades only. R. Hackett and C. Collyer.

Introductory course in equine husbandry. Lecture topics include horse breeds and colors, housing facilities and fencing, and overview discussions of the racing, showing, and breeding industries. Laboratories emphasize basic equine handling and restraint as well as feeds and bedding.

VTMED 652(6532) Avian Medicine and Surgery
Spring. 2 credits. Minimum enrollment 20, maximum 40. Prerequisite: third- and fourth-year veterinary students. Letter grades only. G. V. Kollias and staff.

Designed to introduce third- and fourth-year veterinary students to the principles and practice of clinical avian medicine and surgery. The course is taught in a basic didactic lecture and discussion format with laboratories that reinforce concepts presented in the lectures.

VTMED 653(6533) Advanced Equine Lameness

Designed to teach students the methodology of equine lameness diagnosis. Places a strong emphasis on a hands-on approach to learning and is primarily laboratory-based. During laboratories, students work in small groups on live horses to diagnose the cause of their lameness. By the end, students learn both the practical skills, such as perineural and intra-articular blocks, as well as the methodology necessary to systematically work up a lameness case. Laboratories also provide students with the opportunity to practice field radiography and gain ultrasound skills as they pertain to equine lameness. Additionally, students have the opportunity to practice basic farrier skills. Lecture topics are intended to round out the student's understanding of lameness by providing them with a knowledge base of the common causes of lameness, organized by response to local anesthesia. Radiographic interpretation is emphasized through case discussions. The course is recommended for students anticipating entry into equine practice.

Students seeking hands-on experience with horses are also welcome.

VTMED 654(6534 lec, 6535 lab) Equine Theriogenology
Spring. Lec, 1 credit; lab, 0.5 credit. Minimum enrollment: 12; maximum 24. Lab enrollment by lottery. Prerequisite: third- and fourth-year veterinary students. Letter co-requisite: enrollment in lec. Letter grades only. D. H. Volkman.

Covers advanced aspects of equine reproductive physiology. Discusses reproductive management of mares and stallions using natural and artificial breeding strategies. Stresses diagnosis, treatment, and prevention of common reproductive disorders. The laboratory component builds on skills acquired during foundation courses and provokes experience in techniques important in equine theriogenology.

VTMED 655(6536 lec, 6537 lab) Dairy Cow Theriogenology

Offers lectures and labs that provide both theoretical and practical training in current approaches to the veterinary aspects of dairy-cow reproductive care and management. The aim is to empower the student with entry-level, current knowledge and skills for the reproductive aspects of any modern dairy practice.

VTMED 656(6538) Special Problems in Equine Medicine
Spring. 1.5 credits. Minimum enrollment 10; maximum 30. Enrollment by lottery. Prerequisite: third- and fourth-year veterinary students. S-U grades only. T. Divers and staff.

Intended for students anticipating equine practice. In-depth study of important diseases, review of recent literature, health management, and hands-on procedures or demonstrations are the core of this course.

VTMED 657(6539) Disorders of Large-Animal Neonates
Spring. 1 credit. Minimum enrollment 6; maximum 100. Prerequisite: first-, second-, third-, and fourth-year veterinary students. Letter grades only. G. Perkins.

Introduction to neonatology course. The emphasis is on the medical and surgical problems of foals in the early neonatal period with some information presented about calves, small ruminants, and camelid neonates. Students also spend several hours in the neonatal intensive care unit providing medical care of hospitalized patients under staff supervision.

VTMED 659(6540) Equine Soft-Tissue Surgery

Intended for students anticipating equine practice after graduation. Builds on material presented in the foundation courses to provide supplemental instruction in surgical disorders of the horse. Lectures are case based and emphasize disorders likely to be encountered in equine practice (colic, traumatic injuries, upper respiratory tract disorders, prepurchase examination). Laboratories emphasize diagnostic and therapeutic procedures which an entry-level equine practitioner should be conversant with.

VTMED 661(6541) Surgical Pathology
Spring, summer, fall. 1-2 credits, variable; one or two weeks, approx. eight hours per day for 1 credit per week. Prerequisite: second-, third-, and fourth-year veterinary students by permission of instructor. Letter grades only. S. McDonough.

Provides hands-on experience in the Surgical Pathology Service of the Department of Biomedical Sciences. Working with the attending pathologist, students examine tissue specimens histologically, propose diagnoses, and discuss their interpretations. Students may enroll in this course only through the Office of Student Records within the official add/drop period. All requests to enroll must be accompanied by the Internal Enrollment Form indicating Dr. McDonough's approval of the enrollment and the amount of credit to be awarded. Second-year students should not enroll for any term other than summer unless they have actually reserved a January or spring-break slot through Dr. McDonough.
VTMED 665(6542) Medical and Surgical Problems of Dairy Cattle: Emphasis on the Individual Animal
Spring. 1.5 credits. Minimum enrollment 6; maximum 28. Prerequisite: third- and fourth-year veterinary students. Letter grades only. K. Simpson (coordinator) and staff. Provides students who have a special interest in dairy practice the opportunity for in-depth discussions of special problems in bovine medicine and management. Emphasizes case discussions, physical examination techniques, and ethical and practical matters. Emphasizes individual cow treatment.

VTMED 667(6543) Special Problems in Small-Animal Medicine
Spring. 1 credit. Minimum enrollment 10; maximum 40. Prerequisite: third- and fourth-year veterinary students. S-U grades only. K. Simpson (coordinator) and staff. Students work through selected problems in small-animal medicine in a two-hour weekly seminar. The medical problems associated with cases using historic, clinical, clinical pathologic, and pathologic findings to elucidate basic pathophysiologic principles of disease. The overall objective is to give future small-animal practitioners skills in the clinical skills used by veterinarians in modern dairy practice. Many of these activities fall outside the traditional boundaries of medicine, surgery, and theriogenology and might include antibiotic, antifungal, antiparasitic, and antiviral drugs used from the point of view of unique pharmacokinetic properties, indications for clinical use, and potential toxicities as the basis for rational use.

VTMED 676(6547) Clinical Ophthalmology
Spring. 0.5 credit. Prerequisite: third- and fourth-year veterinary students. S-U grades only. R. Riss, N. Iby, and T. Kern. The principles and practice of entry-level veterinary ophthalmology are introduced by lectures and discussions that emphasize species differences, basic surgical decision-making, and recognition of ocular conditions appropriate for referral. One of the four class periods is devoted to ocular surgical techniques performed on cadaver tissues.

VTMED 677(6548) Dairy Production Medicine
Fall. 2 credits. Minimum enrollment 6; maximum 14. Prerequisite: third- and fourth-year veterinary students. S-U grades only. C. Guard. Intermediate course in techniques and procedures utilized by veterinarians in modern dairy practice. Many of these activities fall outside the traditional boundaries of medicine, surgery, and theriogenology and might include antibiotic, antifungal, antiparasitic, and antiviral drugs used from the point of view of unique pharmacokinetic properties, indications for clinical use, and potential toxicities as the basis for rational use.

VTMED 692(6327) Current Concepts in Reproductive Biology (also BIOAP 757(7570))
Fall. 3 credits. Minimum enrollment 6. Prerequisite: first-, second-, and third-year veterinary students and appropriate undergraduate/graduate training. Letter grades only. Offered odd-numbered years. J. Fortune, W. R. Butler, and staff. Team-taught survey course in reproductive physiology/endocrinology. Lectures are given by a number of reproductive biologists on various aspects of male reproductive function (endocrine regulation, tests function, spermatogenesis, and sperm physiology/function), female reproductive function (endocrinology, ovarian development and function, oocyte physiology/function); fertilization and early embryo development; pregnancy; parturition; puberty; and reproductive technology. Students participate in the form of discussions and/or presentations.

VTMED 693(6328) Current Concepts in Veterinary Medicine
Fall. 2 credits. Minimum enrollment 6. Prerequisite: first-, second-, and third-year veterinary students and appropriate undergraduate/graduate training. Letter grades only. Offered odd-numbered years. J. Fortune, W. R. Butler, and staff. Team-taught survey course in veterinary medicine. Lectures are given by a number of veterinarians on various aspects of medical and surgical problems of individual small animals and of sheep and goats. Basic information is on common clinical presentations such as skin disease, neurologic disease, lameness, and mastitis are considered. Herd monitoring of economically important parameters and necropsy diagnosis of abortions and neonatal losses are addressed. Breeding systems, pregnancy diagnosis methods, correction of dystocia, and common surgical procedures are discussed and demonstrated in laboratory sessions.
INTRODUCES STUDENTS TO PRIMARY MEDICAL CARE OF NONTRADITIONAL PET SPECIES, ZOO ANIMALS, AND NATIVE WILDLIFE. STUDENTS, DIRECTLY SUPERVISED BY THE ATTENDING CLINICIAN, ARE RESPONSIBLE FOR THE ASSESSMENT, PHYSICAL EXAMINATION, AND MEDICAL MANAGEMENT OF WILDLIFE SPECIES PRESENTED TO THE CORNELL UNIVERSITY HOSPITAL FOR ANIMALS. OTHER OPPORTUNITIES AVAILABLE TO ASSIST IN THE DEVELOPMENT OF CLINICAL SKILLS IN WILDLIFE, ZOO, AND EXOTIC-ANIMAL MEDICINE INCLUDE THE WILDLIFE CLINIC CASES, ONGOING WILDLIFE RESEARCH AND CLINICAL PROJECTS, AND TRIPS TO THE ROSAMOND GIFFORD ZOO. SUCCESSFUL COMPLETION OF THE COURSE REQUIRE SATISFACTORY PERFORMANCE DURING THIS 14-DAY CLINICAL ROTATION.

VTMED 704(6604) Quality Milk
Fall or spring. 2 credits. Prerequisite: VTMED 551; third- and fourth-year veterinary students. Letter grades only. R. Gonzalez and QMP staff. Covers the causes, diagnosis, treatment, and prevention of bovine mastitis. Stresses the role of management practices. Includes lectures, readings, discussions, laboratory exercises, and farm visits as part of the Quality Milk Production Services. Participants are expected to complete a case study on a dairy farm with udder-health problems and present their findings to the producer and farm personnel. Grading is on performance during the course and a final exam.

VTMED 705(6605) Special Opportunities in Clinical Veterinary Medicine
Fall, spring, and summer. Prerequisite: VTMED 551; third- and fourth-year veterinary students. Letter grades only. W. Miller and N. Ducharme. Provides opportunities for students who want to explore professional areas not available through the regular curriculum. Blocks of two to four weeks are usually spent at other teaching hospitals, research laboratories, or zoological facilities. Student proposals are submitted to the assistant dean for learning and instruction for review and approval. On-site supervisors of the block are required to evaluate each student formally.

VTMED 707(6607) Poultry Medicine and Production Rotation
Fall, two-week rotation that takes place at University of St. Hyacinthe or University of Guelph in alternating years. 2 credits. Prerequisite: VTMED 551; third- and fourth-year veterinary students. Recommended: VTMED 616. K. A. Schat. Provides an introduction in practical poultry medicine by a combination of lectures, discussions, and laboratory sessions including postmortem examinations. Students also visit hatcheries, broiler, layer, and turkey farms.

VTMED 708(6608) Clinical Oncology
Fall and spring. 2 credits. Maximum enrollment 4 per rotation. Prerequisite: VTMED 551; third- and fourth-year veterinary students. Letter grades only. K. M. Rassnick and staff. Management and prevention of cancer in companion animals represents a significant component of the practice of veterinary medicine. The focus of this clinical rotation is the development of a comprehensive set of skills necessary for a veterinarian to become an advocate for the client/patient with cancer. These skills include appropriate initial evaluation of animals with cancer, sensitive and effective client and referring-veterinarian
communication, ability to access relevant information from numerous sources related to cancer management; and ability to understand and apply principles of surgical, medical, and radiation oncology as well as techniques specifically related to minimize pain and treatment-related effects in cancer patients.

VTMED 709 (5611) Small-Animal Clinical Emergency and Critical Care Medicine
Fall, winter, spring, and summer. 2 credits. Prerequisite: third- and fourth-year veterinary students. S-U grades only.

Management of both emergent and critical cases represents a significant component of the practice of veterinary medicine. The focus of this clinical rotation is the development of a knowledge base and a comprehensive set of skills necessary for a veterinarian to perform adequately in these areas, within a structured format. These skills include the appropriate evaluate (trage) and stabilization of emergency patients, the management of postoperative and other critical patients, and sensitive and effective client communication. Participants access relevant information from various sources related to emergency and critical care medicine, understand and apply these principles to clinical cases. Participants have patient care responsibilities in the Intensive Care and intermediate Care units and work closely with technicians and clinicians to develop familiarity with technical and nursing procedures. Students also participate in the management of incoming emergency cases. The clinical emergency and critical care medicine rotation are primarily an overnight rotation.

VTMED 710(6609) Animal Behavior Clinic
Fall, winter, spring, and summer. 2 credits. Maximum enrollment 2 per rotation.
Prerequisite: VTMED 681; third- and fourth-year veterinary students. S-U grades only. K. A. Houp.

Students participate fully in the Animal Behavior Clinic: answering telephone, mail, and e-mail messages, observing and taking charge of behavior cases. To answer inquiries, the student is expected to consult several behavioral textbooks or other sources. Taking charge of the cases includes reading the entire behavioral history, interviewing the owner, and if the student is the one in charge of the behavior case, forming a diagnosis, conferring with Dr. Houp or a behavioral resident as to the proper behavioral and pharmacological treatment, demonstrating behavior-modification techniques and nursing a behavior client. Follow-up calls to earlier cases may be made.

VTMED 711(6610) Herd Health and Biosecurity Risk Evaluation Using the NYS Cattle Health Assurance Program (NYSCAP) Model
Summer, fall. 2 credits. Minimum enrollment 5. Prerequisites: VTMED 540 and 743; third- and fourth-year veterinary students or permission of instructor. Letter grades only. K. Kaufman, F. L. Welcome, C. V. Nydam, and Diagnostic Lab faculty.

Introduces students to the identification of disease risk and the evaluation of cattle operations, focusing on animal health, food safety, and the environment. The course covers risk assessment, creation of herd plans, biosecurity, Johne's disease, standard operating procedures, global trade, and environmental issues. Additionally, two local farms are visited to give students the opportunity to implement knowledge gained in lectures.

VTMED 712(6613) Equine Specialty Rotation
Fall. 2 credits. Minimum enrollment 5; maximum 10. Prerequisite: VTMED 551. Priority given to fourth-year veterinary students in equine pathway. Letter grades only. Live Emersion N. G. Ducharme, G. Perkins, and S. Fubini. The objective of the rotation is to teach students basic diagnostic recognition and clinical skills for those interested in equine practice. The rotation is a preclinical rotation to respond on equine-related calls on their first day of work. The Cornell horse population is used to teach these practical skills. The emphasis of this elective is hands-on with discussion, rounds, and lectures. The rotation includes lectures and corresponding discussion groups to cover the scientific basis, controversies, industry specific state of the art and clinical indications, contraindications, and potential complications of the various modalities.

VTMED 713 Large-Animal Clinical Emergency and Critical Care Medicine
Summer and spring. 2 credits. Prerequisite: third- and fourth-year veterinary students. S-U grades only. F. Caldwell.

The evaluation and management of the critical patient represent a significant component of the practice of veterinary medicine. As emergency cases will routinely be presented to the large animal practitioner, it is imperative that they be adequately prepared. The focus of this clinical rotation is the development of a knowledge base and a comprehensive set of skills necessary for a veterinarian to perform adequately in these areas, within a structured format. These skills include the appropriate evaluation and stabilization of emergency patients, and the management of post-operative cases and other critical patients. Participants access relevant information from various sources related to emergency and critical care medicine and understand and apply these principles to clinical cases. Participants primarily have patient care responsibilities in the Large Animal Care Unit of the Cornell University Hospital for Animals and work closely with technicians and clinicians to develop familiarity with technical and nursing procedures. The clinical emergency and critical care medicine rotation are primarily an after-hours rotation.

VTMED 720(6425) Issues and Preventive Medicine in Animal Shelters
Spring. 1 credit. Minimum enrollment 10; maximum 40. Prerequisite: VTMED 540; third- and fourth-year veterinary students. Letter grades only. J. M. Scarlett and staff.

VTMED 721(6426) Timely Topics in Veterinary Parasitology: Large-Animal
Spring. 0.5 credit. Minimum enrollment 2. Prerequisite: third- and fourth-year veterinary students. S-U grades only. D. D. Bowman.

In-depth look at one or a few parasites of special interest relative to large-animal medicine. Presents details of taxonomy, biology, epidemiology, clinical presentation, and preventive and curative treatment. Efforts are made to discuss those aspects of the disease as it relates to the practical control of these and in-depth coverage of primary literature relating to the parasite being discussed. Topics vary annually. The course is presented in a lecture/disussion format.

VTMED 722(6427) Timely Topics in Veterinary Parasitology: Small-Animal
Spring. 0.5 credit Minimum enrollment 2. Prerequisite: third- and fourth-year veterinary students. S-U grades only. D. D. Bowman.

In-depth look at one or a few parasites of special interest relative to small-animal medicine. Presents details of taxonomy, biology, epidemiology, clinical presentation, and preventive and curative treatment. Efforts are made to discuss those aspects of the disease as it relates to the practical control of these and in-depth coverage of primary literature relating to the parasite being discussed. Topics vary annually. The course is presented in a lecture/disussion format.

VTMED 726(6554) Reptile Medicine and Surgery
Spring. 1 credit. Minimum enrollment 10; maximum 40. Prerequisite: introductory immunology course or VTMED 540 or VETMI 315; second-, third-, and fourth-year veterinary students and graduate students or others by permission of instructor. Letter grades only. G. V. Kellias.

Designed to introduce third- and potentially fourth-year veterinary students to the principles and practice of reptile medicine and surgery. Taught in a basic lecture and discussion format.

VTMED 730(6428) Vaccines: Theory and Practice
Spring. 1 credit. Minimum enrollment 10; maximum 40. Prerequisite: introductory immunology course or VTMED 540 or VETMI 315; second-, third-, and fourth-year veterinary students and graduate students or others by permission of instructor. Letter grades only. Offered odd-numbered years. T. Clark.

Provides an overview of vaccines used in clinical practice as well as an in-depth look at vaccine development. Emphasizes the most recent advances in vaccine design and delivery, including the use of recombinant DNA techniques for targeting specific immunomolecular responses. Lectures touch on vaccines commonly used in veterinary practice and delivery in detail the use of carriers, adjuvants, and immunostimulants; attenuated pathogens; recombinant subunit vaccines; viral and bacterial vaccines; live delivery; synthetic antibodies; and genetic immunization with "naked" DNA. Grades based on final exam and one term report.

VTMED 732(6438) Veterinary Clinical Toxicology
Spring. 1.5 credits. Prerequisite: second-, third-, and fourth-year veterinary students. S-U grades optional. K. Bischoff.
VTMED 747(6557) Exotic Small Mammals as Pets
Spring. 1.5 credits. Maximum enrollment 80. Prerequisite: third- and fourth-year veterinary students and graduate students. Students enrolled in VTMED 703 encouraged to enroll. Letter grades only. J. K. Morrisey. Concentrates on the husbandry, clinical presentation, diagnosis, and treatment of common diseases of nontraditional small mammals that are kept as pets. These species include ferrets, rabbits, guinea pigs, chinchillas, rats, mice, hamsters, gerbils, hedgehogs, sugar gliders, and other animals. Grading is based on a midterm and final exam.

VTMED 748(6222) Canine and Feline Medical Genetcs
Spring. 2 credits. Minimum enrollment 10, maximum 40. Prerequisites: VTMED 520, 550, and 531. S-U grades optional. V. N. Mermelstein. Covers the genetic and pathophysiologic mechanisms underlying inherited diseases in dogs and cats that may be encountered in small-animal practice. Specific disorders of clinical importance are presented in a lecture format, illustrated by the distribution, diagnosis, and control of inherited diseases in individuals and populations. Ethical considerations regarding treatment, prevention, and control measures are discussed.

VTMED 749(6433) Anaerobic Infections of Animals
Spring. 1 credit. Minimum enrollment 10; maximum 80. Prerequisite: VTMED 540. S-U grades only. P. L. McDonough and staff. Presents anaerobic infections in clinical context as an adjunct to the material covered in Foundation Course IV. Students gain an understanding of the diversity and biology of anaerobic bacteria and the niches that they occupy in the animal and avian body. A basic, clinically oriented taxonomy is presented, and students learn about the virulence and pathogenesis of the major anaerobes that they will encounter in clinical practice. The clinical signs of anaerobic infections, laboratory identification and susceptibility testing, and the use of specimen transport media are also covered. Treatment of common infections, including wound care, is covered and vaccines currently available are discussed in detail. In the second four weeks of the course, students learn about the major clinical syndromes caused by anaerobes. Course format consists of two one-hour lectures per week for eight weeks.

VTMED 750(6434) Managing Infectious Diseases in Small Animal Populations
Spring. 1 credit. Minimum enrollment 3; maximum 20. Prerequisite: third- and fourth-year veterinary students. Highly recommended: VTMED 720. Letter grades only. J. M. Scarrett. Intended as a sequel to the Issues and Preventive Medicine in Animal Shelters course offered in the C Distribution block. In light of the time constraints in the Issues course, the principles of prevention and control to specific diseases (e.g., ringworm, kennel cough) commonly encountered in small animal populations are not discussed. This course encourages students to apply principles of infectious disease, epidemiology, and preventive medicine to infectious disease problems in small animal populations, with a particular emphasis on disease problems in shelters. Mention of modification to fit other small animal populations (e.g., catteries, kennels) is made.

VTMED 751(6558) Applied Dairy Nutrition for Practitioners
Spring. 2 credits. Minimum enrollment 5, maximum 25. Prerequisite: veterinary students or permission of instructor. S-U grades only. T. Overton, D. Nydam, and others. Provides a foundation in the principles of dairy cattle nutrition for veterinary students interested in dairy production medicine. Emphasizes integration of the principles of dairy cattle nutrition with practical rational formulation; with troubleshooting on dairy farms, both preventive and curative.

VTMED 752(6558) Advanced Small Animal Clinical Oncology
Spring. 1 credit. Minimum enrollment 10. Prerequisite: VTMED 552. Letter grades only. K. M. Rassnick. Elective course designed to complement the required course VTMED 552 Veterinary Clinical Oncology. Cancer is among the leading causes of death in dogs and cats and remains the number one concern of pet owners. Management and prevention of cancer in companion animals represents a significant component of the practice of small animal veterinary medicine. This advanced course emphasizes the biologic behavior and patient management of cancers in dogs and cats more thoroughly than addressed in VTMED 552. Additionally, molecular and cytogenetic methodologies that are likely to affect cancer diagnosis and management in the future are discussed. Finally, students are provided with the skills necessary to critically read and evaluate clinically based publications in the professional literature.

Biomedical Sciences

VTBMS 346(3460) Introductory Animal Physiology (also BIOAP 311[3110]) (Undergraduate)
Fall. 3 credits. Prerequisites: BIOG 105, 106, or 101, 102, 103, 104, 107, 108; CHEM 207, 208, or 206, or 215, 216; MATH 106, 111 or 191 or AP credit for any of the above; or one year college-level biology, chemistry, and math. S-U grades optional. E. F. Roew. General course in animal physiology emphasizing principles of operation, regulation, and integration common to a broad range of living systems from the cellular to the organismal level. Structure-function relationships are stressed along with underlying physical-chemical mechanisms.

VTBMS 400(4000) A Genomic Approach to Studying Life
Fall. 3 credits. Prerequisites: one year introductory biology or equivalent plus BIOG 281 or BIOBM 330 or 333 or 331/332 or permission of instructor. Letter grades only. J. Schimenti. Introduces students to principles underlying the organization of genomes and the methods of studying them, emphasizing genome-wide approaches to research. Covers the application of genomics methodologies for addressing issues including evolution, complex systems, genetic and gene-phenotype relationships. Includes periodic, in-depth discussions of landmark or timely genomic papers.

VTBMS 401(4010) Genomics Analysis
Spring. 3 credits. Prerequisites: upper-level undergraduates and graduate students; BIOGD/VTBMS 400 or equivalent by permission of instructor. Letter grades only. T. O'Brien. Overview of approaches and tools used in genomic research. Covers experimental and computational technologies as well as theoretical concepts important for the study of genomes and their function. Topics include high-throughput DNA sequencing and genotyping, genetic mapping of simple and complex traits, RNA expression profiling, proteomics, genome modification and transgenesis, and computational genomics.

VTBMS 600(6000) Special Projects in Anatomy
Fall, spring. 1 credit per 2.5-hour period. Prerequisite: permission of instructor. S-U grades only. Biomedical science staff.

VTBMS 610(6100) Genomes as Chromosomes
Fall. 1 credit. Prerequisites: upper-level undergraduates and graduate students; others by permission of instructor or BIOGD 281 and BIOBM 332. Letter grades only. T. O'Brien and P. Cohen. The eukaryotic genome is partitioned into discrete structural units, the chromosomes. This course examines how chromosomes organization is related to cellular architecture, gene expression, DNA replication, repair and stability. Special emphasis is placed on how the linear arrangement of sequence features along the chromosome, such as genes and regulatory modules, relate to the functional organization of the genome in the nucleus. Experimental and computational approaches used to address chromosome structure and function are studied.

VTBMS 611(6110) Genomes Maintenance Mechanisms
Fall. 1 credit. Prerequisites: upper-level undergraduates and graduate students; BIOGD 281, BIOBM 330, or 333, or 331/332 or equivalents. S-U grades optional. R. Weiss. Focuses on the molecular mechanisms used by eukaryotic cells to preserve genomic integrity. Topics include endogenous and exogenous sources of mutation, DNA repair pathways, and cell cycle checkpoint mechanisms. Also addresses how genome maintenance impacts genome plasticity and evolution, as well as the relationship between genomic instability and disease, including cancer.

VTBMS 612(6120) Overview of Model Organisms
Spring. 1 credit. Prerequisites: upper-level undergraduates and graduate students; BIOGD 281, or BIOGD/VTBMS 400 or permission of instructor. S-U grades optional. J. Schimenti. Presents the features of various model organisms and their relative merits for conducting various types of genetics-genomics research. Model systems discussed are: Arabidopsis, yeast, Drosophila, C. elegans, zebrafish, and mice.
Offered by individual faculty members in the VTBMS 620 (6200) Research Fellowship of experimental functional morphology. The major objective of this discussion and sequelae of gastrointestinal obstructions including reperfusion injury, peritonitis, adhesions, and short bowel syndrome. This course emphasizes development of an advanced understanding of surgically relevant gastrointestinal problems leading to appropriate decision making. Cycle specific growth factor sensitivity, timing of RB protein phosphorylation within the cell cycle. The objective of the course is to present graduate students with methods for cell cycle analyses that will be used in their research.

VTBMS 700 (7000) Predictions of Form or Phylogeny Fall. 1 credit. Prerequisite: permission of instructor. S-U grades optional. J. W. Hermanson. Form and function are often discussed as a correlated entity in biology. This seminar group starts with the question, Does form a correlated entity in biology. This seminar is designed to present graduate students with methods for cell cycle analyses that will be used in their research.

VTBMS 701 (7010) Mouse Pathology and Transgenesis (also TOX 701) Spring. 1 credit. Maximum enrollment 12 students. Priority given to graduate students, pathology residents, interns, and post-docs; third and fourth-year veterinary students, pathology residents, interns, and veterinary students. Priority given to graduate students, pathology residents, interns, and post-docs; third and fourth-year veterinary students may attend if space permits. Prerequisite: permission of instructor. Highly recommended: basic histology course (BIOAP 413) or equivalent. Letter grades only. A. Nikitin and staff. This course will be taught from the basic to the advanced level. It will cover the basic principles of transgenesis and the current state of the field. It will also include discussions on the ethical and legal issues surrounding transgenesis.

VTBMS 702 (7020) Pathophysiology of Cardiopulmonary Surgery (Graduate) Fall. 1.5 credits. Prerequisite: D.V.M. or equivalent. S-U grades only. Offered every third year. A. J. Nixor. Provides specialized training in the anatomic, physiologic, and pathologic process of musculoskeletal diseases in animals and humans, with special emphasis on surgical diseases of tendons, bones, and joints.

VTBMS 703 (7030) Surgical Principles and Surgery of the Integument System (Graduate) Spring. 1.5 credits. Prerequisite: graduate D.V.M.s or equivalent in residency or graduate training programs. S-U grades only. Offered every third year. S. Fubini. Designed for surgery residents and graduate students. It is largely discussion format and examines surgical principles and surgery of the integumentary system.

VTBMS 704 (7040) Pathophysiology of Urogenital Surgery (Graduate) Fall. 1.5 credits. Prerequisite: graduate D.V.M.s or equivalent in residency or graduate training programs. S-U grades only. Offered every third year; next offered 2006. S. Fubini. Designed to review and discuss urogenital surgical procedures in animals and the rational basis for them. Pathophysiology is stressed. Some classes consist of reprints with discussion.

VTBMS 705 (7050) Animal Pain and Its Control Spring. 2 credits. Prerequisite: permission of instructor. Open to third- and fourth-year veterinary medical students, interns, residents, graduate students, and postdoctoral associates interested in fundamental and applied concepts of pain in animals. S-U grades optional. Offered odd-numbered years. D. Glend, J. W. Ludders, P. F. Moon, and L. P. Posner. Emphasizes the physiologic and pathophysiologic mechanisms involved in pain perception by animals, their responses (physiologic and behavioral) to pain, and the pharmacologic mechanisms underlying analgesic therapy. The subject material is presented through lectures, group discussions,
group readings, and group evaluation of analytic protocols.)

[VETCS 706(7060) Pathophysiology of Neurologic Surgery (Graduate)]
Spring. 1.5 credits. Prerequisite: D.V.M.s, M.D.s, or equivalent or permission of instructor. S-U grades only. Offered every third year; next offered 2007. A. J. Nixon. Provides specialized training in neurological techniques and application and discusses pathophysiologic implications of neurosurgical and neurologic diseases.

VETCS 710(7100) Advanced Veterinary Anesthesiology I
Fall. 1 credit. Prerequisite: VTMED 568 or permission of instructor; third- and fourth-year veterinary students, graduate students, interns, and residents. S-U grades only. L. P. Posner, R. D. Gleed, and J. W. Ludders.

Designed to prepare students for the American College of Veterinary Anesthesiology examinations. Also suitable for interns and for residency training in other areas such as surgery and internal medicine. Speakers are from both inside and outside the college. Topics cover areas as they apply to anesthesiology such as physics and engineering, applied pharmacology, physiology, and pathology. Clinically oriented lectures are also given concerning specific anesthetic problems and species-specific differences in response to anesthetic drugs.

VETCS 711(7110) Advanced Veterinary Anesthesiology II
Spring. 1 credit. Prerequisite: VTMED 568 or permission of instructor; third- and fourth-year veterinary students, graduate students, interns, and residents. S-U grades only. L. P. Posner, R. D. Gleed, and J. W. Ludders.

Designed to prepare students for the American College of Veterinary Anesthesiology examinations. Also suitable for interns and for residency training in other areas such as surgery and internal medicine. Speakers are from both inside and outside the college. Topics cover areas as they apply to anesthesiology such as physics and engineering, applied pharmacology, physiology, and pathology. Clinically oriented lectures are also given concerning specific anesthetic problems and species-specific differences in response to anesthetic drugs.

Microbiology and Immunology

VETMI 299(2990) Research Opportunities in Microbiology and Immunology
Summer, six-week session. 6 credits; minimum 120 hours lab time expected per 5 credits. Prerequisites: one year of basic biology and/ or BIOL 131(1310); 6 credits. Basic Biology Advanced Placement Examination of College Entrance Examination Board or BIO G 100 level). Letter grades only. Microbiology and Immunology faculty.

Mentored research apprenticeship program designed to give laboratory experience to qualified unmatriculated high school students (participating in Cornell Summer College). Students are placed in research laboratory with designated project under the direct supervision of a research associate (upper-level graduate student, post-doc, or faculty member). Students are graded on preparation, participation in laboratory academic life, and appropriate acquisition of techniques. At the end of the session, they are expected to give brief (15- to 20-minute) oral presentations on their work and submit manuscripts in a form suitable for publication. The faculty director of the laboratory has ultimate responsibility for evaluating the student’s work and assigning the grade.

VETMI 315(3150) Basic Immunology (also BIO G 305[3050]; Undergraduate)
Fall. 3 credits. Highly recommended: basic courses in microbiology, genetics, and biochemistry. S-U grades optional. J. A. Marsh. Survey of immunology, with emphasis on the cellular and molecular bases of the immune response. More information is available at the BIOG 305 courseinfo web site.

VETMI 331(3310) General Parasitology (also BIOMI 331[3310]; Undergraduate)
Spring. 2 credits. Prerequisites: zoology or biology course; any of the following: BIOPES 261, 264, 267, 274, 275, 278, BIOG 101, 102, 103, 104, 106, 107, 108, 109, 110, 170, 202, 207; BIOMI 192, 290, or equivalent courses. Letter grades only. D. D. Bowman.

Introduction to the basic animal parasites, stressing systematics, taxonomy, general biology, ecological interactions, and behavior of both medically important groups. Also introduces the major animal parasites, protozoan, nematode, platyhelminth, acanthocephalan, annelid, and arthropod.

VETMI 404(4040) Pathogenic Bacteriology and Mycology (also BIOMI 404[4040])
Spring. 2 or 3 credits; 3 credits with leg and sem. Requirement for graduate students. Maximum enrollment for seminar portion 15. Prerequisites: BIOMI 290 and 291; open to undergraduates by permission of instructor. Letter grades only. D. P. Debiec.

Course in medical microbiology, presenting the major groups of bacterial and mycotic pathogens important to human and veterinary medicine. Emphasizes infection and disease pathogenesis. Topics include disease causality; interactions of host, pathogen, and environment, including immunity to bacteria and fungi; and principles of antimicrobial therapy and drug resistance. A companion seminar addresses the current and classic literature related to microbial pathophysiology on the cellular and molecular levels.

VETMI 409(4090) Principles of Virology
Fall. 3 credits. Prerequisites: BIOMI 290 and 291 or permission of instructor. Recommended: BIOMI 408, BIOMI 330–332, 452. G. Whittaker and S. Lazarowitz. Covers the principles of virology, focusing mainly on animal viruses but also including plant viruses and bacteriophage. Topics include the classification of viruses, virus entry, genome replication and assembly, and virus pathogenesis. Particular emphasis is placed on virus-host cell interactions and common features between different viral families.

VETMI 431(4310) Medical Parasitology (also BIOMI 431[4310]; Undergraduate)
Fall. 2 credits. Prerequisites: zoology or biology course; any of the following: BIOPES 261, 264, 267, 274, 275, 278; BIOG 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 170, 202, 207; BIOMI 192, 290, 398, or equivalent course. Letter grades only. D. D. Bowman.

Systematic study of helminths, acanthocephalan, annelid, and nematode parasites of public health importance, with emphasis on epidemiologic, clinical, and zoonotic aspects of these parasitism.

VETMI 605(6050) Special Projects in Microbiology (Undergraduate)
Fall, spring. 1–3 credits. Prerequisite: permission of instructor; good background in microbiology or immunology. Recommended: background in pathogenic microbiology and immunology. S-U grades only. Microbiology staff.

Provides an opportunity for the student to work in a research laboratory or carry out a special project under supervision.

VETMI 620(6200) Research Fellowship in Microbiology and Immunology
Fall, spring, 1–2 credits. Cannot be used to fulfill formal course requirements for DVM curriculum. Prerequisite: permission of instructor. S-U grades only. Faculty TBA. Offered by individual faculty members in the Department of Microbiology and Immunology for DVM students undertaking research in Research Fellowship.

VETMI 700(7000) The Biology of Animal and Plant Viruses (Graduate and Undergraduate)
Fall. 2 credits. Letter grades only. Offered odd-numbered years. C. R. Parrish and virology faculty.

Examines current topics in studies of animal viruses, including some comparisons with plant viruses where similar mechanisms apply. Selected topics are examined in depth, including the structures of viruses and their components, viral nucleic acids and replication strategies, details of the interactions between viruses and their host cell components and metabolism. Other topics include the evolution and selection of viruses, novel approaches to the prevention of virus infection, and methods for antiviral chemotherapy.

VETMI 705(7050) Advanced Immunology (also BIO G 705[7050]; Graduate)
Spring. 3 credits. Prerequisite: VETMI 315 or permission of instructor. Letter grades only. Offered even-numbered years. J. A. Marsh and staff.

Coverage at an advanced level of molecular and cellular immunology.

VETMI 707(7070) Advanced Work in Bacteriology, Virology, and Immunology (Graduate)
Fall, spring. 1–3 credits. Prerequisite: permission of instructor. S-U grades optional. Microbiology staff.

Designed primarily for graduate students with a good background in pathogenic microbiology and immunology. May be elected by veterinary students who are properly prepared.
VETMI 712(7120) Seminars in Infection and Immunity
Fall, spring. 1 credit. Requirement for graduate students in Department of Microbiology and Immunology and field of immunology. S-U grades only. D. Russell. Invited speakers in immunology and infection biology acquaint students with current advances in the field.

VETMI 713(730) Biological and Biomedical Sciences Program—Teaching Experience
Fall, spring. 1 credit. Requirement for first-year graduate students. S-U grades only. D. G. Russell. All graduate students who are a part of the Biological and Biomedical Sciences Program must complete this 1-credit teaching experience. The goal is for each graduate student to increase his or her knowledge in a biology area and simultaneously increase confidence in his or her teaching abilities. Specific teaching assignments are administered through the CVM's Office of Graduate Education. A faculty mentor provides ongoing feedback throughout the experience.

VETMI 719(7190) Immunology of Infectious Diseases (also BIO G 720[7200])
Spring. 2 credits. Prerequisite: VETMI 315 or permission of instructor. S-U grades optional. Offered odd-numbered years. E. Y. Denkers and staff. Focuses on molecular and cellular mechanisms underlying the immunity to infectious diseases caused by viral, bacterial, protozoan, and helminth pathogens. Topics include immune response initiation; antigen presentation pathways; Th1 and Th2 cytokines in protection and pathology; mechanisms of cytolysis; immune evasion strategies; vaccines. Lectures are based on recent advances in the field and are accompanied by relevant readings from the current literature.

VETMI 723(7230) Current Topics in Immunology
Fall, spring. 1 credit. Registration each semester required of field of immunology graduate students. Prerequisite: graduate standing. S-U grades only. Immunology faculty. Immunology discussion group in which students present research papers from the contemporary scientific literature.

VETMI 725(7250) Mechanisms of Microbial Pathogenesis (also BIOMI 725[7250])
Spring. 3 credits. Prerequisites: BIOMI 404, 409, 417 or equivalent course; written permission of instructor for undergraduates. Letter grades only. D. Debbie, M. Hesse, H. Marquis, J. Parker, M. Scidmore, and G. Whittaker. Covers the mechanisms of pathogenesis of bacteria, fungi, parasites, and viruses. Addresses the need for a course covering the breadth of microbial pathogenesis. Emphasizes, at the molecular and cellular levels, the need for microbial pathogens to use to enter, survive, and cause damage to their hosts. By studying the molecular mechanisms of all the major microbial groups together, students will be able to appreciate the commonality of pathogenic mechanisms as well as see the unique properties of each group of organisms. The contribution of the host response to the pathogenesis process will be covered, but in less detail as this information is addressed in VETMI 719 Immunology of Infectious Diseases.

VETMI 737(7370) Advanced Work in Animal Parasitology (Graduate)
Fall, spring. 1–3 credits. Prerequisite: advanced undergraduate, graduate, and veterinary students. Letter grades only. D. D. Bowman and other faculty. Intended for advanced undergraduate, graduate and veterinary students with interests in parasitology research.

VETMI 770(7700) Advanced Work in Avian Diseases (Graduate)
Fall, spring. 1–3 credits. Letter grades only. Times TBA. R. A. Schat.

VETMI 772(7720) Advanced Work in Aquatic Animal Diseases (Graduate)
Fall, spring. 1–3 credits. S-U grades only. Times TBA. P. R. Bowser.

VETMI 773(7730) Advanced Work in Avian Immunology
Fall, spring. Variable credit. Letter grades only. K. A. Schat. Seminar series designed to acquaint students with current research in the field of avian immunology. The range of topics is determined, in part, by the interests of those participating and may include such topics as the ecology of parasitism, parasite systematics, wildlife parasitology, and parasitic diseases of plants and animals, including humans.

Molecular Medicine

[VETMM 299(2990) Undergraduate Research in Pharmacology
Summer, six-week session. 3 to 6 credits; minimum 120 hours of lab time expected per 3 credits. Prerequisites: one year basic biology (excluding BIOL 100), general chemistry, or BIOL 100. Letter grades only. R. A. Gerione. Mentored research apprenticeship program designed to give laboratory experience to qualified unmatriculated high school students (participating in Cornell Summer College) or Cornell underclassmen. Students are placed in a research laboratory with a designated project under the direct supervision of a research associate (upper-level graduate student, postdoc, or faculty member). Students are graded on preparation, participation in laboratory academic life, and appropriate acquisition of techniques. At the end of the session, students are expected to give brief (15- to 20-minute) oral presentations of their work and submit a manuscript in a form suitable for publication. The faculty director of the laboratory has ultimate responsibility for evaluating a student's work and assigning the grade.

VETMM 470(4700) Biophysical Methods (also AEP/BIONB 470[4700])
Fall. 3 credits. Prerequisite: permission of instructor. Letter grades only. C. M. S. Fewtrell. Focuses on regulation of intracellular calcium and techniques for studying calcium movements and distribution in cells. Topics include calcium channels and exchangers, calcium-binding proteins, and calcium stores; phophatidylidinositol turnover, release of calcium from intracellular stores, and activation of calcium influx; calcium gradients and oscillations; mechanisms of

DISTRIBUTION COURSES 417
exocytosis and the proteins involved. Each topic is introduced with a lecture followed by discussion of recent papers from the literature.

[VETMM 701(7010) Organ-System Toxicology]
Fall. 1 credit. Prerequisite: graduate students in environmental toxicology. S-U grades only. Offered even-numbered years. W. S. Schwark.

Minicourse on molecular mechanisms involved in chemical toxicity. Considers specific examples of toxicity in organ systems such as the nervous system, kidney, liver, respiratory tract, and cardiovascular system.

[VETMM 703(7030) Receptor-Ligand Interactions]
Fall. 2 credits. Prerequisite: permission of instructors. S-U grades optional. Offered odd-numbered years. G. A. Weiland and R. A. Cerione.

Covers both the practical and theoretical tools for the study of ligand-receptor interactions, emphasizing the quantitative and physical chemical aspects of receptor theory. Topics discussed are basic methods of radioligand binding assays, including separation and measurement of bound and free ligand; characterization of receptor function; analysis of receptor structure; thermodynamic basis of the binding; methods of analyzing equilibrium binding; methods of analyzing equilibrium binding for complex binding mechanisms; and kinetics of simple and complex binding mechanisms.

[VETMM 704(7040) CNS Synaptic Transmission]
Fall. 2 credits. Limited to 20 students. Prerequisite: senior or graduate standing; permission of instructor. S-U grades optional. Offered odd-numbered years. I. M. Nowak.

Survey course in vertebrate central nervous system physiology and pharmacology, that focuses on mechanisms of neuro-transmitter action at the membrane and cellular levels. Roles of selected neurotransmitters in normal brain and neurological disorders are covered. Topics are introduced in lectures and followed up by discussions of recent journal articles.

[VETMM 705(7050) Chemistry of Signal Transduction]
Fall. 2 credits. S-U grades optional. Offered odd-numbered years. R. A. Cerione.

Focuses on the mechanisms of action of GTP binding proteins. Examines several receptor-coupled signaling systems, including adenylyl cyclase, vertebrate vision, phosphatidylinositol lipid turnover, receptor systems regulating various ion channels, and receptors involved in cell growth regulation.

[VETMM 706(7060) Growth Factor-Coupled Signaling (also BIOBM 734(7340))]
Fall. 0.5 credit. Prerequisite: permission of instructor. S-U grades optional. Offered odd-numbered years. R. A. Cerione.

The general theme of this course is mitogenic signaling pathways. Receptor tyrosine kinases, src, ras, and ras-regulatory proteins are covered.

[VETMM 707(7070) Protein NMR Spectroscopy (also BIOBM 730(7300))]
Spring. 2 credits. Prerequisites: CHEM 390 and 390 or 287 and 288 or permission of instructor. S-U grades optional. Offered odd-numbered years. R. E. Oswald and L. K. Nicholson.

The course acquires the tools necessary for in-depth understanding of multidimensional, multineuclear NMR experiments. Schemes for magnetization transfer, selective excitation, water suppression, decoupling, and others are presented. The application of these techniques to proteins is discussed. Topics include assignments, structure determination, and dynamics characterization is studied.

[VETMM 709(7090) Topics in Cancer Cell Biology]
Fall and spring. 0.5–1 credit per sec. Prerequisite: graduate standing. S-U grades optional. Offered odd-numbered years. Students may select modules (sections) of interest to them. B. U. Pauli.

Sec 1—Cell Adhesion Molecules, Signaling, and Cancer
Spring. 0.5 credit. J. Guan.
Introduces the role of cell adhesion receptors in cancer. Emphasis on the integrin and cadherin families of cell adhesion molecules and their roles in signal transduction and cancer. Topics include the structure and function of integrins, integrin interactions with cytoskeleton, intracellular signaling pathways in cell-cell interactions, integrin-mediated signaling in cell migration, proliferation and survival, changes of integrins in tumors and metastasis, structure and function of cadherins, signaling mechanisms in cell-cell interactions in normal development and cancer.

Sec 2—Cell-Cycle Analysis
Fall and spring. 1 credit. A. Yen.
Presents graduate students with methods for cell-cycle analyses that will be useful in their research. Includes a brief historical review of the cell cycle; a summary of cell-cycle regulatory processes; and practical methods for cell-cycle analysis, including mathematical representations. Topics include growth control of bacterial cell cycle including chemostats, mammalian cell tissue culture, cell synchronization, flow cytometry, age-density representation, G1 regulation, labile regulatory protein models, cell transformation, regulation by growth factors and the cytoskeleton, cyclin/E2F/RB regulatory model, practical examples for analysis of cell-cycle phase durations, cell-cycle phase specific growth factor sensitivity, timing of RB protein phosphorylation within the cell cycle.

Sec 3—Principles of Metastasis
Fall or spring. 0.5 credit. B. U. Pauli.
Discusses the molecular basis of cancer progression leading to metastasis (clonal evolution of metastatically competent cancer cells: contribution of specific oncogenes and tumor suppressor genes); the routes of metastatic spread; the process of intravasation emphasizing the roles of matrix-degrading proteases and angiogenesis; host effect on circulating cancer cells: immunological and hemodynamic considerations; organ-preference of metastasis: the roles of tumor cell/endothelial cell adhesion receptor/ligand pairs; chemokines and chemokine receptors; extracellular matrix components; etc.; emergence of micrometastases: the roles of adhesion and/or chemokine-mediated signaling in intravascular growth promotion of arrested cancer cells; and, animal model of metastasis and anti-metastasis treatment strategies.

Sec 4—Angiogenesis in Normal Development, Cancer, and Other Diseases
Fall. 0.5 credit. B. U. Pauli.
Topics include: vasculogenesis versus angiogenesis, tumor angiogenesis: the angiogenic switch; molecular and cellular principles of tumor vessel formation; structure and function of tumor vessels, e.g., chaotic architecture and blood flow; permeability; altered endothelial surface markers; parakrine- and perfusion-driven tumor growth stimuli; role of hematopoietic stem cells in promoting tumor angiogenesis; angiogenesis in non-neoplastic disease: hypoxia-driven pathological angiogenesis and vascular remodeling; inflammation-induced angiogenesis and vascular remodeling (special emphasis: wound healing); and therapeutic perspectives: promises and problems.

Sec 5—Current Topics in Oncogenic Viruses
Fall. J. Casey.

Sec 6—Growth Factor-Coupled Signaling (also VETMM 706[7060])
Fall. 0.5 credit. R. Cerione.
The general theme is mitogenic signaling pathways. Covers receptor tyrosine kinases, src, ras, and ras-regulatory proteins.

[VETMM 720(7200) Patch-Clamp Techniques in Biology]
Spring, daily during second and third weeks of Jan. 2 credits. S-U grades only. Times TBA. L. M. Nowak.
Students learn theoretical background for patch-clamp studies in morning lectures. The experimental techniques of conventional and permeabilized patch whole-cell recording and single-channel recordings in cell-attached and -excised membrane patches are taught in 15 hours of afternoon laboratory instruction per student. Lab training sessions are arranged individually throughout the spring semester.

[VETMM 730(7300) Graduate Research in Pharmacology or Molecular Medicine]
Fall, spring, and summer. 1–3 credits each. May not be used to fulfill formal course requirements for field of pharmacology. Prerequisite: permission of instructor. S-U grades only. Offered by individual faculty members in the Department of Molecular Medicine and the graduate field of pharmacology for graduate students undertaking research toward M.S. or Ph.D. degrees.

[VETMM 744(7400) Special Projects and Research in Pharmacology]
Fall, spring, and summer. 1–3 credits each. May not be used to fulfill formal course requirements for field of pharmacology. Letter or S-U grades. Times TBA. Field of pharmacology faculty. Enables students to undertake research in an area related to the research interests of a faculty member in the graduate field of pharmacology. Topics include: Mechanisms of Growth-Factor Action—R. A. Cerione; The Role of Calcium in Stimulus-Secretion Coupling—C. M. S. Fewtrell; Mechanisms of Neurotransmitter Release—M. F. S. Central Nervous System Neurotransmitters—L. M. Nowak; Structure-Function of the Nicotinic Acetylcholine Receptor—R. E. Oswald.
VETMM 760(7600) Directed Readings in Pharmacology
Fall, spring, and summer. 1-3 credits each topic. S-U grades only. Reading and discussion. Times TBA. Field of pharmacology faculty.

Individual members of the graduate field of pharmacology offer directed readings and discussions on pharmacological topics to small groups or to individual students. Topics include but are not limited to Receptor Pharmacology, offer directed readings of individual members of the graduate field and discussions on pharmacological topics.

Cell Calcium—C. M. S. Fewtrell.

Population Medicine and Diagnostic Sciences
VTPMD 299(2990) Undergraduate Research in Epidemiology
Fall, spring, and summer. 3 credits; minimum 120 hours of lab time expected per 3 credits. Prerequisite: undergraduate standing; one year of basic biology (score of 5 on Biology Advanced Placement Examination or equivalent), Examination of College Entrance Examination Board (or BIOG 100 level) or permission of instructor. J. Scarlett, H. Erb, Y. Grohn, L. Warnick, H. Mohammed, and Y. Schukken.

Mentored research apprenticeship program designed to give laboratory experience in applied epidemiology to qualified unmatriculated high school students (participating in Cornell Summer College) or Cornell undergraduates. Students are placed in a research laboratory with a designed project under the direct supervision of a research associate (upper-level graduate student, postdoc, or faculty member). Students are graded on participation in laboratory academic life and appropriate acquisition of techniques. At the end of the six-week session, they are expected to give a brief (15- to 20-minute) oral presentation on their work and submit a manuscript in a form suitable for publication. The faculty director of the laboratory has ultimate responsibility for evaluating each student's work and assigning the grade.

VTPMD 664(6640) Introduction to Epidemiology (Graduate)
Fall. 3 credits. Prerequisites: VTPMD/VETCS 605 and BTRY 602 (College of Agriculture and Life Sciences). S-U grades optional. Y. T. Grohn.

Concepts introduced in VTPMD 664 and 665 are developed further, with emphasis on statistical methods. Topics include interaction, effect modification, stratified analysis, matching and multivariate (logistic regression) methods, survival analysis, and strategies for the analysis of epidemiological data.

VTPMD 700(7000) Special Projects in Diagnostic Endocrinology
Fall, spring. 1-3 credits. Prerequisite: permission of instructor. Recommended: AN SC 427. Letter grades only. N. J. Place.

Independent study course. Students have the opportunity to research a particular topic in diagnostic clinical endocrinology of animals.

VTPMD 701(7010) Special Projects in Infectious Diseases
Fall, spring. 1-3 credits. Prerequisite: permission of instructor. S-U grades optional. Diagnostic laboratory faculty.

Provides laboratory experience with attention to specific aspects of infectious disease problems.

VTPMD 702(7020) Special Topics in Infectious Diseases
Fall, spring. 1-3 credits. Prerequisite: permission of instructor. S-U grades optional. Diagnostic laboratory faculty.

Offers a broad exposure to various aspects of infectious diseases.

VTPMD 704(7040) Master's-Level Thesis Research (Graduate)
Fall, spring. 1-3 credits. Prerequisite: permission of instructor. S-U grades only. Diagnostic Laboratory faculty.

Research leading to an M.S. degree.

VTPMD 707(7070) Clinical Biostatistics (Graduate)
Spring. 2 credits. Minimum enrollment 2, maximum 15. Prerequisite: veterinary residents and graduate students. Letter grades only. Offered odd-numbered years. J. M. Scarlett, H. N. Erb and H. O. Mohammed.

Explains the theory behind and interpretation of parametric and nonparametric statistical techniques commonly used in research/clinical medicine. Students analyze small data sets using a commercial statistical-software package.

VTPMD 708(7080) Epidemiology Seminar Series (Graduate)
Fall, spring. 1 credit. S-U grades only. Epidemiology faculty.

Discusses advanced theoretical and analytical epidemiological concepts and techniques.

VTPMD 766(7660) Graduate Research (Graduate)
Fall, spring, summer. Credit and times TBA. Prerequisite: master's and Ph.D. students; permission of graduate faculty member concerned. S-U grades only. Epidemiology faculty.

Enables students outside the section of epidemiology to receive graduate research credits for projects with epidemiological components.

VTPMD 796(7990) Doctoral-Level Thesis Research
Fall, spring, and summer. Credits and times TBA. Prerequisite: master's and Ph.D. students in epidemiology. S-U grades only. Epidemiology faculty.

Enables students in the section of epidemiology to receive graduate research credits for their doctoral research.

FACULTY ROSTER
Altmansworth, Dorothy M., Ph.D., U. of Wisconsin, Madison. Prof., Clinical Sciences.
Amick, Douglas F., Ph.D., U. of Cambridge (England). Dorothy Havemeijer McConville Professor of Equine Medicine, Microbiology, and Immunology.
Appel, Max J., Ph.D., Cornell U. Prof., Emeritus, Microbiology and Immunology.
Baines, Joel, Ph.D., Cornell U. Prof., Microbiology and Immunology.
Baklanov, Cheryl D., D.V.M., Cornell U. Lec., Clinical Sciences.
Barrett, Stephen C., Ph.D., Louisiana State U. Prof., Clinical Sciences.
Beyenbach, Klaus, Ph.D., Washington State U. Prof., Biomedical Sciences.
Bloom, Stephen E., Ph.D., Pennsylvania State U. Prof., Microbiology and Immunology.
Bowman, Dwight D., Ph.D., Tulane U. Prof., Microbiology and Immunology.
Bowser, Paul R., Ph.D., Auburn U. Prof., Microbiology and Immunology.

FACULTY ROSTER
<table>
<thead>
<tr>
<th>Name</th>
<th>Degree(s)</th>
<th>University</th>
<th>Title</th>
<th>Sciences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Randolph, John F.</td>
<td>D.V.M.</td>
<td>Cornell U.</td>
<td>Prof., Clinical Sciences</td>
<td></td>
</tr>
<tr>
<td>Rassnick, Kenneth M.</td>
<td>D.V.M.</td>
<td>Cornell U.</td>
<td>Asst. Prof., Clinical Sciences</td>
<td></td>
</tr>
<tr>
<td>Rawson, Richard E.</td>
<td>Ph.D.</td>
<td>Kansas State U. Sr. Lec.</td>
<td>Biomedical Sciences</td>
<td></td>
</tr>
<tr>
<td>Reimers, Thomas J.</td>
<td>Ph.D.</td>
<td>U. of Illinois.</td>
<td>Prof., Emeritus, Population Medicine and Diagnostic Sciences</td>
<td></td>
</tr>
<tr>
<td>Riss, Ronald C.</td>
<td>D.V.M.</td>
<td>U. of Minnesota.</td>
<td>Assoc. Prof., Clinical Sciences</td>
<td></td>
</tr>
<tr>
<td>Roberson, Mark S.</td>
<td>Ph.D., U. of Nebraska, Lincoln</td>
<td>Assoc. Prof.</td>
<td>Biomedical Sciences</td>
<td></td>
</tr>
<tr>
<td>Russell, David G.</td>
<td>Ph.D.</td>
<td>Imperial Coll., London U. (England)</td>
<td>Prof., Microbiology and Immunology</td>
<td></td>
</tr>
<tr>
<td>Sacco, Tyson P.</td>
<td>Ph.D.</td>
<td>U. of California. Lec.</td>
<td>Biomedical Sciences</td>
<td></td>
</tr>
<tr>
<td>Sack, Wolfgang O.</td>
<td>D.V.M., Ph.D., U. of Edinburgh (Scotland)</td>
<td>Prof. Emeritus, Biomedical Sciences</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scarlett, Janet M.</td>
<td>Ph.D.</td>
<td>U. of Minnesota.</td>
<td>Assoc. Prof. Population Medicine and Diagnostic Sciences</td>
<td></td>
</tr>
<tr>
<td>Schuit, Karel A.</td>
<td>Ph.D.</td>
<td>Cornell U.</td>
<td>Prof., Microbiology and Immunology</td>
<td></td>
</tr>
<tr>
<td>Schimenti, John C.</td>
<td>Ph.D.</td>
<td>U. of Cincinnati.</td>
<td>Prof., Biomedical Sciences</td>
<td></td>
</tr>
<tr>
<td>Schlaffer, Donald H.</td>
<td>Ph.D.</td>
<td>U. of Georgia.</td>
<td>Prof., Biomedical Sciences</td>
<td></td>
</tr>
<tr>
<td>Schukken, Ynte H.</td>
<td>Ph.D.</td>
<td>U. of Utrecht (The Netherlands)</td>
<td>Prof., Population Medicine and Diagnostic Sciences</td>
<td></td>
</tr>
<tr>
<td>Schwartz, Wayne S.</td>
<td>Ph.D.</td>
<td>U. of Ottawa (Canada).</td>
<td>Prof., Molecular Medicine</td>
<td></td>
</tr>
<tr>
<td>Seidmore, Marci Ph.D.</td>
<td>Princeton U. Asst. Prof.</td>
<td>Microbiology and Immunology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scott, Danny W.</td>
<td>D.V.M., U. of California, Davis</td>
<td>Prof., Clinical Sciences</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scott, Fredric W.</td>
<td>Ph.D.</td>
<td>Cornell U. Emeritus Prof. Microbiology and Immunology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scrivani, Peter V.</td>
<td>D.V.M., Cornell U. Lec.</td>
<td>Clinical Sciences</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sellers, Alvin F.</td>
<td>V.M.D., Ph.D.</td>
<td>U. of Minnesota.</td>
<td>Prof. Emeritus, Biomedical Sciences</td>
<td></td>
</tr>
<tr>
<td>Sharp, Geoffrey W.</td>
<td>D.Sc., U. of London (England)</td>
<td>Prof., Molecular Medicine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shin, Sang J.</td>
<td>D.V.M.</td>
<td>Seoul National U. (Korea)</td>
<td>Assoc. Prof., Population Medicine and Diagnostic Sciences</td>
<td></td>
</tr>
<tr>
<td>Short, Charles E.</td>
<td>Ph.D.</td>
<td>U. of Turku (Finland).</td>
<td>Prof. Emeritus, Clinical Sciences</td>
<td></td>
</tr>
<tr>
<td>Simpson, Kenneth W.</td>
<td>Ph.D.</td>
<td>U. of Leicester (England).</td>
<td>Assoc. Prof., Clinical Sciences</td>
<td></td>
</tr>
<tr>
<td>Smith, Donald F.</td>
<td>D.V.M., U. of Guelph (Canada)</td>
<td>Dean and Prof., Clinical Sciences</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smith, Mary C.</td>
<td>D.V.M., Cornell U. Assoc.</td>
<td>Population Medicine and Diagnostic Sciences</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steffey, Michele</td>
<td>D.V.M.</td>
<td>U. of California.</td>
<td>Lec., Clinical Sciences</td>
<td></td>
</tr>
<tr>
<td>Stokol, Tracy P.</td>
<td>Ph.D.</td>
<td>U. of Melbourne (Australia).</td>
<td>Asst. Prof., Population Medicine and Diagnostic Sciences</td>
<td></td>
</tr>
<tr>
<td>Suarez, Susan S.</td>
<td>Ph.D.</td>
<td>U. of Virginia.</td>
<td>Prof., Biomedical Sciences</td>
<td></td>
</tr>
<tr>
<td>Summers, Brian A.</td>
<td>Ph.D.</td>
<td>Cornell U. Prof.</td>
<td>Biomedical Sciences</td>
<td></td>
</tr>
<tr>
<td>Tapp, Daniel N.</td>
<td>V.M.D.</td>
<td>U. of Pennsylvania, Ph.D. Cornell U.</td>
<td>Emeritus Prof., Biomedical Sciences</td>
<td></td>
</tr>
<tr>
<td>Tennant, Bud C.</td>
<td>D.V.M.</td>
<td>U. of California.</td>
<td>Davis, James Law Professor of Comparative Medicine, Clinical Sciences</td>
<td></td>
</tr>
<tr>
<td>Todhunter, Rory J.</td>
<td>Ph.D.</td>
<td>Cornell U. Assoc. Prof.</td>
<td>Clinical Sciences</td>
<td></td>
</tr>
<tr>
<td>Torres, Alfredo</td>
<td>Ph.D.</td>
<td>U. of Nebraska.</td>
<td>Prof., Population Medicine and Diagnostic Sciences</td>
<td></td>
</tr>
<tr>
<td>Travis, Alexander</td>
<td>Ph.D.</td>
<td>U. of Pennsylvania.</td>
<td>Asst. Prof., Biomedical Sciences</td>
<td></td>
</tr>
<tr>
<td>Trotter, Eric J.</td>
<td>D.V.M.</td>
<td>U. of Illinois.</td>
<td>Assoc. Prof., Clinical Sciences</td>
<td></td>
</tr>
<tr>
<td>Volkmann, Dietrich H.</td>
<td>B.V.Sc., U. of Pretoria (South Africa)</td>
<td>Assoc. Prof., Clinical Sciences</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Warnick, Lorin D.</td>
<td>Ph.D.</td>
<td>Cornell U. Assoc. Prof.</td>
<td>Population Medicine and Diagnostic Sciences</td>
<td></td>
</tr>
<tr>
<td>Wasserman, Robert H.</td>
<td>Ph.D.</td>
<td>Cornell U. James Law Prof Emeritus Physiology/Biomedical Sciences</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weiland, Gregory A.</td>
<td>Ph.D.</td>
<td>U. of California, San Diego. Assoc. Prof., Molecular Medicine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weiss, Robert H.</td>
<td>Ph.D.</td>
<td>Baylor Coll. of Medicine. Asst. Prof., Biomedical Sciences</td>
<td></td>
<td></td>
</tr>
<tr>
<td>White, Maurice E.</td>
<td>D.V.M., Cornell U. Prof.</td>
<td>Population Medicine and Diagnostic Sciences</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whittaker, Gary R.</td>
<td>Ph.D., U. of Leeds (England)</td>
<td>Asst. Prof., Microbiology and Immunology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Winand, Nena J.</td>
<td>D.V.M., Iowa State U.</td>
<td>Cornell U. Asst. Prof., Molecular Medicine, Wootton, John F. Ph.D., Cornell U. Prof., Biomedical Sciences</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xin, Hong-Bo</td>
<td>Ph.D., Beijing Met U. (China)</td>
<td>Asst. Prof., Biomedical Sciences</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yen, Andrew</td>
<td>Ph.D., Cornell U. Prof.</td>
<td>Biomedical Sciences</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The College of Arts and Sciences awards one undergraduate degree, the Bachelor of Arts degree.

Summary of Requirements

1. First-year writing seminars: two courses. (See "John S. Knight Institute for Writing in the Disciplines," p. 587.)
2. Foreign language: for graduating classes of 2006 or earlier, proficiency in one language or qualification in two, zero to four courses. For graduating classes of 2007 or later, completion of one course at the nonintroductory level or above (Option 1) or at least 11 credits in one language (Option 2); one to three courses.
3. Distribution: nine courses (may overlap with courses counting toward a major). Please note the two sets of distribution requirements, one for the graduating classes of 2006 or earlier and one for the graduating classes of 2007 and later.
4. Breadth: two courses (may overlap with courses for distribution, major, or electives).
5. Major.
6. Electives: four or five courses (at least 15 credits) not used to fulfill other requirements (other than the breadth requirements) and not in the major field.
7. Residence: eight full-time semesters, unless a student can successfully complete all other requirements in fewer than eight semesters and meet the additional criteria to accelerate graduation. (See "Acceleration" below.)
8. 34 courses: a 3- or 4-credit course counts as one course. A 2-credit course counts as half a course; a 1-credit course does not normally count toward the requirement; a 6-credit language course counts as one and one-half courses. (See "Courses and Credits" for some 1-credit courses in music, dance, and theatre performance that can be cumulated to count as one-half course and for counting 5- and 6-credit courses.)
9. Credits: a total of 120 academic credits, of which 100 must be taken in the College of Arts and Sciences at Cornell. (See "Noncredit Courses" below for courses that do not count as academic credits or courses.)
10. Physical education: completion of the university requirement (passing a swim test and two 1-credit nonacademic courses). Note: Physical education credit does not count toward graduation or toward the 12-credit minimum required for good academic standing each semester.
11. Application to graduate. (See "Graduation.")

Explanation of Requirements

Foreign Language Requirement

For students in the graduating classes of 2006 and earlier, the language requirement may be satisfied in one of two ways:

1. by attaining proficiency (competence at the intermediate level) in one language OR
2. by attaining qualification (mastery of an introductory sequence) in two languages.

Proficiency

Proficiency may be attained in languages by passing an intermediate (200 level) Cornell course of 3 or more credits (or CHIN or JAPAN 161). Introductory courses in some less commonly taught languages are taught at the 200 level or above (e.g., ancient Egyptian and Welsh); these do not confer proficiency. Proficiency can also be earned by examination. A score of 4 or 5 on an AP language exam in French, Italian, or Spanish earns proficiency and 3 credits. Students with those scores should also take the Cornell Advanced Placement Examination (CASE), given during orientation week, to obtain appropriate placement for further language study. A score of 4 or 5 on an AP language exam earns 3 credits but does not carry with it proficiency. However, a student who receives a score of 4 or 5 on an AP language exam can earn proficiency by earning a high score on the CASE. Students with appropriate scores on Cornell Language Placement tests or SAT II examinations are also eligible to take the CASE (see chart below). Native or bilingual speakers and writers of a language other than English may earn proficiency and 3 credits by taking the CASE or an individual exam (if no CASE is available and a qualified examiner is here).

Qualification

Qualification may be attained in any of the following ways:

1. Three years of high school study in any one language gives qualification in that language. No demonstration of competence is necessary. Note, however, that this route to qualification does not guarantee entrance into an intermediate-
level course. Students who want to continue studying the language must be placed in the appropriate course through an examination. Being placed below the intermediate level does not cancel the qualification.

2. Passing the requisite Cornell course, the last course of the introductory sequence.

Note: Except in the case of Sanskrit, completion of language sequences 131-132 does not constitute qualification.

3. Achieving the requisite score (see chart) on the SAT II taken in high school or a score of 56 or higher on the appropriate Cornell LP (Language Placement) test. Students may earn a score of 56 on the placement test at the end of a course numbered 122 (second semester of the introductory sequence) and consequently attain qualification without taking 123, the third semester of the introductory sequence.

4. By departmental or (when no placement test is available) individual examination at Cornell (if a qualified examiner is here).

For students in the graduating classes of 2007 and later:

Option 1: Passing (a) a nonintroductory foreign language course of 3 or more credits at Cornell at the 200 level or above or (b) any other nonintroductory course conducted in a foreign language at Cornell. OR

Option 2: Passing at least 11 credits of study in a single foreign language at Cornell. Students undertaking intensive introductory language study elsewhere should consult the relevant department about applying that study toward Option 2. In most cases this will require satisfactory performance on an examination. Students whose speaking, reading, and writing competence in a language other than English is at the same level we would expect our entering freshmen to have in English (as shown by completing high school in that language or by special examination during their first year here at Cornell) are exempt from the college's language requirement.

Placement
Entering students who have had two or more years of high school study in a language, who have been awarded credit for language work at another college or university, or who are native speakers, bilingual, or have spoken the language at home, may enroll in a course in the same language only after being placed by examination. The placement exam may have been taken in high school (SAT II, taken after the last course, or AP, if the score was 4 or 5) or at Cornell (LP test). Students may, but need not, retake a language test if a year or more has passed since last taking it. Being placed by examination into the first course at a nonintroductory level does not earn credit toward the degree. Degree credit is earned only for demonstrated mastery of work equivalent to the first course at an intermediate level at Cornell and placement into the second intermediate course. Students should seek to satisfy the language requirement in their first years at Cornell. Those with test scores one or more years old may be required to take a Cornell placement test if the instructor deems the student is not adequately prepared for the level in which he or she has enrolled.

<table>
<thead>
<tr>
<th>Placement Tests</th>
<th>SAT II</th>
<th>Language Courses</th>
<th>Literature Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>French</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Placement Tests</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LPF</td>
<td>below 37</td>
<td>below 410</td>
<td>121</td>
</tr>
<tr>
<td></td>
<td>37-44</td>
<td>410-480</td>
<td>112 or 122</td>
</tr>
<tr>
<td></td>
<td>45-55</td>
<td>490-590</td>
<td>123</td>
</tr>
<tr>
<td></td>
<td>56-64</td>
<td>600-680</td>
<td>206</td>
</tr>
<tr>
<td></td>
<td>65 and above</td>
<td>690 and above</td>
<td>CASE required for</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>placement in language.</td>
</tr>
<tr>
<td></td>
<td>AP 4 or 5 in language</td>
<td>3 credits</td>
<td>CASE required for</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>placement in language.</td>
</tr>
<tr>
<td></td>
<td>AP 4 or 5 in literature</td>
<td>3 credits and proficiency</td>
<td>CASE required for</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>placement in language.</td>
</tr>
<tr>
<td>German</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Placement Tests</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LPG</td>
<td>below 37</td>
<td>below 370</td>
<td>121</td>
</tr>
<tr>
<td></td>
<td>37-44</td>
<td>370-450</td>
<td>122</td>
</tr>
<tr>
<td></td>
<td>45-55</td>
<td>460-580</td>
<td>123</td>
</tr>
<tr>
<td></td>
<td>56-64</td>
<td>590-680</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>65 and above</td>
<td>690 and above</td>
<td>CASE required for placement</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AP 4 or 5, 3 credits</td>
</tr>
<tr>
<td>Italian</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Placement Tests</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LPI</td>
<td>below 37</td>
<td>below 370</td>
<td>121</td>
</tr>
<tr>
<td></td>
<td>37-44</td>
<td>370-450</td>
<td>122</td>
</tr>
<tr>
<td></td>
<td>45-55</td>
<td>460-580</td>
<td>123</td>
</tr>
<tr>
<td></td>
<td>56-64</td>
<td>590-680</td>
<td>209</td>
</tr>
<tr>
<td></td>
<td>65 and above</td>
<td>690 and above</td>
<td>CASE recommended for placement</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AP 4 or 5 in language, 3 credits</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AP 4 or 5 in literature, 3 credits and proficiency</td>
</tr>
<tr>
<td>Spanish</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Placement Tests</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LPS</td>
<td>below 37</td>
<td>below 370</td>
<td>121</td>
</tr>
<tr>
<td></td>
<td>37-44</td>
<td>370-450</td>
<td>122</td>
</tr>
<tr>
<td></td>
<td>45-55</td>
<td>460-580</td>
<td>123</td>
</tr>
<tr>
<td></td>
<td>56-64</td>
<td>590-680</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>65 and above</td>
<td>690 and above</td>
<td>CASE recommended for placement</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AP 4 or 5 in language, 3 credits</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AP 4 or 5 in literature, 3 credits and proficiency</td>
</tr>
</tbody>
</table>
Placement Tests and Advanced Placement Credit

1. The following language placement and advanced standing tests are scheduled at the beginning of each semester:
 - Chinese, Japanese, and Korean (schedule available from Department of Asian Studies, 350 Rockefeller Hall);
 - German (schedule available from Department of German Studies, 183 Goldwin Smith Hall);
 - French, Italian, and Spanish (schedule available from Department of Romance Studies, 303 Morrill Hall);
 - Russian (schedule available from Department of Russian, 226 Morrill Hall).

The advanced standing examination in French, German, Italian, Russian, and Spanish, is called the CASE (Cornell Advanced Standing Examination). Eligibility for the CASE may be determined from the placement tables. In Russian only, all students seeking placement take the CASE.

Native speakers of Spanish who have completed their secondary education in a Spanish-speaking country do not take the CASE. For these students, the Spanish program offers a walk-in service, the Native Language Accreditation for Spanish, in the third week of September and the first week of February. Students interested in this service should contact Eleanor Dozier in 414 Morrill Hall. Speakers of Spanish who completed their secondary education in a non-Spanish-speaking country are required to present either SAT II or AP or LPS scores for placement, or for eligibility to take the CASE exam.

2. Arabic: departmental examination, Department of Near Eastern Studies, 409 White Hall.
3. Greek, ancient: departmental examination, Department of Classics, 120 Goldwin Smith Hall.
4. Hebrew: departmental examination, Department of Near Eastern Studies, 409 White Hall.
5. Latin: departmental examination, Department of Classics, 120 Goldwin Smith Hall.

Substitutions to the Language Requirement

Outright waivers of the requirement are never granted. However, rarely and as appropriate, alternatives to language acquisition are approved. Legitimate requests for substitutions require strong, convincing evidence of inability to learn foreign languages in a classroom setting. A poor grade in a Cornell introductory language course or taking the LP exam repeatedly and unsuccessfully is not adequate evidence of disability.

Students who wish to request a substitution for this requirement should meet with Dean Peggy Walbridge, Office of Undergraduate Admissions and Advising, 172 Goldwin Smith Hall. If Dean Walbridge determines that the request has merit, the student meets with the Language Substitution Review Committee. This committee makes the final decision for or against a substitution. If a substitution is allowed, the committee works with the student to select appropriate substitute courses.

Placement in Language Courses and Advanced Placement Credit

Placement into language courses and advanced placement credit are separate results of examinations.

Distribution Requirements

(Note different requirements in the arts, humanities, and social sciences for the graduating classes of 2006 and earlier and the graduating classes of 2007 and later. The science and quantitative reasoning requirement is the same for both groups.)

In satisfying the distribution requirements, students become acquainted with a broad range of subject matter and points of view among disciplines in the college and explore areas that may be entirely new to them. Or, to look at it the other way, as first-year students explore subjects that interest them, they begin to satisfy distribution requirements. Consequently, first-year students should take courses to prepare for possible majors and to explore subjects new to them and take no course only in order to satisfy a distribution requirement. Although students may complete distribution requirements over eight semesters, they can take advanced courses in subjects they (perhaps unexpectedly) find intriguing only if they have completed the introductory prerequisites. Consequently, students should not postpone satisfying distribution requirements until the last semesters. Once aware of a major, students should consider which distribution requirements are yet unfulfilled and how to fulfill them with courses that complement their overall program.

Students in the graduating classes of 2006 and earlier must take a total of nine courses of 3 or more credits each for the distribution requirements: four courses from Groups I (science) and II (quantitative reasoning) below, at least two of which are from Group I and at least one of which is from Group II (e.g., one chemistry, one physics, one geology, and one mathematics). Five courses from Groups III (social science) and IV (humanities and the arts) below, with at least two in each group and two in the same department (e.g., one course in sociology, one in history of art, and two in theatre arts). Courses that satisfy distribution requirements are listed and described in their departmental sections. The Roman numeral—
I, II, III, or IV—indicates which group each course satisfies. If there is no numeral at all, the course satisfies no distribution requirement. Courses in the major may be applied to the distribution requirements (unless prohibited by one of the restrictions noted under restrictions on applying AP credit, transfer credit, and Cornell courses to distribution requirements).

I. Physical and Biological Sciences

In fulfilling the four courses in science and quantitative reasoning, students must take at least two science courses. At least one of these must be from the primary list of courses in science departments in the College of Arts and Sciences:

Primary List:

(These courses listed individually are all cross-listed in an A&S science department.)

Animal Science
427 Fundamentals of Endocrinology
Anthropology
208 Anthropology of Human Mating
275 Human Biology and Evolution
371 Human Paleontology
474 Lab and Field Methods in Human Biology
Applied and Engineering Physics
217 Physics II: Electricity and Magnetism
330 Modern Experimental Optics
363 Electronic Circuits
450 Introduction to Solid-State Physics
470 Biophysical Methods
Archaeology
285 Art, Archaeology, and Analysis
Astronomy: all 3- or 4-credit courses
Biological Sciences: all 3- or 4-credit courses (including any combination of two courses from BIO 101–104) except BIO G 209, 299, 498; BIOM 362; BIOT 172; BIOM 321; BION 423 and BIOSM 204. BIO G 200 and 499 require permission from the Office of Undergraduate Biology.
Biological and Environmental Engineering
441 Computer in Neurobiology
456 Biomechanics of Plants
Biology and Society
214 Biological Basis of Sex
447 Seminar in the History of Biology
461 Environmental Policy
Chemistry and Chemical Biology
all 3- or 4-credit courses
Cognitive Studies
111 Brain, Mind, and Behavior
320 Introduction to Computational Neuroscience
Crop Science
398 Environmental Microbiology
Earth and Atmospheric Sciences
all courses except 150, 250, 435
Engineering
122 Earthquake
185 Art, Archaeology, and Analysis
Entomology
325 Insect Behavior
400 Insect Development
452 Herbivores and Plants
453 Historical Biogeography
455 Insect Ecology
456 Stream Ecology
Feminist, Gender, & Sexuality Studies
214 Biological Basis of Sex
Food
394 Applied and Food Microbiology
History
287 Evolution
415 Seminar in the History of Biology
History of Art
200 Art, Archaeology, and Analysis
Horticulture
243 Taxonomy of Cultivated Plants
Music
204 Physics of Musical Sound
Natural Resources
321 Introduction to Biogeochemistry
456 Stream Ecology
Nutritional Science
275 Human Biology and Evolution
475 Mammalian Birth Defects

Physiology
all courses except 205, 209

Plant Pathology
407 Nature of Sensing and Response

Psychology
111 Brain, Mind, and Behavior
322 Hormones and Behavior
354 Biopsychology Laboratory
350 Introduction to Computational Neuroscience
352 Biopsychology of Learning and Memory
396 Introduction to Sensory Systems
424 Neuroethology
429 Olfaction and Taste: Structure and Function
431 Effects of Aging on Sensory and Perception Systems
450 Human Neuroanatomy
492 Sensory Function

Science and Technology Studies
287 Evolution
477 Seminar in the History of Biology

Visual Studies
492 Sensory Function

Students may select additional science courses
from the following supplementary list:

Animal Science
100 Domestic Animal Biology I
150 Domestic Animal Biology II
212 Animal Nutrition

Anthropology
101 Human Evolution: Genes, Behavior, and the Fossil Record
370 Environmental Archaeology
375 Evolutionary Theory and Human Behavior
390 Primate Behavior and Ecology
463 Zooarchaeological Method
464 Zooarchaeological Interpretation

Applied and Engineering Physics
110 The Laser and Its Applications in Science, Technology, and Medicine

Archaeology
370 Environmental Archaeology
463 Zooarchaeological Method
464 Zooarchaeological Interpretation

Dance
312 The Moving Body: Form and Function

Electrical Engineering
430 Lasers and Optical Electronics

Engineering
110 The Laser and Its Applications in Science, Technology, and Medicine

Entomology
212 Insect Biology

Food
200 Introductory Food Science

Materials Science and Engineering
281 The Substance of Civilization

Natural Resources
201 Environmental Conservation
210 Introductory Field Biology
301 Forest Ecology

Nutritional Science
115 Nutrition and Health
301 Biology of Normal and Abnormal Behavior

Psychology
223 Introduction to Biopsychology
326 Evolution of Human Behavior
361 Biology of Normal and Abnormal Behavior

II. Mathematics and quantitative reasoning

In completing four courses in science and quantitative reasoning, students must take at least one of the following courses (note that EDUC 115 Introductory College Mathematics counts neither toward the college degree nor toward distribution):

Applied Economics and Management
210 Introductory Statistics

Biochemistry, Molecular and Cell Biology
321 Numerical Methods in Computational Molecular Biology

Biometry
301 (formerly 261) Statistical Methods

City and Regional Planning
321 Introduction to Quantitative Methods
328 Qualitative Methodologies in Policy Planning

Cognitive Studies
172 Computation, Information, and Intelligence
424 Computational Linguistics
476 Decision Theory
477 Decision Theory II

Computer Science
100 Introduction to Computer Programming
172 Computation, Information, and Intelligence
211 Computers and Programming
280 Discrete Structures
312 Structure and Interpretation of Computer Programs
321 Numerical Methods in Computational Molecular Biology
424 Computational Linguistics
486 Applied Logic

Ecology and Evolutionary Biology
362 Dynamic Models in Biology

Earth and Atmospheric Science
435 Statistical Methods in Meteorology and Climatology

Economics
319 Introduction to Statistics and Probability
320 Introduction to Econometrics
321 Applied Econometrics
325 Cross Section and Panel Econometrics
327 Time Series Econometrics
368 Game Theory
405 Auction Seminar
431 Monetary Economics
470 Economics of Information
476/477 Decision Theory

Engineering
115 Engineering Applications of OR&IE
172 Computation, Information, and Intelligence
211 Computers and Programming
321 Numerical Methods in Computational Molecular Biology

Industrial and Labor Relations
210 Statistical Reasoning I
211 Statistical Reasoning II

Linguistics
424 Computational Linguistics
483 Intensional Logic
485 Topics in Computational Linguistics

Mathematics
all courses except 101 and 109

Philosophy
231 Introduction to Deductive Logic
350 Foundations of Mathematics
531 Deductive Logic
383 Choice, Chance, and Reason
531 Mathematical Logic
432 Topics in Logic
436 Intensional Logic

Physics
205 Reasoning about Luck
209 Relativity and Chaos

Policy Analysis and Management
210 Introduction to Statistics

Psychology
350 Statistics and Research Design

Sociology
301 Evaluating Statistical Evidence

If students choose two courses from this list to satisfy part of the distribution requirement, those two courses may not have significant overlap. For example, students may not choose two beginning courses in statistics. Nor may they earn credit toward the degree for overlapping courses: BTRY 301 (formerly 261) Statistical Methods I, CRP 223 Introduction to Statistical Reasoning, ECON 321 Applied Econometrics, ILRST 212 Statistical Reasoning, MATH 171 Statistical Theory and Application in the Real World, PSYCH 350 Statistics Research and Design, SOC 301 Evaluating Statistical Evidence.

III. Social sciences and history

The following departments are included in Group III, social sciences and history. Most (although not all) courses in these departments satisfy distribution in this group. Students should consult the departmental listings for options that are noted as satisfying Group III.

Anthropology
Economics
Government
History
Linguistics
Psychology
Sociology

In addition, interdisciplinary departments and programs offer courses in Group III. Again, students should consult the departmental listings and note which courses satisfy Group III.

African Studies
American Studies
Archaeology
Asian Studies
Asian American Studies
Biology and Society
Cognitive Studies
Feminist, Gender, & Sexuality Studies
Near Eastern Studies
Religious Studies
Science and Technology Studies

Finally, CRP 100 The American City and CRP 101 Global City and ENGRG 250 Technology in Society and ENGRG 298 Inventing an Information Society satisfy distribution in Group III.

IV. Humanities and the arts

The following departments are included in Group IV, humanities (literature and philosophy) and the arts. While language and logic courses do not count for distribution,
in this group, most (although not all) other courses in these departments do. Students should consult the departmental listings for options that are noted as satisfying Group IV.

Asian Studies

Comparative Literature

English

German Studies

History of Art

Music II. If a student applies one course in music toward distribution, it must be in music history, culture, or theory. If a student applies more than one course, an acceptable sequence may include a full year of study (two half courses) in musical performance, organizations, or ensembles combined with theory, history, and culture courses. Students may count performance credits as only one course toward distribution.

Philosophy

Romance Studies (French, Italian, and Spanish Literature)

Russian Literature

Theatre, Film, and Dance

In addition, the following interdisciplinary departments and programs offer courses in Group IV. Again, students should consult the departmental and program listings to find which courses satisfy Group IV.

African Studies

American Studies

Anthropology

Archaeology

Asian American Studies

Classics

Comparative Literature

Geography

History

Latin American Studies

Near Eastern Studies

Religious Studies

Science and Technology Studies

Visual Studies

Students in the graduating classes of 2007 and later must complete four courses in science and quantitative reasoning as described for the classes of 2006 and earlier. In addition, they must complete five courses of 3 or more credits each from the following five categories of courses in the humanities and social sciences; they must include at least one course from four different categories and no more than three in the same department.

How an individual course is categorized is indicated with the appropriate abbreviation in its description.

Cultural Analysis (CA)

Courses in this area study human life in particular cultural contexts through interpretive analysis of individual behavior, discourse, and social practice. Topics include belief systems (science, medicine, religion), expressive arts and symbolic behavior (visual arts, performance, poetry, myth, narrative, ritual), identity (nationality, race, ethnicity, gender, sexuality), social groups and institutions (family, market, community), power and politics (states, colonialism, inequality).

Historical Analysis (HA)

Courses in this group interpret continuities and changes—political, social, economic, diplomatic, religious, intellectual, artistic, scientific—through time. The focus may be on groups of people, dominant or subordinate: a specific country or region, an event, a process, or a time period.

Knowledge, Cognition, and Moral Reasoning (KCM)

Offerings in this area investigate the bases of human knowledge in its broadest sense, ranging from cognitive faculties shared by humans and animals such as perception, to abstract reasoning, to the ability to form and justify moral judgments. Courses investigating the sources, structure, and limits of cognition may use the methodologies of science, cognitive psychology, linguistics, or philosophy. Courses focusing on moral reasoning may cover many of the ethical questions that concern the nature of justice, the good life, or human values in general.

Literature and the Arts (LA)

Offerings in this area explore literature and the arts in two different but related ways. Some courses focus on the critical study of artworks and on their history, aesthetics, and theory. These courses develop skills of reading, observing, and hearing and encourage reflection on such experiences; many investigate the interplay among individual achievement, artistic tradition, and historical context. Other courses are devoted to the production and performance of artworks (in creative writing, performing arts, and media such as film and video). These courses emphasize the interaction among technical mastery, cognitive knowledge, and creative imagination.

Social and Behavioral Analysis (SBA)

Courses in this area examine human life in its social context through the use of social scientific methods, often including hypothesis testing, scientific sampling techniques, and statistical analysis. Topics studied range from the thoughts, feelings, beliefs, and attitudes of individuals to interpersonal relations between individuals (e.g., in friendship, love, conflict) to larger social organizations (e.g., the family, society, religious or educational or civic institutions; the economy, government) to the relationships and conflicts among groups or individuals (e.g., discrimination, inequality, prejudice, stigmas, conflict resolution).

Breadth Requirements

Students must include in their undergraduate program at least one Arts and Sciences course that focuses on an area or a people other than those of the United States, Canada, or Europe and one course that focuses on an historical period before the 20th century. Courses that satisfy the geographic breadth requirement are marked with an @ when described in this catalog. Courses that satisfy the historical breadth requirement are marked with a ∗. Many courses satisfy both requirements, and students may in fact use the same course to satisfy both. Students may use courses satisfying distribution, major, or elective—but not writing—requirements in satisfaction of either of the breadth requirements. They may also apply Cornell courses (not credit from an examination) conferring proficiency in a non-Western language toward the geographical breadth requirement.

Restrictions on Applying AP Courses and Credit from Other Institutions to the Distribution Requirements

Students may not apply AP credit or transfer credit from another institution to the breadth requirements or to any distribution requirement in the arts, humanities, or social sciences, which include the categories of CA, HA, KCM, LA, and SBA.

Students in the graduating classes of 2006 and earlier may apply up to two courses of approved advanced placement or transfer credit toward distribution requirements in Group I and II (physical/biological sciences and quantitative/formal reasoning), as long as they take at least one course from the primary list in an Arts and Sciences science department at Cornell. Transfer credit applied to distribution in Group II (quantitative/formal reasoning) must be in mathematics, statistics, or computer science; it may not be in other quantitative subjects. Courses taken at other institutions in mathematics or computer science must be approved for transfer and distribution credit by the Departments of Mathematics or Computer Science respectively.

Students who transfer to the college from another institution are under the above rules for advanced placement credit, but are eligible to have credit for post high school course work taken during regular semesters (not summer school) from their previous institutions count toward all distribution requirements. Transfer students receive a detailed credit evaluation when they are accepted for admission.

Restrictions on Applying Cornell Courses to the Distribution and Breadth Requirements

1. First-year writing seminars may not count toward any other college requirement.

2. No single course may satisfy more than one distribution requirement.

3. Students may count courses in their major toward distribution and breadth.

The Major

In their last two years, students devote roughly one-half their time to acquiring depth and competence in a major subject. The major does not necessarily define a student's intellect or character or lead directly to a lifetime occupation, although it sometimes does some of each. Through the major, students focus and develop their imaginative and intellectual capacities through a subject they find especially interesting.

Most departments and programs specify certain prerequisites for admission to the major; they are found on the following pages in the descriptions of each department and program.

Students may apply for acceptance into the major as soon as they have completed the prerequisites and are confident of their choice. This may be as early as the second semester of freshman year, and must be no later than second semester of sophomore year.
To apply, they take a copy of their official transcript to an appointment with the director of undergraduate studies in their prospective major. A department or program may refuse admission into the major if the applicant's performance does not meet established standards. A student without a major at the beginning of the junior year is not making satisfactory progress toward the degree. That student must meet with an advising dean and may not be allowed to continue in the college.

Available majors
Majors are offered by each of the departments. There are also concentrations in American Studies, archaeology, biology and society, information science, religious studies, science of earth systems, and Feminist, Gender, and sexuality studies.

Some students want to pursue a subject that cannot be met within an established major. They may plan, with the help of their faculty advisor, an independent major that includes courses from several departments and even colleges. See "Independent Major Program," under "Special Academic Options." Whatever the major, it does not meet established standards.

Double majors
Only one major is required for graduation. Some students choose to complete two or even more majors. No special permission or procedure is required; students simply become accepted into any additional majors and find an adviser in each department. All completed majors are posted on the official transcript. However, even though courses in a second major count toward the required 15 credits of electives (see immediately below), double majoring can constrict the variety of electives that might be valuable for an education in the liberal arts and sciences. Students should "double major" only if their intellects and deep interests direct them to do so.

Electives
Of the 34 courses and 120 credits required for graduation, almost one-third are free electives. How students use these electives frequently makes the difference between an ordinary and a truly interesting course of study. Students must complete at least four semesters and at least 15 credits offered outside the major field and not used to fill another requirement except breadth. AP credits not otherwise used may fulfill elective requirements. Students may group electives to complete one of the established interdisciplinary concentrations or may form their own unofficial concentration or "minor" separate from their major. Students may also group electives into a second major. Since only one major is required, students may count courses in a second major as electives. Some students choose to explore a variety of subjects, some develop a concentration in a department or subject outside Arts and Sciences to gain applied training or specialized knowledge.

Residence
The College of Arts and Sciences is a residential community for students who devote their energy and spirit to full-time study. The faculty believes that integrated, full-time study for a defined period best promotes intellectual and creative development and best prepares people for citizenship and careers. Consequently, eight semesters of full-time study in the College of Arts and Sciences are integral to earning the B.A. degree. Even if the minimum requirements can be met in fewer semesters, the faculty of the college expects students to take advantage of the resources of the university for eight full semesters and obtain as rich and advanced an education in the liberal arts and sciences as possible. Students may complete their undergraduate degrees with courses taken in other institutions or as part-time or summer students at Cornell only if they have completed their eight full-time semesters of residence or satisfied the criteria listed below under "Part-time study in final semester."

For transfer students from other institutions, each full semester of study at their previous institution counts as one of the eight semesters of residence. However, even if transfer students have completed more than four full semesters at their previous institution, they must spend at least four semesters on the Cornell campus in Ithaca enrolled in the College of Arts and Sciences. Internal transfers from other colleges at Cornell must spend four semesters on campus in Ithaca as students in the Internal Transfer Division or in the college.

Approved study abroad, SEA Semester, Urban Semester, FALCON, and Cornell in Washington are considered semesters of residence but not semesters on the Cornell campus. Students may spend no more than two semesters on such programs and must be on campus during their last semester. Semesters of extramural study in Cornell's School of Continuing Education, semesters of study at other institutions while on leave from Cornell, and summer sessions anywhere do not count as semesters of residence.

Acceleration
Some students decide that they do not need eight semesters of residence to obtain a solid undergraduate education. These students must complete the first four semesters and spend four full semesters in the major. Benefiting from opportunities for advanced, seminar, and independent (sometimes honors) work is what best characterizes undergraduate education in the college. Students considering acceleration should discuss their plans with their major adviser.

Accelerants apply to graduate one semester before their intended new graduation date. They obtain an "Application to Graduate" for this purpose in the Office of Undergraduate Admissions and Advising, 172 Goldwin Smith Hall. Accelerants must complete:

1. All graduation requirements except for the residency requirement (120 total credits, 100 Arts and Sciences credits, 34 courses, all college requirements and the university's physical education requirement).
2. Either condition a or b:
 a. 60 credits before beginning their last four semesters in the college and the prerequisites for admission to the major in time to spend four semesters in the major.
 b. 48 credits in College of Arts and Sciences courses numbered 300 and above and prerequisites for admission to the major in time to spend four semesters in the major. Upper-level courses taken in other colleges at Cornell University may count toward the 48 only if approved as part of the major.
3. 100 credits at Cornell at "C" (not C-) or above. Courses completed with a grade of "S" will count toward the 100 credits. Advanced placement and transfer credits do not count toward this requirement.
4. Students may not use credits earned while on leave of absence to reduce their terms of residence. In other words, they must be eligible to accelerate without applying any credit toward the degree that they earned while on leave.
5. Accelerants may not finish the degree with credits earned in summer or winter session, through part-time study (unless they meet the guidelines for part-time study), or at an off-campus program, including Cornell in Washington, SEA Semester, Urban Semester, or study abroad. That is, they may not exit through any program other than a full-time Cornell semester in Ithaca.

Ninth semester
Students who can graduate in eight semesters should do so. If a worthy academic plan for a full ninth or tenth semester is approved, the student enrolls in the college as a special student for the additional work. Such a status allows enrollment in a full schedule of courses and full access to campus resources for full tuition, but allows financial aid only from loans or outside agencies, not from Cornell funds. Students who need fewer than 12 credits in a ninth or tenth semester to graduate should complete the outstanding courses and pay prorated tuition. Students may spend a ninth semester with Cornell aid only with permission of the Committee on Academic Records. Such permission is normally granted only to:

1. Students who have been ill or experienced other untoward circumstances beyond their control.
2. Students who were academically underprepared for the curriculum at Cornell and needed to begin with a lighter schedule of courses than normal. (See Dean Turner, Office of Undergraduate Admissions and Advising, 55 Goldwin Smith Hall, about this option.)

Part-time study
Students in good academic standing may take a personal leave of absence and enroll in the School of Continuing Education, but such semesters of extramural study do not count as terms of residence and credits from such semesters may not be used to reduce the terms of residence.
Part-time study in special circumstances

The college and university support students (with financial aid and services) as best they can to make full-time study possible. Occasionally, however, extraordinary but nonfinancial personal, academic, or medical circumstances may require part-time study for the final semester or academic year of full-time study. Students in good academic standing who face extraordinary situations may petition the Committee on Academic Records for a part-time schedule and proration of tuition in the college.

Part-time study in final semester

Students may complete their degrees with part-time study and pay prorated tuition at Cornell after fewer than eight semesters of full-time residence only if:
1. They have completed all requirements by the end of the sixth or seventh semester, met the criteria for accelerated graduation, and are remaining to complete study beyond what is required for the degree.
2. They are writing an honors thesis in the eighth semester and can complete all degree requirements by taking exactly two courses, one of which is the thesis itself. They must register for the thesis and one additional course.

Students must obtain approval of an advising dean and complete the prorated tuition form in the semester before or during the first three weeks of the semester and confirm their status and registration with college registrar Sally O’Hanlon in 55 Goldwin Smith Hall.

Courses and Credits

Counting courses and credits

Students must complete at least 34 courses to graduate—that is, an average of four courses during each of six semesters and five courses during each of two semesters. A 3- or 4-credit course counts as one course; a 2-credit course counts as one-half course. Single-credit courses do not count as part of the 34 except in certain cases when they form a part of a series and two in the same series can again be counted as one-half course (certain offerings in the Department of Music and Department of Theatre, Film and Dance fall into this category). Three 1-credit courses do not aggregate to count as one course.

A 6-credit language course counts as 1 1/2 courses, while the summer FALCON Programs in Asian languages count as 8 credits and two courses each and regular semester FALCON counts as 16 credits and four courses.

Archaeology and geology fieldwork for more than 6 credits counts as two courses each. BIOGD 281 counts as 1 1/2 courses. Other 5- or 6-credit courses count as one course.

Courses and credits do not count as part of the 100. The only exceptions to the above restrictions are for courses (usually no more than three) that certain departments accept from other colleges at Cornell as fulfilling major requirements (and substituting for A&S courses) and for up to two courses that an adviser accepts as part of a completed and formally established cross-college, interdisciplinary concentration.

Using courses toward more than one requirement

A course may fulfill more than one college requirement in the following situations:
1. A course may be used to fulfill a distribution, breadth, and also a major requirement (except as noted under previous section of restrictions on applying AP credits, transfer credits, and Cornell courses to distribution requirements).
2. A one-semester course in foreign literature (not language) or culture that is acceptable for achieving proficiency or certifying Option I in that language may also be applied to the relevant distribution requirement and, if appropriate, to the breadth requirement.
3. Courses may count toward breadth requirements and toward any other requirement except first-year writing seminars.
4. Courses in a second major may count as electives.

Auditing

The college encourages its students to take advantage of its rich curriculum by sitting in on courses that interest them but that they prefer not to take for credit. As long as the instructor agrees, students are welcome to visit courses. Small seminars and language courses are sometimes not open to visitors. Audited courses do not appear on the student’s schedule or transcript.

Repeating courses

Students occasionally need to repeat courses. If the instructor certifies that the course content is different, credit is granted a second time. If the content is the same, both grades nonetheless appear on the transcript and are included in any GPA that is calculated, but the course and credit count toward the degree only once. Students considering repeating a course under this circumstance should discuss the matter with their adviser and an advising dean.

Students who plan to repeat a course submit a petition to the college registrar, Sally O’Hanlon, 55 Goldwin Smith Hall. If the original course grade was F, no petition is necessary.

Courses that do not count toward the degree

The college does not grant credit toward the degree for every course offered by the university. Courses in military training, training as a pharmacy technician, service as a teaching assistant, physical education, remedial or developmental reading, precalculus mathematics (including EDUC 115), supplemental science and mathematics offered by the Learning Strategies Center, English as a second language, keyboarding, and shorthand are among those for which degree credit and credit toward the 12 credits required for good academic standing are not given.

Students enrolled in courses for undergraduate teaching assistants may petition once to have the nondegree credits count toward good academic standing. This would allow continued eligibility for graduating with distinction in all subjects, but would disqualify the student from being on the dean’s list that semester.

Advanced placement credit

See p. 8–10. Advanced placement credits count as part of the 120 credits and 34 courses required for the degree. They do not count as part of the 100 credits required in Arts and Sciences at Cornell; their application to distribution and breadth requirements is restricted or prohibited, as explained previously under “Restrictions.” AP credits are posted on the transcript during the summer between the freshman and sophomore years, after students have decided whether to accept the credit or forfeit it by taking the Cornell course they had placed out of.

Summer session credit

A student may earn credit toward the degree by completing courses in Cornell’s summer session or by successfully petitioning for credit for summer courses at other colleges. Students should consult their advisors regarding summer study plans.

Credit for summer courses not taken at Cornell must be approved by the appropriate Cornell department. Approval forms and information are available online, www.arts.cornell.edu, and in the Office of Undergraduate Admissions and Advising, 55 or 172 Goldwin Smith Hall. Transcripts for completed work at other institutions must be sent to Robin Perry, 172 Goldwin Smith Hall. Credit approved for summer courses away from Cornell (including summer courses abroad) counts toward the 120 credits and 34 courses required for the degree, but not toward the 100 credits required in the college at Cornell. For students in the graduating classes of 2006 or earlier, it may be applied toward part of the Group I, II, or III distribution requirements. For all students, it may not be applied to breadth requirements but may be applied to elective requirements and to major requirements (with the approval of the department).

Entering students who want to receive credit toward the degree for courses completed before matriculation in a summer session away from Cornell should obtain approval forms as soon as possible and have transcripts sent to Robin Perry, 172 Goldwin Smith Hall. Credits completed in Cornell summer sessions will be awarded automatically.

Summer session at Cornell or elsewhere does not count toward the eight-semester residence requirement. Students are permitted to earn up to 12 credits in one summer.

Transferring credit earned away from Cornell while on leave of absence

See “Leaves of Absence.”

Transferring credit (for transfer students from another institution or from another Cornell college)

Transfer students must satisfy all normal requirements for the degree, including eight semesters of full-time study. They must always complete at least 60 credits and 16 courses at Cornell and be in residence on campus in the college for at least four regular semesters.
SPECIAL ACADEMIC OPTIONS

Degree Programs
The following four programs allow students to alter the regular college or major requirements or to work toward more than one degree.

College Scholar Program
The College Scholar Program is meant to serve students whose interests and talents would benefit from a little more academic freedom than other students have, who demonstrate exceptional promise, and who show the maturity to plan and carry out, with the help of their advisor, a well-designed program of studies. College Scholars design idiosyncratic programs: some pursue diverse interests; others integrate a variety of courses into a coherent subject. Up to 40 students in each class are accepted into the program.

College Scholars must complete 120 credits of course work (100 in the college), 34 courses, and, unless they receive permission from the program to accelerate, eight full terms of undergraduate study but are not required to fulfill the other usual college requirements for the degree. They must, however, also complete physical education requirement. All college scholars must complete a senior project. Although they are not required to complete or fulfill the general education requirements, members of the College Scholars Board believe that the spirit of those requirements is good.

Each applicant to the College Scholar Program is asked to write an essay, which is due the last Wednesday of classes before final exams in spring of the freshman year. Students should contact Dean Ken Gabard, Office of Undergraduate Admissions and Advising, 55 Goldwin Smith Hall, for further information.

Dual-Degree Program with Other Colleges
The Dual-Degree Program enables especially ambitious undergraduate students to pursue programs of study in two colleges. Dual-degree candidates may earn both a Bachelor of Arts degree from the College of Arts and Sciences and: (1) a bachelor of science degree from the College of Engineering; or (2) a bachelor of fine arts degree from the Department of Art in the College of Architecture, Art, and Planning; or (3) a bachelor of science degree in urban and regional studies from the Department of City and Regional Planning in the College of Architecture, Art, and Planning; or (4) a bachelor of science degree in agricultural, biology, chemistry, earth science, general science, mathematics, and physics. Cornell students from any college are encouraged to apply for admission to the Cornell Teacher Education Program during their sophomore or junior year. Those who are admitted complete their undergraduate major in an agricultural science, mathematics or one of the sciences, while taking education courses. They are then able to complete a master of arts teaching (MAT) in one year and earn certification in New York State. For more information, contact the program coordinator at 255-9573.

Special-Interest Options
The following options enable students to pursue special interests within the usual degree programs.

Concentrations
Established interdisciplinary concentrations, described in alphabetical order along with department in the pages following, provide structures for organizing electives. Completed concentrations are noted on the transcript.

Informal Minors
Some students organize electives within a discipline or department in Arts and Sciences or another college. Such informal minors can be developed with the help of the departmental directors of undergraduate studies. They are not noted on the transcript.

Independent Study
Independent study affords students the opportunity to pursue special interests or research not treated in regularly scheduled courses. A faculty member, who becomes the student's instructor for the independent course, must approve the proposed study and agree to provide continuing supervision of the work. Students must prepare a proposal for independent study (proposal forms are available at www.arts.cornell.edu and in the Office of Undergraduate Admissions and Advising, 55 and 172 Goldwin Smith Hall). In one semester students may earn up to 6 credits with one instructor or up to 8 credits with more than one instructor.

Undergraduate Research
An excellent way to benefit from being an undergraduate at a research university, at Cornell in particular, is to become an apprentice in ongoing faculty research. About 400 students participate each year in creating new knowledge and earn independent study credit for what they learn and contribute. They sharpen their critical and creative abilities and test their interest in pursuing a research career. Sometimes they publish their work.

The Cornell Undergraduate Research Board, an undergraduate organization, conducts an annual open house to help students get started in research and an annual forum at which undergraduates present their work. See www.rso.cornell.edu/curb.

Students interested in this program should consult Dean David DeVries in the Office of Undergraduate Admissions and Advising, 172 Goldwin Smith Hall, or consult www.research.cornell.edu/undergrad.
Many students find it important to their majors or to their overall academic programs to study off campus or abroad for one or two semesters. When making academic sense, the college encourages its students to pursue such studies and grants credit toward the degree for work satisfactorily completed. It rarely approves students' participation in more than one off-campus program.

Study Abroad

The College of Arts and Sciences encourages study, both on campus and abroad, that provides a greater understanding of the world's peoples, cultures, economies, and environments, and prepares graduates for the challenges of international citizenship in the 21st century. Study abroad is open to students in any major who meet the college requirements and have a strong academic goal. Well-chosen and well-planned study abroad contributes a global or comparative dimension to your chosen field, enhances critical thinking and communications skills, and provides firsthand immersion and appreciation of another culture. Focused academic programs in international citizenship abroad can be excellent preparation for advanced study or honors work in your final semesters at Cornell, and can lead to a career with a global component.

Requirements
- acceptance into a major
- area-studies course work
- fulfillment of the College of Arts and Sciences residence requirement
- GPA of 3.0 or higher and good academic standing
- language study at the required level
- fulfillment of the requirements of the foreign university or program

Cornell Study Abroad students must study alongside degree candidates in their host institutions rather than in self-contained programs that offer courses specially designed for foreigners. The college will approve only those students who provide substantive and coherent academic goals that are consistent with the philosophy of a liberal arts education.

The college advocates study abroad that enables students to become competent in another language, so that they can engage fully in daily life in another culture, develop social relationships, and complete formal course work in that language. To study abroad in a country where the host language is not English, the student must demonstrate competence in the language as a prerequisite. For study abroad in English-speaking countries, direct university enrollment is approved and expected. Cornell students will engage in a full course of study, generally in their major field, and may be approved for language-intensive programs (at least half of the course work in that language) for foreigners. The college will approve only study in countries that meet the college's standards for academic work toward the major while abroad. Whether or not students intend to earn major credit, the college requires that students spend the semester or year abroad. Some especially competitive programs require substantial prior course work in the proposed course of study as a prerequisite to acceptance. Students who intend to enhance their major with study abroad may need advanced course work in that field. Students interested in this program should contact Clare McMillan, 726 University Ave., 255-6453.

Language Study

FALCON (Full-Year Asian Language Concentration). FALCON allows students who are interested in the Far East to study Chinese or Japanese exclusively for one year. They gain proficiency in the language and familiarity with the culture. Students who are interested in the Far East should be aware of the opportunities to pursue rapid and thorough beginning studies on campus with the objective of studying abroad in China or Japan. Students interested in this program should contact the Department of Asian Studies, 350 Rockefeller Hall; e-mail: falcon@cornell.edu.

Language House Program

A complement to classroom cultural and linguistic instruction, the Language House Program combines residential and academic opportunities for developing and practicing conversational skills in French, German, Italian, Japanese, Mandarin Chinese, and Spanish. It helps prepare students who plan to study abroad, and helps returning students share their cultural experiences while further increasing their language skills. Students interested in this program should contact Clare McMillan, 726 University Ave., 255-6453.

Prelaw Study

Law schools seek students with sound training in the liberal arts and sciences; they neither require nor prefer any particular program of study. Students should therefore study what they love and do well. While doing that, they should also develop their powers of precise, analytical thinking and proficiency in writing and speaking. Students in the College of Arts and Sciences who are applying to law school may consult Lisa Harris in the Office of Arts and Sciences Career Services, 55 Goldwin Smith Hall.

The college offers a concentration in law and society. This program offers a broad scope, complements almost any major, and attracts lawyers as well as a subset of those intending to study law. Interested in this program should contact Clare McMillan, 726 University Ave., 255-6453.

Promedical Study

The breadth and depth afforded by a liberal arts education are invaluable for students planning medical careers, whether they intend to practice or go into research. Such education has a profound effect on the doctor's understanding of the world and hence usefulness to patients, and it affords the flexibility of mind that is needed for major research undertakings. Medical and dental schools do not prescribe or even prefer a particular major; they do, however, require particular undergraduate courses, and most students are well advised to begin training in their chosen field. Students who are interested in medical careers are urged to visit the Health Careers Office, 203 Barnes Hall.

The adviser for students in the College of Arts and Sciences who are planning careers in medicine is Dean Janice Turner, Office of Undergraduate Admissions and Advising, 55 Goldwin Smith Hall.

Off-Campus Programs

Many students find it important to their majors or to their overall academic programs to study off campus or abroad for one or two semesters. When making academic sense, the college encourages its students to pursue such studies and grants credit toward the degree for work satisfactorily completed. It rarely approves students' participation in more than one off-campus program.

Study Abroad

The College of Arts and Sciences encourages study, both on campus and abroad, that provides a greater understanding of the world's peoples, cultures, economies, and environments, and prepares graduates for the challenges of international citizenship in the 21st century. Study abroad is open to students in any major who meet the college requirements and have a strong academic goal. Well-chosen and well-planned study abroad contributes a global or comparative dimension to your chosen field, enhances critical thinking and communications skills, and provides firsthand immersion in and appreciation of another culture. Focused academic programs in international citizenship abroad can be excellent preparation for advanced study or honors work in your final semesters at Cornell, and can lead to a career with a global component.

Requirements
- acceptance into a major
- area-studies course work
- fulfillment of the College of Arts and Sciences residence requirement
- GPA of 3.0 or higher and good academic standing
- language study at the required level
- fulfillment of the requirements of the foreign university or program

Cornell Study Abroad students must study alongside degree candidates in their host institutions rather than in self-contained programs that offer courses specially designed for foreigners. The college will approve only those students who provide substantive and coherent academic goals that are consistent with the philosophy of a liberal arts education.

The college advocates study abroad that enables students to become competent in another language, so that they can engage fully in daily life in another culture, develop social relationships, and complete formal course work in that language. To study abroad in a country where the host language is not English, the student must demonstrate competence in the language as a prerequisite. For study abroad in English-speaking countries, direct university enrollment is approved and expected. Cornell students will engage in a full course of study, generally in their major field, and may be approved for language-intensive programs (at least half of the course work in that language) for foreigners. The college will approve only study in countries that meet the college's standards for academic work toward the major while abroad. Whether or not students intend to earn major credit, the college requires that students spend the semester or year abroad. Some especially competitive programs require substantial prior course work in the proposed course of study as a prerequisite to acceptance. Students who intend to enhance their major with study abroad may need advanced course work in that field. Students interested in this program should contact Clare McMillan, 726 University Ave., 255-6453.

All A&S students must be formally accepted into a major before going abroad, and should ideally be accepted into a major before beginning the application process. Most students plan an amount equivalent of academic work toward the major while abroad. Whether or not students intend to earn major credit, the college requires that they spend the semester or year abroad. Some especially competitive programs require substantial prior course work in the proposed course of study as a prerequisite to acceptance. Students who intend to enhance their major with study abroad may need advanced course work in that field. Students interested in this program should contact Clare McMillan, 726 University Ave., 255-6453.

Study abroad can earn up to 15 A&S credits per semester of full-time course work as long as the curriculum abroad is consistent with that of the college. Completion of one trimester of study earns a maximum of 10 credits. Two terms at Oxford or Cambridge may earn up to 20 credits. You must carry a full course load as defined by the host institution, which should be equivalent to at least 15 credits at Cornell, and all courses must be taken for a letter grade. Courses that fail outside the scope of the liberal arts and sciences may only be taken with the prior approval of the Dean of Wasyliw, and will earn non-A&S credits. Some foreign universities offer courses for visiting students that do not carry any academic credit. Students may earn additional credit for enrolling in extra courses during the semester or year abroad.

Credit for study abroad will be awarded only after completion of the semester abroad, and after the college receives your official transcript. To receive credit, students must fill out a Request for Credit from Study Abroad form and submit it to the advising office along with a copy of your transcript. All courses taken abroad will appear on the Cornell transcript and grades earned are reported in the system of the host institution. Grades earned through course work abroad...
do not become part of the Cornell GPA, since grades at other institutions are rarely equivalent to grades at Cornell. **Students must save all written work from all courses until their grades are received and recorded on their Cornell transcript.**

The maximum length of study abroad that can count toward A&S degree requirements is two semesters, which is also the amount of time recommended for true immersion in another culture and language. Approved study abroad projects must support each other's efforts to master new material and discover new knowledge by sharing ideas and resources, by respecting each other's contributions, and by being honest about their own work. Otherwise the university will fail to accomplish its most central and important goals.

Cornell's Code of Academic Integrity and policy about acknowledging the work of others are among the documents new students receive. Students should read them carefully and not assume they adopt from others (not just direct quotations) and help they receive from colleagues or parents. With productive emphasis on collaborative learning and writing, students must understand the general standards and policies about academic integrity and be sure they understand the expectations in individual courses as well. When in doubt, ask the instructor.

ADVISING

The following advisers and offices provide academic advising, help with problems, and information on college procedures and regulations.

Faculty Advisers

Each new student is assigned a faculty adviser. Advisers help students plan programs of study and advise them about ways to achieve their academic goals. Advisers may help students with study or personal problems or may direct them to other offices on campus where help is available. Academic difficulties may frequently be solved or avoided if students and advisers recognize and address problems early.

Advisers and new advisers meet first during orientation week to discuss course selection. New students are encouraged to see their advisers again early in the semester, before it is too late to drop courses, to discuss their academic progress and to become better acquainted. Advisers and advisers meet at least once each semester to discuss courses for the following semester, and more often if advisers wish to discuss academic or personal issues or to petition for an exception to college rules.

Student Advisers

Student advisers pass on lore about the college and life at Cornell and help new students understand requirements and negotiate the university.

Major Advisers

After acceptance into a major, students are assigned a major adviser, a faculty member in the major department, with whom they shape and direct their courses of study. The adviser eventually certifies the completion of the major. Students should consult their major adviser about all academic plans, including honors, study abroad, acceleration, and graduate study. This support is especially important if a student petitions for an exception to the normal procedures or requirements.

Office of Undergraduate Admissions and Advising

This office, located in 55 Goldwin Smith Hall, 255-5004, and 172 Goldwin Smith Hall, 255-4833, is a resource for faculty and student advisers and for individual students and their parents. Advising deans are available to help students define their academic and career goals, to help with special academic options and exceptions to college rules, and to help when problems arise:

- David DeVries, associate dean for undergraduate admissions and advising and undergraduate research, 255-3386
- Yolanda Clarke, juniors, seniors, internal transfers, and minority students, 255-4833
- Juliette Corazon, minority students and liaison to Latino Studies Program, 255-4833
- Maria Davids, juniors, seniors, Dean's Scholars, Cornell Presidential Research Scholars, Mellon Mays Fellows, and postgraduate fellowships, 255-4833
- James Finlay, first- and second-year students, Independent Major Program, Dean's Scholars, Cornell Presidential Research Scholars Fellowships, undergraduate research, 255-5004
- Ken Gabard, first- and second-year students and College Scholar Program, 255-5004
- Lisa M. Harris, career services and pre-law advising, 255-6926
- Ray Kim, student ambassadors, 255-4833
- Irene Komor, career counseling, 254-5295
- Clare McMillan, Language House Program, 255-6543
- Diane J. Miller, career services, 255-6924
- Sally O'Hanlon, registrar, 255-5051
- Janice Turner, minority students and pre-med advising, 255-9497
- Catherine Wagner, juniors, seniors, and dual-degrees, 255-4833
- Peggy Walbridge, juniors, seniors, and students with disabilities, 255-4833
- Patricia Wasyliw, first- and second-year students, academic integrity, study abroad, and peer advisers, 255-5004

Committee on Academic Records

The college faculty's standing Committee on Academic Records has two main tasks: (1) to decide on students' petitions for exceptions...
to college requirements or rules and (2) to review the records of students who fail to maintain good academic standing and to take appropriate action. It accomplishes both those tasks without formulæ and with attention to each individual situation. Its overriding goal is to help students achieve the best undergraduate education possible.

Petitions
The college faculty takes graduation requirements seriously, and the faculty’s Committee on Academic Records virtually never waives a requirement outright. However, some students, with the support of their advisers, propose structuring their educations or fulfilling the spirit of college requirements in ways other than the specified norms. The Committee on Academic Records decides on such requests. Students who find that their undergraduate education would be better realized by satisfying requirements or proceeding in a way that requires an exception to stated rules should meet with an advising dean in the Office of Undergraduate Admissions and Advising. The deans are expert in the college’s expectations and procedures and can help the student formulate a petition, if appropriate. The committee decides petitions on the basis of their educational merit.

Actions
The College of Arts and Sciences has no minimum grade requirement for graduation beyond the guideline that at least 100 Cornell credits of the 120 total required for graduation be passed with grades of C (not C-) or above. Consequently, only through actions of the Committee on Academic Records, described below under “Academic Standing,” does the college maintain the quality of the degree and attend to individual situations when things academic are not going well.

REGISTRATION AND COURSE SCHEDULING

Enrollment in Courses in the College of Arts and Sciences

New Students
During orientation week, new students attend briefings and other information sessions, meet with faculty advisers, and sign into courses. The college reserves spaces in courses for its new students.

Continuing Students
Continuing students select and schedule up to five courses of 3 or more credits and as many 1- and 2-credit courses as they would like during the semester before the one in which the courses will be taken. Students who do not “pre-enroll” during the designated period must wait until the beginning of the semester and may have difficulty securing places in the courses they most want. Before enrolling in courses, students plan their programs and discuss long-range goals with their faculty adviser. In consultation with the student, faculty advisers are welcome to discuss programs and plans with an advising dean in the Office of Undergraduate Admissions and Advising, 55 or 172 Goldwin Smith Hall.

At the beginning of each semester, students find their schedules on “Just the Facts.” Periodically, they should confirm the accuracy of their records.

Limits on Numbers of Courses and Credits
To meet the 34-course requirement, students must normally take four courses during each of six semesters and five courses during each of the two semesters. To meet the 120-credit requirement, students must average 15 credits per semester. (Note: AP credit and/or summer credits may reduce the average numbers of courses and credits required each semester.)

Minimum number of credits per semester
To maintain good academic standing as a full-time student, students must complete at least 12 degree credits per semester; if for compelling personal or academic reasons students need to carry fewer than 12 credits, they should consult their faculty adviser and an advising dean. Permission is by petition only; it is freely given for first-year students.

Maximum number of credits per semester
First-semester freshmen must petition to enroll in more than 18 credits; other students may enroll in up to 22 credits, provided that their previous semester’s average was 3.0 or higher and they are in good academic standing. No more than 22 credits may be taken in a regular semester without permission of the college faculty’s Committee on Academic Records. Students who fail to receive approval for excess credits from the committee may count only 18 or 22 credits, depending on their previous semester’s average, toward the degree for that semester.

Attendance
Attendance in classes is expected. Absences are a matter between students and their instructors. If a student cannot attend classes because of illness or family crisis, the Office of Undergraduate Admissions and Advising will notify instructors at the request of the student or the family. Nonetheless, the student must arrange to make up examinations or other work with each instructor. A student who will be absent because of religious holidays or athletic competitions must discuss arrangements for making up work with his or her instructors well in advance of the absence. A student who must miss an examination must also consult with the professor in advance. Alternative arrangements are at the discretion of the instructor.

Student athletes should discuss scheduled absences with their instructors at the beginning of the semester. Courses vary in their tolerance of absences. Instructors are not obligated to approve absences for purposes of participating in extracurricular activities, although most will be as flexible as is sensible for a student’s academic program.

Adding and Dropping Courses
After course enrollment (also known as pre-enrollment), students may not adjust their schedules until the new semester begins. During the first three weeks of the semester, students may change courses without petitioning. (Note: the add period for first-year writing seminars is only two weeks.)

After the third week of classes, students must petition to add courses and may add them only for a letter grade. They may drop courses through the seventh week of the semester if no issue of academic integrity is at stake. Between the seventh and 12th weeks students may petition to withdraw from courses, if (1) the instructor approves; (2) the adviser approves; (3) an advising dean approves; (4) the drop does not result in fewer than 12 credits; and (5) no issue of academic integrity is at stake. Students must meet with an advising dean to obtain petition forms.

Courses officially dropped after the seventh week will be noted on the transcript by a "W" where the grade would normally appear. This is a matter of record and cannot be petitioned. Petitions to withdraw from courses may not be submitted after the end of the 12th week in the semester.

Deadlines for short courses will be adjusted according to the length of the courses.

The effective date of all course changes will be the day the student submits all completed paperwork to the Office of Undergraduate Admissions and Advising.

Leaves of absence (LOAs)
Taking time off from college to gain experience or funds, or to find direction, is sometimes useful. In general, students arrange in advance for leaves to take effect the following semester. Students in good academic standing may take a personal leave of absence up to the beginning of the semester (defined as the first day of classes). Students not in good academic standing may pursue a conditional leave of absence from the college up to the first day of classes. If medical issues are involved, students must consult Gannett: Cornell University Health Services about the advisability of a medical leave of absence. Any student who wishes to take a leave of absence must consult with an advising dean in the Office of Undergraduate Admissions and Advising, 55 or 172 Goldwin Smith Hall.

Students sometimes find it necessary to take a leave of absence at some point during the semester. In addition to the serious financial consequence of taking leaves after the semester has begun (see the proration schedule for withdrawals and leaves of Absence in the General Information section of this catalog), all leaves taken during the semester are granted at the discretion of the college. Students should discuss their need for a LOA with an advising dean.

Leaves of Absence are of four types:

1. **Personal leaves** impose no conditions concerning reentering the college except for the five-year limit (see “Return from Leave,” below). Readmission is automatic upon written request made by August 1 for a fall semester, or January 1 for a spring semester.

2. **Conditional leaves** are granted by the college for students who wish to take a leave but are in good academic standing, or for students who wish to take a leave during the current semester. In consultation with the student, an advising dean and the Committee on Academic Records set the conditions for the student’s return. Students may not return from conditional leaves for at least two semesters and/or until specific and individual conditions, such as completing unfinished work, have been met. Students may be granted conditional leaves after
the 12th week of a semester only under extraordinary circumstances and with the approval of the faculty's Committee on Academic Records.

3. Medical leaves are granted by the college only upon the recommendation of Gannett, and are usually issued for at least six months. The college may attach additional conditions appropriate to the individual situation. The student's academic standing is also subject to review at the time of the leave and on return. Students must then receive clearance from both Gannett and the college before they may return to study. Students wishing to return from a medical leave should contact Gannett several months in advance to initiate return process, and only then contact the college.

4. Required leaves. The Committee on Academic Records may require a leave of absence if a student is not making satisfactory progress toward the degree. See "Academic Actions."

Students on conditional or required leaves of absence (LOA) may not attend any classes at Cornell through the School of Continuing Education and Summer Sessions. Students on a medical LOA may not register for classes at Cornell unless they obtain the permission of the college and a recommendation from Gannett. Courses taken without college permission will not count toward degree requirements.

Return from Leave

Students wishing to return from leave must contact the college where appropriate, provide documentation that all conditions for readmission have been satisfied. All requests for readmission must be received by the college by August 1 for the fall semester and January 1 for the spring semester. In the case of conditional and/or medical leaves, substantial advance consultation with both the college and Gannett: Cornell University Health Services is necessary. On readmission, the student's academic record will be recalculated. Five years is the maximum length of time a student may be on leave before being withdrawn from the college.

Transferring Credits Earned While on Leave

Students who take courses elsewhere in the United States while on leave may petition to have credits transferred. Petitions are available in 55 and 172 Goldwin Smith Hall and at www.arts.cornell.edu. Approval depends on acceptable grades and the judgment of the relevant departments about the quality of the courses. If approved, these credits may be applied to part of Group I and II distribution requirements. For students in the graduating classes of 2006 or earlier, they may be applied to part of Group I and II distribution requirements. For students in the graduating classes of 2007 and later, they may not be applied to any distribution requirement at all.
Note of R (Yearlong Courses)

R is recorded for satisfactory progress at the end of the first semester of a two-semester course. Students enroll in both semesters, each time for the full number of credits for the whole course. The grade recorded at the end of the second semester evaluates the student's performance in the course for the entire year.

Grade Reports

Grade reports are available online on Just the Facts; they are not mailed to students. Students should periodically check their courses and grades to be sure that they are recorded correctly.

Class Rank

The college does not compute class rank.

Dean's List

Inclusion on the Dean's List is an academic honor bestowed by the dean of the college semester by semester. Based on grades, the criteria include about the top 30 percent of students and vary with the number of credits the student completes. The criteria are subject to slight changes from semester to semester and are available at www.bio.cornell.edu/stu-adv/deanslist.asp and in the Office of Undergraduate Admissions and Advising, 55 Goldwin Smith Hall.

GRADUATION

The Degree

The College of Arts and Sciences grants only one degree (no matter the student's major): the A.B. (or B.A.). A.B. is the abbreviation of the Latin name for the degree, “artium baccalaurius,” or translated into English, B.A., “Bachelor of Arts.”

Application to Graduate

In the first semester of their senior year, students complete an application to graduate. The application allows the college to check each student's plan for fulfilling college requirements. This process is intended to help seniors identify problems early enough in the final year to make any necessary changes in course selection to satisfy those requirements. Nonetheless, meeting graduation requirements is the student's responsibility; problems that are discovered, even late in the final semester, must be resolved by the student before the degree can be granted.

Degree Dates

There are three degree dates in the year: May, August, and January. Students who plan to graduate in May must attend graduation ceremonies in the preceding May. Students graduating in January are invited to a special recognition ceremony in December; they may also attend graduation ceremonies the following May.

Honors

Bachelor of Arts with Honors

Almost all departments offer honors programs for students who have demonstrated exceptional accomplishment in the major and succeeded in research. The honors programs are described by individual departments. The degree of Bachelor of Arts cum laude, magna cum laude, or summa cum laude will be conferred upon a student who, in addition to having completed the requirements for the degree of Bachelor of Arts, has been recommended for a level of honors by the major department, the Independent Major Program, or the College Scholar Program. Concentrations do not offer honors programs.

Bachelor of Arts with Distinction

The degree of Bachelor of Arts with distinction in all subjects will be conferred upon students who have completed the requirements for the degree of Bachelor of Arts, if they have met the following requirements by the end of their final semester:

1. completed at least 60 credits while registered in regular sessions at Cornell;
2. ranked in the upper 30 percent of their class at the end of the seventh semester, or next-to-last semester for transfers and accelerants;
3. received a grade below C- in no more than one course;
4. received no failing grade;
5. have no frozen Incompletes on their records;
6. maintained good academic standing, including completing a full schedule of at least 12 credits, in each of their last four semesters.

CALENDAR SUPPLEMENT

All of the dates in the university calendar at the front of this volume apply to all Cornell students. Listed below are some additional dates that are of importance for students in the College of Arts and Sciences.

<table>
<thead>
<tr>
<th>Date</th>
<th>Fall 2005</th>
<th>Spring 2006</th>
</tr>
</thead>
<tbody>
<tr>
<td>Last day for adding courses without petition</td>
<td>Sept. 16</td>
<td>Feb. 10</td>
</tr>
<tr>
<td>Last day for adding a first-year writing seminar</td>
<td>Sept. 16</td>
<td>Feb. 10</td>
</tr>
<tr>
<td>Last day for changing grade option to S-U or letter</td>
<td>Sept. 26</td>
<td>Feb. 27</td>
</tr>
<tr>
<td>First deadline for submitting independent major requests</td>
<td>Oct. 14</td>
<td>March 10</td>
</tr>
<tr>
<td>Last day to withdraw from a course</td>
<td>Nov. 18</td>
<td>April 21</td>
</tr>
<tr>
<td>Second deadline for submitting independent major requests</td>
<td>Nov. 27</td>
<td>April 3</td>
</tr>
</tbody>
</table>
Deadline for requesting internal transfer to the College of Arts and Sciences for the following semester.

Deadline for applying to the College Scholar Program.

Deadline for applying to study abroad.

Office, to study abroad 474 Uris Hall

Course enrollment (preregistration) for the following semester.

AFRICAN STUDIES AND RESEARCH CENTER

The Africana Studies and Research Center is concerned with the examination of the history, culture, intellectual development, and social organization of Black people and cultures in the Americas, Africa, and the Caribbean. Its program is structured from an interdisciplinary and comparative perspective and presents a variety of subjects in focal areas of history, literature, social sciences, and African languages. African languages such as Swahili are consistently offered fall and spring semesters and also taught during summer/winter session.

The Africana Studies and Research Center administers an undergraduate Certificate in African Studies program. The Africana Studies and Research Center administers an undergraduate Certificate in African Studies program. The Africana Major offers interdisciplinary study of the fundamental dimensions of the African-American, African, and Caribbean experiences. Because of the comprehensive nature of the program, it is to students' advantage to declare themselves Africana majors as early as possible. The following are prerequisites for admission to the major.

Students should submit:
1. a statement of why they want to be an Africana Studies major;
2. a tentative outline of the area of study they are considering (African, African-American, or Caribbean) for the major; and
3. a full transcript of courses taken and grades received.

The center's director of undergraduate studies, A. Bekerie, will review the applications and notify students within two weeks of the status of their request.

After acceptance as a major in the Africana Center, a student must maintain a C+ cumulative average in the center's courses while completing the major program. The Africana major must complete 36 credits in courses offered by the center, to include the following four core courses: AS&RC 205, 290, 390, and 422. Beyond the core courses, the student must take 8 credits of center courses numbered 200 or above and 15 credits numbered 300 or above. The program of an undergraduate major may have a specifically Afro-American focus or a specifically African focus.

Joint Majors (Minor Concentration)

The center encourages joint majors (minor concentration) in the College of Arts and Sciences and in other colleges. Joint majors are individualized programs that must be worked out between the departments concerned. The center's director of undergraduate studies, A. Bekerie, will assist students in the design and coordination of joint major programs. However, in any joint major program, the center will require that at least 16 credits be taken in Africana Studies courses, including AS&RC 290.

The Africana Major offers interdisciplinary study of the fundamental dimensions of the African-American, African, and Caribbean experiences. Because of the comprehensive nature of the program, it is to students' advantage to declare themselves Africana majors as early as possible. The following are prerequisites for admission to the major.

Students should submit:
1. a statement of why they want to be an Africana Studies major;
2. a tentative outline of the area of study they are considering (African, African-American, or Caribbean) for the major; and
3. a full transcript of courses taken and grades received.

The center's director of undergraduate studies, A. Bekerie, will review the applications and notify students within two weeks of the status of their request.

After acceptance as a major in the Africana Center, a student must maintain a C+ cumulative average in the center's courses while completing the major program. The Africana major must complete 36 credits in courses offered by the center, to include the following four core courses: AS&RC 205, 290, 390, and 422. Beyond the core courses, the student must take 8 credits of center courses numbered 200 or above and 15 credits numbered 300 or above. The program of an undergraduate major may have a specifically Afro-American focus or a specifically African focus.

Joint Majors (Minor Concentration)

The center encourages joint majors (minor concentration) in the College of Arts and Sciences and in other colleges. Joint majors are individualized programs that must be worked out between the departments concerned. The center's director of undergraduate studies, A. Bekerie, will assist students in the design and coordination of joint major programs. However, in any joint major program, the center will require that at least 16 credits be taken in Africana Studies courses, including AS&RC 290.

Double Majors

In the case of double majors (as distinct from joint majors) students undertake to carry the full load of stipulated requirements for a major in each of the two departments they have selected.

Certificate in African Studies

In conjunction with the Institute for African Development, the Africana Studies and Research Center administers an undergraduate Certificate in African Studies program. The certificate is offered as a minor concentration available to students in all of the undergraduate colleges at Cornell. Many of the courses in the program might be used to fulfill other course distribution requirements. By pursuing this certificate, students acquire an interdisciplinary understanding of Africa. After developing a foundation of knowledge on the culture, society, and development of Africa in the core course, AS&RC 191 Africa: The Continent and Its People, students pursue 15 credit hours in a humanities or development studies track or a combination of the two, including an additional core course, either AS&RC 205, African Civilizations and Cultures or CRP 477/677 Issues in African Development. The requirements for the certificate are a minimum of 18 credit hours, including the core courses. Students interested in the certificate program must contact A. Bekerie (the center's director of undergraduate studies), who will register them in the program and assign them a faculty adviser from their own college. The faculty adviser will be responsible for determining completion of the certificate requirements.

Honors

The honors program offers students the opportunity to complete a library research thesis, a field project in conjunction with a report on the field experience, or a project or experiment designed by the student. The requirements for admission to the honors program vary depending on major. The honors program requires a B+ cumulative average in all courses and a B+ cumulative average in the center's courses. Each student accepted into the honors program will have an honors faculty committee consisting of the student's adviser and one additional faculty member, which is responsible for final evaluation of the student's work. The honors committee must approve the thesis or project before May 1 of the student's junior year. The completed thesis or project should be filed with the student's faculty committee by May 10 of the senior year.

Language Requirement

Courses in Swahili may be used to satisfy the College of Arts and Sciences language requirement. In Swahili, successful completion of AS&RC 131, 132, 133, and 134 provides proficiency, and the addition of 202 provides proficiency. AS&RC majors are not required to take an African language, but the center recommends the study of Swahili to complete the language requirement.

AS&RC 111/112(1104/1105)

Elementary Arabic I and II (also NES 111/112)

Fall/Spring. 4 credits. AS&RC 112 provides language qualification. M. Younes.

For description, see NES 111/112.

AS&RC 113/212(1106/2101)

Intermediate Arabic I and II (also NES 113/210)

Fall/Spring. 4 credits. AS&RC 212 provides language proficiency and satisfies Option I. M. Younes.

For description, see NES 113/210.

AS&RC 308/312(3100/3101)

Advanced Intermediate Arabic I and II (also NES 311/312)

Fall/Spring. 4 credits. AS&RC 308 provides language proficiency and satisfies Option I. M. Younes.

For description, see NES 311/312.

AS&RC 131(1100)

Swahili

Fall. 4 credits. Language lab times TBA. A. Nanji

Beginner's Swahili. Part 1—Grammar for speaking, reading, and writing. Requires no knowledge of language. Swahili is spoken in the East and Central parts of Africa.
Students gain mastery over spoken Swahili and are introduced to the predominant Swahili literary forms.

AS&RC 205(2300) African Cultures and Civilizations @ (III) (CA)
Spring, summer. 3 credits. A. Belerke. Concerned with the peoples of Africa and the development of African cultures and civilizations from the earliest times to the present day. Focuses on the near modern civilizations of Africa south of the Sahara, and the ancient civilizations of Egypt and the Nile Valley, together with their contributions to the development of world civilization. Also deals with the sociopolitical organization of African societies, their kinship systems, cross-cutting ties, rites of passage, gender relations, and arts (including music, dance, folklore, architecture, sculpture, painting, and body decoration).

AS&RC 206(2502) Introduction to Black Theatre (also THETR 206[2060]) (IV) (LA)
Fall. 3 credits. Successful completion of course gives students priority for limited enrollment in AS&RC 207 Black Theatre, which produces a public performance in spring. L. Grady-Willis. Performance-based course introducing students to the evolution of Black Theatre in the United States, with the study and interpretation of classic and contemporary plays. Students read works often overlooked in mainstream theatre and literature courses, while experiencing firsthand the challenges and triumphs of creating theatre together. Students participate in both individual and group presentations of dramatic materials. Through dialogue as well as hands-on exploration, students gain insight into various aspects of performance and production, while exploring the works of such renowned playwrights as Lorraine Hansberry and Douglas Turner Ward.

AS&RC 207(2500) Black Theatre (also THETR 207[2070])
Spring. 3 credits. L. Grady-Willis. Performance-based course introducing students to Black Theatre through the interpretation of classic and contemporary plays. Students read works often overlooked in mainstream theatre and literature courses, while experiencing firsthand the challenges and triumphs of creating theatre together. Students participate in individual and/or group presentations of dramatic materials. Through dialogue as well as hands-on exploration, students gain insight into various aspects of performance and production. This course culminates in a public performance. Students serve as actors as well as members of the production team.

AS&RC 210(2501) Major Works of Black World Writing (IV) (LA)
Fall. 3 credits. C. Anyadike. Students consider major African writings from the 16th to the present. Includes a survey of African novelists, the course examines how some selected African novels continue and contrast with the artistic and ideological concerns expressed in Things Fall Apart in an effort to get a good understanding of the growth of a novel writing tradition in Africa. Includes a study of the works of such important writers and critics as Chinua Achebe's seminal essays, and other important works of African fiction. The course includes a study of the works of such important writers and critics as Chinua Achebe's seminal essays, and other important works of African fiction.

AS&RC 299 Achebe and the African Novel
Fall. 3 credits. C. Anyadike. A course on the pioneering role and continuing influence of Chinua Achebe's Things Fall Apart on the development of the novel writing tradition in Africa. From the perspectives of Achebe's seminal essays, and other important works of African fiction. The course includes a study of the works of such important writers and critics as Chinua Achebe's seminal essays, and other important works of African fiction.

AS&RC 301(3200) Politics of Global Africa @ (III) (SBA)
Fall. 3 credits. Not offered 2005-2006. A. Mzakwa.

AS&RC 304(3500) African American Art
Spring. 3 credits. C. Finley. Presents a survey of the different forms of visual arts production by African Americans, from 1619 to the present. Begins with an overview of African American art experiences of the Middle Passage and slavery in relation to African American traditions in the decorative arts (furniture, ironwork, quilt-making, basketry), architecture and archeology. The core of the course is centered in the 20th century and today with an examination of the fine arts of painting and sculpture as well as photography, performance, film and video. Special attention is given to rich periods of artistic production, including the Harlem Renaissance and the Black Arts Movement. Slides and films are used extensively to illustrate topics discussed in addition to original examples of African American art and artifacts in the special collection of the Knoed Museum and the Johnson Museum on campus.

AS&RC 310(3501) Introduction to African Art (also ART H 378[3500]) @ (IV) (LA)
Fall. 3 credits. S. Hassan. Survey of the visual art and material cultural traditions of sub-Saharan Africa. Aims at investigating the different forms of visual art traditions in relation to their historical and sociocultural context. Explores the symbolism and complexity of traditional African art through the analysis of myth, ritual, and cosmology. Uses in-depth analysis of particular African societies to examine the relationship of the arts to indigenous concepts of time, space, color, form, and sociopolitical
order. Also explores new and contemporary art forms associated with major socioeconomic changes and processes of assimilation and acculturation. These include tourist art, popular art, and elite art.

AS&RC 311(3600) Government and Politics in Africa @ (III) (SBA)
Fall. 4 credits. M. Wallace.
Deals with power and political participation in Africa. Topics include: the colonial background and its political consequences, the precolonial continuities in the post-colonial politics, ethnicity and allegiance in the African nation, and the authoritarian tendency in African politics. Discussion covers a spectrum of topics from the warrior tradition to the military coup in the post-colonial era; from the elder tradition to presidential gerontocracy, from the sage tradition to intellectual merciocracy. Other major topics include class versus ethnicity in African politics; the one-party versus the multiparty state; sociocultural versus socioeconomic ideologies; the gender question in African politics; the soldier and the state; and the African political experience in a global context.

AS&RC 320(3202) Race in U.S. Cinema 1895 to 1930 (also VISS 320, FILM 320(3200) (IV) (CA)
Spring. 4 credits. M. Wallace.
Cultural stereotypes and cliches of blacks as inept and clownish were rife in the illustrated press at the time (the turn of the century) that the earliest films were brief and cheap to produce, allowing for a range and variety of imagery that quickly overwhelmed the most compelling racial stereotypes on stage and in performance. In the teens, as the U.S. film industry began to consolidate westward in California, there was the emergence of a powerful new set of racial stereotypes mobilized around the perception of slavery as having been most beneficial for all concerned, culminating in such films as Gone with the Wind in 1939. In the meanwhile, in the ’20s and ’30s, the U.S. film industry remained capable of a modicum of diversity and self-contradiction as black entertainers and peoples of color were becoming individually and collectively famous for their extraordinary gifts as actors, singers, dancers and performers. Some of the performers in this list include Jack Johnson, Noble Johnson, Mme. Sul-te-Wan, Bert Williams, Paul Robeson, Fred Washington, Louise Beavers, Hattie McDaniel, Anna Mae Wong, Diana McKinney, Bessie Smith, Louis Armstrong, Josephine Baker, and Ethel Waters.

AS&RC 325 New Postcolonial Black Lit @ (IV) (LA) (also ENGL 399, COM L 325)
Spring. 4 credits. C. Anyadike.
Devoted to the study of exciting and important new voices of the last decade from the so-called postcolonial societies with a view to highlighting how this body of work has broadened or gone beyond the paradigms and the debate it generates among a wide range of thinkers and scholars.

AS&RC 332(3201) 20th-Century Black Cultural Movements (also COM L 387) @ (IV) (CA)
Fall. 4 credits. A. Adams.
Examines the major cultural currents of the 20th century in the Black World. Major movements/currents considered include the Harlem Renaissance, Negritude, Indigenismo, Black Arts Movement, Creolelit. Basing the study primarily on the reading of literary texts, the artistic/cultural movements are studied within the historical, social, and political forces that produced or influenced them, e.g., religion, colonialism, social protest, African and Caribbean independence, and feminism. Particular attention is given to comparisons across geographic regions, principally the African continent, North America, and the Caribbean. The reading of the literary texts is supported by theoretical readings as well as references to other artistic forms, such as visual arts and music.

AS&RC 342(3504) Topics in Black World Writing (IV) (LA)
Spring. 4 credits. A. Adams.
Provides rotating topics in African and Diaspora literary texts for students at the intermediate level. The rotating topics include: “Living Color: African and Diaspora Autobiography”; “The Afro-Europeans: African Diaspora in Europe”; “Africa Seen through the Eye of the Diaspora." Although a lecture course, with specific, required readings, this class also provides an opportunity for students to read independently selected texts for individual projects.

AS&RC 352(3601) Pan-Africanism and International Politics (III) (SBA)
Spring. 3 credits. L. Edmondson.
Pan-Africanism addresses the shared experiences and aspirations of African people around the world, the focus on a search for greater linkages and unifying measures. Informed by an exploration of the racial factor in international relations, this course examines Pan-African theories, ideologies, and movements, past and present, in their political, socioeconomic, and cultural manifestations, focusing mainly on the African continent, the Caribbean, and Black America.

AS&RC 362(3602) Global Perspectives on Gender @ (III)
N. Assité-Lumumba.

AS&RC 380(3300) African History: Earliest Times to 1800 @ (III) (HA)
Fall. 3 credits. Not offered 2005-2006.
A. Bekerie.

AS&RC 404(4200) Afrocentricity: Paradigm and Critical Readings @ (III) (CA)
Fall. 4 credits. A. Bekerie.
What is Afrocentricity? It is a theoretical framework designed to study and interpret the histories and cultures of peoples of Africa and African descent by locating them at the center of their experiences. In other words, it is a method of knowing the life experiences of African peoples from the inside out. The course examines—through the writings of Asante, Kete, Clarke, Jean, Myers, Amin, Mazrui, Gates, Richards, Schlesinger, and Thiongo—the conception and depth of the paradigm, its relevance in the production and utilization of knowledge, particularly emancipatory knowledge, the history of the paradigm, and the debate it generates among a wide range of thinkers and scholars.

AS&RC 410(4300) African American Politics (III) (HA)
J. Turner.

AS&RC 413 Lynching Violence in America (also S HUM 413)
Fall. 4 credits. N. Barnes.
For description, see S HUM 413.

AS&RC 420(4605) Public Policy and the African-American Urban Community @ (III) (SBA)
J. Turner.

AS&RC 422(4501) African Literature @ (IV) (LA)
Spring. 4 credits. G. Anyadike.
With such great focus, both inside and outside Africa, on issues of Africa’s “development,” what place does “literature” take? Is African literature influencing or influenced by the mundane realities of daily living faced by African peoples? Or does African literature concern itself with philosophical ideas and ideals that transcend those realities to embrace the general human condition? Or, does it do both? The texts read in this course are approached in terms of these issues of “African development” and “the universal human experience”.

AS&RC 426 Rastafari, Race, and Resistance (also S HUM 425)
Spring. 4 credits. P. Archer-Straw.
For description, see S HUM 425.

AS&RC 437(4203) Black Feminism and Photography (IV) (CA)
Fall. 4 credits. M. Wallace.
Looks at recent academic and intellectual developments in black feminist thought. Interrogates contemporary investigations by feminist visual culture into the increasing awareness, documentation and photography of American poverty and the last 30 years of the century through the fifties. How did photographic images of the poor go from being regarded as picturesque to successfully provoking efforts of social reform? How were sexuality and gender roles re-inscribed within a series of social class expectations rendered newly explicit by the technological innovations of half-tone printing and the illustrated press? Most important, were these images racially deterministic, merely reportorial or perhaps (as Walker Evans and James Agee might suggest) perennally and deeply poetic? These images form the basis of our national legacy, made increasingly available and are known and utilized by all with the rise to the Internet. As such, this is a timely and useful field of inquiries for today’s undergraduates in the humanities and the arts.

AS&RC 451(4600) Politics and Social Change in the Caribbean @ (III) (SBA)
Fall. 3 credits. L. Edmondson.
Study of the historical, political, economic, social, and cultural forces affecting the domestic and international experiences of Caribbean societies. Special attention is given to conflicting definitions and perceptions of the Caribbean; the continuing salience of struggles for change and utilization of knowledge, particularly emancipatory knowledge, the history of the paradigm, and the debate it generates among a wide range of thinkers and scholars.
and transformation; prospects of regional integration, and Caribbean challenges to the global system, especially with regard to the region’s relations with the United States and the region’s position in the Third World in the context of the North-South cleavage.

AS&RC 455(4500) Caribbean Literature @ (IV) (LA) Fall. 4 credits. A. Adams. Examines the prose literature of the Caribbean islands. Through the reading of several novels and short stories from the various languages and cultural strains that comprise the Caribbean society, students study the points of commonality and the diversity within this body of literature. The recurrence of certain historical, social, and cultural issues that have formed the multi-ethnic Caribbean peoples are analyzed in their varying manifestations across the linguistic and other boundaries to uncover the underlying shared experience.

AS&RC 459(4601) Innovation in Africa and the Diaspora (also EDUC 459(4590) @ (III) (SBA) Fall. 4 credits. N. Assie-Lumumba. Focuses on the legacies of apartheid and the challenges of transformation toward a post-apartheid society in South Africa. Topics include the rise and decline of apartheid; the historical continuity of Black resistance against racism; women under, against, and after apartheid; South Africa’s relations with its neighbors; geo-political, economic, and racial dimensions of the American connection; politics of transition to majority rule; prospects for stability, democracy, and equality; and South Africa’s new role in the African continental and global arenas. Instructor’s lectures are supplemented by films and class discussions.

AS&RC 478(4606) The Family and Society In Africa (also SOC 478) @ (III) (SBA) Fall. 4 credits. N. Assie-Lumumba. The family, as a social institution, is structured according to historical, socioeconomic, political, and cultural factors. Course topics include the concepts of the nuclear and extended family; the roles, rights, and obligations of age groups and generations; and marriage and its related issues, including parenthood, childrearing, and gender roles.

Other issues examined are reproductive health, family planning, sexuality and fertility (particularly during adolescence), family codes, and legal implications. The course deals also with structural change and continuity, the impact of westernization, urbanization of Egypt, the rural-urban divide, and the contemporary economy on the structure and challenges of the family in Africa. Finally, the legacy of African family values and traditions in the African Diaspora, with a focus on the African-American experience, is discussed.

AS&RC 479(4602) Women and Gender Issues in Africa @ (III) (SBA) Spring. 4 credits. N. Assie-Lumumba. There are two contrasting views of the status and role of women in Africa. One view portrays African women as dominated and exploited by men. According to another view women have a favorable social position in Africa: indigenous ideologies consider women to be the foundation of society, they are economically active and independent and they have an identity independent of men. In this seminar we discuss the status and role of women in Africa historically as well as in the contemporary period. Topics include women in non-westernized/ precolonial societies; colonial ideologies on the status of women; gender and access to schooling, participation in the economy and politics; women and the law; women and health issues; gender issues in southern Africa; womanism and feminism; the United Nations Decade of Women; and the four World Conferences on Women (Mexico 1975, Copenhagen 1980, Nairobi 1985, and Beijing 1995).

AS&RC 484(4603) Politics and Social Change in Southern Africa @ (III) (SBA) Spring. 4 credits. L. Edmondson. Focuses on the legacies of apartheid and the challenges of transformation toward a post-apartheid society in South Africa. Topics include the rise and decline of apartheid; the historical continuity of Black resistance against racism; women under, against, and after apartheid; South Africa’s relations with its neighbors; geo-political, economic, and racial dimensions of the American connection; politics of transition to majority rule; prospects for stability, democracy, and equality; and South Africa’s new role in the African continental and global arenas. Instructor’s lectures are supplemented by films and class discussions.

AS&RC 490(4302) Nile Valley Civilization: Ethiopia, Nubia, and Egypt @ (IV) (NA) Spring. 4 credits. A. Bekere. Focuses on Nile Valley civilizations and their contributions to African and world history. Since natural and human resources provide the foundation for civilizations, the course also examines the ecological and cultural compositions of the river. Concentrates on the Aksumite civilization of Ethiopia, Nubian civilizations of the Sudan, and the Kemet civilizations of Egypt. Uses archaeological, literary, oral, biological, and religious sources to study civilization centers along the Nile. Students discuss civilizations as artifacts that have material, spiritual, social, and philosophical dimensions. Students are introduced to the Ethiopic writing system as a practical lesson in the conception and understanding of aspects of African civilizations.

AS&RC 498–499(4902–4903) Independent Study 498, fall; 499, spring. Africana Studies faculty. For students working on special topics, with selected reading, research projects, etc., under the supervision of a member of the Africana Studies and Research Center faculty.

AS&RC 502(6600) Education and Development in Africa Spring. 4 credits. N. Assie-Lumumba. Focuses on educational theory and practice, concentrating on the interaction between formal education and individual productivity and socioeconomic attainment and economic growth and development of nations. Special emphasis is placed on the role of education in industry and developing countries, including African countries, education has also been perceived as a hindrance to development. The concept of human capital and paradigms of development including modernization, dependency, and Third World Forum are first introduced. Specific issues discussed include schooling and nonformal education; the role of primary, secondary, and higher education in development; and the constraints and output, and outcome based on social class, ethnicity, race, and gender. Employment, migration and international brain drain, the information and communication technologies, indigenous knowledge systems, the role of higher education in regional and international cooperation are also examined.

AS&RC 504(6201) Political Change in Africa Fall. 4 credits. A. Mazrui. The study of Africa can be approached dialectically (focusing on the tension between opposing forces) or historically (focusing on themes as chapters of experience). This course borrows from both those approaches. In their class assignments and examinations students are free to use either approach. The first approach explores the dialectic between continuity and change; tradition and modernity; dependency and liberation; foreign and indigenous influences; anarchy and order; political decay and political development; democracy and authoritarianism; and socialism and capitalism. The thematic approach examines African nationalism; race consciousness and Pan-Africanism; political parties and interest groups; executive power; ethnicity in politics; class-formation; civil- military relations; economic and cultural dependency; sub-regional and continental Pan-Africanism; crisis of the African state; and Africa in world politics.

AS&RC 506(6500) Contemporary African Diaspora Art (also ART H 506[5505]) Spring. 4 credits. C. Finley. Since the 1950s, projects of black liberation and empowerment have influenced the work of African Diaspora artists in the black Atlantic. Pivotal historic events, such as the Civil Rights Movement, the dismantling of colonial rule in Africa and the Brixton race riots in England, have urged black artists to reexamine issues of memory, identity, history and belonging. This course considers those artists who trace a visual genealogy of the African Diaspora and work in what has been identified as a practice of remembrance. The
focus is on artists working after 1960, but students also study the roots of this tradition in the beginning of the 20th century and in earlier periods.

AS&RC 530(6505) Womanist Writing in Africa and the Caribbean
Spring. 4 credits. A. Adams. Theoretical essays on the nature, relevance, and articulation of feminist thought from African and Caribbean writers complement literary texts. Gender issues, as manifested both at home and in emigrant situations abroad are examined in texts by such writers as Spero, G. Dangarembga, A.A. Ba, Emecheta, Kincaid, and W. Mandela. (Francophone works may be read in forces that produced or influenced them, e.g., religion, colonialism, social protest, African and Caribbean independence, womanism. Particular attention is given to comparisons across geographic regions, principally the African continent, North America, and the Caribbean. The reading of the literary texts focuses on artists working after 1960, but students also study the roots of this tradition in the beginning of the 20th century and in earlier periods. AS&RC 532(6202) 20th-Century Black Cultural Movements (also COM L 690(6900))
Fall. 4 credits. A. Adams. Examines the major cultural currents of the 20th century in the Black World. Major movements/currents considered include the Harlem Renaissance, Negritude, Indigenismo, Black Arts Movement, Creolité. Basing the study primarily in the reading of literary texts, the artistic/cultural movements are studied within the historical, social, and political forces that produced or influenced them, e.g., religion, colonialism, social protest, African and Caribbean independence, womanism. Particular attention is given to comparisons across geographic regions, principally the African continent, North America, and the Caribbean. The reading of the literary texts focuses on artists working after 1960, but students also study the roots of this tradition in the beginning of the 20th century and in earlier periods. AS&RC 542(6502) Topics in Black World Writing
Spring. 4 credits. A. Adams. Provides rotating topics in African and Diaspora literary texts for students at the intermediate level. The rotating topics include: “In Living Color: African and Diaspora Autobiography”; “The Euro-Americans: African Diaspora in Europe”; “Africa Seen through the Eye of the Diaspora.” Although a lecture course, with specific, required readings, this class also provides an opportunity for students to read independently selected texts for individual projects.

AS&RC 598-599(6900-6901) Independent Study
598, fall, 599, spring. Variable credit. Prerequisite: graduate standing. African Studies faculty.

AS&RC 601-602(6902-6903) African Studies Graduate Seminar
601, fall; 602, spring. 4 credits. African Studies faculty. Designed for first-year AS&RC graduate students. The seminar is coordinated and supervised by one professor but team-taught by three or four faculty members per semester. Each participating faculty member is responsible for a topical segment of the course related to her or his areas of specialization or an area of interest pertaining to theory and methodology of African Studies. AS&RC 610 Hurston and Afro-American Folklore (IV) (LA) (also ENGL 684, AM ST 610, FGSS 609)
Fall. 4 credits. M. Wallace. Looks at the ethnographies and literature produced by Zora Neale Hurston. As an exemplary native-born Modernist, Hurston’s approach to African American culture was generally celebratory. Nonetheless, she often hinted otherwise, rendering her work also a first-rate guide through a full range of perspectives on the diasporean black experience in the ‘20s, ‘30s, and ‘40s. As students read most of her published works, as well as a range of work recently published about her (letters, new biographies, WPA materials), they ponder the remaining mysteries of her life’s work: what did she wish to teach us about African American oral traditions? What were her own religious and/or philosophical beliefs and did they change throughout her lifetime? AS&RC 611 Ellison—Modernism and the Blues (also ENGL 679)
Spring. 4 credits. M. Wallace. Looks at Ralph Ellison’s elegant restructuring of the canon of Modernist literature both through the self-creation of his own fiction and his non-fiction essays. With the assistance of a first-rate biographer (professions, began in Emergence of Genius), students consider some of Ellison’s formative cultural experiences, including his childhood and adolescence in Oklahoma City and his coming of age through his time as a music student at Tuskegee. In the politically progressive atmosphere of New York, Ellison met and learned from the unfolding reputations of Langston Hughes, Richard Wright, Paul Robeson, and James Baldwin. He was already in his middle years and was unable to publish another novel within his lifetime. AS&RC 698-699(8900-8901) Thesis
698, fall; 699, spring. Prerequisite: AS&RC graduate students. African Studies faculty. AKKADIAN
See “Department of Near Eastern Studies.”

AMERICAN STUDIES

The Major
The major in American Studies, appropriate for a wide array of future professions, began as a program of coordinated study in the history, literature, and politics of the United States. These remain the core elements, but American Studies aims to be inclusive in its subject matter. Given the nation’s diverse population and cultures, the program wants its majors to examine American experience in broad terms, drawing on the materials and methods of a variety of disciplines. Students who contemplate becoming American Studies majors are encouraged to speak with the program director as early as possible to arrange for a major adviser. All students majoring in American Studies must take a minimum of 12 courses selected from the American Studies roster. No more than six of these courses can come from any one discipline. Of the 12 courses at least three must have a substantial focus on material before 1900, at least two must deal with American diversity (AM ST 109 and 110 are especially recommended), and at least one must be a 400 level seminar, either an American Studies 430 course or an appropriate substitute seminar at the 400 level (AM ST 500/501, taught in Washington, D.C., does not fulfill the seminar requirement though it counts as one course toward the major). Note: A single course may satisfy more than one of these requirements: e.g., a course on Native Americans in the 1800s is both a course dealing substantially with pre-1900 material and one dealing with American diversity. Although a good bit of freedom is encouraged in the selection of courses, American Studies majors, in consultation with their advisor, must define an area of concentration and complete six courses in that area. The area of concentration can be designed to fit the particular interests of a student, but it must include subjects in at least two disciplines. Possible areas of concentration include “visual studies,” “cultural studies,” “race and ethnicity,” “legal and Constitutional studies,” “American institutions,” “class and social structure,” “the American environment” (Courses taken to satisfy the concentration may be used to fulfill other requirements for the major.) Students may find courses relevant to American experience that they wish to take but that are not on the American Studies course list. With their advisor’s approval, students may count two such courses toward fulfilling the major.

HONORS
Candidates for honors must maintain an average of B+ in courses pertinent to the major and have taken with their advisor in which they wrote a research paper. Normally, at the end of the junior year students who wish to write a senior honors essay must approach a member of the American Studies faculty and discuss their project with a faculty member. With approval from the faculty member students may then register in the fall of their senior year for AM ST 493, the honors essay tutorial. At the end of the fall semester, honors candidates meet with their advisor and a second member of the American Studies faculty to discuss their progress. If satisfactory, honors students complete their honors essays in the spring by enrolling in AM ST 494.
AM ST 101(1101) Introduction to American Studies: History and Literature, the 19th Century # (III or IV) (LA)
G. C. Altschuler and D. McCall.
Interdisciplinary course analyzing American values and behavior as the intersection of culture, politics, literature, and society by examining eight "great" or classic texts written between 1776 and 1900. The historical context of these texts is explored in lecture; and their literary and historical-cultural documents. Texts include Common Sense by Thomas Paine; The Blithedale Romance by Nathaniel Hawthorne; The Lincoln-Douglas Debates; Henry James' The Bostonsians; Mark Twain's Huckleberry Finn, and William Dean Howells' The Rise of Silas Lapham.)

AM ST 102(1102) Introduction to American Studies: History and Literature, the 20th Century (III or IV) (LA)
G. Altschuler and D. McCall.
Interdisciplinary course analyzing American values and behavior as the intersection of culture, politics, literature, and society. It does so by examining eight "great" or classic texts written between 1900 and the present. Texts include Joseph Wood Krutch, The Modern Temper; Hemingway, A Farewell to Arms; Fitzgerald, The Great Gatsby; Reinhold Niebuhr, Children of Light; Children of Darkness; Faulkner, The Sound and the Fury; Ellison, Invisible Man; Roth, American Pastoral; and Updike, Rabbit Is Rich.)

AM ST 109(1109) Introduction to American Studies: New Approaches to Understanding American Diversity, the 19th Century # (III) (HA)
N. Salvatore.
Examines the first century and one-half of American national life and asks a series of interrelated questions about the changing meaning of national identity during this time. What did it mean to become an American, a process often urged on new immigrants, in light of the values and perceptions immigrants brought with them? What did democracy, a core element of becoming American, mean if one were African or Native American? Irish or German? Jewish or Chinese? In what ways did racial and ethnic perceptions structure political and cultural life during this period; and how does understanding the diverse historical reactions to these perceptions aid us in understanding the New Deal, the emergence of the modern conservative movement; the impact of the 1960s on the decades that followed; and the revival of a vibrant, Christian, and politically engaged presence in American politics. In addition to the weekly book, there will be a series of shorter essays selected in consultation with the instructor.

AM ST 430.4(4300) America Reborn?: Conservatives, Liberals, and American Political Culture Since 1945
Spring. 4 credits. Prerequisite: permission of instructor. D. Rubenstein.
This seminar will examine the enormous changes in American political life in the last half of the 20th century. Among the topics we will cover in readings and discussion: the changing fate of liberalism and the legacy of the New Deal, the emergence of the modern conservative movement; the impact of the 1960s on the decades that followed; and the revival of a vibrant, Christian, and politically engaged presence in American politics. In addition to the weekly book, there will be a series of shorter essays selected in consultation with the instructor.

AM ST 430.5(4301) The Milman Seminar
Fall. 4 credits. Prerequisite: permission of instructor. E. Cheyfitz.
The Milman Seminar explores the role of diversity in the formation of a distinct American identity. It will be offered each year, but the general subject is the promise and experience of pluralism. Topic for fall 2005: American Indian Philosophies. This course will focus on Native American (Alaskan, Hawaiian, and Indian) thought from the pre-invasion period (before 1492) to the present as it is contained in both oral narratives and written texts (nonfiction, fiction, and poetry). The purpose of the course will be to ask how understand how and in what forms Native Americans from a range of cultures think about subject matters in a range of areas: social, spiritual, legal, political, aesthetic, scientific, environmental, and historical. Second, to ask how important philosophies can help us answer the following question: what is a just community?

AM ST 430.6(4300) The Milman Seminar
Fall. 4 credits. Prerequisite: permission of instructor. G. C. Altschuler.
The Milman Seminar: Baseball in American Culture. Through a reading of fiction and nonfiction, we examine the role of baseball as it has shaped and reflected the attitudes and values of Americans. Novels assigned include Bernard Malamud, The Natural; Mark Frost and Bob Costas, Bang the Drums Slowly; Philip Roth, *Portnoy's Complaint*; Billions; and Andrew Zimbalist, *Baseball and American Capitalism*.

AM ST 430.7(4301) The Postmodern Presidency (also GOVT 405[4051])
Spring. 4 credits. Prerequisite: permission of instructor. D. Rubenstein.
This course examines the presidencies of Reagan, G. H. W. Bush, Clinton, and...
students of the presidency as a periodizing hypothesis, this course emphasizes the work of cultural critics and historians. We will address the slippage between fact and fiction in cinematic and popular representations of the presidency (biography, novels, television). The construction of gender normativity (especially masculinity) will be an attendant subtheme. The postmodern presidency is read as a site of political as well as cultural contestation. The larger question of this approach to the presidency concerns the relationship between everyday life practices and citizenship as well as the role of national fantasy in American political culture today. Readings will include Frances Fitzgerald’s Way Out There in the Blue, Edmund Morris’ Dutch, Lydia Miller’s George Bush, Dark Prince of Love, and Michael Rogin’s Independence Day, or How I Learned to Stop Worrying and Love the Enola Gay, and Ronald Reagan, the Movie. We will examine films/film excerpts including Dave, Men Attack, Forrest Gump, Independence Day, Primary Colors, Murder at 1600, JFK, Nixon, and House of Yes.

Anthropology, Sociology, and Economics

[AM ST 221(2721)] Anthropological Representation: Ethnographies of Latin Culture (also ANTHR/LSP 221[2721])
V. Santiago-irizarry.
For description, see ANTHR 221.

[AM ST 231(2300)] Latino Communities (also D SOC/LSP 230[2300])
Fall. 4 credits. R. Mire.
For description, see D SOC 230.

[AM ST 239(2350)] Archaeology of North American Indians (also ANTHR 239[2353])
Spring. 4 credits. K. Jordan.
For description, see ANTHR 235.

[AM ST 353(3453)] Anthropology of Colonialism (also ANTHR 353[3453])
Fall. 4 credits. A. Simpson.
For description, see ANTHR 353.

[AM ST 375(3750)] Comparative Race and Ethnicity (also D SOC/LSP 375[3750])
Spring. 4 credits. R. Mire.
For description, see D SOC 375.

[AM ST 377(3777)] The United States (also ANTHR/LSP 377[3777])
Fall. 4 credits. V. Santiago-irizarry.
For description, see ANTHR 377.

Literature and Theatre Arts

[AM ST 206(2030)] Introduction to American Literature (also ENGL 206[2030])
Fall. 4 credits. E. Cheyfitz.
For description, see ENGL 203.

[AM ST 207(2040)] Introduction to American Literature (also ENGL 207[2040])
Spring. 4 credits. J. Caraclo.
For description, see ENGL 204.

[AM ST 215(2150)] Comparative American Literature (also COM L 215[2150])
B. Maxwell.
For description, see COM L 215.

[AM ST 219(2060)] The Great American Novel (also ENGL 206[2060])
Fall. 4 credits. M. Hite.
For description, see ENGL 206.

[AM ST 230(2760)] Survey of American Film (also FILM 276[2760], VISST 230[2300]) (IV) (LA)
Spring. 4 credits. Each student must enroll in a section and attend one screening per week. S. Mize.
Focusing mostly on Hollywood film, this course surveys some major developments in and approaches to 20th-century American cinema. We trace changes in film aesthetics and film style, the development of the American cinema as an institution that comprises an industrial system of production, social and aesthetic norms and codes, and particular modes of reception. The course introduces methodological issues in American film history—especially questions of narrative, genre, stardom, and authorship—and focuses on the ways film shapes gender, race, class, ethnic, and national identities. Screenings include work by D. W. Griffith, John Ford, Howard Hawks, Orson Welles, Vincente Minnelli, Robert Altman, Charles Burnett, Spike Lee, and others and are supplemented by readings in film criticism and history.

[AM ST 240(2641)] Survey in U.S. Latino Literature (also ENGL[2400]/LSP 240[2640])
M. P. Brady.
For description, see ENGL 240.

[AM ST 252(2510)] 20th-Century Women Writers (also ENGL/FGSS 251[2510])
Fall. 4 credits. E. DeLoughrey.
For description, see ENGL 251.

[AM ST 253(2520)] Late 20th-Century Women Writers and Visual Culture (also VISST/ENGL 253[2520])
For description, see ENGL 252.

[AM ST 260(2600)] Introduction to American Indian Literature (also ENGL 260[2600])
E. Cheyfitz.
For description, see ENGL 260.

[AM ST 262(2620)] Asian American Literature (also ENGL/ASIS 262[2620])
4 credits. S. Wong.
For description, see ENGL 262.

[AM ST 268(2680)] The Culture of the 1960s (also ENGL 268[2680])
P. Sawyer.
For description, see ENGL 268.

[AM ST 275(2750)] The American Literary Tradition (also ENGL 275[2750])
N. Waligora-Davis.
The problem of an American national literature is explored through the reading, discussion, and close analysis of texts across the range of American literary history. Not a survey, this course focuses on the relations of the texts to each other, the shaping of national identities in those relationships, and the assumptions about history, language, and the self that underlie them.

[AM ST 293(2650)] Survey in African American Literature (also ENGL 293[2930])
H. Spillers.
For description, see ENGL 293.

[AM ST 335(3370)] Contemporary American Theatre (also THETR/ENGL 335[3370])
Fall. 4 credits. S. Warner.
For description, see THETR 336.

[AM ST 338(3440)] American Film Melodrama (also FILM/ENGL 338[3440])
S. Haenni.
For description, see FILM 338.

[AM ST 348(3480)] Film Noir (also FILM 348[3480]) (IV) (LA)
S. Haenni.
At the close of World War II, the French coined the semester “film noir” to describe a new, “dark,” and “gloomy” set of Hollywood films that were populated by fatalistic fates, criminal gangs, private eyes, and lovers on the run, and that centered on issues of violence, crime, paranoia, betrayal, pessimism, and self-doubt. Deriving from hard-boiled detective fiction, and influenced by Samuel Fuller, German Expressionist cinema, film noir has now become one of the most acclaimed genres in Hollywood film. In this course we explore both the stylistic characteristics and thematic and cultural contexts of film noir. We examine the history and function of “noir” as a critical semester, the influence of hard-boiled fiction, and the evolution of noir style and noir narratives. We investigate how film noir articulates anxieties about postwar masculinity and about the sexual and social roles of women; how it popularizes psychology; how it portrays the city as an “urban jungle”; and about the sexual and social roles of women; how it popularizes psychology; how it portrays the city as an “urban jungle”; and how it represents a response to fears about communism and the atomic bomb. Screenings include major studio features such as Double Indemnity and Laura, B-pictures such as Detour and Gun Crazy, and “neo-noirs” such as Chinatown and Devil in a Blue Dress. The discussion of films is guided by readings in film criticism and history.]
AM ST 361(3610) Studies in the Formation of U.S. Literature: Emerson to Melville (also ENGL 361[3610])
For description, see ENGL 361.

AM ST 364(3640) Studies in U.S. Literature after 1950 (also ENGL 364[3640])
Fall. 4 credits. B. Maxwell.
For description, see ENGL 364.

AM ST 365(3650) American Literature Since 1945 (also ENGL 365[3650])
For description, see ENGL 365.

AM ST 366(3660) Studies in U.S. Fiction before 1900: The 19th-Century American Novel (also ENGL 366[3660])
Spring. 4 credits. S. Samuels.
For description, see ENGL 366.

AM ST 370(3760) Survey in African American Literature: 1918 to Present (also ENGL 370[3760])
For description, see ENGL 370.

AM ST 372(3780) African American Poetry Since 1950 (also ENGL 372[3780])
For description, see ENGL 372.

AM ST 374(3811) Slavery in 20th-Century American Film and Fiction (also ENGL 374[3741], FGSS 378[3780])
Spring. 4 credits. N. Wuligora-Davis.
For description, see ENGL 374.

AM ST 387(3910) Studies in African-American Literature (also ENGL 387[3910])
Fall. 4 credits. H. Spillers.
For description, see ENGL 387.

AM ST 393(3930) International Film of the 1970s (also FILM 393[3930])
Spring. 4 credits. S. Haenni.
More than being characterized by a retreat from political, critical cinema and by the reemergence of the Hollywood blockbuster such as The Godfather, Star Wars, and Jaws, the seventies were also a period of enormous innovation and cross-fertilization in film history and film style. Profound changes in the film industry and film technology along with larger social, political, and cultural developments, enabled new ways of understanding—and using—the cinematic image as well as film sound. In this course, we focus on the transnational nature of seventies film, the influence of European art cinema on American film, the reworking and rejuvenation of genre films (neo-noir, western, horror film, road movie, etc); European responses to and appropriation of American film genres, film conventions, and subject matter; Asian influence in the United States particularly the martial arts film; the emergence of film subcultures, such as black independent film and blaxploitation. Screenings include work by Arthur Penn, Robert Altman, Francis Ford Coppola, Steven Spielberg, Charles Burnett, John Cassavetes, Mario Van Peebles, Gordon Parks, Milo Forman, Sergio Leone, Michelangelo Antonioni, Lina Wertmuller, Bertrand Blier, Louis Malle, Eric Rohmer, Chantal Akerman, Rainer Werner Fassbinder, Wim Wenders, Nicholas Roeg, and Stanley Kubrick and are guided by readings in film criticism and history.

AM ST 395(3970) Policing and Prisons in American Culture (also ENGL 395[3970])
For description, see ENGL 397.

AM ST 396(3981) Latin/o Cultural Practices (also ENGL/LSP 466[4660])
For description, see ENGL 398.

AM ST 403(4030) Senior Seminar in Poetry: A. R. Ammons (also ENGL 403[4030])
Fall. 4 credits. R. Gilbert.
For description, see ENGL 403.

AM ST 425(4260) Senior Seminar in Latinos Studies: Chicana Feminism (also ENGL/LSP 425[4260])
For description, see ENGL 426.

AM ST 456(4650) American Violence (also ENGL 456[4650])
For description, see ENGL 456.

AM ST 476(4760) American Melodrama and Film (also FILM 476[4760])
For description, see FILM 476.

AM ST 477(4601) Melville (also ENGL 477[4601])
For description, see ENGL 477.

Government and Public Policy
GOVT 111(1111) Introduction to American Government and Politics
Fall. 3 credits. T. Lowi.
Introduction to government through the American experience: Concentration on analysis of the institutions of government and politics as mechanisms of social control.

AM ST 302(3021) Social Movement in American Politics (also GOVT 302[3021])
Fall. 4 credits. M. E. Sanders.
For description, see GOVT 302.

AM ST 310(3271) Civil Liberties in the United States (also GOVT 327[3271])
For description, see GOVT 327.

AM ST 311(3111) Urban Politics (also GOVT 311[3111])
For description, see GOVT 311.

AM ST 313(3191) Racial and Ethnic Politics (also GOVT 319[3191])
Spring. 4 credits. M. Jones-Correa.
For description, see GOVT 313.

AM ST 315(3141) Prisons (also GOVT 315[3141])
Fall. 4 credits. M. Katzenstein.
For description, see GOVT 314.

AM ST 316(3161) The American Presidency (also GOVT 316[3161])
For description, see GOVT 316.

AM ST 319(3181) The U.S. Congress (also GOVT 319[3181])
Fall. 4 credits. M. Shetter.
For description, see GOVT 318.

AM ST 326(3031) Imagining America: Race and National Fantasy in European Travel Writing from De Tocqueville to Baudrillard (also COM L 326[3031], GOVT 303[3031])
III (or IV) (CA)
Addresses 19th- and 20th-century European travel writing about America from Alexis de Tocqueville’s landmark work, Democracy in America, to Jean Baudrillard’s polemical America and Umberto Eco’s Travels in Hyperreality. Concerned with the question of what America, as both “Euro-American” ideal and as a living example, represents for the European philosophical voyager. For example, what role does national fantasy play in the encounters revealed in Julie Kristeva’s excursion to America in Simone de Beauvoir’s guided (by Richard Wright) tour as recounted in her diary America Day by Day? Also discusses Francois-Rene de Chateaubriand’s René and Atala as a literary limit case of intercultural exchange. Also considers how race is implicated in these writings (e.g., de Tocqueville, de Beauvoir; Kristeva’s consideration of “the foreigner”) and the pertinence of American genres such as the captivity narrative for readings of Chateaubriand or de Tocqueville and Beauvoir’s writings on prison.

AM ST 328(3281) Constitutional Politics: The United States Supreme Court (also GOVT 328[3281])
Fall. 4 credits. J. Rabkin.
For description, see GOVT 328.

AM ST 350(3501) Atomic Consequences: The Incorporation of Nuclear Weapons in Postwar America (also S&Ts 350, GOVT 305)
For description, see S&Ts 350.
AM ST 351(3605) Ideology (also GOVT 360[3605])
Spring. 4 credits. D. Rubenstein.
For description, see GOVT 360.

AM ST 362(3655) Politics and Literature
(also GOVT 365[3655])
Fall. 4 credits. J. Frank.
For description, see GOVT 365.

AM ST 376(3665) American Political Thought from Madison to Malcolm X (also GOVT 366[3665], HIST 316[3160])
Fall. 4 credits. I. Kramnick.
For description, see GOVT 366.

AM ST 388(3901) Science in the American Polity, 1900 to 1960 (also S&T S 390[3901], GOVT 309[3091])
M. E. Sanders.
For description, see S&T S 391.

AM ST 389(3911) Science in the American Polity, 1960 to Now (also S&T S 391[3911], GOVT 309[3091])
Spring. 4 credits. Staff.
For description, see S&T S 391.

AM ST 404(4041) American Political Development in the 20th Century (also GOVT 404[4041])
M. E. Sanders.
For description, see GOVT 404.

AM ST 422(4201) War at Home (also GOVT 420[4201])
M. Shetter and J. Rabin.
For description, see GOVT 420.

AM ST 424(4241) Contemporary American Politics (also GOVT 424[4241])
Fall. 4 credits. M. Shetter.
For description, see GOVT 424.

AM ST 428(4281) Government and Public Policy: An Introduction to Analysis and Criticism (also GOVT 428[4281])
Fall. 4 credits. T. Lowi.
For description, see GOVT 428.

AM ST 458(4585) American Political Thought (also GOVT 458[4585])
Spring. 4 credits. J. Frank.
For description, see GOVT 458.

AM ST 501(4998) Politics and Policy: Theory, Research, and Practice (also GOVT 500[4998], ALS 500[4998], PAM 406)
Fall and spring. 8 credits each semester.
S. Jackson.
Offered in Cornell in Washington Program.
This course, taught in Washington, D.C., forms the core of the public policy option of the Cornell in Washington Program.

History
AM ST 103(1530) Introduction to American History (also HIST 153[1530])
Fall. 4 credits. J. Parmenter.
A survey of American History from the beginning through the Civil War. Topics include cultural encounters in the age of Columbus, European colonization, the American Revolution, the early republic, antebellum reform movements, and the coming of the Civil War.

AM ST 104(1531) Introduction to American History (also HIST 154[1531])
Spring. 4 credits. D. Chang.
An introductory survey of the development of the United States since the Civil War.

AM ST 124(1240) Democracy and Its Discontents: Political Traditions in the United States (also HIST 124)
Summer. 3 credits. N. Salvatore.
An examination of democracy and its critics. The course explores the evolution of democracy in America, focusing on some of the dramatic and important episodes in American history. It considers the struggles over the emancipation of slaves in the 19th century and expanded rights for women and working people in the 20th century, free-speech issues, the civil-rights movement, religious-based critiques of American culture, and conservative critiques of American liberalism. The course serves as an introduction to the ways in which political expression takes forms in modern American culture. In addition to lectures, the course features several afternoon programs that include guest lecturers and hands-on instruction in how to use the modern electronic research library.

AM ST 201[20][2010] Popular Culture in the United States, 1900 to 1945 (III or IV) (HA)
G. Altschuler.
AM ST 201 deals with American popular culture in the period between 1900 and the end of World War II. As we examine best-sellers, films, sports and television, radio, ads, newspapers, magazines, and music, the goal is to better understand the ways in which popular culture as "contested terrain," the place where social classes, racial and ethnic groups, women and men, the powerful and the less powerful, seek to "control" images and themes. Topics include: the Western, Cultural Heroes and the Cult of Individualism in the 1920s; The Hays Code and the Black Sox scandal; Mae West and the "New Women": Advertising in an Age of Consumption; Gangsters and G-Men; and Jackie Robinson and the American Dilemma.

AM ST 202[20][2020] Popular Culture in the United States, 1945 to Present (III or IV) (HA)
G. Altschuler.
AM ST 202 treats the period from 1945 to the present as we examine best-sellers, films, sports and television, radio, ads, newspapers, magazines, and music. We try to better understand the ways in which popular culture shapes and/or reflects American values. The course also examines the popular culture as "contested terrain," the place where social classes, racial and ethnic groups, women and men, the powerful and the less powerful, seek to "control" images and themes. Topics include: The Honeymooners and the 1950s television, soap operas; "gross-out" movies; Elvis, the Beatles and Guns 'n Roses; gothic romances, and People Magazine and USA Today.

AM ST 203(2033) Wilderness in North American History and Culture (also HIST 203[2033])
Fall. 4 credits. A. Sachs.
For description, see HIST 203.

AM ST 204[20][2022] Court, Crime, and Constitution (also HIST 202[2020])
Spring. 4 credits. R. Polenberg.
For description, see HIST 202.

AM ST 208(2080) Seminar: Era-Franklin D. Roosevelt (also HIST 208[2080])
R. Polenberg.
For description, see HIST 208.

AM ST 209[2090] Seminar in Early America (also HIST 209[2090])
For description, see HIST 209.

AM ST 210[2100] The Emergence of Modern Conservative Movement: From Strom Thurmond to Ronald Reagan
This course explores the social and cultural roots of modern American conservatism and its rise to political prominence in the post-1945 era. We examine the movement's intellectual origins, social and cultural attitudes, and the political figures who presented conservatism's analysis to the public. The interplay between this revived political movement and a more liberal approach deeply grounded in the New Deal and its legacy receives attention as well.

AM ST 212[2120] African American Women: 20th Century (also HIST/FGSS 212[2120])
M. Washington.
For description, see HIST 212.

AM ST 213[2130] Introduction to Asian American History (also HIST 264[2640], AAS 213[2130])
D. Chang.
For description, see HIST 264.

AM ST 214[2140] Seminar on American Foreign Policy (also HIST 214[2140])
Fall. 3 credits. Prerequisite: permission of instructor. W. LaFeber.
For description, see HIST 214.

AM ST 216[2104] Ritual, Print, and People: From Strom Thurmond to Ronald Reagan
For description, see HIST 216.

AM ST 218[2200] Road Trip in American History and Culture (also HIST 220[2200])
For description, see HIST 220.

AM ST 222[2220] Jefferson and Lincoln (also HIST 222[2220])
For description, see HIST 221.

AM ST 236[2360] Native People of the Northeast, Pre-Contact to the Present (also HIST/AIS 236[2360])
For description, see HIST 236.

AM ST 238[2390] Seminar in Iroquois History (also HIST 239[2390])
Fall. 4 credits. J. Parmenter.
For description, see HIST 239.
[AM ST 239(2400)] Immigration and Ethnicity in 20th-Century United States (also HIST 240[2400], LSP 241[2400])

[AM ST 242(2420)] Religion and Politics in African American History from J. Winthrop to R. Reed (also HIST/RELST 242[2420])

[AM ST 250(2501)] Race and Popular Culture (also HIST 251[2510])
Spring. 4 credits. M. Washington. For description, see HIST 251.

[AM ST 251(2110)] Black Religious Traditions from Slavery to Freedom (also HIST/RELST 211[2110])
Fall. 4 credits. M. Washington. For description, see HIST 211.

[AM ST 261(2610)] Latinos in the United States: 1898 to the Present (also HIST/LSP 261[2610])

[AM ST 266(2660)] Introduction to Native American History (also HIST/AMES 266[2660])
Spring. 4 credits. J. Parmenter. For description, see HIST 266.

[AM ST 272(2720)] The Atlantic World from Conquest to Revolution (also HIST 272[2720])

[AM ST 273(2730)] Women in American Society, Past and Present (also HIST 273[2730])

[AM ST 292(2980)] Inventing an Information Society (ECE/ENGRG 298[2980], HIST 292[2920], S&TS 292[2921])
Spring. 3 credits. R. Kline. For description, see ECE 298.

[AM ST 303(3030)] African American Women in Slavery and Freedom (also HIST 303[3030], FGSS 307[3070])
Fall. 4 credits. M. Washington. For description, see HIST 303.

[AM ST 304(3040)] American Culture and Social Change, 1880 to 1980 (also HIST 304[3040])

[AM ST 308(3060)] History of American Workers: 1960 to 1990s (also ILRCB 308[3060])
Fall. 3 credits. J. Cowie. For description, see ILRCB 308.

[AM ST 309(3090)] The Cinema and the American City (also FILM 342[3420])
4 credits. Not offered 2005-2006. S. Haenni. The emergence of the cinema in the late 19th century coincided with the emergence of a new kind of metropolis, characterized by, among other things, new traffic systems (elevated train, subway, automobile); new racial, ethnic, and sexual regimes; and new urban planning. The cinema was inevitably affected by the ways in which the city developed, while at the same time it also made the city legible. In this course we examine how American cities and towns have been represented in film in different ways, as, for instance, musical symphonies, mysteries to be deciphered, or post-apocalyptic wastelands. We explore how gender, racial, ethnic, class, and sexual identities are negotiated in the modern, cinematic city. Screenings range from silent and early sound films, such as _The Crowd_ and 1930s musicals, to contemporary cinema, such as _Do the Right Thing_ and _Blade Runner_; our viewings are guided by readings in film and urban theory and history.

[AM ST 310(3100)] American Constitutional Development (also HIST 310[3100])

[AM ST 311(3110)] Colonial North America to 1763 (also HIST 311[3110])

[AM ST 312(3120)] Age of the American Revolution, 1763 to 1815 (also HIST 312[3120])

[AM ST 322(3220)] Varieties of American Dissent, 1880 to 1990 (also HIST 322[3220])
Fall. 4 credits. N. Salvatore. The idea of dissent in American society raises a variety of images. Civil rights activists, striking workers, and student radicals of the 1960s are familiar enough symbols of dissent. But might we understand a Pentecostal believer, filled with the spirit of his or her God in critiquing contemporary society, as an example of American dissent? This course explores the varieties of economic, political, and cultural dissent in American between 1880 and 1990, and examines how understanding dissent in its specific historical context illuminates major aspects of American life and culture.

[AM ST 323(3230)] The Great Depression (also HIST 323[3230])
Spring. 4 credits. J. Smith. For description, see HIST 323.

[AM ST 331(3310)] Causes of the American Civil War, 1815 to 1860 (also HIST 331[3310])
Fall. 4 credits. E. Baptist. For description, see HIST 331.

[AM ST 340(3400)] Recent American History, 1925 to 1960 (also HIST 340[3400])

[AM ST 341(3410)] Recent American History, 1960 to Present (also HIST 341[3410])
Fall. 4 credits. R. Polenberg. For description, see HIST 341.

[AM ST 343(3430)] American Civil War and Reconstruction, 1860 to 1877 (also HIST 343[3430])
Spring. 4 credits. E. Baptist. For description, see HIST 343.

[AM ST 344(3450)] African-American History (also HIST 335[3350])

[AM ST 345(3450)] Intellectual/Cultural Life of 19th-Century Americans (also HIST/RELST 345[3450])
Fall. 4 credits. A. Sachs. For description, see HIST 345.

[AM ST 346(3460)] Modernization of the American Mind (also HIST 346[3460])

[AM ST 349(3510)] Environmental History: The United States and the World (also HIST 315[3150])
Spring. 4 credits. A. Sachs. For description, see HIST 315.

[AM ST 356(3570)] Engineering in American Culture (also ENGRG/HIST/S&TS 357[3570])
Fall. 4 credits. R. Kline. For description, see ENGRG 357.

[AM ST 357(3550)] Latinos, Law, and Identity (also LSP/D SOC 355[3550])

[AM ST 370(3780)] Topics in U.S. Women's History (also HIST/FGSS 378[3780])

[AM ST 411(4110)] Undergraduate Seminar in the History of the American South: Race and Sex, Men and Women; Gender of the Old South (also HIST 411[4111])

[AM ST 413(4130)] Lynching Violence in America (also S HUM 413)
Fall. 4 credits. N. Barnes. For description, see S HUM 413.

[AM ST 417(4170)] History of Female Adolescence (also HD 417[4170], HIST 458[4580], FGSS 436[4360])
4 credits. Prerequisite: permission of instructor. Not offered 2005-2006. J. Brumberg. For description, see HD 417.
AM ST 419(4190) Seminar in American Social History (also HIST 419(4190))
For description, see HIST 419.

[AM ST 420(4220) Asian American Communities (also HIST 420(4220), AAS 424(4240))]
For description, see HIST 420.

[AM ST 421(4120) Undergraduate Seminar in American Cultural History (also HIST 421(4210), ART H 421(4021))]
For description, see HIST 421.

[AM ST 426 The West and Beyond: Frontiers and Borders in American History and Culture (also HIST 426(4260))]
For description, see HIST 426.

AM ST 427(4261) Sex, Rugs, Salt, and Coal (also HIST 427(4261))
Spring. 4 credits. A. Sachs.
For description, see HIST 427.

AM ST 439(4039) Reconstruction and the New South (also HIST 439(4390))
For description, see HIST 439.

[AM ST 440(4400) Undergraduate Seminar in Recent American History (also HIST 440(4400))]
For description, see HIST 440.

[AM ST 444(4440) American Men (also HIST 444(4440))]
For description, see HIST 444.

[AM ST 466(4660) Iroquois History (also HIST 466(4660))]
For description, see HIST 466.

AM ST 499(4900) New World Encounters, 1500 to 1800 (also HIST 499(4900))
Spring. 4 credits. J. Parmenter.
For description, see HIST 499.

AM ST 500(4997) Research Seminar in American Studies (also HIST 500(4997))
Fall or spring. Offered in Cornell in Washington Program only. S. Blumín and others.
For description, see HIST 500.

Music and Visual Studies

[AM ST 105(1311) Popular Music in America, 1850 to 1985 (also MUSIC 101(1311))]
For description, see MUSIC 101.

AM ST 222(1313) A Survey of Jazz (also MUSIC 222(1313))
Fall. 3 credits. S. Pond.
For description, see MUSIC 222.

AM ST 223(1312) History of Rock Music (also MUSIC 221(1212))
Spring. 3 credits. J. Peraino.
For description, see MUSIC 221.

AM ST 227(2091) The Immigrant Imagination (also ART H 209(2190), AAS 209(2090))
Fall. 4 credits. T. Tu.
For description, see ART H 209.

AM ST 228(2820) The American Landscape (also LA 282(2820))
Fall. 3 credits. H. Gottfried.
For description, see LA 282.

AM ST 355(3605) U.S. Art from FDR to Reagan (also ART H 365(3605))
Fall. 4 credits. J. E. Bernstock.
For description, see ART H 365.

AM ST 360(3740) Painting and Everyday Life in 19th-Century America (also ART H 360(3740))
For description, see ART H 360.

AM ST 390(3810) American Architecture and Building I (also ARCH 390(3810))
Fall. 3 credits. Prerequisites: ARCH 181–182 or permission of instructor. M. Woods.
For description, see ARCH 390.

AM ST 391(3811) American Architecture and Building II (also ARCH 391(3811))
Spring. 3 credits. Prerequisites: ARCH 181–182 or permission of instructor. M. Woods.
For description, see ARCH 391.

AM ST 412(4113) Race, Technology, and VISUALITY (also ART H 413(4113), AAS 413(4130))
Fall. 4 credits. T. Tu.
For description, see ART H 413.

AM ST 462(4762) Topics in Early Modernism (also ART H 462(4762))
For description, see ART H 462.

AM ST 463(4761) Art and Social Histories (also ART H 461(4761))
Fall. 4 credits. L. L. Meixner.
For description, see ART H 461.

Honors
Please see description of major for information about registration in these courses.

AM ST 493-494(4993-4994) Honors Essay Tutorial
493, fall; 494, spring. Up to 8 credits each semester. See M. Jones-Correa for appropriate advisers.

ANTHROPOLOGY 445

ANTHROPOLOGY

Anthropology is one of the most diverse disciplines in the university. Spanning human evolution, the development and heterogeneity of language and culture, human history, and the diversity of cultures past and present, the field has broad scope, uses a variety of methods, addresses basic issues about human origins and human life, and maintains commitment to understanding social life and using this understanding to improve society. Anthropology is an ideal "liberal arts" major. It also serves as a major that, when well designed by the student with his or her adviser, prepares students for a wide range of professional careers, e.g., law, medicine, foreign service, human rights, social services, international development, and business, among others.

Courses for nonmajors: Anthropology welcomes nonmajors into many of its courses. Unless prerequisites are explicitly stated, 200- and 300-level courses do not have formal prerequisites and can be taken by students without prior experience in anthropology. Such students are welcome in these upper-level courses. For additional information to assist nonmajors and students from other colleges in selecting anthropology courses, see the anthropology department web page (falcon.arts.cornell.edu/Anthro/).

The Major
The range and complexity of the field of anthropology requires active collaboration between the student and a faculty adviser in developing an individualized program of study. To enter the anthropology major, a student must pass one course in each of the two broad introductory areas of anthropology: "Nature and Culture" and "Culture and History" listed below under "Introductory Courses." Provisional acceptance into the major is possible before completing these courses, with permission from the director of undergraduate studies in anthropology. Students are encouraged to contact the director of undergraduate studies or other faculty members as soon as possible in their studies to discuss their interests and a possible major in anthropology.

Students see the director of undergraduate studies to apply to the major and get an adviser. They prepare a short statement about their interests and goals for the major, then meet with their adviser to develop a course plan reflecting these special interests. This concentration should include at least 32 credits in addition to the two introductory courses used to enter the major. Examples of possible concentrations are myth and ritual, ethnicity and identity, action research, nature and culture in human history, anthropology and literature, or law, or the arts, or medicine; human origins; ethnomusicology; primate and human behavior; prehistory of the Americas,
or Europe, or Africa: cultural construction of the person. When warranted, the adviser is free to approve up to two cognate courses from other departments totaling up to 8 credit hours to fulfill the 32-credit requirement. Students must complete their program of study in consultation with their adviser as they move through their studies. Our goal is to provide a close and supportive advising relationship and a strong and coherent structure for the student's major.

All anthropology majors are required to take one anthropology seminar at the 400 level during their senior year (463, 420, and 458 are not seminar courses and do not fulfill the requirement). These seminars are designed to provide broad integrating perspectives on the field of anthropology by engaging important issues in contemporary anthropology.

Study abroad and off-campus study programs: The Department of Anthropology encourages students to consider a semester of study abroad or off-campus study developed as an integral part of the student's major concentration. The director of undergraduate studies serves as the anthropology study abroad adviser.

The **Cornell-Nepal Study Program:** The Cornell-Nepal Study Program is a joint program of Cornell University and Tribhuvan University, the national university of Nepal. Qualified anthropology majors, seniors, and first- or second-year graduate students work with faculty from both universities to prepare for and undertake field research projects in Nepal. Students receive 15 credits per semester; students may elect to stay for either fall or spring semester, or for the entire year; application is through Cornell Abroad.

For further information, consult David Holmberg or Kathryn March in the Department of Anthropology.

Other anthropologically relevant study abroad options, using existing Cornell Abroad and off-campus options, can be worked out in consultation with the major adviser, the anthropology study abroad adviser, and Cornell Abroad.

Honors

Honors in anthropology are awarded for excellence in the major, which includes overall GPA and completion of an honors thesis. Anthropology majors interested in the honors program should consult the chair of the Honors Committee in their junior year. To qualify for entrance into the honors program, a student must have at least a 3.0 GPA overall and 3.5 GPA in the major, and the consent of a faculty member in anthropology who will guide the honors thesis. After applying to the program and being admitted as a candidate by the Honors Committee, the student conducts research and writes a thesis. This thesis is evaluated by the faculty research adviser and two other faculty members. Honors (i.e., cum laude, magna cum laude, or summa cum laude) are awarded based on the quality of the thesis and the student's overall record. Honors candidates must start this process by consulting their major adviser about the honors program early in their junior year.

In addition, students may enroll in ANTHR 485 (1401) Senior Thesis Research. To complete the thesis, students must enroll in 491 (fall or spring) Honors Thesis Write-up. Only ANTHR 485 may count toward hours for completion of the anthropology major requirements. The credit hours for these courses are variable, grades for these courses are given by the faculty research adviser, and they are based on performance during thesis research and writing.

Any honors candidate whose research directly involves working with human subjects must receive approval for the project from the Cornell University Committee on Human Subjects.

Special Programs and Facilities

Collections: the department has an extensive collection of archaeological and ethnological materials housed in anthropology collections. A limited number of students can make arrangements to serve as interns in the anthropology collections. Olin Library houses some of the most extensive collections of materials on the ethnology of Southeast Asia, South Asia, East Asia, and Latin America to be found anywhere in the United States. The biological anthropology laboratory (B65 McGraw Hall) houses an extensive collection of skeletal remains, including (1) human skeletal remains, (2) articulated skeletons and cranial casts of primates, and (3) casts of important fossils in the human lineage.

Independent Study: specialized individual study programs are offered in ANTHR 497. Topics in Anthropology, a course open to a limited number of juniors and seniors who have obtained permission and supervision of a faculty member. Undergraduates should note that many 600-level courses are open to them by permission of the instructor.

Colloquia: The Department of Anthropology holds colloquia almost every week of the semester on Friday at 3:30 p.m. in 215 McGraw Hall. Faculty members from Cornell and other universities participate in discussions of current research and problems in anthropology. Students are encouraged to attend.

For more complete information about the anthropology major, see the director of undergraduate Studies or visit the Department of Anthropology web page (falcon.arts.cornell.edu/Anthro/).

[I. Introductory Courses](#)

A. Nature and Culture:

ANTHR 101(1300) Human Evolution: Genes, Behavior, and the Fossil Record ([IPBS Supplementary List])

Fall. 3 credits. Lab usage and maintenance fee: $5. A. Clark Arcadi.

Explores the evolution of humankind through the fossil record, studies of the biological differences among current human populations, and with our closest relatives, the primates. Investigates the roots of human biology and behavior with an evolutionary framework.

ANTHR 103(1401) The Scope of Anthropology

Spring. 1 credit. Does not satisfy major requirement to take two broad introductory courses. Pr- or co-requisite: ANTHR 101 or 102. S/U grades only. Staff. Intended for majors or prospective majors in anthropology. Each week a different member of the faculty in anthropology at Cornell makes a presentation on the nature of his or her work within the field and discusses their interests with students. The course is meant to introduce the range of approaches found within anthropology and help students in planning future course work.

ANTHR 203(2200) Early Peoples: The Archaeological and Fossil Record ([also ARKEO 203(2200)])

Spring. 3 credits. T. Volman.

Survey of the archaeological and fossil record of human evolution. Highlights contributions by researchers from a variety of disciplines as well as the discoveries that have enlivened the study of human evolution for more than a century. Stresses critical evaluation of evidence and interpretation. Demonstrations and films supplement the lectures.

ANTHR 211(2411) Sophomore Seminar: Nature and Culture @ ([III] (SBA))

Special seminar sponsored by the John S. Knight Institutes Sophomore Seminars Program. Seminars offer discipline-specific study within an interdisciplinary context. While not restricted to sophomores, the seminars aim at initiating students into the disciplines cutthroat, discourse community, modes of knowledge, and ways of articulating that knowledge. Limited to 15 students. Special emphasis is given to strong thinking and writing and to personalized instruction with top university professors.

ANTHR 275(2750) Human Biology and Evolution ([also BIOEE/NS 275(2750)] @ ([I] (PB2))

Fall. 3 credits. Offered alternate years; not offered 2005–2006. J. D. Haas.)

B. Culture and History:

ANTHR 100(1200) Ancient Peoples and Places ([also ARKEO 100(1200)]) @ ([III] (CA))

Fall. 3 credits. J. Henderson.

Broad introduction to archaeology—the study of material remains to answer questions about the human past. Case studies highlight the variability of ancient cultures and illustrate the varied methods and interpretive frameworks anthropologists use to reconstruct them. This course can serve as a platform for both archaeology and anthropology undergraduate majors.

ANTHR 102(1400) The Comparison of Cultures @ ([III] (CA))

Spring. 3 credits. A. Riles.

Introduction to cultural anthropology through ethnographies, or the descriptive accounts of anthropologists. Through readings and lectures, students acquaint themselves with a number of cultures from several parts of the world. The cultures range in form from those of small-scale tribal societies to those of state societies. Throughout the course, students attempt to make sense of exotic cultures in their own terms. Attention is focused on variation in cultural patterns as they are expressed in social, economic, and ritual practices. In this encounter, the principles of anthropology as a comparative enterprise that pose distinct cultural systems in belief are developed. Fiction, films, and exercises supplement the formal anthropological materials.
ANTHR 103(1401) The Scope of Anthropology
Spring. 1 credit. Does not satisfy major requirement to take two broad introductory courses. Prereq. or co-requisite: ANTHR 101 or 102. S-U grades only. Staff. For description, see section I.A. “Introductory Courses.”

ANTHR 200(1420) Cultural Diversity and Contemporary Issues (III) (SBA)
Fall. 3 credits. A. Willford. Introduces students to the meaning and significance of forms of cultural diversity for understanding contemporary issues. Drawing from films, videos, and selected readings, students are confronted with different representational forms that portray cultures in various parts of the world and they are asked to critically examine their own prejudices as they influence the perception and evaluation of cultural differences. The course approaches cultures holistically, assuming the inseparability of economies, kinship, religion, and politics, as well as interconnections and dependencies between world areas (e.g., Africa, Latin America, the West). Among the issues considered are “political correctness” and truth; nativism and ecological diversity; religion, race, ethnicity, and sexuality; sin, religion, and war; and global process and cultural integrity.

ANTHR 228(2428) Slavery and Human Trafficking
Fall. 4 credits. M. Fiskejo. Study of slavery and trafficking in human slaves in the world today, as well as its roots and history in Asia, Africa, as well as in medieval Scandinavia, and in America and Europe today. Makes use of anthropological perspectives to look at influential historical and classical traditions on slavery, such as Aristotle’s idea of the “natural slave,” and ask how ownership and domination over fellow humans have been justified in different societies. While introducing themes of gender, race, ethnicity, etc., and basic philosophical issues regarding autonomy and dependence, the course also examines the economic forces of exploitation in the floating world of economic migration, people smuggling, and human trafficking.

ANTHR 310(3410) Nationalism and Revivalism (III) (CA)
Spring. 4 credits. A. Willford. Explores the growing phenomenon of religious and ethnic nationalism within modern nation-states. Also examines ways in which religious and ethnic revivalism provides alternative models of modernity and group identity, often defined in opposition to state-sponsored nationalist ideologies.

ANTHR 312(3512) Work and Workplaces in Japan (III) (SBA)

ANTHR 314(3514) Learning in Japan
Spring. 4 credits. H. Miyazaki.

ANTHR 321/621(3210/6421) Sex and Gender in Cross-Cultural Perspective
Spring. 4 credits. K. March.

Introduction to the study of the sex roles cross-culturally and to anthropological theories of sex and gender. Examines various aspects of the place of the sexes in social, political, economic, ideological, and biological systems to emphasize the diversity of gender and sex-role definitions around the world.
well as the role of knowledge, the academy, and world public opinion.

ANTHR 353/3535 Anthropology of Colonialism (also AIS 353/3530), AM ST 353/3533 (III) (CA)
Fall. 4 credits. A. Simpson.
Examines the relationship between colonialism and anthropology and the ways in which the discipline has engaged this global process locally in North America. One of the aims of this course is to gain an appreciation of colonialism both as a theory of political legitimacy and as a set of governmental practices. As such, North America is re-imagined in light of the colonial project and its technologies of rule such as education, law, policy that worked to transform indigenous notions of gender, property and territory. This is done to appreciate the ways in which these forms of knowledge and practice advanced the settlement of space and place and both settled and unsettled peoples. This course is centered for students interested in gaining comprehensive understanding of these forms of knowledge and practice as grounded within the literature from Native North America.

ANTHR 382/382X Human Rights, Cultural Rights, and Economic Rights: Views from the South

ANTHR 385/385X The Anthropology of Intellectuals (III) (CA)

ANTHR 388/388X Masks of Power and Resistance and Subversion (also ANTHR 688) (III) (SBA)

ANTHR 422/422X Anthropology and Environment (III) (SBA)
Fall. 4 credits. Prerequisite: anthropology majors or permission of instructor. Not offered 2005-2006. D. Holmberg.

ANTHR 426/426X Ideology and Social Production (also ANTHR 726/7426) (III) (SBA)

ANTHR 429/429X Anthropology and Psychoanalysis (III) (SBA)
Spring. 4 credits. S. Sangren.
Psychoanalysis holds that desire emerges from the clash between individuals' predisposition and the need to accommodate to others in society. Yet anthropology has been resistant to the role that psychoanalytic theory might play in linking individual desire to culture. Does psychoanalysis have anything to offer cultural anthropology? Can an understanding of collective institutions be advanced with reference to theories of individual motivation and desire? Conversely, can collective life be understood without reference to individual motivation and desire? Is desire best understood as sexual in nature, or is it better understood in more abstract and existential terms? With such questions in mind, this course surveys anthropology's engagements with psychoanalysis. Students read theoretical works as well as ethnographically grounded case studies on topics including religious experience, mythic narratives, the cultural construction of gender and desire, and modern popular culture.

ANTHR 440/4440 Ethnographic Approaches to Studying Professionals and Institutions (III) (SBA)

ANTHR 442/4452 Violence, Symbolic Violence, Terror, and Trauma in South Asia and the Himalayas (also ANTHR 642/6542) (III) (CA)

ANTHR 444/4444 God(s) and the Market (III) (CA)

ANTHR 470/4720 Political Economy in Archaeology (also ANTHR 770/7270, ARKEO 470/770/4720/7270)
Fall. 4 credits. K. Jordan.
Political economy is a theoretical approach that emphasizes power relations, social tensions, and contradictions and how they mediate access to wealth and basic resources. This seminar explores applications of political-economic theory in archaeological analysis. It begins with some key approaches to political economy within sociocultural anthropology to assess how these works can (and cannot) assist the interpretation of archaeological evidence. Particular attention is paid to questions of methodology, to certain field or analytical techniques facilitate or hinder political-economic interpretations? Case studies apply political-economic approaches to past societies at a variety of analytic and social scales, illustrating potential and limitations between archaeological political economy and issues of culture change, domination and resistance, ideology, gender, and agency.

ANTHR 475/4745 Governmentality, Citizenship, and Indigenous Political Theory
Spring. 4 credits. A. Simpson.
This seminar explores the ways in which Indigenous peoples have theorized, deployed, critiqued notions of “nationhood”, “citizenship” and “sovereignty” in order to articulate and claim rights to territory, to jurisdiction and to the past. Our aim is to gain an appreciation of what constitutes mean in the literature of anthropology, political theory and Native American Studies as well as to examine the ways in which Indigenous peoples understand and critique state practices, maintain and construct their own modes of governance and mobilize politically to achieve these ends. This course is comparative in scope, literature and cases will be drawn from various sites but will dwell largely within Native North America.

ANTHR 479/4747 Ethnicity and Identity Politics: An Anthropological Perspective (also AAS 479/4790) (III) (SBA)

B. Interpretive Approaches in Cultural Anthropology:

These courses stress symbolic or textual approaches to human society. They take as their object of analysis structures of meaning in such diverse areas as performance and text, myth and ritual, gender, and the sociology of knowledge. These same topics arise in many of the area-focused courses as well (Section D) but take center stage in the following courses.

ANTHR 232/2342 Media, Culture, and Society (III) (SBA)
Fall. 3 credits. D. Boyer.
Introduction to understanding the relationship between media and culture from an anthropological perspective. The primary goal is to students develop an ethnographic awareness of the complex factors influencing mass media production, representation, and reception. The course works toward this goal by studying how media technologies effect the representation and reception of cultural identities, how mass media representations mediate the negotiation of national identities and moralities, how institutional situations and professional practices influence media production, and how state and market forces both create and restrict possibilities of media expression. A wide range of social and historical cases are covered by both reading and lectures. Course materials include print, visual, and electronic media. Assignments encourage students to engage the contemporary American media both analytically and critically.

ANTHR 250/2450 The Anthropology of Food and Cuisine (III) (CA)

ANTHR 320/3420 Myth, Ritual, and Symbol (also RELST 320/3720) (III) (CA)
Spring. 4 credits. D. Holmberg.
Examines how systems of thought, symbolic forms, and ritual practice are formulated and expressed in primarily non-Western societies. Focuses on anthropological interpretations of space, time, cosmology, myth, classificatory systems (e.g., color, totems, food, dress, kinship), taboos, sacrifice, witchcraft, sorcery, and rites of passage (birth, initiation, marriage, death). Examines both the roles of specialists (e.g., spirit mediums, curers, priests, ascetics) and nonspecialists in producing these cultural forms.

ANTHR 343/3553 Anthropology through China Ethnography (III) (SBA)
Fall. 4 credits. Not offered 2005-2006. S. Sangren.
For description, see section III. C. "Understanding Cultures and Societies."

ANTHR 369/3269 Gender and Age in Archaeology (also ANTHR 669/6269, ARKEO 369/669/3269/6269, FGSS 370/E70/3700/6700)
Fall. 4 credits. N. Russell.
In recent years, feminist theory has begun to have an impact on archaeological thought. It is now recognized that gender is likely to have been a relevant dimension of social organization in past societies. Some archaeologists are also trying to take into account the differing interests and experiences of children, adults of reproductive age, and the elderly. This course is not limited to any period or geographical area, but ranges widely in examining how feminist theory has been applied to archaeological data and models. Considers whether it is necessary to identify women and men, adults and children in the archaeological record to take gender and age into account. Also examines the uses of archaeological data by contemporary feminists.
Anthropology constructs its theories in the comparison of different social and cultural systems and thus depends integrally on knowledge about particular places. The courses below are all focused on the cultures of particular areas in reference to key anthropological questions. Students without prior experience in anthropology are welcome in these courses.

C. Cultures in Anthropological Perspective:

Anthropology constructs its theories in the comparison of different social and cultural systems and thus depends integrally on knowledge about particular places. The courses below are all focused on the cultures and societies of particular areas of the world and organize knowledge about these areas in reference to key anthropological questions. Students without prior experience in anthropology are welcome in these courses.

ANTHR 210(2410) Sophomore Seminar: South Asian Diaspora (also AAS 210(2110)) (III) (CA)

This is a special seminar sponsored by the John S. Knight Institutes Sophomore Seminars Program. Seminars offer discipline-specific study within an interdisciplinary context. While not restricted to sophomores, the seminars aim at initiating students into the disciplines outlook, discourse community, modes of knowledge, and ways of articulating that knowledge. Limited to 15 students. Special emphasis is given to strong thinking and writing and to personalized instruction with top university professors.

ANTHR 221(2721) Anthropological Representation: Ethnographies on Latino Culture (also LSP 272(2721), AM ST 272(2721)) (III) (CA)

Fall. 3 credits. Not offered 2005-2006. V. Santiago-Inzarray.

ANTHR 337(3537) Gender, Identity, and Representation: Ethnographies on Latino Culture (also LSP 272(2721), AM ST 272(2721)) (III) (CA)

Fall. 4 credits. B. Lambert.

Survey of the principal Eskimo and American Indian culture areas north of Mexico. Selected cultures are examined to bring out distinctive features of the economy, social organization, religion, and worldview. Although the course concentrates on traditional cultures, some lectures and readings deal with changes in native ways of life that have occurred during the period of European-Indian contact.

ANTHR 338(3538) Continuity in the Pacific Islands (also ARKEO 446(4256)) @ # (III) (CA)

Fall. 4 credits. Not offered 2005-2006.

J. Henderson.

ANTHR 433(4533) Male and Female in the Himalayas (also ARKEO 356(3256)) @ # (III) (SBA)

Fall. 4 credits. Not offered 2005-2006.

K. March.

ANTHR 303(3703) Asians in the Americas: A Comparative Perspective (also AAS 303(3030)) @ # (III) (CA)

Fall. 4 credits. V. Munasinghe.

The common perception of ethnicity is that it is a "natural" and an inevitable consequence of cultural difference. "Asians" overseas, in particular, have been reputed as a people who cling tenaciously to their culture and refuse to assimilate into their host societies and cultures. But, who are the "Asians"? On what basis can we label "Asians" an ethnic group? Although there is a significant Asian presence in the Caribbean, the category "Asian" itself does not exist in the Caribbean. What does this say about the nature of categories that label and demarcate groups of people on the basis of alleged cultural and phenotypical characteristics? This course examines the dynamics behind group identity, namely ethnicity, by comparing and contrasting the multicultural experience of Asian populations in the Caribbean and the United States. Ethnographic case studies focus on the East Indian and Chinese experiences in the Caribbean and the Chinese, Korean, Japanese, Filipino, and Indian experiences in the United States.

ANTHR 343(3553) Anthropology Through China Ethnography (also ARKEO 355(3255)) @ # (III) (SBA)

S. Sangren.

ANTHR 344(3554) Male and Female in Chinese Culture and Society (also FGSS 344(3440)) @ # (III) (SBA)

S. Sangren.

ANTHR 355(3255) Ancient Mexico and Central America (also ARKEO 355(3255)) @ # (III) (HA)

Spring. 4 credits. J. Henderson.

Survey of the cultural history of ancient Mexico and Central America, emphasizing Aztec and Maya civilizations. The use of ethnographic and historical information to enrich archaeological interpretation is a general theme. Specific topics include the emergence of settled farming life, the rise of civilization and the state, and the development of mechanisms that linked the many societies in the region into a single sphere of interaction.
ANTHR 377(3777) The United States
(also LSP/AM ST 3777777) (III) (CA)
Fall. 4 credits. V. Santiago-Irazuri.
The anthropological inquiry into one's own culture or national exercise. This course explores issues in the cultural construction of the United States as a "pluralistic" society. Looks at the ideological context for the production of a cultural profile predicted upon ideas that are intrinsic to American images of identity such as individualism, freedom, and equality and the way these are applied in practice. Readings include historic documents and accounts, popular writing, and recent ethnographies on the United States.

ANTHR 383(3683) Topics in African Ethnography: The State and Civil Society in Colonial and Contemporary Africa @ (III) (SBA)
Fall. 4 credits. Not offered 2005-2006.
J. Schoss.

ANTHR 384(3684) Africa in the Global Economy (also ANTHR 7847884) @ (III) (SBA)
Fall. 4 credits. J. Schoss.
Examines the shifting and various ways in which African societies and nation states have been and continue to be enmeshed in global economic structures. Topics include: past and present African engagement in global trade; the nature of commodity marketing, consumption and advertising in colonial and post-colonial Africa; the burgeoning African tourist industry; the intersection between local communities and international development efforts, and the crucial but ambivalent role of primary commodities export industries, with particular consideration of diamond mining. Readings focus on a few key ethnographic and/or social historical texts. These texts are supplemented from materials by mass media sources, contemporary African films, and critical commentaries by African scholars.

ANTHR 413(4513) Religion and Politics in Southeast Asia (also ASIAN 41144113) @ (III) (CA)
A. Willford.

ANTHR 421(4621) Comparative Islamic Movements
Fall. 4 credits. Not offered 2005-2006.
J. Rigi.

ANTHR 423(4523) Making History on the Margins: The China-SE Asia Borders (also ANTHR 7237323)
Spring. 4 credits. M. Fiskeso.
This seminar course is a new in-depth look at classical issues regarding the making of history, revisiting the mountain borders in between China and Southeast Asia made famous by Lach, Levi-Stauss, Kirch, and Friedman) attempting to understand structure, history, and center-periphery transformations. The peoples of this region (Kachin, Wa, Naga, etc.) selected by fateful forces and processes beyond their control, as prisoners of geography and circumstance, or what role do they have in the making of their own history? The course addresses themes from regional ethnography into theoretical issues, and forms an introduction to field research in this fertile region.

ANTHR 441(4541) Himalayan Ethnographies (also ANTHR 7417541) @ (III) (CA)
Fall. 4 credits. D. Holmberg.
Focuses on a systematic reading of the monographic literature on the peoples and cultures of Himalayas. Classic and contemporary ethnographies are juxtaposed in an attempt to trace the history of the anthropological interest. Although students read studies focused on Tibetan cultures and Hindu cultures continuous with those of India, the majority of monographs are drawn from the literature on Nepal because the greatest number of ethnographies on Himalayan peoples and cultures have been produced in reference to Nepal. Engagement with this ethnographic literature is the context for assessing the state of anthropological study of the Himalayas on topics as diverse as the environment, ritual, and gender. The course is framed in a more general reflection on problems in ethnographic research and writing as they have emerged in critiques of ethnography in the past two decades.

ANTHR 442(4542) Violence, Symbolic Violence, Trauma and Transformation in South Asia and the Himalayas (also ANTHR 6426542) @ (III) (CA)
D. Holmberg.

ANTHR 450(4852) Europe (also ANTHR 75070582) (III)
Rotating seminar dealing with diverse topics related to the anthropology of Europe. Examples are postsocialist transitions, the ethnographic representation of transnational relations and institutions in Europe, integration in the West and disintegration in the East of Europe, immigration, regionalism, and ethnic conflict. Each year it is staffed by one of the three Europeanists in the Department of Anthropology—Dominic Boyer (post-Socialist transition), Darydd Greenwood (ethnicity and nationalism), and Jakob Rigi (post-Socialist capitalism). The course serves to balance the area curriculum of the department by adding European topics to offerings. It also serves the Modern European Studies Concentration and the International Relations Concentration directly as an additional, much-needed offering at the upper levels. Because the topics and professors vary, students may take more than one of these seminars.

ANTHR 455(4455) Anthropology in the Real World
Spring. 4 credits. J. Schoss.
Designed to expose students to the range of ways and fields within which practitioners employ anthropological theory, methods and perspectives. Course format includes both seminar discussions and workshop sessions with invited speakers. Both the invited speakers and the discussion topics represent different broadly defined fields in which anthropologists practice. Through class discussion and writing, students are expected to critically consider such issues as: research ethics, professional responsibility, the academic versus activist role, methodological practices, and the relationship between individual practitioners and the national, international, and organization contexts within which they work. Students produce a major research paper examining a particular field of "practical" anthropology of their interest.

ANTHR 456(4255) Mesoamerican Religion, Science, and History @ (III) (CA)
Fall. 4 credits. Not offered 2005-2006.
J. Henderson.

ANTHR 462(4262) Catalhoyuk and Archaeological Practice (also ANTHR 7627762), ARKEO 472/7272(4272/7272), AM ST 472/4720(7272/7272) @ (III) (HA)
Fall. 4 credits. Not offered 2005-2006.
N. Russell.

ANTHR 472(4272) Historical Archaeology of Indigenous Peoples (also ANTHR 7727727), ARKEO 472/7727(4272/7727), AM ST 472/4720(7727/7727) @ (III) (HA)
K. Jordan.

ANTHR 477(4577) Ethnology of Island Southeast Asia @ (III) (CA)
Fall. 4 credits. Not offered 2005-2006.

ANTHR 493(4283) Seminar in Archaeology: The Aztecs (also ARKEO 4684283) @ (III) (CA)
Fall. 4 credits. Not offered 2005-2006.

IV. Anthropological Thought and Method

As a form of inquiry, anthropology has a long and complex history and uses a wide variety of theories and methods. In this section, topics in the history of anthropological thought and numerous anthropological approaches are presented, along with courses focused on the design of anthropological research projects.

ANTHR 215(2215) Stone Age Art (also ARKEO 215215, 2152215) @ (III) (CA)
Fall. 3 credits. Not offered 2005-2006.
T. Volman.

ANTHR 306(3406) Ethnographic Description (III)
Fall. 4 credits. Not offered 2005-2006.

ANTHR 324(3424) Anthropology Amongst the Disciplines (III) (CA)
J. Siegel.

ANTHR 330(3230) Humans and Animals (also ARKEO 3303230) @ # (III) (CA)
N. Russell.

ANTHR 362(3462) Democratizing Research: Participation, Action, and Research (also ANTHR 6626662)
Fall. 4 credits. Not offered 2005-2006.
J. Greenwood.

ANTHR 368(3468) Marx: An Overview of His Thought (also ANTHR 6686688) @ (III) (SBA)
D. D. Greenberg.

ANTHR 372(3272) Hunters and Gatherers (also ANTHR 6726722), ARKEO 3726722(67226722) @ (III) (SBA)
Fall. 4 credits. T. Volman.
Survey of contemporary and recent peoples with economies based completely or mainly on hunting and gathering. Examines selected societies from various parts of the world to
compare aspects of technology, subsistence practices, organization, and beliefs. Considers the impact of contact with more economically advanced societies.

ANTHR 403(4403) The Craft of Anthropology: Ethnographic Field Methods (also ANTHR 603[6403]) (III) (SBA) Fall. 4 credits. Not offered 2005–2006. V. Santiago-Iniria.

ANTHR 405(4250) Archaeology Research Design (also ANTHR 605[250], ARKEO 405[605]) (III) (SBA) Spring. 4 credits. Not offered 2005–2006.

ANTHR 480(4480) Anthropology and Globalization (also ANTHR 680[6480]) (III) Spring. 4 credits. Willford. Examines anthropological perspectives on globalization and assesses the cultural, political, and social implications of contemporary global processes. In exploring the factors that are contributing to the production of diasporic consciousness, the intensity and variety of transnational flows of culture, commodities, corporations, and people are considered.

ANTHR 487(4900) Field Research Abroad Fall or spring. Credit TBA. Prerequisite: undergraduate standing. Staff. Field research abroad as part of the Cornell-Nepal Studies Program, the Cornell-Honduras Program, or other departmentally approved programs. Topics are selected and project proposals prepared by students in consultation with faculty. Fieldwork typically involves extended research (usually four to six weeks) in a foreign setting with faculty supervision culminating in a major paper or report.

ANTHR 494(4294) Seminar in Archaeology: The Archaeology of Human Origins (also ARKEO 494[4294]) (III) (HA) Spring. 4 credits. T. Volman. Exploration of the archaeological record associated with early modern and near-modern humans as well as their nonmodern contemporaries, such as the Neanderthals. Major issues include: what behaviors and capabilities are indicated for various populations, and how and why did these change over the course of the later Pleistocene? To what extent does the archaeological record support the “Out-of-Africa” hypothesis of a recent, African origin for all modern humans?

V. Human History and Archaeology

Archaeology tells the story of human origins, the invention of farming and settled life, the rise of complex social institutions and technologies, and the worldviews of the past, while also teaching field and laboratory methods for uncovering the human past.
ARTS AND SCIENCES 2005-2006

ANTHR 356(3256) Archaeology of the Andes (also ARKEO 356/3256) @ (III) (HA)

ANTHR 369(3269) Gender and Age in Archaeology (also ANTHR 669/6269), ARKEO 369/669[3269/6269], FGSS 370/670)
Fall. 4 credits. N. Russell.
For description, see section III B. "Understanding Cultures and Societies."

ANTHR 370(3270) Environmental Archaeology (also ANTHR 670[6270], ARKEO 370/670[3270/6270]) (IPBS Supplementary List)
Fall. 4 credits. T. Volman.
Survey of selected topics in paleoenvironmental analysis and reconstruction, with emphasis on how they inform interpretations of the archaeological record. Ranges broadly from a general consideration of human ecology and the role of environment in culture change to detailed study of specific techniques and approaches.

ANTHR 372(3272) Hunters and Gatherers (also ANTHR 672[6272], ARKEO 372/672[3272/6272]) @ (III) (SBA)
Fall. 4 credits. T. Volman.
For description, see section IV. "Anthropological Thought and Method."

ANTHR 405(4250) Archaeological Research Design (also ANTHR 605[6250], ARKEO 405/605[4250/6250]) (III) (SBA)

ANTHR 409(4209) Approaches to Archaeology (also ANTHR 609[6209], ARKEO 409/609[4209/6209]) (III) (CA)
Fall. 4 credits. Not offered 2005-2006.

ANTHR 456(4256) Mesoamerican Religion, Science, and History (also ARKEO 456[4256]) @ (III) (CA)
Fall. 4 credits. Not offered 2005-2006.

ANTHR 459(4259) Archaeological Analysis (also ANTHR 659[6259], ARKEO 459/659[4259/6259]) (III) (SBA)

ANTHR 459(4259) Archaeology of the Household (also ANTHR 659[6259], ARKEO 459/659[4259/6259]) (III) (SBA)
Fall. 4 credits. Not offered 2005-2006.

ANTHR 462(4262) Catalhoyuk and Archaeological Practice (also ANTHR 762[7262], ARKEO 462/762[4262/7262]) @ (III) (HA)
Fall. 4 credits. Not offered 2005-2006.

ANTHR 463(4263) Zooarchaeological Method (also ARKEO 463[4263]) (IPBS Supplementary List)
Fall. 5 credits. N. Russell.
For description, see section IV. "Anthropological Thought and Method."

ANTHR 464(4264) Zooarchaeological Interpretation (also ARKEO 464[4264]) (IPBS Supplementary List)
Spring. 4 credits. N. Russell.
For description, see section IV. "Anthropological Thought and Method."

ANTHR 467(4267) Origins of Agriculture (also ARKEO 467[4267]) @ (III) (HA)

ANTHR 470(4270) Political Economy in Archaeology (also ANTHR 770[7270], ARKEO 470/770[4270/7270]) (IPBS Supplementary List)
Fall. 4 credits. K. Jordan.
For description, see section III A. "Understanding Cultures and Societies."

ANTHR 493(4293) Seminar in Archaeology: The Aztecs (also ARKEO 493[4293]) (III) (HA)
Fall. 4 credits. Not offered 2005-2006.

ANTHR 494(4294) Seminar in Archaeology: The Archaeology of Human Origins (also ARKEO 494[4294]) (III) (HA)
Spring. 4 credits. T. Volman.
For description, see section IV. "Anthropological Thought and Method."

VI. Nature and Culture

Thinking about nature and culture and their interaction is central to contemporary anthropology. The courses in this section present a biocultural and evolutionary perspective on behavior, focus on the interplay between nature and culture, and discuss the controversies surrounding these relationships between these dimensions of human life.

ANTHR 211(2411) Sophomore Seminar: Nature and Culture @ (III) (SBA)
For description, see section IA. "Introductory Courses."

ANTHR 242(2201) Early Agriculture (also ARKEO 242[2201]) @ (III) (HA)

ANTHR 344(3554) Male and Female in Chinese Culture and Society (also FGSS 344[3440]) @ (III) (SBA)
Fall. 4 credits. Limited to 12 students. Prerequisite: anthropology majors or permission of instructor. 2005-2006. T. Volman.

ANTHR 370(3270) Environmental Archaeology (also ANTHR 670[6270], ARKEO 370/670[3270/6270]) (IPBS Supplementary List)
Fall. 4 credits. T. Volman.
For description, see section V. "Human History and Archaeology."

ANTHR 372(3272) Hunters and Gatherers (also ANTHR 672[6272], ARKEO 372/672[3272/6272]) @ (III) (SBA)
Fall. 4 credits. Not offered 2005-2006.

ANTHR 475(4275) Evolutionary Theory and Human Behavior (also ANTHR 675[6275]) (IPBS Supplementary List)

ANTHR 490(4390) Topics in Biological Anthropology
Spring. 4 credits. Prerequisites: ANTHR 101, 390, or permission of instructor. Not offered 2005-2006. A. Clark Arcadi.

Relevant courses in other departments

BIOI 247(2470) Ethnobiology

BIOI 348(3480) The Healing Forest
Spring. 2 credits. D. M. Bates and J. Rodriquez.

BIOI 422(4420) Current Topics in Ethnobiology
Fall. 2 credits. Limited to 12 students. Prerequisite: permission of instructor. D. Bates.

MUSIC 104(1302) Introduction to World Music II: Asia
Fall. 3 credits. Not offered 2005-2006. M. Hatch.

MUSIC 245(1311) Gamelan in Indonesian History and Cultures
Spring. 3 credits. Prerequisite: permission of instructor. M. Hatch.

NS/ND 347(3471), B&SOC 347(3471) Human Growth and Development: Biological and Social Interactions

NS 630(6300) Anthropometric Assessment
Spring. 1 credit. J. Haas.

VII. Graduate Seminars

The graduate program in anthropology is described in much greater detail on the anthropology department web page at falcon. arts.cornell.edu/Anthro/. The seminars described immediately below pertain to the graduate curriculum in general, are premised on the relevance of other departments, and are related fields. This sequence, and the graduate curriculum in general, is premised on the relevant courses in other departments. The graduate program in anthropology is described in much greater detail on the anthropology department web page at falcon. arts.cornell.edu/Anthro/. The seminars described immediately below pertain to the program in sociocultural anthropology. For information about graduate study in archaeology and biological anthropology, see the anthropology department web page.
idea that anthropology is best defined as the comparative study of human social life. This definition resists institutional pressures in the academy to distinguish social science from humanistic or cultural studies and scholarly from more worldly applications. Our most important method, ethnography, is at once scientific and humanistic; disciplinary aspirations refuse to view cultural interpretation and analytic explanation as separable values. Furthermore, theory in anthropology is directly related to practice in the world whether in relation to research or more action-oriented pursuits. Consequently,

ANTHR 600(6000) Proseminar: Culture and Symbol
Fall. 6 credits. D. Boyer.
Focuses on an appreciation of symbolic, expressive, and representational forms and processes both as producers and products of social activities. Through the study of symbolic anthropology, structuralism, exchange, myth and ritual, religion, gender, personhood, linguistics, semiology, etc., the course investigates how identity and meaning are linked to the practical exigencies of social life. While emphasizing aspects of the discipline generally associated with cultural anthropology, the course endeavors to set the stage for a dialectical understanding of social, political, economic, and symbolic activities as interrelated phenomena. The works of Victor Turner, Sahlins, among others, as well as contemporary theories are given careful attention.

ANTHR 601(6010) Proseminar: Social Organization
Spring. 6 credits. J. Rigi.
Focuses on linkages between culture and social institutions, representations and practices. The nature of these linkages is debated from strongly contesting points of view in social theory (structuralist, poststructuralist, hermeneutic, Marxist). Unlike debates in critical theory where the form of contestation has been mainly philosophical, in anthropology, these issues have developed in ethnographic analyses. The course briefly surveys kinship theory and economic anthropology with a focus on implications for general issues in social theory. Discussion of attempts to develop dialectical syntheses around the motion of “practice” follows. The issues addressed in this section carry over into the next, colonialism and post-colonialism, in which poststructuralist readings of history are countered to Marxist ones. Finally, Lacanian and Marxist visions of ideology as they relate to anthropological theory and ethnographic analysis are examined with particular emphasis on the cultural and social production of symbols.

ANTHR 603(6403) The Craft of Anthropology (also ANTHR 403[4403])
V. Santiago-Irizarry.

ANTHR 604(6404) Praxis and Culture

ANTHR 605(6250) Archaeological Research Design (also ANTHR 405[4250], ARKEO 405/605[4250/6250])

ANTHR 609(6209) Approaches to Archaeology (also ANTHR 409[4209], ARKEO 409/609[4209/6209])

ANTHR 610(6410) Language and Myth

ANTHR 614(6414) Reading in the Ethnographic Tradition (1880 to 1960)
D. Holmberg.

ANTHR 615(6415) Reading Contemporary Ethnographies (1960 to 1990)

ANTHR 616(6416) Cultural Production of the Person
J. Fajans.

ANTHR 621(6421) Sex and Gender in Cross-Cultural Perspective (also ANTHR 321[3421], FGSS 321/351[321/351])

ANTHR 624(6424) Ethnic and Gender Identity in Anthropology, Language, and Law (also LSP 624[6424])
V. Santiago-Irizarry.

ANTHR 628(6428) Social Forms of Violence in Anthropological Perspective
J. Siegel.

ANTHR 629(6543) Chinese Ethnology
S. Sangren.

ANTHR 635(7520) Southeast Asia: Readings in Special Problems
Fall or spring. Credit TBA. Staff. Independent reading course on topics not covered in regularly scheduled courses. Students select a topic in consultation with the faculty member who has agreed to supervise the course work.

ANTHR 640(7540) Problems in Himalayan Studies
D. Holmberg.

ANTHR 641(7530) South Asia: Readings in Special Problems
Fall or spring. Credit TBA. Staff. Independent reading course on topics not covered in regularly scheduled courses. Students select a topic in consultation with the faculty member who has agreed to supervise the course work.

ANTHR 642(6542) Violence, Symbolic Violence, Terror and Trauma in South Asia and the Himalayas (also ANTHR 442[4242])
D. Holmberg.

ANTHR 644(6440) Research Design
J. Schoss.

ANTHR 648(6248) Iroquois Archaeology (also ANTHR 348[3248], ARKEO 348/648[3248/6248], AIS 448/648[4248/6480])
Spring. 4 credits. K. Jordan.
For description, see ANTHR 348, section V, "Human History and Archaeology."

ANTHR 650(6450) Social Studies of Economics and Finance
H. Miyazaki.

ANTHR 652(6452) Evidence: Ethnography and Historical Method
H. Miyazaki.

ANTHR 655(7550) East Asia: Readings in Special Problems
Fall or spring. Credit TBA. Staff. Independent reading course on topics not covered in regularly scheduled courses. Students select a topic in consultation with the faculty member who has agreed to supervise the course work.

ANTHR 656(6256) Maya History (also ARKEO 656[6256])
J. Henderson.

ANTHR 658(6258) Archaeological Analysis (also ANTHR 458[4258], ARKEO 458/658[4258/658])
J. Henderson.

ANTHR 659(6259) Archaeology of the Household (also ANTHR 459[4259], ARKEO 459/659[4259/659])

ANTHR 660(6460) Language, Ideologies, and Practices (also LSP 660[6460])
V. Santiago-Irizarry.

ANTHR 662(6462) Democratizing Research: Participation, Action, and Research (also ANTHR 362[3462])
D. J. Greenwood.

ANTHR 663(6463) Action Research
D. Greenwood.

ANTHR 665(6760) Topics in Native American Societies and Cultures (also AIS 665)
B. Lambert.

ANTHR 667(6267) Contemporary Archaeological Theory (also ARKEO 667[6267])
Fall. 4 credits. Prerequisite: for undergraduates, permission of instructor. Not offered 2005–2006. N. Russell.

ANTHR 668(6468) Marx: An Overview of His Thought (also ANTHR 368[3468])
Spring. 4 credits. J. Rigi.
For description, see ANTHR 368, section IV, "Anthropological Thought and Method."

ANTHR 669(6269) Gender and Age in Archaeology (also ANTHR 469[4269], ARKEO 469/669[4269/6269])
Spring. 4 credits. M. Russell.
For description, see ANTHR 369, section III, "Understanding Cultures and Societies."
ANTHR 670(6270) Environmental Archaeology (also ANTHR 370[3720], ARKEO 370[670](3720[6720]))
Fall. 4 credits. T. Volman.
For description, see ANTHR 370, section V, "Human History and Archaeology."

[ANTHR 671(6371) Palaeoanthropology of South Asia (also BIOEE 671[6710], ASIAN 620)
Fall. 5 credits. Not offered 2005-2006.
K. A. R. Kennedy.]

ANTHR 672(6272) Hunters and Gatherers (also ANTHR 372[3272], ARKEO 372[672](3272[6722]))
Fall. 4 credits. T. Volman.
For description, see ANTHR 372, section IV, "Anthropological Thought and Method."

[ANTHR 673(6373) Human Evolution: Concepts, History, and Theory (also BIOEE 673[6730])
Fall. 3 credits. Prerequisite: one year introductory biology, ANTHR 101, or permission of instructor. Offered alternate years. Not offered 2005-2006.
K. A. R. Kennedy.]

ANTHR 677(6477) The Anthropology of Global Turbulence
Fall. 4 credits. Not offered 2005-2006.
J. Rigi.]

[ANTHR 678(6478) Value and Life: From Gift to Spectacle
J. Rigi.]

ANTHR 679(6479) Technocracy: Anthropological Approaches
A. Riles.]

ANTHR 680(6480) Anthropology and Globalization (also ANTHR 480[4480])
A. Riles.]

[ANTHR 681(6481) Empire and Imperialism
J. Rigi.]

ANTHR 682(6482) Perspectives on the Nation
Fall. 4 credits. V. Munasinghe.
Critical examination of the key texts that have informed our understanding of the nation and nationalism. Beginning with some of the founding texts such as Hahn Kohl's "The Idea of Nationalism: A Study in its Origins and Backgrounds" (1994), Plamenatz's "Two Types of Nationalism" (1976), and Renan's "What is a Nation" (1939), the course moves on to more contemporary writings by Gellner, Hobsbawm and Anderson and ends with alternate analytical approaches that have been informed by the "national question" in the "Third World" such as Partha Chatterjee's "Nationalist Thought and the Colonial World." A central theme is how notions of culture, power, and history are implicated in constructions of "the Nation." Also explores the possibilities of an ethnographic approach to the nation and ask if such an analytical/methodological move may help us better grapple with the perplexing emotive dimension of nationalisms. The intersection of gender and nation also form a section of this course.

[ANTHR 690(6420) Ritual and Myth: Structure, Process, Practice
Spring. 4 credits. Not offered 2005-2006.]

[ANTHR 693(6593) Law and Social Movement in East Asia (also LAW 744)
A. Riles.]

[ANTHR 699(6399) Current Fields in Biological Anthropology
Fall. 4 credits. Not offered 2005-2006.]

ANTHR 701(7910) Independent Study: Grad I
Fall or spring. Credit TBA. Prerequisite: graduate standing. Staff.
For description, see ANTHR 701, section VII, "Graduate Seminars."

ANTHR 702(7920) Independent Study: Grad II
Fall or spring. Credit TBA. Prerequisite: graduate standing. Staff.
For description, see ANTHR 701, section VII, "Graduate Seminars."

ANTHR 703(7930) Independent Study: Grad III
Fall or spring. Credit TBA. Prerequisite: graduate standing. Staff.
For description, see ANTHR 701, section VII, "Graduate Seminars."

ANTHR 720(4240) Development of Anthropological Thought (also ANTHR 420(4240))
Spring. 4 credits. H. Miyazaki.
For description, see ANTHR 420, section IV, "Anthropological Thought and Method."

ANTHR 723(4523) Making History on the Margins: The China-SE Asia Borderlands (also ANTHR 423[4523])
Spring. 4 credits. M. Fiskevich.
For description, see ANTHR 423, section III C, "Understanding Cultures and Societies."

ANTHR 725(7425) Ideology and Social Production (also ANTHR 425[4426])
S. Sangren.

[ANTHR 739(7545) Peoples and Cultures of the Himalayas (also ANTHR 338[3545])
K. M. Jordan.]

ANTHR 741(7541) Himalayan Ethnographies (also ANTHR 441[4541])
Fall. 4 credits. D. Holberg.
For description, see ANTHR 441, section IIIC, "Understanding Cultures and Societies."

ANTHR 750(7652) Europe (also ANTHR 450[4582])
For description, see ANTHR 450, section III A, "Understanding Cultures and Societies."

[ANTHR 762(7262) Catalhoyuk and Archaeological Practice (also ANTHR 462[4262], ARKEO 462[762](4262[7262]))
Fall. 4 credits. Not offered 2005-2006.
N. Russell.]
of uncovering and interpreting them. Sixteen of the credit hours should be at the 300 level or above. At least two courses must be taken from each of the following categories: II. Anthropological Archaeology; III. Classical, Near Eastern, and Medieval Archaeology; and IV. Methodology and Technology. Only 4 credits of ARKEO 300 Individual Study or other supervised study can count toward the major.

Courses basic to the discipline of archaeology are marked with the word 'Basic' after the number of credit hours. It is recommended that majors who are planning to pursue graduate studies in archaeology take at least two of the basic courses in each category. Further courses in languages and geology are also recommended.

Honors. Honors in archaeology are awarded on the basis of the quality of an honors essay and the student's overall academic record. Prospective honors students should have at least a 3.5 GPA in the major and a 3.0 grade point overall. They should consult with the director of undergraduate studies before the beginning of the senior year. The honors essay is normally prepared over two semesters in consultation with a faculty adviser during the senior year. Students enroll in ARKEO 481 Honors Thesis Research, and to complete the thesis, they enroll in ARKEO 482 Honors Thesis Writeup. Both courses are offered in the fall and spring. Only ARKEO 481 may count toward hours for completion of the archaeology major requirements. The credit hours for these courses are variable.

Fieldwork. Every student should gain some practical experience in archaeological fieldwork on a project authorized by his or her adviser. This requirement may be waived in exceptional circumstances. The Jacob and Hedwig Hirsch bequest provides support for a limited number of students to work at excavations sponsored by Cornell and other approved institutions.

The Concentration

Students in Cornell schools and colleges other than Arts and Sciences may elect a concentration in archaeology. To concentrate in archaeology, the student must complete five courses, all with a grade of C or better. The five courses must consist of either (1) ARKEO 100 and four other courses from categories II–IV (described above), at least three of which must be basic courses, or (2) five courses from categories II–IV, at least four of which must be basic courses. Concentrators are encouraged to gain some fieldwork experience. They are eligible for Hirsch Scholarships in support of fieldwork on the same basis as majors.

First-Year Writing Seminars

For course descriptions, see the First-Year Writing Program brochure.

I. Introductory Courses and Independent Study Courses

ARKEO 100(1200) Ancient Peoples and Places (also ANTHR 100(1200)) # @ (III or IV) [HA]

Fall. 3 credits. Basic. J. Henderson.

Broad introduction to archaeology: the study of material remains to answer questions about the human past. Case studies highlight the variability of ancient societies and illustrate the varied methods and interpretive frameworks archaeologists use to reconstruct them. This course can serve as a platform for both archaeology and anthropology undergraduate majors.

ARKEO 200(3000) Individual Study in Archaeology and Related Fields

Fall and spring. Credit TBA. Prerequisite: ARKEO 100 or permission of instructor. Students pursue topics of particular interest with the guidance of a faculty member.

ARKEO 481(4981) Honors Thesis Research

Fall or spring. 4 credits, variable. Prerequisite: admission to honors program. Independent work under the close guidance of a faculty member.

ARKEO 482(4982) Honors Thesis Writeup

Fall or spring. 4 credits, variable.

II. Anthropological Archaeology

ARKEO 203(2200) Early People: The Archaeological and Fossil Record (also ANTHR 203(2200))

Spring. 3 credits. Basic. T. P. Volman.

For description, see ANTHR 203.

ARKEO 215(2215) Stone Age Art (also ANTHR 215(2215))

ARKEO 235(2235) Archaeology of North American Indians (also ANTHR 235(2235))

ARKEO 255(2255) Great Empires of the Andes (also ANTHR 255(2255)) # @ (III) [HA]

Spring. 3 credits. K. Jordan.

For description, see ANTHR 255.

ARKEO 242(2201) Early Agriculture (also ANTHR 242(2201))

ARKEO 255(2255) Great Empires of the Andes (also ANTHR 255(2255)) # @ (III) [HA]

ARKEO 317(3217) Stone Age Archaeology (also ANTHR 317(3217))

ARKEO 330(3230) Humans and Animals (also ANTHR 330(3230))

ARKEO 494(4294) Seminar in Archaeology: The Archaeology of Human Origins (also ANTHR 494[4294])
Spring. 4 credits. T. P. Volman.
For description, see ANTHR 494.

[ARKEO 609(6290) Approaches to Archaeology (also ARKEO 409[4290], ANTHR 409[4290]/609[6290])]
Fall. 4 credits. Prerequisite: permission of instructor. Not offered 2005-2006.
N. Russell.

ARKEO 648(6248) Iruqois Archaeology (also ARKEO 348[3248], ANTHR 348[3248]/648[6248], AIS 348[3248]/3480[6480])
Spring. 4 credits. K. Jordan.
For description, see ANTHR 348.

[ARKEO 656(6256) Maya History (also ANTHR 656[6256])]

[ARKEO 659(6259) Archaeology of the Household (also ARKEO 459[4259], ANTHR 459[4259]/659[6259])]

ARKEO 667(6267) Contemporary Archaeological Theory (also ANTHR 667[6267])
Spring. 4 credits. Limited to 14 students. Prerequisite: permission of instructor for undergraduates. Not offered 2005-2006. N. Russell.

ARKEO 669(6269) Gender and Age in Archaeology (also ARKEO 369[3269], ANTHR 369[3269]/669[6269])
Spring. 4 credits. N. Russell.
For description, ANTHR 369.

ARKEO 700(7270) Political Economy in Archaeology (also ARKEO 470[4270], ANTHR 470[4270]/700[7270])
Fall. 4 credits. K. Jordan.
For description, ANTHR 470.

[ARKEO 772(7272) Historical Archaeology of Indigenous Peoples (also ARKEO 472[4272], ANTHR 472[4272]/772[7272], AM ST 472[4272])]

III. Classical, Near Eastern, and Medieval Archaeology

[ARKEO 221(2726) Minoan-Mycenaean Art and Archaeology (also CLASS 221[2726], ART H 221[2226])]
For description, see CLASS 221.

[ARKEO 227(2727) The Bible and Ancient Near Eastern Civilization (also NES/JWST/RELST 227[2727])]

[ARKEO 240(2240) Old World Prehistory (also ANTHR 240[2240])]

[ARKEO 260(2662) Daily Life in the Biblical World (also NES/JWST 262[2662])]

ARKEO 263(2663) Introduction to Biblical History and Archaeology (also NES/JWST 263[2663], RELST 264[2663])
Spring. 3 credits. Basic. J. Zorn.
For description, see NES 265.

[ARKEO 266(2666) Jerusalem through the Ages (also NES/JWST/RELST 266[2666])]

ARKEO 268(2668) Ancient Egyptian Civilization (also NES/JWST 268[2668])

ARKEO 276(2765) Religions of Ancient Israel (also NES/RELST/JWST 275[2765])
Fall. 3 credits. J. Zorn.
For description, see NES 275.

ARKEO 321(3721) Mycenae and Homer (also CLASS 321[3721], ART H 321[3721])
Fall. 4 credits. Basic. Prerequisite: at least one course in archaeology, classics, or history of art. J. Coleman.
For description, see CLASS 321.

ARKEO 361(3661) Sumerian Language and Culture (also NES/JWST 361[3661])
4 credits. D. Owen.
For description, see NES 361.

ARKEO 362(3762) Sumerian Language and Culture II (also NES/JWST 362[3762])
Spring. 4 credits. D. Owen.
For description, see NES 362.

[ARKEO 364(3764) Ancient Iraq: Mesopotamian Civilization (also NES/JWST 364)]

ARKEO 365(3665) Ancient Iraq II: From the Beginning of the Second Millennium to the Conquest of Alexander the Great (also NES/JWST 365[3665])
Fall. 4 credits. D. Owen.
For description, see NES 365.

ARKEO 366(3666) The History and Archaeology of the Ancient Near East (also JWST/NEs 366[3666])
Fall. 4 credits. Basic. D. I. Owen.
For description, see NES 366.

[ARKEO 380(3800) Introduction to the Arts of China (also ART H 380[3800])]

[ARKEO 425(4350) Seminar on the Bronze Age Architecture of Asia Minor (also ART H 425[4355], CLASS 430[4730])]
Spring. 4 credits. Prerequisite: permission of instructor. Not offered 2005-2006. P. I. Kuniholm.

[ARKEO 432(4204) Sardis and the Cities of Asia Minor (also ART H 432[4254], CLASS 432)]

ARKEO 434(4340) The Rise of Classical Greece (also ART H 434[4254], CLASS 434[4734])
Spring. 4 credits. Recommended: CLASS 220 or 221 or ART H 220 or 221, or permission of instructor. P. I. Kuniholm.
The art and archaeology of the Greek dark ages. Topics include: site reports, pottery, metalworking, the introduction of the alphabet, the beginnings of coinage, and links with Anatolia and the Near East.

[ARKEO 435(4207) Seminar on Roman Art and Archaeology (also CLASS 435[4735], ART H 427[4207])]
Spring. 4 credits. Prerequisite: permission of instructor. Not offered 2005-2006. J. Coleman.

[ARKEO 520(5200) Seminar in Classical Archaeology (also ART H 520[5200], CLASS 620[7750])]

[ARKEO 629(7729) The Prehistoric Aegean (also CLASS 629[7729])]
4 credits. Prerequisite: graduate standing; advanced undergraduates by permission of instructor. Not offered 2005-2006. J. Coleman.

[ARKEO 663(6763) Sumerian Language and Culture III (also ARKEO 363[3263], NES/JWST 363[3663], NES/JWST 366[3763])]
For description, see NES 363.

[CLASS 220(2700) Introduction to Art History: The Classical World (also ART H 220[2260])]

[CLASS 237(2607) Greek Religion and Mystery Cults (also RELST 237)]

[CLASS 240(2725) Greek Art and Archaeology (also ART H 222[2225])]

[CLASS 322(3722) Greeks and Barbarians (also ART H 328)]
Fall. 4 credits. Prerequisite: CLASS 220 or 221, or permission of instructor. Not offered 2005-2006. J. Coleman.

[CLASS 329(3729) Greek Sculpture]

[CLASS 333(3643) Greek and Roman Mystery Cults and Early Christianity (also RELST 333)]
Fall. 4 credits. Recommended: previous course in classics (civilization or language) or RELST 101. Not offered 2005-2006. K. Clinton.

[ART H 320 The Archaeology of Classical Greece (also CLASS 320)]
ART H 322 Arts of the Roman Empire (also CLASS 350[3740]) Spring. 4 credits. A. Ramage. For description, see ART H 327.

ART H 325 Greek Vase Painting (also CLASS 325[3725]) Fall. 4 credits. Not offered 2005–2006. A. Ramage.

ART H 327 Greek and Roman Coins (also CLASS 327[3727]) Fall. 4 credits. A. Ramage. For description, see ART H 327.

[LA 545(5450) The Parks and Fora of Imperial Rome] Spring. 3 credits. Prerequisites: advanced standing in design field, classics, or history of art, or permission of instructor. Not offered 2005–2006. K. Gleason.

IV. Methodology and Technology

[ARKEO 256(2756) Practical Archaeology (also CLASS 256[2756]) Spring. 3 credits. Not offered 2005–2006. J. Coleman.]

ARKEO 261(2610) Urban Archaeology (also LA/CRP 261[2610]) Fall. 3 credits. Basic. S. Baugher. For description, see LA 261.

ARKEO 262(2620) Laboratory in Landscape Archaeology (also LA 262[2620]) Spring. 3 credits. S. Baugher. For description, see LA 262.

ARKEO 309(3090) Dendrochronology of the Aegean (also ART H 320[3250], CLASS 339[3750]) 4 (IV) [HA] Fall and spring. 4 credits. Limited to 10 students. Prerequisite: permission of instructor. Letter grades only. P. I. Kuniholm. Participation in a joint research project of dating modern and ancient tree-ring samples from the Aegean and Mediterranean. Supervised reading and laboratory work. A possibility exists for summer fieldwork in the Aegean.

ARKEO 370(3270) Environmental Archaeology (also ARKEO 670[6270], ANTHR 370[3270], 670[6270]) Spring. 4 credits. T. P. Volman. For description, see ANTHR 370.

[ARKEO 405(4250) Archaeological Research Design (also ARKEO 605[6250], ANTHR 405[4250], 605[6250], 405[4250], 605[6250]) Spring. 4 credits. Prerequisites: permission of instructor. Not offered 2005–2006. J. S. Henderson and T. P. Volman.]

ARKEO 423(4231) Ceramic Arts (also ART H 423[4231], CLASS 431[4731]) Spring. 4 credits. Prerequisite: permission of instructor. A. Ramage. For description, see ART H 423.

[ARKEO 437 Geophysical Field Methods (also EAS 437[4370]) Fall. 3 credits. Prerequisite: PHYS 213 or 208 or permission of instructor. Not offered 2005–2006. L. D. Brown.]

[ARKEO 458(4258) Archaeological Analysis (also ARKEO 658[6258], ANTHR 658[6258]) Spring. 4 credits. Limited to 15 students. Prerequisite: archaeological course or permission of instructor. Not offered 2005–2006. J. S. Henderson.]

ARKEO 463(4263) Zoological Archaeological Method (also ANTHR 463[4263] I/ PBS Supplementary List) Fall. 5 credits. N. Russell. For description, see ANTHR 463.

ARKEO 464(4264) Zoological Archaeological Interpretation (also ANTHR 464[4264] I/PBS Supplementary List) Spring. 4 credits. Prerequisites: ARKEO/ ANTHR 463; permission of instructor. N. Russell. For description, see ANTHR 464.

[ARKEO 467(4267) Origins of Agriculture (also ANTHR 467[4267]) Spring. 4 credits. Not offered 2005–2006.]

ARKEO 600(6000) Special Topics in Archaeology Fall. 4 credits. Staff.

ARKEO 601(6010) Graduate Colloquium in Archaeology Fall. 4 credits. Prerequisites: graduate students and advanced undergraduates by permission of instructor. Not offered 2005–2006. K. Gleason.

ARKEO 605(6250) Archaeological Research Design (also ARKEO 605[6250], ANTHR 605[6250], 605[6250], 605[6250], 405[4250], 605[6250]) Spring. 4 credits. Prerequisites: permission of instructor. Not offered 2005–2006. J. S. Henderson and T. P. Volman.

ARKEO 670(6270) Environmental Archaeology (also ARKEO 370[3270], ANTHR 370[3270], 670[6270]) Spring. 4 credits. T. P. Volman. For description, see ANTHR 370.

[BIOEE 671(6371) Paleoenvironment of South Asia (also ANTHR 671[6371], ASIAN 620[6620]) Fall. 3 credits. Not offered 2005–2006. K. A. R. Kennedy.]

[LA 569(5690) Archaeology in Preservation Planning and Design (also CRP 569[5690]) Fall. 3 credits. Not offered 2005–2006. S. Baugher.]

V. Relevant Courses at Ithaca College

Contact Sherene Baugher in Landscape Architecture at sbb8@cornell.edu or the Ithaca College Anthropology Department at 274–1351 for further information or visit their web site at www.ithaca.edu/hs/anthro/ Prehistory of South America. M. Malpass. Every other year.

New World Complex Societies. M. Malpass. Irregular offering.

World Prehistory. J. Rossen. Every semester.

People, Plans, and Culture: Archaeobotany and Ethnobotany. J. Rossen. Every other year.

Ethnoarchaeology. J. Rossen. Every other year.

Archaeological Field School.

ASIAN STUDIES

The Department of Asian Studies encompasses the geographical areas of East Asia, South Asia, and Southeast Asia and offers courses in most of the disciplines of the social sciences and the humanities. Forty-five members of the department specialize in languages, linguistics, literatures, and religions, while associated faculty throughout the university teach courses on Asia in their own disciplines, from art history and government to rural sociology. Asian Studies courses through the 400 level (ASIAN is the prefix) are taught in English, and are open to all students in the university. Some of these courses may be counted toward majors in other departments; others fulfill various distribution requirements.

The Major

A student majoring in Asian Studies normally specializes in the language and culture of one country and often chooses an additional major in a traditional discipline.

Majors complete two courses at the 200 level (a minimum of 6 credits with a grade of C or better) in one of the Asian languages offered at Cornell. The major consists of at least 30 additional credits (which may include up to 6 credits of further language study) of courses numbered 200 and above selected by the student in consultation with his or her adviser from among the Asia content courses offered by the Department of Asian Studies and by Asia specialists in other departments.

The applicant for admission to the major in Asian Studies must have completed at least
two Asia content courses, one of which can be a language course. Students must receive permission for admission to the major from the director of undergraduate studies. The student must have received a minimum grade of C in all other courses counted toward the major.

Honors
To be eligible for honors in Asian Studies, a student must have a cumulative GPA of 3.7 in all Asian Studies area courses, exclusive of language study only, and must successfully complete an honors essay during the senior year. Students who wish to be considered for honors should apply to the director of undergraduate studies during the second semester of their junior year. The application must include an outline of the proposed project and the endorsement of a supervisor chosen from the Asian Studies faculty. During the first semester of the senior year the student does research for the essay in conjunction with an appropriate Asian Studies course or ASIAN 401. By the end of the first semester the student must present a detailed outline of the honors essay or other appropriate work and have it approved by the project supervisor and the director of undergraduate studies. The student is then eligible for ASIAN 402, the honors course, which entails writing the essay. At the end of the senior year the student has an oral examination (with at least two faculty members) covering both the honors essay and the student's area of concentration.

Concentration in East Asia Studies
A candidate for the bachelor of arts or science degree at Cornell may take a concentration in East Asia studies by completing at least 18 credits of course work in East Asia studies. Students normally take five courses in East Asian Studies at the 200 level or above from those East Asian courses listed (China, Japan, Korea) either under Asian Studies or Asian-related courses. Of these, two courses might be Asian language courses at the 200 level or beyond. East Asian graduate courses may also be taken for the concentration, as well as East Asian-related courses with a research paper on a South Asia topic. Appropriate courses taken through Cornell Abroad in East Asia may also be counted toward the concentration. Students concentrating in East Asian Studies should select an adviser from the East Asia Program faculty for consultation on their course of study. For more information, contact the Department of Asian Studies at 350 Rockefeller Hall, 255-5095.

Concentration in Southeast Asia Studies
A candidate for the bachelor of arts or science degree at Cornell may take a concentration in Southeast Asia Studies by completing at least 18 credits of course work in Southeast Asian Studies. The student must have a cumulative GPA of 3.7 in all other courses counted toward the major. One South Asian graduate course may be taken for the concentration with permission of both the instructor and the adviser. The same applies for one South Asia-related course with a research paper on a South Asian subject. Additional courses may be added if offered with comparable South Asia content.

Concentration in Southeast Asia Studies
A candidate for the bachelor of arts or science degree at Cornell may take a concentration in Southeast Asian Studies by completing 18 credits of course work in Southeast Asian Studies. A recommended plan would include ASIAN 208 and four courses at the intermediate or advanced stage, two of which could be a Southeast Asian language. Students taking a concentration in Southeast Asian Studies are members of the Southeast Asia Program and are assigned an adviser from the program faculty. Such students are encouraged to commence work on a Southeast Asian language either at the 10-week intensive courses offered by the Southeast Asia Studies Summer Institute (SEASSI) or by studying for one semester at IKIP Malang, Indonesia; Khon Kaen University, Thailand; or Nihon University, Japan. Fellowships are available for undergraduates through the Cornell Abroad Program.

Intensive Language Program (FALCON)
The FALCON Program offers intensive instruction in Japanese or Chinese. Aside from the exclusive language schools of some government agencies, FALCON is the only program in the world that offers a full year of intensive instruction beginning at the elementary level and continuing to the advanced level. FALCON is a full-time program; the degree of intensity does not allow students to enroll simultaneously in other courses or to work, except perhaps on weekends. Students typically take the entire sequence of classes (160, 161, and 162), but they must take any other portion of the program if they have the necessary background as determined by a placement interview. Students often choose to apply only to the summer portion. The spring and fall semesters of the Chinese program are expected to be offered in Beijing at Tsinghua University.

Students must formally apply to the program. To guarantee course availability, applications must be received by March 1. After that, applicants are reviewed on a rolling basis and acceptance is contingent on the availability of spaces. Applications are available in 388 Rockefeller Hall or on the FALCON web site at http://falcon.cornell.edu/falcon.

Study Abroad
There are many strong options for study abroad in South or Southeast Asia. Cornell Abroad helps students plan a year or semester abroad as part of their Cornell undergraduate degree. Cornell has affiliations with several programs and institutions in Asia and sends students to those and others.

Cornell is affiliated with IUP, the Inter-University Program for Chinese Language Studies in Beijing (at Tsinghua University) and is a member of CIEE and IES, organizations sponsoring study abroad programs offering Chinese language instruction at several levels as well as courses in Chinese studies in the humanities and social sciences. Students may also study at other programs in China, Hong Kong, and Taiwan. The Chinese FALCON program includes a spring semester in Beijing.

Cornell is a member of the consortium of the Kyoto Center for Japanese Studies, an undergraduate semester or year program in Japanese language and Japanese culture. An agreement with International Christian University (ICU), outside Tokyo, permits Cornell students to attend that institution. Cornell students have attended CIEE and IES programs as well as other programs and institutions in Japan.

Cornell is a member of the American Association of Indian Studies, which offers fellowships for intensive study in India or Hindi, Bengali, and Tamil. There are study abroad options in universities or other organizations in various regions of India. In cooperation with Tribhuvan National University of Nepal, Cornell organizes the Cornell-Nepal Study Program for undergraduate and graduate students wishing to spend a semester or year studying and conducting research in Nepal.

Students may spend a semester or year in Mongolia, Korea, Vietnam, Indonesia, Thailand, Singapore, or the Philippines or to choose to study Asia at the School of Oriental and African Studies in London, or the Faculty of Asian Studies at the Australian National University. Undergraduates should consult Cornell Abroad, graduate students should inquire at the East Asia Program, Southeast Asia Program, or South Asia Program offices.

First-Year Writing Seminars
See John S. Knight Institute brochure for times, instructor, and descriptions.

General Education Courses
ASIAN 125(1125) Introduction to the Urdu Script (also URDU 125(1125))
Spring. 1 credit. Permission: HINDI 101 or permission of instructor. Staff. For description, see URDU 125.

ASIAN 191(1191) Introduction to Modern Asian History (also HIST 191(1190))
@ (III) (HA) (CA)
Fall. 4 credits. T. Loos and S. Cochran.

ASIAN 192(1192) Introduction to World Music: Asia (also MUSIC 104(1302))
@ (IV) (CA)
Fall. 3 credits. Not offered 2005-2006. M. Hatch.

ASIAN 201(2021) Sophomore Seminar: Buddhist Felicities (CA) (IV)
Spring. 4 credits. A. Blackburn. Should Buddhists desire nirvana? What is the pleasure and reassurance of monasticism, meditation, and ritual? With reference to materials from historical and contemporary contexts in South and Southeast Asia, and the American Buddhist diaspora, this course examines some of the central felicities of Buddhism and reflect on the scholarly move to study Buddhism in terms of emotion, ritual, narrative, and material culture. Writing projects include responses to films, art objects, and ethnographic writing, as well as close readings of Buddhist texts.
This is a special seminar sponsored by the John S. Knight Institutes Sophomore Seminars Program. Seminars offer discipline-specific study within an interdisciplinary context. While not restricted to sophomores, the seminars aim at initiating students into the disciplines' outlook, discourse community, modes of knowledge, and ways of articulating that knowledge. Limited to 15 students. Special emphasis is given to strong thinking and writing and to personalized instruction with top university professors.

[ASIAN 206(2206)] The Occidental Tourist: Travel Writing and Orientalism in Southeast Asia (also HIST 207/507[2070/5070]) @ (III)
For description, see HIST 207.

[ASIAN 208(2208)] Introduction to Southeast Asia @ (III or IV) (CA)
Fall. 3 credits. T. Chaloemtiaran.
For anyone curious about the most diverse part of Asia; defines Southeast Asia both as the nation-states that have emerged since 1945 (Brunei, Burma, Cambodia, Indonesia, Laos, Malaysia, Philippines, Singapore, Thailand, and Vietnam) and as a larger cultural world extending from southern China to Madagascar and Polynesia. Students find a serious, organized introduction to a variety of disciplinary and topical approaches to this region, including geography, linguistics, history, religion and ideology, anthropology, marriage and family systems, music, hierarchy and literature, art and architecture, agriculture, industrialization and urbanization, politics and government, warfare and diplomacy, ecological and human degradation, and business and marketing. The course teaches both basic information and different ways of interpreting that information.

[ASIAN 211(2211)] Introduction to Japan: Japanese Texts in History @ # (IV) (HA)
Fall. 3 credits. B. deVary.
Introduction to Japanese studies for nonmajors. Introduces top university professors. Special emphasis is given to strong thinking and writing and to personalized instruction with top university professors. The course teaches both basic information and different ways of interpreting that information.

[ASIAN 212(2212)] Introduction to China @ # (IV) (CA)
Spring. 3 credits. R. McNeal.
Interdisciplinary introduction to Chinese culture especially designed for students not majoring in Asian Studies. Explores literature, history, religion, art and archaeology, and other aspects of China's rich and diverse heritage, from earliest times to the present.

[ASIAN 215(2215)] Introduction to South Asian Civilization @ (IV) (HA)
Spring. 3 credits. A. Blackburn.
Interdisciplinary introduction to the cultures and histories of South Asia, with special attention to religion, political authority, and the arts.

[ASIAN 218(2218)] Introduction to Korea [also HIST 218(2180)] @ (III or IV) (CA)
Spring. 3 credits. M. Shin.
Multidisciplinary introduction to Korean history, society, and culture. The first part of the course examines sources of Korean tradition in their historical contexts. The second part, on the transition to a modern society, covers the mid-19th century to the Korean War. The last part is devoted to contemporary society.

Asia—Literature and Religion Courses
The following courses are taught entirely in English and are open to any Cornell student.

[ASIAN 219(2219)] Women in South Asia [also HIST/FGSS 219(2190)] @ (III) (HA)
Fall. 4 credits. D. Ghosh.
For description, see HIST 219.

[ASIAN 220(2220)] Buddhism in America [also RELST 220(2220)] @ (IV)

[ASIAN 222(2228)] The Indian Ocean World [also HIST 222(2220)] @ (III) (HA)
Spring. 4 credits. Limited to 15 students. E. Tagliacozzo.
For description, see HIST 228.

[ASIAN 241(2241)] China's Literary Heritage: An Introduction in Translation @ # (IV) (LA)
Spring. 3 credits. D. X. Warner.
Survey course designed for, though not limited to, nonmajors with or without any knowledge of Chinese language, history, or culture. Students read a broad selection in translation of poems, prose, and narrative writings from the pre-modern period on a variety of themes, including the individual and society, man and nature, love and sorrow, fate and faith, life and death. Lectures and guided discussions explore the interrelation between the Chinese literary tradition and its culture, history, philosophy, religions, and visual art. The goal is to help students toward informed and enjoyable reading of Chinese literature while gaining a deeper understanding of the Chinese and cultural heritage.

[ASIAN 245(2245)] Gamelan in Indonesian History and Culture [also MUSIC 245(1341)] @ (IV) (LA)
Fall or spring. 3 credits. Permission of instructor, M. Hatch.
For description, see MUSIC 245.

[ASIAN 249(2249)] Peddlers, Pirates, and Prostitutes: Subaltern Histories of Southeast Asia, 1800 to 1900 [also HIST 249/648] @ # (III) (HA)
For description, see HIST 249.

[ASIAN 250(2250)] Introduction to Asian Religions [also RELST 250(2250)] @ # (IV) (HA)
Spring. 5 credits. D. Boucher.
Explores a range of religious traditions in South Asia (Pakistan, India, and Sri Lanka) and East Asia (China and Japan) including Hinduism, Buddhism (South and East Asia), Confucianism, Daoism, and Shinto. We concentrate on these religions in traditional times in order to understand better the historical foundations that have influenced much of what these cultures are today. The course format includes lectures and discussion sections.

[ASIAN 277(2277)] Meditation in Indian Culture [also RELST 277(2277)] @ # (IV) (CA)
Spring. 3 credits. D. Gold.
Probes the truths behind traditional claims of the priority of internal practice in Indian traditions. Students are expected to experiment with some basic meditation practices and situate them within larger South Asian worldviews as suggested by doctrines, rituals, iconic forms, and literary texts. Grades are based on short papers.

[ASIAN 282(2282)] Japanese Animation and New Media @ (IV) (CA)
Fall. 3 credits. T. LaMarre.
Introduces Japanese animation and new media, with an emphasis on analysis of myth, genre, and media.

[ASIAN 284(2284)] Southeast Asia in the World System: Incorporation, 1500 to Present [also HIST 284(2840)] @ # (III)
For description, see HIST 284.

[ASIAN 293(2293)] History of China up to Modern Times [also HIST 293(2930)] @ # (III) (HA)
For description, see HIST 293.

[ASIAN 294(2294)] History of China in Modern Times [also HIST 294(2940)] @ # (III) (HA)

[ASIAN 299(2299)] The U.S.-Vietnam War [also HIST 298(2980)] @ (III) (HA)
Fall. 3 credits. K. Taylor, F. Logevall.
Analyzes events in Vietnam, the United States, and elsewhere related to the U.S. policy of intervention in Vietnam between 1954 and 1975. Readings include historical narratives, memoirs, and literature. The course evaluates the standard winner (Hanoi) and loser (U.S.) narratives and how they have silenced southern Vietnamese voices.

[ASIAN 299(2290)] Buddhism [also RELST 290] @ # (IV) (CA)

[ASIAN 301(3301)] Schools of Thought—Ancient China @ # (IV) (HA)
Fall. 4 credits. R. McNeal.
Introduces students to early Chinese thought through readings in translation from classical works on moral and political philosophy. Addresses critically the traditional conception of the Six Schools of thought in ancient China, including the Taoists, Confucians, Legalists. Examines newly discovered materials and recent research that helps clarify the relationships among early intellectual traditions and the social and intellectual world from which they emerged.

[ASIAN 302(3302)] Art of War in Ancient China @ # (IV) (HA)
Fall. 4 credits. R. McNeal.
Sun-tzu's Art of War is one of the most widely translated and circulated books of all time. Businessmen in Asia swear by it, professional coaches invoke it when planning strategy, and students of political science plumb its depths for timeless wisdom on how to defeat an enemy without taking to the battlefield. This
course examines Sun-tzu's text in its historical context, along with several other early military and strategic works. Students treat the works as a genre and read them not as manuals for modern-day success, but as a record of a complex and sophisticated conceptualization of the role of warfare and all its components in the broader mission of the state.

[ASIAN 306(3306) Zen Buddhism (also REST 306) @ # (IV) (KCM)
Spring. 4 credits. Limited to 15 students.
Prerequisites: any university-level course in Buddhist studies, Asian/REST 250, or permission of instructor. Graduate students can take this course for credit and sign up for an additional credit hour for an extra session. Not offered 2005–2006. J. M. Law.]

ASIAN 312(3312) Intellectuals in Early Modern Korea @ # (IV) (HA)
Spring. 4 credits. Prerequisite: one course on modern Japan or Korea. M. Shin.
Introduction to early modern Korean history (early 19th century to 1945) through a survey of its major intellectuals. Gives an overview of the political and socioeconomic background that gave rise to these intellectuals and then examines how they commented on and tried to shape the conditions of their times. Topics include critiques of feudal society, the origins of modern literature and historiography, socialism/communism, liberation movements, Christianity, and feminism. Readings include secondary sources, Korean texts in translation, and works by Korean intellectuals written in English.

ASIAN 326(3326) Comparative Civil War
Spring. 4 credits. K. Taylor.
[ASIAN 328(3328) Construction of Modern Japan (also HIST 328(3280)) @ # (III) (HA)
J. V. Koschmann.
For description, see HIST 328.]

ASIAN 342(3342) History of Modern South Asia 1700 to 1947 (also HIST 342(3420)) # (III) (HA)
Fall. 4 credits. D. Ghosh.
For description, see HIST 342.

ASIAN 346(3346) Modern Japanese Politics (also GOVT 346(3463)) @ (III)
Spring. 4 credits. R. Weiner.
For description, see GOVT 346.

ASIAN 347(3347) Tantric Traditions (also REST 349) @ # (IV) (CA)
Fall. 4 credits. D. Gold.
Treats the development of tantric traditions in the Indian subcontinent and beyond. Discusses philosophical, sociopolitical, religious, cultic, and visionary dimensions of tantra. Different Hindu and Indo-Tibetan traditions are studied, and some attention is paid to tantric developments in East Asian Buddhism.

[ASIAN 348(3348) Indian Devotional Poetry (also REST 348(3488)) @ # (IV) (LA)

ASIAN 351(3351) Indian Religious Worlds (also REST 351(3351)) @ (IV)

[ASIAN 354(3354) Indian Buddhism (also REST 354(3354)) @ # (IV) (HA)

[ASIAN 355(3355) Japanese Religions (also REST 355(3355)) @ # (IV) (CA)

[ASIAN 356(3356) Theravada Buddhism (also REST 363) @ (IV) (CA)
A. Blackburn.]

[ASIAN 357(3357) Chinese Religions (also REST 357(3357)) @ # (IV) (CA)
D. Boucher.]

ASIAN 359(3359) Japanese Buddhism: Texts in Context (also REST 359(3359)) @ # (IV) (HA)
Spring. 4 credits. J. M. Law.
Focuses on six figures in Japanese Buddhism: Sūchō (767–822), Kūkai (?–835), Hōnen (1133–1212), Nichiren (1222–1282), Dogen (1280–1253), and Fuki (1685–1769). Studies their lives, writings, core practices, and doctrines and a central religious dynamic the work of each embodies: establishment of a Mahayana ordination, esoteric practice, the popularization of Buddhism, Buddhist pro-nationalist ideologies, and establishment of Zen meditation as iconic "Japanese" Buddhism.

ASIAN 373(3737) 20th-Century Chinese Literature @ (IV) (LA)
Fall. 4 credits. E. Gunn.
A survey of the principal works in English translation, the course introduces fiction, drama, essays, and poetry of China beginning with the Republican era and continuing up to the present in the People's Republic and Taiwan, with attention to social and political issues and literary theory.

ASIAN 374(3734) Chinese Narrative
Spring. 4 credits. E. Gunn, D. X. Warner. Selected works in classical Chinese fiction are read in translation. Major novels, such as The Dream of the Red Chamber and Water Margin, are emphasized.

ASIAN 379(3379) Southeast Asian Literature in Translation @ (IV) (LA)
Spring. 4 credits. L. Paterson.
Introduction to modern Southeast Asian literature in translation, concentrating on contemporary short stories and novels from the mainland. Explores the literature thematically with reference to such issues as modernization, decolonization, changing gender roles and relationships, and the urban-rural dichotomy.

ASIAN 380(3380) Vietnamese Literature in Translation @ # (IV) (LA)
Fall. 4 credits. L. Paterson.
Survey of Vietnamese literature available in translation from all eras beginning with earliest times to the contemporary period. Includes both poetry and prose, with particular attention to literary forms and considerations of how those forms relate to their ostensible contents. Also addresses how the idea of a national literature arose and how the substance of this idea was constructed.

ASIAN 385(3385) History of Vietnam (also HIST 388/688(3880/6880)) @ # (IV) (HA)
Spring. 4 credits. Meets concurrently with ASIAN 685. Graduate students may enroll and attend a seminar sec. K. Taylor.
Survey of Vietnamese history and culture from earliest times to the present.

ASIAN 386(3386) Southeast Asia through Film @ (IV) (CA)
Spring. 4 credits. L. Paterson.
Explores the portrayal in Western cinema of countries of Southeast Asia in juxtaposition with films produced in the countries themselves. In what ways is this exotic region constructed through Western eyes? To what degree has Southeast Asian cinema itself imitated this Occidental construct? The earliest Western films shot in Southeast Asia, the rise of local cinemas, and the most recent Hollywood blockbusters are examined. Through close analysis of these films, students explore the process of visual translation from reality to fantasy, in both the local and international contexts, throughout the 20th century.

ASIAN 387(3387) Literature and Film of South Asia (also COM L 386(3860)) @ (IV) (CA)
Fall. 4 credits. A. Banerjee.
For description, see COM L 386.

ASIAN 388(3388) Theorizing Gender and Race in Asian Histories and Literatures (also ASIAN 688(6688), COM L 398(3980)/688(3980)/6880) @ (IV) (CA)
Fall. 4 credits. N. Sakai.
Students are allowed to take this course as ASIAN 388 or 688, although those who have studied Japanese for more than four years are strongly encouraged to register in ASIAN 688. Those who register in ASIAN 688 have to spend additional time in class to deal with texts in Japanese. ASIAN 388: mainly for undergraduate and graduate. Prerequisite: none. The type and amount of written work required: oral presentations in class and two term papers (8 to 12 pages double-spaced each).
terror are represented and remembered within countries. Readings include memoirs from Cultural Revolution China, post-war Vietnam, of representation such as intended audience, construction of memory, and framing of individual experience. They also examine to what extent these accounts contribute to, or contradict, national narratives of the respective countries. Readings include memoirs from Cultural Revolution China, post-war Vietnam, Khmer Rouge Cambodia, Burma under military rule, and contemporary Thailand.

ASIAN 425(4425) Theories of Civilization (also HIST 495[4940]) # (III or IV) (HA)
Spring. 4 credits. K. Taylor. Survey of theories about how to define civilization and how civilizations arise and decline, based on the writings of Cordwainer and Mneucti, Ibn Khaldun, Giambattista Vico, Oswald Spengler, and Arnold Toynbee.

ASIAN 430(4430) Structure of Korean (also LING/KOREA 430[4430]) (III) (KCM)

ASIAN 436(4436) Topics in Indian Film (IV) (LA)
Spring. 4 credits. No knowledge of an Indian language required. D. Gold. Treats various aspects of Indian film, with local topics to vary from year to year. These topics include religion in Indian film, Indian art films, and the golden age of Indian film. All topics are discussed in relation to the conventions of mainstream Bollywood cinema and their social and cultural significances. Attendance at weekly screenings is required.

ASIAN 444(4441) Mahayana Buddhism (also RELST 441[4441]) (IV) (CA)
Spring. 4 credits. D. Boucher. Explores the origins and early developments of a movement in Indian Buddhism known as the Mahayana, focusing on a small slice of this movement's voluminous literature. Topics include the causalatta, the lay/mönk distinction, attitudes of Mahayana toward women and other Buddhists, and the development of Buddhist utopias and transcedent Buddhists.

ASIAN 443(4433) Neoliberalism and Culture (also S HUM 424)
Spring. 4 credits. Limited to 15 students. Nae-hui Kang.

ASIAN 445(4445) Japanese Imperialism in East Asia (IV) (HA)
Fall. 4 credits. Limited to 15 students. M. Shin.

ASIAN 449(4449) History and Methods of the Academic Study of Religion (also RELST 449[4449]) # (III) (KCM)
Spring. 4 credits. Prerequisite: one course satisfying religious studies major. J. M. Law.

Provides advanced students in religious studies or the humanities familiarity with important methodological issues in the academic study of religion. Following a brief historical outline, major approaches to the academic study of religion currently used and discussed in religious studies are examined. Students read works from the following approaches to the study of religion: anthropology, philosophical hermeneutics, phenomenology, history of religions, the sociology of religion and critical ideological studies. In the final segment, the course focuses on recent developments in the field of religious studies.

ASIAN 450(4450) Crime and Diaspora in Southeast Asian History (also HIST 451[4510]) # (III)

ASIAN 453(4453) Immortality and Enlightenment in Chinese Religions (IV) (CA)
Spring. 4 credits. D. Boucher. Examines techniques of spiritual cultivation in both the Daoist and Buddhist traditions of China, comparing and contrasting methods that focus on the manipulation of bodily energies and fluids, particularly in the early and medieval Daoist traditions, with the Buddhist emphasis on cognitive transformation, particularly in the Chan school. Discussions also look beyond China to include Indian and Western techniques, leading to mystical awareness, as well as to the debates on the nature of mystical states as “pure consciousness events” on the one hand, or culturally specific constructions on the other.

ASIAN 460(4460) Indian Meditation Texts (also RELST 460[4460]) # (IV) (KCM)
Fall. 4 credits. No knowledge of Indian languages required. D. Gold. Draws on approaches from literary criticism, anthropology, and religious studies to explore texts that record religious experience. Readings are drawn from classical meditation manuals of Hinduism and Buddhism and later yogic and devotional texts.

ASIAN 462(4462) Religion, Colonialism, and Nationalism in South and Southeast Asia (also HIST 462[4662], RELST 462[4652]) (IV) (CA)
Spring. 4 credits. Prerequisites: one course in ASIAN, RELST, HIST, ANTH at 300 level or above course in ASIAN or RELST or permission of instructor. Not offered 2005–2006. A. Blackburn.

ASIAN 482(4482) Seminar: Gender Adjudicated (also HIST 480[4800]) # (III)
Fall. 4 credits. T. Loos.

ASIAN 483(4483) Internationalism, Nationalism, and Modern Japanese Discursive Space (III) (KCM)
Spring. 3 credits. N. Sakai.
In the late 19th and early 20th centuries, nation-states formed in Britain, France, Japan, Germany, and the United States sought to become imperial powers; and “internationalism” virtually collapsed. Focusing on Japanese examples, but not excluding other cases, this course studies modern national subjectivity with a view to the problems of ethnicity, colonialism, sexism, historical memory, post-coloniality, and academic knowledge.
[ASIAN 496(4486) Ritual and Performance in Japanese Religions (also RELST 486)] (IV) (CA)
Spring. 4 credits. Limited to 12 students. Prerequisites: for undergraduates, permission of instructor. Ability to read Japanese not required, but there are optional readings in Japanese. Graduate students may sign up for this as graduate-level course. Not offered 2005–2006.
J. M. Law.

[ASIAN 487(4487) Vedanta Among the Shastras @ (IV) (HA)
Spring. 4 credits. Prerequisite: primarily for seniors/majors and graduate students, background in subject, permission of instructor. Not offered 2005–2006. C. Minkowski.

ASIAN 492(4492) Undergraduate Seminar in Medieval Chinese History (also HIST 492/4920) @ (III) (HA)
Fall. 4 credits. Prerequisites: ASIAN/HIST 293, HIST 360, or permission of instructor. C. Peterson.
Topic: The life of the Chinese literati—social, cultural, and intellectual—as seen through literature, art, and other materials. For description, see HIST 492.

ASIAN 493(4493) Problems in Modern Chinese History (also HIST 493/6930/6930) @ (III) (HA)
Fall. 4 credits. Prerequisite: permission of instructor. Not offered 2005–2006.
S. Cochran.
For description, see HIST 493.

ASIAN 496(4496) Tokugawa Literature and Thought @ (IV) (HA)
Spring. 4 credits. N. Sakai.
Introduction (in English translation) to literary, theatrical, and intellectual works of the Tokugawa period (1600–1868). Examines the characteristics of the literary and theatrical works of the Tokugawa Japan. Students read the philosophical and philological works on the classics by writers such as Oggyu Sorai and Motoori Norinaga to discuss the issues of literary modernity.

ASIAN 499(4499) Problems in Modern Chinese History (also HIST 499/6990) @ (III) (HA)
Spring. 4 credits. Prerequisite: permission of instructor. Not offered 2005–2006.
S. Cochran.
For description, see HIST 499.

ASIAN 507(5507) The Occidental Tourist (also HIST 207/3070/3070, ASIAN 206/2060)
T. Loos.
For description, see HIST 207.

Asia—Graduate Seminars
For complete descriptions of courses numbered 600 or above, consult the director of graduate studies.

[ASIAN 601(6601) Southeast Asia Area Seminar: Thailand (also HIST 487/687, 4870/6870)]
Staff.

ASIAN 602(6602) Southeast Asia Seminar
Spring. 4 credits. Staff.

[ASIAN 604(6604) Southeast Asia Topical Seminar

[ASIAN 605–606(6605–6606) Master of Arts Seminar in Asian Studies
605, fall. 606, spring. 2–4 credits. Not offered 2005–2006. Staff.]

[ASIAN 610(6610) SLA and the Asian Languages (also LING 609/6090)]
For description, see LING 609.

ASIAN 612(6612) Japanese Bibliography and Methodology
Fall. 1 credit. Requirement for honors students and M.A. candidates. Prerequisite: permission of instructor. F. Kotas.

ASIAN 613(6613) Southeast Asian Bibliography and Methodology
Fall. 1 credit. Requirement for honors students and M.A. candidates. Prerequisite: permission of instructor. Recommended: reading knowledge of at least one Southeast Asian language or other Asian language (especially Chinese or Japanese) and a major European language (especially French, Spanish, or Dutch). Staff.
Designed to instruct students in methods of identifying and locating resources for the study of Southeast Asia. Emphasis is on the practical aspects of using various types of bibliographical tools to identify both primary and secondary sources in Southeast Asian and Western languages. Electronic databases and online services as well as traditional printed resources are covered. Relevant arcana of library science is explained as necessary.

ASIAN 618(6618) Gender and Sexuality in Southeast Asian History (also ASIAN 416/4416, HIST 416/616/4160/6160)
Spring. 4 credits. Prerequisite: graduate standing. T. Loos.
For description, see HIST 416.

ASIAN 619(6619) Graduate Seminar: Translation in Theory
Spring. 4 credits. B. de Bary.
The study of translation, often figured as invisible, brings hidden histories to light. Translation may be a practice of myth-making and art. The course introduces theories of translation significant for post-modern, post-colonial, and visual studies.

ASIAN 626(6626) The 18th Century and the Emergence of Literary Modernity
Spring. 4 credits. N. Sakai.

ASIAN 634(6634) Buddhist Studies Seminar
Fall. 4 credits. Prepares graduate students studying Asian religions for a examination; other graduate students by permission of instructor. A. Blackburn.
Reviews central historical developments in the field of Buddhist studies, as well as recent methodological debates and innovations.

[ASIAN 638(6638) Monks, Texts, and Relics: Transnational Buddhism in Asia (also RELST 438)]
Spring. 4 credits. Prerequisites: one 300-level or above course in ASIAN or RELST or permission of instructor. Not offered 2005–2006. A. Blackburn.

ASIAN 650(6650) Seminar in Asian Religions
Fall. 4 credits. Limited to 10 students. Prerequisite: graduate standing. Recommended: reading knowledge of modern Japanese. J. M. Law.

[ASIAN 651(6651) Crime and Diaspora in Southeast Asian History (also HIST 451/650/4510/6510)]
For description, see HIST 650.

[ASIAN 654(6654) Indian Buddhism (also ASIAN 354/3354, RELST 354/6354/6354/654)]
For description, see ASIAN 354.

[ASIAN 662(6662) Religion, Colonialism, and Nationalism in South and Southeast Asia (also RELST 462)]
Spring. 4 credits. Prerequisites: one course in ASIAN, RELST, HIST, ANTHR at 300 level or above or permission of instructor. Not offered 2005–2006. A. Blackburn.

[ASIAN 671(6671) Paleoenthropology of Southeast Asia (also BIOEE 671/6710, ANTHR 671/6711)]
For description, see BIOEE 671.

ASIAN 675(6675) Southeast Asia Reading Seminar: The Early Thai Novels
Fall. 4 credits. T. Chaloemtiarana.

ASIAN 680(6680) Vietnamese Literature in Translation (also ASIAN 380/3380)
Fall. 4 credits. L. Paterson.
For description, see ASIAN 380.

[ASIAN 684(6684) Southeast Asia in the World System: Capitalism and Incorporation, 1500 to Present (also HIST 284/684/2840/6840)]
For description, see HIST 684.

ASIAN 685(6685) History of Vietnam (also HIST 388/688/3880/6880 and ASIAN 385/3385)
Spring. 4 credits. K. Taylor.
For description, see ASIAN 385.

ASIAN 688(6688) Theorizing Gender and Race in Asian Histories and Literature (also ASIAN 388/3388)
Fall. 4 credits. Prerequisite: reading knowledge of Japanese. N. Sakai.
For description, see ASIAN 388.

[ASIAN 693(6693) Problems in Modern Chinese History (also HIST 493/693/4930/6930)]
For description, see HIST 493.

[ASIAN 694(6694) Problems in Modern Chinese History (also HIST 499/699/4990/6990)]
For description, see HIST 499.
ASIAN 696(6966) Modern Southeast Asia: Graduate Proseminar (also HIST 396/696(3960/6960))
Spring, 4 credits. T. Loos and E. Tagliocozzo.
For description, see HIST 396.

ASIAN 698(6988) Seminar in Japanese Thought (also HIST 698(6980))
Fall, 4 credits. Limited to 15 graduate students. Prerequisite: reading knowledge of Japanese. V. Koschmann.
For description, see HIST 698.

ASIAN 701-702(7701-7702) Seminar in East Asian Literature
701, fall; 702, spring. 1–4 credits. Staff.

ASIAN 703-704(7703-7704) Directed Research
703, fall or spring; 704, fall or spring. 1–4 credits. Staff.

ASIAN 705(7705) Crosslinguistic Topics—Language Acquisition (also LING 700.2)
Fall. 4 credits. Y. Shirai.
For description, see LING 700.2.

ASIAN 899(8999) Master’s Thesis Research
Fall, spring. 2–4 credits. Staff.

ASIAN 999(9999) Doctoral Dissertation Research
Fall, spring. 2–4 credits. Staff.

Honors Courses

ASIAN 401(4401) Asian Studies Honors Course
Fall or spring. 4 credits. Prerequisite: senior standing; admission to honors program. Staff. Supervised reading and research on the problem selected for honors work.

ASIAN 402(4402) Asian Studies Honors: Senior Essay
Fall or spring. 4 credits. Prerequisite: admission to honors program. Staff. The student, under faculty direction, prepares an honors essay.

ASIAN 403-404(4403-4404) Asian Studies Supervised Reading
Fall, spring, or both. 1–4 credits. Prerequisite: permission of instructor; majors and other qualified students. Intensive reading under the direction of a member of the staff.

Bengali

BENGAL 121-122(1121-1122) Elementary Bengali
121, fall; 122, spring. 4 credits each semester. BENGAL 122 provides language qualification. Prerequisite: for BENGAL 122, BENGAL 121 or examination. Enables students to read and comprehend basic Bengali texts as well as speak and write in the language. The introduction of the Bengali script is complemented by detailed instruction in grammar.

BENGAL 201-202(2201-2202) Intermediate Reading and Conversation I
201, fall; 202, spring. 4 credits each semester. BENGAL 201 provides language proficiency and satisfies Option 1. Prerequisites: for BENGAL 201, BENGAL 122 or examination; for BENGAL 202, BENGAL 201 or examination. Building on skills mastered at the elementary level and continuing grammar instruction, this course is designed to advance students’ oral competence and enhance comprehension skills through reading and listening. Its aim is to enable students to interact productively when immersed in the environment and/or to carry out research in primary material in the language.

BENGAL 203-204(2203-2204) Intermediate Bengali Composition and Conversation
203, fall; 204, spring. 2 credits each semester. Prerequisites: for BENGAL 203, BENGAL 122 or examination; for BENGAL 204, BENGAL 203 or examination. Complements the verbal skills developed in BENGAL 201–202 by improving writing skills.

BENGAL 300(3000) Directed Studies
Fall or spring. 1–4 credits, variable. Prerequisite: permission of instructor. Y. Shirai.
Taught on a specialized basis to address particular student needs.

BENGAL 303–304(3303–3304) Bengali Literature I, II
303, fall; 304, spring. 4 credits each semester. Prerequisites: BENGAL 203–204 or equivalent. Designed in consultation with students to address their specific needs. Through reading literary texts organized around social and cultural theme-clusters, the course aims to refine the students’ breadth of understanding and develop literary/critical skills.

Burmese

Note: Contact S. Tun in 405 Morrill Hall before classes begin for placement or other testing and organizational information.

Burmese Reading @
BURM 104 provides language proficiency and satisfies Option 1. Prerequisites: for BURM 104, BURM 121; for BURM 202, BURM 201. S. Tun.

BURM 201 provides language proficiency and satisfies Option 1. Prerequisites: for BURM 201, BURM 123; for BURM 202, BURM 201. S. Tun.
Continuing instruction in Burmese, with emphasis on consolidating and extending conversational skills, and on extending reading ability.

BURM 300(3000) Directed Studies
Fall or spring. 1–4 credits, variable. Prerequisite: permission of instructor. Times TBA with instructor. S. Tun.
Taught on a specialized basis to address particular student needs.

BURM 301–302(3301–3302) Advanced Burmese
301, fall or spring; 302, fall or spring. 3 credits each semester. Prerequisites: for BURM 301, BURM 202 or permission of instructor; for BURM 302, BURM 301. S. Tun.
Continuing instruction on conversational and literary skills, but with special emphasis on reading. Students encounter various genres and styles of written Burmese. Readings include articles on current events, and either several short stories or a novel. Focus is on developing reading skills, particularly on vocabulary development, consolidating and expanding grammar, and appreciating stylistic and cultural differences.

Burmese Culture and Conversation Practice
BURM 103-104(1103-1104) Burmese Conversation Practice
103, fall; 104, spring. 2 credits each semester. BURM 104/122 fulfills qualification portion of language requirement. Prerequisites: for BURM 104, BURM 103 and 121. May not be taken alone; must be taken simultaneously with BURM 121–122. S. Tun.
Additional drills, practice, and extension of materials covered in BURM 121 and 122. These courses are designed to be attended simultaneously with BURM 121–122 respectively, allowing students to obtain qualification within a year.

BURM 121-122(1121-1122) Elementary Burmese
121, fall; 122, spring. 4 credits each semester. BURM 122 provides language qualification. BURM 104/122 fulfills qualification portion of language requirement. Prerequisites: for BURM 122, BURM 121. May be taken alone or simultaneously with BURM 103–104. S. Tun.
A thorough grounding is given in all language skills: listening, speaking, reading, and writing.

BURM 123(1123) Continuing Burmese
Fall. 4 credits. Provides language qualification. Prerequisite: BURM 122. S. Tun.
Continuing instruction in conversational and reading skills to prepare students for 200-level courses.

Chinese

Note: Testing for placement, except for those with near-native abilities (particularly those schooled in a Chinese setting up until the age of about 12), takes place in registration week, before classes begin. Time and place will be posted at http://lrc.cornell.edu/asian/ programs/placement and on the bulletin board outside 350 Rockefeller Hall. Students with some Chinese schooling who want to obtain 3 credits for their proficiency will be tested at...
the beginning of the second week of classes. Again, the time and place will be announced.

CHIN 101-102(1101-1102) Elementary Standard Chinese (Mandarin)
101, fall; 102, spring. 6 credits each semester. CHIN 102 provides language qualification. Limited to 10-12 students per sec. Prerequisite: for CHIN 102, CHIN 101 or permission of instructor. Students must enroll in sec. one and sec. two: Because of limited sec. size, students missing first two class meetings without university excuse are dropped so others may register. No students added after second week of classes. Letter grades assigned unless student receives exceptional permission from course coordinator for S-U. S. Divo and staff.
For beginners only, providing a thorough grounding in conversational and reading skills. Students with some facility in the spoken language (because Chinese is spoken at home) but who do not read characters should take 109-110. Students who read Chinese, but who speak "dialects" such as Cantonese or Amoy, should enroll in CHIN 215.

CHIN 109-110(1109-1110) Beginning Reading and Writing (Standard Chinese)
109, fall, 110, spring. 4 credits each semester. CHIN 110 provides language qualification. Prerequisite: permission of instructor. Students who complete CHIN 110 normally continue with CHIN 209 and 210. Because of high demand, students missing first two meetings without university excuse are dropped so others may register. Y. Y. Lee Mehta.
Intended primarily for students who speak some Chinese (e.g., at home), but who have had little or no formal training. The focus is on characters, reading comprehension, basic grammar, and reading aloud with standard Chinese (Mandarin) pronunciation.

CHIN 111-112(1111-1112) Elementary Cantonese
111, fall; 112, spring. 4 credits each semester. CHIN 112 provides language qualification. Prerequisite: for CHIN 111, permission of instructor; for CHIN 112, CHIN 111 or equivalent. Students with Mandarin background should enroll in CHIN 111. H. Huang.
CHIN 111 is for beginners with no or very limited Chinese/Cantonese language background from heritage or previous formal training. CHIN 111/112 gives comprehensive training in oral/aural reading/writing in Cantonese spoken and used in Canton and Hong Kong. CHIN 111 focuses more on oral and aural skills training than on reading and writing Cantonese characters. CHIN 112 covers more training on reading and writing Cantonese characters than does CHIN 111. For more details, see http://lrc.cornell.edu/asian/courses/ch/chin111.

CHIN 201-202(2201-2202) Intermediate Standard Chinese (Mandarin)
201, fall or summer; 202, spring or summer. 4 credits each semester. CHIN 201 provides language proficiency and satisfies Option 1. Prerequisites: for CHIN 201, CHIN 202 and with grade of C+ or above equivalent; for CHIN 202, CHIN 201 or equivalent. Q. Teng and staff.
Continuing instruction in written and spoken Chinese with particular emphasis on consolidating basic conversational skills and improving reading confidence and ability.

CHIN 209-210(2209-2210) Intermediate Reading and Writing
209, fall; 210, spring. 4 credits each semester. CHIN 209 provides language proficiency and satisfies Option 1. Prerequisite: for CHIN 209, CHIN 111 or equivalent; CHIN 210, CHIN 209. After completing 210, students may take only 400-level courses in Chinese. Staff.
Continuing focus on reading and writing for students with spoken background in standard Chinese: introduction of personal letter writing and other types of composition.

CHIN 211-212(2211-2212) Intermediate Cantonese
211, fall; 212, spring. 4 credits each semester. CHIN 211 provides language proficiency and satisfies Option 1. Prerequisites: for 211, permission of instructor and completion of CHIN 112 or elementary conversational skills in Cantonese from heritage but very limited formal training in Cantonese character reading and writing. Y. Y. Lee Mehta.
Continuing instruction in spoken and written Cantonese at a higher level than CHIN 111-112. Oral training covers conversational Cantonese expression on daily life topics. Written training includes reading aloud and writing Cantonese characters as well as simple composition writing skills in Chinese characters. For more details, see http://lrc.cornell.edu/asian/courses/ch/chin211.

CHIN 213-214(2213-2214) Intermediate Reading and Writing for Cantonese Speakers
213, fall; 214, spring. 4 credits each semester. CHIN 213 provides language proficiency and satisfies Option 1. Prerequisite: for 213, Cantonese speakers who have no major problems in oral communication in Cantonese and have very basic ability in reading and writing Cantonese characters; for 214, CHIN 213 or equivalent. H. Huang.
Intended primarily for students who are Cantonese speakers from heritage or previous formal training and who have very basic ability in Chinese character reading and writing. The training focuses on reading and writing Cantonese characters as well as composition/essay writing in Cantonese characters. Students also learn some basic knowledge of Mandarin oral and written translation vs. English or Mandarin. For more details, see http://lrc.cornell.edu/asian/courses/ch/chin213.

CHIN 215(2215) Mandarin for Cantonese Speakers
Fall. 4 credits. Provides language proficiency and satisfies Option 1. Limited to 15 students. Prerequisite: advanced Cantonese with native-like reading and writing ability. Staff.
Works on standard Chinese pronunciation and differences in vocabulary and grammar between Cantonese and Mandarin.

CHIN 300(3000) Directed Studies
Fall or spring. 1-4 credits, variable. Prerequisite: permission of instructor. Times TBA with instructor. Staff.
Taught on a specialized basis to address particular student needs.

CHIN 301-302(3301-3302) High Intermediate Chinese
301, fall; 302, spring. 4 credits each semester. CHIN 301 provides language proficiency and satisfies Option 1. Prerequisites: for CHIN 301, CHIN 202 or equivalent; for CHIN 302, CHIN 301. Y. Lee Mehta.
Continuing instruction in spoken Chinese and in various genres and styles of written Chinese.

CHIN 304(3304) Advanced Mandarin Conversation
Spring. 1 credit. Limited to 10 students. Prerequisite: CHIN 202, 215, 301, or permission of instructor. Staff.
Offers a wonderful speaking and listening opportunity to students who wish to maintain/improve their language proficiency by engaging in guided discussions of various topics.

CHIN 411-412(4411-4412) Advanced Chinese: Fiction, Reportage, Current Events
411, fall; 412, spring. 4 credits each semester. Prerequisites: for CHIN 411, CHIN 302 or equivalent; for CHIN 412, CHIN 411 and permission of instructor. Q. Teng.
Reading, discussion, and composition at advanced levels.

CHIN 425(4425) Special Topics
Spring. 4 credits. Prerequisite: permission of instructor. Staff.
For full information, brochures, etc., see the FALCON Program coordinator in 388 Rockefeller Hall or e-mail: falcon@cornell.edu or http://lrc.cornell.edu/falcon
PASCAL is designed to help students develop "copability" in Chinese by bringing them to the level where they can make progress on their own even with no further instruction. The full-year program provides over 1,800 hours of language exposure—which exceeds even the exposure that students living in China typically receive. This allows students to develop levels of fluency, accuracy, and control that are not achieved in other academic settings. By taking the entire full-year sequence, students can complete as much Chinese in one calendar year as they would complete in three or more years of regular study at most academic institutions. The full-year program is divided into two parts, each of which is offered in Beijing at Tsinghua University. In the summer and fall, three small interactive classes per day are conducted entirely in Chinese, and one lecture is conducted in both Chinese and English. In the spring semester,
all four classes are conducted entirely in Chinese. In the summer and fall, students are also required to spend two one-hour sessions per day in the language lab. Additional preparation time in the language lab of up to three hours is necessary in the evenings.

Students must formally apply to the program. To guarantee course availability, applications must be received by March 1. After that, applicants are reviewed on a rolling basis and acceptance is contingent on the availability of spaces. Applications are available in 388 Rockefeller Hall or at http://falcon.cornell.edu.

CHIN 160(1160) Introductory Intensive Mandarin
Summer only. 8 credits. Provides language qualification. Students who complete this course with grade of at least B are normally eligible to enroll in CHIN 201. S. Divo and staff. Introduction to spoken and written Mandarin. Lectures on linguistic and cultural matters, intensive practice with native speakers, and laboratory work.

CHIN 161-162(1161-1162) Intensive Mandarin @
161, fall; 162, spring. 16 credits each semester. CHIN 161 provides language proficiency and satisfies Option I. Prerequisites: for CHIN 161, CHIN 160 or equivalent or permission of instructor; for CHIN 162, CHIN 161 or placement by FALCON staff before beginning of spring semester. Students must apply formally to program: open to all Cornell students and students from other institutions. S. Divo and staff. Work in spoken and written Chinese from an intermediate to an advanced level. This is a full-time program and full academic load; the demands of the program do not normally permit students to take other courses simultaneously. With a sequence of 160, 161, and 162, in only one calendar year a student can complete as much Chinese as would be gained in three or more years of regular study at most academic institutions.

CHIN 162-163(1162-1163) Intermediate Mandarin @
162, fall; 163, spring. 16 credits each semester. CHIN 163 provides language proficiency and satisfies Option I. Prerequisite: CHIN 162 or permission of instructor. Students who complete this course with grade of at least B are normally eligible to enroll in CHIN 201. R. McNeal.

CHIN 163-164(1163-1164) Advanced Mandarin @
163, fall; 164, spring. 16 credits each semester. CHIN 164 provides language proficiency and satisfies Option I. Prerequisite: CHIN 163 or permission of instructor. Not offered 2005-2006. R. McNeal.

HINDI 101-102(1101-1102) Elementary Hindi-Urdu
101, fall; 102, spring. 6 credits each semester. HINDI 102 provides language qualification. Prerequisite: for HINDI 101, HINDI 101 or equivalent. Staff. For those students who have had very little or no exposure to Hindi-Urdu. Designed to enable such students to read, write, and converse in the language with confidence and enjoyment. Hindi and Urdu are sister languages and share an identical grammar and elementary vocabulary. The language presented is colloquial. The Hindi script is taught first and the Urdu script is taught as an additional course in the spring semester. Students who have some experience of Hindi-Urdu or a closely related language are suited for HINDI 109-110 and should check with the instructor.

HINDI 109-110(1109-1110) Accelerated Elementary Hindi-Urdu
109, fall; 110, spring. 3 credits each semester. HINDI 110 provides language qualification. Students who have had very little or no exposure to Hindi-Urdu. Designed to enable such students to read, write, and converse in the language with confidence and enjoyment. Hindi and Urdu are sister languages and share an identical grammar and elementary vocabulary. The language presented is colloquial. The Hindi script is taught first and the Urdu script is taught as an additional course in the spring semester. Students who have some experience of Hindi-Urdu or a closely related language are suited for HINDI 109-110 and should check with the instructor.
grounding in all the language skills: listening, speaking, reading, and writing.

HINDI 201-202 (2201-2202) Intermediate Hindi Reading
201, fall; 202, spring. 3 credits each semester. **HINDI 201 provides language proficiency and satisfies Option 1.** Prerequisites: for HINDI 201, HINDI 102; for HINDI 202, HINDI 201 or permission of instructor. Staff.

HINDI 203-204 (2203-2204) Intermediate Composition and Conversation @ 203, fall; 204, spring. 3 credits each semester. **HINDI 203 provides language proficiency and satisfies Option 1.** Prerequisites: for HINDI 203, HINDI 102; for HINDI 204, HINDI 203 or permission of instructor. Staff.

HINDI 300 (3000) Directed Studies Fall or spring. 1–4 credits, variable. Prerequisite: permission of instructor. Times TBA with instructor. Not offered 2005–2006. T. Savella and staff.

HINDI 305-306 (3305-3306) Directed Individual Study 305, fall; 306, spring. 2–4 credits. Prerequisites: INDO 301–302 and 303–304 or equivalent knowledge of Indonesian or Malay. T. Savella and staff.

INDO 121-122 (1121-1122) Elementary Indonesian
121, fall; 122, spring. 4 credits each semester. Prerequisite: for INDO 122, INDO 121 T. Savella and staff.

INDO 123 (1123) Continuing Indonesian
Fall. 4 credits. **Provides language qualification.** Prerequisite: INDO 122 or equivalent. T. Savella and staff.

INDO 203-204 (2203-2204) Intermediate Composition and Conversation @ 203, fall; 204, spring. 3 credits each semester. **INDO 203 provides language proficiency and satisfies Option 1.** Prerequisites: for INDO 203, INDO 125; for INDO 204, INDO 203 or permission of instructor. Not offered 2005–2006. T. Savella and staff.

INDO 205-206 (2205-2206) Intermediate Indonesian @ 205, fall; 206, spring. 3 credits each semester. **INDO 205 provides language proficiency and satisfies Option 1.** Prerequisites: for INDO 205, INDO 123 or equivalent; for INDO 206, INDO 205 or equivalent. T. Savella and staff.

Develops all four skills: reading, writing, speaking, and comprehension.

[INDO 300 (3000)] Directed Studies Fall or spring. 1–4 credits, variable. Prerequisite: permission of instructor. Times TBA with instructor. Not offered 2005–2006. T. Savella and staff.

Japanese

JAPAN 101-102 (1101-1102) Elementary Japanese
101, fall; 102, spring. 6 credits each semester. **JAPAN 102 provides language qualification.** Prerequisite for 102: JAPAN 101 or placement by instructor during registration period. Intended for beginners or those who have been placed in the course by examination. Students must enroll in one lec and one sec. Undergraduates may not enroll for S/U grade option. Graduate students must enroll for a letter grade and may change to S-U by permission of instructor. R. Sukle, Y. Nakanishi, and staff.

Gives a thorough grounding in all four language skills—speaking, listening, reading, and writing—at the beginning level but with a special emphasis on oral communicative use and the language in social contexts. Homework is largely work on the skill aspects through practice on the Internet, with CDs, or with tapes. The lecture provides explanation, analysis, and cultural background necessary for successful interaction with Japanese people. Sections are conducted entirely in Japanese. Materials covered are not the same as for JAPAN 141–142.

JAPAN 141-142 (1141-1142) Beginning Japanese at a Moderate Pace
141, fall; 142, spring. 4 credits each semester. Prerequisite: for JAPAN 142, JAPAN 141 or placement by instructor during registration. Y. Nakanishi and staff. Beginning-level training in listening, speaking, reading, and writing— at the beginning level but with a special emphasis on oral communicative use and the language in social contexts. Homework is largely work on the skill aspects through practice on the Internet, with CDs, or with tapes. The lecture provides explanation, analysis, and cultural background necessary for successful interaction with Japanese people. Sections are conducted entirely in Japanese. Materials covered are not the same as for JAPAN 141–142.

JAPAN 201-202 (2201-2202) Intermediate Japanese Conversation @ 201, fall and summer; 202, spring and summer. 4 credits each semester. **JAPAN 201 provides language proficiency and satisfies Option 1.** Prerequisites: for JAPAN 201, JAPAN 102 or placement by instructor during registration; for JAPAN 202, JAPAN 201 and 203 or placement by instructor during registration. Students must enroll in lec and one sec. Y. Katagiri.

For students who have learned basic Japanese grammar and oral skills and would like to use the language for natural conversation and effective oral communication. The course is intended to (1) expand vocabulary for daily life use; (2) brush up on knowledge of basic grammar for fluency; and (3) develop communicative skills for varied situations.

JAPAN 241-242 (2241-2242) Intermediate Japanese at a Moderate Pace
241, fall; 242, spring. 4 credits each semester. **JAPAN 242 provides language qualification and satisfies Option 1.** Prerequisites: for JAPAN 242, JAPAN 241 or placement by instructor during registration; for JAPAN 242, JAPAN 241 or placement by instructor during registration. Y. Kawasaki and staff.

Reading of intermediate texts emphasizing practical materials, with development of writing skills.

JAPAN 300 (3000) Directed Studies
Fall or spring. 1–4 credits variable. Prerequisite: permission of instructor. Times TBA with instructor. Staff. Taught on a specialized basis to address particular student needs.

JAPAN 301-302 (3301-3302) Advanced Readings in Japanese Literature @ 301, fall; 302, spring. 4 credits each semester. Prerequisites: for JAPAN 301, HINDI 301 or equivalent. Staff.

Selected readings in modern Japanese literature.

Indonesian

Students who have completed INDO 121–122–123 or its equivalent have the option of taking a one-semester program in Malang, East Java, during the junior year. The program combines a variety of cultural and artistic options with area course work and advanced language study. Complete information is available through Cornell Abroad.

Students who have completed a minimum of 18 credits or the equivalent are eligible to apply for a summer program in the Advanced Indonesian Abroad Program. Further information is available from the Southeast Asia Program (180 Uris Hall, 255-2578).

INDO 121-122 (1121-1122) Elementary Indonesian
121, fall; 122, spring. 4 credits each semester. Prerequisite: for INDO 122, INDO 121 T. Savella and staff.

Gives a thorough grounding in basic speaking and listening skills with an introduction to reading.

INDO 123 (1123) Continuing Indonesian
Fall. 4 credits. **Provides language qualification.** Prerequisite: INDO 122 or equivalent. T. Savella and staff.

Improves speaking skills, such as fluency and pronunciation, focusing on verbal communication skills; offers a wide range of readings and sharpens listening skills.

INDO 203-204 (2203-2204) Intermediate Composition and Conversation @ 203, fall; 204, spring. 3 credits each semester. **INDO 203 provides language proficiency and satisfies Option 1.** Prerequisites: for INDO 203, INDO 123; for INDO 204, INDO 203 or permission of instructor. Not offered 2005–2006. T. Savella and staff.
Reading of selected modern texts, including excerpts and brief complete pieces by outstanding writers of Japanese prose.

JAPAN 401-402(4401-4402) Oral Narration and Public Speaking
401, fall; 402, spring. 2 credits each semester. Prerequisites: for JAPAN 401, JAPAN 302 or placement by instructor during registration; for JAPAN 402, JAPAN 401 or placement by instructor during registration. Conducted entirely in Japanese, using Japanese audiovisual and written materials. Y. Katagiri.

Advanced course to develop skills in oral delivery in formal settings. Students increase vocabulary and patterns used in public occasions, e.g., class presentations, speeches, discussions, interviews and debates. Fluency and listening comprehension are emphasized. Also for those interested in academic settings, e.g., research students or conference participants.

JAPAN 403-404(4403-4404) Advanced Japanese Reading @
403, fall; 404, spring. 4 credits each semester. Prerequisite: JAPAN 304 or permission of instructor.

Section I: Area of humanities. May not be used for distribution. Reading of selected modern texts, including newspaper columns and writings by representative authors and critics. K. Selden.

Section II: Area of economics and social science. May not be used for distribution. Y. Kawasaki. Reading of selected modern texts with emphasis on expository style.

JAPAN 410(4410) History of the Japanese Language (also LING/ASIAN 411(4411)) @ # (III) (HA)
Fall. 4 credits. Prerequisite: permission of instructor. Not offered 2005-2006. J. Whitman.

JAPAN 421-422(4421-4422) Directed Readings
421, fall; 422, spring. 1-4 credits. Prerequisite: advanced students; placement by instructor during registration. Selected texts from modern and contemporary short stories. K. Selden.

Japanese FALCON (Full-year Asian Language Concentration)

Director: R. Sukle, 388 Rockefeller Hall, 255-0734 or rsj9@cornell.edu.

Program coordinator: 388 Rockefeller Hall, 255-0457 or falcon@cornell.edu.

FALCON is designed to develop "copability" in students by bringing them to the level where they can make further progress on their own even with no further instruction.

The full-year program provides over 1,800 hours of language exposure—which exceeds even the exposure that students living in Japan typically receive. This intensive work in Japanese allows students to develop levels of fluency, accuracy, and control of the language that is not achieved in any other type of academic setting. The full-year FALCON sequence is Japanese 160 (summer), 161 (fall), and 162 (spring). By taking this entire sequence, students can complete as much Japanese in one calendar year as they would complete in three or more years of regular study at most academic institutions. Because of FALCON's intensive nature, graduate students can complete their language work in minimal time. Undergraduates, including freshmen, achieve levels of competency that far exceed what is normally achieved in a four-year program. FALCON provides that continue studying Japanese after FALCON. Three small interactive classes per day are conducted entirely in Japanese, and one lecture is conducted in both Japanese in English. The interactive classes are conducted by experienced and highly trained teachers, and the lecture is taught by an expert in the structure of the Japanese language. In addition to time spent in these classes, students also are required to spend two one-hour sessions per day in the language lab. Additional preparation time in the language lab of up to three hours is necessary in the evenings.

JAPAN 160(1160) Introductory Intensive Japanese (FALCON)
Summer only. 8 credits. Provides language proficiency and satisfies Option 1. Prerequisite: permission of instructor. K. Selden.

JPLIT 406(4406) Introduction to Classical Japanese @
Fall. 4 credits. Provides language proficiency and satisfies Option 1. Prerequisite: permission of instructor. K. Selden.

Introduction to the fundamental grammar and vocabulary of classical Japanese.

JPLIT 408(4408) Readings in Classical Japanese @
Spring. 4 credits. Provides language proficiency and satisfies Option 1. Intended for students who have completed JAPAN 403/404 sequence or equivalent. Prerequisite: JPLIT 406 or permission of instructor. K. Selden.

Readings of excerpts and complete brief pieces from representative premodern Japanese literature mostly with the use of standard modern annotated editions. Different selections and themes are introduced each year.

JPLIT 421-422(4421-4422) Directed Readings
421, fall; 422, spring. 2-4 credits. Prerequisite: for JPLIT 421, JAPAN 404 or equivalent; for JPLIT 422, JAPAN 402 or equivalent. Staff.

Students choose a faculty member to oversee this independent study. The student and the faculty member work together to develop class readings.

JPLIT 456(4456) Helen Narrative @ (IV) (LA)
Fall. 4 credits. Recommended: some knowledge of classical Japanese. T. LaMarre.

Centers on Heian monogatari, with an emphasis on narrative analysis and problems of power and visibility. Primary readings in English with supplementary materials in modern Japanese.

JPLIT 613(6613) Seminar in Tokugawa Culture and Thought
Spring. 2-4 credits. Prerequisite: permission of instructor. Not offered 2005-2006. N. Sakai.

JPLIT 614(6614) Seminar in Modern Japanese Literature: Historicizing the Postmodern (also COM L 695(6695))
Spring. 4 credits. Prerequisite: permission of instructor. Not offered 2005-2006. B. de Bary.

JPLIT 617(6617) Modern Japanese Philosophy
Fall. 4 credits. Not offered 2005-2006. N. Sakai.

JPLIT 618(6618) Japanese Philosophical Discourse II
Fall. 4 credits. Prerequisite: reading knowledge of Japanese. Not offered 2005-2006. N. Sakai.

JPLIT 624(6624) Advanced Readings in Modern Japanese Literature
Spring. 4 credits. Prerequisite: permission of instructor. B. de Bary.

JPLIT 625(6625) Directed Readings
Fall or spring. 4 credits. Staff.

Students choose a faculty member to oversee this independent study. The student and the faculty member work together to develop class readings.

JPLIT 700-701(7700-7701) Seminar: Reading of Historical Materials—Japanese Imperial Nationalism and Its Literature
700, fall; 701, spring. 4 credits. Not offered 2005-2006. N. Sakai.
Korean

KOREA 101-102(1101-1102) Elementary Korean
101, fall; 102, spring. 6 credits each semester. KOREA 102 provides language qualification. H. Diffloth and staff. Covers basics of speaking, reading, and writing. Introduces Hangul writing system and grammar.

KOREA 109-110(1109-1110) Elementary Reading
109, fall; 110, spring. 3 credits each semester. KOREA 110 provides language qualification. H. Diffloth and staff. For students who have spoken some Korean in the home, but whose reading and writing skills are limited or nonexistent. If in doubt about eligibility, see instructor.

KOREA 201-202(2201-2202) Intermediate Korean @
201, fall; 202, spring. 4 credits each semester. KOREA 201 provides language proficiency and satisfies Option 1. Prerequisites: for KOREA 201, KOREA 102 or permission of instructor; for KOREA 202, H. Diffloth and staff. Covers the basics of speaking, reading, and writing at the intermediate level.

KOREA 209-210(2209-2210) Intermediate Reading @
209, fall; 210, spring. 4 credits each semester. KOREA 209 provides language proficiency and satisfies Option 1. Prerequisites: for KOREA 209, KOREA 110 or permission of instructor; for KOREA 210, H. Diffloth and staff. Intermediate level of reading comprehension and writing course for students who have acquired basic oral proficiency. Introduces some reading and writing with Chinese characters.

KOREA 300(3000) Directed Studies
Fall or spring. 1–4 credits variable. Prerequisite: permission of instructor. H. Diffloth and staff. Taught on a specialized basis to address particular student needs.

KOREA 301-302(3301-3302) Advanced Korean
301, fall; 302, spring. 4 credits each semester. Prerequisites: for KOREA 301, KOREA 202; for KOREA 302, KOREA 301 or placement by instructor. H. Diffloth and staff. Reading of advanced texts, including newspapers and Chinese character material, together with advanced use of the spoken language.

KRLIT 305(3305) Modern Korean Literature in Translation @ (IV)

KRLIT 405(4405) Readings in Korean Literature @ (IV) (LA)
Fall. 4 credits. Prerequisite: three years of Korean language study or permission of instructor. Staff. Readings of 20th-century Korean literature in the original. Short stories and novels are selected to provide a mixture of canonical and contemporary authors. Students also read some academic works of literary history and criticism.

KRLIT 432(4432) Middle Korean (also LING 432[4432]) @ (IV) (LA)
Spring. 4 credits. Prerequisite: KOREA 301 or equivalent. Not offered 2005–2006. J. Whitman. For description, see LING 432.
<table>
<thead>
<tr>
<th>Department</th>
<th>Course Number</th>
<th>Course Title</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sanskrit</td>
<td>[SANSK 251-252][2251-2252] Intermediate Sanskrit [also CLASS 201-292][2351-2352], LING 251-252[2251-2252]</td>
<td>Provides language proficiency and satisfies Option 1. Offers alternate years. SANSK 251 is equivalent.</td>
<td>Offered alternate years. Not offered 2005-2006. Staff. Taught on a specialized basis to address particular student needs.</td>
</tr>
<tr>
<td></td>
<td>[SANSK 131-132][1131-1132] Elementary Sanskrit [also CLASS 191-192][1331-1332], LING 131-132[1131-1132]</td>
<td>Provides language proficiency. Offered alternate years. Staff. Introduces the essentials of Sanskrit grammar to enable students to read classical and epic Sanskrit as quickly as possible.</td>
<td>Offered alternate years. Not offered 2005-2006. Staff. Taught on a specialized basis to address particular student needs.</td>
</tr>
<tr>
<td></td>
<td>[SANSK 300][3000] Directed Studies</td>
<td>Fall or spring. 1-4 credits, variable. Prerequisite: permission of instructor. Times TBA with instructor. S. Oja. Taught on a specialized basis to address particular student needs.</td>
<td>Taught on a specialized basis to address particular student needs.</td>
</tr>
<tr>
<td></td>
<td>[PALI 131-132][1131-1132] Elementary Pali</td>
<td>Fall, fall; 132, spring. 3 credits each semester. This language series may not be used to satisfy language requirement. Not offered 2005-2006. Staff.</td>
<td>Taught on a specialized basis to address particular student needs.</td>
</tr>
<tr>
<td></td>
<td>[PALI 151][1151] Accelerated Elementary Pali</td>
<td>Spring. 3 credits. Prerequisite: background in Sanskrit or permission of instructor. Not offered 2005-2006. A. Blackburn.</td>
<td>Taught on a specialized basis to address particular student needs.</td>
</tr>
<tr>
<td></td>
<td>[PALI 301-302][3301-3302] Advanced Pali</td>
<td>Fall, fall; 302, spring; 301-302, summer. 3 credits each semester. Prerequisite: NEPAL 204 or permission of instructor. S. Oja. Reading of advanced texts, together with advanced drill on the spoken language.</td>
<td>Taught on a specialized basis to address particular student needs.</td>
</tr>
<tr>
<td></td>
<td>[THAI 101-102][1101-1102] Elementary Thai</td>
<td>Fall; 102, spring. 6 credits each semester. THAI 102 provides language proficiency and satisfies Option 1. Prerequisites: for THAI 102, THAI 101 or equivalent.</td>
<td>Taught on a specialized basis to address particular student needs.</td>
</tr>
<tr>
<td></td>
<td>[THAI 201-202][2201-2202] Intermediate Thai Reading @</td>
<td>Fall; 201, fall; 202, spring. 3 credits each semester. THAI 201 provides language proficiency and satisfies Option 1. Prerequisites: for THAI 201, THAI 202, or equivalent. Staff.</td>
<td>Taught on a specialized basis to address particular student needs.</td>
</tr>
<tr>
<td></td>
<td>[THAI 300][3000] Directed Studies</td>
<td>Fall or spring. 1-4 credits, variable. Prerequisite: permission of instructor. Times TBA with instructor. S. Oja. Taught on a specialized basis to address particular student needs.</td>
<td>Taught on a specialized basis to address particular student needs.</td>
</tr>
<tr>
<td></td>
<td>THAI 102, 101 or equivalent. Intended for beginners or students placed by examination. N. Jagacinski. Gives a thorough grounding in all the language skills: listening, speaking, reading, and writing. Selected core readings in contemporary Tagalog literature are used, but students, in consultation with the instructor, may select some of the reading materials.</td>
<td>Taught on a specialized basis to address particular student needs.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>THAI 201, 202, 203, 204, 205 or equivalent. T. Savella. Continuing instruction in spoken and written Thai.</td>
<td>Taught on a specialized basis to address particular student needs.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>THAI 201, 202, 203, 204, 205 or equivalent. N. Jagacinski. Continuing instruction in spoken and written Thai.</td>
<td>Taught on a specialized basis to address particular student needs.</td>
<td>Taught on a specialized basis to address particular student needs.</td>
</tr>
<tr>
<td></td>
<td>THAI 203-204[2203-2204] Intermediate Thai Composition and Conversation @</td>
<td>Fall; 203, fall; 204, spring. 3 credits each semester. THAI 203 provides language proficiency and satisfies Option 1. Prerequisites: for THAI 203, THAI 202, or equivalent. Not offered 2005-2006.</td>
<td>Taught on a specialized basis to address particular student needs.</td>
</tr>
<tr>
<td></td>
<td>THAI 201, 202, 203, 204, 205 or equivalent. N. Jagacinski. Continuing instruction in spoken and written Thai.</td>
<td>Taught on a specialized basis to address particular student needs.</td>
<td>Taught on a specialized basis to address particular student needs.</td>
</tr>
</tbody>
</table>

Literature in Sanskrit

[SNLIT 467-468][4467-4468] Reading in Sanskrit Literature: The Vedas @ (IV) Spring, 3 credits. Prerequisite: permission of instructor. Not offered 2005-2006. C. Minkowski.}

Sinhala (Sinhalese)

SINHA 101-102[1101-1102] Elementary Sinhala

101, fall; 102, spring. 6 credits each semester. SINHA 102 provides language qualification. Prerequisite: for SINHA 102, SINHA 101 or equivalent. Staff. Semi-intensive course for beginners. A thorough grounding is given in all the language skills: listening, speaking, reading, and writing.

SINHA 160[1160] Intensive Sinhala

Summer only. 6 credits. Intended for beginners. Offered alternate years. Six-week intensive introduction to one of Sri Lanka's two official languages, and central to many scholarly and applied projects in Sri Lanka. Provides an unusual opportunity to obtain basic competence in the language during a single summer. Spoken language skills are emphasized during the program, which also introduces the writing system and colloquial reading materials. This lays the foundation for later study of literary Sinhala. When possible, students who already possess basic skills in colloquial Sinhala are admitted for more advanced studies in colloquial and/ or literary Sinhala.

SINHA 201-202[2201-2202] Intermediate Sinhala Reading @

201, fall; 202, spring. 3 credits each semester. SINHA 201 provides language proficiency and satisfies Option 1. Prerequisites: for SINHA 201, SINHA 102, for SINHA 202, 201 or equivalent. Staff.

SINHA 300[3000] Directed Studies

Fall or spring. 1-4 credits, variable. Prerequisite: permission of instructor. Times TBA with instructor. Staff. Taught on a specialized basis to address particular student needs.

Tagalog

TAG 121-122[1121-1122] Elementary Tagalog

121, fall; 122, spring. 4 credits each semester. Prerequisite: for TAG 122, TAG 121. T. Savella. Gives a thorough grounding in basic speaking and listening skills with an introduction to reading.

TAG 123[1123] Continuing Tagalog

Fall. 4 credits. Provides language proficiency and satisfies Option 1. Prerequisite: for TAG 122 or equivalent. T. Savella. Improves speaking skills, such as fluency and pronunciation, focusing on verbal communication skills; offers a wide range of readings; and sharpens listening skills.

TAG 205-206[2205-2206] Intermediate Tagalog @

205, fall; 206, spring. 3 credits each semester. TAG 205 provides language proficiency and satisfies Option 1. Prerequisites: for TAG 205, TAG 123 or equivalent; for TAG 206, 205 or equivalent. T. Savella. Develops all four skills: reading, writing, speaking, and comprehension.

TAG 300[3000] Directed Studies

Fall or spring. 1-4 credits, variable. Prerequisite: permission of instructor. Times TBA with instructor. T. Savella. Taught on a specialized basis to address particular student needs.

Thai

THAI 101-102[1101-1102] Elementary Thai

101, fall; 102, spring. 6 credits each semester. THAI 102 provides language qualification. Prerequisite: for THAI 102, THAI 101 or equivalent. Intended for beginners or students placed by examination. N. Jagacinski. Gives a thorough grounding in all the language skills: listening, speaking, reading, and writing.

THAI 201-202[2201-2202] Intermediate Thai Reading @

201, fall; 202, spring. 3 credits each semester. THAI 201 provides language proficiency and satisfies Option 1. Prerequisites: for THAI 201, THAI 102, for THAI 202, 201 or equivalent. N. Jagacinski. Continuing instruction in spoken and written Thai.

THAI 203-204[2203-2204] Intermediate Composition and Conversation @

203, fall; 204, spring. 3 credits each semester. THAI 203 provides language proficiency and satisfies Option 1. Prerequisites: for THAI 203, THAI 202 or permission of instructor; for THAI 204, 203 or equivalent. Not offered 2005-2006. |
THAI 301-302(3301-3302) Advanced Thai @
301, fall; 302, spring. 4 credits each semester. THAI 301 provides language proficiency and satisfies Option I. Prerequisite: THAI 202 or equivalent. N. Jagacinski.
Selected readings in Thai writings in various fields.

THAI 303-304(3303-3304) Thai Literature @
303, fall; 304, spring. 4 credits each semester. THAI 303 provides language proficiency and satisfies Option I. Prerequisite: THAI 302 or equivalent. N. Jagacinski.
Reading of significant novels, short stories, and poetry written since 1850. Selected readings in Thai writings in various fields.

THAI 401-402(4401-4402) Directed Individual Study
401, fall; 402, spring. 4 credits each semester. For advanced students or students with special problems or interests. Prerequisite: permission of instructor. Taught on a specialized basis to address particular student needs.

VIET 101-102(1101-1102) Elementary Vietnamese @
101, fall; 102, spring. 6 credits each semester. VIET 102 provides language qualification. Prerequisite: for VIET 102, VIET 101 or equivalent. Intended for beginners or students placed by examination. T. Tranviet.
Gives a thorough grounding in all language skills: listening, speaking, reading, and writing.

VIET 201-202(2201-2202) Intermediate Vietnamese @
201, fall; 202, spring. 3 credits each semester. VIET 201 provides language proficiency and satisfies Option I. Prerequisites: for VIET 201, VIET 102 or equivalent, for VIET 202, 201. T. Tranviet.
Continuing instruction in spoken and written Vietnamese; emphasis on enlarging vocabulary, increasing reading speed, and reading various genres and styles of prose.

VIET 301-302(3301-3302) Advanced Vietnamese @
301, fall or spring; 302, fall or spring. 3 credits each semester. VIET 301 provides language proficiency and satisfies Option I. Prerequisites: for VIET 301, VIET 202 or permission of instructor; for VIET 302, 301. T. Tranviet.
Continuing instruction in spoken and written Vietnamese; emphasis on enlarging vocabulary, increasing reading speed, and reading various genres and styles of prose.

VIET 401-402(4401-4402) Directed Individual Study
401, fall; 402, spring. 2-4 credits, variable, each semester. Prerequisite: permission of instructor. Intended for advanced students. T. Tranviet.
Various topics according to need.

Vietnamese Language

Related Courses in Other Departments and Colleges
Check the primary department section for the offering status of the following courses. Courses in other colleges will count as College of Arts and Sciences credit only for Asian Studies majors.

Asia/General Courses

ANTHRO 374 Human Palaeontology
AEM 454 Economics of Agricultural Development (also ECON 464)
AEM 667 Topics in Economic Development (also ECON 770)
COMM 424/624 Communication in the Developing Nations
ECON 473 Economics of Export-Led Development
HIST 495 Kings and States: Asian Models
[ART H 280 Introduction to Art History: Approaches to Asian Art]
ILRIC 637 Labor Relations in Asia
D SOC 205 Rural Sociology and International Development

China—Area Courses

ANTH 655 East Asia: Readings in Specific Problems
ECON 469 Economy of China
ECON 772 Economics of Development

GOVT 645 Chinese Politics
HIST 243 China and the West before Imperialism
HIST 293 History of China Up to Modern Times
HIST 294 China in Modern Times
HIST 492 Undergraduate Seminar in Medieval Chinese History
HIST 493/693 Problems in Modern Chinese History
HIST 791-792 Seminar in Medieval Chinese History
[ART H 380 Introduction to the Arts of China]
[ART H 481 The Arts in Modern China]

Japan—Area Courses

ANTH 655 East Asia: Readings in Specific Problems
ARCH 339 Elements, Principles, and Theories in Japanese Architecture
[HIST 230 Japan and the Pacific War]
HIST 297/497 Japan Before 1600
HIST 328 State, Society, and Culture in Modern Japan
HIST 420 Tale of Genji in Historical Perspective
HIST 489 Seminar in Modern Japanese History
HIST 798 Seminar in Japanese Thought
ILRHR 656 International Human Resource Management
[MUSIC 481 Japanese Music: Style and Tradition]

South Asia—Area Courses

ANTHR 275 Human Biology and Evolution (also BIOES/NS 275)
ANTHR 321 Sex and Gender
ANTHR 339 Peoples and Cultures of the Himalayas
ANTHR 406 Culture of Lives
ANTHR 621 Sex and Gender
ANTHR 641 South Asia. Readings in Specific Problems
ANTHR 673 Human Evolution: History, Concepts, and Theory (also BIOES 673)
ARCH 342 Architecture as a Cultural System
ARCH 441–442 Special Topics in Architectural Culture and Society
ARCH 445 Architecture and the Mythic Imagination
ARCH 446 Topics in Architecture, Culture, and Society
ARCH 447 Architectural Design and the Utopian Tradition
ARCH 647–648 Architecture in its Cultural Context I and II
ARCH 649 Graduate Investigations in Architecture, Culture, and Society
CRP 671 Seminar in International Planning
[ECON 475 Economic Problems of India]
HD 436 Language Development (also PSYCH/LING 436)
HD 633 Seminar on Language Development
Resource Center
The program’s Asian American Studies Resource Center, located in 420 Rockefeller Hall, provides meeting space for the more than 40 undergraduate student organizations of the Cornell Asian Pacific Student Union and the graduate student Asian Pacific American Graduate Association. It also holds a modest print collection of books, periodicals, and newspapers; a current news clipping file; a comprehensive database of publications on Asian Americans since 1977; and a sizable collection of videotapes as well as music CDs on the Asian American experience.

Research
The program encourages faculty and student research on Asian Americans by sponsoring guest lectures, conferences, film festivals, readings, and exhibits. It also funds research projects and student travel to conferences and research sites. The Asian American Studies Workshop is the program's principal research initiative, engaging Cornell's faculty and students with invited faculty from other universities in a yearlong intensive study of selected themes.

Core Faculty
D. Chang, V. Munasinghe, T. Tu, S. Wong

Advisory Board
T. Chaloemtiarana (Southeast Asia Program), B. de Bary (Asian Studies), D. Chang (history), S. Han (sociology), V. P. Kayastha (Kroch Library), J. V. Koschmann (history), V. Munasinghe (anthropology), V. Nee (sociology), N. Sakai (Asian Studies), S. Samuels (English), A. M. Smith (government), V. Munasinghe (anthropology), V. Nee (sociology), N. Sakai (Asian Studies), S. Samuels (English), A. M. Smith (government), K. W. Taylor (Asian Studies), T. Tu (history of art), Wai-Kwong Wong (Gannett Health Center), S. Wong, director (English), D. Yeh (vice president/student/academic services)

Courses

AAS 111(1110) Introduction to Asian American Studies (III or IV) (CA)
Spring. 3 credits. Can be used to satisfy either social science or humanities distribution requirement. T. Tu.

The purpose of this course is fourfold: (1) to introduce students to the multifaceted experiences of Asians in the United States; (2) to examine how a diverse group of people came to be identified as “Asian Americans”; (3) to understand the role of difference—gender, class, ethnic—in the formation of “Asian American” identities; and (4) to link historical experiences with contemporary issues.

AAS 111(1110) Introduction to Asian American Studies: New Approaches to Understanding Asian American Diversity, the 20th Century (also AM ST/LSP 110[1110], HIST 161[1610]) (III or IV) (HA)

AAS 209(2090) Sophomore Seminar: The Immigrant Imagination (also ART H 209[2190], AM ST 209[2091]) (III) (HA)
Spring. 4 credits. Limited to 15 students. T. Tu.
Explores how contemporary immigrant experiences are expressed through visual culture. Examines a variety of expressive forms—including visual and material arts, video/performance art, and film—produced by recent immigrants and considers the ways in which they function as a type of “migration narrative.” By doing so, connections are made between visual representations and other modes of narration, including literary and musical. The following questions: How do the visual arts operate within immigrant communities as a mode of story-telling or history-making? How have immigrants employed visual culture to narrate their cross-cultural movements, community-building efforts, political struggles, and cultural memories? Is there such a thing as “immigrant art”? If so, what are its characteristics and how does it help to reshape our understanding of contemporary artistic productions?

AAS 210(2110) Sophomore Seminar: South Asian Diasporic Locations (also ANTHR 210[2110]) (III) (CA)

This interdisciplinary course, with an emphasis on anthropology, introduces students to the multiple roots/routes, lived experiences, and imagined worlds of South Asians who have traveled to various lands—Fiji, South Africa, Mauritius, Britain, Malaysia, the United States, and Trinidad—as well as within South Asia itself, at different historical moments. The course begins with the labor migrations of the 1830s and continues to the present. Compares and contrasts the varied expressions of the South Asian Diaspora to critically evaluate transnational identity.

This is a special seminar sponsored by the John S. Knight Institute’s Sophomore Seminars Program. These seminars offer discipline-specific study within an interdisciplinary context. While not restricted to sophomores, the seminars aim at initiating students into the disciplines outlook, discourse community, modes of knowledge, and ways of articulating that knowledge. Limited to 15 students. Special emphasis is given to strong thinking and writing and to personalized instruction with top university professors.

AAS 211(2110) Sophomore Seminar: Race and the American City: Reading San Francisco and New York (also ENGL 211) (IV) (LA)

AAS 212(2120) American Diversity in the 20th Century (also HIST 264[2640], AM ST 211) (III) (HA)

AAS 213(2130) Asian American History (also HIST 264[2640]) (III) (HA)

D. Chang.

AAS 262(2620) American Asian Literature (also ENGL 262[2620]) (IV) (LA)
Fall. 4 credits. S. Wong.

AAS 303(3030) Asians in the Americas: A Comparative Perspective (also ANTHR 303) (III) (CA)
Fall. 4 credits. V. Munasinghe.

The common perception of ethnicity is that this is a “natural” and an inevitable consequence of cultural difference. “Asians” overseas, in particular, have won repute...
as a people who cling tenaciously to their culture and refuse to assimilate into their host societies and cultures. But who are the "Asians"? On what basis can we label Asians an ethnic group? Although there is a significant Asian presence in the Caribbean, the category "Asian" itself does not exist in the Caribbean. What does this say about the nature of categories that label and demarcate groups of people on the basis of alleged cultural and phenotypical characteristics? This course examines the dynamics behind group identity, namely ethnicity, by comparing and contrasting the multicultural experience of Asian populations in the Caribbean and the United States. Ethnographic case studies focus on the East Indian and Chinese experiences in the Caribbean and the Chinese, Korean, Japanese, Filipino, and Indian experiences in the United States.

AAS 413(4130) Race, Technology, and Visuality (also ART H 414(4113)) (IV) [CA]
Fall. 4 credits. T. Tu.
Examines how new information and communication technologies have altered the ways we visualize and perform racial identities. Questions the popular assumption that the "formation revolution" has made it possible and even desirable to transcend racial differences by exploring the following: how racial hierarchies have informed debates around technological, creativity, ownership, and agency, and how this is embodied through visual and linguistic cues in the ostensibly disembodied domains of virtual media; and how the emergence of interactive, online, electronic entertainment, and mobile technologies have allowed artists to generate new images of and ideas about racial and ethnic identities.

AAS 414(4140) Popular Culture in Asian America (also ART H 414(4114)) (IV) [CA]
Spring. 4 credits. Prerequisite: permission of instructor. T. Tu.
Through a variety of "case studies," this course examines the forms and practices of Asian American popular culture (including music, film, video, print and visual, decorative, and performance arts), within the historical, social, and political contexts that have shaped their production. What is the relationship of these popular forms to the histories of Asian American communities? How have Asian Americans' engagements with "the popular" altered "traditional" modes of individual and collective representation, artistic production, cultural exchange, and political critique? The course also considers how the circulation of Asian popular culture in the United States (e.g., Bollywood and beyond) has altered our understanding of "Asian American culture" and "Asianness" more generally.

AAS 424(4240) Asian American Communities (also HIST/AM ST 420(4220)) (III) [HA]
Fall. 4 credits. D. Chang.
For description, see HIST 420.

AAS 438(4380) Immigration and Ethnic Identity (also SOC 438)
For description, see SOC 438.

AAS 453(4530) 20th-Century American Women Writers of Color (IV) [LA]
S. Wong.

AAS 478(4780) Self and Nation in Asian-American Literature (also ENGL 478)
S. Wong.

AAS 479(4790) Ethnicity and Identity Politics: An Anthropological Perspective (also ANTHR 479(4749)) (III) [SBA]
V. Munasinghe.

AAS 495(4950) Independent Study
Fall or Spring. 1–4 credits. Topic and credit hours TBA arranged between faculty and student. Independent study forms must be approved by Asian American Studies Program office.

AAS 497(4970) Jim Crow and Exclusion-Era America (also HIST 497/697) (III) [NA]
Spring. 4 credits. Limited to 15 students.
D. Chang.

AAS 499(4990) Independent Study
Fall or Spring. 4 credits. Not offered 2005–2006.
T. Tu.

The Major
The purpose of the major in Astronomy is to provide in-depth knowledge and education about the nature of the universe. Astronomy relies heavily on preparation in physics and mathematics. Consequently, many courses in these fields are included as prerequisites. In preparation for the major, students normally elect the introductory physics sequence PHYS 112–213–214 or 116–217–218 and the complementary pathway in mathematics, MATH 111–112–221–222 or 191–192–293–294 (or equivalent). Students who anticipate undertaking graduate study are urged to elect the honors physics sequence PHYS 116–217–218–318–327 if possible. The sophomore seminar ASTRO 235 Topics in Astronomy and Astrophysics provides an introduction to current research in astronomy and astrophysics for prospective majors but is not required of students who elect to major in Astronomy after the sophomore year. Students are also urged to acquire computer literacy.

ASTRO 294 is designed to give students hands-on experience with the techniques of analysis, visualization, and simulation needed in astrophysical research. Acceptance to the major is first considered after completion of three semesters of introductory physics and mathematics and in general requires a GPA of 3.2 in physics and mathematics courses.

The major requirements stress the importance of building a strong preparation in physical science. The following upper-level courses are normally required:

PHYS 314 or 318, 316, 523 or 527, 341 and 443
A&EP 321–322 (or equivalent, e.g., MATH 420 and 422)
ASTRO 410, 431, and 432.

With permission of the major adviser, students interested in planetary studies may substitute appropriate advanced courses or may pursue an independent major under the program in the Science of Earth Systems. Majors are encouraged to supplement the above courses with any astronomy, physics, or other appropriate courses at or above the 300 level. Advanced seniors may enroll in astronomy graduate courses with the permission of the instructor. Students are also encouraged to
work with faculty members on independent study projects under the course ASTRO 440 or to apply to a variety of programs at Cornell, Arecibo, and elsewhere that offer undergraduates summer employment as research assistants. Nearly all undergraduate majors and concentrators become involved in research projects in the junior and senior years.

Students whose interest in astronomy is sparked somewhat late in their undergraduate career are encouraged to discuss possible paths with the director of undergraduate studies in Astronomy.

Honors. A student may be granted honors in Astronomy upon the recommendation of the Astronomy Advisers Committee of the Astronomy faculty.

Double majors. A double major in Astronomy and another subject is possible in many circumstances. However, the set of courses used to fulfill the requirements for each major must be completely independent.

Distribution Requirement. All courses in astronomy, except ASTRO 233 and 234, may be used to fulfill the science distribution requirement in the College of Arts and Sciences.

Courses

ASTRO 101(1101) The Nature of the Universe (I) (PBS)
Fall. 3 credits. Limited to 22 students per lab, 30 per disc sect. Prerequisites: none. T. Herter, labs: J.-L. Margot and staff. Introduces students to the Cosmos. The birth, evolution, and death of stars, the formation of the chemical elements, and the nature of white dwarfs, neutron stars, and black holes are discussed. An introduction to the theories of special relativity and general relativity is given. The course covers the search for other worlds outside the solar system and the possible existence of life and intelligence elsewhere in the universe. Modern theories of cosmology are presented, and the origin, structure, and fate of the universe are discussed. Most of the course notes as well as sample exams and simulations are made available on the web.

ASTRO 102(1102) Our Solar System (I) (PBS)
Spring. 3 credits. Limited to 30 students per disc. S. Squyres and J.-L. Margot; labs: G. Stacey and staff. The past few decades have seen incredible advances in the exploration of our solar system. In this course students learn about the current state and past evolution of the Sun and its family of planets, moons, asteroids, and comets. The course emphasizes images and other data obtained from current and past NASA space missions and how these data provide insights about the important processes that have shaped the evolution of solar system objects. General astronomical concepts relevant to the study of the solar system are also discussed. Critical focus is on developing an understanding of the Earth as a planetary body and discovering how studies of other planets and satellites influence models of the climatic, geologic, and biologic history of our home world. Other topics include impact hazards, the search for life in the solar system, and life on other worlds. Nearly all undergraduate majors and concentrators become involved in research projects in the junior and senior years.

ASTRO 103(1103) The Nature of the Universe (I) (PBS)
Fall. 3 credits. T. Herter. Identical to ASTRO 101 except for omission of the laboratory.

ASTRO 104(1104) Our Solar System (I) (PBS)
Spring. 4 credits. Limited to 22 students per lab, 30 per disc sec: J.-L. Margot and S. Squyres. Identical to ASTRO 102 except for addition of the laboratory.

ASTRO 105(1105) An Introduction to the Universe (I) (PBS)
Summer. 3 credits. Recommended: high school physics. D. Kornreich. How do we measure the size of our galaxy and the size of the universe? Is the universe round or flat? How are the stars born, why do they shine, and how do they die? What are the chemical elements, and how were they formed in supernovae, pulsars, and black holes? How was the solar system formed? What are the environments of other planets like? What is the basic structure of Earth and the other planets? Will we catastrophically alter the earth? Does life exist elsewhere in the universe? How can we find out? Each student has an opportunity to make observations with small telescopes.

ASTRO 106(1106) Essential Ideas in Relativity and Cosmology (I) (PBS)
Summer. 3 credits. Prerequisites: high school algebra and trigonometry. R. A. Saenz. Explanation of Einstein's theories of special and general relativity, which brought about a fundamental change in our conceptual understanding of space and time. Correspondence to, and conflicts with, common sense. Applications to various areas in special relativity (space travel, the equivalence of mass and energy, nuclear fission and fusion, and thermonuclear processes in the sun) and in general relativity (motion of light and particles in curved spacetime, cosmological models, the question of whether the universe is open or closed).

ASTRO 107(1107) An Introduction to the Universe (I) (PBS)
Summer. 4 credits. D. Kornreich. Identical to ASTRO 105 except for the addition of the afternoon laboratory that emphasizes mathematical problem-solving. This option is recommended for potential majors in science and engineering.

ASTRO 195(1195) Observational Astronomy (I) (PBS)
Fall. 3 credits. Limited to 24 students. Prerequisite: permission of instructor required (forms available in SS610). G. Stacey. Provides a "hands-on" introduction to observational astronomy intended for liberal arts students at the freshman and sophomore level. High school mathematics is assumed, but otherwise there are no formal prerequisites. The course objective is to teach how we know what we know about the universe. The course is set up with two lectures and one evening laboratory per week. Not all of the evening sessions are used. Planned exercises include five or six observational labs (star gazing with binoculars and small telescopes, telescope conversations and CCD imaging of star clusters, nebulae, and the planets, solar observations, radio observations of the Milky Way Galaxy), plus a selection of exercises from the following: experiments in navigating by the stars; construction and use of simple instruments such as optical spectroscopes and sun dials; laboratory spectroscopy; experiments in planetary cratering; collection and study of micrometeorites; computer simulations of the orbits of planets and their satellites; and cosmological explorations using data from the Hubble Space Telescope available on the web.

ASTRO 201(2201) Our Home in the Universe (I) (PBS)
Fall. 3 credits. Prerequisite: freshman or sophomore standing. No scientific background assumed. Lect: C. Lloyd, lec 1: R. Giovannelli, M. Haynes. General discussion of our relation to the physical universe and how our view of the universe has changed from ancient to modern times. Several main themes are covered over the course of the semester: the evolution of our view of the sky from that of ancient cultures to that of space telescopes; the death of stars and the formation of black holes; dark matter and the structure of galaxies; and the origin, evolution, and fate of the universe. Presents a nonmathematical introduction to these subjects and discuss uncertainties and unresolved issues in our understanding.

ASTRO 202(2202) Our Home in the Solar System (I) (PBS)
Spring. 3 credits. Prerequisite: freshman or sophomore standing; some background in science. J. Veverka. Writing course designed to develop an understanding of our home planet as a member of a diverse family of objects in our solar system. Discussion centers on how studies of other planets and satellites have broadened our knowledge and perspective of Earth, and vice versa. We study, debate, and learn to write critically about important issues. Several public policy topics benefit from this perspective. Topics discussed include global warming, the impact threat, the searches for extrasolar planets and extraterrestrial intelligence, and the exploration of Mars.

ASTRO 211(2211) Astronomy: Stars, Galaxies, and Cosmology (I) (PBS)
Fall. 4 credits. Intended for first- and second-year engineering and physical sciences students. Prerequisite: introductory calculus or co-registration in MATH 111 or 119 or permission of instructor. J. Houck. Topics discussed include: the formation and evolution of normal and extreme stars, the structure and evolution of galaxies, and cosmology.

ASTRO 212(2212) The Solar System: Planets, Satellites, and Rings (I) (PBS)
Spring. 4 credits. Intended for first- and second-year engineering and physical sciences students. Prerequisite: introductory calculus or co-registration in MATH 111 or 119; some knowledge of classical physics (mechanics and thermodynamics). D. Campbell and P. Nicholson.
Introduction to the solar system, with emphasis on the application of simple physical principles. Topics include: the Sun, nucleosynthesis of the elements, radioactive dating, seismology and planetary interiors, planetary surfaces and atmospheres including greenhouse models, orbital mechanics and resonances, interrelations between meteorites, asteroids and comets, the Jovian planets, icy moons and ring systems, and the search for extra-solar planets.

ASTRO 233(2233) Sophomore Seminar: Topics in Astronomy and Astrophysics: The Origin of Cosmic Structures
Fall. 2 credits. Limited to 15 students. Intended for sophomores planning to major in Astronomy or related fields. Prerequisites: PHYS 112 or 116 and 213 or 217, MATH 112, 122 or 192 or permission of instructor. D. Campbell and M. Haynes. Course theme may change yearly. The fall 2005 course is offered as a Knight sophomore seminar and explores the theme “From Rocks to the Universe: How Modern Telescopes Are Being Used to Answer the Major Questions in Astronomy.” These questions include the formation of stars and planets; the prevalence of extra-solar planetary systems, including ones containing earth-like planets; how and when the first galaxies formed; the nature of dark energy and dark matter; and the structure of the universe.

This is a special seminar sponsored by the John S. Knight Institutes Sophomore Seminars Program. Seminars offer discipline-specific study within an interdisciplinary context. While not restricted to sophomores, the seminars aim at initiating students into the disciplines outlook, discourse community, modes of knowledge, and ways of articulating that knowledge. Limited to 15 students. Special emphasis is given to strong thinking and writing and to personalized instruction with top university professors.

ASTRO 234(2234) Modern Astrophysical Techniques
Spring. 2 credits. Intended for sophomores majoring or concentrating in Astronomy or related fields. Prerequisites: two semesters of introductory physics and two semesters of calculus. ASTRO 235 or permission of instructor; some experience with computer programming. J. Lloyd. Reviews the basic techniques employed in astrophysical research, both observational and theoretical, to explore the universe. Basic methods and strategies of data acquisition and image and signal processing are discussed. Students gain hands-on experience with visualization techniques and methods of error analysis, data analysis, and numerical simulation. Exercises address the processes by which astrophysicists piece together observations made with today’s foremost astronomical instruments to solve questions concerning the origin of planets, stars, galaxies, and the universe itself.

ASTRO 280(2280) Space Exploration (I) (PBS)
Fall. 3 credits. No special background in physical sciences, math, or engineering assumed. S. Squyres. Provides an overview of space science, with particular emphasis on the solar system, and a detailed examination of a few selected objects, including the planet Mars, the satellites in the outer solar system, and comets. The focus is on methods of collecting information and especially on spacecraft and space missions. Topics include the design and limitations of instruments. Ethical and political questions associated with space exploration are discussed. Intended for students with an interest in science, technology, and associated policy issues.

ASTRO 290(2290) Relativity and Astrophysics (I) (PBS)
Spring. 4 credits. Prerequisites: freshman physics, calculus, and geometry. I. Wasserman. Provides a geometrically based introduction to special and general relativity, followed by consideration of astrophysical applications. Includes discussion of tests of Einstein’s theory of space, time, and gravitation; the physics of white dwarfs, neutron stars, and black holes; an introduction to modern cosmology.

ASTRO 299(2299) Search for Life in the Universe (I) (PBS)
Spring. 4 credits. Prerequisites: two courses in any physical science subject or permission of instructors. J. Cordes and Y. Terzian. Surveys the contents of the universe. Reviews theories of cosmic and stellar evolution, and of the formation and evolution of planetary systems, planetary atmospheres, and surfaces. Questions regarding the evolution of life and the development of technology are discussed. Methods to detect extraterrestrial life with emphasis on the physical and associated instrumentation are presented. Hypothetical communication systems are developed and discussed.

ASTRO 310(3310) Planetary Imaging Processing (I) (PBS)
Fall. 3 credits. Intended for sophomores or juniors majoring or concentrating in Astronomy or related fields. Prerequisites: two semesters of introductory physics and some experience with computer programming; permission of instructor required (form available in SS610). J. Bell. Reviews the basic techniques employed in the collection and processing of spacecraft images of planets, moons, rings, asteroids, and comets, from both the observational and theoretical perspectives. Students gain hands-on experience with digital image manipulation, including visualization, calibration, statistics, and error analysis. Specific examples involve the processing and analysis of imaging data from missions like Voyager, Clementine, Galileo, NEAR, Mars Pathfinder, Mars Global Surveyor, and the Hubble Space Telescope. Exercises encompass the range of techniques used by planetary scientists to acquire and process spacecraft data that are then used to address questions on the geology, composition, and evolution of solar system bodies.

ASTRO 331(3331) Climate Dynamics (also EAS 331(3331)) (I) (PBS)
Fall. 4 credits. Prerequisite: MATH 112 or 192 or equivalent or permission of instructor. G. Good. Processes that determine climate and contribute to its change are discussed, including atmospheric radiation, ocean circulation, and atmospheric dynamics. Contemporary climate change issues are investigated and discussed in the context of natural variability of the system.

ASTRO 332(3332) Elements of Astrophysics (I) (PBS)
Spring. 4 credits. Prerequisites: MATH 112, 122, or equivalent; PHYS 213 or 217. R. Giannini and M. Haynes. Introduction to astronomy, with emphasis on the application of physics to the study of the universe. Covers: physical laws of radiation; distance, size, mass, and age of stars, galaxies, and the universe; stellar evolution and nucleosynthesis; supernovae, pulsars, and black holes; galaxies and quasars. Introduction to cosmology. Mainly intended for students of science, engineering, and science education interested in astronomy and astrophysics.

ASTRO 342(3342) Atmospheric Dynamics (also EAS 342(3420)) (I) (PBS)
Spring. 3 credits. Prerequisites: one year each of calculus and physics. K. H. Cook. Introduction to the basic equations and techniques used to understand motion in the atmosphere, with an emphasis on the space and time scales typical of storm systems (the synoptic scale). The governing equations of atmospheric flow are derived from first principles and applied to middle latitude and tropical meteorology. Topics include balanced flow, atmospheric waves, circulation, and vorticity.

ASTRO 410(4410) Experimental Astronomy (I) (PBS)
Fall. 4 credits. Prerequisites: PHYS 214/218 (or 310 or 360), PHYS 323/327 (or co-registration) and permission of instructor required (form available in SS610). J. Bell, J. Cordes, and J. Houck. Observational astrophysics. Major experiments involve techniques in CCD (charge-coupled-device) imaging, optical photometry, optical spectroscopy, radio spectroscopy, and radio astronomy. The experiments involve use of the Hartung-Boothroyd Observatory’s 24-inch telescope, a laboratory two-element radio interferometer, and a radio telescope mounted on top of the Space Sciences Building. The laboratory covers the fundamentals of using astronomical instrumentation and data analysis as applied to celestial phenomena: asteroids, normal stars, supernova remnants, globular clusters, planetary nebulae, the interstellar medium, OH masers, and galaxies.

ASTRO 431(4431) Introduction to Astrophysics and Space Sciences (I) (PBS)
Fall. 4 credits. Prerequisites: mathematics above 200 level and physics above 300 level. Recommended: PHYS 443. D. Lai. Overview of modern astrophysical concepts for physical science majors. Major topics include stellar formation, structure, and evolution; stellar atmospheres, compact objects (white dwarf, neutron star, and black holes); planets; and brown dwarfs. Current research problems in these areas are introduced along the way. The emphasis is on using fundamental principles of physics to explain astronomical phenomena. A variety of physics, including elements of atomic and molecular physics, solid state physics and fluid mechanics, are introduced or reviewed in a quick, practical fashion to be put to use in solving astrophysics puzzles.
ASTRO 432(4432) Introduction to Astrophysics and Space Sciences II (I) (PBS)
Spring. 4 credits. Prerequisite: ASTRO 431 or permission of instructor. D. Chernoff. Covers two broad topics: the astrophysics of the interstellar medium and cosmology. The interstellar medium section covers thermal equilibrium and radiative transport in HII regions, atomic gas regions, and molecular clouds. The cosmology section includes expansion of the universe, metrics, Friedmann equations, dark matter, cosmological tests, the early universe, and the cosmological production of the elements.

ASTRO 434(4434) The Evolution of Planets (I) (PBS)

ASTRO 440(4940) Independent Study in Astronomy
Fall or spring. 2–4 credits. Prerequisite: permission of instructor; to register: obtain an independent study form in department office, 610 Space Sciences Bldg. Recommended: familiarity with topics covered in ASTRO 332, 431, or 434. Individuals work on selected topics. A program of study is devised by the student and instructor.

ASTRO 445(4445) Introduction to General Relativity (also PHYS 445(4445)) (I) (PBS)
Fall. 4 credits. E. Flanagan. For description, see PHYS 445.

ASTRO 490(4490) Senior Seminar Critical Thinking (I) (PBS)
Fall. 3 credits. Prerequisites: none. Open to all students. Y. Terzian.

ASTRO 495(4495) Introduction to Astrophysics (also PHYS 495(4495)) (I) (PBS)
Fall. 4 credits. E. Flanagan.

ASTRO 510(6510) Applications to General Relativity (also PHYS 554(6554))

ASTRO 511(6511) Physics of Black Holes, White Dwarfs, and Neutron Stars (also PHYS 525(6525))

ASTRO 516(6516) Galactic Structure and Stellar Dynamics
Fall. 4 credits. D. Chernoff. Introduction to the study of the structure of galaxies via the laws of modern physics. Topics include the observed distribution of stars and gas in the Milky Way, the rotation of spiral galaxies, the spiral structure, galaxy classification and evolution, and cosmological results in galaxy formation.

ASTRO 520(6520) Radio Astronomy
Fall. 4 credits. J. Cordes and D. Campbell. Covers radio astronomy telescopes and electronics; antenna theory; observing procedures and data analysis; concepts of interferometry and aperture synthesis.

ASTRO 540(6540) Stellar Evolution
Fall. 4 credits. Prerequisite: knowledge of special relativity and methods of dynamics at level of Classical Mechanics by Goldstein. Not offered 2005–2006. J. York. Systematic introduction to Einstein's theory using both modern and classical methods of computation. Topics include review of special relativity, differential geometry, foundations of general relativity (GR), laws of physics in the presence of gravitational fields, GR as a dynamical theory, experimental tests of GR. At the level of Gravitation by Misner, Horne, and Wheeler.

ASTRO 550(6550) General Relativity (also PHYS 555(6555))
Fall. 4 credits. E. Flanagan.

ASTRO 555(6555) Theory of the Interstellar Medium

ASTRO 556(6556) Theory of Stellar Structure and Evolution (also PHYS 667(7667))
Fall. 4 credits. Not offered 2005–2006. D. Chernoff. Intended to provide a systematic development of stellar astrophysics, both theory and observations. Topics include hydrodynamic equations; Newton's laws of motion and equation of state; stellar structure equations; gravitation; stellar oscillations; energy sources; radiative transfer and atmospheres; convection and stellar turbulence; nuclear burning and nucleosynthesis; solar neutrinos; star formation, pre-main sequence stars, brown dwarfs, end states of stellar evolution (white dwarfs, neutron stars, and black holes); supernovae; interacting binary stars; stellar

where large-scale surveys throughout the electromagnetic spectrum and using non-electromagnetic signals (e.g., neutrinos and gravitational waves) are ongoing and anticipated. Applications are also chosen from topics in geophysics, plasma physics, electronics, artificial intelligence, expert systems, and genetic programming. The course is self-contained and is intended for students with thorough backgrounds in the physical sciences or engineering.

ASTRO 557(6557) Techniques of Optical/Infrared and Submillimeter Astronomy
Spring. 4 credits. Not offered 2005–2006. G. Stacey and staff. Optical/infrared and submillimeter telescopes and instrumentation are discussed and related to current research in these fields. Includes telescope design and general optical design (ray tracing), CCD, photocostructor, photovoltaic, bolometer, impurity band conduction, and heterodyne detection systems are presented. The instrumentation discussion includes general instrument design and specific applications to cameras, spectrographs, and interferometers. Detection limits for various systems, cryogenic techniques, and astronomical data analysis techniques are also discussed. Special topics include speckle interferometry and adaptive optics.

ASTRO 560(6560) Theory of Stellar Structure and Evolution (also PHYS 667(7667))
Fall. 4 credits. Not offered 2005–2006. D. Chernoff. Intended to provide a systematic development of stellar astrophysics, both theory and observations. Topics include hydrodynamic equations; Newton's laws of motion and equation of state; stellar structure equations; gravitation; stellar oscillations; energy sources; radiative transfer and atmospheres; convection and stellar turbulence; nuclear burning and nucleosynthesis; solar neutrinos; star formation, pre-main sequence stars, brown dwarfs, end states of stellar evolution (white dwarfs, neutron stars, and black holes); supernovae; interacting binary stars; stellar

where large-scale surveys throughout the electromagnetic spectrum and using non-electromagnetic signals (e.g., neutrinos and gravitational waves) are ongoing and anticipated. Applications are also chosen from topics in geophysics, plasma physics, electronics, artificial intelligence, expert systems, and genetic programming. The course is self-contained and is intended for students with thorough backgrounds in the physical sciences or engineering.
The universe, its constituents, its large-scale structure, and its history in the light of the major thrusts of contemporary cosmology. The extragalactic distance scale. Galaxy formation and evolution. Confrontation of cosmological inference with current observational constraints—this course will revolutionize our ability to search for structure in the Milky Way. The seminar focuses on (1) major surveys carried out in radio and at other wavelengths in recent years, their scientific goals, and technical challenges, and (2) plans and prospects for major surveys that are likely to take place in this decade with the L-band feed array at Arecibo. Large surveys require new paradigms for observational astronomy, particularly in confrontation with data acquisition, excision of artificial and natural interference, the management of extremely large databases, the development of robust tools for data mining, and the timely delivery of data products to archives that are accessible to the wider community.

ASTRO 621(7621) Seminar: Planetary Radar Astronomy
Spring. 3 credits. Prerequisites: upper-level undergraduates and graduate students in Astronomy, engineering, and geology; good background in undergraduate mathematics and physics. D. Campbell and J.-L. Margot.

Application of radar to the study of the surfaces of planets, planetary satellites, asteroids, and comets. Topics include target detectability and the specification of the needed antennas, transmitters, and receiving systems; data processing techniques; imaging techniques including delay-Doppler imaging, synthetic aperture radar (SAR) and interferometric SAR; target characterization from cross section, scattering laws, and polarization measurements; results from earth-based and spacecraft radar observations of Mercury, Earth, the Moon, Mars, the satellites of Jupiter, the rings of Saturn, asteroids, and comets.

ASTRO 640(6940) Advanced Study and Research
Fall or spring. Credit TBA.

Guided reading and seminars on topics not currently covered in regular courses.

ASTRO 651(6515) Atmospheric Physics (also EAS 651(6510))

For description, see EAS 651.

ASTRO 652(6520) Advanced Atmospheric Dynamics (also EAS 652(6520))

For description, see EAS 652.

ASTRO 660(6760) Cosmic Electrodynamics (also A&EP 608(6080))
Spring. 2 credits. R. Lovelace. Selected topics discussed in detail: the solar wind, stellar winds, Bondi accretion, Bondi-Hoyle accretion, accretion disks with B fields, magneto-rotational instability, magneto-centrifugal winds and jets from disks. Poynting jets, funnel flows, the propeller stage of accretion, advection and convection dominated accretion flows, fast dynamo processes in astrophysics.

ASTRO 671(7671) Seminar: Star Formation
Fall. 3 credits. P. Goldsmith.

Focuses on the astrophysics of star formation and reviews observational data about young stars and their connection with the interstellar medium from which they form. Students consider the physical processes in molecular clouds, including stability, formation of dense cores, and protostars. The impact of young stars on their surroundings—an important part of the overall process of star formation—is considered for both low- and high-mass stars. Students review the evolution of pre-main-sequence stars and examine star formation on both galactic and extragalactic scales. The class is conducted in a seminar format; students make presentations on selected topics and write and deliver a research paper.

ASTRO 671(7671) Seminar: Micron to Millimeter Astronomy

Covers topics of current interest in infrared and submillimeter astrophysics, including extragalactic sources, star formation in the galaxy; nearby dwarf, starburst, and ultraluminous galaxies; and distant "proto"-galaxies. Recent results obtained with Spitzer Space Telescope and ground-based facilities are covered. The seminar includes lectures from faculty and staff and also student presentations from the readings during the course.

ASTRO 673(7673) Seminar: Planetary Atmospheres

Deals with motions in planetary atmospheres. Among the topics discussed are the Venus general circulation, dust and water transports on Mars, alternating jets on the outer planets, and compositional layering in the outer planets.
understand ourselves and the living world around us. Many of the decisions we face today deal with the opportunities and problems that biology has put before us.

The major in biological sciences at Cornell is available to students enrolled in either the College of Agriculture and Life Sciences or the College of Arts and Sciences. Student services provided by the Office of Undergraduate Biology, 216 Stimson Hall, are available to students from either college.

The biology major is designed to enable students to acquire the foundations in physical and life sciences necessary to understand modern biology and to pursue advanced studies in a specific area of biology. Programs of study include animal physiology; biochemistry; computational biology; ecology and evolutionary biology; general biology; genetics and development; insect biology; microbiology; molecular and cell biology; neurobiology and behavior; nutrition; plant biology; and systematics and biodiversity.

Students interested in the marine sciences may consult the Shoals Marine Laboratory Office (G14 Stimson Hall) for academic advising. For more details about the biology curriculum, see the “Biological Sciences” section of this catalog or visit the Office of Undergraduate Biology web site, www.bio.cornell.edu.

BIOLOGY & SOCIETY MAJOR

The Biology & Society major is suited for students who wish to combine training in biology with perspectives from the social sciences and humanities on the social, political, and ethical aspects of modern biology. In addition to providing a foundation in biology, Biology & Society students gain a background in the social dimensions of modern biology and in the biological dimensions of contemporary social issues.

The Biology & Society major, which involves faculty from throughout the university, is offered by the Department of Science and Technology Studies. Students in the College of Arts and Sciences, the College of Human Ecology, and the College of Agriculture and Life Sciences are eligible for the major. The major is coordinated for students in all colleges through the Biology & Society Office. Students can get information, specific course requirements, and application procedures for the major from the Biology & Society office in 306 Rockefeller Hall, 255-0197.

Because the major is multidisciplinary, students must attain a basic understanding of the several disciplines it comprises. The curriculum includes courses in ethics; statistics; history, philosophy, and social studies of science and biology; and basic biology (e.g., genetics and development; biochemistry and molecular-cell biology; ecology; evolutionary biology), as well as integrative courses offered through Biology & Society. Majors are required to take a core course and must develop a theme, an intellectually coherent grouping of courses representative of their special interest in Biology & Society. Recommended themes in the Biology & Society major include biology, behavior, and society; biology and human population; biology and public policy; environment and society; and health and society. Students may also develop their own individually tailored themes (which in recent years have included topics such as biotechnology and society and agriculture, environment, and society). In consultation with their faculty adviser, students select courses that meet the foundation and core course requirements so as to build a coherent theme. Sample curricula for the recommended themes and for several student-developed themes are available in the Biology & Society office. A list of all course descriptions is available in 306 Rockefeller Hall.

Faculty members are available (according to posted office hours or by appointment) in the Biology & Society offices, 306 Rockefeller Hall, to answer questions and to provide assistance.

Admission to the Major

All students should have completed a year of college-level biology before submitting an application during their sophomore year. Juniors are considered on a case-by-case basis. Upper-division applicants should realize the difficulties of completing the major requirements in fewer than two years. Freshmen admitted to the Colleges of Agriculture and Life Sciences and Human Ecology as Biology & Society majors are considered to have been admitted to the major on a provisional basis, contingent on successful completion of the course sequence in introductory biology and submission of the application to the university major. The application includes (1) a one-page statement explaining the student's intellectual interests in the Biology & Society major and why the major is consistent with the student's academic goals and interests; (2) the theme the student wishes to pursue in the major; (3) a tentative plan of courses fulfilling Biology & Society requirements, including courses taken already at Cornell and those the student does not wish to take; and (4) a transcript of work completed at Cornell University (and elsewhere, if applicable), current as of the date of application.

Acceptance into the major requires completion of the course sequence in introductory biology. Sophomore standing or completion of this prerequisite may be admitted to the major on a provisional basis. It is the student's responsibility to assure that final acceptance is granted upon satisfactory completion of the introductory biology sequence. Although only introductory biological science is a prerequisite for acceptance, students find it useful to have completed some of the other requirements (listed below) by the end of their sophomore year, preferably by the end of the first semester. Students who are considering the major may also find it beneficial to take S&TS 201, What Is Science?, in their freshman or sophomore year. Human Ecology students should also consult the current Human Ecology guide and meet with the college advising coordinator, Nancy Breen, 205 Martha Van Rensselaer Hall, 255-1928.

Major Requirements

No single course may satisfy more than one major requirement. All courses must be taken for a letter grade.

1. **Basic courses**
 b. College calculus (one course)*
 c. Recommended but not required: General chemistry (one-year sequence) (prerequisite to biochemistry and other chemistry courses).

2. **Foundation Courses**
 a. Ethics: one course; B&SOC 205 (also S&TS 205) or B&SOC 206 (also S&TS 206, PHIL 246).
 b. Social sciences/humanities foundation: two courses; one from any two of the following subject areas: history of science; philosophy of science; sociology of science; politics of science; and science communication.
 c. Biology foundation (breadth requirement): three courses, one each from three of the following subject areas: biochemistry, molecular and cell biology (BIBM 350 or 351 or 353 or NS 320; ecology (BIOEE 261); genetics and development (BIOGD 281 or 282 or PL BR 225); evolutionary biology (BIOEE 278); animal behavior (BIONB 221); neurobiology and behavior (BIONB 222); physiology and anatomy (BIOAP 311 or NS 341 but not BIOAP 212); biological diversity (BIOPL 241 or BIOM 290 or BIOEE 375 or 374 or 470 or 472 or 471 or 475 or 476 or ENTOM 212 or PL PA 390); nutrition (NS 115).
 d. Biology foundation (Depth requirement): one biology course for which one of the above (2c) is a prerequisite.
 e. Statistics: one course selected from MATH 171, BTRY 301, AEM 210, SOC 301, PSYCH 350, ECON 319, PAM 210.
3. Core Course*: (one course). Should be completed by end of junior year.
 B&SOC 301 Life Sciences and Society (also S&TS 301); or S&TS 286 Science and Human Nature (also PHIL 286).

4. Theme (five courses that correspond to the theme selected by the student). These courses must be above the 100-level, at least 3 credit hours, and taken for a letter grade. Choose these courses as follows:
 a. Natural science issues/biology elective (two courses). Select from the list of B&SOC approved natural science issues courses or choose course(s) with introductory biology as a prerequisite from: ALS, AN SC, BIOCHEM, BIOJ, BR, BR PA, CHEM, CRN, ENTOM, F&SC, HD, NS, NTRES, PL, PSYCH, PSYCH PA, PUB H, PUB H PA, PSYCH, VTMED.
 b. Humanities/social sciences electives** (two courses). Courses from the list of senior seminars may be used as theme electives if not used to meet another requirement, or select humanities or social sciences courses in consultation with the faculty adviser.
 c. Senior seminar** (one course taken senior year). Courses change yearly.

* Students may petition to take a second statistics course (an advanced course, in sequence with the statistics course taken in the foundation) in place of the calculus requirement.

** Among the courses taken to meet the social sciences and humanities requirements (2 A, 2 B, 3 A, 3 B, and 4 C), a minimum of two social science courses and two humanities courses must be chosen. History of science, philosophy of science, and ethics courses may be counted toward the humanities requirement for the major.

*** A list of approved depth courses using NS 115. A current list is available at 306 Rockefeller Hall.

Independent Study
Projects under the direction of a Biology & Society faculty member are encouraged as part of the program of study in the student's theme area. Applications for research projects are accepted by individual faculty members. Students may enroll for 1-4 credits in B&SOC 575 Independent Study with written permission of the faculty supervisor and may elect either the letter grade or the S/U option. Applications and information on faculty research, scholarly activities, and undergraduate opportunities are available in the Biology & Society office, 306 Rockefeller Hall. Independent study credits may not be used in completion of the major requirements.

The Honors Program
The honors program is designed to provide independent research opportunities for academically talented undergraduate students whose major is Biology & Society (B&SOC). Students who enroll in the honors program are expected, with faculty guidance, to do independent study and research dealing with issues in Biology & Society. Students participating in the program should find the experience intellectually stimulating and rewarding whether or not they intend to pursue a research career.

Biology & Society majors are considered for entry into the honors program at the end of the second semester of the junior year. Application forms for the honors program are available in the Biology & Society office, 306 Rockefeller Hall. The honors program is available to Biology & Society majors from the Colleges of Arts and Sciences and Agriculture and Life Sciences. Biology & Society majors in the College of Human Ecology must be selected by an honors committee within their college. To qualify for the Biology & Society honors program, students must have an overall Cornell cumulative grade point average (GPA) of at least 3.3, have formulated a research topic, and have found a project supervisor (with an academic appointment at Cornell) and another faculty member willing to serve as their advisers.

At least one of these must be a member of the Biology & Society major. Applications will be reviewed by a committee headed by the director of undergraduate studies, who will notify students directly of the outcome. Students will be permitted to register for the honors program only by permission of the department. Students must enroll for both the fall and spring semesters. B&SOC 499 is now cross-listed with the College of Agriculture and Life Sciences as ALS 499. Students wishing to receive CALS credit can sign up for ALS 499. They must attend the honors seminar during the fall semester. More information on the honors program is available in the Biology & Society Office, 306 Rockefeller Hall, 255-6047.

People to contact for Biology & Society honors information:
In Arts and Sciences: Brian Chatbot, director of undergraduate studies, bcf1@cornell.edu
In Agriculture and Life Sciences: David Pimentel, faculty representative to CALS Honors Committee, dp188@cornell.edu
In Human Ecology: Nancy Breen, advising coordinator, CHE, neb5@cornell.edu

Further Information
Professor Brian Chatbot, director of undergraduate studies, bcf1@cornell.edu
Professor Douglas Gurak, advising coordinator, College of Agriculture and Life Sciences, dg2@cornell.edu
Dr. Nancy Breen, advising coordinator, College of Human Ecology, neb5@cornell.edu
Susan Sullivan, Biology & Society Advising Office, 306 Rockefeller Hall, 255-6047, sfcl@cornell.edu
web site: www.sts.cornell.edu

1. First-Year Writing Seminars and Introductory Courses
Consult the John S. Knight Institute web site for times, instructors, and descriptions. Website: www.arts.cornell.edu/Knight_institute/index.html

S&T 101(1101) Science and Technology in the Public Arena
Fall. 3 credits. Recommended as an introduction to the field. Not required; may not be used to fulfill major requirement. S&T 101 and 102 may be taken separately or in any order. R. Prentice.
For description, see S&Ts listings, S&Ts 101.

S&T 102(1102) Histories of the Future
Spring. 3 credits. Recommended as an introduction to the field. Not required; may not be used to fulfill a major requirement. S&Ts 101 and 102 may be taken separately or in any order. R. Seh.
For description, see S&Ts listings, S&Ts 102.

II. Foundation Courses
A. Ethics (one course)
B&SOC 205(2051) Ethical Issues in Health and Medicine (also S&Ts 205(2051) (IV) (KCM)
Fall. 4 credits. Limited to 150 students. Not open to freshmen. K. Vogel.
In today's rapidly changing world of health and medicine, complex ethical issues arise in many contexts—from the private, interpersonal interactions between doctor and patient to the broad, mass-mediated controversies that make medicine into headline news. This course examines ethical problems and policy issues that arise in contemporary medicine, health care, and biomedical research. Tools for ethical analysis are applied to a variety of cases and fundamental questions in bioethics. Perspectives from social science, history, and law also inform the course. The course explores ethical questions that arise in a number of substantive contexts, including the doctor-patient relationship, medical decision making near the end of life, human experimentation, genetics and reproductive technology, public health, and the allocation of scarce resources.

B&SOC 206(2061) Ethics and the Environment (also S&Ts 206(2061), PHIL 246(2460) (IV) (KCM)
Spring. 4 credits. Limited to 50 students. Open to all undergraduates, freshmen by permission of instructor. J. Turner.
Aims to acquaint students with moral issues that arise in the context of the environment and environmental policy. Our concerns about the environment bring to our attention the importance of economic, epistemological, legal, political, and social issues in assessing our moral obligations to other humans and the natural world. The attempt is then to explore how different factors come into play in defining our responsibilities to the environment and to examine the grounds for our environmental policy decisions. A background in basic ecology or environmental issues or ethics is helpful.

B. Social Sciences/Humanities Foundation (two courses, one from any two areas)

1. History of Science
S&Ts 233(2331) Agriculture, History, and Society: From Squanto to Biotechnology
Fall. 3 credits. M. Rosser.
For description, see S&Ts listings, S&Ts 233.

S&Ts 282(2821) Science in Western Civilization (also HIST 282(2820))
Spring. 4 credits. P. Dear.
For description, see HIST 282.

S&Ts 287(2871) Evolution (also BIOEE 207[2070], HIST 287[2870])
Fall or summer. 3 credits. May not be taken for credit after BIOEE 279.
W. Provine.
For description, see BIOEE 207.
S&TS 355(3551) Computing Cultures
For description, see S&TS 356.

S&TS 356(3561) Computing Cultures
For description, see S&TS listings, S&TS 355.

S&TS 444(4441) Historical Issues of Science and Technology (also SOCI 344(3441), INFO 344(3440), HIST 441[4410])

S&TS 501(5011) What Is Science? An Introduction to the Social Studies of Science and Technology (also SOC 210[2100])
Spring. 3 credits. T. Pinch.
For description, see S&TS listings, S&TS 201.

S&TS 352(3521) Science Writing for the American Polity: 1800 to 1960 (also GOVT 352[3520], AM ST 389[3891])
Fall. 4 credits. May not be taken for credit after BIOBM 330. G. Feigenson.

S&TS 391(3911) Science in the American Polity: 1960 to Now (also GOVT 391[3910], AM ST 389[3891])
Spring. 4 credits. S. Hilgartner.
For description, see S&TS 391.

[S&TS 427(4271) Politics of Environmental Protection (also GOVT 427[4270])]

S&TS 421(4210) Communication and the Environment
Spring. 3 credits. May be used in Foundation only if not taken as senior seminar. Staff.
For description, see S&TS 421.

S&TS 285(2851) Communication in the Life Sciences (also COMM 285[2850])
Spring. 3 credits. B. Lewenstein.
For description, see COMM 285.

B&SOC 301(3011) Life Sciences and Society (also S&TS 301[3011])
Fall. 4 credits. May be used to meet core course requirement. C. Silverman.
For description, see Core Courses.

S&TS 442(4421) Sociology of Science (also S&TS 442[4421], SOC/CRP 442[4420])
Fall. 4 credits. Not offered 2005-2006. Staff.
For description, see S&TS listings, S&TS 442.
ARTS AND SCIENCES - 2005-2006

BIODG 292(2820) Human Genetics
Spring. 2 or 3 credits. 2 credits if taken after BIODG 281; must be taken for 3 credits to fulfill Biology & Society requirements. Limited to 25 students per disc. M. Goldberg. For description and prerequisites, see BIODG 282.

PL BR 225(2250) Plant Genetics
Spring. 3 credits. M. Mitschler. For description, see PL BR 225.

4. Evolutionary Biology

BIOEE 278(2780) Evolutionary Biology
Fall and spring. 3 or 4 credits. Fall. R. Harrison; spring. M. Shulman and staff. For description, see BIOEE 278.

5. Animal Behavior

BIONB 221(2210) Neurobiology and Behavior I: Introduction to Behavior
Fall. 3, 4, or 5 credits. C. Walcott and staff. For description and prerequisites, see BIONB 221.

6. Neurobiology and Behavior

BIONB 222(2220) Neurobiology and Behavior II: Introduction to Neurobiology
Spring. 3 or 4 credits. R. Booker and staff. For description and prerequisites, see BIONB 222.

7. Physiology and Anatomy

BIOAP 311(3110) Introductory Animal Physiology, Lectures (also VTBMS 346)
Fall. 3 credits. E. Loew and staff. For description and prerequisites, see BIOAP 311.

NS 341(3410) Human Anatomy and Physiology
Spring. 4 credits. Prerequisite: permission of instructor. Students must preregister for lab in 309 Martha Van Rensselaer Hall during course enrollment period. V. Utermohlen. For description and additional prerequisites, see NS 341.

8. Biological Diversity

BIOMI 290(2900) General Microbiology Lectures
Fall, spring, and summer. 2 or 3 credits; must be taken for 3 credits to fulfill major requirement. B. Batzing (summer) and W. Gihorse. For description and prerequisites, see BIOMI 290.

BIOPL 241(2410) Introductory Botany
Fall. 3 credits. K. Niklas. For description, see BIOPL 241.

BIOEE 274(2740) The Vertebrates: Structure, Function, and Evolution
Spring. 4 credits. B. McGuire. For description and prerequisites, see BIOEE 274.

BIOEE 373(3730) Biology of the Marine Invertebrates
Fall. 5 credits. D. Harvell and J. Morin. For description and prerequisites, see BIOEE 373.

BIOEE 470(4700) Herpetology, Lectures
Spring. 2 credits; must be taken in conjunction with 472 to count for major credit. Not offered 2005-2006. H. Greene. For description and prerequisites, see BIOEE 470.

[BIOEE 471(4710) Mammalogy
Fall. 4 credits. Not offered 2005-2006. Staff. For description and prerequisites, see BIOEE 471.

[BIOEE 472(4720) Herpetology, Laboratory
Spring. 2 credits; must be taken in conjunction with 470 to count for major credit. Not offered 2005-2006. H. Greene. For description and prerequisites, see BIOEE 472.

BIOEE 475(4750) Ornithology
Spring. 4 credits. D. Winkler. For description and prerequisites, see BIOEE 475.

[BIOEE 476(4760) Biology of Fishes
Fall. 4 credits. Not offered 2006-2007. A. McCune. For description and prerequisites, see BIOEE 476.

ENTOM 212(2120) Insect Biology
Fall. 4 credits. C. Gilbert. For description and prerequisites, see ENTOM 212.

PL PA 309(3090) Introductory Mycology
Fall. 3 credits. K. Hodge. For description and prerequisites, see PL PA 309.

9. Nutrition

NS 115(1150) Nutrition, Health, and Society
Fall. 3 credits. D. Levitsky. For description, see NS 115.

D. Biology foundation (depth requirement): one course for which one of the above breadth requirement courses (2C) is a prerequisite.

E. Statistics (one course)

AEM 210(2100) Introductory Statistics
Spring. 4 credits. C. VanEs. For description and prerequisites, see AEM 210.

BTRY 301(3010) Statistical Methods I
Fall. 4 credits. P. Sullivan. For description and prerequisites, see BTRY 301.

ECON 319(3190) Introduction to Statistics and Probability
Fall and spring. 4 credits. Y. Hong and F. Molinari. For description and prerequisites, see ECON 319.

MATH 171(1710) Statistical Theory and Application in the Real World
Fall and spring. 4 credits. Staff. For description, see MATH 171.

PAM 210(2100) Introduction to Statistics
Fall and spring. 4 credits. K. Joyner, L. O’Neill, R. Swisher, and staff. For description, see PAM 210.

PSYCH 350(3500) Statistics and Research Design
Fall. 4 credits. Staff. For description, see PSYCH 350.

SOC 301(3010) Evaluating Statistical Evidence (also D SOC 302(3020))
Fall. 4 credits. Limited to Arts and Sciences students. Staff. For description, see SOC 301.

III. Core Courses

B&SOC 214(2140) Biological Basis of Sex Differences (also BIOAP/FGSS 214(2140)) (I) (PBS)
Spring. 3 credits. J. Fortune. For description, see BIOAP 214.

B&SOC 347(3471) Human Growth and Development: Biological and Behavioral Interactions (also MD/NS 347(3470))
Spring. 3 credits. Offered alternate years. J. Haas and S. Robertson. For description and prerequisites, see HD 347.

[BIOEE 275(2750) Human Biology and Evolution (also ANTHR/NS 275(2750))
Fall. 3 credits. Not offered 2005-2006. K. Kennedy and J. Haas. For description, see BIOEE 275.

[BIOEE 673(6730) Human Evolution: Concepts, History, and Theory (also ANTHR 673(6731))
Fall. 3 credits. Not offered 2005-2006. K. Kennedy. For description, see BIOEE 673.

BIO G 305(3050) Basic Immunology
Fall. 3 credits. J. Marsh. For description, see BIO G 305.

[BIOPL 247(2470) Ethnobiology
Fall. 3 credits. Not offered 2005-2006. D. Bates. For description, see BIOPL 247.
ENTOM 210(2100) Plagues and People
Fall. 3 credits. L. Harrington.
For description, see ENTOM 210.

EAS 322(3220) Biogeochemistry of the Hawaiian Islands
Spring. 4 credits. Students must apply via Cornell Abroad for the Hawaii program.
L. Derry.
For description, see EAS 322.

EAS 351(3510) Marine Ecosystems Field Course
Spring. 4 credits. Students must apply via Cornell Abroad for Hawaii program.
C. Greene and B. Monger.
For description, see EAS 351.

HD 220(2220) Biological Issues in Human Development: The Human Brain and Mind
Fall. 3 credits. E. Temple.
For description, see HD 220.

HD 266(2660) Emotional Functions of the Brain
Spring. 3 credits. R. Depue.
For description, see HD 266.

HD 320(3200) Human Developmental Neuropsychology: Neurobiology of Human Diseases and Disorders
Spring. 3 credits. E. Temple.
For description, see HD 320.

HD 344(3440) Infant Behavior and Development
Fall. 3 credits. Not open to freshmen.
S. Robertson.
For description and prerequisites, see HD 344.

HD 366(3660) Psychobiology of Temperament and Personality
Fall. 3 credits. R. DePue.
For description and prerequisites, see HD 366.

HD 433(4330) Developmental Cognitive Neuroscience
Spring. May be used as depth course if BIONB 221 or 222 taken as breadth.
3 credits. E. Temple.
For description, see HD 433.

HD 436(4360) Language Development (also LING/PSYCH/COGST 436)
Spring. 4 credits. B. Lutu.
For description, see HD 436.

NS 222(2220) Maternal and Child Nutrition
Fall. 3 credits. Limited to 25 students.
C. Garza and P. Brannon.
For description and prerequisites, see NS 222.

NS 331(3310) Physiological and Biochemical Bases of Human Nutrition
Spring. 4 credits. C. McCormick.
For description and prerequisites, see NS 331.

[NS 475(4750) Mechanisms of Birth Defects
For description and prerequisites, see NS 475.1]

[NTRES 201(2010) Environmental Conservation
Spring. 3 credits. T. Fahey.
For description, see NTRES 201.]

[PSYCH 223(2230) Introduction to Biopsychology
Fall. 3 credits. Not offered 2005-2006. Staff.
For description, see PSYCH 223.1]

[PSYCH 326(3260) Evolution of Human Behavior
For description and prerequisites, see PSYCH 326.1]

Examples of biology electives
AN SC 300(3000) Animal Reproduction and Development
Spring. 3 credits. J. Parks.
For description, see AN SC 300.

HD 366(3660) Psychobiology of Temperament and Personality
Fall. 3 credits. R. DePue.
For description and prerequisites, see HD 366.

NS 331(3310) Physiological and Biochemical Bases of Human Nutrition
Spring. 4 credits. C. McCormick.
For description, see NS 331.

B. Humanities/Social Science elective (two courses)
Courses listed earlier as social science/humanities foundation courses (LB) are particularly appropriate as social science/humanities electives. However, a single course cannot be used to meet both requirements.
Examples of recommended social science or humanities electives are listed below. A more complete list is available in 306 Rockefeller Hall.

Examples of social science electives
AEM 464(4640) Economics of Agricultural Development (also ECON 464[4640])
Fall. 3 credits. R. Christy.
For description, see AEM 464.

[ANTHR 211(2411) Nature and Culture
For description, see ANTHR 211.1]

B&SOC 331(3311) Environmental Governance (also S&T&S 331[3311], NTRES 331[3310])
Spring. 3 credits. S. Wolf.
For description, see NTRES 331.

BIOEE 671(6710) Paleanthropology of South Asia (also ANTHR 671[6731])
Fall. 3 credits. K. Kennedy.
For description, see BIOEE 671.

[CRP 451(4510) Environmental Law (also CRP 551[5510])
Fall. 4 credits. Not offered 2005-2006. R. Booth.
For description, see CRP 451.1]

D SOC 205(2050) Rural Sociology and International Development (also SOC 206[2060])
Spring. 3 credits. P. McMichael.
For description, see D SOC 205.

[D SOC 261(2610) Sociology of Sustainable Development
Fall. 3 credits. Not offered 2005-2006. Staff.
For description, see D SOC 261.1]

[D SOC 333(3330) Genomics and Society (also S&T&S 333[3331])
Fall. 3 credits. Not offered 2005-2006. Staff.
For description, see D SOC 333.1]

SOC 411(4110) Health and Survival Inequalities (also FGSS 410(4100))
Fall. 4 credits. A. Basu.
For description, see SOC 411.

[DEA 422(4220) Ecological Literacy in Design (also ARCH 464.01(4601))
For description, see DEA 422.1]

[HD 241(2410) History of Childhood in the United States
For description, see HD 241.1]

HD 251(2510) Social Gerontology: Aging and the Life Course
Spring. 3 credits. Limited to 60 students. Highly recommended: HD 250 or equivalent, to be determined by instructor.
E. Wethington.
For description, see HD 251.

[HD 258(2580) The History of Women in the Professions 1800 to Present (also HIST 230[2380], FGSS 238[2380], AM ST 258[2581])
For description, see HD 258.1]

[HD 336(3360) Connecting Social, Cognitive, and Emotional Development
Fall. 3 credits. Not offered 2005-2006. P. Casasola.
For description and prerequisites, see HD 336.1]

[HD 362(3620) Human Bonding
Fall. 3 credits. Not offered 2005-2006. C. Hazan.
For description, see HD 362.1]

HD 370(3700) Adult Psychopathology (also PSYCH 325[3250])
Spring. 3 credits. H. Segal.
For description, see HD 370.

HD 417(4170) Female Adolescence in Historical Perspective
Spring. 3 credits. J. Brumberg.
For description, see HD 417.

[HD 457(4570) Health and Social Behavior (also SOC 457[4570])
Fall. 3 credits. Not offered 2005-2006. E. Wethington.
For description, see HD 457.1]

[NS 421(4210) Nutrition and Exercise
Spring. 3 credits. Limited to nutrition majors, others by permission of the Instructor. S. Travis.
For description and prerequisites, see NS 421.]

NS 450(4500) Public Health Nutrition
Spring. 3 credits. K. Rasmussen and D. Pelletier.
For description, see NS 450.
[NS 650(6500) Food and Nutrition Assessment in a Social Context
Fall. 3 credits. D. Pelletier and G. Pelto.
For description and prerequisites, see NS 650.]

[NS 651(6510) Food and Nutrition Action in a Social Context
Spring. 3 credits. Not offered 2005-2006.
D. Pelletier and G. Pelto.
For description and prerequisites, see NS 651.]

NTRES 333(3330) Environmental Issues and Indigenous People
Spring. 3 credits. M. Musket.
For description, see NTRES 333.

[NTRES 407(4070) Religion, Ethics and the Environment
Fall. 3 credits. Not offered 2005-2006.
R. Baer.
For description, see NTRES 407.]

PAM 303(3030) Ecology and Epidemiology of Health
Fall. 3 credits. Staff.
For description, see PAM 303.

PAM 350(3500) Contemporary Issues in Women's Health
Fall. 3 credits. A. Parrot.
For description, see PAM 350.

PAM 380(3800) Human Sexuality
Spring. 4 credits. A. Parrot.
For description, see PAM 380.

PAM 435(4350) U.S. Health Care System
Fall. 3 credits. R. Battistella.
For description, see PAM 435.

PAM 437(4370) Economics of Health
Spring. 3 credits. K. Simon.
For description, see PAM 437.

PAM 568(5680) Long-Term Care and the Aged: Alternative Health and Social Service Delivery Systems
Spring. 3 credits. Staff.
For description, see PAM 568.

[SOC 340(3400) Health, Behavior, and Policy
S. Caldwell.
For description, see SOC 340.]

Examples of humanities electives
PHIL 241(2410) Ethics
Spring. 4 credits. T. Gendler.
For description, see PHIL 241.

S&T 481(4811) Philosophy of Science
[also PHIL 481/681(4810)/6810]
Spring. 4 credits. R. Boyd.
For description, see PHIL 681.]

C. Senior Seminars.

[B&SOC 404(4041) Human Fertility in Developing Nations [also D SOC 408[4080]]
Spring. 3 credits. Not offered 2005-2006.
J. Sykes.
For description, see D SOC 408.]

B&SOC 420(4201) The Darwinian Scientific Revolution [also S&T 420[4201]] (IV) (HA)
Fall. 4 credits. Offered one time only, fall 2005. K. Lambert.
Looks at the emergence of Darwinism in the social and scientific context of 19th-century industrial Britain, asking how both scientists and a newly emerged mass audience viewed the controversies raised by Darwinian and non-Darwinian theories of evolution. By listening in on these conversations about class, race, sex, and religion, the class explores science as an integral part of the culture and society of the Victorian period.

B&SOC 425(4251) From "Cold Mothers" to “Autistic Dachshunds”: Autism in 20th-Century America [also S&T 425[4251]] (III) [SBA]
Spring. 4 credits. Offered spring 2006 only. C. Silverman.
For description, see S&T 425.

[B&SOC 427(4271) Politics of Environmental Protection [also S&T 427[4271], GOVT 420[4201]]
S. Yearley.
For description, see S&T 427.]

B&SOC 447(4471) Seminar in the History of Biology [also BIOEE 467[4670], HIST 415[4150], S&Ts 447[4471]] (I) [PBS]
Summer. six-week session. 4 credits.
P. W. Provine.
For description, see BIOEE 467.

B&SOC 461(4611) Environmental Policy [also BIOEE/ALS 461] (I) [PBS]
Fall and spring (yearlong); must be started in fall. 3 credits each semester. Limited to 12 students. D. Pimentel.
For description and prerequisites, see BIOEE 467.

B&SOC 471(4711) The Dark Side of Biology: Biological Weapons, Bioterrorism, and Biocriminality [also S&T 471[4711]] (III) [SBA]
Fall. 4 credits. Prerequisites: at least one course in S&Ts and one semester of biology beyond introductory biology. Not offered 2005-2006.
K. Vogel.
Rapid advances in biotechnology, as well as changing social and political climates, have created new public fears that the malicious release of pathogens and toxins by states and/or terrorist groups is a serious threat. Debates have also emerged as to what biological research and publications should be restricted and censored to prevent misuse. The course explores the scientific, social, political, legal, and ethical discussions surrounding historical and current work on dangerous pathogens and toxins. This course also takes a look at the role that the expert and lay communities play in the shaping of popular perceptions and public policies in these threat discussions.

COMM 421(4210) Communication and the Environment
Spring. 3 credits. Staff.
For description, see COMM 421.

CSS 410(4100) Environmental Impacts of Agricultural Biotechnology
Spring. 3 credits. D. Buckley.
For description, see CSS 410.

HD 336(3360) Connecting Social, Cognitive and Emotional Development
Fall. 3 credits. M. Casasola.
For description, see HD 336.

HD 366(3660) Psychology of Temperament and Personality
Fall. 3 credits. R. Depue.
For description and prerequisites, see HD 366.

HD 416(4160) Development Perspectives on Legal Psychology
Spring. 3 credits. K. Mueller-Johnson.
For description, see HD 416.

HD 417(4170) Female Adolescence in Historical Perspective [also FGSS 438[4380], HIST 458[4580], AM ST 417[4170]]
Spring. 3 credits. J. Brumberg.
For description, see HD 417.

HD 418(4180) Aging: Contemporary Issues
Fall. 3 credits. S. Cornelius.
For description, see HD 418.

[HD 419(4190) Midlife Development
Spring. 3 credits. Not offered 2005-2006.
S. Cornelius.
For description, see HD 419.]

HD 432(4320) Cognitive, Social, and Developmental Aspects of Scientific Reasoning
Spring. 3 credits. B. Koslowski.
For description, see HD 452.

[HD 464(4640) Adolescent Sexuality
Spring. 3 credits. Not offered 2005-2006.
R. Savin-Williams.
For description, see HD 464.]

HD 468(4680) Stress in Childhood and Adolescence
Spring. 3 credits. J. Eckenrode.
For description, see HD 468.

[HD 660(6600) Social Development
Spring. 3 credits. Prerequisite: for undergraduates, permission of instructor.
K. Greene.
For description, see HD 660.]

NS 452(4520) Molecular Epidemiology and Dietary Markers of Chronic Disease
Spring. 3 credits. P. Cassano.
For description, see NS 452.

PAM 552(5520) Managed Care
Fall. 3 credits. J. Kuder.
For description, see PAM 556.

PAM 559(5590) Epidemiology, Clinical Medicine, and Management Interface Issues
Spring. 3 credits. Staff.
For description, see PAM 559.

SOC 410(4100) Health and Survival Inequalities [also FGSS 410[4101]]
Spring. 3 credits. A. Basu.
For description, see SOC 410.

D SOC 438[4380] Population and Development [also SOC 437[4370]]
Fall. 3 credits. D. Gurak.
For description, see D SOC 438.
undergraduate students interested in an application-oriented program in mathematics may select an appropriate program in the Department of Mathematics, the Department of Computer Science, or some department of the College of Engineering.

A listing of selected graduate courses in applied mathematics can be found in the description of the center under “Interdisciplinary Centers, Programs, and Studies.”

CENTER FOR INTERNATIONAL STUDIES

See “Interdisciplinary Centers, Programs, and Studies.”

CHEMISTRY AND CHEMICAL BIOLOGY

H. D. Abruna, chair (122 Baker Laboratory, 255-4175); G. W. Coates, associate chair; M. A. Hines, director of undergraduate studies; J. Meinwald, J. Almy, B. A. Baird.

The Department of Chemistry and Chemical Biology offers a full range of courses in physical, organic, inorganic, analytical, theoretical, bioorganic, and biophysical chemistry. In addition to their teaching interests, chemistry and chemical biology faculty members have active research programs. The link between teaching and research is a vital one in a continuously evolving scientific subject; it ensures that students will be provided with the most advanced information and perspectives, and affords opportunities for students to participate in research.

The Major

To fit the widely varying needs of our undergraduate majors, the department offers two different tracks that both lead to the same undergraduate degree:

Standard Major—The standard major provides a comprehensive background in all fields of chemistry. Most students who complete the standard major go on to graduate study in chemistry or to medical school, although some students proceed directly to a position in the chemical industry. With additional independent research (which is not required), the standard chemistry major is fully accredited by the American Chemical Society.

Alternative Major—The alternative major offers a flexible program of study that is primarily designed for students who wish to double major in another field. For example, students majoring in biology can complete the alternative major with little additional class work. This program might also be attractive for students interested in law (especially patent law), as a double major in government.
or economics plus chemistry is quite feasible. This program is not suited to further graduate work in chemistry. With few exceptions, students in the alternative major are not chosen to participate in the honors program in chemistry. The alternative major is not accredited by the American Chemical Society.

Either version of the major can be completed in three years of study. Most students, however, complete all of the requirements in their first three years with the exception of CHEM 410 (Inorganic Chemistry, which is usually taken in the fall semester of the senior year. The typical chemistry course sequence is:

- first year: general chemistry and mathematics
- second year: organic chemistry, analytical and organic laboratories, and physics
- third year: physical chemistry lectures and laboratories
- fourth year: inorganic chemistry

Admission to the Major

Admission to the chemistry major requires the satisfactory completion of a number of introductory courses which, when taken together, demonstrate an ability to complete the major. These courses include:

1. CHEM 215-216 or 207-208 (CHEM 211, 208 or 206, 208 are accepted but not recommended),
2. CHEM 300 or 301-303, 359-360 (357-358 may be substituted), 389-390, and 410,
3. MATH 112 or 121, or 122, 221-222, or 192-193,
4. PHYS 208 or 213.

Most standard majors also perform independent research, either during the semester or in the summer. Many students take advanced courses to complement this program.

The Standard Major

In addition to the courses required for admission to the major, the following additional courses must be completed for the standard major:

1. CHEM 301-303, 359-360 (357-358 may be substituted), 389-390, and 410,
2. MATH 112, 213, or 122, 221-222, or 192-193,
3. PHYS 208 or 213.

Most standard majors also perform independent research at some point in their academic career, either during the semester or in the summer. Many students take advanced courses to complement this program.

The Alternative Major

In addition to the courses required for admission to the major, the following courses must be completed for the alternative major:

1. CHEM 251, 257, 287, 289 and 410 (CHEM 357-358 or 359-360 may be substituted for CHEM 257. CHEM 389-390 can be substituted for CHEM 287. Any of these options also will fulfill the advanced chemistry course requirement.)
2. MATH 112 or 122 or 192
3. PHYS 208 or 213
4. One additional 3- or 4-credit advanced chemistry course at the 300 level or above
5. Three additional courses, of 3 or more credits each, that form a cohesive unit and are not at the introductory level.

These three courses must be approved by a departmental committee.

The three additional courses may be in another field of study, such as biochemistry, biology, materials science, economics, government, or education. Many students who double major in chemistry take courses from their second major to satisfy this requirement.

Like the standard majors, many alternative majors perform independent research, either in the chemistry department or in another department.

Honors

Any student who completes the requirements for a standard major in chemistry with a cumulative GPA of 3.5 or higher shall be awarded a degree with honors (cum laude). In addition, senior chemistry majors who have superior grades in chemistry and related subjects and who have had good performance in at least 8 credits of undergraduate research (or the equivalent) in chemistry or a related field (e.g., biochemistry) may be nominated for the honors program. To ensure that the nominations process runs smoothly, all students who are interested in the honors program should discuss this possibility with their adviser early in the fall semester of the senior year. Admission to the honors program is by invitation only. Students completing the alternative major are only eligible for the honors program in exceptional cases.

Students in the honors program participate in the honors seminar (CHEM 498) and write a senior thesis. The successful completion of the honors program leads to the degree of bachelor of arts with honors or high honors in chemistry.

Program for Science Teachers

Chemistry majors who wish to become teachers will be interested to know that Cornell University offers a certification program for teachers of secondary (grades 7-12) science. Interested students apply to the program during their sophomore or junior years. If accepted, students integrate some course work in education with the rest of their undergraduate studies. All chemistry majors who enter this program will remain in the College of Arts and Sciences to complete the major.

After earning the bachelor's degree, certification students enter the graduate field of education to complete a fifth year of study at Cornell. Following this fifth year, students are eligible for a master's degree from Cornell and a teaching certificate from New York State. Additional information is available from Susie Slack, 424 Kennedy Hall, 255-9255, or Professor Deborah Trumbull, 426 Kennedy Hall, 255-3108.

Laboratory Course Regulations

Students registered for laboratory courses who do not appear at the first meeting of the laboratory will forfeit their registration in that course.

Students and members of the teaching staff are required to wear safety goggles and lab aprons in all chemistry laboratories. Closed-toed footwear is required (no sandals). Students are reminded to take their goggles and lab aprons to the first laboratory session.

Those who fail to cooperate with the safety program will be asked to leave the laboratories.

Students in organic and analytical labs are required to pay for glassware and any other items broken or missing from their laboratory desks at the close of each semester. Students who fail to inventory their desks at the appointed time in the presence of their instructor are charged a $20 fee in addition to charges for any breakage.

Courses

Note: class meeting times are accurate at the time of publication. If changes occur, the department will provide new information as soon as possible.

Preliminary examinations for all courses may be given in the evening.

CHEM 105(1150) The Language of Chemistry (I) (PBS)

Fall. 3 credits. Contributes to satisfying CALS physical science requirement of one course in chemistry. S-U or letter grades. Lec, M W F; prelims in normal class period. J. Meinwald.

In his autobiography, A. Kornberg (Nobel Laureate in Medicine, 1959) wrote, "much of life can be understood in rational terms if expressed in the language of chemistry. It is an international language, a language for all time, a language that explains where we came from, what we are, and where the physical world will allow us to go." Through careful examination of a few milestone investigations of naturally occurring biologically important compounds (e.g., the antimalarial quinine, bombykol, and the sperm attractants of algae), the principles of chemistry to which Kornberg refers are developed. Methods of analyzing chemical problems are emphasized, rather than the memorization of specific results or formulas. There is an opportunity for students, working in small groups, to prepare and present short reports on topics of particular current interest at the interface between chemistry and biology.

CHEM 106(1160) The World of Chemistry (I) (PBS)

Spring. 3 credits. Contributes to satisfying CALS physical science requirement of one course in chemistry. S-U or letter grades. Lec, M W F; prelims, March 7, April 6. R. Hoffman.

Chemistry is the art, craft, business, and science of substances and their transformations. Since we've learned to look inside, we know that within those substances undergoing change are persistent groupings of atoms called molecules. So chemistry is also played out on the microscopic level. This is a course that looks at the way chemistry enters all aspects of the everyday world and the way it interacts with culture and the economy. Students try to gain a feeling for the way science is done and grasp the interplay of chemistry and biology.

CHEM 206(1560) Introduction to General Chemistry (I) (PBS)

Introduction to chemistry, both quantitative and qualitative, for those needing a less
CHEM 207-208(2070-2080) General Chemistry (I) (PBS)

207, fall or summer, 208, spring or summer, 4 credits each semester.
Prerequisite: for CHEM 208, CHEM 206 or 207.

Covers fundamental chemical principles, with considerable attention given to the quantitative aspects and to the techniques important for further work in chemistry.

CHEM 211(2110) Chemistry for the Applied Sciences (I) (PBS)

Covers important chemical principles and facts with the objective of understanding the role of chemistry in other fields. Emphasis is on practical aspects of laboratory work.

CHEM 215-216(2150-2160) Honors General and Inorganic Chemistry (I) (PBS)

Fall: 215, spring: 216. 4 credits each semester.
Limited enrollment. Prerequisites: good performance in high school chemistry, physics, and mathematics. Co-requisite: calculus course at level of MATH 111 or 191. CHEM 215 is recommended for students who intend to specialize in chemistry or in related fields. Taking CHEM 208 after CHEM 215 is not recommended and may be done only by permission of 208 instructor. Nonrefundable lab fee (covers cost of safety goggles, lab apron, and breakage): $20. Lec., M, W, F; lab., M, T, W, R or F; prelms., Oct. 6, Nov. 10, Feb. 28, Apr. 11. Fall: B. Widom; spring: S. Lee. Intensive systematic study of the laws and concepts of chemistry, with considerable emphasis on quantitative aspects. Second semester includes systemsatics of inorganic chemistry. Laboratory work covers qualitative and quantitative analysis, transition metal chemistry, and spectroscopic techniques.

CHEM 233(2330) Introduction to Biomolecular Structure

Fall. 2 credits. Limited to 30 students. Prerequisites: CHEM 207-208 or equivalents. Lec., T, R. Not offered 2005-2006. S. E. Ealick.

Intended for students with a basic understanding of chemistry who are considering a program of study in biochemistry. Explores the interrelationship of the structure and function of biologically important molecules. Emphasizes understanding the way in which the three-dimensional arrangements of atoms determine the biophysical properties of both small molecules and macromolecules such as proteins and enzymes. The study of molecular structure is aided by interactive computer graphics for visualizing three-dimensional structures of molecules.

CHEM 251(2510) Introduction to Experimental Organic Chemistry

Introduction to the synthesis, separation, and handling of materials, including applications of many types of chromatography, simple and fractional distillation, crystallization, extraction, and others.

CHEM 252(2520) Elementary Experimental Organic Chemistry

Spring. 2 credits. Prerequisite: CHEM 251. Recommended for nonchemistry majors. Lec., T; lab., W, R; prelim., Apr. 27. S. Russo.

Continuation of CHEM 251.

CHEM 257(1570) Introduction to Organic and Biological Chemistry (I) (PBS)

Spring or summer, 3 credits. Prerequisite: CHEM 206 or 207. Because CHEM 257 is only a 3-credit course, it does not provide a practical route to satisfying medical school requirements. Because of duplication of material, students who take both 257 and 357 will receive graduation credit only for CHEM 257. Lec., M, W, F; prelms., Feb., 16, Mar., 14, April 11. D. A. Usher.

Introduction to organic chemistry with an emphasis on those structures and reactions of organic compounds having particular relevance to biological chemistry.

CHEM 287-288(2870-2880) Introductory Physical Chemistry (I) (PBS)

Survey of the fundamental principles of physical chemistry, focusing in the fall on thermodynamics, chemical and enzyme kinetics, and an introduction to quantum mechanics. In the spring the course is oriented to the application of physical chemistry to biological systems, including statistical mechanics, phenomena in condensed phases, transport, electrochemistry, and spectroscopy. CHEM 287 satisfies the minimum requirement for physical chemistry in the alternative chemistry major.

CHEM 290(2900) Introductory Physical Chemistry Laboratory

Fall or spring, 2 credits each semester. Lec., fall: R, spring: R, lab.: fall, M, T; spring, M, T, R, F, T, McCarrick.

Survey of the methods basic to the experimental study of physical chemistry, with a focus on the areas of kinetics, equilbrium, calorimetry, and molecular spectroscopy.

CHEM 300(3000) Quantitative Chemistry

Fall. 2 credits. Prerequisite: CHEM 208 or 215 advanced placement in chemistry. Lec, R, lab, M, T, W, R; prelms, Oct. 20, Nov. 22. D. B. Zax.

Volumetric, spectrophotometric, and potentiometric methods are emphasized. Techniques are learned by analysis of knowns, and then are used on unknowns. Lectures and problem sets stress the relationship between theory and applications.

CHEM 301(3100) Honors Experimental Chemistry I (I) (PBS)

Spring, 4 credits. Prerequisites: CHEM 300 and 357 or 359, Lec., M, W, F, 2 labs, M, W, or T, R, D. B. Collum or 216 or Introduction to the techniques of synthetic organic chemistry. A representative selection of the most important classes of organic reactions is explored in the first half of the semester, augmented by lectures on the reaction chemistry and the theory of separation and characterization techniques. The second half of the semester is devoted to a special project, part of which is designed by the student. An opportunity to use inert atmosphere techniques is included.

CHEM 302(3020) Honors Experimental Chemistry II (I) (PBS)

Fall. 4 credits. Limited enrollment, priority given to chemistry majors. Prerequisite: CHEM 301. Lec., M, W, F, 2 labs, M, W, or T, R, F, T, McCarrick.

Instrumental methods of analysis, including chemical microscopy, visible and infrared spectroscopy, and gas chromatography. Basic concepts of interfacing are covered.

CHEM 303(3030) Honors Experimental Chemistry III (I) (PBS)

Spring, 4 credits. Limited to 10 students per lab. Prerequisites: CHEM 302, 389, 390, co-registration in latter permissible. Lec, M, W, F, 2 labs, M, W, T, R, M. A. Hines.

Introduction to experimental physical chemistry, including topics in calorimetry, spectroscopy, and kinetics. The analysis and numerical simulation of experimental data is stressed.

CHEM 357-358(3570-3580) Organic Chemistry for the Life Sciences (I) (PBS)

Fall or summer, 357, spring or summer, 358, 3 credits each semester. Prerequisite: for CHEM 357, CHEM 355 or 359. CHEM 357 or permission of instructor. Recommended: concurrent registration in CHEM 251 or 357. Because of duplication of material, students who take both CHEM 257 and 357 will receive graduation credit only for CHEM 257. Lec., M, W, F; optional rec may be offered; prelms. Sept., 22, Oct., 18, Nov. 10, Feb. 16, Mar, 14, Apr. 13. Fall: B. Gunem; spring: G. W. Coates.
Study of the more important classes of carbon compounds—especially those encountered in the biological sciences. Emphasizes their three-dimensional structures, mechanisms of their characteristic reactions, their synthesis in nature and the laboratory, methods of identifying them, and their role in modern science and technology.

CHEM 359-360(3590-3600) Honors Organic Chemistry I and II (I) (PBS)
Fall: 3 credits. Prerequisites: CHEM 216 with grade of B or better. CHEM 208 with grade of A or better, or permission of instructor. Students must perform minimum of three experiments; 6 credits given for three additional experiments; completion of five exercises in elementary glass-blowing counts as one experiment. Limited enrollment. Prerequisites: CHEM 302 and permission of instructor. Lab time required: 16 hours each week, including at least two four-hour sessions in one sec. M W F: first week only. Not offered 2005-2006. J. M. Burtich.

CHEM 410(4100) Inorganic Chemistry (I) (PBS)

CHEM 421(4210) Introduction to Inorganic Chemistry Research
Fall or spring. 2-4 credits. Prerequisites: CHEM 303 and 389-390, or 287-288, and 289-290 with average of B- or better, or permission of instructor. Selected faculty. Research in inorganic chemistry involving both laboratory and library work, planned in consultation with a faculty member.

CHEM 433(4330) Introduction to Analytical Chemistry Research
Fall or spring. 2-4 credits. Prerequisites: CHEM 305 and 390 with average of B- or better or permission of instructor. Selected faculty. Research in analytical chemistry involving both laboratory and library work, planned in consultation with a faculty member.

CHEM 440(4400) Bio-Inorganic Chemistry (I) (PBS)

Studies the principles of physical chemistry from the standpoint of the laws of thermodynamics, kinetic theory, statistical mechanics, and quantum chemistry.

CHEM 391(3910) Physical Chemistry II (also CHEM 291(2910)) (I) (PBS)

CHEM 404(4040) Entrepreneurship in Chemical Engineering
Spring. 1 credit. Lec. T. B. Ganem. Designed to acquaint students with the problems of planning, starting, and managing a new scientifically oriented business venture, the course consists of six weekly 90-minute meetings focusing on case studies and assigned reading, as well as outside lectures by entrepreneurs in the chemical, pharmaceutical, and biotechnology industries. Topics include: executive evaluation and assessment, business formation, resource allocation, management development, as well as manufacturing and sales issues.

CHEM 405(4050) Techniques of Modern Synthetic Chemistry (I) (PBS)
Spring. 3 or 6 credits. To receive 3 credits, students must perform minimum of three two-week experiments; 6 credits given for three additional experiments; completion of five exercises in elementary glass-blowing counts as one experiment. Limited enrollment. Prerequisites: CHEM 302 and permission of instructor. Lab time required: 16 hours each week, including at least two four-hour sessions in one sec. M W F: first week only. Not offered 2005-2006. J. M. Burtich.

CHEM 477(4770) Introduction to Physical Chemistry Research
Fall or spring. 2-4 credits. Prerequisite: CHEM 390 with average of B- or better or permission of instructor. Research in physical chemistry involving both laboratory and library work, planned in consultation with a faculty member.

CHEM 498(4980) Honors Seminar
Spring. 0 credits. Admission only by department invitation. Additional pre- or co-requisites: outstanding performance in two coherent 4-credit units of research in course such as CHEM 421, 433, 461, 477, or equivalent amount of research in another context. D. T. McQuade.

CHEM 600-601(6000-6010) General Chemistry Colloquium
600, Fall. 601, spring. 0 credits. R. Staff. Series of talks representative of all fields of current research interest in chemistry given by distinguished visitors and faculty members.

CHEM 602(6020) Information Literacy for the Physical Scientist
Spring. 1 credit. Primarily for graduate students and undergraduate chemistry majors doing research. Lec. T. L. Solla. Introduction to physical science information research methods, with hands-on exploration of print and electronic resources. Much important information can be missed and valuable time wasted if efficient information research strategies. Topics include finding chemical and physical properties, reaction and analytical information; patents, web resources, using specialized resources in chemistry, physics, computer science, and materials science; and managing citations.

CHEM 605(6050) Advanced Inorganic Chemistry II: Structure, Reactivity
Fall. 4 credits. Prerequisite: CHEM 389-390 or equivalent or permission of instructor. Lec. M W F. P. Wolczanski. Introduction to chemical bonding and applications of group theory, including valence bond theory, and spectroscopy as applied to main group and transition-metal coordination compounds. An introduction to reactivity covers substitution, electron transfer, and related reactions. Readings are at the level of Bishop's Group Theory and Chemistry and Jordan's Reaction Mechanisms of Inorganic and OrganoMetallic Systems.

CHEM 606(6060) Advanced Inorganic Chemistry III: Synthesis, Structure, and Reactivity of Coordination Compounds, and Bioinorganic Chemistry
Spring. 4 credits. Prerequisite: CHEM 605 or equivalent or permission of instructor. Lec. M W F. Not offered 2005-2006. P. T. Wolczanski. Synthesis, structure, and reactivity of main group and modern coordination compounds and biinorganic systems. The mechanisms of transition-metal reactions are emphasized, and evaluation of the current literature are
stressed. Background readings are at the level of Reaction Mechanisms of Inorganic and Organometallic Systems by Jordan.

CHEM 607(6070) Advanced Inorganic Chemistry III: Solid-State Chemistry

CHEM 608(6080) Advanced Inorganic Chemistry IV: Symmetry, Structure, and Reactivity

Spring. 4 credits. M. W. F. P. T. Wolczanski. Synthesis, structure, and reactivity of organometallic compounds. Evaluation of the current literature is emphasized, and background readings are at the level of Reaction Mechanisms of Inorganic and Organometallic Systems by Jordan and Principles and Applications of Transition Metal Chemistry by Collman, Hegedus, Finke, and Norton.

CHEM 622(6220) Chemical Communication

CHEM 625(6250) Advanced Analytical Chemistry I

Spring. 4 credits. Prerequisite: CHEM 288 or 390 or equivalent. Lec, M. W. F; occasional prelims, W. D. B. Zax. Application of high-resolution NMR spectroscopy to chemical problems. Depending on the time and class interest, either infrared and mass spectroscopy or some practical experience in NMR are offered.

CHEM 627(6270) Advanced Analytical Chemistry II

Spring. 3 credits. Primarily for graduate students. Prerequisite: CHEM 793 or equivalent preferable. Lec, M. W. F. Not offered 2005–2006. D. B. Zax. Modern techniques in nuclear magnetic resonance. Little overlap is expected with CHEM 625, as this course focuses on more general questions of experimental design, understanding of multiple experiment results, and aspects of coherent averaging theory. Examples taken from both liquid and solid-state NMR. May also be of interest to other coherent spectroscopists.

CHEM 628(6280) Isotopic and Trace Element Analysis (also NS 680[6800])

Spring. 3 credits. Primarily for graduate students and advanced undergraduates. Prerequisite: CHEM 288 or 390 or 302, or CHEM 208 and PHYS 208, or permission of instructor. Lec, T. R. T. P. Begley. Recommended: knowledge of material covered in CHEM 625 or MSE 452. Lec, T. R. D. Y. Sogah. This course begins with a brief overview of organometallic chemistry and catalysis. X-ray and electron spectroscopies, and biological and solid state applications.

CHEM 629(6290) Electrochemistry

Spring. 4 credits. Primarily for graduate students and junior and senior undergraduates. Prerequisite: CHEM 359 or equivalent. Recommended: MATH 213. Lec, T. R. D. H. Abrahams. Fundamentals and applications of electrochemistry. Topics include the fundamentals of electrode kinetics, electron transfer theory, the electrical double layer, diffusion, and dynamic transport. A wide range of techniques and their application as well as instrumental aspects are covered.

CHEM 650-651(6500-6510) Organic and Organometallic Chemistry Seminar

Fall, 650; spring, 651, spring. 0 credits. Requirement for graduate students majoring in organic or biorganic chemistry. Juniors and seniors encouraged to attend. M. Staff. Series of talks representative of all fields of current research interest in organic organometallic chemistry, given by research associates, faculty members, and distinguished visitors.

CHEM 665(6650) Advanced Organic Chemistry

Fall. 4 credits. Primarily for graduate students and junior and senior undergraduates. Prerequisites: CHEM 359 or 360, and CHEM 390 or equivalents, or permission of instructor; some knowledge of elementary quantum mechanics. Lec, M. W. F. B. K. Carpenter. Discussion of the properties and reactivities of organic molecules and the underlying physical phenomena that affect them.

CHEM 666(6660) Synthetic Organic Chemistry

Spring. 4 credits. Primarily for graduate students and upperclass undergraduates. Prerequisite: CHEM 605 or permission of instructor; some knowledge of elementary quantum mechanics. Modern techniques of organic synthesis; applications of organic reaction mechanisms and retrosynthetic analysis to the problems encountered in rational multistep synthesis, with particular emphasis on modern developments in synthesis design.

CHEM 668(6680) Chemical Aspects of Biological Processes

Fall. 4 credits. Prerequisite: CHEM 360 or equivalent. Lec, T. R. T. P. Begley. Examines a representative selection of the most important classes of enzyme-catalyzed reactions from a mechanistic perspective. Topics include the chemical basis of enzymatic catalysis, techniques for the elucidation of enzyme mechanism, cofactor chemistry, and the biosynthesis of selected natural products. The application of chemical principles to understanding biological processes is emphasized.

CHEM 669(6690) Organic and Polymer Synthesis Using Transition Metal Catalysts

Fall. 4 credits. Prerequisite: primarily for graduate students; CHEM 359/360 or equivalent or permission of instructor. Not offered 2005–2006. G. W. Coates. Transition metal-based catalysts are invaluable in both organometallic and polymer syntheses. This course begins with a brief overview of organometallic chemistry and catalysis.
Structure, properties, synthesis, and reactions of nucleic acids from a chemical point of view. Special topics include RNA, antisense and oligonucleotide technology, ribozyme reactions (including the ribosome), mutagens, PCR, recent advances in sequencing, DNA as a computer, and alternative genetic materials.

CHEM 681(6810) Introduction to Quantum Chemistry
Fall. 4 credits. Prerequisites: one year of undergraduate physical chemistry, three semesters of calculus, one year of college physics. Lec T. R. Not offered 2005–2006. G. S. Ezra.

Introduction to the application of quantum mechanics in chemistry. Covers many of the topics in CHEM 793-794 at a more descriptive, less mathematical level. Designed for advanced undergraduates, chemistry graduate students with a minor in physical chemistry, and graduate students from related fields with an interest in physical chemistry. At the level of Quantum Chemistry by Levine or Molecular Quantum Mechanics by Atkins.

CHEM 686(6860) Physical Chemistry of Proteins
Fall. 4 credits. Primarily for graduate students. Prerequisite: CHEM 288 or 390 or equivalents. Letter grades for undergraduate and graduates. Lec. M W F. P. Chen.

Physical properties of proteins are presented from a quantitative perspective and related to biological function. Topics include: chemical, structural, thermodynamic, hydrodynamic, electrical and conductive properties of soluble and membrane proteins; conformational transitions, protein stability and folding; photochemistry and spectroscopic properties of proteins; and protein-protein interactions and single molecular studies.

CHEM 700(7000) Baker Lectures
Fall, on dates TBA. 0 credits. Lee, T. R.

This year's lecturer: Robert H. Grubbs, California Institute of Technology. Distinguished scientists who have made significant contributions to chemistry present lectures for approximately six weeks.

CHEM 701(7010) Introductory Graduate Seminar
Fall. 0 credits. Highly recommended for all senior graduate students in any field of chemistry. Lec. W. Not offered 2005–2006. R. Hoffmann.

Discussion of professional issues facing young chemists as well as life skills: academic and industrial trends, presentations, employment, immigration, publication, research funding, and ethics.

CHEM 716(7160) Introduction to Solid State Organic Chemistry
Spring. 3 credits. Recommended background: CHEM 607 or some exposure to or course in solid state chemistry and quantum mechanics; good undergraduate physical chemistry course may be sufficient for quantum theory. Lec. CHEM 793 or 794 are at substantially higher level than what is needed. Lec. M W F. Not offered 2005–2006. S. Lee.

Examines some principles of crystallography and also electronic structure theory of solids. We then consider properties such as conduction, superconductivity, ferroelectricity and ferromagnetism. The final portion of this course is concerned with structure-property relations.

CHEM 755(7650) Physical Organic Chemistry I
Spring. 4 credits. Primarily for graduate students. Prerequisite: CHEM 665 or permission of instructor. Lec. M W F. B. Carpenter.

Explores contemporary tools for calculating molecular structures and energies of species of all sizes. The course uses computers extensively but requires only a limited knowledge of mathematics (mainly linear algebra).

CHEM 774(7740) Chemistry of Natural Products: Combinatorial Chemistry

Combinatorial chemistry has revolutionized the way organic chemists think about structure function studies on biological systems and the design of inhibitors. This course explores the design, synthesis, screening, and use of natural (i.e., peptide, protein, nucleic acid, carbohydrate) and unnatural (i.e., totally synthetic) libraries.

CHEM 780(7800) Chemical Kinetics and Molecular Reaction Dynamics
Fall. 4 credits. Prerequisite: CHEM 681 or permission of instructor. Lec. T. R. P. L. Houston.

Principles and theories of chemical kinetics and molecular reaction dynamics. Topics include potential energy surfaces, transition state theory, and statistical theories of unimolecular decomposition. Depending on class interest, the course also includes special topics such as surface reactions and photochemistry.

CHEM 787(7870) Mathematical Methods of Physical Chemistry
Fall. 4 credits. Prerequisites: one year of undergraduate physical chemistry, three semesters of calculus, and one year of college physics. Lec. T. R. G. S. Ezra.

Provides the mathematical background for graduate courses in physical chemistry, such as quantum mechanics and statistical mechanics, as well as for research in experimental and theoretical physical chemistry. It includes linear algebra, matrices, and the eigenvalue problem; methods of solution of ordinary differential equations, special functions; partial differential equations; integral transforms; functions of a complex variable. The program Mathematica® is employed extensively for both analytical and numerical applications. At the level of Mathematical Methods for Scientists and Engineers by McQuarrie.

CHEM 788(7880) Macromolecular Crystallography (also BIOM 738(7380))
Fall. 5 credits. Prerequisite: permission of instructor. Lec. T. R. S. E. Fallick.

Lectures cover the fundamentals of x-ray crystallography and focus on methods for determining the three-dimensional structures of macromolecules. Topics include crystallization, data collection, phasing methods, model building, refinement, structure validation, and structure interpretation.

CHEM 791(7910) Molecular Spectroscopy

Principles of molecular rotational, vibrational, and electronic spectroscopy. Topics include interaction of molecules with radiation; Born-Oppenheimer approximation; diatomic molecules; polyatomic molecules; feasible operations and the molecular symmetry group; and spectroscopy, dynamics, and IR. At the level of Molecular Rotation Spectra by Kroto.

CHEM 792(7920) Molecular Collision Theory

The concepts and methods of scattering theory are described with particular emphasis on applications to problems of chemical interest. At the level of Child's Molecular Collision Theory and Taylor's Scattering Theory.

CHEM 793(7930) Quantum Mechanics I
Fall. 4 credits. Prerequisites: CHEM 390, co-registration in A&EP 321, or CHEM 787 or equivalent or permission of instructor. Lec. M W F. M. A. Hines.

Topics include Schroedinger's equation, wave packets, uncertainty principle, matrix mechanics, orbital and spin angular momentum, exclusion principle, perturbation theory, and the variational principle. At the level of R. Shankar, Quantum Mechanics.

CHEM 794(7940) Quantum Mechanics II
Spring. 4 credits. Prerequisites: CHEM 793 or equivalent and CHEM 787 or equivalent or co-registration in A&EP 322, or permission of instructor. Lec. M W F. B. Widoon.

Topics include WKB theory; virial theorems; Born-Oppenheimer approximation; non-crossing rule; non-adiabatic transitions; time-dependent perturbation theory; electromagnetic radiation interacting with matter; density matrices; line shape; scattering theory; Hartree-Fock and density-functional theories of electronic structure; energy bands in extended structure.

CHEM 795(7950) Statistical Thermodynamics
Fall. 4 credits. Primarily for graduate students. Prerequisites: CHEM 390 or equivalent. Pre- or co-requisite: CHEM 681 or 793 or equivalent. Lec. W. F. G. Chan.

Classical thermodynamics at the level of Thermodynamics and an Introduction to Thermostatistics by Callen and statistical thermodynamics at the level of the first 12 chapters of Statistical Mechanics by McQuarrie. Topics in the first part include the first and second laws, free energy and Legendre transforms, convexity, thermodynamic potentials, densities and fields, phase equilibrium, thermodynamics of dilute systems, and the third law. Topics in the second part include ensembles and partition functions, fluctuations, ideal gases, ideal harmonic crystals and black-body radiation, the third law (again), chemical-equilibrium constants, imperfect gases, and the quantum ideal gases (Fermi-Dirac and Bose-Einstein statistics).

CHEM 796(7960) Statistical Mechanics

Continuation of CHEM 678. Statistical mechanics of interacting systems. Topics include liquid state theory, computational statistical mechanics, critical phenomena, renormalization group theory, and nonequilibrium statistical mechanics.
applied to chemical reactions, transport and spectroscopy.

[CHEM 798(7980) Bonding in Molecules]
Spring. 4 credits. prerequisite: some exposure to quantum mechanics; good undergraduate physical chemistry course or CHEM 681 PHYS 433 or CHEM 793–794 are at substantially higher level than what is needed; students should consult instructor if in doubt.LEC, T. R. Not offered 2005–2006. R. Hoffmann.

Aims to build a qualitative picture of bonding in all molecules, including organic, inorganic, organometallic systems and extended structures (polymer, surfaces, and three-dimensional materials). The approach uses molecular orbital theory to shape a language of orbital interactions. Some basic quantum mechanics is needed, more is taught along the way. The course is directed at organic, inorganic, and polymer chemists who are not theoreticians; it is useful for physical chemists, engineers, and physicists as well.

CHINA AND ASIA-PACIFIC STUDIES

web site: www.einaudi.cornell.edu/caps

China and Asia-Pacific Studies (CAPS) offers a unique approach to the study of the China's language, history, politics, society, and foreign relations by providing students with experience both on- and off-campus, including three years in Ithaca, one semester in Washington, D.C., and one semester in Beijing.

The Major

To be admitted to the major, a student must pass the gateway course, CAPS 262 (GOVT 282).

To complete the major, a student must pass 12 additional courses, completing each of them with a grade of "C" or higher:

In Ithaca, CHIN 101-102 and 201-202; CAPS 400; and two of the following: CAPS 385 (also GOVT 385), CAPS 313–314 (also HIST 313–314).

In Washington, D.C. (in fall of junior year), CAPS 300.

In Ithaca or Washington D.C. (before fall of senior year), CHIN 301–302.

In Beijing (in fall of senior year), CAPS 310 and 350.

Students interested in this major should speak to the program director to arrange for a major adviser.

Externships

CAPS majors hold externships in government, business, the media, or other organizations during their semesters in Washington, D.C., and Beijing. They are encouraged to coordinate the two experiences. For example, in successive years they might hold externships at the Chinese embassy in Washington and the U.S. embassy in Beijing, or at the Chinese desk of the Washington Post in Washington and the China bureau of the Washington Post in Beijing.

Honors

To become a candidate for honors, a CAPS major must maintain a grade average of B+ and have approval for a senior essay proposal from a faculty advisor. During senior year, a CAPS honors student completes the research and writing of a senior essay in the course of taking two tutorials, CAPS 401 in Beijing and CAPS 402 in Ithaca.

Prerequisite Course

CAPS 282(2827) China and the World (also GOVT 282(2827))
Spring. 4 credits. A. Carlson.

This course comes to terms with the dramatic rise of China by reviewing Chinese foreign policy since the establishment of the People’s Republic of China. In particular, it concentrates on major developments during the 1990s and 1980s. Such a wide-ranging survey encompasses not only China’s relations with its major bilateral partners but also its broader relationship with the international system.

Courses in Ithaca

CHIN 101-102(1101-1102) Elementary Standard Chinese (Mandarin)
101, fall; 102, spring. 6 credits each semester.

For description, see CHIN 101-102 under “Asian Studies.”

CHIN 201-202(2201-2202) Intermediate Standard Chinese (Mandarin)
201, fall; 202, spring. 4 credits each semester.

For description, see CHIN 201–202 under “Asian Studies.”

CHIN 301-302(3301-3302) High Intermediate Chinese
301, fall; 302, spring. 4 credits each semester.

For description, see CHIN 301–302 under Asian Studies.

CAPS 352(3520) Twentieth Century Asian-American Relations (also HIST 352)
Fall. 4 credits. J. Chen.

For description, see HIST 352.

CAPS 385(3857) American Foreign Policy (also GOVT 385)
Spring. 4 credits. J. J. Suh.

For description, see GOVT 385.

[CAPS 313(3130) U.S. Foreign Relations, 1750 to 1912 (also HIST 313)]

[CAPS 314(3140) U.S. Foreign Relations, 1914 to Present (also HIST 314(3140))]
Spring. 4 credits. F. Logevall.

For description, see HIST 314.

[CAPS 400(4000) Senior Seminar on China’s Foreign Relations]

[CAPS 402(4020) Honors Essay Tutorial]

Courses in Beijing

[CAPS 310(3100) Survey of Chinese History, Politics, and Foreign Relations]

[CAPS 350(3500) Seminar on China]

[CAPS 401(4010) Honors Essay Tutorial]

CHINESE

FALCON Program (Chinese)

See Department of Asian Studies.
students who wish to gain first-hand archaeological experience may also join one of several summer Cornell-sponsored field projects in Greece and Turkey.

The study of language is a vital part of classics. The department offers courses ranging from 100-level classes designed to further the understanding of English through the study of the Latin and Greek sources of much of its vocabulary, to courses in linguistics on the morphology and syntax of the ancient languages, comparative grammar, and Indo-European (the reconstructed source of the family of languages that includes Greek, Latin, Sanskrit, and most modern European languages). The core function of the department is the study of ancient Greek and Latin. Elementary Greek and Latin are taught in both two-semester courses and intensive summer or one-semester courses. (For students whose Latin is a bit rusty, the department also offers a rapid, one-semester review class.) Students with a more advanced background take advanced Greek or Latin courses, from intermediate language classes at the 200 level, which brush up and broaden knowledge of syntax and vocabulary, to graduate and faculty reading groups. All of these courses include an emphasis on the major texts used by students of ancient literature, such as the New Testament, the classics of the Greek and Roman world extended far beyond antiquity, a related course may focus on some aspect of the classical tradition in a later period. Students select related courses in consultation with the student's departmental adviser (see below). The courses in Latin must include at least three at the 300 level.

Classical Civilization

The classical civilization major has four requirements: (1) one 200-level course in Greek or Latin; (2) CLASS 211 or HIST 265, CLASS 212 or HIST 268, and CLASS 220; (3) five courses selected from those listed under classical civilization, classical archaeology, ancient philosophy, Greek (numbered 104 or above), and Latin (numbered 100 or above); and (4) three courses in related subjects selected in consultation with the student's departmental adviser (see below).

With the permission of the director of undergraduate studies, other survey courses may be substituted for the those listed in (2).

Major Subjects

Classics is an interdisciplinary field concerned with the study of Mediterranean civilizations from the 15th century BCE to the sixth century CE. Subjects in the field include Greek and Latin language, literature, and linguistics; ancient philosophy, history, archaeology, and art history; papyrology, epigraphy, and numismatics. In addition to the required courses in language and literature, the majors include a requirement for related courses intended to give breadth and exposure to the other disciplines within the field and to enrich the student's study of classical languages and literature. Since the influence of the Greek and Roman world extended far beyond antiquity, a related course may focus on some aspect of the classical tradition in a later period. Students select related courses in consultation with their departmental advisers or the director of undergraduate studies.

Honors

Candidates for the degree of bachelor of arts with honors in classics, Greek, Latin, or classical civilization must fulfill the requirements of the appropriate major and complete the two-semester honors course, CLASS 472. (Credit for the honors course may be included in the credits required for the major.) Candidates for honors must have a cumulative average grade of 3.0 and an average of 3.5 in their major. Students choose an honors adviser by the end of their sixth semester, in consultation with the departmental honors committee or the DUS. By the second week of their seventh semester, they submit an outline of their proposed research to their adviser and the committee. The thesis is written in the second semester of the course, under the supervision of the student's honors adviser. The level of honors is determined by the committee, in consultation with students' advisers. Copies of successful honors theses are filed with the department. Further details about this program are provided in the brochure Guidelines for Honors in Classics, available in the department office, 120 Goldwin Smith Hall, or on the department web page: www.arts.cornell.edu/ classics/honors.asp.

Independent Study

Independent study at the 300 level may be undertaken by undergraduates upon completion of one semester of work at the 300 level in the relevant field and only with the permission of the director of undergraduate studies.

Study Abroad

Cornell is associated with four programs that provide opportunities for summer, semester, or yearlong study abroad in Greece and Italy. The American School of Classical Studies at Athens offers a summer program for graduate students and qualified undergraduates; College Year in Athens offers semester-long courses (consult Cornell Abroad for details). The Intercollegiate Center for Classical Studies in Rome provides semester-long courses in Latin, Greek, ancient history, art, archaeology, and Italian; the American Academy in Rome offers both full-year and summer programs for qualified graduate students. The Department of Classics awards several travel grants each year for graduate students from the Townsend Memorial Fund; undergraduates are eligible for the Caplan Travel Fellowships (see "Caplan Fellowships," below). Detailed information on these programs is available in the department office, 120 Goldwin Smith Hall.

Summer Support for Language Study

The Department of Classics has at its disposal resources to assist students who wish to enroll in intensive Latin or Greek courses during the summer session. These courses are designed to enable students to enter second-year Latin or Greek the following fall. Preference is given to undergraduate majors in classics and other students who are majoring in Latin or Greek for completion of their majors or graduate programs; dyslexic students are accorded additional preference. Two different kinds of support are available: (1) The Kanders-Townsend Prize Fellowship provides a $5,100
stipend to cover living expenses and full tuition for either CLASS 103 or 107, and is open only to freshman or sophomore classics majors (or potential classics majors) who have already begun one classical language and wish to start the other in the summer. (2) Classics department tuition support is open to Cornell undergraduate and graduate students and provides some level of tuition support, up to the full amount; no stipend for living expenses is offered. Applications are due to the chair of the Department of Classics by March 31. See also "Caplan Fellowships," below.

Placement in Greek and Latin
Placement of first-year students in Greek and Latin courses is determined by examinations given by the Department of Classics during orientation week. For details concerning these examinations, contact the director of undergraduate studies.

Satisfying the College Language Requirements with Ancient Greek or Latin
Greek: option 1 is satisfied by taking CLASS 201 or above; option 2 is satisfied by taking either CLASS 101, 102, and 104 or CLASS 103 and 104.
Latin: option 1 is satisfied by taking CLASS 205 or above; option 2 is satisfied by taking either CLASS 105, 106, and 109 or CLASS 107 and 109.

Satisfying the College Language Requirements with Ancient Greek or Latin
Greek: option 1 is satisfied by taking CLASS 201 or above; option 2 is satisfied by taking either CLASS 101, 102, and 104 or CLASS 103 and 104.
Latin: option 1 is satisfied by taking CLASS 205 or above; option 2 is satisfied by taking either CLASS 105, 106, and 109 or CLASS 107 and 109.

Language courses at the 100 level are offered for letter grades only. S-U grades are available at the 200 level only under extraordinary circumstances. Students with fluency in Greek or Latin may satisfy option 1 with an advanced course appropriate to their background and interest; contact the director of undergraduate studies for further information. Modern Greek is offered by the Department of Near Eastern Studies. Contact NES for more information.

First-Year Writing Seminars
The department offers first-year writing seminars on a wide range of classical and medieval topics. Consult John S. Knight Writing Seminar Program brochures for times, instructors, and descriptions.

Caplan Fellowships
The Harry Caplan Travel Fellowships are awarded annually to one or two outstanding juniors by the College of Arts and Sciences for travel in Europe or the Near East. Interested juniors should consult the director of undergraduate studies.

Classical Civilization

CLASS 171(1609) English Words: Histories and Mysteries (also LING 109[1109]) # (III or IV) (HA)
For description, see LING 109.1

CLASS 211(2601) The Greek Experience (also one classical language) # (IV) (CA)
Fall. 3 credits. Limited to 50 students. F. Ahl.
Introduction to the literature and thought of ancient Greece. Topics include epic and lyric poetry, tragedy and comedy, and historical, political, philosophical, and scientific writings. Some attention is also given to the daily life of ordinary citizens, supplemented by slides of ancient art and architecture.

CLASS 212(2620) The Roman Experience (also PHIL 211[2110]) # (IV) (CA)

CLASS 215(2629) Introduction to the New Testament (also NES 229[2629], RELST 229) # (IV) (HA)
3 credits. K. Haines-Eitzen.
For description, see NES 229.

CLASS 217(2603) Initiation to Greek Culture # (IV) (LA)
Fall. 4 credits. Limited to 18 students. Intended especially for freshmen. Students must apply in writing to chair, Department of Classics, 120 Goldwin Smith Hall. Not offered 2005–2006. P.ucci and L. Abel.

CLASS 220(2648) The Comic Theater (also LING 223, THETR 223[2230]) # (LA)
Fall. 3 credits. Limited to 200 students. J. Coleman.
Introduction to comedy, defined as the belief that the entities commonly called gods have no real existence. Begins with the origins of western atheism in ancient Greece. Students then read and discuss a selection of later writings illustrating the historical development of atheism and its relationship with dream, naturalism, and modern science. Students are encouraged to make critical use of some of the extensive resources available on the web at atheist, freethinker, and secular humanist sites. Particular themes considered in class discussions and student presentations include: faith vs. reason as means of knowledge; scientific evidence for and against the existence of divinity; the comparison of nonreligious moral and ethical codes with religious ones; atheist critiques of historical Christian attitudes toward science and slavery; the problem of the existence of multiple exclusive religions; and the positive aspects of atheism. Students must give two oral presentations of particular questions chosen in consultation with the instructor that are subsequently written up as 12-page papers; two in-class preliminary exams and a final exam.

CLASS 229(2650) War and Peace in Greece and Rome (also HIST 228) # (III or IV)
For description, see HIST 228.

CLASS 231(2661) Ancient Philosophy (also PHIL 211[2110]) # (IV) (KCM)
Fall. 4 credits. G. Fine.
For description, see PHIL 211.

CLASS 234(2320) Seminar: Eyewitness to War in the Ancient World (also HIST 232) # (III or IV) (HA)
Study of ancient soldier-historians who participated in the campaigns about which they later wrote. Topics include historiography, autobiography, propaganda, prose style. Readings include selections from Thucydides, Xenophon, Julius Caesar, Josephus, Ammianus Marcellinus as well as, for comparative purposes, modern soldier-historians.

CLASS 236(2604) Greek Mythology (also COM L 236) # (IV) (LA)
Fall. 3 credits. Limited to 200 students. D. Mankin.
Survey of the Greek myths, with emphasis on the content and significance of the myths in Mediterranean society, including the place of myth in Greek life and consciousness; the factors and influences involved in the creation of myths; and the use of myths for our understanding of Greek literature, religion, and moral and political concepts.

CLASS 237(2607) Greek Religion and Mystery Cults (also RELST 237) # (IV) (CA)
Greek religion constitutes one of the essential features of ancient Greek civilization and distinguishes it from later Western civilization. Since religion permeates Greek culture, including the major art forms (epic poetry, tragedy, comedy, architecture, and sculpture), the course investigates the interaction of religion with these forms—an investigation that is fruitful both for the understanding of Greek religion and the forms themselves, some of which, like tragedy, originated in cult. A representative variety...
A general introduction to Roman history from the foundation of Rome in the middle of the eighth century to the end of the Republic (51 B.C.). The course is the first part of a two-semester survey of Roman history up to the deposition of the last Roman emperor in the West (A.D. 476). Examine the rise of Rome from a village in Italy to an imperial power over the Mediterranean world and consider the political, economic, and social consequences of that achievement.

CLASS 268(2684) History of Rome II
(also HIST 268[2671]) # (III) (HA)

Roman History II: The Roman Empire. This course, the second part of a two-semester survey of Roman history, examines the history of the Roman Empire from the beginnings of the Augustan Principate (31 B.C. to the fall of the Western Empire in the fifth century A.D. 476). Students consider the creation and development of the imperial regime, explore the various types of challenges (military, cultural, and religious) to the hegemony of the Roman state, and try to understand the transformations of Roman society and culture down to the middle of the fifth century A.D.

CLASS 293(2691) Classical Indian Narrative
(also ASIAN 291) # (IV)

CLASS 333(3643) Greek and Roman Mystery Cults and Early Christianity
(also RELST 333) # (IV) (CA)
Fall. 4 credits. Recommended: classics course (civilization or language) or RELST 101. Not offered 2005—2006. K. Clinton.

Study of the controversial question of religious continuity between paganism and early Christianity. After a brief survey of classical mystery cults and Hellenistic religion, the course focuses on such Hellenistic and Roman cults as the mystery cults of Isis, Bacchus, Mithras, and Attis and the Great Mother and on the distinctive features that contributed to their success. Discussion of Christian liturgy and beliefs to determine what Christianity owed to its pagan predecessors and to isolate the factors that contributed to its triumph over the "rival" pagan cults of late antiquity.

**CLASS 339(3669) Plato (also PHIL 309[3090]) # (IV) (KCM)
Fall. 4 credits. Prerequisite: at least one philosophy course. Not offered 2005—2006. G. Fine.

For description, see PHIL 309.

**CLASS 340(3664) Aristotle (also PHIL 310[3100]) # (IV) (KCM)
Staff.

Aristotle's practical and productive works (his Ethics, Politics, Rhetoric, and Poetics), with attention to their grounding in his theoretical works.

CLASS 341(3661) Hellenistic Philosophy
(also PHIL 308) (IV) (KCM)
Fall. 4 credits. Prerequisite: CLASS 231 or philosophy course. Not offered 2005—2006. C. Britain.

Studies the philosophical developments of the Hellenistic period (c. 321—45 BCE), which were in part a reaction to Plato and Aristotle. The focus is on the works of Epicurus, Zeno, and Diodorus Siculus. A survey of Hellenistic religious thought and the relationship between philosophy and religion in the third century B.C. to the end of the period. Themes include social ethics, New Philosophy, and the philosophy of science.

CLASS 345(3645) The Tragic Theater
(also COM L 344[3440], THETF 345) # (IV) (LA)
Fall. 4 credits. Limited to 40 students. Not offered 2005—2006. F. Ahl.

Tragedy and its audiences from ancient Greece to modern theater and film. Works studied include: Aeschylus—Agamemnon, Sophocles—Oedipus Tyrannus, Euripides—Alcestis, Helen, Iphigenia in Aulis, Orestes, Seneca's Thyestes, Trojan Women, Shakespeare's Julius Caesar, Titus Andronicus, Othello, Strindberg's The Father, Durrenmatt's The Visit, Bergman's Seventh Seal, Casanova. Iphigenia.

CLASS 346(3646) Art of Subversive Writing
(also COM L 346[3460]) # (IV) (LA)
Spring. 3 credits. Not offered 2005—2006. F. Ahl.
For description, see COM L 346.

**CLASS 357(3659) Ancient Athens and Sparta # (IV) (HA)

Herodotus and Thucydides tell us much of what we know about Athens and Sparta in the sixth and fifth centuries B.C.—about the development, flourishing, and disastrous conflict of these two very different, even contradictory states. Students read Herodotus and Thucydides in English translation, compare what they tell us with other evidence (including Aristotle and Xenophon), and analyze their narrative style, historiographical, and literary texts. Students attend to how these formative thinkers and writers created an authoritative version of events.

**CLASS 382(3642) Greeks, Romans, and Victorians (also COM L 382[3820]) # (IV) (LA)
Spring. 4 credits. F. Ahl.
Explores how 19th-century (and especially Victorian English and Irish) poets, dramatists, and, to a lesser extent, novelists, present Greek-Roman antiquity. The varied influences of Vergil and Homer, Seneca and Sophocles, Plautus and Aristophanes, Horace, and Greek lyric poetry are discussed in selected works of Thomas More, Shelley, Byron, Swinburne, W. S. Gilbert, Oscar Wilde, and the pre-Raphaelites and Victorian poets.

CLASS 387(3686) Independent Study in Classical Civilization, Undergraduate Level
Fall and spring. Up to 4 credits.

CLASS 392(3692) Cosmology and Divination in Antiquity
(also ASIAN/ NES 392[3920]) # (IV) (HA)
For description, see ASIAN 392.
Students read selections from the leading works of scholarship on ancient Greece from the 19th and 20th centuries, including such authors as Grote, Burchhardt, Corford, Glorz, Momigliano, M. I. Finley, Ste. Croix, Vermant, Vidal-Naquet, and the current crop of scholars.

CLASS 450(4680) The Peloponnesian War (also HIST 450/630(4500/6300)) # (III)
Fall. 4 credits. Prerequisite: CLASS 211 or 217, HIST 265, or permission of instructor. Not offered 2005–2006. B. Strauss.
For description, see HIST 450.

CLASS 461(4641) Sacred Fictions
For description, see S HUM 411.

CLASS 469(4689) Equality and Inequality in Ancient Greece (also HIST 469) # (III or IV)
Fall. 4 credits. Prerequisite: HIST 265, CLASS 211 or 217, or written permission of instructor. Not offered 2005–2006. B. Strauss.
For description, see HIST 469.

CLASS 475(4625) The Christianization of the Roman World, 300 to 600 CE (also RELST 475[4226], HIST 493, NES 475(4675)) # (III or IV) (HA)
Fall. 4 credits. E. Rebillard.
In the fourth century CE the emperors decided to favor Christianity and shortly thereafter to forbid non-Christian activity. The “end of paganism” however did not occur all at once if it ever did. The study of the Christianization of the Roman world is concerned both by the impact of Christian belief and practice on the late antique society and by the resistance and/or persistence of the old belief and practices. This seminar focuses on the approaches to the problem of Christianization and on its documentation. Through readings and discussion, it charts the transformations of the Roman world from 300 to 600 CE and attempts to better understand what remains of one of the most fascinating historical problems of the ancient world.

CLASS 555(7355) Graduate Proseminar
Provides an intensive introduction to the tools, techniques, and methods of classical scholarship.

CLASS 700(9900) Doctoral Dissertation Research
Fall and spring. 0 credits. Letter grades only. Staff.

CLASS 703(7690) Independent Study for Graduate Students in Classical Civilization
Fall and spring. Up to 4 credits. Was CLASS 711–712.

CLASS 101(1101) Elementary Ancient Greek I
Fall. 4 credits. K. Clinton.
Introduction to Attic Greek. Designed to enable the student to read the ancient authors as soon as possible.

CLASS 102(1102) Elementary Ancient Greek II
Spring. 4 credits. Was CLASS 103. Provides language qualification. Prerequisite: CLASS 101 or equivalent. Staff. Continuation of CLASS 101, prepares students for CLASS 104.

CLASS 103(1103) Intensive Greek
Summer. 6 credits. Was CLASS 104. Provides language proficiency. Staff. Intensive introduction combining the fundamentals of ancient Greek grammar with readings from a variety of classical authors in the original Greek. Prepares students in a single semester for CLASS 104.

CLASS 104(1105) Elementary Ancient Greek III #
Fall. 3 credits. Was CLASS 201. Provides language proficiency. Prerequisites: CLASS 102, 103, or placement by departmental exam. H. Rawlings, III.
Introduces students to reading Greek literary texts (Xenophon’s Anabasis) and a dialogue of Plato. Covers complex syntax and reviews the grammar presented in CLASS 102 and 103.

CLASS 197-198(1141-1142) Elementary Modern Greek I and II (also NES 121-122[1340-1341])
197, fall; 198, spring. 4 credits each semester. Limited to 15 students. M. Hnaraki.
For description, see NES 121-122.

CLASS 199-298(1143-1144) Intermediate Modern Greek (also NES 127-222[1342-1343])
199, fall; 298, spring. 4 credits each semester. M. Hnaraki.
For description, see NES 127-128.

CLASS 201(2101) Greek Prose # (IV) (LA)

CLASS 202(2105) The Greek New Testament (also NES 230[2730], RELST 202[2105]) # (IV) (LA)
Spring. 3 credits. Prerequisites: at least one year of ancient Greek (CLASS 101–103 or 104) or permission of instructor. E. Rebillard.
Sequel to NES 229/CLASS 215. Selections in Greek from all four gospels, the letters of Paul, and Acts.
ARTS AND SCIENCES - 2005-2006

[GREEK 203(2103) Homer (IV) (LA)]
Spring. 3 credits. Provides language proficiency and satisfies Option 1. Prerequisite: CLASS 104. Not offered 2005-2006. Staff.

Readings in the Homeric epics.

CLASS 204(2104) Euripides: Alcestis (IV) (LA)
Spring. 3 credits. Provides language proficiency and satisfies Option 1. K. Clinton.
With Alcestis, we encounter Greek tragedy in one of its most absorbing and comic versions. Serious events and comic happenings interlace and weave a most mysterious analysis of human responses to death, to marriage, to myth. The text has no long choruses and therefore is easier for students with limited experience of Greek. This is a wonderful introduction to Greek Tragedy.

CLASS 301(3101) Greek Epic (IV) (LA)

CLASS 302(3102) Greek Historiography and Oratory (IV) (HA)

CLASS 303(3103) Undergraduate Seminar: Greek Drama (IV) (LA)
Fall. 3 credits. Provides language proficiency and satisfies Option 1. P. Pucci. Topic: Euripides.

CLASS 304(3104) Greek Philosophy and Rhetoric: Plato and the Orators (IV) (LA)
Fall. 4 credits. Prerequisite: one 200-level Greek course. Not offered 2005-2006. Staff. Undergraduate seminar.

CLASS 305(3629) Introduction to the New Testament Seminar (also NES 329(3629), RELST 329)
Fall. 1 credit. Created to offer extra credit option for students who have had one year of Greek, to read portions of New Testament and other Christian writings in Greek. Does not count toward classics major requirement as 300-level Greek course. Prerequisite: one year of Greek. Co-requisite: enrollment in NES 229.

CLASS 310(3110) Special Topics in Greek Literature (IV) (LA)
Fall and spring. 4 credits. Provides language proficiency and satisfies Option 1. Prerequisite: two 200-level Greek courses or permission of instructor. Not offered 2005-2006.

CLASS 313(3113) Hellenistic Poetry (IV) (LA)
Spring. 4 credits. H. Pelliccia.
The Hellenistic Greek poetry of Callimachus, Theocritus, Apollonius of Rhodes and others is often studied as the bridge between archaic and classical Greek poets and Latin poets such as Catullus, Virgil and Ovid. This course gives consideration to these important interrelationships only after attempting to understand and appreciate the accomplishments of the Hellenistic authors on their own terms.

CLASS 316(3116) Greek Prose Composition (IV) (LA)
Spring. 4 credits. Provides language proficiency and satisfies Option 1. Prerequisite: CLASS 104. Not offered 2005-2006. Staff.

CLASS 385(3105) Independent Study in Greek, Undergraduate Level
Fall and spring. Up to 4 credits. Fall and spring. Fall: R. L. Casteel; spring: P. Pucci. Prerequisite: permission of DUS in the case of documented schedule conflict.

CLASS 417(4101) Advanced Readings in Greek Literature (IV) (LA)
Fall. 4 credits. Not offered 2005-2006.

CLASS 418(4102) Advanced Readings in Greek Literature (IV) (LA)
Spring. 4 credits. P. Pucci. Topic: Greek epic.

CLASS 419(4116) Advanced Greek Composition (IV) (LA)
Spring. 4 credits. Prerequisite: CLASS 316 or equivalent. Not offered 2005-2006.

CLASS 605-606(7105-7106) Graduate Survey of Greek Literature 605: Greek, literature from Homer to the mid-fifth century. 606: Greek literature from the late fifth century to the Empire.

CLASS 611(7111) Greek Philosophical Texts (also PHIL 411(4110))
Fall and spring. Up to 4 credits. Was CLASS 511. Prerequisite: knowledge of Greek and permission of instructor. G. Fine. Readings of Greek philosophical texts in the original.

CLASS 671(7171) Graduate Seminar in Greek
Fall, spring. 4 credits. Fall: K. Clinton; spring: P. Pucci. Topic: fall, Greek religion; spring, Herodotus and Homer (Corbali Conference).

CLASS 672(7172) Graduate Seminar in Greek
Fall, spring. 4 credits. Fall: F. Ahl; spring: H. Rawlings III. Topic: fall, Herodotus; spring, Thucydides.

CLASS 701(7910) Independent Study for Graduate Students in Greek
Fall and spring. Up to 4 credits. Was CLASS 701-702.

Lat

CLASS 105(1201) Elementary Latin I
Fall. 4 credits. Staff. Introductory course designed to prepare students to start reading Latin prose at the end of a year. The class moves swiftly and meets daily. Work includes extensive memorization of vocabulary and paradigms; study of Latin syntax; and written homework, quizzes, tests, and oral drills.

CLASS 106(1202) Elementary Latin II
Spring. 4 credits. Provides language qualification. Prerequisite: 105 or equivalent. Staff.

Continuation of CLASS 105, using readings from various authors; prepares students for CLASS 109.

CLASS 107(1203) Intensive Latin
Spring and summer. 6 credits. Students must register for CLASS 107 and 107.1. Staff.

Intensive introduction that quickly instills the essentials of Latin grammar before progressing to readings in the original Latin. Prepares students in a single semester for CLASS 109.

CLASS 108(1204) Latin in Review
Fall. 4 credits. Provides language qualification. Prerequisite: placement by departmental examination. M. Fontaine. Designed to accommodate students who have had some Latin, but are insufficiently prepared to take 106. It begins with review of some material covered in 105 and then continues with second-semester Latin material (106). The class moves swiftly and meets daily. Work includes extensive memorization of vocabulary and paradigms; study of Latin syntax; and written homework, quizzes, tests, and oral drills. Students should be ready for LATIN 205 by the end of the course.

CLASS 109(1205) Elementary Latin III
Fall and spring. 3 credits. Was CLASS 205. Provides language proficiency. Prerequisites: CLASS 106, 107, 108 or placement by departmental exam. Fall. F. Ahl; spring, K. Clinton.

Introduces students to reading a literary Latin text (Cicero's Speeches against Catiline). Covers complex syntax and reviews the grammar presented in CLASS 106, 107, or 108.

CLASS 205(2201) Latin Prose
Fall. 3 credits. Provides language proficiency and satisfies Option 1. Prerequisite: CLASS 109 or grade of A- or above in CLASS 106, 107, 108 or placement by departmental exam. H. Rawlings III.

Speeches of Cicero, including (as time allows) the defense of the actor Roscius, the prosecution of the provincial governor Verres, and the abuse of Marcus Antonius (Philippics).

CLASS 206(2202) Ovid: Erotic Poetry (IV) (LA)
Spring. 3 credits. Provides language proficiency and satisfies Option 1. Prerequisite: CLASS 109, 205, or placement by departmental exam. D. Mankin.

Ovid's erotic poetry is relatively easy to translate but rich in its literary structure and influence.

CLASS 207(2203) Catullus (IV) (LA)
Fall. 3 credits. Provides language proficiency and satisfies Option 1. Prerequisite: CLASS 109. Not offered 2005-2006. Staff.

Aims to present the poems of Catullus within their cultural and historical context. The poems are read and translated, and their significance both individually and as products of Late Roman Republican culture discussed in class. Selections from Catullus's contemporaries are assigned in translation.

CLASS 208(2204) Roman Drama (IV) (LA)
Offers an overview of prose letter-writing in the Late Republic and Empire. Selections from the correspondence of Cicero, Pliny, and other authors are assigned in translation. Among other topics, the discussion focuses on the issues of transmission, circulation, and publication of letter-collections, as well as on the political and cultural context in which the letters were written.

Class 306 (3201) Roman Epic # (IV) (LA)
Spring. 3 credits. Provides language proficiency and satisfies Option 1. Prerequisite: 200-level Latin. P. Pucci. Undergraduate seminar.

Class 307 (3202) Roman Historiography # (IV) (LA)
Spring. 4 credits. Was Class 317. Provides language proficiency and satisfies Option 1. Prerequisite: one 200-level Latin or permission of instructor. Not offered 2005-2006. M. Fontaine. Undergraduate seminar. Focuses on Roman historiography through close readings of the authors Sallust, Livy, and Tacitus, with some attention paid to Caesar and the fragmentary historians. Principal objectives include analysis of competing literary styles, scholarly methods, and authorial biases. Special emphasis is placed on the development of historical writing over time.

Class 308 (3203) Roman Poetry: Virgil, Eclogues and Georgics (LA)

Class 309 (3204) Roman Prose # (IV) (LA)

Class 310 (3205) The Augustan Age # (IV) (LA)
Fall. 4 credits. E. Rebillard. Provides language proficiency and satisfies Option 1. Prerequisites: two semesters of 200-level Latin or permission of instructor. Introduction to the literature of the age of Augustus. Briefly reviews the history (the fall of the Republic, the rise to power of Augustus, the creation of a new political system) so that the literature of the period can be read in a comprehensible context. Students read selections from Livy's History, some Epistles of Horace, selections from the Aeneid of Vergil, and selections from the Fasti of Ovid. Attention is also given to the art and architecture of the period, especially as it relates to the literature.

Class 317 (3217) Latin Prose Composition # (IV) (LA)
Fall. 4 credits. Provides language proficiency and satisfies Option 1. Prerequisite: one semester of 200-level Latin. A. Nussbaum.

Class 369 (3629) Intensive Medieval Latin Reading # (IV) (LA)

Class 386 (3286) Independent Study in Latin, Undergraduate Level
Fall and spring. Variable to 4 credits. Was Class 227-228. Prerequisite: permission of DUS in the case of documented schedule conflict. Staff.

Class 411 (4201) Advanced Readings in Latin Literature # (IV) (LA)
Fall. 4 credits. Not offered 2005-2006. Staff.

Class 412 (4202) Advanced Readings in Latin Literature # (IV) (LA)

Class 414 (4216) Advanced Latin Prose Composition # (IV) (LA)
Spring. 4 credits. Was Class 441. Prerequisite: graduate standing; undergraduates who have completed LATIN 317 and have permission of instructor. Not offered 2005-2006. Staff.

Class 603 (7207) Later Latin Literature: Late Antique and Medieval Hagiography

Class 625-626 (7205-7206) Graduate Composition # (IV) (LA)
Fall and spring. Variable to 4 credits. Was Class 227-228. Prerequisite: permission of DUS in the case of documented schedule conflict. Staff.

Class 639 (7209) Latin Reading # (IV) (LA)

Class 679 (7271) Graduate Seminar in Latin: Cicero: De Divinazione
Fall. 4 credits. C. Brittain. Cicero's De Divinazione: philosophical dialogue on the possibility of communication between the divine and human beings. It is also the earliest surviving theoretical discussion of Roman religion. This course examines Cicero's use of the dialogue form, the various theories of divination, and their relation to contemporary religious and political practice.

Class 680 (7272) Graduate Seminar in Latin: Virgil

Class 702 (7920) Independent Study for Graduate Students in Latin
Fall and spring. Up to 4 credits. Staff.

Class 720 (2700) Introduction to Art History: The Classical World (also ART H 220 (2200)) # (IV) (HA)
Fall. 4 credits. Each student must enroll in a sec. K. McDonnell.

Class 221 (2726) Minoan-Mycenaean Art and Archaeology (also ARKEO 221 [2275], ART H 221 [2226]) # (IV) (CA)

Class 232 (2723) Archaeology in Action I (also ARKEO 232 (2723), ART H 224) # (IV)

Class 233 (2724) Archaeology in Action II (also ARKEO 233 (2724), ART H 225) # (IV)

For description, see ART H 225.

Class 240 (2725) Greek Art and Archaeology # (IV) (CA)

Introduction to the material culture of Greece from the Early Iron Age through the fall of the Hellenistic period. Focuses particularly on famous monuments such as the Parthenon but also on the evidence for daily life and for contact with other civilizations of the Mediterranean. A critical attitude is encouraged toward the interpretation of archeological remains and toward contemporary uses (and misuses) of the past.

Class 256 (2756) Practical Archaeology (also ARKEO 256 (2756)) (II or IV) (HA)

Introduction to the aims and methods of field archaeology. Topics include remote sensing (satellite images and aerial photos); surface survey; subsurface investigations by magnetometer, ground penetrating radar; the layout and development of a land excavation; underwater excavations; the collection, description, illustration, and analysis of artifacts and data, such as pottery, lichens, botanical samples, and radiocarbon samples. Hands-on experience with potsherds and other artifacts from prehistoric and Classical Greece and Cyprus in the university's collections is intended to prepare students for work in the field.

Class 321 (3221) Mycenaean and Homer (also ARKEO 321 (3221), ART H 321 (3226)) # (IV) (HA)
Fall. 4 credits. Prerequisite: at least one course in archaeology, classics, or history of art. J. Coleman.

Studies the relationship between the Mycenaean period of Greece (known primarily from archaeology) and the Homeric Iliad and Odyssey. Topics include Mycenaean architecture, burial customs, kingship, and military activities; the reasons for the collapse of the Bronze Age palatial economies; the archaeological evidence for society in the "Dark Ages" that followed; the writing systems of Mycenaean Greece (Linear B) and the Iron Age (the Semitic/Greek alphabet); the nature of...
of the Homeric poems and their value as historical sources.

[CLASS 322(3722) Greeks and Their Neighbors (also ART H 328) # (IV) (HA)]
Fall. 4 credits. Prerequisite: CLASS 220 or 221, or permission of instructor. Not offered 2005–2006. J. Coleman. Studies the archaeological and other evidence for the interaction between Greek civilization and the peoples of the eastern and western Mediterranean from the 15th to the fourth centuries B.C. Focuses on Greek relationships with Egypt, Phoenicia, Cyprus, Anatolia, and Italy in the post-Bronze Age period.

[CLASS 324(3719) Art in the Daily Life of Greece and Rome (also ART H 319) # (IV)]

[CLASS 325(3725) Greek Vase Painting (also ART H 325[3205]) # (IV) (LA)]

[CLASS 327(3727) Greek and Roman Coins (also ART H 327) # (IV) (LA)]
Spring. 4 credits. A. Ramage. For description, see ART H 327.

[CLASS 329(3729) Greek Sculpture (also ART H 329) # (IV) (LA)]
4 credits. Not offered 2005–2006. J. Coleman. Examines ancient Greek sculpture, both three-dimensional and two-dimensional, from the Archaic to the Hellenistic period. Aspects of the works studied include technological advances, changing ideology of the sculptors, regionalism of styles, and taste of individual patrons.

[CLASS 330(3750) Dendrochronology of the Aegean (also ARKEO 309, ART H 309[3090]) # (IV) (HA)]
Fall and spring. 4 credits. Was CLASS 309. Limited to 10 students. Prerequisite: permission of instructor. Letter grades only. P. I. Kuniholm. For description, see ART H 309.

[CLASS 350(3740) Arts of the Roman Empire (also ART H 322[3202]) # (IV) (HA)]
Fall. 4 credits. A. Ramage. For description, see ART H 322.

[CLASS 431(4731) Ceramics (also ARKEO/ART H 432[4231]) # (IV) (CA)]
Fall. 4 credits. Was CLASS 423. Prerequisite: permission of instructor. A. Ramage. For description, see ART H 423.

[CLASS 433(4734) The Rise of Classical Greece (also ARKEO 434[4734], ART H 434[4254]) # (IV) (HA)]
Spring. 4 credits. Recommended: CLASS 220 or 221, ART H 220 or 221, or permission of instructor. P. I. Kuniholm. For description, see ARKEO 434.

[CLASS 435(4735) Seminar on Roman Art and Archaeology (also ARKEO 435[4207], ART H 427[4207]) # (IV) (CA)]
Spring. 4 credits. Prerequisite: permission of instructor. A. Ramage. For description, see ART H 427.

[CLASS 629(7729) The Prehistoric Aegean (also ARKEO 629[7729])]

[CLASS 630(7750) Seminar in Classical Archaeology (also ARKEO 520, ART H 520[5200])]

[CLASS 705(7970) Independent Study for Graduate Students in Classical Archaeology]
Fall and spring. Up to 4 credits. Was CLASS 721–722. Staff.

Greek and Latin Linguistics

[CLASS 421(4451) Greek Comparative Grammar (also LING 451[4451]) (III) (KCM)]
Spring. 4 credits. Prerequisite: thorough familiarity with morphology of classical Greek. A. Nussbaum. The prehistory and evolution of the sounds and forms of ancient Greek as reconstructed by comparison with the other Indo-European languages.

[CLASS 422(4452) Latin Comparative Grammar (also LING 452[4452]) (III) (KCM)]

[CLASS 425(4455) Greek Dialects (also LING 455[4455]) (III) (KCM)]
Fall. 4 credits. Not offered 2005–2006. A. Nussbaum. Survey of the dialects of ancient Greek through the reading and analysis of representative epigraphical and literary texts.

[CLASS 426(4456) Archaic Latin (also LING 456[4456]) (III) (IV) (LA)]
Spring. 4 credits. Prerequisite: reading knowledge of Latin. Not offered 2005–2006. A. Nussbaum. Reading of epigraphic and literary pre-classical texts with special attention to archaic and dialectal features. The position of Latin among the Indo-European languages of ancient Italy, the rudiments of Latin historical grammar, and aspects of the development of the literary language.

[CLASS 427(4457) Homeric Philology (also LING 457[4457]) # (III) (LA)]
Spring. 4 credits. Prerequisite: ability to read Homeric Greek. A. Nussbaum. The language of the Homeric epics: dialect background, archaisms, modernizations. The notion of a Kunstsprache. Its constitution, use, and internal consistency. The phonological and morphological aspects of epic compositional technique.

[CLASS 429(4459) Mycenaean Greek (also LING 459[4459]) (III) (LA)]

Sanskrit

[CLASS 191-192(1331-1332) Elementary Sanskrit (also LING/SANSK 131-132(1311-1312)]
191, fall; 192, spring. 4 credits each semester. Was CLASS 131–132. CLASS 192 provides language qualification. Staff. Introduction to the essentials of Sanskrit grammar. Designed to enable the student to read classical and epic Sanskrit as quickly as possible.

[CLASS 291-292(2351-2352) Intermediate Sanskrit (also LING/ SANSK 251-252[2251-2252]) # (IV)]
291, fall; 292, spring. 3 credits each semester. Was CLASS 251–252. CLASS 291 provides language proficiency and satisfies Option 1. Prerequisite: CLASS 192 or equivalent. Not offered 2005–2006. Staff. Readings from the literature of Classical Sanskrit: Fall—selections from the two Sanskrit epics, the Mahabharata and the Ramayana. Spring—more selections from the epics, and from other Sanskrit story literature or from Sanskrit dramas.

[CLASS 391(3391) Independent Study in Sanskrit, Undergraduate Level]
Fall and spring. Variable to 4 credits. Was CLASS 403–404. Staff.

[CLASS 490(4490) Sanskrit Comparative Grammar (also LING 459[4459]) (III) (LA)]
Fall. 4 credits. A. Nussbaum. Survey of the historical phonology and morphology of Sanskrit in relation to the Indo-Iranian and Indo-European comparative evidence.

[CLASS 704(7950) Independent Study for Graduate Students in Sanskrit]
Fall and spring. Variable to 4 credits. Was CLASS 703–704. Staff. See also CLASS 293, 390, and 395 (under “Classical Civilization” listings).

Honors Courses

[CLASS 472(4720) Honors Course: Senior Essay]
Fall and spring. 8 credits. Student must choose adviser by end of sixth semester. Topics must be approved by Standing Committee on Honors by beginning of seventh semester. See “Honors” under Classics front matter.

Related Courses in Other Departments and Programs

See listings under:
- Archaeology
- Asian Studies
- Comparative Literature
- English
- Feminist, Gender & Sexuality Studies
- History
- History of Art
- Linguistics
- Medieval Studies
- Near Eastern Studies
- Philosophy
Religious Studies
Society for the Humanities

COGNITIVE STUDIES PROGRAM

Cognitive Studies comprises a number of disciplines that are linked by a major concern with fundamental capacities of the mind, such as perception, memory, reasoning, language, the organization of motor action, and their neural correlates. In the College of Arts and Sciences these disciplines are represented in the departments of Computer Science, Economics, Linguistics, Mathematics, Neurobiology and Behavior, Philosophy, Psychology, and Sociology. Elsewhere in the university they are represented in the Departments of Computer Science, Mechanical and Computer Engineering, and Mechanical and Aerospace Engineering (College of Engineering), the Departments of Design and Environmental Analysis and Human Development (College of Human Ecology), the Departments of Communication and Education (College of Agriculture and Life Sciences), and the Johnson Graduate School of Management.

The issues addressed in Cognitive Studies arise at several levels. At the broadest level are problems of characterizing such basic notions as "mind," "knowledge," "information," and "meaning." At a more specific level are questions regarding the abstract operating principles of individual components of the mind, such as those underlying visual perception, language ability, and understanding of concepts. These principles concern the organization and behavior of the components and how they are biologically represented in the brain. At the most specific level are questions about the properties of the elementary computational structures and processes that constitute these components.

Important insights into issues of these kinds have been achieved in recent years as a result of the various Cognitive Studies disciplines converging in their theoretical and methodological approaches. It is this convergence, in fact, that warrants grouping the disciplines together under the single term "Cognitive Studies." Even greater progress can be expected in the future as a consequence of increasing cooperation among the disciplines.

Undergraduate Concentration

An interdisciplinary undergraduate concentration in Cognitive Studies is available to Cornell University undergraduates in the College of Arts and Sciences. Students from other colleges who seek such a concentration should discuss such possibilities with the Cognitive Studies office, which will provide information and contacts regarding such concentrations.

The undergraduate concentration in Cognitive Studies is designed to enable students to engage in a structured program directly related to the scientific study of cognition and the mind. The concentration provides a framework for the design of structured, supervised programs of study in this growing interdisciplinary field. Such programs of study serve as components to course work in a single discipline as represented by an individual department. It is considered crucial that students gain a strong background in their major, independent of their work in the concentration. Independent majors and college scholars may also apply. Colleges vary in their procedures for formal recognition of this concentration (contact the Cognitive Studies office for details). The Cognitive Studies Program faculty have designed five structured "tracks" that offer students different ways of satisfying the concentration. In addition, students are always able to construct their own programs of study subject to approval by their concentration advisor. The courses listed under each track are program suggestions. The student should consult with his or her Cognitive Studies adviser to develop a more customized curriculum. In some cases, students may want to combine or cross tracks. In general, it is expected that students in the concentration will often end up taking more, and we encourage them to do an independent research project (COGST 470) and a research workshop such as COGST 471.

The five typical tracks are as follows. The first track involves a particular approach to the study of cognition and culture. Students will acquire skills and knowledge in formal and applied linguistic theory, psycholinguistic experimentation, and computational modeling techniques.

Foundation issues in cognitive science are intimately relevant to real world settings. The Cognitive Studies in Context track offers students the opportunity to learn and independently explore how theory and research on the mind can help us better understand how we use information in much of our daily activities, whether it be the workplace, the classroom, or any other aspect of everyday life. Students will come to better understand the cognitive ergonomics of such diverse settings as an aircraft cockpit, a quality control station on an assembly line, or an anesthesia station in a surgical suite. They will come to better understand the perceptual constraints that help tailor the design of visual communication systems, or the linguistic constraints that help tailor text-based communication. They will come to see how the functional architecture of human memory guides the presentation and use of information in a wide array of settings. They will also learn how design constraints on computer hardware and software interact with human capacities and biases.

COGST 101/COM S 101/LING 170/PHIL 191/PSYCH 102 Introduction to Cognitive Science

COGST/COM S/PSYCH 201 Cognitive Science in Context Laboratory

COGST/PSYCH 416 Modeling Perception and Cognition

In addition, three more upper-level approved courses in Cognitive Studies areas normally will be expected.

2. Perception and Cognition

This track focuses on psychological, computational, and neurobiological approaches to the interface between perception and cognition. Students will develop a grasp of the continuum between sensory impressions and complex thought.

COGST 101/COM S 101/LING 170/PHIL 191/PSYCH 102 Introduction to Cognitive Science

COGST/COM S/PSYCH 201 Cognitive Science in Context Laboratory

COGST/PSYCH 214 Cognitive Psychology

COGST/PSYCH 416 Modeling Perception and Cognition

COGST 450/HD 437/LING 450/PSYCH 437 Lab Course: Language Development

BIONE 326 The Visual System

PSYCH 305 Visual Perception

PSYCH 316 Auditory Perception

PSYCH 412 Laboratory in Cognition and Perception

PSYCH 418 Psychology of Music

PSYCH 419 Neural Networks Laboratory

COGST 465/COM S 392/PSYCH 465 Topics in High-Level Vision

3. Language and Cognition

This track focuses on the representation, processing, and acquisition and learning of language, as well as its role in cognition and culture. Students will acquire skills and knowledge in formal and applied linguistic theory, psycholinguistic experimentation, and computational modeling techniques.
Cognition and Information Processing

This track focuses on how the mind (or a computer) can encode, represent, and store information. Students will develop an understanding of concepts, categories, memory, and the nature of information itself.

COGST/PSYCH 416 Modeling Perception and Cognition

A Cognitive Studies undergraduate laboratory and computer facility is available for all students in a Cognitive Studies concentration. This facility will help link resources from different laboratories across the Cornell campus as well as providing a central location for developing and conducting experimental research in Cognitive Studies.

Students who complete the concentration requirements will have their concentration in Cognitive Studies officially represented on their transcript. In addition, students who have made substantial progress toward completing the requirements for the concentration will be eligible for enrollment in the graduate courses in Cognitive Studies during their senior year.

Concentration Application Procedures

Initial inquiries concerning the undergraduate concentration should be made to the Cognitive Studies Program coordinator, Linda LeVan, cogst@cornell.edu, 255-6431, who will provide application materials and set up a meeting with a relevant member of the Undergraduate Concentration Committee. This committee will assist the student with selection of a concentration adviser with expertise in the student's main area of interest.

To formally initiate the concentration in Cognitive Studies, a student must gain approval for a selection of courses from a concentration adviser (one of the program faculty). The courses selected must form a coherent cluster that makes sense to both the adviser and the student. To be admitted to the concentration, the student must submit this plan of study to the Cognitive Studies undergraduate faculty committee for final approval.

In addition to assisting in and approving the student's selection of courses, the concentration adviser serves as a general source of information about the field of Cognitive Studies, relevant resources around the university, and job and graduate school opportunities. Often, the adviser can help the student develop independent research experience.

Independent Research. The concentration encourages each student to be involved in independent research that bears on research issues in Cognitive Studies, if possible.

COGST 470 is available for this purpose. It is recommended that students report on their research activities in an annual undergraduate forum. The Undergraduate Concentration Committee is committed to helping students find an appropriate research placement when needed.

The Committee for Undergraduate Concentration in Cognitive Studies consists of: Bart Selman, Computer Science, 255-5043, 4144 Upson Hall, selman@cs.cornell.edu; Dragaj Zec, linguistics, 255-0728, D217 Morrill Hall, D217@cornell.edu; Tamar Gendler, philosophy, 255-6828, 224 Goldwin Smith Hall, tamar.gendler@cornell.edu; Michael Spivey, psychology, 255-9365, 238 Uris Hall, spivey@cornell.edu. The current director of undergraduate studies is Dragaj Zec.

Graduate Minor

Entering graduate students, as well as advanced undergraduates, who are interested in cognition and in the cognitive sciences are advised to take the introductory course COGST 501 Issues in Biological Information Processing in the fall semester. A student will be expected to enroll concurrently in COGST 214.

Graduate students minoring in Cognitive Studies should take COGST 531 Topics in Cognitive Studies, at some point after taking COGST 501. This is a "topics" course, which focuses on different issues each spring semester, and also is open to advanced undergraduate students.

For more information, consult the program office (278C Uris Hall, 255-6431, cogst@cornell.edu) or the director of graduate studies, Michael Spivey (255-9365, spivey@cornell.edu).

Courses

Cognitive Studies

COGST 101(1101) Introduction to Cognitive Science (also COM S 101[1110], LING 170[1170], PHIL 191[1910], PSYCH 102[1200]) (III) (KCM)

Fall. 3 or 4 credits; 4-credit option involves writing section instead of exams.

M. Spivey.

Surveys the study of how the mind/brain works. Examines how intelligent information processing can arise from biological and artificial systems. Draws primarily from five disciplines that make major contributions to cognitive science: philosophy, psychology, neuroscience, linguistics, and computer science. The first part of the course introduces the roles played by these disciplines in cognitive science. The second part focuses on how each of these disciplines contributes to the study of five topics in cognitive science: language, vision, learning and memory, action, and artificial intelligence.

COGST 111(1110) Brain, Mind, and Behavior (also BION/BPSYCH 111[1110]) (I) (PS)

Spring. 3 credits. Intended for freshmen and sophomores in humanities and social sciences; seniors not allowed. Not recommended for psychology majors; biology majors may not use course for credit toward major. Letter grades only. Not offered 2005-2006. R. Hoy and E. Adkins Regan.

Understanding how the brain creates complex human behavior and mental life is a great scientific frontier of the next century. This course enables students with little scientific
background from any college or major to appreciate the excitement. What are the interesting and important questions? How are researchers trying to answer them? What are they discovering? Why did the brain evolve this remarkable capacity?

COGST 172 Computation, Information, and Intelligence (also COM S 5/ENGRI 172) (FALL) (MGH) Fall. 3 credits. Prerequisite: some background in calculus. L. Lee.

Introduction to computer science using methods and examples from the field of artificial intelligence. Topics include game playing, search techniques, learning theory, computer-intensive methods, data mining, information retrieval, the web, natural language processing, machine translation, and the Turing test. This is not a programming course; rather, "pencil and paper" problem sets are assigned. Not open to students who have completed the equivalent of COM S 100.

Field and staff.

Explores the theories of cognitive science and provides direct experience with the techniques of cognitive science, in relation to the full range of both present and anticipated future activities in the workplace, the classroom, and in everyday life. Discussions of laboratory exercise results, supplementation of laboratory topics, and analyses of challenging primary research literature are done in meetings of the entire class. Laboratory exercises, which are done on an individual or small group basis, include both pre-planned investigations and student-developed experiments. Use of digital computers as well as the Internet, e-mail, and other web sites are integral components of the course.

The focus is on human-computer interactions that are intended to permit effective and efficient exchange of information and control of functions or operations. This approach is applied to real-life settings. Students are expected to attend each discussion meeting having read and thought about assigned materials, and to come to scheduled laboratory meetings fully prepared to perform the laboratory exercises. Laboratory facilities are available to students at all times so that statistical analysis of data, preparation of laboratory reports, and collection of experimental data are facilitated.

COGST 215 Psychology of Language (also LING/PSYCH 215/715/7150) (III) (KCM) Spring. 3 credits. Prerequisite: sophomore, junior, or senior standing; any one course in psychology or human development. M. Christiansen.

Provides an introduction to the psychology of language. The purpose of the course is to introduce students to the scientific study of psycholinguistic phenomena. It covers a broad range of topics from psycholinguistics, including the origin of language, the different components of language (phonology, morphology, syntax, and semantics), processes involved in reading, computational modeling of language processes, the acquisition of language (both under normal and special circumstances), and the brain bases of language.

COGST 220 The Human Brain and Mind: Biological Issues in Human Development (also HD 220) (KCM) Fall. 3 credits. Prerequisite: HD 115 or permission of instructor. E. Temple.

What do we know about the biology of the mind? As long ago as the 1600s, when the philosopher Descartes speculated on how the mind and body interact, humans have been fascinated by how the chunk of tissue we call the brain can give rise to all the complexity that is human behavior. This course is designed as an introduction to the biology underlying human behavior. After studying basic concepts in neurobiology and neuroanatomy, the course explores a variety of topics, such as how the brain reacts to drugs, how and why brain mechanisms underlie seeing, hearing, thinking, talking, feeling emotions and desires, and dreaming. Students try to understand what is understood (and what is not yet understood) about the biological mechanisms underlying the human experience. In addition, we discuss the biology of clinical disorders throughout. This course gives background necessary for other courses in HD that focus on biological mechanisms of human development and serves as a prerequisite for many of them.

Designed to help students develop a broad understanding of the mechanisms, processes, and current issues in cognitive development and learn to do critical, in-depth analyses of developmental research. Discusses how children's thinking changes over the course of development and evaluate psychological theories and research on various aspects of cognitive development. Topics include perception, representation and concepts, reasoning and decision making, social cognition, memory, metacognition, language and thought, and academic skills. Students also have hands-on research experiences with "real" kids.

Introductory course that emphasizes the formal structure of natural language in the Minimalist framework. The following topics are covered: the formal representation of linguistic knowledge, principles, and parameters of Universal Grammar, the basic biology of language, mechanisms of linguistic performance, the modularity hypothesis, and language and cognition. The course is especially suited for fields such as psychology, philosophy, computer science, and linguistics (and also for those enrolled in the concentration in Cognitive Studies) who want to take a one-semester introduction to linguistics that concentrates on the formal principles that govern linguistic knowledge, along with some discussion of their biological realization and their use in perception and production.

COGST 305(3050) Foundations of Linguistics (also LING 305[3305]) (III) (KCM) Fall. 4 credits. Prerequisites: LING 101 plus one other linguistics course, or two similar courses in another area of Cognitive Studies. Not offered 2005–2006. C. Collins.

Covers foundational issues in linguistic theory, including the nature of linguistic data, poverty of stimuli, autonomy of syntax, different frameworks (including functional linguistics), and the history of linguistics.

COGST 330(3300) Introduction to Computational Neuroscience (also BIOPH/PSYCH 330(3300)) (I) (PBS) Fall. 3–4 credits; 4-credit option includes lab providing additional computer simulation exercises. Limited to 25 students. Prerequisite: BIION 222 or permission of instructor. Offered alternate years.

Covers the basic ideas and techniques involved in computational neuroscience. Surveys diverse topics including: neural dynamics of small networks of cells, neural coding, learning in neural networks and in brain structures, memory models of the hippocampus, sensory coding and others.

COGST 333(3330) Problems in Semantics—Quantification in Natural Language (also LING 333(3333), PHIL 333(3330)) (III or IV) (KCM) Spring. 4 credits. Prerequisites: course in logic or semantics or permission of instructor. M. Rooth.

Looks at problems in the semantic analysis of natural languages, critically examining work in linguistics and philosophy on particular topics of current interest.

COGST 342(3420) Human Perception: Applications to Computer Graphics, Art, and Visual Display (also PSYCH 342/642/3420/6420), VISST 342(3432)) (III) Fall. 3 or 4 credits. 4-credit option involves term paper. Prerequisite: PSYCH 101 or permission of instructor. Highly recommended: PSYCH 205 D. Field.

Our present technology allows us to transmit and display information through a variety of media. To make the most of these media channels, it is important to consider the limitations and abilities of the human observer. The course considers a number of applied aspects of human perception with an emphasis on the display of visual information. Topics include "three-dimensional" display systems, color theory, spatial and temporal limits of the visual systems, attempts at subliminal communication, and "visual" effects in film and television.
Fueled by theoretical constraints derived from recent advances in the brain and cognitive sciences, the last decade of the 20th century saw a resurgence of scientific interest in the evolution of language. This seminar surveys a cross section of modern theories, methods, and research pertaining to the origin and evolution of language. Considers evidence from psychology, the cognitive neurosciences, comparative psychology, and computational modeling of evolutionary processes. Topics for discussion may include: What does the fossil record tell us about language evolution? What can we learn from comparative perspectives on neurobiology and behavior? Can apes really learn language? Did language come about through natural selection? What were the potential preadaptations for language? What is the relationship between phylogeny and ontogeny?

COGST 428 Connectionist Psycholinguistics
(also LING/PSYCH 428/628/4280/6280) (III)
Fall. 3 credits. Prerequisite: senior standing or permission of instructor. Offered alternate years. M. Christiansen.

Connectionist psycholinguistics involves using (artificial) neural networks, which are inspired by brain architecture, to model empirical data on the acquisition and processing of language. As such, connectionist psycholinguistics has had a far-reaching impact on language research. This course surveys the state of the art of connectionist psycholinguistics, ranging from speech processing and word recognition, to inflectional morphology, sentence processing, language acquisition, and reading. An important focus of discussion is the methodological and theoretical issues related to computational modeling of psychological data. The broader implications of connectionist models of language are discussed, not only for psycholinguistics, but also for computational and linguistic perspectives on language.

COGST 437 Thinking and Reasoning
(also HD 238/2380) (I)
Fall. 3 credits. Prerequisite: HD 115 or PSYCH 101. B. Koslowski.

Examines problem solving and transfer, pre-cognitive thinking, logical thinking, practical syllogisms, causal reasoning, scientific reasoning, surveys basic issues, methods, and research in the study of first-language acquisition. The acquisition of communication systems in nonhuman species such as chimpanzees is addressed, but major emphasis is on the child. An optional lab course supplement is available (see COGST 450/HD 437/LING 450/PSYCH 437).

COGST 438 Minds, Machines, and Intelligence
(also S & T S 438) (III) (KCM)

Central topics of both "hard cognition" and "soft cognition" (e.g., information processing and neuropsychological functioning) and "soft cognition" (e.g., problem solving, concepts and categories) are covered. Selected topics are linked to methodological issues and to important social issues such as cross-cultural
cognitive science can meet across disciplines to learn and practice the essentials of research using interdisciplinary approaches. In this workshop, students critique and discuss the existing literature in a field of inquiry, individual students present their research designs, methods, and results from their independent research studies, debate the interpretation of their research results, and participate in the generation of new research hypotheses and designs, in a peer group of other undergraduate students involved in related research.

[COGST 474 Introduction to Natural Language Processing (also COM S 474|4740, LING 474|4474)] (III) (KCM)

Presents formalisms, algorithms, and methodology for manipulating natural languages computationally. Emphasizes parts of natural language (syntax and morphology, but not semantics) where algorithms and scientific understanding make it possible for us to create and implement approximately complete accounts of linguistic phenomena and also makes use of language use (a million or a billion words). Most of the methods are not only useful for engineering applications but also advance our scientific understanding of human languages.

[COGST 476-477 Decision Theory (also COGST/ECON 676-677|6760-6770)] (III) (MQR)
Fall and spring, 4 credits each semester. In fall, course is lecture based. Students are required to complete several problem sets and there is a final exam. In spring, there are additional lectures as well as visiting speakers. Students are required to read speakers’ papers, participate in discussions, and complete a research project. Not offered 2005–2006. E. Blume, D. Easley, and J. Halpern.

Research on decision theory resides in a variety of disciplines including computer science, economics, game theory, philosophy and psychology. This network reconnects these approaches. The course is taught jointly by two economists and a computer scientist. The course covers several areas: (1) basic decision theory. This theory, sometimes known as “rational choice theory,” is part of the foundation for the disciplines listed above. It applies to decisions made by individuals or by machines. (2) the limitations of and problems with this theory. Issues discussed here include decision theory paradoxes revealed by experiments, cognitive and knowledge limitations, and computational issues. (3) new research designed in response to these difficulties. Issues covered include alternative approaches to the foundations of decision theory, adaptive behavior, and shaping the individual decisions by aggregate/evolutionary forces.

[COGST 491|4910] Research Methods in Psychology (also COGST 691|6910, PSYCH 491|4910|4910|6910)
Spring. 4 credits. Limited to 18 students. Recommended: permission of instructor. PSYCH 350, experience in upper-division psychology courses, or graduate standing. Graduate students, see COGST 691.

D. Dunnihou.

Intensive examination of the basic research methods used in social, personality, cognitive, and developmental psychology. The course focuses on designing and conducting experiments, i.e., how to turn vague theories into concrete and testable notions, evaluate studies, avoid common pitfalls, and, finally, remain ethical. Beyond learning methods of “correct” and rigorous experimentation, we also discuss what makes a research study actually interesting. The course, in addition, covers test construction, survey methods, and “quasi experiments.” Students concentrate on completing a small research project in which they conduct an experiment, interpret its data, and write up the results.

Computer Science

[COM S 101|1170] Introduction to Cognitive Science (also COGST 101|1110, LING 170|1170, PHIL 191|1910, PSYCH 102|1020)
Fall. 3 or 4 credits. M. Spivey.

[COM S 172|1700] Computation, Information, and Intelligence (also COGST 172, ENGR 172|1700, INFO 172)
Fall. 3 credits. L. Lee.

[COM S 201|2710] Cognitive Science in Context Laboratory (also COGST/PSYCH 201|2710)
Spring. 4 credits. D. Field and staff.

[COM S 211|2110] Computers and Programming
Fall, spring, or summer. 3 credits.

[COM S 312|3110] Data Structures and Functional Programming
Fall or spring. 4 credits.

[COM S 324|3470] Computational Linguistics (also COGST 424|4240, LING 424|4243)
Fall. 4 credits. M. Rooth.

[COM S 381|3810] Introduction to Theory of Computing
Fall, summer. 4 credits.

[COM S 392|4110] Topics in High-Level Vision (also COGST 465|4650, LING 465|4650, COM S 476|476|476|477)

[COM S 411|4110] Programming Languages and Logic
Fall. 4 credits. Not offered every year.

[COM S 472|4700] Foundations of Artificial Intelligence
Fall. 3 credits. T. Joachims.

[COM S 473|4701] Practicum in Artificial Intelligence
Fall. 2 credits. T. Joachims.

[COM S 474|4740] Introduction to Natural Language Processing (also COGST/LING 474|4474)

[COM S 478|4780] Machine Learning
Spring. 3 credits.

[COM S 481|4810] Introduction to Theory of Computing
Fall. 4 credits. J. Halpern.

[COM S 486|4860] Applied Logic (also MATH 486|4860)
Spring. 4 credits.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Instructor(s)</th>
<th>Credits</th>
<th>Quarter</th>
<th>Offered Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDUC 411(4110)</td>
<td>Educational Psychology</td>
<td>Fall: Q. Wang; Spring: B. Koslowski</td>
<td>3</td>
<td>Fall, Spring</td>
<td>Not offered 2005-2006.</td>
</tr>
<tr>
<td>HD 115(1150)</td>
<td>Human Development</td>
<td>Fall or summer</td>
<td>3</td>
<td>Credits</td>
<td></td>
</tr>
<tr>
<td>HD 230(2300)</td>
<td>Cognitive Development (also COGST 230[2300])</td>
<td>Spring: S. Robertson and J. Haas</td>
<td>3</td>
<td>Credits</td>
<td></td>
</tr>
<tr>
<td>HD 238(2380)</td>
<td>Thinking and Reasoning (also COGST 437)</td>
<td>Fall: B. Koslowski</td>
<td>3</td>
<td>Credits</td>
<td></td>
</tr>
<tr>
<td>HD 266(2660)</td>
<td>Emotional Functions of the Brain</td>
<td>Spring</td>
<td>3</td>
<td>Credits</td>
<td></td>
</tr>
<tr>
<td>HD 320(3200)</td>
<td>Human Developmental Neuropsychology</td>
<td>Spring</td>
<td>3</td>
<td>Credits</td>
<td></td>
</tr>
<tr>
<td>HD 336(3360)</td>
<td>Connecting Social, Cognitive, and Emotional Development</td>
<td>Fall: M. Casasola</td>
<td>3</td>
<td>Credits</td>
<td></td>
</tr>
<tr>
<td>HD 344(3440)</td>
<td>Infant Behavior and Development</td>
<td>Fall: S. Robertson</td>
<td>3</td>
<td>Credits</td>
<td></td>
</tr>
<tr>
<td>HD 347(3470)</td>
<td>Human Growth and Development: Biological and Behavioral Interactions (also BASOC 347, NS 347[3470])</td>
<td>Spring: S. Robertson and J. Haas</td>
<td>3</td>
<td>Credits</td>
<td></td>
</tr>
<tr>
<td>HD 362(3620)</td>
<td>Human Bonding</td>
<td>Fall</td>
<td>3</td>
<td>Credits</td>
<td></td>
</tr>
<tr>
<td>HD 431(4310)</td>
<td>Mind, Self, and Emotion: Research Seminar (also COGST 435)</td>
<td>Fall: C. Linster</td>
<td>3</td>
<td>Credits</td>
<td>Offered alternate years.</td>
</tr>
<tr>
<td>HD 433(4330)</td>
<td>Developmental Cognitive Neuroscience (also COGST 433[4330])</td>
<td>Spring: T. DeVoogd</td>
<td>3</td>
<td>Credits</td>
<td></td>
</tr>
<tr>
<td>HD 436(4360)</td>
<td>Language Development (also COGST 436, LING 436[4436], PSYCH 436[4360])</td>
<td>Spring: M. Christiansen</td>
<td>4</td>
<td>Credits</td>
<td></td>
</tr>
<tr>
<td>HD 437(4370)</td>
<td>Lab Course: Language Development (also COGST/LING 450[4450], PSYCH 437[4370])</td>
<td>Spring: M. Spivey; Fall: J. Bowers; spring, M. Diesing</td>
<td>2</td>
<td>Credits</td>
<td>In conjunction with COGST/LING/PSYCH 437.</td>
</tr>
<tr>
<td>HD 439(4390)</td>
<td>Cognitive Development: Infancy through Adolescence (also COGST 439[4390])</td>
<td>Spring: M. Christiansen</td>
<td>3</td>
<td>Credits</td>
<td></td>
</tr>
<tr>
<td>HD 452(4520)</td>
<td>Culture and Human Development (also COGST 452)</td>
<td>Fall: Q. Wang</td>
<td>3</td>
<td>Credits</td>
<td></td>
</tr>
<tr>
<td>LING 101(1101)</td>
<td>Introduction to Linguistics</td>
<td>Fall or spring: C. Rosen; spring: M. Diesing</td>
<td>4</td>
<td>Credits</td>
<td></td>
</tr>
<tr>
<td>LING 170(1170)</td>
<td>Introduction to Cognitive Science (also COGST/COM S 101[1101], PHIL 191[1910], PSYCH 102[1020])</td>
<td>Fall: M. Spivey</td>
<td>4</td>
<td>Credits</td>
<td></td>
</tr>
<tr>
<td>LING 215(2215)</td>
<td>Psychology of Language (also COGST 215, LING 715, PSYCH 215[715][2150][7150])</td>
<td>Spring: M. Christiansen</td>
<td>3</td>
<td>Credits</td>
<td></td>
</tr>
<tr>
<td>LING 264(2264)</td>
<td>Language, Mind, and Brain (also COGST 264)</td>
<td>Spring: C. Linster</td>
<td>4</td>
<td>Credits</td>
<td></td>
</tr>
<tr>
<td>LING 301(3301)</td>
<td>Introduction to Phonetics</td>
<td>Fall</td>
<td>4</td>
<td>Credits</td>
<td></td>
</tr>
<tr>
<td>LING 302(3302)</td>
<td>Introduction to Phonology</td>
<td>Spring: D. Zec</td>
<td>4</td>
<td>Credits</td>
<td></td>
</tr>
<tr>
<td>LING 303(3303)</td>
<td>Introduction to Syntax</td>
<td>Fall</td>
<td>4</td>
<td>Credits</td>
<td></td>
</tr>
<tr>
<td>LING 304(3304)</td>
<td>Introduction to Semantics and Pragmatics</td>
<td>Spring: M. Rooth</td>
<td>4</td>
<td>Credits</td>
<td></td>
</tr>
<tr>
<td>LING 305(3305)</td>
<td>Foundations of Linguistics (also COGST 305[3050])</td>
<td>Fall: C. Linster</td>
<td>4</td>
<td>Credits</td>
<td></td>
</tr>
<tr>
<td>LING 332(3332)</td>
<td>Philosophy of Language (also PHIL 332[3332])</td>
<td>Fall: M. Christiansen</td>
<td>4</td>
<td>Credits</td>
<td></td>
</tr>
<tr>
<td>LING 333(3333)</td>
<td>Problems in Semantics—Quantification in Natural Language (also COGST/PHIL 333[3333])</td>
<td>Spring: M. Christiansen</td>
<td>4</td>
<td>Credits</td>
<td></td>
</tr>
<tr>
<td>LING 400(4400)</td>
<td>Language Typology</td>
<td>Fall: C. Rosen</td>
<td>4</td>
<td>Credits</td>
<td></td>
</tr>
<tr>
<td>LING 401-402(4401-4402)</td>
<td>Phonology I, II</td>
<td>Fall and spring: C. Rosen</td>
<td>4</td>
<td>Credits</td>
<td></td>
</tr>
<tr>
<td>LING 402-404(4403-4404)</td>
<td>Syntax I, II</td>
<td>Fall and spring: M. Christiansen</td>
<td>4</td>
<td>Credits</td>
<td></td>
</tr>
<tr>
<td>LING 414(4414)</td>
<td>Second Language Acquisition I (also ASIAN 414[4414])</td>
<td>Fall: Y. Shirai</td>
<td>4</td>
<td>Credits</td>
<td></td>
</tr>
<tr>
<td>LING 415(4415)</td>
<td>Second Language Acquisition II (also ASIAN 417[4417])</td>
<td>Spring: Y. Shirai</td>
<td>4</td>
<td>Credits</td>
<td></td>
</tr>
<tr>
<td>LING 419(4419)</td>
<td>Phonetics I</td>
<td>Fall: S. Hertz</td>
<td>4</td>
<td>Credits</td>
<td></td>
</tr>
<tr>
<td>LING 420(4420)</td>
<td>Phonetics II</td>
<td>Spring: M. Christiansen</td>
<td>4</td>
<td>Credits</td>
<td></td>
</tr>
<tr>
<td>LING 421(4421)</td>
<td>Semantics I</td>
<td>Spring: M. Christiansen</td>
<td>4</td>
<td>Credits</td>
<td></td>
</tr>
<tr>
<td>LING 422(4422)</td>
<td>Semantics II</td>
<td>Fall</td>
<td>4</td>
<td>Credits</td>
<td></td>
</tr>
<tr>
<td>LING 423(4423)</td>
<td>Morphology</td>
<td>Spring: M. Christiansen</td>
<td>4</td>
<td>Credits</td>
<td></td>
</tr>
<tr>
<td>LING 424(4424)</td>
<td>Computational Linguistics (also COGST 424[4240], COM S 324[3470])</td>
<td>Fall: M. Christiansen</td>
<td>4</td>
<td>Credits</td>
<td></td>
</tr>
<tr>
<td>LING 425(4425)</td>
<td>Pragmatics</td>
<td>Spring: B. Lust</td>
<td>4</td>
<td>Credits</td>
<td></td>
</tr>
<tr>
<td>LING 428(4428)</td>
<td>Connectionist Psycholinguistics (also COGST 428 LING 628, PSYCH 428[628][4280][6280])</td>
<td>Fall: M. Christiansen</td>
<td>3</td>
<td>Credits</td>
<td>Offered alternate years.</td>
</tr>
<tr>
<td>LING 436(4436)</td>
<td>Language Development (also COGST/HD/PSYCH 436[4360])</td>
<td>Spring: M. Christiansen</td>
<td>4</td>
<td>Credits</td>
<td></td>
</tr>
<tr>
<td>MATH 281(2810)</td>
<td>Deductive Logic (also PHIL 331[3310])</td>
<td>Fall: M. Christiansen</td>
<td>4</td>
<td>Credits</td>
<td></td>
</tr>
<tr>
<td>MATH 481(4810)</td>
<td>Mathematical Logic (also PHIL 431[4310])</td>
<td>Fall: M. Christiansen</td>
<td>4</td>
<td>Credits</td>
<td></td>
</tr>
<tr>
<td>MATH 482(4820)</td>
<td>Topics in Logic (also PHIL 432[4320])</td>
<td>Spring: H. Hodes</td>
<td>4</td>
<td>Credits</td>
<td></td>
</tr>
<tr>
<td>MATH 483(4830)</td>
<td>Intensional Logic (also PHIL 436[4360])</td>
<td>Spring: C. Linster</td>
<td>4</td>
<td>Credits</td>
<td></td>
</tr>
<tr>
<td>MATH 486(4860)</td>
<td>Applied Logic (also COM S 486[4860])</td>
<td>Spring: C. Linster</td>
<td>4</td>
<td>Credits</td>
<td></td>
</tr>
<tr>
<td>PSYCH 111(1110)</td>
<td>Brain, Mind, and Behavior (also COGST/PSYCH 111[1110])</td>
<td>Fall: M. Christiansen</td>
<td>3</td>
<td>Credits</td>
<td></td>
</tr>
<tr>
<td>PSYCH 222(2220)</td>
<td>Neurobiology and Behavior II: Introduction to Neurobiology</td>
<td>Spring: T. DeVoogd</td>
<td>4</td>
<td>Credits</td>
<td></td>
</tr>
<tr>
<td>PSYCH 380(3800)</td>
<td>Biopsychology of Learning and Memory (also PSYCH 332[3320])</td>
<td>Spring: C. Linster</td>
<td>3-4</td>
<td>Credits</td>
<td></td>
</tr>
<tr>
<td>PSYCH 380(3800)</td>
<td>Computational Neuroscience (also COGST/PSYCH 330[3300])</td>
<td>Fall: 3-4 credits</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Art and Sciences - 2005-2006
PHIL 191(1910) Introduction to Cognitive Science (also COGST/COM S 101[1101], LING 170[1170], PSYCH 102[1020])
Fall. 3 or 4 credits. M. Spivey.

PHIL 231(2310) Introduction to Deductive Logic
Fall and spring. 4 credits.

PHIL 261(2610) Knowledge and Reality
Spring. 4 credits.

PHIL 262(2620) Introduction to Philosophy of Mind
Fall. 4 credits.

PHIL 286(2860) Science and Human Nature (also S&TS 286[2861])
Spring. 4 credits. R. Boyd.

PHIL 318(3180) 20th-Century Philosophy
B. Helle.

PHIL 331(3310) Deductive Logic (also MATH 281[2810])
Fall. 4 credits. H. Hodes.

PHIL 332(3320) Philosophy of Language (also LING 332[3332])
Fall. 4 credits. Z. Szabo.

PHIL 333(3330) Problems in Semantics (also COGST 333[3330], LING 333[3333])
Spring. 4 credits. M. Rooth.

PHIL 361(3610) Epistemology
Spring. 4 credits.

PHIL 362(3620) Philosophy of Mind
S. Shoemaker.

PHIL 381(3810) Philosophy of Science: Knowledge and Objectivity (also S&TS 381[3811])
Fall. 4 credits. R. Boyd.

PHIL 382(3820) Philosophy and Psychology

PHIL 383(3830) Choice, Chance, and Reason
H. Hodes.

PHIL 389(3890) Philosophy of Science: Evidence and Explanation

PHIL 431(4310) Mathematical Logic (also MATH 481[4810])

PHIL 432(4320) Topics in Logic (also MATH 482[4820])
Spring. 4 credits. H. Hodes.

PHIL 433(4330) Philosophy of Logic
Spring. 4 credits.

PHIL 434(4340) Foundations of Mathematics
H. Hodes.

PHIL 436(4360) Intensional Logic (also MATH 483[4830])

PHIL 437(4370) Problems in the Philosophy of Language
H. Hodes.

PHIL 461(4640) Metaphysics

PSYCH 102(1200) Introduction to Cognitive Science (also COGST/COM S 101[1101], LING 170[1170], PSYCH 102[1020])
Fall. 3 or 4 credits. M. Spivey.

PSYCH 111(1110) Brain, Mind, and Behavior (also BIONB 111[1111], COGST 111[1110])
R. Hoy and E. Adkins Regan.

PSYCH 201(2010) Cognitive Science in Context Laboratory (also COGST/COM S 201[2010])
Spring. 4 credits. D. Field and staff.

PSYCH 206[2060] Perception (also PSYCH 605[6050])
Spring. 3 credits. J. Cutting.

PSYCH 209[2090] Developmental Psychology (also PSYCH 709[7090])
Spring. 4 credits. M. Goldstein.

PSYCH 214[2140] Cognitive Psychology (also COGST 214[2140])
Fall. 3 credits. S. Edelman.

PSYCH 215[2150] Psychology of Language (also COGST 215, LING 215[2175], PSYCH 715[7150])
Spring. 3 credits. M. Christiansen.

PSYCH 223[2230] Introduction to Biopsychology
Fall. 3 credits. Not offered 2005–2006.

PSYCH 235[2350] Visual Perception (also VISST 305)
Fall. 4 credits. J. Cutting.

PSYCH 311(3110) Introduction to Human Memory (also PSYCH 611[6110])

PSYCH 316(3160) Auditory Perception (also PSYCH 716[7160])
Fall. 3 or 4 credits. C. Krumhansl.

PSYCH 325[3250] Evolution of Human Behavior (also PSYCH 625[6260])
R. Johnston.

PSYCH 330(3300) Introduction to Computational Neuroscience (also BIONB/COGST 330[3300])
Fall. 3–4 credits. C. Linster.

PSYCH 332[3320] Biopsychology of Learning and Memory (also BIONB 328[3280], PSYCH 632[6320])
Spring. 3 credits. T. DeVogel.

PSYCH 342(3420) Human Perception: Applications to Computer Graphics, Art, and Visual Display (also COGST 342[3420], VISST 342[3432], PSYCH 642[6420])
D. Field.

PSYCH 361(3610) Biopsychology of Normal and Abnormal Behavior (also NS 361[3610])
Fall. 3 credits. B. J. Strupp.

PSYCH 396(3960) Introduction to Sensory Systems (also BIONB 396[3960], PSYCH 696[6960])
B. Halpern.

PSYCH 412(4120) Laboratory in Cognition and Perception (also PSYCH 612[6121])
D. Field.

PSYCH 413(4130) Information Processing: Conscious and Nonconscious

PSYCH 414(4140) Comparative Cognition (also COGST 414[4140], PSYCH 714[7140])

PSYCH 415(4150) Concepts, Categories, and Word Meanings (also PSYCH 615[6150])

PSYCH 416(4160) Modeling Perception and Cognition (also COGST 416[4160], PSYCH 616[6160])
Spring. 4 credits. M. Spikey.

PSYCH 417(4170) The Origins of Thought and Knowledge (also PSYCH 717[7170])

PSYCH 418(4180) Psychology of Music (also PSYCH 618[6180])
Spring. 3 or 4 credits. C. Krumhansl.

PSYCH 424(4240) Neuroethology (also BIONB 424[4240])

PSYCH 425(4250) Cognitive Neuroscience (also PSYCH 625[6250])
Fall. 4 credits. B. Finlay.

COGNITIVE STUDIES PROGRAM 503

[PHIL 382(3820) Philosophy and Psychology
Attention is also given to the development of research proposals.

COGST 663(6620) Philosophy of Psychology [also PHIL 663(6620)]
Fall. 4 credits. T. Gendler.
Research seminar directed at graduate students in philosophy, psychology and cognitive science. The focus is on identifying and discussing issues of philosophical significance raised by recent work in cognitive, developmental and social psychology. Primary readings are journal articles in psychology and philosophy. Likely topics include recent work on autism and the theory of mind, recent work on the automation of social behavior, and recent work on motor planning and the common coding of perception and action.

COGST 671 Introduction to Automated Reasoning [also COM S 671(6762)]
Fall. 4 credits. Prerequisite: (COM S 611 and graduate standing) or permission of instructor. Not offered 2005-2006. Topics in modern logic needed to understand and use automated reasoning systems such as HOL, Nuprl, and PVS. Special emphasis is on type theory and logic and on tactic-oriented theorem proving.

COGST 676-677 Decision Theory [also COGST 476/477, COM S 576/577, ECON 476-477/676-677(4460-4470/6760-6770)]
Fall and spring. 4 credits each semester. Fall: lecture-based; students must complete several problem sets and a final exam. Spring: additional lectures as well as visiting speakers; students must read speakers’ papers, participate in discussions, and complete a research project. Not offered 2005-2006. L. Blume, D. Easley, and J. Halpern.
Research on decision theory resides in a variety of disciplines including computer science, economics, game theory, philosophy, and psychology. This new course attempts to integrate these various approaches. The course covers several areas: (1) basic decision theory. This theory, sometimes known as “rational choice theory,” attempts to supply the foundation for the disciplines listed above. It applies to decisions made by individuals or by machines; (2) the limitations of and problems with this theory. Issues discussed here include decision theory and the paradoxes generated by experiments, cognitive and knowledge limitations, and computational issues; (3) new research designed in response to these difficulties. Issues covered here include alternative approaches to the foundations of decision theory, adaptive behavior, and shaping the individual decisions by aggregate/evolutionary forces.

COGST 691(6910) Research Methods in Psychology [also COGST 491(4910), PSYCH 491(4910)]
Spring. 4 credits. Limited to 15 students. D. Dunning.
Intensive examination of the basic research methods used in social, personality, cognitive, and developmental psychology. Focuses on designing and conducting experiments, i.e., how to turn vague theories into concrete and testable notions, evaluate studies, avoid common pitfalls, and finally remain ethical. The course, in addition, covers test construction, survey design, and “quasi experiments.” Students concentrate on completing a small research project in which they conduct an experiment, interpret its data, and write up the results.
COGST 710(7100) Research in Human Experimental Psychology (also PSYCH 710[7100]) Fall or spring. Credit TBA. Prerequisite: permission of instructor.

COM S 664(6670) Machine Vision Fall. 4 credits. R. Zabih.

[COM S 671(6762) Introduction to Automated Reasoning (also COGST 671) Fall. 4 credits. Not offered 2005–2006.]

COM S 672(6700) Advanced Artificial Intelligence Spring. 4 credits. Prerequisite: COM S 472.

COM S 674(6740) Natural Language Processing Spring. 4 credits. Prerequisite: COM S 472. Not offered every year.

[COM S 676(6764) Reasoning about Knowledge Fall. 4 credits. Prerequisites: mathematical maturity and acquaintance with propositional logic. Not offered 2005–2006.]

[COM S 677(6766) Reasoning about Uncertainty Fall. 4 credits. Prerequisites: mathematical maturity and acquaintance with propositional logic. Not offered 2005–2006.]

COM S 772(7970) Seminar in Artificial Intelligence Fall and spring. 2 credits.

COM S 775(7794) Seminar in Natural Language Understanding Fall and spring. 2 credits. C. Cardie.

EDUC 611(6110) Educational Psychology Fall. 3 credits. Prerequisite: graduate standing or permission of instructor. D. Schrader.

EDUC 614(6140) Gender, Context, and Epistemological Development (also FGSS 624[6240]) Fall. 3 credits. D. Schrader.

EDUC 714(7140) Moral Development and Education Spring. 3 credits. Offered alternate years. D. Schrader.

[HD 633(6330) Language Acquisition Seminar (also COGST/LING 633(6330)) Fall. 1–4 credits. Prerequisite: COGST/HD/LING/PSYCH 436 or equivalent. Not offered 2005–2006. B. Lust.]

HD 600/700 Graduate Seminars

[LING 530(5530) Representation of Structure in Vision and Language (also COGST/PSYCH 530[6150]) Spring. 4 credits. Offered alternate years; not offered 2005–2006. S. Edelman.]

[LING 609(6609) Second Language Acquisition and the Asian Languages (also ASIAN 610[6610]) Fall. 4 credits. Prerequisite: LING 414–415. Not offered 2005–2006. Y. Shirai.]

LING 628 Connectionist Psycholinguistics (also COGST/LING 426, PSYCH 428/628[4280/6280]) Fall. 3 credits. Offered alternate years. M. Christiansen.

[LING 633(6633) Language Acquisition Seminar (also COGST/HD 633[6330]) Fall. 1–4 credits. Prerequisite: COGST/HD/LING/PSYCH 436 or equivalent. Not offered 2005–2006. B. Lust.]

LING 700(7700) Graduate Seminars

MATH 681(6810) Logic Spring. 4 credits.

MATH 781–782(7810–7820) Seminar in Logic Fall and spring. 4 credits each.

[MATH 789(7890) Topics in Applied Logic Fall. 4 credits. Not offered 2005–2006.]

NBA 663(6630) Managerial Decision Making Fall. 3 credits. J. Russo.

PHIL 633(6330) Philosophy of Language—Linguistic Convention Spring. 4 credits. Z. Szabó.

PHIL 663(6630) Philosophy of Psychology (also COGST 663[6630]) Fall. 4 credits. T. Gendler.

PHIL 700(7000) Graduate Seminars

PSYCH 519(6830) Affects and Cognition (also NRE 507) Fall. 4 credits. A. M. Isen.

PSYCH 521(6210) Psychobiology (Developmental Seminar) Fall and spring. 4 credits each semester.

[PSYCH 530(6300) Representation of Structure in Vision and Language (also COGST 530[6300], LING 530[5530]) Spring. 4 credits. Offered alternate years; not offered 2005–2006. S. Edelman.]

PSYCH 550(5500) Special Topics in Cognitive Science (also COGST 550[5500]) Spring. 4 credits. M. Spivey.

PSYCH 616(6160) Modeling Perception and Cognition (also COGST/PSYCH 416[4160]) Spring. 4 credits. M. Spivey.

PSYCH 618(6180) Psychology of Music (also PSYCH 418[4180]) Spring. 4 credits. C. Krumhansl.

PSYCH 628(6280) Connectionist Psycholinguistics (also COGST/PSYCH 428[4280], LING 428/628[4428/6628]) Fall. 3 credits. Offered alternate years. M. Christiansen.

PSYCH 631(6310) Effects of Aging on Sensory and Perceptual Systems (also BIONB 421[4210], PSYCH 431[4310]) Fall. 3 or 4 credits. B. Halpern.

PSYCH 691(6910) Research Methods in Psychology (also COGST 491/691[4910/6910], PSYCH 491[4910]) Spring. 4 credits. D. Dunning.

[PSYCH 714(7140) Comparative Cognition (also COGST/PSYCH 414[4140]) Spring. 3 or 4 credits. Not offered 2005–2006.]

PSYCH 716(7160) Auditory Perception (also PSYCH 316[3160]) Fall. 4 credits. C. Krumhansl.

COLLEGE SCHOLAR PROGRAM
K. Gabard, director (55 Goldwin Smith Hall, 235-5792)
The College Scholar Program is described in the introductory section of Arts and Sciences.

COLLS 397 Independent Study
Fall or spring. 1–4 credits. Prerequisite: permission of program office.

COLLS 499 Honors Research
Fall or spring. 1–8 credits. Max. 8 credits may be earned for honors research. Prerequisite: permission of program director. Each participant must submit brief proposal approved by honors committee.

COMPARATIVE LITERATURE

COMPARATIVE LITERATURE 505

K. Gabard, director (55 Goldwin Smith Hall, 235-5792)
The College Scholar Program is described in the introductory section of Arts and Sciences.

COLLEGE SCHOLAR PROGRAM
K. Gabard, director (55 Goldwin Smith Hall, 235-5792)
The College Scholar Program is described in the introductory section of Arts and Sciences.

COLLS 397 Independent Study
Fall or spring. 1–4 credits. Prerequisite: permission of program office.

COLLS 499 Honors Research
Fall or spring. 1–8 credits. Max. 8 credits may be earned for honors research. Prerequisite: permission of program director. Each participant must submit brief proposal approved by honors committee.

COMPARATIVE LITERATURE

COMPARATIVE LITERATURE 505

The Department of Comparative Literature provides an array of courses in European as well as non-European literature. Courses stress significant authors, themes, problems, styles, genres, historical periods, and theoretical perspectives. In cooperation with related departments in the humanities, the departmental offerings reflect current interdisciplinary approaches to literary study: hermeneutics, semiotics, deconstruction, cultural criticism, Marxism, reception aesthetics, feminism, and psychoanalysis.

The Major
The major enables students to develop an integrated knowledge of Western literature, to strengthen their reading and writing abilities, and to prepare for careers demanding analytical, interpretive, and evaluative skills. Prospective majors should consult with the director of undergraduate studies. After declaring a major, a student chooses an adviser from the department's faculty. The requirements for the major are designed to allow each student to follow a course of study that combines intellectual rigor with the pursuit of personal interests. The specific contours of such a program are worked out in consultation with the student's adviser.

Requirements for the Major
1. Five courses in Comparative Literature at the 200 level and above, including the core course listed below. A student may include up to two literature courses from other departments.
2. One core course in Comparative Literature (for 2005-2006 COM L 458 [fall], COM L 415 [spring]) to be taken by all majors.

Courses

COM L 200(2000) Introduction to Comparative Literature (el also VIIST 200[2000], ENGL 292[2920]) (IV) (LA)

Spring. 4 credits. T. Murray. Introduction to modes of vision and the historical impact of visual images, visual structures, and visual space on culture, communication, and politics. Drawing on the visual traditions of both Western and non-Western societies, we examine procedures of sight (from optical machines to the psychology of vision and philosophy of aesthetics); spaces (from landscapes to maps to cities); objects (from sacred sites to illuminated books to digital art); performances (race, sexualities, ethnicities, cultures); and technologies (photography, cinema, video, and computing). Through online writing and papers, students reflect on how visual studies complicates traditional models of defining and analyzing art objects and everyday culture. Guest lecturers occasionally address the class.

Fall. 4 credits. S. Donatelli. A reading of seminal texts that represent and have shaped Western culture and hence form an essential part of the student's intellectual equipment. By evaluating and interpreting selections from the Bible, Homer, Virgil, Lady Muraski, Dante, Castiglione, and Shakespeare, students gain practice in critical reading, thinking, and writing.

COM L 202(2020) Great Books # (IV) (LA)

Spring. 4 credits. S. Donatelli. A reading of seminal texts that represent and have shaped Western culture and hence form an essential part of the student's intellectual equipment. By evaluating and interpreting selections from the Bible, Homer, Virgil, Lady Muraski, Dante, Castiglione, and Shakespeare, students gain practice in critical reading, thinking, and writing.

COM L 203(2030) Introduction to Comparative Literature (IV) (LA)

Fall. 4 credits. W. J. Kennedy. The course is designed to acquaint students with the range and variety of the field by having members of the department present those aspects that reflect their areas of expertise and their methods of teaching. Of the three meetings each week, the first generally takes the form of a lecture; the second and third is a discussion of the assigned text. Topics to be considered include uses and methods of comparison, the role of theory in literary criticism, and connections between literary study and other disciplines, including history, law, visual and film studies, and/or political and economic theory. Authors studied range from Aeschylus to Ammons, Baudelaire to Borges, Cervantes to Cézanne. Readings in English translation. Open to majors and prospective majors as well as students intending majors other than Comparative Literature.

COM L 204(2040) Global Fictions (IV) (CA)

COM L 205(2050) Introduction to Poetry (IV) (LA)

COM L 211(2110) Comedy and Humanism [also THETR 214(2140)] (IV) (LA)

Spring. 4 credits. S. Donatelli. A reading of premodern and modern texts, mostly narrative, affords an appreciation of comedy in an increasingly rationalistic and technological age. Comic wisdom and its processes are considered as a valuable aspect of the humanist inheritance through our reading of key works by Plato, Erasmus, Cervantes, Austen, Gogol, and Queneau. The philosophical dimensions of comic thought and action are explored through writings by Descartes, Vico, and several modern commentators including Freud. The course invites a speculative response to these and related topics such as laughter, the carnival, and the fool.

COM L 215(2150) Sophomore Seminar: Comparative American Literatures [also AM ST 215(2150)] (IV) (LA)

COM L 220(2200) Thinking Surrealisms [also ART H 219(2191)] (IV) (LA)

COM L 225(2250) Sophomore Seminar: Poetry and Poetics of Difference [also ENGL 225] (IV) (LA)

COM L 226(2260) Sophomore Seminar: Viewing Modern Barcelona [also SPANL 230] (IV) (CA)

Fall. 4 credits. Limited to 15 students. J. R. Resina.

For description, see SPANL 230.

COM L 227(2270) Sophomore Seminar: Life and Love in Two Languages (IV) (LA)

Fall. 4 credits. N. Melas. "The limits of my language," wrote Wittgenstein, "means the limits of my world." This course will explore the poetics and politics of the multiple worlds of those who speak, write, or live in more than one language. We will explore the circumstances by which a single language comes to
dominate large areas of the world and the strategies writers practice to maintain an edge of difference. Examining a range of writing, from literature written in second or third languages, to texts written in intertexts between dominant and subjugated languages, to immigrant texts written between languages or in variants of "global English," we will attend to the poetic strictures and possibilities.

While not restricted to sophomores, the seminars aim at initiating students into the disciplines outlook, discourse community, modes of knowledge, and ways of articulating that knowledge. Limited to 15 students.

For description, see ENGL 276.

COM L 276(2760) Desire (also ENGL 276[2760]) (IV) (LA)
Spring. 4 credits. E. Hanson
For description, see ENGL 276.

COM L 282(2820) Japanese Animation and New Media (ASIAN 282[2820], VISST 282) @ (IV) (CA)
Fall. 4 credits. T. Lamarre
For description, see ASIAN 282.

[COM L 302(3020) Literature and Theory (also COM L 622[6220], ENGL 302[620]3020[620]) (IV) (LA)]
Fall. 4 credits. Next offered fall 2000.
J. Culler.

[COM L 304(3040) Europe and Its Others: An Introduction to the Literature of Colonialism @ (IV) (LA)]
Fall. 4 credits. Not offered 2005-2006.
N. Metaxas.

COM L 306(3060) Comparative Martial Arts Film and Literature
Fall. 4 credits. P. Liu
With Kill Bill, Kung Fu Hustle, Hero, and The Matrix, martial arts has emerged as a popular visual spectacle. Comparing varied literary, bodily, and cinematic modes of martial arts performance, we will study the vocabulary, ideology, and institutional basis of each mode of representation. Along with traditional and modernist Chinese martial arts novels, we will analyze contemporary martial arts movies and novels produced in the United States and Hong Kong to understand the global history of martial arts. Topics include: origins of martial arts and martial arts cinema; kung fu as a racialized bodily performance; appropriations of kung fu in black popular culture; the culture of Bruce Lee; Japanese anime, manga, and trading card games as an alternative site of martial arts cultural production and circulation; and the relation of martial arts to women, muscle, and the gendering of the body.

COM L 310(3100) Media Studies (also GERST 315[3150]) (IV) (CA)
Spring. 4 credits. W. Kitter
For description, see GERST 315.
COM L 386(3860) Literature and Film of South Asia (also ASIAN 386[3383]) (IV) (LA)
Fall. 4 credits. A. Banerjee.
A survey of literary and filmic texts from the area encompassing present-day India, Pakistan, and Bangladesh. Discussions are organized around issues such as nation and narrative; historiography; secularism and religious nationalism; gender, marginalized and diasporic identities. All texts are English translations or subtitles. Though focused on the 20th century, the course engages epic and folkloric discourses in context. Students studied range from canonical figures of Rabindranath Tagore, M. K. Gandhi, Ismat Chughtai, and Sadat Hasan Manto to contemporary literary pioneers such as Mahasweta Devi, Kishwar Naheed, K. R. Ananthamurthy, and Taslima Nasreen. Films include auteur and independent cinema, Bombay potboilers, and documentaries.

COM L 387(3870) 20th-Century Black Cultural Movements (also COM L 690[6900], AS&RC 332[352][3201/6202]) (IV) (CA)
Fall. 4 credits. A. Adams.
For description, see AS&RC 332.

COM L 388(3890) Theorizing Gender and Race in Asian Histories and Literatures with a Particular Focus on Japanese Cases (also COM L 688[6880], ASIAN 388[3883][3386][6386]) (IV) (CA)
Fall. 4 credits. N. Sakai.
For description, see ASIAN 388.

COM L 400(4000) Forms of the Novel
Fall. 4 credits. P. Liu.
The aim of this course is to introduce students to the major arguments in “novel theory” and the problems novel theory poses for cross-cultural studies of literature. Organized around three central units—history, form, and ideology of the novel—this course will examine (1) the historical rise of the novel and changing conceptions of private life; (2) the representations and generic conventions of the novel as a unique mode of narrative; and (3) the historically contingent character of literary forms—that is, the extent to which formal innovations are predicated of the ideological strategies and generic conventions of the novel as a unique mode of narrative and the way that new forms are adopted, modified, and reproduced by the forms themselves. We will consider the major claims advanced by novel theorists against both western and non-western literary examples.

COM L 401(4101) Open Secrets: Studies in Narrative (also ENGL 401[4101])
Fall. 4 credits. Limited to 15 students. A. Francois.
How do literary and filmic texts disclose and simultaneously keep their secrets? This course examines the role of secrets in producing and blocking narrative and dramatic movement, and in releasing and withholding meaning. Particular attention is given to secrets such as the gay closet or racial passing that seem to occur “in plain sight,” like Poe’s “Purloined Letter.” In comparing tragedies, films, case histories, novels, and short stories, we discuss the role of narrative and confessional acts in the construction, circulation and concealment of public and private identities, marked and unmarked by gender, sexual identity, race, or class. We also critically examine the implied analogies between interpretation and detective work, and between reading and religious election. What distinguishes interpretive “insight” from naïve reading? What role does irony play in defining the relationships between “blind” characters and “perceptive” readers? Authors read include Sophocles, Lafayette, Kleist, Poe, Melville, James, Larsen, and Freud.

COM L 403(4030) Writing America Past 9/11 (also GERST 403[4031], ENGL 406[4103], GOVT 410[4105]) (II or IV) (CA)
Spring. 4 credits. P. Gilgen.
For description, see GERST 403.

COM L 404(4040) Troubodours and Heretics (also S HUM 408)
Fall. 4 credits. Limited to 15 students. R. Klein.
For description, see S HUM 408.

COM L 407(4070) The Literature of Imperialism (also S HUM 403, ENGL 448[4480])
Spring. 4 credits. Limited to 15 students. W. Cohen.
For description, see S HUM 403.

COM L 410(4100) Science, Technology, and Culture Science (also S&T 412[4120], VISST 412[4120])
Fall. 4 credits. A. Banerjee.
A study of the role scientific theories and technological innovations play in the production and conceptualization of culture. While the course considers contemporary phenomena that are changing the very ways we live and think artificial intelligence or genetic engineering, for instance it does not ignore insights and inventions whose transformative powers we may no longer recognize, such as evolution and relativity, electricity and aviation. We will develop a critical analysis of the relationship between techno-scientific and culture by reading and viewing four different categories of texts side by side: literary/visual (from western and eastern Europe, and the U.S.); scientific/technological; philosophical; and selected historical documents and commentary. Discussions will focus on the crucial junctures when science and technology powerfully transform languages and privileged indices not only of knowledge and power, but also creativity and identity.

COM L 413(4130) Death, Culture, and the Literary Monument (IV)

COM L 415(4150) The Theory and Analysis of Narrative (IV) (LA)

COM L 416(4160) Kafka In/On Translation (also GERST 416[4160]) (IV) (LA)

COM L 418(4180) Discourses of Reality (also GERST 418[4180]) (IV) (LA)
Fall. 4 credits. D. Fore.
For description, see GERST 418.

COM L 419-420(4190-4200) Independent Study
Spring, fall. 420, spring. Variable credit. COM L 419 and 420 may be taken independently of each other. Applications available in 247 Goldwin Smith Hall.

COM L 422(4220) Literature and Oblivion
Spring. 4 credits. Core course for majors. Limited to 15 students. N. Melas.
The monumental aspirations of literature to immortality date back as far as the earliest epic. This course will attempt a critical study of the powers of art against oblivion. We will start with the paradox whereby all language and especially poetic language necessarily destroys that which it seeks to preserve, just as a monument substitutes and thus overwhelms the very loss it commemorates. Since Art’s monumentality sets it against the contingencies of history, a central concern will be the relation of art to history, particularly when art’s negations encounter powerful worldly negations, such as those surrounding gender difference and colonial domination. Framed by Homer’s Iliad and Derek Walcott’s “postcolonial” Caribbean epic Omeros, the readings will also be a comparative exercise in reading across time and space and will include theoretical texts (Plato, Hegel, Nietzsche, Blanchot, Benjamin, Patterson) alongside literature. Particular attention in course time and writing assignments will be directed to improving critical writing skills.

COM L 424(4240) New Testament Seminar (also RELST 420(4260)) (IV) (HA)
Spring. 4 credits. Limited to 20 students. C. Carmichael.

COM L 427(4240) The Totalitarian Order: Vision and Critique (also GERST 424[4240]) (IV) (CA)
Fall. 4 credits. P. Holthendahl.
For description, see GERST 424.

COM L 428(4280) Biblical Seminar (also RELST 427[4280]) (IV) (HA)
Fall. 4 credits. Limited to 15 students. C. Carmichael.
A study of how biblical ethical and legal rules (in Exodus, Leviticus, and Deuteronomy) comment on incidents in the biblical narratives (Genesis–2 Kings). The link between law and narrative enables us to observe in detail how ancient thinkers evaluate ethical and legal problems of perennial interest.

COM L 429(4290) Postcolonial Poetry and the Poetics of Relation (also ENGL 484/685, FRLIT 435/635, SPANL 435/635)
Spring. 4 credits. Limited to 15 students. J. Monroe.
Focusing on postcolonial theory, poetry, and poetics of the past several decades, this seminar explores in particular the idea of a “poetics of relation,” with attention especially to questions of language, identity, and community in a range of innovative poetic practices from the United States, the Caribbean, and Latin and South America. All texts not originally written in English are available in English translation. Students with knowledge of French and/or Spanish work.

COM L 422(4220) Literature and Oblivion
Spring. 4 credits. Core course for majors. Limited to 15 students. N. Melas.
The monumental aspirations of literature to immortality date back as far as the earliest epic. This course will attempt a critical study of the powers of art against oblivion. We will start with the paradox whereby all language and especially poetic language necessarily destroys that which it seeks to preserve, just as a monument substitutes and thus overwhelms the very loss it commemorates. Since Art’s monumentality sets it against the contingencies of history, a central concern will be the relation of art to history, particularly when art’s negations encounter powerful worldly negations, such as those surrounding gender difference and colonial domination. Framed by Homer’s Iliad and Derek Walcott’s “postcolonial” Caribbean epic Omeros, the readings will also be a comparative exercise in reading across time and space and will include theoretical texts (Plato, Hegel, Nietzsche, Blanchot, Benjamin, Patterson) alongside literature. Particular attention in course time and writing assignments will be directed to improving critical writing skills.

COM L 424(4240) New Testament Seminar (also RELST 420(4260)) (IV) (HA)
Spring. 4 credits. Limited to 20 students. C. Carmichael.

COM L 427(4240) The Totalitarian Order: Vision and Critique (also GERST 424[4240]) (IV) (CA)
Fall. 4 credits. P. Holthendahl.
For description, see GERST 424.

COM L 428(4280) Biblical Seminar (also RELST 427[4280]) (IV) (HA)
Fall. 4 credits. Limited to 15 students. C. Carmichael.
A study of how biblical ethical and legal rules (in Exodus, Leviticus, and Deuteronomy) comment on incidents in the biblical narratives (Genesis–2 Kings). The link between law and narrative enables us to observe in detail how ancient thinkers evaluate ethical and legal problems of perennial interest.

COM L 429(4290) Postcolonial Poetry and the Poetics of Relation (also ENGL 484/685, FRLIT 435/635, SPANL 435/635)
Spring. 4 credits. Limited to 15 students. J. Monroe.
Focusing on postcolonial theory, poetry, and poetics of the past several decades, this seminar explores in particular the idea of a “poetics of relation,” with attention especially to questions of language, identity, and community in a range of innovative poetic practices from the United States, the Caribbean, and Latin and South America. All texts not originally written in English are available in English translation. Students with knowledge of French and/or Spanish work.
A study of the contrasting autobiographies (beginning with the fact that one is in prose and the other in poetry) written at the turn of the 18th century by Jean-Jacques Rousseau and William Wordsworth, and other texts which reveal, in spite of great differences in genre and subject matter, their common concerns, such as memory, poetic language, and the significance of literature. Writing requirements: two ten-page papers, short writing assignments, oral presentation. Some knowledge of French recommended but not required.

In the age of globalization and the World Wide Web, what's become of such familiar distinctions as the "traditional" and the "experimental," the "mainstream" and the "alternative." How does contemporary poetry situate itself among competing discourses (e.g., fiction, film, electronic media)? How are we to understand its evolving public spheres and its relationship to the central cultural and historical developments of our time? What is the role of the poet? The critic? What is the role of the composer? The consumer? How do we describe contemporary poetry and poetry with particular emphasis on discussions of writing and literature. Reading knowledge of French is required, although most of the texts are available in English.

This course explores a productive tension between two critical concepts that have recently entered critical dialogue ... as well as a capacity to form ties with social beings outside biologically and sexually regulated networks. Embodiment

COM L 480(4800) Baudelaire in Context
(also COM L 680(6800), FRLIT 480(4800)) # (IV) (LA)

COM L 481(4810) Studies in Gender Theory: Kinship and Embodiment
(also FGSS 480(4800))
Spring. 4 credits. Limited to 15 students.
P. Liu.

This course explores a productive tension between two critical concepts that have recently entered critical dialogue again to constitute a re-orientation of gender theory: "kinship" and "embodiment." This course, kinship designates both a socially determinate system of organizing individuals and resources as well as a capacity to form ties with social beings outside biologically and sexually regulated networks. Embodiment refers to the process whereby one's body materializes in language, acquires its contours of visibility and intelligibility, becomes an object of consciousness, comes to define the boundaries between self and other. With the help of literary works, we will explore why and how kinship and embodiment should be thought of as one question in recent theoretical discourse and what implications this formulation has for a theory of gender specifically.

COM L 482(4820) Latin American Women Writers (also SPANL 492,
FGSS 492(4920)) @ (IV) (LA)
Fall. 4 credits. Not offered 2005-2006.
D. Castillo.

COM L 486(4860) Contemporary Poetry and Poetics
(also ENGL 488(4880),
FRLIT 435, SPANL 474) (IV) (LA)
Fall. 4 credits. Taught every other fall.
J. Monroe.
Danrosch, Spivak); discussions of comparative method in the humanities and social sciences (Anderson, Tilley, Harootunian); philosophical and theoretical meditations (Lycord, Nancy, Deleuze-Guattari, Fanon, Glissant); selected literary texts.

COM L 611(6110) Sexuality and the Politics of Representation (also FILM 610[6100])
Spring. 4 credits. A. Villarejo.
For description, see FILM 610.

COM L 613(6130) Spaces in Literature (also GERST 616[6160])
Fall. 4 credits. A. Schwarz.
For description, see GERST 616.

COM L 616(6160) Translation Theory (also ASIAN 616, VISST 619[6169])
Spring. 4 credits. B. deBary.
For description, see ASIAN 616.

COM L 619-620(6190-6200) Independent Study
619, fall; 620, spring. Variable credit. COM L 619 and 620 may be taken independently of each other. Applications available in 247 Goldwin Smith Hall.

COM L 621(6210) The Arabic Literary Heritage: History and Literary Theory (also NES 377/677, COM L 321[3210])
Spring. 4 credits. S. Toorawa.
For description, see NES 377.

COM L 622(6220) Literature and Theory (also COM L 302[3020], ENGL 322[3220], COM/GERST 322[3220])
Fall. 4 credits. Next offered 2006. J. Culler.

COM L 628(6280) Lyric Poetry (also ENGL 628[6280])
Fall. 4 credits. J. Culler and D. Fried.
For description, see ENGL 628.

COM L 630(6300) Aesthetics in the 18th Century (also ENGL 630[6300])
Fall. 4 credits. N. Saccamano.
For description, see ENGL 630.

COM L 631(6310) Politics and the Passions: Hobbes to Rousseau (also ENGL 631[6310])

COM L 633(6330) Theories of Language (also GERST 633[6330])
Spring. 4 credits. W. Kitiler.
For description, see GERST 633.

COM L 634(6340) Deleuze and Lyotard: Aesthetics (also ENGL 629[6290], FRLIT 672[6720], VISST 634[6340])
Fall. 4 credits. T. Murray.
The course will discuss the aesthetic, political, and cultural implications of the writings of French philosophers, Gilles Deleuze and Jean-François Lyotard. Their differing approaches to the excess of aesthetics and artistic practice helped shape influential theories of space, figuration, and time that continue to influence discussions of postmodernism, minority writing, terrorism, social justice, and global memory. Crucial to their work is the value of artistic practice and analysis to the overall project of understanding an aesthetics of engagement. Particularly important to both is the importance of technological and electronic innovations in cinema, painting, video, and new media to the theorization of social subjectivity in a global age, particularly on the edge of abstraction. We will spend time comparing and contrasting their discussion of artistic concepts and projects in texts such as Cinema 1, Cinema 2, The Fold, Francis Bacon: The Logic of Sense, Difference and Repetition by Deleuze; Discourse/Figure, What’s Proper to Theatre, The Inhuman, The Differend, Jacques Monory by Lyotard. Students will be asked to engage in regular online commentaries and to produce two 10-15 page papers or one thirty page term paper. Options will be made available for alternate engagement with artistic practice or multimedia expression.

COM L 635(6350) Postcolonial Poetry and the Poetics of Relation (also ENGL 685, FRLIT 635, SPANL 635)
Spring. 4 credits. Limited to 15 students. J. Monroe.
Focusing on postcolonial theory, poetry, and poetics of the past several decades, this seminar explores in particular the idea of a "poetics of relation," with attention especially to questions of language, identity, and community in a range of innovative poetic practices from the United States, the Caribbean, and Latin and South America. All texts not originally written in English are available in English translation. Students will develop knowledge of French and/or Spanish work in the original as well as course materials written in these languages. Authors include Giorgio Agamben, Will Alexander, Homi Bhabha, Kamau Brathwaite, Aime Cesaire, Theres Haki Kung, Franz Fanon, Eduard Glissant, Nicola Guillen, Joy Harjo, Jean-Luc Nancy, Nicanor Parra, Gayatri Spivak, Cecelia Vicuna, Rosmarie Waldrop, Derek Walcott, and Raul Zurita.

COM L 636(6360) Comparative Modernisms/Alternative Modernities (also GERST 651, ART H 651[6510], VISST 650[6500])
Spring. 4 credits. P. Gilgen.
For description, see GERST 651.

COM L 639(6390) Islamic Spain: Culture and Society (also COM L/RELST 334[3340], JWST 339[3539], NES/SPANL 339[3539])
Spring. 4 credits. R. Brann.
For description, see NES 339.

COM L 641(6410) Derrida, Writing, and the Institution of Literature (also COM L 441[4410], ENGL 441[4410], 442[4420])
Spring. 4 credits. J. Culler.
For description, see COM L 441.

COM L 643(6430) Poetry and Poetics of Translation (also COM L/GERST 439[4390], ENGL 641[6410], ROM S 439[639])

COM L 644(6440) Judaism and Modernism (also ENGL 683[6830])

COM L 645(6450) Rousseau and Rhetorical Reading (also COM L 444[4440], ENGL 442[4420])

COM L 650(6500) Renaissance Poetry (also COM L 450[4500], ENGL 622[6220], ITALT 450[650])

COM L 652(6520) Renaissance Humanism (also COM L 452[4520])

COM L 661(6610) Romantic Drama (also ENGL 440/644[4440/6440], COM L 440[4440])
Fall. 4 credits. R. Parker.
For description, see ENGL 440.

COM L 663(6630) Nietzsche and Heidegger (also GERST 663[6630])
Fall. 4 credits. G. Waite.
For description, see GERST 663.

COM L 665(6650) The Literature of Empire in the Renaissance (also ENGL 626[626])

COM L 667(6670) Poetry and Rhetoric (also COM L 467[6670], ENGL 663[6630], 668[6680], FRLIT 637[637])
Fall. 4 credits. Not offered 2005-2006. C. Chase.

COM L 668(6680) Theorizing Gender and Race in Asian Histories and Literatures with a Particular Focus on Japanese Cases (also COM L 398[3980], ASIAN 388/688[3388/6688])
Fall. 4 credits. N. Sakai.
For description, see ASIAN 688.

COM L 670(6700) Fascist Culture (also ITALT 495/695[4950/6950], COM L 495[4950])
Fall. 4 credits. T. Campbell.
For description, see ITALT 495.

COM L 671(6710) Transnational Imaginaries: Globalization and Culture
Fall. 4 credits. Limited to 15 students. Prerequisite: advanced undergraduates and graduates. Not offered 2005-2006. N. Melas.

COM L 673(6730) Topics in Modern European Intellectual and Cultural History (also HIST 673[6730], JWST 674)
Fall. 4 credits. D. LaCapra.
For description, see HIST 673.

COM L 674(6740) Contemporary Poetry and Poetics
Fall. 4 credits. Next taught fall 2006 (every other fall). J. Monroe.

COM L 675(6750) Critical Passages (also ENGL 675[6750])
Spring. 4 credits. A. Francois.
For description, see ENGL 675.

COM L 677(6770) Systems Theory and the Function of Art (also GERST 659)
Fall. 4 credits. P. Gilgen.
For description, see GERST 659.

COM L 678(6780) Politics and Theology (also ENGL 663[6630], FRLIT 675)
Spring. 4 credits. T. McNulty.
For description, see FRLIT 675.
COMPUTER SCIENCE 511

COMPUTER SCIENCE

The Department of Computer Science is affiliated with both the College of Arts and Sciences and the College of Engineering. Students in either college may major in Computer Science. For details, visit our web site at www.cs.cornell.edu/ugrad.

The Major

CS majors take courses in algorithms, data structures, logic, programming languages, scientific computing, systems, and theory. Electives in artificial intelligence, computer graphics, computer vision, databases, multimedia, and networks are also possible.

Requirements include:

- three semesters of calculus (MATH 111–122 (or 112)–221 or 191–192–294)
- two semesters of introductory computer programming (COM S 100 and 211)
- a 1-credit project (COM S 212)
- a seven-course Computer Science core (COM S 280, 312, 314; one of 321, 322, 421, or 428; 381, 414, and 482)
- two 400+ Computer Science electives, totaling at least 6 credits (COM S 490 not allowed)
- a Computer Science project course (COM S 413, 415, 419, 433, 468, 473, 501, 514, or 664)
- a mathematical elective course (e.g., ENGRD 270, MATH 293, MATH 300+, TAM 310)
- two 300+ courses that are technical in nature and total at least 6 credits
- a three-course specialization in a topic area other than Computer Science. These courses must be numbered 300 level or greater.

Note: All of the field electives described above must be courses of 3 or more credit hours with the exception of the COM S project course, which is 2 credits or more.

The program is broad and rigorous, but it is structured in a way that supports in-depth study of outside areas. Intelligent course selection can set the stage for graduate study and employment in any technical area and any professional area such as business, law, or medicine. With the adviser, the Computer Science major is expected to put together a coherent program of study that supports career objectives and is true to the aims of liberal education.

Admission

All potential affiliates are reviewed on a case-by-case basis relative to the following criteria:

- a grade of C or better in all COM S courses and MATH courses
- a GPA of 2.5 or better in COM S 211, 212, and 280
- a GPA of 2.5 or better in MATH 112, 192, or COM S 280

Courses used in the affiliation GPA computations may be repeated if the original course grade was below a C. The most recent grade will be used for all repeated courses. Qualifying courses must be taken at Cornell.

Departmental honors in Computer Science is granted to students who have maintained a cumulative GPA greater than or equal to 3.5 and completed a set of coherent courses and research activities that satisfy the following requirements:

- at least one COM S course (at least 1 credit hours), at or above the 500 level with a grade of A- or better; no seminars
- at least two semester-long 3-credit courses of COM S 490 (Independent Research) with a COM S faculty member, with grades of A- or better each semester

Latin Designations (appended to the degree), awarded by the field of Computer Science for all who qualify as stated above, are based on the final cumulative GPA, as follows:

- cum laude, 3.50 or above
- magna cum laude, 3.75 or above
- summa cum laude, 4.00 or above

Note: Honors courses may not be used to satisfy the COM S 400+ elective requirement, the COM S project requirement, the math elective, the technical electives, or the specialization. See the COM S undergraduate web site for more information on eligibility: www.cs.cornell.edu/ugrad.

Computing in the Arts Undergraduate Concentration

A concentration in Computing in the Arts with an emphasis on computer science is available both to Computer Science majors and to students majoring in other subjects. For more information, see pages 514-515.

Courses

For complete course descriptions, see "Computer Science" under "Computing and Information Science (CIS)."

COM S 099(1109) Fundamental Programming Concepts
Fall, summer. 2 credits. Freshmen only. Prerequisites: none. S-U grades only.

COM S 100(1110, 1112) Introduction to Computer Programming (II) (MGR)
Fall, spring, summer. 4 credits. During the fall and spring semesters, two versions of COM S 100 (COM S 100J and COM S 100K) are available as described in the "Computing and Information Science (CIS)" section.

COM S 101(1710) Introduction to Cognitive Science (also COGST 101(1101), LING 170(1170), PHIL 191(1910), PSYCH 102(1200))(III)
(KCM)
Fall, summer. 3 credits. For description, see COGST 101.

COM S 113(2000) Introduction to C
Fall, spring. Usually weeks 1-4. 1 credit. Prerequisite: COM S 100 or equivalent programming experience. Credit granted for both COM S 113 and 213 only if 113 taken first. S-U grades only.

COM S 114(2006) Unix Tools
Fall, usually weeks 5-8. 1 credit. Prerequisite: COM S 100 or equivalent programming experience. Recommended: knowledge of at least one programming language. S-U grades only.

COM S 130(1300) Introductory Design and Programming for the Web (also INFO 130[1300])
Fall. 3 credits. Prerequisites: none. No computer background necessary.

COM S 165(1610) Computing in the Arts (also ART 170, CIS 165[1610], MUSIC 165, PSYCH 165[1650])
Spring. 3 credits. Recommended: good comfort level with computers and some of the arts.

COM S 167(1620) Visual Imaging in the Electronic Age (also ART 170, CIS 167[1620], ENGR 187[1670])
Spring. 3 credits. For description, see ART 170.
COM S 172(1700) Computation, Information, and Intelligence (also COGST 172, ENGR 172(1700), INFO 172(1700)) (II) (MQR)
Fall. 3 credits. Prerequisite: some knowledge of differentiation, permission of instructor for students who have completed equivalent of COM S 100.

COM S 201(2710) Cognitive Science in Context Laboratory (also COGST 201, PSYCH 201[2010]) (III) (KCM)
Fall or spring. 3 credits. Limited to 24 students. Recommended: concurrent or prior registration in PSYCH 102/COGST 101/COM S 101/LING 170/PHIL 191.
Knowledge of programming languages not assumed.
For description, see COGST 201.

COM S 211(2110) Computers and Programming (also ENGRD 211[2110]) (II) (MQR)
Fall, spring, 3 credits. Prerequisite: COM S 100 or equivalent course in Java or C++.

COM S 212(2111) Java Practicum
Fall, spring. 1 credit. Pre- or corequisite: COM S/ENGRD 211. Letter grades only.

Fall or spring. 2 credits. Prerequisite: COM S 100 or equivalent programming experience. Students who plan to take COM S 113 and 213 must take 113 first. S-U grades only.

Spring, usually weeks 5-8. 1 credit. Prerequisite: COM S 114 or equivalent. S-U grades only.

COM S 215(2004) Introduction to C #
Fall, spring, usually weeks 5-8. 1 credit. Prerequisite: COM S/ENGRD 211 or equivalent experience. S-U grades only.

COM S 230(2300) Intermediate Design and Programming for the Web (also INFO 230[2300])
Spring. 3 credits. Prerequisite: COM S S-U grades only.

Fall. 3 credits. Prerequisite: COM S 100 or permission of instructor.

COM S 312(3110) Data Structures and Functional Programming (II) (MQR)
Fall, spring. 4 credits. Prerequisite: COM S 211/212 or equivalent programming experience. Should not be taken concurrently with COM S 314.

COM S 314(3420) Computer Organization (also ECE 314[3140])
Fall, spring. 4 credits. Prerequisite: COM S 211 or ENGRD 230. Should not be taken concurrently with COM S 312.

COM S 321(3510) Numerical Methods in Computational Molecular Biology (also BIOBM 321[3210], ENGRD 321[3210]) (II) (MQR)
Fall. 3 credits. Prerequisite: at least one course in calculus (e.g., MATH 106, 111, or 191) and course in linear algebra (e.g., MATH 221 or 294 or ITRY 417); COM S 100 or equivalent and some familiarity with iteration, arrays, and procedures; knowledge of discrete probability and random variables at the level of COM S 280. COM S majors and minors may use only one of the following toward their degree: COM S 321, 322, or 421. Offered odd-numbered years.

COM S 322(3220) Introduction to Scientific Computation (also ENGRD 322[3220])
Spring, summer. 3 credits. Prerequisites: COM S 100 and MATH 221 or 294, knowledge of discrete probability and random variables at the level of COM S 280. COM S majors and minors may use only one of the following toward their degree: COM S 321, 322, or 421.

COM S 324(3470) Computational Linguistics (also COGST 424[4240], LING 424[4242]) (II) (MQR)
Fall or spring. 4 credits. Prerequisites: LING 203. Labs involve work in UNIX environment; COM S 114 recommended. For description, see LING 424.

COM S 330(3300) Applied Database Systems (also INFO 330[3300])
Fall. 3 credits. Prerequisite: COM S/ENGRD 211. COM S majors may use only one of the following toward their degree: COM S/INFO 330 or COM S 433.

COM S 381(3810) Introduction to Theory of Computing
Fall, summer. 3 credits. Prerequisite: COM S 280 or permission of instructor. Credit not granted for both COM S 381 and 481; corrective transfers between COM S 381 and 481 (in either direction) encouraged during first few weeks of instruction.

COM S 400(4150) The Science of Programming
Fall. 3 credits. Prerequisite: COM S 211. Not offered every year.

COM S 401(4110) Programming Languages and Logics
Fall. 4 credits. Prerequisite: COM S 312 or permission of instructor. Not offered every year.

COM S 412(4120) Introduction to Compilers
Spring. 3 credits. Prerequisites: COM S 312 (or permission of instructor) and 314. Corequisite: COM S 413.

COM S 413(4121) Practicum in Compilers
Spring. 2 credits. Corequisite: COM S 412. A compiler implementation project related to COM S 412.

COM S 414(4410) Systems Programming and Operating Systems
Fall, spring, summer. 3 credits. Prerequisite: COM S 211, 212, 312 (or permission of instructor), and 314. Corequisite: COM S 415 in spring only.

COM S 415(4411) Practicum in Operating Systems
Spring. 2 credits. Corequisite: COM S 412. A compiler implementation project related to COM S 412.

COM S 416(4420) Computer Architecture (also ECE 475)
Fall. 4 credits. Prerequisites: ENGRD 230 and COM S/ECE 314. For description, see ECE 475.

COM S 419(4450) Computer Networks
Spring. 4 credits. Prerequisite: MATH 319.

COM S 421(4210) Numerical Analysis
Fall. 4 credits. Prerequisites: MATH 221 or 294 or equivalent, one additional mathematics course numbered 300 or above, and knowledge of programming. COM S majors and minors may use only one of the following toward their degree: COM S 321, 322, or 421.

COM S 426(4520) Introduction to Bioinformatics
Fall. 4 credits. Prerequisites: COM S/INFO 230, COM S 280.

COM S 428(4510) Introduction to Computational Biophysics
Fall. 3 credits. Prerequisites: COM S 100, GHEM 211 or equivalent, MATH 221, 293, or 294, PHYS 112 or 213, or permission of instructor. Recommended: BIOM 330. Offered even-numbered years.

COM S 430(4300) Information Retrieval (also INFO 430[4300])
Fall. 3 credits. Prerequisite: COM S 211 or equivalent.

COM S 431(4302) Web Information Systems (also INFO 431[4302])
Spring. 3 credits. Prerequisites: COM S 211 and some familiarity with web site technology.

COM S 432(4320) Introduction to Database Systems
Fall. 3 credits. Prerequisites: COM S 312 (or 211, 212, and permission of instructor).

COM S 433(4321) Practicum in Database Systems
Fall. 2 credits. Prerequisite: COM S 432 or coregistration in COM S 432. COM S majors may use only one of the following toward their degree: COM S/INFO 330 or COM S 453.

COM S 465(4620) Computer Graphics I (also ARCH 374)
Fall. 4 credits. Prerequisite: COM S/ENGRD 211. May not be taken for credit after completion of COM S 417.

COM S 467(4630) Computer Graphics II
Spring. 3 credits. Prerequisite: COM S 465.

COM S 468(4631) Computer Graphics Graphics
Spring. 2 credits. Prerequisite: COM S 465. Corequisite: COM S 467.

COM S 472(4700) Foundations of Artificial Intelligence
Fall. 3 credits. Prerequisites: COM S 211 and 280 (or equivalent).

COM S 473(4701) Practicum in Artificial Intelligence
Fall. 2 credits. Corequisite: COM S 472.

COM S 474(4740) Introduction to Natural Language Processing (also COGST 474, LING 474[4474])
Fall or spring. 4 credits. Prerequisite: COM S 211.

COM S 478(4780) Machine Learning
Spring. 4 credits. Prerequisites: COM S 280, 312, and basic knowledge of linear algebra and probability theory.

COM S 480(4870) Introduction to Cryptology (also MATH 355[3350])
Fall. 3 credits. Prerequisites: MATH 280 or equivalent, one additional mathematics course numbered 300 or above, and knowledge of programming. COM S majors and minors may use only one of the following toward their degree: COM S 321, 322, or 421.

COM S 482(4870) Introduction to Cryptology (also MATH 355[3350])
Fall. 3 credits. Prerequisites: MATH 280 or equivalent, one additional mathematics course numbered 300 or above, and knowledge of programming. COM S majors and minors may use only one of the following toward their degree: COM S 321, 322, or 421.

COM S 486(4870) Introduction to Cryptology (also MATH 355[3350])
Fall. 3 credits. Prerequisites: MATH 280 or equivalent, one additional mathematics course numbered 300 or above, and knowledge of programming. COM S majors and minors may use only one of the following toward their degree: COM S 321, 322, or 421.

COM S 488(4870) Introduction to Cryptology (also MATH 355[3350])
Fall. 3 credits. Prerequisites: MATH 280 or equivalent, one additional mathematics course numbered 300 or above, and knowledge of programming. COM S majors and minors may use only one of the following toward their degree: COM S 321, 322, or 421.
COM S 481(4810) Introduction to Theory of Computing
Fall. 4 credits. Prerequisite: COM S 280 or permission of instructor. Credit not granted for both COM S 381 and 481.

COM S 482(4820) Introduction to Analysis of Algorithms
Spring or summer. 4 credits. Prerequisites: COM S 280 and 312.

COM S 483(4812) Quantum Computation
Fall. 2 credits. Prerequisite: familiarity with theory of vector spaces over complex numbers. Not offered every year.
For description, see PHYS 481.

COM S 486(4860) Applied Logic (also MATH 466(4660)) (II) (MQR)
Fall or spring. 4 credits. Prerequisites: MATH 222 or 294, COM S 280 or equivalent (e.g., MATH 332, 432, 434, 481), and some additional course in mathematics or theoretical computer science.

COM S 490(4999) Independent Reading and Research
Fall, spring. 1–4 credits.

COM S 501(5150) Software Engineering
Spring. 4 credits. Prerequisite: COM S 211 or equivalent experience programming in Java or C++.

COM S 513(5430) System Security
Fall. 4 credits. Prerequisites: COM S 414 or 419 and familiarity with JAVA, C, or C++ programming languages.

COM S 514(5410) Intermediate Computer Systems
Spring. 4 credits. Prerequisite: COM S 414 or permission of instructor.

COM S 516(5420) Parallel Computer Architecture (also ECE 572)
Spring. 4 credits. Prerequisite: ECE 475. For description, see ECE 572.

COM S 522(5220) Computational Tools and Methods for Finance
Spring. 4 credits. Prerequisites: programming experience (e.g., C, FORTRAN, or MATLAB) and some knowledge of numerical methods, especially numerical linear algebra. Not offered every year.

COM S 530(5300) The Architecture of Large-Scale Information Systems (also INFO 530(5300))
Spring. 4 credits. Prerequisite: COM S/INFO 330 or COM S 432.

COM S 565(5640) Computer Animation (also ART 273, CIS 565(5640))
Fall. 4 credits. Prerequisite: none. For description, see ART 273.

COM S 566(5642) Advanced Animation (also ART 372/CIS 566(5642))
Spring. 4 credits. Prerequisite: none. For description, see ART 372.

COM S 572(5722) Heuristic Methods for Optimization (also CEE 509(5090), CIS 572(5722), OR&E 533(5340))
Fall. 3 or 4 credits. Prerequisites: COM S/ENGRD 211 or 322 or CEE/ENGRD 241, or graduate standing, or permission of instructor. Not offered every year.
For description, see CEE 509.

COM S 578(5780) Empirical Methods in Machine Learning and Data Mining
Fall. 4 credits. Prerequisites: COM S 280 and 312 or equivalent.

COM S 611(6110) Advanced Programming Languages
Fall. 4 credits. Prerequisite: graduate standing or permission of instructor.

COM S 612(6120) Compiler Design for High-Performance Architectures
Spring. 4 credits. Prerequisites: COM S 314 and 412 or permission of instructor.

COM S 614(6410) Advanced Systems Design
Fall or spring. 4 credits. Prerequisite: COM S 414 or permission of instructor.

COM S 615(6460) Peer-to-Peer Systems
Fall or spring. 4 credits. Recommended: COM S 614.

COM S 619(6450) Advanced Computer Networks
Fall. 4 credits. Prerequisites: COM S 419 or 519, or permission of instructor. Not offered every year.

COM S 621(6210) Matrix Computations
Fall. 4 credits. Prerequisites: MATH 411 and 431 or permission of instructor.

COM S 622(6220) Numerical Optimization and Nonlinear Algebraic Equations
Spring. 4 credits. Prerequisite: COM S 621. Offered odd-numbered years.

COM S 624(6240) Numerical Solution of Differential Equations
Spring. 4 credits. Prerequisites: exposure to numerical analysis (e.g., COM S 421 or 621), differential equations, and knowledge of MATLAB. Offered even-numbered years.

COM S 626(6510) Computational Molecular Biology
Spring. 4 credits. Prerequisites: familiarity with linear programming, numerical solutions of ordinary differential equations, and nonlinear optimization methods.

COM S 628(6522) Biological Sequence Analysis
Spring. 4 credits. Prerequisites: none.

COM S 630(6300) Representing and Accessing Digital Information (also INFO 630(6300))
Spring. 4 credits. Prerequisites: basic knowledge of linear algebra and probability theory, basic programming skills.

COM S 632(6320) Database Systems
Spring. 4 credits. Prerequisite: COM S 432/435 or permission of instructor.

COM S 633(6322) Advanced Database Systems
Spring. 4 credits.

COM S 664(6670) Machine Vision
Fall. 4 credits. Prerequisites: undergraduate-level understanding of algorithms and MATH 221 or equivalent.

COM S 665(6620) Advanced Interactive Graphics
Fall or spring. 4 credits. Prerequisites: COM S 465 and 467 or equivalent and undergraduate-level understanding of algorithms, probability and statistics, vector calculus, and programming. Not offered every year.

COM S 667(6630) Physically Based Rendering
Fall or spring. 4 credits. Prerequisites: COM S 465 and 467 or equivalent and undergraduate-level understanding of algorithms, programming, and vector calculus.

COM S 671(6762) Introduction to Automated Reasoning
Fall or spring. 4 credits. Prerequisite: COM S 611 and graduate standing or permission of instructor. Not offered every year.

COM S 672(6700) Advanced Artificial Intelligence
Spring. 4 credits. Prerequisite: COM S 472 or permission of instructor.

COM S 673(6724) Integration of Artificial Intelligence and Operations Research (also CIS 673(6724))
Spring. 3 credits.

COM S 674(6740) Natural Language Processing
Spring. 3 credits. Prerequisite: COM S 472 or permission of instructor. COM S 474 is not a prerequisite. Not offered every year.

COM S 676(6764) Reasoning about Knowledge
Fall 4 credits. Prerequisites: mathematical maturity and acquaintance with propositional logic. Not offered every year.

COM S 677(6766) Reasoning about Uncertainty
Fall. 4 credits. Prerequisites: mathematical maturity and acquaintance with propositional logic. Not offered every year.

COM S 678(6780) Advanced Topics in Machine Learning
Spring. 4 credits. Prerequisites: COM S 478 or equivalent, or COM S 578 or equivalent, or permission of instructor. Not offered every year.

COM S 681(6820) Analysis of Algorithms
Fall. 4 credits. Prerequisite: COM S 482 or graduate standing.

COM S 682(6810) Theory of Computing
Spring. 4 credits. Prerequisite: COM S 381 or 481 and COM S 482 or 681 or permission of instructor.

COM S 683(6822) Advanced Design and Analysis of Algorithms
Spring. 4 credits. Prerequisite: COM S 681 or permission of instructor. Not offered every year.
COM S 684(6840) Algorithmic Game Theory
Fall or spring. 4 credits. Prerequisite: background in algorithms and graphs at level of COM S 482. No prior knowledge of game theory or economics assumed.

COM S 685(6850) The Structure of Information Networks (also INFO 685(6850))
Fall or spring. 4 credits. Prerequisite: COM S 482.

COM S 686(6860) Logics of Programs
Spring. 4 credits. Prerequisites: COM S 481, 682, and MATH 481 or MATH/COM S 486. Not offered every year.

COM S 709(7090) Computer Science Colloquium
Fall. 1 credit. For staff, visitors, and graduate students interested in computer science. S-U grades only.

COM S 711(7191) Seminar in Advanced Programming Languages
Fall or spring. 3 credits.

COM S 713(7491) Seminar in Systems and Methodology
Fall, spring. 4 credits. Prerequisites: graduate course employing formal reasoning (e.g., COM S 611, 615, 671), a logic course, or permission of instructor. Not offered every year.

COM S 714(7410) Topics in Systems
Fall or spring. 3 credits. Prerequisite: permission of instructor.

COM S 715(7192) Seminar in Programming Refinement Logics
Fall, spring. 4 credits. Prerequisite: permission of instructor.

COM S 717(7430) Topics in Parallel Architectures
Fall. 4 credits. Prerequisite: COM S 612 or permission of instructor. Not offered every year.

COM S 718(7890) Computer Graphics Seminar
Fall, spring. 4 credits.

COM S 719(7190) Seminar in Programming Languages
Fall, spring. 4 credits. Prerequisite: COM S 611 or permission of instructor. S-U grades only.

COM S 721(7210) Topics in Numerical Analysis
Fall, spring. 4 credits. Prerequisite: COM S 621 or permission of instructor. Not offered every year.

COM S 726(7590) Problems and Perspectives in Computational Molecular Biology (also PL BR 726(7260))
Fall, spring. 1 credit. Open to all from life sciences, computational sciences, and physical sciences. S-U grades only.

COM S 732(7320) Seminar in Database Systems
Fall, spring. 4 credits. S-U grades only.

COM S 754(7490) Systems Research Seminar
Fall, spring. 1 credit. S-U grades only.

COM S 772(7790) Seminar in Artificial Intelligence
Fall. spring. 4 credits. Prerequisite: permission of instructor. S-U grades only.

COM S 775(7784) Seminar in Natural Language Understanding
Fall, spring. 2 credits.

COM S 786(7860) Introduction to Kleene Algebra
Spring. 4 credits. Prerequisites: COM S 481. Recommended: COM S 482 or 681, COM S 682, elementary logic (MATH 481 or 681), algebra (MATH 432).

COM S 788(7890) Seminar in Theory of Algorithms and Computing
Fall, spring. 4 credits. Prerequisite: permission of instructor. S-U grades only.

COM S 790(7999) Independent Research
Fall, spring. Prerequisite: permission of a Computer Science adviser. Independent research for master of engineering project.

COM S 799(9999) Thesis Research
Fall, spring. Prerequisite: permission of a Computer Science adviser. S-U grades only. Doctoral research.

COMPUTING IN THE ARTS

UNDERGRADUATE CONCENTRATION

The computer plays a role in almost every aspect of human life, and its influence and potential now extend routinely not only to technical and commercial pursuits but also into the realms of the imaginative and the aesthetic. The Computing in the Arts concentration offers students opportunities to use computers to realize works of art, to study the perception of artistic phenomena, and to think about new, computer-influenced paradigms and metaphors for the experiences of making and appreciating art. Faculty from several departments in the college offer courses toward the concentration, drawing on disciplines in the arts, the social sciences, the humanities, and the physical sciences. Currently, the concentration is offered in three tracks: computer science, music, and psychology, each described in more detail below. Students may concentrate in the same area as their major, or in a different area.

The goal is to encourage the development of reasonable depth within one area, without neglecting the interdisciplinary nature of the field. Hence, rather than choosing courses at random from the lists below or focusing too narrowly on one particular corner of the field, each student should work actively with an adviser from his or her concentration in building an appropriate program.

Course Lists

Computer Science track. In addition to the core course, COM S 165, any five of the following. Note that some of these courses have COM S prerequisites:

• COM S 565, Computer Animation
• COM S 566, Advanced Computer Animation
• COM S 578, Empirical Methods in Machine Learning and Data Mining
• INFO 345, Human-Computer Interaction Design
• INFO 440, Advanced Human-Computer Interaction Design
• INFO 450, Language and Technology

Up to two courses from another track.

Music track. In addition to the core course, MUSC 165, any five of the following. Note that some of these courses have MUSIC prerequisites:

• ART 170, Visual Imaging in the Electronic Age (also CIS 167, COM S 167, ENGR 167)
• *ICS 300, Introduction to Computer Game Design
• *COM S 211, Computers and Programming + 212, Java Practicum (together these count as one course)
• *COM S 465, Computer Graphics I
• *COM S 467, Computer Graphics II + 468, Computer Graphics Practicum (together these count as one course)
• *COM S 472, Foundations of Artificial Intelligence
• *COM S 474, Introduction to Natural Language Processing
• *COM S 478, Machine Learning
• *COM S 565, Computer Animation
• *COM S 566, Advanced Computer Animation
• *COM S 578, Empirical Methods in Machine Learning and Data Mining

* indicates courses with COM S prerequisites.
EARTH AND ATMOSPHERIC SCIENCES

The Geological Sciences Major

The geological sciences major reveals Earth's turbulent history from the formation of our solar system to the plate tectonic cycles and ice ages that dominate Earth's present behavior. That history is highlighted by the co-evolution of life and the Earth system, a dramatic story that starts with the origin of life in our sun's planetary system and leads to the modern interglacial phase of our planet's latest ice age during which our species has emerged to play a major role in the planetary system. Topics of study also include the fundamental processes responsible for the concentration of mineral and energy resources that have enabled our technological evolution, and include natural hazards such as earthquakes, volcanic eruptions, floods, and landslides, which pose dangers to our increasingly vulnerable cities and infrastructure.

The geological sciences major prepares students in geology, geophysics, geochemistry, and geobiology for careers in energy and mineral industries, or in water and environmental contaminant investigation (environmental geology), and academic and government research enterprises. Many of these career tracks involve a graduate study, for which the major is excellent preparation. Alternatively, it is a valuable major for a pre-law or pre-med program or in preparation for a career in K–12 education.

In addition to classroom-based work, students learn by outdoor fieldwork and involvement in the vigorous research programs of the department. Field courses take students to New York and neighboring states, Argentina, Hawaii, and other varying locales. Undergraduates have served as field assistants for faculty members and graduate students in South America, Europe, Asia, Canada, the U.S.A., and several oceanic islands. Facilities include equipment for processing seismic signals and satellite images of the Earth's surface through extensive libraries of earthquake records, air and video images, and exploration seismic records, and instruments for highly precise chemical and physical analyses of earth materials. Undergraduates are encouraged to participate in research activities, frequently as paid assistants.

For admission to the geological sciences major, a student should have made substantial progress toward completing the following basic science requirements for the major: MATH 111–112 or 191–192, PHYS 207–208 or 112–213, CHEM 207 or 211. Freshmen and sophomores should take an introductory EAS course (or courses), normally EAS 101, 201, 102, or 154. Juniors with a strong foundation in mathematics and science may be accepted into the major without an introductory course. Majors take EAS 210, the five 300-level core courses listed below, 6 credits of additional course work from earth and atmospheric sciences courses numbered 300, 400, or 600, plus an additional course in either computer science or biological science or an intermediate-level course in biological science, mathematics, chemistry, or physics. In addition, a requirement for an advanced outdoor field experience may be met by completing one of the following 4-credit options: (1) EAS 417 Field Mapping in Argentina, 3 credits, and EAS 491 or 492 (based on field observations) for a combined 4-credit minimum; (2) EAS 437 Geophysical Field Methods, 3 credits, plus at least 1 credit of EAS 491 or 492 using geophysical techniques from EAS 437; (3) EAS 491–492 Undergraduate Research, 2 credits each, with a significant component of fieldwork; or (4) a pre-approved outdoor advanced field course taught by another college or university (+-credit minimum).

Core Courses

EAS 326 Structural Geology
EAS 355 Mineralogy
EAS 356 Petrology and Geochemistry
EAS 375 Sedimentology and Stratigraphy
EAS 388 Geophysics and Geotectonics

Prospective majors should contact B. L. Isacks as soon as possible for advice in planning a program. Students majoring in geological sciences may attend the departmental seminars and take advantage of cruises, field trips, and conferences offered through the Department of Earth and Atmospheric Sciences.

Courses offered at the 100 and 200 level are open to all students. Certain 300- and 400-level courses in earth and atmospheric sciences may be of particular interest to students of chemistry, biology, and physics. Students are encouraged to inquire about courses that interest them at the undergraduate program office in 2124 Snee Hall.

Honors. An honors program is offered by the Department of Earth and Atmospheric Sciences for superior students. Candidates for
This part of the SES curriculum builds a strong and diverse knowledge of fundamental science and mathematics, providing the student with the basic tools needed in upper-level science courses.

a. MATH 190 or 191, and MATH 192 (or MATH 111, 112)

b. PHYS 207 and 208 (or PHYS 112, 213)

c. CHEM 207 and 208

d. BIOGD 101/103-102/104 (or 105-106) or BIOGD 109/110

2. Required Introductory Courses:

a. EAS 220 The Earth System

Three 4-credit courses that emphasize the interconnectedness of the Earth system are required. These courses are founded on the most modern views of the planet as an interactive and ever-changing system, and each crosses the traditional boundaries of disciplinary science.

a. EAS 302 Evolution of the Earth System

b. EAS/ASTRO 351 Climate Dynamics

c. EAS/NTRES 321 Biogeochemistry

4. Concentration Courses

Four intermediate to advanced-level courses (300 level and up) that build on the core courses and have prerequisites in the basic sciences and mathematics courses are required. Note that additional basic math and science courses may be required to complete the concentration courses:

a. MATH 190 or 191, and MATH 192 (or MATH 111, 112)

b. PHYS 207 and 208 (or PHYS 112, 213)

c. CHEM 207 and 208

d. BIOGD 101/103-102/104 (or 105-106) or BIOGD 109/110

5. Field Experiences

A student may substitute for a concentration course a field experience, or a combination of field experiences and courses, with the approval of an advisor.

6. Environmental Problems

During the past several decades, with the increasing concern about air and water pollution, nuclear waste disposal, the denudation of the ozone layer, and global climate change, the scientific community has gained considerable insight into how the biosphere, hydrosphere, atmosphere, and lithosphere systems interact. It has become evident that we cannot understand and solve environmental problems by studying these individual systems in isolation. The interconnectedness of these systems is a fundamental attribute of the Earth system, and understanding their various interactions is crucial for understanding our environment.

The SES major emphasizes the basic study of the Earth system as one of the outstanding intellectual challenges in modern science and as the necessary foundation for the future management of our home planet. Cornell's strengths across a broad range of earth and environmental sciences have been fused to provide students with the tools to engage in what will be the primary challenge of the 21st century. The SES major has its home in the Department of Earth and Atmospheric Sciences, but relies on the collaboration of several departments across the university.

The SES curriculum includes a strong preparation in mathematics, physics, chemistry, and biology during the freshman and sophomore years. This includes taking the introductory course, EAS 220 The Earth System. During the junior and senior years, students complete the SES core sequence, studying such topics as climate dynamics, Earth system evolution, and biogeochemistry. These classes emphasize the interconnectedness of the Earth system, and are team-taught by professors from different traditional disciplines. The selection of upper-level "concentration" courses allows the student to develop an area of expertise that complements the breadth of the introductory and SES core courses. Possible areas of concentration include biogeochemistry, ecological systems, environmental geology, ocean sciences, climate dynamics, hydrological systems, and soil science. Currently an opportunity for field-based learning exists through a semester of study in Hawaii.

The SES major provides a strong preparation for graduate school in any one of the Earth system sciences, such as atmospheric sciences, geology, geophysics, oceanography, hydrology, ecology, and biogeochemistry. Students seeking employment with the B.S. degree will have many options in a wide variety of environmentally oriented careers in both the private sector and government. Students with the strong science background provided by the SES major are also highly valued by graduate programs in environmental law, public affairs, economics, and public policy.

The requirements for the major adopted beginning fall 2005 are as follows:

1. Basic Math and Sciences
EAS 150(1500) Fortran Applications in Earth Science (also CIS 112 [1122])
Spring. seven-week course. 2 credits. Prerequisite: CIS/EAS 121 or equivalent. Letter grades only. A. J. Persico.
Emphasizes the applications of scientific computing in the Earth sciences, including data processing and modeling of the Earth, its atmosphere, and oceans. Extends the procedural programming concepts developed in CIS/EAS 121 and considers their implementation in high-performance, compiled languages. Topics include the structure and syntax of a FORTRAN program, data input/output, compilation, and debugging.

EAS 154(1540) Introductory Oceanography, Lecture (also BIOEE 154(1540)) (I) (PBS)
Fall. summer. 3 credits. Fall: C. H. Greene and B. C. Monger; summer: B. C. Monger.
Intended for both science and nonscience majors. Covers the basic workings of the ocean including its physics, chemistry, and biology. Following this basic description, the course examines threats to the health of the ocean and the important role the oceans play in global climate change. Non-science majors should pay particular attention to this course to fulfill a science requirement, because they learn how broadly the ocean works (physically, chemically and biologically) in a single nonquantitative class.

EAS 155(1550) Introductory Physics and Chemistry of the Earth (also ENGRD 210[210]) (I) (PBS)
Laboratory course covering topics presented in EAS/BIOEE 154.

EAS 201(2010) Introduction to the Physics and Chemistry of the Earth (also ENGRD 201[201]) (I) (PBS)
Fall. 3 credits. Prerequisites: PHYS 112 or 207. J. Phillips Morgan.
Topics include formation of the solar system: accretion and evolution of the earth; the rock cycle: isotopes and the geological time scale; plate tectonics, rock and minerals, earth dynamics, mantle plumes; the hydrologic cycle: runoff, floods and sedimentation, groundwater flow, and contaminant transport, and the weathering cycle: chemical cycles, CO₂ (weathering), rock cycle, controls on global temperature (CO₂ or ocean currents), oil, and mineral resources.

EAS 203(2030) Fundamental Principles of Earth Science (I) (PBS)
Fall. 5 credits. Recommended: modest science background. Letter grades only. J. Phillips Morgan.
Have you ever wondered how to use quantitative logic but have been afraid to risk taking a course where your grade depended upon it? Are you interested in the earth? If so, try EAS 203 this semester. Lectures develop quantitative insight into how the earth works and are the same as in EAS 201. A term paper substitutes for quantitative prelims, and the final is an exam essay. A weekly discussion session with the professor explains the physics and math conceptually. The goal is to develop an appreciation for how quantitative approaches can contribute to the intellectual understanding, while also learning about the earth, its evolution, and its future environmental challenges.

EAS 210(2100) Introduction to Field Methods in Geologic Sciences (I) (PBS)
Fall. 3 credits. Prerequisites: EAS 101 (or 201) and permission of instructor. One lec., \sat field trips. Staff.
Covers the methods by which rocks are used as a geological database. Topics include field methods used in the construction of geological maps and cross sections, systematic description of stratigraphic sections. There are field and laboratory sessions on Saturdays until Thanksgiving. There is one additional lecture during most of these weeks. Course includes one weekend field trip to eastern New York.

EAS 213(2130) Marine and Coastal Geology (I) (PBS)
Summer. 4 credits. Prerequisite: introductory geology or ecology or permission of instructor. Staff.
A special two-week course offered at Cornell’s Sholes Marine Laboratory (SMU), located on an island near Portsmouth, N.H. For more details and an application, contact SML office, G41 Shimmon Hall. Estimated cost for 2005 (including tuition, room, board, and ferry transportation): $2,120.

EAS 220(2200) The Earth System (I) (PBS)
Summer. 1 credit. Staff.
Integrated introduction to the earth system stressing the biological, chemical, geological, and physical interactions among the atmosphere, ocean, and solid earth. Topics include biogeochemical cycles, climate dynamics, and by study of the atmosphere, biosphere, cryosphere (ice), hydrosphere (oceans and inland waters), and lithosphere (solid earth).

EAS 222(2220) Seminar—Hawaii’s Environment
Fall. 1 credit. S-U grades only. A. Moore and L. A. Derry.
For students interested in the unique environmental systems of the Hawaiian Islands. Designed to bring together students returning from field studies in Hawaii with students interested in going there to study. Through reading and discussion students explore the ecology, biology, ocean, atmosphere, and culture of the Hawaiian environment.

EAS 240(2400) Field Study of the Earth System (I) (PBS)
Spring. 4 credits. Prerequisite: enrollment in EAS or Environment Sciences Semester in Hawaii; one semester of calculus (MATH 191/192/193 or 111/112), and two semesters of any of the following: PHYS 207/208 or 112/213; CHEM 207/208; BIO 101/103–102/104 or 105/106 or 109/110, or equivalent course work. A. Moore.
Interdisciplinary field course covering fundamental concepts of the Earth System. Topics include local, regional, and global circulation patterns in the solid Earth, atmosphere, and ocean; energy and mass transfer, change and variability of Earth, atmosphere, and ocean systems; and the temporal record of change preserved in the geologic record; and Earth, oceanic, and atmospheric controls on ecosystem processes. The course is project-based with students engaged in hands-on, active learning that takes advantage of local resources.

EAS 250(2500) Meteorological Observations and Instruments
Fall. 4 credits. Prerequisite: EAS 151. M. W. Wysocki and B. Monger.
Introduces the principles and techniques of meteorological measurements and observations including surface, free-air, and remote systems. Topics include instrument siting, mounting, and protection; instrument response characteristics, calibration, and standardization, and recorders and data logging systems. Includes laboratory exercises in observation and data analysis. Intended to serve as preparation for Observers Examination.

EAS 268(2680) Climate and Global Warming (I) (PBS)
Spring. 3 credits. Prerequisite: basic college math. A. T. DeGaetano.
Students from a range of disciplines become familiarized with such contemporary issues in climatology as global warming and El Niño. Introductions to the natural greenhouse effect, past climates, observed and projected climate changes and impacts. Also natural climate variations and their consequences and predictability. Weekly student-led discussions of issues appearing in journals such as Nature.

EAS 296(2960) Forecast Competition
Fall and spring. 1 credit, may be repeated. Students enroll for two consecutive semesters; credit awarded after second semester. Prerequisite: sophomore standing in atmospheric science or permission of instructor. S-U grades only. D. S. Wilks.
Two-semester course providing daily exercise in probabilistic weather forecasting, in which students compete to forecast local weather most skillfully.

EAS 302(3020) Evolution of the Earth System (I) (PBS)
Spring. 4 credits. Prerequisites: MATH 112 or 192 and CHEM 207 or equivalent. W. M. White, W. D. Allmon, and B. L. Isacks.
Covers the co-evolution of life and the earth system: Earth's early history; plate tectonics, continental drift, and the great changes during the past billion years; mountain building, ice ages, and our own emergence during the past 10 million years. Serves as an introduction to methods of interpreting information preserved in the rock record.

EAS 315(3150) Geomorphology (I) (PBS)
Fall. 4 credits. Prerequisite: 3-credit EAS course. B. L. Isacks.
A study of the processes that sculpt the Earth's terrestrial landscapes. Landforms constructed by Earth's internal processes are the point of departure as students examine their modification by physical interaction with the atmosphere. Laboratory exercises include both field examination of landforms of the Finger Lakes area and computer analysis of satellite images and digital elevation models of examples from around the globe. Includes two Saturday field trips.

EAS 321(3210) Introduction to Biogeochemistry (also NTRES 321[3210]) (I) (PBS)
Fall. 4 credits. Prerequisites: CHEM 207, MATH 112, plus a course in biology and/ or geology. L. A. Derry.
Control and function of the Earth's global biogeochemical cycles. Begins with a review of the basic inorganic and organic chemistry of biologically significant elements, and
then considers the biogeochemical cycling of carbon, nutrients, and metals that take place in soil, sediments, rivers, and the oceans. Topics include weathering, acid-base chemistry, biological redox processes, nutrient cycling, trace gas fluxes, bio-active metals, the use of isotopic tracers, controls on atmospheric carbon dioxide, and mathematical models. Interactions between global biogeochemical cycles and other components of the Earth system are discussed.

EAS 322(3220) Biogeochemistry of the Hawaiian Islands (I) (PBS)
Spring. 4 credits. Prerequisites: enrollment in Earth and Environmental Sciences Semester in Hawaii; BIOEE 261, EAS 321, EAS 455, or permission of instructor. L. Derry.
Field-oriented study of biogeochemical processes and ecosystem interactions across the Hawaiian Islands. Field, class, and laboratory work focus on how landscape age and climate strongly control biogeochemical cycling and ecosystem development in Hawaii. Other topics include succession of ecosystems, evolution of nutrient cycles, and impacts of invasive species. The class is structured around field projects, carried out both as groups and individually.

EAS 326(3260) Structural Geology (I) (PBS)
Spring. 4 credits. Prerequisite: one semester of calculus, plus introductory geology course or permission of instructor. One weekend field trip. R. W. Allmendinger.
Nature and origin of deformed rocks at microscopic to macroscopic scales, with emphasis on structural geometry and kinematics. Topics include stress, strain, rheology, deformation mechanisms, minor structures, faulting, folding, and structural families.

EAS 331(3310) Climate Dynamics (also ASTRO 331(3331)) (I) (PBS)
Fall. 3 credits. Prerequisites: two semesters of calculus and one of physics. R. H. Cook. Processes that contribute to its change are discussed, including atmospheric radiation, ocean circulation, and atmospheric dynamics. Contemporary climate change issues are investigated and discussed in the context of natural variability of the system.

EAS 334(3340) Microclimatology (I) (PBS)
Spring. 3 credits. Prerequisite: physics course. Offered alternate years; next offered 2006. D. S. Wilkes.

EAS 341(3410) Atmospheric Thermodynamics and Hydrostatics (I) (PBS)
Fall. 3 credits. Prerequisites: one year of calculus and one semester of physics. M. Wysocki.
Introduction to the thermodynamics and hydrostatics of the atmosphere, with emphasis on the space and time scales of typical storm systems (the synoptic scale). The governing equations of atmospheric flow are derived from first principles and applied to middle latitude and tropical meteorology. Topics include balanced flow, atmospheric waves, circulation, and vorticity. Text used is An Introduction to Dynamic Meteorology by Holton.

EAS 342(3420) Atmospheric Dynamics (also ASTRO 342(3420)) (I) (PBS)
Spring. 3 credits. Prerequisites: one year each of calculus and physics. K. H. Cook and P. J. Gierasch.
Introduction to the basic equations and techniques used to understand motion in the atmosphere, with an emphasis on the space and time scales of typical storm systems (the synoptic scale). The governing equations of atmospheric flow are derived from first principles and applied to middle latitude and tropical meteorology. Topics include balanced flow, atmospheric waves, circulation, and vorticity. Text used is An Introduction to Dynamic Meteorology by Holton.

EAS 350(3500) Dynamics of Marine Ecosystems (also BIOEE 350(3500)) (I) (PBS)
Fall. 3 credits. Prerequisites: one year of calculus and a semester of oceanography (i.e., EAS 154), or permission of instructor. C. H. Greene and R. W. Howarth.
Lecture course covering the interactions of physical and biological processes in marine ecosystems. It begins by looking at these processes on a global scale and works down to the scales relevant to individual organisms. Topics include: global patterns of ocean circulation; global patterns of ocean production; climate variability and the role of the ocean in global climate change; the El Nino/Southern Oscillation; ecosystems and climate; and the open ocean and coastal environments.

EAS 351(3510) Marine Ecosystems Field Course (also BIOEE 351(3510)) (I) (PBS)
Spring. 4 credits. Prerequisites: EAS 240; enrollment in Earth and Environmental Sciences Semester in Hawaii. Recommended: oceanography course. C. H. Greene, B. Monger, and C. D. Harvell.
Covers the interactions of physical and biological processes in marine ecosystems. Starts by looking at these processes on ocean-basin to regional scales and works down to the smaller scales relevant to individual organisms. Spring course is added to modern techniques of marine-ecosystems research, including remote sensing, oceanographic-survey methods, and experimental marine ecology. This course is field and laboratory intensive with students engaged in hands-on, active learning that takes advantage of local resources.

EAS 352(3520) Synoptic Meteorology (I) (PBS)
Weather map analysis and forecasting techniques are studied by applying the principles of fluid and heat flow. This course strengthens previously introduced meteorological concepts which are applied to forecasting midlatitude and high latitude weather systems, such as cyclones, anticyclones, jet streams, fronts, and waves.

EAS 355(3550) Mineralogy (I) (PBS)
Fall. 3 credits. Prerequisites: EAS 101 or 201 and CHEM 207 or 211 or permission of instructor. S. Mahlburg Kay.
Covers the structures, chemistry, and occurrence of the rock-forming minerals. Principles of phase equilibrium as applied to igneous and metamorphic systems. Description, classification, chemistry, origin, regional distribution, and dating of igneous and metamorphic rocks. Geochemical trace elements analysis of igneous and metamorphic systems. The petrological evolution of the planets.

EAS 356(3560) Petrology and Geochemistry (II) (PBS)
Spring. 4 credits. Prerequisite: EAS 355. R. W. Kay.
Principles of phase equilibrium as applied to igneous and metamorphic systems. Description, classification, chemistry, origin, regional distribution, and dating of igneous and metamorphic rocks. Geochemical trace elements analysis of igneous and metamorphic systems. The petrological evolution of the planets.

EAS 375(3750) Sedimentology and Stratigraphy (I) (PBS)
Fall. 4 credits. Prerequisite: EAS 101, 102, or 201. J. L. Giss.
Sediments, sedimentary rocks, and the rock cycle; sedimentary systems and stratigraphic sequences; fossil organisms and their paleoecology; correlation of strata in relation to age and environment; construction of the geological time scale; stratigraphic study of plate-tectonic processes and global change.

EAS 388(3880) Geophysics and Geodynamics (I) (PBS)
Spring. 4 credits. Prerequisites: MATH 192 (or 112) and PHYS 208 or 213. B. L. Iackes.
Covers global tectonics and the deep structure of the solid earth as revealed by investigations of earthquakes, earthquake waves, the earth's gravitational and magnetic fields, and heat flow.

EAS 401(4010) Fundamentals of Energy and Mineral Resources (I) (PBS)
Spring. 3 credits. L. Cathles.
Fossil fuels will continue to be the prime source of energy for the foreseeable future, and society depends upon mineral resources. This course describes and quantitatively analyzes energy and mineral resources of the Earth. The distribution and nature of Earth resources are discussed, focusing on U.S. examples. Quantitative tools are then developed and used to understand the processes that accumulate resources to economic levels.

EAS 404(4040) Geodynamics
Spring. 3 credits. Prerequisite: calculus and calculus-based physics or permission of instructor. J. Phipps Morgan.
Quantitative study of the deformation, heat transport, and melting processes that have shaped the evolution of the solid Earth. Familiar physical and chemical principles and concepts are applied to the study of plate tectonics, fluid dynamics, mantle convection, melting, and mountain building.

EAS 405(4050) Active Tectonics (I) (PBS)
Spring. 3 credits. Recommended: mechanical background equivalent to EAS 326/388. S-U grades optional. M. Pritchard.
Develops the ideas necessary to understand how the Earth deforms—from individual earthquakes to the construction of mountain ranges. Discusses the driving forces of deformation, and how these forces interact with different geologic materials to cause deformation.

EAS 417(4170) Field Mapping in Argentina (I) (PBS)
Summer. 3 credits. Prerequisites: EAS 210 and 326. Recommended: knowledge of Spanish. S. Mahlburg Kay.
Covers modern techniques of geological mapping applied in the region of San Juan, Argentina, including folded and faulted sedimentary rock units of the Andean Precordillera (San Juan River section), and shallow-level silicic intrusives (Cerro Blanco-Ullum). The geologic discovery of the traces of past meteor impacts and massive volcanic explosions was a long evolutionary process. Students discuss physical models and geologic evidence for impacts and explosive volcanism. The centerpiece of the course is a weeklong field trip over spring break that examines the Ries impact structure in SW Germany and explosive volcanism in the Eifel. These sites were where phenomena were noticed and debated and are well-preserved and accessible field examples. The last section of the course discusses possible links of both with the great mass extinctions.

[EAS 425(4250) European Discovery of Impacts and Explosive Volcanism] (PBS)
Fall. 2 credits. Prerequisite: junior, senior, or graduate standing with background in geology and permission of instructor. Letter grades only. Meets one day per week plus field trip during spring break. Fee probably charged for required weeklong field trip. J. Phipps Morgan.

EAS 435(4350) Statistical Methods in Meteorology and Climatology (II) (MQR)
Fall. 3 credits. Prerequisites: introductory statistics course (e.g., AEM 210) and calculus. S. J. Colucci.
Covers statistical methods used in climatology, operational weather forecasting, and selected meteorological research applications; some statistical characteristics of meteorological data, including probability distributions and correlation structures; operational forecasts derived from multiple regression models, including the MOS system; and forecast evaluation techniques.

[EAS 447(4470) Synoptic Meteorology II (I) (PBS)]
Fall. 3 credits. Prerequisites: EAS 341 and 342. S. J. Colucci.
Structure and dynamics of large-scale, mid-latitude weather systems, such as cyclones, anticyclones, and waves, with consideration of processes that contribute to temperature changes and precipitation. Laboratory sessions involve real-time weather forecasting and the computer application of a numerical model of the atmosphere to study selected large-scale, mid-latitude weather events.

EAS 453(4530) Advanced Petrology (I) (PBS)
Fall. 3 credits. Prerequisite: EAS 356. Offered alternate years. R. W. Kay.
Includes topics in magmas and metamorphism in the context of plate tectonics; major and trace element chemistry and phase petrology as monitors of the creation and modification of igneous rocks; and temperature and stress in the crust and mantle and their influence on reaction rates and textures of metamorphic rocks. Application of experimental studies to natural systems.

[EAS 454(4540) Advanced Mineralogy (I) (PBS)]
Spring. 3 credits. Prerequisite: EAS 355 or permission of instructor. Offered alternate years; not offered 2005–2006. S. Mahlburg Kay.

EAS 455(4550) Geochemistry (I) (PBS)
Fall. 4 credits. Prerequisites: CHEM 207 and MATH 192 or equivalent. Recommended: EAS 356. Offered alternate years. W. M. White.
Looks at the Earth from a chemical perspective. Covers the formation of the elements; cosmochemistry; chemical evidence regarding the formation of the Earth and solar system; trace-element geochemistry; isotope geochemistry; geochemical thermodynamics and kinetics; chemical evolution of the crust, mantle, and core; weathering and the chemistry of natural waters; chemistry of rivers and oceans; hydrothermal systems and ore deposition.

EAS 456(4560) Mesoscale Meteorology (I) (PBS)
Spring. 3 credits. Prerequisites: EAS 341 and 342 or permission of instructor. S. J. Colucci.
Covers the structure and dynamics of mid-latitude mesoscale weather systems such as fronts, jets, squall lines, precipitation bands, downslope windstorms, and lake effect snowstorms. The course also considers tropical weather systems and mesoscale modeling.

[EAS 457(4570) Atmospheric Pollution (I) (PBS)]
Fall. 3 credits. Prerequisite: EAS 341 or thermodynamics course, and one semester of chemistry, or permission of instructor. Offered alternate years; not offered 2006–2007. M. W. Wysocki.

EAS 458(4580) Volcanology (I) (PBS)
Fall. 3 credits. Prerequisite: EAS 356 or equivalent. Offered alternate years; not offered 2005–2006. T. E. Jordan.

EAS 459(4590) Advanced Stratigraphy (I) (PBS)
Fall. 3 credits. Prerequisite: EAS 375 or permission of instructor. Offered alternate years; not offered 2005–2006. T. E. Jordan.

EAS 460(4600) Late Quaternary Paleoclimatology (I) (PBS)
Fall. 4 credits. Prerequisite: one year of introductory biology and either EIOEE 274, 373, EAS 375, or permission of instructor. Offered alternate years; not offered 2005–2006. W. Allmon.

EAS 462(4620) Marine Ecology (also BIOEE 462(4620)) (I) (PBS)

EAS 470(4700) Advanced Mineralogy (I) (PBS)
Spring. 3 credits. Prerequisites: EAS 355 or permission of instructor. Offered alternate years. R. W. Kay.
Includes topics in magmas and metamorphism in the context of plate tectonics, major and trace element chemistry, phase petrology as monitors of the creation and modification of igneous rocks, and temperature and stress in the crust and mantle and their influence on reaction rates and textures of metamorphic rocks. Application of experimental studies to natural systems.

[EAS 471(4710) Introduction to Groundwater Hydrology (also BEE 471(4710)) (I/PBS)]
Fall. 3 credits. Prerequisite: MATH 294 and ENGRD 202. L. Cathles.
Intermediate-level study of aquifer geology; groundwater flow, and related design factors. Includes description and properties of natural aquifers, groundwater hydraulics, salt water, and solute transport.

EAS 475(4750) Special Topics in Oceanography
Fall, spring, summer. 2–6 credits, variable. Prerequisites: one semester of oceanography and permission of instructor. Fall. Spring. C. H. Greene; Summer: B. C. Monger.
Undergraduate instruction and participation in advanced areas of oceanographic research. Topics change from semester to semester. Contact instructor for further information.

EAS 476(4760) Sedimentary Basins: Tectonics and Mechanics (I) (PBS)
Fall. 3 credits. Prerequisite: EAS 356 or equivalent. Offered alternate years; not offered 2005–2006. T. E. Jordan.

EAS 477(4770) Environmental Biophysics (also CBS 483(4830)) (I) (PBS)
Spring. 3 credits. Offered alternate years. S. J. Riha.
Introduces basic principles of energy and mass transfer and storage in soil-plant systems. Topics include energy budgets, soil heat flow, water movement in saturated and unsaturated soils, evapotranspiration, water, gas, and nutrient dynamics in the soil-plant-atmosphere continuum. Applications to agronomic and environmental problems and instrument design and use are considered through discussion and problem sets.
EAS 487(4870) Introduction to Radar Remote Sensing (also ECE 487[4870]) (I) (PBS)
Fall. 3 credits. Prerequisite: PHYS 208 or 213 or equivalent. D. L. Hyssel.
Covers the fundamentals of radar, antennas, and remote sensing. Students are exposed to the principles underlying the analysis and design of antennas used for communication and for radar-related applications. They also encounter both a mathematical and a practical description of how radars function, how their performance can be optimized for different applications, and how signals acquired by them can be processed. The objective is to familiarize students with a wide variety of radars rather than turn them into practicing radar engineers. Each topic is developed from basic principles so students with a wide variety of backgrounds are able to take the course. Emphasis is placed on radar applications in geophysics, meteorology and atmospheric sciences, astronomy and space sciences. Radar remote sensing of the Earth from spacecraft receives special attention.

EAS 491-492(4910-4920) Undergraduate Research
Fall, spring. 1-4 credits. Staff (B. L. Isacks, coordinator).
Introduction to the techniques and philosophy of research in the earth sciences and an opportunity for undergraduates to participate in current staff research projects. Topics chosen in consultation with, and guided by, a staff member. A short written report is required, and outstanding projects are prepared for publication. Students should fill out form at 2124 Snee Hall.

EAS 493(4930) Special Topics in Atmospheric Science
Fall or spring. 1-6 credits. S-U grades optional. Students must register using independent study form. Staff.
Study of topics in atmospheric science that are more specialized or different from other courses. Special topics covered depend on staff and student interests.

EAS 494(4940) Special Topics in Geophysics
Fall. 3 credits. Staff.
Study of specialized topics in geophysics. Topics change from semester to semester. Students should contact appropriate professor for more information.

EAS 495(4950) Independent Study in Atmospheric Science
Fall, spring. 1-6 credits. S-U grades optional. Staff.
Opportunity for undergraduates to participate in current staff research projects. Students must fill out EAS 494 form at 2124 Snee Hall.

EAS 497(4970) Special Topics in Geological Sciences
Fall or spring. 1-6 credits. S-U grades optional. Students must register using independent study form. Staff.
Study of topics in geological sciences that are more specialized or different from other courses. Special topics covered depend on staff and student interests.

EAS 498(4980) Teaching Experience in Earth and Atmospheric Sciences
Fall, spring. 1-4 credits. S-U grades only. Staff.
The student assists in teaching an EAS course appropriate to his or her previous training. The student meets with a discussion or laboratory section, prepares course materials, grades assignments, and regularly discusses course objectives and teaching techniques with the faculty member in charge of the course.

EAS 499(4990) Undergraduate Research in Atmospheric Science
Fall or spring. Credit TBA. S-U grades only. Students must register using independent study form. Staff.
Independent research on current problems in atmospheric science.

EAS 500(5000) Design Project in Geohydrology
Fall, spring; may continue over two or more semesters. 3-12 credits. Alternative to industrial project for M.Eng. students choosing geohydrology option. L. M. Cathles.
The project may address one of the many aspects of groundwater flow and contamination and must involve a significant geological component and lead to concrete recommendations or conclusions of an engineering nature. Students present results orally and in a professional report.

EAS 502(5020) Case Histories in Groundwater Analysis
Spring. 4 credits. L. M. Cathles.
Groundwater flow in a specific area, such as a proposed nuclear-waste disposal site, is analyzed in depth. Geological and resource data on the area are presented early in the course. Then the material is analyzed by students working as an engineering analysis team. Each student makes a weekly progress report and writes part of a final report. Students present results in a half-day seminar at the end of the semester.

[EAS 622(6220) Advanced Structural Geology I
Spring. 3 credits. Prerequisites: EAS 326 and permission of instructor. Offered alternate years. R. W. Allmendinger.]

EAS 624(6240) Advanced Structural Geology II
Spring. 3 credits. Prerequisites: EAS 326 and permission of instructor. Offered alternate years. R. W. Allmendinger.
Geometry, kinematics, and mechanics of structural provinces. Concentration on thrust belts, rift provinces, or strike-slip provinces. Techniques of balanced cross sections.

EAS 628(6280) Geology of Orogenic Belts
Spring. 3 credits. Prerequisite: permission of instructor. Not offered 2005-2006.

[EAS 641(6410) Analysis of Biogeochemical Systems
Spring. 3 credits. Prerequisite: MATH 293 or permission of instructor. Offered alternate years. L. A. Derry.]

[EAS 651(6510) Atmospheric Physics (also ASTRO 651[7651])
Fall. 3 credits. Prerequisite: good background in undergraduate calculus and physics. Offered alternate years; next offered 2006-2007. K. H. Cook, P. J. Gierasch, and S. J. Colucci.

[EAS 652(6520) Advanced Atmospheric Dynamics (also ASTRO 652[7652])
Spring. 3 credits. Prerequisites: EAS 341 and 342 or equivalent. Offered alternate years; next offered 2006-2007. S. J. Colucci and P. J. Gierasch.

[EAS 656(6560) Isotope Geochemistry
Spring. 3 credits. Open to undergraduates. Prerequisite: EAS 455 or permission of instructor. Offered alternate years. W. M. White.]

[EAS 666(6660) Applied Multivariate Statistics
Spring. 3 credits. Prerequisites: multivariate calculus, matrix algebra, and two statistics courses. Offered alternate years; not offered 2006-2007. D. S. Wilks.]

EAS 675(6750) Modeling the Soil-Plant-Air System (also CSS 675[7675])
Spring. 3 credits. Prerequisite: EAS/CSS 483 or equivalent. S. J. Rihla.

EAS 692(6920) Special Topics in Atmospheric Science
Fall or spring. 1-6 credits. S-U grades optional. Staff.

EAS 700-799(7000-7990) Seminars and Special Work
Fall or spring. 1-3 credits. Prerequisite: permission of instructor. Staff.
Advanced work on original investigations in earth and atmospheric sciences. Topics change from semester to semester. Students should contact appropriate professor for more information.

EAS 711(7110) Upper Atmospheric and Space Physics
Fall or spring. 1-6 credits. Seminar course. TBA. D. L. Hyssel.

EAS 722(7220) Advanced Topics in Structural Geology
R. W. Allmendinger.

EAS 731(7310) Planetary Geodynamics, Active Tectonics, Volcanology, Earthquakes, and Geodesy
M. Prichard.

EAS 733(7330) Advanced Topics in Geodynamics
Spring. J. Phipps Morgan.

EAS 751(7510) Petrology and Geochemistry
R. W. Kay.

EAS 755(7550) Advanced Topics in Geodynamics, Tectonics, and Geochemistry
Fall. 3 credits. J. Phipps Morgan.

EAS 757(7570) Current Research in Petrology and Geochemistry
S. Mahlburg Kay.

EAS 771(7710) Advanced Topics in Sedimentology and Stratigraphy
T. E. Jordan.

EAS 782(7820) Advanced Topics in Paleobiology
W. D. Allmanton.
EAS 773(7730) Paleobiology
J. L. Cisne.

EAS 775(7750) Advanced Topics in Oceanoigraphy
C. H. Greene.

EAS 780(7800) Earthquake Record Reading
Fall. M. Barazangi.

EAS 781(7810) Geophysics Exploration Radar
L. D. Brown.

EAS 783(7830) Advanced Topics in Geophysics
B. L. Isacks.

EAS 785(7850) Advanced Topics in Seismology
L. D. Brown.

EAS 792(7930) Andes-Himalayas Seminar

EAS 795(7950) Low Temperature Geochemistry
W. M. White.

EAS 797(7970) Fluid-Rock Interactions
L. M. Cathles.

EAS 799(7990) Soil, Water, and Geology Seminar
Spring. L. M. Cathles and T. S. Steenhuis.

EAS 850(8500) Master's-Level Thesis Research in Atmospheric Science
FALL. Credit by arrangement. S-U grades optional. Hours by arrangement. Graduate faculty. Limited to students specifically in the master's program in atmospheric science.

EAS 950(9500) Graduate-Level Dissertation Research in Atmospheric Science
Fall or spring. Credit by arrangement. S-U grades optional. Hours by arrangement. Graduate faculty. Limited to students in the atmospheric science Ph.D. program only before "A" exam has been passed.

EAS 951(9510) Doctoral-Level Dissertation Research in Atmospheric Science
Fall or spring. Credit by arrangement. S-U grades optional. Hours by arrangement. Graduate faculty. Limited to students admitted to candidacy in the atmospheric science Ph.D. program after "A" exam has been passed.

EAST ASIA PROGRAM

140 Uris Hall

The East Asia Program draws together faculty from departments and fields throughout the university who participate in a program of research and teaching on the civilizations and cultures of East Asia. Courses are offered through departments in the humanities and social sciences, as well as in the fields of business, city and regional planning, international and comparative labor relations, and rural sociology. The Department of Asian Studies offers language courses in Mandarin, Cantonese, Korean, and Japanese, in addition to the Full-year Asian Language Concentration (PALCON) in Japanese and Mandarin. Undergraduates major in the Department of Asian Studies and concentrate on the language and culture of one East Asian country, while graduate students may work toward an M.A. in East Asian Studies, a dual M.B.A./M.A., or an M.A./Ph.D. in a discipline such as agricultural economics, anthropology, city and regional planning, government, history, history of art, linguistics, literature, rural sociology, or sociology. Graduate students concentrating on East Asia may apply for a variety of fellowships and travel grants offered by the East Asia Program. The formal program of study is enriched by numerous events and extracurricular activities, including films, workshops, art exhibits, lectures, symposia, and cultural and artistic performances on East Asia. With nearly 600,000 holdings in Chinese, Japanese, Korean, and western languages, the Wason Collection in Kroch Library is a major national resource for research on East Asia. A 5,000-piece collection representing the full range of Chinese, Japanese, and Korean art may be seen at the George and Mary Rockwell Galleries in the Herbert F. Johnson Museum of Art.

ECONOMICS

The study of economics provides an understanding of the way economies operate and an insight into public issues. The department offers a broad range of undergraduate courses in such fields as money and banking; international and comparative economics; economic theory; history; growth and development; and the organization, performance, and control of industry.

The Major

Prerequisites
ECON 101 and 102 and MATH 111 (or equivalents, with approval of the director of undergraduate studies), all with grades of C or better.

ECON 301 with a grade of C or better substitutes for 101; ECON 302 with a grade of C or better substitutes for 102.

Requirements
Eight courses listed by the Department of Economics at the 300 level or above, or approved by the student's major adviser, all with grades of C- or better. (S-U grade option is not allowed.)

These eight courses must include:
1. ECON 313 and 314
2. ECON 321, or ECON 319 and 320 (ECON 313, 314, 321 or 320 should be completed before senior year.)
3. at least three courses from the following:
 ECON 318, 320, 322–329
ECON 301 with a grade of B or better substitutes for both 101 and 313; ECON 302 with a grade of B or better substitutes for both 102 and 314.

If ECON 321 is applied toward the major, neither 319 nor 320 can be applied.

ECON 498 and 499 cannot be counted toward the eight-course requirement.

If ECON 315 is applied to the major, ECON 301 cannot be.

If ECON 314 is applied to the major, ECON 302 cannot be.

If both ECON 367 and ECON 368 are taken, only one can be applied to the major.

An honors program is currently being offered. Students should consult the director of undergraduate studies before May of their junior year for more information.

Students planning graduate work in economics should select ECON 319–320 rather than 321 and should consider including some of the following courses in their majors:
ECON 367 Game Theoretic Methods
ECON 368 Game Theory
ECON 416 Intertemporal Economics
ECON 419 Economic Decisions under Uncertainty
ECON 445–446 Topics in Microeconomic and Macroeconomic Analysis

Students planning careers in business management should consider including some of the following courses in their majors:
ECON 353 Financial Economics
ECON 351 or 352 Industrial Organization
ECON 361–362 International Trade and Finance
ECON 440-441 Analysis of Agricultural Markets and Commodity Futures Markets

ECON 445 Personnel Economics for Managers

In addition to completing the economics major, such students should also consider courses in accounting and subjects such as finance, marketing, entrepreneurship, business administration, and law business. Courses in these subjects are offered by the Department of Applied Economics and Management, the School of Hotel Administration, and the Johnson Graduate School of Management.

Students planning to attend law school should consider including some of the following courses in their majors:

ECON 351 or 352 Industrial Organization
ECON 354 Economics of Regulation
ECON 361-362 International Trade and Finance
ECON 404 Economics and the Law

In addition to completing the economics major, such students should inquire at Career Services, College of Arts and Sciences, concerning recommended courses offered by other departments.

Courses

ECON 101(1110) Introductory Microeconomics (III) (SBA)
Fall, spring, winter, and summer. 3 credits. ECON 101 is not a prerequisite for 102. Explanation and evaluation of how the price system operates in determining what goods are produced, how goods are produced, who receives income, and how the price system is modified and influenced by private organizations and government policy.

ECON 102(1120) Introductory Macroeconomics (III) (SBA)
Fall, spring, winter, and summer. 3 credits. ECON 101 is not a prerequisite for 102. Analysis of aggregate economic activity in relation to the level, stability, and growth of national income. Topics may include the determination and effects of unemployment, inflation, balance of payments, deficits, and economic development, and how these may be influenced by monetary, fiscal, and other policies.

ECON 230(2300) International Trade and Finance (III) (SBA)
For description, see AEM 230.

ECON 301(3010) Microeconomics (III) (SBA)
Fall. 4 credits. Prerequisite: calculus course. Intended for students with strong analytical skills who have not taken ECON 101, 102. May be used to replace both ECON 101 and 313 (may replace 313 only with grade of B or better). Covers the topics taught in ECON 101 and 313. An introduction to the theory of consumer and producer behavior and the functional distribution of national income.

ECON 302(2020) Macroeconomics (III) (SBA)
Spring. 4 credits. May be used to replace both ECON 102 and 314 (may replace 314 only with grade of B or better). Prerequisite: ECON 301. Intended for students with strong analytical skills who have not taken ECON 101, 102. Covers the topics taught in ECON 102 and 314. An introduction to the theory of national income determination, unemployment, growth, and inflation.

ECON 307(3070) Introduction to Peace Science (also CRP 495.18(2850) (III) (SBA)
Fall and spring. 3 credits. Prerequisites: ECON 101-102 or permission of instructor. Introduction to the theories of and research on conflict resolution. Topics include conflict, its role and impact on society; theories of aggression and altruism; causes of war; game theory; conflict management procedures and other analytical tools and methods of peace science; and alternatives to war.

ECON 313(3130) Intermediate Microeconomic Theory (III) (SBA)
Fall, spring, and summer. 4 credits. Prerequisites: ECON 101-102 and a calculus course. The pricing processes in a private enterprise economy are analyzed under varying competitive conditions, and their role in the allocation of resources and the functional distribution of national income is considered.

ECON 314(3140) Intermediate Macroeconomic Theory (III) (SBA)
Fall, spring, and summer. 4 credits. Prerequisites: ECON 101-102 and a calculus course. Introduces the theory of national income and determination and economic growth in alternative models of the national economy. Examines the interaction and relation of these models to empirical aggregate economic data.

ECON 319(3190) Introduction to Statistics and Probability (II) (MGR)
Fall and spring. 4 credits. Prerequisites: ECON 101-102 and MATH 111-112. Provides an introduction to statistical inference and to principles of probability. It includes descriptive statistics, principles of probability, discrete and continuous distributions, and hypothesis testing (of sample means, proportions, variance). Regression analysis and correlation are introduced.

ECON 320(3200) Introduction to Econometrics (II) (MGR)
Fall and spring. 4 credits. Prerequisites: ECON 101-102, 319, or equivalent. Introduction to the theory and application of econometric techniques. How econometric models are formulated, estimated, used to test hypotheses, and used to forecast; understanding economists' results in studies using regression model, multiple regression model, and introduction to simultaneous equation models.

ECON 321(3210) Applied Econometrics (II) (MGR)
Fall. 4 credits. Prerequisites: ECON 101-102 and a calculus course. Provides an introduction to statistical methods and principles of probability. Topics include analysis of data, probability concepts and distributions, estimation and hypothesis testing, regression, correlation and time series analysis. Applications from economics are used to illustrate the methods covered in the course.

ECON 322(3220) World Economic History (III) (HA)
Spring. 4 credits. Prerequisites: ECON 101 and 102 or equivalent. An economist's perspective on the comparative evolution of selected economic and social institutions, with emphasis on trade, finance, population growth and technological change.

ECON 323(3230) American Economic History (III) (SBA)
Fall. 4 credits. Prerequisite: ECON 101-102 or equivalent. Not offered 2005-2006. Surveys problems in American economic history from the first settlements to early industrialization.

ECON 324(3240) American Economic History (III) (SBA)
Spring. 4 credits. Prerequisites: ECON 101-102 or equivalent. Surveys problems in American economic history from the Civil War to World War I.

ECON 325(3250) Cross Section and Panel Econometrics (II) (MGR)
Spring. 4 credits. Prerequisite: ECON 320. Introduction to cross-section and panel econometrics. Topics include multiple-regression analysis with qualitative information to models, simple and advanced panel data methods, informal variable, estimation, simultaneous equation models.

ECON 327(3270) Time Series Econometrics (II) (MGR)
Spring. 4 credits. Prerequisite: ECON 320. Introduction to time-series econometrics. Topics include stationary time series, ARMA models, multivariate models, non-stationary models and unit roots, and co-integration.

ECON 331(3310) Money and Credit (III) (SBA)
Spring. 4 credits. Prerequisites: ECON 101-102 and 314. A systematic treatment of the determinants of the money supply and the volume of credit. Economic analysis of credit markets and financial institutions in the United States.

ECON 333(3330) Financial Economics (III) (SBA)
Fall. 4 credits. Prerequisites: ECON 313 and 314. Examines the theory and decision making in the presence of uncertainty and the practical aspects of particular asset markets.

ECON 335(3350) Public Finance: The Microeconomics of Government (III) (SBA)
Fall. 4 credits. Prerequisites: ECON 101-102 and 313, or equivalent, and one semester of calculus. Analyzes the role of government in a free market economy. Topics include public goods, market failures, allocation mechanisms, optimal taxation, effects of taxation, and benefit-cost analysis. Current topics of an applied nature vary from semester to semester.

ECON 336(3360) Public Finance: Resource Allocation and Fiscal Policy (III) (SBA)
Spring. 4 credits. Prerequisites: ECON 101-102 and 313, or equivalent and one semester of calculus. Covers the revenue side of public finance and special topics. Subjects include the federal debt, the budget, and government regulation and transfers, as well as problems like local public goods, health care, education, the hierarchy of governmental structure, plus a variety of applied problems.
ECON 337(3370) Equilibrium and Welfare Economics (III) (SBA)
Fall. 4 credits. Prerequisites: ECON 313, 314, 319.
Introduction to the theory of competitive equilibrium and economic efficiency. Begins with a review of the Walrasian model and identify conditions under which a price-guided decentralized competitive economic equilibrium is optimal allocation of resources. Presents a number of celebrated examples and applications: the standard 2x2x2 model of international trade, Leontief's input-output model, Morishima's interpretation of labor theory of value, Arrow's analysis of uncertainty and Amartya Sen's analysis of famines. Finally, problems of market failure are reviewed.

ECON 339(3390) State and Local Public Finance (III) (SBA)
Spring. 4 credits. Prerequisite: ECON 313.
Examines the role of subnational governments and jurisdictions in the economy. Among the broad questions addressed are: what tasks are optimally assigned to local governments? What impact can such assignment have on efficiency and equity? How do intergovernmental financial relations affect these outcomes? The theory and evidence on these issues are analyzed, with frequent application to current issues, like debates surrounding local, school district-based provision of education.

ECON 341(3410) Economics of Wages and Employment II (III) (SBA)
For description, see ILRLE 440.

ECON 342(3420) Economic Analysis of the University
For description, see ILRLE 648.

ECON 351(3510) Industrial Organization I (III) (SBA)
Fall. 4 credits. Prerequisite: ECON 313 or equivalent.
Examines the analysis of markets with only a few firms (i.e., oligopolies), and the primary focus is the strategic interactions between firms. Topics include static competition in oligopolies, cartels and other forms of collusive behavior, competition between firms producing differentiated products, entry behavior, RD and behavior, and government interventions in oligopoly industries (e.g., antitrust laws).

ECON 352(3520) Industrial Organization II (III) (SBA)
Spring. 4 credits. Prerequisite: ECON 313 or equivalent.
Focuses primarily on the pricing decisions of firms. The course does not consider the strategic response of other firms to these pricing decisions. The pricing decisions include price discrimination, commodity bundling, pricing a product line and pricing a durable good. In addition to pricing decisions, the course considers topics associated with private information such as adverse selection, signaling, and moral hazard. Numerous theoretical models are presented and empirical results are discussed.

ECON 354(3540) The Economics of Regulation (III) (SBA)
Fall. 4 credits. Prerequisite: ECON 313 or equivalent.
Regulation constrains individual and institutional behavior. These interfaces between the private and public sectors are explored in terms of their rationale, efficacy, and economic consequences. Regulation is examined as a system of incentives that guides the development and efficient functioning of markets, that moulds the behavior of regulated industries like utilities and that elicits socially desirable levels of pollution, congestion, risk and benefits from externality-generating activities. How the various professions (law, accounting and engineering) view and address these challenges are examined in light of their economic effects.

ECON 358(3580) Behavioral Economics (III) (SBA)
Spring. 4 credits. Prerequisite: ECON 313.
Introduces students to behavioral economics, an emerging subfield of economics that incorporates insights from psychology and other social sciences into economics. Examines evidence on how human behavior systematically departs from the standard assumptions of economics, and also investigates attempts by behavioral economists to improve economic analyses.

ECON 361(3610) International Trade Theory and Policy (III) (SBA)
Fall. 4 credits. Prerequisites: ECON 101–102 and 313.
Surveys the sources of comparative advantage. Studies commercial policy and analyzes the welfare economics of trade between countries. Some attention is paid to the institutional aspects of the world trading system.

ECON 362(3620) International Monetary Theory and Policy (III) (SBA)
Spring and summer. 4 credits.
Prerequisites: ECON 101–102 and 314.
Surveys the determination of exchange rates and the theory of balance of payments adjustments. Also explores open economy macroeconomics and analyzes some of the institutional details of foreign exchange markets, balance of payments accounting, and the international monetary system.

ECON 367(3670) Game Theoretic Methods (III) (SBA)
Fall. 4 credits. Prerequisites: ECON 101 or equivalent. ECON 367 is not a prerequisite for ECON 368.
Introduces students to the use of game-theoretic methods for the social sciences. This leads to an analysis of the social and political foundations of economics that prepares students to think strategically on social and economic matters and thus serves as a background for more advanced courses in economics, game theory, and related social sciences.

ECON 368(3680) Game Theory (II) (MQR)
Spring. 4 credits. Prerequisites: ECON 313 and 319. ECON 367 is not a prerequisite for ECON 368.
Studies mathematical models of conflict and cooperation in situations of uncertainty (about nature and about decision makers).

ECON 371(3710) Economic Development (III) (SBA)
Fall. 4 credits. Prerequisite: ECON 313 or equivalent.
Studies the problem of sustaining accelerated economic growth in less-developed countries. Emphasizes trade-offs between growth, welfare, and equity; the legacy of colonialism; relevance of history and economic theory; problems of capital formation, economic planning and international specialization; and the interaction of industrialization, agricultural development, and population change.

ECON 372(3720) Applied Economic Development (III) (SBA)
Spring. 4 credits. Prerequisite: ECON 101–102.
Examines several special topics in the economics of developing countries. Recent topics are the concepts of development and underdevelopment, the debate over development economics, the peasant household and its role in the national economy, the debt crisis, the state vs. market debate and the role of the state in economic development, and the question of sustainable development.

ECON 404(4040) Economics and the Law (III) (SBA)
Fall. 4 credits. Prerequisite: ECON 101.
Examines, through the lens of economic analysis, of legal principles drawn from various branches of law, including contracts, torts, and property. Cases are assigned for class discussion; in addition, there are several writing assignments.

ECON 405(4050) Auction Seminar (II) (MQR)
Spring. 4 credits. Prerequisites: ECON 314, 319, 320, and 368.
Uses theoretical and empirical methods to analyze bidding behavior in auctions. The first part of the course studies theoretical models of auctions. The role of private information is discussed in the context of two empirically important auction formats: the first-price-sealed-bid and the open-ascending-bid auction. Bid-shading and the winner's curse are explained in these models. Optimal selling strategies as well as the issue of bidder collusion are analyzed. In the second part, empirical evidence on these topics is discussed in the context of outer continental shelf oil auctions, Internet auctions, and treasury bill and spectrum auctions. One session is devoted to an auction experiment in class. In the final part of the course, students present and debate the issues of their semester papers. Readings are assigned weekly from the reading packet.

ECON 408(4080) Production Economics and Policy (III) (SBA)
For description, see AEM 608.

ECON 409(4095) Auction Seminar (II) (MQR)
Spring. 4 credits. Prerequisites: ECON 314, 319, 320, and 368.
Uses theoretical and empirical methods to analyze bidding behavior in auctions. The first part of the course studies theoretical models of auctions. The role of private information is discussed in the context of two empirically important auction formats: the first-price-sealed-bid and the open-ascending-bid auction. Bid-shading and the winner's curse are explained in these models. Optimal selling strategies as well as the issue of bidder collusion are analyzed. In the second part, empirical evidence on these topics is discussed in the context of outer continental shelf oil auctions, Internet auctions, and treasury bill and spectrum auctions. One session is devoted to an auction experiment in class. In the final part of the course, students present and debate the issues of their semester papers. Readings are assigned weekly from the reading packet.

ECON 409(4090) Production Economics and Policy (III) (SBA)
For description, see AEM 608.
ECON 409(4090) Environmental Economics (III) (SBA)
For description, see AEM 451.

ECON 416(4160) Intertemporal Economics (III) (SBA)
Fall. 4 credits. Prerequisite: ECON 313. Not offered 2005–2006.
Intended for advanced economics majors who are especially interested in economic theory. Topics include (1) review of the one good Ramsey model of optimal savings and accumulation; conditions for intertemporal efficiency in production; comparative dynamics and sensitivity analysis; (2) some earlier models of capital accumulation: the roles of present value and internal rate of return in guiding investment decisions; (3) growth, exhaustible resources; pollution and conservation: discussion of the trade-offs facing a society.

ECON 417(4170) History of Economic Analysis II (III) (HA)
Spring. 4 credits. Prerequisites: ECON 101–102 or permission of instructor.
Covers early writings in economics and their relationship to current economic analysis and policy issues. Examples include: ancient and medieval philosophers on justice in exchange; mercantilist arguments for trade protection; early theories about the effect of monetary expansion (D. Hume); the role of the entrepreneur (Cantillon); and general competitive equilibrium (the Physiocrats).
The most recent reading assignment in this course is Adam Smith's Wealth of Nations but the emphasis is on the relationship between the precursors of Adam Smith and his Wealth of Nations to modern economics analysis and current efforts to answer some of the questions raised in the early writing on economics.

ECON 419(4190) Economic Decisions under Uncertainty (III)
Fall. 4 credits. Prerequisites: ECON 313 and 319. Not offered 2005–2006.
Provides an introduction to the theory of decision making under uncertainty with emphasis on economic applications of the theory.

ECON 420(4200) Economics of Family Policy—Adults (III)
ECON 420 and 421, together, count as one course for the economics major.
For description, see PAM 320.

ECON 421(4210) Economics of Family Policy—Children (III)
ECON 420 and 421, together, count as one course for the economics major.
For description, see PAM 321.

ECON 430(4300) Policy Analysis: Welfare Theory, Agriculture, and Trade (III) (SBA)
For description, see AEM 630.

ECON 431(4310) Monetary Economics (II) (MQR)
Covers monetary theory, history, and policy. Topics include transaction costs, centralized and bilateral trading, media of exchange, international exchange and monetary arrangements, and central bank and its policy.

ECON 434(4340) Financial Economics, Derivatives, and Risk Management (III) (SBA)
Summer only. 4 credits. Prerequisite: ECON 313.
Helps students understand, design, and price derivative contracts. Topics include pricing of forwards, options, and swaps; developing trading strategies with derivatives; using derivatives for financial risk management; and the importance of flexibility in various economic settings.

ECON 440(4400) Analysis of Agricultural Markets
ECON 440 and 441 together, count as one course for economics majors.
For description, see AEM 640.

ECON 441(4410) Commodity Futures Markets
ECON 440 and 441, together, count as one course for economics majors.
For description, see AEM 641.

ECON 442(4430) Compensation, Incentives, and Productivity
For description, see ILRLE 443.

ECON 444(4440) Evolution of Social Policy in Britain and America
For description, see ILRLE 444.

ECON 445(4450) Industrial Policy (III) (SBA)
Fall. 4 credits. Prerequisite: ECON 313.
Highlights of the course include (1) the role of the state in an industrial society; the drive for industrialization; the prevention of de-industrialization; the views of the Nobelists—Friedman, the Libertarian vs. North, the institutionalist; the original intent of laissez-faire; (2) the major debates—the pros and cons of the Washington Consensus ("liberalization"); IMF and "conditionality"; market failure vs. government failure as roots for crises; (3) the East Asian episodes; Komiya on the Japanese MITI—early successes/recent problems; Linsu Kim about Korean policy—are subsequent difficulties the necessary price for the early triumphs? industrial policies vs. export promotionism (the cases of Singapore and Penman, Malaysia)—viable approaches under the WTO rules; (4) present developments and implications; trade frictions (the export expansion of the PRC); environmental concerns.

ECON 446(4460) Topics in Macroeconomic Analysis Is Keynesianism Dead? (III)
Fall or spring. 4 credits. Prerequisite: ECON 314. Not offered 2005–2006.
The coverage of this course may vary from semester to semester. At present, it deals with the range of criticisms against Keynesian theory by the New Classical Economics, alias the Equilibrium School, alias the Rational Expectations School. Despite the fact that almost all intermediate macroeconomic textbooks are Keynesian in perspective, clearly Keynesian economics is currently at bay. Critiques Keynesian theory.

ECON 447(4470) Economics of Social Security (III) (SBA)
For description, see PAM 346.

ECON 450(4500) Resource Economics (III) (SBA)
For description, see AEM 450.

ECON 451(4510) Economic Security (III) (SBA)
For description, see ILRLE 340.

ECON 455(4550) Income Distribution (III) (SBA)
For description, see ILRLE 441.

ECON 456(4560) The Economics of Employee Benefits (III) (SBA)
For description, see ILRLE 442.

ECON 457(4570) Women in the Economy (III) (SBA)
For description, see ILRLE 445.

ECON 458(4580) Topics in 20th-Century Economic History (III) (SBA)
For description, see ILRLE 448.

ECON 459(4590) Economic History of British Labor 1750 to 1940 (III) (SBA)
For description, see ILRLE 446.

ECON 460(4600) Economic Analysis of the Welfare State (III) (SBA)
For description, see ILRLE 642.

ECON 461(4610) The Economics of Occupational Safety and Health (III) (SBA)
For description, see ILRLE 644.

ECON 469(4690) China's Economy under Mao and Deng @ (III) (SBA)
Spring. 4 credits. Prerequisite: ECON 101–102 or permission of instructor.
Examines the development of the Chinese economy and the evolution of China's economic system between the early 1990s and late 1990s.

ECON 470(4700) Economics of Information (also ECON 669)[6690] (II) (MQR)
Spring. 4 credits. Prerequisite: ECON 609.
Classic models of "perfect competition" require that economic agents are fully informed, or at least equally informed, about all relevant economic information. Prices, descriptions of commodities, and so forth.
This course studies theoretical models that examine the difficulties of resource allocation when this assumption fails. Discusses models of auctions, adverse selection, bargaining, mechanism design, moral hazard, screening, and sorting. Begins with a survey of rudimentary incomplete information games that is useful in reading the literature to follow. Evaluation is through problem sets and exams.

ECON 473(4730) Economics of Export-Led Development @ (III) (SBA)
Spring. 4 credits. Prerequisites: ECON 313, 314, or equivalent.
Examines the phenomenon of export-led development from both the theoretical and empirical points of view. Concentration is on experiences within the West Pacific Rim.

ECON 474(4740) Economics of Hunger and Malnutrition (III)
For description, see NS 457.

ECON 475(4750) The Economy of India @ (III) (SBA)
Fall. 4 credits. Prerequisite: ECON 101–102 or equivalent background. Not offered 2005–2006.
Presents the major economics and development problems of contemporary India and examines the country's future economic prospects. The aim is, however, to discuss
these problems in their proper historical perspectives. Hence, the course starts with a brief outline of the social and political history of India. It then turns to a more detailed account of the economic history of India in two stages.

ECON 476[4760] Decision Theory I (also ECON 576[5760], CIS 576[5846]) (II) (MOR)

Fall. 4 credits. Research on decision theory resides in a variety of disciplines including computer science, economics, game theory, philosophy, and psychology. This course attempts to integrate these various approaches. The course is taught jointly by faculty from Game Theory and Computer Science. The course covers several areas: (1) basic decision theory. This theory, sometimes known as “rational choice theory,” is part of the foundation for the disciplines listed above. It applies to decisions made by individuals or by machines: (2) the limitations of and problems with this theory. Issues discussed here include decision theory paradoxes revealed by experiments, cognitive and knowledge limitations, and computational issues; (3) new research designed in response to these difficulties. Issues covered include alternative approaches to the foundations of decision theory, adaptive behavior and shaping the individual decisions by aggregate/evolutionary forces and more computationally based approaches.

ECON 477(4770) Decision Theory II (also ECON 577[5770], CIS 577[5847]) (II) (MOR)

Spring. 4 credits. Prerequisite: ECON 476 or 676 or CIS 576. A continuation of ECON 476.

ECON 494(4940) Economic Methods for Engineering and Management

For description, see CEE 594.

ECON 496(4960) Independent Study in Economics

Fall or spring. Variable credit. Independent study.

ECON 499(4990) Honors Program

Fall and spring. 8 credits. Prerequisites: ECON 313, 314, 320 (or 319–320). Students should consult the director of undergraduate studies for details. Admission is competitive. Interested students should apply to the program in the spring semester of their junior year.

Graduate Courses and Seminars

ECON 609(6090) Microeconomic Theory I

Fall. 4 credits. Topics in consumer and producer theory.

ECON 610(6100) Microeconomic Theory II

Spring. 4 credits. Topics in consumer and producer theory, equilibrium models and their application, externalities and public goods, intertemporal choice, simple dynamic models and resource depletion, choice under uncertainty.

ECON 611(6110) Microeconomic Theory III

Spring. 4 credits. Prerequisites: ECON 609 and 610. Not offered 2005–2006. Part of a three-semester sequence in microeconomic theory. Provides a rigorous underpinning of partial equilibrium competitive analysis and reviews theories of non-competitive markets, including Bertrand, Cournot, and monopolistic competition. Covers the classical sources of market failure (public goods, externalities, and natural monopoly) and discusses market failures stemming from informational asymmetries. Also provides an introduction to contract theory, bargaining theory, social choice, and the theory of mechanism design.

ECON 612(6130) Macroeconomic Theory I

Fall. 4 credits. Covers the following topics: static general equilibrium; intertemporal general equilibrium; infinitely lived agents models and overlapping generations models; welfare theorems; equivalence between sequential markets and Arrow-Debreu Markets; Ricardian proposition; Modigliani-Miller theorem; asset pricing, recursive competitive equilibrium, the Neoclassical Growth Model; calibration; and introduction to dynamic programming.

ECON 614(6140) Macroeconomic Theory II

Spring. 4 credits. Covers the following topics: dynamic programming; stochastic growth; search models; cash-in-advance models; real business-cycle models; labor indivisibilities and lotteries; heterogeneous agents models; optimal fiscal and monetary policy; sustainable plans; and endogenous growth.

ECON 617(6170) Intermediate Mathematical Economics I

Fall. 4 credits. Prerequisites: calculus II and intermediate linear algebra.

Covers selected topics in Matrix algebra (vector spaces, matrices, simultaneous linear equations, characteristic value problem), calculus of several variables (elementary real analysis, partial differentiation, convex analysis), classical optimization theory (unconstrained maximization, constrained maximization).

ECON 618(6180) Intermediate Mathematical Economics II

Spring. 4 credits. Not offered 2005–2006. Continuation of ECON 617. Develops additional mathematical techniques for applications in economics. Topics may include study of dynamic systems (linear and nonlinear difference equations, differential equation, chaotic behavior), dynamic optimization methods (optimal control theory, nonstochastic and stochastic dynamic programming), and game theory (repeated dynamic and evolutionary games).

ECON 619(6190) Econometrics I

Fall. 4 credits. Prerequisite: ECON 319–320 or permission of instructor. Gives the probabilistic and statistical background for meaningful application of econometric techniques. Topics include probability theory probability spaces, random variables, distributions, moments, transformations, conditional distributions, distribution theory and the multivariate normal distribution, convergence concepts, laws of large numbers, central limit theorems, Monte Carlo simulation, statistics: sample statistics, sufficiency, exponential families of distributions. Further topics in statistics are considered in ECON 620.

ECON 620(6200) Econometrics II

Spring. 4 credits. Prerequisite: ECON 619. A continuation of ECON 619 (Econometrics I) covering statistics: estimation theory, least squares methods, method of maximum likelihood, generalized method of moments, theory of hypothesis testing, asymptotic test theory, and nonnested hypothesis testing; and econometrics: the general linear model, generalized least squares, specification tests, instrumental variables, dynamic regression models, linear simultaneous equation models, nonlinear models, and applications.

ECON 639(6390) Public Political Economy (also CEE 528[5280])

Spring. 4 credits. Prerequisite: ECON 313 or equivalent. Not offered 2005–2006. Topics include the intrinsic nature of goods and services, decreasing cost of production, externalities and congestion, attributes and government regulation essential for an effective market, the efficient role of government in non-market resource allocation methods, methods for inferring the demand for public goods, efficient public decision-making, the supply of public services and raising revenue through taxes and user-fees. Particular emphasis is placed on the interaction between fairness and efficiency in resolving conflicts over public goods provision, including defining jurisdictions for the provision of particular services. Examples emphasize the proper provision of infrastructure services: physical (transportation, utilities, tele-information), human-capital (education and RD), and biological (renewable resources, species diversity and the environment).

ECON 669(6690) Economics of Information

Spring. 4 credits. Prerequisite: ECON 609. Classic models of "perfect competition" require that economic agents are fully informed, or at least equally informed, about all relevant economic information: prices, descriptions of commodities, and so forth. This course will study theoretical models that examine the difficulties of resource allocation when this assumption fails. The course will discuss models of: Auctions, adverse selection, hargaining, mechanism design, moral hazard, screening, searching and sorting. The course will begin with a survey of rudimentary incomplete information games that will be useful in reading the literature to follow. Evaluation will be through problem sets and exams.

ECON 676(6760) Decision Theory I (also ECON 476[4760], CIS 576[5846])

For description, see ECON 476.

ECON 677(6770) Decision Theory II (also ECON 477[4770], CIS 577[5847])

For description, see ECON 477.

ECON 691(6910) Health Economics

For description, see PAM 691.

ECON 699(6990) Readings in Economics

Fall or spring. Variable credit. Independent study.

ECON 703(7030) Seminar in Peace Science

Fall. 4 credits. Topics covered at an advanced level are: game theory, coalition theory, bargaining and negotiation processes, cooperative procedures, microbehavior models, macrosocial processes, and general systems analysis.
ECON 710(7100) Stochastic Economics: Concepts and Techniques

Spring. 4 credits. Prerequisites: ECON 609, 610, 613, 614, 619, and 620.
Reviews a number of techniques that have been developed in stochastic models of economic behavior. These include discrete-time Markov processes, dynamic programming under uncertainty, and continuous-time diffusion processes. Examples of economic models are drawn from recent literature on optimal capital accumulation and optimal savings and portfolio selection problems; permanent income hypothesis; and dynamic models of price adjustment. Advanced graduate students contemplating work in economic theory and econometric theory gain exposure to current research.

ECON 712(7120) Advanced Macroeconomics

4 credits. Prerequisites: ECON 613, 614.
Introduces students to some of the topics and analytic techniques of current macroeconomic research. The course has three parts: dynamic programming, new Keynesian economics, and recent theories of economic growth. The dynamic programming section includes models of consumption, investment, and real business cycles. The new Keynesian section covers models of wage and price rigidity, coordination failure, and credit markets. The section on endogenous growth looks at recent efforts to add nonconvexities to models of optimal growth. These topics are intended to complement the material on overlapping generations covered elsewhere.

ECON 713(7130) Advanced Macroeconomics II

Spring. 4 credits. Prerequisites: ECON 613, 614.
Reviews the most recent research in endogenous growth theory. This theory is little more than a decade old, but it has produced a large number of both empirical and theoretical results that have substantially reshaped the general field of macroeconomics. It is perhaps too soon to say that most of the work at the frontier of today’s macroeconomics belongs to this field. An increasing number of papers have been touching important issues such as learning, investment, and market structure; private and public organization of R&D; education financing, human capital accumulation, technological unemployment, growth and business cycles, inequality and growth, political equilibrium, democracy and growth, instability, social conflict, capital accumulation, intergenerational and vested interests and barriers to technology adoption, international transfers of technologies, and sustainable development. This course aims to orient the student in this large and variegated literature consisting of recently published articles and working papers. Understanding this literature is a sound training in the analytical methods used at the frontier of theoretical research, but it also provides a number of empirical results at the center of the economic debate.

ECON 714(7140) Empirical Macroeconomics

Spring. 4 credits. Prerequisites: ECON 613 and 614.
Advanced graduate-level course emphasizing empirical applications. Students learn how to deal with data and how to estimate and test macroeconomic theories, and can develop research topics in applied macroeconomics for their dissertations.

ECON 717(7170) Mathematical Economics

4 credits. Prerequisites: ECON 609-610 (or equivalent training in micro theory) and MATH 413-414 (or equivalent training in analysis).
The primary theme of this course is to explore the role of prices in achieving an efficient allocation of resources in dynamic economies. Some of the classical results on static equilibrium theory and welfare economics on attainability of Pareto optimal allocations through decentralized organizations are examined through an axiomatic approach. Some basic issues on capital theory are also analyzed.

ECON 718(7180) Topics in Mathematical Economics

ECON 719(7190) Advanced Topics in Econometrics I

Fall. 4 credits. Prerequisite: ECON 619–620 or permission of instructor.
Covers advanced topics in econometrics, such as asymptotic estimation and test theory, robust estimation, Bayesian inference, advanced topics in time-series analysis, errors in variables, and latent variable models, qualitative and limited dependent variables, aggregation, panel data, and duration models.

ECON 720(7200) Advanced Topics in Econometrics II

Spring. 4 credits. Prerequisite: ECON 619–620 or permission of instructor.
For description see ECON 719.

ECON 721 Time Series Econometrics

Spring. 4 credits. Prerequisite: ECON 619–620 or permission of instructor.
Covers traditional and current time-series techniques that are widely used in econometrics. Topics include the theory of stationary stochastic processes including univariate ARMA(p,q) models, spectral density analysis, and vector autoregressive models; parametric and semi-parametric estimation; current developments in distributional theory; and estimation and testing in models with integrated regressors including, unit root tests, co-integration, and permanent vs. transitory components.

ECON 722(7210) Topics in Time Series Econometrics

Spring. 4 credits. Prerequisite: ECON 721. Covers topics not treated by ECON 721. These include co-integration, fractional integration, long memory, and ARCH/GARCH models. Other topics may also be considered based on the interests of the students.

ECON 723(7230) Semi/Non Parametric Econometrics

Fall. 4 credits. Prerequisite: ECON 619–620 or permission of instructor.
Analyzes the ways identification problems limit the conclusions that may be drawn in empirical economic research and studies how identified and partially identified parameters can be estimated. In the first part of the course, the focus is on nonparametric models. Ways data can be combined with weak assumptions to yield partial identification of population parameters are discussed.

ECON 731(7310) Monetary Economics

Spring. 4 credits. Prerequisites: ECON 614 or permission of instructor.
Covers advanced topics in monetary economics, macroeconomics, and economic growth—such as overlapping-generations, taxes and transfers denominated in money, transactions demand for money, multi-asset accumulation, exchange rates, and financial intermediation.

ECON 732(7320) Monetary Economics

Fall. 4 credits. Prerequisites: ECON 731 or permission of instructor.
Covers advanced topics in monetary economics, macroeconomics, and economic growth—such as economic volatility, the "business cycle" of growth and business cycles, and endogenous growth theory, technological evolution, financial market frictions, and cyclical fluctuations.

ECON 735(7350) Public Finance: Resource Allocation and Fiscal Policy [also AEM 735(7350)]

Fall. 4 credits.
Develops a mathematical and highly analytical understanding of the role of government in market economies and the fundamentals of public economics and related issues. Topics include generalizations and extensions of the fundamental theorems of welfare economics, in-depth analysis of social choice theory and the theory on implementation in economic environments, public goods and externalities and other forms of market failure associated with asymmetric information. The theoretical foundation for optimal direct and indirect taxation is also introduced along with the development of various consumer surplus measures and an application to rent-seeking theory. Topics of an applied nature vary from semester to semester depending on faculty research interests.

ECON 736(7360) Public Finance: Resource Allocation and Fiscal Policy

Spring. 4 credits.
Spends a large part of the semester covering the revenue side of public finance. Topics include the impact of various types of taxes as well as the determination of optimal taxation. The impact of taxation on labor supply, savings, company finance and investment behavior, risk bearing, and portfolio choice are explored. Other topics include the interaction of taxation and inflation, tax evasion, tax incidence, social security, unemployment insurance, deficits, and interactions between different levels of government.

ECON 737(7370) Location Theory and Regional Analysis

Fall. 4 credits. Prerequisites: ECON 609, 617, and econometrics course. Not offered 2005–2006.
Covers economic principles influencing the location of economic activity, its spatial equilibrium structure, and dynamic forces. Topics include spatial pricing policies, price competition, and relocation by firms; residential location patterns; patterns of regional growth and decline; and patterns of urbanization.

ECON 738(7380) Public Choice

Spring. 4 credits. Prerequisites: ECON 609, 610.
This course has two parts. It begins with an introduction to economic theories of political decision making. Reviews the theory of voting, theories of political parties and party
competition, theories of legislative decision making and interest group influence. Also discusses empirical evidence concerning the validity of these theories. The second part uses these theories to address a number of issues in public economics. Develops the theory of political failure; analyzes the performance of alternative political systems and discusses the problem of doing policy analysis, which takes into account political constraints.

ECON 739(7390) Advanced Topics in State and Local Public Finance
Spring. 4 credits. Prerequisites: ECON 609, 620.
Provides an in-depth examination of microeconomic theory surrounding the role of subnational governments and jurisdictions in the economy. Among the broad questions addressed are: What tasks are optimally assigned to local governments? What impact can such assignment have on efficiency and equity? In addition to the theoretical foundations of these issues, the course explores recent empirical evidence in this area, with particular attention to the research designs and data used in relevant papers.

ECON 741(7410) Seminar in Labor Economics
For description, see ILRLE 744.

ECON 742(7420) Seminar in Labor Economics
For description, see ILRLE 745.

ECON 743(7430) Seminar in Labor Economics
For description, see ILRLE 746.

ECON 746(7460) Economics of Higher Education
For description, see ILRLE 747.

ECON 747(7470) Economics of Higher Education
For description, see ILRLE 747.

ECON 748(7480) Applied Econometrics I
For description, see ILRLE 741.

ECON 749(7490) Applied Econometrics II
For description, see ILRLE 742.

ECON 751(7510) Industrial Organization and Regulation
Fall. 4 credits. Prerequisites: ECON 609, 610.
Focuses primarily on recent theoretical advances in the study of industrial organization. Topics include market structure, nonlinear pricing, quality, durability, location selection, repeated games, collusion, entry deterrence, managerial incentives, switching costs, government intervention, and R&D payments. These topics are discussed in a game-theoretic context.

ECON 753(7530) Public Policy Issues for Industrial Organizations

ECON 756(7560) Noncooperative Game Theory
Fall. 4 credits. Prerequisites: ECON 609–610 and 619.
Surveys equilibrium concepts for noncooperative games. Covers Nash equilibrium and a variety of equilibrium refinement methods, including perfect equilibrium, proper equilibrium, sequential equilibrium and more. Pays attention to important special classes of games, including bargaining games, signalling games, and games of incomplete information. Most of the analysis is from the strict decision-theoretic point of view, but also surveys some models of bounded rationality in games, including games played by automata.

ECON 757(7570) Economics of Imperfect Information
Spring. 4 credits. Prerequisites: ECON 609–610 and 619.
Considers some major topics in the economics of uncertain information. Although the precise topics considered vary from year to year, subjects such as markets with asymmetric information, signalling theory, sequential choice theory, and record theory are discussed.

ECON 758(7580) Psychology and Economic Theory
Fall, spring. 4 credits. Prerequisites: economics graduate core or permission of instructor.
Explores the ways in which insights from psychology can be integrated into economic theory. Presents evidence on how human behavior systematically departs from the standard assumptions of Economics and how this can be incorporated into modeling techniques.

ECON 760(7600) Topics in Political Economy
Fall. 4 credits. Prerequisite: economics graduate core or permission of instructor.
Depicts critiques and extensions of economic theory, taking into account the political and social moorings of economic activity and equilibria. The formation and persistence of social norms; the meaning and emergence of property rights; the role of policy advice in influencing economic outcomes; and the effect of political power and ideology on economic variables are studied. While these topics were popular in the classic works of political economy, recent advances in game theory and, more generally, game-theoretic thinking allows a new approach to these topics. Hence, the course begins by devoting some lectures to elementary ideas in game-theory and strategic analysis.

ECON 761(7610) International Economics: Trade Theory and Policy
Fall. 4 credits. Prerequisites: ECON 609, 610.
Surveys the sources of comparative advantage. Analyzes simple general equilibrium models to illustrate the direction, volume, and welfare effects of trade. Topics in game theory and econometrics as applied to international economics may be covered.

ECON 762(7620) International Economics: International Finance and Open Economy Macroeconomics
Spring. 4 credits. Prerequisite: ECON 761. Surveys the determination of exchange rates and theories of balance of payment adjustments. Explores open economy macroeconomics by analyzing models of monetary economies. Topics in monetary economics and econometrics as applied to international economics are covered.

ECON 763(7630) Topics in International Economic History
Spring. 4 credits. Prerequisite: solid understanding of international trade and finance.
Covers selected topics in modern economic history. Focuses on the process of international economic integration, or globalization. Traces the roots of globalization and its evolution in the last several centuries. Special attention is paid to the relationship between international market integration and economic growth.

ECON 770(7700) Topics in Economic Development
For description, see AEM 667.

Spring. 4 credits. Prerequisites: economics graduate core.
Focuses on empirical methods for the analysis of household survey data. Explores the hands-on use of such data to address policies issues related to welfare outcomes, particularly nutrition, health, education, and poverty. Covers empirical methods as they apply to a series of measurement and modeling issues, as well as the valuation of interventions. While underlying theory is reviewed briefly, the course attempts to bridge the gap between theory and practice, addressing issues such as model identification, functional form, estimation techniques to control for endogeneity and heterogeneity, and so forth. The course grade is based primarily on two empirical exercises, and related write-up, as well as class participation. Students are given actual household data sets and software with which to conduct exercises. These data enable students to apply analytical techniques discussed. Data sets are provided from African, Asian, and Latin American countries.

ECON 772(7720) Economics of Development
For description, see ILRLE 749[7490]
Spring. 4 credits. Prerequisites: first-year graduate economic theory and econometrics.
Analytical approaches to the economic problems of developing nations. Topics include old and new directions in development economics thinking, the welfare economics of poverty and inequality, empirical evidence on who benefits from economic development, labor market models, project analysis with application to the economics of education, and development policy.

ECON 773(7730) Economic Development
Fall. 4 credits. Prerequisites: ECON 609, 610, and 611.
Concerned with theoretical and applied works that seek to explain economic development, or lack thereof, in countries at low-income levels. Specific topics vary each semester.
ECON 774/7740 Economic Systems
Spring. 4 credits.
Deals with economic systems, formerly centrally planned economies, and economies in transition.

ECON 775/7750 Development Microeconomics
Spring. 4 credits.
Prerequisites: economics graduate core.
Explores the application of microeconomic analysis to economic issues in developing countries. Focuses on household behavior and the analysis or rural institutions. Covers the historical agricultural household model and recent developments in the theory of the household, topics in rural economies, financial arrangements, program evaluation and the interaction of social norms and economic organization. Designed to prepare students for applied research in micro development economics by giving an overview over the current state of research in that discipline.

ENGLISH

The Department of English offers a wide range of courses in English, American, and Anglophone literature as well as in creative writing, expository writing, and film analysis. Literature courses focus variously on close reading of texts, study of particular authors and genres, questions of critical theory and method, and the relationship of literary works to their historical contexts and to other disciplines. Writing courses typically employ the workshop method in which students develop their skills by responding to the criticism of their work by their classmates as well as their instructors. Many students supplement their formal coursework in English by attending public lectures and poetry readings sponsored by the department or by writing for campus literary magazines. The department seeks not only to foster criticism of their work by their classmates as well as their instructors. Many students supplement their formal coursework in English by attending public lectures and poetry readings sponsored by the department or by writing for campus literary magazines. The department seeks not only to foster critical analysis and lucid writing but to also teach students to think about the nature of language and to be alert to both the rigor and the pleasures of reading texts of diverse inspiration.

First-Year Writing Seminars
As part of the university-wide First-Year Writing Seminars program administered by the John S. Knight Institute for Writing in the Disciplines, the department offers many one-semester courses dealing with various forms of writing (e.g., narrative, autobiographical, and expository) and in specific areas in English and American literature, and with the relation of literature to culture. Students may apply any of these courses to their first-year writing seminar requirement. Detailed program descriptions may be found in the first-year writing seminars program listings, available from college registrars in August for the fall semester and in November for the spring semester.

Seminarians interested in majoring in English are encouraged to take at least one of the department's 200-level fall-first-year writing seminars: ENGL 270 The Reading of Fiction, ENGL 271 The Reading of Poetry, and ENGL 272 Introduction to Drama. These courses are open to all second-semester freshmen. They are also open, as space permits, to first-semester freshmen with scores of 700 or above on the CEEB College Placement Tests in English composition or literature, or 4 or 5 on the CEEB Advanced Placement Examinations. These students must have completed another first-year writing seminar.

Courses for Nonmajors
For students majoring in fields other than English, the department provides a variety of courses at all levels. A number of courses at the 200 level are open to qualified freshmen, and all are open to sophomores. Courses at the 300 level are open to all sophomores, juniors, and seniors; they are also open to freshmen who have received the instructor's prior permission. The suitability of courses at the 400 level for nonmajors depends in part on the course topics, which are subject to change from year to year. Permission of the instructor is sometimes required; prior consultation is always strongly advised.

The Major in English
Students who major in English develop their own programs of study in consultation with their major advisers. Some choose to focus on a particular historical period or literary genre or to combine sustained work in creative writing with the study of literature. Others pursue interests in such areas as women's literature, African-American literature, literature and the visual arts, or critical theory.

The department recommends that students prepare themselves for the major by taking one or more of its preparatory courses, such as ENGL 201 The Reading of Fiction, ENGL 270 The Reading of Fiction, ENGL 271 The Reading of Poetry, or ENGL 272 Introduction to Drama. (The "ENGL prefix identifies courses offered by the Department of English, all of which appear in the English section of Courses of Study or the department's supplementary lists of courses; it also identifies courses sponsored and taught by other academic units and cross-listed with English.) These courses concentrate on the skills basic to the English major and to much other academic work—responsive, sensitive reading and lucid, strong writing. As first-year freshmen, any one of them will satisfy one-half the College of Arts and Science's first-year writing requirement.

ENGL 280, 281, 288, and 289 are also suitable preparations for the major and are open to students who have completed their first-year writing seminar requirement. ENGL 201 and 202, which together constitute a two-semester survey of major British literature, are strongly recommended for majors and prospective majors. ENGL 201 and 202 (unlike ENGL 280, 281, 288, and 289) are also "approved for the major" in the special sense of that phrase explained below.

To graduate with a major in English, a student must complete with passing grades 10 courses (40 credit hours) approved for the English major. All ENGL courses numbered 300 and above are approved for the major. In addition, with the exception of first-year ENGL 270, 271, and 272-200-level courses in creative and expository writing (ENGL 280, 281, 288, and 289), and courses designated for nonmajors, all 200- level ENGL courses are also approved for the major. Courses used to meet requirements for the English major may also be used to meet the "Humanities and the Arts" distribution requirement of the College of Arts and Sciences. Many of these courses may be used to meet the college's "historical breadth" requirement as well.

Of the 40 credits required to complete the major, 8 credits (two courses) must be at the 400 level or above. 12 credits (three courses) must be from courses in which 50 percent or more of the material consists of literature originally written in English before 1800, and another 12 credits (three courses) must form an intellectually coherent "concentration." The 400-level and pre-1800 requirements may be satisfied only with ENGL courses, and ENGL 493--494, the Honors Essay Tutorial, may not be used to satisfy either one. Courses that satisfy the pre-1800 requirement are so designated in Courses of Study. Many English majors use ENGL 201 to begin meeting this requirement since it provides an overview of earlier periods of English literature and so enables them to make more informed choices of additional pre-1800 courses.

ENGL 202 does not qualify as a pre-1800 course. Neither do courses offered by other departments unless they are cross-listed with English. Advanced courses in foreign literature may not be used to fulfill the pre-1800 requirement, but they may be used for English major credit provided they are included within the 12-credit limit described above.

The three-course concentration requirement may be satisfied with any courses approved for the major. The department's "Guide to the English Major" suggests areas of concentration and offers examples of courses that fall within those areas, but majors define their own concentrations in consultation with their advisers.

As many as 12 credits in appropriate courses offered by departments and programs other than English may be used to satisfy English major requirements. Courses in literature and creative writing offered by academic units representing neighboring or allied disciplines (German Studies, Romance Studies, Russian and East European Studies, Comparative Literature, African Studies, the Society for the Humanities, American Studies, Feminist, Gender and Sexuality Studies, Religious Studies, Asian American Studies, Latino Studies, and Theatre, Film, and Dance) are routinely counted toward the 40 hours of major credit provided they are appropriate for
juniors or seniors, as are most courses at the 300 level and above. English majors who are double majors may exercise this option even if all 12 credits are applied to their second major. All English majors are urged to take courses in which they read foreign works of literature in the original language, and for that reason 200-level literature courses for which qualification is a prerequisite (as well as more advanced foreign literature courses) may be counted toward the English major. Credit from other non-ENGL courses may be included within the 12 credits of nondepartmental courses approved for the major only when the student is able to demonstrate to the adviser's satisfaction their relevance to his or her individual program of study.

The Major in English with Honors
Second-semester sophomores who have done superior work in English and related subjects are encouraged to seek admission to the department's program leading to the degree of Bachelor of Arts in English. Following an interview with the chair of the Honors Program, qualified students will be admitted provisionally to the program. During their junior year these students complete at least one honors seminar (ENGL 491 or 492) and are encouraged to take an additional 400-level English course in the area of their thesis topic. On the basis of work in these and other English courses, a provisional honors candidate is expected to select a thesis topic and secure a thesis adviser by the end of the junior year. A student who has been accepted by a thesis adviser becomes a candidate for honors rather than a provisional candidate. During the senior year, each candidate for honors in English enrolls in a yearlong tutorial (ENGL 491 or 492) and is encouraged to take an additional 400-level English course in the area of their thesis topic. The year's work culminates in the submission of a substantial scholarly or critical essay to be judged by at least two members of the faculty. More information on the Honors Program may be found in a leaflet available in the English offices.

First-Year Writing Seminars Recommended for Prospective Majors

ENGL 270(2700) The Reading of Fiction
Fall, spring, summer. 3 credits. Each section limited to 17 students. Recommended for prospective majors in English. This course does not satisfy requirements for the English major. This course examines modern fiction, with an emphasis on the short story and novella. Students write critical essays on authors who flourished between 1870 and the present, such as James, Joyce, Woolf, Hurston, Lawrence, Fitzgerald, Hemingway, Faulkner, Rhys, Welty, Sälinger, and Morrison. Reading lists vary from section to section, and some may include a novel, but close, attentive, and imaginative reading and writing are central to all.

ENGL 271(2710) The Reading of Poetry
Fall, spring, 3 credits. Each section limited to 17 students. Recommended for prospective English majors. This course does not satisfy requirements for the English major. How can we become more appreciative, alert readers of poetry, and at the same time better writers of prose? This course attends to the rich variety of poems written in English, drawing on the works of poets from William Shakespeare to Sylvia Plath, John Keats to Li- Young Lee, Emily Dickinson to A. R. Ammons. We may read songs, sonnets, odes, villanelles, even limericks. By engaging in thorough discussions and varied writing assignments, we explore the implicit and explicit interrelations of form, meaning, modes, and genres of English poetry, and in the process expand the possibilities of our own writing.

ENGL 272(2720) Introduction to Drama
Fall, spring, 3 credits. Each section limited to 17 students. Recommended for prospective English majors. This course does not satisfy requirements for the English major. Students in this seminar study plays, older and newer, in a variety of dramatic idioms and cultural traditions. Plays being performed by the theatre department are included, if possible. A typical reading list might include works by Sophocles, Shakespeare, Chekhov, Brecht, Miller, Beckett, and Shange. Course work consists of writing and discussion, and the occasional viewing of live or filmed performances.

Expository Writing

ENGL 288-289(2880-2889) Expository Writing (IV) (LA)
Fall, spring, summer. 3 credits. Each section limited to 15 students. Prerequisite: permission of the instructor on the basis of a writing sample (critical/interpretive prose), which should reach the instructor before the first day of class. S. Davis.

"Fictions"—of voice, audience, plot, point of view, figurative language, and syntactic style—abound in good expository writing; they stand out in works that deliberately test and play with ideas: dialogues, satires, parables, short fictions by Jorge Luis Borges and Octavia Butler, and essays by Richard Rorty and Terry Eagleton.

ENGL 381(3810) Reading as Writing, Writing as Reading (IV) (LA)
Fall. 4 credits. Course limited to 15 students. Prerequisite: permission of the instructor on the basis of a writing sample (critical/interpretive prose), which should reach the instructor before the first day of class. S. Davis.

ENGL 386(3860) Philosophic Fictions (IV) (LA)
Spring. 4 credits. Course limited to 15 students. Prerequisite: permission of the instructor on the basis of a writing sample (critical/interpretive prose), which should reach the instructor before the first day of class. S. Davis.

"Fictions"—of voice, audience, plot, point of view, figurative language, and syntactic style—abound in good expository writing; they stand out in works that deliberately test and play with ideas: dialogues, satires, parodies, parables, poetic fictions, and "thought-experiments." Students will write critically about such works and the issues they raise, and will experiment with writing in similar forms. The "fictions" read and written in this course are not realistic narratives or evocations of personal experience; they are the vehicles and animating force of the argument or the issues they raise. Students and instructors will confer individually throughout the semester. ENGL 288-89 does not satisfy requirements for the English major.

Fall 2005 Listing:

Section 1. Making the News
J. Carlacio
Section 2. Hollywood Babylon
C. Bennett
Section 3. American Political Satire
A. E. Gómez
Section 4. War, Peace, and the Law
W. Pork
Section 5. Issues, Audiences, and Ourselves
B. LeGendre
Section 6. The Reflective Essay
K. Gottschalk
Section 7. The Essay: Personal to Public
C. Chung
Section 8. Rights, Democracy, and the Courts
T. Thorn

See English department course offerings for full fall and spring section descriptions.
nonfiction. The course assumes a high degree of self-motivation, a capacity for independent work, and critical interest in the work of other writers; it aims for a portfolio of conceptually rich and stylistically polished writing.

Creative Writing

Students usually begin their work in Creative Writing with ENGL 280 or 281, and only after completion of the First-Year Writing Seminar requirement. Please note that either ENGL 280 or ENGL 281 is the recommended prerequisite for 300-level creative writing courses. ENGL 280 and 281 may satisfy a distribution requirement in your college (please check with your college adviser). ENGL 382-383, 384-385, and 480-481 are approved for the English major.

ENGL 280-281 (2800-2810) Creative Writing (IV) (LA)

Fall, summer, winter, spring. 3 credits. Limited to 18 students. Prerequisite: completion of the First-Year Writing Seminar requirement. Majors and prospective majors, please note: Although recommended for prospective English majors, ENGL 280-281 cannot be counted toward the 40 credits required for completion of the English major. It is a prerequisite for 300-level courses in creative writing, which count toward the major. ENGL 280 is not a prerequisite for ENGL 281.

An introductory course in the theory, practice, and reading of prose, poetry, and allied forms. Students are given the opportunity to try both prose and verse writing and may specialize in one or the other later in the course. The class meetings are conducted as workshops.

ENGL 382-383 (3820-3830) Narrative Writing (IV) (LA)

Fall, 382; spring, 383. 4 credits each semester. Each section limited to 15 students. Prerequisite: ENGL 280 or 281 and permission of instructor based on submission of a manuscript (bring manuscript to first day of class). Fall: sec 1, S. Vaughn; sec 2, M. McCoy; sec 3, R. Morgan; sec 4, N. Revoy. Spring: sec 1, M. Koch; sec 2, H. Viramontes; sec 3, L. Herrin; sec 4, L. Herrin.

The writing of fiction; study of models; analysis of students’ work.

ENGL 384-385 (3840-3850) Verse Writing (IV) (LA)

Fall or summer, 384; spring, 385. 4 credits each. Each section limited to 15 students. Prerequisite: ENGL 280 or 281 and permission of instructor based on submission of manuscript (bring manuscript on first day of class). Fall: sec 1, L. Van Clef-Stefanof; sec 2, P. Janowitz. Spring: sec 1, L. Van Clef-Stefanof; sec 2, K. McClane.

The writing of poetry; study of models; analysis of students’ poems; personal conferences.

ENGL 480-481 (4800-4810) Seminar in Writing (IV) (LA)

Fall, 480; spring, 481. 4 credits each semester. Each section limited to 15 students. Prerequisite: permission of instructor, normally on the basis of a manuscript. The manuscript should be submitted to the instructor by the second day of classes rather than the first day of class. Previous enrollment in ENGL 280 or 281 and at least one

300-level writing course recommended. Successful completion of one half of the 480-481 sequence does not guarantee enrollment in the other half; students must receive permission of the instructor to enroll again. Fall: sec 1, H. Viramontes, sec 2, P. Janowitz, spring: K. McClane and S. Vaughn.

Intended for those writers who have already gained a basic mastery of technique. Although ENGL 480 is not a prerequisite for ENGL 481, students normally enroll for both semesters and should be capable of a major project—a collection of stories or poems, a group of personal essays, or perhaps a novel—to be completed by the end of the second semester. Seminars are used for discussion of the students’ manuscripts and published works that individual members have found of exceptional value.

Courses for Freshmen and Sophomores

These courses have no prerequisites and are open to freshmen and nonmajors as well as majors and prospective majors.

Introductions to Literary Studies

ENGL 200 (2000) Introduction to Criticism and Theory (IV) (LA)

Fall. 4 credits. S. Moldin.

This is an introductory course exploring some of the key concepts and methods used in literary and cultural studies. Focusing in particular on movies, novels, and popular cultural texts (e.g., TV sitcoms), we will try to answer such basic questions as: what does it mean to read and analyze texts well? What roles do history and social ideology play in our readings? How does a text's form or structure shape what it means? What, after all, is "art"? (As opposed to what?) Is there such a thing as beauty? We will also focus on literary and cultural "theory," examining both contemporary questions and historical ones. Readings on critical and theoretical theory from a variety of cultural traditions will be analyzed and we will cover a range of thinkers from the Greek philosopher Plato or the Indian thinker Bharata to contemporary writers who focus on such issues as gender, race, and sexuality. J. Carlacio.

ENGL 201-202 (2010-2020) The English Literary Tradition I (IV) (LA)

201: fall; 202: spring. 4 credits each semester. ENGL 201 is not a prerequisite for 202, but may be used as one of the three pre-1800 courses required of English majors. D. Fried.

201. An introduction to the study of English literature, examining its historical development and achievements from its beginnings to the middle of the 17th century. Readings will include Beowulf and Sir Gawain and the Green Knight in modern translation, selections from Chaucer’s Canterbury Tales and the writings of medieval women, Book I of Spenser’s Faerie Queene, Elizabethan sonnets, a play by Shakespeare, poems by Donne, Marvell, and Herbert, and selections from Milton’s Paradise Lost. Lectures are supplemented by small discussion groups once a week. Short creative exercises will introduce techniques of close reading and approaches to literary language and style.

202 (2020): spring. 4 credits. D. Fried. An introductory survey of English literature from the late 17th century to the 20th century. We begin with the satires of the Restoration and 18th century including Pope’s mock epic The Rape of the Lock, Swift’s Gulliver’s Travels, and selections from Johnson’s poems and criticism. Selections from the Romantic era will include Blake’s Songs of Innocence and Songs of Experience; poems and prose of Wordsworth, Coleridge, Shelley, and Keats; and a novel by Jane Austen. We will read poetry and prose from the Victorian era by Tennyson, Browning, Arnold, and Hopkins, plus Wilde’s play The Importance of Being Earnest, and approach early 20th-century literature through Hardy, Forster, and Eliot. Lectures will be supplemented by small discussion groups once a week. Short creative exercises will introduce techniques of close reading and approaches to literary language and style.

ENGL 203 (2030) Introduction to American Literatures (also AM ST 206/2030) (IV) (LA)

Fall. 4 credits. E. Cheyfitz.

This course is intended as an introduction to some important American literatures within the context of the European invasion of the Americas beginning in 1492. Our focus is on the way U.S. literature represents this invasion through the rubrics of race, gender, and class in the period before the Civil War, which was dominated by the issues of Indian removal, slavery, and expansion. The readings come from a list that includes Native American oral narratives; documentary narratives of European imperialism and colonization (the journal of Columbus, the Coronado expedition, and William Bradford’s Of Plymouth Plantation and the African diaspora (Olaudah Equiano’s The Interesting Narrative); narratives of captivity among the Indians (Mary Rowlandson and Mary Edwards); slave narratives (Frederick Douglass and Harriet Jacobs); autobiography (Benjamin Franklin, William Apess, and Black Hawk); political declarations and manifestos (John Winthrop’s ‘A Model of Christian Charity,’ Thomas Paine’s Common Sense, The Declaration of Independence, the Federalist, David Walker’s Appeal, the Seneca Falls Declaration of Sentiments, Henry David Thoreau’s “Resistance to Civil Government,” Apees “Eulogy on King Philip”), legal cases (Cherokee Nation v. Georgia and Dred Scott v. Sandford); ethnographies (Roger Williams’ A Key into the Language of America, and Lewis Henry Morgan’s League of the Iroquois); essays (Ralph Waldo Emerson), poetry (Phillis Wheatley, Walt Whitman, Emily Dickinson) and fiction (James Fenimore Cooper, Herman Melville, Edgar Allen Poe, Lydia Maria Child, Harriet Beecher Stowe, Catherine Maria Sedgwick, Harriet Wilson, Martin Delany, and John Rollin Ridge).

ENGL 204 (2040) Introduction to American Literatures: The Making of America: Reconstruction to the Present (also AM ST 207/2030) (IV) (LA)

Spring. 4 credits. J. Casiano.

The Civil War marked a major and important moment in America’s growth as it attempted to come to terms with its past of racialized and colonialist
imperialism. And yet, the country continued to struggle to identify itself not only broadly as a democratic nation but also specifically as a “melting pot” of individuals fighting for their civil and sovereign rights. We will examine texts that speak directly to these issues. For example, we’ll study how Americans, through prose, poetry, and fiction, used writing to exemplify and articulate their desire for citizenship as well as for the right to act out a politics of difference. To this end, we will read texts that engage in a conversation about these and other issues, such as those authored by Native Americans, including Momaday and Ortiz; African Americans, including Cooper, Cullen, De Bois, Ellison, Hughes, Locke, Walker, and Washington; Asian Americans, including Lee and Mukerjee; Latino/a Americans, including Anzaldua and Gisneros; Jewish-Americans, including Rich; and, of course, Anglo-Americans, including Chepin, Eliot, Faulkner, Gilman, and Hemingway. This course, intended only as a survey of American literature since the Civil War, will blend lecture with discussion and includes several short and long writing assignments.

ENGL 205(2050) Introduction to World Literature (IV) (LA)
Spring. 4 credits. D. E. DeLoughery.

In this course we read contemporary literature from Africa, the Caribbean, the Middle East, South Asia, and the Pacific Islands (including New Zealand). We examine how literatures produced in the former colonies of the British Empire are in dialog with each other, and how they inscribe the complex relationship between native traditions and western colonialism. The course is particularly concerned with how representations of local identities (the intersections between gender, sexuality, nation, ethnicity, and religion) help us understand the global production of postcolonial literature in English. We draw from multiple artistic genres (the novel, poetry, performance poetry, short stories, and film) to raise questions about what might constitute “world literature.” Authors may include Chinua Achebe, Patricia Grace, Jamaica Kincaid, Murakami, Bapsi Sidhwa, and Derek Walcott.

ENGL 206(2060) The Great American Cornell Novel (also AM ST 219(2060)) (IV) (LA)
Fall. 4 credits. M. Hite.

Some of the best novels of the last 50 years were written by people who were students or professors at Cornell. In this class we will read and discuss some of these novels—along with some shorter fiction—by some, but regrettably not all, of the following: A.M. photo Anisy, Susan Choi, Richard Farnell, Lamar Herrin, Alison Lurie, Dan McGall, Maureen McCoy, Lorrie Moore, Robert Morgan, Toni Morrison, Vladimir Nabokov, Stewart O’Nan, Thomas Pynchon, Stephanie Vaughn, Helena Maria Viramontes and Kurt Vonnegut. Lecture-discussion format with sections, some guest appearances. Students will also be required to attend some readings outside of the class periods.

ENGL 207(2070) Introduction to Modern Poetry (IV) (LA)
Spring. 4 credits. B. Gilbert.

Poetry written in the 20th and 21st centuries is both challenging and exhilarating in its freedom, innovation, and diversity. Not a survey, this course will sample the vast array of poetic modes and forms employed over the past 100 years, with primary emphasis on the work of American poets. Our focus in the course will be on the poems themselves—how they feel, sound, look, mean, and work—and on the varying contexts in which they may be read. These contexts include: audiences, readers, and the life and career of the poet; important poetic movements (Imagism, Surrealism, Language poetry, etc.); verse forms ranging from the strictly patterned to the seemingly random; the poetry industry (or “Po Biz”); poetry and social movements (feminism, multiculturalism); poetry and technology; poetry and science; poetry and the self. Attention will also be paid to the craft of poetry writing through exercises and lectures. No previous study of poetry required.

ENGL 208(2080) Shakespeare and the 20th Century (IV) (LA)
Spring. 4 credits. This course may be used as one of the three pre-1800 courses required of English majors. S. Davis.

What can we learn about Shakespeare’s plays from their reception in the 20th century? What can we learn about modern cultures from their appropriations of these texts? We will compare four or five plays with their adaptations in film and theater and exploit the uses made of Shakespeare in education, advertising, and public culture. We will confront the vast differences and startling continuities between the Shakespeare handed down by earlier times and the Shakespeare recovered or re-invented in the modern era. We will also pay attention to the variety of critical approaches scholars and reviewers have taken to Shakespeare on the page and in performance. For spring 2006, tentatively: "Romeo and Juliet," "Hamlet," "The Merchant of Venice," "Othello," and "King Lear," together with films or filmed stage productions directed by James Ivory, John Madden, Baz Luhrman, Michael Radford, Janet Suzman, Trevor Nunn, and Akira Kurosawa, as well as Jane Smiley’s "A Thousand Acres" and the musical comedy "Kiss Me Kate."

[ENGL 209(2090) Introduction to Cultural Studies (IV) (CA)
4 credits. Next offered 2006–2007.]

ENGL 227(2270) Shakespeare # (IV) (LA)
Spring. 4 credits. This course may be used as one of the three pre-1800 courses required of English majors. B. Correll.

A lecture and discussion course that offers students a survey of representative Shakespearean comedies, tragedies, and history plays. Our study includes attention to forms, themes, and historical contexts, including history of the early modern English theatre.

[ENGL 228(2280) The Essay in English # (IV) (LA)
4 credits. Next offered 2006–2007.]

Major Genres and Areas

[ENGL 240/2400) Survey in U.S. Latino Literature (also LSP 240/2460), AM ST 250/2641) (IV) (LA)

[ENGL 244/2440) Sophomore Seminar: Studies in Irish Culture (IV) (LA)
Fall. 4 credits. Limited to 15 students. Next offered 2006–2007. S. Siegel.]

ENGL 251(2510) 20th-Century Women Writers (also FGSS 251(2510)) (IV) (LA)
Fall. 4 credits. E. DeLoughery.

This course is concerned with questions about women’s experience and perspective in the 20th century. It explores intersections of gender, ethnicity, race, sexuality, and other vectors of identity. Readings will be global in scope and might include authors such as Jamaica Kincaid, Keri Hulme, Toni Morrison, Sandra Gisneros, and others. Requirements include two papers, a presentation, and active class participation.

[ENGL 252(2520) Sophomore Seminar: Late 20th-Century Women Writers and Visual Culture (also VISST 252/2625) (IV) (LA)

ENGL 255(2550) African Literature (also AS&RC 255(2503)) (IV) (LA)
Fall. 4 credits. B. Jeyifo.

An introduction to major African writers and literary traditions. Authors to be studied may include Chinua Achebe, Wole Soyinka, Ngugi wa Thiong'o, Nadine Gordimer, Bessie Head, Ayi Kwei Armah, Ama Ata Aidoo, Ben Okri, Tayeb Salih, and Ousmane Sembene.

ENGL 260(2600) Introduction to American Indian Literatures in the United States (also AM ST 260/2600) (IV) (LA)

ENGL 262(2620) Asian American Literature (also AS&RC 262, AM ST 262(2620) (IV) (LA)
Fall. 4 credits. S. Wong.

This course will introduce both a variety of writings by Asian North American authors and some critical issues concerning the production and reception of Asian American texts. Working primarily with novels, we will be asking questions about the relation between literary forms and the social context within which they take on their meanings, and about the historical formation of Asian American identities.

ENGL 273(2730) Children’s Literature (IV) (LA)
Spring. 4 credits. J. Adams.

An historical study of children’s literature from the 17th century to the present, principally in Europe and America, which will explore changing literary forms in relation to the social history of childhood. Ranging from oral folktale to contemporary novelistic realism (with some glances at film narrative), major figures may include Perrault, Newbery, the Grimms, Andersen, Carroll, Alcott, Stevenson, Burnett, Kipling, the Disney studio, E. B. White, C. S. Lewis, Sendak, Silverstein, Mildred Taylor, Bette Greene. We’ll also encounter a variety of critical models—psychoanalytic, materialist, feminist, structuralist—that scholars have employed to explain the variety and importance of children’s literature.

ENGL 274(2740) Scottish Literature and Culture (IV) (LA)
Fall or Spring. 3 or 4 credits. C. Milgram.

An introduction to Scottish literature and culture with a focus on the 20th century. Themes include Scottish practice and ideology from the late eighteenth century to the present, particularly in the writing of women and of the English major nonmajors as well. This course may be used as one of the three pre-1800 courses required of English majors. T. Hill and H. Shaw.
Scotland was an independent kingdom during most of its history. Although it is now politically united with England, it preserves a cultural distinctiveness. This course provide an introduction to Scottish literature and its cultural context. We focus on important Scottish literary texts, with special emphasis on the medieval period and the 18th through the 20th centuries. The course should appeal to those who wish to learn more about their Scottish heritage, to those who wish to view in a new perspective works normally considered monuments of "English" literature, and to those who simply wish to know more about a remarkable culture and the literature it produced. Some of the texts will be read in Scots, but no familiarity with Scots or earlier English is presumed. Authors studied include Henryson, Dunbar, Anonymous (the Scottish Ballads), Burns, Scott, Stevenson, Grassey Gibbon, Spark, and several 20th-century writers of short stories. Students view the film The Prime of Miss Jean Brodie.

ENGL 276(2760) Desire (also COM L/FGSS 276(2760), THETR 278(2780)) (IV) (LA)

Spring. 4 credits. Letter grades only.
E. Hanson.

Sexual desire may be seen as a series of scripted performances, a set of stories we tell ourselves about ourselves. Through a critical discussion of "these pleasures which we lightly call physical," to borrow a phrase from the French novelist Colette, we might discover a deeper appreciation for the strange narrative of someone else's desire, and perhaps even the strange narrative of our own. We will begin with the theory that desire has a literary history, and examine classic texts in some of its most influential modes: Platonic, Christian, romantic, decadent, psychoanalytic, feminist, and queer. This course is an introductory survey of medieval and Renaissance texts from Plato and Aristophanes to Jean Genet and Caryl Churchill; it is also a survey of the most influential trends in modern sexual theory and sexual politics, including the work of Freud, Foucault, Barthes, and various feminists and queer theorists. Topics for discussion include Greek pedarasty, sublimation, hysteria, sadomasochism, homosexuality, pornography, cybersex, feminism, and other literate, and explore the fear of sexual pleasures, and the focus will always be on expanding our critical vocabulary for considering sex and sexual desire as a field of intellectual inquiry.

ENGL 293(2930) Survey in African American Literature (also AM ST 293(2930)) (IV) (LA)

Fall. 4 credits. The course is designed for majors but will be open to all interested students. Next offered 2006–2007.
H. Spillers.

Special Topics

ENGL 210(2100) Medieval Romance: Voyage to the Otherworld (IV) (LA)

Spring. 4 credits. This course may be used as one of the three pre-1800 courses required of English majors. T. Hill.

The course will survey some medieval narratives concerned with representative voyages to the otherworld or with the impinging of the otherworld upon ordinary experience. The syllabus will normally include some representative Old Irish otherworld literature: selections from The Makhtygon, selections from the Lay of Marie de France, Chretian de Troyes's Erec, Yeain, and Lancelot, and the Middle English Sir Gawain and the Green Knight. We will finish by looking at a few later otherworld romances, such as selections from a new text. All readings will be in modern English. Requirements: three brief (two to three typed pages) papers and a final exam designed to test the students' reading.

ENGL 217(217) History of the English Language to 1300 (also LING 217(217)) # (III or IV) (MA)

Fall. 4 credits. W. Harbert.

For description, see LING 217.

ENGL 263(2630) Studies in Film Analysis: Monsters and Misfits: Hollywood's Misogynist Myths of Women (also FGSS 263(2630), FILM 264(2640)) (IV) (LA)

Spring. 4 credits. Students enrolling in this seminar must be free to view films late afternoons on Mondays and Tuesdays. A "lab fee" of $25 will be charged.

Permission of the instructor required.
L. Bogel.

Exploring a series of mostly Hollywood films, we consider the cultural, political, sexual, and psychological implications of conservative myths that demonize women in film. Mainstream misfits and monstrous mothers, love-lorn ladies and sermonizing suffragettes, language-lacking loners and marriage-mangling marauders, vampires and aliens: all film genres make room to exclude misfits, co-opt them back into the circle, or define community norms in opposition to them. Students view, discuss, and read about such films as The Piano Teacher, The Hand that Rocks the Cradle, Psycho, The Manchurian Candidate (two versions), Safe, The Piano, Far From Heaven, The Searchers, Alien, Gilda, Fatal Attraction, The Stepford Wives (two versions), The Haunting, Carrie, Boys Don't Cry, and The Bitter Tears of Petra von Kant.

ENGL 268(2680) Culture and Politics of the 1960s (also AM ST 268(2680)) (IV) (CA)

ENGL 292(2920) Introduction to Visual Studies (also VISST 200(2000)) (IV) (LA)

Spring. 4 credits. T. Murray.

For description, see VISST 200.

ENGL 297(2970) Sophomore Seminar: Sustainable Literature (IV) (CA)

Fall. 4 credits. L. Donaldson.

This interdisciplinary course will introduce students to some of the most urgent problems facing our planet and creating a sustainable future. Although sustainability has often been viewed as a scientific or social scientific issue, these approaches often fail to address the need for vision, imagination and new paradigms of knowledge in resolving the crisis of non-sustainable living. In addition to ecological design and theories of sustainability, we will explore what poetry, fiction, and indigenous storytelling traditions might contribute to larger debates about sustainability at Cornell (and other universities), our upstate New York bioregion, and North America more generally. For example, we will read about ecological design and then visit Eco-Village, an environmentally sustainable co-housing development in Ithaca. Since resolving the sustainability crisis requires new ways of acting and knowing, students in the course will participate in an action research project on sustainability outside of the classroom.

This is a special seminar sponsored by the John S. Knight Institute's Sophomore Seminars Program. Seminars offer discipline-intensive study within an interdisciplinary context. While not restricted to sophomores, the seminars aim at initiating students into the discipline's outlook, discourse community, modes of knowledge, and ways of articulating that knowledge. Limited to 15 students. Special emphasis is given to strong thinking and writing and to personalized instruction with top university professors.

Courses for Sophomores, Juniors, and Seniors

Courses at the 300 level are open to sophomores, juniors, and seniors and to others with the permission of the instructor.

ENGL 302(3020) Literature and Theory (also COM L 302(3020), ENGL 602(6020)) (IV) (LA)

Fall. 4 credits. No previous knowledge of literary theory is assumed. Next offered 2006–2007. J. Coller.

ENGL 308(3080) Icelandic Family Sagas (IV) (LA)

ENGL 310(3100) Old English in Translation (IV) (LA)

ENGL 311(3110) Old English (also ENGL 611(6110)) (IV) (LA)

Fall. 4 credits. May be used as one of the three pre-1800 courses required of English majors. S. Zacher.

The course is intended as an introduction for graduate and undergraduate students to the Old English language; graduate students may also opt to use it for more advanced work. We begin with simple prose texts and proceed to poetic texts such as Maldon, The Wanderer, The Seafarer, The Dream of the Rood, and selections from Elene. The course addresses language and literature as a pairing. There are regular translations and discussions, a midterm exam, a short paper, and a final exam.

ENGL 312(3120) Beowulf (also ENGL 612(6120)) (IV) (LA)

Spring. 4 credits. Recommended: one semester's study of Old English or equivalent. May be used as one of the three pre-1800 courses required of English majors. T. Hill.

A close reading of Beowulf. Attention is given to relevant archaeological, literary, cultural, and linguistic issues.

ENGL 316(3160) Beasts, Bodies, and Boundaries

Spring. 4 credits. S. Zacher.

This course will provide a sampling of medieval English literature from the 13th to the 15th centuries, with works including Pearl, Sir Gawain and the Green Knight, The Owl and the Nightingale, Chaucer's Wife's Tale, Sir Orfeo, and excerpts from the Ancreine Withe and Mandeville's Travels. Since we will be learning Middle English in the process of reading these works, ample time will be
devoted to understanding the rudiments of the language and to practicing its pronunciation. As we come to negotiate what may at first seem like imposing differences with respect to medieval language and culture, we will simultaneously consider themes of "otherness" as they relate to aspects of race, gender, and religion in the works we read. We will consider how these texts use geographical, physical, and psychological borders in order to problematize distinctions between the natural and supernatural, the normal and the monstrous, the worldly and otherworldly, the interior and exterior. These oppositions will be used to challenge tendencies in these texts (and perhaps also in our own reading) both to exoticize and easily familiarize "otherness."

ENGL 319(3190) Chaucer # (IV) (LA)

Fall. 4 credits. This course may be used as one of the three pre-1800 courses required of English majors. M. Raskolnikov

Chaucer is known as the "father of English poetry" before he was entirely cold in his grave. Why is what he wrote more than six hundred years ago still riveting for us today? It is not just because he is the greatest of this language and its literature; it is because what he wrote was funny, fierce, thoughtful, political, philosophical and, oh yes, notoriously bawdy. In this class, we will read some of his brilliant short works, including The House of Fame, to give us a sense of his social and intellectual context. We will then spend a good long time on Chaucer's two greatest and longest works: the love epic Troilus and Criseyde, the masterpiece in his own day, and The Canterbury Tales, his oft-censored panorama of medieval English life. As for the language? Ezra Pound once wrote that "anyone who is too lazy to master the comparatively small glossary necessary to understand Chaucer deserves to be shut out from the reading of good books forever." All works will be read in Middle English, which will prove surprisingly easy and pleasant. Other class requirements include three short papers and a take-home final, as well as some informal writing, and the burden/privilege of carrying the big red Riverside Chaucer all semester long.

ENGL 321(3210) Spenser and Malory # (IV) (LA)

Fall. 4 credits. This course may be used as one of the three pre-1800 courses required of English majors. Informal lecture and discussion. C. Kaske.

Paired selections covering about half of Malory's Mort e d'Arthur and half of Spenser's Faerie Queene. The French Prose Arthurian Cycle, Chretien's romances, Sir Gawain and the Green Knight, and some of Spenser's minor poems are mentioned occasionally as background. Comparisons assess possible literary influence, the distinctive vision, style, and narrative technique of each author as a writer of romance, and the development of Arthurian romance from the Middle Ages to the Renaissance.

ENGL 327(3270) Shakespeare: Staging Women # (IV) (LA)

Fall. 4 credits. B. Machosky.

Through close reading and varied analyses of some of Shakespeare's fascinating female characters, we will examine various stage conventions, including the use of boy actors, cross-dressing, minimal sets, theatrical rhetoric, and poetic diction. We will also consider the ways in which love, war, and sexual and cultural issues of the period were represented on the stage, not only through the personification of women but also in other figures, like supernatural beings and the male monarch. Complete texts will include: As You Like It, The Taming of the Shrew, Macbeth, Othello (in conjunction with the performance at the Schwartz Center), A Midsummer Night's Dream, and Richard II.

ENGL 328(3280) The Bible in Literary and Cultural Perspective # (IV) (LA)

Fall. 4 credits. L. Donaldson.

This course will offer a cultural and literary introduction to the Bible, including the historical contexts of various biblical texts and the trajectory of powerful prophetic, narrative, and apocalyptic images within the literary imagination of various cultures. For example, apocalypse has emerged as one of the most crucial experiential and spiritual modes in the contemporary global arena. This course will investigate the literary and religious grounding of apocalypse in both the Hebrew and Christian traditions, its appropriation in various historical eras, and its recent literary as well as political resurgence. Other possible topics include the Bible as story, the relations of biblical poetry to the poetic traditions of the ancient Mediterranean and biblical prophecy, and the popularity of Wisdom literatures. The course will also introduce students to various ways of reading biblical texts. Readings will be in English (the New Revised Standard translation) with frequent reference to the original language versions.

ENGL 329(3290) Milton # (IV) (LA)

Fall. 4 credits. This course may be used as one of the three pre-1800 courses required of English majors. R. Kalas.

An introduction to the poetry and prose of John Milton in light of the political, social, and religious upheaval of the 17th century. Rather than dividing the poetry from the prose, this course will foreground the integration of poetic and polemical concerns in Milton's work. Readings will include selected short poems, Comus, Samson Agonistes, Paradise Regained, all of Paradise Lost, Areopagitica, The Doctrine and Discipline of Divorce, and excerpts from Milton's other prose works.

ENGL 330(3300) Restoration and 18th-Century Literature # (IV) (LA)

Spring. 4 credits. This course may be used as one of the three pre-1800 courses required of English majors. Next offered 2006-2007. F. Bogel.

ENGL 333(3330) The 18th-Century English Novel # (IV) (LA)

Spring. 4 credits. This course may be used as one of the three pre-1800 courses required of English majors. F. Bogel.

A study of form and theme in the British novel tradition. The course focuses on representative novels, mostly from the 18th century, paying close attention to language and structure but also to cultural contexts and to the development of the novel form itself. We explore such topics as truth and fiction; romance, realism, satire, and the gothic; heroic and mock-heroic modes; sentiment, sensibility, and sexuality; race and gender; and the forms and uses of narrative. Readings may include Behn's Oroonoko, Defoe's A Journal of the Plague Year, Richardson's Clarissa, Fielding's Joseph Andrews, and Smollett's The History of a Woman of Pleasure, Johnson's Rasselas, Voltaire's Candide, Walpole's The Castle of Otranto, Burney's Evelina, Mackenzie's The Man of Feeling, and Austen's Pride and Prejudice.

ENGL 337(3370) Contemporary American Theater (also THEATR 337[3370], AM ST 337)

Fall. 4 credits. S. Warner.

For description, see THEATR 337.

ENGL 340(3400) English Romantic Period # (IV) (LA)

Fall. 4 credits. This course may not be used as one of the pre-1800 courses required of English majors. A. L. François.

Readings from early 1790s to early 1820s writers—among them Blake, Wordsworth, Wollstonecraft, Coleridge, Byron, Hazlit, Shelley, Percy Shelley, with major emphasis on poetry but with substantial attention to prose fiction, drama, letters, and political and literary essays. The course is concerned with close reading of formal experiments in narrative, lyric, and dramatic representation and with analysis of political and cultural issues and contexts in an age of national reform and international revolution and conflict.

ENGL 345(3450) Victorian Controversies # (IV) (LA)

ENGL 350(3500) The Modern Tradition I: 1890-1940 (IV) (LA)

Fall. 4 credits. D. Schwarz.

Critical study of major works by Hardy, Conrad, Lawrence, Joyce, Woolf, Eliot, Yeats, Hopkins, Wilde, Wallace Stevens, and others. While the emphasis will be on close reading of individual texts, we shall place the authors and works within the context of literary, political, and intellectual history. The course will seek to define the development of literary modernism (mostly but not exclusively in England) and relate literary modernism in England to that in Europe and America as well as to other intellectual developments. We shall be especially interested in the relationship between modern literature and modern painting and sculpture; on occasion, slides are viewed. Within the course material students will be able to select the topics on which they write essays.

ENGL 353(3530) The Modern Indian Novel @ (IV) (LA)

ENGL 354(3540) British Modernist Novel (IV) (LA)

ENGL 355(3550) Decadence (also COM L/FGSS 355(3550)) (IV) (LA)
Fall. 4 credits. Next offered 2006-2007.
E. Hanson.

[ENGL 361(3610) Studies in the Formation of U.S. Literature: Emerson to Melville (also AM ST 361(3610) # (IV) (LA)]
D. Fried.

[ENGL 362(3620) The American Renaissance (also AM ST 362) (IV) (LA)]
D. Fried.

ENGL 363(3630) Studies in U.S. Literature Before 1900: The American 1920s—Literature and Culture (also AM ST 363(3610)) (IV) (LA)
The course will take a broad approach to the cultural activities of the decade following the First World War and preceding the Great Depression. Topics will include the new motives, forms, and audiences of fiction, drama, and poetry; literary realism under duress; the Harlem Renaissance; postwar blues and the influenza epidemic; suffragist politics and the New Woman; the masses as a matter for intellectual scrutiny; Fordism; the Red Scare, nativism, and the fear of annihilation of the cultures of radio, children's illustrated books, popular song and jazz. We will ask: what made for aesthetic radicalism and political radicalism in the period; what were the relations of pleasure and labor; how different was the self-consciousness of the "Lost Generation"; and what appears to be the legacies of the decade? Readings will include essays by Randolph Bourne, Margaret Sanger, Walter Lippmann, W.E.B. DuBois, and Lewis Mumford, fiction by Jean Toomer, Ernest Hemingway, Sherwood Anderson, Dorothy Parker, Nella Larsen, John Dos Passos, Samuel Ornitz, Sinclair Lewis, Dashiel Hammet, and perhaps even F. Scott Fitzgerald; dramas by Sophocles, Beckett and Elmer Rice, and poetry by Pound, Eliot, William's, H.D., Langston Hughes, Hart Crane, Marianne Moore, and Louis Zukofsky.

ENGL 364(3640) Studies in U.S. Literature after 1950: American Fiction in the 1960s (IV) (LA)
Spring. 4 credits. P. Sawyer.
A survey of some distinguished American novels that draw directly or indirectly upon cultural movements and debates that arose in the 1960s. We will explore the relationship between gender, ethnicity, and "Americanness"; between documentary realism and "magical" or satirical abstraction; and between traumatic memory and the impulse to narrate. A recurrent theme will be the condition of originality and outsidership. Readings will include Heller's Catch-22, Vonnegut's Slaughterhouse-Five, Doctorow's The Book of Daniel, Pirchon's The Crying of Lot 49, Morrison's Beloved, Kingston's The Woman Warrior, Welch's The Headless and Tim Loney, and the stories of Donald Barthelme.

ENGL 365(3650) American Literature Since 1945 (also AM ST 365(3650)) (IV) (LA)
Fall. 4 credits. Next offered 2006-2007.
B. Maxwell.

ENGL 366(3660) Studies in U.S. Fiction Before 1900: The 19th-Century American Novel # (IV) (LA)
Spring. 4 credits. S. Samuels.
Reading closely some of the most fascinating novelists in the 19th-century United States, we examine patterns of social and political awareness in these writers. In particular, we think about the relations among stylistic concerns in the construction of identities formed by national, racial, gendered, and sexual allegiances. Writers may include Mark Twain, Charles Chesnutt, Nathaniel Hawthorne, Henry James, Edith Wharton, Pauline Hopkins, Harriet Wilson, Herman Melville, E.D.E.N. Southworth, and Stephen Crane.

ENGL 367(3670) Studies in U.S. Fiction After 1900: The Literature of the Stranger (also AM ST 367(3670)) (IV) (LA)
Fall. 4 credits. Major Writers and Movements. M. P. Brady.
This course will survey some of the significant themes and movements preoccupying 20th-century fiction as well as some of the major U.S. writers such as Henry James, Zora Neale Hurston, Thomas Pynchon, and Willa Cather.

ENGL 368(3680) Faulkner
Spring. 4 credits. H. Spillers.
This course will examine selected writings of William Faulkner, beginning with some of the early novels (The Sound and the Fury, Light in August, Absalom, Absalom!) and concluding with A Fable. We will consider Faulkner's impact as a maker of myth and as one of the leading figures of a literary discourse that creates a modernist sensibility in American letters. As a southern writer, Faulkner is traditionally confined to the character study and concluding with August, Absalom, Absalom!) dramatic and melodrama as genres, vehicles of exotic types, but his systemic fictional exploration of "violence and the sacred" provides a powerful clue to the larger issue of a national identity. Faulkner, in his own terms, dared to imagine "culture" as a problem for both reflected and rejected the medievalisms which formed their very origins. Plays by Shakespeare, Marlowe, and Jonson will be among those we consider.

ENGL 370(3700) The Victorian Novel # (IV) (LA)
F. Sawyer.

ENGL 371(3710) Literature of the Outlaw (also COM L 371(3710))
Spring. 4 credits. B. Maxwell.
For description, see COM L 371.

ENGL 372(3720) Medieval and Renaissance Drama (also THETR 372(3720) # (IV) (LA)
Spring. 4 credits. This course may be used as one of the three pre-1800 courses required of English majors.
M. Raskolnikov.

ENGL 373(3730) English Drama from 1700 to the Present # (IV) (LA)
S. McMillin.

ENGL 374(3740) Slavery in 20th-Century Film and Fiction (also AM ST 374(3740)) (IV) (LA)
Spring. 4 credits. N. Waligora-Davis.
This course explores 20th-century preoccupations and reconstructions of slavery, examining the ways slavery continues to define and impact sexuality, racial identities and their popular representations, our sense of public and private spaces, legal discourse, and our national identity. What does it mean to be a black or white man or woman in America? Who does law, history, and society concede as legitimate witness? How should we craft our histories? Who is a subject of, and who is subjected to law? How are privacy interests diffused against social interests? What is a (black) woman's reproductive
rights (in the age of contraceptive options and abortion)? How do desires materialize and how are they materially denied? Our readings will place in close proximity not only historical writings on slavery (slave history and slave narratives) and these 20th-century revisionist slave stories, but slave law and contemporary immigration, property, reproduction, criminal, and privacy legislation.

ENGL 375[3750] Studies in Drama and Theatre: Modernism and Metatheatre (IV) (LA)

[ENGL 378[3780] American Poetry Since 1950 (also AM ST 372[3780]) (IV) (LA)
Spring. 4 credits. Next offered 2006–2007. R. Gilber]

ENGL 381[3810] Reading as Writing (IV) (LA)
See complete course description in section headed “Expository Writing.”

ENGL 382-385[3820-3830] Narrative Writing (IV) (LA)
See complete course description in section headed “Creative Writing.”

ENGL 384-385[3840-3850] Verse Writing (IV) (LA)
See complete course description in section headed “Creative Writing.”

ENGL 386[3860] Philosphic Fictions (IV) (LA)
See complete course description in section headed “Expository Writing.”

ENGL 388[3880] The Art of the Essay (IV) (LA)
See complete course description in section headed “Expository Writing.”

Spring. 4 credits. J. Caraclo.

ENGL 391[3910] Studies in African American Literature (also AM ST 387)
Fall. 4 credits. H. Spillers.

ENGL 392[3920] Politics and Poetry (also THETR 395) (IV) (CA)

ENGL 393[3930] Women's Literature (also FGSS 396[3960]) (IV) (LA)
Fall. 4 credits. Next offered 2006–2007.

ENGL 394[3940] Introduction to Global Women's Literature (also AM ST 395[3970]) (IV) (CA)

ENGL 395[3950] Latin/o Cultural Pratices (also LSP 398[3980]) (IV) (CA)
Spring. 4 credits. U.S. Latin/o history is strongly recommended as a prerequisite, but not required. Next offered 2006–2007.

ENGL 401[4010] Open in the Narrative (IV) (LA)
Fall. 4 credits. A-L. For description, see COMM 401.

ENGL 402[4020] Literature and Theory as Moral Inquiry (IV) (K)
Spring. 4 credits. S. Mohanty.

Middlemarch, Coetzee's Disgrace, Morrison's Beloved, Woolf's Mrs. Dalloway, Conrad's Heart of Darkness, and Achebe's Things Fall Apart. Other writers we most probably will read include Nadine Gordimer, Doris Lessing, and Kazuo Ishiguro. We will begin our close reading, with particular attention to the relationship between formal elements (e.g., the use of narrative techniques) and the moral questions the texts organize and explore. Assignments include two papers and a journal.

ENGL 403[4030] Senior Seminar in Poetry: A. R. Ammons (also AM ST 403[4030]) (IV) (LA)
Fall. 4 credits. R. Gilbert.

A close study of the works and career of the late American poet and Cornell professor A. R. Ammons. We will consider all of Ammons's published books, as well as unpublished materials housed in the Kroch Manuscript collection. Particular attention will be given to the following topics: shifting levels of tone and diction in Ammon's poetry, from the sublime to the bawdy; the special role of scientific language and knowledge in his work; recurring themes of one vs. many and center vs. periphery; his employment of a range of forms, from the "really short poem" to the book-length opus; his connections to the culture and landscape of the South; his relationship to 19th-century figures like Wordsworth, Emerson, Whitman, and Dickinson, and to his contemporaries like Frost, Stevens, Williams, Pound, and Ashbery; his critical reception and its effects on his writing. Students will be asked to write three papers and to give at least one oral presentation.
ENGL 413(4130) Middle English (also ENGL 613(6130)) (IV) (LA)
Fall. 4 credits. This course may be used as one of the three pre-1800 courses required of English majors. T. Hill.

This course surveys the language and literature of late medieval England, beginning with the cultural, literary, and linguistic collapse of standard Old English and proceeding to the age of Chaucer and perhaps a bit beyond. Readings will move through chronicles, homilies, lyrics, and acknowledged literary masterpieces such as The Owl and the Nightingale, the works of the Pearl poet, selections from Piers Plowman, and other poems from the "alliterative revival.

ENGL 414(4140) Bodies of the Middle Ages: Embodiment, Incarnation Performance # (IV) (LA)
Spring. 4 credits. This course may be used as one of the three pre-1800 courses required of English majors. Next offered 2006-2007. M. Raskolnikov.

ENGL 428(4280) Problem Poems: Close Reading and Critical Debate # (IV) (LA)
Fall. 4 credits. This course may be used as one of the three pre-1800 courses required of English majors. F. Bogle.

In the course of literary history, a number of interesting English and American poems have generated long-standing—sometimes dramatic—controversy, much of it still unresolved. We’ll study closely a variety of these poems as "problems," paying attention to the texts themselves, to the sources of the disagreements, and to what criticism can tell us about how those disagreements have been produced and addressed (some supplementary readings in criticism and theory will be made available). We’ll also ask what these controversies can tell us about poetic meaning, about the procedures of criticism, and about the ways history and culture shape our understanding of literary texts. Poems—mostly short—lyrics—will be drawn from a wide range of authors and periods. Authors may include Shakespeare, Jonson, Marvell, Rochester, Swift, E. Egerton, Pope, Gray, Wordsworth, Coleridge, Keats, Tennyson, Dickens, Christina Rossetti, Lawrence, Williams, Millay, Campbell, Roethke, Bishop, Larkin, Plath, and others. This is an appropriate course for anyone interested in poetry and different ways of reading it.

ENGL 429(4290) Adam's Rib and Other Divine Signs: Reading Biblical Narrative # (IV) (LA)
Spring. 4 credits. L. Donaldson.

One of the most exciting developments in the field of biblical studies has been the introduction of literary and critical methodologies to the texts of the Jewish and Christian Testaments. Reading the Bible through the lenses of semiotics, new historicism, deconstruction, cultural studies, postcolonialism, feminism has posed a significant challenge to more traditional modes of biblical interpretation. This advanced undergraduate course will introduce students to the popular and provocative ways of reading biblical narrative. Rather than coverage of the entire Bible, the course will instead focus on stories and passages foregrounding specific critical issues. For example, feminist critics have examined why the book of Judges symbolically perpetrates violence against women (through the narratives of the Levite's concubine, Jephthah's daughter, and the Benjaminite women), while semioticians have privileged the Judges story of Samson and Delilah. Postcolonial critics have interrogated such passages as Matthew's "great commandment" as well as the Johannine story of the woman at the well, while those in cultural studies have paid particular attention to the construction of a multicultural church in Luke/Acts. Each narrative that we read will evoke a similar cluster of the theoretical and critical issues. Possible readings include Genesis, Judges, First and Second Samuel, and the gospel of Mark. This course is a seminar with significant opportunity for discussion.

ENGL 430(4300) Topics in American Studies (also AM ST 430(4303)) (IV) (LA)
Fall and spring. 4 credits. Fall American Indian Philosophies.

E. Cheyfitz. Spring: Literature as History: The Americas. B. Maxwell. For descriptions, see AM ST 450.

ENGL 434(4340) Electronic Art and Culture (IV) (LA)

ENGL 437(4370) Fiction(s) of Race, Fact(s) of Racisms: Perspectives from South African and Afro-American Literatures @ (IV) (LA)

ENGL 440(4440) Romantic Drama (also ENGL 644(6440), COM L 644/661 (4446(4446)), THEATR 440(4400), 4442(4442)), 4440(4440)) (IV) (LA)
Fall. 4 credits. R. Parker.

Readings for the course will include plays by a range of British writers, such as Baillie, Coleridge, Shelly, Byron, and Wordsworth, along with earlier or contemporary plays by writers such as Racine, Goethe, Schiller, and Kleist. We’ll also study contemporary adaptations of Shakespeare, and the pantomime and melodrama versions of "Oh, or Three Finger-Jack." Though some attention will focus on aspects of staging and performance, the primary work of the course will be on drama as a literary form and cultural phenomenon.

ENGL 441(4410) Derrida, Writing, and the Institute of Literature (also ENGL 642(6420), COM L 441/641(6410)) (IV) (LA)
Spring. 4 credits. J. Culler.

For description, see COM L 441.

ENGL 442(4420) The Dandy in London and Dublin # (IV) (LA)

ENGL 445(4450) Shakespeare in (Con)Text (also THEATR 446(4460), VISST 446(4461) @ (IV) (LA)
Fall. 4 credits. B. Levitt.

For description, see THEATR 446.

ENGL 448(4480) The Literature of Imperialism (also S HUM 403, COM L 407(4070)) (IV) (LA)
Spring. 4 credits. W. Cohen.

For description, see S HUM 403.

ENGL 449(4490) Wordsworth and Rousseau (also COM L 461(4610)) (IV)
Spring. 4 credits. C. Chase.

For description, see COM L 461.

ENGL 450(4500) History of the Book # (IV) (LA)

ENGL 451(4510) Literature, Visual Arts, and Modernist Experimentation (IV) (LA)
Spring. 4 credits. O. Moses.

This class will focus on the relation between modernist visual arts and concurrent experiments in literary form. We will be thinking about the techniques required for close reading and close looking. What kinds of attention are appropriate to a particular modernist painting or text? What sorts of identification do they elicit, and in the process what feelings are generated and staged? Throughout the course, we will be asking whether there is something distinctive in the kinds of attention that these arts require. Modernist texts and paintings are difficult, sometimes grim and uninviting, but seldom unrewarding. We will be thinking a lot about the strains, burdens, and demands these respective arts make upon their audiences. The goal will be to analyze the structure—conjunctive, disjunctive, or hierarchical—in which events and incidents are ordered compositionally, as writers and artists experiment with ways of framing and constructing attention. Is it possible that certain ways of staging events—forms of orderliness, ways of rendering the salience or ambience of incidents—have social and political implications? Does modernist writing demand a particular way of entering its mental space? Does modernist painting? Are they analogous? What are the constituent elements of a representation? In other words, what is one looking at in a given work? In the case of Cubist collage, which will start off our course, what is the effect of gathering together textures, affects, colors, and above all, fragments of representation, as the still lifes of an earlier era once gathered together objects of a domestic household (collage must be understood in juxtaposition with its antecedent genres)? Is this a facet of world-quotaiton, and if so what sort of world is it? Best to answer all these questions in a form focused on particular works. We will be looking at a variety of different literary and artistic genres and forms. In addition to literary texts and paintings about the visual arts, the syllabus contains theoretical essays from a number of critics and writers that will help us develop a sense of the period and its concerns.

ENGL 452(4520) Wilde and Woolff (IV) (LA)
Spring. 4 credits. S. Siegel.

This seminar considers the question of style: what does the word mean, why has it claimed attention, how has it behaved in the work of two authors whose writings among their contemporaries marked distinctive departures? We explore Oscar Wilde and Virginia Woolf as readers of literary and social texts. Along the way, we direct our attention to the implicit expectations brought to the understanding of "Victorians" and "Modemists." Selections are drawn from the full range of Wilde's and Woolff's work. Our principal texts, however, are limited to a few essays by each author.
A chronological approach will give a historical basis to the course, but the primary concern will be learning how to analyze musical drama and how to handle the problems and opportunities of interpretation integral to this complex theatrical form. Readings will include the Kern and Hammerstein Show Boat and its source in Edna Ferber's novel of the same name; the Rodgers and Hammerstein Oklahoma! and its source in Lynn Riggs' Green Grow the Lilacs; the Loesser and Burrows Guys and Dolls, and its sources in stories by Damon Runyon; the Bernstein and Sondheim and Laurents West Side Story and its source, Romeo and Juliet.

ENGL 460(4601) Riddles of Rhythm (IV) (LA) Spring. 4 credits. D. Fried.

What makes a poem's pulse beat? How do poets shape our responses by ordering words into rhythm? How have poets and their readers accounted for the essence and effects of rhythm? How are the rhythms of words, lines, and stanzas related? How does rhythm fit into the weave of a poem's other formal features? This course will explore a thematic shared by women writers and artists in the turn from the late 20th century to the early 21st century, a time we haven't yet named historically. For the writers and artists we will examine, questions of bodily visibility raise even the smallest islands have contributed to world modernity. We will draw from studies in environmental imperialism to complicate the myth of the isolated tropical island and place this in a dialogue with contemporary island tourism. By engaging what Kamau Brathwaite calls the "contradiction between land and sea," we'll consider how the history and geography of island spaces help deepen our understanding of home, nation, and transoceanic migration. Derek Walcott's suggestion that "the sea is history" will be considered in relation to indigenous, creole, and diaspora island literatures. This course will be taught in collaboration with the Islands of Globalization project hosted at the University of Hawai'i. Depending on interest, we might organize a visit to their campus during spring break. (See http://ipd.eastwestcenter.org/mi/index2.htm.)

ENGL 475(4750) Senior Seminar in the 20th Century: Writers' Writers in 20th-Century Literature (IV) Spring. 4 credits. Limited to 20 students. L. Herrin.

The term 'a writer's writer' has sometimes been regarded as a dubious distinction. Does a writer's appeal to his fellow writers come at the expense of a broader audience? Can a writer write too well for his own good? Does "elegance" carry a connotation of "exclusiveness"? Is there something unAmerican (and, hence, proEuropean) about too much attention to style? I propose reading a list of fictional works spanning the century to see which of them survive because of or in spite of their heightened attention to style? Opinionated discussion from start to finish and wise and passionate papers defending (or deflating) your favorite writers' writer. Works taken from the following list: Bellow, Céline, Dostoevsky, Faulkner, Hemingway, Isherwood, James, Shirley Hazzard, Katherine Anne Porter, Eudora Welty, William Gass, J. D. Salinger, John Hawkes, Grace Paley, Vladimir Nabokov, Marilynne Robinson, James Salter, and Cormac McCarthy.

ENGL 479(4790) Gender and Visual Culture in Women's Literature (also FGSS 479[4790], VISST 480(480)) (IV) Fall. 4 credits. S. Samuels.

This course will explore a thematic shared by women writers and artists in the turn from the late 20th century to the early 21st century, a time we haven't yet named historically. For the writers and artists we will examine, questions of bodily visibility raise
further questions about sexuality and mother-daughter relations. They also use fiction and visual culture to show elements of ingestion and forced incorporation. For example, many narrators emphasize scenes of eating and refusing to eat. Paying particular attention to women who write on reproduction and race, we will read criticism such as Honten, Spillers, Julia Kristeva, and Nawal al-Sadawi. We will also ask questions such as, How does the famous foregrounding of nudity and female genitalia by women artists like Mary Kelly and Renee Cox relate to questions of food and consumption, especially in works like The Dinner Party or The Last Supper? How does Renee Cox connect her images of the female nude when she photographs herself naked with her naked son in Yo Mama? What about Cindy Sherman’s use of medical paraphernalia to impersonate women’s bodies? Texts will be by Tsitsi Lubwisi, Njokolo, Nanay Yea Gombe, Ngugi wa Thiong’o, Wangari Maathai, T.S. Motsi, Ayana Doney, Hong Kingston, and Toni Morrison. Artists examined include Renee Cox, Mary Kelly, Shirin Neshat, Cindy Sherman, Sally Mann, Bernie Searle, and Kara Walker.

ENGL 480-481 (4800-4810) Seminar in Writing (IV) (LA)
Fall. 4 credits. B. Levitt.
For description, see section "Creative Writing."

ENGL 482-483 (4820) Hamlet: The Seminar (also THETR 447[4470]) # (IV) (LA)
Spring. 4 credits. B. Levitt.
For description, see THETR 447.

ENGL 483(4801) Seminar in Comparative 20th-Century Anglophone Drama (also COM L 489[4890], THETR 480[4800], ARTS AND SCIENCES - 2 (IV) (LA)
Fall. 4 credits. Some knowledge of classical and avant-garde theories of drama and theatre would be useful, but is not a prerequisite for this course.

This course will examine the 20th-century Anglophone drama in diverse areas of the English-speaking world. Through works of Irish, African, Caribbean and U.S. playwrights like Friel, Soyinka, Fugard, Walcott and Shange, the course will be organized around two principal issues: the use of folk, ritual, vernacular and carnivalesque performance idioms to transform the received genre of Western literary drama; themes of empire, colony and postcolonial in the making of the modern world.

ENGL 484(4840) PostColonial Poetries and the Poetics of Relation (also ENGL 685[6850], COM L 429[6290][4290][6350])
Spring. 4 credits. J. Monroe.
For description, see COM L 429.

ENGL 486(4860) American Indian Women’s Literature (also AIS 486[4860]) (IV) (LA)

ENGL 487(4870) Writing About Literature (IV) (LA)

ENGL 489(4890) Contemporary Poetry and Poetics (also COM L 486[4860]) (IV) (LA)
Fall. 4 credits. J. Monroe.
For description, see COM L 486.

[ENGL 490(4900) Literatures of the Archipelagoes: Caribbean and Pacific "Tidalectics" @ (IV) (LA)

ENGL 491(4910) Honors Seminar I
Fall. 4 credits. Open to students in the Honors Program in English or related fields, or by permission of instructor.

Sec. 1: Reading Joyce’s Ulysses—D. Schwarz.
A thorough episode-by-episode study of the art and meaning of Joyce’s Ulysses. We shall place Ulysses in the context of Joyce’s canon, Irish culture, and literary modernism. We shall explore the relationship between Ulysses and other experiments in modernism—especially painting and sculpture—and show how Ulysses redefines the concepts of epic, hero, and reader. We shall discuss how Ulysses raises major issues about the city, colonialism, and popular culture, and dramatizes what it means for the central character to become a Jew and an outsider in Dublin. We shall also discuss strategies of reading and approaches to literary study. No previous experience with Joyce is required.

Sec 2: Telling Fictions—C. Chase.
This course examines short works of 19th-century fiction that address questions of justice and call upon history as a fact for their subject matter. The course explores what these works are able to do because they are defined as fictions. Instead of pursuing the question in historical terms, the course develops a set of terms for describing narrative (such as "story" and "discourse") and inquires into the concept of "fiction," including the ways in which it arises in recent theory and criticism. Readings include texts of Melville, Kleist, Derrida, Arendt, Jacobs, J. Hillis Miller, and Sedgwick. Two 10-page papers and at least one presentation in class. No exam.

ENGL 492(4920) Honors Seminar II
Spring. 4 credits. Open to students in the Honors Program in English or related fields, or by permission of instructor.

Sec. 1: Love, Loss, and Lament in the Renaissance and Modernity—B. Correll.
This seminar will read a variety of texts that deal with passion and emotion in striking ways. Our goal is to gain a historical understanding of how emotions were thought of in the Renaissance and to ask how these emotions were expressed in literature. We will also consult early modern and modern philosophical and scientific writings on the emotions by Bacon, Montaigne, Burton, Wright, and Freud.

Sec. 2: Reading the Black American Imaginary 1775 to the present: From Slave Petition to Hip Hop Culture—N. Wallgora-Davis.
This course introduces key figures and some of the leading questions in black intellectual history that have shaped black expressions and effective culture in the United States from the late 18th century. It opens with readings of slave petitions, fugitive slave narratives, and polemics against the central questions configuring Enlightenment discourse and the Haitian Revolution. Our treatment of the 19th and early 20th centuries begins with readings on the "Negro Problem" and the ideology of racial uplift, and moves into the burgeoning black radicalisms and black nationalisms of the 1920s. This course will engage the central tenets and concerns of the Civil Rights movement, the Black Nationalist Movement, the Black Arts Movement, while moving forward to study the connections between Reagonomics, the War on Drugs, and Hip Hop culture. Our readings will include but not be limited to Martin Delany, Alexander Crummel, Frederick Douglass, W.E.B. DuBois, Oscar Micheaux, Ralph Ellison, James Baldwin, Robin D. G. Kelley, and Toni Morrison, in addition to early 20th century and contemporary films and music.

ENGL 493(4930) Honors Essay Tutorial I
Fall or spring. 4 credits. Prerequisites: senior standing and permission of director of the Honors Program.

ENGL 494(4940) Honors Essay Tutorial II
Fall or spring. 4 credits. Prerequisites: ENGL 493 and permission of director of the Honors Program.

ENGL 495(4950) Independent Study
Fall or spring. 2-4 credits. Prerequisites: permission of departmental adviser and director of undergraduate studies.

ENGL 498(4980) The Literature of Revolution (also S HUM 404, COM L 440[4440])
Fall. 4 credits. W. Cohen.
For description, see S HUM 404.

Courses Primarily for Graduate Students

Permission of the instructor is a prerequisite for admission to courses numbered in the 600s. These are intended primarily for graduate students, although qualified undergraduates are sometimes admitted. Undergraduates seeking admission to a 600-level course should consult the instructor. The list of courses given below is illustrative only; a definitive list, together with course descriptions and class meeting times, is published in a separate department brochure before course enrollment each semester.

Graduate Courses in English 2005-2006

ENGL 600(6000) Colloquium for Entering Students
J. Adams.

ENGL 611(6110) Old English (also ENGL 311[3110])
S. Zacher.

ENGL 613(6130) Middle English (also ENGL 413[4130])
T. Hill.

ENGL 616(6160) Death of the Author, Birth of the Author: Literary Theory, Medieval and Modern
M. Raskolnikov.

ENGL 627(6270) Studies in Shakespeare: Gender and Authorship in Shakespeare
S. McMillin.

ENGL 628(6280) Lyric Poetry
J. Culler and D. Fried.

ENGL 630(6300) Aesthetics in the 18th Century (also COM L 630[6300])
N. Saccamano.
ENGL 644/6440: Romantic Drama
(also ENGL 440[4440], THETR 440/4440[440/4440], COM L 445/648[4450/6610])
R. Parker.

ENGL 645/6450: England and Empire
P. Sawyer.

ENGL 666/6660: Naturalism and Modernism
D. Man.

ENGL 669/6690: Gift and Contract in the 19th-Century United States: Social and Sexual Constructions of Whiteness, Ethnicity, and Race (also FGSS 669[6690])
S. Samuels.

ENGL 670(6700): Key Issues in Contemporary Theory
S. Mohanty.

ENGL 702(7020): Advanced Old English
S. Zacher.

ENGL 710(7100): Advanced Old English
S. Zacher.

ENGL 781.01 MFA Seminar: Poetry
L. Van Cleef-Stefanson.

ENGL 781.02 MFA Seminar: Fiction
H. Viramontes.

ENGL 785(7850): Reading for Writers
P. Janowitz.

ENGLISH AS A SECOND LANGUAGE
See “English for Academic Purposes.”

ENGLISH FOR ACADEMIC PURPOSES

Introduction to the Program
The Feminist, Gender, and Sexuality Studies Program is an interdisciplinary program in the College of Arts and Sciences that seeks to deepen our understanding of gender and
sexuality and how they are ubiquitously intertwined with structures of power and inequality. Central to the curriculum are the following overarching assumptions:

That definitions of sex, gender, and sexuality are neither universal nor immutable, but are instead social constructions that vary across time and place, serve political ends, and have ideological underpinnings. That gender and sexuality are best understood when examined in relation to one another, in relation to the oppression of women and sexual minorities (e.g., lesbians, gays, bisexuals, transgendered and transsexual people), and in relation to other structures of privilege and oppression, especially racism and class exploitation; and that even the most current knowledge derived from the humanities, social sciences, and natural sciences is not as impartial, objective, or neutral as has traditionally been thought, but emerges instead out of particular historical and political contexts.

A historical footnote: Established in 1972 as one of the by-products of the Women’s Liberation Movement, the Cornell Feminist, Gender, and Sexuality Studies Program was initially called Women’s Studies so as to explicitly name the group rendered invisible by (what was then almost always referred to as) the “patriarchy”—and also so as to highlight that it would be speaking from the perspective of the traditionally marginalized, other rather than from the perspective of the group presumed by the dominant paradigm to neutrally represent humankind (i.e., men).

But the name quickly became controversial, not only because it suggested that the objects of study, as well as those undertaking the study, were exclusively women, but also because it did nothing to discourage the common assumption that the women in question were white, middle-class, and heterosexual. To expand and institutionalize the sexuality component of the Program, a minor in Lesbian, Bisexual, and Gay Studies was established at both the graduate and undergraduate levels in the early 1990s.

To shift the emphasis of the program even further toward the intertwining of gender and sexuality with structures of power and inequality, in 2002 the program changed its name from Women’s Studies to Feminist, Gender, and Sexuality Studies.

Program Offerings

Feminist, Gender, and Sexuality Studies offers an undergraduate major, an undergraduate concentration, and a graduate minor. Undergraduate students in the College of Arts and Sciences who want to major in FGSS may apply directly to the program. Undergraduate students in other colleges at Cornell will need to work out special arrangements and should speak to FGSS’s director of undergraduate studies (DUS).

The Undergraduate Major: FGSS

1. Prerequisite courses: Before applying to the major, the student must complete any two FGSS courses with a grade of B- or better. For FGSS courses that are cross-listed with another department, students may officially register either through FGSS or through the cross-listing department. Suggested entry-level courses include any FGSS course at the 200 level, especially 201 and 202, both of which are required for completion of the major. FGSS courses at the 200 level or above may count as both prerequisites and as part of the FGSS major. First-year writing seminars, in contrast, may count as prerequisites but not as part of the major.

2. Required course work:

 a. A minimum of 36 credits in FGSS courses is required for the major. No course in which the student has earned less than a C- can count toward these 36 credits. As noted above, for FGSS courses that are cross-listed with another department, students may officially register either through FGSS or through the cross-listing department.

 b. These 36 credits must include three courses specifically required of all FGSS majors:

 - FGSS 201 Introduction to FGSS Studies
 - FGSS 202 Introduction to FGSS Theories
 - FGSS 400 Senior Seminar in FGSS Studies

 c. These 36 credits must also include at least one FGSS course with a significant focus on each of the following three categories:

 - Intersectional structures of oppression (race, ethnicity, and/or class)
 - Global perspectives (Africa, Asia, Latin America, or Middle East)
 - Historical condition (e.g., a given course may satisfy one, two, or even three of these categories, a given student must take at least two courses to fulfill this requirement)

 d. Students with a double major may count up to three FGSS courses toward their FGSS major that they are simultaneously counting toward a second major.

The Honors Program: To graduate with honors, a FGSS major must complete a senior thesis under the supervision of a FGSS faculty member and defend that thesis orally before an honors committee. To be eligible for honors, students must have at least a cumulative grade point average (GPA) of 3.0 in all course work and a 3.3 average in all courses applying to their FGSS major. Students interested in the honors program should consult the DUS late in the spring semester of their junior year or very early in the fall semester of their senior year. For more information about the honors program, see FGSS 499 and the “Guidelines for a Senior Honors Thesis,” available in the FGSS Program office.

The FGSS Concentration

Undergraduate students in any college at Cornell may concentrate in Feminist, Gender, and Sexuality Studies in conjunction with a major defined elsewhere in the university. The concentration consists of five FGSS courses (officially registered either through FGSS or through the cross-listing department) that are completed with a grade of C- or above, none of which may be counted toward the student’s non-FGSS major. An exception to this rule may be made for students in the statutory colleges, who may petition the DUS in FGSS to count one course from their major toward the FGSS concentration. As with the FGSS major, first-year writing seminars cannot be included within the five required courses. Students wishing to concentrate in FGSS should see the DUS. The five courses required for the FGSS Undergraduate Concentration must include:

 - FGSS 201 Introduction to FGSS Studies
 - FGSS 202 Introduction to FGSS Theories
 - Any FGSS course that satisfies at least one of the three categories required for a major (see above)

Any two additional FGSS courses of the student’s choosing.

The LBG Concentration

FGSS serves as home to the Lesbian, Bisexual, and Gay Studies Program, which offers an undergraduate concentration as well as a graduate minor. The LBG undergraduate concentration consists of four courses. For a complete listing of all courses that will fulfill this concentration please see the LBG Studies portion of this catalog.

1. First-Year Writing Seminars

 - FGSS 106(1060) FWS: Women and Writing (also ENGL 106[1060])
 - Fall and spring. 3 credits. Staff. For description, see ENGL 105.

 - FGSS 116(1160) Writing Modern Women (also GERST 116[1160])

2. Courses

 - FGSS 201(2010) Introduction to Feminist, Gender, and Sexuality Studies (III or IV) (CA)
 - Fall. 4 credits. S. Martin.

 - FGSS 202(2020) Introduction to Feminist, Gender, and Sexuality Studies (III or IV) (CA)
 - Fall. 4 credits. D. Reese.
Introduces students to critical approaches in feminist scholarship to the cultural, socioeconomic, and political situation(s) of women. Particular attention is paid to the conceptual challenges and dangers posed by attempts to study women without taking account of relations between race, class, and gender in ideological and social formations. Readings draw on work in various disciplines and include literary texts and visual images.

FGSS 205(2050) Introduction to World Literatures in English (also ENGL 205[2050])
Spring. 4 credits. E. DeLoughrey.
For description, see ENGL 205.

FGSS 206(2060) Gender and Society
(also D SOC 206[2060])
For description, see D SOC 206.

FGSS 209(2090) Seminar in Early American History (also HIST 209[2090])
M. B. Norton.

FGSS 212(2120) African American Women: 20th Century (also HIST/AM ST 212[2120])
M. Washington.

FGSS 214(2140) Biological Basis of Sex Differences (also B&SOC 214[2141], B&SOC 214[2141])
Fall. 4 credits. Offered alternate years; next offered 2006–2007. J. Fortune.

FGSS 215(2150) Gender, Nationalism, and War (also GOVT 215[2157])
M. Evangelista.

FGSS 216(2160) Gender and Colonization in Latin America (also HIST 216[2160])
Spring. 4 credits. K. Graubart.
For description, see HIST 216.

FGSS 217(2170) Gender, Sex, Empire: Modern Middle East (also HIST 217[2170], NES 217[2171])
Spring. 4 credits. W. Jacob.
For description, see HIST 217.

FGSS 219(2190) Women in South Asia (also HIST 219[2190], ASIAN 219[2219])
Fall. 4 credits. D. Ghosh.
For description, see HIST 219.

FGSS 241(2410) New York Women (also HIST 241[2410])
M. Rossiter.

FGSS 244(2440) Language and Gender Relations (also LING 244[2244])
Fall. 4 credits. S. McConnell-Ginet.
For description, see LING 244.

FGSS 246(2460) Contemporary Narratives by Latina Writers (also SPANL/SPAN 246[2460])
Fall. 3 credits. L. Carrillo.
For description, see SPANL 246.

FGSS 249(2490) Feminism and Philosophy (also PHIL 249[2490])
N. Sethi.

FGSS 251(2510) 20th-Century Women Writers (also ENGL 251[2510])
Fall. 4 credits. E. DeLoughrey.
For description, see ENGL 251.

FGSS 252(2520) Late 20th-Century Women Writers and Visual Cultures (also ENGL 252[2520], VISST 252[2522], AM ST 253[2530])
Spring. 4 credits. S. Samuels.
For description, see ENGL 252.

FGSS 261(2610) Feminist Theory/State Theory (also GOVT 261[2615])
Spring. 4 credits. A. M. Smith.
For description, see GOVT 261.

FGSS 262(2620) Introduction to Asian American Literature (also ENGL 262[2620], ASIAN 262, AM ST 262[2620])

FGSS 263(2630) Studies in Film Analysis: Monsters and Misfits: Hollywood's Misogynist Myths of Women (also ENGL 263[2630], FILM 265[2650])
Spring. 4 credits. J. Bogel.
For description, see ENGL 263.

FGSS 273(2730) Women in American Society, Past and Present (also HIST 273[2730])
M. B. Norton.

FGSS 276(2760) Desire (also ENGL 276[2760], THETR 276[2760])
Spring. 4 credits. E. Hanson.
For description, see ENGL 276.

FGSS 279(2790) Queer Fiction (also ENGL 279[2790])
E. Hanson.

FGSS 280(2800) Introduction to Lesbian Fiction (also ENGL 279[2790])
K. McCullough.

FGSS 285(2850) Gender and Sexual Minorities (also HD 284[2840])
Fall. 3 credits. K. Cohen.
For description, see HD 284.

FGSS 307(3070) African American Women in Slavery and Freedom (also HIST/AM ST 307[3070])
Fall. 4 credits.
M. Washington.
For description, see HIST 307.

FGSS 321/631(3210/6310) Sex and Gender in Cross-Cultural Perspective (also ANTHR 321/621[3210/6421])
Fall. 4 credits. K. March.
For description, see ANTHR 321/621.

FGSS 344(3440) Male and Female in Chinese Culture and Society (also ANTHR 344[3554])
S. Sangren.

FGSS 348(3480) Studies in Women's Fiction (also ENGL 348[3480])
E. DeLoughrey.

FGSS 355(3550) Decadence (also ENGL 355[3550])
E. Hanson.

[FGSS 356(3560) He Said, She Said: The Battle of the Sexes in Medieval and Renaissance Writing (also FILM 356[3560])]

[FGSS 360(3600) Gender and Globalization (also CRP 395[3950]) (III) (SBA)]
L. Beneria.
Invites students to think globally about gender issues and to trace the connections between global, national, and local perspectives. Emphasizes: (1) understanding processes of globalization (economic, political, cultural); (2) discussing the ways in which these processes interact with the dynamics of gender differentiation; (3) understanding how globalization has affected women's and men's paid and unpaid work; (4) discussing the significance of women's location in global markets; (5) looking at the importance of culture and the social construction of gender in shaping the ways in which globalization affects people's lives and gender relations; (6) introducing regional differences and similarities; (7) discussing the gender dimensions in the debates on "the clash of civilizations"; (8) introducing questions of global governance and examining specific cases that illustrate women's role in the shaping of international debates. Combines theoretical and empirical readings/discussions.

[FGSS 368(3680) Marriage and Sexuality in Medieval Europe (also HIST/RELST 368[3680])]
P. Hyams.

FGSS 369(3690) Fast-Talking Dames and Sad Ladies (also ENGL 369[3690], FILM 369[3690])
Fall. 4 credits. L. Bogel.
For description, see ENGL 369.

FGSS 370(3700) Gender and Age in Archeology (also ANTHR/ARKEO 369[3690])
Fall. 4 credits. N. Russell.
For description, see ANTHR 369.

[FGSS 377(3770) Concepts of Race and Racism (also GOVT 377[3775])]
A. M. Smith.

[FGSS 384(3840) History of Women and Unions (also ILRCB 384[3840])]
I. DeVault.

[FGSS 396(3960) Introduction to Global Women's Literature (also ENGL 396[3960])]
E. DeLoughrey.

FGSS 399(3990) Undergraduate Independent Study
Fall and spring. 1–4 credits. Prerequisites: one course in FGSS and permission of an FGSS faculty member. Staff.

FGSS 400(4000) Senior Seminar in Feminist, Gender, and Sexuality Studies
Fall. 4 credits. Prerequisite: requirement for and limited to FGSS majors. Staff.
Although the topic/focus of this course surely varies with the instructor, it is always treated as a broad capstone course for majors.
(FGSS 404(4040) Women Artists [also ART H 466(4610)])
Fall. 4 credits. J. Bernstock.
For description, see ART H 466.

(FGSS 405/605/4050/6050) Domestic Television (IV) [SBA])
A. Villarejo.
Seminar concerning television as technology and cultural form, focusing on the "domestic" as a synonym for gendered value-coding, an axis of the international division of labor (and issues of television's dissemination and circulation), and a site for historical exploration. The course balances readings in television and cultural theory (Spigel, Dienst, Merck, Williams, Feuer, Mulders, Mellencamp, Stattuc, Spiwak, and others) with close analysis of television as information, entertainment, furniture, technology, text, genre, flow, channel, and circuit of production of the commodity audience. Students may enroll in either undergraduate or graduate level with graduate students submitting a longer paper and doing supplementary readings.

(FGSS 410(4100) Health and Survival Inequalities [also SOC 410(4100)])
Fall. 4 credits. A. Basu.
For description, see SOC 410.

(FGSS 411/611(4110/6110) Seminar: Devolution and Privatization: Challenges for Urban Public Management (also CRP 412/612 [4120/6120], AEM 433/633 [4330/6330]))
Fall. 4 credits. M. Warner.
For description, see CRP 412.

(FGSS 416(4160) Gender and Sex in South East Asia [also HIST 416(4160), ASIAN 416(4161)])
Spring. 4 credits. T. Loos.
For description, see HIST 416.

(FGSS 420/620(4200/6200) Government Policy Workshop [also CRP 434(4360), CRP 418(4180), AEM 634(6340)])
Spring. 4 credits. M. Warner.
For description, see CRP 418/618.

(FGSS 421(4210) Theories of Reproduction [also SOC 421(4210)])
Spring. 4 credits. A. Basu.
For description, see SOC 421.

(FGSS 423/4320) Sex in French [also FRLIT 442/642(4420/6420)]
C. Howie.
For description, see FRLIT 423.

(FGSS 433/4330) The Female Dramatic Tradition [also FILM 436(4380)]

(FGSS 437/4370) Black Feminism and Photography [also AS&RC 437(4203)]
Fall. 4 credits. M. Wallace.
For description, see AS&RC 437.

(FGSS 444/4440) Historical Issues of Gender and Science [also S&TS 444(4441)]
Spring. 4 credits. M. Rossiter.
For description, see S&TS 444.

(FGSS 445/4450) American Men [also HIST 444(4440)]
E. Baptista.

(FGSS 446/4460) Women in the Economy [also IRLE 445(4450), ECON 457(4570)]

(FGSS 448/4480) Global Perspectives on Violence against Women [also PAM 444(4440)]
A. Parrot.

(FGSS 451(4510) Women in Italian Renaissance Art [also ART H 450(4450)])
C. Lazzaro.

(FGSS 453(4530) 20th-Century American Women Writers of Color [also ENGL AAS 453(4530)])
S. Wong.

(FGSS 454(4540) Opera, History, Politics, Gender [also HIST/ITALL 456(4560), S HUM 459, COM L 459(4590)])
M. Steinberg and S. Stewart.

(FGSS 461(4610) Sexuality and the Law [also GOVT 462(4625)])
Sprint. 4 credits. A. M. Smith.
For description, see GOVT 462.

(FGSS 465(4650) Feminist Theory/ Lesbian Theory [also COM L 465(4650)])
A. Villarejo.
Seminar exploring developments in feminist theory, primarily in the United States from the 1950s through the mid-1990s. Also traces the changing status of "lesbianism" in feminist theories over that same time period and examine its status in current constructions of "queer theory." What happens to the relationship between feminist theory and lesbian thought when "queer theory" emerges? The purpose of the course is to encourage critical, historically informed readings of what could be considered canonical texts and crucial junctures in Second Wave feminist thought, many of which remain unfamiliar even to FGSS students.

(FGSS 467(4670) Sexual Minorities and Human Development [also HD 464(4640)])
R. Savin-Williams.

(FGSS 470(4700) Studies in the Novel: Experimental Novels by 20th-Century Women [also ENGL 470(4700)])
M. Hite.

(FGSS 474(4740) Exoticism and Eroticism: Figures of the Other in the French Enlightenment [also FRLIT 475(4750)])
A. Berger.

(FGSS 475/4750(4750)/6750) Advanced Undergraduate Seminar in Global Feminisms: Naming Women and Globalization
Recent international treaties have designated a "trade barrier" as a primary semester in legislative negotiations between nation-states. This course explores the implications of this particular economic form of valuation for larger questions of social justice. How do certain values appear as values, how are they coded, and how are they read? What of values that are unable to appear under the lens of the semester "trade barrier" such as communal property, domestic labor, or historical justice? Can projects for social equality appear within the calculations of global capital? If so, how and under what auspices and how and when are human rights and/or women's rights articulated within this context? A corollary issue for our discussion is the category of "nature" in its relation to national sovereignty. Sometimes considered a universal "inheritance of man," other times a form of state or private property, "nature" is at the center of disputes concerning intellectual property rights, while women are often named the custodians of natural resources in U.N. documents. How are women's lives implicated in particular approaches to assigning value to nature (both juridical and economic)? How can feminist critiques address these incongruous forms of value in which women, in the new, global economy, have become ensnared?

(FGSS 476(4760) Global Women's Literature: [En] Gendering Space [also ENGL 476(4760)])
E. Deloughrey.

(FGSS 477(4770) Intersections in Lesbian Fiction [also ENGL 478(4780), AM ST 468(4680)])
K. McCullough.

(FGSS 479(4790) Gender and Visual Culture in Women's Literature [also ENGL 479(4790)])
Fall. 4 credits. S. Samuels.
For description, see ENGL 479.

(FGSS 480(4800) Studies in Gender Theory: Kinship and Embodiment [also COM L 481(4810)])
Spring. 4 credits. P. Liu.
For description, see COM L 481.

(FGSS 481(4810) Latin American Women Writers [also SPANL 492(4920), COM L 482(4820)])
D. Castillo.

(FGSS 488/688(4880/6880) Beliefs, Attitudes, and Ideologies [also PSYCH 489/689(4890/6890)])
Fall. 4 credits. D. Bern.
For description, see PSYCH 489.

(FGSS 490(4900) Gender, Memory, and History [also ENGL 491(4910)])
K. McCullough.

(FGSS 491/691(4910/6910) Femininity, Ethics, and Aesthetics [also FRLIT 481(4810), ENGL 481(4810), AM ST 468(4680)])
T. McNulty.

(FGSS 492(4920) Music and Queer Identity [also MUSIC 492(4231)])
J. Peraino.

(FGSS 494(4940) Love, Sex, and Song in the Middle Ages [also MUSIC 494(4221)])
J. Peraino.

(FGSS 496(4960) Women and Music [also MUSIC 493(4232)])
J. Peraino.
To graduate with honors, FGSS majors must complete a senior thesis under the supervision of a FGSS faculty member and defend that thesis orally before an honors committee. To be eligible for honors, students must have at least a cumulative GPA of 3.0 in all FGSS courses. The senior honors thesis (FGSS 699) is a one-year project. It may be based on research, analysis of existing materials, or other appropriate work. The thesis is to be completed in the spring of the senior year. For information about the requirements for writing seminars and descriptions of seminar offerings, see the John S. Knight Institute website: www.arts.cornell.edu/knight_institute.

FRENCH

See "Romance Studies."

GERMAN STUDIES

L. Adelson, chair; D. Bathrick, M. Briggs (Dutch), B. Buettnier, associate language program director; P. Gilgen, director of undergraduate studies; A. Groos, P. U. Hohendahl, W. Kittler, G. Lischke, language program director; B. Martin, U. Maschke, associate language program director; D. Reese, A. Schwarz, director of graduate studies; L. Trancik (Swedish), G. Waite. Emeritus: H. Deinert.

The Department of German Studies offers students a wide range of opportunities to explore the literature and culture of German-speaking countries, whether as part of their general education, a major in German Studies, or a double major involving another discipline, or as preparation for graduate school or an international professional career. Courses are offered in German as well as in English; subjects range from medieval to contemporary literature and from film and visual culture to intellectual history, music, history of psychology, and feminist, gender, and sexuality studies.

The department's offerings in English begin with a series of first-year writing seminars introducing various aspects of German literature (e.g., the fairy tale and romantic consciousness or 20th-century writers such as Kafka, Hesse, Mann, Brecht), theorists such as Marx, Nietzsche and Freud, issues in mass culture and modernity, problems of German national identity/es, and cinema and society. Courses in German and English at the 300 and 400 levels explore such topics as the Faust legend, aesthetics from Kant to Heidegger, city typographies, Freud and his legacy, opera from Mozart to Strauss, the German novel, political theory and cinema, the Frankfurt School, and feminist theory. It may be possible to arrange a German section for courses taught in English, either informally or formally (for credit). Students are encouraged to discuss this possibility with instructors.

Students wishing to begin German language at Cornell enroll in GERST 121-122, 123 (introductory language level). Students then continue with intermediate-level courses, which provide further grounding in the language as well as introduce German literature and cultural studies. The course GERST 206 provides instruction for German in the culture of business, leading to certification. On the advanced level (300 level or above), we offer thematically oriented courses that include intensive language work (301, 302, 510); literature and culture study courses in German, including the Senior Seminar; and seminars of interdisciplinary interest taught in English. Addressing a broad spectrum of topics in German culture, our courses appeal to German majors and other qualified students alike.

FGSS 627(6270) Organizations and Social Inequalities (also ILROC 626[6260])

FGSS 636(6360) Comparative History of Women and Work (also IRLIC 636[6360])

Spring. 4 credits. L. DeVault.

For description, see IRLIC 636.

FGSS 640(6400) Historical Issues of Gender and Science (also S&TS 640[6401])

Spring. 4 credits. S. Seth.

For description, see S&TS 640.

FGSS 644(6440) Topics in the History of Women in Science (also S&TS 644[6441])

FGSS 651(6510) The Sexual Child (also ENGL 651[6510])

FGSS 654(6540) Queer Theory (also ENLG 654[6540])

Spring. E. Hanson.

For description, see ENLG 654.

FGSS 656(6560) Aestheticism (also ENLG 656[6560])

FGSS 661(6610) Cinematic Desire (also ENLG 661[6610])

Fall. 4 credits. S. Samuels.

For description, see ENLG 661.

FGSS 669(6690) Gift and Contract in the 19th-Century United States: Social and Sexual Constructions of Whiteness, Ethnicity, and Race (also ENLG 669[6690])

Fall. 4 credits. S. Samuels.

FGSS 671(6710) Feminist Methods (also D SOCI 671[6710])

FGSS 699(6990) Women's Writing from the Post-Colonial World: Theory and Practice (also ENLG 691[6910])

FGSS 699(6990) Topics in FGSS

Fall and spring. Variable credit. Staff. Independent reading course for graduate students on topics not covered in regularly scheduled courses. Students develop a course of readings in consultation with a faculty member in the field of FGSS who has agreed to supervise the course work.

FGSS 762(7620) Sexuality and the Law (also GOVT 762[7625])

Spring. 4 credits. A. M. Smith.

For description, see GOVT 762.

FILM

See “Department of Theatre, Film, and Dance.”
Sequence of courses

Courses in German:

Introductory level: GERST 121-122, after completion, placement into GERST 123 or 200
Intermediate level: GERST 200, 202, 204, and 206
Advanced level: GERST 301, 302, 307, 310, 410
Courses in German or English: further 300- and 400-level literature and culture courses (see course descriptions).

Advanced Standing

Students with an AP score of 4 or better are automatically granted 3 credits in German. Students with an AP score of 4 or better, an LPG score of 65 or higher, or an SAT II score of 690 or higher must take the CASE exam for placement in courses above GERST 200.

Students coming to Cornell with advanced standing in German and/or another subject area are encouraged to consider a double major and to discuss the options with the director of undergraduate studies as early as possible.

Certificate in German Language Study

The Certificate in German Language Study is issued to recognize substantial language study beyond the GERST 200 level in the Department of German Studies. Students are awarded the certificate after passing three German Studies courses held in German with a grade of B or above. Two of these courses must be at the 300 level or above. Applications for the language certificate may be picked up in the Department of German Studies (183 Goldwin Smith Hall) in February.

Internships

The department works with the USA-Interns program to provide summer internships to qualified students with German companies and agencies. Interested students should contact Professor Gunhild Lischke (gl5@cornell.edu, G75 Goldwin Smith Hall, 255-0725) early in the fall semester.

The Majors

The department offers two options for the major: German literature and culture, and German area studies. The latter is a more broadly defined sequence that includes work in related disciplines. The course of study in either major is designed to give students proficiency in reading, speaking, and writing in German, to acquaint them with German culture, and to help them develop skills in reading, analyzing, and discussing German texts in relevant disciplines with those goals in mind, the department encourages study abroad. For both majors, there is a wide variety of courses co-sponsored with other departments (Comparative Literature, Government, History, Music, Theatre, Film, and Dance; Feminist, Gender, and Sexuality Studies).

The department encourages double majors and makes every effort to accommodate prospective majors with a late start in German. Students interested in a major should consult the director of undergraduate studies, Professor Peter Gilgen, 192 Goldwin Smith Hall.

German (Literature and Culture)

Students in this major select courses from the Department of German Studies and may use them to pursue individual interests in literature, film and visual culture, theater and performing arts, music, intellectual and political history, and gender studies, for example. Please consult with the director of undergraduate studies.

Admission: By the end of their sophomore year, prospective majors should have successfully completed GERST 202, 204, or 206.

To complete the major, a student must:

1. Demonstrate competence in the German language by successful completion of two 300-level courses with intensive language work (GERST 301, 302, 310) or the equivalent.
2. Complete six courses in the Department of German Studies at the 300 level or above. One of these must be GERST 410 Senior Seminar.
3. Select a faculty adviser from the department.

German Area Studies

Students select courses from the Department of German Studies as well as courses with a substantial German component from other departments, such as Comparative Literature; Government; History; Music; Theatre, Film, and Dance; and Feminist, Gender, and Sexuality Studies.

Admission: By the end of their sophomore year, prospective majors should have successfully completed GERST 202, 204, or 206.

To complete the major, a student must:

1. Demonstrate competence in the German language by successful completion of two 300-level courses with intensive language work (GERST 301, 302, 310) or the equivalent.
2. Complete six courses with a substantial German component at the 300 level or above. Three of these must be in the Department of German Studies, including GERST 410 Senior Seminar.
3. Select a committee of one or more faculty advisers to help formulate a coherent program of study. One of the advisers must be from the Department of German Studies.

Honors

Honors in German Studies are awarded for excellence in the major, which includes overall grade point average and completion of the honors thesis. Students are awarded either honors (cum laude), high honors (magna cum laude), or the highest honors (summa cum laude) in the program based on the honors advisers' evaluation of the level and quality of the work completed toward the honors degree. The honors distinction will be noted on the student's official transcript and will also be indicated on the student's diploma.

Prerequisites for admission. Students must have upperclass standing, an overall GPA of a B or higher, and a GPA of 3.5 or higher in the major. Students must first consult with the DUS in German Studies regarding eligibility for the honors program.

Procedure. Students who wish to be considered for honors ideally should apply to the DUS no later than the second term of the junior year. Students who are off campus in their junior year must apply by the third week of classes in the first semester of their senior year. Students should secure the consent of a faculty member to serve as the director of both the reading course (GERST 453) and the writing of a thesis (GERST 454). With the help of their thesis adviser, students choose an area of special interest and identify at least one other faculty member who is willing to serve on the honors committee. An oral thesis defense concludes the process.

Study Abroad in a German-Speaking Country

The Department of German Studies strongly supports study abroad as an opportunity for students to live and study in the German cultural context. The experience of living abroad promotes enduring personal growth, provides new intellectual perspectives through cultural immersion, and opens up academic and professional opportunities.

Students interested in studying abroad are encouraged to consider the Berlin Consortium, of which Cornell is a member. The program is run in conjunction with the Free University of Berlin and is of very high caliber. Six weeks of an intensive language practicum held at the Berlin Consortium center are followed by one or two semesters of study at the university. Participants enroll in regular courses at the university. Assistance in finding internships between semesters may be available to students staying for an entire academic year. Four semesters of German language study are prerequisite for participating in the program; ideally the last of these courses should be at the 300 level.

Students interested in this or other study abroad options in Germany, Austria, or Switzerland should consult the Language Program Director, Gunhild Lischke (G75 Goldwin Smith Hall, 255-0725, gl5@cornell.edu).

First-Year Writing Seminars

Consult the John S. Knight Institute brochure for course times, instructors, and descriptions.

Courses Offered in German

GERST 121(1210) Exploring German Contexts I

Fall or spring. 4 credits. Intended for students with no prior experience in German or language placement test (LPG) below 37, or SAT II below 370. G. Lischke, U. Maschke, and staff.

Students develop basic abilities in listening, reading, writing, and speaking German in meaningful contexts through interaction in small group activities. Course materials including videos, short articles, poems, and songs provide students with varied perspectives on German language, culture, and society.
GERST 122(1220) Exploring German Contexts II
Fall or spring. 4 credits. Prerequisite: GERST 121, LPG 57-64, or SAT II 370–450. Students who obtain a PG of 56 or above after GERST 122 attain qualification and may enter a 200-level course; otherwise successful completion of GERST 123 is required for qualification.) U. Masckhe and staff.

Students build on their basic knowledge of German by engaging in intense and more sustained interaction in the language. Students learn more advanced language structures allowing them to express more complex ideas in German. Discussions, videos, and group activities address topics of relevance to the contemporary German-speaking world.

GERST 123(1230) Expanding the German Dossier
Fall or spring. 4 credits. Provides language qualification. Prerequisite: study of German and LPG 45-55 or SAT II 460–580. U. Masckhe and staff.

Students continue to develop their language skills by discussing a variety of cultural topics and themes in the German-speaking world. The focus of the course is on expanding vocabulary, reviewing major grammar topics, developing effective reading strategies, improving listening comprehension, and working on writing skills. Work in small groups gives each student's opportunity to speak in German and provides for greater feedback and individual help.

GERST 200(2001) Germany: Intercultural Context (IV) (CA)
Fall or spring. 3 credits. Provides language proficiency and satisfies Option I. Prerequisite: qualification in German (GERST 123 or LPG 56-64 or SAT II 590–680) or placement by exam. B. Buettner, G. Lischke, and staff.

Content-based language course on the intermediate level. Students examine important 20th- and 21st-century aspects of German culture while expanding and strengthening their reading, writing, and speaking skills in German. Materials for each topic are selected from a variety of sources (fiction, newspapers, magazines, and the Internet). Units address a variety of topics including studying at a German university, modern literature, Germany online, and Germany at the turn of the century. Oral and written work and individual and group presentations emphasize accurate and idiomatic expression in German. Successful completion of the course enables students to continue with more advanced courses in language, literature, and culture.

GERST 202(2021) Literary Texts and Contexts (IV) (LA)
Fall or spring. 3 credits. Provides language proficiency. Prerequisite: GERST 200 or equivalent or placement exam. Conducted in German. B. Buettner and U. Maschke.

Students in this intermediate course read and discuss a number of works belonging to different literary genres by major German-speaking authors such as Kafka, Walser, Brecht, Mann, Frisch, Dürenmann, Bachmann, and others. They explore questions of subjectivity and identity in modern society, of human existence as existence in language, and of the representation of history in literary texts. Activities and assignments focus on the development of reading competency in different literary genres, the improvement of writing skills including the accurate use of idiomatic expressions, the expansion of students' German vocabulary, and the systematic review of select topics in German grammar.

GERST 204(2041) Working with Texts (CA)
Fall or spring. 3 credits. Provides language proficiency and satisfies language Option I. Prerequisite: GERST 200 or placement by exam (placement score and CASE).

Staff. Emphasis is on improving oral and written expression of idiomatic German. Enrichment of vocabulary and appropriate use of language in different conversational contexts and written genres. Material consists of readings in contemporary prose, articles on current events, videos, and group projects. Topics include awareness of culture, dependence of meaning on perspective, interviews with native German speakers, German news broadcasts, reading German newspapers on the Internet.

GERST 206(2061) German in Business Culture (CA)
Spring. 3 credits. Prerequisite: proficiency in German (GERST 200 or placement by examination [placement score and CASE]). Students without prior basic knowledge of business German are welcome. G. Lischke. Students learn German and understand German business culture at the same time. This German language course examines the German economic structure and its major components: banks, trade unions, the banking system, and the government. Participants learn about the business culture in Germany and how to be effective in a work environment, Germany's role within the European Union, the role of the Bundesbank, the importance of trade and globalization, and current economic issues in Germany. The materials consist of authentic documents from the German business world, TV footage, and a business German textbook. At the end of the course, the external Goethe Institut exam Deutsch für den Beruf is offered.

GERST 301(3011) Scenes of the Crime: German Mystery and Detective Fiction (IV) (LA)
Fall. 4 credits. Satisfies language option I. May be counted toward requirement for 300-level language work in the major. Prerequisite: GERST 202, 204, 206 or equivalent, or placement by exam, or permission of instructor. Taught in German P. Gilgen.

Exploration of German crime, detective, and mystery writing in texts ranging from the early 19th century to contemporary fiction. Authors studied may include: Kleist, E. T. A. Hoffmann, Dürenmann, Schatten, Stüskind, Handke, Ören, Arjouni, Ani, and Glauser. In addition to exercising hermeneutic skills (and, by extension, that gray matter of which Sherlock Holmes and Hercule Poirot were so fond), this course aims at improving proficiency in aural and reading comprehension, as well as speaking and writing skills, with emphasis on vocabulary expansion, advanced grammar review, and stylistic development. Recommended to students interested in a combined introduction to literature and high-level language training. The sister course GERST 302 Youth Adolescence is taught in the spring semester.

GERST 202(2021) Youth Culture: Adolescence in German Fiction (IV) (LA)
Spring. 4 credits. Satisfies language Option I. Prerequisite: GERST 202, 204 or 206 or equivalent or placement exam, permission of instructor. Taught in German.

B. Buettner.

Examination of literary and cultural approaches to childhood, youth, and adolescence in texts ranging from the late 18th century to the present. Authors may include Bernhard, Musil, Zweig, von Horvath, Mann, Goethe, Kaschnitz, and others. Aimed at improving students' proficiency in aural and reading comprehension, as well as in speaking and composition skills. Focus on high-level grammar review, stylistic and expository refinement and vocabulary expansion. Recommended for students wishing to combine intensive language training with reading and discussion of short fiction.

GERST 305(3051) Writing America (IV) (LA)

GERST 306(3061) German Media (IV) (CA)

GERST 307(3071) After the Fires: Divided Germany, 1945 to 1999 (IV) (CA)

GERST 310(3100) Berlin: Where the Wild Things Are (IV) (CA)

Prerequisite: GERST 202, 204, 206, or equivalent or permission of instructor. Taught in German. U. Maschke.

GERST 358(3580) The Age of Goethe (IV) (LA)
Fall. 4 credits. Satisfies language Option 1. Prerequisite: any 300-level German course or permission of instructor. Taught in German. A. Groos.
Introduction to literary and philosophical texts of the Age of Goethe, ranging from the late Enlightenment through Romanticism. After initial readings on the Enlightenment by Lessing, Kant, and Schiller, readings/discussions explore major literary representatives of the Sturm-und-Drang and Weimar periods, such as Goethe’s Werther and Faust I (Selections), Schiller’s Kabale und Liebe and Maria Stuart, and a wide selection of poetry. Readings in Romantic literature include narratives by writers such as Kleist, E.T.A. Hoffmann, and Tieck, as well as poetry by Hölderlin, Novalis, Brentano, and Eichendorff.

GERST 410(4100) Senior Seminar (IV) (CA)
Fall. 4 credits. Satisfies language Option 1. Prerequisites: adequate command of German; any 300-level course taught in German, or equivalent, or permission of instructor. Readings and discussions in German. W. Kitter.
Topic: Before the law. The creation of an international court of law, which the United States refused to join while at the same time advocating the ideals of freedom and liberty all around the world, begs the old question once again: What is the law—a universal, a global principle, or a custom, a tradition that defines and distinguishes one culture from the other? This course examines a limited number of case studies using documents from different historical periods and mixing genres such as legal codes, philosophy of law, and literature. This course studies the laws of sexual relations in Kant and Fichte, the paradox of right and wrong in Hegel, a citizen’s right to revolt in Kleist, the question of accountability in Büchner, the conflict between regional and universal law in Kafka, the relation between crime and grace in Dürrenmatt, and the laws of guilt in war in Heiner Muller.

GERST 423(4230) Avant-Garde and Neo-Avant-Garde: From Dada to the Wiener Gruppe, and Beyond (IV) (LA)

GERST 442(4420) Changing Worlds: Migration, Minorities, and German Literature (IV) (LA)
Spring. 4 credits. Satisfies language Option 1. Prerequisite: any 300-level course taught in German or equivalent or permission of instructor. Taught in German; required readings and discussions in German. L. Adelson.
What makes a German world? The defeat of the Third Reich in 1945 and the collapse of communist Europe in 1989 were major geopolitical events that continue to reverberate in German culture, as many authors consider the ever-changing imaginative contours of German worlds by literary means. Transnational migration and minority struggles represent other pivotal markers of global change on the cusp between the 20th and 21st centuries. This course examines how imaginative contours of German worlds have been reshaped in literature since 1945 through the lens of migration and minorities. Special attention is paid to Jews, Turks, and Black Germans, though some attention is also paid to literary phenomena involving other minorities and migration experience, including that of Eastern Europeans who have immigrated to the Federal Republic of Germany. Rather than assuming that tradition and minorities merely mimic social relations in documentary fashion, this course foregrounds the medium of literature to ask how worlds of fiction and comedy prompt readers to engage real and possible worlds in newly imaginative ways. The course emphasizes narrative fiction, but some poetry, music, television, and film are also considered. Focal readings include selected works by authors such as Paul Celan, Anna Seghers, Jurek Becker, Greete Weil, Doron Rabinovici, Irene Dische, Maxim Biller, Wladimir Kaminer, Aras Oren, Sinasi Dikmen, Jakob Arjouni, Emme Sevgi Özdamar, Zafer Senocak, Zehra Çirak, Firdun Zaimoglu, Berkan Karpät, Kemal Kurt, TORKAN, May Ayim, Ika Hügel-Marshall, Gaban Tschinag, Zé do Rock, José Oliver, Jamal Tuschick, Herta Müller, Terézia Mora, Yoko Tawada, and others.

Courses conducted in English
It may be possible to arrange a German section for courses conducted in English, either formally or informally (for credit). Students are encouraged to discuss this possibility with instructors.

GERST 315(3150) Media Studies (also COM L 310(3100)) (IV) (CA)
Spring. 4 credits. W. Kitter.
Introduction to the history of modern media starting in the late 18th century and linking with the present. The material is divided into five sections: (1) Electric media: From Chappè's optical telegraph to Sommerring's first electrical telegraph, Morse code, and the telephone; (2) Electromagnetic media: wireless, radio, radar, television; (3) Visual media: central perspective, the camera obscura, the photographic camera, and film; (4) Sound recording: from Chappe's optical telegraph to Soemmerring's first electrical telegraph, Morse code, and the phonograph to CDs; (5) The universal machine: The distinction between analog and digital data processing, cybernetics, basic components of digital computers, some notes on programming, basic notions of cryptography. To provide students with a wide horizon three types of readings are juxtaposed: (1) technical manuals; (2) theoretical and philosophical analyses; and (3) literary accounts.

GERST 318(3180) "1800" # (IV)

GERST 330(3300) Political Theory and Cinema (also COM L 330(3300), GOVT 370(3705), FILM 329[3290]) (III or IV) (CA)
Spring. 4 credits. Prerequisite: none.
Introduction to fundamental problems of current political theory, filmmaking, and film analysis, along with their interrelationship. Particular emphasis on comparing European and cinematic cinema with Hollywood in terms of Marxist, psychoanalytical (Lacanian), postmodernist, and postcolonial types of interpretation. Although this is a lecture course, there is ample time for class discussions.

GERST 340(3400) Metropolis: Urban Sites in Literature (IV) (LA)
Fall. 4 credits. Readings and discussions in English (texts available in German). A. Schwarz.
Interdisciplinary study of metropolitan life focusing on Berlin and Vienna (1800–1990) as major contexts of artistic modernity and historical change. Topics include: the city as both the product and source of artistic production; the interrelationship between literary concepts of montage, collage, and their architectural counterparts (Bauhaus et al.); the tension between private and public spaces, and the status of crowds, anonymity, and the timeless through the risen of an avant-garde movement in an urban environment. Focuses on short fiction, architectural theory, sites and art history, film, political and literary manifestos. Authors include: Fontane, Broch, Benn, Benjamin, Doblin, Simmel, Johnson, Rilke, Kohlsaat, Vidler.

GERST 342(3420) Words and Music (also MUSIC 272[2045]) # (IV) (LA)
Spring. 4 credits. Prerequisite: some ability to read music. Students with no experience in reading music (playing an instrument) encouraged to enroll concurrently in MUSIC 100 (1 credit). Taught in English, with reading options in English or German. A. Groos.
This course surveys the evolution of texts set to music in German-speaking culture of the 18th and 19th centuries. A brief presentation of Luther and the Protestant hymn introduces sessions on texted Baroque music, especially cantatas and oratorios by Bach. After tracing the emergence of a secular culture of sensibility in Mozart's Abduction from the Seraglio and late 18th-century songs, readings and listenings explore Classicism and Romanticism, focusing on songs and song cycles by Beethoven, Schubert, Schumann, and Brahms. A final segment investigates the role of words and music in constructing a German national identity, especially folk songs and Wagner's use of the medieval past in operas such as Tannhäuser or Die Meistersinger.
In the wake of the attacks of 9/11 and their political and military aftermath much has been said and written on the relationship between the U.S. and its European allies. In this course, we will address a number of literary, philosophical, and political engagements with the events of 9/11. German Anti-Americanism, and the American animus against "Old Europe." We will also ask how German intellectuals see their own as well as Germany's (and, by extension, Europe's) role in a changed world and how they judge American foreign policy and the role of the UN. We will begin by examining the reactions of a number of European intellectuals to 9/11, especially those of Habermas, Derrida, and Zizek. We will then attempt to map the significant rapprochement between Habermas and Derrida's political theories which finally led to a collaboration on the question of Europe. In addition we will examine a series of contributions to the debate by American intellectuals, such as Susan Sontag, Chomsky, and Gumbrecht and by their German counterparts, such as Enzensberger, Broder, and Böggla. Since the course is taught in English, the German texts will be read in translation. The course is aimed primarily at advanced undergraduate students with some familiarity with research methods in cultural studies or history or political science.

[GERST 405(4050) Introduction to Medieval German Literature I # (IV)
(LA)
Not offered 2005-2006. A. Groos.]

[GERST 406(4061) Introduction to Medieval German Literature II # (IV)
(LA)
Not offered 2005-2006. A. Groos.]

[GERST 407(4071) Teaching German as a Foreign Language
Fall. 4 credits. G. Gauche. Designed to familiarize students with current ways of thinking in the field of applied linguistics and language pedagogy. Introduces different concepts of foreign language methodology as well as presents and discusses various techniques as they can be implemented in the foreign language classroom. Special consideration is given to topics such as planning syllabi, writing classroom tests, and evaluating students' performance. Participants conduct an action research project.

[GERST 408(4081) Uncanny Communities
(IV)
Not offered 2005-2006. A. Schwarz.]

[GERST 409(4091) Spinoza and New Spinozism (IV)
(LA)
Not offered 2005-2006. G. Waite.]

[GERST 412(4120) German Literature from 1770 to 1848 # (IV)
Not offered 2005-2006. L. Adelson.]

[GERST 415(4150) Marx, Nietzsche, Freud (also GOVT 473[4735]) # (III or IV)
(CA)
Not offered 2005-2006. G. Waite.]

[GERST 416(4160) Kafka In/On Translation (IV)
(LA)

[GERST 417(4170) Faust: Transformations of a Myth # (IV)
(CA)
Not offered 2005-2006. H. Deinert.]

[GERST 418(4180) Discourses in Reality: Documentary Literature in the 20th Century (also COM L 418[4180]) # (IV)
(LA)
Fall. 4 credits. Limited to 15 students. Prerequisite: literature at 300 level or permission of instructor. D. Fere. Comparative seminar considering the vital contribution of documentary production to various avant-garde and neo-avant-garde literary projects of the 20th century. Taking as a point of departure the "invention" of reportage at the moment of the media boom of the 1920s, it considers the relationship between those technologies of mechanical reproducibility that dramatically transformed the material conditions of aesthetic production and the new literary genre that was ambiguously situated between technical-scientific discourse and traditional literary forms. From Surrealist autobiography to the Mass Observation movement, from the Soviet "biography of the object" to the PSA archive, from the New Journalism to ethnography and oral history, this course surveys diverse documentary practices together with the theoretical debates that motivated and attended them in four political contexts (the Soviet Union, Germany, France, England, and the United States) over a period of time extending from pre-WWII to the post-war neo-avant-garde. The readings are coordinated with weekly film screenings that explore the documentary mode in cinema.

[GERST 424(4240) The Totalitarian Order: Vision and Critique (also COM L 427[4270], GOVT 425[4255]) # (IV)
(CA)
Fall. 4 credits. Limited to 15 students. Prerequisite: senior undergraduate level or permission of instructor or graduate student. P. U. Hohendahl. The seminar explores the rise of totalitarian regimes with an emphasis on National Socialism and Stalinism. We will examine the development of the political and theoretical to the 20th century. Discusses changing definitions of creativity as ingenuity, inspiration, or insanity; divine possession, originality, or fanatic enthusiasm. Special focus on social and artistic transgression; genius and creativity; and madness and art. The readings are selected from texts spanning the 18th to the 20th century. Discusses changing definitions of creativity as ingenuity, inspiration, or insanity; divine possession, originality, or fanatic enthusiasm. Special focus on social and artistic transgression; genius and gender; passions and pathological disorders. Authors include Aristotle, Goethe, Kant, Hoffmann, Kleist, Foucault, Feldman, Bühner, Nietzsche, Freud, Mann, Musil, Jelinek, Kafka.

[GERST 437(4370) Brecht, Artaud, Muller, Wilson (also FILM 420[4200]) # (IV)

[GERST 431(4310) Modern Drama (also THETR 431[4310]) # (IV)
(LA)

[GERST 435(4350) Introduction to Literary Theory (also COM L 435[4350], ROM S 435[4350]) # (IV)
(LA)
Fall. 4 credits. Taught in English; readings in English; but students with other languages are encouraged also to work in them. G. Waite. Basic introduction to several modes and vocabularies of literary theory and analysis. Because the main focus is from the late 20th century to the present, the course studies linguistic paradigm, Russian formalism, structuralism, poststructuralism, deconstruction, philosophical hermeneutics, critical theory and several other types of argument in Marxism, psychoanalysis, feminism, gay and lesbian studies, and cultural studies. Every attempt is made to keep assigned readings short, to read these texts carefully, and to apply theory to practice.

[GERST 439(4390) Poetry and Poetics of Translation (also COM L 439[4390], 439[4390], 439[4390], ENGL 641[6410]) # (IV)
(LA)
Not offered 2005-2006.]

[GERST 441(4410) Introduction to Germanic Linguistics (also LING 441[4414]) # (III or IV)
(Spring. 4 credits. W. Harbert. For description, see LING 441.)

[GERST 443(4430) Rescreening the Holocaust (also FILM/RELST 450[4500]) # (IV)
(LA)

[GERST 451(4512) Poetry of the 1990s (also COM L 451[4512]) # (IV)
(Spring. 4 credits. W. Harbert. For description, see LING 441.)

[GERST 453(4530) Honors Research
Fall. Staff.]

[GERST 454(4540) Honors Thesis
Spring. 8 credits. Prerequisite: GERST 453. Staff.]

[GERST 472(4720) Poetry of the 1990s (also COM L 472) # (IV)

[GERST 495(4950) The Cultural Theory of the Frankfurt School (III or IV)
Not offered 2005-2006. P. U. Hohendahl.]

[GERST 496(4960) Theorizing the Public Sphere (III or IV)
Not offered 2005-2006. P. U. Hohendahl.]

Graduate Courses
Note: For complete descriptions of courses numbered 600 or above consult the appropriate catalog for course numbers above consult the appropriate instructor.

[GERST 606(6061) Topics in Historical Germanic Phonology (also LING 643[6434])
Not offered 2005-2006. W. Harbert.]
[GERST 608(6081) Topics in Historical Germanic Syntax (also LING 644[645]-643)]

[GERST 615(6150) Jews in German Culture Since 1945 (also JWST 615[6150])]

[GERST 616(6160) Spaces of Literature (also COM L 613[6130])]
Fall. 4 credits. A. Schwarz.
The seminar will examine how space is represented in texts and pursue the question whether literary language can be connected to spatial features that are unique to prose, poetry, and other poetic discourses. We shall review the tradition of literary representations of space by discussing topics such as "the aesthetics of space," "landscape and garden architecture," "the sublime," "the relationship between corporeality and external worlds," "space and memory/communication between space, place, locale, psychic and physical spaces." Ranging from antiquity to contemporary literary and theoretical texts the seminar will approach "space" as a phenomenon that changes its shape with changing analytical or poetic approaches simultaneously changing the shape of the inquiring or representing discourse. Other guiding questions will be: does literature take on spatial features? Is poetic language dependent on spatial orientation? Does literature create space? Literature, Philosophy, Psychoanalysis will be the disciplinary spaces under discussion. Readings include: Aristotle, Plato, Longinus, Kant, Goethe, Hoelderlin, Novalis, F.T.A. Hoffmann, Stifter, Nietzsche, Betti, Heidegger, Freud, Rilke, Bernhard, Bachelard, Blanchot. Discussion in English; texts available in both German and English.

[GERST 617(6170) Literature and Affect]

[GERST 618(6180) "The Science of the Experience of Consciousness": Hegel's Phenomenology of Spirit]

[GERST 623(6230) Aesthetic Tumors: The Fin-de-siècle]

[GERST 624(6240) Seminar in Medieval Literature: Minnesang]
Fall. 4 credits. Prerequisite: GERST 405 or equivalent. A. Groos.
Classical Minnesang, practiced by the aristocracy of the late 12th and early 13th centuries, is transmitted only in manuscripts written a century later. The transition from song to book, and the variability—even incompatibility—of texts poses vexing questions for understanding Middle High German love lyrics. Were they conceived as both songs and poems, performed and/or read in private? Can their performativity be recovered from the texts? Were the songs performed at court as part of feudal self-representation, or are they stagings of subject-formation, even author-formation, vis-à-vis a community? What is the significance of their foregrounding of gender relationships for an emerging secular culture? Readings focus on the major Minnesänger around 1200, Heinrich von Morungen, Reinmar, and Walther von der Vogelweide.

[GERST 625(6250) Culture's Threshold: Speculative Fictions from Rousseau to Freud]

[GERST 626(6250) Nuremberg]

[GERST 627(6270) Baroque]

[GERST 628(6280) Robert Walser: Revolutions in Narrative]

[GERST 629(6290) The Enlightenment]

[GERST 630(6300) Classicism and Idealism]

[GERST 631–632(6310–6320) Academic German I and II]
631, fall; 632, spring; 3 credits each semester. Prerequisites: graduate standing; for GERST 632, GERST 631 or equivalent. Staff.
Intended primarily for beginners with little or no previous German knowledge. Emphasis in 631 on acquiring basic German reading skills. Emphasis in 632 on development of the specialized vocabulary of student's field of study.

[GERST 633(6330) Speaking about Language: Theories from Greek Antiquity to the Present (also COM L 633[6330])]
Spring. 4 credits. W. Kittler.
This course traces a history of language theories from antiquity to the present. It is divided into seven sections: (1) Antiquity and words and things—Plato Kratylos and Aristotle On Interpretation; (2) Middle Ages: the learned language and the vernacular—Dante Alighieri: De vulgari eloquentia; (3) Baroque: universal languages—Descartes, Dalgamo, Wilkins, Wilkins, Lohbri, (4) the 18th century: the origins of language—Rousseau, Herder, Jacob Grimm; (5) the 19th century: the history of language—Boopp and the "Neugrammatiker"; (6) the 20th century: language as space—Saussure, Lakan, Derrida; (7) the 20th century: information theory—Shannon, Chomsky, Mandelbrot. Texts are available in translations (where possible), but reading the originals is strongly encouraged.

[GERST 634(6340) German Romanticism]

[GERST 635 (6350) The Gates to Modernity: From Karlsbad to the 1848 Revolution]
Spring. 4 credits. P. U. Hohendahl.
Anchor course. The seminar will focus on Germany's entry into the modern age—represented by authors such as Heine, Büchner, Feuerbach, and Marx. The course will deal with the cultural, political, and social consequences of the Enlightenment, among them the democratization of literature and culture, the politicization of philosophy, and the emancipation of women and groups (women and working class). The readings will trace the formation of bourgeois culture and its contradictions as they are articulated by the writers of Young Germany, the Left Hegelians, and radical literati of the 1840s.

[GERST 636(6360) Kleist and Kafka: Prose Works]

[GERST 637(6370) 19th-Century Fiction: The Realist Project]

[GERST 640(6400) The Modern German Novel]

[GERST 647(6470) German Literature from 1949 to 1989]

[GERST 650(6500) Culture in the Weimar Period]
Spring. 4 credits. P. Gilgen.
After having been reduced to a minor ideological formation of bourgeois origin, aesthetics has recently made a strong comeback in the field of theory. This course probes the reasons for this historical change. From the arguments of the critics we will derive a catalog of criteria for a viable aesthetics in order to examine how contemporary aesthetic theory relates to cognitive theories, the historicity of art and taste, and the emancipatory potentials of ethics and politics. Readings may include Adorno, Berger, de Bolla. Bourdieu, Noël Carroll, Cavell, Danto, Derrida, Dickie, Eagleton, Goodman, Guillery, Luhmann, Lyotard, de Man, Walter Benn Michaels, Ohmann, Scarry, Shusterman, Barbara Herrnstein Smith, and Williams.

[GERST 652(6520) Culture in Germany 1933–1945]
Fall. 4 credits. Reading knowledge of German necessary. D. Bathrick.
This "anchor course" will examine three contexts for culture in Germany during the Nazi period. First, the officially promoted party literature and mass mediated culture (film, music, architecture, the performing and visual arts) produced within the Third Reich. Second, the various cultures of resistance, "Inner Immigration," or non-compliance as they emerged in the realm of literature and mass culture during the period. Third, the culture of the Jewish community of Germany and Austria during the Nazi period as well as the cultural products of the concentration and death camps.

[GERST 653(6530) Opera]

[GERST 654(6540) Arthurian Romance]
Spring. 4 credits. Prerequisite: permission of instructor. A. Groos.
This course provides an introduction to the comparative study of Arthurian romance. After an introduction to Geoffrey of Monmouth's Historia regum Britanniae, readings explore interpretative issues in a widely disseminated tale (e.g., Erec and Enide), the Grail legend (Christen de Troyes' Perceval and Wolfram von Eschenbach's Parzival), and representatives of the Tristan and Lancelot legends. Discussions include issues such as romance's relationship to other genres (chronicle, epic, saint's life), Bakhtin's theory of pre-novelistic discourse, proliferation, and medieval illustrations of Arthurian material. Sessions may also include prose narratives (the Prose Lancelot, Malory) or the reception of Arthurian material in the 19th century (Wagner). Readings are in English translation; participants are encouraged to read texts.
in the original medieval language where possible.

[GERST 658(6580) Old High German, Old Saxon (also LING 646[6464]) Not offered 2005–2006. W. Harbert.]

GERST 659(6590) Systems Theory and the Function of Art (also ART H 659[6590], COM L 677[6770])

Fall. 4 credits. P. Gilgen.

In addition to providing a general introduction into Niklas Luhmann's systems theory, this course examines the role Luhmann ascribes to art within the social system. Readings include The Art of Society in its entirety; substantial excerpts from Social Systems and Ecological Communication; a number of Luhmann's essays on the problems of aesthetics; important contributors to, and forerunners of, Luhmannian systems theory, such as von Foerster, Bateson, and Spencer Brown; and contributions by Luhmann's detractors and defenders, such as Habermas, Baeccker, Rasch, and Werber.

[GERST 661(6610) After the City: From Metropolis to Electropolis (also ARCH 338[338], ARCH 638[6388]) Not offered 2005–2006. G. Waite.]

GERST 662(6630) Nietzsche and Heidegger (also COM L 663[6630])

Fall. 4 credits. G. Waite.

This seminar provides, primarily, a basic introduction to the thinking of Nietzsche and Heidegger, including the latter's appropriation of the former. We will also be interested in the types of argumentation and styles of writing of both philosophers, in light of the hypothesis that both were working in the long tradition of esoterism, that is, that neither wrote exactly what he thought and that they intended their impact to come beneath the level of conscious apprehension. In addition to their own work, we will consider their influence in works across the “Left-Center-Right” spectrum.

GERST 670(6700) Modern Social Theory II (also GOVT/VISS 670[6705])

Spring. 4 credits. S. Buck-Morss.

For description, see GOVT 670.

[GERST 672(6720) German Opera Topic: Wagner (also MUSIC 674[7422]) Not offered 2005–2006. A. Groos.]

GERST 681(6810) Reproducing Enlightenment: Paradoxes of the Body Politic (also COM L 681[6810])

Spring. 4 credits. D. Reeve.

In a series of readings ranging from La Mettrie's obscure treatise entitled "Man as Plant" through to the paradoxical speech acts of Büchner's tragedy Dantons Tod, we will consider the ways in which Enlightenment figures of totality have been animated by a desire for as well as a fear of reproduction. The seminar will trace the category of "reproduction," understood both in terms of off-print and off-spring, in a cluster of Enlightenment and Romantic texts both philosophical and literary. How and when does the logic of reproduction interrupt the logic of autonomy? Here one might consider the autonomy of the imagination, of the moral subject or of the political will. How do the specters and forces of reproduction relate to the formations of plurality within the citizenry? Here one might consider the voices of Brockden Brown's Wieland, the allegory of Mary Shelley's manufactured man, or the uncontrollable proliferations of Goethe's Elective Affinities. In order to broach our topic we will necessarily be concerned with definitions. How shall we understand "Enlightenment" for our inquiry: as a fixed historical period, a political project, the result of historical process, the telos of "civilization"? Is it "attainable"? In this seminar, we will turn to the literary to read the precepts of reason as they lead a course through aporias of Enlightenment attempts to figure its own persistence. Works by La Mettrie, Lessing, Diderot, Rousseau, Kant, Brockden Brown, Mary Shelley, Kleist, Goethe, Coleridge, Büchner, Marx, Foucault, Adorno/Horkheimer. Readings in French, German, and English. Discussion in English.

GERST 683(6830) From Electric to Electronic Media (also COM L 653[6530], FILM 653[6530])

GERST 684(6840) Radio, Radar, Television (also COM L 683[6830], S&T S 684[6841])

Fall. 4 credits. W. Kittler.

"Whoever controls the electromagnetic spectrum on the battlefield will win the next war."—Admiral Sergio Gorshkov, former Commander-in-Chief, Soviet Navy. "If there is a World War Three, the winner will be on the side that can best control and manage the electromagnetic spectrum."—Admiral Thomas A. Mooer, USN, former chairman, Joint Chiefs of Staff.

This course is part of a series on the media history of the past two centuries. It covers the period from the end of the telegraph to the beginnings of the digital paradigm—roughly from 1899 to 1945. Electromagnetic waves can transmit information but also locate objects in the distance or at night. The real counterparts of wireless telegraphy, radio, radar, sonar and television are the airplane, the tank, and the submarine. From the coupling of these media emerges the battle of the machines. Its gadgets populate our everyday lives. Students study several texts from such fields as radio engineering, the history of warfare, philosophy, and literature. To open up the seminar for students outside of the department, source materials are read in translation (if one exists). Study of the originals is, however, strongly recommended.

GERST 685(6850) Gramsci and Cultural Politics (also COM L 685[6850], GOVT 675[6755])

Spring. 4 credits. G. Waite.

The modern or postmodern, and increasingly global, capitalist system rules by overt violence and coercion in tandem with what Antonio Gramsci (1891–1937) called the "noncoercive coercion" of "cultural hegemony." This seminar has two basic aims: to introduce the basic political, theoretical, historical, and cultural writings of Gramsci (which also requires attention to his main sources, e.g., Croce, Dante, Lenin, Marx, Machiavelli), and then to trace main directions of the Gramscian legacy in philosophy, political theory and practice, and cultural theory and practice (notably filmmaking). This legenda includes the works of Aijaz Ahmad, Louis Althusser, Christine Buci-Glucksmann, Norberto Bobbio, Ernesto Laclau, Chantal Mouffe, and Pier-Paolo Pasolini. The main primary texts are Gramsci's pre-prison Writings, selections from his prison notebooks, and his letters from prison.

GERST 689(6890) The Aesthetic Theory of Adorno (also COM L 689[6890])

GERST 693(6930) "The Sign of History": Kant and Lyotard

GERST 696(6960) Conceptualizing Cultural Contact

GERST 699(6990) German Film Theory (also FILM 699[6990])

GERST 753–754(7530–7540) Tutorial in German Literature Fall and spring. 1–4 credits each semester. Prerequisite: permission of instructor.

Dutch

DUTCH 121–122(1210–1220) Elementary Dutch

121. Fall. 122. Spring. 4 credits each semester. DUTCH 122 provides language qualification. Prerequisite: permission of instructor. M. Briggs.

Intensive practice in listening, speaking, reading, and writing Dutch in meaningful contexts. The course also offers insight into Dutch language, culture, and society.

DUTCH 203(2031) Intermediate Composition and Conversation Fall. 3 credits. Provides language proficiency and satisfies Option I. Prerequisite: qualification in Dutch or permission of instructor. Offered in Dutch. M. Briggs.
Improved control of Dutch grammatical structures and vocabulary through guided conversation, discussions, compositions, readings, and films, drawing on all Dutch-speaking cultures.

[DUTCH 204(2041) Intermediate Composition and Conversation
Not offered 2005-2006. M. Briggs.]

DUTCH 300(3000) Directed Studies
Spring. 1-4 credits, variable. Prerequisite: proficiency in Dutch or permission of instructor. Conducted in Dutch. M. Briggs. Individualized advanced Dutch studies. Provides students with individualized programs which can be anything from advanced mastery in any or all skills to the mastery of Dutch for research, literature, and history in support of all disciplines.

Swedish
SWED 121-122(1210-1220) Elementary Swedish
121, fall, 122, spring. 4 credits each semester. Prerequisite: for SWED 122, SWED 121 or equivalent. Fall, L. Tranck; spring, K. B. von Winelshach. Students develop abilities in listening, speaking, reading, and writing within Sweden's cultural context. Work on the Internet, interactive computer programs, and a virtual textbook are used in these courses.

[SWED 123(1230) Continuing Swedish
Not offered 2005-2006. L. Tranck.]

SWED 203(2031) Intermediate Swedish
Fall. 3 credits. Provides language proficiency and satisfies Option I. Prerequisite: SWED 123 or permission of instructor. L. Tranck. Intermediate to advanced-level instruction using audiovisual material and text to enhance language comprehension.

[SWED 204(2041) Advanced Swedish
Not offered 2005-2006. L. Tranck.]

DUTCH 300(3000) Directed Studies
Fall. 1-4 credits, variable. Prerequisite: permission of instructor. Times TBA with instructor L. Tranck. Taught on a special-credited basis to address particular student needs.

GOVERNMENT
Web site: falcon.arts.cornell.edu/Govt.

“Government” is what Cornell calls a department that elsewhere might be termed political science. The focus of this discipline is power applied to public purposes. Some faculty concentrate on purposes, some on applications. Some engage in the close reading of great texts of political philosophy, while others analyze the behavior of power-wielders and publics in this and other societies. Government is divided into four subfields: U.S. politics, comparative politics (other nations), political theory (philosophy), and international relations (transactions between nations).

The Major
To be admitted to the major, a student must pass two government courses.

To complete the major, a student must:
1. pass two of the introductory government courses (GOVT 111, 131, 161, 181);
2. pass an additional course in one of the remaining subfields (American government, comparative government, political theory, or international relations). This course may be any course offered in the government department, including introductory courses, upper-level courses or seminars but must be a minimum of 3 credits. Students are strongly advised to take at least one course in each of the four subfields;
3. accumulate an additional 28 credits of government course work at the 300 level or above;
4. complete at least one seminar-style course in government that may be applied toward the 28 credits. These courses include those numbered 400XX to which students are admitted by application only, or other 400-level GOVT courses in which no more than 15 students are enrolled.
5. accumulate 11 credits in upper-level courses in related fields (e.g., anthropology, economics, history, science and technology studies, psychology, and sociology). Upper-level courses are usually courses numbered at the 300 level or above (200-level courses are not considered upper-level). Students should consult with their major adviser to choose appropriate courses. All choices of related courses must be approved by the major adviser or the director of undergraduate studies;
6. all courses used to fulfill a government major must be passed with a letter grade.

To summarize, a total of 10 government courses and three additional courses (11 credits) of upper-level related courses are required to complete the major. For more information about the government major, please visit our web site: http://falcon.arts.cornell.edu/Govt.

Cornell in Washington Program
Government majors may apply to the Cornell in Washington program to take courses and undertake a closely supervised externship during a fall or spring semester.

European Studies Concentration
Government majors may elect to group some of their required and optional courses in the area of European studies, drawing from a wide variety of courses in relevant departments. Students are invited to consult Professors P. Katzenstein and S. G. Tarrow for advice on course selection and foreign study programs.

Model European Community Simulation
Undergraduates with an interest in the European Union, public affairs, or debating may participate in an annual European Union simulation held, on an alternating basis, in April at SUNY Brockport or in January in Brussels. The simulation provides an opportunity for participation, representing politicians from the members states, to discuss issues and resolutions of current concern to the European Union.

To prepare for the simulation, a 2-credit course is offered by the Department of Government each year (GOVT 431 or 432). Participation in the simulation is opened only to those who register for this course. Anyone interested in participating or finding out more information should contact the Institute for European Studies at 255-7592.

International Relations Concentration
See the description under "Special Programs and Interdisciplinary Studies."

Honors. Application to the honors program is made in the early spring of the junior year. For more information about the honors program and an application form, please visit falcon.arts.cornell.edu/Govt.

First-Year Writing Seminars. Consult the John S. Knight Institute brochure for times, instructors, and descriptions.

Major Seminars. Fall or spring. 4 credits. These seminars, emphasizing important controversies in the discipline, cap the majors' experience. Thus preference in admission is given to majors over nonmajors and seniors over juniors. Topics and instructors change each semester. To apply, students should pick up an application in 210 White Hall during the pre-enrollment period.

Course Subfields. Courses in the Department of Government are broken down into four subfields: American government, political theory, international relations, and comparative government. To determine in which category (or subfield) the following courses fall, please note the two-letter reference at the end of the descriptions.

The key is as follows: AM = American, PT = political theory, IR = international relations, and CO = comparative.

GOVT 111(1111) Introduction to American Government and Politics (III) (SBA)
Fall and summer. 3 credits. T. Lowi.

Introduction to government through the American experience. Concentrates on analysis of the institutions of government and politics as mechanisms of social control. (AM)

GOVT 121(1213) Introduction to Comparative Government and Politics (III) (SBA)
Spring and summer. 3 credits. K. Roberts.

Provides a survey of the institutions, political processes, and policies of contemporary states. Focuses on the conditions for and workings of democracy. Looking at Western Europe, students analyze institutional variations among liberal democracies, and their political implications. Then they probe the origins of democracy in Western societies and the reasons why communism and other forms of authoritarian rule have prevailed elsewhere. Finally, they explore theimpetus behind and the obstacles to democratization in the Third World and the erstwhile Communist bloc. Throughout this survey, problems of democracy are related to problems of economic development, efficiency, and equality. (CO)
GOVT 161(1615) Introduction to Political Philosophy (III) (HA)
Spring. 3 credits. B. Hendrix.
Survey of the development of Western political theory from Plato to the present. Readings are of the major theorists. Examination of the relevance of their ideas to contemporary politics. (PT)

GOVT 182(1827) WIM Section: Introduction to International Relations (SBA)
Fall and summer. 3 credits. P. Katzenstein.
Introduction to the basic concepts and practice of international politics. (IR)

GOVT 201(2011) Sophomore Seminar: Fatherhood, Marriage, and Family Policy
Fall. 4 credits. M. Katzenstein and E. Wethington.
For description, see GOVT web site. (AM)

GOVT 202(2021) Sophomore Seminar: Honor and Obligation in Conflict (III)
Spring. 4 credits. J. Rabkin.
Explores a key question in political life—why obey the law? Examines the question where answers are most difficult: in the extreme setting of international conflict in war and commerce, where normal policing is not available. Looks at ancient and medieval answers, as portrayed in literature of those eras. Then it highlights changes in successive modern—and now, perhaps, post-modern—efforts to sustain legal restraints beyond the realm of ordinary state controls, as illustrated in formal treaties and accounts of actual conflicts. (AM)

This is a special seminar sponsored by the John S. Knight Institutes Sophomore Seminars Program. Seminars offer discipline-specific study within an interdisciplinary context. While not restricted to sophomores, the seminars aim at initiating students into the disciplines outlook, discourse community, modes of knowledge, and ways of articulating that knowledge. Limited to 15 students. Special emphasis is given to strong thinking and writing and to personalized instruction with top university professors.

GOVT 248(2485) Ethics and International Relations (also PHIL 248)
Spring. 4 credits. R. Miller.
For description, see PHIL 248. (PT)

GOVT 254(2547) Africa During the 20th Century (also HIST 254)
Spring. 4 credits. M. Terretta.
For description, see HIST 254.

GOVT 251(2515) Sophomore Seminar: Feminist Theoretical and State Theory (also FGSS 261)
Spring. 4 credits. A. M. Smith.
Feminist theory presents unique challenges to the student of politics interested in state structures, legal politics, and public policy. While liberal democratic state theory takes for granted the separation between the private and public spheres, feminist theory submits that distinction to a thorough interrogation. Through the feminist theory lens, we can appreciate the way in which public policy not only impacts the domestic household, but actually shapes and defines the family itself through mechanisms such as family law, welfare policy, labor market regulation, and even residential zoning by-laws. Feminists also insist that the "personal" is "political." An individual woman might decide to use contraception or to practice safer sex in a highly intimate context, but feminist theory brings to light the fact that social movements, governmental agencies, and legal doctrine have set the stage for that personal decision. Feminist theory is therefore situated in a privileged position to shed new light on some of the most interesting issues in contemporary politics, such as same-sex marriage, abortion, the HIV and AIDS epidemic, stem cell research, age discrimination in the workplace, and poverty policy. This seminar explores feminist theory's interrogation of state theory. Pays particularly close attention to the feminist theory that explores the intersection between racism and sexism in America today. (PT)

This is a special seminar sponsored by the John S. Knight Institute's Sophomore Seminars Program. Seminars offer discipline-intensive study within an interdisciplinary context. While not restricted to sophomores, the seminars aim at initiating students into the discipline's outlook, discourse community, modes of knowledge, and ways of articulating that knowledge. Limited to 15 students. Special emphasis is given to strong thinking and writing and to personalized instruction with top university professors.

GOVT 274(2747) History of the Modern Middle East in the 19th and 20th Centuries (also HIST 276)
JWST/NE 274(2674) @ (III or IV) (HA)
Spring. 3 credits. M. Campos.
For description, see NES 274. (IR)

GOVT 282(2827) China and the World (also CAPS 282)
Spring. 3 credits. A. Carlson.
Study of the dramatic rise of China through reviewing major developments in contemporary Chinese foreign policy since the establishment of the People's Republic of China (PRC), and concentrating more specifically on major developments in Chinese foreign policy during the 1980s and 1990s. Such a wide-ranging survey of Chinese foreign policy involves not only a consideration of the evolution of China's relations with its major bilateral partners but also an investigation of how China has defined its broader relationship with the international system. In addition, students are asked to consider which causal factors have been of primary importance in motivating Chinese behavior. (IR)

GOVT 293(2935) Inequality, Diversity, and Justice (III or IV) (KCM)
Fall. 4 credits. H. Shue.
Existing nation-states face many challenges that cross their borders, including environmental degradation, transnational terrorism, and global market forces. This course considers the possibility and desirability of a world government. Students evaluate the practical achievability of different world-level political structures, paying particular attention to contemporary theories of international relations, and to related questions of social-scientific evidence. Students also evaluate the ethical status of potential world-level political structures, evaluating the normative value of existing states compared to the likely dangers and benefits of several visions of world government. (IR)

GOVT 301(3011) Public Opinion and American Democracy (III) (HA)
Spring. 4 credits. R. Miller.
Examines public opinion and assess its place in the American political system. Emphasizes both how citizens thinking about politics is shaped, and the role of public opinion in political campaigns, elections and government. Examines research on the current state of public opinion. Also discusses historical developments in opinion and its place in politics, including changes that arose with the
development of polling and with the advent of television and other electronic media. Considers normative questions, including the role opinion should play in American democracy. (AM)

GOVT 302(3021) Social Movements in American Politics (also AM ST 302(3021)) (III) (HA)
Fall. 4 credits. E. Sanders.
Analyzing a variety of movements from the late 19th century to the present, this course seeks answers to the following questions: What social and political conditions gave rise to these movements? What determined success or failure? (and how should those terms be defined)? How do social movements affect political processes and institutions (and vice versa)? What is their legacy in politics and in patterns of social interaction? The major movements analyzed are populism, progressivism, labor; socialism; women's suffrage, the contemporary gender equality movement; protest movements of the 1930s; civil rights; SDS and antiwar movements of the 1960s; environmentalism; the 1980s anti-nuclear (Weapons) movement; gay rights; and the new right. Some theoretical works are used, but most of the theoretical explorations are derived inductively, from studies of actual movements and the difficulties they faced. (AM)

[GOVT 303(3031) Imagining America (also AM ST 326(3031)) (III or IV) (GA)

GOVT 304(3043) Women and Politics (also GOVT 304(3040)) (III) (SBA)
Spring. 4 credits. B. Martin.
Relies on case studies to examine gender and politics from a comparative perspective. Explores how political and economic transformations impact gender norms and family structures, thereby posing new challenges for governments in the ongoing tasks of nation-building and construction of a national identity. Topics include, but are not limited to: (1) changing social constructions of family; (2) families as agents of socialization; (3) gender efforts to control women's reproductive capacities; (4) women's political mobilization; and (5) policy instruments used to reproduce ideal families. (CO, AM)

GOVT 306(3063) Society and Party Politics (also SOC 307)
Spring. 4 credits. S. Van Morgan.
For description, see SOC 307.

GOVT 307(3071) Introduction to Public Policy
Summer. 4 credits. S. Jackson.
Public policy is shaped by many forces. This course will enhance your ability to understand those forces and the policies that they produce. It will provide you with tools for thinking about, assessing, and evaluating those policies. And it will introduce you to the many relevant institutions, interests, and ideologies which operate in the policy arena and the debates about the impact of these forces which engage students of the policy process. In the second, we will consider two different lenses through which we might peer to evaluate policies. In the third, we will discuss the main lines of debate in contemporary American politics concerning four substantive issues: crime and punishment, education, the economy and foreign trade, and foreign policy. The course will meet four days a week for one hour. Based on assigned readings, the class sessions will mix lectures, discussions, group activities, and guest speakers.

[GOVT 308(3081) Science in the American Polity 1800 to 1960 (also S&T 390(3900)) (III) (SBA)

[GOVT 309(3091) Science in the American Polity (also AM ST 398(3911), S&T 391(3911)) (III) (SBA)
For description, see S&T 391.

[GOVT 311(3111) Urban Politics (also AM ST 311(3111)) (III) (SBA)

GOVT 312(3128) America's Changing Faces (also AM ST 301(3121)) (III)
Spring. 4 credits. M. Shefter.
A new generation of leaders has emerged in America's political, economic, educational and cultural institutions. Those leaders employ and explore in their work modern communications technologies such as the Internet. Thereby, they are changing both what is done, and how things are done in the respective life spheres. This course explores the resulting changes in the nature of American life and asks questions about the interactions among the different spheres of life. (AM)

GOVT 313(3131) The Nature, Functions, and Limits of Law (III) (GA)
Spring. 4 credits. Prerequisite: undergraduate standing. R. Filman.
General education course for students at the sophomore and higher levels. Law is presented not as a body of rules but as a set of varied techniques for resolving conflicts and dealing with social problems. The roles of courts, legislatures, and administrative agencies in the legal process is analyzed, considering also the constitutional limits on their power and the practical limits of their effectiveness. Assigned readings consist mainly of judicial and administrative decisions, statutes and rules, and commentaries on the legal process. Students are expected to read assigned materials before each class and to be prepared for participation in class discussion. (AM)

[GOVT 314(3141) Prisons (also AM ST 315(3141)) (III) (SBA)
Fall. 4 credits. M. Katzenstein.
Seminar examining the politics of incarceration. Why is prison construction a growth industry? What is the role of public policy and of the law in this process of prison expansion? How does race and racism in American society figure in this? Are women's prisons designed to respond to the needs of a "generic-male" prisoner or are they organized around women's needs? Are there "spaces" within the prison (educational programs, libraries, chaplain's offices) that alleviate the grim realities of prison life. A section of the course is devoted to reading about and discussing different forms of political activism on behalf of prison reform. Seminar members should plan an occasional extra class time, likely to be on a Wednesday or Thursday evening, to hear guest speakers and see films. (AM)

[GOVT 316(3161) The American Presidency (III) (SBA)

GOVT 317(3171) Campaigns and Elections (III) (SBA)
Fall. 4 credits. M. Mebane.
The role of Congress in the American political system. Topics include political setting within which Congress operates, the structure of Congress, the salient features of the legislative process, and recent congressional behavior in a number of policy areas. (AM)

GOVT 318(3181) U.S. Congress (also AM ST 319(3181)) (III) (SBA)
Fall. 4 credits. M. Mebane.
The role of Congress in the American political system. Topics include political setting within which Congress operates, the structure of Congress, the salient features of the legislative process, and recent congressional behavior in a number of policy areas. (AM)

GOVT 319(3191) Racial and Ethnic Politics (also AM ST 313(3191), LSP 319(3191)) (III) (SBA)
Spring. 4 credits. M. Jones-Correa.
In 1965 the landscape of American politics changed dramatically with the passage of the Voting Rights Act. That same year, Congress passed the Immigration Reform Act, which lifted the huddled masses admitted at the time, arguably had had equally profound effects. This course provides a general survey of minority politics in the United States, focusing on the effects of these two key pieces of legislation. The course highlights the relationships between immigrants and minorities, electoral politics and protest politics, and between cooperation and competition within and among minority groups. The purpose of the course is not only to present the simplest differences in the agendas and strategies adopted by minority groups, but to indicate the interaction between "minority" politics and American politics as a whole. (AM)

GOVT 320(3201) Public Opinion and Public Choice (III) (SBA)
Spring. 4 credits. Prerequisite: GOVT 111 or permission of instructor. W. Mebane.
A fundamental paradox in democracy is that a government that the people control is only rarely a government that does what the people want. This is not to say that government not by the people is better (it is usually worse). This course explores this problem, contrasting the answers given by the concept of public opinion and the formal theory of social choice. The paradox is encountered in several American political institutions, including elections, legislatures, and bureaucracy. (AM)

GOVT 323(3231) The Great Depression (also HIST 322(3230)) (III) (HA)
Spring. 4 credits. J. S. Smith.
For description, see HIST 322. (AM)

GOVT 327(3271) Civil Liberties in the United States (also AM ST 310(3271)) (III) (CM)
A trip to the past and the future that examines the main economic and political transformations in Europe over the course of more than 60 years, theoretical and analytical insights from history, sociology, and political science to describe and interpret the rise and relative decline of Europe as a world actor. In particular, emphasizes the role of state competition and the drive toward capital accumulation, first within Europe and then on a global scale, in providing the impetus for Europe’s political and economic dynamics. During this period, Europe invented and eventually transcribed the nation-state. Simultaneously, its economy moved from agrarian to industrial, and then to postindustrial, from self-sufficiency to integration into global exchange networks encompassing populations, goods, services, and capital. At the formal level, the course combines lectures with multimedia materials.

GOVT 343(3437) The Politics of European Integration (III) (SBA) Spring. 4 credits. H. Zimmermann. Despite recent bad feelings, the countries constituting the European Union (EU) still remain the most important partners for the United States in the world. And despite the rise of China and other Asian countries, the EU, together with the United States, still calls the tune in the international economy. However, even citizens of the European Union generally know very little about how this complex structure works. This course explores the policies and policy-making of the European Union against the backdrop of the postwar history of European integration and the institutional framework of the EU. Also considers the external dimension of the EU and explore current debates about the emerging European polity, in particular the European constitution. Throughout the course students reflect on parallels with the American political system and on the state of current transatlantic relations. (IR)

GOVT 346(3463) Modern Japanese Politics (also ASIAN 346[3346]) @ (III) Spring. 4 credits. R. Weiner. Japanese politics in comparative perspective, with special focus on the “lost decade” years from the early 1990s to the present. Topics include historical foundations; political parties and elections; legislative politics; the bureaucracy; industrial, foreign, immigration/minority, and aging policy; protest movements, and/or others according to student interest. (CO)

GOVT 354(3549) Capitalism, Competition, and Conflict in the Global Economy (III) (SBA) Fall. 4 credits. P. Katzenstein. Unemployed autoworkers in Detroit and the wood stoves in New England signal an important change in America's relation to the world economy. This course characterizes these changes in a number of fields (trade, money, energy, technology), explains them as the result of the political choices of a declining imperial power that differs substantially for the choices of other states (Japan, Germany, Britain, France, the small European states, and Korea), and examines their consequences for America and international politics. (AM, CO, IR)

GOVT 360(3605) Ideology (III) (CA) Spring. 4 credits. D. Rubenstein. Focuses on critical approaches to the study of ideology in order to understand the role of ideology in political development. After an initial presentation of the classical Marxist texts on ideology, examines 20th-century reworkings of hegemony theorist Antonio Gramsci and the critical structuralist approaches of Roland Barthes, Jean Baudrillard and Dick Hebdige. Concentrates on the “lived relation” to ruling ideas in the form of ideologies of everyday life. The second part of the course is devoted to psychoanalytically oriented theories (Freud, Lacan) which address the internalization of belief, both in relation to the intrapsychic and in the interaction between psychic and state apparatuses. Concludes with Louis Althusser’s notion of interpellation, which examines the Marxist, structuralist and psychoanalytic objectives of the course material. The theorists in the second part of the course are contextualized within the experience of the historical trauma of decolonization and French decolonization. Throughout the semester, students reflect on the continued relevance of historic ideologies, centered around notions of class interest, to late 20th-century ideologies' attachments to national, religious, ethnic, technological identity. (PT)

GOVT 362(3625) Modern Political Philosophy (also PHIL 346[3460]) (III or IV) (KCM) Fall. 4 credits. R. Miller. For description, see PHIL 346. (PT)

GOVT 363(3633) Politics and Culture (III) (HA) Spring. 4 credits. M. Berezin. For description, see SOC 248. (CO)

GOVT 365(3655) Politics and Literature (also AM ST 362[3655]) (III) (LA) Fall. 4 credits. J. Frank. What is political authority and how is it constituted? How do we judge and act when torn by conflicting obligations? How do political actors in the present negotiate the legacies of past injustice (e.g., slavery, colonialism, state violence)? To what extent does the past shape and determine our present (our sense of self, our relations with others)? And where might we find the cultural resources for resistance and/or political transformation? These are some of the ethical and political questions pursued in this course through the study of prominent (and diverse) works of literature. This course examines the important contributions of literature to the study of politics, and to the formation of a more thoughtful, critical citizenship. (PT)

GOVT 366(3665) American Political Thought from Madison to Malcolm X (also HIST 316[3160], AM ST 370[3665]) # (III) (HA) Fall. 4 credits. I. Kramnick.
Survey of American political thought from the 18th century to the present. Particular attention is devoted to the persistence of liberal individualism in the American tradition. Politicians, pamphleteers, and poets provide the reading. Insightful historical and social context is offered.

**GOVT 368(3685) Global Justice (also PHIL 347[3470]) (III or IV) (KC)
R. Miller.**

**GOVT 370(3705) Political Theory and Cinema (also GERST/COM L 3300[3300], THETR 330[3300]) (III or IV) (CA)
Spring. 4 credits. G. Waite.**

For description, see GERST 330. (PT)

**GOVT 375(3755) Visual Culture and Social Theory (also COM L 368[3680], VISST 367[3647]) (III or IV) (CA)
Fall. 4 credits. Not offered 2005-2006.
S. Buck-Mors.**

**GOVT 377(3775) Concepts of Race and Racism (III) (CA)
A. M. Smith.**

**GOVT 381(3817) Conflict and Cooperation in Trans-Atlantic Relations (III) (SBA)
H. Zimmermann.**

**GOVT 383(3837) The Cold War (III) (HA)
M. Evangelista.**

**GOVT 384(3847) Contemporary International Conflicts (III) (SBA)
Fall. 4 credits. Not offered 2005-2006.
J. J. Suh.**

**GOVT 385(3857) American Foreign Policy (also CAPS 385[3857]) (III) (SBA)
Spring. 4 credits. J. J. Suh.**

Introduction to several aspects of U.S. foreign policy, emphasizing current concerns and organized in terms of several principal functions and regions of interest to U.S. foreign policy. Examines theories of foreign policy as well as specific historical/contemporary cases. This course has three basic goals: (1) to familiarize students with the importance of theory for describing, understanding, and explaining foreign policy decision making behavior, (2) to sensitize students to the complex constraints under which foreign policy is made, the margins of choice that statesmen have in shaping policy, and the intended and unintended consequences that a chosen policy has on international as well as domestic life; and (3) to help students develop a critical, in-depth understanding of some of the foreign policy issues that face the United States today and to encourage them to think creatively about alternatives. (IR)

**GOVT 386(3867) The Causes of War (III) (SBA)
Fall. 4 credits. C. Way.**

Surveys leading theories of the causes of interstate war—that is, large-scale organized violence between the armed forces of states. Why is war a recurring feature of international politics? Are democracies more peaceful than other types of states, and if so what explains this "democratic peace?" Why do democratic publics seem to reward threats to use force by "rallying around the flag" in support of their governments? Does the inexcusable pattern of the rise and fall of nations lead to cycles of great power wars throughout history? These and other questions are examined in this survey of theories of war at three levels of analysis: the individual and small groups, domestic politics, and the international system. Topics include the historical explanations for war; evaluation of the evidence for the various explanations; the impact of nuclear weapons on international politics; ethics and warfare; the uses and limitations of air power; international terrorism. (IR)

**GOVT 389(3898) International Law (III) (HA)
Fall. 4 credits. Taught in Washington, D.C. Is international law a pious delusion, helpless in the face of real power? Or is public policy becoming so entangled in international standards that international law is now eroding national sovereignty? This course surveys the theoretical foundations and general history of international law since the 17th century to highlight what new is in the doctrines and institutions by which it operates in the contemporary world. The course gives special attention to the relation between international and U.S. law and to the workings of international law in particular fields—including environmental and human rights protection, trade regulation, and control of terrorism. (IR)

**GOVT 391(3917) Chinese Foreign Policy (III)
Spring. 4 credits. A. Carlson.**

Examines the dramatic rise of China through reviewing the main themes and trends in contemporary Chinese foreign policy since the establishment of the People's Republic, and more specifically concentrating on major developments in Chinese foreign policy during the 1980s and 1990s. Such a survey involves not only a consideration of the evolution of China's relations with its major bilateral partners, but also investigates its changing relationship with international institutions and norms. In addition, students are asked to consider the extent to which Chinese foreign policy is simply a reflection of systemic and structural variables such as shifts in the relative balance of power, and what role other factors, such as ideology, culture, leadership psychology, and/or domestic politics, play. In short, the course explores how important "China" is in determining the course of Chinese foreign policy. (IR)

**GOVT 393(3937) Introduction to Peace Studies (III) (SBA)
Fall. 4 credits. Not offered 2005-2006.
M. Evangelista.**

**GOVT 395(3957) New Forces (Actors and Issues) in International Politics (III) (SBA)
Spring. 4 credits. A. Carlson.**

How important are regional groupings, nongovernmental organizations, narco-terrorists, ethnic groups, and transnational environmental issues within international politics? These forces seem to be occupying an increasingly central position in the international arena, yet the factors that have caused their rise, and the degree to which they have transformed the face of international politics, are still poorly understood. This course addresses such issues through exploring how students of international politics have described and explained the emergence of these new forces in the international system during the post-Cold War period. In short, the course focuses on determining the extent to which we are witnessing a transformation of the international political system, and why such a change is (or is not) taking place. (IR)

**GOVT 397(3997) Israeli-Palestinian Conflict (also NES/JWST 397[3697], SOC 397[3970]) @ (III) (HA)
Fall. 4 credits. Not offered 2005-2006.
T. Sorek.**

**GOVT 404(4041) American Political Development in the 20th Century (also AM ST 404[4041], GOVT 612[6121]) (III) (HA)
Fall. 4 credits. Not offered 2005-2006.
E. Sanders.**

**GOVT 405(4051) The Postmodern Presidency: 2004 (also AM ST 430.7[4503]) (III) (CA)
Fall. 4 credits. Not offered 2005-2006.
D. Rubenstein.**

Examines the presidencies of Reagan, G. H. W. Bush, Clinton, and G. W. Bush in relation to what scholars have called "the postmodern presidency." While this term has been used by institutionalist students of the presidency as a periodizing hypothesis, this course emphasizes the work of cultural critics and historians. Addresses the slippage between fact and fiction in cinematic and popular representations of the presidency (biography, novels, television). The construction of gender normativity (especially masculinity) is an attendant subtheme. The postmodern presidency is read as a site of political as well as cultural contestation. The larger question of this approach to the presidency concerns the relationship between everyday life practices and citizenship as well as the role of national fantasy in American political culture today. (AM)

**GOVT 406(4061) Politics of the American Civil War (also AM ST 430.1) # (III) (HA)
R. Bensel.**

**GOVT 410(a4105) Writing America Post 9/11 (also GERST 403[4031]) (III or IV) (CA)
Spring. 4 credits. P. Gilgen.**

For description, see GERST 403. (PT)

**GOVT 413(a4131) Coordination in American Politics (also GOVT 613[6131]) (III) (SBA)
Spring. 4 credits. Prerequisites: for undergraduates, GOVT 111 and one 300-level course in American government, or permission of instructor. W. Mebane.**

Serves as an introduction to the various theories and techniques of strategic decision making, and more specifically to the theory of optimality in dynamic environments. The Seminar examines the idea that American voters act in a strategically coordinated way. Are voters as wary of one another as they are of politicians? Examines how coordination depends on American institutions, especially the separation of powers and the political parties. Looks at how large-scale coordination, which implies collective equilibrium, need not depend on individuals being highly informed and rational. Considers how coordination and strategic voting affect the parties' campaign strategies, and what coordination implies about popular control of the government. (AM)

**GOVT 417(a4171) Science and American Democracy (also SOC 429)
Spring. 4 credits. A. Jewett.**

For description, see S HUM 429.
This course will examine how socioeconomic and political factors related to immigration and racial/ethnic migration impact metropolitan governance in both U.S. central cities and suburban jurisdictions. We will consider some major issues in metropolitan governance through readings on pluralism, political power, regime theory, racial-economic segregation and the incorporation of immigrant and racial/ethnic groups. We will examine how metropolitan governments have traditionally balanced allocative versus distributive concerns of newcomers and existing groups. We will also examine the contemporary prospects for public-private-nonprofit partnerships at the local government level. Students will participate in both theoretical and practical discussions and will be evaluated based on participation, short papers and a research design (final paper) covering a related topical area. (AM)

GOVT 424(4241) Contemporary American Politics (also GOVT 4244241, GOVT 629(6291) (III) (HA)
Fall. 4 credits. M. Shifter.
Seminar analyzing some major changes in U.S. electoral and group politics in recent decades. Topics include: partisan realignment, the new conservatism, racial cleavages, "identity politics," and democratic decline.

GOVT 425(4255) The Totalitarian Order: Vision and Critique (also GERST 424(4240) (III or IV) (CA)
Fall. 4 credits. P. Hohenadl.
For description, see GERST 424. (PT)

GOVT 426(4263) Colonialism and Post-Colonialism (also GOVT 6256253) (III) (HA)

GOVT 428(4281) Government and Public Policy: An Introduction to Analysis and Criticism (also AM ST 428(4281) (III) (SBA)
Fall. 4 credits. T. J. Lowi.
Concentrates on history and criticism of U.S. policies and the political associations with them. Particular attention is given to the origins and character of the regulatory state and the welfare system. (AM)

GOVT 431(4313) Model European Union I

GOVT 432(4323) Model European Union II
Fall. 2 credits. Staff.
For description, see GOVT web site.

GOVT 439(4393) Japanese Politics (also ASIAN 439(4393) (III) (SBA)
Fall. 4 credits. Not offered 2005-2006. R. Weiner.

GOVT 450(4503) Islam and Politics in Southeast Asia (also GOVT 650(6503) (III) (HA)
Spring. 4 credits. Recommended: some background knowledge of the region. L. Ryter.

Recent official concerns about the rise of Islamic militancy in Southeast Asia have tended to be short on context. The relationship between Islam and politics in Southeast Asia has been varied and dynamic. A relatively late arrival to the region but already significant by the dawn of European colonialism, Islam has assumed syncretic forms particular to local conditions. British, Dutch, and Spanish policies toward Islam have resulted in different relations between Islam and the state in Malaysia, Indonesia, and the Philippines. Within each of these countries, Islamic groups have disputed the proper relationship between Islam and nationalism, the nature of power, and much else. Consequently, Islamic groups have formed NGOs, political parties, armed resistance movements, and also military alliances. This seminar adopts a theoretically grounded comparative historical perspective. (CO)

GOVT 451(4510) Socrates (also S HUM 424)
Spring. 4 credits. S. Jedlickiewicz.
For description, see S HUM 424. (PT)

GOVT 452(4520) Theories and Narratives of Decline (also S HUM 420)
Spring. 4 credits. J. Rusten.
For description, see S HUM 420. (PT)

GOVT 453(4535) The Right of Prevention (also S HUM 423)
Spring. 4 credits. P. Bojanic.
For description, see S HUM 423. (PT)

GOVT 458(4585) American Political Thought (also GOVT 658(6585), AM ST 458(4585) (III)
Spring. 4 credits. J. Frank.

GOVT 460(4605) Justice Toward Indigenous Peoples (III) (KCM)
Fall. 4 credits. Not offered 2005-2006. B. Hendrix.

GOVT 462(4625) Sexuality and the Law (also GOVT 762(7625), FOSS 461(4610) (7620)
Spring. 4 credits. A. M. Smith.
Advanced feminist theory/political theory seminar for graduate students and law students. Deals first with theoretical approaches to sexuality that build on and interrogate the post-structuralist approach that defines sexuality as a social construction, rather than an expression of a-historical instincts. Explores a series of major legal and political issues: the right to privacy with respect to contraception and abortion; the restriction of abortion rights; the exclusion of homosexuals from the practices protected by the right to privacy; the racial regulation of marriage; same-sex marriage; Fireman's "sexual family" critique of family law; the moral regulation of poor women in early welfare law; the sexual regulation of poor single mothers in contemporary welfare law; the question of suspect class status for lesbians and gay men; and homosexuality and military service. Throughout the course, students examine the extent to which sexuality is constructed in articulation with gender, class and race differences. The reading list includes theoretical works (Foucault, Butler, Cohen and Martin), Supreme Court decisions; and critical commentaries by feminist legal theorists. (PT)

GOVT 465(4655) Contemporary Political Philosophy (also PHIL 447(4470))
Spring. 4 credits. R. Miller.
For description, see PHIL 447.

GOVT 466(4665) Topics Pol Phil: Islamism (also GERST 466466) (III)
Spring. 4 credits. Prerequisite: graduate students or juniors and seniors who have taken GOVT 161 or 300-level course in political theory. S. Buck-Moss.
Topics vary by year and may be written by non-European and non-U.S. theorists who have inspired modern political and social movements. Attention is given to the political and theoretical presuppositions embedded in the very conception of "the West," the hegemony of its political discourses, and how these figure into the meanings of "modernity," "progress," "universal rights," and "liberation." In fall 2002 the topic was Islamism. Philosophical texts include those by Ayatollah Ruhollah Khomeini, Hassan al-Banna, Muhammad Iqbal, Ustadh Mahmood, Sayyid Qutb, and Ali Shariati. Commentaries include those by academic scholars: Mohammed Arkoun, Talal Asad, Saba Mahmood, Bobby Sayyid, Azzam Tamimi, Basam Tibi, as well as historical and social-scientific analyses of political events influenced by Islamism. (In alternate years, Latin American and Caribbean writers and social movements are the focus.) (PT)

GOVT 470(4705) Contemporary Reading of the Ancients (also FRLIT 470(4700), COM L 475(4750)) (III) (CA)
Fall. 4 credits. Graduate students welcome to enroll. D. Rubenstein.
Focuses on Derrida's reading of Plato and St. Augustine. Begins with Derrida's close reading of Plato's Phaedrus and traces his conceptual adumbration of the phaneronomy to other critical and philosophical scenes: addiction and terrorism. The next major encounter is between St. Augustine's Confessions and Derrida's Giocostruzione. Considers the questions of national and religious identity in relation to other Derridean texts such as Monolingualism of the Other. Returns to conclude with Plato's Apology, Crito and Phaedo, read in tension with Derrida's last extended interview, his writings on death and the death penalty. Throughout the seminar students explore the conceptual interrogation of globalization, citizenship, hospitality, friendship, pedagogy, eros and death. (PT)

GOVT 472(4725) Republicanism and Liberalism (also GOVT 673(6735)) (III) (HA)
Fall. 4 credits. I. Kramnick.
Seminar examining the intellectual roots of what is today, at least in Anglo-American political thought, a central debate between community-oriented visions of the ideal polity and individual-centered ideals. Authors read include Aristotle, Cicero, Machiavelli, Hobbes, Locke, Mill, Rousseau, Paine, Smith, and the Federalist Papers. (PT)
GOVT 499 (4999) Undergraduate Independent Study
Fall or spring. 1-4 credits. One-on-one tutorial arranged by the student with a faculty member of his or her choosing. Open to government majors doing superior work, and it is the responsibility of the student to establish the research proposal and to find a faculty sponsor. Applicants for independent study must present a well-defined program of study that cannot be satisfied by pursuing courses in the regularly scheduled curriculum. No more than four credits of independent study may count toward fulfillment of the major. Students who elect to continue taking this course for more than one semester must select a new theme or subject each semester. Credit can be given only for work that results in a satisfactory amount of writing. Emphasis is on the capacity to subject a body of related readings to analysis and criticism. Keep in mind that independent study cannot be used to fulfill the seminar requirement. The application form for independent study is available in 210 White Hall and must be completed at the beginning of the semester in which the course is being taken.

GOVT 500 (4998) Politics and Policy: Theory, Research, and Practice (also AM ST 501 [4998], PAM 406 [4060])
Fall, spring. Offered in Cornell in Washington Program. An intensive research and writing experience using the extensive resources of Washington, D.C. (AM)

GOVT 601 (6019) Methods of Political Analysis I
Fall. 4 credits. W. Mebane. The first half of this course examines how to frame, evaluate, and compare empirical explanations in political science. Introduces several theoretical approaches that have been widely applied in political science research, including rational choice, social mechanisms, and functionalism. Students discuss the differences between explanation and description, emphasizing the idea of experimental manipulation. Building on this general discussion, the second half explores the distinctive methodological issues involved in comparing macro-social units and surveys a range of different approaches to comparative analysis.

GOVT 602 (6029) Methods of Political Analysis II
Spring. 4 credits. N. Winter. Introduction to some of the quantitative methods used in political science. The central theme of the course consists in applying quantitative methods to explore and evaluate political science theories. Specific topics include probability theory; concepts of inference, including point estimation, confidence intervals, and hypothesis testing; strategies of data analysis and presentation; and regression. The goal is to provide students with basic familiarity with statistics and econometrics for studying politics, and to lay a solid foundation for further course work for those who choose to pursue quantitative analysis in more depth.

GOVT 603 (6031) Field Seminar in American Politics
Spring. 4 credits. R. Bensel. Introduces the major issues, approaches, and institutions of American government and the various subfields of American politics.

Focuses on both substantive information and theoretical analysis. (AM)

GOVT 606 (6067) Field Seminar in International Relations
Fall. 4 credits. A. Carlson. General survey of the literature and propositions of the international relations field. Criteria are developed for judging theoretical propositions and are applied to the major findings. Participants are expected to do extensive reading in the literature as well as research. (IR)

GOVT 607 (6075) The Western Political Tradition: A Survey
Fall. 4 credits. Not offered 2005-2006. R. Hendrix.

GOVT 610 (6101) Political Identity: Race, Ethnicity, and Nationalism (also LSP 610 [6101])
Fall. 4 credits. M. Jones-Corea. The social sciences generally treat ethnicity, nationalism, and race as descriptive categories or variables, while avoiding any definition of these categories or thinking about how they should be used. How should we go about describing ethnicity, nationalism, and race? Should we treat them as primordial or as social constructions? This seminar explores the distinction between the two and the consequences for constructing a political identity. Students will explore how political identity is constructed and deconstructed.
GOVT 620(6201) The United States Congress
Fall. 4 credits. Not offered 2005–2006. R. Bensel.]

GOVT 621(6213) Democratic Institutions
Fall. 4 credits. R. Weiner.
Institutions and constitutions establish the "rules of the game" of democracies. This seminar examines how they emerge and evolve, and how—or whether—they shape democratic stability, policy profiles, party systems, political participation, and quality of governance, among other phenomena. Examines both established and new democracies (with the United States among its major cases). (CC)

GOVT 625(6253) Colonialism and Post-Colonialism [also GOVT 428(4281)]

GOVT 626(6263) Comparative Political Economy

GOVT 629(6291) Contemporary American Politics [also GOVT 424(4241)]
Fall. 4 credits. M. Shefter.
For description, see GOVT 424. (AM)

GOVT 639(6393) Comparative Political Participation

GOVT 641(6413) Revitalizing Labor: A Comparative Perspective [also ILRIC 632(6320)]
Spring. 4 credits. L. Turner.
For description, see ILRIC 632.

GOVT 646(6461) Public Opinion
Fall. 4 credits. N. Winter.
Introduction to the vast literature devoted to public opinion. Surveys the major theoretical approaches and empirical research in the field of political behavior, although it touches on participation and voting only in passing. The primary focus is on American public opinion, although some attention is paid to comparative work. In addition to empirical research on the antecedents of opinion and its role in the larger political system, the course also considers normative work on the meaning and measurement of opinion and on its role in democratic politics. (AM)

GOVT 647(6473) Criminality and the State

GOVT 650(6503) Islam and Politics in Southeast Asia [also GOVT 450(4503)]
Spring. 4 credits. L. Ryter.
For description, see GOVT 450. (CC)

GOVT 651(6511) Natural Law and the Law of Nations
Spring. 4 credits. J. Rubkin.
Governments have assumed the existence of international law—or the law of nations—for centuries. Before today's network of multilateral treaties and international organizations, thinking about the law of nations was guided by notions about the most fundamental obligations in the law of nature. The same law of nature was thought to provide the moral foundations of domestic law. In today's world, when such categories as "domestic" seem questionable, there is renewed interest in philosophic foundations for international law, from late medieval times to the 20th century, with particular emphasis on doctrines and assumptions invoked by American statesmen. (AM)

GOVT 657(6573) Comparative Democratization

GOVT 658(6585) American Political Thought [also GOVT/AM ST 458(4585)]
Spring. 4 credits. J. Frank.
For description, see GOVT 458.

GOVT 659(6595) Ethics and Cultural Difference
Spring. 4 credits. B. Hendrix.
One of the persistent questions in moral thinking is its appropriate degree of generality. Can we make moral claims that have universal applicability? What would it mean for such claims to be valid? If there are some universal moral principles, which ones might they be? These abstract theoretical concerns are tied to obvious political worries: Are claims about universal moral principles often colonialist justifications for oppression? Do theoretical arguments about moral universals have meaning for real people entrenched in actual political structures? What is the role of political theorists themselves in arguments about culture and morality? Authors to be read include Michele Moody-Adams, Michael Walzer, James Tully, Iris Young, Will Kymlicka, and others. (PT)

GOVT 660(6600) States and Social Movements [also SOC 660(6600)]
Spring. 4 credits. S. Tarrow.
Two traditions run parallel in political sociology and comparative politics: the study of statebuilding and state transformation and the study of social movements and contentious politics. In the 1960s and 1970s, they converged in the work of scholars like Charles Tilly, who advanced both fields of study, which then ran along parallel but largely independent tracks. This course seeks to synthesize the two traditions, drawing on both historical and contemporary materials from Europe and the Third World, and searching for the key mechanisms and processes that link forms of contention to processes of statebuilding and state transformation. (CO)

GOVT 661(6615) Secession, Intervention, and Just-War Theory

GOVT 662(6625) Field Seminar in Political Theory
Fall. 4 credits. J. Frank.
Introduces students to several contemporary approaches to political theorizing, with an emphasis placed on different modes of interpretation. Authors read may include: Althusser, Arendt, Butler, Foucault, Habermas, Kristeva, Maclntyre, Skinner, Strauss, Taylor, Wolin, and Zizek. (PT)

GOVT 664(6645) Democratic Theory

GOVT 666(6665) Media Theory: Film and Photograph [also VISST 666(6664), FRLLT 676(6760)]
Fall. 4 credits. D. Rubenstein.
Seminar addressing two concerns: the specifically French contribution to visual theory in relation to the media of television, film, and photography, and the political stakes of that theory in relation to larger issues of globalization, in which both image and event are subjected to eve-increasing pressures. To what extent is French media theory a response to tele-technological imperatives? Begins with a consideration of television and the televisual, framed by Jacques Lacan's radio address, "Television," and Pierre Bourdieu's "On Television." Questions of hegemony, institution, and audience induce further interrogation of the status of the virtual and the "operational fetishism" of television in Baudrillard, Derrida, and Virilio. Next the course considers differences between the televisual and cinematic image in relation to three canonical texts: Deleuze's Cinema (1 & II), Michel Chion's The Voice in Cinema, and Christian Metz's Imaginary Signifier (as well as selections by Debord). Concludes with an examination of canonical writing on photography (Barrthes, Bourdieu) and recent writings of Baudrillard that returns to the question of the digital and numeric's "murder" of the image as well as its political consequences post 9/11. (PT)

GOVT 667(6675) Graduate Seminar: European Cultural and Intellectual History

GOVT 670(6705) Modern Social Theory II [also GERST 670(6700), VISST 670]
Spring. 4 credits. S. Buck-Mors.
Topics vary. (PT)

GOVT 672(6725) Postcolonial Political Thought

GOVT 673(6735) Republicanism and Liberalism
Fall. 4 credits. I. Kramnick.
For description, see GOVT 472.

GOVT 675(6755) Gramsci and Cultural Politics [also COM L 685(6850), GERST 685(6860)]
Spring. 4 credits. G. Waite.
For description, see GERST 685. (PT)

GOVT 677(6775) Language and Politics

GOVT 679(6795) Althusser and Lacan
GOVT 681(6817) Politics of Transnationalism (also SOC 680)
Spring. 4 credits. S. Tarrow.
Globalization and internationalization are giving rise to a new area of international studies that examines the interactions of civil society actors with one another, with states, and with international institutions. This course traces the development of this area of research from its origins in the "old" international relations. It examines the contributions of constructivist, liberal internationalism, and state-centered realism, and focuses on four areas of transnational politics: norm formation, the construction of transnational coalitions, the effects of transnational advocacy networks, and whether there is a growing fusion between international and domestic contention. (IR)

GOVT 682(6827) Unifying While Integrating: China and the World
Spring. 4 credits. A. Carlson.
For description, see GOVT 482.

[GOVT 685(6857) International Political Economy
Spring. 4 credits. P. Katzenstein.
Exploration into a range of contemporary theories and research topics in the field of international political economy. The seminar covers different theoretical perspectives and a number of substantive problems. (IR)]

GOVT 687(6877) Asian Security (also GOVT 487[4877])
A. Carlson.

GOVT 689(6897) International Security Politics
Spring. 4 credits. C. Way.
Examines a variety of international relations theories in studying a broad range of security issues, including the causes of war, alliance formation, balance-of-power politics, security regimes, nuclear and conventional deterrence, the democratic peace, military strategy, international terrorism, and domestic constraints on the use of force. Using a variety of theoretical perspectives, the students will investigate these and other issues, paying particular attention to evaluating the theoretical arguments with both historical and systematic evidence. (IR)

GOVT 691(6917) Normative Issues in IR
Fall. 4 credits. M. Smith.
Investigation of what is casually referred to as the "politics of meaning" is of course central to political theory and political science as a whole. However, profound controversies revolve around the definition of "ideology," its relationship to the interests of dominant groups, the means by which it is circulated throughout diverse social spaces, the ability of political agents to interrupt institutionalized ideologies, and the processes by which ideology penetrates and reconstructs the worldviews of the dominated. The groundwork for the seminar is laid by examining key texts on ideology by Marx. Students trace the multiple meanings of the term in his work and their various implications. Next they explore the ways in which the study of gendered and racial discourse has transformed our understanding of ideology. Students address the Freudian and Lacanian interventions in ideology studies with respect to the concepts of the unconscious and misidentification. They discuss the ways in which Adorno, Horkheimer, and Habermas have re-articulated Marx's formulations. The structuralist and post-structuralist schools are studied with reference to Saussure, Levi-Strauss, Barthes, and Althusser. Finally, students explore the problem of institutional analysis with reference to texts from the science and technology studies and state theory traditions. (PT)

[GOVT 700(7007) Labor in Global Cities (also ILRCB 700[7006])
Fall. 4 credits. L. Turner.
For description, see ILRCB 706. (CO)]

GOVT 707(7073) Game Theory for Political Science
Fall. 4 credits. Requires no prior training in game theory or formal methods. R. Weiner.
Game theory is a tool for studying strategic interaction. This course offers a critical introduction, with applications to comparative politics, American politics, and international relations. Studies the core concepts of game theory, how to formulate, solve, and empirically test games in ways that help advance research; and how to assess game-theoretic arguments in the political science literature.

GOVT 728(7281) Government and Public Policy
Fall. 4 credits. T. J. Law.
For description, see GOVT 428. (AM)

[GOVT 735(7353) Politics of South Asia
R. Herrnoll]

GOVT 760(7605) Theoretical Approaches to Ideology
Fall. 4 credits. A. M. Smith.
Investigation of what is casually referred to as the "politics of meaning" is of course central to political theory and political science as a whole. However, profound controversies revolve around the definition of "ideology," its relationship to the interests of dominant groups, the means by which it is circulated throughout diverse social spaces, the ability of political agents to interrupt institutionalized ideologies, and the processes by which ideology penetrates and reconstructs the worldviews of the dominated. The groundwork for the seminar is laid by examining key texts on ideology by Marx. Students trace the multiple meanings of the term in his work and their various implications. Next they explore the ways in which the study of gendered and racial discourse has transformed our understanding of ideology. Students address the Freudian and Lacanian interventions in ideology studies with respect to the concepts of the unconscious and misidentification. They discuss the ways in which Adorno, Horkheimer, and Habermas have re-articulated Marx's formulations. The structuralist and post-structuralist schools are studied with reference to Saussure, Levi-Strauss, Barthes, and Althusser. Finally, students explore the problem of institutional analysis with reference to texts from the science and technology studies and state theory traditions. (PT)

GOVT 762(7625) Sexuality and the Law (also GOVT 462[4625], FGSS 461/762[4610/7620])
Spring. 4 credits. A. M. Smith.
For description, see GOVT 462. (PT)

GOVT 799(7999) Independent Study
Fall or spring. 4 credits. Not open to undergraduates. Undergraduates wishing to conduct supervised study should register for GOVT 499.

Individualized readings and research for graduate students. Topics, readings, and writing requirements are designed through consultation between the student and the instructor. Graduate students in government who are looking to use this as an option to fulfill their course requirements should check with their chairs to be certain that the program of study is acceptable for this purpose. Applications must be completed and signed by the instructor and by the chairs of their special committees. They are available from, and must be returned to, the graduate assistant in 212 White Hall.

GREEK
See "Department of Classics."

HEBREW
See "Department of Near Eastern Studies."

HINDI-URDU
See "Department of Asian Studies."

HISTORY

The popularity of history among Cornell students is due to its usefulness as preparation for graduate, professional, or law school and for any career that requires critical thinking and good writing; the reputation of the faculty for scholarship, teaching, and advising; and most of all, the intrinsic interest of the discipline. A wide variety of introductory and advanced courses is offered. The department is particularly strong in ancient, medieval, and modern European history; in American, Latin American, and Asian history; and in the history of science.

Advanced Placement
Students who pass the AP American and/or European History exam with a score of 4 or 5 have two options: (1) use the AP credits to fulfill the Arts and Sciences course credit requirements for graduation; or (2) take introductory American and/or European history courses.

The Major
To complete the history major, a student must fulfill the requirements listed below:
Entry requirement: completion of any two history courses excluding first-year writing seminars.
The history department offers an honors program for students who wish to research and write a thesis during their senior year. To qualify for honors, a student must (1) sustain at least a 3.5 cumulative average in all history courses and (2) earn at least a cum laude grade on the honors essay and on the oral exam.

Cornell in Washington Program

History majors may apply to the Cornell in Washington program to take courses and undertake a closely supervised externship during a fall or spring semester.

Course Offerings

African History
American History
Asian History
Comparative History
European History—Ancient European History
European History—Medieval, Renaissance, and Early Modern European History
European History—Modern European History
History of Science
Latin American History
Near Eastern History
Honors, Reading, and Research

Course Numbering System

100-level courses are very general introductory courses (151-152, 190-191) and first-year writing seminars.

200-level courses are seminars or lecture courses. Neither has prerequisites and both admit freshmen.

200-299-level courses (which are identified by the name "seminar" in the title) are similar to courses numbered 300-899. Some have prerequisites that vary by instructor. Both admit sophomores and above.

300-399-level courses are upper-level courses. They are designed to provide students with an introduction to the major fields and subfields of historical study and to prepare them for independent research and writing.

400-499-level courses are upper-level courses. They are designed to provide students with an introduction to the major fields and subfields of historical study and to prepare them for independent research and writing.

500-599-level courses are upper-level courses. They are designed to provide students with an introduction to the major fields and subfields of historical study and to prepare them for independent research and writing.

600-699-level courses are graduate-level courses.

African History

[HIST 254(2540) Africa During the 20th Century (also GOVT 254(2540)) © (III) (HA) Spring. 4 credits. M. Terretta. 1870 marks the beginnings of the West's political and economic dominance of Sub-Saharan Africa through colonization. Africans did not passively accept Western dominance. The colonial encounter transformed both Africa and the West, as Africans struggled to live under a foreign administration, and Europeans struggled to uphold their hegemony and explain Africa to metropolitan audiences. Westerners misinterpreted most of Africa and continue to do so to this day. As we familiarize ourselves with portions of Africa's history of late 19th century to the present, we will remain conscious of the ways in which Africa has historically been portrayed in the West. We will also seek out the ways in which Africans and people of African descent portrayed themselves. In so doing, we will pay particular attention to the post–World War II ideologies that surfaced throughout Africa and the political, cultural, and philosophical writings that emerged in conjunction with nationalist movements.

[HIST 255(2550) The Past and Present of Precolonial Africa @ (III) (HA) Spring. 4 credits. Not offered 2005-2006. S. Greene.]

[HIST 407(4070) A History of African Nationalism, 1945 to 1994 © (III) (HA) Spring. 4 credits. M. Terretta. Through primary sources written by African nationalists, intellectuals, political activists, and thinkers, students will study various anti-colonial nationalist movements in Africa, exploring their intellectual, political, and philosophical roots. For example, was anti-colonial/nationalist ideology informed by intellectual traditions that existed in Africa prior to European occupation? Did it draw on writings of revolutionary thinkers in the African Diaspora? Did African intellectuals emphasize the international ideological trends of the period such as Communism, Pan-Africanism, the United Nations’ Human Rights?]

American History

[HIST 101(1101) First-Year Writing Seminar: The Blues and American Culture Fall. 3 credits. Students should register through First-Year Writing Seminar Program. R. Polenberg. Bessie Smith, Gertrude "Ma" Rainey, Billie Holiday, "Blind Lemon" Jefferson, Robert]
HIST 103[1103] First-Year Writing Seminar: Immigrant Experiences (also AAS 103[1103])
Spring. 3 credits. Students should register through First-Year Writing Seminar Program. Not offered 2005-2006.
D. Chang.]
HIST 124[1240] Democracy and Its Discontents: Political Traditions in the United States (also AM ST 124[1240])
Summer 2005. 3 credits. N. Salvatore. For description, see AM ST 124.
HIST 126[1260] First-Year Writing Seminar: Local History: Cornell University
Fall. 3 credits. Students should register through First-Year Writing Seminar Program. C. Kammel. Explores the history of Cornell University in the context of American educational tradition. Students consider the founders and the university's initial phase as a radical institution. How Cornell grew and changed—and how the university mirrored society—is explored. Readings are drawn from discussions of the university by Carl Becker, Morris Bishop, E. B. White, and others. Students also read commentaries by former students drawn from their letters, memoirs, and diaries. Papers focus on Cornell's past and on Cornell today. Students conduct research in the university archives, in print materials, and among current Cornell students.

HIST 130[1300] First-Year Writing Seminar: History of the Writing of History
Fall. 3 credits. Limited to 17 students. Not offered 2005-2006. A. Sachs.

HIST 131[1310] First-Year Writing Seminar: Great Depression: A Global Crisis (also GOVT 131[1310])
Fall. 3 credits. Limited to 17 students. J. Smith. How do nations and their citizens respond to the "creative destruction" that characterizes capitalism? This seminar investigates this question by focusing on the Great Depression of the 1930s, exploring how this global crisis in capitalism helped provoke different kinds of political responses, from Roosevelt's New Deal in the United States to the rise of Hitler's Nazi regime in Germany. Readings are short and concentrate on primary historical documents, as well as some theoretical readings. Students spend most of their time improving writing, from formulating an effective argument and evaluating its supporting evidence to producing a polished final draft. A series of related writing exercises, leading to six papers, is required.

HIST 153[1530] Introduction to American History (also AM ST 103[1530]) # (III) (HA)
Summer and fall. 4 credits. 153 is not a prerequisite for 154. J. Parrent. Survey of American history from the beginnings through the Civil War. Topics include cultural encounters in the age of Columbus, European colonization, the American Revolution, the early republic, antebellum reform movements, and the coming of the Civil War.

HIST 154[1531] Introduction to American History (also AM ST 104[1531]) (III) (HA)
Summer and spring. 4 credits. 153 is not a prerequisite for 154. D. Chang. An introductory survey of the development of the United States since the Civil War.

HIST 161[1610] American Diversity: The 20th Century (also AM ST 110[1110], LSP/AAS 111[1110]) (III or IV) (HA)
Fall. 4 credits. Not offered 2005-2006.
M. C. Garcia and D. Chang.

Spring. 4 credits. Limited to 15 students. Designed for sophomores but open to others as space permits. Prerequisite: permission of instructor. R. Polenberg. Seminar examining 20th-century Supreme Court decisions on such issues as the "third degree," illegal search-and-seizure, the exclusionary rule, and the right against self-incrimination. Special attention is given to events leading up to Miranda v. Arizona in 1966, and to how and why the Court has modified that holding.

HIST 203[2030] Wilderness in North American History and Culture (also AM ST 203[2033]) # (III or IV) (HA)
Fall. 4 credits. Limited to 15 students; priority given to sophomores. Students must commit to weekend-long field trip in Sept. A. Sachs. Interdisciplinary sophomore seminar examining wilderness as a concept that has often been at the center of American (and Canadian) culture. Takes a slice of HIST 315 Environmental History and explores it in great depth, asking how wilderness has been imagined, described, discussed, explored, penetrated, shunned, embraced, preserved, and despotted in the North America, from the colonial period to the present. Authors include Mary Rowlandson, Emerson, Thoreau, Frederick Douglass, John Muir, Jack London, Faulkner, Margaret Atwood, and Jon Krakauer. A class field trip requires a full weekend in September.

HIST 208[2080] Seminar: The Era of Franklin D. Roosevelt (also AM ST 208[2080]) (III) (HA)
Fall. 4 credits. Limited to 15 students. Designed for undergraduates but open to all students. Prerequisite: permission of instructor. Not offered 2005-2006.
R. Polenberg.

HIST 209[2090] Seminar in Early American History (also AM ST/GFSS 209[2090]) (III) (HA)

HIST 211[2110] Sophomore Seminar: Black Religious Traditions: Sacred and Secular (also AM ST 251[2110], RELST 211[2110]) (III) (HA)
Fall. 4 credits. Limited to 15 students. Letter grades only.
M. Washington. Survey of black religious and spiritual traditions during bondage and the early years of freedom. Examines slave religion, the rise of black churches in the North, the formation of black churches after the Civil War, the independent church movement, and the churches' role in social protest.

This is a special seminar sponsored by the John S. Knight Institutes Sophomore Seminars Program. Seminars offer discipline-specific study within an interdisciplinary context. While not required to sophomores, the seminars aim at initiating students into the disciplines of English, journalism, and history. Special emphasis is given to strong thinking and writing and to personalized instruction with top university professors.

HIST 214[2140] Seminar on American Foreign Policy (also AM ST 214[2140]) (III) (HA)
Fall. 4 credits. Prerequisite: permission of instructor. L. Feeney.
The course will study the evolution of the presidency and US foreign policy in the post-1890s era, with special emphasis on the post-1940 years. A minimum of four papers, including a long research paper, will be required.

HIST 225[2250] The U.S.-Mexico Border: History, Culture, Representation (also LSP 225[2250]) (III)

HIST 229[2290] Jefferson and Lincoln: American Ideas about Freedom (also AM ST 229[2290]) (III) (HA)

HIST 232[2320] Native Peoples of the Northeast (also AM ST 232[2360]) # (III) (HA)

HIST 239[2390] Seminar in Iroquois History (also AM ST 239[2390], AIS 239[2390]) # (III) (HA)
Fall. 4 credits. Limited to 15 students. J. Parmenter. Explores the history and culture of Iroquois people from ancient times, through their initial contacts with European settlers, to their present-day struggles and achievements under colonial circumstances in North America. Adopting an interdisciplinary perspective, students are exposed to a
A variety of methodologies and approaches to reconstructing the Iroquois past. Readings and discussions are drawn from a range of sources, with special emphasis on historical documents. In addition to these texts, students read traditional narratives, contemporary Iroquois literature, material from the Internet, and museum exhibits of material culture.

[HIST 240(2400) Seminar: Immigration and Ethnicity in 20th-Century United States (also AM ST/LSP 239[2400]) (III) (HA)]
Fall. 4 credits. Limited to 15 students. Prerequisite: permission of instructor. Not offered 2005–2006. M. C. Garcia.

[HIST 242(2420) Religion and Politics in American History: From J. Winthrop to R. Reed (also AM ST/RELST 242[2420]) (III) (HA)]

[HIST 272(2720) The Atlantic World from Conquest to Revolution @ (III) (HA)]

[HIST 273(2730) Women in American Society, Past and Present (also FGSS 273[2730]) # (III) (HA)]

[HIST 303(3030) African-American Women in Slavery and Freedom (also FGSS 303[3030], AM ST 303[3030]) # (III) (HA)]
Fall. 4 credits. Letter grades only. M. Washington.

[HIST 304(3040) American Culture in Historical Perspective, 1880 to 1980 (also AM ST 304[3040]) (III) (CA)]

[HIST 313(3130) U.S. Foreign Relations, 1750 to 1912 # (III) (HA)]

[HIST 314(3140) History of American Foreign Policy, 1912 to the Present (also AM ST 314[3140]) (III) (HA)]
Spring. 4 credits. F. Logevall.

[HIST 321(3210) Colonial North America to 1763 # (III) (HA)]

[HIST 324(3240) Varieties of American DisSent, 1880 to 1900 (also AM ST 324[3240]) (III) (HA)]
Fall. 4 credits. N. Salvatore.

[HIST 325(3250) Age of the American Revolution, 1754 to 1815 (also AM ST 325[3250]) # (III) (HA)]

[HIST 327(3270) The Old South # (III) (HA)]

[HIST 331(3310) Causes of the American Civil War, 1815 to 1860 (also AM ST 331[3310]) # (III) (HA)]

[HIST 335(3350) African-American History from Slavery to Freedom # (III) (HA)]

[HIST 340(3400) Recent American History, 1925 to 1965 (also AM ST 340[3400]) (III) (HA)]

[HIST 341(3410) Recent American History, 1965 to the Present (also AM ST 341[3410]) (III) (HA)]
Summer and fall. 4 credits. Not open to freshmen. R. Polenberg.

[HIST 343(3430) American Civil War and Reconstruction, 1860 to 1877 (also AM ST 343[3430]) # (III) (HA)]
Spring. 4 credits. E. Baptist.

A survey of the turning point of U.S. history: The Civil War (1861–1865) and its aftermath, Reconstruction (1865–1877). We will look at the causes, the coming, and the conduct, of the war, and the way in which it became a war for freedom. We will then follow the cause of freedom through the greatest slave rebellion in American history, and the attempts by formerly enslaved people to make freedom real in Reconstruction. And we will see how Reconstruction's tragic ending left questions open that are still not answered in U.S. society and politics.
HIST 345(3450) 19th-Century Cultural History (also AM ST 345[3450] # (III) (HA)
Fall. 4 credits. A. Sachs.
An examination of the development of cultural and intellectual diversity in the United States. Topics covered include: slavery and abolition; landscape and environment; religion; Darwinism; professionalization; literature; and the women's movement.

HIST 346(3460) The Modernization of the American Mind (also AM ST 346[3460]) # (III) (HA)

HIST 375(3750) The African American Workers, 1865 to 1910: The Rural and Urban Experience (also ILRCB 385[3850]) # (III)
Fall. 3 credits. Prerequisite: junior or senior standing or permission of instructor. Not offered 2005-2006. N. Salvatore.

HIST 376(3760) The African American Social History, 1910 to the Present: Race, Work, and the City (III)

HIST 378(3780) Topics in U.S. Women's History (also AM ST/FGSS 378[3780]) (III)
Fall. 4 credits. Prerequisite: HIST/FGSS 273, 303, or 236 or permission of instructor. Not offered 2005-2006. M. B. Norton.

HIST 411(4110) Undergraduate Seminar in the History of the American South: Race and Sex, Men and Women: Gender in the Old South (III) (HA)

HIST 414(4140) Motivations of American Foreign Policy (III) (HA)
Fall. 4 credits. Prerequisite: permission of instructor. W. LaFeber.

HIST 419(4190) Seminar in American Social History (also AM ST 419[4190]) (III) (HA)
Spring. 4 credits. Offered in Cornell in Washington program. S. Blumin.

HIST 420(4200) Asian American Communities (also AM ST 420[4220], AAS 420[4240]) (III) (HA)

HIST 421(4210) Undergraduate Seminar in Cultural History (also AM ST 421[4210], ART H 421[4210]) (III)
Spring. 4 credits. Limited to 15 students. Prerequisite: permission of instructor. Not offered 2005-2006. M. Kammen.

HIST 426(4260) The West and Beyond: Frontiers and Borders in American History and Culture (III) (HA)
Spring. 4 credits. Limited to 15 students; priority given to junior and senior majors in history and American studies. Not offered 2005-2006. A. Sachs.

HIST 428(4261) Commodification in Historical Perspective: Sex, Rugs, Salt, and Coal (also AM ST 427[4261]) # (III) (HA)
Spring. 4 credits. Priority given to juniors and seniors majoring in history or American studies. A. Sachs.
Everything is for sale today—but has it always been? This course examines the history of various commodities to explore the changing cultural and environmental impacts of market forces. Why are "oriental" rugs collector's items? How did we come to keep salt shakers on our dinner tables? When did coal start replacing wood as a fuel source? This course crosses multiple boundaries of time and space as it examines both case studies and broader theoretical perspectives, allowing us to draw connections between our culture of consumption and the social forces wrapped up in production. How was the taste for sugar linked to the slave trade? Is prostitution really "the oldest profession?" What goes into your daily cup of coffee besides half and half? And what was Western society like before everything had a price?

HIST 430(4300) America in the Camera's Eye (also AM ST 430.2, ART H 430[4300]) (III) (IV)
Fall. 4 credits. Limited to 15 students. Prerequisite: permission of instructor. Not offered 2005-2006. R. L. Moore.

HIST 439(4390) Reconstruction and the New South (also AM ST 439[4390]) # (III)
This course focuses on the American South in the 19th century as it made the transition from Reconstruction to new forms of social organization and patterns of race relations. Reconstruction will be considered from a sociopolitical perspective, concentrating on the experiences of the freed people. The New South emphasis will include topics on labor relations, economic and political changes, new cultural alliances, the rise of agrarianism, and legalization of Jim Crow.

HIST 440(4400) Undergraduate Seminar in Recent American History (also AM ST 440.1[4420]) (III) (HA)
Fall. 4 credits. Prerequisite: permission of instructor. Not offered 2005-2006. R. Polenberg.

HIST 444(4440) American Men (III) (HA)

HIST 448(4480) The Rublin Seminar (also AM ST 430.5[4301], LSP 430.5)

HIST 455(4550) The Four Seasons Motif in American Culture (also AM ST 430.2) (III) (CA)
Fall. 4 credits. Limited to 15 students. Prerequisite: permission of instructor. Not offered 2005-2006. M. Kammen.

HIST 466(4660) Inquisitions History (also AM ST 466[4660]) # (III) (HA)

HIST 484(4840) Seminar in the History of American Labor: Race, Work, and the City (also ILRCB 304[3040]) (III)
Fall. 4 credits. Prerequisite: for juniors and seniors, permission of instructor. Not offered 2005-2006. N. Salvatore.

HIST 490(4900) New World Encounters, 1500 to 1800 (also AM ST 490[4990]) (III) (HA)
Spring. 4 credits. Limited to 15 students. M. Parmenter.
The discovery of the Americas, wrote Francisco Lopez de Gomara in 1552, was "the greatest event since the creation of the world, excepting the Incarnation and Death of Him who created." Five centuries have not diminished either the overwhelming importance or the strangeness of the early encounter between Europeans and the indigenous peoples of the Americas. Taking a comparative approach, this course will conceptualize early American history as the product of reciprocal cultural encounters by assessing the various experiences of Spanish, French, and English newcomers in different regions of the Americas. Critical interpretation of primary source material will be emphasized in the course, as will the development of students' ability to reflect critically on these documents, taking into account the perspective of both the colonizers and the colonized.

HIST 497(4970) Jim Crow and Exclusion-Empire (also AAS 497[4970]) (III) (HA)

HIST 500(4997) Undergraduate Research Seminar (also AM ST 500[4997])
Fall and spring. 8 credits each semester. Offered in Cornell in Washington Program. S. Jackson.
Intensive research and writing experience using the extensive resources of Washington, D.C.

HIST 604(6040) Colloquium in American History

HIST 610(6101) Afro-American Historiography

HIST 618(6180) Readings in 20th-Century U.S. Political, Intellectual, and Diplomatic History
Spring. 4 credits. Prerequisite: graduate standing. F. Logan.
This graduate seminar examines selected topics in 20th-century U.S. political, intellectual, and diplomatic history. The emphasis will be on reading and discussion of key works representing a variety of approaches.

HIST 621(6210) Graduate Seminar in American Cultural History

HIST 626(6260) Graduate Seminar in the History of American Women (also FGSS 626[6260])
HIST 627(6270) Graduate Seminar in Early American History
Spring. 4 credits. Prerequisite: graduate standing; permission of instructor. Not offered 2005–2006. J. Parmenter.

HIST 628(6280) Graduate Seminar: 19th-Century U.S. History
Fall. 4 credits. E. Baptist.
Introduces students to the historiography of the nineteenth-century United States. Investigates the period both thematically and chronologically. Students read, discuss, and critique works written from a variety of perspectives and using a number of different approaches.

HIST 683(6830) Seminar in American Labor History (also ILRBC 763[7081])
Fall. 3 credits. Prerequisite: graduate standing. Not offered 2005–2006.
N. Salvatore.

HIST 697(6970) Jim Crow and Exclusion-Era America (also HIST 487[4870])
D. Chang.

HIST 710(7100) Colloquium in American History
M. B. Norton.

Asian History

HIST 190(1900) Introduction to Asian Civilizations @ (III)

HIST 191(1910) Introduction to Modern Asian History (also ASIAN 191[1911]) @ (III)
Fall. 4 credits. S. Cochran and T. Loos.
The history of Asia-Pacific from the 19th century to the present, focusing on relations of China, Japan, and Southeast Asia with each other and with the West.

HIST 207(2070) Sophomore Seminar: The Occidental Tourist: Travel Writing and Orientalism in Southeast Asia (also ASIAN 206[2660], HIST 507[5070]) @ (III)
Spring. 4 credits. Letter grades only. Prefer (but not required) that students have taken HIST 191 or 396. Not offered 2005–2006.
T. Loos.

HIST 219(2190) Women and Gender in South Asia: State and Society from Pre-colonial to Post-colonial (also ASIAN 219[2219], FGS 219[2190]) @ (III)
Fall. 4 credits. Sophomore seminar.
D. Ghosh.
Discussion-based reading seminar on the history of women and the construction of gender in South Asia. The readings consider broad themes that have historically affected the status of South Asian women: discourses about backwardness, domesticity, nationalism, family and property rights, the law, violence, labor, and social activism. Working chronologically from the pre-colonial through the colonial and post-colonial periods, questions are raised about the relative status of South Asian men and women within their communities. A significant theme of the course addresses the importance of gender to the making of South Asian nationalisms, and the forms of postcolonial governance it gave rise to after independence.

HIST 228(2280) Indian Ocean World (also ASIAN 228[2281]) @ (III)
Spring. 4 credits. Limited to 15 students.
E. Tagliacozzo.
Looks at the many intersecting histories of the Indian Ocean. The Indian Ocean was the first oceanic basin that supported large-scale cross-cultural contact for mankind. These warm tropical waters saw peoples from East Africa, the Middle East, the Indian Subcontinent, and Southeast Asia all meet and mix over many centuries. The course looks at these histories of contact, spanning maritime studies, archaeological perspectives, winds and weather patterns (including the vital monsoons), religious migrations (including Buddhism, Christianity, and Islam), and the history of commerce (e.g., the Spice Trade). Asks how the Indian Ocean became a crucial canvas for painting human history over vast, oceanic distances. Open to students interested in world history and its regional variants.

HIST 230(2300) Seminar in History and Memory: The Asia-Pacific War @ (III)
Fall. 4 credits. Limited to 15 students.
J. V. Koschmann.

HIST 231(2310) Crimes Against Humanity and Their Aftermath: 20th-Century East Asia (also ASIAN 236[2363]) @ (III)
V. Koschmann and M. Shin.

HIST 238(2431) Families in China since the 17th Century @ (III)
Spring. 4 credits. Limited to 15 students.
S. Cochran.
It is often said that “traditional familialism” has always provided the bedrock of Chinese society and continues to do so today. This course considers how Chinese families have coped with powerful forces for change—social upheavals, military conflicts, political revolutions, and economic transformations. Readings are all in English and include translations of letters, diaries, memoirs, and novels as well as historical interpretations of family life.

HIST 243(2430) Sophomore Seminar: History of Things @ (III)
Fall. 4 credits. Sophomore seminar.
E. Tagliacozzo.
Examines material culture as an avenue of looking at history in broad and comparative ways. The course is global in shape and unrestricted temporally; it asks how “things” make up our world, and how they affect our lives historically and help shape the human story. Glass, dyes, opium, salt, coal, sugar, tea and even shrunk heads are all considered.
This is a special seminar sponsored by the John S. Knight Institute’s Sophomore Seminars Program. Seminars offer discipline-intensive study within an interdisciplinary context. While not restricted to sophomores, the seminars aim to introduce students into the discipline’s outlook, discourse community, modes of knowledge, and ways of articulating that knowledge. Limited to 15 students.
Special emphasis is given to strong thinking and writing to personalized instruction with top university professors.

HIST 249(2490) Peddlers, Pirates, and Prostitutes: Subaltern Histories of Southeast Asia, 1800 to 1900 (also ASIAN 249[2481], ASIAN 549[5481]) @ (III)
E. Tagliacozzo.

HIST 284(2840) Southeast Asia in the World System: Capitalism and Incorporation, 1500 to Present (also ASIAN 684, ASIAN 284[2284]) @ (III)
Fall. 4 credits. Graduate students should enroll in HIST 684. Not offered 2005–2006.
E. Tagliacozzo.

HIST 289(2890) The U.S.-Vietnam War (also ASIAN 298[2298]) @ (III)
Fall. 3 credits. K. Taylor and F. Logevall.
This course will survey events in Vietnam, the U.S., and elsewhere related to the U.S. policy of intervention in Vietnam between 1954 and 1975. Readings will include historical narratives, memoirs, and literature. The course will evaluate the standard (Hanoi and loser (U.S.) narratives and how they have silenced southern Vietnamese voices.

HIST 293(2930) History of China up to Modern Times (also ASIAN 293[2293]) @ (III)
C. Peterson.

HIST 294(2940) History of China in Modern Times (also ASIAN 294[2294]) @ (III)
Staff.

HIST 319(3190) Introduction to South Asia’s Environmental History (also ASIAN 319[3319]) @ (III)
M. Rangajaran.

HIST 328(3280) Construction of Modern Japan @ (III)
J. V. Koschmann.

HIST 330(3300) Japan from War to Prosperity @ (III)
J. V. Koschmann.

HIST 342(3420) History of Modern South Asia, 1700 to 1947: From the Mughals to Midnight (also ASIAN 342[3342]) @ (III)
Fall. 4 credits. D. Ghosh.
Broad overview of the history of the South Asian subcontinent from the end of the Mughal empire to its partitioning into India and Pakistan. One of the largest (and longest occupied) postcolonial regions, the Indian subcontinent has been witness to over two centuries of European colonialism. Prominent themes in the course include the shift between Mughal and British forms of governance, the emergence of religious and regional identities, social reform and the “woman question,” deindustrialization, and nationalism. Considers how the history of this region has been written, by whom, and why. Using primary sources and scholarly articles by a varied group of scholars, this course considers whether there is such a thing as one history of South Asia.
HIST 360(3600) Early Warfare, East and West # (III) (HA)
Fall. 4 credits. C. Peterson.
A study of the principal modes of warfare found both in the East and the West from ancient times up to the 18th century. Tactical evolution and the impact of innovations are stressed, but attention is also paid to the general social and cultural background and the role of non-military factors.

HIST 388(3880) History of Vietnam (also HIST 680(6880), ASIAN 385/685[3385/6685]) @ # (III) (HA)
Fall. 3 credits. K. Taylor.
For description, see ASIAN 385/685.

HIST 395(3950) Premodern Southeast Asia (also ASIAN 397[3397] # (III) (HA)
Fall. 4 credits. Open to undergraduates, both majors and nonmajors in history, and to graduate students, though with separate requirements. E. Tagliacozzo.
Examines Southeast Asia's history from earliest times up until the mid-18th century. The genesis of traditional kingdoms, the role of monumental architecture (e.g., Angkor in Cambodia and Borobodur in Indonesia), and the forging of maritime trade links across the region are all covered. Religion—both indigenous to Southeast Asia and the great imports of Hinduism, Buddhism, Christianity and Islam—is also surveyed in the various pre-modern polities that dotted Southeast Asia. This course questions the region's early connections with China, India, and Arabia, and asks what is indigenous about Southeast Asian history, and what has been borrowed over the centuries.

HIST 396(3960) Southeast Asian History from the 18th Century (also HIST 696(6960), ASIAN 396/696[3396/6696]) # (III) (HA)
Spring. 4 credits. Graduate students must enroll in HIST 696. T. Loos and E. Tagliacozzo.
Surveys the modern history of Southeast Asia with special attention given to colonialism, U.S. foreign policy in Southeast Asia, and local sociocultural institutions. Considers global transformations that brought “the West” into people’s lives in Southeast Asia. Focuses on the development of the modern nation-state, but also questions the narrative by incorporating groups that are typically excluded. Assigns primary texts in translation.

HIST 410(4100) Archipelago: Worlds of Indonesia (also HIST 617[6100], ASIAN 409/617[4409/6617]) # (III) (HA)

HIST 416(4160) Undergraduate Seminar on Gender and Sexuality in Southeast Asia (also HIST/FGSS 416[6160], ASIAN 416/616[4416/6616]) # (III) (CA)
Spring. 4 credits. Letter grades only. T. Loos.
Students consider the relationships among colonialism and gender and sexual identity formation in Southeast Asia. Using material from a wide range of fields including anthropology and literature, the course complicates the simplistic East-West and male/female binary.

HIST 451(4510) Crime and Diaspora in Southeast Asian History, 1750 to 1950 (also HIST 650[6510], ASIAN 450/651[4450/6651]) # (III) (HA)

HIST 458(4800) Senior Seminar: Gender Adjudicated (also FGSS 480[4800], ASIAN 482/4842) # (III) (HA)

HIST 484(4840) Subversion as Foreign Policy: The United States in Southeast Asia # (III) (HA)

HIST 487(4870) Seminar in Thailand (also HIST 687[6670]) # (III) (HA)

HIST 489(4890) Seminar in Modern Japanese History # (III) (HA)
Fall. 4 credits. Prerequisites: HIST 330 or 328 or equivalent knowledge of modern Japanese history. Not offered 2005–2006. J. V. Koschmann.

HIST 492(4920) Undergraduate Seminar in Medieval Chinese History (also ASIAN 492[4492]) # (III) (HA)
Fall. 4 credits. Prerequisite: HIST 293 or 360, or permission of instructor. C. Peterson.
Topic for Fall 2005: The life of the Chinese literati—social, cultural, and intellectual as seen through literature, art, and other materials.

HIST 493(4930) Problems in Modern Chinese History (also ASIAN 493/693[4493/6693], HIST 693[6930]) # (III) (HA)
Fall. 4 credits. Prerequisite: HIST 294 or permission of instructor. Not offered 2005–2006. S. Cochran.

HIST 494(4940) Theories of Civilization (also ASIAN 425[4425]) # (III or IV) (HA)
Spring. 4 credits. K. Taylor.
For description, see ASIAN 425.

HIST 496(4960) Conservation, Politics, and History: Seminar on Comparative Perspectives on Colonialism (III) (HA)

HIST 499(4990) Problems in Modern Chinese History (also HIST 694[6694], ASIAN 499/694[4499/6694]) # (III) (HA)
Spring. 4 credits. Prerequisite: HIST 294 or permission of instructor. Not offered 2005–2006. S. Cochran.

HIST 507(5070) Graduate Seminar: The Occidental Tourist

HIST 598(5980) Colloquium in Modern Japanese History

HIST 616(6160) Gender and Sexuality in Southeast Asian History (also ASIAN 416/616[4416/6616], FGSS/HIST 416[6160/6610]) # (III) (HA)
Spring. 4 credits. Limited to 15 students. Intended for graduate students. Letter grades only. T. Loos.
For description, see HIST 416.

HIST 617(6100) Archipelago: Worlds of Indonesia (also HIST 410[4100], ASIAN 409[4409]/617)

HIST 650(6510) Crime and Diaspora in Southeast Asian History, 1750 to 1950 (also HIST 451[4510])

HIST 684(6840) Southeast Asia in the World System: Capitalism and Incorporation, 1500 to the Present (also HIST 284[2840], ASIAN 284/684[2284/6684])

HIST 687(6870) Seminar in Thailand (also HIST 487[4487], ASIAN 610[6610])

HIST 688(6880) History of Vietnam (also HIST 388[3388], ASIAN 385/685[3385/6685])
Fall. 3 credits. K. Taylor.
For description, see ASIAN 385.

HIST 693(6930) Problems in Modern Chinese History (also ASIAN 493/693[4493/6693], HIST 493[4493])
Fall. 4 credits. Prerequisite: HIST 294 or permission of instructor. Not offered 2005–2006. S. Cochran.

HIST 694(6940) Problems in Modern Chinese History (also HIST 499[4499], ASIAN 499/699[4499/6699])
Spring. 4 credits. Prerequisite: HIST 294 or permission of instructor. Not offered 2005–2006. S. Cochran.

HIST 696(6960) Modern Southeast Asian History, 1750 to 1950 (also HIST 650[6510], ASIAN 416/616[4416/6616])
Spring. 4 credits. T. Loos and E. Tagliacozzo.
For description, see HIST 396.

HIST 698(6980) Seminar in Japanese Thought
Spring. 4 credits. Prerequisite: reading knowledge of Japanese. J. V. Koschmann.

Comparative History

HIST 272(2720) The Atlantic World from Conquest to Revolution (also AM ST 272[2720]) # (III) (HA)

HIST 274(2740) Foodways: A Social History of Food and Eating # (III) (HA)
HIST 309(3090) History and Geographical Imagination @ (III) (HA)

HIST 409(4090) Seminar on Work in Europe and America # (III) (HA)

HIST 418(4180) Comparative Agrarian History @ (III) (HA)

HIST 460(4601) Toward a Prehistory of Terrorism (also S HUM 416)
Spring. 4 credits. O. Falk.
For description, see S HUM 416.

HIST 473(4730) Thinking Through Civilization (also S HUM 415)
Fall. 4 credits. A. Randian.
For description, see S HUM 415.

Ancient European History

HIST 151(1510) Introduction to Western Civilization # (III) (HA)
Summer and fall. 4 credits. B. Strauss.
Survey of European history from Antiquity to the Renaissance and Reformation.
Important themes include the influence of ancient culture on medieval society, the development of and conflict between secular and ecclesiastical governments, European encounters with the non-Europeans, the culture and role of minority groups within European society, and the roles of women.

HIST 232(2320) Sophomore Seminar: Eyewitness to War in the Ancient World (also CLASS 234(2320)) # (III or IV) (HA)

HIST 256(2560) War and Peace in Greece and Rome (also CLASS 256(2560)) # (III or IV) (HA)
In ancient Greece and Rome, government did little besides wage war and raise taxes, culture focused on war, warriors gloried in battle, and civilians tried to get out of the way. This course surveys the impact of war and the rarity of peace in the ancient world. Topics include: “why war?”; the face of battle; leadership, strategy, operations, and tactics, women and war; intelligence and information gathering; diplomacy and peacemaking; militarism; war and slavery; the archaeology of warfare. Readings in translation include selections from Homer, Herodotus, Thucydides, Xenophon, Caesar, Livy, Tacitus, Josephus, and Ammianus Marcellinus.

HIST 265(2650) Ancient Greece from Homer to Alexander the Great (also CLASS 265(2650)) # (III) (HA)

HIST 267(2670) History of Rome I (also CLASS 267(2682)) # (III) (HA)

HIST 268(2671) History of Rome II (also CLASS 268(2684)) # (III) (HA)

HIST 432(4320) Topics in Ancient Greek History (also CLASS 436(4320)) # (III or IV) (HA)
Spring. 4 credits. B. Strauss.
Topic for spring 2006: The Trojan War, Myth and Reality. Study of the historical, archaeological, and epigraphic evidence (or lack thereof) for the Trojan War, with an emphasis on new discoveries, theories, and controversies.

HIST 434(4340) Socrates (also S HUM 424)
Spring. 4 credits. S. Jedrickiwicz.
For description, see S HUM 424.

HIST 435(4350) Modern Classics in the Historiography of Ancient Greece (also CLASS 445(4685)) (III) (HA)
Spring. 4 credits. Prerequisite: Introductory course in ancient Greek history or permission of instructor. Not offered 2005–2006. B. Strauss.

HIST 450(4500) The Peloponnesian War (also HIST 630(6300), CLASS 450(4680)) # (III)
Fall. 4 credits. Prerequisites: HIST 265, CLASS 211 or 217, or permission of instructor. Not offered 2005–2006. B. Strauss.

HIST 630(6300) Topics in Ancient History (also CLASS 632(7682))

Medieval, Renaissance, and Early Modern European History

HIST 151(1510) Introduction to Western Civilization # (III) (HA)
Fall and summer. 4 credits. B. Strauss.
For description, see "Ancient European History."

HIST 152(1520) Introduction to Western Civilization # (III) (HA)
Summer and spring. 4 credits. H. Case.
For description, see "Modern European History."

HIST 210(2100) The Government of God # (III) (HA)

HIST 226(2260) Religion, Politics, and Society in the Age of the Reformations # (III) (HA)
Fall. 4 credits. Limited to 15 students. R. Weil.
In the 16th century, the Protestant reformations and the Catholic Counter-Reformation alike sought to sweep away traditional religious practice and popular "superstition" and to reconstruct the relationship of humans to God. This course examines the ideas of Protestant and Catholic traditional religious practice and popular "superstition" and to reconstruct the relationship of humans to God. This course examines the ideas of Protestant and Catholic reformers, the techniques of conversion by which they sought to win the hearts and minds of the masses, and the success or failure of their efforts. Also looks at the effects of religious movements on politics, the relationship of church and state, and the role of the church in society. The course begins with the idea that the Christian Church played a central role in the political organization of the European state and that the concepts of the early modern world were shaped by the idea that the Christian Church was the pillar of society. The course then examines the effects of the Reformation on the political and social life of Europe, and the impact of the Counter-Reformation on the political and social life of Europe.

HIST 252(2520) Modern East-Central Europe (also CLASS 252(2520)) # (III) (HA)
Fall. 4 credits. H. Case.
Covers the key events, political ideologies, social and cultural trends, and definitions of East-Central Europe from 1848 to the present. Themes include experiences of empire, war and revolution, the rise of nationalism, liberalism, fascism, and communism, totalitarian regimes, dissident movements, the post-communist transition, the experiences and roles of women in the region's history, the fate of minorities and multinational states, European integration, and the future of the region. Students are asked to reflect on how various primary sources (e.g., documents, fiction, letters, memoirs) help us frame and ultimately try to answer the questions raised by the events of the last century and a half in East-Central Europe.

HIST 259(2590) The Crusades # (III)
Spring. 4 credits. T. Billado.
A lecture course examining the Crusading Movement and the States it produced from the 11th century to the fall of the mainland Kingdom of Jerusalem in 1291. The historical themes this generates are almost unlimited. The course treats the Christianity and Chivalry of the Medieval West, the confrontation of this culture with those of the Mediterranean and Islam, and what is perhaps the cradle of Western Colonialism. The very concept of "Crusade" itself is problematic today and will continue to cast its shadow on U.S. dealings with the Middle East. The sometimes spectacular readings allow students to choose from a wide range of paper topics, and enjoy an excellent introduction to every aspect of the long-gone world of the Middle Ages.

HIST 262(2620) The Middle Ages: Introduction and Sampler (also RELST 265(2655)) # (III) (CA)
Summer and fall. 4 credits. T. Billado.
This new course is a single-semester alternative to HIST 263–64. It aims to convey what was significant in that area of the "West" that was to become Europe, between the end of the Roman Empire in the West and the Renaissance, from 295 to 1400. It thus takes a critical look at a formative period of Western civilization. The focus is on the development by stages of European structures and institutions, of its dominant religion Christianity, its distinctive culture and its stances before deviance.

HIST 269(2770) The Early Middle Ages # (III) (HA)

HIST 272(2720) Atlantic World: From Conquest to Revolution (also AM ST 272[2720]) # (III) (HA)

HIST 277(2771) The Later Middle Ages # (III) (HA)

HIST 305(3050) Britain, 1660 to 1815 # (III) (HA)
Fall. 4 credits. R. Weil.
The British Isles from the Restoration of Charles II through the Napoleonic wars. We will consider the domestic effects of war and Empire, luxury, commerce and the public sphere; continuing conflicts over religious tolerance, political rights, and the relation of England to Ireland and Scotland. Readings include works by John Locke, Jonathan Swift, Adam Smith, Thomas Paine, Edmund Burke, and Jane Austen.

HIST 320(3200) The Viking Age # (III) (HA)

HIST 349(3490) Early Modern England # (III) (HA)
Fall. 4 credits. R. Weil.
Explores the crises of political, religious, and epistemological authority that plagued England in the 16th and 17th centuries. Examines the political and cultural impact of the Protestant Reformation, the nature of Tudor despotism and Stuart absolutism, the construction of a rhetoric of political dissent around issues of sexuality and corruption, competing understandings of the social order and social control, the Puritan Revolution, and the invention of liberalism. Emphasizes close reading of contemporary sources, from autobiography and drama to political theory.

[HIST 350(3500) The Italian Renaissance (also ITALL 221(2210)) # (III or IV) (HA)]

[HIST 351(3510) Machiavelli (also ITALL 351(3510)) # (III or IV) (HA)]

[HIST 364(3640) The Culture of the Renaissance II (also COM L/FLFLIT/RELST 362(3620), ENGL 325(3250), MUSIC 360[3242]) # (III or IV) (CA)]
Fall. 4 credits. Prerequisite: for freshmen, permission of instructor. K. P. Long and W. Kennedy.

[HIST 365(3650) The History of Florence in the Time of the Republic, 1250 to 1530 (also ITALL 365[3650]) # (III or IV) (HA)]

[HIST 408(4080) Feudalism and Chivalry: Secular Culture in Medieval France, 1000 to 1300 # (III) (HA)]
Fall. 4 credits. Recommended: HIST 262, 263 or 264, T. Billado.
An upper-level seminar on the main currents of noble lay culture in France, which led European fashions in love, warfare, entertainment, and environment through most of the period. There will be heavy emphasis on contemporary sources (in English), including lively and complete readings from epic literature (the Song of Roland), lives, and chronicles.

[HIST 409(4090) Seminar on Work in Europe and America # (III) (HA)]

[HIST 436(4360) Conflict Resolution in Medieval Europe # (III) (KCM)]
Spring. 4 credits. T. Billado.
This seminar concentrates on a time (late 9th–13th centuries) when much of Europe lacked formal systems of justice, and so handled questions of social control quite largely by extra-legal means. Its subject is in one sense political history 'upside-down,' as reviewed by individuals rather than their rulers. We examine ways in which anthropology and some recent approaches to law can assist: the readings will be partly anthropology, partly translated medieval accounts of actual conflicts, with samples of recent interpretation. The topics covered should be of interest to law students and majors in anthropology and other modern social sciences.

[HIST 447(4470) Crusaders and Chroniconers @ (III) (HA)]

[HIST 468(4680) Love and Sex in the Italian Renaissance (also ITALL 468[4680]) # (III or IV) (HA)]

[HIST 471(4710) Knowledge and Politics in 17th-Century England (also S&TS 473[4731]) # (III) (CA)]

[HIST 476(4760) History and Story in the North Sagas (also HIST 676[6760]) # (III) (HA)]

[HIST 479(4790) Patronage and the Medici # (III) (HA)]

[HIST 491(4910) Approaches to Medieval Violence (also HIST 692[6920]) # (III) (CA)]
Fall. 4 credits. Limited to 15 students. Prerequisite: permission of instructor. Not offered 2005–2006. O. Falk.

[HIST 495(4950) Gender Power and Authority in England 1600 to 1800 # (III) (CA)]
Spring. 4 credits. R. Weil.
It's a truism that early modern society was a "patriarchal" one in which men had authority—but how did that authority operate and what were its limits? How did the exercise of power between men and women intersect with religious, literary, legal and political institutions? This course approaches these questions chronologically, examining the impact of the Reformation, the English Revolution, the Enlightenment, the rise of middle class and polite culture. Also explores them methodologically and genetically, with an eye to how different kinds of evidence and sources can produce different kinds of conclusions. Historians' hypotheses are tested by analysis of primary sources.

[HIST 651(6520) Old English Literature in Its Historical Context (also ENGL 710[7100])]

[HIST 652(6530) England—Britain—Europe in the Middle Ages]

[HIST 663(6630) Graduate Seminar in Renaissance History]

[HIST 676(6760) History and Story in the North Sagas (also HIST 476[4760])]

[HIST 692(6920) Approaches to Medieval Violence (also HIST 491[4910])]

Modern European History

HIST 140(1400) FW: Kipling's India: Literature, Culture, History
Fall. 4 credits. Limited to 17 students. Freshmen only. R. Travers.
Uses the novels, stories, and poems of Rudyard Kipling to explore the history of the British Empire in India in the 19th century. Asks what Kipling's fictional works can tell us about the British project of governing India and also considers the broader question of the uses of fiction as a historical source.

HIST 152(1520) Introduction to Western Civilization (1600 to the End of World War II) # (III) (HA)
Spring. 4 credits. H. Case.
Offers a comparative perspective on the development of modern states, societies, and cultures in Europe and North America. Topics include religious and scientific revolutions in early modern Europe; European expansion and conquest; Enlightenment and revolution; liberalism, capitalism, and communism; the politics of race, slavery, and the new imperialism; the World Wars and the Holocaust; the Cold War; and the modern and the post-modern in European and American culture.

HIST 205(2050) The French Enlightenment: Methods, Ambitions, Contradictions # (III) (HA)
Fall. 4 credits. Limited to 15 students. S. Kaplan.
Seminar devised especially for second-year students. The Enlightenment Project, midwife to modernity, intimately associated with the Age of Revolution in the 18th century that profoundly transformed the European/Atlantic world (and beyond), has come under sharp assault in the past quarter century. This course seeks to scrutinize that heritage and incidentally make sense of this debate. What was the Enlightenment, particularly in its French incarnation? By critically reading some of the most unsettling and significant texts of the period, students scrutinize the methods, the ambitions and the contradictions of the so-called "philosophies," who constitute for certain observers "the party of humanity" and for others the harbingers of horror.

[HIST 218(2180) Seminar on Genocide (III) (HA)]

[HIST 223(2230) International Law (III) (HA)]

"ARTS AND SCIENCES - 2005-2006"
In the 16th century, the Protestant reformations and the Catholic Counter-Reformation alike sought to sweep away traditional religious practice and popular "superstition" and to reconstruct the relationship of humans to God. This course examines the ideas of Protestant and Catholic reformers, the techniques of conversion by which they sought to win the hearts and minds of the masses, and the success or failure of their efforts. Also looks at the effects of religious movements on politics, the relationship of church and state on family life, and on the encounter between Europeans and Native Americans and other non-Europeans.

This course will examine the role of antisemitism in 19th- and 20th-century European ideological, political and socioeconomic developments. Attention will be paid to the way in which antisemitism illuminates the underside of European history, allowing us to see how anti-Jewish intolerance and prejudice becomes embedded in the worldviews of significant sectors of the European populations, culminating in the Holocaust. Topics will include: the Christian roots of antisemitism and the extent to which modern antisemitism marks a break with the medieval past; the politicization of antisemitism by both Left and Right; the role of antisemitism in socioeconomic conflicts linked to the rise of capitalism; Jewish responses to antisemitism; antisemitism in the Nazi and Fascist revolts; and contemporary interpretations of antisemitism.

This course will examine the role of antisemitism in 19th- and 20th-century European ideological, political and socioeconomic developments. Attention will be paid to the way in which antisemitism illuminates the underside of European history, allowing us to see how anti-Jewish intolerance and prejudice becomes embedded in the worldviews of significant sectors of the European populations, culminating in the Holocaust. Topics will include: the Christian roots of antisemitism and the extent to which modern antisemitism marks a break with the medieval past; the politicization of antisemitism by both Left and Right; the role of antisemitism in socioeconomic conflicts linked to the rise of capitalism; Jewish responses to antisemitism; antisemitism in the Nazi and Fascist revolts; and contemporary interpretations of antisemitism.

This course studies international humanitarian and human rights activities from their origins to the present. The ideological and social roots of humanitarian thought and action receive attention, as does the often-overlapping, sometimes conflictual relationship between humanitarianism and human rights advocacy. Case studies will include the anti-slavery movement, the activities of faith-based groups, biographical studies of pioneering individuals, and the international response to various genocides.

This course examines the role of antisemitism in 19th- and 20th-century European ideological, political and socioeconomic developments. Attention will be paid to the way in which antisemitism illuminates the underside of European history, allowing us to see how anti-Jewish intolerance and prejudice becomes embedded in the worldviews of significant sectors of the European populations, culminating in the Holocaust. Topics will include: the Christian roots of antisemitism and the extent to which modern antisemitism marks a break with the medieval past; the politicization of antisemitism by both Left and Right; the role of antisemitism in socioeconomic conflicts linked to the rise of capitalism; Jewish responses to antisemitism; antisemitism in the Nazi and Fascist revolts; and contemporary interpretations of antisemitism.

This course will examine the role of antisemitism in 19th- and 20th-century European ideological, political and socioeconomic developments. Attention will be paid to the way in which antisemitism illuminates the underside of European history, allowing us to see how anti-Jewish intolerance and prejudice becomes embedded in the worldviews of significant sectors of the European populations, culminating in the Holocaust. Topics will include: the Christian roots of antisemitism and the extent to which modern antisemitism marks a break with the medieval past; the politicization of antisemitism by both Left and Right; the role of antisemitism in socioeconomic conflicts linked to the rise of capitalism; Jewish responses to antisemitism; antisemitism in the Nazi and Fascist revolts; and contemporary interpretations of antisemitism.

This course examines the role of antisemitism in 19th- and 20th-century European ideological, political and socioeconomic developments. Attention will be paid to the way in which antisemitism illuminates the underside of European history, allowing us to see how anti-Jewish intolerance and prejudice becomes embedded in the worldviews of significant sectors of the European populations, culminating in the Holocaust. Topics will include: the Christian roots of antisemitism and the extent to which modern antisemitism marks a break with the medieval past; the politicization of antisemitism by both Left and Right; the role of antisemitism in socioeconomic conflicts linked to the rise of capitalism; Jewish responses to antisemitism; antisemitism in the Nazi and Fascist revolts; and contemporary interpretations of antisemitism.

This course examines the role of antisemitism in 19th- and 20th-century European ideological, political and socioeconomic developments. Attention will be paid to the way in which antisemitism illuminates the underside of European history, allowing us to see how anti-Jewish intolerance and prejudice becomes embedded in the worldviews of significant sectors of the European populations, culminating in the Holocaust. Topics will include: the Christian roots of antisemitism and the extent to which modern antisemitism marks a break with the medieval past; the politicization of antisemitism by both Left and Right; the role of antisemitism in socioeconomic conflicts linked to the rise of capitalism; Jewish responses to antisemitism; antisemitism in the Nazi and Fascist revolts; and contemporary interpretations of antisemitism.

This course examines the role of antisemitism in 19th- and 20th-century European ideological, political and socioeconomic developments. Attention will be paid to the way in which antisemitism illuminates the underside of European history, allowing us to see how anti-Jewish intolerance and prejudice becomes embedded in the worldviews of significant sectors of the European populations, culminating in the Holocaust. Topics will include: the Christian roots of antisemitism and the extent to which modern antisemitism marks a break with the medieval past; the politicization of antisemitism by both Left and Right; the role of antisemitism in socioeconomic conflicts linked to the rise of capitalism; Jewish responses to antisemitism; antisemitism in the Nazi and Fascist revolts; and contemporary interpretations of antisemitism.

This course examines the role of antisemitism in 19th- and 20th-century European ideological, political and socioeconomic developments. Attention will be paid to the way in which antisemitism illuminates the underside of European history, allowing us to see how anti-Jewish intolerance and prejudice becomes embedded in the worldviews of significant sectors of the European populations, culminating in the Holocaust. Topics will include: the Christian roots of antisemitism and the extent to which modern antisemitism marks a break with the medieval past; the politicization of antisemitism by both Left and Right; the role of antisemitism in socioeconomic conflicts linked to the rise of capitalism; Jewish responses to antisemitism; antisemitism in the Nazi and Fascist revolts; and contemporary interpretations of antisemitism.

This course examines the role of antisemitism in 19th- and 20th-century European ideological, political and socioeconomic developments. Attention will be paid to the way in which antisemitism illuminates the underside of European history, allowing us to see how anti-Jewish intolerance and prejudice becomes embedded in the worldviews of significant sectors of the European populations, culminating in the Holocaust. Topics will include: the Christian roots of antisemitism and the extent to which modern antisemitism marks a break with the medieval past; the politicization of antisemitism by both Left and Right; the role of antisemitism in socioeconomic conflicts linked to the rise of capitalism; Jewish responses to antisemitism; antisemitism in the Nazi and Fascist revolts; and contemporary interpretations of antisemitism.

This course examines the role of antisemitism in 19th- and 20th-century European ideological, political and socioeconomic developments. Attention will be paid to the way in which antisemitism illuminates the underside of European history, allowing us to see how anti-Jewish intolerance and prejudice becomes embedded in the worldviews of significant sectors of the European populations, culminating in the Holocaust. Topics will include: the Christian roots of antisemitism and the extent to which modern antisemitism marks a break with the medieval past; the politicization of antisemitism by both Left and Right; the role of antisemitism in socioeconomic conflicts linked to the rise of capitalism; Jewish responses to antisemitism; antisemitism in the Nazi and Fascist revolts; and contemporary interpretations of antisemitism.

This course examines the role of antisemitism in 19th- and 20th-century European ideological, political and socioeconomic developments. Attention will be paid to the way in which antisemitism illuminates the underside of European history, allowing us to see how anti-Jewish intolerance and prejudice becomes embedded in the worldviews of significant sectors of the European populations, culminating in the Holocaust. Topics will include: the Christian roots of antisemitism and the extent to which modern antisemitism marks a break with the medieval past; the politicization of antisemitism by both Left and Right; the role of antisemitism in socioeconomic conflicts linked to the rise of capitalism; Jewish responses to antisemitism; antisemitism in the Nazi and Fascist revolts; and contemporary interpretations of antisemitism.

This course examines the role of antisemitism in 19th- and 20th-century European ideological, political and socioeconomic developments. Attention will be paid to the way in which antisemitism illuminates the underside of European history, allowing us to see how anti-Jewish intolerance and prejudice becomes embedded in the worldviews of significant sectors of the European populations, culminating in the Holocaust. Topics will include: the Christian roots of antisemitism and the extent to which modern antisemitism marks a break with the medieval past; the politicization of antisemitism by both Left and Right; the role of antisemitism in socioeconomic conflicts linked to the rise of capitalism; Jewish responses to antisemitism; antisemitism in the Nazi and Fascist revolts; and contemporary interpretations of antisemitism.

This course examines the role of antisemitism in 19th- and 20th-century European ideological, political and socioeconomic developments. Attention will be paid to the way in which antisemitism illuminates the underside of European history, allowing us to see how anti-Jewish intolerance and prejudice becomes embedded in the worldviews of significant sectors of the European populations, culminating in the Holocaust. Topics will include: the Christian roots of antisemitism and the extent to which modern antisemitism marks a break with the medieval past; the politicization of antisemitism by both Left and Right; the role of antisemitism in socioeconomic conflicts linked to the rise of capitalism; Jewish responses to antisemitism; antisemitism in the Nazi and Fascist revolts; and contemporary interpretations of antisemitism.
representation of the war in subsequent films, literature, and political culture.

[HIST 379(3790) The First World War: Causes, Conduct, Consequences (III) (HA)]

[HIST 382(3830) Europe, 1900 to 1945 (III) (HA)]

[HIST 384(3840) Europe, 1945 to 1968 (III) (HA)]
J. Weiss.

[HIST 385(3850) Europe in the 20th Century: 1968 to 1990 (III)]
J. Weiss.

[HIST 409(4090) Seminar on Work in Europe and America # (III) (HA)]
S. L. Kaplan.

[HIST 417(4170) History of Jews in Modern France (also JWST 446(4170), FRLIT 413 (III or IV) (HA)]
Spring. 4 credits. Prerequisite: permission of instructor. V. Caron.
This course will explore the integration of Jews into French society from the French Revolution to the present. Topics will include the debate over Jewish emancipation during the Enlightenment, the French Revolution, and the Napoleonic era; the processes of religious and social assimilation; the rise of antisemitism and the Dreyfus Affair; Jewish responses to antisemitism; the immigrant challenge and refugee crisis of the 1930s; the Vichy era and Jewish resistance during World War II; and the reconstruction of the French Jewish community since 1945.

[HIST 433(4330) History of Modern German Jewry: From the Enlightenment to the Post-1945 Era (also GIST 443, JWST 453(4330)) (III) (HA)]

[HIST 446(4460) Strategy in World War II (III) (HA)]
Spring. 4 credits. Prerequisite: permission of instructor. Not offered 2005–2006.
J. Weiss.

[HIST 452(4520) History of the New Europe (III) (HA)]
Fall. 4 credits. Limited to 15 students.
H. Case.
Focuses on European leaders' and intellectuals' attempts to refashion or reinvent Europe through renewal projects initiated since the 19th century. Such projects often combined ideology and geopolitics to justify individual state actions, effect boundary shifts, assure the predominance of a certain strain of European culture, or maintain alliance systems within Europe. Readings are taken from period authors whose works show how different countries and peoples across Europe have perceived their role in the "New" Europe of history, and what continuities and divergences exist between earlier ideas regarding the essence of Europe and those of today.

[HIST 457(4570) Seminar in European Fascism (III) (HA)]

[HIST 462(4620) Popular Culture in European History (III) (CA)]

[HIST 463(4630) War and Society in Eastern Europe (III) (HA)]
Spring. 4 credits. H. Case.

[HIST 467(4670) Seminar in Modern European Political History (III) (HA)]
Fall. 4 credits. Prerequisite: permission of instructor. Not offered 2005–2006. J. Weiss.

[HIST 474(4740) Topics in Modern European Intellectual and Cultural History (also COM L 474(4740)) (III or IV)]
Fall. 4 credits. Limited to 15 students.
D. LaCapra.
The course will explore the relations between history and critical theory with special attention to the study and writing of intellectual and cultural history. Specific topics will include gender, "orientalism," racism, terrorism, and Nazism. A focus will be debates among historians and critical theorists on particularly controversial issues, including postmodernism and the so-called linguistic turn.

[HIST 477(4770) Seminar on the Politics of the Enlightenment # (III) (HA)]
S. Kaplan.

[HIST 488(4880) Seminar in Late 19th-Century European Imperialism (III) (HA)]
Spring. 4 credits. Prerequisite: permission of instructor. Not offered 2005–2006.
I. Hull.

[HIST 601(6010) European History Colloquium]
Fall and spring. 2 credits each semester. Limited to graduate students. Fall, D. LaCapra and H. Case; spring, P. Holquist and H. Case.
Research colloquium designed for European history graduate students. Offers a forum for students to present papers and to discuss the work of visiting scholars.

[HIST 605(6051) Themes and Issues in Modern European History]
Spring. 4 credits. H. Case and P. Holquist.
General overview of key texts in the historiography of modern Europe. Students read and discuss one book per week.

[HIST 629(6290) Graduate Seminar in 20th-Century German History]
Fall. 4 credits. Prerequisite: permission of instructor. Not offered 2005–2006. I. Hull.

[HIST 672(6720) Seminar in European Intellectual History]
Fall. 4 credits. D. LaCapra.

[HIST 673(6730) Seminar in European Intellectual History (also HIST 474(4740))]
D. LaCapra.

[HIST 674(6740) Graduate Seminar in German History, 1770 to 1918]
I. Hull.

[HIST 678(6780) Seminar in Modern European Social History]
Spring. 4 credits. Prerequisite: permission of instructor. Not offered 2005–2006.
J. Weiss.

History of Science

[HIST 250(2500) Technology in Society (also ENGRG/ECE 250(2500), S&T 250(2501)) (III) (HA)]
Fall. 3 credits. Not offered 2005–2006.
R. Kline.

[HIST 281(2810) Science in Western Civilization (also S&T 281[2811]) # (III) (HA)]
Fall. 4 credits. HIST 281 is not a prerequisite to 282. P. Dear.
Aims to make comprehensible both to science majors and to students of the humanities the historical structure and development of modern science and to show science as a cultural phenomenon. Changing perceptions of nature and human knowledge from Greek antiquity to the 20th century form the framework for current Western views of the world, while the roots of the present-day dominance of "science" as a symbol of progress and modernity lie in an alliance between knowledge of nature and power over nature that took shape in the 19th century after a long period of emergence. 281 runs chronologically up to the death of Isaac Newton and focuses on the cultural traditions of Christian Europe and its selective appropriation of a Greek heritage.

[HIST 282(2820) Science in Western Civilization (also S&T 282[2821]) # (III) (HA)]
Spring. 4 credits. HIST 281 is not a prerequisite to 282. P. Dear.
Aims to make comprehensible both to science majors and to students of the humanities the historical structure and development of modern science and to show sciences as cultural phenomena. Changing perceptions of nature and human knowledge from Greek antiquity to the 20th century form the framework for current Western views of the world, while the roots of the present-day dominance of "science" as a symbol of progress and modernity lie in an alliance between knowledge of nature and power over nature that took shape in the 19th century after a long period of emergence. Covers the 18th, 19th, and early 20th centuries.

[HIST 287(2870) Evolution (also BIOEE 287[2871], S&T 287[2871]) (I or III) (PBS)]
Fall or summer. 3 credits. A. MacNeill.
For description, see BIOEE 207.

[HIST 292(2920) Inventing an Information Society (also ENGRG/ECE 292[2980], S&T 292[2921]) (III) (HA)]
Spring. 3 credits. R. Kline.
For description, see ENGRG 298.

[HIST 329(3290) Physical Science in the Modern Age (also S&T 330[3301]) (III) (HA)]
Fall. 4 credits. S. Seth.
For description, see S&T 330.
HIST 357(3570) Engineering in American Culture (also ENGRG 357(3570), S&T 357(3571)) Fall. 4 credits. R. Kline.
For description, see ENGRG 357.

[HIST 415(4150) Seminar in the History of Biology (also BIOEE 467(4670), B&SOC/STS 447(4471)) (I or III) (PBS)]
Specific topic changes each year. For description, see BIOEE 467.

HIST 464(4640) Historical Issues of Science, Technology, Race and Colonialism (also S&T 475(4751)) Fall. 4 credits. S. Seth.
For description, see S&T 475.

[HIST 471(4710) Knowledge and Politics in 17th-Century England (also S&T 473(4731)) (III) (CA)]

[HIST 525(5250) Seminar in the History of Technology (also S&T 525)]

[HIST 620(6200) Intelligibility in Science (also S&T 620(6201))]

[HIST 680(6800) Seminar in Historiographical Approaches to Science (also S&T 680(6801))]
Fall. 4 credits. Not offered 2005--2006. P. R. Dear.

HIST 711(7110) Introduction to Science and Technology Studies (also S&T 711(7111))
Fall. 4 credits. P. Dear.
For description, see S&T 711.

Latin American History

HIST 195(1950) Colonial Latin America (III) (HA)
Fall. 4 credits. K. Graubart.
Examines the "encounter" between Spain and the New World, which began in 1492. Topics include the cultural hybridity that preceded as well as developed from colonialism, the production of ethnicity and race, slavery and economic stratification, intellectual currents and daily life, rebellion and independence.

HIST 196(1960) Modern Latin America (III) (HA)
Spring. 4 credits. R. Crab.
An introductory survey of Latin American history from the early 19th century to the present with particular emphasis on processes of nation-state formation and the development of capitalist economies. Prominent themes include U.S.-Latin American Relations; neocolonialism; and radicalism and revolutionary movements, explored through a variety of primary and secondary sources.

HIST 216(2160) Gender and Colonization in Latin America (III) (HA)
Spring. 4 credits. K. Graubart.
This sophomore seminar examines questions of gender and sexuality in the conquest and colonization of Latin America, 1492-1820. Topics will include: Iberian masculinity, men and women and the conquest; changes in indigenous gender roles as a result of colonization; and gender in society with slavery; honor and sexuality across classes and ethnic groups; nations, nationalism and gender in the 19th century.
This is a special seminar sponsored by the John S. Knight Institute’s Sophomore Seminars Program. Seminars offer discipline-intensive study within an interdisciplinary context. While not restricted to sophomores, the seminars aim at initiating students into the discipline’s outlook, discourse community, modes of knowledge, and ways of articulating that knowledge. Limited to 15 students. Special emphasis is given to strong thinking and writing and to personalized instruction with top university professors.

HIST 224(2240) Art and Politics in 20th-Century Latin History (III) (HA)

[HIST 225(2250) Sophomore Seminar: The U.S.-Mexico Border-History, Culture, Representation (also LSP 225(2250)) (III) (CA)]

[HIST 240(2400) Seminar: Immigration and Ethnicity in the 20th Century United States (also LSP 241(2400)) (III) (HA)]
Fall. 4 credits. Limited to 15 students. Prerequisite: permission of instructor. Not offered 2005--2006. M. C. Garcia.

HIST 245(2450) Sophomore Seminar: Drug Policy, Politics, Policies (III) (HA)
Spring. 4 credits. Recommended: previous course in Latin American history. M. Roldan.
This seminar uses the narcotics trade to examine a variety of issues in historical perspective: migration, human rights, smuggling, international trade and foreign policy. The temporal focus is the period between the 1920s and the present.
This is a special seminar sponsored by the John S. Knight Institute’s Sophomore Seminars Program. Seminars offer discipline-intensive study within an interdisciplinary context. While not restricted to sophomores, the seminars aim at initiating students into the discipline’s outlook, discourse community, modes of knowledge, and ways of articulating that knowledge. Limited to 15 students. Special emphasis is given to strong thinking and writing and to personalized instruction with top university professors.

[HIST 300(3000) Spanish in the Disciplines (also SPANL 302(3020)) (III) (CA)]
Fall. 1 credit. Co-requisite: HIST 306. Staff.
For description, see SPANL 302.

HIST 301(3010) Perspectives on Latin America (also LAT A/SPANL 320(3200)) (II or IV) (CA)
Spring. 4 credits. M. Roldan.
Introductory course recommended for those concentrating in Latin American Studies. Topics vary by semester, but readings always focus on current research in various disciplines and regions of Latin America. The range of issues addressed includes the economic, social, cultural, and political trends and transitions in the area. In the weekly meetings, instructors and guest lecturers facilitate student discussions. Students are required to participate in all class discussions and write one research paper in their chosen focus area.

HIST 303(3031) Andean History and Ethnography (II/III) (HA)
Spring. 4 credits. R. Graubart.
The Andean region of South America—comprising the modern nations of Peru, Ecuador, and Bolivia—has a rich documentary history dating back thousands of years, from major pre-Hispanic civilizations (most famously the Incas) to today as an important center in the Spanish colonial empire to modern revolutions and movements for indigenous rights. Through critical readings of historical texts as well as archaeological artifacts, students examine key junctures in Andean history, especially from the perspectives of indigenous peoples.

HIST 306(3060) Modern Mexico: From Independence to the Zapatisas (III) (HA)
Fall. 4 credits. R. Crab.
A survey of Mexico’s history from the early 19th century to the present. The course covers social, cultural and economic trends and their relationship to political movements. Special emphasis will be given to the ways in which “common people” participated in and influenced politics; to the important regional, class, ethnic, and gender differences that have figured prominently in Mexico’s history; and to the politics of history-making.

HIST 309(3090) History and Geographical Imagination (III) (HA)
Fall. 4 credits. Not offered 2005--2006. R. Crab.

HIST 404(4041) Ethnicity, Race, and Indigeneity in Latin America (III) (HA)
Fall. 4 credits. Limited to 15 students. Prerequisite: previous course in Latin American history. K. Graubart.
This seminar examines the historical production of “race” and ethnicity in the Latin American context, beginning with the invention of the category of “Indians” by European colonists and the introduction of African slaves into these already complex societies. We will examine in depth the theories of race that emerged in the 18th and 19th centuries in Europe and the Americas. The second half of the course will address contemporary issues that stem from these colonial concerns: nationalism, the romantic invocation of the indigenous past, cultural practices, land rights, political representation and enduring racism.

HISTORY 569
ARTS AND SCIENCES - 2005-2006

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Department</th>
<th>Credits</th>
<th>Time(s)</th>
<th>Prerequisites/Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIST 418(4180)</td>
<td>Comparative Agrarian History</td>
<td>(III)</td>
<td>4</td>
<td>Fall</td>
<td>Not offered 2005-2006. R. Craib.</td>
</tr>
<tr>
<td>HIST 424(4240)</td>
<td>Art and Politics in 20th-Century Latin America</td>
<td>(III)</td>
<td>4</td>
<td>Fall</td>
<td>Prerequisite: permission of instructor. Not offered 2005-2006. M. Roldan.</td>
</tr>
<tr>
<td>HIST 429(4290)</td>
<td>Cervantes and the Mediterranean World</td>
<td>(III)</td>
<td>4</td>
<td>Fall</td>
<td>Prerequisite: permission of instructor. Conducted in Spanish. M. Garces. For description, see SPANL 448.</td>
</tr>
<tr>
<td>HIST 431(4310)</td>
<td>Farmworkers</td>
<td>(III)</td>
<td>4</td>
<td>Fall</td>
<td>Prerequisite: permission of instructor. Conducted in Spanish. M. Garces. For description, see SPANL 448.</td>
</tr>
<tr>
<td>HIST 459(4590)</td>
<td>Radicals and Revolutionaries in Modern Latin America</td>
<td>(III)</td>
<td>4</td>
<td>Fall</td>
<td>Limited to 15 students. R. Craib.</td>
</tr>
</tbody>
</table>

Honors and Research Courses

Note: HIST 201-302 are not regular courses for which students may sign up at will. They are personal arrangements between an instructor and a particular student. Students must first gain the permission of a particular instructor to work with them.

- **HIST 201(2001) Supervised Reading**
 - Fall or spring. 2 credits. Prerequisites: junior or senior standing; permission of instructor. Staff.

- **HIST 302(3002) Supervised Research**
 - Fall or spring. 3 or 4 credits. Prerequisites: upperclass standing; permission of instructor. Staff.

- **HIST 400(4000) Honors Proseminar**
 - Fall and spring. 4 credits. Limited to 15 students. For prospective honors candidates in history. Prerequisite: permission of member of Honors Committee. Fall, F. Lojewski; spring, R. Craib. Explores major approaches to historical inquiry, analysis, and presentation. Ways of thinking about history along with research methods and organization of the results are considered by reading and discussing a variety of historical works. Substantive readings are drawn from several time periods and diverse geographical areas. There is one short paper during the semester and a longer final paper that explores the work of a major historian or school of historical writing. Students interested in HIST 400 should consult the DUS/head of honors program.

- **HIST 401(4001) Honors Guidance**
 - Fall. 4 credits. Prerequisites: HIST 400 and permission of instructor. J. V. Koschmann.

- **HIST 402(4002) Honors Research**
 - Spring. 4 credits. Prerequisites: HIST 400 and permission of instructor. J. V. Koschmann.

- **HIST 709(7090) Introduction to the Graduate Study of History**
 - Fall. 4 credits. Requirement for first-year graduate students. P. Holquist and T. Loo. Designed to introduce entering graduate students to the crucial issues and problems in historical methodology that cut across various areas of specialization.
HISTORY OF ART

The Department of the History of Art provides a broad range of introductory and advanced courses in Western art (European and North American) and non-Western art (East and Southeast Asian, African), from antiquity to the present.

The Major

Department majors acquire a broad understanding of the history of art in several chronological and geographical areas: ancient, medieval, Renaissance, modern (Europe and North America), Southeast Asia, China, Japan, and Africa. Additionally, majors practice a range of art historical methods and interpretive strategies, including connoisseurship, dendrochronology, feminism, iconography, semiotics, and art and social history. Majors are encouraged to locate the history of art within allied humanities fields and the applied arts by taking courses in history, literature, history of architecture, and fine arts. The study of foreign languages is strongly encouraged.

Requirements for the Major

Prospective majors should consult the director of undergraduate studies. Students wishing to declare a major in the history of art should have completed any two courses above the 100 level at Cornell in the department by the end of their sophomore year and have received a grade of B or above in both. Courses must be taken for letter grade. These courses count toward the total 44 credits. The major in the history of art requires 44 credits, 30 at the 200 level or above. The core requirements are: proseminar, another seminar at the 400 level or above; two courses on art from the following time periods: Ancient Europe, Medieval Islamic, or Renaissance/Baroque (one course per time period); two courses on art from the three following geographical areas: Africa, Asia, or Latin America (one course per region); and two courses on modern-contemporary art in Europe and North America, including art from outside the Anglo-American tradition. In addition to the 44 credits, majors are required to take two courses, approved by their advisers, in areas related to the history of art.

Honors

To become a candidate for the degree of bachelor of arts with honors in the history of art, a student must have a cumulative average of A- for all courses taken in the department and B+ in all arts and sciences courses. Application to write a honors thesis should be made to the director of undergraduate studies during the second semester of the junior year. Students are advised to enroll in ART H 498 or H 499 Research at this time. The application must include a summary of the proposed project, an endorsement by a faculty sponsor, and a copy of the student's transcript. In the senior year the honors candidate will include ART H 498 and 499 in his or her course load. These courses address the research and writing of the senior thesis under the direction of the student's project adviser.

Course Numbering System

100-level courses are first-year writing seminars.
200-level courses are introductions to the major subdivisions of Western art and art outside the West.
300-level courses are intermediate courses addressing more specialized topics or epochs.
400-level courses are seminars primarily for advanced undergraduates and graduate students.
500-level courses are seminars primarily for professional level.
600-level courses are seminars primarily for graduate students.

First-Year Writing Seminars

For first-year writing seminar offerings in the history of art, consult the John S. Knight Institute brochure for times, instructors, and descriptions. These courses may not be used to satisfy the distribution requirement or the major.

Courses

ART H 202(2100) Survey of European Art: Renaissance to Modern # (IV) (CA)
Summer only. 3 credits. D. Royce-Roll. The major traditions and movements in Western European art from the Renaissance to the modern period. Painting, sculpture, and architecture with an emphasis on painting. Each Friday class meets at the Johnson Museum of Art with gallery talks and viewing of relevant works that supplement the previous four days of classroom lectures.

ART H 209(2190) Sophomore Seminar: The Immigrant Imagination (also AAS 209[2090]) (III) (HA)
Spring. 4 credits. Limited to 15 students. T. Tu.
Explores how contemporary immigrant experiences are expressed through visual culture. Examines a variety of expressive forms—religious, social, and political—in the context of immigration. Art is a medium for the telling of stories and the making of history. The course places significant emphasis on, in addition to religious representations and other modes of narration, including literary and musical. The course is designed for students interested in the arts and cultures of immigration. It is a special seminar sponsored by the John S. Knight Institute's Sophomore Seminars Program. Seminars offer discipline-intensive study within an interdisciplinary context.

ART H 210(2100) Introduction to Art History: The Classical World # (IV) (CA)
Fall. 4 credits. A. Ramage.

ART H 211(2110) Introduction to Art History: The Medieval World # (IV) (CA)
Fall. 4 credits. A. Ramage.

ART H 212(2120) Introduction to Art History: The Renaissance and Baroque World # (IV) (CA)
Fall. 4 credits. C. Robinson.

ART H 213(2130) Introduction to Art History: The Modern World # (IV) (CA)
Fall. 4 credits. C. Robinson.

ART H 214(2140) Introduction to Art History: The Contemporary World # (IV) (CA)
Fall. 4 credits. C. Robinson.

ART H 215(2150) Introduction to Art History: The Islamic World # (IV) (CA)
Fall. 4 credits. C. Robinson.

ART H 250(2350) Introduction to Art History: Islamic Art and Culture (also NES 247[2747]) # (IV) (HA)
Fall. 4 credits. C. Robinson.

ART H 255(2355) Introduction to Art History: Medieval Art and Culture (also NES 253[2553]) # (IV) (HA)
Spring. 4 credits. C. Robinson.
ART H 260(2600) Introduction to Art History: The Modern Era (IV) (CA)
Spring. 4 credits. Not open to students who have taken ART H 201. Each student must enroll in a sec. J. Bemstock.

Consider modern art in a historical and cultural context, from painting associated with the French Revolution through American pop art. The course traces major movements and artists: Neo-Classicism (David), Romanticism (Delacroix), Realism (Courbet), Impressionism (Monet), Post-Impressionism (Van Gogh), Cubism (Picasso), Fauvism (Matisse), Surrealism (Miró), Abstract Expressionism (Pollock), and Pop Art (Warhol). Different critical approaches are examined.

ART H 261(2601) Introduction to Art History: Modern Art (IV) (CA)
Summer. 3 credits. D. Royce-Roll.

Introduction to early modern art as it developed within the French Revolution and Second World War II era. Both European and American movements are examined, particularly as represented in the Herbert F. Johnson Museum of Art collection where some class meetings are held. The course combines a chronological survey with a brief examination of topics concerning the social condition, the artist’s vision, and cultural iconology.

[ART H 270(2700) Mapping America (also AM ST 270(2700)) # (IV) (CA)

[ART H 280(2800) Introduction to Art History: Approaches to Asian Art @ # (IV) (CA)

ART H 306(3600) Introduction to Art History: Contemporary Art: 1960 to Present
Spring. 4 credits. Prerequisite: ART H 260 or equivalent. I. Dadi.

Discusses new art practices since the 1960s. Although numerous artistic experiments took place during the first half of the 20th century, it was with the declining importance of modernist painting and sculpture by the 1960s that newer modes of artistic practice became established. This course explores the rise of Fluxus, Minimalism, Conceptualism, Land Art, Video and Performance, Postmodernism, and Postcolonialism. These practices are located in relation to intellectual and social movements, such as the 1960s counterculture, feminism, race, ecology, institutional critique, and globalization. This course focuses primarily on European and American art but also incorporates selected global developments.

ART H 309(3250) Dendrochronology of the Aegean (also CLASS 330[3750], ARKEO 309[3090]) # (IV) (HA)
Fall and spring. 4 credits. Limited to 10 students. Prerequisite: permission of instructor. P. J. Kuniholm.

Participation in a research project of dating modern and ancient tree-ring samples from the Aegean and Mediterranean. Supervised research in laboratory, field, and archaeological excavation. A pass/fail exists for summer fieldwork in the Aegean.

ART H 321(3226) Mycenae and Homer (also CLASS/ARKEO 321[3721]) # (IV) (HA)
Fall. 4 credits. J. Coleman.

Study of the relationship between the Mycenaean period of Greece (known primarily from archaeology) and the Homeric Iliad and Odyssey. Topics include Mycenaean architecture, burial customs, kingship and military activities; the reasons for the collapse of the Bronze Age palatial economies; the archaeological evidence for society in the “Dark Ages” that followed; the writing systems of Mycenaean Greece (Linear B) and the Iron Age (the Semitic/Greek alphabet); the nature of the Homeric poems and their value as historical sources.

ART H 322(3202) Arts of the Roman Empire (also CLASS 350[3740])
Fall. 4 credits. Prerequisite: permission of instructor. A. Ramage.

The visual arts in the service of the first world state. Starts with the architecture, painting, and sculpture of the Etruscan and Republican period but concentrates on monuments of the Imperial era in Italy and the provinces until the time of Constantine. Art made for private patrons is considered, along with the official presentations of the emperors.

[ART H 325(3205) Greek Vase Painting (also CLASS 325[3725]) # (IV) (LA)

[ART H 327(3207) Greek and Roman Coins (also CLASS 327[3727]) # (IV) (LA)
Spring. 4 credits. A. Ramage.

Examines the varied issues of Greek cities and the Roman state. Considers coins as art objects as well as economic and historical documents. Studies changes in design, value, and metals from the origins of coinage to the late Roman period. Includes lectures, student presentations, and work with the actual examples.

[ART H 343(3443) Art and Society in Early Renaissance Italy @ # (IV) (HA)

[ART H 344(3440) Leonardo, Michelangelo, and Raphael @ # (IV) (HA)

[ART H 345(3445) Rome, Florence, and Venice in the 16th Century @ # (IV) (HA)
Spring. 4 credits. C. Lazzaro.

Examines the distinctive cultural identities of Rome, Florence, and Venice and how art, architecture, and urban planning served to create the myths and self-images of these cities, their rulers, and society. Rome (a secular state with the pope at its head), Florence (a duchy ruled by the Medici dynasty), and Venice (an oligarchic republic), all had in common a "civic society," a social and intellectual elite of both rulers and patricians joined by a shared classical culture. This course examines the images and symbols of each center, among them the centers of power in each city, government-sponsored propaganda, and major sculptural and architectural works. Works made for artists of the 16th century, including Michelangelo, Raphael, Bronzino, and Titian, are discussed, but the focus is on issues and issues rather than artists.

ART H 349(3149) Artistic Identity through Time: From Anonymous to Magananimous (IV) (HA)
Fall. 4 credits. P. More.

Surveys the variety of roles artists/architects have assumed, constructed, or negotiated over time. The social economic status of the artists ranges from revered truth to slave, manual laborer to intellectual, bohemian to member of the bourgeoisie, craftsman to visionary, activist to actor, spectator to hero. Constructions of genius and personal negotiation of identity are explored through a variety of sources, including philosophical texts, biography, treatises, popular press, and film. We consider artistic identity through gender, ethnicity, nationality, and social economic status. Artistic productions including architecture, painting, sculpture, installation, and performance are examined from the time of the Pharaohs to the present day, from Immhotep to Warhol.

ART H 350(3100) History of Photography (IV) (LA)
Winter. 4 credits. I. Dadi.

Provides a survey of the history of photography over a course of two centuries. Starting with its invention in the 1830s, this course covers the subject both topically and chronologically. During the 19th century, it focuses on its technical development and on the complex relations that photography in relation to painting, portraiture, urban life, war, anthropology, exploration and travel, and science and industry. While these topics continue to be important during the 20th century, photography has been enriched by new developments that include its use as a modernist and experimental art form, in social documentary and photojournalism, in propaganda, in advertising and fashion, and its centrality in the practice of conceptual art, postmodernism, and in the digital age.

ART H 351(3420) Culture of the Renaissance II (also COM/L/FRLIT 362[3620], ENGL 325[3250], HIST 364[3640], MUSIC 390[3242]) # (IV) (LA)
Fall. 4 credits. F sec required. W. J. Kennedy and K. Long.

Members of various departments lecture on Luther, Marguerite de Navarre, Michelangelo, Pare, Shakespeare, and Monteverdi. Guest lecturers include Richard Neil, History; Medina Lasansky, History of Architecture, Andrew Weislogel, Johnson Museum of Art; and Neil Zaslav, Music. Lectures and discussions introduce different methods of interpretation and of historical analysis.

[ART H 355(3300) Romanesque and Early Gothic Art and Architecture: Europe and the Mediterranean, 691 to 1150 AD (also NES 359) # (IV) (LA)
4 credits. Prerequisite: for freshmen, permission of instructor. Not offered 2005–2006. C. Robinson.]

[ART H 356(3301) Gothic and the Medieval World @ # (IV) (LA)

[ART H 360(3740) Painting 19th-Century America (also AM ST 360[3740]) # (IV) (CA)
Spring. 4 credits. Recommended: ART H 245. L. L. Meixner.

An interdisciplinary view of art life in 19th-century America from the colonial era through the Gilded Age. Considers definitions
of democratic culture through topical units, including New England portraiture and commodity culture; the art museum in ... images of Native Americans, Manifest Destiny, and the frontier myth; cosmopolitan taste and robber barons in the Gilded Age. Alongside key paintings, students look at print culture including daguerreotypes, postcards, political prints, photographs, and advertisements.

Puccini's La Bohème and Verdi's La Traviata. Images include postcards, playbills, medical photographs, and posters. Organizing our historical units is the theme of power and vision with attention to the female gaze, voyeurism, surveillance, and scopophilia.

Investigates the different forms of African- American visual artistic traditions in relation to their historical origins and sociocultural context from the early days of slavery to the present time. Starts with an overview of African art and the experiences of the Middle Passage and the Atlantic world; African American traditions in the decorative arts including: pottery, architecture, ironwork, quilt making, and basketry. This is followed by a fine-art survey starting with the 18th and 19th centuries and continuing through the early 20th-century Harlem Renaissance up to the present. Certain issues related to African-American arts and creativity such as "improvisation," "Black Aesthetic," and "Pan Africanism" are discussed. Slides, films, and filmstrips are used extensively to illustrate topics discussed. Visits to museums and relevant current exhibitions may be arranged.

Examines art in relation to contemporary politics, society and literature. A few of the developments on which the course focuses are: Abstract Expressionism, Pop Art, Earth Art, and Feminist Art. Examines various critical approaches.

Considers the contextual features of American art from the 1930s through the late 1980s.

Historical and critical survey of the architecture of Washington. Attention is given to the periods, styles, architects, and sociopolitical order. New and contemporary art forms associated with major socioeconomic changes and processes of assimilation and accumulation also are explored. These include tourist art, popular art, and elite art.

Investigates the different forms of African- American visual artistic traditions in relation to their historical origins and sociocultural context from the early days of slavery to the present time. Starts with an overview of African art and the experiences of the Middle Passage and the Atlantic world; African American traditions in the decorative arts including: pottery, architecture, ironwork, quilt making, and basketry. This is followed by a fine-art survey starting with the 18th and 19th centuries and continuing through the early 20th-century Harlem Renaissance up to the present. Certain issues related to African-American arts and creativity such as "improvisation," "Black Aesthetic," and "Pan Africanism" are discussed. Slides, films, and filmstrips are used extensively to illustrate topics discussed. Visits to museums and relevant current exhibitions may be arranged.

Fall. 4 credits. Each student must enroll in a sec. J. E. Bernstock. M. Fernandez.

Fall or spring. 4 credits. Prerequisite: students in Cornell in Washington program; nonarchitects. P. Scott.

Fall. 3 credits. S. Hassan.

Fall. 3 credits. K. McGowan.

Fall. 4-6 credits. Not offered 2005-2006. Faculty.

Fall. 4 credits. Requisite: permission of instructor. All classes meet in Johnson Art Museum study gallery.

Fall. 4 credits. Requisite: permission of instructor. All classes meet in Johnson Art Museum study gallery.

Fall. 4 credits. Requisite: permission of department faculty member.

Fall or spring. 2-4 credits; may be repeated for credit. Requisite: permission of department faculty member.

Fall. 4 credits. Requisite: history of art majors; freshmen and sophomores by permission of instructor. All classes meet in Johnson Art Museum study gallery.

Requisite: history of art majors; freshmen and sophomores by permission of instructor. All classes meet in Johnson Art Museum study gallery.

Fall. 4 credits. Requisite: history of art majors; freshmen and sophomores by permission of instructor. All classes meet in Johnson Art Museum study gallery.

Fall. 4 credits. Requisite: history of art majors; freshmen and sophomores by permission of instructor. All classes meet in Johnson Art Museum study gallery.

Fall. 4 credits. Requisite: history of art majors; freshmen and sophomores by permission of instructor. All classes meet in Johnson Art Museum study gallery.

Fall. 4 credits. Requisite: history of art majors; freshmen and sophomores by permission of instructor. All classes meet in Johnson Art Museum study gallery.

Fall. 4 credits. Requisite: history of art majors; freshmen and sophomores by permission of instructor. All classes meet in Johnson Art Museum study gallery.
ART H 410(4310) Methods in Medieval
(also NES 419(4710))
Spring. 4 credits. Prerequisite: permission of instructor. Seminar introducing students to the methods and tools of medieval scholarship. Required of all graduate students who have been admitted to the program in Medieval Art History; others, with permission of instructor, must enroll. C. Robinson.

ART H 411(4311) The Multicultural Alhambra (also S HUM/SPANL 411, NES 451)

ART H 412(4312) The Late Medieval Art of Devotion # (IV) (HA)

ART H 413(4113) Race, Technology and Visuality (also AAS 413(4130), AM ST 412(4113)(IV) (CA)
Fall. 4 credits. T. Tu.

ART H 414(4114) Popular Culture and Visual Practice in Asian America (also AAS 414(4140)) (IV) (CA)
Spring. 4 credits. T. Tu.

ART H 420(4322) The Late Medieval Devotional Image in Iberia (also NES 422(4722), SPANL 422(4220)) # (IV) (CA)
Fall. 4 credits. Prerequisites: permission of instructor; comfortable reading knowledge of Spanish. C. Robinson.

ART H 421(4450) Women in Italian Renaissance Art (also FGSS 451(4510)) # (IV) (HA)
Fall. 4 credits. Prerequisite: permission of instructor. Not offered 2005–2006. C. Lazzaro.

ART H 422(4321) Ceramics (also CLASS 431(4731), ARKEO 423(4231)) # (IV) (CA)
Fall. 4 credits. A. Ramage.

ART H 427(4207) Seminar on Roman Art and Archaeology (also CLASS 435(4735), ARKEO 435(4210)) # (IV) (CA)
Spring. 4 credits. Prerequisite: for freshmen or sophomores, permission of instructor. C. Robinson.

ART H 428(4254) The Rise of Classical Greece (also ARKEO/CLASS 434(4734)) # (IV) (HA)
Spring. 4 credits. Recommended: CLASS/ART H 220, 221, or permission of instructor. P. J. Runnels. Covers the art and archaeology of the Greek dark ages. Topics include: site reports, pottery, metalworking, the introduction of the alphabet, the beginnings of coinage, and links with Anatolia and the Near East.

ART H 440(4507) Aesthetic Theory: The End of Art (also GERST/COM L 656(6560)) (IV) (HA)
Fall. 4 credits. Prerequisite: permission of instructor. Not offered 2005–2006. P. Gilgern.

ART H 448(4440) Constructing the Self in the 16th Century # (IV) (HA)
Abstract expressionism, which would establish the United States as the leader of avant-garde art internationally from the late 1940s until the 1970s, was a self-consciously hermetic form of art. As such it has lent itself to numerous theories and conflicting interpretations (e.g., Marxist, feminist, psychoanalytical) that are the subject of this course.

ART H 466 (4610) Women Artists (also FGSS 404(4040)) (IV) (LA)
Fall. 4 credits. Prerequisite: permission of instructor. J. E. Bernstock. Seminar examining both feminist art criticism and the work of women artists from antiquity to the present. Consider the 1970s and the Bread and circuses movement. View works by such artists as Jennifer Bartlett, Artemisia Gentileschi, Elizabeth Vigee-Lebrun, Mary Cassatt, Kathe Kollwitz, Georgia O'Keefe, Louise Nevelson, Joan Mitchell, Judy Chicago, and Barbara Kruger.

ART H 476 (4776) Seminar in American Art (IV) (CA)

ART H 478 (4578) African Cinema (also AS & RC 435) @ (IV) (LA)

ART H 481 (4611) Art of the Tang Dynasty (618 to 907) (also ASIAN 479) @ (IV) (HA)
4 credits. Prerequisite: ART H 383 or course in Chinese history or literature and permission of instructor. Not offered 2005–2006. A. Pan.

ART H 482 (4840) The Era of Contention: Contemporary Taiwanese Art Since 1987 (also ASIAN/VISST 482(4482)) @ (IV) (HA)
4 credits. Prerequisite: history of art majors; freshmen or sophomores by permission of instructor. Not offered 2005–2006. A. Pan.

ART H 483 (4813) Arts of the Song Dynasty, with Focus on Tea Cultures in East Asia @ (IV) (LA)

ART H 490 (4850) Art and Collecting: East and West (also ASIAN 491(4045)) @ (IV) (CA)

ART H 491 (4690) Comparative Modernities @ (IV) (CA)

ART H 497 (4997) Honors Research
Fall or spring. 2 credits. Staff. The prospective honors student does rigorous independent readings supervised by a selected thesis adviser. By the end of the semester, an annotated bibliography and detailed outline of the thesis should be completed.

ART H 498 (4998) Honors Work I
Fall or spring. 4 credits. Intended for senior art history majors who have been admitted to the honors program. Basic methods of art historical research are discussed and individual readings assigned, leading to selection of an appropriate thesis topic.

ART H 499 (4999) Honors Work II
Fall or spring. 4 credits. Prerequisite: ART H 498. The student under faculty direction prepares a senior thesis.

ART H 506 (5505) Contemporary African Diaspora Art (also AS & RC 506(5650))
Spring. 4 credits. C. Finley. Since the 1950s, projects of African decolonization and Black liberation and empowerment have influenced the work of African Diaspora artists in the Black Atlantic. Pivotal historic events, such as the Civil Rights Movement, the dismantling of colonial rule in Africa, and the Brixton race riots in England, have urged Black artists to reexamine issues of memory, identity, history, and belonging. This course considers those artists who trace a visual genealogy of the African Diaspora and work in what has been identified as a practice of remembrance. Focuses on artists working after 1960 but also study the roots of the 20th century and in earlier periods.

ART H 520 (5200) Seminar in Classical Archaeology (also CLASS 630(7750), ARKEO 520(5200))

ART H 540 (5440) Nature, Cultural Landscape, and Gardens in Early Modern Europe
Fall. 4 credits. Prerequisite: permission of instructor. C. Lazzaro. Seminar examining cultural understandings of nature in early modern Europe, especially Italy. Considers concepts of nature as well as "second nature," "cultural landscape," and "pastoral" and the forming of national identity through gardens and alteration to the land. Also examines the cultural significance of plants, animals, and collections of natural objects, Italian gardens of the 16th and 17th centuries, and some French gardens, especially the Versailles of King Louis XIV.

ART H 549 (5450) Problems in Interpretation in Italian Renaissance Art
4 credits. Prerequisite: permission of instructor. C. Lazzaro.

ART H 570 (4150) Introduction to Critical Theory

ART H 571 (5571) African Aesthetics

ART H 572 (4152) Mimicry

ART H 574 (4154) Cyberfeminism
of Luhmann’s essays on the problems of aesthetics; important contributors to, and forerunners of, Luhmannian systems theory, such as von Förster, Bateson, and Spencer Brown; and contributions by Luhmann’s detractors and defenders, such as Habermas, Baćker, Rasch, and Werber.

[ART H 660(6600)] Visual Ideology (also GERST 660[6660])

HUMAN BIOLOGY PROGRAM

J. Haas, nutritional sciences, director (220 Savage Hall, 255-2665); B. Finlay, psychology; J. Fortune (biology/women’s studies), E. Frongillo (nutritional sciences), R. Johnston (psychology), K. A. R. Kennedy (ecology and systematic/anthropology), D. Levitsky (nutritional sciences), D. L. Pellicer (nutritional sciences), W. Provine (ecology and systematic/history), S. Robertson (human development), R. Savin-Williams (human development). M. Small (anthropology)

Human biology integrates the methods and theories of many disciplines, such as biology, nutrition, neurobiology, physiology, psychology, demography, ecology, genetics, and paleontology into a comprehensive study of biological diversity in Homo sapiens. A central focus of this interdisciplinary approach to the study of the human organism is an understanding of evolutionary processes that explain our biological variation through space and time. The curriculum of study seeks to educate future biological scientists to address the concerns of a society that is becoming more demanding of the scientific community to place its specialized biological knowledge in a broad context. The human biology curriculum is of particular relevance to undergraduate students in premedical and predentistry programs, biological anthropology, nutrition, human development, ecology and evolutionary biology, psychology, physiology, genetics, and the health-related sciences. It serves to bring together students who have a common interest in human biology and to provide a forum for student-faculty interaction on various topics relating to human evolution and biological diversity. Human biology is not a major but a curriculum of study that provides majors in various departments and colleges with a program for selecting elective courses that deal with the biology of the human species. Students after their freshman year may develop a program of study in human biology while majoring in any one of a number of different departmental fields.

Basic Requirements

The requirements for a program of study in human biology are designed to ensure sufficient background in physical sciences and mathematics to enable the student to pursue a wide range of interests in the fields of modern biological sciences, anthropology, and fields related to the evolution and biological diversity of the human species. Adjustments may be made in these requirements depending on the student’s academic background and affiliation with colleges and schools within the university.

The basic requirements are one year of introductory biology (BIO G 101–103 plus 102–104 or 105–106 or BIO G 107–108 offered during the eight-week Cornell Summer Session); one year of general chemistry (CHEM 207–208 or 215–216); one year of college mathematics (MATH 111–112 or 105–106 or 111–115); one course in genetics (BIO G 280, 281, or 282); one course in biochemistry (BIO G 330, 331, 332, or 333 or NS 320). It is recommended that students planning graduate study in biological anthropology, psychology, and related fields in the medical and nutritional sciences take a course in statistics. Students should consult their faculty adviser in human biology for help in selecting appropriate courses.

Elective courses should be taken to enable the student to acquire breadth in the subject matter of human biology outside of their departmental major. Therefore only 6 of the 15 human biology elective credits may also fulfill requirements for the major. Courses should be selected that also provide sufficient exposure to the integration of basic anatomical and physiological sciences with the behavior of individuals and groups within the context of evolutionary theory and ecology. The courses listed below are representative of the offerings in human biology and are included to assist the student in organizing a curriculum of study. They are organized into three groups that reflect the three levels of integration noted above: (1) human anatomy and physiology, (2) human behavior, and (3) human evolution and ecology. Students should choose at least one course from each of these areas of integration. It is anticipated that the student will include in a program of study at least one of the laboratory courses offered. It is expected that a student will take a minimum of 15 credits from among these courses.

There is no foreign language requirement for human biology beyond what is dictated by specific departments and colleges.

The requirements for the human biology curriculum are set alongside requirements of the undergraduate majors as these are listed as faculty in human biology to be their principal adviser, or he or she may have an adviser in the departmental major and seek the advice of a human biology faculty adviser in matters pertaining to satisfaction of the requirements. In certain cases a faculty adviser may represent both the major and the curriculum of study in human biology.

Courses

Human Anatomy and Physiology

AN SC 410(4100) Nutritional Physiology and Metabolism
Fall. 3 credits.

BIOAP 214(2140) Biological Basis of Sex Differences (also B&SOC 214[2141], FGSS 214[2140])
Spring. 3 credits.

BIOAP 311(3110) Introductory Animal Physiology, Lectures (also VETPH 346[3460])
Fall. 3 credits.

BIOAP 319(3190) Animal Physiology Experimentation
Fall. 4 credits.

BIOAP 427(4270) Fundamentals of Endocrinology
Fall. 3 credits.

BIOAP 458(4580) Mammalian Physiology
Spring. 3 credits.

BIOM 434(4340) Applications of Molecular Biology to Medicine, Agriculture, and Industry
Fall. 3 credits.

BIOM 439(4390) Molecular Basis of Human Disease (also BIOGD 439[4390])
Fall. 3 credits.

BIOEE 274(2740) The Vertebrates: Structure, Function, and Evolution
Spring. 4 credits.

BIOGD 487(4870) Human Genomics
Spring. 3 credits.

BIOM 417(4170) Medical Parasitology (also VETMI 431[4310])
Fall. 2 credits.

NS 115(1150) Nutrition, Health, and Society
Fall. 3 credits.

NS 222(2220) Maternal and Child Nutrition
Fall. 3 credits.

NS 315(3150) Obesity and the Regulation of Body Weight (also PSYCH 361[3610])
Spring. 3 credits.

NS 331(3310) Physiological and Biochemical Bases of Human Nutrition
Spring. 4 credits.

NS 341(3410) Human Anatomy and Physiology
Spring. 4 credits.

NS 361(3610) Biology of Normal and Abnormal Behavior (also PSYCH 361[3610])
Fall. 3 credits.

NS 421(4210) Nutrition and Exercise
Spring. 3 credits.

NS 431(4310) Mineral Nutrition and Chronic Disease
Fall. 3 credits.

NS 441(4410) Nutrition and Disease
Fall. 4 credits.

NS 475(4750) Mechanisms Underlying Mammalian Developmental Defects (also BIOAP 475[4750])
Spring. 3 credits.

NS 614(6140) Topics in Maternal and Child Nutrition
Fall. 3 credits.

PSYCH 322(3220) Hormones and Behavior (also BIONB 322[3220])
Fall. 3 or 4 credits.
PSYCH 425(4250) Cognitive Neuroscience
Fall. 4 credits.

PSYCH 460(4600) Human Neuroanatomy
Spring. 3 credits.

Human Behavior

ANTHR 208(3308) Anthropology of Human Mating
Fall. 3 credits.

ANTHR 390(3390) Primate Behavior and Ecology
Spring. 4 credits.

ANTHR 490(4930) Topics in Biological Anthropology
Spring. 4 credits.

BIONB 327(3270) Evolutionary Perspectives on Human Behavior
Fall. 3 credits.

BIONB 392(3920) Drugs and the Brain
Fall. 4 credits.

BIONB 421(4210) Effects of Aging on Sensory and Perceptual Systems
Fall. 3 or 4 credits.

BIONB 422(4220) Modeling Behavioral Evolution
Spring. 4 credits.

BIONB 424(4240) Neuroethology (also PSYCH 424[4240])
Spring. 3 credits.

BIONB 426(4260) Clinical Neurobiology
Fall. 3 credits.

BIONB 427(4270) Animal Social Behavior
Fall. 4 credits.

BIOP 247(2470) Ethnobiology
Fall. 3 credits.

BIOP 348(3480) The Healing Forest
Spring. 2 credits.

BIOP 442(4420) Current Topics in Ethnobiology
Fall. 3 credits.

DEA 325(3250) Human Factors: Ergonomics—Anthropometrics
Fall. 3 credits.

DEA 350(3500) Human Factors: The Ambient Environment
Spring. 3 credits.

HD 220(2200) The Human Brain and Mind (also COGST 220[2200])
Fall. 3 credits.

HD 266(2660) Emotional Functions of the Brain
Spring. 3 credits.

HD 320(3200) Human Developmental Neurosciences
Spring. 3 credits.

HD 344(3440) Infant Behavior and Development
Fall. 3 credits.

HD 366(3660) Psychobiology of Temperament and Personality
Fall. 3 credits.

HD 433(4330) Developmental Cognitive Neurosciences (also COGST 433[4330])
Spring. 3 credits.

NS 245(2450) Social Science Perspectives on Food and Nutrition
Fall. 3 credits.

NS 347(3470) Human Growth and Development: Biological and Behavioral Interactions (also HD & SOCS 347[3470])
Spring. 3 credits.

NS 361(3610) Biopsychology of Normal and Abnormal Behavior (also PSYCH 361[3610])
Fall. 3 credits.

PAM 380(3800) Human Sexuality
Spring. 4 credits.

PSYCH 223(2230) Introduction to Biopsychology
Fall. 3 credits.

PSYCH 332(3320) Biopsychology of Learning and Memory (also BIONB 328[3280])
Spring. 3 credits.

PSYCH 326(3260) Evolution of Human Behavior
Spring. 4 credits.

PSYCH 422(4220) Developmental Biopsychology
Fall. 4 credits.

PSYCH 425(4250) Cognitive Neuroscience (also BIONB 423[4230])
Fall. 4 credits.

PSYCH 427(4270) Evolution of Language (also COGST 427[4270])
Fall. 5 credits.

PSYCH 440(4400) The Brain and Sleep
Fall. 4 credits.

Human Evolution and Ecology

ANTHR 101(1300) Introduction to Anthropology: Biological Perspectives on the Evolution of Humankind
Fall. 3 credits.

ANTHR 203(2200) Early People: The Archaeological and Fossil Record (also ARKEO 203[2200])
Spring. 3 credits.

ANTHR 375(3750) Evolutionary Theory and Human Behavior
Spring. 4 credits.

ANTHR 390(3390) Primate Behavior and Ecology
Spring. 4 credits.

ANTHR 490(4930) Topics in Biological Anthropology
Spring. 4 credits.

BIOEE 261(2610) Ecology and the Environment
Fall or summer. 4 credits.

BIOEE 275(2750) Human Biology and Evolution (also NS 275[2750])
Fall. 3 credits.

BIOEE 278(2780) Evolutionary Biology
Fall or spring. 3 or 4 credits.

BIOEE 371(3710) Human Paleontology
Fall. 4 credits.

BIOEE 464(4640) Macroevolution
Spring. 4 credits.

BIOEE 469(4690) Food, Agriculture, and Society
Spring. 3 credits.

BIOEE 671(6710) Paleanthropology of South Asia (also ANTHR 671[671])
ASIAN 671(6731)

BIOEE 673(6730) Human Evolution: Concepts, History, and Theory (also ANTHR 673[673])
Spring. 3 credits.

BIOD 481(4810) Population Genetics
Fall. 4 credits.

BIOD 482(4820) Human Genetics and Society
Fall. 4 credits.

B&SOC 447(4471) Seminar in the History of Biology (also HIST 415[4150], S&T 447[4471])
Summer. 4 credits.

D SOC 201(2010) Population Dynamics (also SOC 202[202])
Spring. 3 credits.

D SOC 410(4100) Health and Survival Inequalities (also SOC 410[4100])
Fall. 4 credits.

NS 306(3060) Nutritional Problems of Developing Countries
Spring. 3 credits.

NS 450(4500) Public Health Nutrition
Spring. 3 credits.

NS 451(4510) Epidemiology and Health of Human Communities
Fall. 3 credits.

NS 452(4520) Molecular Epidemiology and Dietary Markers of Chronic Disease
Spring. 3 credits.

NS 457(4570) Economics of Hunger and Malnutrition (also ECON 474[4740])
Spring. 3 credits.

PAM 303(3030) Ecology and Epidemiology of Health
Fall. 3 credits.

PSYCH 326(3260) Evolution of Human Behavior
Spring. 4 credits.

PSYCH 427(4270) Evolution of Language (also COGST 427[4270])
Fall. 3 credits.

VTPMD 664(6640) Introduction to Epidemiology
Fall. 3 credits.

HUNGARIAN

See "Department of Linguistics" and "Russian."

INDEPENDENT MAJOR PROGRAM

J. Finlay, director, 55 Goldwin Smith Hall, 255-5004.
The inequality concentration exposes students to the breadth of approaches, methods, and topical areas on offer while also allowing them to tailor a program to their particular interests. The requirements are as follows:

1. Overview Course
 The overview course may be selected from any of the eight courses listed below. When possible, the overview course should be completed early in the program, as it serves to define the field and to expose students to topics that might be explored in future course work.
 - Income Distribution (IRLRE 441)
 - Inequality, Diversity, and Justice (PHIL 193, CRP /GOVT/SOC 293)
 - Power and Poverty in America (GOVT 310)
 - Social Inequality (SOC 208 and D SOC 209)
 - Comparative Social Stratification (D SOC 370 and SOC 371)
 - Social Inequality: Contemporary Theories, Debates, and Models (SOC 518)
 - Introduction to Social Inequality (SOC 108)
 - Inequality and Social Science (SOC 221)

2. Controversies About Inequality
 (PHIL 195, SOC/PAM/IRLRE/D SOC/GOVT 222)
 This 3-credit course introduces students to current controversies in the study of inequality while facilitating interdisciplinary dialogue between concentrators and faculty members at Cornell University. Students are exposed to research on inequality under way at Cornell presented by guest lecturers and also participate in debates on pressing inequality-relevant issues (e.g., welfare reform, school vouchers, immigration policy, affirmative action).

3. Electives
 In addition to the overview course and core course, students must select four electives from the list of qualified courses. This list can be viewed on the web site for the Center for the Study of Inequality.
 - Inequality and Social Science (SOC 221)
 - Social Inequality (SOC 208 and D SOC 209)
 - Comparative Social Stratification (D SOC 370 and SOC 371)
 - Social Inequality: Contemporary Theories, Debates, and Models (SOC 518)
 - Introduction to Social Inequality (SOC 108)
 - Inequality and Social Science (SOC 221)

4. Lectures and Seminars
 The Center for the Study of Inequality hosts occasional lectures and symposia, and concentrators are expected to attend them when possible. These events will be announced via e-mail and are also listed on the center web site, www.inequality.cornell.edu.

Enrolling in the Concentration
The web site for the Center for the Study of Inequality, www.inequality.cornell.edu, provides current information on the Inequality Concentration (see listing under "Academic Training"). For students considering the concentration, it may be useful to schedule a meeting with the assistant to the director (inequality@cornell.edu). Once a decision is made to enroll, a faculty adviser should be chosen to help design a program of study that combines effectively with the major, that is intellectually coherent, and that serves future career and professional interests well.

Research and Internship Opportunities
The Center for the Study of Inequality serves as a clearinghouse for internship opportunities in the areas of poverty and inequality (see CSI web site under "Finding an Internship"). Additionally, CSI can assist students who wish to become involved in research by matching them to faculty projects of interest, and by providing small research grants for student-initiated research (see CSI web site under "Student Research Grants").

Sample Programs
The inequality concentration allows students considerable flexibility in devising programs that reflect their interests. As examples of possible programs, we have listed below sample tracks, each comprising a different set of possible electives. The first program listed below is a general track that provides an overview of the field, while the remaining nine programs are more specialized and focus on particular issues within the field. This sampling of programs is obviously illustrative and does not cover the entire range of interests that may be addressed within the concentration.

General Track
The objective of the general track is to provide a broad foundation that addresses both the many forms of inequality (e.g., class, gender, ethnicity) as well as the various approaches and perspectives (e.g., economic, sociological, historical) that have been brought to bear on these forms. The sample schedule outlined below is just one of many possible programs that meets this generalist objective.

1. Overview Course (choose any one)
2. Controversies About Inequality (PHIL 195, SOC/PAM/IRLRE/D SOC/GOVT 222)
3. Possible Electives:
 - Economics of Hunger and Malnutrition (ECON 474, NS 457)
 - Race, Power, and Privilege in the United States (ASASC 280)
 - Gender Inequality (SOC 316)
 - Social Welfare as a Social Institution (PAM 383)

Globalization and Inequality
As a global economy takes hold, there has been increasing concern that economic inequalities will grow apace, especially North-South inequalities between rich and poor countries. The countervailing "optimistic view" is that between-country disparities will in the long run wither away and render inequality an entirely internal, within-country affair. These and related lines of argument can be explored in courses that address such topics as trends in income inequality, theories of economic development, emerging patterns of international migration, and globalization and gender.
1. **Overview Course (choose any one)**

2. **Controversies About Inequality (PHIL 195, SOC/PAM/ECON/ILRLE/GOVT 222)**

3. **Possible Electives (choose any four):**
 - International Development (D SOC 205, SOC 206)
 - Economic Development (ECON 371)
 - Labor Markets and Income Distribution in Developing Countries (ILRLE 635)
 - Globalization and Inequality (SOC 320)
 - Indigenous Peoples and Globalization (D SOC 325)
 - Comparative Ethnic Stratification: Demographic Perspectives (D SOC 431/631)
 - Global Perspectives on Gender (AS&R 362)
 - Sex and Gender in Cross-Cultural Perspective (ANTHR 321/621, FGSS 321/631)
 - Human Migration: Internal and International (D SOC 430)
 - Gender and International Development (FGSS/CRP 614)
 - Politics of Transnationalism (GOVT 681)

Social Policy and Inequality

In the modern period, inequalities generated in the market and through other social institutions are typically regarded as excessive, and the state is seen as the main tool for redistribution, discrimination abatement, equalization of life chances, and related forms of amelioration. The social policy and inequality track explores the role of the state in generating and reducing inequalities of various kinds.

1. **Overview Course (choose any one)**

2. **Controversies About Inequality (PHIL 195, SOC/PAM/ILROB/GOVT 222)**

3. **Possible Electives (choose any four):**
 - Organizations and Social Inequality (SOC 322, ILROB 626)
 - The Sociology of Markets (SOC 217)
 - Sociology of Markets (ILROB/SOC 622)
 - Economic Security (ILRLE 340, ECON 451)
 - Employment Discrimination and the Law (ILRBC 684)
 - Human Resource Economics and Public Policy (ILRHR 500)
 - Employee Relations and Diversity (ILRHR 463)
 - Social Welfare as a Social Institution (PAM 383)
 - Applied Public Finance (PAM 204)
 - Introduction to Policy Analysis (PAM 230)
 - Critical Perspectives (PAM 240)
 - Introduction to Policy Management (PAM 320)
 - Intermediate Policy Analysis (PAM 330)
 - Demography and Family Policy (PAM 371)
 - Social Policy (SOC 325/526)
 - Social Policy (PAM 473)

Social Policy and Social Welfare (CRP 488/548)

Policy Analysis: Welfare Theory, Agriculture, and Trade (ECON 430, AEM 630)

Economic Analysis of the Welfare State (ILRLE 642, ECON 460)

Families and Social Policy (HD 456)

Health and Social Behavior (HD/SOC 457)

Public Policy and the African-American Urban Community (AS&R 420)

Seminar: Beliefs, Attitudes, and Ideologies (PSYCH 489, FGSS 480)

Feminist Jurisprudence (LAW 646)

Political Economy of Education (EDUC 378)

Research on Education Reform and Human Resource Policy (ILRHR 653)

The Ethics of Inequality

Charges of social injustice are often charges of excessive inequality. What are the political, philosophical, and legal debates that are relevant to such judgments? Under what conditions should rich countries assist poor ones? At what point should governments step in and redistribute income? When should parents pass on their wealth to their children?

The ethics of inequality track examines the conditions under which inequalities might be deemed legitimate or illegitimate, evaluates prevailing inequalities and social policy as against this yardstick, and explores the larger role of values in popular and scholarly judgments about inequality.

1. **Overview Course: Inequality, Diversity, and Justice (PHIL 193, SOC/CRP/GOVT 293)**

2. **Controversies About Inequality (PHIL 195, SOC/PAM/ILROB/GOVT 222)**

3. **Possible Electives:**
 - **A. Ethics Courses (choose two):**
 - Values in Law, Economics, and Industrial Relations (ILRBC 607)
 - Appropriation and Alienation (PHIL 142)
 - Global Thinking (PHIL 194, GOVT 294)
 - Modern Political Philosophy (PHIL 346, GOVT 462)
 - Contemporary Political Philosophy (PHIL 447, GOVT 465)
 - International Justice (PHIL 448, GOVT 492)
 - Feminism and Philosophy (PHIL/FGSS 249)
 - Marx (PHIL 219)
 - Marx: An Overview of His Thought (ANTHR 368)
 - **B. Social Science Classes (choose two):**
 - Select courses in consultation with adviser (see list of electives below).

Poverty and Economic Development

Over the past century, rich countries have of course become yet richer, while less developed countries remain burdened with massive poverty. The courses listed below examine the sources and causes of world poverty, the rise of global anti-inequality social movements, and the types of policy interventions that might stimulate economic development and reduce poverty.

1. **Overview Course (choose any one)**

2. **Controversies About Inequality (PHIL 195, SOC/PAM/ILROB/GOVT 222)**

3. **Possible Electives (choose any four):**
 - Economic Development (ECON 371)
 - Population and Development (D SOC 438, SOC 437)
 - International Justice (PHIL 448, GOVT 492)
 - Economics of Development (ECON 466, AEM 666)
 - Land Reform Old and New (D SOC 643)
 - Issues in African Development (CRP 477/677)
 - Labor Markets and Income Distribution in Developing Countries (ILRRC 635)
 - Global Perspectives on Gender (AS&R 362)
 - Population, Environment, and Development in Sub-Saharan Africa (D SOC 495)
 - Gender and International Development (FGSS/CRP 614)
 - Politics of Transnationalism (GOVT 681)
 - Economics of Malnutrition and Hunger (NS 457, ECON 474)

Social Movements and Inequality

The history of modern society may be seen in large part as a history of anti-inequality social movements (e.g., the Enlightenment, socialism, the union movement, the civil rights movement, feminism) interspersed with occasional inequality-inducing reactions (e.g., the post-socialist transition). The social movements track examines the causes, effects, and likely future of such social movements and the reactions they spawn.

1. **Overview Course (choose any one)**

2. **Controversies About Inequality (PHIL 195, SOC/PAM/ILROB/GOVT 222)**

3. **Possible Electives (choose any four):**
 - Utopia in Theory and Practice (SOC 115)
 - Social Movements (D SOC 311)
 - Social Movements in American Politics (GOVT/AM ST 302)
 - Poor People's Movements (GOVT 456)
 - Group Conflict and the Nation-State (SOC 531)
 - Social Movements (SOC/GOVT 660)
 - Politics of Transnationalism (GOVT 681)
 - Feminism Movements and the State (GOVT/FGSS 353)
 - Comparative Labor Movements in Latin America (ILRRC 631)
 - Union Organizing (ILRBC 400)
 - Theories of Industrial Relations Systems (ILRRC 606)
 - Revitalizing the Labor Movement: A Comparative Perspective (ILRRC 632)
 - Women and Unions (ILRBC/FGSS 384)
History of Resistance Movements in Africa and the Diaspora (AS&R&C 283)
Latina Activism Feminist Theory (LSP 300)
Prisons (GOVT 314)

Education and the Reproduction of Inequality

In the contemporary period, the study of inequality has increasingly turned on the study of formal education, as schools have become the main institutional locus for training and credentialing workers and for signaling potential employers about (putative) worker quality. The inequality and education track examines educational institutions and how they are organized, how they generate equality and inequality, and how possible institutional changes (e.g., vouchers, required testing) might affect the reproduction of inequalities.

1. **Overview Course (choose any one)**
2. **Controversies About Inequality (PHIL 195, SOC/PAM/ILROB/GOVT 222)
3. **Possible Electives (choose any four):**
 - Introduction to Education (EDUC 101)
 - Sociology of Education (EDUC 271)
 - Education, Inequality, and Development (D SOC 305)
 - Schooling and Society (SOC 357)
 - Issues in Educational Policy (EDUC 370)
 - Political Economy of Education (EDUC 378)
 - The Politics of Education (GOVT 406)
 - Research on Education Reform and Human Resource Policy (ILRHR 653)
 - Education, Technology, and Productivity (ILRHR 695)
 - Educational Finance (EDUC 664)
 - Education in Africa and the Diaspora (AS&R&C/EDUC 459)
 - Education and Development in Africa (AS&R&C 502)

Race and Ethnicity in Comparative Perspective

This program of study examines the many forms of racial and ethnic inequality as revealed across different times and places. When race and ethnicity are examined from an explicitly comparative perspective, it becomes possible to identify regularities and better understand the forces of competition, conflict, and subordination among ethnic and racial groups. The courses listed below address such issues as the causes of discrimination, the implications of residential segregation for inequality, the sources of ethnic and racial differences in income, the effects of anti-inequality reform efforts (e.g., affirmative action), and the possible futures of ethnic and racial stratification.

1. **Overview Course (choose any one)**
2. **Controversies About Inequality (PHIL 195, SOC/PAM/ILROB/GOVT 222)
3. **Possible Electives (choose any four):**
 - Introduction to American Studies: New Approaches to Understanding American Diversity, the 20th Century (AM ST/LSP 110)
 - Race and Ethnic Relations (SOC 204)

Race, Power, and Privilege in the United States (AS&R&C 280)

History and Politics of Racialization: A Comparative Study (AS&R&C 204)

Sociology of Health and Ethnic Minorities (LSP/D SOC 220)

Prisons (GOVT 314)

Minority Politics in the United States (GOVT/ LSP 319)

Concepts of Race and Ethnicity (GOVT 377)

Comparative Ethnic Stratification: Demographic Perspectives (D SOC 431/631)

Race, Gender, and Organization (GOVT/FGSS 415)

Employee Relations and Diversity (ILRHR 463)

Ethnicity and Identity Politics: An Anthropological Perspective (ANTHR 479)

Political Identity: Race, Ethnicity, and Nationalism (GOVT/LSP 610)

B. Immigration and Ethnicity

Comparative Migration to the Americas (LSP 203, HIST 202, AM ST 204)

Strangers and Citizens: Immigration and Labor in U.S. History (ILRHR 302)

Immigration and Ethnic Identity (SOC/AAS 438)

Immigration and Ethnicity (SOC/AS 438)

Human Migration: Internal and International (D SOC 430)

The Immigrant City: 1900 to 2000 (LSP/HUM/AM ST 406, HIST 412)

Migration and the American Labor Force (ILRHR 469)

Immigration and Ethnicity in 20th-Century United States (HIST 201)

Immigration and Refugee Law (LAW 731)

C. Case Studies

African-American Social and Political Thought (AS&R&C 231)

African-American Women in the 20th Century (HIST/AM ST/FGSS 212)

African-American History from Slavery to Freedom (HIST 355)

The African-American Workers, 1865 to 1910: The Rural and Urban Experience (HIST 375, ILRHR 385)

The African-American Workers, 1910 to The Present: Race, Work, and the City (HIST 376, ILRHR 386)

African-American Women in Slavery and Freedom (HIST/AM ST 303, FGSS 307)

Public Policy and the African-American Urban Community (AS&R&C 420)

Politics and Social Change in Southern Africa (AS&R&C 484)

Global Africa: Comparative Black Experience (AS&R&C 501)

Afro-American Historiography (HIST 610)

African-American Women (HIST 608)

Latinos in the United States (SOC/D SOC 265, and LSP 201)

Introduction to U.S. Latino History, Part I (LSP/HIST 260, AM ST 259)

Introduction to U.S. Latino History, Part II (LSP/HIST/AM ST 261)

Latina Activism Feminist Theory (LSP 300)

Latino Politics in the United States (LSP/GOVT 306)

Introduction to Asian American Studies (AAS 110)

Asian American History (AAS/HIST 213)

Asians in the Americas: A Comparative Perspective (AAS/ANTHR 303)

Introduction to American Indian Studies (AIS/ D SOC 100)

Indian America in the 20th Century (AIS/D SOC 175)

Indians, Settlers, and Slaves in the Early South (AIS/HIST 329)

Antisemitism and the Crisis of Modernity: From the Enlightenment to the Holocaust (HIST/JWST 459)

The Family and Inequality

Although workers in modern labor markets are often analytically treated as independent individuals, they of course typically belong to families that pool the labor supply of their members, consume goods jointly, and serve in some circumstances as units of collective production. It might therefore be asked how the modern labor market has adapted to and evolved in the context of the family (and, obversely, how the family has responded to the market). The courses within this track explore such issues as the causes and consequences of the intrafamilial division of labor, the effects of marriage and family structure on careers, and the transmission of socioeconomic advantage from one generation to the next.

1. **Overview Course (choose any one)**
2. **Controversies About Inequality (PHIL 195, SOC/PAM/ILROB/GOVT 222)
3. **Possible Electives (choose any four):**
 - Work and Family (SOC/FGSS 203)
 - Demography and Family Policy (PAM 371)
 - Families and Social Policy (HD 456)
 - Families and the Life Course (SOC 251 and HD 250)
 - Parent-Child Development in African-American Families (HD 458)
 - The Sociology of Marriage (SOC/FGSS 309)
 - Seminar in Family Studies and the Life Course (HD 655)
 - Contemporary Family Theory and Research (HD 650)
 - Economics of Househill Behavior (PAM 605)
The Major
Information Science (IS) is an interdisciplinary field that explores the design and use of information systems in a social context: the field studies the creation, representation, organization, application, and analysis of information in digital form. The focus of Information Science is on systems and their use rather than on the computing and communication technologies that underlie and sustain them. Moreover, Information Science examines the social, cultural, economic, historical, legal, and political contexts in which information systems are employed, both to inform the design of such systems and to understand their impact on individuals, social groups, and institutions.

Courses in the Information Science (IS) major are assigned to three area-based tracks:

- **Human-Centered Systems** This area examines the relationship between humans and information, drawing from human-computer interaction and cognitive science.
- **Information Systems** This area examines the computer science problems of representing, organizing, storing, manipulating, and accessing digital information.
- **Social Systems** This area studies the cultural, economic, historical, legal, political, and social contexts in which digital information is a major factor.

Students must complete a set of 11 core courses: one introductory course, four courses in mathematics and statistics, and two courses from each of the three IS area-based tracks. Students must also obtain depth in two tracks.

Core (11 courses)

1. **Introductory** (one course):
 - INFO 130 Introductory Design and Programming for the Web
2. **Math and Statistics** (four courses):
 - MATH 111 Calculus I
 - either MATH 231 Linear Algebra and Differential Equations or MATH 221 Linear Algebra and Differential Equations
 - INFO 205 Mathematical Methods for Information Science
3. **Human-Centered Systems (two courses):**
 - INFO 214 Cognitive Psychology
 - INFO 245 Psychology of Social Computing
4. **Information Systems (two courses):**
 - COM S 211 Computers and Programming
 - INFO 280 Intermediate Design and Programming for the Web
5. **Social Systems (two courses):**
 - either ECON 301 Microeconomics or ECON 313 Intermediate Microeconomic Theory
 - either ECON 301 Microeconomics or ECON 313 Intermediate Microeconomic Theory

Additional information on Information Science courses can be found below and in the "Computing and Information Science (CIS)" section of "Courses of Study." Course information for all other courses in the major can be found in the relevant departments (e.g., AEM, COM S, S&TS).

Human-Centered Systems

One of the following:

- **MATH 171 Statistical Theory and Application in the Real World**
- **H ADM 201 Hospitality Quantitative Analysis**
- **AEM 210 Introductory Statistics**
- **PAM 210 Introduction to Statistics**
- **ENGRD 270 Basic Engineering Probability and Statistics (or equivalent)**

- **BTY 301 Statistical Methods I**
- **SOC 301 Evaluating Statistical Evidence**
- **C E 304 Uncertainty Analysis in Engineering**
- **ILRST 312 Applied Regression Methods**
- **ECON 319 Introduction to Statistics and Probability**
- **PSYCH 350 Statistics and Research Design**

3. **Human-Centered Systems (two courses):**
 - INFO 214 Cognitive Psychology
 - INFO 245 Psychology of Social Computing
4. **Information Systems (two courses):**
 - COM S 211 Computers and Programming
 - INFO 280 Intermediate Design and Programming for the Web
5. **Social Systems (two courses):**
 - either ECON 301 Microeconomics or ECON 313 Intermediate Microeconomic Theory
 - either ECON 301 Microeconomics or ECON 313 Intermediate Microeconomic Theory

Where options in the core courses exist, the choice will depend on the student's interests and planned advanced courses for the selected primary and secondary tracks.

Tracks
Students must complete four advanced courses in their primary track and three advanced courses in their secondary track, selected from those listed below. Human-Centered Systems and Information Systems can be used as primary or secondary tracks. Social Systems can be used only as a secondary track.

Requirements
Courses taken to satisfy the core course requirements may not be used to fulfill the track requirements.

Additional Information

PSYCH 416 Modeling Perception and Cognition

INFO 680 Advanced Human–Computer Interaction Design

INFO 545 Seminar in Computer-Mediated Communication

INFO 540 Language and Technology

DEA 470 Applied Ergonomic Methods

* Students who take PSYCH 342 may also count its prerequisite, PSYCH 205, toward the Human-Centered Systems primary or secondary track requirements. Similarly, students who take PSYCH 380 may also count PSYCH 280 toward the Human-Centered Systems primary or secondary track requirements. At most, one of PSYCH 205 or PSYCH 280 can be counted toward the primary or secondary track requirements.

Information Systems

INFO 330 Applied Database Systems

COM S 419 Computer Networks

LING 424 Computational Linguistics

INFO 430 Information Retrieval

INFO 431 Web Information Systems

COM S 432 Introduction to Database Systems

COM S 465 Computer Graphics I

COM S 472 Foundations of Artificial Intelligence

LING 474 Introduction to Natural Language Processing

OR&IE 474 Statistical Data Mining

COM S 478 Machine Learning

OR&IE 480 Information Technology

COM S 501 Software Engineering

INFO 530 Architecture of Large-Scale Information Systems

Social Systems

SOC 304 Social Networks and Social Processes

AEM 322 Technology, Information, and Business Strategy*

INFO 349 Media Technologies

INFO 355 Computers: From the 17 C. to the Dot.com Boom

INFO 356 Computing Cultures

ECON 368 Game Theory (formerly ECON 467)*

INFO 387 The Automatic Lifestyle: Consumer Culture and Technology

LAW 410 Limits on and Protection of Creative Expression—Copyright Law and Its Close Neighbors

S&TS 411 Knowledge, Technology, and Property

ECON 419 Economic Decisions under Uncertainty

COMM 428 Communication Law

INFO 435 Seminar on Applications of Information Science

OR&IE 435 Introduction to Game Theory*

S&TS 438 Minds, Machines, and Intelligence

INFO 447 Social and Economic Data

ECON 476/477 Decision Theory I and II
Courses can be found in the CIS section of
Detailed information about the concentration
all three tracks: Human-Centered Systems,
INFO 130(1300) Introductory Design and
concentration has been designed to ensure that students have substantial grounding in
of Study.
A concentration in Information Science is also available to students in the College of Arts and Sciences, CALS, AAP (Architecture and Planning students only), Engineering, Computing, and Social Sciences). Courses must be taken for a letter grade.
A grade of C or better in each of the completed core courses with an overall GPA for these courses of 2.7 or more.
Courses used in the affiliation GPA computations may be repeated if the original course grade was below a C. The most recent grade will be used for all repeated courses.
Qualifying courses must be taken at Cornell.
To qualify for departmental honors, a student must have:
• maintained a cumulative GPA greater than or equal to 3.5;
• completed INFO 435 Seminar on Applications of Information Science;
• completed 6 additional credits of IS course work at or above the 500 level (graded courses only; no seminars or 2-credit project courses; these courses are in addition to the primary and secondary track requirements);
• completed 6 credits of INFO 490 Independent Study and Research with an IS faculty member, spread over at least two semesters and with grades of A- or better. It is expected that the research pursued in INFO 490 will result in a project report.
The Concentration
A concentration in Information Science is also available to students in the College of Arts and Sciences, CALS, AAP (Architecture and Planning students only), Engineering, Computing, Human Ecology, Hotel, and IILR. The concentration has been designed to ensure that students have substantial grounding in all three tracks: Human-Centered Systems, Information Systems, and Social Systems. Detailed information about the concentration can be found in the CIS section of Courses of Study. Students are also referred to www.infosci.cornell.edu/ugrad/concentrations.html for more up-to-date description of the concentration and its requirements.
Courses
For complete course descriptions, see the Information Science listings under Computing and Information Science (CIS).
INFO 130[1300] Introductory Design and Programming for the Web (also
Fall. 3 credits.
INFO 295(2950) Mathematical Methods for Information Science
Fall. 4 credits. Corequisite: MATH 231 or equivalent.
INFO 330(3300) Applied Database Systems (also COM S 330[3300])
Fall. 3 credits. Prerequisite: COM S/ENGRD 211.
INFO 345(3450) Human-Computer Interaction Design (also COMM 345[3450])
Spring. 3 credits.
INFO 349(3491) Media Technologies (also COMM 349[3490], S&TS 349)
Spring. 3 credits. For description, see COMM 349.
INFO 355[3551] Computers: From the 17 C. to the Dot.com Boom (also
Fall. 4 credits. For description, see S&TS 355.
INFO 356(3561) Computing Cultures (also S&TS 356[3561])
Spring. 4 credits. Prerequisites: none. For description, see S&TS 356.
INFO 387[3871] The Automatic Lifestyle: Consumer Culture and Technology (also S&TS 387[3871])
Spring. 4 credits. Not offered 2005-2006. For description, see S&TS 387.
INFO 400[4300] Information Retrieval (also COM S 430[4300])
Fall. 3 credits. Prerequisite: COM S/ENGRD 211 or equivalent.
INFO 431(4302) Web Information Systems (also COM S 431[4302])
Spring. 3 credits. Prerequisites: COM S 211 and some familiarity with web site technology.
INFO 435[4390] Seminar on Applications of Information Science (also INFO 635[6390])
Spring. 3 credits. Prerequisites: background in computing, data structures, and programming at level of COM S 211 or equivalent, and experience in using information systems.
INFO 440[4400] Advanced Human-Computer Interaction Design (also COMM 440[4400])
Fall. 3 credits. Prerequisites: COMM 345 or permission of instructor. For description, see COMM 440.
INFO 445[4450] Seminar in Computer-Mediated Communication
Fall. 3 credits. Prerequisites: COMM/INFO 245.
For description, see COMM 445.
INFO 447[4470] Social and Economic Data (also IILRLE 447[4470])
Spring. 4 credits. Prerequisites: one semester of calculus, IS statistics requirement, at least one upper-level social science course, or permission of instructor.
INFO 450[4500] Language and Technology (also COMM 450[4500])
Spring. 3 credits. For description, see COMM 450.
INFO 490(4999) Independent Reading and Research
Fall, spring. 1-4 credits.
INFO 491[4910] Teaching in Information Science, Systems, and Technology
Fall, spring. Variable credit.
INFO 515[5150] Culture, Law, and Politics of the Internet
Fall. 4 credits.
INFO 530[5300] The Architecture of Large-Scale Information Systems (also COM S 530[5300])
Spring. 4 credits. Prerequisite: COM S 330 or COM S 432.
INFO 614[6140] Cognitive Psychology (also PSYCH 614[6140])
Fall. 5 credits. Not offered 2005-2006. Consists of two components: PSYCH 214 (3 credits) and COGST 501 (2 credits). Intended for graduate students; undergraduates opting for 5 credits should enroll simultaneously in PSYCH 214 and COGST 501.
For description, see PSYCH 614.
INFO 630(6300) Representing and Accessing Digital Information (also COM S 630[6300])
Spring. 4 credits. Prerequisite: basic knowledge of linear algebra and probability theory and basic programming skills.
INFO 634[6341] Information Technology in Sociocultural Context (also S&TS 634[6341])
Fall. 4 credits. Prerequisite: permission of instructor. Not offered 2005-2006. For description, see S&TS 634.
INFO 635[6390] Seminar on Applications of Information Science (also INFO 435[4390])
Spring. 3 credits. Prerequisites: background in computing, data structures, and programming at level of COM S 211 or equivalent, and experience in using information systems. Undergraduates and master's students should register for INFO 435; Ph.D. students should register for INFO 635.
INTERNATIONAL RELATIONS CONCENTRATION

D. R. Lee (AEM), director; Faculty Advisory Board: M. Cook (ILR), M. Evangelista (Government), S. Feldman (Development Sociology), J. Reppy (SILS), B. Strauss (History), K. Grace (Associate Director, Cornell Abroad)

Objective

The International Relations (IR) Concentration is an interdisciplinary program for undergraduate students enrolled in any of the seven Cornell undergraduate colleges. The IR Concentration provides a structured and yet flexible program for undergraduates to take advantage of the vast resources available at the university for studying the politics, economics, history, languages, and cultures of the countries and regions of the world.

Graduates of the program have gone on to pursue further education in fields such as political science and anthropology and to successful careers in international law, economics, agriculture, trade, finance, international development, and government service, among others. They have gone on to work in international and nongovernmental organizations, in cross-cultural affairs, in journalism, and in education.

The International Relations Concentration is not a major or a department, but rather a program offering a selection of courses reaching across colleges and departments. Students pursue the IR Concentration in addition to their regular degree. Students concentrating in international relations have majored in fields ranging from anthropology, city and regional planning, communications, economics, government, and history to natural resources, industrial and labor relations, and computer science. International course work and language study add a global and cross-cultural dimension to those majors. Some students even design an independent major in some aspect of international relations or comparative social or cultural studies. Spending a semester or year of study abroad can contribute to meeting the course requirements of the IR Concentration, including the language requirement.

Course Requirements

These requirements are designed to expose students to a broad range of perspectives in international relations while allowing them to tailor their course selections to specific interests. Courses throughout the university are grouped into four subject areas, including:

1. International Economics and Development
2. World Politics and Foreign Policy
3. Transnational Processes and Policies
4. Cultural Studies

Within these four subject areas, courses are also identified as "core" or "elective." Students must complete altogether eight courses from the four groups according to one of two options. Option A emphasizes the politics and economics of international relations. Option B puts greater stress on culture. In choosing either option, students should ensure that they acquire familiarity with more than one geographic region or country. All courses used to fulfill the concentration requirements must be taken for a letter grade. Courses can count both toward a major and the International Relations Concentration.

Option A: One core course from each of Groups 1, 2, 3, and 4; one elective from each of Groups 1, 2, 3, and 4

Option B: One core course from each of Groups 1, 2, 3, and 4; one elective from either Group 1 or Group 2—One elective from Group 3 and 4, and one additional elective from either Group 3 and Group 4

Before pre-registration a course list for the following semester (as well as lists for the current and previous semesters) can be obtained from the administrative coordinator in 156 Uris Hall, as well as from the web site.

Note: These lists are not necessarily complete. Other courses throughout the university qualify for the IR Concentration by prior arrangement.

Language Requirement

Students in the IR Concentration are expected to complete additional language study beyond the College of Arts and Sciences' degree requirement (for those in Arts and Sciences). This study can be accomplished in one of two ways: (1) two years of one foreign language (proficiency plus one course); (2) two languages at proficiency.

Study Abroad

Students in the IR Concentration are encouraged to study abroad to bring a practical dimension to their expertise in international issues. Those who choose this option will find the requirements for the concentration highly compatible with courses taken abroad. Students are encouraged to contact the administrative coordinator before departure.

Completion

Transcripts will reflect successful completion of the requirements for the Concentration. In addition, students will receive a special certificate and a letter of confirmation signed by the director of the IR Concentration and the director of the Mario Einaudi Center for International Studies.

Enrollment

To obtain course lists, to enroll and for all further information, please contact the IR administrative coordinator, Mario Einaudi Center for International Studies, 152 Uris Hall, 254-5004.

Course List for 2005-2006

Course options are listed below. Most courses are offered one semester only. Because offerings may change, see the administrative coordinator, course roster, and IR web site for further details.

Group 1: International Economics and Development

Core:

ECON/AEM 230 International Trade and Finance
ECON 263/AEM 430 International Trade Policy
ECON 361 International Trade Theory
ECON 362 International Monetary Theory and Policy

Electives:

AEM 432 Business and Governments in Global Marketplace
AEM 433/CRP 412 Development, Privatization, and New Public Management
ECON 324 American Economic History
ECON 371 Economic Development
ECON/ILRLE 444 Evolution of Social Policy in Britain and America
ECON/AEM 450 Resource Economics
ECON/AEM 464 Economics of Agricultural Development
CRP 327 Regional Economic Impact Analysis
CRP 371 Cuha: The Search for Development Alternatives
CRP 417 Economic Development: Firms, Industries, and Regions
GOVT 350/ILRRC 333 Politics of the Global North
GOVT 354 Capitalism, Competition, and Conflict
ANTHR 384 Africa in the Global Economy

Group 2: World Politics and Foreign Policy
Core:
GOVT 181 Introduction to International Relations

Electives:
GOVT 302 Social Movements in American Politics
GOVT 332 Modern European Politics
GOVT 400 Democracy in Latin America
GOVT 424 Contemporary American Politics
GOVT 482 Unifying While Integrating: China and the World
AS&RC 311 Government and Politics in Africa
AS&RC 451 Political and Social Change in Caribbean
HIST/AM ST 214 American Foreign Policy
HIST 252 Modern Eastern Europe
HIST 289/ASIAN 298 The U.S.-Vietnam War
HIST/LAT A 306 Modern Mexico: From Independence to the Zapatistas
HIST 371 World War II in Europe
HIST 414 Motivations of U.S. Foreign Policy

Group 3: Transnational Processes and Policies
Core:
GOVT/PHIL 294 Global Thinking
GOVT 393 Introduction to Peace Studies

Electives:
AEM 432 Business and Governments in Global Marketplace
ECON/AEM 464 Economics of Agricultural Development
CRP 384 Green Cities
CRP 453 Environmental Aspect of International Planning
HD 483 Early Care and Education in Global Perspective
D SOC 275 Immigration and a Changing America
ILRRCB 304 Seminar in American Labor and Social History
ILRRC 469 Immigration and the American Labor Force
IARD 300 Perspectives in International Agricultural and Rural Development
IARD/FD SC 402 Agriculture in the Developing Nations I
IARD 494 Special Topics in International Agriculture
NTRES 332 Ethics and the Environment
NTRES 494 History of the Environment Sciences

Group 4: Cultural Studies
Core:
ANTHR 200 Cultural Diversity and Contemporary Issues
ANTHR 102 Introduction to Anthropology: The Comparison of Cultures

Electives:
ANTHR/AM ST 230 Cultures of Native North America
ANTHR/AAS 303 Asians in the Americas
ANTHR 316 Power, Society, Culture in Southeast Asia
ANTHR/FGSS 321 Sex and Gender in Cross-Cultural Perspective
ANTHR 355 Situation of China’s Minorities
ANTHR/AM ST 355 Anthropology of Colonialism
ANTHR/LSP/AM ST 377 The United States
ART H 245 Renaissance and Baroque
ART H 250/FGSS 247 Introduction to Art History: Islamic Art and Culture
ART H 322/CLASS 350 Arts of the Roman Empire
ART H 365/AM ST 355 U.S. Art from FDR to Reagan
ART H 378/AS&RC 310 Art in African Culture and Society
AS&RC/ENGL 255 African Literature
AS&RC 310/ART H 378 Introduction of African Art
AS&RC 455 Caribbean Literature
AS&RC/EDUC 459 Education in Africa Diaspora
AS&RC 478 Family and Society in Africa
ASIAN 191 Introduction to Modern Asian History
ASIAN 208 Introduction to Southeast Asia
ASIAN 211 Introduction to Japan
ASIAN/MUSIC 245 Gamelan in Indo Culture
COM L 366 Literature and Film of South Asia
COM L 387/AS&RC 322 20th Black Culture Movement
COM L 489/ENGL 483/THER 483 Comparative 20th-Century Anglophone Drama
COM L/ITALL 495 Fascist Culture
ENGL 274 Scottish Literature and Culture
ENGL 333 The 18th-Century Novel
ENGL 340 The English Romantic Period
FGSS/SPANL 246 Contemporary Narratives by Latina Writers
FILM 293/NE 293/JWST 291 Sophomore Seminar: Middle Eastern Cinema
FILM/GERST 396 German Film
FRIT 221 Modern French Literature
FRIT 224/HIST 270 The French Experience
FRIT 321 Readings in Modern French Literature and Culture
FRIT 323 Reading Francophone Literature and Culture
FRIT 370 The French Enlightenment

HIST 151/AM ST 103 Introduction to Western Civilization
HIST 153 Introduction to American History
HIST/ASIAN 191 Introduction to Modern Asian History
HIST 195 Colonial Latin America
HIST 211/AM ST 251 Black Religious Traditions
HIST/FGSS/ASIAN 219 Women in South Asia
HIST 252 Modern Eastern Europe
HIST 291/JWST 252 Modern European Jewish History 1789 to 1948
HIST 305 Britain, 1660 to 1815
HIST 326 History of the British Empire
HIST/AM ST 345 19th-Century American Cultural History
HIST/ENGRG 357 Engineering in American Culture
HIST 360 Early Warfare, East and west
HIST 364/COM L 362/ENGL 325 Culture of the Renaissance II
HIST 388/ASIAN 385 Vietnamese Histories
HIST 395/ASIAN 397 Premodern Southeast Asia
HIST/LAT A 404 Race and Ethnicity in Latin America
HIST 429/SPANL 448 Cervantes-Mediterranean World
HIST 452 History of the New Europe
HIST 453/NE 457/RELST 457 Formation of Islamic Law
HIST 483/CLASS 475/RELST 475 Christianization/Roman World
HIST/ASIAN 492 Medieval Chinese History
ILRRCB/AM ST 306 Recent History of American Workers
ITALL 250 Perspectives in Italian Culture
ITALL 297 Introduction to Italian Literature
ITALL 300 Italian Practicum
KRLIT 405 Readings in Korean Literature
NES 254 Introduction to Near Eastern Civilizations
NES/JWST/RELST 275 Religions of Ancient Israel
NES 366/JWST 366 011-229/ The History and Archaeology of the Ancient Near East
NES 447 Middle Eastern Music Ensemble
RUSSL 369 Dostoevsky
RUSSL 499 The Avant-Garde in Russian Literature and the Arts
SOC/NE 332 Martyrdom in Contemporary Society
SOC 478 Family and Society in Africa
SPANL 218 Introduction to Hispanic Literature
SPANL 301 Hispanic Theater Production
SPANL 319 Renaissance Hispanism
SPANL 323 Reading Latin American Civilization
THETR 242 Introduction to World Theatre III
The Program of Jewish Studies was founded as an extension of the Department of Semitic Languages and Literatures, now the Department of Near Eastern Studies, in 1973 and attained status as an intercollegiate program in 1976. The program has grown out of the conviction that Judaic civilization merits its own comprehensive and thorough treatment and that proper understanding of any culture is inconceivable without adequate knowledge of the language, literature, and history of the people that created it. Accordingly, the offerings in the areas of Jewish languages and especially modern Jewish history and culture have been added to the program. It is a broadly based, interdisciplinary program, bringing together faculty from various Cornell departments and colleges. The Program of Jewish Studies supports teaching and research in the many areas of Jewish Studies. It is a secular, academic program, whose interests are diverse and cross-cultural. The program recognizes its special relationship to teaching and research in classical Judaica and Hebraica pursued by the members of the Department of Near Eastern Studies, with particular emphasis on the interrelationship between Judaism, Christianity, and Islam.

It presently enables students to obtain basic instruction and specialization in the fields of Semitic languages: the Hebrew Bible, medieval and modern Hebrew literature; ancient, medieval, and modern European and Middle Eastern Jewish history; and Holocaust studies. In some of these fields students may take courses on both graduate and undergraduate levels. Faculty throughout the university provide breadth to the program by offering courses in related areas of study.

For more information, please visit www.arts.cornell.edu/jwst/index.html.

Courses Offered

JWST 101-102 (1101-1102) Elementary Modern Hebrew I and II (also NES 101-102/1101-1102)

101, fall; 102, spring. 4 credits. Letter grades only. S. Shoer.

For description, see NES 101-102.

JWST 103 (1103) Elementary Modern Hebrew III (also NES 103/1103)

Fall. 4 credits. N. Scharf.

For description, see NES 103.

JWST 123-124 (1111-1112) Introduction to Biblical Hebrew I and II (also NES/RELST 123-124/1111-1112)

123, fall; 124, spring. 3 credits each semester. JWST 124 provides language qualification. Limited to 17 students. Not offered 2005-2006. Staff.

For description, see NES 123-124.

JWST 200 (2100) Intermediate Modern Hebrew (also NES 200/2100)

Spring. 4 credits. N. Scharf.

For description, see NES 200.

JWST 223 (2623) Introduction to the Hebrew Bible (also NES/RELST 223/2623)

Fall. 3 credits. S. Sanders.

For description, see NES 223.

JWST 227 (2727) The Bible and Ancient Near Eastern Civilization (also NES/RELST 227/2727)

For description, see NES 227.

JWST 229 (2629) Introduction to the New Testament (also CLASS 215/2629, RELST/NESS 229/2629)

Fall. 3 credits. K. Haines-Eitzen.

For description, see NES 229.

JWST 234 (2634) Muslims and Jews in Confluence and Conflict (also NES/RELST 234/2634)

Fall. 3 credits. Not offered 2005-2006. R. Brann.

For description, see NES 234.

JWST 235 (2635) Jews and Arabs in Contact and Conflict: The Modern Period (also COM L 245/2450, NES 235/2635)

Spring. 3 credits. D. Starr.

For description, see NES 235.

JWST 250 (2650) From Medievalism to Modernity: The History of Jews in Eastern Modern Europe, 1492-1789 (also NES 245, HIST 285/2850)

Fall. 4 credits.

For description, see HIST 292.

JWST 251 (2651) Judaism, Christianity, and Islam (also NES/RELST 251/2651)

For description, see NES 251.

JWST 252 (2920) Modern European Jewish History, 1789 to 1948 (also HIST 291/2910)

Fall. 4 credits. V. Caron.

For description, see HIST 292.

JWST 253 (2850) Anti-Semitism and the Crisis of Modernity: From the Enlightenment to the Holocaust (also HIST 235/2350)

Fall. 4 credits. V. Caron.

For description, see HIST 235.

JWST 256 (2556) Introduction to the Quran (also NES 256/2556, RELST/COM L 256/2556)

Fall. 3 credits.

For description, see NES 256.

JWST 257 (2570) Ethics of Imagining the Holocaust (also GERST/ENGL 221)

For description, see ENGL 221.

Spring. 3 credits.

For description, see NES 262.

JWST 263 (2663) Introduction to Biblical History and Archaeology (also RELST/ARKEO/NES 263/2663)

Spring. 3 credits. J. Zorn.

For description, see NES 263.

JWST 266 (2666) Jerusalem Through the Ages (also RELST/NES/ARKEO 266/2666)

Fall. 3 credits.

For description, see NES 266.

JWST 268 (2668) Ancient Egyptian Civilization (also ARKEO/NES 268/2668)

Fall. 3 credits. Not offered 2005-2006.

For description, see NES 268.

JWST 271 (2271) Yiddish Linguistics (also LING 241/2241)

For description, see LING 241.

JWST 273 (2673) History of the Middle East: 13th through 18th Centuries (also HIST 275/2731), NES 273/2673)

Fall. 3 credits.

For description, see NES 273.
JWST 274(2674) History of the Modern Middle East: 19th and 20th Centuries (also HIST 276[2760], GOVT 274[2747], HIST 276[2674]) Spring. 3 credits. M. Campos. For description, see NES 274.

JWST 275(2675) Religions of Ancient Israel (also RELST/NES 275[2675], ARKEO 276[2675]) Fall. 3 credits. J. Zorn. For description, see NES 275.

JWST 290(2670) History of Zionism and the Birth of Israel (also NES 290, HIST 267) Spring. 4 credits. Not offered 2005–2006. V. Caron. For description, see HIST 267.

JWST 291(2793) Middle Eastern Cinema (also NES 293[2793], FILM 293[2930], COM L 293, VISST 293[2193]) Fall. 4 credits. D. Starr. For description, see NES 293.

JWST 295(2695) Introduction to Christian History (also RELST/NES 295[2695], HIST 299[2695]) Spring. 3 credits. Not offered 2005–2006. R. Harrigan. For description, see NES 295.

JWST 301(3101) Advanced Intermediate Modern Hebrew (also NES 301[3101]) Fall. 4 credits. N. Scharf. For description, see NES 301.

JWST 305(3105) Conversational Hebrew (also NES 305[3105]) Spring. 2 credits. Limited to 15 students. Prerequisite: NES 301, 400, or permission of instructor; non-native speakers only. N. Scharf. For description, see NES 305.

JWST 320(3620) Women in the Hebrew Bible (also RELST 320[3270], NES 320[3720], FGSS 322[3220]) Fall. 4 credits. S. Sanders. For description, see NES 320.

JWST 329(3629) Introduction to New Testament Synoptic (also RELST/ NES 329[3629], CLASS 305[3629]) Fall. 1 credit. K. Haines-Eitzen. For description, see NES 329.

JWST 332(3832) Martyrodom in Contemporary Societies (also NES 332[3832], SOC 332[3320]) Fall. 4 credits. T. Sorek. For description, see SOC 332.

JWST 352(3700) History of the Holocaust (also HIST 370[3700]) Spring. 4 credits. V. Caron. For description, see HIST 370.

JWST 361(3661) Sumerian Language and Culture I (also NES 361[3661], ARKEO 361[3661]) Fall. 4 credits. Not offered 2005–2006. D. I. Owen. For description, see NES 361.

JWST 362(3762) Sumerian Language and Culture II (also NES 362[3662], ARKEO 362[3662]) Spring. 4 credits. D. I. Owen. For description, see NES 362.

JWST 365(3665) Ancient Iraq II: From the Beginning of the Second Millennium to the Conquest of Alexander the Great (also ARKEO 365[3665], NES 365[3665]) Spring. 4 credits. Not offered 2005–2006. D. I. Owen. For description, see NES 365.

JWST 366(3666) History and Archaeology of the Ancient Near East (also NES/ARKEO 366[3666]) Fall. 4 credits. D. I. Owen. For description, see NES 366.

JWST 369/669 Sumerian Language and Culture IV (also NES 369[3669], ARKEO 369[3669]) Fall. 4 credits. D. I. Owen. For description, see NES 369.

JWST 370(3870) The Middle East in Europe (NES 370[3870], SOC 387) Spring 4 credits. T. Sorek. For description, see NES 370.

JWST 373/673 Sumerian Language and Culture V (also NES 373[3673], ARKEO 381[3661]) Spring. 4 credits. D. I. Owen. For description, see NES 373.

JWST 385(3685) Middle Eastern Cities: History, Society, and Culture (also HIST 382[3820], NES 385[3685]) Fall. 4 credits. Not offered 2005–2006. M. Campos. For description, see NES 385.

JWST 386(3788) The Jews in and Out of Egypt (also NES 386[3788], COM L 386[3880]) Spring. 4 credits. Not offered 2005–2006. D. Starr. For description, see NES 388.

JWST 393/693 History of Jews and Christians in the Modern Middle East (also NES 393[3693]) Fall. 4 credits. Not offered 2005–2006. M. Campos. For description, see NES 393.

JWST 395(3895) Israeli Society (also NES 395[3695], SOC 390[3900]) Spring. 4 credits. T. Sorek. For description, see NES 395.

JWST 397(3697) History of the Israeli-Palestinian Conflict (also NES 397[3697], GOVT 397[3697]) Fall. 4 credits. Not offered 2005–2006. T. Sorek. For description, see NES 397.

JWST 400(4100) Seminar in Advanced Modern Hebrew (also NES 400) Fall. 4 credits. Limited to 15 students. N. Scharf. For description, see NES 400.

JWST 401(4101) Topics in Modern Hebrew Literature (also NES 401) Spring. 4 credits. D. Starr. For description, see NES 401.

JWST 420(4102) Readings in Biblical Hebrew Prose (also NES/RELST 420[4102]) Spring. 4 credits. S. Sanders. For description, see NES 420.

JWST 428(4628) Gnosticism and Early Christianity (NES/RELST 428[4628]) Fall. 4 credits. K. Haines-Eitzen. For description, see NES 428.

JWST 446(4170) History of Jews: Modern France (also HIST 417[417]) Spring. 4 credits. V. Caron. For description, see HIST 417.

JWST 453(4330) History of Modern German Jewry: From the Enlightenment to the Post-1945 Era (also HIST 433[433], GERST 433) Spring. 4 credits. Not offered 2005–2006. V. Caron. For description, see HIST 433.

JWST 467(4567) Cultivating Modernities: The Aesthetics of Uneven Development in the Middle East (also NES 467[4567]) Fall. 4 credits. T. Grigor. For description, see NES 467.

JWST 468(4568) Of Orientalism and (Post)Colonial Space (also NES 468[4568]) Spring. 4 credits. T. Grigor. For description, see NES 468.

JWST 474(4740) Topics in Modern Europe: Intellectual and Cultural History (also JWST 674[6740], HIST 474[4740], COM L 474[6724740], 6740], COM L 474 [4740], 6740], COM L 474 [4740], 6740]) Fall. 4 credits. D. LaCapra. For description, see HIST 474.

JWST 491-492(4991-4992) Independent Study—Undergraduate Fall and spring. Variable credit. Staff.

Courses not offered 2005–2006

JWST 236 Israel: Literature and Society (also NES 236) Spring. 4 credits. V. Caron. For description, see NES 236.

JWST 246 Introduction to Classical Jewish History (also RELST/NES 246) Spring. 4 credits. T. Sorek. For description, see RELST/NES 246.

JWST 255 Women and the Holocaust (also ENGL/FGSS 255) Spring. 4 credits. D. Starr. For description, see ENGL/FGSS 255.

JWST 261 Ancient Seafaring (also NES 261, ARKEO 261) Spring. 4 credits. D. Starr. For description, see NES 261.

JWST 271 Yiddish Linguistics (also Ling 271) Spring. 4 credits. D. Starr. For description, see Ling 271.

JWST 299 The Hebrew Bible and the Arabic Qur'an in Comparative Perspective (also NES/RELST/COM L 299) Spring. 4 credits. D. LaCapra. For description, see NES/RELST/COM L 299.

JWST 323 Rebuilding Biblical Narrative Apocrypha and Pseudepigrapha (also NES/RELST 323) Spring. 4 credits. T. Sorek. For description, see NES/RELST 323.

JWST 328 Gnosticism and Early Christianity (also NES 328, RELST 330) Spring. 4 credits. T. Sorek. For description, see NES 328.
JOHN S. KNIGHT INSTITUTE FOR WRITING IN THE DISCIPLINES

The director of the John S. Knight Institute is Jonathan Monroe, associate dean of the College of Arts and Sciences, professor in the Department of Comparative Literature, and George Elliott Reed Professor. Katherine Gottschalk, senior lecturer in the Department of English, is the Walter C. Teagle Director of First-Year Writing Seminars. The institute's offices are in 101 McGraw Hall, 255-4061.

S. Donatelli (Sophomore Seminars Program), M. Gilliland (Writing Workshop), K. Hjortshoj (Writing in the Majors), B. LeGendre (Writing Workshop), J. Martin (Writing Workshop), J. Pierpont (Writing Workshop), E. Shapiro (Writing Workshop).

The John S. Knight Institute helps to coordinate the teaching of writing in all undergraduate schools and colleges (the School of Industrial and Labor Relations; the School of Hotel Administration; and the colleges of Agriculture and Life Sciences; Architecture, Art, and Planning; Arts and Sciences; Engineering; and Human Ecology). The program administers writing seminars for first-year and upperclass students, discipline-based seminars in its Sophomore Seminars Program, tutorial writing classes, and seminars in the teaching of writing. More than thirty academic departments and programs participate in the program.

First-Year Writing Seminars

For first-year students the Institute offers the First-Year Writing Seminars—more than 125 different courses in the humanities, social sciences, expressive arts, and sciences. Through introductory work in a particular field of study, seminars help students write good English expository prose—prove that, at its best, is characterized by clarity, coherence, intellectual force, and stylistic control. All seminars pursue this common aim through small classes, with a maximum of 17 students, and adherence to a program-wide set of guidelines:

- Seminars require at least six—and at most nine—formal essays on new topics. (While these assignments should total about 30 pages, some of the 30-page total may include major drafts that receive commentary from the instructor and are later significantly revised.) Assignments form a logical sequence.
- At least three of the six to nine required essays are developed through several stages of revised drafts under the instructor's guidance. Guidance may involve oral or written commentary on drafts, individual conferences, in-class group work, peer commentary, reading responses, journals, and so on.
- Ample classroom time is spent on work directly related to writing.
- Reading assignments in the course subject are kept under 75 pages per week to permit regular, concentrated work on writing.
- All students meet in at least two individual conferences with the instructor.

Offerings change from semester to semester. Each semester's First-Year Writing Seminars are described on the web at http://fws.arts.cornell.edu.

To ensure that students will enjoy the benefits of small writing classes, First-Year Writing Seminars are limited to no more than 17 students. In structuring their writing courses, students request placement in one of five writing seminars by filling out an electronic ballot in August for the fall semester and in November for the spring semester. Over 90 percent receive one of their top three choices. After placement by ballot, students may change their writing seminars via electronic add and drop. Writing seminars may be added only during the first two weeks of each semester.

The colleges and the schools served by the Institute accept First-Year Writing Seminars in fulfillment of their individual graduation requirements in categories referred to variously as “first-year writing,” “oral and written expression,” and the like. The Institute does not decide whether students may graduate: it makes courses available. Individual colleges and schools administer their own graduation requirements.

Currently, most undergraduate students are required to take two First-Year Writing Seminars. Architecture majors, however, need only one. Hotel students fulfill their requirement in one semester, through H ADM 165 in one semester plus one First-Year Writing Seminar in the other. Agriculture and Life Sciences students can take First-Year Writing Seminars through four from among a variety of other courses to fulfill their requirement.

All students who score 5 on the Princeton Advanced Placement Examination in English receive 3 credits. Such credits are awarded automatically; no application to the John S. Knight Institute or the Department of English is necessary. How these credits may be applied to first-year writing or other distribution requirements depends on the student’s college and school. Students who score 5, except Architecture majors, may apply their 3 credits toward the writing requirements of their college. Students who score 4, only Agriculture and Life Sciences students and Hotel students, may apply their 3 credits toward the writing requirements of their college. Students should always consult their college registrars to be certain that they understand their writing requirements.

Students who have already taken a First-Year Writing Seminar, or who score 4 or 5 on the Princeton AP exam, or 700 or better on the English Composition or CEEB, may enroll, space permitting, in the following upper-level First-Year Writing Seminars: ENGL 290, 271, or 272.

Although there are no exemptions from college writing requirements, some students may fulfill all or part of their college’s writing requirement through transfer credits or transfer-course substitutions.

For work done at other institutions to be accepted as equivalent to First-Year Writing Seminars, students should demonstrate that they have done a reasonably equivalent amount of writing in a formal course (e.g., it is not sufficient to write one 30-page term paper.) Students in the College of Engineering and the College of Arts and Sciences must file an “application for transfer evaluation” to request writing credit for such courses; students in other colleges should consult their college registrars.

In unusual circumstances, upper-level students may petition to use a Cornell writing course other than a First-Year Writing Seminar to satisfy part of their writing requirement. The John S. Knight Institute must approve all such petitions in advance.

For information about the requirements for First-Year Writing Seminars and descriptions of seminar offerings, visit the John S. Knight Institute web site at http://arts.cornell.edu/knight_institute.

English 288–289: Expository Writing

Helps students write with more confidence and skill in all disciplines. Open to Cornell sophomores, juniors, and seniors. ENGL 288–289 courses explore themes shaped by a genre or use of expository writing, by the common concerns of several disciplines, or by an interdisciplinary topic intimately related to the written medium. Although English department instructors make up roughly half the staff, the Knight Institute’s involvement enables the course to extend and diversify its offerings in separately defined, 16-member sections that appeal to the varied interests and needs of students in many areas of study. Students may choose among a variety of sections focusing on such themes as “War, Peace, Terror, and the Law,” “Making the News,” “The Reflective Essay,” “Hollywood Babylon,” and “Rights, Democracy, and the Courts.” All staff are selected because their special interests and their training and experience in First-Year Writing Seminars promise original course design and superior performance.

Sophomore Seminars

Since 2001, the John S. Knight Institute has been sponsoring a distinctive tier of electives through its Sophomore Seminars Program. The program involves a range of disciplines across the College of Arts and Sciences and the university. Building on an introductory exposure to discipline-specific approaches to writing gained by students in their two required First-Year Writing Seminars, the Sophomore Seminars provide interested students with an early mentoring experience in a small forum with leading
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAS 210*</td>
<td>South Asian Diasporic Locations</td>
</tr>
<tr>
<td>AAS 211*</td>
<td>Race and the American City: Reading New York and San Francisco</td>
</tr>
<tr>
<td>AEM 200*</td>
<td>Contemporary Controversies in the Global Economy</td>
</tr>
<tr>
<td>AN SC 204</td>
<td>Domestic Animal Issues</td>
</tr>
<tr>
<td>ANTHR 211*</td>
<td>Nature and Culture</td>
</tr>
<tr>
<td>ART 372</td>
<td>Contemporary Art: Making and Looking</td>
</tr>
<tr>
<td>ART H 209</td>
<td>The Immigrant Imagination</td>
</tr>
<tr>
<td>ASIAN 201</td>
<td>Buddhist Felicities</td>
</tr>
<tr>
<td>ASTRO 233</td>
<td>From Planets to Galaxies: The Origin of Cosmic Structures</td>
</tr>
<tr>
<td>BIOEE 467*</td>
<td>Why Is Evolutionary Biology So Controversial?</td>
</tr>
<tr>
<td>CLASS 244*</td>
<td>Psychoculture, Ego, and Self</td>
</tr>
<tr>
<td>COM L 215*</td>
<td>Comparative American Literatures</td>
</tr>
<tr>
<td>COM L 225*</td>
<td>Poetry and Poetics of Difference</td>
</tr>
<tr>
<td>COM L 227*</td>
<td>Multilingualism</td>
</tr>
<tr>
<td>CRP 385</td>
<td>Separate Societies: Poverty and Inequality in U.S. Cities</td>
</tr>
<tr>
<td>CSS 200</td>
<td>Soils and Civilizations</td>
</tr>
<tr>
<td>DANCE 204*</td>
<td>Movement in Time and Space</td>
</tr>
<tr>
<td>ENGL 204*</td>
<td>Introduction to American Literatures: Narrating the Nation</td>
</tr>
<tr>
<td>ENGL 209*</td>
<td>Introduction to Cultural Studies</td>
</tr>
<tr>
<td>ENGL 220*</td>
<td>The Idea of the Pet in Literature</td>
</tr>
<tr>
<td>ENGL 221*</td>
<td>Imagining the Holocaust</td>
</tr>
<tr>
<td>ENGL 244*</td>
<td>Studies in Irish Culture</td>
</tr>
<tr>
<td>ENGL 252*</td>
<td>Late 20th-Century Women Writers and Visual Culture</td>
</tr>
<tr>
<td>ENGL 297</td>
<td>Sustainable Literature</td>
</tr>
<tr>
<td>FD SC 230</td>
<td>Functional Foods: Where Food Science and Nutrition Meet</td>
</tr>
<tr>
<td>GOVT 202</td>
<td>Honor and Obligation in Conflict</td>
</tr>
<tr>
<td>GOVT 215*</td>
<td>Gender, Nationalism, and War</td>
</tr>
<tr>
<td>GOVT 220*</td>
<td>Empires</td>
</tr>
<tr>
<td>GOVT 227</td>
<td>The Atomic Age</td>
</tr>
<tr>
<td>GOVT 261</td>
<td>Feminist Theory/State Theory</td>
</tr>
<tr>
<td>HD 201</td>
<td>Fatherhood and Family Policy</td>
</tr>
<tr>
<td>HIST 207*</td>
<td>The Occidental Tourist: Travel Writing and Orientalism in Southeast Asia</td>
</tr>
<tr>
<td>HIST 211*</td>
<td>Black Religious Traditions: Sacred and Secular</td>
</tr>
<tr>
<td>HIST 225*</td>
<td>U.S.-Mexico Border: History, Culture, and Representation</td>
</tr>
<tr>
<td>HIST 232*</td>
<td>Eyewitness to War in the Ancient World</td>
</tr>
<tr>
<td>HIST 241*</td>
<td>Riot and Revolution in 19th-Century Africa</td>
</tr>
<tr>
<td>HIST 243</td>
<td>The History of Things</td>
</tr>
<tr>
<td>HORT 215</td>
<td>Nonfiction Adventure Writing: Reclaiming the Scientist's Voice</td>
</tr>
<tr>
<td>ITAL 250*</td>
<td>The Uses of Learning</td>
</tr>
<tr>
<td>LA 215</td>
<td>Engaging Places</td>
</tr>
<tr>
<td>LING 212*</td>
<td>Language and Culture</td>
</tr>
<tr>
<td>MUSIC 270*</td>
<td>Music in American Cultures</td>
</tr>
<tr>
<td>MUSIC 300*</td>
<td>Proseminar in Musicology</td>
</tr>
<tr>
<td>NES 237</td>
<td>Ninth-Century Baghdad and Its "Bad" Boys (and Girls)</td>
</tr>
<tr>
<td>NES 265</td>
<td>Law, Society, and Culture in the Middle East</td>
</tr>
<tr>
<td>NES 293*</td>
<td>Middle Eastern Cinema</td>
</tr>
<tr>
<td>NES 296*</td>
<td>Jesus in History, Tradition, and the Cultural Imagination</td>
</tr>
<tr>
<td>PHIL 216*</td>
<td>Self, Ego, Psyche</td>
</tr>
<tr>
<td>PSYCH 231*</td>
<td>Topics in Cognitive Science: Mind and Reality in Science Fiction</td>
</tr>
<tr>
<td>RELST 253</td>
<td>Black Religious Traditions: Sacred and Secular</td>
</tr>
<tr>
<td>SRTS 212*</td>
<td>Sound Studies</td>
</tr>
<tr>
<td>SOC 221</td>
<td>Race/Class/Gender: Research in Progress</td>
</tr>
<tr>
<td>SOC 357</td>
<td>Schooling, Racial Inequality, and Public Policy in America</td>
</tr>
<tr>
<td>SPANL 230</td>
<td>Viewing Modern Barcelona</td>
</tr>
<tr>
<td>SPANL 255</td>
<td>Maladies of the Soul: Don Quijote</td>
</tr>
</tbody>
</table>

Teaching Writing
Each summer and fall, the institute offers instruction in the teaching of writing to new staff members in the First-Year Writing Seminars and other qualified individuals. Teaching Writing, offered in the summer or fall, is primarily a course for graduate students. The program also sponsors a summer apprenticeship program for a limited number of graduate students, and a summer seminar for faculty members interested in the teaching of writing.

Writing Workshop
The John S. Knight Institute offers "An Introduction to Writing in the University" for first-year students (or transfer students needing writing credit) through the Writing Workshop. This course is designed for students who have had little training in composition or who have serious difficulty with writing assignments.

Writing in the Majors
Spanning the humanities, social sciences, and sciences, the Knight Institute's upper-level Writing in the Majors courses do not satisfy formal writing requirements, and faculty participation is entirely voluntary. While all writing in the Majors courses include extensive writing, usually with guided revision, they also emphasize other forms of active, interactive learning essential to scholarship and careers in the disciplines.

Writing the Walk-In Service
Through the Writing Walk-In Service, the Writing Workshop offers tutoring assistance in writing to any student who needs help with a writing project. The Writing Walk-In Service has tutors available during the academic year in 174 Rockefeller Hall and North and West
LATIN AMERICAN STUDIES PROGRAM

LATIN AMERICAN STUDIES PROGRAM

190 Uris Hall
John S. Henderson, Anthropology, Director, Latin American Studies Program; Vilma Santiago-Irizarry, Anthropology, LASP director of graduate studies; Lourdes Beneria, City and Regional Planning; Robert Blake, Animal Science; David Block, Ibero-American Bibliographer, Bruno Bosteels, Romance Studies; Debra Castro, Romance Studies, director of undergraduate studies; Maria Lorena Cook, School of Industrial and Labor Relations; Raymond Craib, History; David Cruz de Jesus, Romance Studies; Eleanor Dozier, Romance Studies; Maria Fernandez, History of Art, Gary Fields, International Labor Relations and Economics; Maria Antonia Garces, Romance Studies; Maria Cristina Garcia, History; William W. Goldsmith, City and Regional Planning; Karen Graubart, History; Jere D. Haas, Anthropology, Nutritional Science; Jean-Pierre Habicht, Nutritional Science; Zulma Iginu, Romance Studies; Steven Jackson, Government; Teresa Jordan, Geological Science; Steven Kyle, Agricultural Economics; David R. Lee, Applied Economics and Management; Barbara Lynch, City and Regional Planning; Luis Morató, Romance Studies; Ben Olguín, English; Jura Oliveira, Romance Studies; Kathleen O'Neill, Government; Edumundo Paz Soldán, Romance Studies; Gretel Pelto, Nutritional Sciences; Jose Piedra, Romance Studies; Simone Pinet, Romance Studies; Alison Power, Department of Ecology and Evolutionary Biology; Eloy Rodriguez, Plant Biology; Jeanine Rountree-Puccio, Romance Studies; Elvira Sanchez-Blake, Romance Studies; Roberto Sierra, Music; Jose M. Rodriguez-Garcia, Romance Studies; Maria Sycos, Romance Studies; Margarita Suner, Linguistics; Terence Turner, Anthropology; Hector Velez, Sociology; Emeritus: Thomas Davis, Economics; Matthew Drosdoff, Agricultural Economics; Billie-Jean Isbell, Anthropology; John Murra, Thomas Pogge, Agricultural Economics; Don Sola, Romance Studies; Joseph M. Sycos, Development Sociology; David Thurston, Plant Pathology; Arnold Van Wambeke, Agronomy, Lawrence Williams, School of Industrial and Labor Relations; Frank Young, Developmental Sociology.

Core courses are designed to provide a broad overview of Latin American studies, focusing on key themes and issues across different disciplines.

LAT A 100(100) Introduction to Latin American Studies
Fall. K. Graubart.
Examines the encounter between Spain and the New World, which began in 1492. Topics include the cultural hybridity that preceded as well as developed from colonialism, the production of ethnicity and race, slavery and economic stratification, and daily life, rebellion and independence.

LAT A 144(1441) FWS: Latin American Women (also ANTHR 144(1441))
Spring. Staff.
Explores the varied experiences of women in Latin American countries from colonial times to the present. Examines the ways that different experiences of race, ethnicity, and class affect women's involvement in economic, religious, political and revolutionary struggles. Uses a variety of textual sources such as autobiography, fiction, poetry, ethnography, and historical accounts to focus on how gender and sexuality are constructed in various contexts—questioning what difference being a woman makes. The final paper compares autobiography and life history to ethnographic and historical texts to determine what is lost or gained in privileging the micro versus macro level of analysis.

LAT A 195(1950) Colonial Latin America (also HIST 195(1950))
Fall. K. Graubart.
Examines the encounter between Spain and the New World, which began in 1492. Topics include the cultural hybridity that preceded as well as developed from colonialism, the production of ethnicity and race, slavery and economic stratification, and daily life, rebellion and independence.

LAT A 196(1960) Modern Latin America (also HIST 196(1960))
Spring. R. Craib.
Introductory survey of Latin American history from the early 19th century to the present with particular emphasis on nation-state formation and the development of capitalist economies. Prominent themes include neocolonialism, revolutionary movements and radicalism, ethnic, gender.
and class relations; and United States–Latin American relations.

LAT A 216(2161) Gender and Colonialization in Latin America (also HIST 216[2160])
Spring. K. Graubart.
Seminar examining colonization as a gendered process. Looks at men’s and women’s lives in terms of sexuality, marriage, labor roles, ethnicity, and spirituality. Other important topics could include witchcraft, honor, law, and masculinity.

LAT A 218(2180) Introduction to Hispanic Literature (also SPANL 218[2180])
Fall.
Intermediate course designed to improve reading, writing, speaking, and comprehension skills in Spanish through the reading and discussion of contemporary literary works of various genres (narrative prose, drama, and poetry) from Spain and Spanish America. Emphasizes the development of fluency in reading and of critical and analytical abilities. Considers the cultural, sociological, and aesthetic implications of texts by authors such as Borges, Cortazar, Puentes, Garcia Márquez, Garcia Lorca, and Cela.

LAT A 245(2451) Drugs: People, Politics, Policies (also HIST 245[2450])
Spring. M. Roldan.
Seminar using the narcotics trade to examine a variety of issues in historical perspective: migration, human rights, smuggling, international trade, and foreign policy. The temporal focus is the period between the 1920s and the present.

LAT A 266(2660) Latin American Vanguards (also SPANL 266[2660])
Spring. B. Bostelles.
Survey of the cultural and political factors that led to the development of Latin American vanguard movements in the arts and literature. Includes a study of vanguardism in the visual arts, poetry, and drama.

LAT A 300(3011) The Cultural History of Latin America (also HIST 301[3010])
Spring. M. Roldan.
Seminar examining how the intersection of art and politics shaped culture, ideology, and identity in Latin America from the Mexican Revolution to the dictatorships of the late 20th century. Topics may include muralism and the Mexican Revolution; working class and immigrant culture in Argentina and the tango; samba as social and political protest in Brazil; gender and politics in exiled literature; and the appropriation of public spaces as artistic forums and means of communication under authoritarian regimes.

LAT A 301(3010) Hispanic Theater Production (also SPANL 301[3010])
Fall. M. L. Sullivan.
Students develop a specific dramatic text for full-scale production. This course involves selection of an appropriate text, close analysis of the literary aspects of the play, and group evaluation of its representational value and effectiveness. All students in the course are involved in some aspect of production of the play, and write a final paper as a course requirement. Credit is variable depending upon the student’s role in play production: a minimum of 50 hours of work is required for 1 credit; a maximum of 2 credits is awarded for 100 hours or more of work.

LAT A 302(3020) Spanish in the Disciplines (also SPANR 302[3020])
Fall and spring. Staff.
1-credit Language Across the Curriculum. Designed for further course discussion in Spanish. Credit attached to LAT A 320 in spring 2006 and fall 2005 TBA.

LAT A 303(3031) Andean History and Ethnohistory (also HIST 303[3031])
Spring. K. Graubart.
Seminar on the Andean region of South America—formerly the Spanish colonial empire—investigating prehispanic civilizations (most famously the Incas) and its history going back thousands of years, from major prehispanic civilizations (most famously the Incas) to its role as an important center in the Spanish colonial empire to modern revolutions and movements for indigenous rights. Through critical readings of historical texts as well as archaeological artifacts, this course examines key junctures in Andean history, especially from the perspectives of indigenous peoples.

LAT A 306(3060) Modern Mexico: Independence to Zapatistas (also HIST 306[3060])
Fall. R. Craib.
Survey of Mexico’s history from the early 19th century to the present. Covers social, cultural, and economic trends and their relationship to politics. Includes cultural and political movements. Special emphasis given to the ways in which “common people” participated in and influenced politics; to the important regional, class, ethnic, and gender differences that have figured prominently in Mexico’s history; and to the politics of history-making.

LAT A 313(3150) Readings in Modern Spanish Literature (also SPANL 319[3190])
Fall. Staff.
In the study of Hispanic culture, 1492 works not only as the date of a watershed event but as a cipher of the main currents that shaped the Hispanic world. This course will enable students to read and analyze representative texts of the 19th and 20th centuries from various regions of Spanish America. Among the authors considered are Sarmiento, Hernández, Martí, Dario, Agustini, Borges Cortázar, García Márquez, Poniatowska, and Valenzuela.

LAT A 320(3200) Perspectives on Latin America (also HIST 301[3010], SPANL 320[3200])
Spring. Highly recommended for Latin American studies concentrators.
J. Henderson and M. Roldan.
Intercultural, co-taught course offered every spring through the Latin American Program. Topics vary by semester, but readings always focus on current research in various disciplines and regions of Latin America. Issues addressed include the economic, social, cultural, and political trends and transitions in the area. In the weekly meetings, instructors and guest lecturers facilitate student discussions. Students taking the course are required to participate in all class discussions and write one research paper in their chosen focus area.

LAT A 346(3460) Hispanic Caribbean Culture and Literature (also SPANL 346[3460])
Fall. Staff.
Introduction to the history, culture, and literature of the Hispanic Caribbean, with major emphasis on Puerto Rico and the Dominican Republic. Analysis of the cultural and social peculiarities of the Caribbean area. Includes discussions of national identity and the emergence of alternative subjectivities in the literatures of the region. Topics include: race, gender, and sexual otherness, hybridity and translocality in the context of contemporary globalization, and postmodernity in the region. Authors such as Martí, Hostos, Ortiz, Guinán, Páez Matos, Carpentier, Lekama Lima, Piétre, Arenas, Sánchez, Ferré, Valdés, Estévèz, Vergés, Vélez Maggiolo, Hernández, Díaz, Ramos Otero, Rodrigez Jullà, Vega, García Ramis, and Sánchez-Feltes are included. Some supplemental theoretical readings include such authors as Ortiz, Cornejo Polar, Benítez Rojo, García Canclini, Ramos, Sommer, Bhachu, Butler.

LAT A 355(3551) Archaeology of Mexico and Central America
Spring. J. Henderson.
A survey of the cultural history of ancient Mexico and Central America, emphasizing Mesoamerican and Maya civilizations. The use of ethnographic and historical information to enrich archaeological interpretation is a general theme. Specific topics include the emergence of settled farming life, the rise of civilization and the state, and the development of mechanisms that linked the many societies in the region into a single sphere of interaction.

LAT A 385(3850) Separate Societies: Poverty and Inequality in U.S. Cities (also CRP 385[3850])
Fall. W. W. Goldsmith.
Many problems in U.S. cities and their metropolitan areas result from trends in the global economy. They also cause the trends. In the first view, global changes affect industrial structure, labor markets, and public budgets. Women, people of color, and immigrants suffer disproportionate penalties of joblessness, low pay, and poor public services. These penalties are imposed in good part via territorial exclusion. While many suburbs and city neighborhoods have
good schools, safe, clean streets, and plenty of services, others do not. In the second view, the same exclusionary structure that denies full citizenship to those who live in deprived neighborhoods also abets damaging global trends. A segregated territory frustrates any effective local response, including the voices of politicians, the people who live there, and the people who benefit from the problems they create. The problems they create are not just local, but global.

In their writing, students examine the evidence and the logic of both arguments.

Deals with the genesis of contemporary Latin American theater as it alternately reflected and individuated from European models. The shift in technique from absurdist to Brechtian tendencies is viewed as a necessary expression on political realities inherent in the Latin American experience. Students engage in close textual analysis of scripts from the following playwrights: Carballo, Vigliolo Pineda and Jose Triana. Puerto Ricans, René Marqués and Luis Rafael Sánchez; Argentinians, Griselda Gambaro; Colombians, Enrique Buenaventura; and Mexicans, Emilio Carballedo and Rosario Castellanos among others. Format: In keeping with the course focus on the cultural turn, students should be prepared for extensive oral participation in addition to written exams.

Examines major historical and recent demographic transitions in mortality, fertility, age structure, and composition, and explores the relationships between these transitions and the social, or economic, and cultural changes being experienced by diverse societies before, during, and following the onset and conclusions of the demographic shifts. Uses case studies from diverse historical periods and geographic locations. Graduate students also meet with the instructor every other week to discuss graduate readings and topics relevant to their papers.

Examines major historical and recent demographic transitions in mortality, fertility, age structure, and composition, and explores the relationships between these transitions and the social, or economic, and cultural changes being experienced by diverse societies before, during, and following the onset and conclusions of the demographic shifts. Uses case studies from diverse historical periods and geographic locations. Graduate students also meet with the instructor every other week to discuss graduate readings and topics relevant to their papers.

Examines major historical and recent demographic transitions in mortality, fertility, age structure, and composition, and explores the relationships between these transitions and the social, or economic, and cultural changes being experienced by diverse societies before, during, and following the onset and conclusions of the demographic shifts. Uses case studies from diverse historical periods and geographic locations. Graduate students also meet with the instructor every other week to discuss graduate readings and topics relevant to their papers.

LAT A 438(4380) Population and Development [also D SOC 438(4380)]
Fall. D. Gurak.
Examines major historical and recent demographic transitions in mortality, fertility, age structure, and composition, and explores the relationships between these transitions and the social, or economic, and cultural changes being experienced by diverse societies before, during, and following the onset and conclusions of the demographic shifts. Uses case studies from diverse historical periods and geographic locations. Graduate students also meet with the instructor every other week to discuss graduate readings and topics relevant to their papers.

LAT A 474(4740) Transformations in the Global South [also CRP 474(4740)]

LAT A 507(6070) Race and Ethnicity in Latin America [also HIST 607(6041)]
Fall. Prerequisite: basic knowledge of Latin American history.
Seminar examining the invention of ethnicity in the colonial period, the development of a theory of race within Latin American as well as European societies, and the politics of "indignity" in the 20th century.

LAT A 568(6680) Andean Modernities [also SPANL 668(6680)]
Spring. E. Paz-Soldan.

LAT A 610, 611 Minority Politics in the United States (also AM ST, D SOC 610)
LAT A 612 Political Identity: Race, Ethnicity, and Nationalism (also GOVT 612)
LAT A 624 Ethnoracial Identity in Anthropology, Language, and Law (also ANTHR 624, LAW 723)
LAT A 660 Language, Ideologies, and Practices Research (also ANTH 660)
LAT A 674(6740) Transformations in the Global South [also CRP 674(6740)]

LATINO STUDIES PROGRAM
454 Rockefeller Hall

Undergraduate Concentration
The Latino Studies Program offers an interdisciplinary undergraduate concentration in Latino studies, with courses mostly drawn from history, sociology, anthropology, literature, and language, but the program also cross-lists courses from other colleges.

- To complete the concentration, students must take at least five courses (a minimum of 15 credits) in Latino studies, including Latinos in the United States (D SOC 265, LSP 201, and SOC 265), which is offered each spring semester.
- Students are required to include at least three courses from Groups I and II (one from each group, and another from either group). Of the three courses, two must be at the 300 or 400 level.

One elective course (see list below) can count toward the concentration. Courses must be completed with a letter grade of C or above. Independent studies and first-year seminar seminars do not count toward concentration requirements. The list varies each semester in accordance with faculty schedules and visiting appointments.

Group I: Humanities
LSP 225 The United States—Mexico Border: History, Culture, Representation (also AM ST/HIST 225)
LSP 240 Survey in U.S. Latina/o Literature (also AM ST/ENGL 240)
LSP 246 Contemporary Narratives by Latina Writers (also FGSS/SPANL 246)
LSP 248 Poetry of the Latina/o Experience (also SPANL 248)

Group II: Social Sciences
LSP 260 Latinos in the United States: Colonial Period to 1898 (also AM ST 259, HIST 260)
LSP 261 Latinos in the United States: 1898 to the Present (also AM ST/HIST 261)
LSP 303 American Dreams (also SPANL 303)
LSP 366 Spanish in the United States (also LING/SPANL 366)
LSP 398 Latina/o Cultural Practices (also AM ST 396, ENGL 398)
LSP 462 Senior Seminar in Latina/o Studies: Chicana Feminism in a Globalizing World (also ENGL 462)
LSP 693 Gender, Globalization, and Latina/o Literature (also ENGL 693)

Group III: Electives
LSP 100 Introduction to World Music I: Africa and the Americas (also MUSIC 103)
LSP 101 Research Strategies in Latino Studies
LSP 111 Introduction to American Studies: New Approaches to Understanding American Diversity, the 20th Century (also AM ST 110, HIST 111)
LSP 202 Spanish for English-Spanish Bilinguals (also SPANR 200)
LSP 241 Immigration and Ethnicity in 20th-Century United States (also HIST 240)
LSP 311 Social Movements (also AIS/D SOC 311)
LSP 319 Minority Politics in the United States (also GOVT 319, AM ST 313)

LATINO STUDIES PROGRAM
454 Rockefeller Hall

Undergraduate Concentration
The Latino Studies Program offers an interdisciplinary undergraduate concentration in Latino studies, with courses mostly drawn from history, sociology, anthropology, literature, and language, but the program also cross-lists courses from other colleges.

- To complete the concentration, students must take at least five courses (a minimum of 15 credits) in Latino studies, including Latinos in the United States (D SOC 265, LSP 201, and SOC 265), which is offered each spring semester.
- Students are required to include at least three courses from Groups I and II (one from each group, and another from either group). Of the three courses, two must be at the 300 or 400 level.

One elective course (see list below) can count toward the concentration. Courses must be completed with a letter grade of C or above. Independent studies and first-year seminar seminars do not count toward concentration requirements. The list varies each semester in accordance with faculty schedules and visiting appointments.

Group I: Humanities
LSP 225 The United States—Mexico Border: History, Culture, Representation (also AM ST/HIST 225)
LSP 240 Survey in U.S. Latina/o Literature (also AM ST/ENGL 240)
LSP 246 Contemporary Narratives by Latina Writers (also FGSS/SPANL 246)
LSP 248 Poetry of the Latina/o Experience (also SPANL 248)

Group II: Social Sciences
LSP 260 Latinos in the United States: Colonial Period to 1898 (also AM ST 259, HIST 260)
LSP 261 Latinos in the United States: 1898 to the Present (also AM ST/HIST 261)
LSP 303 American Dreams (also SPANL 303)
LSP 366 Spanish in the United States (also LING/SPANL 366)
LSP 398 Latina/o Cultural Practices (also AM ST 396, ENGL 398)
LSP 462 Senior Seminar in Latina/o Studies: Chicana Feminism in a Globalizing World (also ENGL 462)
LSP 693 Gender, Globalization, and Latina/o Literature (also ENGL 693)

Group III: Electives
LSP 100 Introduction to World Music I: Africa and the Americas (also MUSIC 103)
LSP 101 Research Strategies in Latino Studies
LSP 111 Introduction to American Studies: New Approaches to Understanding American Diversity, the 20th Century (also AM ST 110, HIST 111)
LSP 202 Spanish for English-Spanish Bilinguals (also SPANR 200)
LSP 241 Immigration and Ethnicity in 20th-Century United States (also HIST 240)
LSP 311 Social Movements (also AIS/D SOC 311)
LSP 319 Minority Politics in the United States (also GOVT 319, AM ST 313)
The Latino Studies Program library in 432 Rockefeller Hall serves Cornell students, faculty, staff, and the wider local community. The library and conference room also provide meeting space for more than 20 Latino student organizations.

Graduate Minor

Students wishing to complete a graduate minor in Latino studies need to formally register with the Latino Studies Program office, take an upper-level seminar (400/600) tentatively titled Introduction to Latino Studies: History and Methodologies, and work intensively with a faculty member outside of their major field. Over the course of their study, they will be expected to take two other Latino studies graduate or advanced undergraduate courses outside of their major field. In lieu of available courses, the student and his or her minor field adviser may design a special project that culminates in a paper given at a conference or presented for publication. Upon project approval, the director of graduate studies will award a certificate to the student.

Library

The Latino Studies Program library in 432 Rockefeller Hall serves Cornell students, faculty, staff, and the wider local community. The library maintains print and media resources pertinent to Latino studies, including an extensive collection of books, periodicals, and films. The library and conference room also provide meeting space for more than 20 Latino student organizations.

Courses

- **[LSP 100](1301)** Introduction to World Music: Africa and the Americas (also MUSIC 102X(1301))

- **[LSP 111](1110)** Introduction to American Studies: Understanding American Diversity
 The 20th Century (also AM ST 110[1110], HIST 181[1161])
 4 credits. Not offered 2005-2006. M. C. Garcia. Examines American national life in the 20th century and asks questions about the changing meaning of national identity. What does it mean to be an American in the 21st century? What assimilation? Can assimilate structurally and yet maintain a distinct cultural identity? In what ways do racial and ethnic perceptions structure political, economic, and cultural life? This is a team-taught interdisciplinary course in which students analyze historical, literary, and cultural evidence in exploring these and other issues.

- **[LSP 201](2010)** Latinos in the United States (also SOC/D SOC 265[2550])
 Spring. 4 credits. variable. H. Velez. Exploration and analysis of the Hispanic experience in the United States. An examination of sociohistorical background and economic, psychological, and political factors that converge to shape a Latino group identity in the United States. Perspectives are suggested and developed for understanding Hispanic migrations, the plight of Latinos urban and rural areas, and the unique problems faced by the diverse Latino groups. Groups studied include Mexican Americans, Dominicans, Cubans, and Puerto Ricans.

- **[LSP 202](2020)** Spanish for English-Spanish Bilinguals (also SPANR 200[2000])
 Fall and spring. 3 credits. Staff. Designed to expand bilingual students' knowledge of Spanish by providing them with ample opportunities to develop and improve each of the basic language skills.

- **[LSP 220](2200)** Sociology of Health and Ethnic Minorities (also D SOC 220[2200])
 Fall. 3 credits. P. Parra. Discusses the health status of minorities in the United States by exploring intragroup diversity such as migration, economic status, and the influence of culture and the environment on health status and access to health care. Although special attention is given to Latino populations, discussion encompasses other minorities who face similar problems.

- **[LSP 225](2250)** The U.S.-Mexico Border: History, Culture, Representation (also HIST 225[2250])
 4 credits. Not offered 2005-2006. R. Craib and M. C. Garcia. Writing-intensive, interdisciplinary sophomore seminar on the United States-Mexico border. The study of borders, and specifically of the United States-Mexico border, requires us to cross the disciplinary and methodological borders of academic fields. The proliferation of provocative writings on the border in recent years bears this assumption out: in no other field of study has the literature been so remarkably interdisciplinary, so methodologically eclectic, nor so theoretically provocative. This seminar is designed to help students analyze and understand the histories, cultures and representations of the border that are so important to contemporary self-fashioning and policy-making in the United States and Mexico. Readings include works of fiction, literary and cultural theory, history, science studies, and postcolonial criticism. Students are expected to write several papers of varying lengths that develop their skills in historical research and textual criticism.

- **[LSP 230](2300)** Latino Communities (also D SOC/AM ST 230[2300])
 Fall. 3 credits. R. Mize. A major focus of this course is the predominance of Puerto Ricans and Dominicans in New York, Cubans in South Florida, and Mexicans in the Southwest. The last portion addresses the increasing “Latinization” of new receiving areas and the formation of transnational communities that extend spatially beyond border communities. The course is designed to introduce students to the literature on Latino rural and urban communities. Students are introduced to the core concepts of community sociology while attempting to account for the predominance of Puerto Ricans and Dominicans in New York, Cubans and Central Americans in Miami, and Mexicans in the Southwest. Additional geographic areas of investigation include the U.S.-Mexico border region and the rural agricultural counties that are dependent upon migrant labor. Final topics of interest include the "Latinization" of the rural Midwest, South, and Northeast, the subsequent dispersal of Latino communities throughout the United States and a re-envisioning of "community" as not entirely space dependent. The experiences of transnational community formation are highlighted.

- **[LSP 240](2400)** Survey in U.S. Latino Literature (also ENGL 240[2400], AM ST 240[2461])
 4 credits. Not offered 2005-2006. M. P. Brady. It is estimated that by the year 2030, the Latino/a population in the United States will be the largest "minority group" in the country. This course seeks to introduce students to the growing body of literature across time, space, and genre, by the various U.S. Latino/a communities. Of particular interest are the manner and degree to which Latino/a literature's converge and diverge as they explore issues of "race," ethnicity, sexuality, class, nationality, and identity in general, at a time when the American profile is increasingly becoming "Latinized." Authors include Juan Seguin, Aliurista, Gloria Anzaldúa, Cherrie Moraga, Bernardo Vega, Miguel Piñero, Nicolosa Mohr, Cristina Garcia, Oscar
Hijuelos, Julia Alvarez, Rubén Martínez, and several others.

[LSP 241(2400) Immigration and Ethnicity in the 20th Century United States (also HIST 240[2400], AM ST 239[2400])]

Seminars examining at immigration to the United States in the 20th century, highlighting the experiences of several groups as case studies. Analyzes the “push-pull” factors that compelled people to come to the United States, the impact of cultural and structural assimilation, nativist movements, the evolution of U.S. immigration policy, and the formation of ethnic identity in U.S. society. Attention is given to current issues, such as immigration reform, bilingual education, and the multiculturalism debate.

[LSP 246(2460) Contemporary Narratives by Latina Writers (also SPANL/FGSS 246[2460])]
Fall. 3 credits. L. Carrillo.

Offers a survey of narratives by representative Latina writers of various Latino ethnic groups in the United States including Chicana, Chilean, Cuban, Dominican, and Puerto Rican. Investigates the parallel development of a Latina perspective on personal, social and cultural issues alongside that of the U.S. ethnic liberation/revitalization movements of the 1960s through to contemporary feminist activism and women of color movements. Also investigates these works as artistic attempts to deal with such issues as culture, language and bilingualism, family, gender, sexuality, and domesticity. Regional distinctions and contributions are accounted for. Readings include works by Julia Alvarez, Gloria Anzaldúa, Elena Castedo, Ana Castillo, Denise Chavez, Sandra Cinogeros, Judith Ortiz Cofer, Cristina García, Nora Glickman, Nicholasa Mohr, Cherrie Moraga, Archy Obejas, Esmeralda Santiago, Ana Lydia Vega, and Helena Maria Viramontes.

[LSP 248(2480) Poetry of the Latina/o Experience (also SPANL 248[2480])]
Spring. 3 credits. L. Carrillo.

Survey of the central importance of poetry in the modern and contemporary Latina/o experience. Readings chart and document the 19th century development of feminist, lesbian, and gay poetry; to the Cuban poets emerging as the “American” generation; and the “new” migration from Latin America; the transnational influence of immigrant communities on their homelands.

[LSP 303(3030) American Dreams (also SPANL 303[3030])]

Beginning with a close reading of Michael Jones-Correa's article, “Nuestra América,” in New York, Between Two Nations, class discussions focus on recent Latin American immigration to the United States through two complementary perspectives and meditations on the immigrant experience: that of the individuals who have arrived in the United States, and that of individuals who have chosen to remain in their countries of origin. The course studies films like Nueva Yol and Fábrica de Edén, Latin American authors like Carlos Fuentes, Ana Lydia Vega and Ariel Dorfman; and U.S. Latinos like Julia Alvarez, Francisco Goldman, and Cristina García. Students are encouraged to do individually tailored research projects that may include autobiographical, ethno-historical elements as well as literary analysis and theoretical inquiries.

[LSP 311(3110) Social Movements (also D SOC/AIS 311[3110])]
Fall. 3 credits. A. González.

Social movements are collective efforts by relatively powerless groups of people to change society. Typically conceptualized as non- or extra-institutional political activity, social movements are “politics by other means.” In this course we examine the transnational dimensions of social movements to assess the implications of globalization for political mobilization and the ways that social movement actors engage global political process to effect social change. Under what circumstances do movements emerge? How do global processes shape both domestic and transnational political mobilization? How do movements internally organize and choose political tactics and strategies to achieve their goals? How has immigration transformed the social movement landscape? Such questions will be examined through a study of specific social movements from an international comparative perspective.

[LSP 355(3551) Modern and Contemporary Latin/Latin American Art (also ART H 355[3551])]

Designed as a thematic survey of Latin American Latino art from the early 20th century to the present. Attention is given to issues such as the effect of colonialism on Latin American Latino visual arts, the creation of national artistic styles, the contributions of Latin American art and artists to European and American cultural centers, the interaction of high art and popular culture, the role of art criticism on popular perceptions of Latin American art, and the contributions of Latin American Latino women to various aspects of artistic practice.

[LSP 375(3750) Comparative U.S. Racial and Ethnic Relations (also AM ST 375[3750], D SOC 375[3750])]
Spring. 3 credits. R. Mize.

Introduces and evaluates theories of race and ethnicity through a comparative-historical study of the social construction of race. Within the context of the formation of the United States, course materials examine structures of race as they influence Latina/o, African American, Native American, and Asian American experiences. Examine the sociohistorical construction of “race” through the attendant institutions of racism such as slavery, Jim Crow, law and violence, genocide, war, ideology (from Manifest Destiny to free labor), second-class citizenship, immigration restriction, colonialism, internment, and temporary-worker programs. Differences and commonalities among the historically racialized groups are the...
main source for comparative analysis. In addition, the course includes a survey of the sociological theories of race and ethnicity as well as a critical interrogation of whiteness and ethnic identities. Maps the origins of "race" thinking in the era of scientific racism (biological determinism, Social Darwinism, and eugenics) and critically interrogates their link to sociological theories of race as culture, ethnicity, nation, and class. Highlights contemporary theories of race and racism, especially the construction of Latinas/o and African Americans. The heterogeneity of Latinas/o lived experiences in the United States is compared/contrasted with Afro-Caribbean and African immigrant lived experiences within the category of "being Black in America." The course focuses on the historical legacy of institutional and interpersonal racism and its contemporary relevance in terms of political, economic, residential, legal, educational, cultural, health, and social-psychological inequalities.

LSP 377(3777) The United States (also ANTH/RM ST 377(3777))
Fall. 4 credits. V. Santiago-Irizarry.
The anthropological inquiry into one's culture is never a neutral exercise. This course explores issues in the cultural construction of the United States as a "pluralistic" society. Looks at the ideological context for the production of a cultural profile predicated upon ideas that are intrinsic to American images of identity such as individualism, freedom, and equality and the way these are applied in practice. The course readings include historic documents and accounts, popular writings, and recent ethnographies on the United States.

[LSP 386(3860) Cinema and Social Change (also FILM 386(3860))
Explores postcolonial film and video through the rubric of "third cinema." We investigate the diverse historical, political, and generic commitments of films from Africa, South Asia, U.S. Latino, Latin America, and the United Kingdom. Readings in film and postcolonial theory guide our critical analyses across campus combine short lectures and discussion of assigned readings. Emphasis is on migrant farmworkers in the United States, mostly from the Caribbean and mainland Latin America, with an increasing focus as the semester progresses on farmworkers in central and upstate New York. Course requirements include analytical essays, a final paper, and participation in a service-learning project that are arranged in conjunction with the instructors.

[LSP 420-421(4200-4210) Undergraduate Independent Study
Fall and spring. 2–4 credits. Prerequisite: permission of instructor. Guided independent study.

LSP 431/631 Farmworkers (also CRP 395.72679.72, HIST 431/631(HIST the ILLR), ILRCB 402)
Spring. 4 credits. Team taught. Faculty supervisor: R. Craib.
Interdisciplinary, team-taught course on the role of rural migrant labor. Weekly sessions taught by faculty members from across campus combine short lectures and discussion of assigned readings. Emphasis is on migrant farmworkers in the United States, mostly from the Caribbean and mainland Latin America, with an increasing focus as the semester progresses on farmworkers in central and upstate New York. Course requirements include analytical essays, a final paper, and participation in a service-learning project that are arranged in conjunction with the instructors.

[LSP 562(6424) Ethnoracial Identity in Anthropology, Language, and Law (also ANTH/RM ST 624(6424), LAW 723)
Examines the role that both law and language, as mutually constitutive mediating systems, occupy in constructing ethnoracial identity in the United States. Approaches the law from a critical anthropological perspective, as a signifying and significant sociocultural system rather than as an abstract collection of rules, norms, and cultural production and reproduction that contribute to the creation and maintenance of differential power relations. Course material draws on anthropological, linguistic, and critical race theory as well as ethnographic and legal material to guide and document the analyses.

[LSP 660(6640) Latino Languages, Ideology, and Practice (also ANTH/RM ST 660(6640))
Cultural identity and citizenship in the United States have often been organized around linguistic difference and the issues this raises in an English-dominant society. Drawing from anthropological theories on language, this course looks at the place of language as a signifying practice in the United States by focusing on the experience of Latino communities. Topics explored include linguistic diversity and change, accommodation and resistance, language maintenance and shift, linguistic ideologies, the production of language hierarchies, and institutional applications of language.

[LSP 693(6930) Gender, Globalization and Latino/a Literature (also ENGL 693)

LAW AND SOCIETY

[Go to the website for more details on the courses offered in Law and Society.]
concentration is included on their college transcript. All students completing the concentration will receive a certificate and can include their participation in the law and society concentration on a resume or law school application.

To allow sufficient time for a coherent program of study to be developed and completed, students who have an interest in this concentration are required to register before the start of the second semester of their junior year. Under extenuating circumstances, late registrations may be accepted at the discretion of the directors, but only if the registrant has a plan already formulated for completing the concentration's requirements. Special late registration forms that include the student's plan outline are available in the Ethics and Public Life (EPL) office, 240 Goldwin Smith Hall.

The standard law and society registration form is available online at www.arts.cornell.edu/epl and in the EPL office. As part of the registration process, each student is assigned a law and society adviser who is available to provide guidance with course selection and help with other questions or concerns related to the student's participation in the concentration. The name and contact information of the assigned adviser are included in a welcome e-mail that is sent shortly after a student's registration form is received.

Four-Event Requirement

Many students find access to and participation in law and society events a particularly beneficial component of the concentration. Officially registered law and society students are notified of "qualifying" events (usually at least 10 per semester) and other information related to the concentration through an e-mail listserve and postings outside the Ethics and Public Life office. Attendance at a minimum of four events (tracked with sign-in sheets) is required between registration and graduation, but students seeking a broader perspective are encouraged to attend as many events as they can.

Four-Course Requirement

Law and society is an interdisciplinary concentration requiring students to successfully complete four courses (at least 12 credits) from the approved course list, earning a letter grade no lower than C- in each. Of the four qualifying courses, at least two must be outside the student's major, and no more than two can be in the same subject area. Cross-listed courses may be counted in any of the departments listed. Students who have a double major are permitted to select one major as the dominant and use applicable courses from the second major toward the four-course requirement. Appropriate courses taken before registering for the law and society concentration can be counted toward the four-course requirement. There are no required courses, but past students have found GOVT 313 and PSYCH 265 particularly relevant.

At the discretion of the law and society directors, permission may be granted to substitute an appropriate course that has been:

1. accepted from another educational institution toward the student's degree program (one course maximum)
2. taken as part of a semester abroad program
3. recently added to the Cornell curriculum

The best evidence of a course's appropriateness is the syllabus, which is often available online and can be submitted electronically to one of the directors for their determination. Petitions for course substitutions should be submitted before the student's final semester.

To facilitate tracking of courses taken and/or events attended, a printable student progress record can be accessed electronically or obtained as a preprinted form from the EPL office.

The law and society concentration is administered by the Ethics and Public Life (EPL) office. For more information, contact the EPL administrative assistant at 240 Goldwin Smith Hall, epl@cornell.edu, or 255-8515.

Approved Law and Society Courses

Arts and Sciences

- **AM ST/ENGL 268** Politics and Culture in the 1960s
- **AM ST/GOVT 302** Social Movements in American Politics
- **AM ST 310/GOVT 327** Civil Liberties in the United States
- **AM ST/HIST 312** Structure of American Political History
- **AM ST 313/GOVT 319/LSP 319** Racial and Ethnic Politics
- **AM ST/HIST 324** Varieties of American Dissent, 1880 to 1990
- **AM ST/HIST 336** Capitalism and Society in Developing America, 1607 to 1877
- **AM ST 344/HIST 355** African American History from Slavery to Freedom
- **AM ST 395/ENGL 397** Policing and Prisons in American Culture
- **AM ST 430/G/GOVT 427/LSM 430** Immigrants, Membership and Citizenship
- **ANTHR 323** Kinship and Social Organization
- **ANTHR 328** Conflict, Dispute Resolution, and Law in Cultural Context
- **ANTHR 377** The United States
- **ANTHR/LSM 624** Ethnic Identity in Anthropology, Language, and Law
- **ASIAN/HIST/FGSS 476** Comparative Colonial Law and Society
- **AS&RC 204** History and Politics of Racialization: A Comparative Study
- **AS&RC 231** African-American Social Political Thought
- **AS&RC/PAM 280** Race, Power, and Privilege in the United States
- **AS&RC 420** Public Policy and African-American Urban Community
- **B&SOC/STS 205** Ethical Issues in Health and Medicine
- **B&SOC/STS/NTRES 331** Environmental Governance
- **B&SOC/STS 406** Biotechnology and the Law

B&SOC/STS 407 Law, Science, and Public Values

- **B&SOC/STS 427** The Politics of Environmental Protection in America
- **B&SOC/STS 446** Biomedical Ethics
- **CBS 515** Law and Politics of the Internet
- **COM L/RELS 526** Christianity and Judaism
- **COM L/RELS 328** Literature of the Old Testament
- **COM L 370** Literature and Ethics
- **COM L 428/RELS 427** Biblical Seminar
- **ECON 335** Public Finance: The Microeconomics of Government
- **ECON 336** Public Finance: Resource Allocation and Fiscal Policy
- **ECON 404** Economics and the Law
- **ECON 420** Economics of Family Policy: Adults
- **ECON 421** Economics of Family Policy: Children
- **ENGL/AM ST 268** Politics and Culture in the 1960s
- **ENGL 397/AM ST 395** Policing and Prisons in American Culture
- **ENGL 402** Literature as Moral Inquiry
- **FGSS/D SOC 206** Gender and Society
- **FGSS/HIST 275** Women in American Society, Past and Present
- **FGSS/NES 281** Gender and Society in the Muslim Middle East
- **FGSS/SOC 316** Gender Inequality
- **FGSS/RELST/HIST 368** Marriage and Sexuality in Medieval Europe
- **FGSS/GOVT 415** Race, Gender, and Organization
- **FGSS/HIST/ASIAN 476** Comparative Colonial Law and Society
- **GOVT 111** Introduction to American Government and Politics
- **GOVT 210/ILR/251/CRP 395/PHIL 196** Race in the United States and at Cornell
- **GOVT 260/PHIL 242** Social and Political Philosophy
- **GOVT 293/CRP 293/SOC 293/PHIL 193** Inequality, Diversity, and Justice
- **GOVT 294/PHIL 194** Global Thinking
- **GOVT/AM ST 302** Social Movements in American Politics
- **GOVT 315** The Nature, Functions, and Limits of Law
- **GOVT 314** Prisons
- **GOVT 315** American Legal System
- **GOVT 316** The American Presidency
- **GOVT 318** U.S. Congress
- **GOVT 319/LSM 319/AM ST 313** Racial and Ethnic Politics in the United States
- **GOVT 324** Legal Reasoning and Legal Adaptation: A Comparison of American and Talmudic Law
- **GOVT 327/AM ST 310** Civil Liberties in the United States
- **GOVT 328** U.S. Supreme Court
College of Arts and Sciences - 2005-2006

GOVT/SOC 341 Modern European Society and Politics

GOVT 362/PHIL 346 Modern Political Philosophy

GOVT 363/SOC 248 Politics and Culture

GOVT 364 The Selfish Individual in the Modern World

GOVT 389 International Law

GOVT 393 Introduction to Peace Studies

GOVT 400.9 Science and Technology Policy

GOVT 403 International Environmental Politics and the Law

GOVT 404 American Political Development in the 20th Century

GOVT 407 First Amendment Theory

GOVT 412 Voting and Political Participation

GOVT/FGSS 415 Race, Gender, and Organization

GOVT 427/LSP 430/AM ST 430.4 Immigrants, Membership and Citizenship

GOVT 428 Government and Public Policy: An Introduction to Analysis and Criticism

GOVT 429 Government and Public Policy: An Introduction to Analysis and Criticism (cont.)

GOVT 468 Radical Democratic Feminisms

GOVT 469 Limiting War

GOVT 474/PHIL 446 Community, Nation, and Morality

GOVT 491 Conflict, Cooperation, and Norm: Ethical Issues in International Affairs

GOVT 492/PHIL 448 International Justice

HIST/FGSS 273 Women in American Society, Past and Present

HIST/AM ST 312 Structure of American Political History

HIST 318 American Constitutional Development

HIST/AM ST 324 Varieties of American Dissent, 1800-1990

HIST 335/AM ST 344 African American History from Slavery to Freedom

HIST/AM ST 336 Capitalism and Society in Developing America, 1607 to 1877

HIST/RELST/FGSS 368 Marriage and Sexuality in Medieval Europe

HIST 372-652/NE/S 351/651/RELST 350 Law, Society, and Culture in the Middle East, 1200 to 1500

HIST 436 Conflict Resolution in Medieval Europe

HIST 440 Undergraduate Tradition in Recent American History (Topic: freedom of speech, censorship, and the Supreme Court)

HIST 446 Law, Crime, and Society in Europe, 1350-1800

HIST 459 Radicals and Revolutionaries in Latin America

HIST/ASIAN 470 Comparative Colonial Law and Society

JWST/NE/S/RELST 223 Introduction to the Bible I

JWST/NE/S/RELST 224 Introduction to the Bible II

JWST/NE/S 363 Society and Law in the Ancient Near East

LSP 319/GOVT 319/AM ST 313 Racial and Ethnic Politics

LSP 430/AM ST 430.4/GOVT 427 Immigrants, Membership and Citizenship

LSP/ANTHR 624 Ethnoracial Identity in Anthropology, Language and Law

NEL/NEST/RELST 223 Introduction to the Bible I

NEL/NEST/RELST 224 Introduction to the Bible II

NEL/FGSS 281 Gender and Society in the Muslim Middle East

NEL 351/651/RELST 350/HIST 372/652 Law, Society, and Culture in the Middle East, 1200 to 1500

NEL 357/RELST 356 Islamic Law and Society

NEL/JWST/NE/S 363 Society and Law in the Ancient Near East

PHIL 145 Contemporary Moral Issues

PHIL 193/GOVT 293/CRP 293/SOC 293 Inequality, Diversity, and Justice

PHIL/GOVT 194 Global Thinking

PHIL 196/GOVT 210/ILRID 251/CRP 395.04 Race in America and at Cornell

PHIL 241 Ethics

PHIL 242/GOVT 260 Social and Political Philosophy

PHIL 245 Ethics and Health Care

PHIL 246/S&T/S 206 Ethics and the Environment

PHIL 247 Ethics and Public Life

PHIL 341 Ethical Theory

PHIL 342 Law, Society, and Morality

PHIL 343 Civil Disobedience

PHIL 344 History of Ethics: Ancient and Medieval

PHIL 345 History of Ethics: Modern

PHIL 346/GOVT 362 Modern Political Philosophy

PHIL 446/GOVT 474 Community, Nation, and Morality

PHIL 448/GOVT 492 International Justice

PSYCH 265 Psychology and Law

RELST/NE/S/JWST 223 Introduction to the Bible I

RELST/NE/S/JWST 224 Introduction to the Bible II

RELST/COM 1 326 Christianity and Judaism

RELST/COM 1 328 Literature of the Old Testament

RELST 350/NE/S 351/651/HIST 372/652 Law, Society, and Culture in the Middle East, 1200 to 1500

RELST 356/NE/S 357 Islamic Law and Society

RELST/HIST/FGSS 368 Marriage and Sexuality in Medieval Europe

RELST 427/COM L 428 Biblical Seminar

S&T/S&B/SOC 205 Ethical Issues In Health and Medicine

S&T/S&B/SOC 206/PHIL 246 Ethics and the Environment

S&T/S&B/SOC/NTRES 331 Environmental Governance

S&T/S 354/SOC 352 The Sociology of Contemporary Culture

S&T/S 360 Ethical Issues in Engineering

S&T/S&B&SOC 466 Biotechnology and the Law

S&T/S&B&SOC 407 Law, Science, and Public Values

S&T/S 411 Knowledge, Technology, and Property

S&T/S&B&SOC 427 The Politics of Environmental Protection in America

S&T/S&B&SOC 446 Biomedical Ethics

SOC/D/SOC 200 Social Problems

SOC/D/SOC 207 Problems in Contemporary Society

SOC 208 Social Inequality

SOC 246 Drugs and Society

SOC 248/GOVT 363 Politics and Culture

SOC 293/GOVT 293/CRP 293/PHIL 193 Inequality, Diversity, and Justice

SOC/FGSS 316 Gender Inequality

SOC 326 Social Policy

SOC 340 Health, Behavior, and Health Policy

SOC/GOV 341 Modern European Society and Politics

SOC 352/S&T/S 354 The Sociology of Contemporary Culture

SOC 356/556 Law and Society

SOC 357 Schooling and Society

SOC 371/D/SOC 370 Comparative Issues in Social Stratification

SOC 375/D/SOC 301 Theories of Society

College of Art, Architecture, and Planning

CRP 293/GOVT 293/SOC 293/PHIL 193 Inequality, Diversity, and Justice

CRP 380 Environmental Politics

CRP 395.04/GOVT 210/ILRID 251/PHIL 196 Race in America and at Cornell

CRP 444/544/NTRES 444 Resource Management and Environmental Law

CRP 448/548 Social Policy and Social Welfare

CRP 451 Environmental Law

CRP 474 Third World Urbanization

College of Human Ecology

HD 233 Children and the Law

HD 456 Families and Social Policy

PAM 204 Applied Public Finance

PAM 230 Introduction to Policy Analysis

PAM/AS&B&R 280 Race, Power, and Privilege in the United States

PAM 310 Evaluation of Public Policies

PAM 334 Corporations, Shareholders, and Policy

PAM 341 Economics of Consumer Law and Protection

PAM 383 Social Welfare as a Social Institution
LESGIAN, BISEXUAL, AND GAY STUDIES

The field of lesbian, bisexual, and gay (LBG) studies is devoted to the interdisciplinary study of the social construction of sexuality. LBG studies is founded on the premise that the social organization of sexuality is best studied from the perspectives offered by those positions that have been excluded from established cultural norms.

In addition to offering a graduate minor, the field of LBG Studies offers an undergraduate concentration, which is administered under the auspices of feminist, gender, and sexuality studies (FGSS) and which consists of four courses from the list below. Although most of the courses in LBG studies (including those on men) generally fall under the aegis of FGSS and are hence crosslisted with it, not all of the courses in FGSS are sufficiently focused enough on the social construction of sexuality per se to be part of the LBG studies concentration. In order to qualify for the concentration, courses must devote a significant portion of their time to sexuality and to questioning the cultural and historical institution of exclusive heterosexuality. Students selecting their four courses from the LBG studies subset must identify their concentration and as either LBG studies or FGSS, they cannot double-count their credits and thereby use the same courses for both concentrations.

Students interested in the LBG studies concentration should contact the Lesbian, Bisexual, and Gay Studies Office in 386 Uris Hall.

Courses

ANTHR 200(420) Cultural Diversity and Contemporary Issues
Fall. 3 credits. A. Willford.
For description, see ANTHR 200.

ANTHR 321/621(3421/6241) Sex and Gender in Cross-Cultural Perspective (also FGSS 321/631[3210/6210])
Fall. 4 credits. K. March.
For description, see ANTHR 321/621.

ENG 276(2760) Desire (also FGSS/COM L 276[2760])
Spring. 4 credits. E. Hanson.
For description, see ENGL 276.

[ENGL 278(2780) Queer Fiction (also FGSS 278)]

[ENGL 355(3550) Decadence (also FGSS 355[3550])]

[ENGL 395(3950) Video: Art, Theory, and Politics (also THETR 395[3950])]

[ENGL 424(4240) Studies in Renaissance Lyric]

[ENGL 478(4780) Intersections in Lesbian Fiction (also FGSS 477[4770], AM ST 478[4780])]

[ENGL 651(6510) The Sexual Child (also FGSS 651[6510])]

[ENGL 654(6540) Queer Theory (also FGSS/COM L 654[6540])]
Spring. 4 credits. E. Hanson.
For description, see ENGL 654.

[ENGL 655(6550) Aestheticism (also FGSS 655[6550], COM L 655[6550])]

[ENGL 660(6660) Cinematic Desire (also AM ST 662[6620], FGSS 661[6610])]

[ENGL 703(7030) Theorizing Film: Race, Nation, and Psychoanalysis (also FRLT 695[6950])]

FGSS 201(2010) Introduction to Feminist, Gender, and Sexuality Studies
Fall. 4 credits. S. Martin.
For description, see FGSS 201.

FGSS 400(4000) Senior Seminar in Feminist, Gender, and Sexuality Studies
Fall. 4 credits. Staff.
For description, see FGSS 400.

[FGSS 405/605(4050/6050) Domestic Television]

FGSS 610(6100) Sexuality and the Politics of Representation (also FILM 610[6100])
Spring. 4 credits. A. Villarejo.
For description, see FGSS 610.

[FLRT 442/642(4420/6420) Sex in French (also FGSS 432/632[4320/6320])]

[GERST 413(4130) The Women around Freud]

[GERST 614(6140) Gender at the Fin-de-siècle]

[GOVT 467(4675) Radical Democratic Feminisms (also FGSS 460[4680])]

GOVT 762(7620) Sexuality and the Law (also FGSS 762[7620])
Spring. 4 credits. A. M. Smith.
For description, see GOVT 762.

HD 284(2840) Gender and Sexual Minorities (also FGSS 285[2850])
Fall. 3 credits. K. Cohen.
For description, see HD 284.

[HD 464(4640) Sexual Minorities and Human Development (also FGSS 487[4870])]

[HIST 209(2090) Seminar in Early America (also FGSS 209[2090])]
Linguistics

http://ling.cornell.edu

Linguistics, the systematic study of human language, lies at the crossroads of the humanities and the social sciences, and much of its appeal derives from the special combination of intuition and rigor that the analysis of language demands. The interests of the members of the Department of Linguistics and linguistic colleagues in other departments span most of the major subfields of linguistics: phonetics and phonology, the study of speech sounds; syntax, the study of how words are combined; semantics, the study of meaning; historical linguistics, the study of language change over time; and sociolinguistics, the study of language's role in social and cultural interactions.

Studying linguistics is not a matter of studying many languages. Linguistics is a theoretical discipline with ties to such areas as cognitive psychology, philosophy, logic, computer science, and anthropology. Nonetheless, knowing particular languages (e.g., Spanish or Japanese) in some depth can enhance understanding of the general properties of human language. Not surprisingly, then, many students of linguistics owe their initial interest to a period of exposure to a foreign language, and those who come to linguistics by some other route find their knowledge about languages enriched and are often stimulated to embark on further foreign language study.

Students interested in learning more about linguistics and its relationship to other disciplines in the humanities and social sciences are encouraged to take LING 101, a general overview, which is a prerequisite for most other courses in the field, or one of the first-year writing seminars offered in linguistics (on topics such as metaphor and the science of language). LING 101 and other introductory courses fulfill the social science distribution requirement. Most 100- and 200-level courses have no prerequisites and cover various topics in linguistics (e.g., LING 170 Introduction to Cognitive Science; LING 285 Linguistic Theory and Poetic Structure) or focus on the linguistics of a particular geographic region or the development of particular languages (e.g., LING 217 History of the English Language to 1300; LING 239 The Celtic Languages). Some of these courses also fulfill the breadth requirements.

Talks and discussions about linguistics are offered through the Undergraduate Linguistics Forum and the Linguistics Colloquium (sponsored by the department and the Cornell Linguistic Circle). These meetings are open to the university public and anyone wishing to learn more about linguistics is most welcome to attend.

The Major

For questions regarding the linguistics major, contact Professor Wayne Harbert (210 Morrill Hall, 255-8441, whe2@cornell.edu).

The prerequisite for a major in linguistics is the completion of LING 101 and either LING 301, 302, 303, or 304. The major has its own language requirement, different from that of the College of Arts and Sciences, which should be completed as early as possible: majors must complete the equivalent of two semesters of college-level study of a language that is either non-European or non-Indo-European (language study undertaken to satisfy the college requirement can also count toward the major requirement if the language meets these conditions). With approval of the department's director of undergraduate studies, this requirement may be waived for students taking the cognitive studies concentration or a double major.

The other standard requirements for the linguistics major are as follows:

1. LING 301 Introduction to Phonetics, LING 302 Introduction to Phonology, LING 303 Introduction to Syntax, and LING 304 Introduction to Semantics and Pragmatics (one of which will already have been taken as a prerequisite to the major).
2. LING 314 Historical Linguistics.
3. Three additional courses in linguistics at the 300 or 400 level, of which two must be general linguistics.
4. A course at or beyond the 300 level in the structure of a language, or LING 400 Language Typology or LING 600 Field Methods.

Some substitutions to these standard requirements are possible after consultation with your adviser and approval by the DUS.

Honors

Applications for honors should be made during the junior year or by the start of fall semester of the senior year. For further information consult the DUS. Candidates for admission must have a 3.0 (B) average overall and should have a 3.2 average in linguistics courses. In addition to the regular requirements of the major, the candidate for honors will complete an honors thesis and take a final oral exam in defense of it. The thesis is usually written during the senior year but may be started in the second semester of the junior year when the student's program so warrants. The oral exam will be conducted by the honors committee; consisting of the thesis adviser and at least one other faculty member in linguistics.

Members of other departments may serve as additional members if the topic makes this advisable. LING 493 and 494 may be taken in conjunction with thesis research and writing but are not required.

Courses

LING 101(1101) Introduction to Linguistics (III) (KCM)
Fall or spring. 4 credits each semester. Fall, A. Miller-Ockhuizen; spring, M. Diesing.

Overview of the science of language, especially its theoretical underpinnings, methods, and major findings. Areas covered include: the relation between sound and meaning in human languages, social variation in language, language change over time, universals of language, and the mental representation of linguistic knowledge.

Students are introduced to a wide variety of language phenomena, drawn not only from languages resembling English, but also from many that appear to be quite unlike English, such as those native to the Americas, Africa, Asia, Australia, and the South Pacific.

LING 109(1109) English Words: Histories and Mysteries (also CLASS 171(1609) # (III or IV) (HA)
Spring. 4 credits. M. Weiss.

Where do the words we use come from? This course examines the history and structure of the English vocabulary from its distant Indo-European roots to the latest in technical jargon and slang. Topics include formal and semantic change, taboo and expletives, new words from old, "learned" English loans from Greek and Latin, slang, and society.

LING 111(1111) American Sign Language I
Summer only. 4 credits. T. Galloway.

Students with no previous background in American Sign Language (ASL) are introduced to the nature of a signed language and develop expressive and receptive skills in ASL. Basic grammar and vocabulary are covered, including explanations of the fundamental parts of a sign, proper use of fingerspelling, and the significance of nonmanual features. Instruction is supplemented with videotexts allowing students to begin to explore the visual literature of the Deaf community in the United States—stories, poems, and jokes that are unique to Deaf culture. Readings and class discussions acquaint students with the causes of deafness, the historical development of ASL and its linguistic status, and characteristics of deaf education both throughout history and in the present day.

LING 112(1112) American Sign Language II
Summer only. 4 credits. Prerequisite: LING 111 or permission of instructor. T. Galloway.
In this intermediate course, students continue to develop expressive and receptive fluency in ASL. Focus is on greater descriptive skill, developing intermediate-level narratives, and enhancing conversational ability. Advanced grammar and vocabulary is supplemented with further instruction in the linguistic structure of ASL. Readings, class discussions, and videotapes containing samples of the visual literature of the U.S. Deaf community continue students' investigation into American Deaf history and the shaping of modern Deaf culture.

LING 131-132[1131-1132] Elementary Sanskrit (also CLASS 191-192[1331-1332], SANSK 131-132[1131-1132])

For description, see SANSK 131-132.

LING 170(1170) Introduction to Cognitive Science (also COGST 101[1101], COM S 101[1101], PHIL 101[1101], PSYCH 102[1200]) (III) (KCM)

For description, see COGST 101.

LING 212[2212] Sophomore Seminar: Language and Culture (III) (KCM)

LING 215/715[2215/7715] Psychology of Language (also PSYCH/COGST 215[2150]) (III) (KCM)

For description, see PSYCH 215.

LING 221[2217] History of the English Language to 1300 (also ENGL 217[2170]) # (III or IV) (HA)

Fall. 4 credits. W. Harbert.

Explores the development of the English language from its Indo-European beginnings through the period of Early Middle English. Topics include linguistic reconstruction, changes in sound, vocabulary and grammatical structure, external influences, and Old and Early Middle English language and literature. This course forms a sequence with LING 218, but the two may be taken independently.

LING 218[2218] History of the English Language since 1300 (also ENGL 218[2180]) (III or IV) (HA)

Spring. 4 credits. W. Harbert.

Explores the development of the English language from the time of Chaucer to the present. Topics include the development of standard English; the rise of English as a world language; the rise of modern concepts of grammar; the development of dictionaries; American and British English; regional and social variation in American English; English, and culture; and English and politics. Guest lecturers are invited to discuss Middle and Modern English literature. This course forms a sequence with LING 217, but it may be taken independently.

LING 223[2236] Introduction to Gaelic

Introduction to the Scottish Gaelic language, with some discussion of its history, structure, and current status.

LING 237[2237] The Germanic Languages (also GERST 237) (III) (KCM)

LING 238[2238] Introduction to Welsh

Fall. 3 credits. Not offered 2005-2006. W. Harbert.

Introduction to the Welsh language, with discussion of its history, structure, and current status, and a brief introduction to Welsh literature.

LING 239[2239] The Celtic Languages (III) (CA)

Surveys the history, structure, and political and social situation of the Celtic languages (Welsh, Scottish Gaelic, Irish Gaelic, Breton, Cornish, and Manx). Includes a few days of introductory instruction in some of these languages.

LING 241(2241) Yiddish (also JWST 271[2271]) (III) (SBA)

Covers a wide variety of topics relating to the Yiddish language and Yiddish culture, including the structure of Yiddish, the history of the Yiddish language, Yiddish in America (e.g., the Yiddish revival, the role of the Yiddish press), Yiddish as a minority/dying language, and the influence of Yiddish on present-day American English.

LING 242(2242) Diversity in American Languages (III) (SBA)

Spring. 3 credits. Not offered 2005-2006. Staff.

LING 244(2244) Language and Gender (also FGSS 244[2440]) (III) (SBA)

Fall. 4 credits. For nonmajors or majors. S. McConnell-Ginet.

Explores connections between language (use) and gender/sex systems, addressing such questions as the following: How do sex and gender affect the ways we speak, the ways we interpret and evaluate speech? How do sociocultural differences in women's and men's roles affect their language use, their relation to language change? What is meant by sexist language? How does conversation structure the social worlds of women and men? Readings draw from work in linguistics, anthropology, philosophy, psychology, literature, and general women's studies and feminist theory.

LING 246/546[2246/5546] Minority Languages and Linguistics (III) (SBA)

Fall. 4 credits. Graduate students register under LING 546. W. Harbert.

Examines minority languages from linguistic, social, and political perspectives. Topics discussed include language death (according to some projections, the majority of the world's languages are in danger of becoming extinct by the end of this century), language maintenance efforts and the reasons they succeed or fail, bilingualism, language contact, official languages, linguistic rights, and related issues. A range of specific case studies are introduced, and each student is expected to research and report on aspects of the history, current situation, and future prospects of a minority language of his or her choosing.

LING 251-252(2251-2252) Intermediate Sanskrit (also CLASS 291-292[2351-2352], SANSK 251-252[2251-2252]) # (IV)

Provides language proficiency and satisfies Option 1. Not offered 2005-2006. For description, see SANSK 251-252.

LING 285/585[2285/5585] Linguistic Theory and Poetic Structure (also ENGL 296[2960]) (III or IV) (LA)

Spring. 4 credits. Graduate students register under LING 585. J. Whitman.

Poems are among the most highly structured linguistic objects that human beings produce. While some of the devices used in poetry are arbitrary and purely conventional, most are natural extensions of structural properties inherent in natural language itself. The aim of this course is to reveal the ways poetry is structured at every level, from rhyme to metaphor, and to show how certain results of modern linguistics can usefully be applied to the analysis and interpretation of poetry.

LING 301(3301) Introduction to Phonetics (III) (KCM)

Fall. 4 credits. Prerequisite: LING 101 or permission of instructor. W. Ham.

Introduction to the study of the physical properties of human speech sounds, including production, acoustics, and perception of speech. Provides in-depth exposure to the breath of sounds found across human languages. Students achieve a high level of skill in phonetic transcription and some practice in reading spectrograms. An introduction to speech synthesis and automatic speech recognition is also provided. A small course project to discover the phonemes of an unknown language is undertaken.

LING 302(3302) Introduction to Phonology (III) (KCM)

Spring. 4 credits. Prerequisite: LING 101 or permission of instructor. D. Zee.

Introduction to phonology, which studies how language systems and linguistic phenomena are organized and how they live up to linguistic theory. Focuses on concepts of linguistic form and their manifestation in speech. Provides in-depth exposure to the breadth of sounds found across human languages. Students achieve a high level of skill in phonetic transcription and some practice in reading spectrograms. An introduction to speech synthesis and automatic speech recognition is also provided. A small course project to discover the phonemes of an unknown language is undertaken.

LING 303(3303) Introduction to Syntax (III) (KCM)

Fall. 4 credits. Prerequisite: LING 101 or permission of instructor. M. Diesing.

Introduction to syntax, which studies how words are combined to form phrases and sentences. The course aims to give students the ability to address questions regarding the syntactic properties that are shared by natural languages (as well as those that distinguish them) in a clear and informed way. Topics include those that lie at the heart of theoretical syntax: phrase structure, transformations, grammatical relations, and anaphora. Emphasis throughout the course is placed on forming and testing hypotheses.
LING 304(3304) Introduction to Semantics and Pragmatics (III) (KCM)
Spring. 4 credits. Prerequisite: LING 303 or permission of instructor. M. Diesing. Examines the theoretical components of cognitive meaning: (1) how sentences mean what they mean and (2) how they can be used to communicate more than what they (literally) mean. Investigates precise ways of describing the possible interpretations of a sentence and the relationship between meaning and syntactic structure. Topics include the representation of lexical meaning, the meaning of quantifier phrases and analyses of scope ambiguities, and classic puzzles of reference. Also examines possible applications of the theory to linguistically interesting legal cases (torts and criminal law), slips of the tongue, acquisition studies, language disorders, and connections with the philosophy of language.

LING 305(3305) Foundations of Linguistics (also COGST 305[3050]) (III) (KCM)
Fall. 4 credits. Prerequisites: LING 101 plus one other LING course, or two similar courses in another area of cognitive studies. Not offered 2005-2006. Staff.

LING 308(3308) Readings in Celtic Languages
Fall or spring, depending on demand. 2 credits. Prerequisite: permission of instructor. S-I. grades only. W. Harbert. Reading/discussion groups in Welsh or Scottish Gaelic.

LING 311(3311) The Structure of English; Denying English Grammar (also ENGL 313[3130]) (III or IV) (KCM)

LING 314(3314) Introduction to Historical Linguistics # (III) (HA)
Fall. 4 credits. Prerequisite: LING 301 or permission of instructor. J. Whitman. Survey of the basic mechanisms of linguistic change, with examples from a variety of languages.

LING 315-316(3315-3316) Old Norse
315, fall; 316, spring. 4 credits each semester. A. Angantysson.
Old Norse is a collective term for the earliest North Germanic literary languages: Old Icelandic, Old Norwegian, Old Danish, and Old Swedish. The richly documented Old Icelandic is the center of attention, and the purpose is twofold: the students gain knowledge of an ancient North Germanic language, important from a linguistic point of view, and gain access to the medieval Icelandic (and Scandinavian) literature. 315: The structure of Old Norse (Old Icelandic), phonology, and morphology, with reading of selections from the Prose-Edda, a 13th-century narrative based on the Eddaic poetry. 316: Extensive reading of Old Norse texts, among them selections from some of the major Icelandic family sagas: Njal's saga, Grettis saga, and Egils saga, as well as the whole Hrafnkels saga.

LING 321(3321)-322(3322) History of the Romance Languages (also ROM S 321[3210]) # (III) (HA)
321, spring; 322, 4 credits each semester. Prerequisites: LING 101 and qualification in any Romance language. Offered alternate years; 322 not offered 2006. C. Rosen. 321: Covers popular Latin; Pan-Romance trends in phonology, morphology, syntax, and the lexic; regional divergence; non-Latin influences; and medieval diglossia and emergence of Romance standards. 322: French, Italian, and Spanish from 850 to 1290 AD. Analysis of texts. Overview of other languages to the present day. Elements of dialectology.

[LING 323(3333) Comparative Romance Syntax (also COGST S 323) (III) (KCM)]
Spring. 4 credits. Prerequisites: LING 101 and qualification in any Romance language. Offered alternate years; not offered 2005-2006. C. Rosen. Concise survey of Romance syntax, covering the salient constructions in six languages with equal attention to their historical evolution and their current state. Grammatical innovation and divergence in a typological perspective.

LING 332(3332) Philosophy of Language (also PHIL 332[3320]) (IV)
For description, see PHIL 332.

LING 333(3333) Problems in Semantics (also COGST 333[3330]) (III or IV) (KCM)
Fall. 4 credits. Prerequisite: logic or semantics course or permission of instructor. Not offered 2005-2006; next offered 2006-2007. D. Atusch. Looks at problems in the semantic analysis of natural languages, critically examining work in linguistics and philosophy on particular topics of current interest. Topics for 2006 are presupposition, aspects and events, tense, modality, negative polarity, and focus.

LING 347(3247) Topics in the History of English (III) (HA)
Spring. 4 credits. Prerequisite: LING 217, 314, course in Old or Middle English, or permission of instructor. Not offered 2005-2006; next offered 2006-2007. W. Harbert. Treats specific topics in the linguistic history of the English language, selected on the basis of the particular interests of the students and the instructor.

LING 390(3390) Independent Study in Linguistics
Fall or spring. 1-4 credits, variable. Prerequisite: LING 101 and permission of instructor. Staff. Independent study of linguistics topics not covered in regular curriculum for undergrads.

LING 400(4400) Language Typology (III) (KCM)
Spring. 4 credits. Prerequisite: LING 101. C. Rosen. Studies a basic question of contemporary linguistics: in what ways do languages differ, and in what ways are they all alike? Efforts are made to formalize universal of syntax and to characterize the full inventory of constructions available to natural languages. Common morphological devices and their syntactic correlates are covered. Emphasis is on systems of case, agreement, and voice.

LING 401-402(4401-4402) Phonology I, II (III) (KCM)
401, fall; 402, spring. 4 credits each semester. Prerequisites: for LING 401, LING 302 or equivalent. For LING 402, LING 401 or permission of instructor. Fall, D. Zee; spring, M. Wagner.
401 provides a basic introduction to phonological theory. The first half of the course focuses on basic principles of phonology, patterns of sounds, and their representations. In the second half, the nature of syllable structure and feature representations are explored. 402 provides further refinement of the issues investigated in 401, focusing in particular on metrical theory, lexical phonology, autosegmental phonology, and prosodic morphology.

LING 403-404(4403-4404) Syntax I, II (III) (KCM)
403, fall; 404, spring. 4 credits each semester. Prerequisites: for LING 403, LING 303, for LING 404, LING 403 or permission of instructor. Fall, J. Bowers; spring, A. Pereltsvaig.
403 is an advanced introduction to syntactic theory within the principles and parameters/minimalist frameworks. Topics include phrase structure, argument structure (unaccusative verbs, unergative verbs, double object constructions), principles of word order, and the binding theory. 404 is a continuation of 403, focusing on syntactic dependencies, including the theory of control, an examination of locality constraints on movement, covert versus overt movement, and the syntax of quantification. The purpose of the course is to develop the background needed for independent syntactic research.

LING 405(4405) Sociolinguistics (III) (CA)
Fall. 4 credits. Prerequisite: LING 101 or permission of instructor. Not offered 2005-2006. S. McConnell-Ginet.

LING 409(4409) Structure of Italian (III) (KCM)
Fall. 4 credits. Prerequisites: LING 101 and qualification in any Romance language. Offered alternate years; not offered 2005-2006. C. Rosen.

LING 410(4410) History of the Italian Language (III) (HA)
Spring. 4 credits. Prerequisites: LING 321 and either ITAL 209, ITAL 216, or equivalent. Offered alternate years; not offered 2005-2006; next offered 2006-2007. C. Rosen.
Overview of Italian and its dialects from the earliest texts to the present day. Emergence of the standard language. External history and sociolinguistic circumstances.

LING 411(4411) History of the Japanese Language (also ASIAN 411[4411], JAPAN 410[4410]) # (III) (HA)
Fall. 4 credits. Prerequisite: permission of instructor; reading knowledge of Japanese. Offered alternate years; not offered 2005-2006. J. Whitman.
Overview of the history of the Japanese language followed by intensive examination of issues of interest to the participants. Students should have a reading knowledge of Japanese.
An introduction to the field of applied linguistics with focus on different domains of language research as they come to bear on the matter of second language learning. Topics include developmental and experimental psychology of language; textual and discourse analysis; literacy; cognitive consequences of bilingualism, corpora and language transfer; and contact between first and second language communities.

LING 413[4413] Applied Linguistics and Second Language Learning (III) (KCM)

Spring. 4 credits. Prerequisite: at least one course in applied linguistics, linguistics, psychology, anthropology, communication, cognitive studies, education, or literary analysis, or permission of instructor. Y. Shirai.

An introduction to the field of applied linguistics with focus on different domains of language research as they come to bear on the matter of second language learning. Topics include developmental and experimental psychology of language; textual and discourse analysis; literacy; cognitive consequences of bilingualism, corpora and language transfer; and contact between first and second language communities.

LING 414[4414] Second Language Acquisition I (also ASIAN 414[4414]) (III) (KCM)

Fall. 4 credits. Prerequisite: permission of instructor. Y. Shirai.

Survey of the quantitative and qualitative research literature on the acquisition of second and additional languages among the adult population. Research carried out in both experimental and natural settings is considered. Topics include learner errors and errors analysis; contrastive analysis hypothesis; developmental and variability patterns in the acquisition of syntax; phonology and morphology, including the potential effects of typological and formal universals; pragmatics and discourse; the lexicon, social and cognitive factors in acquisition, communication, and learning strategies; theories of second language acquisition.

LING 415[4415] Second Language Acquisition II (also ASIAN 417[4417]) (IV) (KCM)

Spring. 4 credits. Prerequisite: permission of instructor. Y. Shirai.

Examines various issues in second language acquisition research that are particularly relevant to foreign language teaching and learning. Topics include the role of input (listening/reading) vs. output (speaking/writing); implicit vs. explicit learning; negative vs. positive evidence (including the role of error correction); affective factors (motivation; anxiety); individual differences; teachability hypothesis and syllabus construction; the structure of second language proficiency.

LING 416[4416] Structure of the Arabic Language (also NES 416[4206]) (IV) (KCM)

Not offered 2005–2006. For description, see NES 416.

LING 417[418][417][4418] History of the Russian Language (also RUSSA 401[402][4401][4402]) (III) (MA)

417, Spring; [418] 4 credits each semester. Prerequisite: for LING 417, permission of instructor; for LING 418, LING 417 or equivalent. Offered alternate years; 418 not offered 2005–2006. W. Browne.

Phonological, morphological, and syntactic developments from Old Russian to modern Russian.

LING 419[4419] Phonetics I (III) (KCM)

Spring. 4 credits. Prerequisite: permission of instructor. S. Hertz.

Provides a basic introduction to the study of phonetics. Topics include anatomy and physiology of the speech production apparatus; transcription and production of some of the world’s sounds; basic acoustics, computerized methods of speech analysis, acoustic characteristics of sounds; speech perception, speech synthesis, and stress and intonation.

LING 420[4420] Phonetics II (III) (KCM)

Fall. 4 credits. Prerequisite: LING 419. A. Miller-Ockhuizen.

Continuation of Phonetics I, providing a more detailed survey of some areas in acoustic and artifactual phonetics. Topics include feature theory, vocal tract acoustics, quantal theory, speaker normalization, theories of speech perception, coarticulation, theories of speech production, and prosody. In addition, a number of “hands-on” projects are part of the course.

LING 421[4421] Semantics I (III) (KCM)

Fall. 4 credits. Prerequisite: LING 304. D. Abusch.

Introduces methods for theorizing about meaning within generative grammar. These techniques allow the creation of grammars that pair syntactic structures with meanings. Students look at several empirical areas in detail, among them complementation (combining heads with their arguments), modification, conjunction, definite descriptions, relative clauses, traces, bound pronouns, and quantification. An introduction to logical and mathematical concepts used in linguistic semantics (e.g., set theory, functions and their types, and the lambda notation for naming linguistic meanings) is included in the course.

LING 422[4422] Semantics II (III) (KCM)

Fall. 4 credits. Prerequisite: LING 421 or permission of instructor. D. Abusch.

Uses the techniques introduced in Semantics I to analyze linguistic phenomena, including quantifier scope, ellipsis, and referential pronouns. Temporal and possible worlds semantics are introduced and used in the analysis of modality, tense, and belief sentences. The phenomena of presupposition, indefinite descriptions, and anaphora are analyzed in a dynamic compositional framework that formalizes the idea that sentence meaning effects a change in an information state.

LING 423[4423] Morphology (III) (KCM)

Spring. 4 credits. Prerequisite: LING 101 or permission of instructor. Staff.

Addresses the basic issues in the study of words and their structures. Provides an introduction to different types of morphological structures with examples from a wide range of languages. Special emphasis is given to current theoretical approaches to morphological theory.

LING 424[4424] Computational Linguistics (also CGST 324[3470], COM S 324[3420]) (III) (MGR)

Fall. 4 credits. Prerequisite: LING 304 or permission of instructor. Recommended: COM S 114. Offered alternate years. M. Roeth.

Steady progress in formalisms, algorithms, linguistic knowledge, and computer technology is bringing computational mastery of the syntax, morphology, and phonology of natural languages within reach. The course introduces methods for “doing a language” computationally, with an emphasis on approaches that combine linguistic knowledge with powerful computational formalisms. Topics include context-free grammars, parsing, and representation of syntactic analyses; finite state morphology; probabilistic grammars; feature constraint formalisms for syntax; treebank and other markup methodology; and experimental-modeling methodology using large data samples.

LING 425[4425] Pragmatics (also PHIL 435[4430]) (III or IV) (KCM)

Fall. 4 credits. Prerequisite: LING 304 or PHIL 231, or permission of instructor. Not offered 2005–2006. D. Abusch.

Introduction to aspects of linguistic meaning that have to do with context and with the use of language. Topics include context change semantics and pragmatics, presupposition and accommodation, conversational implicature, speech acts, and the pragmatics of definite descriptions and quantifiers.

LING 427[4427] Structure of Hungarian (also HUNG 427[4427]) (III) (KCM)

Fall. 4 credits. Prerequisite: LING 101. Offered alternate years; not offered 2005–2006. W. Browne.

LING 428[628][4428][628][4428] Connectionist Psycholinguistics (also COGST 428, PSYCH 428[528][528][528][528]) (III)

Not offered 2005–2006. For description, see PSYCH 428.

LING 430[4430] Structure of Korean (also ASIAN/KOREA 430[4430]) (III) (KCM)

Spring. 4 credits. Prerequisite: KOREAN 102 or linguistics course. No previous knowledge of Korean required. Offered alternate years; not offered 2005–2006. J. Whitman.

Intensive examination of the syntax and phonology of a non-Indo-European language with the objective of testing principles of current linguistic theory.

LING 431[4431] Structure of an African Language (III) (KCM)

Spring. 4 credits. Prerequisite: LING 101 or permission of instructor. Not offered 2005–2006. Staff.

Survey of the grammar of an African language in light of current linguistic theory.

LING 432[4432] Middle Korean (also KRLIT 432[4432]) (IV) (LA)

Introduction to the premodern Korean language. Focuses on the earliest texts of the 15th century, but also introduces materials written in Korean using Chinese characters before the 15th century, including byangga.

LINGUISTICS 601
The prehistory and evolution of the sounds and forms of ancient Greek as reconstructed by comparison with the other Indo-European languages.

LING 433(4433) The Lesser-Known Romance Languages (also ROM S 433[4433]) (III) (KCM)

Surveys three or four Romance languages or dialects, examining their sound systems, grammars, and historical evolution from Latin. Includes some native speaker demonstrations. Readings represent both the modern languages and their earliest attested stages.

LING 434(4434) Language Development (also COGST/PSYCH 434[4434], HD 337[3370]) (III) (KCM)

For description, see COGST 434.

LING 437(4437) Celtic Linguistic Structures (II) (KCM)
Spring. 4 credits. Prerequisite: LING 403.

Treats selected topics in the syntax and morphosyntax of the modern Celtic languages.

LING 441(4441) Introduction to Germanic Linguistics (also GERST 441[4410]) (III) (NA)
Fall. 4 credits. Prerequisite: LING 101 or permission of instructor. Not offered 2005–2006. W. Harbert.

Survey of major issues in historical Germanic linguistics.

LING 442(4442)-4443(4443) Linguistic Structure of Russian (also RUSSA 403[4033]-4043[4404]) (III) (KCM)
442, fall; 443, spring. 4 credits each semester. Prerequisites: for LING 442, reading knowledge of Russian; for LING 443, LING 443 or equivalent. 444 not offered 2005–2006. W. Browne.

Synchronic analysis of the structure of modern Russian. LING 443 deals primarily with phonology and its relation to syntax and 444 with syntax and word order.

LING 450(4500) Lab Course: Language Development (also COGST 450, HD 437[4370], PSYCH 437[4370]) (III) (KCM)

For description, see COGST 450.

LING 451(4451) Greek Comparative Grammar (also CLASS 421[4451]) (III) (KCM)
Fall. 4 credits. Prerequisite: thorough familiarity with classical Greek morphology. A. Nussbaum.

The prehistory and evolution of the sounds and forms of ancient Greek as reconstructed by comparison with the other Indo-European languages.

LING 452(4452) Latin Comparative Grammar (also CLASS 422[4452]) (III) (KCM)

The prehistory of the evolution of the sounds and forms of classical Latin as reconstructed by comparison with the other Indo-European languages.

LING 454(4454) Italic Dialects (also CLASS 424) (III) (KCM)

The phonology and morphology of Faliscan, Oscan, and Umbrian studied through the reading of epigraphical texts. Attention to the relations of these languages to Latin and the question of proto-Italic.

LING 455(4455) Greek Dialects (also CLASS 425[4455]) (III) (KCM)
Fall. 4 credits. Prerequisite: basic familiarity with classical Greek morphology. Not offered 2005–2006. A. Nussbaum.

Survey of the dialects of ancient Greek through the reading and analysis of representative epigraphical and literary texts.

LING 456(4456) Archaic Latin (also CLASS 426[4456]) (III) (LA)

A. Nussbaum.

Reading of epigraphic and literary preclassical texts with special attention to archaic and dialectal features. The position of Latin among the Indo-European languages of ancient Italy, the rudiments of Latin historical grammar, and aspects of the development of the literary language.

LING 457(4457) Homeric Philology (also CLASS 427[4457]) (III) (LA)
Spring. 4 credits. Prerequisite: ability to read Homeric Greek. A. Nussbaum.

The language of the Homeric epics: dialect background, archaisms, modernizations. The notion of a Kunstsprache: its constitution, use, and internal consistency. The phonological and morphological aspects of epic compositional technique.

LING 459(4459) Mycenaean Greek (also CLASS 429[4459]) (III or IV) (LA)

A. Nussbaum.

Introduction to the epigraphy, language, and content of the Linear B tablets with special attention to their implications for Greek historical grammar and dialectology.

LING 460(4460) Sanskrit Comparative Grammar (also CLASS 490[4490]) (III or IV) (KCM)
Fall. 4 credits. Prerequisite: reasonable familiarity with classical Sanskrit morphology. A. Nussbaum.

Survey of the historical phonology and morphology of Sanskrit in relation to the Indo-Iranian and Indo-European comparative evidence.

LING 474(4474) Introduction to Natural Language Processing (also COGST 474, COM S 474[4740]) (III)
Fall. 4 credits. Prerequisite: COM S 211 or permission of instructor. C. Cardie.

Introduction for students with computer science background. Covers relevant material in linguistics. Includes computational phonology and other applications of finite state methods; context-free, probahlistic, and feature constraint syntax; parsing and statistical algorithms; corpus and markup methodologies.

LING 483(4483)-4843(4483) Intensional Logic (also MATH 483[4830], PHIL 438[4380]) (II) (MGR)

For description, see PHIL 436.

LING 485(4485) Topics in Computational Linguistics (II) (MGR)
Spring. 4 credits. Prerequisite: LING 424 or LING/COM S 474.

Laboratory course concerned with broad-coverage computational grammars, computational methodology for addressing linguistic questions, and programming and experimental environments for computational linguistics. Course work includes an experimental project.

LING 493(4493) Honors Thesis Research
Fall. 4 credits. Staff.

May be taken before or after LING 494, or may be taken independently.

LING 494(4494) Honors Thesis Research
Spring. 4 credits. Staff.

May be taken as a continuation of, or before, LING 493.

LING 501(5501) Cognitive Science (also COGST 501[6150], PHIL/PSYCH 501)

For description, see COGST 501.

LING 530(5530) Representation of Structure in Vision and Language (also COGST/PSYCH 530[6300])

For description, see PSYCH 530.

LING 531(5531) Topics in Cognitive Studies (also COGST 531, PSYCH 531[6310])

For description, see COGST 531.

LING 600(6600) Field Methods
Spring. 4 credits. Prerequisites: LING 401 and 403 or permission of instructor. Staff.

Elicitation, recording, and analysis of data from a native speaker of a non-Western language not generally known to students.

LING 601(6601) Topics in Phonological Theory
Spring. 4 credits, variable. Prerequisites: LING 401 and one higher-level phonology course or reading knowledge of Russian; for LING 401 or 403 or permission of instructor. Not offered 2005–2006.

Staff.

Selected topics in current phonological theory.

LING 602(6602) Topics in Morphology
Fall. 4 credits. Prerequisites: LING 401 or 403 or permission of instructor. Not offered 2005–2006.

Staff.

Selected topics in current morphological theory.

LING 604(6604) Research Workshop
Fall. 2 credits. Requirement for third-year linguistics graduate students. S/U grades only. J. Whitman.

Provides a forum for presentation and discussion of ongoing research, and development of professional skills. Participants must enroll in a concurrent independent study with a special committee member, or a relevant workshop.

LING 608(6608) Historical Syntax

LING 609(6609) SLA and the Asian Languages (also ASIAN 610[6610])
Fall. 4 credits. Prerequisite: LING 414–415 or permission of instructor. Not offered 2005–2006. Y. Shirai.

LING 615(6615) Topics in Semantics
Fall. 4 credits. Prerequisite: LING 421 or permission of instructor. Not offered 2005–2006. D. Abusch.

Selected topics in semantic theory, focusing on recent literature.
LING 616(6616) Topics in Syntactic Theory
Fall. 4 credits, variable. Prerequisite: LING 404 or permission of instructor. A. Pereltsvaig. Examination of recent developments in syntactic theory, including "minimalist" approaches to phrase structure, derivations/representations and the nature of economy conditions, and parametric differences.

[LING 617-618(6617-6618) Hittite
617, fall; 618, spring. 4 credits each semester. Prerequisites: for LING 617, permission of instructor; for LING 618, LING 617 or permission of instructor. Not offered 2005–2006. M. Weiss. Introduction to the cuneiform writing system and the grammar of Hittite, followed by the reading of selected texts.]

[LING 619(6619) Rigveda
Fall. 4 credits. Prerequisite: permission of instructor. Not offered 2005–2006. Staff.]

[LING 620(6620) Comparative Grammar of Anatolian (also NES 623)

[LING 621(6621) Avestan and Old Persian (also NES 621)

[LING 623-624(6623–6624) Old Irish I, II
623, fall; 624, spring. 4 credits each semester. Prerequisite: for LING 624, LING 623 or permission of instructor. Not offered 2005–2006. Staff.]

LING 625(6625) Middle Welsh
Spring. 4 credits. Prerequisite: permission of instructor. W. Harbert. Students develop a reading knowledge of Middle Welsh through translating selections from prose and poetry. Emphasis is on the prose tales, including the Mabinogi. No familiarity with Welsh is assumed.

[LING 629(6629) Old Avestan (also NES 622)

[LING 631(6631) Comparative Indo-European Linguistics
Fall. 4 credits. Prerequisite: permission of instructor. Not offered 2005–2006. Staff. Introduction to the comparative grammar of the Indo-European languages.]

LING 633(6633) Language Acquisition Seminar (also COGST/HD 633[6633])
For description, see HD 635.

LING 634(6634) Philosophy of Language (also PHIL 633[6633])
For description, see PHIL 635.

[LING 635-636(6635–6636) Indo-European Workshop
635, fall; 636, spring. 4 credits each semester. Prerequisite: permission of instructor. Not offered 2005–2006. M. Weiss. An assortment of subjects intended for students with previous training in Indo-European linguistics: problems in the reconstruction of Proto Indo-European, topics in the historical grammars of the various IE languages, reading and historical linguistic analysis of texts, and grammatical sketches of "minor" IE languages.]

[LING 637(6637) Introduction to Tocharian
the important scientific developments of our time. Acquaintance with mathematics is also extremely useful for students in the social sciences and valuable for anyone interested in the full range of human culture and the ways of knowing the universe in which we live. The Department of Mathematics faculty has strong groups specializing in algebra, number theory, combinatorics, real and complex analysis, Lie groups, topology and geometry, logic, probability and statistics, mathematical physics, and applied mathematics. Related departments at Cornell have specialists in computer science, operations research, linear programming, and game theory, and courses in these topics can be integrated readily into the mathematics major.

The department offers a rich variety of undergraduate courses, and many of its beginning graduate courses are suitable for advanced undergraduates as well. Under some conditions, a student may carry out an independent reading and research project for college credit under the supervision of a faculty member.

Members of the department are available to discuss with students the appropriate course for their levels of ability and interest, and students are urged to avail themselves of this help.

Students who want to take any of the courses numbered 300 or above are invited to confer, before registering, with the instructor concerned. The level of a course is indicated by the first digit of the course number: roughly, 1, 2, indicate underclass courses; 3, 4, upperclass courses; 5, professional level and mathematics education courses; 6, 7, graduate courses. The subject matter of courses is often indicated by the second digit: 0, general; 1, 2, indicate underclass courses; 3, 4, analysis; 5, 6, topology and geometry; 7, probability and statistics; 8, logic; 9, other.

Midterm grades, when required, will be S or U only, except in special circumstances. In courses with numbers below 700, students will receive letter grades, with the exception of nonmathematics majors who have requested an S-U grade.

Advanced Placement
Secondary school students are strongly urged to take one of the two advanced placement exams of the College Entrance Examination Board in their senior year. Freshmen who have had some calculus but who have not taken an advanced placement exam should take the placement exam in mathematics offered at Cornell just before the beginning of classes in the fall. Anyone with any knowledge of calculus should carefully read “Advanced Placement,” pp. 8-12.

The Major
The mathematics major adapts to a number of purposes. It can emphasize the theoretical or the applied. It can be appropriate for professionals and nonprofessionals alike, and can be broad or narrow. It can also be combined easily with serious study in another subject in the physical, biological, or social sciences by means of a double major and/or concentration. For example, a double major in mathematics and economics is facilitated by the concentration in computer science (requirement 4, option b) described below. This concentration permits a student to use certain computer science courses to satisfy the requirements of both majors. Questions concerning the major should be brought to a departmental representative.

Prerequisites
The traditional prerequisites are MATH 221-222, 223-224, or 293-294. Normally students will be admitted to the major only when they have grades of B or better in all 200-level mathematics courses taken. Alternative prerequisites are MATH 213 and 231, normally with grades of B+ or better.

Requirements
There are five requirements for the major:

1. COM S 100. Students are urged to take this course before the end of their sophomore year.

2. Two courses in algebra. Eligible courses are
 - MATH 431 or 433
 - MATH 432 or 434
 - MATH 352 or 356
 (Credit for both MATH 332 and 336 will be granted only if both were taken during or before spring 2002.)

3. Two courses in analysis. Eligible courses are MATH 311, 321, 323, 413, 414, 418, 420, 422, 424, 425, 428.

4. Five further high-level mathematical courses. Two-credit courses count as half courses. For students graduating in May 2007 or later, 500-level MATH courses will not normally count toward the major. In rare cases, exceptions are granted. Students should consult their advisers. The seven alternatives (a-g) below do not exhaust the possibilities. A mathematics major interested in a concentration in a subject different from those below may develop a suitable individual program in consultation with his or her major adviser.

 a. Concentration in Mathematics:
 i. Four additional MATH courses numbered 300 or above.
 ii. One course dealing with mathematical models. Any course from outside mathematics with serious mathematical content and dealing with scientific matters. Serious mathematical content includes, but is not limited to, extensive use of calculus or linear algebra. Any course from another department that would satisfy one of the other concentrations may be used. In addition, COM S 211, MATH 335/COM S 480, MATH/BIOEE 362, MATH 384/PHIL 330, MATH 481/PHIL 431, MATH 482/PHIL 432, MATH 483/PHIL 436, MATH/COM S 486, PHYS 116, 208, 213, or 217 may be used, but no other 100-level physics course, nor PHYS 209, nor 218, nor PHIL 218, may be used. Some courses in biology, chemistry, and other fields may be used.

 b. Concentration in Computer Science: Five additional courses from (iii) and (iv) below, of which at least one is from (iii) and three are from (iv).

 c. Concentration in Economics: Five additional courses from (v), (vi), and (vii) below, of which at least two are from (v), three courses from (vi), and a fifth course from any of (v), (vi), or (vii).

 d. Concentration in Mathematical Biology: Five additional courses from (viii) and (ix) below, with three courses from (viii) and two courses from (ix).

 e. Concentration in Mathematical Physics: Five additional courses from (x) and (xi) below, of which at least one is from (x) and three are from (xi).

 f. Mathematics courses numbered 300 or above.

 g. Computer science courses with significant mathematical content. Eligible courses are: MATH 321, 322, 381, 400, 411, 421, 426, 427, 428, at most one of 465 and 467, 468, 474, 478, 480, 481, 482, 483, and 486. Students graduating in January 2007 or earlier may use any COM S course numbered 300 or above to fulfill this requirement.

 h. Concentration in Other Mathematics Disciplines: Eligible courses are MATH 311, 321, 323, 413, 414, 420, 428, 422, 424, 425, 426, 427, or 429, 441, 442, 451, 452, 453, 454, 455, 471, 472, 481, 482, 483, and 486.
f. **Concentration in Operations Research:** Five additional courses from (xii) and (xiii) below, of which at least one is from (xii) and three are from (xiii).

xii. Mathematics courses numbered 300 or above.

xiii. Courses in operations research in which the primary focus involves mathematical techniques. Eligible courses are: ORIE 520, 321, 360, 361, 431, 432, 434, 435, 436, 451, 462, 483. Many operations research graduate courses are also allowed. Students should consult with their advisers.

g. **Concentration in Statistics:** Five additional courses from (xv), (xvi), and (xvii) below, which include both from (xv) and at least two from (xvi).

MATH 171 is recommended as an additional course, not counting toward the requirements. It should be taken, or audited, before or simultaneously with MATH 471.

xiv. Mathematics courses numbered 300 or above.

xv. MATH 471 and 472.

xvi. Courses in other departments with significant content in probability and statistics, complementing (xiv). Eligible courses are BTRY 302 and 482; ORIE 361, 462, 464, 468, 469, 473, 474, and 476 (counted as half a course here), ILRST 312, 410, and 411; and ECON 320. Many graduate courses co-listed in the Department of Statistical Science are also allowed (e.g., BTRY 602, 603, and 604). Students should consult their advisers.

A course may be counted toward the mathematics major only if it is taken for a letter grade and a grade of C- or better is received for that course.

Major advisers can alter these requirements upon request from an advisee, provided the intent of the requirements is met.

Senior Thesis

A senior thesis can form a valuable part of a student’s experience in the mathematics major. It is intended to allow students to cover significant areas of mathematics not covered in course work, or not covered there in sufficient depth. The work should be independent and creative. It can involve the solution of a serious mathematics problem, or it can be an expository work, or variants of these. Both the process of doing independent research and mathematics exposition, as well as the finished written product and optional oral presentation, can have a lasting positive impact on a student’s educational and professional future.

Double Majors

The Departments of Computer Science, Economics, and Physics all permit double majors with the mathematics major, allowing the courses listed under the corresponding concentrations above to be counted for both majors. Students should consult the appropriate departments for any further conditions.

Honors Program

The Department of Mathematics awards honors (cum laude and high honors (magna cum laude and summa cum laude) to graduating mathematics majors who have demonstrated outstanding ability in the major program.

The awards are determined by the Mathematics Major Committee in the latter part of the semester before graduation. The committee will primarily be looking for excellent performance in mathematics courses, particularly in challenging courses at the 400 level or beyond. Participation in the honors seminar (MATH 401) for one semester, or independent study at a high performance level can also contribute to honors. Students interested in honors should consult their major advisors concerning suitable courses.

Outstanding performance in graduate classes or an excellent senior thesis can also contribute to high honors. Students interested in high honors should consult their major advisors and the chair of the department’s Mathematics Major Committee during the second semester of their junior year.

Teacher Education in Mathematics

For information on the various possibilities for students considering teaching mathematics in schools, go to www.math.cornell.edu/Undergraduate/Teaching.

Studying Mathematics Outside the Major

The College of Arts and Sciences and the Department of Mathematics offer no minor or concentration in mathematics for students who are not math majors. However, some other scientific departments in the college offer, within their own majors, concentrations in mathematics and mathematics-related fields. A student interested in such a concentration should consult the director of undergraduate studies of his or her major department.

The College of Engineering offers a minor in applied mathematics that is open to any undergraduate in that college. Students who take the three-semester sequence 111–112–213 may also take the engineering sequence 190–191–192–230–293–294. Students are encouraged to consult with their advisers.

MATH 190 or 191 may be substituted for 112. The two-year sequences include some linear algebra. Students who take the three-semester sequence 111–112–213 may learn some linear algebra by taking MATH 231.

Distribution Requirement

The mathematics courses that can be used to satisfy the Group II (Quantitative and Formal Reasoning) part of the Arts College distribution requirements are indicated by the symbol "(QII)" next to the title of the course and those that can be used to satisfy the new Mathematics and Quantitative Reasoning Requirement are indicated by the symbol "(MQII)."

Basic Sequences

Precalculus

- **Description**
 - Courses
 - 1. Algebra and trigonometry to prepare students for calculus
 - MATH 109* or EDUC 005*
 - 2. Algebra, analytic geometry, elements of calculus
 - EDUC 115*, MATH 100*

* MATH 100, MATH 109, EDUC 005, and EDUC 115 do not carry credit for graduation in the Arts College.

Students who want a semester of calculus after EDUC 115 or MATH 100 may take MATH 106 or 111. Noncalculus alternatives are MATH 105 or 171.

Calculus

- **Description**
 - Mathematics Courses
 - 1. Standard three-semester sequence for students who do not expect to take advanced courses in mathematics
 - 111–112–213
 - 2. Calculus for engineers (also taken by some physical science majors)

Students who expect to take advanced courses in mathematics: 111–112–221–222, 111–122–123–124 or some mix of these courses. Students may also take the engineering sequence 190–191–192–230–294. Students are encouraged to consult with their advisers.

MATH 190 or 191 may be substituted for 112. The two-year sequences include some linear algebra. Students who take the three-semester sequence 111–112–213 may learn some linear algebra by taking MATH 231.

Special-Purpose Sequences

- **Mathematics Courses**
 - 1. Finite mathematics and calculus for life and social science majors
 - 105–106
 - 2. Other possible finite mathematics and calculus sequences
 - 105–111
 - 3. Calculus and statistics sequences
 - 106–171, 111–171

Students who want to take two semesters of calculus are advised to take the first two semesters of one of the three calculus sequences. Students with excellent performance in MATH 106 may follow that course with MATH 112 or 122. The courses in each of the calculus and statistics sequences may be taken in either order, since no
calculus background is required for MATH 171. Each of the sequences listed here satisfies the mathematics requirement for most medical schools.

Switching between calculus sequences is often difficult, especially at the 200 level. Students should not attempt such a switch without consulting the director of undergraduate studies.

Courses with Overlapping Content
Because the department offers many courses with overlapping content, students must choose their courses carefully to ensure that they will receive credit for each course they take. Listed below are groups of courses that have similar content. Students will receive credit for only one of the courses in each group.

106, 111, 121
112, 122, 190, 191
192, 213, 222, 224
221, 231, 294
332, 335, 336*
451 and 453
452 and 454

*Credit for both MATH 332 and MATH 336 will be granted only if both were taken during or before spring 2002.

Note: Courses with overlapping content are not necessarily equivalent courses. Students are encouraged to consult a mathematics faculty member when choosing between them.

Fees
In some courses there may be a small fee for photocopying materials to be handed out to students.

Summer Courses
A list of mathematics courses usually offered every summer can be found in the School of Continuing Education and Summer Sessions section of this catalog. Students interested in taking summer courses in mathematics should consult the Department of Mathematics web site (www.math.cornell.edu). A tentative summer listing may be available as early as October.

Undergraduate Course Offerings
Please visit www.math.cornell.edu for further information and up-to-the-minute corrections.

Foundation courses: 105, 106, 111, 112, 122, 190, 191, 192, 213, 221, 222, 223, 224, 231, 293, 294
Mathematics Education: 408, 451
History of Mathematics: 403
General and Liberal Arts Courses: 103, 135, 171, 201, 304, 401, 408
Analysis: 311, 321, 413, 414, 418
Algebra and Number Theory: 332, 335, 336, 431, 432, 433, 434
Combinatorics: 441, 442, 455
Geometry and Topology: 356, 451, 452, 453, 454
Probability and Statistics: 171, 275, 471, 472
Mathematical Logic: 281, 384, 481, 482, 483, 486

MATH 100(1000) Calculus Preparation
Fall. 2 transcript credits only; cannot be used toward graduation.
Introduces a wide variety of topics of algebra and trigonometry that have applications in various areas of mathematics. Focus is on the development of linear, polynomial, rational, trigonometric, exponential, and logarithmic functions. Students will have a better understanding of the behavior of these functions in their application to calculus because of the strong emphasis on graphing. Application of these mathematical ideas is addressed in problem-solving activities.

MATH 103(1103) Mathematical Explorations (II) (MQR)
Fall, spring, summer. 3 credits.
For students who wish to experience how mathematical ideas naturally evolve. The homework consists of the students actively investigating mathematical ideas. The course emphasizes ideas and imagination as opposed to techniques and calculations. Topics vary depending on the instructor and are announced (www.math.cornell.edu) several weeks before the semester begins. Some assessment is done through writing assignments.

MATH 105(1105) Finite Mathematics for the Life and Social Sciences (II) (MQR)
Fall. 3 credits. Prerequisite: three years high school mathematics, including trigonometry and logarithms.
Introduction to linear algebra, probability, and Markov chains that develops the parts of the theory most relevant for applications. Specific topics include equations of lines, the method of least squares, solutions of linear systems, matrices, basic concepts of probability, permutations, combinations, binomial distribution, mean and variance, and the normal approximation to the binomial distribution. Examples from biology and the social sciences are used.

MATH 106(1106) Calculus for the Life and Social Sciences (II) (MQR)*
Spring. 3 credits. Prerequisite: readiness for calculus, such as can be obtained from three years of high school mathematics (including trigonometry and logarithms) or from MATH 100. MATH 109, or EDUC 115. For students planning to take MATH 112, MATH 111 is recommended rather than 106.
Introduction to differential and integral calculus, partial derivatives, elementary differential equations. Examples from biology and the social sciences are used.

MATH 109(1109) Precalculus Mathematics
Summer. 3 transcript credits only; cannot be used toward graduation. Designed to prepare students for MATH 111. Reviews algebra, trigonometry, logarithms, and analytic geometry. Emphasis is on the development of linear, polynomial, rational, trigonometric, exponential, and logarithmic functions; and exponential functions; applications of differentiation, including graphing, max-min problems, tangent line approximation, implicit differentiation, and applications to the sciences; the mean value theorem; and antiderivatives, definite and indefinite integrals, the fundamental theorem of calculus, substitution in integration, and the area under a curve. Graphing calculators are used, and their pitfalls are discussed, as applicable to the above topics. MATH 111 can serve as a one-semester introduction to calculus or as part of a two-semester sequence in which it is followed by MATH 112 or 122.

MATH 112(1120) Calculus II (II) (MQR)*
Fall, spring. 4 credits. Prerequisite: MATH 111 with grade of C or better or excellent performance in MATH 106. Those who well in MATH 111 and expect to major in mathematics or strongly mathematics-related field should take 112 instead of 112.
Focuses on integration: applications, including volumes and arc length; the analytic of integration, approximate integration, and applications, polar coordinates, infinite series, and complex numbers, as well as an introduction to proving theorems.

MATH 122(1220) Honors Calculus II (II) (MQR)*
Fall. 4 credits. Prerequisite: one semester of calculus with high performance or permission of department. Students planning to continue with MATH 213 are advised to take 112 instead of this course.
Takes a more theoretical approach to calculus than MATH 112. Topics include differentiation of elementary transcendental functions, techniques of integration, applications, polar coordinates, infinite series, and complex numbers, as well as an introduction to proving theorems.

MATH 135(1350) The Art of Secret Writing (II) (MQR)
Fall, spring, summer. 5 credits. Prerequisite: three years high school mathematics.
Examines classical and modern methods of message encryption, decryption, and cryptoanalysis. Mathematical tools are developed to describe these methods (modular arithmetic, probability, matrix arithmetic, number theory), and some of the fascinating history of the methods and people involved is presented.

MATH 171(1710) Statistical Theory and Application in the Real World (II) (MQR)
Fall, spring, summer. 4 credits. Prerequisite: high school mathematics.
No previous familiarity with computers presumed. No credit if taken after ECON 319, 320, or 321.
Introductory statistics course discussing techniques for analyzing data occurring in the real world and the mathematical and philosophical justification for these techniques. Topics include population and sample distributions, central limit theorem, statistical theories of point estimation, confidence intervals, testing hypotheses, the linear

*See the list of courses with overlapping content at the end of the introduction.
model, and the least squares estimator. The course concludes with a discussion of tests and estimates for regression and analysis of variance (if time permits). The computer is used to demonstrate some aspects of the theory, such as sampling distributions and the Central Limit Theorem. In the lab portion of the course, students learn and use computer-based methods for implementing the statistical methodology presented in the lectures.

MATH 190 (1900) **Calculus for Engineers (II) (MQR)**
Fall. 4 credits. Prerequisite: three years of high school mathematics, including trigonometry and logarithms and at least one course in differential and integral calculus.
Covers the same material as MATH 191 but meant for students with less preparation. Essentially a second course in calculus. Topics include techniques of integration, finding areas and volumes by integration, exponential growth, partial fractions, infinite sequences and series, and power series.

MATH 191 (1910) **Calculus for Engineers (II) (MQR)**
Fall or spring. 4 credits.
Prerequisite: three years of high school mathematics including trigonometry and logarithms and at least one course in differential and integral calculus.
Essentially a second course in calculus. Topics include techniques of integration, finding areas and volumes by integration, exponential growth, partial fractions, infinite sequences and series, and power series.

MATH 192 (1920) **Calculus for Engineers (II) (MQR)**
Fall or spring. 4 credits.
Prerequisite: MATH 190 or 191. Introduction to multivariable calculus. Topics include partial derivatives, double and triple integrals, line integrals, vector fields, Green's theorem, Stokes' theorem, and the divergence theorem.

MATH 201 (2010) **Invitation to Higher Math: Algebra and Geometry (II) (MQR)**
Spring. 3 credits.
Provides a preview of some of the more advanced topics in mathematics that do not involve calculus. Topics are chosen for their intrinsic interest and beauty rather than practical utility. One theme is to see some of the strange and surprising mathematical universes that can be constructed when one is not confined to the everyday real world. Another theme is the rich interplay between algebra and geometry, how each illuminates the other. A high point is a geometric proof that there is no general formula for solving polynomial equations of degree five and greater such as the well-known quintic formula. Intended for students who may be considering a math major, or who just like math and are good at it.

MATH 213 (2130) **Calculus III (II) (MQR)**
Fall, spring. 4 credits.
Prerequisite: MATH 112, 122, 190, or 191.
Designed for students who wish to master the basic techniques of multivariable calculus, but whose major will not require a substantial amount of mathematics. Topics include vectors and vector-valued functions, multivariable and vector calculus including multiple and line integrals; first- and second-order differential equations with applications; systems of differential equations; and elementary partial differential equations. The course may emphasize different topics in the syllabus in different semesters.

MATH 221 (2210) **Linear Algebra (II) (MQR)**
Fall, spring. 4 credits. Prerequisite: two semesters of calculus with high performance or permission of department. Recommended for students who plan to major in mathematics or a related field. For a more applied version of this course, see MATH 231.
Topics include vector algebra, linear transformations, matrices, determinants, orthogonality, eigenvalues, and eigenvectors. Applications are made to linear differential equations.

MATH 222 (2220) **Multivariable Calculus (II) (MQR)**
Fall, spring. 4 credits. Prerequisite: MATH 221. Recommended for students who plan to major in mathematics or a related field. Differential and integral calculus of functions of several variables, line and surface integrals as well as the theorems of Green, Stokes, and Gauss.

MATH 223 (2230) **Theoretical Linear Algebra and Calculus (II) (MQR)**
Fall. 4 credits. Prerequisite: two semesters of calculus with grade of A- or better, or permission of instructor.
MATH 223–224 provides an integrated treatment of linear algebra and multivariable calculus designed for students who have been highly successful in their previous calculus courses. The material is presented at a higher theoretical level than in 221–222. Topics in 223 include vectors, matrices, and linear transformations; differential calculus; functions of several variables; inverse and implicit function theorems; quadratic forms, extrema, and manifolds; multiple and iterated integrals.

MATH 224 (2240) **Theoretical Linear Algebra and Calculus (II) (MQR)**
Spring. 4 credits. Prerequisite: MATH 223. Topics include vector fields, line integrals, differential forms and exterior derivative, work, flux, and density forms; integration of forms over parametrized domains; and Green's, Stokes', and divergence theorems.

MATH 231 (2310) **Linear Algebra with Applications (II) (MQR)**
Fall, spring. 4 credits. Prerequisite: MATH 111 or equivalent. Students who plan to major in mathematics should take MATH 221 or 294.
Introduction to linear algebra for students who wish to focus on the practical applications of the subject. A wide range of applications are discussed and computer software may be used. The main topics are systems of linear equations, matrices, determinants, vector spaces, orthogonality, and eigenvalues. Typical applications are population models, input/output models, least squares, and difference equations.

MATH 275 (2750) **Living in a Random World (II) (MQR)**
Spring. 3 credits. Prerequisite: one semester of calculus. Some familiarity with integration and differentiation is useful, but the equivalent of a first-year calculus course in calculus is more than enough.
Concentrates on applications of probability in the physical, biological, and social sciences, and to understanding the world around us (e.g., games, lotteries, option pricing, and opinion polls).

MATH 281 (2810) **Deductive Logic (also PHIL 331–3310) (II) (MQR)**
Fall. 4 credits.
For description, see PHIL 331.

MATH 293 (2930) **Engineering Mathematics (II) (MQR)**
Fall, spring, summer. 4 credits. Prerequisite: MATH 292. Taking MATH 293 and 294 simultaneously is not recommended.
Introduction to ordinary and partial differential equations. Topics include: first-order equations (separable, linear, homogeneous, exact); mathematical modeling (e.g., population growth, terminal velocity); qualitative methods (slope fields, phase plots, equilibria, and stability); numerical methods; second-order equations (method of undetermined coefficients, application to oscillations and resonance, boundary-value problems and eigenvalues); Fourier series; linear partial differential equations (heat flow, waves, the Laplace equation); and linear systems of ordinary differential equations.

MATH 294 (2940) **Engineering Mathematics (II) (MQR)**
Fall, spring, summer. 4 credits. Prerequisite: MATH 192. Taking MATH 293 and 294 simultaneously is not recommended.
Linear algebra and its applications. Topics include matrices, determinants, vector spaces, eigenvalues and eigenvectors, orthogonality and inner product spaces; applications include brief introductions to difference equations, Markov chains, and systems of linear ordinary differential equations. May include computer use in solving problems.

MATH 304 (3040) **Prove It! (II) (MQR)**
Spring. 4 credits. Prerequisite: MATH 221, 223, 294, or permission of instructor.
In mathematics, the methodology of proof provides a central tool for confirming the validity of mathematical assertions, functioning much as the experimental method does in the physical sciences. In this course, students learn various methods of mathematical proof, starting with basic techniques in propositional and predicate calculus and in set theory and combinatorics, and then moving to applications and illustrations of these via topics in one or more of the three main pillars of mathematics: algebra, analysis, and geometry. Since cogent communication of mathematical ideas is important in the presentation of proofs, the course emphasizes clear, concise exposition. This course is useful for all students who wish to improve their skills in mathematical proof and exposition, or who intend to study more advanced topics in mathematics.

See the list of courses with overlapping content at the end of the introduction.

MATH 275 (2750) **Living in a Random World (II) (MQR)**
Spring. 3 credits. Prerequisite: one semester of calculus. Some familiarity with integration and differentiation is useful, but the equivalent of a first-year calculus course in calculus is more than enough.
Concentrates on applications of probability in the physical, biological, and social sciences, and to understanding the world around us (e.g., games, lotteries, option pricing, and opinion polls).

MATH 281 (2810) **Deductive Logic (also PHIL 331–3310) (II) (MQR)**
Fall. 4 credits.
For description, see PHIL 331.

MATH 293 (2930) **Engineering Mathematics (II) (MQR)**
Fall, spring, summer. 4 credits. Prerequisite: MATH 292. Taking MATH 293 and 294 simultaneously is not recommended.
Introduction to ordinary and partial differential equations. Topics include: first-order equations (separable, linear, homogeneous, exact); mathematical modeling (e.g., population growth, terminal velocity); qualitative methods (slope fields, phase plots, equilibria, and stability); numerical methods; second-order equations (method of undetermined coefficients, application to oscillations and resonance, boundary-value problems and eigenvalues); Fourier series; linear partial differential equations (heat flow, waves, the Laplace equation); and linear systems of ordinary differential equations.

MATH 294 (2940) **Engineering Mathematics (II) (MQR)**
Fall, spring, summer. 4 credits. Prerequisite: MATH 293 and 294 simultaneously is not recommended.
Linear algebra and its applications. Topics include matrices, determinants, vector spaces, eigenvalues and eigenvectors, orthogonality and inner product spaces; applications include brief introductions to difference equations, Markov chains, and systems of linear ordinary differential equations. May include computer use in solving problems.

MATH 304 (3040) **Prove It! (II) (MQR)**
Spring. 4 credits. Prerequisite: MATH 221, 223, 294, or permission of instructor.
In mathematics, the methodology of proof provides a central tool for confirming the validity of mathematical assertions, functioning much as the experimental method does in the physical sciences. In this course, students learn various methods of mathematical proof, starting with basic techniques in propositional and predicate calculus and in set theory and combinatorics, and then moving to applications and illustrations of these via topics in one or more of the three main pillars of mathematics: algebra, analysis, and geometry. Since cogent communication of mathematical ideas is important in the presentation of proofs, the course emphasizes clear, concise exposition. This course is useful for all students who wish to improve their skills in mathematical proof and exposition, or who intend to study more advanced topics in mathematics.

See the list of courses with overlapping content at the end of the introduction.
MATH 311(3110) Introduction to Analysis (II) (MQR)
Fall, spring. 4 credits. Prerequisites: MATH 221–222, 223–224, or 192 and 294. A thorough introduction to the foundations of calculus, real analysis, and the real numbers. Topics include limits, continuity, uniform continuity, differentiability, the intermediate value theorem, and the mean value theorem. Emphasis is placed upon understanding and constructing mathematical proofs.

MATH 321(3210) Manifolds and Differential Forms (II) (MQR)
Fall. 4 credits. Prerequisites: multivariable calculus and linear algebra (e.g., MATH 221–222, 223–224, or 192 and 294). Provides a transition from calculus to real analysis. Topics include rigorous treatment of fundamental concepts in calculus: including limits and convergence of sequences and series, compact sets, continuity, uniform continuity, differentiability of functions. Emphasis is placed upon understanding and constructing mathematical proofs.

MATH 335(3350) Introduction to Cryptology (also COM S 480/G4870) (II) (MQR)
Fall, spring. 3 credits. Prerequisites: MATH 221–222, 223–224, or 192 and 294, and COM S 100 or equivalent. Introduction to the algorithmic and mathematical concepts of cryptanalysis. Topics include security vs. feasibility and different types of cryptographic attack, elementary probability, number theory, cryptographic hash functions, and secret and public key cryptography.

MATH 336(3360) Applicable Algebra (II) (MQR)*
Spring, summer. 4 credits. Prerequisite: MATH 221, 223, 231, or 294. Introduction to the concepts and methods of abstract algebra and number theory that are of interest in applications. Covers the basic theory of groups, rings and fields and their applications to such areas as public-key cryptography, error-correcting codes, parallel computing, and experimental designs. Applications include the RSA cryptosystem and use of finite fields to construct error-correcting codes and Latin squares. Topics for partial differential equations may include induction and recursion, synthetic and analytic geometry, number systems, the geometry of complex numbers, angle measurement and trigonometry, and the so-called elementary functions. Topics for partial differential equations may include the Poisson, heat and wave equations, boundary and initial-boundary value problems, maximum principles, continuous dependence on data, separation of variables, Fourier series, Green's functions, numerical methods, transform methods.

MATH 332(3320) Algebra and Number Theory (II) (MQR)*
Fall. 4 credits. Prerequisite: MATH 221, 223, 231 or 294. Covers various topics from number theory and modern algebra. Usually includes most of the following: primes and factorization, Diophantine equations, congruences, quadratic reciprocity, continued fractions, rings and fields, finite groups, and an introduction to the arithmetic of the Gaussian integers and quadratic fields. Motivation and examples for the concepts of abstract algebra are provided primarily from number theory and geometry.

MATH 341(3410) Honors Seminar: Topics in Modern Mathematics (II) (MQR)
Spring. 4 credits. Prerequisite: two mathematics courses numbered 300 or higher, or permission of instructor. Participatory seminar aimed primarily at introducing senior and junior mathematics majors to some of the challenging problems and areas of modern mathematics. Helps students develop research and expository skills in mathematics, which is important for careers in any field that makes significant use of the mathematical sciences (i.e., pure or applied mathematics, physical or biological sciences, business and industry, medicine). Content varies from year to year.

MATH 408(4080) Mathematics in Perspective (II) (MQR)
Spring. 4 credits. Prerequisite: permission of instructor. Examines several basic topics in mathematics, topics that are usually introduced in high school, from the perspective gained through the real numbers and their properties, and the role of careful definitions and proofs in both deepening our understanding of mathematics and generating new mathematical ideas. In addition, the course relates these basic topics to current mathematical research. Specific topics may include induction and recursion, synthetic and analytic geometry, number systems, the geometry of complex numbers, angle measurement and trigonometry, and the so-called elementary functions.

MATH 413(4130) Honors Introduction to Analysis I (III) (MQR)
Fall, spring. 4 credits. Prerequisite: high level of performance in MATH 221-222, 223-224, or 192 and 294 and familiarity with proofs. Students who do not intend to take MATH 414 are encouraged to take MATH 413 in spring. Introduction to the rigorous theory underlying calculus, covering the real number system and functions of one variable. Based entirely on proofs. The student must expect to know how to read and, to some extent, construct proofs before taking this course. Topics typically include construction of the real number system, properties of the real number system, continuous functions, differential and integral calculus of functions of one variable, sequences and series of functions.

MATH 414(4140) Honors Introduction to Analysis II (II) (MQR)
Spring. 4 credits. Prerequisite: MATH 413. Proof-based introduction to further topics in analysis. Topics may vary. Offered Lebesgue measure and integration, functions of several variables, differential calculus, implicit function theorem, infinite dimensional normed

*See the list of courses with overlapping content at the end of the introduction.
and metric spaces, Fourier series, ordinary differential equations.

MATH 418(4180) Introduction to the Theory of Functions of One Complex Variable (II) (MQR)
Spring. 4 credits. Prerequisite: MATH 223–224, 311, or 413 or permission of instructor.

Theoretical and rigorous introduction to complex variable theory. Topics include complex numbers, differential and integral calculus for functions of a complex variable including Cauchy's theorem and the calculus of residues, elements of conformal mapping. Students interested in the applications of complex analysis should consider MATH 422.

MATH 420(4200) Differential Equations and Dynamical Systems (II) (MQR)
Fall, spring. 4 credits. Prerequisite: high level of performance in MATH 221–222, 223–224, 192 and 294, or permission of instructor.

Covers ordinary differential equations in one and higher dimensions: qualitative, analytic, and numerical methods. Emphasis is on differential equations as models and the implications of the theory for the behavior of the system being modeled and includes an introduction to bifurcations.

MATH 422(4220) Applied Complex Analysis (II) (MQR)
Spring. 4 credits. Prerequisite: MATH 221–222, 223–224, 192 and 294, or 213 and 231. Undergraduates who plan to attend graduate school should take MATH 418. Covers complex variables, Fourier transforms, Laplace transforms and applications to partial differential equations. Additional topics may include an introduction to generalized functions.

MATH 424(4240) Wavelets and Fourier Series (II) (MQR)
Spring. 4 credits. Prerequisite: MATH 221–222, 223–224, 192 and 294, or permission of instructor.

Both Fourier series and wavelets provide methods to represent or approximate general functions in terms of simple building blocks. Such representations have important consequences, both for pure mathematics and for applications. Fourier series use natural sinusoidal building blocks and may be used to help solve differential equations. Wavelets use artificial building blocks that have the advantage of localization in space. A full understanding of both topics requires a background involving Lebesgue integration theory and functional analysis. This course presents as much as possible on both topics without such formidable prerequisites. The emphasis is on clear statements of results and key ideas of proofs, working out examples, and applications. Related topics that may be included are Fourier transforms, Heisenberg uncertainty principle, Shannon sampling theorem, and Poisson summation formula.

MATH 425(4250) Numerical Analysis and Differential Equations (II) (MQR)
Fall. 4 credits. Prerequisite: MATH 221–222, 223–224, or 192 and 294, one course numbered 300 or higher in mathematics and COM S 100, or permission of instructor. Offered every two years.

Introduction to the fundamentals of numerical analysis: error analysis, interpolation, direct and iterative methods for systems of equations, numerical integration. In the second half of the course, the above are used to build approximate solvers for ordinary and partial differential equations. Strong emphasis is placed on understanding the advantages, disadvantages, and limits of applicability for all the covered techniques. Computer programming is required to test the theoretical concepts throughout the course.

MATH 428(4280) Introduction to Partial Differential Equations (II) (MQR)
Spring. 4 credits. Prerequisite: MATH 221–222, 223–224, 192 and 294, or permission of instructor.

Topics are selected from first-order quasilinear equations, classification of second-order equations, with emphasis on maximum principles, existence, uniqueness, stability. Fourier series methods, approximation methods. Additional topics may include modules over Euclidean domains and Sylow theorems.

MATH 431(4310) Linear Algebra (II) (MQR)*
Fall. 4 credits. Prerequisite: MATH 221, 223, 231, or 294. Undergraduates who plan to attend graduate school in mathematics should take MATH 433–434.

Introduction to linear algebra, including the study of vector spaces, linear transformations, matrices, and systems of linear equations. Additional topics are quadratic forms and inner product spaces, canonical forms for various classes of matrices and linear transformations.

MATH 432(4320) Introduction to Algebra (II) (MQR)*
Spring. 4 credits. Prerequisite: MATH 352, 356, 431 or 433, or permission of instructor.

Undergraduates who plan to attend graduate school in mathematics should take MATH 433–434.

Introduction to various topics in abstract algebra, including groups, rings, fields, factorization of polynomials and integers, congruences, and the structure of finitely generated abelian groups. Optional topics are modules over Euclidean domains and Sylow theorems.

MATH 433(4330) Honors Linear Algebra (II) (MQR)*
Fall. 4 credits. Prerequisite: high level of performance in MATH 221, 223, 231, or 294.

Honors version of a course in advanced linear algebra, which treats the subject from an abstract and axiomatic viewpoint. Topics include vector spaces, linear transformations, polynomials, determinants, tensor and wedge products, canonical forms, inner product spaces, and bilinear forms. Emphasis is on understanding the theory of linear algebra; homework and exams include at least as many proofs as computational problems. For a less theoretical course that covers approximately the same subject matter, see MATH 431.

MATH 434(4340) Honors Introduction to Algebra (II) (MQR)*
Spring. 4 credits. Prerequisite: MATH 352, 356, 431, or 433, or permission of instructor.

Honors version of a course in abstract algebra, which treats the subject from an abstract and axiomatic viewpoint, including universal mapping properties. Topics include groups, rings, and modules over Euclidean domains and Sylow theorems; rings, factorization: Euclidean rings, principal ideal domains and unique factorization domains, the structure of finitely generated modules over a principal ideal domain, fields, and Galois theory. The course emphasizes understanding the theory with proofs in both homework and exams. An optional computational component using the computer language GAP is available. For a less theoretical course that covers similar subject matter, see MATH 432.

MATH 441(4410) Introduction to Combinatorics I (II) (MQR)
Fall. 4 credits. Prerequisite: MATH 221, 223, 231, or 294.

Combinatorics is the study of discrete structures that arise in a variety of ways, particularly in other areas of mathematics, computer science, and many areas of application. Central concerns are often to count objects having a particular property (e.g., trees) or to prove that certain structures exist (e.g., matchings of all vertices in a graph). The first semester of this sequence covers basic questions in graph theory, including extremal graph theory (how large a graph must a given graph be if there is a certain subgraph) and Ramsey theory (which shows that large objects are forced to have structure). Variations on matching theory are discussed, including theorems of Dilworth, Hall, König, and Rado, and a brief introduction to network flow theory.

Methods of enumeration (inclusion/exclusion, Mobius inversion, and generating functions) are introduced and applied to the problems of counting permutations, partitions, and triangulations.

MATH 442(4420) Introduction to Combinatorics II (MQR)*
Spring. 4 credits. Prerequisite: MATH 221, 223, 231, or 294. Offered alternate years.

Continuation of the first semester, although formally independent of the material covered there. Emphasis is on the study of certain combinatorial structures, such as Latin squares and combinatorial designs (which are of use in statistical experimental design), and classical finite geometries and combinatorial geometries (also known as matroids, which arise in many areas from algebra and geometry through discrete optimization theory). There is an introduction to partially ordered sets and lattices, including general Mobius inversion and its applications, as well as the Polya theory of counting in the presence of symmetries.

MATH 451(4510) Euclidean and Spherical Geometry (II) (MQR)
Fall. 4 credits. Prerequisite: MATH 221, 223, 231, or 294, or permission of instructor.

Covers topics from Euclidean and spherical (non-Euclidean) geometry. Nonlecture, seminar-style course organized around student participation.

MATH 452(4520) Classical Geometries (II) (MQR)
Spring. 4 credits. Prerequisite: MATH 221, 223, 231, or 294, or permission of instructor. Offered alternate years; not offered 2005–2006.

Introduction to hyperbolic and projective geometries—the classical geometries that were developed as Euclidean geometry was better understood. For example, the historical problem of the independence of Euclid's fifth postulate is understood when the existence of
the hyperbolic plane is realized. Straightedge (and compass) constructions and stereographic projection in Euclidean geometry can be understood within the structure of projective geometry. Topics in hyperbolic geometry include models of the hyperbolic plane and relations to spherical geometry. Topics in projective geometry include homogeneous coordinates and the classical theorems about conics and conics not passing through points and lines. Optional topics include principles of perspective drawing, finite projective planes, orthogonal Latin squares, and the cross ratio.

MATH 453 (4530) Introduction to Topology (II) (MQR)
Fall. 4 credits. Prerequisite: MATH 221, 223, 231, or 294, plus at least one mathematics course numbered 300 or above, or permission of instructor.

Topology may be described briefly as qualitative geometry. This course begins with basic point-set topology, including connectedness, compactness, and metric spaces. Later topics may include the classification of surfaces (such as the Klein bottle and Möbius band), elementary knot theory, or the fundamental group and covering spaces.

MATH 454 (4540) Introduction to Differential Geometry (II) (MQR)
Spring. 4 credits. Prerequisites: MATH 221-222, 223-224, or 293-294, plus at least one mathematics course numbered 300 or above. MATH 453 is not a prerequisite. Differential geometry involves using calculus to study geometric concepts such as curvature and geodesics. This introductory course focuses on the differential geometry of curves and surfaces. It may also touch upon the higher-dimensional generalizations, Riemannian manifolds, which underlie the study of general relativity.

MATH 455 (4550) Applicable Geometry (II) (MQR)
Spring. 4 credits. Prerequisite: good introduction to linear algebra (e.g., MATH 221, 223, 231, or 294) or permission of instructor. MATH 453 is not a prerequisite. Differential geometry involves using calculus to study geometric concepts such as curvature and geodesics. This introductory course focuses on the differential geometry of curves and surfaces. It may also touch upon the higher-dimensional generalizations, Riemannian manifolds, which underlie the study of general relativity.

MATH 457 (4570) Computational Homology (II) (MQR)
Fall. 4 credits. Prerequisites: linear algebra and advanced calculus.
Undergraduate version: MATH 657. For description, see MATH 657.

MATH 471 (4710) Basic Probability (II) (MQR)
Fall. 4 credits. Prerequisites: one year of calculus. Recommended: some knowledge of multivariate calculus.

Introduction to probability theory, which prepares the student to take MATH 472. The course begins with basics: combinatorial probability, mean and variance, independence, conditional probability, and Bayes formulae. Density and distribution functions and their properties are introduced. The law of large numbers and the central limit theorem are stated and their implications for statistics are discussed.

MATH 472 (4720) Statistics (II) (MQR)
Spring. 4 credits. Prerequisites: MATH 471 and knowledge of linear algebra (e.g., MATH 221). Recommended: some knowledge of multivariable calculus.

Statistics have proved to be an important research tool in nearly all of the physical, biological, and social sciences. This course serves as an introduction to statistics for students who already have some background in calculus, linear algebra, and probability theory. Topics include parameter estimation, hypothesis testing, and regression. The course emphasizes both the mathematical theory of statistics and techniques for data analysis that are useful in solving scientific problems.

MATH 481 (4810) Mathematical Logic (also PHIL 431 [4310]) (II) (MQR)
Spring. 4 credits. Prerequisites: MATH 222 or 223 and preferably some additional course involving proofs in mathematics, computer science, or philosophy. Offered alternate years; not offered 2005-2006.

First course in mathematical logic providing precise definitions of the language of mathematics and the notion of proof (propositional and predicate logic). The completeness theorem says that we have all the rules of proof we could ever have. The Gödel incompleteness theorem says that they are not enough to decide all statements even about arithmetic. The compactness theorem exploits the finiteness of proofs to show that theories have unintended (nonstandard) models. Possible topics include principles of noncomputability, the mathematical definition of an algorithm and the existence of noncomputable functions; the basics of set theory to cardinality and the uncountability of the real numbers.

MATH 482 (4820) Topics in Logic (also PHIL 432 [4320]) (II) (MQR)
Spring. 4 credits. Prerequisite: good introduction to logic course from Mathematics Department at 200 level or higher, one logic course from Philosophy Department at 300 level or higher, or permission of instructor. Not offered 2005-2006.

For description, see PHIL 432.

MATH 483 (4830) Intensional Logic (also PHIL 436 [4360]) (II) (MQR)
Spring. 4 credits. Prerequisite: MATH 481 and knowledge of linear algebra (e.g., MATH 221). Recommended: some knowledge of multivariable calculus.

For description, see PHIL 436.

MATH 484 (4840) Applied Logic (also COM S 486 [4860]) (II) (MQR)
Spring. 4 credits. Prerequisites: MATH 221-222, 223-224, or 192 and 294; COM S 280 or equivalent (e.g., MATH 332, 336, 432, 434, or 481); and additional course in mathematics or theoretical computer science.

Covers propositional and predicate logic; compactness and completeness by theorems of completeness; the compactness theorem; lambda calculus; reduction strategies; topics in Prolog, LISP, ML, or Nuprl; and applications to expert systems and program verification.

MATH 490 (4900) Supervised Reading and Research
Fall, spring. 1-6 credits. Supervised reading and research by arrangement with individual professors. Not for material currently available in regularly scheduled courses.

Professional-Level and Mathematics Education Courses

MATH 505 (5050) Educational Issues in Undergraduate Mathematics
Spring. 4 credits. Prerequisite: graduate standing or permission of instructor.

Generally offered every two years. Examines various educational issues in undergraduate mathematics, with special emphasis on the relationship of these issues to the mathematics itself. The precise choice of topics varies, but the intent is that a balance of different views be presented and discussed. There are extensive readings in the course and occasional guest lectures. Possible topics include nature of proof and how and when to teach it, calculus "reform," teaching mathematics to schoolteachers, writing, using technology, the use of assessment, and major issues, equity, effective uses of technology, what is mathematical understanding and how do we recognize it, what should every mathematics major know, and research in undergraduate mathematics.

MATH 507 (5070) Teaching Secondary Mathematics: Theory and Practice
Spring. 4 credits. Provides direct experience of new approaches, curricula, and standards in mathematics education. Discussion of articles, activities in the secondary classroom, and videotape of classroom teaching are tied to in-class exploration of math problems. Experience in the computer lab, examining software environments and their use in the mathematics classroom is included. Participants are expected to write short papers, share ideas in class, and present their opinions on issues.

MATH 508 (5080) Mathematics for Secondary School Teachers
Fall, spring. 1-6 credits. Prerequisite: secondary school mathematics teachers or permission of instructor. May not be taught every semester.

Examination of the principles underlying the content of the secondary school mathematics curriculum, including connections with the history of mathematics and current mathematics research.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 611</td>
<td>Real Analysis</td>
<td>Covers measure and integration and functional analysis.</td>
</tr>
<tr>
<td>MATH 612</td>
<td>Complex Analysis</td>
<td>Covers measure theory, integration, and Lp spaces.</td>
</tr>
<tr>
<td>MATH 617</td>
<td>Dynamical Systems</td>
<td>Covers basic theory of Hilbert and Banach spaces and operations on them.</td>
</tr>
<tr>
<td>MATH 621</td>
<td>Measure Theory and Lebesgue Integration</td>
<td>Covers basic theory of Hilbert and Banach spaces and operations on them.</td>
</tr>
<tr>
<td>MATH 622</td>
<td>Applied Functional Analysis</td>
<td>Covers basic theory of Hilbert and Banach spaces and operations on them.</td>
</tr>
<tr>
<td>MATH 628</td>
<td>Complex Dynamical Systems</td>
<td>Covers basic theory of Hilbert and Banach spaces and operations on them.</td>
</tr>
<tr>
<td>MATH 629</td>
<td>Algebra</td>
<td>Covers basic theory of Hilbert and Banach spaces and operations on them.</td>
</tr>
<tr>
<td>MATH 631</td>
<td>Algebra</td>
<td>Covers basic theory of Hilbert and Banach spaces and operations on them.</td>
</tr>
<tr>
<td>MATH 632</td>
<td>Algebra</td>
<td>Covers basic theory of Hilbert and Banach spaces and operations on them.</td>
</tr>
<tr>
<td>MATH 633</td>
<td>Algebra</td>
<td>Covers basic theory of Hilbert and Banach spaces and operations on them.</td>
</tr>
<tr>
<td>MATH 634</td>
<td>Commutative Algebra</td>
<td>Covers basic theory of Hilbert and Banach spaces and operations on them.</td>
</tr>
<tr>
<td>MATH 635</td>
<td>Lie Groups</td>
<td>Covers basic theory of Hilbert and Banach spaces and operations on them.</td>
</tr>
<tr>
<td>MATH 636</td>
<td>Lie Algebras</td>
<td>Covers basic theory of Hilbert and Banach spaces and operations on them.</td>
</tr>
</tbody>
</table>

Note: The above courses are a selection from the graduate courses offered at Cornell University. The descriptions are based on the provided information and may not be exhaustive. For more detailed information, please refer to the university's course catalog or website.
basic concepts in homology theory from a computational and algorithmic point of view.

[MATH 661(6610) Geometric Topology]
Fall. 4 credits. Not offered 2005–2006. Introduction to some of the more geometric aspects of topology and its connections with group theory. Possible topics include surface theory, 3-manifolds, knot theory, geometric and combinatorial group theory, hyperbolic groups, and hyperbolic manifolds.

[MATH 662(6620) Riemannian Geometry]
Spring. 4 credits. Generally offered every two years; not offered 2005–2006. Topics include linear connections, Riemannian metrics and parallel translation; covariant differentiation of tensor fields; the exponential map, the Gauss Lemma and completeness of the metric; isometries and space forms, Jacobi fields and the theorem of Cartan-Hadamard, the first and second variation formulas; the index form of Morse and the theorem of Bonnet-Meyer; the Rauch, Hessian, and Laplacian comparison theorems; the Morse index theorem; the conjugate and cut loci; and submanifolds and the Second Fundamental Form.

[MATH 671(6710) Probability Theory I]
Fall. 4 credits. Prerequisite: MATH 671. Content will vary from year to year. Course may be taken more than once for credit. Previously, topics have been chosen from stochastic calculus, diffusion processes, martingale problems, weak convergence, and Markov processes in continuous time.

[MATH 672(6720) Probability Theory II]
Spring. 4 credits. Prerequisite: MATH 671. Generally offered every two years; not offered 2005–2006. Topics include random walks and ergodic theory, depending on time and interest of the students and the instructor.

[MATH 674(6740) Introduction to Mathematical Statistics]
Spring. 4 credits. Prerequisites: MATH 671 and ORIE 6700, or permission of instructor. Topics include an introduction to the theory of point estimation, hypothesis testing and confidence intervals, consistency, efficiency, and the method of maximum likelihood. Basic concepts of decision theory are discussed; the key role of the sufficiency principle is highlighted and applications are given for finding Bayesian, minimax, and unbiased optimal decisions. Modern computer-intensive methods such as the bootstrap receive some attention, as do simulation methods involving Markov chains. The parallel development of some concepts of machine learning is exemplified by classification algorithms. An optional section may include nonparametric curve estimation and elements of large sample asymptotics.

[MATH 675(6750) Statistical Theories Applicable to Genomics]
Fall. 4 credits. Not offered 2005–2006. Focuses on statistical concepts useful in genomics (e.g., may include microarray data analysis) that involve a large number of populations. Topics include multiple testing and closed testing (the cornerstone of multiple testing), family-wise error rate, false discovery rate (FDR) of Benjamini and Hochberg, and Storey’s papers relating to pFDR. Also discussed are the shrinkage technique or the Empirical Bayes approach, equivalent to the BLUP in a random effect model, which is a powerful technique, taking advantage of a large number of populations in a related technique, which allows use of the same data to select and make inferences for the selected populations (or genes), is discussed. If time permits, there may be some lectures about permutation tests, bootstrapping, and QTL identification.

[MATH 681(6810) Logic]
Spring. 4 credits. Covers basic topics in mathematical logic, including propositional and predicate calculus; formal number theory and recursive functions; completeness and incompleteness theorems, compactness and Skolem-Löwenheim theorems. Other topics as time permits.

[MATH 703(7030) Topics in the History of Mathematics]
Spring. 4 credits. Prerequisites: undergraduate algebra and analysis. Generally offered every two years; not offered 2005–2006. Topics in the history of modern mathematics at the level of Math 691. Selection of advanced topics from modem algebraic, differential, and geometric topology. Content varies.

[MATH 711-712(7110-7120) Seminar in Analysis]
Fall, spring. 4 credits each semester. Seminar on topics in analysis.

[MATH 717(7170) Applied Dynamical Systems (also T&M 776[7760])]
Fall. 4 credits. Topics include review of planar (single-degree-of-freedom) systems; local and global analysis; structural stability and bifurcations in planar systems; center manifolds and normal forms; the averaging theorem and perturbation methods; Melnikov’s method; discrete dynamical systems, maps and difference equations, homoclinic and heteroclinic motions, the Smale Horseshoe and other chaotic attractors, and strange attractors, and chaos in free and forced oscillator equations; and applications to problems in solid and fluid mechanics.

[MATH 722(7220) Topics in Complex Analysis]
Fall. 4 credits. Not offered every year; not offered 2005–2006. Selection of advanced topics from complex analysis, such as Riemann surfaces, complex dynamics, and conformal and quasiconformal mapping. Course content varies.

[MATH 729(7290) Seminar in Partiail Differential Equations]
Spring. 4 credits. Generally offered every two years; not offered 2005–2006.

[MATH 731-732(7310-7320) Seminar in Algebra]
731, fall; 732, spring. 4 credits each semester.

[MATH 735(7350) Topics in Algebra]
Fall, spring. 4 credits. Selection of advanced topics from algebra, algebraic number theory, and algebraic geometry. Course content varies.

[MATH 737(7370) Algebraic Number Theory]
Fall. 4 credits.

[MATH 739(7390) Topics in Algebra]
Spring. 4 credits. Selection of advanced topics from algebra, algebraic number theory, and algebraic geometry. Content varies.

[MATH 740(7400) Homological Algebra]
Spring. 4 credits.

[MATH 751-752(7510-7520) Berstein Seminar in Topology]
751, fall; 752, spring. 4 credits each semester.

[MATH 753(7530) Algebraic Topology II]
Fall. 4 credits. Not offered 2005–2006. Continuation of 751. The standard topics most years are cohomology, cup products, Poincare duality, and homotopy groups. Other possible topics include fiber bundles, fibrations, vector bundles, and characteristic classes. May sometimes be taught from a differential forms viewpoint.

[MATH 755-756(7550-7560) Topology and Geometric Group Theory Seminar]
755, fall; 756, spring. 4 credits each semester.

[MATH 757-758(7570-7580) Topics in Topology]
757, fall; 758, spring. 4 credits each semester. Selection of advanced topics from modern algebraic, differential, and geometric topology. Content varies.

[MATH 761-762(7610-7620) Seminar in Geometry]
761, fall; 762, spring. 4 credits each semester. Either 761 or 762 generally offered every year.

[MATH 767(7670) Algebraic Geometry]
Fall. 4 credits.

[MATH 771-772(7710-7720) Seminar in Probability and Statistics]
771, fall; 772, spring. 4 credits each semester.

[MATH 774(7740) Topics in Statistics]
Fall. 4 credits. Prerequisites: probability theory (MATH 671–672 or equivalent, containing stochastic processes) and statistics (MATH 472 or 674). Continuation of MATH 674. Selection of advanced topics from mathematical statistics and empirical processes. Applications are emphasized, such as hidden Markov models, pattern recognition, neural networks, decision trees, model selection and other computationally intensive procedures. Content varies.

[MATH 777-778(7770-7780) Stochastic Processes]
777, fall; 778, spring. 4 credits each semester.

[MATH 781-782(7810-7820) Seminar in Logic]
781, fall; 782, spring. 4 credits each semester.
MATH 783(7830) Model Theory
Spring, 4 credits. Generally offered every two years.
Introduction model theory at the level of the books by Hodges or Chang and Keisler.

MATH 784(7840) Recursion Theory
Fall, 4 credits.
Covers theory of effectively computable functions; classification of recursively enumerable sets; degrees of recursive unsolvability; applications to logic; hierarchies; recursive functions of ordinals and higher type objects; generalized recursion theory.

[MATH 787(7870) Set Theory
Spring, 4 credits. Generally offered every two years, not offered 2005-2006.
First course in axiomatic set theory at the level of the book by Kunen.]

MATH 788(7880) Topics in Applied Logic
Fall, 4 credits.
Covers applications of the results and methods of mathematical logic to other areas of mathematics and science. Topics vary each year. Recent examples are automatic theorem proving, formal semantics of programming and specification languages, linear logic, constructive (intuitionism) nonstandard analysis, and automata theory. This year's topics are available on-line, i.e., those with presentations given by various types of automata. Students are expected to be familiar with the standard results in graduate-level mathematical logic.

MATH 790(7900) Supervised Reading and Research
Fall, spring, 1-6 credits.

MEDIEVAL STUDIES

Undergraduate Study in Medieval Studies
Course work in medieval studies enhances the student's enjoyment and understanding of the artistic and material relics of the Middle Ages: Gregorian chant, illuminated manuscripts and stained glass windows, Gothic cathedrals, Crusader castles, and picturesque towns crammed within ancient walls. Students discover the serious realities involved in, and shaped by, Arthurian tales of brave knights and fair ladies, dungeons, dragons, and other marvels. Students can analyze and appreciate their heroism, their Black Death, triumphs in courtly love and pitched battle, swords and scimitars, caliphs and popes, fear of demons and djinn, and the reassuring presence of angels. Students can study all this and more very well in English, but see below for how to acquire the medieval languages that so enhance the experience.

The period saw many of the foundational choices that have, for good and ill, made the world what it is today. Many of our current challenges in the fields of law, human rights, attitudes toward power, authority, gender relations, and sexual mores derive from the ways in which these and other questions were formulated a millennium ago. It actually makes good sense to think out your positions on today's world through study of the less complicated but intriguing medieval West, with whose successes and failures we must still contend. Serious investigation of exotic materials marks this concentration out as a unique addition to Cornell's training. The Medieval Studies Program houses a lively undergraduate association. Quodlibet, that arranges frequent lectures on medieval topics and an annual celebratory Reading of prose and poetry in many medieval languages.

The "middle" in "Middle Ages" comes from its position between antiquity and the "modern" period, in a schema created for European and Western conditions. Our concentration, however, is more properly inclusive and treats a time span from roughly the fifth century into the 16th and ranges from Western Europe and the Mediterranean to China and Japan. To discover the vibrant state of medieval studies today, students should look at the extraordinary range of scholarly, but accessible, web sites that have sprung up all over the Internet. (They can start from Cornucopia noted below.) Cornell possesses a wealth of resources to introduce students to every corner of the field.

Many students feel bound to choose their majors with an eye to future careers and earning potential. While this concentration provides strong interdisciplinary breadth to many majors (e.g., classics, all modern languages, history, music, philosophy), and is excellent preparation for graduate study in a medieval field, science majors do well too. The program provides encouragement, guidance, and an avenue for intelligent appreciation of an important part of our pasts.

Undergraduates who wish to undertake an independent major or concentration in medieval studies should consult the director of the program, 250 Goldwin Smith Hall, 255-8545, medievalst@cornell.edu.

The undergraduate concentration in medieval studies shall consist of five medieval courses (at the 200 level or above) or at least two different disciplines, of which up to two may also count toward the major, and one must come from our list of approved "core courses," which are marked with an asterisk (*).

Medieval Languages
Medieval texts (like all others) become most lively and informative when read in the original, and Cornell fortunate offers many courses for students interested in acquiring the relevant skills: Medieval Latin, Old English, Middle English, Gothic, Old Saxon, Old High German, Middle High German, Old Norse-Icelandic, Old Irish, Middle Welsh, Old Occitan (Provençal), Old French, Medieval Spanish, Medieval Italian, Old Russian, Old Church Slavonic, Classical Arabic, Medieval Hebrew, Classical Chinese, and Classical Japanese.

Some medieval languages require study of a modern language (e.g., French for Old Occitan and Old French) or a classical language (Classical Latin for Medieval Latin) as background. Students interested in a concentration in Medieval Studies should begin the study of a medieval language as early as possible, so that they may be able to study texts in the original before they graduate. Students are advised to consult the sponsoring departments for information about the prerequisites for various medieval languages.

Graduate Study
The Medieval Studies Program offers both an interdisciplinary and a literary comparative Ph.D. in medieval studies. Disciplinary fields of concentration offered within the Field of medieval studies are medieval archaeology, medieval history, medieval history of art, medieval literature, medieval music, medieval philology and linguistics, and medieval philosophy. Information about the graduate program in medieval studies is available from the field coordinator (medieval@cornell.edu), and at Cornucopia, the program's web site (www.arts.cornell.edu/medieval).

Medieval Studies Courses: Graduate and Undergraduate
Courses in various aspects of medieval studies are offered every year in several cooperating departments, including Art and Art History, Asian Studies, Classics, Comparative Literature, English, German Studies, History, Linguistics, Music, Near Eastern Studies, Philosophy, Romance Studies, Russian Literature, and by the Society for the Humanities. For descriptions, please see the home department. The current year's offerings are:

*ART H 250(2350) Introduction to Islamic Art and Culture (also NES 247[2747])
Fall. 4 credits. C. Robinson.

*ART H 255(2355) Introduction to Medieval Art and Culture
Spring. 4 credits. C. Robinson.

ART H 309(3250) Dendrochronology of the Aegean (also ARKEO 309[3090], CLASS 309[3095])
Fall and spring. 4 credits each semester. P. I. Kuniholm.

ART H 410(4310) Methods in Medieval: History and Historiography of Historians of Medieval Art
Spring. 4 credits. C. Robinson.

*ART H 422(4322) Late Medieval Devotional Image in Iberia (also NES 422[4722], SANS 422[4220])
Fall. 4 credits. C. Robinson.

*CLASS 405(4665) Augustine's Confessions
Spring. 4 credits. C. Brittain.

*CLASS 475(4625) The Christianization of the Roman World, 300 to 600 (also HIST 483[4830], NES/RELST 475[4675])
Fall. 4 credits. E. Rebillard.

CHLT 213-214(2213-2214) Introduction to Classical Chinese
213: fall, 214: spring. 3 credits each semester. Staff.

CHLT 420(4620)[4420/6620] Tang Poetry: Themes and Contexts
Fall. 4 credits. D. X. Warner.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIST 492</td>
<td>Undergraduate Seminar in Medieval Chinese History</td>
<td>4</td>
<td>C. Peterson</td>
</tr>
<tr>
<td>ITALL 320</td>
<td>Medieval Italy</td>
<td>4</td>
<td>M. Migiel</td>
</tr>
<tr>
<td>ITALL 423</td>
<td>Dante and Deviance</td>
<td>4</td>
<td>C. Howie</td>
</tr>
<tr>
<td>JPLIT 406</td>
<td>Introduction to Classical Japanese</td>
<td>4</td>
<td>K. Selden</td>
</tr>
<tr>
<td>LING 217</td>
<td>History of the English Language to 1300</td>
<td>4</td>
<td>W. Harbert</td>
</tr>
<tr>
<td>LING 280</td>
<td>Readings in Celtic Languages</td>
<td>2</td>
<td>W. Harbert</td>
</tr>
<tr>
<td>LING 308</td>
<td>Readings in Celtic Languages</td>
<td>4</td>
<td>W. Browne</td>
</tr>
<tr>
<td>LING 661</td>
<td>Old Church Slavonic (also RUSSA 602[6601])</td>
<td>4</td>
<td>W. Browne</td>
</tr>
<tr>
<td>LING 662</td>
<td>Old Russian Texts (also RUSSA 602[6602])</td>
<td>4</td>
<td>W. Browne</td>
</tr>
<tr>
<td>MATH 222</td>
<td>History of the English Language to 1300 (also ENGL 217[2170])</td>
<td>4</td>
<td>W. Harbert</td>
</tr>
<tr>
<td>MATH 282</td>
<td>History of the English Language to 1300 (also ENGL 217[2170])</td>
<td>4</td>
<td>W. Harbert</td>
</tr>
</tbody>
</table>

Modern European Studies Concentration

Students from any college may choose an undergraduate concentration in modern European studies to complement any major in any college. The purpose of the concentration is to provide a coherent structure for students with an interest in interdisciplinary study in the field of European studies. The concentration has three tracks: European politics, economics, and society; modern European history; and European culture. The requirements for the concentration are:

1. Competence in at least one modern European language, Romance, Germanic, or Slavic (i.e., completion of a 300-level course or equivalent with a grade of at least B-), or demonstration of an advanced level of competence in an oral proficiency interview test where available).

2. Completion of two out of three interdisciplinary core courses:

- **GOVT/SOC 341[3410] Modern European Society and Politics**
 Spring. 4 credits. J. Díez Medrano

- **ANTHR 450[4652] The Anthropology of Europe: Postsocialist Transition**
 Spring. 4 credits. D. Boyer.

Under certain conditions, students may be permitted to substitute other courses for those listed above.

3. Completion of one course in modern European history (post-1789).

4. Two additional courses in any of the three areas, which may include a senior seminar (400 level).

- **Courses in European and comparative politics, anthropology, sociology, feminist, gender and sexuality (FGSS) studies, and related courses in the School of Hotel Administration, the College of Agriculture and Life Sciences.**
Only two courses may be used to satisfy requirements for both the major and the concentration. Courses satisfying the breadth and distribution requirements in the College of Arts and Sciences, however, may be applied to the concentration. Students interested in completing a research project under the European Summer Research Program may apply for the Wood Fellowship in their junior year. All concentrators are encouraged to participate in the Language House Program, and to spend a semester or more in a program of study in Europe. Courses taken abroad may be applied to the concentration if they are approved for Cornell credit.

Undergraduates in the College of Arts and Sciences can major in European Studies through the Independent Major or College Scholar programs.

Departmental advisers include D. Greenwood (anthropology); C. Otto (architecture); S. Christopherson (CRP); G. Fields (economics); D. Schwarz (German studies); S. Tarrow (government/sociology); J. Weiss (history); C. Rosen (linguistics); N. Zaslaw (music); T. Campbell (romance studies); G. Shapiro (Russian literature); D. Bathrick (theatre, film, dance).

Office: 255-4097
Web site: www.arts.cornell.edu/music/

MUSICAL PERFORMANCE AND CONCERTS

MUSICAL PERFORMANCE and CONCERTS
Musical performance is an integral part of Cornell's cultural life and an essential part of its undergraduate academic programs in music. The department encourages music making through its offerings in individual instruction and through musical organizations and ensembles that are directed and trained by members of the faculty. Students from all colleges and departments of the university join with music majors in all of these ensembles:

- Vocal ensembles
 - Chamber Singers
 - Chorale
 - Chorus
 - Glee Club
 - Sage Chapel Choir
 - World Music Choir

- Instrumental ensembles
 - Chamber Music Ensembles
 - Chamber Orchestra
 - Symphony Orchestra
 - Jazz Ensembles
 - Jazz Combos
 - Chamber Winds
 - Wind Ensemble
 - Wind Symphony
 - Gamelan
 - Middle Eastern Music Ensemble
 - World Drum and Dance Ensemble
 - Steel Band

Information about requirements, rehearsal hours, and conditions for academic credit can be found in the following listings for the Department of Music. Announcements of auditions are posted during registration each fall semester and, where appropriate, each spring semester as well.

The University is also home to many student-run musical organizations, including the Big Red Marching Band and Big Red Pep Band, the Cornell Savoyards, and several a cappella groups. Information is available directly from each group.

The Department of Music and the Faculty Committee on Music sponsor more than 100 formal and informal concerts each year by Cornell's ensembles, faculty, and students and by distinguished visiting artists. The great majority of concerts are free and open to the public. Lectures and courses are listed at www.arts.cornell.edu/music/. Additional information is available through the events office (255-4760).

NONMAJORS
In addition to its performing, instructional, and concert activities, the department offers numerous courses for nonmajors, many of which carry no prerequisites and presuppose no previous formal training in music. Consult the following course listings, and for further information consult Professor S. Tucker, director of undergraduate studies, fall (255-3423), Professor R. Sierra, director of undergraduate studies, spring (255-3663), or the department office, 101 Lincoln Hall (255-4097).

THE MAJOR
The major carries the study of music to an advanced level through the integration of performance, music theory, and music history. It is designed to accommodate both students who are oriented toward eventual graduate or professional work in music and those who wish to take a more general approach, often in conjunction with a major in another department.

Students contemplating a major in music then design their course of study with their adviser. Knowledge of music then design their course of study with their adviser. Music then design their course of study with their adviser. Prerequisites for admission to the major are completion of MUSCI 152 and 154, at the latest, by the end of the sophomore year (the freshman year is preferable), with an overall grade of B- or better in each course. In consultation with the director of undergraduate studies, students are expected to have chosen an adviser from among the department faculty before acceptance into the major; admission to the major is decided by the faculty as a whole. Students majoring in music then design their course of study with their adviser.

Music majors must complete the Core Curriculum plus at least two electives. The Core Curriculum serves as the basis for focus in specific areas, such as composition, performance, jazz studies, vernacular music, Western art music, or Asian music. Students may, however, choose electives that reflect a more broadly based study. Those intending to pursue graduate study or professional work in music are advised to take further courses in addition to the two required electives.

The Core Curriculum consists of courses:
1. in music theory: MUSIC 251, 252, 253, 254
2. in music history: MUSIC 207, 208, 300, 400
3. in performance: MUSIC 322 or 323

Honors. The honors program in music is intended to provide special distinction for the department's ablest undergraduate majors. Qualified students are invited to become candidates by the faculty early in the second semester of their junior year. As soon as possible thereafter, the student forms a committee of three or more faculty members to guide and evaluate the honors work. In their senior year, candidates enroll in MUSIC 401-402 with the chair of the honors committee as instructor. Candidates are encouraged to formulate programs that allow them to demonstrate their musical and scholarly abilities, culminating in an honors thesis, composition, or recital, to be presented not later than April 1 of the senior year. A comprehensive examination administered by the candidate's committee is held not later than May 1. The level of honors conferred is based primarily on the candidate's performance in the honors program, and secondarily on the candidate's overall record in departmental courses and activities.

COMPUTING IN THE ARTS UNDERGRADUATE CONCENTRATION
A concentration in Computing in the Arts with an emphasis on music is available both to music majors and to students majoring in other subjects. For more information, contact the department office, 101 Lincoln Hall (255-4097).

DISTRIBUTION REQUIREMENT
College of Arts and Sciences students may apply either one or two music department courses toward the distribution requirement in Literature and the Arts (LA) or Cultural
Instruments.

Facilities
Music Library. The Sidney Cox Library of Music and Dance in Lincoln Hall has an excellent collection containing approximately 160,000 periodicals, books, scores, and parts; 60,000 sound and video recordings; and a microfilm collection of early printed and manuscript sources. Its depth and breadth serve the needs of a wide variety of users on the campus computer lab (designed specifically for music uses), listening, and video viewing facilities are open to all members of the Cornell community. Highlights of the research collection include early opera libretti and scores, 18th-century keyboard and chamber music, 17th- and 18th-century books on music, and an archive of American popular song from 1850 to 1950. In addition, the Carl A. Kroch Library houses, in the Division of Rare and Manuscript Collections, a collection of musical manuscripts and early printed books on music.

Concert Halls. The Department of Music sponsors more than 100 concerts annually. Cornell's principal concert halls are Bailey Hall Auditorium (about 1,400, currently under renovation), Sage Chapel (about 800), and Barnes Hall Auditorium (about 280). Six concert grand pianos are available for performances in the various concert halls, plus the following historical keyboard instruments: a modern copy of a 18th-century fortepiano by Johann Andreas Stein, a new fortepiano by Robert McNulty, a Broadwood grand piano from 1827, an 1824 Conrad Graf fortepiano replica, an 1868 Erard grand, one Dowd and one Hubbard harpsichord, and a Challen clavichord. Four distinctive organs are available to qualified individuals for lessons and practice: a small Italian organ (1746) and a two-manual mechanical-action instrument (1972), both in Anabel Taylor Chapel; a three-manual symphonic organ (1941) in Sage Chapel; and an 18th-century German-style chamber organ (2003) in Barnes Hall. In addition, the Music Department owns a limited number of string, wind, and percussion instruments that may be rented by members of the department's ensembles.

Digital Music Program Workstations.

Introductionary Courses

MUSIC 100(1100) Elements of Musical Notation
Fall or spring, weeks 2-5. 1 credit. Co-requisite: any 3-credit music course and permission of instructor. This course endeavors to acquaint students with every important aspect of piano construction and maintenance. Although there is some "hands-on" work during class time, the main thrust is to make the participants aware of every aspect of their instrument.

MUSIC 110(1103) Piano Technology
Fall. 3 credits. No previous training in music required.

MUSIC 101(1311) Popular Music in America: A Historical Survey
Fall. 3 credits. No previous training in music required. Not offered 2005-2006.

MUSIC 102(1101) Fundamentals of Music I (LA)
Fall. 3 credits. No previous training in music required. Not offered 2005-2006.

MUSIC 103(1301) Introduction to World Music I: Africa and the Americas (also LPS 103(1301) () (IV) (CA)
Spring. 3 credits. No previous training in music required. Not offered 2005-2006.

MUSIC 104(1302) Introduction to World Music II: Asia (also VISS 104) (IV) (CA)
Spring. 3 credits. No previous training in music required. M. Hatch.

MUSIC 105(1105) Introduction to Music Theory (IV) (LA)
Spring. 3 credits. Recommended: experience in reading music; students may take MUSIC 100 concurrently. J. Webster. An elementary, self-contained introduction to the theory of Western art music, emphasizing fundamental musical techniques, theoretical concepts, and their application. Intervals, scales, triads, basic concepts of tonality, extensive listening to music in various styles: analysis of representative works of Bach, Mozart, Beethoven, and Debussy.

MUSIC 107(1201) Hildegard to Handel (IV) (LA)
Fall. 3 credits. Prerequisite: ability to read music or concurrent enrollment in MUSIC 100. Not offered 2005-2006. N. Zaslav.

MUSIC 108(1202) Mozart to Minimalism (IV) (LA)
Spring. 3 credits. Prerequisite: ability to read music or concurrent enrollment in MUSIC 100. Staff. A survey of Western art music in many genres from the second half of the 18th century to the present. Composers whose music is studied include Haydn, Mozart, Beethoven, Schubert, Schumann, Mendelssohn, Berlioz, Chopin, Wagner, Verdi, Liszt, Brahms, Mahler, Debussy, Strauss, Stravinsky, Bartok, Ives, Webern, Messiaen, Copland, Bernstein, Stucky, and Sierra.

MUSIC 110(1103) Piano Technology
Fall. 1 credit. M. Bilson.

Music Theory

Students contemplating the music major are strongly advised to take MUSIC 151, 152, 153, and 154 in the freshman year; in any case MUSIC 152 and 154 must be completed no later than the end of the sophomore year.

MUSIC 151(2101) Tonal Theory I (IV) (LA)
Fall. 3 credits. Prerequisites: admission by departmental examination and concurrent enrollment in or previous credit for MUSIC 153, or equivalent. Intended for students expecting to major in music and other qualified students. Staff. Detailed study of the fundamental elements of modal and tonal music: rhythm, scales, intervals, triads; melodic principles and two-part counterpoint; diatonic harmony and four-part voice leading; basic formal structures. Study engages different repertories, including
Western art music as well as non-Western and popular traditions.

MUSIC 152(2102) Tonal Theory II (IV) (LA)
Spring. 3 credits. Prerequisites: MUSIC 151 and 153 or equivalent; concurrent enrollment in or previous credit for MUSIC 154. Intended for students expecting to major in music and other qualified students. A grade of B- or better in MUSIC 152 is required for admission to music major. Staff.

MUSIC 153(2103) Musicianship I
Fall. 2 credits. Pre- or co-requisite: MUSIC 151. Intended for students expecting to major in music and other qualified students. Staff.

MUSIC 154(2104) Musicianship II
Spring. 2 credits. Pre- or co-requisite: MUSIC 152. Intended for students expecting to major in music and other qualified students. A grade of B- or better in MUSIC 154, and failure in no individual musicianship components of the course, are required for admission to the music major. Staff.

MUSIC 204(2111) Physics of Musical Sound (also PHYS 204(1204)) (I) (P6)
Spring. 3 credits. K. Selby.
For description, see PHYS 204.

MUSIC 251(3101) Tonal Theory III (IV) (LA)
Fall. 3 credits. Prerequisites: MUSIC 152 and 154 or equivalent. Co-requisite: MUSIC 253. Staff.
Continuation of diatonic and introduction to chromatic harmony; species counterpoint; composition in small forms.

MUSIC 252(3102) Tonal Theory IV (IV) (LA)
Spring. 3 credits. Prerequisites: MUSIC 251 and 253 or equivalent. Co-requisite: MUSIC 254. K. Taavola.
Study of and composition in larger forms, including sonata form; systematic study of chromatic harmony, voice-leading, and modulation; composition in chromatic style.

MUSIC 253(3103) Musicianship III
Fall. 2 credits. Pre- or co-requisite: MUSIC 251. Staff.
Dictation: melodies with modulation; chorale phrases with secondary dominants and other chromatic chords. Score reading: four parts using treble, alto, tenor, and bass clefs. Musical terms: orchestral ranges, terms, clefs, and transpositions.

MUSIC 254(3104) Musicianship IV
Spring. 2 credits. Pre- or co-requisite: MUSIC 252. K. Taavola.
Sight singing: melodies in four clefs, including modality and chromatic modification. Keyboard: chromatic sequences, chromatic modulations, improvised modulations employing diatonic pivot chords; Dictation: intervals, rhythms, short melodies, and short, diatonic chorale phrases. Score reading: four parts, including transposing instruments. Musical terms: other terms in French, German, and Italian.

MUSIC 350(3111) Improvisational Theory (IV) (LA)
Spring. 4 credits. Prerequisite: MUSIC 152 or permission of instructor. Not offered 2005-2006. P. Merrill.
Study of tonal concepts in jazz improvisation including major and minor modes; rhythmic motive development; swing feel; even eighth-note feel; phrase construction; chordal style; linear style; and ear development through performance, analysis, keyboard skill, transcription, and composition.

MUSIC 451(4101) Counterpoint # (IV) (LA)
Spring. 4 credits. Prerequisite: MUSIC 251 or permission of instructor. Not offered 2005-2006. S. Stucky.
Sight singing: melodies in three clefs, including chromatic modulation. Staff.

MUSIC 452(4102) Topics in Music Analysis (also MUSIC 602[6101]) (IV) (LA)
Spring. 4 credits. Prerequisite: MUSIC 251 or permission of instructor. K. Taavola.
Topic: Post-tonal music theory.

MUSIC 453(4111) Composition in Recent Styles (IV) (LA)
Through analysis, repertoire from the 20th and 21st centuries furnishes models for composing new works. Styles and techniques are drawn from composers such as Debussy, Bartók, Schoenberg, Copland, and Adams. Recommended (though not required) before taking MUSIC 454, when both 453 and 454 are offered, they form a full-year sequence.

MUSIC 454(4112) Composition IV (IV) (LA)
Spring. 4 credits. Prerequisite: MUSIC 251 or permission of instructor. Not offered 2005-2006. R. Sierra.
Study of music composition through the use of traditional forms such as variation and sonata. The student is required to write original pieces for solo and chamber ensembles.

MUSIC 455(4121) Conducting IV (IV) (LA)
Fall. 4 credits. Prerequisite: MUSIC 251 or permission of instructor. C. Kim.
Gives fundamentals of score reading, score analysis, rehearsal procedures, and conducting technique; instrumental and choral contexts.

MUSIC 456(4122) Orchestration IV (IV) (LA)
Spring. 4 credits. Prerequisite: MUSIC 251 or permission of instructor. R. Sierra.
Orchestration based on 19th- and 20th-century models.

MUSIC 457(4103) 20th-Century Musical Languages (IV) (LA)

MUSIC 458(4123) Jazz Arranging (IV) (LA)
Fall. 3 credits. Prerequisite: MUSIC 358 or permission of instructor. P. Merrill.
A survey of jazz arranging techniques for the big band, including basic jazz calligraphy; four-part close, drop two, and drop four voicings; rhythm section writing; standard chord nomenclature; chord scale relationships; chordal and rhythmic variation; section writing; standard formal structures; riff style; lead line; and counterpoint through analysis and composition.

Music in History and Culture

MUSIC 221(1312) History of Rock Music (also AM ST 222(1312)) (IV) (LA)
Spring. 3 credits. No previous training in music required. J. Peraino.
This course examines the development and cultural significance of rock music from its origins in blues, gospel, and Tin Pan Alley up to present-day genres of alternative rock and hip hop.

MUSIC 222(1313) A Survey of Jazz (also AM ST 222(1313)) (IV) (LA)
Fall. 3 credits. S. Pond.
This course addresses jazz from two perspectives: the various sounds of jazz, as well as the historical streams—musical and cultural—that have contributed to its development. The historical focus locates jazz as an expression of culture. The course investigates how jazz affects and is affected by notions of ethnicity, class, nationalism, gender, art, and genre. The inquiry is focused throughout by listening to recordings, studying writings about music by musicians and nonmusicians, learning to listen with new ears, experiencing jazz firsthand, and collaborating to add to the body of literature on jazz.

MUSIC 224(1341) Gamelan in Indonesian History and Cultures (also ASIAN 245[2245], VISST 244[2744]) @ (IV) (LA)
Fall or spring. 3 credits. Prerequisite: permission of instructor. No previous knowledge of musical notation or performance experience necessary. Fall, staff; spring, M. Hatch.
An introduction to Indonesia through its art. Elementary techniques of performance on the Indonesian gamelan, a general introduction to Indonesian history and cultures, and the sociocultural contexts for the arts there. Several short papers and one longer research report are required. Instruction by visiting Balinese musician.

MUSIC 261(2221) Bach and Handel # (IV) (LA)
Fall. 3 credits. Prerequisite: any 3-credit music course or permission of instructor.

MUSIC 262(2222) Haydn and Mozart # (IV) (LA)
Fall. 3 credits. Prerequisite: any 3-credit music course or permission of instructor.
we will trace the development of the opera libretto from the play or short story upon which it is based. We will compare and critique some of the different productions and, for two operas, in live performance (Donizetti's Lucia di Lammermoor and Puccini's Tosca) at the Syracuse Opera). "Writing projects" is flexibly defined, as the expressive output takes several forms, including web-based projects. This is a special seminar sponsored by the John S. Knight Institutes Sophomore Seminars Program. Seminars offer discipline-specific study within an interdisciplinary context. While not restricted to sophomores, the seminars aim at initiating students into the disciplines outlook, discourse community, modes of knowledge, and ways of articulating that knowledge. Limited to 15 students. Special emphasis is given to strong thinking and writing and to personalized instruction with top university professors.

MUSIC 272(2245) Words and Music (also GERST 342/3430)
Spring. 4 credits. A. Groos.
For description, see GERST 342.

MUSIC 274(2241) Opera (also THETR 273/2730) # (IV) (LA)
Fall. 3 credits. D. Rosen.
An introduction to opera through the examination of six major works of the operatic repertory by such composers as Mozart, Donizetti, Verdi, Wagner, Bizet, Puccini, and Britten, with attention to the interaction of the words, music, and visual elements. With two of the operas studied, we will trace the development of the opera libretto from the play or short story upon which it is based. We will compare and critique some of the different productions available on video and DVD recordings and, for two operas, in live performance (Donizetti's Lucia di Lammermoor at Tri-Cities Opera in Binghamton and Puccini's Tosca at the Syracuse Opera).

MUSIC 276(2242) The Orchestra and Its Music # (IV) (LA)
Spring. 3 credits. Prerequisite: any 3-credit music course or permission of instructor. Not offered 2005-2006. N. Zaaslaw.
The music of, and the social structures supporting, large instrumental ensembles in the Western world, including: Italian court festivals of the 16th century, string bands of the 17th century, Lully's ascendency at Paris and Versailles, and music of Purcell, Corelli, Vivaldi, Bach, Handel, Haydn, Mozart, Beethoven, Schubert, Schumann, Mendelssohn, Berlioz, Liszt, Wagner, Brahms, Tchaikovsky, Dvorák, Mahler, Strauss, Stravinsky, Schoenberg, Webern, Bartók, Shostakovich, Messiaen, Copland, Carter, Tower, Stucky, Sierra, and others.

MUSIC 277(2243) The Piano and Its Music (IV) (LA)
Fall or spring. 3 credits. Prerequisite: one semester of music theory (MUSIC 105, equivalent course, or equivalent experience) or permission of instructor. Not offered 2005-2006. D. Rosen and M. Bilson.

MUSIC 279(2244) The Orchestra II (IV) (LA)
Spring. 3 credits. Attendance at dance concerts and music concerts required.
A. Fogelsanger.
For description, see DANCE 324.

Music History Courses for Majors and Qualified Nonmajors

MUSIC 207(3201) Survey of Western Music I # (IV) (LA)
Fall. 3 credits. Pre- or co-requisite: MUSIC 151/153 or permission of instructor. J. Peraino.
A survey of Western music and its social contexts from the beginning of notation (circa 900) to 1700. Topics include sacred chant, secular song, polyphony, madrigals, early opera, and the development of independent instrumental music. The course emphasizes listening and comprehension of genres and styles, and is intended for music majors and qualified nonmajors.

MUSIC 208(3202) Survey of Western Music II # (IV) (LA)
Spring. 3 credits. Pre- or co-requisite: MUSIC 152/154 or permission of instructor. A. Richards.
A survey of Western music and its social contexts from 1700 to the present. Topics include the decline of church music, the rise of public concerts and opera, the evolution of the orchestra, and modernism in the 20th century. The course, which emphasizes listening and comprehension of genres and styles, is intended for music majors and qualified nonmajors.

MUSIC 300(3211) Proseminar in Musicology (IV) (LA)
Spring. 4 credits. D. Yearsley.
Introduction to methods in musicology, including historiography, criticism, approaches to vernacular and non-western musics, and gender studies.

MUSIC 374(3222) Opera and Culture (also GERST 374/3740, ITALA 374) # (IV) (LA)
Spring. 4 credits. Prerequisite: any 3-credit music course or proficiency in German or Italian. Not offered 2005-2006. A. Groos.
For description, see GERST 374.

MUSIC 381(3231) Topics in Western Art Music to 1750 # (IV)
Fall. 4 credits. Prerequisite: MUSIC 152 or permission of instructor. Not offered 2005-2006. Staff.

MUSIC 382(3232) Topics in Western Art Music 1750-Present (IV)
Spring. 4 credits. Prerequisite: MUSIC 152 or permission of instructor. Not offered 2005-2006. Staff.

MUSIC 386(3301) Topics in Popular Music and Jazz (IV)
Fall. 4 credits. Prerequisite: MUSIC 152/154 or permission of instructor. Not offered 2005-2006. Staff.
This course addresses alternating topics, centering on the post–World War II years to ca. 1970. Even-numbered years: Rhythm-and-blues to funk. Using the change in Billboard classification from "race" records to "rhythm-and-blues" as a beginning point, we examine musical, commercial, and sociopolitical developments in black popular music to the advent of funk. Odd-numbered years: Post-bebop jazz. Using the "bebop revolution" as a beginning point, we examine style movements (including cubop, cool and West Coast jazz, avant-garde jazz, modalism, and fusion) in light of changing aesthetics, sociopolitical movements, and intersections with other musics of the time. For either topic, reading (historical, biographical, and critical) and listening assignments are major components of the course. There are no midterm or final exams; however, quizzes and research papers are required.

MUSIC 390(3242) Culture of the Renaissance (IV) (also COM L 362/3620, ENGL 325/3250, HIST 364/3640, ART H 351/3420, FRLIT 362/3620) # (III or IV) (CA)
Fall. 4 credits. K. Long and W. J. Kennedy.
For description, see COM L 362.

MUSIC 398-399(3901) Independent Study in Music History
Fall, spring. 398, 399; spring. 4 credits. Prerequisite: MUSIC 152 and permission of instructor. Staff.
Advanced study of various topics in music history. Students enrolling in MUSIC 398-399 participate in, but do not register for, an approved 200-level music history course and, in addition, pursue independent research and writing projects.

MUSIC 400(4211) Senior Seminar
Fall. 4 credits. J. Peraino.
Topic: Critical approaches to popular music. This course introduces and compares various methods of studying popular music, including historical, analytical, sociological, ethical, and cultural. The focus will be on styles and performers within the genres of rock 'n' roll and rap.

MUSIC 410(4222) Music and Monstrous Imaginings # (IV) (LA)

MUSIC 411(2244) The Organ in Western Culture # (IV) (LA)
Fall. 4 credits. Prerequisite: permission of instructor. Not offered 2005-2006. A. Richards and D. Yearsley.
A course in live performance and real-time, interactive sound manipulation techniques both in concert and over networks. Students will work individually or in small groups toward realizing short pieces that utilize tools and ideas from the course. MUSIC 220 is appropriate as a continuation for those who have taken MUSIC 120 but is open to others by permission.

[MUSIC 320(3421) Scoring the Moving Image Using Digital Technology (IV) (LA)]
Spring. 4 credits. Prerequisite: MUSIC 120 with grade of B or higher and MUSIC 251. Not offered 2005-2006. K. Ernste.*

[MUSIC 355(3431) Sound Design and Digital Audio (also THETR 368[3680]) (IV) (LA)]
Fall. 4 credits. W. Cross.
For description, see THETR 368.

[MUSIC 356(3441) Digital Performance (also THETR 368[3680]) (IV) (LA)]
Spring. 4 credits. W. Cross.
For description, see THETR 369.

Musical Instruction

Cornell faculty members offer individual instruction in voice, organ, harpsichord, piano and fortepiano, violin, viola, cello, and some brass and woodwind instruments to those students advanced enough to do college level work in these instruments. Lessons are available by audition only. They may be taken either without credit (MUSIC 321) or with credit (MUSIC 322 or 323). All students studying with Cornell faculty members must enroll in MUSIC 321, 322, or 323. Other instruments may sometimes be studied for credit outside Cornell, but also by audit only (see MUSIC 321-323, Secs 9 and 10).

Lessons for beginners. The Department of Music can recommend outside teachers for those who wish to begin studying voice or an instrument. No credit is available for beginning instruction.

Auditions. Auditions are held at the beginning of each semester for lessons for advanced students. Contact the music department office in 101 Lincoln Hall for information.

Earning academic credit for lessons. For every 4 credits earned in MUSIC 322, the student must have earned, or currently be earning, at least 3 credits in another music course (excluding MUSIC 322, 323, 331-348, or 421-448). These 3 credits must be earned before, or simultaneously with the first 2 credits in 322; they cannot be applied retroactively. Only music courses taught at Cornell (or approved transfer courses from other colleges or universities) may be used to satisfy this requirement.

Fees. The fee for a one-hour lesson (or two half-hour lessons) weekly, with or without credit, is $480 per semester. For a one-half hour lesson weekly (without credit only), the fee is $240. All fees are nonrefundable once lessons begin, even if the course is subsequently dropped. **Lessons taken outside Cornell.** Under certain conditions, advanced students may earn credit for lessons taken outside Cornell. An audition is required, and no credit can be granted for beginning instruction. For further information, read the description of MUSIC 322-323, Secs 9 and 10, and contact the Music Department office.

Scholarships. Music majors receive a scholarship of up to $840 per semester. Any member of department-sponsored ensembles may, with the permission of the director of the ensemble, receive a partial scholarship to help defray the cost of the lessons. Scholarships are intended only for lessons in the student's primary performing medium. Scholarship forms, available in the music department office, are to be returned to the office within the first three weeks of classes.

MUSIC 321-322-323(3501-3502-4501) Individual Instruction

Prerequisite: advanced students only; may register after successful audition with instructor, or, if student needs to study outside Cornell, with appropriate faculty sponsor. Students should contact instructor or music department office for audition information. Students may register for these courses in successive semesters or years.

MUSIC 321(3501) Fall or spring. 0 credits each semester. See section listing below for instructors. Students who pass a successful audition to study with Cornell faculty, but either wish to take only a half-hour lesson per week or cannot receive credit for lessons, must enroll in MUSIC 321. S-U grades only.

MUSIC 322(3502) Fall or spring. 2 credits each semester. See section listing below for instructors. Students earn 2 credits each semester for one-hour lesson (or two half-hour lessons) per week, accompanied by appropriate practice schedule. Letter grades only.

MUSIC 323(4501) Fall or spring. 4 credits each semester. See section listing below for instructors. Open only to juniors and seniors majoring in music and graduate students in music. The section numbers listed below apply to MUSIC 321, 322, or 323, depending on the instrument studied.

Sec 01 Voice. J. Kellock.
Sec 02 Organ. A. Richards.
Sec 03 Piano. X. Bjerken and Staff.
Sec 04 Harpsichord. A. Richards and D. Yearey.
Sec 05 Violin or Viola. V. Gellev.
Sec 06 Cello. J. Haines-Eitzen.
Sec 07 Brass. Staff.
Sec 08 Woodwinds. Staff.
Sec 09/Sec 10 Individual Instruction Outside Cornell.

All the standard orchestral and band instruments, keyboard instruments, guitar, and voice may, under certain conditions, be studied for credit with outside teachers. This course is available primarily for the study of instruments not taught at Cornell and when there is limited enrollment in MUSIC 321 and 322. Price approval and audition by a member of the faculty in the department are required, and credit may be earned only as described under “Earning academic credit for lessons,” above. Additionally, a departmental petition must be completed by the end of the third week of classes. For information and a list of approved teachers, consult the department office, 101 Lincoln Hall.

Digital Music and New Media

MUSIC 120(1421) Introduction to Digital Music (IV) (LA)
Fall and spring. 3 credits. Limited enrollment. Prerequisite: permission of instructor. Required: ability to read music, K. Ernste.

A composition-based introduction to computer hardware and software for digital sound and digital media. Fundamentals of MIDI sequencing and other techniques for producing electroacoustic music. Each student creates several short compositions.

MUSIC 165(1465) Computing in the Arts (also COM S/CIS/ENGRI 165[1610])
Spring. 3 credits. G. Bailey.
For description, see COM S 165.

MUSIC 220(2421) Computers in Music Performance (IV) (LA)
Spring. 3 credits. Limited enrollment. Prerequisite: permission of instructor. K. Ernste.
Musical Organizations and Ensembles

Students may participate in musical organizations and ensembles throughout the year. Permission of the instructor is required, and admission is by audition only (usually at the beginning of each semester), except that the Sage Chapel Choir and the Cornell Gamelan Ensemble are open to all students without prior audition. Registration is permitted in two of these courses simultaneously and students may register in successive years, but no student may earn more than 8 credits in these courses. Membership in these musical organizations and ensembles is also open to qualified students who wish to participate without earning credit.

MUSIC 331-332(3601) Sage Chapel Choir
331, fall; 332, spring. Either 0 credits, S-U, or 1 credit, letter grade, each semester. Prerequisite: successful audition. The Sage Chapel Choir sings regularly in the Sunday service of worship, which is broadcast on WSKH-FM radio, and on special occasions throughout the year.

MUSIC 333-334(3602) Chorus
333, fall; 334, spring. Either 0 credits, S-U, or 1 credit, letter grade, each semester. Prerequisite: successful audition. S. Tucker. A treble-voice chorus specializing in music for women's voices and in mixed-voice repertory.

MUSIC 335-336(3603) Glee Club
335, fall; 336, spring. Either 0 credits, S-U, or 1 credit, letter grade, each semester. Prerequisite: successful audition. S. Tucker. A male-voice chorus specializing in music for men's voices and in mixed-voice repertory.

MUSIC 338(3631) Wind Symphony
Fall and spring. Either 0 credits, S-U, or 1 credit, letter grade, each semester. Prerequisite: successful audition. C. Johnston Turner and J. Miller.

MUSIC 339-340(3615) Jazz Ensemble II
339, fall; 340, spring. Either 0 credits, S-U, or 1 credit, letter grade, each semester. Prerequisite: successful audition. P. Merrill. Study and performance of classic and contemporary big band literature. Rehearsals once a week with one to two performances a semester.

MUSIC 432(3633) Wind Ensemble
Fall and spring. Either 0 credits, S-U, or 1 credit, letter grade, each semester. Prerequisite: successful audition. C. Johnston Turner.

MUSIC 434-434(3621) Symphony Orchestra
434, fall; 434, spring. Either 0 credits, S-U, or 1 credit, letter grade, each semester. Prerequisite: successful audition. C. Johnston Turner. Study and performance of a broad repertoire of orchestral works from Beethoven to the present.

MUSIC 435-436(2541) Advanced Instruction—Gamelan
435, fall; 436, spring. Either 0 credits, S-U, or 1 credit, letter grade, each semester. Limited enrollment. Prerequisite: permission of instructor. Fall, staff; spring, M. Hatch.

Concentrated instruction for students in advanced techniques of performance on the Indonesian gamelan.

MUSIC 347-348(3611) World Music Choir
Spring. Either 0 credits, S-U, or 1 credit, letter grade, each semester. Prerequisite: permission of instructor. S. Tucker. A mixed-voice chorus whose repertoire is drawn from Africa, Central America, South America, the Caribbean, Eastern Europe, and Asia. Music reading skills are not necessary, but a good ear is essential.

MUSIC 421-422(4621) Chamber Orchestra
421, fall; 422, spring. Either 0 credits, S-U, or 1 credit, letter grade, each semester. Prerequisite: successful audition. C. Kim. Study and performance of chamber orchestra works from the baroque period to the present.

MUSIC 423-424(4616) Jazz Combos
423, fall; 424, spring. Either 0 credits, S-U, or 1 credit, letter grade, each semester. Prerequisite: successful audition. P. Merrill. Study and performance of classic and contemporary small-group jazz.

MUSIC 431-432(3614) Middle Eastern Music Ensemble (also NES 447-448/497-498)
431, fall; 432, spring. Either 0 credits, S-U, or 1 credit, letter grade, each semester. Prerequisite: permission of instructor. M. Hatch. Performance of diverse musical traditions from the Middle East. Instruction in individual instruments (oud, ney, kanoun, and percussion) and group rehearsals, culminating in one or two performances per semester. Songs are taught in several languages, with the assistance of local language and diction teachers.

MUSIC 433-434(3613) Steel Band
433, fall; 434, spring. Either 0 credits, S-U, or 1 credit, letter grade, each semester. Prerequisite: background in music and permission of instructor. J. Armstrong. This performance group specializes in traditional Caribbean steel drum repertoire and beyond.

MUSIC 435-436(3612) World Drum and Dance Ensemble
435, fall; 436, spring. Either 0 credits, S-U, or 1 credit, letter grade, each semester. Prerequisite: permission of instructor. J. Armstrong. This group specializes in traditional music from West Africa and the Caribbean. Drumming techniques, song, and dance styles are incorporated into each semester's activities. No previous percussion experience is necessary.

MUSIC 437-438(4631) Chamber Winds
437, fall; 438, spring. Either 0 credits, S-U, or 1 credit, letter grade, each semester. Prerequisite: enrollment in Symphonic Band. Wind Symphony, or Wind Ensemble and permission of instructor. Coordinator: C. Johnston Turner. Flexible instrumentation ensembles perform original woodwind, brass, and percussion music from Gabrielli brass choirs and Mozart serenades through more contemporary works such as Stravinsky's Octet and new music premieres. The ensembles participate in Wind Symphony and Wind Ensemble concerts in addition to several chamber concerts throughout the year.

MUSIC 439-440(4615) Jazz Ensemble I
439, fall; 440, spring. Either 0 credits, S-U, or 1 credit, letter grade, each semester. Prerequisite: successful audition. P. Merrill. Study and performance of classic and contemporary big band literature. Rehearsals twice a week with two to four performances per semester.

MUSIC 441-442(4651) Chamber Music Ensembles
441, fall; 442, spring. Either 0 credits, S-U, or 1 credit, letter grade, each semester. Prerequisite: successful audition. Coordinator: M. Yampolsky. Study and performance of chamber music works from duos to octets, for pianists, string, and wind players.

MUSIC 443-444(3604) Chorale
443, fall; 444, spring. Either 0 credits, S-U, or 1 credit, letter grade, each semester. Prerequisite: successful audition. J. Miller. Study and performance of selected choral music for mixed voices.

MUSIC 445-446(4641) Gamelan Ensemble
445, fall; 446, spring. Either 0 credits, S-U, or 1 credit, letter grade, each semester. Prerequisite: permission of instructor. Fall, staff; spring, M. Hatch. Advanced performance on the Indonesian gamelan. Tape recordings of gamelan and elementary number notation are provided. Some instruction by visiting Balinese artist.

MUSIC 447-448(4600) Chamber Singers
447, fall; 448, spring. Either 0 credits, S-U, or 1 credit, letter grade, each semester. Prerequisite: successful audition. Staff. A mixed-voice chamber choir specializing in Renaissance and 20th-century music.

Graduate Courses

Open to qualified undergraduates by permission of instructor.

MUSIC 601(6201) Introduction to Bibliography and Research
Fall. 4 credits. N. Zaslav. This course explores the nature of the discipline and introduces the many types of bibliographic tools, both printed and electronic, needed to pursue research in music.

MUSIC 602(6101) Analytical Technique (also MUSIC 492/4102)
Spring. 4 credits. K. Taavola. Topic: Post-tonal music theory.

[MUSIC 603(6202) Editorial Practice
Spring. 4 credits. Not offered 2005-2006. Staff.]

[MUSIC 604(6301) Introduction to Ethnomusicology
Spring. 4 credits. Open to graduate students in anthropology, linguistics, psychology, sociology, African Studies, and other cognate fields by permission of instructor. Not offered 2005-2006. S. Pond or M. Hatch. This course surveys a spectrum of issues central to the field, including but not limited to issues of identity and representation, methods of musical and cultural analysis, area studies, applied ethnomusicology, and intersections with other fields in the humanities and social sciences.]
MUSIC 620(6420) Techniques for Computer Music
Fall. 4 credits. Prerequisite: permission of instructor. K. Ernste.
Intended principally for doctoral students in music composition but open to others by permission. The course presents a practical overview of both classical and state-of-the-art techniques for computer music including digital synthesis, signal processing and sound manipulation, analysis and resynthesis, spatialization, and real-time and/or interactive applications. Students will produce several short studio projects as well as one larger piece to be presented in a final concert.

MUSIC 622(7511) Knowing the Score
Fall. 2 credits. Open to qualified performers. M. Bilson.
This course examines musical notation of the 18th, 19th, and 20th centuries and looks at works from the standard repertoire in an attempt to glean as much information as possible from the rhythmic and expressive markings provided by the composer. How long is an unmarked quarter note to be held in an Adagio? How long in an Allegro? What is the proper execution of dotted rhythms, or are there several possibilities for similar notations? What is the meaning of slurs in the notation of Mozart, in the notation of Brahms, or even Bartók?

[MUSIC 653(7101) Topics in Tonal Theory and Analysis

[MUSIC 654(7102) Topics in Post-Tonal Theory and Analysis

[MUSIC 655(7121) Advanced Orchestral Technique
Fall. 4 credits. Not offered 2005–2006. S. Stucky.]

MUSIC 657-658(7111) Composition
657, fall; 658, spring. 4 credits each semester. R. Sierra and S. Stucky.

MUSIC 659(6421) Electroacoustic Composition
Spring. 4 credits. Prerequisite: permission of instructor. K. Ernste.
Intended principally for doctoral students in music composition but open to others by permission. Depending on students’ backgrounds and interests, the course may include an introduction to electroacoustic composing, an emphasis on aesthetic issues associated with the field, interactivity and real-time performance, software instrument design, performance controllers, or other topics.

[MUSIC 674(7222) German Opera (also GERST 672(6720)
For description, see GERST 672.)]

[MUSIC 677(7221) Mozart: His Life, Works, and Times (also GERST 757(7570)
Fall. 4 credits. Not offered 2005–2006. N. Zaslaw.)]

[MUSIC 680(7301) Topics in Ethnomusicology
Spring. 4 credits. Also open to graduate students in anthropology, linguistics, psychology, sociology, African Studies, Asian Studies, and other cognate fields by permission of instructor. Not offered 2005–2006. S. Pond.]

[MUSIC 681(7201) Seminar in Medieval Music
Fall. 4 credits. Not offered 2005–2006. J. Peraino.)

[MUSIC 683(7231) Music and Postmodern Critical Theory
Fall. 4 credits. Not offered 2005–2006. J. Peraino.)

[MUSIC 684(7202) Seminar in Renaissance Music
Fall. 4 credits. Not offered 2005–2006. R. Harris-Warrick.]

MUSIC 686(7203) Seminar in Baroque Music
Spring. 4 credits. D. Yearsley.
Topic: J. S. Bach’s secular cantatas. This seminar examines Bach’s secular vocal music in the context of his own oeuvre and that of his contemporaries. The course includes close examination of the musical and poetic texts of selected cantatas, and consider them as commentaries on and reflections of life in Bach’s Leipzig, concentrating on themes such as sexuality and secularization, leisure and vice, domestic life and social interaction, and relations between the sexes.

MUSIC 688(7204) Seminar in Classical Music
Fall. 4 credits. A. Richards.
Topic: Gothic: Music in culture c. 1800. The musical Gothic is the counterpart to the “Classical” style. Its gloomy settings and horrifying incidents haunted the popular musical imagination in the decades on either side of 1800. Music intermingled with vision and fantasy: indeed, strange imaginations were enabled and born of sound. Topics include: theoretical considerations of the Gothic; the Grotesque and the revenant Baroque; musical and visual representations of human character, both deviant and “normal”; music in Gothic fiction and visual arts; contemporary women performers and musico-dramatic portrayals of Lenore and Joan of Arc; C. P. E. Bach, Beethoven, Haydn, Mozart, and the dark sublime.

[MUSIC 689(7205) Seminar in Music of the Romantic Era
Fall. 4 credits. Not offered 2005–2006. Staff.]

MUSIC 690(7206) Seminar in Music of the 20th Century
Fall and spring. 4 credits. Fall, S. Stucky; spring, D. Rosen.
Fall topic: The music of Lutoslawski; spring topic: Benjamin Britten.

MUSIC 691–692(7501) Historical Performance
691, fall; 692, spring. 4 credits each semester. Prerequisite: permission of instructor. M. Bilson.
Lessons on the major instrument with supplementary study and research on related subjects.

[MUSIC 693(7211) Seminar in Performance Practice
Fall. 4 credits. N. Zaslaw.
Recent debates about ornamentation, vibrato, tempo, phrasing and articulation in European music of the 18th century.

MUSIC 697-698(7901) Independent Study and Research
697, fall; 698, spring. Credit TBA. Staff.

[MUSIC 765(7103) History of Music Theory
Fall. 4 credits. Not offered 2005–2006. K. Taavola.)

[MUSIC 787(7232) History and Criticism

MUSIC 901–902(9901) Thesis Research
901, fall; 902, spring. Up to 6 credits each semester. S-U grades only. Limited to doctoral students in music who have passed the Admission to Candidacy exam.

NEAR EASTERN STUDIES

The Department
The Department of Near Eastern Studies (409 White Hall) offers courses in Near Eastern civilization including archaeology, history, religions, languages, and literatures. These course offerings treat the Near East from the dawn of history to the present and emphasize methods of historical, cultural, and literary analysis. Students are encouraged to take an interdisciplinary approach to the religions and cultures of the region and their articulation during antique, late antique, medieval, and modern times. For more information, please visit www.muse.cornell.edu/nest.

Distribution Requirements
Any two Near Eastern Studies history or archaeology courses at the 200, 300, or 400 level that form a reasonable sequence or combination satisfy the distribution requirement in the social sciences/history. Any two Near Eastern Studies civilization or literature courses at the 200, 300, or 400 level that form a reasonable sequence or combination satisfy the distribution requirement in the humanities. NES 197 or 251 plus any other Near Eastern Studies course will constitute a sequence to fulfill the distribution requirement in either social sciences/history or humanities, depending on the second course used in combination with 197 or 251. All 200- or 300-level language courses may fulfill the humanities requirement.

The Major
A major in Near Eastern Studies offers students the opportunity to explore the languages, literatures, cultures, religions, and history of the Near East/Middle East from antiquity to the modern day. The major is designed both to acquaint students broadly with the region and its cultures as well as to study a particular subfield in depth.
Prerequisites

• The applicant for admission to the major in Near Eastern Studies must have completed at least two Near Eastern Studies content courses, one of which can be a language course. Students are strongly encouraged to enroll in language courses and/or NES 251 or 254 either before signing into the major or early on in their major.

• Prospective majors must meet with the director of undergraduate studies before submitting a major application.

• To qualify as a major, a cumulative grade average of C or better is required.

Major Requirements

For students graduating in the Classes of 2006 or earlier, consult the department. The precise sequence and combination of courses chosen to fulfill the major is selected in consultation with the student’s adviser. All majors must satisfy the following requirements (no course may be used to satisfy two requirements; S-U option not permitted):

1. Two years of one Near Eastern language or, in exceptional cases, one year of two Near Eastern languages

2. Nine 3- or 4-credit NES courses, which must include the following:
 a. NES 251 Judaism, Christianity, and Islam or NES 254 Introduction to Near Eastern Civilizations
 b. NES 460 Junior/Senior Proseminar: Theory and Method in Near Eastern Studies
 c. Seven additional courses, of which:
 i. Three must fulfill temporal breadth, defined as: one course whose chronological parameters fall within the period 3000 BCE to 600 CE, one course whose chronological parameters fall within the period 600 CE to 1800 CE, and one course whose chronological parameters fall between 1800 CE and the present. The following are examples (a complete list may be obtained in the department office).

 iii. One of the 300-level or above courses must be a research seminar (courses are designated with ®). The following are examples (a complete list can be found in the department office):

 iv. Note: A maximum of two independent studies can be applied to the major; a maximum of two non-cross-listed courses may be applied to the major; a maximum of two courses may receive credit for transfer of credit. Archaeological fieldwork on Cornell-sponsored projects in the Near East may also qualify for course credit.

First-Year Writing Seminars

For descriptions, consult the John S. Knight Institute brochure for times, instructors, and descriptions.

Language Courses

Arabic

NES 111-112(1201-1202) Elementary Arabic I and II (also AS&RC 111/112(1201-1202))

111, fall; 112, spring. 4 credits each semester. NES 112 provides language qualification. Limited to 18 students per section. Prerequisite: for NES 112, NES 111 or permission of instructor. Letter grades only. M. Younes.

Provides a thorough grounding in all language skills: listening, speaking, reading, and writing. It starts with spoken Arabic and gradually integrates Modern Standard Arabic in the form of listening and reading texts. Emphasis is on learning the language through using it in meaningful contexts. Students who successfully complete the two-semester sequence are able to (1) understand and actively participate in simple conversations involving basic practical and social situations (e.g., introductions, greetings, school and family, work, simple instructions); (2) read Arabic material of limited complexity and variety (e.g., simple narrative and descriptive texts, directions); (3) write notes and short letters describing an event or a personal experience. An important objective of the course is to familiarize students with basic facts about the geography, history, and culture of the Arab world.

NES 113-210(1203-2200) Intermediate Arabic I and II (also AS&RC 113/212)

113, fall; 210, spring. 4 credits each semester. NES 210 provides language proficiency and option 1. Limited to 18 students per section. Prerequisites: for NES 113, one year of Arabic or permission of instructor; for NES 210, NES 113 or permission of instructor. Letter grades recommended. M. Younes.

Sequel to NES 111-112. Continued development of the four language skills through extensive use of graded materials on a wide variety of topics. Increased attention is given to developing native-like pronunciation and grammatical accuracy, but the main focus is on developing communication skills. The student who successfully completes 210 is able to: (1) understand and express himself or herself in Arabic in situations beyond the basic needs; (2) read and comprehend written Arabic of average difficulty; (3) write a letter, a summary of a report, or a reading selection. An appreciation of Arabic literature and culture is sought through the use of authentic materials.

NES 133-134(1211-1212) Introduction to Qur'anic and Classical Arabic (also RELST 133-134(1211-1212))

133, fall; 134, spring, D. Powers. 4 credits each semester. NES 134 provides language qualification. Not offered 2005-2006. Designed for students who are interested in reading the language of the Qur'an
and Hadiths (Sayings of the Prophet) with accuracy and understanding. Authentic texts in the form of chapters from the Qur'an and Hadiths are presented and analyzed, and basic grammatical structures are discussed, explained, and practiced systematically. Interested students are encouraged to memorize excerpts from the texts. At the end of the two-semester sequence, the successful student has mastered a working vocabulary of over 1,000 words, correct pronunciation, and the most commonly used grammatical structures. In addition, the course provides the student with a firm foundation on which to build an advanced study of Classical Arabic.

NES 212(2213) Arabic Grammar
Spring. 3 credits. S. M. Toorawa.
See instructor for description.

[NES 213(2211) Classical Arabic Texts (also RELST 213[2211])] @ (IV) (LA)
Spring. 3 credits. Prerequisite: NES 210 or equivalent. Not offered 2005–2006.
D. Powers.
Introduces students to different genres of literary Arabic. We read, translate and discuss selected texts written in classical and modern standard Arabic. Review of morphology and grammar.

[NES 214(2212) Qur'an and Commentary (also RELST 214[2212])] @ (IV) (LA)
D. Powers.
Advanced study of classical Arabic through a close reading of selected chapters of the Qur’an, together with the Quranic commentary (tafsir) and other relevant literature. Special attention is given to grammar, syntax, and lexicography.

NES 311-312(3201-3202) Advanced Intermediate Arabic I and II (also AS&RC 308-312) @
311 fall; 312 spring. 4 credits each semester. Provides language qualification and satisfies Option I. Limited to 15 students.
Prerequisite: for NES 311, NES 210 or permission of instructor; for NES 312, NES 311 or permission of instructor.
Letter grades recommended. M. Younes.
Introduces students to authentic, unedited Arabic language materials ranging from poems, short stories, and plays to newspaper articles dealing with social, political, and cultural issues. Emphasis is on developing fluency in oral expression through discussion of issues presented in the reading selections. There is more focus on the development of native-like pronunciation and accurate use of grammatical structures than on elementary and intermediate Arabic. A primary objective of the course is the development of writing skill through free composition exercises in topics of interest to individual students.

[NES 416(4206) Structure of the Arabic Language (also LING 416[4416]) (III)] (KCM)
Spring. 4 credits. Limited to 15 students. Prerequisite: one year of Arabic or a suitable background. Not offered 2005–2006.
M. Younes.
Consists of a brief history of Arabic and its place in the Semitic language family, the sociolinguistic situation in the Arab world (diglossia), Arabic phonology (sounds, emphasis, syllable structure, and related processes), morphology (verb forms and derivational patterns), and syntax (basic sentence structures, cases, and moods).

Greek

NES 121-122(1340-1341) Elementary Modern Greek I and II (also CLASS 197-198[1141-1142])
121, fall; 122, spring. 4 credits each semester. NES 122 provides language qualification. Limited to 15 students.
M. Harakat.
Intended for students with no experience in Greek. The goal is to provide a thorough grounding in Greek language with an emphasis on communication. Small class size provides intensive practice in speaking, writing, and listening/comprehension.

NES 127-222(1342-2343) Intermediate Modern Greek I and II (also CLASS 199-299[1143-1144])
127, fall; 222, spring. 4 credits. NES 222 provides language proficiency and option I. Prerequisite: one year (two semesters) of elementary modern Greek. M. Harakat.
Emphasizes complex grammatical and syntactical phenomena of the Modern Greek language through oral communication and texts. Students look into idiomatic nuances and special features of word order. Oral speech and writing are more crucial at this level.

Hebrew

NES 101-102(1101-1102) Elementary Modern Hebrew I and II (also JWST 101-102[1101-1102])
101, fall; 102, spring. 4 credits each semester. Limited to 18 students per section. Prerequisite: for NES 101, NES 101 with grade of C- or better or permission of instructor. Letter grades recommended. S. Shoer.
Intended for beginners. Provides a thorough grounding in reading, writing, grammar, oral comprehension, and speaking. Students who complete the course are able to function in basic situations in a Hebrew-speaking environment.

NES 103(1103) Elementary Modern Hebrew III (also JWST 103[1103])
Fall. 4 credits each semester. Provides language qualification. Limited to 20 students per section. Prerequisite: NES 102 with grade of C- or better or permission of instructor. Letter grades recommended.
N. Scharf.
Sequel to NES 101–102. Continued development of reading, writing, grammar, oral comprehension, and speaking skills.

NES 123-124(1111-1112) Introduction to Biblical Hebrew I and II (also JWST/RELST 123-124[1111-1112])
123, fall; 124, spring. 3 credits each semester. NES 123 provides language qualification. Limited to 17 students. Not offered 2005–2006.
N. Scharf.
Intended to develop basic proficiency in reading the Hebrew Bible. The first semester emphasizes introductory grammar and vocabulary. The second semester focuses on reading selected passages in the Hebrew Bible, with further development of vocabulary and grammar.

Hindi-Urdu

NES 105-106(1310-1311) Elementary Hindi-Urdu (also HINDI 101-102[1101-1102])
Fall, spring. 6 credits each semester. Staff.
For description, see HINDI 101–102.

NES 107(1312) Introduction to Urdu Script (also HINDI 125)
Spring. 1 credit. Staff.
For description, see ASIAN 125.

Persian

NES 115-116[1220-1221] Elementary Persian I and II
115, fall; 116, spring. 4 credits each semester. NES 116 satisfies language qualification. Limited to 15 students.
R. Daneshvar.
Hieroglyphic Egyptian

[**NES 330-331(3450-3451)** Hieroglyphic Egyptian I and II]

330, fall; 331, spring @ # (IV) (LA). 4 credits. Not offered 2005–2006. Staff.

Sumerian

[NES 361(3661) Sumerian Language and Culture I (also JWST/ARKEO 361(3661)/6622), ARKEO 361(3661)/6661, NES 661(6661)] @ # (IV) (HA)

Continuation of NES 360. Focuses on a more intense introduction to Sumerian language and grammar with additional readings in literature in translation. Particular emphasis is placed on the reading and interpretation of original texts from the Cornell collection and their use in the reconstruction of Mesopotamian history and culture in the third millennium BCE.

[NES 362(3762) Sumerian Language and Culture II (also JWST/ARKEO 362(3762)/6762), NES 662(6762)] @ # (LA)

Continuation of NES 361. Continues the intensive introduction to Sumerian language and grammar with additional readings in Sumerian literature in translation. Particular emphasis is placed on the reading and interpretation of original texts from the Cornell collection and their use in the reconstruction of Mesopotamian history and culture in the third millennium BCE.

[NES 363(3763) Sumerian III (also JWST/ARKEO 363(3763)/6763), NES 663(6763)] @ # (LA)

Continuation of NES 362. Continues the intensive introduction to Sumerian language and grammar with additional readings in Sumerian literary texts. Particular emphasis is placed on the reading and interpretation of original texts from the Cornell collection and their use in the reconstruction of Mesopotamian history and culture in the third millennium BCE.

Ugaritic

[NES 337-338(3430-3431)] Ugaritic I and II (also NES 637-638)

337, fall; 338, spring @ # (IV) (LA). 4 credits each semester. Prerequisite: knowledge of another Semitic language (preferably Hebrew). Not offered 2005–2006. Staff.

Study of the language and literature of ancient Ugarit, an important site in northern Canaan. Special attention is paid to the relationships between Ugaritic and Hebrew and between Canaanite literature and the Bible.

Topics Courses

[NES 217 Gender, Sex, Empire: Mode Mid East # (III) (HA)]

Spring. 4 credits. W. Jacob.

For description, see HIST 217.

[NES 222(2623) Introduction to the Bible (also JWST/RELST 223[2623]) @ # (IV) (LA)]

Fall. 3 credits. S. Sanders.

[NES 227(2727) The Bible and Ancient Near Eastern Civilization (also JWST/ARKEO/RELST 227[2727]) @ # (IV) (LA)]

The Hebrew Scriptures contain a wide array of literary forms, including historical works, prophetic texts, and wisdom literature. These works—compiled from an even wider assortment of text types (cosmologies, folk tales, love songs, palace records, treaties, letters and more)—were not written in a cultural vacuum but find a home in the literary world of Israel’s neighbors, including Mesopotamians, Egyptians, Hitites, and others. This course examines the different literary genres found in the Hebrew Scriptures in comparison with similar material from the ancient Near East to clarify the interpretation, dating, and purpose of the Biblical material.

[NES 229(2629) Introduction to the New Testament (also RELST/JWST 229[2629], CLASS 215[2629]) @ # (IV) (HA)]

Fall. 3 credits. K. Haines-Eitzen.

Provides a literary and historical introduction to the earliest Christian writings, most of which eventually came to be included in the New Testament. Through the lens of the gospel narratives and earliest Christian letters, especially those of Paul, the course explores the rich diversity of the early Christian movement, from its Jewish roots in first-century Palestine through its development and spread to Asia Minor and beyond. Careful consideration is given to the political, economic, social, cultural, and religious circumstances that gave rise to the Jesus movement, as well as those that facilitated the emergence of various manifestations of early Christian beliefs and practices. Students who have had at least one year of Greek and would like to participate in a 1-credit, New Testament Greek reading weekly seminar should also enroll in NES 329.

[NES 230(2730) The Greek New Testament (also CLASS 202[2105], RELST 202[2105]) @ # (IV) (LA)]

Spring. 3 credits. E. Rebillard.

For description, see CLASS 202.

[NES 234(2634) Muslims and Jews in Confluence and Conflict (also JWST/RELST 234[2634]) @ # (IV) (HA)]

Examines the cultural and historical interaction between Arabs and Jews from the emergence of Islam in the seventh century through the classical age of Islam. Focuses on the period of classical Islamic civilization and medieval Judaism under the orbit of Islam. The interaction of the two cultures (scriptural, spiritual, intellectual, literary, communal, and interpersonal) is studied through readings of primary texts (in translation). The course concludes with reflections on the cultural reawakening and the development of national consciousness of the two peoples in the past two centuries. At that time the role of historical memory in the modern conflict in light of the record of pre-modern interaction is also considered.

Topics Courses

[NES 217 Gender, Sex, Empire: Mode Mid East # (III) (HA)]

Spring. 4 credits. W. Jacob.

For description, see HIST 217.
This is a special seminar sponsored by the John S. Knight Institute's Sophomore Seminars Program. Sophomore Seminars are designed to initiate students into the discipline's outlook, while not restricted to sophomores. The seminars aim at promoting community, critical thinking, and the development of writing and research skills.

The founding of the Round City of Baghdad in the mid-eighth century by the ascendant Abbasid dynasty ushered in a period of intense scholarly, administrative, and artistic activity. The ninth and tenth centuries in Baghdad have come to be known as the "golden age." Students read works by and about Baghdadis, in particular a group I termed the "bad boys and girls of Baghdad." Readings include Nahj al-’ibn; Al-Muqaffa' on rulership; Mas'udi on Ja'far (remember Disney's Aladdin?); the caliph Harun al-Rashid and the elephant he sent Charlemagne; and the singing sensation 'Arif, who was the lover of some of Baghdad's most famous men. Students learn how paper, books, and writing changed Baghdad, Islamic society, and human knowledge; and how Arab-Islamic society contributed to the world.

This is a special seminar sponsored by the John S. Knight Institute's Sophomore Seminars Program. Sophomore Seminars are designed to initiate students into the discipline's outlook, while not restricted to sophomores. The seminars aim at promoting community, critical thinking, and the development of writing and research skills.

The founding of the Round City of Baghdad in the mid-eighth century by the ascendant Abbasid dynasty ushered in a period of intense scholarly, administrative, and artistic activity. The ninth and tenth centuries in Baghdad have come to be known as the "golden age." Students read works by and about Baghdadis, in particular a group I termed the "bad boys and girls of Baghdad." Readings include Nahj al-’ibn; Al-Muqaffa' on rulership; Mas'udi on Ja'far (remember Disney's Aladdin?); the caliph Harun al-Rashid and the elephant he sent Charlemagne; and the singing sensation 'Arif, who was the lover of some of Baghdad's most famous men. Students learn how paper, books, and writing changed Baghdad, Islamic society, and human knowledge; and how Arab-Islamic society contributed to the world.

This is a special seminar sponsored by the John S. Knight Institute's Sophomore Seminars Program. Sophomore Seminars are designed to initiate students into the discipline's outlook, while not restricted to sophomores. The seminars aim at promoting community, critical thinking, and the development of writing and research skills.

The founding of the Round City of Baghdad in the mid-eighth century by the ascendant Abbasid dynasty ushered in a period of intense scholarly, administrative, and artistic activity. The ninth and tenth centuries in Baghdad have come to be known as the "golden age." Students read works by and about Baghdadis, in particular a group I termed the "bad boys and girls of Baghdad." Readings include Nahj al-’ibn; Al-Muqaffa' on rulership; Mas'udi on Ja'far (remember Disney's Aladdin?); the caliph Harun al-Rashid and the elephant he sent Charlemagne; and the singing sensation 'Arif, who was the lover of some of Baghdad's most famous men. Students learn how paper, books, and writing changed Baghdad, Islamic society, and human knowledge; and how Arab-Islamic society contributed to the world.
parents and children, gender, slavery, the interplay of transmission of property, the status of non-Muslims, crime and its punishment, law and the public sphere.

This is a special seminar sponsored by the John S. Knight Institute's Sophomore Seminars Program. Sophomore Seminars offer discipline-specific study within an interdisciplinary framework. While not restricted to sophomores the seminars aim at initiating students into the discipline's outlook, its discourse community, its modes of knowledge, and its ways of articulating that knowledge and making it public. Special emphasis is given to strong thinking and writing and to personalized instruction with top university professors.

[NES 256(2666) Jerusalem Through the Ages (also JWST/ARKEO/RELST 266(2666))] @ # (III) (HA)
Fall. 3 credits. Not offered 2005-2006.
J. Zorn.
Jerusalem is a holy city to the adherents of the three great monotheistic faiths: Judaism, Christianity, and Islam. For most of its existence it has also been a national capital or major provincial center for the many states and empires that vied for control of the vital land bridge connecting Africa, Europe, and Asia. Thus many of the pivotal events that shaped western civilization were played out in the streets and structures of Jerusalem. This course explores the history, archaeology, and natural topography of Jerusalem throughout its long life, from its earliest remains in the Chalcolithic period (ca. 4000-3000 B.C.E.) to the modern era, including Jebusite Jerusalem, Jerusalem as the capital of the Davidic dynasty, the Roman era city of Herod and Jesus, the Crusaders and medieval Jerusalem, and Ottoman Jerusalem as the city entered the modern era. Students examine the original historical sources (e.g., the Bible, Josephus, the Madaba map) that pertain to Jerusalem. Slides and videos are used to illustrate the natural features, man-made structures, and art manifestations that flesh out the textual material providing a fuller image of the world's most prominent spiritual and secular capital.

[NES 268(2668) Ancient Egyptian Civilization (also ARKEO/JWST 268(2668))] @ # (III or IV) (HA)
Fall. 3 credits. Not offered 2005-2006.
G. Kadish.
Surveys the history and culture of pharaonic Egypt from its prehistoric origins down to the conquest by Alexander the Great. Within a chronological framework, the following themes or topics are considered: the development of the Egyptian state (monarchy, administration, ideology); social organization (class, gender and family, slavery); economic factors; empire and international relations; science and technology; and such cultural factors as religion, literature, writing, art, and architecture. Considerable use is made of ancient texts in translation and slides. This is basically a course, but there is opportunity for questions and clarifications.

[NES 273(2673) History of the Middle East: 13th through 16th Centuries (also HIST 275, JWST 273(2673))] @ # (IV) (HA)
Spring. 3 credits. Not offered 2005-2006.
M. Campos.
Examines the history of the Middle East from the Mongol sack of Baghdad in 1258 to the eve of World War I. Focuses on the histories of the Ottoman and Safavid empires, exploring elements of imperial rule, religion and society; economy and trade; cultural production, internal reform; contact with the West; ethnic and religious minorities; and the origins of modern social, political, and cultural imperialism in the Middle East.

[NES 274(2764) History of the Modern Middle East: 19th and 20th Centuries (also JWST 274(2764), HIST 276(2760))] @ # (III or IV) (HA)
Spring. 3 credits. M. Campos.
Surveys the history, politics, and society of the Middle East from World War I until the present day. Students think critically about the transformation of the Middle East from autonomous Islamic empires to colonized mandates to post-colonial states; the development of collective identities such as nationalism, pan-Arabism, and Islamism; the formation and mobilization of social classes and changing gender relations; the Middle East throughout World War II and subsequent American hegemony; revolution, war, and civil strife; and popular culture.

[NES 275(2765) Religions of Ancient Israel (also RELST/JWST 275(2765), ARKEO 276(2765))] @ # (IV) (HA)
Fall. 3 credits. J. Zorn.
A casual reading of the Hebrew Bible might suggest that the Iron Age Israelites were normative monotheists, with occasional deviations. However, a religion approaching true monotheism began to emerge only with the return from the Babylonian Exile, after 539 BC. Before that Israelite religious beliefs and practices were much more complex and their society anything but strictly monotheistic. This course, through the use of archaeological and epigraphic data and a closer reading of the Biblical text, explores topics like: temple worship, private religion, religion of women, cult prostitution, burial practices and beliefs about the afterlife, the role of prophets, the roles of "foreign" gods like Baal, Asherah, and Tammuz, human sacrifice, and more.

[NES 280 (2990)] Bosnian Literature (also ROM S 289)
Spring. 3 credits. K. Battig von Wittelsbach.
For description, see ROM S 280.

[NES 283(2793) Middle Eastern Cinema (also JWST 291(2793), FILM 293(2930), COM L 293, VISST 293(2930)] @ # (IV) (LA)
Fall. 4 credits. D. Starr.
Musical comedies, to dramas, to experimental genres. Readings provide background on the particular cultural and historical contexts in which the films are produced and familiarize students with techniques for critically interpreting visual media. Films are screened on Mondays at 7:30 p.m. and also are available on reserve.

[NES 299(2699) Issues in Middle Eastern Politics, Religion, and Culture
Fall and spring. 1 credit.
R. Brann.
The peoples, cultures, religions, and politics of the Middle East are never far removed from the front pages of the world's leading newspapers and journals. This course engages students in discussing current religious, political, and sociocultural concerns and issues in the Middle East, including the intersection of American interests and policies in the region.

[NES 301(3710) The Language of the Qur'an (RELST 310[3710])
Spring. 4 credits. Prerequisite: NES 113 or equivalent.
D. Powers and M. Younes.
Certain verses in the Qur'an have been the subject of intense debate among Muslim scholars since the first century of Islamic history. In some cases, words and phrases do not seem to fit the surrounding context. In others, the language of the Qur'an appears to violate the standard rules of Arabic grammar. How are these problems to be explained? In an attempt to answer these questions, students study a dozen or so Qur'anic verses and the explanations that have been given for them by both Muslim and non-Muslim scholars. Then they apply the tools of modern linguistics to these same problems, and compare the results with those of earlier scholarship. The linguistic analysis of the Qur'an is informed by a survey of early Islamic history, particularly as it relates to the revelation, transmission, and codification of the Qur'an and the development of Arabic writing.

[NES 320(3620) Women in the Hebrew Bible (also JWST 320[3620], RELST 316, FGS 332[3220]) @ # (IV) (LA)
Fall. 3 credits. S. Sanders.
Features stories about women in the Hebrew Bible. Through literary readings of these texts, students attempt to understand the role of narrative in the promotion of ancient Israelite ideology. Questions asked include, why do women appear so prominently in the Bible's stories, and what do these women represent in the larger picture of ancient Israelite culture. Students look at different literary types (e.g., foreign woman, prostitute, seductress, widow) and the social and historical realities behind the literary representation of women. All texts in English translation.

[NES 329(3629) Introduction to the New Testament—Seminar (also CLASS 305[3629], JWST/RELST 329[3629])
Fall. 1 credit. Prerequisite: concurrent or previous enrollment in NES 229 and one year of ancient Greek. K. Haines-Eitzen.
Weekly seminar that may be taken in addition to NES 229. The seminar provides an opportunity to read portions of the New Testament and other ancient writings in Greek. Students work on grammatical and textual issues as well as other problems related to translations.

[NES 332(3832) Martyrdom in Contemporary Societies (JWST 332[3832], SOC 332[3320]) (SBA)
Fall. 4 credits. Prerequisite: Concurrent or previous enrollment in NES 229 and one year of ancient Greek.
Nothing demonstrates better the power of society than the readiness of any individuals to sacrifice their lives for their community, their nation, or their religious group. There is no better way to investigate than to celebrate the image of individuals who sacrificed themselves, ostensibly, for their community. This course sheds a sociological
light on these intimate relations between violent death and solidarities of modern societies. Offers a comparative discussion on the social significance of heroic death and victimhood in various contexts around the globe. Examines various national "cultures of death," analyzing what sociological theories have to say about these phenomena, and discussing the required adaptations in existing theories in light of case studies presented in class.

NES 339(3539) Islamic Spain: Culture and Society (also JWST/SPANL 339/3539/3939, COM L/RELS 334/639/3359/6539, NES 639(6539)) @ (IV) (CA)
R. Brann.

Examines the culture and society of al-Andalus (Islamic Spain) from 711, when Islam arrived in Iberia, until 1492 and the demise of Nasrid Granada. Through extensive discussion and analysis of Arabic, Latin, and Hebrew primary sources and historical texts, the course considers the origins of Islamic poetry, the relationships among the various confessional and ethnic communities in al-Andalus and the problems involved in Moorish Christian and Andalusi Jewish subcultural adaptations of Andalusi Arabo-Islamic culture. Fullfills research seminar requirement for major.

NES 364(3664) Ancient Iraq I: Origins of Mesopotamian Civilization (also JWST 364/664, HIST 364/664), ARKEO 364(3764)/664, NES 664(6664)) @ # (III or IV) (HA)
D. I. Owen.

Introduction to the language, literature, history, culture, and archaeology of Sumerian civilization from the fourth and third millennia b.c.e. Focuses on Sumerian civilization from its emergence in the archaeological record in the fourth millennium until its disappearance around 2000 B.C.E. In addition, it emphasizes the parallel development of the Semitic peoples in Syria (Eblaites) and upper Mesopotamia (Akkadians). A special feature of the course is a basic introduction to the Sumerian language using original cuneiform tablets in the collection of the Department of Near Eastern Studies.

NES 365(3665) Ancient Iraq II: From the Beginning of the Second Millennium to the Conquest of Alexander the Great (also ARKEO 365/3665/665), JWST 365/665, NES 665(6665)) @ # (III or IV) (HA)
D. I. Owen.

Introduction to the history, culture, literature, and archaeology of Syro-Mesopotamia from the emergence of the Babylonians around 2000 B.C.E through the Persian period, which was brought to an end by the conquest of Alexander the Great in 331 B.C.E. The interrelationships between the various political entities during this long period (the Amorites, Hittites, Hurrians, Syrians, and Elamites Iranians) are emphasized.

NES 366(3666) The History and Archaeology of the Ancient Near East (also ARKEO/JWST 366(3666)) @ # (III or IV) (HA)
Fall. 4 credits. D. I. Owen.

Introductory survey of the history and archaeology of the major civilizations of the Near East from the Persian Gulf—Mesopotamia, to Anatolia, Syria, and Canaan. Covers the time span from advent of written sources in the late fourth millennium to the Persian conquest of Cyrus. Sumerian, Babylonian, Eblaite, Elamite, Canaanite, Assyrian, Syro-Phoenician and Israelite cultures are discussed with particular emphasis on indigenous developments and cross-cultural contacts. Extensive use of visual aids highlights the course.

NES 370(3870) The Middle East in Europe (also JWST 370(3870), SOC 387(3870))
Spring. 4 credits. T. Sorek.

In contemporary Europe, issues relating to migrants and immigrants from the Middle East (and North Africa) are constantly debated by the states, by majority populations, and by the minorities themselves. This course introduces a social scientific approach to these debates, emphasizing themes of collective identities, nationalism, religion, popular culture and the legacy of European colonialism.

NES 377(3777) The Arabic Literary Heritage: History and Literary Theory
Fall. 4 credits. S. M. Toorawa.

Survey of Arabic literature from the sixth century to the present day. A wide range of primary texts (in translation) is accompanied by background readings that place the authors and works in their literary, religious, political and societal contexts. Special attention is paid to literary theory, both Arabic and Western (notably, the applicability of Western literary theory to Arabic literature).

NES 385(3865) Middle Eastern Cities: History, Society, and Culture (also JWST 385/685, HIST 382(3820)) @ # (III or IV) (HA)
M. Campos.

Examines the role of the city in the Middle East, the contours of urban life and the lived experiences of city-dwellers, and the city as a microcosm of broader historical transformations. In particular, the course looks at the city as a site of governance, social relations, economic transformations, and cultural change. Begins with a theoretical discussion of the urban form as well as the historical and contemporary debate over the "Islamic city." Next the course moves from the Maghrib to the Mashriq and from the rise of Islam to the modern day, guided by the following analytical themes: holy cities and sacred spaces; urban social institutions; imperial capitals and provincial towns; the rise of the port cities and the world economy; minority spaces and urban heterogeneity; colonialism and the transformation of the urban form; "public space" and urban social movements; divided cities such as Beirut and Jerusalem; and narrations of the city. Readings include a variety of historical, anthropological, travel, fictional, and primary texts. Fullfills research seminar requirement for major.

NES 388(3788) The Jews In and Out of Egypt (also JWST 388(3788), COM L 388) @ # (IV) (LA)
D. Starr.

Examines literary representations of the vibrant Jewish communities of Egypt, from the Biblical narratives to the modern period. Through readings from the rich textual record spanning millennia, students explore the shifting symbols of the Exodus narrative as well as transformations in the understanding of "exile" and "diaspora." Beginning with a discussion of the Biblical and Rabbinic representations of Pharaonic Egypt, the course then surveys Jewish culture and cultural production during the Hellenistic, Late Antique, and Medieval Islamic periods. Proportionally more time is spent discussing the representations of Jewish communities in Egypt in the 19th and 20th centuries.

NES 399(3899) Sociology of Sport (also JWST 389, SOC 330(3300)) @ (III) (SBA)
Fall. 4 credits. T. Sorek.

For description, see SOC 330.

NES 393(3693) History of Jews and Christians in the Modern Middle East (also JWST 393/3693) @ # (III) (HA)
M. Campos.

Examines Jewish and Christian communities in the modern Middle East (19th and 20th centuries) from a comparative historical perspective, focusing on the Byzantine Levant (Mashriq), Egypt, and the former Ottoman heartland of Anatolia and the Balkans. Examines diverse aspects of non-Muslim experience in the Middle East while analyzing these communities in dialogue with their surrounding Muslim states and societies. Thematically, the course covers issues such as communal life, economy, gender, folk religion, social and spatial boundaries, nationalism, ethnic conflict, Diaspora, and reconstructions of the Jewish and Christian past as well as ongoing struggle in the contemporary Middle East. Draws on a wide variety of interdisciplinary primary and secondary sources, including novels, ethnography, films, memoirs, and scholarly texts.

NES 395(3895) Israeli Society (also JWST 395/3895, SOC 390(3900)) @ (III) (SBA)
Spring. 4 credits. T. Sorek.

Introduces students to major themes in contemporary Israeli society, focusing on the following: the tension between the definition of Israel as a Jewish state and its aspiration to be democratic, the place of religion in politics, the effects of the long-term occupation of the West Bank and the Gaza Strip, the fragile status of the Arab Palestinian citizens of Israel, civil–military relations, intra-Jewish ethnic divides, and gender relations. The course emphasizes processes of the formation of collective identities in Israel and the interdependency of culture and politics. Requirements: students are expected to come to class fully prepared to participate in a discussion of the readings; three knowledge quizzes; a movie report; active participation in the course web site forum; a midterm paper, final exam.
NES 397(3697) History of the Israeli-Palestinian Conflict (also JWST 397(3697), SOC 397[3970], GOVT 397[3967]) (III) (HA)
Fall. 4 credits. Not offered 2005-2006.
T. Sorek.
Introduces students to the complexity of the Israel-Palestinian conflict in its various dimensions: national, religious, economic, and cultural. Outlines the history of the conflict from the beginning of Zionist immigration to Palestine in the late 19th century until the current day. The course juxtaposes the different subjective points of view and motivation of the actors involved and analyzes the sociopolitical process as a product of these interrelated positions. In addition, it demonstrates how the internal structures of both societies influence and are influenced by the dynamics of the conflict. Special emphasis is given to the significance of heroism, victimhood, and martyrdom in shaping the conflict and the identities of the parties involved. Requirements: three knowledge quizzes, participation in the course web site forum, and a final exam.

NES 400(4100) Seminar in Advanced Hebrew (also JWST 400(4100)) (IV) (LA)
Fall. 4 credits; because topics vary by semester, may be repeated for credit by permission of instructor. Fullfills option 1. Limited to 15 students. Prerequisite: NES 301 with grade equivalent to C- or better or permission of instructor. Letter grades recommended. N. Scharf.
Continuation of work done in NES/JWST 301, with less emphasis on the study of grammar. Students read and discuss texts of cultural relevance, using articles published in Israeli newspapers and works by authors in each of the three principal genres: poetry, theater, and novels.

NES 410(4710) Methods in Medieval Literature (also ART H 410(4310)) (IV) (HA)
Spring. 4 credits. C. Robinson.
For description, see ART H 410.

NES 414(4201) Readings in Arabic Literature @ # (IV) (LA)
Spring. 4 credits. Prerequisites: NES 312, 400-level NES Arabic course, or permission of instructor. S. M. Toorawa.
Introduces students to Arabic prose literature through a close reading of selections by classical, medieval, and modern writers. Emphasis is on grammar and syntax.

NES 415(4202) Readings in the Modern Arabic Short Story @ (IV) (LA)
Fall. 4 credits. Prerequisite: NES 312 or permission of instructor. D. Starr.
Introduces students to modern Arabic literature through the genre of the short story. Class discussions and writing assignments center on interpretation and textual analysis.

NES 418(4618) Seminar in Islamic History 600 to 750 (also NES 618(6618), HIST 461/671(4610/6710), RELST 418) @ (III) (HA)
D. Powers.
Examination of Islamic history from 600 to 750, with special attention to interpretive issues relating to the career of the Prophet Muhammad; the Arab conquests, the emergence of the Caliphate, conversion to Islam, and the Abbasid revolution. Students read primary sources in English translation, especially The History of Tabari. fulfills research seminar requirement for major.

NES 422(4722) Late Medieval Devotional Image (also ART H 422(4322)) @ (IV) (CA)
Fall. 4 credits. C. Robinson.
For description, see ART H 422.

NES 428(4628) Gnosticism and Early Christianity (also JWST/RELSST 428(4628)) @ (IV) (HA)
Fall. 4 credits. K. Haines-Eitzen.
In-depth exploration of early Christian Gnosticism, with emphasis on the gnostic texts. Early Christian Gnosticism came to be considered heretical by early proto-orthodox Church Fathers. In addition to reading the condemnations written by the opponents of gnostic thought, students focus attention on reading (in English translation) substantial portions of the Gnostic texts written by the Gnostics themselves and found at Nag Hammadi, Egypt, in 1945. To set these texts within a socio-historical context, the course discusses scholarly theories about Jewish and hellenistic roots of early Christian Gnosticism. fulfills research seminar requirement for major.

NES 429(4929) Race in Medieval Islamic World (also 3 HUM 428)
Spring. 4 credits. B. Toorawa.
For description, see S HUM 428.

NES 447-448(4947-4948) Middle Eastern Music Ensemble (also MUSIC 431-432(3614))
447, fall; 448, spring. 1 credit each semester. Limited to 40 students. Prerequisite: permission of instructor. M. Hatch and staff.

NES 449(4490) Cervantes and the Mediterranean World (also SPANL 448(4480)) (IV) (LA)
Fall. 4 credits. M. A. Garcia.
For description, see SPANL 448.

NES 453(4953) Islamism (also GOVT 466(4665)) (III)
Spring. 4 credits. J. P. Duck-Mosse.
For description, see GOVT 466.

NES 457(4657) Seminar in Islamic History: Formation of Islamic Law (RELSST 457(4657), HIST 453(4530))
Fall. 4 credits. Prerequisite: NES 255 or equivalent, or permission of instructor. D. Powers.
Examines what has been called “the mystery of the formation of Islamic law” by attempting to establish a middle ground between the traditional Islamic approach to the subject and that of revisionist western scholars. Themes discussed include: the Near Eastern and Arabian background of the Quranic legislation; the relationship between Quranic legal pronouncements and legal practice during the first centuries; the debate over the authenticity of hadith reports, i.e., statements about what Muhammad said, did or condoned by his silence; the role of caliphal law and Umayyad administrative practice; and the formation of the law schools or madhab. fulfills research seminar requirement for major.

NES 460(4560) Theory and Method in Near Eastern Studies
Spring. 4 credits. Requirement for NES majors. K. Haines-Eitzen.
Seminar offering advanced Near Eastern Studies students the opportunity to read and discuss the range of theories and methods that have been employed by scholars in the interdisciplinary area of Near Eastern studies. After giving attention to the historical development of area studies programs—and their current status and relevance—students read a wide range of highly influential works in Near Eastern studies. Literary theory, historiography, post-colonialism, and archaeology, gender theory, and comparative religions are a few of the approaches, methods, and theories explored. Authors include Talal Asad, Homi K. Bhabha, Mircea Eliade, Timothy Mitchell, Mary Douglas, Zachary Lockman, Edward Said, J. Z. Smith.

NES 467(4567) Cultivating Modernities: The Aesthetics of Uneven Development in the Middle East (IV) (CA)
Fall. 4 credits. T. Grigor.
Traces the cultural history of rapid and uneven development in the modern Middle East, predominantly based on the experiences of 19th- and 20th-century Iran. Topics cover a wide range of debates on the constructs of high culture, aesthetic values, archaeological policies, colonial rivalry, local resistance, gendered metaphors, racial rhetorics, secular nationalism, and national historiography. Through a close examination of the built environment and material culture, the course reveals the perils of Iran's rapid modernization and the ensuing social tensions of its modernity. Their investigation hints at the often unbridgeable gulf between how things worked and how they looked in modern Iran.
For in 20th-century Iran, aesthetics was not only a mere allegory of modernity, but also the supreme (re)presentation of the image of an unevenly developed modern nation that would eventually succumb to a popular (cultural) revolution.

NES 468(4568) Of Orientalism and (Post)Colonial Space (also JWST 468(4568))

Spring. 4 credits. T. Grigor.

Raising major themes that have constituted the Orientalist tradition. Reexamines Orientalist spaces both conceptual, imagined, spatial, rhetorical, historical, and sociopolitical by readdressing the problematic of Orientalism, not only as a long history of (mis)readings, but also as a technique of seeing, representing, and critiquing the space of the postcolonial. Examines its history and historiography as well as its modes of operation in the larger context of scholarly thinking. Focused on architectural and visual discourses, the course takes the spaces of language and historiography, desire and gaze, (dis)utopias and modernity, prisons and pleasure, vandalism and civilization, despots and harem, disease and urban hygiene, sex and colonialism, diasporas and marginality, exiles and cities, canons and barbarians. Out of the matrix of complex and (un)transferable modernities, the course concludes with current debates about the polarization of Of Orientalism and its many Spaces that affect our daily life.

NES 475(4675) Christianization/Roman World (also CLASS 475(4625), RELST 475(4675), HIST 483(4830)) # (III or IV) (HA)

Spring. 3 credits. E. Rebillard.

For description, see CLASS 475.

NES 491-492(4991-4992) Independent Study, Undergraduate Level

Fall and spring. Variable credit.

Prerequisite: permission of instructor. Staff.

NES 498-499(4998) Independent Study, Honors

Fall and spring. 8 credits.

Prerequisite: permission of instructor. Staff.

[NES 639(6539) Islamic Spain: Culture and Society (also NES 339(3539), JWST/SPANL 339(3539)/639), COM L 334(383), RELST 334(383)/639(6539))]

R. Brann.

Examines the culture and society of al-Andalus (Islamic Spain) from 711, when Islam arrived in Iberia, until 1492 and the demise of Nasrid Granada. Through extensive discussion and analysis of Arabic, Latin, and Hebrew primary documents and literary texts of various genres (in translation), the course challenges ideological bases of conventional thinking regarding the social, political, and cultural identity of medieval Spain. Among other things, the class investigates the origins of lyric poetry, the relationships among the various confessional and ethnic communities in al-Andalus and the problems involved in Mozarabic Christian and Andalusi Jewish subcultural adaptations of Andalusi Arabo-Islamic culture.

NES 691-692(6991-6992) Independent Study: Graduate Level

Fall and spring. Variable credit.

Prerequisite: permission of instructor. Staff.

For in 20th-century Iran, aesthetics was not only a mere allegory of modernity, but also the supreme (re)presentation of the image of an unevenly developed modern nation that would eventually succumb to a popular (cultural) revolution. The study of philosophy provides students with an opportunity to become familiar with some of the ideas and texts in the history of thought while developing analytical skills that are valuable in practical as well as academic affairs. It affords the excitement and satisfaction that come from understanding and working toward solutions of intellectual problems. The curriculum includes offerings in the history of philosophy, logic, philosophy of science, ethics, social and political philosophy, metaphysics, and theory of knowledge. Any philosophy course numbered in the 100s or 200s is suitable for beginning study in the field. Sections of PHIL 100 are part of the first-year writing seminar program; they are taught by various members of the staff on a variety of philosophical topics, and because of their small size (17 students at most) they provide ample opportunity for discussion. Students who want a broad introduction to philosophy may take PHIL 101, but many students with special interests may find that the best introduction to philosophy is a 200-level course in some particular area of philosophy; such courses have no prerequisites and are usually open to first-year students.

The Major

Students expecting to major in philosophy should begin their study of it in their freshman or sophomore year. Admission to the major is granted by the director of undergraduate studies of the department on the basis of a student's work during the first two years. Normally the student must have completed two philosophy courses with grades of A or better. Eight philosophy courses, taken for a letter grade, are required for the major. They must include at least one course on ancient philosophy (PHIL 211), or a course with a language component on Plato or Aristotle), at least one course on classical modern metaphysics and epistemology from Descartes through Kant (e.g., PHIL 212 or a course on the empiricists, the rationalists, or Kant), and a minimum of three courses numbered above 300. Students admitted to the major (after fall 1996) are required to take a minimum of six philosophy courses numbered above 200, and may not count more than one section of PHIL 100 toward the major. Courses numbered 191–199 do not count toward the major. A course in formal logic (e.g., PHIL 231), while not required, is especially recommended for majors or prospective majors.

Philosophy majors must also complete at least 8 credits of course work in related subjects approved by their major advisers. Occasionally majors may serve as teaching or research aides, working with faculty members familiar with their work.

Honors

A candidate for honors in philosophy must be a philosophy major with an average of B+ or better for all work in the College of Arts and Sciences and an average of B+ or better for all work in philosophy. In either or both semesters of the senior year a candidate for honors enrolls in PHIL 490 and undertakes research leading to the writing of an honors essay by the end of the final semester. Honors students normally need to take PHIL 490 both semesters of their senior year to write a satisfactory honors essay. PHIL 490 does not count toward the eight philosophy courses required for the major. Prospective candidates should apply at the Department of Philosophy office, 218 Goldwin Smith Hall.

Fees

In some courses a small fee may be charged for photocopying materials to be handed out to students.

Introductory Courses

These courses have no prerequisites; all are open to freshmen.

Related Courses in Other Departments

- Africana Studies
- Archaeology
- Asian Studies
- Classics
- Comparative Literature
- Economics
- English
- Feminist, Gender, and Sexuality Studies
- German Studies
- Government
- History
- History of Art
- Linguistics
- Medieval Studies
- Music
- Philosophy
- Religious Studies
- Romance Studies
- Russian Literature
- Society for the Humanities
- Sociology
- Theatre, Film, and Dance
- Visual Studies

PHILOSOPHY

Emeritus: C. A. Ginet, S. Shoemaker.

The study of philosophy provides students with an opportunity to become familiar with some of the ideas and texts in the history of thought while developing analytical skills that are valuable in practical as well as academic affairs. It affords the excitement and satisfaction that come from understanding and working toward solutions of intellectual problems. The curriculum includes offerings in the history of philosophy, logic, philosophy of science, ethics, social and political philosophy, metaphysics, and theory of knowledge. Any philosophy course numbered in the 100s or 200s is suitable for beginning study in the field. Sections of PHIL 100 are part of the first-year writing seminar program; they are taught by various members of the staff on a variety of philosophical topics, and because of their small size (17 students at most) they provide ample opportunity for discussion. Students who want a broad introduction to philosophy may take PHIL 101, but many students with special interests may find that the best introduction to philosophy is a 200-level course in some particular area of philosophy; such courses have no prerequisites and are usually open to first-year students.

The Major

Students expecting to major in philosophy should begin their study of it in their freshman or sophomore year. Admission to the major is granted by the director of undergraduate studies of the department on the basis of a student's work during the first two years. Normally the student must have completed two philosophy courses with grades of A or better. Eight philosophy courses, taken for a letter grade, are required for the major. They must include at least one course on ancient philosophy (PHIL 211), or a course with a language component on Plato or Aristotle), at least one course on classical modern metaphysics and epistemology from Descartes through Kant (e.g., PHIL 212 or a course on the empiricists, the rationalists, or Kant), and a minimum of three courses numbered above 300. Students admitted to the major (after fall 1996) are required to take a minimum of six philosophy courses numbered above 200, and may not count more than one section of PHIL 100 toward the major. Courses numbered 191–199 do not count toward the major. A course in formal logic (e.g., PHIL 231), while not required, is especially recommended for majors or prospective majors.

Philosophy majors must also complete at least 8 credits of course work in related subjects approved by their major advisers. Occasionally majors may serve as teaching or research aides, working with faculty members familiar with their work.

Honors

A candidate for honors in philosophy must be a philosophy major with an average of B+ or better for all work in the College of Arts and Sciences and an average of B+ or better for all work in philosophy. In either or both semesters of the senior year a candidate for honors enrolls in PHIL 490 and undertakes research leading to the writing of an honors essay by the end of the final semester. Honors students normally need to take PHIL 490 both semesters of their senior year to write a satisfactory honors essay. PHIL 490 does not count toward the eight philosophy courses required for the major. Prospective candidates should apply at the Department of Philosophy office, 218 Goldwin Smith Hall.

Fees

In some courses a small fee may be charged for photocopying materials to be handed out to students.

Introductory Courses

These courses have no prerequisites; all are open to freshmen.
PHIL 101(1101) Introduction to Philosophy (IV) (KCM)
Fall, spring, and summer. 3 credits. Fall: staff; spring: W. Weatherson; summer: K. Chang. Provides a broad overview of philosophical issues of perennial significance. Ethics: what is it for an act to be right or wrong? Do moral rules hold for everyone, or do some people have some moral roles and other people have others? What's wrong with death? Epistemology: can we have any knowledge of external reality, or only of our own ideas? Can we have any knowledge that does not come from perception, such as mathematical knowledge? Metaphysics: why is there something rather than nothing? What is the relation between a thing and its parts?

Spring: Introduction to some central philosophical debates. Covers four areas of philosophical debate: (1) whether there is a God or we know about the external world, if we do; (2) the relationship between mind and body; (4) what actions are moral or immoral. Focuses as much on the tools philosophers use to advance these debates as on the resolutions of the debates themselves. The purpose of this course is as much to introduce students to how philosophers think about problems as it is to introduce them to the philosophical problems themselves.

PHIL 145(1450) Contemporary Moral Issues (IV) (KCM)
Fall. 3 credits. Not offered 2005–2006.

PHIL 151(1510) Philosophy of Sport (IV) (KCM)
Fall. 3 credits. Not offered 2005–2006.

PHIL 181(1810) Introduction to the Philosophy of Science (IV) (KCM)
Fall. 3 credits. Not offered 2005–2006.

PHIL 191(1910) Introduction to Cognitive Science (also COGST 101[1101], PSYCH 102[1200], COM S 101[1710],LING 170[1710]) (III) (KCM)
Fall. 3 or 4 credits. M. Spivey. For description, see PSYCH 102.

PHIL 193(1930) Inequality, Diversity, and Justice (also CRP/SOC 283[2930], GOVT 293[2935]) (III or IV) (KCM)
Fall. 4 credits. No prerequisites. Intended primarily for freshmen and sophomores. Introductory lec, F Aug. 26; thereafter, lec, M, W, T. F. Miller. Interdisciplinary discussion of the nature and moral significance of social inequality, diversity and poverty and of the search for just responses to them. How unequal are economic opportunities in the United States today? How many people are in genuine poverty? What are the typical causes of poverty? To what extent, if any, does justice require government action to reduce current economic inequalities? Race has special significance as a source of inequality? Does gender? Is affirmative action justified, as a response to such inequalities? How does membership in an ethnic group shape people's lives, and how should it? How should governments deal with religious diversity and other differences in ultimate values (which give rise, for example, to radically different attitudes toward abortion, school prayer and sexuality)? Do people in per-capita rich countries have a duty to help the foreign poor? Readings and guest lectures combine the resources of philosophy, social science, and legal studies.

PHIL 194(1940) Global Thinking (also GOVT 294[2947]) (III or IV) (KCM)
Fall. 4 credits. H. Shue. The United States is the mightiest military power in human history. How should this power be used? This course examine the meaning and the importance of central considerations involved, including: the national interest including national security, the international rule of law including the laws of war, the promotion of fundamental values including human rights, and the equal sovereignty of states. Among the specific policy disputes discussed is the Bush doctrine of preemptive war, "humanitarian" intervention, and unilateralism/multilateralism. In all cases, students discuss how to integrate political and moral considerations into all things-considered judgments about what to do here and now.

PHIL 195(1950) Controversies About Inequality (also SOC /PAM 222[2220], ECON 222, ILLRLE 222, GOVT 222) (III or IV) (SBA)

PHIL 201(2010) Philosophical Puzzles (IV) (KCM)

PHIL 211(2110) Ancient Philosophy (also CLASS 120) (III or IV) (KCM)
Fall. 4 credits. Prerequisites: none. Open to freshmen. G. Fine. Examines the origin and development of Western philosophy in Ancient Greece and Rome. Studies some of the central ideas of the Pre-Socrates, Socrates, Plato, Aristotle, and the Hellenistic philosophers (Epicureans, Stoics, and Skeptics). Questions considered include: What are the nature and limits of knowledge? How reliable is perception? What are the basic entities in the universe: atoms, Platonic Forms or Aristotelian substances? Is moral knowledge possible? What is the nature of happiness and what sort of life makes people happy? Do human beings have free will? Ought we to fear death? Among the fundamental works we will read is Plato's Republic.

PHIL 212(2120) Modern Philosophy (IV) (KCM)
Spring. 4 credits. A. Chignell. Introductory course in philosophy with a strong emphasis on close reading of core texts. Focuses on the "early modern" period—roughly between the English and the French revolutions (1640–1789). Covers four books by four of the most important philosophers of this era. Our main focus is the metaphysical (or antimetaphysical) views of the authors, but we also study their views on epistemology. Topics include questions about the existence and nature of ideas, knowledge, causal connections, matter, soul, God, and freedom.

PHIL 213(2130) Existentialism (IV) (KCM)

PHIL 216(2160) Sophomore Seminar: Self, Ego, Psycho # (IV) (KCM)
course of the 17th and 18th centuries, within modern empiricism, our focus will be on British authors. We begin with John Locke's *Essay concerning Human Understanding* and then we turn to some of his main empiricist followers and critics—George Berkeley, David Hume and Thomas Reid. While the course is fairly comprehensive, it highlights three central problems for modern empiricism: the nature of matter, the certainty of mathematics, and the signification of words.

PHIL 314(3140) Ancient Philosophy # (IV) (KCM)

PHIL 315(3150) Medieval Philosophy # (IV) (KCM)

PHIL 316(3160) Kant # (IV) (KCM)
Fall. 4 credits. Prerequisite: two courses in philosophy at 200 level or above—PHIL 212 or equivalent should be one of them; otherwise, permission of instructor required. Not offered 2005–2006. A. Chignell.

PHIL 317(3170) Hegel # (IV) (KCM)

PHIL 318(3180) Origins of 20th-Century Philosophy # (IV) (KCM)

PHIL 319(3190) 20th-Century Analytic Philosophy # (IV) (KCM)
Fall. 4 credits. Staff. Discusses some principal philosophical figures of the period between the world wars. In particular, the focus is on gaining an appreciation of Ludwig Wittgenstein's monumental text, the *Tractatus Logico-Philosophicus*, its sources of influence, and the scope of its influence, especially on the logical empiricist movement and its greatest exponent, Rudolf Carnap. Includes a postscript on the Carnap-Quine debate over the nature of philosophy.

PHIL 330(3300) The Foundations of Mathematics # (IV) (MQR)
Spring. 4 credits. H. Hodes. Topic for spring 2006: set theory as a foundation for mathematics, with some attention to its philosophical motivations. This course covers the ZF axioms, functions, relations and orderings in the set-theoretic context, ordinal numbers, cardinal numbers, and the construction of the standard number systems.

PHIL 331(3310) Deductive Logic (also MATH 281[2810]) # (II) (MQR)
Fall. 4 credits. H. Hodes. The syntax and model-theory of classical propositional logic and classical predicate logic, including proofs of the soundness and completeness of Natural Deduction formalizations of these logics, with some attention to related material.

PHIL 332(3320) Philosophy of Language # (IV) (KCM)
Fall. 4 credits. M. Eklund. Introduction to contemporary philosophy of language. Does not aim at covering all the ground; focuses instead almost exclusively on questions of singular reference. Problems surrounding the use of singular terms in natural language take an important role in philosophical reflection, so working through this course helps orient students in contemporary analytic philosophy. In relation to singular reference, the course touches on a number of important issues including the problem of negative existentials, the status of modalities, the nature of intentionality, and the interpretation of propositional attitudes.

PHIL 333(3330) Problems in Semantics (also LING 333[3333], COGST 333[3330]) # (III or IV) (KCM)
Fall. 4 credits. D. Abusch. Looks at problems in the semantic analysis of natural languages, critically examining work in linguistics and philosophy on particular topics of current interest. Focuses on word meaning (lexical semantics). Topics include economical decompositions (the hypothesis that at the semantic level words are typically syntactically complex), Fodor's arguments for conceptual atomism, natural kinds and the contextual determination of meaning, theta roles, event semantics, Jackendoff's conceptual semantics, the linguistic architecture linking lexical semantics to syntax and morphology, and comprehensive lexical classifications such as Levin classes and Wordnet.

PHIL 334(3340) Pragmatics (also LING 425[4425]) # (III or IV)

PHIL 341(3410) Ethical Theory # (IV) (KCM)

PHIL 342(3420) Law, Society, and Morality # (IV) (KCM)

PHIL 344(3440) History of Ethics: Ancient and Medieval # (IV) (KCM)
Fall. 4 credits. T. H. Irwin. The development of moral theory in Greek, Roman, and medieval philosophers. Topics include: Socrates and his questions about morality; the different answers of Plato, Aristotle, and the Stoics; and the influence of Christian thought. Main questions: happiness, welfare, and the human good; the virtues, self-interest and the interest of others; love, friendship and morality; theories of human nature and their relevance to ethics; comparisons and contrasts with modern moral theory. Readings mainly from Plato, Aristotle, the Stoics, St. Augustine, St. Thomas Aquinas.

PHIL 345(3450) History of Ethics: Modern # (IV) (KCM)
Spring. 4 credits. T. Irwin. Continuation of PHIL 344. Hobbes's challenge to Greek and Christian ethics, responses to Hobbes, self-interest and the interests of others, the place of reason and sentiment in ethics, the objectivity of ethics, different conceptions of the right and the good, utilitarianism and its critics, and radical critiques of morality. Readings mainly from Hobbes, Butler, Hume, Kant, Sidwick, Nietzsche, Bradley, and Rawls.

PHIL 346(3460) Modern Political Philosophy (also GOVT 362[3625]) # (III or IV) (KCM)
Fall. 4 credits. R. Miller. Study of the leading contemporary theories of justice, including the work of Rawls, Nozick, Gauthier, and Scanlon. In discussing these theories and their critics, students encounter radically different accounts of the moral significance of economic inequality, the kinds of freedom that governments ought to protect, the kinds of values and convictions that are
a proper basis for laws (as opposed to being private matters); the tension between unequal political influence and democratic rights; and the roles of community, virtue, and group-loyalty in political justification. While mainly exploring these rival conceptions of freedom, equality, community, and obligation, the course also examines the implications of these theories for specific political controversies (e.g., abortion, welfare programs, and pornography).

PHIL 347(3470) Global Justice (also GOVT 368(3685)) (II or IV) (KCM)

R. Miller.

[PHIL 348(3480) Philosophy and Literature (IV) (KCM)
Not offered 2005–2006.]

[PHIL 349(3490) Feminism and Philosophy (IV) (KCM)
Not offered 2005–2006.]

PHIL 361(3610) Epistemology (IV) (KCM)
Fall. 4 credits. T. Gendler.
Upper-division course suitable for graduate students, and for advanced undergraduates who have already taken at least two philosophy courses. Introduces students to a number of the topics and texts that have set the agenda for contemporary discussions in epistemology. Topics are chosen from among the following: skepticism, the problem of defining knowledge, foundationalism and coherentism, epistemic justification, internalism and externalism, epistemic contextualism, perception, and a priori knowledge. Most readings are selected from those collected in Knowledge: Readings in Contemporary Epistemology, eds. S. Bernecker and F. Dretske, and Epistemology: An Anthology eds. E. Sosa and J. Kim.

PHIL 364(3640) Metaphysics (IV) (KCM)
Z. Szabó.

PHIL 381(3810) Philosophy of Science: Knowledge and Objectivity (also S&TS 381(3811)) (IV) (KCM)
Fall. 4 credits. T. Boyer.
Examination of central epistemological and metaphysical issues raised by scientific theorizing: the nature of evidence; scientific objectivity; the nature of theories, models, and paradigms; and the character of scientific revolutions.

[PHIL 382(3820) Philosophy and Psychology (IV)
Not offered 2005–2006.]

[PHIL 383(3830) Choice, Chance, and Reason (II) (MQR)
Not offered 2005–2006.]

[PHIL 384(3840) Philosophy of Social Science (IV) (KCM)

PHIL 387(3870) Philosophy of Mathematics (IV)
Spring. 4 credits. Prerequisite: logic course and at least one other philosophy course or permission of instructor. H. Hodes.
Topic for spring 2006: Logicism (the thesis that mathematics is in some sense just fancy logic) and its critics. Focuses on the “classical” material by Frege and Russell (with some attention to their foundational projects but more on their ontological and epistemological commitments) but also considers criticism by Poincare, Wittgenstein, and others, the consequences of Gödel’s incompleteness theorems. Also considers (if time permits) recent incarnations of the Logicist viewpoint and comparisons with Hilbertian formalism, Bourbaki-inspired structuralism, and standard set-theoretic foundations for mathematics.

PHIL 390(3900) Independent Study
Fall or spring. Credit TBA.
To be taken only in exceptional circumstances. Must be arranged by the student with his or her adviser and the faculty member who has agreed to direct the study.

Advanced Courses and Seminars
These courses are offered primarily for majors and graduate students.

PHIL 409(4090) German Philosophical Texts (IV) (KCM)
Fall and spring. Variable credit. Prerequisites: basic reading (not speaking) knowledge of German and permission of instructor. Reading and translation of philosophical texts (historical and contemporary) in German.

PHIL 410(4100) Latin Philosophical Texts (IV) (KCM)
Fall and spring. Variable credit. Prerequisites: knowledge of Latin and permission of instructor. S. MacDonald. Reading of philosophical texts in the original Latin.

PHIL 411(4110) Greek Philosophical Texts (also CLASS 611(7111)) # (IV) (KCM)
Fall and spring. Variable credit. Open to undergraduates only with permission of instructor. T. Irwin.
Reading and translation of philosophical texts in the original Greek.

PHIL 413(4130) Topics in Ancient Philosophy (also CLASS 442(4662)) # (IV) (KCM)
Spring. 4 credits. G. Fine. TBA.

PHIL 415(4150) Augustine's Confessions (also RELST/CLASS 405(4665)) (IV) (KCM)
Spring. 4 credits. C. Britain.
Augustine's Confessions record the strange story of his conversion to or rediscovery of God under the stimulus of the letters of Paul and the pagan philosophy of Plotinus. The Confessions interpret his conversion as an act of memory or self-investigation that culminates in a Platonic philosophical vision of the divine at the limits of the self; the work itself is written as a self-conscious act of memory (or self-investigation); it also contains a theoretical analysis of memory (Book X). This course studies Augustine's conception of memory as the source of the self and the bridge from the self to the divine, and its origins in Greek philosophy, Latin rhetorical theory, and individual experience.

PHIL 416(4160) Modern Philosophy # (IV) (KCM)

[PHIL 431(4310) Mathematical Logic (also MATH 481(4810)) (II) (MQR)
Spring. 4 credits. Prerequisite: MATH 222 or 225 and preferably some additional course involving proofs in mathematics, computer science, or philosophy. Not offered 2005–2006.]

[PHIL 432(4320) Topics in Logic (also MATH 482(4820)) (II) (MQR)
Spring. 4 credits. Prerequisite: at least one course in logic at or above level of PHIL 331 (MATH 261), either one course in post-calculus algebra or permission of instructor. Not offered 2005–2006. H. Hodes.]

PHIL 433(4330) Philosophy of Logic (IV)

PHIL 435(4350) Pragmatism (also LING 425(4425)) (III or IV) (KCM)

PHIL 436(4360) Intensional Logic (also LING 483(4483), MATH 483(4830)) (II) (MQR)
Spring. 4 credits. Prerequisites: MATH 281 and PHIL 351 or 231 with A- or better; or successful completion of any course that presupposes a significant portion of either of the above (e.g., MATH 481 and PHIL 431 or MATH 484 and PHIL 434). With permission of instructor, students who do not have a background in logic may take this course if they have successfully completed a rigorous, theoretical, proof-based course in the mathematics or computer science departments. Not offered 2005–2006. Staff.

PHIL 441(4410) Contemporary Ethical Theory (IV) (KCM)

PHIL 447(4470) Contemporary Political Philosophy (also GOVT 465) (III or IV) (KCM)
Spring. 4 credits. R. Miller.
Topic for 2006: Inequality, local and global. The critique of economic and political inequalities within a society, long a central theme of political philosophy, has recently been subject to two major challenges: philosophical arguments against the moral significance of economic inequality, and international developments creating a need to extend standard discussions of inequality to the world at large. This investigation of these controversies may include these questions: What is the ultimate value, if any, of economic equality and democracy? What is the role of ties of community and objections to exploitation in the criticism of economic inequality? Do current global economic processes give rise to special duties on the part of the better-off? What are the moral implications of the special global power of the United States? Should inroads of globalization on cultural and political autonomy be opposed? What is the significance of democratic values for global governance?

PHIL 448(4480) International Justice (also GOVT 492) (III or IV) (KCM)

PHIL 460(4600) Epistemology (IV)

PHIL 462(4620) Philosophy of Mind (IV) (KCM)

PHIL 464(4640) Metaphysics (IV) (KCM)

PHIL 481(4810) Problems in the Philosophy of Science (IV) (KCM)
PHIL 483(4830) Choice, Chance, and Reason (IV) (KCM)

PHIL 490(4900) Informal Study for Honors
Fall and spring. 4 credits. Prerequisite: senior honors students. See "Honors" at the beginning of the Philosophy section.

PHIL 611(6110) Ancient Philosophy

[PHIL 612(6120) Medieval Philosophy
Not offered 2005–2006.]

PHIL 633(6330) Philosophy of Language: Tense and Time (also LING 700(7700))
Fall. 4 credits. Z. Szabo. The topic of this course is the interpretation of indefinite and definite descriptions. This seemingly parochial topic is of seminal importance: one way or another, it raises all the foundational questions that concerned philosophers of language in the last century are connected to it. We will begin by quickly rehearsing the classical material: papers by Frege, Russell, Strawson, Donnellan, Grice and Kripke. The bulk of the class will be devoted to recent work by philosophers such as Devitt, Graff, Neale, Salmon, and Sainsbury, as well as linguists such as Dekker, Heim, Roberts, von Fintel, and ter Meulen.

PHIL 641(6410) Ethics and Value Theory

PHIL 643(6430) Social and Political Philosophy

PHIL 651(6510) Philosophy of Religion

PHIL 662(6620) Philosophy of Perception
Spring. 4 credits. Staff. Seminar focusing on contemporary debates concerning the nature of perceptual consciousness. Does perceptual experience have representational content? If so, what is it like? Can the sensual aspects of perceptual experience be entirely understood in terms of the representational content of the experience?

PHIL 663(6630) Philosophy of Psychology

[PHIL 665(6650) Metaphysics
Spring. 4 credits. B. Weatherston. In this course we'll look at some of David Lewis's most important philosophical works. The focus of the course will be Lewis's methodology and philosophical outlook. So well-stated are his views with regards the definition of theoretical terms, his Humean supervenience thesis, and his distinction between natural and non-natural properties. The second part will be on Lewis's metaphysics. Our attention will be on how Lewis fits seemingly non-Humean elements into his sparse Humean picture. Finally we'll look at his views on mind and language. The central theme here will be how Lewis uses metaphysics to respond to Wittgensteinian worries about the possibility of semantics, and the limits of this response.

PHIL 681(6810) Philosophy of Science (also S Amp T 681(6811))
Spring. 4 credits. R. Boyd. Topic TBA.

PHIL 691(6910) Normative Issues in IR (also GOVT 491/691)
Fall. 4 credits. H. Shue. Examines selected normative elements of international affairs, divided into three interlocking clusters: (1) issues of conflict, including both low-intensity military intervention and nuclear weapons; (2) questions of cooperation, especially between rich nations and poor nations; (3) debates about the authority and status of the major players in the international system: individual persons, nation-states, and international regimes. Questions considered include: is the retention by some nations of nuclear weapons morally justified? Is the world economy unjust? Should national governments be pressured to respect individual human rights?

PHIL 700(7000) Informal Study
Fall or spring. Credit TBA. To be taken by graduate students only in exceptional circumstances and by arrangement made by the student with his or her Special Committee and the faculty member who has agreed to direct the study.

PHYSICS

The Department of Physics offers a full range of university-level work in physics, from general education courses for nonscientists to doctoral-level independent research. Major research facilities are operated by two component organizations, the Laboratory of Atomic and Solid State Physics (LASSP) and the Laboratory for Elementary Particle Physics (LEPP). LASSP carries out extensive research efforts in condensed-matter physics and biophysics. LEPP operates a major high-energy physics research facility at Wilson Laboratory, the Cornell electron-positron storage ring (CESR). Theoretical work is carried out in many fields of physics, including astrophysics. There is a full schedule of weekly research-oriented seminars and colloquia. Students find many opportunities for research participation and summer employment.

Introductory physics sequences are: 101–102, 207–208, and 112–213–214, or its more analytic version 116–217–218. In addition, there is a group of general-education courses, PHYS 200–208, 209, 210, PHYS 101–102, a self-paced autotutorial course, is designed for students who do not intend to take further physics courses and who do not have preparation in calculus. PHYS 112 and 207 both require calculus (MATH 190 or 191, 111), and additional mathematics is required for subsequent courses in the sequence. PHYS 101–102 or 207–208 may be taken as terminal physics sequences. The three-course sequences 112–213–214 or 110–217–218 are recommended for engineers and physics majors.

Courses beyond the introductory level that might be of interest to nonmajors include PHYS 316 Modern Physics I, PHYS 330 Modern Experimental Optics, and PHYS 360 Electronic Circuits. Advanced placement and credit are offered as outlined in "Advanced Placement of Freshmen," or students may consult the director of undergraduate studies, as should students requesting transfer credit for physics courses taken at another college.

The Major
The major program is constructed to accommodate students who wish to prepare for professional or graduate work in physics as well as those who wish to complete their major program in the field of physics but have other post-graduation goals. The physics major provides flexibility to pursue diverse interests through concentrations either within physics or outside physics.

Students who wish to major in physics are advised to start the physics sequence in the first semester of their freshman year. The major program still can be completed with a second-semester start, but flexibility in future course scheduling is reduced.

Prospective majors are urged to make an early appointment at the physics office for advice in program planning. Acceptance into the major program is normally granted upon completion of a year of physics as listed in physics sequences at Cornell with all course grades at the B level or higher. Students wishing to declare the major should meet with the director of undergraduate studies, who will match the student with a major adviser following discussion of the student's interests. Details of the major course program are worked out in consultation between the student and major adviser.

Physics Core
Common to all major programs is a requirement to complete a core of physics courses. In addition to the three-semester introductory sequence (PHYS 112–213–214 or 110–217–218), the core includes five upper-level courses—(1) the two-course sequence in modern physics (PHYS 316–317), (2) at least three semester hours of laboratory work selected from PHYS 310, 330, 360, 410, ASTRO 410, (3) an intermediate course in classical mechanics, and (4) an intermediate course in electromagnetism (PHYS 101–102). Accompanying these physics courses should be work in mathematics through at least MATH 222 or 294. Students following the professional/graduate school channel are expected to complete at least one additional
Concentration within Physics

A student who wishes to pursue professional or graduate work in physics or a closely related field should follow a concentration within the field of physics. For those students with a strong secondary school preparation, the sequence PHYS 116–217–218 is encouraged. Students are strongly encouraged to start the sequence with PHYS 116, even if they qualify for advanced placement credit for PHYS 112 and/or 213. Core courses in mechanics and electromagnetism will normally be PHYS 318 and 327, respectively. The minimum 15 hours beyond the core must be composed of physics courses with numbers greater than 300 and must include the senior laboratory course PHYS 410. This means a physics concentration needs a minimum of 7 credit hours of laboratory work to complete the requirements. The accompanying table shows several typical course sequences by means of which the major requirements may be completed. The primary distinction among students who may follow the different sequences is the amount and level of pre-college work in calculus and in physics. Changes in these typical patterns are common, as agreed on between student and major faculty adviser. Research work is encouraged of all majors. If this work is done as an independent project, PHYS 490, up to 8 credits can be applied to the concentration.

Concentration outside Physics

Such a concentration will reflect the student’s interest in some area related to physics. The array of courses that comprise the concentration must have internal coherence. The array will normally be worked out in conference with the major faculty adviser, and must be approved by the adviser. Of the required 15 hours credit beyond the core, at least 8 credits must be in courses numbered above 300. Students in the past have chosen to concentrate in a wide variety of fields, including (but not limited to) astronomy, business, chemical physics, computer science, econometrics, education, geophysics, history, and philosophy of science, law, meteorology, or public policy. A combined biology-chemistry concentration is common for pre-medical students or those who wish to prepare for work in biophysics.

The department particularly wishes to encourage students with an interest in science education. Physics majors can obtain teaching certification by concentrating in education and then completing a one-year master of arts in teaching (MAT) degree. Information about the education concentration and MAT can be obtained from the Department of Education’s Cornell Teacher Education Program or from the director of undergraduate studies in physics. For students with concentrations outside physics, the core requirements in mechanics and electromagnetism can be appropriately met with PHYS 314 and 323, respectively.

Students with an astronomy concentration who might continue in that field in graduate school should use ASTRO 410, 431, 432 as part of the concentration; they are encouraged to use PHYS 318 and 327 to satisfy the core requirements in mechanics and electromagnetism.

Honors

A student may be granted honors in physics upon the recommendation of the Physics Advisers Committee of the physics faculty. There is no particular course structure or thesis requirement for honors.

Double Majors

Double majors including physics are possible and not at all uncommon. It should be noted, however, that any course used to satisfy a requirement of another major may be used in satisfaction of physics major requirements only if the student’s concentration is within physics.

Courses with Overlapping Content

Because the department offers several courses with overlapping content, students should select courses carefully to meet the needs of their academic programs and to ensure credit for each course they take. Listed below are groups of courses with largely similar content. In general, students may receive credit for only one of the courses in each group.

PHYS 101, 112, 116, 207	PHYS 102, 208, 213, 217
PHYS 214, 218	PHYS 314, 318
PHYS 323, 327	PHYS 325, 327
PHYS 116, 216	

In addition, students with credit for PHYS 101, 112, 116, or 207, or an advanced placement equivalent who wish to enroll in PHYS 200–206, 209, or 210 should obtain written permission from the instructor and the director of undergraduate studies in physics.

Course Prerequisites

Prerequisites are specified in physics course descriptions to illustrate the materials that students should have mastered. Students who wish to plan programs different from those suggested by the prerequisite ordering are urged to discuss their preparation and background with a physics adviser or with the instructor in the course. In many cases an appropriate individual program can be worked out without exact adherence to the stated prerequisites.

Courses

PHYS 012(1012) PHYS 112(1112)

Supplement

Spring. 1 credit. S-U grades only.

R. Lieberman.

Provides backup instruction for PHYS 112. Recommended for students who either feel insecure about taking PHYS 112 or simply want to develop their problem-solving skills. Emphasis is on getting the student to develop a deep understanding of basic concepts in mechanics. Much class time is spent solving problems and applications.

PHYS 013(1013) PHYS 213(2213)

Supplement

Fall. 1 credit. S-U grades only.

R. Lieberman.

Provides backup instruction for PHYS 213. Description is the same as for PHYS 012, except the material covered is electricity and magnetism.

Typical Physics Course Sequences (other sequences are also possible)

<table>
<thead>
<tr>
<th>Semester</th>
<th>No AP math or physics</th>
<th>1 year AP calculus and good HS physics</th>
<th>Outside concentrates</th>
<th>Outside concentrates (alternate)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st – Fall</td>
<td>112</td>
<td>116</td>
<td>112</td>
<td>112</td>
</tr>
<tr>
<td>2nd – Spring</td>
<td>213</td>
<td>217</td>
<td>213</td>
<td>213</td>
</tr>
<tr>
<td>3rd – Fall</td>
<td>214</td>
<td>218</td>
<td>214</td>
<td>215</td>
</tr>
<tr>
<td>4th – Spring</td>
<td>316, 3x0</td>
<td>316, 3x0</td>
<td>3x0</td>
<td>214</td>
</tr>
<tr>
<td>5th – Fall</td>
<td>317, 327, 3x0</td>
<td>317, 327, 3x0</td>
<td>3x0</td>
<td>3x0, 316</td>
</tr>
<tr>
<td>6th – Spring</td>
<td>314/318, 443</td>
<td>318, 443</td>
<td>314</td>
<td>314, 3x0</td>
</tr>
<tr>
<td>7th – Fall</td>
<td>341, 410</td>
<td>341, 410</td>
<td>317, 323</td>
<td>317, 323</td>
</tr>
<tr>
<td>8th – Spring</td>
<td>Elective(s)</td>
<td>Elective(s)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- For majors with concentrations outside physics, there is wide variation in individual programs, arranged to best match the field of concentration.
- Crossovers between the two sequences 112–113–214 and 116–217–218 are possible, although the combination 112–213–218 is difficult. PHYS 207 may be substituted for PHYS 112. Students taking 217 after 112 must co-register for 216.
- Students taking the honors sequence 116–217–218 are strongly encouraged to start with PHYS 116. Exceptionally well-prepared students may be able to begin work at Cornell with PHYS 217. Such students should visit the department office for advice in planning a course program.
- Physics electives for the major include 360, 444, 454, 455, 480, 490, 525, 553, 561, 572, the senior seminars 481–489, ASTRO 332 or 431–432, and A&EP 434.
- **One** semester of intermediate laboratory, listed here as 3x0, is required.
- Well-prepared sophomores wishing to take PHYS 318 should consult the instructor before registering.
PHYS 101(1101) General Physics I (I) (PBS)
Fall, summer (eight-, six-, or a four-week session within the first weeks of the eight-week session). 4 credits. Enrollment may be limited. Prerequisites: three years of high school mathematics, including some trigonometry. Students without high school physics should allow extra time for PHYS 101. Includes less mathematical analysis than PHYS 207 but more than PHYS 200-206, 209, 210. Fall introductory lect., R. Aug. 25 or M. Aug. 29. Staff. Emphasizes quantitative and conceptual understanding of the subfields of introductory physics developed without use of calculus. The course is mostly self-paced in a mastery-oriented format including eight subject units and a final retention (review) unit. Most instruction occurs in the learning center with personal tutoring by staff, assigned readings, problems, laboratory exercises, videotaped lectures, and solutions of sample test questions at our web site. Unit testing is designed to measure mastery of the course at the level of the test tries. Major topics for 101: kinematics, forces and dynamics, momentum, energy, fluid mechanics, waves and sound, thermal physics, kinetic theory, and thermodynamics. At the level of College Physics, first ed., by Gianbattista, Richardson, and Richardson.

PHYS 102(1102) General Physics II (I) (PBS)
Spring, summer (eight-week, six-week, or second four weeks only for those doing PHYS 101 in first four weeks). 4 credits. Enrollment may be limited. Prerequisite: PHYS 101(1101), PHYS 101 or 112 or 207. Includes less mathematical analysis than PHYS 208 but more than PHYS 200-206, 209, 210. Spring introductory lect., M. Jan. 29. Staff. Emphasizes quantitative and conceptual understanding of the topics of introductory physics developed without use of calculus. The course is mostly self-paced in a mastery-oriented format including eight subject units and a final retention (review) unit each week. Most instruction occurs in the learning center with personal tutoring by staff, assigned readings, problems, laboratory exercises, videotaped lectures, and solutions of sample test questions at the course web site. Unit testing is designed to measure mastery with a limit of three test tries taken at the time of the student's choice. Major topics for 102: electricity and magnetism, optics, relativity, quantum, nuclear, and particle physics. At the level of College Physics, first ed., by Gianbattista, Richardson, and Richardson.

PHYS 103(1103) General Physics (I) (PBS)
Summer. 4 credits. Prerequisite: three years high school mathematics, including trigonometry. Students without high school physics should allow extra time for PHYS 103. A more traditional version of PHYS 101. Not appropriate for students majoring in physics or engineering; primarily for students minorinng in life sciences.LEC and disc, M-F; lab, M-W. Basic principles treated quantitatively but without calculus. Topics include kinematics; forces and fields; momentum, angular momentum, and energy; thermal physics and fluid mechanics; sound waves. Text at the level of College Physics, first ed., by Gianbattista, Richardson, and Richardson.

PHYS 112(1112) Physics & Mechanics (I) (PBS)
Fall, spring, summer (six-week session). 4 credits. Primarily for engineering students and prospective physics majors. Prerequisite: MATH 191 or 112, or equivalent may enroll, but PHYS 112 employs some math concepts before their completion in these calculus courses. Fall, P. Krasicky; spring, Staff. Covers the mechanics of particles with focus on kinematics, dynamics, conservation laws, central force fields, periodic motion. Mechanics of many-particle systems: center of mass, rotational mechanics of a rigid body, and static equilibrium. At the level of University Physics, Vol. 1, by Young and Freedman.

PHYS 116(1116) Physics I: Mechanics and Special Relativity (I) (PBS)
Fall, spring. 3 credits. More analytic than PHYS 112, intended for students who are comfortable with deeper, somewhat more abstract approach; intended mainly but not exclusively for prospective majors in physics, astronomy majors, and engineering physics majors. Prerequisites: good secondary school physics course, familiarity with basic calculus, and enjoyment of puzzle-solving. Corrective transfers between PHYS 110 and PHYS 112 (in either direction) are encouraged during first three weeks of instruction. Two rec each week and seven 2-hour labs. Fall, V. Elser; spring, M. Perelstein. At the level of An Introduction to Mechanics by Kleppner and Kolenkow.

PHYS 117(1117) Concepts of Modern Physics
Fall. 1 credit. Enrollment may be limited. Co-requisite: PHYS 112 or 213 or 217. For freshmen who plan to major in physics, applied engineering physics, and pre-medical. A. Sadow. Intended for freshmen who plan to major in physics or a closely related field (i.e., applied and engineering physics or astronomy) and would like to learn about the concepts of modern (quantum) physics. Recommended for prospective physics majors. Possible topics of discussion are methodology, symmetry and conservation laws, quantum theory, the unification of forces and matter, and big-bang cosmology.

PHYS 190(1190) Supplemental Introductory Laboratory
Fall, spring. 1 credit. Times TBA with instructor. Limited enrollment. S-U grades only. Prerequisites: 3 transfer credits for introductory physics lecture material; a degree requirement for laboratory component of that introductory course; approval of director of undergraduate studies, and permission of lecturer of that introductory course. Students perform the laboratory component of one of the introductory courses (PHYS 112, 207, 208, 213, 214) to complement the lecture-related course credit earned elsewhere. Those wishing to take equivalent of one of these introductory courses at another institution should receive prior approval from the physics director of undergraduate studies.

PHYS 201(1201) Why the Sky Is Blue: Aspects of the Physical World (I) (PBS)
Fall. 3 credits. A. Sadow. Descriptive physics course aimed specifically at the nonscience student. There is an emphasis on the ideas of modern physics where the approach is both historical and thematic. The methodology of science and the nature of evidence is emphasized. An overriding theme is the unification and character of physical laws as shown, for example, through the great principles of symmetry and conservation. While a few computational problems are assigned, the purpose is to help students to understand the concepts rather than to master problem-solving techniques.

PHYS 202(1202) How Physics Works (I) (PBS)
Spring. 3 credits. Intended for nonphysics majors. No background in either science or mathematics beyond high school algebra assumed. P. Stein. Introduces students who are not majoring in scientific or quantitative disciplines to the techniques and ways of reasoning employed in physics. By gaining an understanding of two milestones in the history of physics (the discoveries of Newton and the application of the laws of physics to physical principles), students learn about the interaction of experiment, mathematics, and the scientific culture that has fueled the advance of physics.

PHYS 203(1203) Physics of the Heavens and the Earth--A Synthesis (I) (PBS)
Spring. 3 credits. Prerequisite: none; uses high school algebra and geometry. For nonscience majors. H. Padamsee. Shows how the unification of apparently distinct areas of physics leads to an explosion in the growth of our knowledge and understanding. The material is divided into three parts: the physics of motion on earth; motion in the heavens; and synthesis. Trace how ideas about terrestrial and celestial motion evolved separately at first, from the ancient ideas of Greek philosophers to the dynamics and telescopic discoveries of Galileo during the Renaissance. The two arenas finally melded under Newton's Unification of Two Milie. Einseh's special and general theories of relativity eventually supplanted Newton's ideas. There is an emphasis throughout on "how do we know the laws?" These are the stories of breakthroughs, discoveries and brilliant insights made by fascinating people, offering a humanistic perspective.

PHYS 204(2104) Physics of Musical Sound (also MUSIC 204[2111]) (I) (PBS)
Spring. 3 credits. Intended for nonscientists; does not serve as prerequisite for further science courses. Assumes no scientific background but uses high school algebra. R. Selby. Explores musical sound from a physics point of view. Topics include: how various musical instruments work; pitch, scales, intervals and tunings; hearing; room acoustics; reproduction of sound. Science writing and physics problem-solving skills are developed through weekly assignments. Student activities include hands-on investigations of musical instruments, and field trips. Students write a term paper investigating a topic of their choice. At the level of The Science of Sound by Rossing, Moore, and Wheeler.
PHYS 205(1205) Reasoning about Luck (II) (MQR)
Fall. 3 credits. Intended for nonscientists and prospective high school science teachers. Does not serve as prerequisite for further science courses. Assumes no scientific background but uses high school algebra. V. Ambegaokar.

When and how natural scientists can cope rationally with chance is the theme of this course. Starting from simple questions—such as how one decides if an event is “likely,” “unlikely,” or just incomprehensible—an understanding is reached of more subtle points: why it is, for example, that in large systems likely events can become overwhelmingly likely. From these last considerations, the interested student is introduced to the second law of thermodynamics, that putative bridge between C. P. Snow’s two cultures. The way in which chance occurs, albeit somewhat mysteriously, in quantum mechanics is also explained.

There are several problem sets, but the main assignment is a 15- to 20-page paper on one or more of the topics covered.

PHYS 207(2207) Fundamentals of Physics I (I) (PBS)
Fall. 4 credits. Prerequisites: high school physics plus MATH 111, 190, or 191, or solid grasp of basic notions of introductory calculus. Co-requisite: math course approved by instructor. R. Thorne.

A two-semester introduction to physics, intended for students majoring in an analytically oriented biological science, a physical science, or mathematics. The combination of lectures illustrated with applications from the sciences, medicine, and everyday life, weekly labs tightly coupled to lectures that introduce computer-aided data acquisition and analysis, and recitations that emphasize cooperative problem-solving, provide a step-by-step course to the methods of physics and the basic analytical and scientific communication skills required by all scientists. Course covers mechanics, conservation of energy, waves, and topics from thermophysics, fluids, and materials physics. At the level of Fundamentals of Physics, Vol. I, sixth ed., by Halliday, Resnick, and Walker.

PHYS 208(2208) Fundamentals of Physics II (I) (PBS)
Spring. 4 credits. Prerequisites: PHYS 207 or 112 or 101; substantial contact with introductory calculus (e.g., MATH 111, 190, or 191). 207–208 is a two-semester introduction to physics with emphasis on tools generally applicable in sciences, intended for students majoring in physical science, mathematics, or analytically oriented biological science.

Covers electricity and magnetism, and topics from geometrical and physical optics, quantum and nuclear physics. At the level of Fundamentals of Physics, Vol. II, sixth ed., by Halliday, Resnick, and Walker.

PHYS 213(2213) Physics II: Heat/Electromagnetism (I) (PBS)
Fall, spring, summer (six-week session). 4 credits. Primarily for engineering students and prospective physics majors. Prerequisites: PHYS 212 and MATH 192. Students co-registered in MATH 192, 221, or equivalent may enroll, but PHYS 213 employs some math concepts before their completion in these calculus courses. Fall, L. Gibbons; spring, G. Dugan.

Topics include temperature, heat, the laws of thermodynamics, electrostatics, behavior of matter in electric fields, DC circuits, magnetic fields, Faraday’s law, AC circuits, and electromagnetic waves. At the level of University Physics, Vols. 1 and 2, by Young and Freedman, 11th ed. Laboratory covers electrical circuits, magnetic fields, and magnetic induction, thermometry, and calorimetry.

PHYS 214(2214) Physics III: Optics, Waves, and Particles (I) (PBS)
Fall, spring, summer (six-week session). 4 credits. Intended for engineering students and prospective physics majors. Prerequisites: PHYS 213 and MATH 293. Students co-registered in MATH 293, 222, or equivalent may enroll, but PHYS 214 employs some math concepts before their completion in these calculus courses. Fall, T. Arias; spring, staff.

Waves of optics and vibrations, waves and phenomena, mechanical waves, sound waves, electromagnetic waves, reflection and transmission of waves, interference and diffraction effects, transport of momentum and energy, wave properties of particles, and introduction to quantum physics. Course includes computer use in solving problems and labs. At the level of University Physics, Vols. 1–3, by Young and Freedman.

PHYS 216(2216) Introduction to Special Relativity
Fall, spring, weeks 4–6 based on preregistration. 1 credit. Enrollment may be limited. Course requirement is for registration in PHYS 217, unless student has taken relativity course at level of PHYS 116 or ASTRO 106. Prerequisites: PHYS 112 or 207 or permission of instructor. S-U grades only. Lect., T. R. Fall, D. Ralph; spring, staff.

Introduction to Einstein’s Theory of Special Relativity, including Galilean and Lorentz transformations, the concept of simultaneity, time dilation and Lorentz contraction, the relativistic transformations of velocity, momentum and energy, and relativistic invariance in the laws of physics. At the level of An Introduction to Mechanics by Kleppner and Kolenkow.

PHYS 217(2217) Physics II: Electricity and Magnetism (also A&EP 217[2170])(I) (PBS)
Fall, spring. 4 credits. Enrollment may be limited. Intended for students who have done very well in PHYS 112 or 116 and in mathematics and who desire more analytical treatment than that of PHYS 213. Prospective physics majors encouraged to register.

Prerequisites: approval of student’s advisor and permission of instructor. Co-requisite: MATH 293 or equivalent. Placement quiz may be given early in semester, permitting students who find PHYS 217 too abstract or analytical to transfer into PHYS 213. Vector calculus is helpful. It is assumed the student has seen special relativity at level of PHYS 116 or is currently enrolled in PHYS 117. Laboratory course material of MATH 192. Fall, A. LeClair; spring, staff.

At the level of Electricity and Magnetism, Vol. 2, by Purcell (Berkeley Physics Series).

PHYS 218(2218) Physics III: Waves and Thermodynamics (I) (PBS)
Fall, spring. 4 credits. Enrollment may be limited. Intended for students who have done very well in PHYS 116 and 217 and in mathematics and who desire more analytical treatment than that of PHYS 214. Prospective physics majors encouraged to register. Prerequisites: PHYS 217 (with grade of B or higher) and course in differential equations or permission of instructor. Fall, D. Cassel; spring, M. Wang.

The first part of the course gives a thorough discussion of wave equations, including traveling waves, standing waves, energy, momentum, power, reflection and transmission, interference and diffraction. Derives wave equations on strings, for sound and light, and in elastic media. Covers Fourier series and linear partial differential equations. In some semesters, elasticity theory and tensor calculus may be introduced. The second part introduces thermodynamics and statistical mechanics, including heat engines, the Carnot cycle, and the concepts of temperature and entropy. In some semesters random walks and diffusion may be introduced. Evening exams may be scheduled. At the level of Physics of Waves by Elmore and Head.

PHYS 310(3310) Intermediate Experimental Physics (I) (PBS)
Spring. 3 credits. Enrollment may be limited. Prerequisite: PHYS 206 or 213. Lab, T. R.

Students select from a variety of experiments. An individual, independent approach is encouraged. Facilities of the PHYS 410 lab are available for some experiments.

PHYS 314(3314) Intermediate Mechanics (I) (PBS)
Spring. 4 credits. Prerequisites: PHYS 208 or 214 (or equivalent) and MATH 294 (or equivalent). Assumes prior introduction to linear algebra and Fourier analysis. Intended for physics majors with concentration outside physics or astronomy. PHYS 318 covers similar material at more analytical level.

J. C. Davis.

Likely topics include Lagrangian mechanics, Newtonian mechanics based on a variational principle; conservation laws from symmetries, two-body orbits due to a central force, analysis of scattering experiments; small amplitude oscillating systems including normal mode analysis, parametrically driven systems; rigid body motion; motion in non-inertial reference frames; and nonlinear behavior including bistability and chaos. Students not only become more familiar with analytic methods for solving problems in mechanics but also gain experience with computer tools. At the level of Classical Dynamics by Marion and Thornton.

PHYS 316(3316) Basics of Quantum Mechanics (I) (PBS)
Fall, spring. 3 credits. Prerequisites: PHYS 214 or 218 and co-registration in at least MATH 294 or equivalent. Assumes that majors registering in PHYS 316 will continue with PHYS 317. Fall, J. C. Davis; spring, G. Hoffstaetter.

Topics include breakdown of classical concepts in microphysics: light quanta and matter waves; Schrödinger equation and solutions for square well, harmonic oscillator; and the hydrogen atom; angular momentum, spin, and magnetic moments; identical
particles and exclusion principle. At the level of An Introduction to Quantum Physics by French and Taylor.

PHYS 317(3317) Applications of Quantum Mechanics (I) (PHS)
Fall. 3 credits. Prerequisite: PHYS 316.
Staff.
Covers a number of applications of quantum mechanics to problems in modern physics. Topics include: the physics of single and multi-electron atoms, quantum statistical mechanics, molecular structure, quantum theory of metals, band theory of solids, superconductivity, nuclear structure, nuclear reactions, and elementary particle physics.

PHYS 318(3318) Analytical Mechanics (I) (PHS)
Spring. 4 credits. Prerequisites: PHYS 116 or permission of instructor; A&EP 321 or appropriate course(s) in mathematics.
Intended for junior physics majors concentrating in physics or astronomy. PHYS 314 covers similar material at less demanding level. Assumes prior exposure to Fourier analysis, linear differential equations, linear algebra, and vector analysis. E. Flanagan.

Newtonian mechanics of particles and systems of particles, including rigid bodies; oscillating systems; gravitation and planetary motion; moving coordinate systems; Euler's equations; Lagrange and Hamilton formulations; normal modes and small vibrations; introduction to chaos. At the level of Classical Mechanics by Goldstein, Classical Dynamics by Marion and Thornton, and Analytical Mechanics by Hand and Finch. Supplementary reading is assigned.

PHYS 323(3323) Intermediate Electricity and Magnetism (I) (PHS)
Fall. 4 credits. Prerequisites: PHYS 208 or 213/214 (or equivalent) and MATH 293/294 (or equivalent). Recommended: co-registration in A&EP 321 or appropriate mathematics course.
Intended for physics majors. Covers electro/magnetostatics, boundary value problems, dielectric and magnetic media, Maxwell's Equations, electromagnetic waves, including guided waves, and sources of electromagnetic radiation. At the level of Introduction to Electrodynamics by Griffiths.

PHYS 327(3327) Advanced Electricity and Magnetism (I) (PHS)
Fall. 4 credits. Prerequisites: PHYS 217/218 or permission of instructor. Co-requisite: A&EP 321 or appropriate mathematics course(s).
Intended for physics majors concentrating in physics or astronomy. PHYS 323 covers similar material at less demanding level. Assumes knowledge of material at level of PHYS 217 and makes extensive use of vector calculus, and some use of Fourier transforms and complex variables. F. C. Csakl.

Covers electro/magnetostatics, vector and scalar potentials, multipole expansion of the potential solutions to Laplace's Equation and boundary value problems; time-dependent electrodynamics; Maxwell's Equations, electromagnetic waves, reflection and refraction, wave guides, retarded potential, antennas, relativistic electrodynamics, four vectors, Lorentz, transformation of fields.

At the level of Classical Electromagnetic Radiation by Heald and Marion.

PHYS 330(3330) Modern Experimental Optics (also A&EP 330(3330)) (I) (PHS)
Fall. 4 credits. Limited enrollment. Prerequisite: PHYS 214 or equivalent. LeC; W; lab, M T. M. Wang.

Practical laboratory work in basic and modern optics. The six projects cover a wide range of topics from geometrical optics to classical wave properties such as interference, diffraction, and polarization. Each experimental setup is equipped with standard, off-the-shelf optics and opto-mechanical components to provide the students with hands-on experience in practical laboratory techniques currently employed in physics, chemistry, biology, and engineering. Students are also introduced to digital imaging and image processing techniques. At the level of Optics by Hecht.

PHYS 341(3341) Thermodynamics and Statistical Physics (I) (PHS)
Fall. 4 credits. Prerequisites: PHYS 214, 316, and MATH 293. D. Brower.

Covers statistical physics, developing both thermodynamics and statistical mechanics simultaneously. Also covers concepts of temperature, laws of thermodynamics, entropy, thermodynamic relations, and free energy. Applications to phase equilibrium, multicompontent systems, chemical reactions, and thermodynamic cycles. Application of statistical mechanics to physical systems, and introduction to treatment of Maxwell-Boltzmann, Bose-Einstein, and Fermi-Dirac statistics with applications. Elementary transport theory. At the level of Fundamentals of Statistical and Thermal Physics by Reif or Introduction to Statistical Mechanics by Betts.

PHYS 360(3360) Electronic Circuits (also A&EP 360(3630)) (I) (PHS)
Fall. 3 credits. Prerequisites: undergraduate course in electricity and magnetism (e.g., PHYS 208, 213, or 217) or permission of instructor. No previous electronics experience assumed, although course moves quickly through introductory topics such as basic d.c. circuits. Fall semester usually has smaller enrollment.

S-U grade option available by permission of instructor for students who do not require course for major. Fall, E. Kirkland; spring, R. Thorne.

Practical electronics as encountered in a scientific or engineering research/development environment. Analyze, design, build, and test circuits using discrete components and integrated circuits. Analog circuits: resistors, capacitors, filters, operational amplifiers, feedback amplifiers, oscillators, comparators, passive and active filters, diodes and transistor switches and amplifiers. Digital circuits: combinational and sequential logic (gates, flip-flops, registers, counters, timers), analog to digital (ADC) and digital to analog (DAC) conversion, signal averaging, computer architecture and interfacing. Additional topics may include analog and digital signal processing, light wave communications, transducers, and noise reduction techniques. At the level of Art of Electronics by Horowitz and Hill.

At the level of Classical Electromagnetic Radiation by Heald and Marion.

PHYS 400(4400) Informal Advanced Laboratory
Fall, spring. I–3 credits, variable. Prerequisites: two years physics or permission of instructor. Fall, D. Hartill; spring, staff.

Experiments of widely varying difficulty in one or more areas, as listed under PHYS 410, may be done to fill the student's special requirements.

PHYS 410(4410) Advanced Experimental Physics (I) (PHS)
Fall. Spring. 4 credits. Prerequisite: senior standing or permission of instructor; PHYS 214 (or 310 or 360) plus 318 and 327, or permission of instructor. Fall, D. Hartill; spring, staff.

Selected topics in experimental concepts and techniques. About 60 different experiments are available in acoustics, optics, spectroscopy, electrical circuits, electronics and ionics, magnetic resonance, x-rays, low temperature, solid state, cosmic rays, and nuclear physics. The student performs three to four different experiments, depending on difficulty, selected to meet individual needs and interests. Independent work is stressed. Lectures are on experimental techniques used in experiments in the laboratory and on current research topics.

PHYS 443(4443) Intermediate Quantum Mechanics (I) (PHS)
Spring. 4 credits. Prerequisites: PHYS 327 or 332; and PHYS 316 and A&EP 321 or appropriate mathematics course(s); co-registration in PHYS 314 or 318; or permission of instructor. Assumes prior experience in linear algebra, differential equations, and Fourier transforms. M. Neubert.

Provides an introduction to concepts and techniques of quantum mechanics, at the level of An Introduction to Quantum Mechanics by Griffiths.

PHYS 444(4444) High-Energy Particle Physics (I) (PHS)
Spring. 4 credits. Prerequisite: PHYS 443 or permission of instructor. A. Ryd.

The standard model of particle physics; behavior of high-energy particles and radiation; elementary particles; basic properties of accelerators and detectors; general symmetries and conservation laws. At the level of Introduction to Elementary Particles by Griffiths or Modern Elementary Particle Physics by Kane.

PHYS 445(4445) Introduction to General Relativity (also ASTRO 445(4445)) (I) (PHS)
Fall. 4 credits. Offered as alternative to more comprehensive, two-semester graduate sequence PHYS 553 and 554. E. Flanagan.

One-semester introduction to general relativity, which teaches physics concepts and phenomenology while keeping mathematical formalism to a minimum. General relativity is a fundamental cornerstone of physics that underlies several of the most exciting areas of current research. These areas include theoretical high-energy physics and the search for a quantum theory of gravity, relativistic astrophysics, and in particular, cosmology, where there have been several ground-breaking observations over the last few years. It uses the new textbook Gravity: An Introduction to Einstein's General Relativity by Hartle.
PHYS 451(4451) Classical Mechanics, Nonlinear Dynamics, and Chaos (also PHYS 551(6551)) (I) (PBS)
Spring. 3 credits. Prerequisite: strong performance in PHYS 318 or equivalent. Biweekly two-hour sem TBA. Not offered 2005–2006.

PHYS 454(4454) Introductory Solid-State Physics (also A&E 450(4450)) (I) (PBS)
Fall. 4 credits. Prerequisite: PHYS 443, A&RP 361, or CHEN 379 highly desirable but not required. Lect. M W F; computer labs: W or R. F. Wise. Introduction to modern solid-state physics, including crystal structure, lattice vibrations, electron theory of metals and semiconductors, and selected topics from magnetic properties, optical properties, superconductivity, and defects. At the level of Introduction to Solid State Physics by Kittel and Solid State Physics by Ashcroft and Mermin.

PHYS 455(4455) Geometrical Concepts in Physics (I) (PBS)
Spring. 4 credits. Prerequisite: PHYS 323 or equivalent and at least co-registration in PHYS 318 or permission of instructor. Usually offered every other spring. Geometrical methods are an essential tool in modern theoretical physics and provide deep insights into classical physics. This course introduces basic concepts from differential geometry and differential forms, emphasizing calculational methods and illustrating their utility in various examples from mechanics, electrodynamics, and crystal diffraction. At the level of Geometric Methods of Mathematical Physics by Schutz.

PHYS 456(4456) Introduction to Accelerator Physics and Technology (also PHYS 656(7656)) (I) (PBS)
Fall. 5 credits. Prerequisites: PHYS 314 or 327 and PHYS 323 or 327. Lec, T R. Not offered 2005–2006. G. H. Hoffstaetter. Fundamental physical principles of particle accelerators and enabling technologies, with a focus on circular high-energy colliders, and x-ray sources such as the Cornell Electron Storage Ring (CESR.).

PHYS 457(4457) The Storage Ring as a Source of Synchrotron Radiation (also PHYS 657(7657)) (I) (PBS)
Spring. 3 credits. Prerequisites: PHYS 314 or 327 and PHYS 323 or 327 or permission of instructor. Previous completion of PHYS 455 not required. Not offered 2005–2006. S. Gruner and R. Talman. Physics of synchrotron radiation with a focus on characteristics of radiation from dipole magnets, electron beam properties that influence radiation characteristics, and issues of flux, brightness, emittance, brilliance, beam stability, and beam lifetime. Regular lectures alternate with visitor lectures on specialized topics on radiation from insertion devices (e.g., wigglers and undulators), x-ray optics, coupling to beams, and coherence in x-ray beams. Special emphasis is placed on understanding the requirements of experimental x-ray applications and hands-on opportunities for doing synchrotron radiation experiments.

PHYS 458(4458) Advanced Topics in Accelerator Physics (also PHYS 658(7658)) (I) (PBS)

PHYS 459(4459) Independent Study in Physics
Fall or spring. Variable to 4 credits; max. of 8 credits may be applied to physics major. Prerequisite: permission of professor who will direct proposed work. Copy of Request for Independent Study form must be filed with physics department course coordinator, 121 Clark Hall. Individual project work (reading or laboratory) in any branch of physics.

PHYS 500(5400) Informal Graduate Laboratory
Fall, spring. Variable to 2 credits. Prerequisite: permission of instructor. Fall, D. Hartill; spring, staff. Experiments of widely varying difficulty in one or more areas, as listed under PHYS 510, may be done to fill special requirements.

PHYS 510(6510) Advanced Experimental Physics
Fall, spring. 3 credits. Optional lec associated with PHYS 410 available M. Fall, D. Hartill; spring, staff. About 60 different experiments are available in acoustics, optics, spectroscopy, electrical circuits, electronics and ionics, magnetic resonance, X-rays, low temperature, solid state, cosmic rays, and nuclear physics. Students perform three to four experiments selected to meet individual needs. Independent work is stressed. Lectures include techniques used in experiments in the advanced laboratory and on current research topics.

PHYS 520(6520) Projects in Experimental Physics
Fall, spring. Variable to 3 credits. Prerequisite: PHYS 510. To be supervised by faculty member. Students must advise department course coordinator of faculty member responsible for project. Projects of modern topical interest that involve some independent development work by student. Opportunity for more initiative in experimental work than is possible in PHYS 510.

PHYS 525(6525) Physics of Black Holes, White Dwarfs, and Neutron Stars (also ASTRO 525(6525))
Spring. 4 credits. Prerequisites: none. Not offered 2005–2006. D. Lai. Covers the formation of compact objects: neutrino and gravitational radiation from supernova collapse and neutron stars; equilibrium configurations, equations of state, stability criteria, and mass limits; the influence of rotation and magnetic fields, pulsar phenomena, mass flow in binary systems, spherical and disk accretion, high-temperature radiation processes, compact X-ray sources; Gamma-Ray bursts; and high-energy processes near supermassive blackholes, Quasars, and active galactic nuclei. Emphasis is on the application of fundamental physical principles to compact objects. Topics in diverse areas of physics are discussed, including solid-state physics, nuclear physics, relativity, fluid dynamics, and high-energy physics.

PHYS 551(6551) Classical Mechanics, Nonlinear Dynamics, and Chaos (also PHYS 451(4451))
PHYS 553(554)/555-556) General Thermodynamics, Statistical Mechanics in the Presence of Gravitational Fields, Special Relativity from the Viewpoint of GR, GR as a Dynamical Theory, and Experimental Tests of GR. At the Level of Principle, Electrodynamics, Hydrodynamics, An Introduction to Einstein's General Relativity may also be useful. PHYS 554 is a continuation of 553, which emphasizes applications to astrophysics and cosmology. Topics include gravitational collapse and black holes, gravitational waves, elementary cosmology, and the use of active gravitational dynamics as a fundamental element of astrophysical and cosmological research.

PHYS 561(5611) Classical Electrodynamics
Fall. 3 credits. R. Talman. Covers Maxwell's equations, electromagnetic potentials, electrodynamics of continuous media (selected topics), special relativity, and radiation theory. At the level of Classical Electrodynamics by Jackson.

PHYS 562(5621) Statistical Physics
Spring. 4 credits. Primarily for graduate students. Prerequisites: good knowledge of quantum mechanics, classical mechanics, and undergraduate-level thermodynamics or statistical mechanics class. J. Sethna. Starts with the fundamental concepts of temperature, entropy, and free energy, defining the microcanonical, canonical, and grand canonical ensembles. Touches upon Markov chains, random walks, diffusion equations, and the fluctuation-dissipation theorem. Covers Bose-Einstein and Fermi statistics, black-body radiation, Bose condensation, superfluidity, metals, and white dwarves. Discusses fundamental descriptions of phases, and introduces Landau theory, topological order parameters, and the homotopy classification of defects. Briefly studies first-order phase transitions and critical droplet theory and concludes with a discussion of critical phenomena, scaling, universality, and the renormalization group.

PHYS 572(5721) Quantum Mechanics I
Fall. 4 credits. H. Tye. Covers the general principles of quantum mechanics, formulated in the language of Dirac. Covers systems with few degrees of freedom such as hydrogen atom, including fine and hyperfine structure. Theory of angular momentum, symmetries, perturbations and collisions are developed to analyze phenomena displayed by these systems. At the level of Quantum Mechanics: Fundamentals by Gottfried and Yan. A knowledge of the subject at the level of PHYS 443 is assumed, but the course is self-contained.

PHYS 574(5741) Applications of Quantum Mechanics II
Spring. 4 credits. Knowledge of concepts and techniques covered in PHYS 561 and 572 and of statistical mechanics at undergraduate level assumed. Possible topics include identical particles, many electron atoms, second quantization, quantization of the electromagnetic field, scattering of complex systems, radiative transitions, and introduction to the Dirac equation.

PHYS 599(5991) Cosmology (also ASTRO 599(5991))
Not offered 2005–2006. For description, see ASTRO 599.

PHYS 635(6351) Solid-State Physics I
Fall. 3 credits. Prerequisites: good undergraduate solid-state physics course (e.g., PHYS 454), as well as familiarity with graduate-level quantum mechanics. D. Ralph. Survey of the physics of solids: crystal structures, x-ray diffraction, phonons, and electrons. Selected topics from semiconductors, magnetism, superconductivity, disordered materials, dielectric properties, and mesoscopic physics. At the level of Atomic and Electronic Structure of Solids by Kaxiras.

PHYS 636(6361) Solid-State Physics II
Spring. 3 credits. Prerequisite: PHYS 635. P. Brouwer. Continuation of PHYS 635. Topics from quantum condensed matter physics not included in that course, which may include Fermi Liquid Theory, magnetism, superconductivity, broken symmetries, elementary excitations, topological defects, superfluids, the quantum-Hall effect, mesoscopic quantum transport theory, Anderson localization, and other metal insulator transitions.

PHYS 645(6451) High-Energy Particle Physics
Fall. 3 credits. A. Ryder. Serves as an introduction to physics of hadrons, mesons, and leptons. PHYS 646(6461) High-Energy Particle Physics Spring. 3 credits. M. Neubert. Covers topics of current interest, such as high-energy electron and neutrino interactions, electron positron annihilation, and high-energy hadronic reactions.

PHYS 651(6511) Relativistic Quantum Field Theory I
Fall. 3 credits. S-U grades only. M. Perelstein. Topics include consequences of causality and Lorentz invariance, field quantization, perturbation theory, calculation of cross sections and decay rates, and an introduction to radiative corrections and renormalization with applications to electromagnetic and weak interactions.

PHYS 652(6521) Relativistic Quantum Field Theory II
Spring. 3 credits. S-U grades only. H. Tye. A continuation of PHYS 651. Introduces more advanced methods and concepts in quantum field theory. Topics include renormalization, non-abelian gauge theories, functional integral methods, and quantization of non-abelian gauge theories, spontaneous symmetry breaking, and anomalies. At the level of An Introduction to Quantum Field Theory by Peskin and Schroeder.

PHYS 653(6531) Statistical Physics
Fall. 3 credits. Prerequisites: quantum mechanics at level of PHYS 572, statistical physics at level of PHYS 562. S-U grades only. E. Mueller. Survey of topics in modern statistical physics selected from phase transitions and the renormalization groups, linear response and fluctuations-dissipation theorems; quantum statistical mechanics, and nonequilibrium statistical mechanics.

PHYS 654(6541) Theory of Many-Particle Systems
Spring. 3 credits. Prerequisites: PHYS 562, 574, 635, 636, and 653 or permission of instructor. S-U grades only. Not offered 2005–2006. Staff. Equilibrium and transport properties of microscopic systems of many particles. Formalisms such as thermodynamic Green's functions are introduced and applied to such topics as normal and superconducting Fermi systems, disordered metals, magnetism, dynamical impurity problems, and Luttinger Liquids.

PHYS 655(6551) Introduction to Accelerator Physics and Technology (also PHYS 456/4456)
Not offered 2005–2006. For description, see PHYS 456.

PHYS 657(6571) The Storage Ring as a Source of Synchrotron Radiation (also PHYS 457/4457)
Not offered 2005–2006. For description, see PHYS 457.

PHYS 661(6611) Advanced Topics in High-Energy Particle Theory
Fall. 3 credits. Prerequisite: PHYS 652. S-U grades only. Not offered 2005–2006. H. Tye. Presents advanced topics of current research interest. Subject matter varies from year to year. Some likely topics are two-dimensional conformal field theory with applications to string theory and condensed matter physics, applications of the electroweak theory, lattice gauge theory, mathematical methods (e.g., group theory), perturbative quantum chromodynamics, anomalies and geometry, supersymmetry, current algebra, heavy quark physics, heavy quark symmetry, and phenomenological issues beyond the standard model.

PHYS 667(6671) Theory of Stellar Structure and Evolution (also ASTRO 560/5650)
Not offered 2005–2006. For description, see ASTRO 560.

PHYS 670(6701) Instrumentation Seminar

PHYS 680(6801) Computational Physics (also PHYS 480/4480, ASTRO 690/6901)
For description, see PHYS 480.
PHYS 681-689 (7681-7689) Special Topics
Offerings are announced each semester. Typical topics are group theory, analyticity in particle physics, weak interactions, superfluids, stellar evolution, surface physics, Monte Carlo methods, low-temperature physics, magnetic resonance, phase transitions, and the renormalization group.

PHYS 681 (7681) Quantum Information Processing (also PHYS 481[481], COM S 483[483])
For description, see PHYS 481.

PHYS 682 (7682) Computational Methods for Nonlinear Systems (also CIS 629[629])
Fall. 4 credits. Enrollment may be limited. J. Sethna and C. Myers.
Graduate computer laboratory, focusing on the next generation of tools for computation, simulation, and research in a broad range of fields of interest to the IGERT program and the Life Sciences Initiative. The course is pitched at a high level of computational sophistication, but is designed to fit into the busy schedules of first-year graduate students.

PHYS 687 (7687) Selected Topics in Accelerator Technology (also PHYS 487[487])
For description, see PHYS 487.

PHYS 688 (7688) Advanced Topics in Accelerator Physics (also PHYS 488[488])
Fall. 3 credits. Not offered 2005–2006.
For description, see PHYS 488.

PHYS 690 (7690) Independent Study in Physics
Fall or spring. Variable to 4 credits. Students must advise department course coordinator, 121 Clark Hall, of faculty member responsible for grading their project. S-U grades only. Special graduate study in some branch of physics, either theoretical or experimental, under the direction of any professorial member of the staff.

POLISH
See "Department of Russian."

PORTUGUESE
See "Department of Romance Studies."

PSYCHOLOGY

The Major
Admission to the major is usually granted to any student in good standing in the college who has passed three or more psychology courses with grades of C+ or better. Provisional admission requires two such courses. To apply to the major and receive an adviser, a major application form may be obtained from the department office (211 Urs Hall) and should be completed and taken to one of the faculty members whose name is listed on the form.

Requirements for the major are:
1. A total of 40 credits in psychology (including prerequisites), from which students majoring in psychology are required to choose, in consultation with their advisors, a range of courses that covers the basic processes in psychology (laboratory and/or field experience is recommended); and
2. Demonstration of proficiency in statistics before the beginning of the senior year.

Normally it is expected that all undergraduate psychology majors will take at least one course in each of the following three areas of psychology:
1. Perceptual and cognitive psychology
2. Biopsychology
3. Social, personality, and abnormal psychology

The following classification of Department of Psychology offerings is intended to help students and their advisers choose courses that will ensure that such breadth is achieved.

1. Perceptual and cognitive psychology:
 - PSYCH 223, 322, 324, 325, 326, 331, 390, 420, 422, 424, 425, 429, 431, 440, 492.
2. Biopsychology:
 - PSYCH 223, 322, 324, 325, 326, 331, 390, 420, 422, 424, 425, 429, 431, 440, 492.
3. Social, personality, and abnormal psychology:
 - PSYCH 265, 275, 280, 281, 325, 327, 328, 380, 402, 404, 450, 481, 489, 491.
4. Other courses:
 - Other courses may be chosen, in consultation with an adviser, but only with the approval of the chair of the department.

With the permission of the adviser, courses in other departments may be accepted toward the major requirements.

Computing in the arts undergraduate concentration. The computer plays a role between hormones, other biochemical processes, and behavior. Perceptual and cognitive psychology includes such courses as cognition, perception, memory, and psycholinguistics. Personality and social psychology is represented by courses in social psychology and personality (e.g., Psychology and Law, Judgment and Decision Making), as well as courses in fieldwork and psychophysiology. In the areas majorly mentioned above, the department emphasizes the statistical and logical analysis of psychological data and problems.

Statistics requirement.
Proficiency in statistics can be demonstrated in any one of the several ways listed below.
1. Passing PSYCH 350.
2. Passing an approved course or course sequence in statistics in some other department at Cornell.
3. Passing a course or course sequence in statistics at some other college, university, or college-level summer school. The course or sequence must be equivalent to at least 6 semester credits. The description of the course from the college catalog and the title and author of the textbook used must be submitted to Professor Gilovich for approval.
4. Passing an exemption examination. This examination can be given at virtually any time during the academic year if the student gives notice at least one week before. Students who have completed a theoretical statistics course in a department of mathematics or engineering and who wish to demonstrate competence in applied statistics usually find this option the easiest. Students planning this option should discuss it in advance with Professor Gilovich.

Concentration in biopsychology. Psychology majors interested in psychology as a biological science can elect to specialize in biopsychology. Students in this concentration must meet all of the general requirements for the major in psychology and must also demonstrate a solid background in biology; the physical sciences, including at least introductory chemistry, and mathematics. Students will design with their advisers an integrated program in biopsychology built around courses on physiological, chemical, anatomical, and ecological determinants of human and nonhuman behavior offered by the Department of Psychology. Additional courses in physiology, anatomy, biochemistry, neurochemistry, neurobiology, and behavioral biology may be designated as part of the psychology major after consultation between the student and his or her biopsychology adviser.
in almost every aspect of human life, and its influence and potential now extend routinely not only to technical and commercial pursuits but also into the realms of the imaginative and the aesthetic. The Computing in the Arts concentration offers students opportunities to use computers to realize works of art, to study the perception of artistic phenomena, and to think about new, computer-influenced paradigms and metaphors for the experiences of making and appreciating art. Faculty from several departments in the college offer courses toward the concentration, drawing on disciplines in the arts, the social sciences, the humanities, and the physical sciences. Currently, the concentration is offered in three tracks: computer science, music, and psychology, each described in more detail below. Students may concentrate in the same area as their major, or in a different area.

It is likely that additional tracks in other disciplines will be added to the concentration, indeed possible that this will have occurred after the publication deadline for this year's Courses of Study but in time to take effect in the 2005-2006 academic year. The director and area representatives listed below will always have the latest information.

Director
Graeme Bailey

Applying for the Concentration and Choosing Courses
Students should meet with the track representative in their chosen discipline for initial advising about the concentration. For 2005-2006, these representatives are Graeme Bailey (computer science track), Steven Stucky (music track), and Carol Krumhansl (psychology track).

Regardless of which track they choose, all students in the concentration are required to take the core course, Computing in the Arts (COM S 165, cross-listed as ART 175, CIS 165, ENGR 165, MUSC 165, and PSYCH 165). This course combines fundamental background in cognitive modeling, statistics, programming, and algorithmic thinking, as preparation for more specialized work; hence, though it is not a formal prerequisite to other courses, it should be taken as early as possible in the student's program. For students who have already gained an equivalent background through other courses, however, it may be waived by permission of the director.

In addition to the core course, each student chooses another five courses satisfying the following requirements:

1. At least one must entail a significant computing component, regardless of its home department (marked * in the lists below).
2. At least two must entail a significant artistic component (marked f in the lists below).
3. For students majoring in a field offering a track, none of the courses from that track may be double-counted as also satisfying major requirements.

The goal is to encourage the development of reasonable depth within one area, without neglecting the interdisciplinary nature of the field. Hence, rather than choosing courses at random from the lists below or focusing too narrowly on one particular corner of the field, each student should work actively with an adviser from his or her concentration in building an appropriate program.

COURSE LISTS

Computer Science track. In addition to the core course, COM S 165, any five of the following. Note that some of these courses have COM S prerequisites.

ART 170 Visual Imaging in the Electronic Age (also CIS/COM S/ENGR 167)
COM S 465 Computer Graphics I
COM S 467 Computer Graphics II + 468 Computer Graphics Practicum (together these count as one course)
COM S 472 Foundations of Artificial Intelligence
COM S 474 Introduction to Natural Language Processing
COM S 478 Machine Learning
COM S 565 Computer Animation
COM S 566 Advanced Computer Animation
COM S 578 Empirical Methods in Machine Learning and Data Mining
INFO 345 Human-Computer Interaction Design
INFO 440 Advanced Human-Computer Interaction Design
INFO 450 Language and Technology

Up to two courses from another track
Music track. In addition to the core course, MUSIC 165, any five of the following. Note that some of these courses have MUSIC prerequisites.

MUSIC 120 Composing with Computers
MUSIC 121 Performing with Computers
MUSIC 355/THETR 368 Sound Design and Digital Audio
MUSIC 356/THETR 369 Digital Performance
MUSIC 358 Improvisational Theory
MUSIC 451 Counterpoint
MUSIC 455 Composition in Recent Styles
MUSIC 454 Composition
MUSIC 457 20th-Century Musical Languages
PHYS/MUSIC 204 Physics of Musical Sound

Up to two courses from another track
Psychology track. In addition to the core course, PSYCH 165, any five of the following.

Note that some of these courses have PSYCH prerequisites.

ART 170 Visual Imaging in the Electronic Age (also CIS/COM S/ENGR 167)
COM S 465 Computer Graphics I
COM S 467 Computer Graphics II + 468 Computer Graphics Practicum (together these count as one course)
INFO 214/PSYCH 214 Cognitive Psychology
MUSIC 120 Learning Music through Digital Technology
PSYCH 205 Perception
PSYCH 305 Visual Perception
PSYCH 316 Auditory Perception
PSYCH 342 Human Perception: Applications to Computer Graphics, Art, and Visual Display
PSYCH 418/MUSIC 418 Psychology of Music

Up to two courses from another track

Undergraduate honors program. The honors program is designed for exceptional students who wish to pursue an intensive and independent program of research in psychology. Successful participation serves as evidence of the student's facility in the two most important skills required of an academic psychologist: namely, the capacity to acquire and integrate a substantial body of theoretical and factual material and the ability to devise and execute a creative empirical research project.

The honors program offers students the closest contact and consultation with faculty they will likely experience while at Cornell, and all qualified majors who are planning graduate work in any academic field should consider applying. However, it should also be noted that conducting honors research and completing a thesis is an extremely demanding undertaking, both in time and effort. Due to the demands of both research and writing, it is expected that after the Christmas break, honors students will return to campus as early as possible to continue their work, as well as remain on campus through all of spring break.

The focus of the honors program is conducting an experiment, analyzing the data that result, and describing the project in a thesis that closely approximates a professional-level research report both in form and quality. The research project is to be conducted under the close sponsorship of a faculty member. Subject to approval, the sponsor need not be in the psychology department per se. Students that successfully complete the honors program graduate with one of levels of honors, which is noted on their diplomas. The customary level is cum laude, awarded to approximately two-thirds of psychology honors graduates. Approximately one-third receive the next higher level of honors, which is magna cum laude. A student who has both an unusually strong academic record in psychology and completes a thesis of exceptionally high quality will be considered for summa cum laude, the highest level of honors. However, those are unusual cases. The T. A. Ryan Award, accompanied by a cash prize, is awarded to the student who conducts the best honors project in a given year. Students in the program register for 3 or 4 credits of PSYCH 471 Independent Study in both fall and spring semesters.
Exploration of selected areas in the field of psychology. Involves extensive discussion and a semester paper related to the seminar topic. Choice of seminar topics and meeting times are available at the second lecture of PSYCH 101.

Weekly seminar that may be taken in addition to PSYCH 101 to provide an in-depth science. The first part of the course introduces the roles played by these disciplines in cognitive science. The second part describes how the brain creates complex human behavior and mental life in a great scientific frontier of the next century. This course enables students with little scientific background from any college or major to appreciate the excitement. What are the interesting and important questions? How are researchers trying to answer them? What are they discovering? Why did the brain evolve this remarkable capacity?

PSYCH 165(1650) Computing in the Arts (also COM/S/IS/ENGR 165[1610], MUSIC 165[1465])
Fall. 3 credits. G. Bailey. Over the centuries, artists in a wide variety of media have employed many approaches to the creation of art, ranging from the philosophical to the mechanical to the virtual. This course unravels some of the mysteries going on inside software used for art and music. It looks at ways of breaking things apart and sampling and ways of putting things together and reassembling, and explores ideas for creation. There are no formal course prerequisites (in particular, no courses in programming, calculus, or probability), although a good comfort level with computers and some of the arts is helpful. This course does not teach software packages for creating art and music. The course complements ART 171+ and MUSIC 120+. Please note that this course will change a little for its next offering in Spring 2006. In particular, there will be an enhanced programming content so that the students by the end will be able to program at the level of cs100 ‘live’, and the perception/cognition aspects will be put on steroids in consultation with Carol Krumhansl (and probably also David Field), and may well be team-taught.

PSYCH 111[1110] Brain, Mind, and Behavior (also BIONB/COGST 111[1110]) (I) (PBS)
Spring. 3 credits. J. B. Maas. Understanding how the brain creates complex human behavior and mental life is a great scientific frontier of the next century. This course enables students with little scientific background from any college or major to appreciate the excitement. What are the interesting and important questions? How are researchers trying to answer them? What are they discovering? Why did the brain evolve this remarkable capacity?

PSYCH 101(1101) Introduction to Psychological Inquiry (III) (SBA)
Fall, summer (six-week). 3 credits. Prerequisite: freshman, sophomore, or junior standing. Attendance at least mandatory. Students who wish to take disc seminar should also enroll in PSYCH 103.
M W F J. B. Maas. The study of human behavior. Topics include brain functioning and mind control, psychophysiology of sleep and dreaming, psychological testing, perception, learning, cognition, memory, language, motivation, personality, abnormal behavior, psychotherapy, social psychology, and other aspects of applied psychology. Emphasis is on developing skills to critically evaluate claims made about human behavior.

PSYCH 102(1200) Introduction to Cognitive Science (also COGST 101[1101], COM S 101[1170], LING 170[1770], PHIL 191[1910]) (III) (KCM)
Fall, summer (six-week). 3 or 4 credits, 4-credit option involves writing sec instead of exams). T R. M. Spivey. Surveys the study of how the mind/brain works. Examines how intelligent information processing can arise from biological and artificial systems. Draws primarily from five disciplines that make major contributions to cognitive science: philosophy, psychology, neuroscience, linguistics, and computer science. The first part of the course introduces the roles played by these disciplines in cognitive science. The second part focuses on how each of these disciplines contributes to the study of five topics in cognitive science: language, vision, learning and memory, action, and artificial intelligence.

PSYCH 103(1103) Introductory Psychology Seminars
Fall. 1 credit. Limited to 300 students. Co-requisite: PSYCH 101. 12 different time slots. T. R. M. Spivey and staff. Weekly seminar that may be taken in addition to PSYCH 101 to provide an in-depth exploration of selected areas in the field of psychology. Involves extensive discussion and a seminar paper related to the seminar topic. Choice of seminar topics and meeting times are available at the second lecture of PSYCH 101.

PSYCH 214(2140) Cognitive Psychology (also COGST 214[2140]) (III) (KCM)
Fall. 3 credits. Limited to 175 students. Prerequisite: sophomore standing. Graduate students, see PSYCH 614. Not offered 2005–2006. M W F. S. Edelman. Introduces the idea of cognition as information processing or computation, using examples from perception, attention and consciousness, memory, language, and thinking. Participants acquire conceptual tools that are essential for following the current thought on the nature of mind and its relationship to the brain. Undergraduates who want 5 credits should enroll in PSYCH 214 and COGST 501.

PSYCH 215(2150) Psychology of Language (also COGST 215[2150], LING 215[2215]) (III) (KCM)
Spring. 3 credits. Prerequisites: sophomore, junior, or senior standing; any one course in psychology or human development. Graduate students, see PSYCH 715. T R. M. Christiansen.

Cognitive science may be defined as the scientific study of mind. This class will use psychology and philosophy as the two main interpretive frameworks in the study of language. The purpose of the course is to introduce students to the scientific study of psycholinguistic phenomena. Covers a broad range of topics from psycholinguistics, including the origin of language, the different components of language (phonology, morphology, syntax, and semantics), processes involved in reading, computational modeling of language processes, the acquisition of language (both under normal and special circumstances), and the brain bases of language.
PSYCH 223(2230) Introduction to Biopsychology (I/PBS: supplementary list)
Fall. 3 credits. M W F 10:10. Prerequisites: none. May be used to satisfy psychology major breadth requirement and as alternative prerequisite for upper-level biopsychology courses. Staff. Introduction to psychology from a biological perspective, including both evolutionary and physiological approaches to behavior. Topics include the structure and function of the nervous system, genetic and biochemical models of behavior, hormones and behavior, biological basis of cognition, communication, and language, and the evolution of social organization.

Introductory courses in social and personality psychology. Each of the following three courses (265, 275, 280) provides an introduction to a major area of study within social and personality psychology. These courses are independent of one another, and none have any prerequisites. Students may take any one of the courses or any combination of them (including all three). Courses may be taken in any order or simultaneously.

PSYCH 231(2310) Sophomore Seminar: Topics in Cognitive Studies: Mind and Reality in Science Fiction (also PSYCH 531(5331), COGST 531(5331) (III) (KCM))
Spring. 4 credits. Limited to 15 students. Not offered 2005-2006. S. Edelman. What does it mean to be a mind? How is a mind affected by its embodiment? By the body's immersion in the world? By not having a body in the first place, or not any longer? Is the world out there what it seems? Is there a world out there? Profound thinking about, and sometimes disturbing insights into, the nature of the human mind and its relationship to reality are found in the writings of a handful of visionaries (Philip K. Dick, Ursula K. LeGuin, Greg Egan, and others) discussed in this course. The discussions are grouped into six themes: dreaming and reality, sanity and madness, self and others, sex and embodiment, death and immortality, and humanity and transhumanity.

This is a special seminar sponsored by the John S. Knight Institute's Sophomore Seminars Program. Seminars offer discipline-specific study within an interdisciplinary context. While not restricted to sophomores, the seminars aim at initiating students into the discipline's outlook, discourse community, modes of knowledge, and ways of articulating that knowledge. Limited to 15 students. Special emphasis is given to strong thinking and writing and to personalized instruction with top university professors.

PSYCH 265(2650) Psychology and Law (III) (SBA)
Fall. 3 credits. M W F. D. A. Dunning. Examines the implications of psychological theories and methods in law and the criminal justice system. Concentrates on psychological research on legal topics (e.g., confession, eyewitness testimony, jury decision making, homicide, aggression, the prison system), social issues (e.g., death penalty, affirmative action), and on psychologists as participants in the legal system (e.g., assessing insanity and dangerousness and for expert testimony).

PSYCH 275(2750) Introduction to Personality Psychology (also HD 260(2600)) (III) (SBA)
Spring. 3 credits. Prerequisite: PSYCH 223 or permission of instructor. T. R. C. Hazan. Designed as an introduction to theory and research in the area of personality psychology, with special emphasis on personality development. Covers the major influences including genetic, environmental, and gene-environment interactions, and involves in-depth study of the major theories. The assumptions and models of human behavior that form the basis of each theoretical orientation are examined and compared, and the relevant empirical evidence reviewed and evaluated. In addition, basic psychometric concepts and the methods for measuring and assessing personality are covered, as are the major related debates and controversies.

PSYCH 280(2800) Introduction to Social Psychology (III) (SBA)
Spring, summer (three-week). 3 credits. T T. D. Gildovich and D. T. Regan. Introduction to research and theory in social psychology. Topics include social influence, persuasion, and attitude change; social interaction and group phenomena; altruism and aggression; stereotyping and prejudice; and everyday reasoning and judgment.

PSYCH 282(2820) Community Outreach (also HD 282(2820))
Fall. 2 credits. Prerequisites: PSYCH 101 or HD 115. T. H. Segal. Provides students with information and perspectives essential to volunteer fieldwork with human and social service programs in the community. Readings are drawn from the field of community psychology and include analyses of successful programs, such as Head Start, as well as a review of the methods by which those programs are developed and assessed. Although students are not required to volunteer, the instructor provides students with a list of local agencies open to student placements.

PSYCH 292(2920) Intelligence (III) (SBA)
Fall. 4 credits. Prerequisites: one 200-level psychology course. M W. Sec meetings F. Not offered 2005-2006. U. Neisser. Scientific evidence concerning issues that surround intelligence tests and what they measure. Topics include the history of testing, correlates of test scores, alternative approaches to mental ability, genetic and environmental contributions to diversity in intelligence, effects of schooling, worldwide IQ gains, cultural factors, and group differences.

PSYCH 305(3050) Visual Perception (also VIIST 305) (III)
Fall. 4 credits. Limited to 25 students. Prerequisite: PSYCH 205 or permission of instructor. M W F. E. Cutting. Detailed examination of pictures and their comparison to the real world. Linear perspective in Renaissance art, photography, cinema, and video is discussed in light of contemporary research in perception and cognition.

PSYCH 311(3110) Introduction to Human Memory (III)
Spring. 3 credits. Limited to 40 students. Recommended: some familiarity with statistical methods and experimental design and study of cognition. Graduate students, see PSYCH 611. T R. Not offered 2005-2006. Staff.

Overview of experimental findings and theoretical issues in the study of human memory. Coverage includes topics such as the nature of memory; various memory systems, coding and retrieval processes, practice and habit acquisition, organization for learning and memory, interference and forgetting, models of memory, and memory dysfunction and its relation to normal memory.

PSYCH 313(3130) Problematic Behavior in Adolescence (also HD 313(3130)) (III) (KCM)
Fall. 3 credits. Prerequisite: HD 115 or PSYCH 101. Recommended: HD 216. M W. Not offered 2005-2006. J. Haugard. Explores several problematic behaviors of adolescence, including addictive and antisocial behaviors, delinquency, abuse, eating disorders, and delinquency. Various psychological, sociological, and biological explanations for the behaviors are presented. Appropriate research is reviewed; treatment and prevention strategies are explored. An optional discussion section is available to students who would like an opportunity to discuss readings and lectures in greater depth.

PSYCH 316(3160) Auditory Perception (III) (KCM)
Fall. 3 or 4 credits; 4-credit option involves lab project or paper. Limited to 30 students. Prerequisite: PSYCH 102, 205, 209, or 214 (or other psychology, linguistics, or biology courses by permission of instructor). Graduate students, see PSYCH 716. M W. Not offered 2005-2006. C. L. Krumhansl. Covers the major topics in auditory perception including: physics of sound; structure and function of the auditory system; perception of loudness, pitch, and spatial location; and music and environmental sounds.

PSYCH 322(3220) Hormones and Behavior (also BIONB 322(3220)) (I) (PBS)
Fall. 3 credits. Two lect plus sec in which students read and discuss original papers in the field, give an oral presentation, and write a term paper. Prerequisites: junior or senior standing; any one of the following: PSYCH 223, BIONB 221 or 222, or one year introductory biology plus psychology course. Graduate students, see PSYCH 722. Letter grades only. Not offered 2005-2006. M W F. E. Adkins Regan. Comparative and evolutionary approaches to the study of the relationship between reproductive hormones and sexual behavior in vertebrates, including humans. Also hormonal contributions to parental behavior, aggression, stress, learning and memory, and biological rhythms.

PSYCH 324(3240) Biopsychology Laboratory (also BIONB 324(3240)) (I) (PBS)
Fall. 4 credits. Limited to 20 students. Prerequisites: junior or senior standing; PSYCH 223 or BIONB 221 or 222, and permission of instructor. T R. T. J. DeVoogd. Experiments designed to provide experience in animal behavior (including learning) and its neural and hormonal mechanisms. A variety of techniques, animal species, and behavior patterns are included.
PSYCH 325(3250) Adult Psychopathology (also HD 370(3700)(III) (SBA)
Spring. 3 credits. Prerequisite: sophomore, junior, or senior standing, or one course in psychology or human development. T R. No S-U option. M W. H. Segal.
A theoretical and empirical approach to the biological, psychological, and social (including cultural and historical) aspects of adult psychopathology. Readings range from Freud to topics in psychopharmacology. The major mental illnesses are covered, including schizophrenia as well as mood, anxiety, and personality disorders. Childhood disorders are not covered.

[PSYCH 326(3260) Evolution of Human Behavior (I) (PBS)
Spring. 4 credits. Prerequisite: PSYCH 223, or introductory biology, or introductory anthropology. Graduate students, see PSYCH 626. T R. Not offered 2005–2006.
R. F. Johnston.
A broad comparative approach to the behavior of animals and humans with special emphasis on the evolution of human behavior. Topics vary but include some of the following: human evolution, evolutionary and sociobiological theory, animal communication, nonverbal communication, language, cognitive capacities, social behavior and organization, cooperation and altruism, sexual behavior, mating and marriage systems, aggression, and warfare.]

PSYCH 327(3270) Field Practicum I (also HD 327(3270)(III) (SBA)
Fall only. 3 credits. Limited enrollment.
-Prerequisites: PSYCH 325 or HD 370 (or taken concurrently), and permission of instructor. Students must commit to taking PSYCH 329 in spring semester. Letter grades only. M. W. H. Segal.
Composed of three components that form an intensive undergraduate field practicum. First, students spend three to six hours a week at local mental health agencies, schools, or nursing facilities working directly with children, adolescents, or adults; supervision is provided by host agency staff. Second, the instructor provides additional weekly individual and group supervision for each student. Third, seminar meetings cover issues of adult and developmental psychopathology, clinical technique, case studies, and current research issues. Students write one short paper, two final take-home exams, and present an account of their field experience in class.

PSYCH 328(3280) Field Practicum II (also HD 328[3280])(III) (SBA)
Spring. 3 credits. Limited enrollment.
Prerequisites: PSYCH 327 taken previous semester. PSYCH 325 or HD 370 (or taken concurrently), permission of instructor. Letter grades only. M. W. H. Segal.
Continues the field practicum experience from PSYCH 327.

PSYCH 330(3300) Introduction to Computational Neuroscience (also BIONB 3300)(II)(SBA)
Fall. 3 credits. Limited to 25 students.
Prerequisite: BIONB 222 or permission of instructor. S-U grades optional. Lect, T R 2:55–4:10. Offered alternate years.
C. Linster.
Covers the basic ideas and techniques involved in computational neuroscience. Surveys diverse topics including neural dynamics of small networks of cells, neural coding, learning in neural networks and in brain structures, memory models of the hippocampus, and sensory coding.

PSYCH 332(3320) Biopsychology of Learning and Memory (also BIONB 3320)(I)(PBS)
Spring. 3 credits. Limited to 60 students.
Prerequisites: one year of biology and either a biopsychology course or BIONB 222. Graduate students, see PSYCH 632. M W. F. T. J. DeVoogd.
Surveys the approaches that have been or are currently being used to understand the biological bases for learning and memory. Topics include invertebrate, "simple system" approaches, imprinting, avian song learning, hippocampal and cerebellar function, or research using fMRI pathology in humans. Many of the readings are from primary literature.

PSYCH 340(3400) Autobiographical Memory
Spring. 3 credits. Limited to 20 students.
Prerequisites: any one course in psychology or human development. M W. U. Neisser.
Much recent research has focused on people's ability to remember—and often to misremember—their own life experiences. This course aims at this research, including such topics as "flashbulb" memories, "childhood amnesia," the development of memory in children, cultural differences, the "false memory syndrome," eyewitness testimony, prospective memory, sex differences, recall of school learning, the amnesic syndrome, and the relation between memory and self.

PSYCH 342(3420) Human Perception: Applications to Computer Graphics, Art, and Visual Display (also CGST 342(3420), VISST 342(3422)(III)
Fall. 3 or 4 credits; 4-credit option involves term paper.
Highly recommended: PSYCH 205. Graduate students, see PSYCH 624. T R. D. J. Field.
Our present technology allows us to transmit and display information through a variety of media. To make the most of these media channels, it is important to consider the limitations and abilities of the human observer. The course considers a number of applied aspects of human perception with an emphasis on the display of visual information. Topics include "three-dimensional" display systems, color theory, spatial and temporal limitations of the visual systems, attempts at subliminal communication, and "visual" effects in film and television.

PSYCH 347(3470) Psychology of Visual Communications (also VISST 347)
(Spring. 4 credits. Limited to 25 students.
Prerequisites: introductory biology or biopsychology, plus second course in elementary physics, chemistry, and behavior. S-U grades optional. Offered alternate years.
B. J. Strupp.
Covers both those characteristics of sensory systems that are common across living organisms and those sensory properties that represent adaptations to particular habitats, environments, or niches. The principles and limitations of major methods used to examine sensory systems are considered. Emphasis is on somesthesic, visual, and auditory systems. This course is taught using the Socratic method, in which the instructor asks questions of the students. Students are assigned original literature in the form of printed or electronic journal articles or reviews and are expected to come to each class having read, thought about, and prepared to discuss the assigned readings and other assigned information resources. A course packet of reproduced articles, textbooks, a course web site, and Internet sites are used. Students submit brief analyses of, and comments and questions on, all assignments.

PSYCH 350(3500) Statistics and Research Design (II) (MQR)
Fall, summer (three-week), 4 credits.
Limited to 120 students. M W. F. Staff.
Acquaints the student with the elements of statistical description (e.g., measures of average, variation, correlation) and, more important, develops an understanding of statistical inference. Emphasis is placed on those statistical methods of principal relevance to psychology and related behavioral sciences.

PSYCH 361(3610) Biopsychology of Normal and Abnormal Behavior (also NS 361(3610)(I)(PBS; Supplementary List)
Spring. 3 credits. Limited to 50 students in psychology and 50 students in nutritional sciences.
Prerequisites: junior or senior standing; introductory biology and introductory psychology or permission of instructor. S-U grades optional. M W. F. B. J. Strupp.
Critical evaluation of factors thought to underlie normal and abnormal behavior and/or cognitive functioning. Psychological, biological, and societal influences are integrated. Topics include the biopsychology of learning and memory; nutritional influences on behavior/cognition (e.g., sugar, food additives, caffeine); cognitive dysfunction (e.g., amnesia, Alzheimer's disease); developmental exposure to environmental toxins and drugs of abuse; and psychiatric disorders (depression, eating disorders).

PSYCH 380(3800) Social Cognition (III) (SBA)
Fall. 3 credits.
Prerequisites: junior or senior standing; PSYCH 280. Not offered 2005–2006.
T. R. M. Ferguson.
What are the causes and consequences of our own and other's judgments, feelings, attitudes, and behaviors? This course introduces students to social cognition, which is a research perspective that uses both cognitive and social psychological theories and methodologies to explain such social phenomena.

PSYCH 396(3960) Introduction to Sensory Systems (also BIONB 396(3960)(II)(PBS)
Spring. 4 credits. Limited to 25 students.
Prerequisites: introductory biology or biopsychology. Course emphasizes perception in behavior, biopsychology, cognitive science, neuroscience, or perception; knowledge of elementary physics, chemistry, and behavior. S-U grades optional. Offered alternate years.
T. R. B. Halpern.
Covers both those characteristics of sensory systems that are common across living organisms and those sensory properties that represent adaptations to particular habitats, environments, or niches. The principles and limitations of major methods used to examine sensory systems are considered. Emphasis is on somesthesic, visual, and auditory systems. This course is taught using the Socratic method, in which the instructor asks questions of the students. Students are assigned original literature in the form of printed or electronic journal articles or reviews and are expected to come to each class having read, thought about, and prepared to discuss the assigned readings and other assigned information resources. A course packet of reproduced articles, textbooks, a course web site, and Internet sites are used. Students submit brief analyses of, and comments and questions on, all assignments.
by e-mail to the course's electronic mailing list a day before each class meeting. The mailing list distributes submissions to all members of the class and to the instructor. In addition to these brief tri-weekly written exercises, a web site or a term paper on a topic germane to the course is required. All examinations are in take-home format. At the level of *From Sound to Synapse* by C. D. Geisler and *The Retina* by J. E. Dowling, courseinfo.cit.cornell.edu/courses/psych_nibh_396/.

[PSYCH 401(4010) Theoretical Approaches to Psychopathology and Treatment (III)]

Fall. 3 credits. Limited to 20 students. Prerequisite: PSYCH 281 or 325. Times TBA. Not offered 2005–2006. Staff.

[PSYCH 402(4020) Current Research on Psychopathology: Depression (III)]

Spring. 4 credits. Limited to 20 students.
Prerequisite: PSYCH 325 or HD 370 and permission of instructor. M. Not offered 2005–2006. Staff.

Current research and theory on the nature and etiology of depression. Approaches from various perspectives (biological, psychological, sociocultural) are considered. Minimal attention given to psychotherapy and symptomatology.

[PSYCH 404(4040) Psychopathology and the Family (III)]

Spring. 4 credits. Limited to 20 students.
Prerequisite: PSYCH 325 or HD 370 and permission of instructor. M. Not offered 2005–2006. Staff.

Explores familial influences on the development of abnormal behavior. It examines how psychological, biological, and cultural factors in a family might contribute to such disorders as anorexia nervosa, depression, psychopathy, and psychosomatic illnesses. Emphasis is placed on early childhood experiences in the family and their impact on the development of later psychopathology. The course also discusses how the evolution of family structures in more recent times (e.g., the rise in day care and diverse family structures) is also examined.

[PSYCH 405(4050) Intuitive Judgment (III) (SBA)]

Fall. 4 credits. Limited to 18 students by application. Priority given to senior psychology majors. Prerequisites: at least one course in each of social and cognitive psychology. T. Gilovich.

Judgment pervades everyday experience. Can this person be trusted? Does this relationship have promise? Is the economy likely to flourish? This course examines how people answer such questions by examining—in depth—classical and contemporary scholarship on the subject. Readings are mostly primary sources.

[PSYCH 410(4101) Undergraduate Seminar in Psychology]

Fall or spring. 2 credits. Priority given to psychology majors. Staff.

Information on specific sections for each semester, including instructor, prerequisites, and time and place, may be obtained from the Department of Psychology office, 211 Uris Hall.

[PSYCH 412(4120) Laboratory in Cognition and Perception (III)]

Spring. 4 credits. Limited to 15 students. Prerequisite: statistics and one course in cognitive science or psychopathology recommended. Graduate students, see PSYCH 612. M W. D. J. Field.

Laboratory course designed to introduce students to experimental methods in perception and cognitive psychology. Students take part in a number of classic experiments and develop at least one independent project. Computers are available and used in many of the experiments although computer literacy is not required. Projects are selected from the areas of visual perception, pattern recognition, memory, and concept learning.

[PSYCH 413(4130) Information Processing: Conscious and Nonconscious (III)]

Spring. 4 credits. Prerequisites: at least one course in human experimental psychology and permission of instructor. PSYCH 350 or equivalent useful for evaluating empirical research. R. Not offered 2005–2006. Staff.

In the past decade, a not-so-quiet revolution has been taking place in the field of cognition regarding the problem of conscious mental computation. Data have come from patients with striking neuropsychological syndromes, i.e., the phenomenon of “blindsight” and the “amnesic” syndrome. The signature of independent mental computations has also been amply demonstrated in normal individuals in laboratory settings. This course critically evaluates the theoretical worth and empirical justifications for the distinction between conscious and nonconscious mental computations in normal and patient populations. Weekly readings are from, but not limited to, topics such as visual processes, face recognition, explicit and implicit memory, language processing, and social cognition. Students are required to: lead and partake in advanced-level discussions of classic and current papers; submit weekly summaries of the assigned readings; and write a term paper on a topic of their choice. Students should be prepared to read extensively!

[PSYCH 414(4140) Comparative Cognition (also COGST 414(4140) (III) (KCM)]

Spring. 3 or 4 credits; 4-credit option involves annotated bibliography or creation of relevant web site. Prerequisites: PSYCH 205, 209, 214, 223, 292 or permission of instructor. Graduate students, see PSYCH 714. T. R. Staff.

Examines some of the conceptual and empirical work resulting from and fueling the recent surge of interest in animals' thinking. Specific topics may include whether nonhumans behave intentionally; whether they show concept and category learning, memory, and abstract thinking similar to that of humans; the role of social cognition in the evolution of intelligence; and whether animals are conscious or self-aware. Evidence from communication studies in which animal signals provide a “window on the mind” plays a strong role in the course. Includes studies of naturally occurring signaling in various species and experiments in which nonhumans are trained in human-like language behavior. Cognition in nonhuman primates is a specific focus throughout. The course is a mix of lecture and discussion, emphasizing the latter as much as possible.

[PSYCH 415(4150) Concepts, Categories, and Word Meanings (III)]

Fall. 4 credits. Prerequisites: PSYCH 205, 209, 214, or 215, or permission of instructor. Graduate students, see PSYCH 615. Staff.

Consideration of what categories are psychologically important, how they are represented and used through concepts, and how category structure and semantic structure are interrelated. Different models of concept structure and categorization processes are evaluated, as are models of conceptual change and concept acquisition. Other topics include the relationship between conceptual and broader knowledge representation systems such as scripts, mental models, and intuitive theories; relative roles of associative information and beliefs in concept structure; categorization in other species; neuropsychological studies of categorization; comparisons of categorization systems across cultures; and comparisons of concept structures across different categories.

[PSYCH 416(4160) Modelling Perception and Cognition (also COGST 416(4160)] (III)

Spring. 4 credits. Prerequisites: PSYCH 205, 209, 214, or 215, or permission of instructor. Graduate students, see PSYCH 616. M W. F. M. Spivey.

Offers a survey of several computational approaches to understanding perception and cognition. Explores linear systems analysis, connectionist models, dynamical systems, and production systems, to name a few. Emphasis is placed on how complex sensory information gets represented in these models, as well as how it gets processed. Covers computational accounts of language processing, language acquisition, visual perception, and visual development, among other topics. Students complete a final project that applies a computational model to some perceptual/cognitive phenomena.

[PSYCH 417(4170) The Origins of Thought and Knowledge (III)]

Fall. 4 credits. Prerequisite: permission of instructor. Graduate students, see PSYCH 717. M W. Not offered 2005–2006. Staff.

In-depth analysis of current theories concerning the growth of thought and knowledge in infancy and early childhood. This course addresses the following questions: How do infants come to understand the objects and events they experience? What are the best methods for assessing development of perception, cognition, and language? How do developing perceptual, cognitive, and language skills constrain object perception? What are the applications of research on early perceptual and cognitive development to such fields as robotics and artificial intelligence?

[PSYCH 418(4180) Psychology of Music (also MUSIC 418(4181) (III) (KCM)]

Fall. 3 or 4 credits, depending on whether student elects to do independent project. Indicated for upper-level students in music, psychology, engineering, computer science, linguistics, physics, anthropology, biology, and related disciplines. Some music background desirable but no specific musical skills required. Graduate students, see PSYCH 618. M W. C. L. Kruman. Covers the major topics in the psychology of music treated from a scientific perspective. Reviews recent developments in the cognitive science of music, beginning with music.
Studies the relationship between structure and function in the central nervous system. Stresses the importance of evolutionary and mechanistic approaches for understanding the human behavior and cognition. Focuses on issues in cognitive neuroscience, including mechanisms of perception, particularly vision, and the neuropsychology of everyday acts involving complex cognitive skills such as recognition of individuals, navigation in the world, language, memory, social interaction, and consciousness.

PSYCH 427(4270) Evolution of Language (also COGST 427[4270], PSYCH 627[6270])
Fall. 3 credits. Prerequisite: junior or senior standing; any one course in psychology or human development. Graduate students, see PSYCH 627. S-U grades optional. Offered alternate years. M. Christiansen. Seminar surveying a cross-section of modern theories and approaches to problems in the study of language. Includes consideration of species-specific aspects of language and the evolution of language. Students complete weekly lab reports and develop one independent project demonstrating the application of a neural network to a problem discussed in the course.

PSYCH 422(4220) Developmental Biopsychology (III) (KCM)
Fall. 4 credits. Prerequisites: introductory biology or neurobiology or psychology course (e.g., PSYCH 223 or BIONB 221). Graduate students, see PSYCH 622. M W F. Not offered 2005-2006. B. L. Finlay. Stresses the importance of evolutionary and mechanistic approaches to problems in the development of behavior. Topics include how neurons are generated, finding targets, and establishing connections; the emergence of reflexive and complex behavior; how experience affects the developing brain; evolutionary perspectives on the development of perception, memory, and communication systems, and abnormal development.

PSYCH 424(4240) Neuroethology (also BIONB 424[4240]) (I) (PBS)
Spring. 3 credits. Prerequisites: BIONB 221 or 222 or BIO G 101–102 and permission of instructor. S-U grades optional. M W F: disc, one hour each week. Not offered 2005–2006. C. D. Hopkins. Takes a hands-on approach to understanding the limitations and successful applications of neural networks to problems in cognitive and biological psychology. A variety of neural network architectures are discussed and explored using computer simulations. Applications of networks to perceptive recognition and representation are emphasized. Students consider the class of problems that different networks can solve and consider the accuracy with which they model real nervous systems. Students complete weekly labs and develop one independent project demonstrating the application of a neural network to a problem discussed in the course.

PSYCH 428(4280) Connectionist Psycholinguistics (also COGST 428[4280]) (III)
Fall. 3 credits. Prerequisite: senior standing or permission of instructor. Graduate students, see PSYCH 628. Offered alternate years. T. M. Christiansen. Connectionist psycholinguistics involves using (artificial) "neural" networks, which are inspired by brain architecture, to model empirical data on the acquisition and processing of language. As such, connectionist psycholinguistics has had a far-reaching impact on language research. This course surveys the state of the art of connectionist psycholinguistics, ranging from speech processing and word recognition, to inflectional morphology, sentence processing, language production and reading. Students read, analyze, and discuss in class the assigned readings, and are expected to come to each class having already done and thought about the assigned readings, and to take an active part in every class. All examinations are take-home. At the level of Stevens' *Handbook of Experimental Psychology*: Vol. 1. Sensation and Perception; Handbook of Offaestion and Gustation, 2nd ed., R. L. Doty, ed.; *Neurobiology of Taste and Smell*, 2nd ed., T. E. Finger, W. L. Silver, and D. R. Restrepo, eds.; *Smell and Taste in Health and Disease* (T. V. Mitchell et al., eds.); *Mechanisms of Taste Transduction* (S. A. Simon and S. D. Roper, eds.); and *Neuroscience* (D. Purves et al., eds.).

PSYCH 431(4310) Effects of Aging on Sensory and Perceptual Systems (also BIONB 431[4310]) (I) (PBS)
Fall. 3 or 4 credits. This course involves term paper or creation of relevant web site. Limited to 35 students. Prerequisites: introductory biology or psychology, plus second course in perception, neurobiology, cognitive science, or biopsychology. T R. Not offered 2005–2006. B. P. Halpern. Literature-based examination of post-maturation changes in the perceptual, structural, and physiological characteristics of somesthetic, visual, auditory, and chemosensory systems. Emphasis is on human data, with nonhuman information included when especially relevant. Quality of life issues are included. Current developments in human sensory prosthetic devices, and in regeneration or replacement of receptor structures or organs are examined. Brief written statements by e-mail of questions and problems related to each set of assigned readings are required. Examinations are take-home. At the level of Stevens' *Handbook of Experimental Psychology*: Vol. 1. Sensation and Perception; Handbook of Offaestion and Gustation, 2nd ed., R. L. Doty, ed.; *Neurobiology of Taste and Smell*, 2nd ed., T. E. Finger, W. L. Silver, and D. R. Restrepo, eds.; *Smell and Taste in Health and Disease* (T. V. Mitchell et al., eds.); *Mechanisms of Taste Transduction* (S. A. Simon and S. D. Roper, eds.); and *Neuroscience* (D. Purves et al., eds.).

PSYCH 429(4290) Olfaction and Taste: Structure and Function (also BIONB 429[4290]) (I) (PBS)
Spring. 3 or 4 credits. 4-credit option requires term paper or creation of web site. Limited to 35 students. Priority given to junior and senior psychology or neurobiology or biology majors and graduate students. Prerequisite: 300-level course in biopsychology or neurobiology or equivalent. Graduate students, see PSYCH 629. S-U grades optional. Offered alternate years. T. M. Christiansen. Seminar surveying a cross-section of modern theories and approaches to problems in the study of smelling and tasting. Topics include how neurons are generated, finding targets, and establishing connections; the emergence of reflexive and complex behavior; how experience affects the developing brain; evolutionary perspectives on the development of perception, memory, and communication systems, and abnormal development.

PSYCH 425(4250) Cognitive Neuroscience (also BIONB 425[4250]) (KCM)
Fall. 4 credits. Prerequisites: introductory biology, biopsychology or neurobiology (e.g., PSYCH 223 or BIONB 221); and introductory course in perception, cognition, or language (e.g., PSYCH 102, 209, 214, or 215). Graduate students, see PSYCH 625. S-U grades optional. M W F. Offered alternate years. B. L. Finlay. Takes a hands-on approach to understanding the limitations and successful applications of neural networks to problems in cognitive and biological psychology. A variety of neural network architectures are discussed and explored using computer simulations. Applications of networks to perceptive recognition and representation are emphasized. Students consider the class of problems that different networks can solve and consider the accuracy with which they model real nervous systems. Students complete weekly labs and develop one independent project demonstrating the application of a neural network to a problem discussed in the course.

PSYCH 419(4190) Neural Networks Laboratory
Spring. 4 credits. Limited to 15 students. Prerequisites: at least one course in biology, psychology, or neuroscience, one year of calculus, and permission of instructor. Graduate students, see PSYCH 619. T R. Not offered 2005–2006. D. J. Field. Takes a hands-on approach to understanding the limitations and successful applications of neural networks to problems in cognitive and biological psychology. A variety of neural network architectures are discussed and explored using computer simulations. Applications of networks to perceptive recognition and representation are emphasized. Students consider the class of problems that different networks can solve and consider the accuracy with which they model real nervous systems. Students complete weekly labs and develop one independent project demonstrating the application of a neural network to a problem discussed in the course.

PSYCH 418(4180) Olfaction and Taste: Structure and Function
Fall. 3 credits. Prerequisite: any course in psychology or biology. Graduate students, see PSYCH 618. S-U grades optional. Offered alternate years. M. Christiansen. Seminar surveying a cross-section of modern theories and approaches to problems in the study of smelling and tasting. Topics include how neurons are generated, finding targets, and establishing connections; the emergence of reflexive and complex behavior; how experience affects the developing brain; evolutionary perspectives on the development of perception, memory, and communication systems, and abnormal development.

PSYCH 419(4190) Neural Networks Laboratory
Spring. 4 credits. Limited to 15 students. Prerequisites: at least one course in biology, psychology, or neuroscience, one year of calculus, and permission of instructor. Graduate students, see PSYCH 619. T R. Not offered 2005–2006. D. J. Field. Takes a hands-on approach to understanding the limitations and successful applications of neural networks to problems in cognitive and biological psychology. A variety of neural network architectures are discussed and explored using computer simulations. Applications of networks to perceptive recognition and representation are emphasized. Students consider the class of problems that different networks can solve and consider the accuracy with which they model real nervous systems. Students complete weekly labs and develop one independent project demonstrating the application of a neural network to a problem discussed in the course.

PSYCH 425(4250) Cognitive Neuroscience (also BIONB 425[4250]) (KCM)
Fall. 4 credits. Prerequisites: introductory biology, biopsychology or neurobiology (e.g., PSYCH 223 or BIONB 221); and introductory course in perception, cognition, or language (e.g., PSYCH 102, 209, 214, or 215). Graduate students, see PSYCH 625. S-U grades optional. M W F. Offered alternate years. B. L. Finlay. Takes a hands-on approach to understanding the limitations and successful applications of neural networks to problems in cognitive and biological psychology. A variety of neural network architectures are discussed and explored using computer simulations. Applications of networks to perceptive recognition and representation are emphasized. Students consider the class of problems that different networks can solve and consider the accuracy with which they model real nervous systems. Students complete weekly labs and develop one independent project demonstrating the application of a neural network to a problem discussed in the course.

PSYCH 427(4270) Evolution of Language (also COGST 427[4270], PSYCH 627[6270])
Fall. 3 credits. Prerequisite: junior or senior standing; any one course in psychology or human development. Graduate students, see PSYCH 627. S-U grades optional. Offered alternate years. M. Christiansen. Seminar surveying a cross-section of modern theories and approaches to problems in the study of language. Includes consideration of species-specific aspects of language and the evolution of language. Students complete weekly lab reports and develop one independent project demonstrating the application of a neural network to a problem discussed in the course.
PSYCH 435(4350) Olfaction, Pheromones, and Behavior (III)
Fall. 4 credits. Prerequisites: introductory biology, neurobiology, and behavior or biopsychology or 300-level course in biopsychology or permission of instructor: R. Johnston. Covers chemical signals, olfaction, and behavior in vertebrates (including humans), as well as the neurobiology of olfaction and odor-mediated behaviors. Behavioral topics may vary from year to year but include evaluation of and advertisement for mates, aggression and territorial behavior, parental-young interactions, social recognition (species, sex, individual, kin reproductive state, status), memory for odors, odor and endocrine interactions, imprinting, and homing and navigation. Basic aspects of the structure and function of the olfactory system and also covered, including the molecular biology of chemo-reception, olfactory coding, and higher-order processing in the central nervous system. The format includes lectures, discussions, and student presentations.

PSYCH 436(4360) Language Development (also COGST 436(4360), HD 436(4360), LING 436(4363) (III) (KCM)
Spring. 4 credits. Open to undergraduate and graduate students. Graduate students should also enroll under HD 633/LING 700/PSYCH 600, supplemental graduate seminar. Prerequisite: at least one course in developmental psychology, cognitive psychology, cognitive development, or linguistics. S-U grades optional. T. R. B. Lust. Surveys basic issues, methods, and research in the study of first-language acquisition. Major theoretical positions in the field are considered in the light of experimental studies in first-language acquisition of phonology, syntax, and semantics from infancy on. The fundamental linguistic issues of "universal grammar" and the biological foundations for acquisition are discussed, as are the issues of relations between language and thought. The acquisition of communication systems in nonhuman species such as chimpanzees is addressed, but major emphasis is on the child. An optional self-paced course supplement is available. (see COGST 450/LING 450 and PSYCH 437.)

PSYCH 437(4370) Lab Courses: Language Development (also COGST 450(4500), LING 450(4505), HD 457(4570) (in conjunction with COGST 436(4360), HD 436(4360), LING 436(4363), Language Development)
Spring. 2 credits. R. B. Lust. Optional supplement to the survey course Language Development (HD/COGST/PSYCH/LING 436). Provides students with a hands-on introduction to scientific research, including design and methods, in the area of first-language acquisition.

PSYCH 440(4400) The Brain and Sleep
Fall. 4 credits. Prerequisites: at least PSYCH 223 or BIONB 221. Recommended: additional course in biology, biopsychology, or neurobiology. S-U grades optional. Graduate students, see PSYCH 640. M. W. H. S. Porte. Taking a comparative evolutionary perspective, this course examines the neural events that instigate, maintain, and disturb the states and rhythms of sleep in various species. Emphasizing human data where possible, special topics include sleep deprivation and the biological functions of sleep; biologically interesting deviations from normal sleep; and the cognitive neuroscience of sleep, including sleep's possible role in learning and memory.

PSYCH 441(4410) Laboratory in Sleep Research
Spring. 4 credits. Lab fee: $50. Graduate students, see PSYCH 641. W. H. S. Porte. Emphasizing the neurobiology of sleep state, this course immerses students in the laboratory study of human sleep and its psychological correlates. Serving as both experimenter and subject, each student learns the physical rationale and techniques of electroencephalography and other bioelectric measures of behavioral state. Using computerized data analysis, students complete weekly laboratory reports and a collaborative term project. Sleep recordings are done during the day or evening when possible. In addition, overnight recording sessions are required.

PSYCH 450(4500) Gender and Clinical Psychology (also PSYCH 650(6500), FGSS 450(4505)) (III)
Fall. 4 credits. Limited to 15 students. Prerequisite: introductory or graduate standing and course related to psychopathology and/or feminist analysis; permission of instructor through application process during preceding spring semester. Graduate students, see PSYCH 650. Letter grades only. Not offered 2005-2006. M. S. Bem. Advanced undergraduate/graduate seminar exploring feminist analyses of several interrelated topics in the construction of clinical psychology/psychiatry and gender/sexuality. Topics include, among others, hysteria, borderline personality disorder, multiple personaliy, anorexia, trauma, transsexuality, and homosexuality. Course requirements include weekly informal written commentaries on the readings, a final essay examination, and an in-class presentation on a self-selected topic.

PSYCH 452(4520) Trauma and Treatment (also PSYCH 652(6520))
Fall. 4 credits. Limited to 15 students. Priority given to senior psychology and human development majors. Prerequisite: course work in both psychopathology and social development; permission of instructor by e-mail application during preregistration. Letter grades only. S. Bem. An in-depth examination of psychological trauma and its treatment in psychotherapy. Special attention is given to the neuroscience of danger, defense, and emotional dysregulation, and the study traumatic attachment on development, the key role of dissociation, and an array of treatments including dialectical behavior therapy, play therapy, sensorimotor therapy, gestalt therapy, and psychodynamic therapy.

PSYCH 460(4600) Human Neuroanatomy
Spring. 3 or 4 credits. 4 credits involves one disc/lab per week in which students dissect sheep brains, read original research papers, and write term paper; Prerequisites: PSYCH 223, or BIONB 222, or permission of instructor for 4-credit option; junior, senior, or graduate standing. No auditors. Letter grades only. Cec, M W F; disc, TBA. Not offered 2005-2006. Staff.

Neuroanatomy is the substrate for the functional organization of the human nervous system. This course introduces the brain nuclei and major connecting pathways of functional neural systems: sensory, motor, and integrative. Our understanding of the functions of these systems is based in part on their dysfunction, on the symptoms of neurological and psychiatric diseases that damage or inactivate selected pathways. This course highlights neuroanatomical pathways and networks that are known, or hypothesized, to be dysfunctional in a variety of nervous system disorders.

PSYCH 465(4650) Topics in High-Level Vision (also COGST 465(4650), COM S 392) (III) (KCM)
Spring. 4 credits. Graduate students, see PSYCH 665. Offered alternate years; not offered 2005-2006. S. Edelman. High-level vision is a field of concern with functions such as visual object recognition and categorization, scene understanding, and reasoning about visual structure. It is an essentially cross-disciplinary endeavor, drawing on concepts and methods from neuroscience and neuropsychology, cognitive psychology, applied mathematics, computer science, and philosophy. This course concentrates on a critical examination of a collection of research publications, linked by a common thread, from the diverse perspectives offered by the different disciplines. Students write biweekly commentaries on the assigned papers and a term paper integrating the material covered in class.

PSYCH 470(4700) Undergraduate Research in Psychology
Fall or spring. 1-4 credits. Prerequisite: written permission from staff member who will supervise the work and assign grade must be included with course enrollment material. Students should enroll in section listed for that staff member; section list available from Department of Psychology. S-U grades optional. Staff. Practice in planning, conducting, and reporting independent laboratory, field, and/or library research.

PSYCH 471(4710) Advanced Undergraduate Research in Psychology
Fall or spring. 1-4 credits. Prerequisite: written permission of staff member who will supervise work and assign grade must be included with course enrollment material. Students should enroll in the course supplement that carries the work and assign grade. S-U grades optional. Staff. Advanced experience in planning, conducting, and reporting independent laboratory, field, and/or library research. One, and preferably two, semesters of PSYCH 470 is required. The research should be more independent and/or involve more demanding technical skills than that carried out in PSYCH 470.

PSYCH 472(4720) Multiple Regression
Spring, weeks 1-7. 2 credits. Prerequisite: one solid semester of introductory statistics. Recommended: analysis of variance. M. W. F. E. Stange. Covers uses and pitfalls of multiple regression in causal analysis, path analysis, and prediction. Emphasis is on analyzing data collected under uncontrolled conditions. Includes collinearity, indicator variables,
and has been broadly applied to classic social psychological phenomena, including judgments, attitudes, emotion, motivation, and behavior. The crux of this moment is the controversy that such phenomena can occur without a person's awareness, intent, or control. Although there is an abundance of empirical work on this topic, there are many unanswered and interesting questions. The objective of the course is twofold. The first is for students to learn the automaticity literature in social psychology; the second is to identify such critical questions, and speculate on possible answers. The course reviews the range of theoretical and empirical work on automaticity and examines contemporary definitions of automaticity within social and other areas of psychology. The analysis of automaticity is necessarily closely linked with issues such as unconscious vs. conscious processing, attention, control, intentionality, and free will.

PSYCH 489/4890 Seminar: Beliefs, Attitudes, and Ideologies (also PSYCH 488/688(4890/6890)(III)(CA))
Fall. 4 credits. Prerequisites: admission by application during spring pre-registration period for fall semester. Priority given to juniors, seniors, and graduate students. M. J. Bern. Course in cultural analysis examining the properties of beliefs and attitudes, how they are formed, and the psychological functions they serve, and how they get organized into ideologies. Several topics are involved in America's "culture wars" examined, such as abortion, gender, sexual orientation, and affirmative action. Other topics include the culture of childhood, deaf culture, and the ideologies of science. Participants write weekly commentaries on the readings and a term paper examining a particular ideology.

PSYCH 491/4910 Research Methods in Psychology (also COGST 491/4910)
Spring. 4 credits. Limited to 20 students. Recommended: permission of instructor. PSYCH 350, upper-division psychology courses, or graduate standing. Graduate students, see PSYCH 691. D. A. Dunning. An intensive examination of the basic research methods used in social, personality, cognitive, and developmental psychology. The course focuses on designing and conducting experiments, i.e., how to turn vague theories into concrete and testable notions, evaluate studies, avoid common pitfalls, and, finally, remain ethical. Beyond learning methods and writing up the results.

PSYCH 492/4920 Sensory Function (also BIOM 492/4920, VISIT 492)
Spring. 4 credits. Limited to 25 students. Prerequisites: 300-level biopsychology course, or BIOM 222 or BIOAP 311, or equivalent; knowledge of elementary physics, chemistry, and behavior. S-U grades only. Course topics, see PSYCH 692. M. W. F. Offered alternate years; not offered 2005-2006. B. P. Halpern and H. C. Howland.

In general, this course has covered classical topics in sensory function such as vision, hearing, touch, and balance, as well as some more modern topics like sensory processing, location of stimulus sources in space, the development of sensory system, and non-classical topics such as electrophysiology and internal chemoreceptors.

Advanced Courses and Seminars
Advanced seminars are primarily for graduate students, but with the permission of the instructor they may be taken by qualified undergraduates. The selection of seminars to be offered each semester is determined by the needs of the students. A supplement describing these advanced seminars is available at the beginning of each semester and can be obtained from the department office (211 Uris Hall). The following courses may be offered either semester and carry 4 credits unless otherwise indicated.

PSYCH 510-511(6100-6110) Perception
PSYCH 512-514(6120) Visual Perception
PSYCH 518(6181) Topics in Psycholinguistics
PSYCH 519-520(6300/6830) Cognition
PSYCH 521(6210) Behavioral and Brain Sciences
PSYCH 522(6220) Topics in Perception and Cognition
PSYCH 523(6230) Hormones and Behavior
PSYCH 527(6270) Topics in Biopsychology

PSYCH 530-5300 Structure in Vision and Language (also COGST 530(5300), LING 530(5330), COM S 393)
Spring. 4 credits. Graduate seminar. Limited to 20 graduate students. Prerequisites: graduate standing; course each in cognitive psychology, linguistics, computer science, or permission of instructor. Offered alternate years. S. Edelman.

One of the central puzzles of cognition is the manner in which brains deal with structured information such as scenes composed of a variety of objects, or sentences composed of words and phrases. The processing of structure by the brain, or perceiving of primary tasks, is constrained by the neuronal architecture, as well as by general principles of information processing that are studied in computer science. This course focuses on insights from these different disciplines, serving as a foundation for understanding each in abstract computational terms, yet compatible with the basic neurobiological constraints, with behavioral data, and with philosophical intuition.
What does it mean to be a mind? How is a mind affected by its embodiment? By the body's immersion in the world? By not having a body in the first place, or not any longer? Is there a world out there? Profound questions about the nature of the human mind and its relationship to reality are found in the writings of a handful of visionaries (Philip K. Dick, Ursula K. LeGuin, Greg Egan, and others) discussed in this course. The discussions are grouped into six themes: dreaming and reality, sanity and madness, self and others, sex and embodiment, death and immortality, humanity and transhumanism.

PSYCH 613(3150) Obesity and the Regulation of Body Weight (also NS 315[3150])
Spring. 4 credits. Limited to 30 students. Prerequisites: one course each in biology and nutrition, or undergraduates by permission of instructor. S-U grades optional. Offered alternate years. T R. D. A. Levitsky.

Multidisciplinary discussion of the causes, effects, and treatments of human obesity. Topics include the biopsychology of eating behavior, the genetics of obesity, the role of activity and energy metabolism, psychosocial determinants of obesity, anorexia nervosa, therapy and its effectiveness, and social discrimination.

PSYCH 535(6350) Evolutionary Perspectives on Behavior

PSYCH 541(6410) Statistics in Current Psychological Research

PSYCH 550(6500) Special Topics in Cognitive Science

PSYCH 580(6800) Experimental Social Psychology

PSYCH 600(6000) General Research Seminar
Fall or spring. 0 credits.

PSYCH 605(6050) Perception (also PSYCH 205[2050])
Spring. 4 credits. Non-arts graduate students only. T R. J. E. Cutting.

PSYCH 611(6110) Introduction to Human Memory (also PSYCH 311[3110])

PSYCH 612(6120) Laboratory in Cognition and Perception (also PSYCH 412[4120])

PSYCH 614(6140) Cognitive Psychology (also PSYCH 214[2140])

PSYCH 615(6150) Concepts, Categories, and Word Meaning (also PSYCH 415[4150])

PSYCH 616(6160) Modeling Perception and Cognition (also PSYCH 416[4160], COGST 416[4160])
Spring. 4 credits. M. Spivey.

PSYCH 618(6180) Psychology of Music (also PSYCH 418[4180])
Fall. 4 credits. M W. C. Krumhansl.

PSYCH 619(6190) Neural Networks Laboratory (also PSYCH 419[4190])

PSYCH 622(6220) Developmental Biopsychology (also PSYCH 422[4220])

PSYCH 625(6250) Cognitive Neuroscience (also PSYCH 425[4250])
Fall. 4 credits. M W. B. F. L. Finlay.

PSYCH 626(6260) Evolution of Human Behavior (also PSYCH 326[3260])
Spring. 4 credits. T R. R. E. Johnstone.

PSYCH 627(6270) Evolution of Language (also COGST/PSYCH 427[4270])
Fall. 4 credits. M. Christiansen.

PSYCH 628(6280) Connectionist Psycholinguistics (also PSYCH 428[4280])
Fall. 4 credits. W. M. Christiansen.

PSYCH 631(6310) Effects of Aging on Sensory and Perceptual Systems (also PSYCH 431[4310], BIONB 421[4210])
Fall. 4 credits. T R. B. P. Halpem.

PSYCH 632(6320) Biopsychology of Learning and Memory (also PSYCH 332[3320], BIONB 328[3280])
Spring. 4 credits. M W. F. T. J. DeVoogd.

PSYCH 640(6400) The Brain and Sleep (also PSYCH 440[4400])
Fall. 4 credits. M W. H. S. Porte.

PSYCH 641(6410) Laboratory in Sleep Research (also PSYCH 441[4410])
Spring. 4 credits. W. H. S. Porte.

PSYCH 642(6420) Human Perception: Applications to Computer Graphics, Art, and Visual Display (also PSYCH/COGST 432[4320])
Fall. T R. D. J. Field.

PSYCH 650(6500) Gender and Clinical Psychology (also PSYCH 450[4500], FGSS 450[4500], 4500[4500])

PSYCH 652(6520) Trauma and Treatment (also PSYCH 452[4520])
Fall. 4 credits. S. Benj.

PSYCH 655(6550) Topics in High-Level Vision (also PSYCH 465[4650], COGST 465[4650], COM S 392)
Spring. 4 credits. S. Edelman.

PSYCH 661(6610) Advanced Social Psychology (also PSYCH 481[4810])
Fall. 4 credits. T R. D. T. Regan.

PSYCH 682(6820) Automaticity (also PSYCH 482[4820])
Spring. 4 credits. M. Ferguson.

PSYCH 689(6890) Seminar: Beliefs, Attitudes, and Ideologies (also PSYCH 489[4890])
Fall. 4 credits. M. D. J. Bern.

PSYCH 691(6910) Research Methods in Psychology (also PSYCH 491[4910])
Spring. 4 credits. T R. D. A. Dunning.

PSYCH 692(6920) Sensory Function (also PSYCH/BIONB 492[4920])

PSYCH 696(6960) Introduction to Sensory Systems (also PSYCH/BIONB 396[3960])

PSYCH 700(7000) Research in Biopsychology

PSYCH 709(7090) Developmental Psychology (also PSYCH 209[2090])
Spring. 4 credits. M W. Staff.

PSYCH 710(7100) Research in Human Experimental Psychology

PSYCH 713(7130) Information Processing: Conscious and Nonconscious (also PSYCH 413[4130])
Spring. 4 credits. R. Staff.

PSYCH 714(7140) Comparative Cognition (also PSYCH/COGST 414[4140])
Spring. 4 credits. T R. M. Staff.

PSYCH 715(7150) Psychology of Language (also PSYCH 215[2150])
Spring. 4 credits. T R. M. Christiansen.

PSYCH 716(7160) Auditory Perception (also PSYCH 316[3160])

PSYCH 717(7170) The Origins of Thought and Knowledge (also PSYCH 417[4170])

PSYCH 720(7200) Research in Social Psychology and Personality

PSYCH 722(7220) Hormones and Behavior (also PSYCH/BIONB 322[3220])

PSYCH 775(7750) Proseminar in Social Psychology I
Fall. 2 credits. Limited to 10 students. Prerequisite: graduate students in social psychology; permission of instructors. D. Dunning, M. Ferguson, T. Gilovich, and D. Regan.

First semester of a yearlong discussion-seminar course intended to give graduate students an in-depth understanding of current research and theory in social psychology. Emphasizes social cognition, but other topics, such as group dynamics, social influence, the social psychology of language, and emotional experience, are covered.
or allied disciplines or subdisciplines (e.g., history of religions, religion and literature, religion and psychology, ethics, theology, area studies), (2) students seeking courses on topics relating to religion to fulfill distribution requirements; and (3) students desiring a more systematic exposure to the academic study of religion as a significant component of a liberal arts education. To all students, our program offers an excellent opportunity to develop a deeper understanding and appreciation of the complex ways in which religious traditions inform human thought and behavior. The courses offered through our program are built on the established scholarly tradition of the study of religion as an academic, as opposed to confessional, pursuit. Religious traditions are explored in all of their complexity through comparative, contextual (in specific historical or cultural contexts), and thematic studies.

The program also hosts lecture series, conferences, symposia, and periodic social gatherings for faculty members and students throughout the academic year to foster a sense of intellectual community.

The Major in Religious Studies

Signing into the major:
To sign into the major in Religious Studies, a student must have completed at least one course in Religious Studies before scheduling an appointment with the program director. Here is the process:

1. Schedule an appointment with the director of the Religious Studies Program, whose name and e-mail address can be found on the Religious Studies website.

2. In addition to a copy of the current Cornell transcript (the informal one students regularly receive is acceptable), students should bring to their meeting with the director all of these forms, available in the Religious Studies office, 409 White Hall:
 a. a completed Religious Studies major application form
 b. a proposed "course of study," which will be used as a guide in the student's conversation with the director and revised for formal submission to the program upon your entrance as a major
 c. a College of Arts and Sciences adviser/major form, which will be signed by the director and adviser. The adviser will be assigned in the student's meeting with the director based on interest.

Advising in the Religious Studies Program:
Upon entering the major in Religious Studies, a student is assigned a faculty adviser whose area of expertise most closely matches the proposed interest of the student. An up-to-date approved adviser list is available in the Religious Studies office. Note that not all faculty members who cross-list courses with RELST can serve as RELST advisers. Working closely with one's RELST adviser when selecting courses is an important component of this program, enabling students to fulfill the requirements for the major while creating an integrated and coherent course of study out of our large number of multidisciplinary course offerings.

To graduate as a major in Religious Studies, a student must (1) complete with letter grades the program's three core courses, RELST 250 Introduction to Asian Religions, RELST 251 Introduction to Judaism, Christianity, and Islam, and RELST 449 History and Methods of the Academic Study of Religion; and (2) complete with letter grades seven additional courses approved for the major.

Students must complete 10 courses cross-listed with Religious Studies.

Three Core Courses:
- RELST 250 Introduction to Asian Religions
- RELST 251 Introduction to Judaism, Christianity, and Islam
- RELST 449 History, Theory, and Methods in the Academic Study of Religion

The requirement for either or both RELST 250/251 may be satisfied by taking two or more courses in the relevant traditions with some attention to breadth:

- The requirement for RELST 250 may be satisfied by taking at least one course on South Asian traditions AND one course on East Asian traditions.

- The requirement for RELST 251 may be satisfied by taking at least one course in each of two or more of the traditions of Near Eastern origin (Judaism, Christianity, and Islam).

Absolutely no student will be exempted from RELST 449.

Seven Additional Courses
In selecting their additional courses for the major, students are expected to consult closely with their advisers to ensure that their programs have adequate breadth in Religious Studies generally and depth in a particular tradition, cultural area, or approach to the field.

Most courses approved for the major are offered by cooperating departments within the College of Arts and Sciences. A comprehensive up-to-date list of these courses is maintained at the office of the Religious Studies Program, 409 White Hall.

Graduating with Honors in Religious Studies:

GENERAL INFORMATION

1. **Eligibility.** 3.0 cumulative average and 3.5 average inside the major with no grade in the major below B-. Program director notifies eligible candidates during the spring semester of the junior year or before commencement of final year.

2. **Honors Courses.** Candidates must sign into RELST 495 Senior Honors Essay for 8 credits (two courses) for two semesters. After the first semester, an R in the transcript indicates that this course (usually for 8 credits) is a yearlong course. When the project is completed at the end of the second semester, the grade recorded counts for all 8 credits. (The 8-credit limit is the result of the conviction/ belief that earning more than 8 credits for a single "piece" of one's undergraduate education is unwise.)

The student submits the honors proposal (with and according to the program's instruction/cover sheet) to the Religious Studies administrator before the end of the spring semester of the junior year, or
RELIGIOUS STUDIES MAJOR

not later than Sept. 15 of the final year. The administrator then approves the student’s signing into the honors courses.

3. Honors Committee—three faculty members. While students are required to have three faculty members on their committee at the time of the submission of the final draft, only two of them must be identified when the proposal is submitted. In the event the adviser is on leave, the program will assign a committee member from the list of approved RELST advisers. The three members should be:

a. The professor who has agreed to work closely with the student over the year and to be the supervisor/gradr of the project is chair of the committee.

b. The student’s Religious Studies major adviser (required)

c. Another knowledgeable faculty member Sometimes the adviser is the supervisor/chair. If that is the case, the student needs two additional knowledgeable professors for the committee of three.

Courses Approved for the Major Sponsored by Religious Studies

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Description</th>
<th>Credits</th>
<th>Semester</th>
<th>Instructor</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>RELST 133-134([1211-1212])</td>
<td>Introduction to Qur'anic and Classical Arabic</td>
<td>Also NES 133-134([1211-1212])</td>
<td>133, Fall; 134, Spring.</td>
<td>4 credits. Fall, S. Toorawa; Spring, D. Powers.</td>
<td>Not offered 2005-2006.</td>
<td></td>
</tr>
<tr>
<td>RELST 202(210S)</td>
<td>The Greek New Testament</td>
<td>Also CLASS 202(2105),</td>
<td>N.E.S. 230(2730)</td>
<td>Spring.</td>
<td>3 credits. Prerequisites: at least one year of Ancient Greek (CLASS 101-105 or 104, or permission of instructor).</td>
<td>For description, see CLASS 202.</td>
</tr>
<tr>
<td>RELST 211(2110)</td>
<td>Black Religious Traditions: Sacred and Secular</td>
<td>Also AM ST 251([2110],</td>
<td>HIST 211(2110))</td>
<td>Fall.</td>
<td>4 credits. M. Washington.</td>
<td>For description, see HIST 211.</td>
</tr>
<tr>
<td>RELST 220(2220)</td>
<td>Buddhism in America</td>
<td>Also ASIAN 220([2220])</td>
<td>Winter.</td>
<td>3 credits. Not offered 2005–2006.</td>
<td>J. M. Law.</td>
<td>For description, see ASIAN 220.</td>
</tr>
<tr>
<td>RELST 223(2623)</td>
<td>Introduction to the Hebrew Bible</td>
<td>Also NES/JWST 223(2623)]</td>
<td>Fall.</td>
<td>3 credits. Staff.</td>
<td>For description, see NES 223.</td>
<td></td>
</tr>
<tr>
<td>RELST 224(2624)</td>
<td>Introduction to the Bible II</td>
<td>Also NES/JWST 224(2624)])</td>
<td>3 credits. Not offered 2005–2006. Staff.</td>
<td>For description, see NES 224.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RELST 226(2646)</td>
<td>Atheism Then and Now</td>
<td>Also CLASS 226(2646)]</td>
<td>Spring.</td>
<td>3 credits. J. Coleman.</td>
<td>For description, see CLASS 226.</td>
<td></td>
</tr>
<tr>
<td>RELST 229(2629)</td>
<td>Introduction to the New Testament</td>
<td>Also NES/JWST 229(2629)]</td>
<td>Fall.</td>
<td>3 credits. K. Haines-Eitzen.</td>
<td>For description, see NES 229.</td>
<td></td>
</tr>
<tr>
<td>RELST 237(2607)</td>
<td>Greek Religion and Mystery Cults</td>
<td>Also CLASS 237([2607)]</td>
<td>Spring.</td>
<td>3 credits. Not offered 2005–2006.</td>
<td>K. Clinton.</td>
<td>For description, see CLASS 237.</td>
</tr>
<tr>
<td>RELST 239(2639)</td>
<td>Cultural History of Jews of Spain</td>
<td>Also NES/JWST/SPANL 239(2639)]</td>
<td>Fall.</td>
<td>3 credits. Not offered 2005–2006. Staff.</td>
<td>For description, see NES 239.</td>
<td></td>
</tr>
<tr>
<td>RELST 244(2644)</td>
<td>Introduction to Ancient Judaism</td>
<td>Also NES/JWST 244(2644)]</td>
<td>Fall.</td>
<td>3 credits. Not offered 2005–2006. Staff.</td>
<td>For description, see NES 244.</td>
<td></td>
</tr>
<tr>
<td>RELST 250(2250)</td>
<td>Introduction to Asian Religions</td>
<td>Also ASIAN 250(2250)]</td>
<td>Spring.</td>
<td>3 credits. D. Boucher.</td>
<td>For description, see ASIAN 250.</td>
<td></td>
</tr>
<tr>
<td>RELST 255(2555)</td>
<td>Introduction to Islamic Civilization</td>
<td>Also NES 255([2555),</td>
<td>HIST 253(2530)]</td>
<td>Spring.</td>
<td>3 credits. D. Powers.</td>
<td>For description, see NES 255.</td>
</tr>
<tr>
<td>RELST 256(2556)</td>
<td>Introduction to the Qur'an</td>
<td>Also NES/JWST 256([2556)]</td>
<td>Spring.</td>
<td>3 credits. Not offered 2005–2006.</td>
<td>S. Toorawa.</td>
<td>For description, see RELST 256.</td>
</tr>
<tr>
<td>RELST 259(2559)</td>
<td>Islam in Theory and Practice</td>
<td>Also NES 259([2559)]</td>
<td>Fall.</td>
<td>3 credits. Not offered 2005–2006.</td>
<td>S. Toorawa.</td>
<td>For description, see NES 259.</td>
</tr>
<tr>
<td>RELST 262(2630)</td>
<td>Religion and Reason</td>
<td>Also PHIL 262(2630)]</td>
<td>Spring.</td>
<td>4 credits. Not offered 2005–2006.</td>
<td>S. MacDonald.</td>
<td>For description, see PHIL 262.</td>
</tr>
<tr>
<td>RELST 263(2663)</td>
<td>Introduction to Biblical History and Archaeology</td>
<td>Also NES/JWST/ARKEO 263([2663)]</td>
<td>Spring.</td>
<td>3 credits. J. Zorn.</td>
<td>For description, see NES 263.</td>
<td></td>
</tr>
<tr>
<td>RELST 265(2565)</td>
<td>Law, Society, and Culture in the Middle East</td>
<td>Also NES 265([2565),</td>
<td>HIST 265(2565)]</td>
<td>Fall.</td>
<td>4 credits. D. Powers.</td>
<td>For description, see NES 265.</td>
</tr>
<tr>
<td>RELST 266(2666)</td>
<td>Jerusalem Through the Ages</td>
<td>Also NES/JWST 266(2666)]</td>
<td>Fall.</td>
<td>5 credits. Not offered 2005–2006.</td>
<td>J. Zorn.</td>
<td>For description, see NES 266.</td>
</tr>
<tr>
<td>RELST 275(2765)</td>
<td>Religions of Ancient Israel</td>
<td>Also NES/JWST 275([2765),</td>
<td>ARKEO 276(2765)]</td>
<td>Fall.</td>
<td>3 credits. J. Zorn.</td>
<td>For description, see NES 275.</td>
</tr>
<tr>
<td>RELST 277(2277)</td>
<td>Meditation in Indian Culture</td>
<td>Also CLASS 277([2277)]</td>
<td>Spring.</td>
<td>3 credits. D. Gold.</td>
<td>For description, see ASIAN 277.</td>
<td></td>
</tr>
<tr>
<td>RELST 310(3710)</td>
<td>The Language of the Quran</td>
<td>Also ASIAN 310([3710)]</td>
<td>Spring.</td>
<td>4 credits. Prerequisite: NES 113 Intermediate Arabic I or equivalent.</td>
<td>D. Powers and M. Younes.</td>
<td>For description, see NES 310.</td>
</tr>
<tr>
<td>RELST 315(3150)</td>
<td>Medieval Philosophy</td>
<td>Also PHIL 315([3150)]</td>
<td>Fall.</td>
<td>4 credits. Not offered 2005–2006.</td>
<td>S. MacDonald.</td>
<td>For description, see PHIL 315.</td>
</tr>
<tr>
<td>RELST 320(3720)</td>
<td>Women in the Hebrew Bible</td>
<td>Also NES/JWST 320([3720],</td>
<td>FGSS 322([3720)]</td>
<td>Fall.</td>
<td>4 credits. Staff.</td>
<td>For description, see NES 320.</td>
</tr>
<tr>
<td>RELST 326(3280)</td>
<td>Christianity and Judaism</td>
<td>Also COM L 326([3280)]</td>
<td>Spring.</td>
<td>4 credits. C. Carmichael.</td>
<td>For description, see COM L 326.</td>
<td></td>
</tr>
<tr>
<td>RELST 328(3280)</td>
<td>Literature of Old Testament</td>
<td>Also COM L 328([3280)]</td>
<td>Fall.</td>
<td>4 credits. Staff.</td>
<td>For description, see COM L 328.</td>
<td></td>
</tr>
<tr>
<td>RELST 329(3629)</td>
<td>Introduction to New Testament Seminar</td>
<td>Also NES/JWST 329([3629)]</td>
<td>Fall.</td>
<td>1 credit. Prerequisite: one year of ancient Greek. Co-requisite: RELST 229.</td>
<td>J. Haines-Eitzen.</td>
<td>For description, see NES 329.</td>
</tr>
</tbody>
</table>
[RELST 332(3644)] Sages and Saints/Ancient World (also CLASS 332[3644], NES 326[328]) (HA)
Fall. 4 credits. F. Rehillard.
For description, see CLASS 332[3644].

[RELST 333(3643)] Greek and Roman Mystery Cults and Early Christianity (also CLASS 333[3643])
For description, see CLASS 333.

[RELST 334(3539)] Islamic Spain: Culture and Society (also NES 335/635[3539]; JWS 339[3539], COM L 334[3340], SPANL 639[6390])
For description, see NES 335.

[RELST 342(3343)] Introduction to the History of Daoism (also ASIAN 343[3343])
For description, see ASIAN 343.

[RELST 347(3347)] Tantric Traditions (also ASIAN 347[3347])
Fall. 4 credits. D. Gold.
For description, see ASIAN 347.

[RELST 348(3348)] Indian Devotional Poetry (also ASIAN 348[3348])
For description, see ASIAN 348.

[RELST 351(3351)] Indian Religious Worlds (also ASIAN 351[3351])
For description, see ASIAN 351.

[RELST 354(3354)] Indian Buddhism (also RELST 654[6654], ASIAN 354/654[3354/3539], JWS 354/654[3354/3539])
For description, see ASIAN 354/654.

[RELST 359(3359)] Japanese Religions: A Study of Practice (also ASIAN 359[3359])
For description, see ASIAN 359.

[RELST 357(3357)] Chinese Religions (also ASIAN 357[3357])
For description, see ASIAN 357.

[RELST 359(3359)] Japanese Buddhism (also ASIAN 359[3359])
Spring. 4 credits. J. M. Law.
For description, see ASIAN 359.

[RELST 368(3680)] Marriage and Sexuality in Medieval Europe (also HIST/FGSS 368[3680])
Fall. 4 credits. Not offered 2005-2006. P. Hyams.
For description, see HIST 368.

[RELST 361(3481)] Anthropology and Religion (also ANTHR 381[3481])
For description, see ANTHR 381.

[RELST 393(3693)] Jews and Christians in the Modern Middle East (also NES 393[3693])
For description, see NES 393.

[RELST 405(4665)] Augustine's Confessions (also CLASS 405[4665], PHIL 415[4150])
Spring. 4 credits. C. Brittain.
For description, see CLASS 405.

[RELST 410(4100)] Latin Philosophical Texts (also PHIL 410[4100])
Spring. Varies. Credit. Prerequisite: knowledge of Latin and permission of instructor. S. MacDonald.
For description, see PHIL 410.

[RELST 420(4720)] Readings in the Biblical Hebrew Prose (also NES 420[4720])
Spring. 4 credits. Staff.
For description, see NES 420.

[RELST 421(4421)] Religious Reflections on the Human Body (also ASIAN 421[4421])
For description, see ASIAN 421.

[RELST 425(4250)] Religion, Conflict, and Media (also ASIAN 425[4250])
Spring. 4 credits. D. Schultz.
For description, see ASIAN 425.

[RELST 426(4260)] New Testament Seminar (also COM L 426[4260])
Spring. 4 credits. C. Carmichael.
For description, see COM L 426.

[RELST 427(4280)] Biblical Seminar (also COM L 428[4280])
Fall. 4 credits. C. Carmichael.
For description, see COM L 428.

[RELST 428(4628)] Gnosticism and Early Christianity (also NES/JWST 428[4628])
Fall. 4 credits. K. Haines-Fitzen.
For description, see NES 428.

[RELST 429(4290)] Adam's Rib and Other Divine Signs: Reading Biblical Narrative (also ENGL 429[4290])
Spring. 4 credits. L. Donaldson.
For description, see ENGL 429.

[RELST 441(4441)] Mahayana Buddhism (also ASIAN 441[4441])
For description, see ASIAN 441.

[RELST 449(4449)] History and Methods of the Academic Study of Religion (also ASIAN 449[4449])
For description, see ASIAN 449.

[RELST 450(4500)] Rescreening the Holocaust (also THETR 450[4500], GERST 449[4490], COM L 453[4530], JWS 449[4749])
For description, see THETR 450.

[RELST 453(4453)] Immortality and Enlightenment (also ASIAN 453[4553])
Spring. 4 credits. D. Boucher.
For description, see ASIAN 453.

[RELST 457(4657)] Formation of Islamic Law (also NES 457[4657], HIST 453[4530])
Fall. 4 credits. D. Powers.
For description, see NES 457.

[RELST 460(4460)] Indian Meditation Texts (also ASIAN 460[4460])
Fall. 4 credits. D. Gold.
For description, see ASIAN 460.

[RELST 475(4625)] Christianization/Roman World (also CLASS 475[4625], NES 475[4756], HIST 483[4830])
Fall. 3 credits. E. Rebillard.
For description, see CLASS 475.

[RELST 490-491(4990-4991)] Directed Study
490, fall; 491, spring. 2-4 credits each semester. For majors in Religious Studies; permission of director required. Staff.

[RELST 495(4995)] Senior Honors Essay
Fall and spring (two semesters). 8 credits. Requirement for honors in Religious Studies. Staff.

[RELST 639(6539)] Islamic Spain: Culture and Society (also COM L/RELST 334[3359], JWS/NER 339/639[3390/6390], SPANL 639[6390])
For description, see NER 339/639.

[RELST 650(6560)] Seminar on Asian Religions (also ASIAN 650[6650])
Fall. 4 credits. Limited to 10 students. Prerequisite: graduate standing. Reading knowledge of modern Japanese desirable. J. M. Law.
For description, see ASIAN 650/6650.

[RELST 654(6654)] Indian Buddhism (also RELST 354[3354], ASIAN 354/654[3354/3539])
For description, see ASIAN 354/654.

Additional courses offered by cooperating departments may also be approved through petition for the major in Religious Studies.

For details see the program director, whose name and e-mail address can be found on the Religious Studies web site.

ROMANCE STUDIES
The Department of Romance Studies offers courses in the following areas: French, Italian, and Spanish literature; Catalan, French, Italian, Portuguese, Quechua, and Spanish language; Francophone, Italian, and Hispanic culture, and linguistics and semiotics. Through its course offerings and opportunities for independent study, the department seeks to encourage study of the interactions of the Romance literatures among themselves, with other literatures, and with other fields of inquiry.

Catalan

CATAL 121-122(1210-1220) Elementary Catalan
121, fall; 122, spring. 4 credits each semester. 121 must be taken before 122.
Catalan provides language qualification. Recommended: knowledge of another Romance language. Fall: A. Sosa-Velasco; spring: A. Herz. Catalan is a Romance language spoken by some 10 million people in four European states (Andorra, France, Italy, and Spain). This course provides a thorough grounding in all language skills: speaking, listening, reading, writing, and design is recommended to provide students with the basis for establishing linguistic contact with Catalan culture.

French

The Major

The major in French is divided into two options: French cultural studies and French literature. While prospective majors should try to plan their programs as far ahead as possible, especially if they intend to study abroad, no student will be refused admission merely because of a late start. See Professor M. C. Vallois, the director of undergraduate studies, in 310 Morrill Hall, mcv46@cornell.edu. This consultation is especially important for finding out what sequence of courses will follow the current choice of courses. Students interested in majoring in French linguistics should contact the Department of Linguistics.

French Literature

This option is designed to give students mastery of the oral and written language, as well as a broader knowledge of French and Francophone culture in an interdisciplinary context. To be admitted to the major, a student should have completed FRLIT 221 or 224. To complete the major, a student must:

1. Acquire advanced knowledge of and competence in French language. This competence is demonstrated by the successful completion of FRROM 312 or its equivalent, such as properly accredited study abroad or the passing of a special language test (the CASE examination) or the permission of the major adviser or of the director of undergraduate studies.

2. Take the three core courses for the major: FRLIT 321 Readings in Modern French Literature and Culture; FRLIT 322 Readings in Early Modern French Literature and Culture; FRLIT 323 Readings in Francophone Literature and Culture.

3. Take five more courses at the 300 level or above, at least three of which must be FRLIT courses. At least one of these courses must be on material created before the 19th century. The remaining two may be in related fields such as comparative literature; history; art history; visual studies; government; linguistics; feminist, gender, and sexuality studies; or another relevant discipline, only if there is a significant French component to the course.

French Cultural Studies

This option is designed to give students mastery of the oral and written language, as well as a broader knowledge of French and Francophone culture in an interdisciplinary context. To be admitted to the major, a student should have completed FRLIT 221 or 224. To complete the major a student must hold:

1. Acquire advanced knowledge of and competence in French language. This competence is demonstrated by the successful completion of FRROM 312 or its equivalent, such as properly accredited study abroad or the passing of a special language test (the CASE examination) or the permission of the major adviser or of the director of undergraduate studies.

2. Take the three core courses for the major: FRLIT 321 Readings in Modern French Literature and Culture; FRLIT 322 Readings in Early Modern French Literature and Culture; FRLIT 323 Readings in Francophone Literature and Culture.

3. Take five more courses at the 300 level or above, at least three of which must be FRLIT courses. At least one of these courses must be on material created before the 19th century. The remaining two may be in related fields such as comparative literature; history; art history; visual studies; government; linguistics; feminist, gender, and sexuality studies; or another relevant discipline, only if there is a significant French component to the course.

The French Experience

Students interested in majoring in French linguistics should contact the Department of Linguistics.

Concentration in French Studies

At Cornell, a concentration is the functional equivalent of a minor. Its purpose is to supplement a student's major with a complementary focus or concentration that is indicated on the graduate's transcript. The concentration in French Studies, organized by the interdisciplinary Program in French Studies, is designed to be compatible with all kinds of majors and is open to students in all the undergraduate colleges. The concentration promotes broad understanding of French culture, as well as Francophone literatures, societies, and their political/ economic systems. It also encourages students to refine and practice their language skills. Students pursuing the concentration must attain proficiency (by taking a placement exam or completing a 200-level course in French) and must take the core course The French Experience or an approved equivalent of the core course. Students must also complete a minimum of two concentration courses. Students must have the permission of the major adviser to declare a concentration.

Applications for the concentration are accessible at the French Studies web site, www.einaudi.cornell.edu/french_studies/about/index.asp and should be submitted to the Institute for European Studies (120 Uris Hall) or to Bonnie Bailey at bab3@cornell.edu.

Study Abroad in France

French majors or other interested students may study in France for one or two semesters during their junior year. Opting for one of several study-abroad plans recognized by the Departments of Romance Studies and Linguistics facilitates the transfer of credit. Information about these plans is available from the director of undergraduate studies. Students must be Cornell undergraduates with a strong academic record. The minimum French preparation is the completion of FRROM 219 or its equivalent in advanced credit or placement by the Cornell CASE examination. Taking FRROM 301 and/or 312 is, however, strongly recommended.

Students interested in studying in France are encouraged to consider the special benefits offered by EDUCO, the program in Paris cosponsored by Cornell and by Emory, and Duke University. EDUCO offers advanced students a challenging course of study and the experience of total immersion in French life and culture in Paris. Participants in this program spend the year or semester as fully matriculated students at the University of Paris VII and other institutions of higher learning in Paris, including the Institut d'Etudes Politiques (Sciences Po), selecting courses in many fields from the regular university course offerings. Students begin the academic year with an intensive three-week orientation in French history, society and daily life. While it is possible to enroll in the EDUCO Program for one semester, admission will be given first to students planning to study abroad for the full academic year.

EDUCO maintains a center in Paris with appropriate support staff. The resident director, chosen annually from the Cornell, Emory, and Duke faculties, introduces students to the program plan and gives academic advice, and helps ensure the quality of the
courses. The center, which includes a small library and word-processing facilities, is regularly used by students for special tutorials, seminars, and lectures, as well as informal gatherings.

Honors. The honors program encourages well-qualified students majoring in French literature and culture to do independent work in French outside the structure of courses. The preparation of the senior honors essay, generally spread over two semesters, provides a unique learning opportunity, since it allows for wide reading and extensive rewriting to a degree not possible in the case of course papers.

To be eligible for honors, students must have a general grade point average of at least 3.00 and a grade point average of at least 3.5 in the French major.

No special seminars or courses are required of honors students, but they will have regular meetings with the faculty advisers who have agreed to supervise their work. They may receive course credit by enrolling in FRROM 429-430, but these independent study courses must be taken in addition to the courses that meet the minimum requirements for the major. At the end of the senior year, each honors student is examined orally on the honors essay by a jury consisting of his or her faculty adviser and two other faculty members. The senior essay is to be made available for reading by the jury on or before April 15. The awarding of honors is determined by the student's grades in the major and the quality of the honors essay.

Language
Enrollment in a language course is conditional upon the student's eligibility for the particular level and on attendance of the first scheduled class session. Because of the high demand for language courses, a student who fails to meet the minimum requirements for the major. At the end of the senior year, each honors student is examined orally on the honors essay by a jury consisting of his or her faculty adviser and two other faculty members. The senior essay is to be made available for reading by the jury on or before April 15. The awarding of honors is determined by the student's grades in the major and the quality of the honors essay.

Note: Students placed in the 200-level courses have the option of taking language and/or literature courses; see listings under "Literature" for descriptions of the literature courses, some of which may be taken concurrently with FRROM 206, 209, or 219.

FRROM 123(1230) Continuing French
Fall or spring. 4 credits. Provides language qualification. Prerequisite: FRROM 122 or LPF 45-55 or SAT II 490-590. Recommended courses after FRROM 123: FRROM 206 or 209. Fall: K. Proux (course coordinator) and staff, spring: K. Proux.
All-skills course designed to improve pronunciation, oral communication, and reading ability, to establish a groundwork for correct writing; and to provide a substantial grammar review. The approach encourages the student to see the language within the context of its culture.

FRROM 206(2060) French Intermediate Reading and Writing
Fall. 3 credits. Provides language proficiency and satisfies Option 1. Prerequisite: FRROM 123, LPF 56-64, or SAT II 600-680. Conducted in French. Recommended courses after FRROM 206: FRROM 219 or FRLLT 221. S. Tun. Designed for students who want to focus on their reading and writing skills. Emphasizes grammar review and expansion, vocabulary development, and appreciation of different styles of language. Diverse text types are used, including a contemporary novel and student-selected material.

FRROM 209(2090) French Intermediate Composition and Conversation I
Fall, spring, or summer. 3 credits. Provides language proficiency and satisfies Option 1. Prerequisite: FRROM 123, LPF 56-64, or SAT II 600-680. Conducted in French. Recommended courses after FRROM 209: FRROM 219 or FRLLT 221. Fall: C. Sparfel (course coordinator), C. Waldron, and staff; spring: C. Sparfel (course coordinator) and staff; summer: C. Waldron.
Designed to strengthen grammar skills; improve reading, speaking, and writing ability; and help students become independent learners.

FRROM 210(2100) Pronunciation of Standard French
Spring. 3 credits. Prerequisites: FRROM 206 or 209 or higher, C. Waldron. Designed for students who want to focus on their reading and writing skills. Emphasizes grammar review and expansion, vocabulary development, and appreciation of different styles of language. Diverse text types are used, including a contemporary novel and student-selected material.

FRROM 312(3120) Advanced French (II)
Fall or spring. 4 credits. Prerequisite: FRROM 301 or 305, or Q++ on Cornell Advanced Standing Examination (CASE). T. Alkire.
Course on stylistics and translation aiming to help students develop a richer, more nuanced and idiomatic command of both the spoken and written language. Systematic study of grammar is discontinued as more attention is devoted to topics such as descriptive and prescriptive stylistics, authorial style, varieties of spoken and written French and their literary representations, rhetorical figures, poetics, as well as translation theory and textual analysis. Writing exercises include pastiche, précis, explication de texte, an exercice de style, and thème. Additional exercises target vocabulary development. Seminar-style participation in class discussions is expected, as are two oral presentations.

FRROM 313(3130) French in the News
Spring. 4 credits. Prerequisite: FRROM 301 or 305, or Q++ on Cornell Advanced Standing Examination (CASE). C. Waldron.
Studying French televised news broadcasts and other media places students at the heart of today's France. Flexible approach allows students to perfect their language skills.
FRROM 315(3150) Translating from French—Translating from Spanish (also SPANR 315[3150], COM L 314) (IV) (LA)
Fall. 4 credits. Prerequisite: successful completion of a 500-level course in Spanish or French; FRROM 312 or SPANR 312 or permission of instructor. J. Routier-Pucci and C. Porter.
Seminar-type course focusing on translating from the SL (source language) into the TL (target language, i.e., English). The objective is to learn and practice the skill of translating from one of the SLs into English, and in so doing, investigate the various technical, stylistic, and cultural difficulties encountered in the process. To attain this objective, students are exposed to a series of translation tasks, conducted individually or in groups: they are asked to justify their translations, compare different translations of the same passage, work on different types of texts, and edit each other's translations.

FRROM 630(6300) French for Reading—Graduate Students
Spring only. 3 credits. Prerequisite: graduate standing. T. Alkire and staff.
Designed for those with little or no background in French. Aims primarily to develop skill in reading French. Covers grammar basics, extensive vocabulary, and strategies for reading in a foreign language. Some flexibility in selecting texts according to fields of interest is offered.

FRLIT 221(2210) Introduction to Textual Analysis # (IV)
Fall or spring. 3 credits. Prerequisite: FRROM 206 or 209 or CASE Q+. Conducted in French. Fall: T. McNulty and staff; spring: C. Howie and staff.
Designed to introduce students to methods of textual analysis, through the reading and discussion of works in various genres (narrative prose, drama, poetry) from the French and Francophone world. Emphasizes the development of analytical skills, in particular close readings of works by a variety of authors from different periods.

FRLIT 224(2240) The French Experience (III or IV) (CA)
Fall. 4 credits. Readings available both in French and in English translation. Conducted in English. P. Lewis.
Examination of French society, culture, and institutions through key moments in French history in an attempt to understand what made French culture so distinctive. Looking attentively at texts, images and contexts, students attempt to unravel some of the defining enigmas of the French experience. Two lectures a week in English. Readings available in French and in English translation. Discussion sections available in French when possible.

Note: Prerequisite for all 300-level courses in French literature: FRLIT 221 or equivalent.

FRLIT 321(3210) Readings in Modern French Literature and Culture (IV) (LA)
Fall or spring. 4 credits. Prerequisites: FRLIT 221 or 224, and FRROM 301 or 305 or CASE placement. Conducted in French. L. Dubreuil.
Designed to teach ways of reading and understanding works created from the Romantic period to the present day, in their cultural context. A range of texts from various genres is presented, and students refine their analytical skills and their understanding of various methodologies of reading. Texts by authors such as Balzac, Baudelaire, Cixous, Colette, Duras, Genet, Maillarmé, Michaux, Proust, Rimbaud, Sarrate, Sarthe.

FRLIT 322(3220) Readings in Early Modern Literature and Culture # (IV) (LA)
Spring. 4 credits. Prerequisites: FRLIT 221 or 224, and FRROM 301 or 305 or CASE placement. Conducted in French. M. C. Vallois.
Designed to familiarize students with works from the Renaissance, the Classical period, and the Enlightenment, as well as the cultural and historical context in which these texts were created, reflected a dynamic period of significant change for France. Texts by such authors as Ronsard, du Bellay, Montaigne, Molière, Marguerite de Navarre, Corneille, Diderot, de Lafayette, Racine, Perrault, Rousseau.

FRLIT 323(3230) Readings in Francophone Literatures and Cultures 6 (IV) (LA)
Fall. 4 credits. Prerequisites: FRLIT 221 or 224, and FRROM 301 or 305 or CASE placement. Conducted in French. L. Dubreuil.
Designed to enrich students' knowledge of the Francophone literatures and cultures in their diversity and social and cultural complexity. Various works from France, West Africa, the Maghreb, and the Caribbean Islands are considered and various methodologies of analysis are presented. Works by such authors as Cheikh Amadou Kane, Amapé Bâ, Racid Boudjeda, Aimé Césaire, René Depestre, Raphaël Confiant.

FRLIT 325(3250) Being French: Questions of Identity in Modern French Culture (IV) (CA)
Fall. 4 credits. Prerequisites: FRROM 301, CASE placement, or permission of instructor. P. Lewis.
What does it mean to identify oneself as French or to be identified by others as French? Why do observers often speak of a national identity crisis in France? To explore these questions in their multiple aspects, this course looks at the ways France's culture, history, politics, and society from World War II to the present have both reshaped and unsettled the idea and the experience of Frenchness. In addition to analyzing important texts and theories related to the development of the novel in French, this course examines problems such as the appearance of narrative and historical consciousness, the representation of woman, and the relation between literature and society. Texts include such major works as Tristan and Iseult, Perrault's Contes, Mme de LaFayette, Prevost, Rousseau, Diderot, Laclos, and Sade.

FRLIT 362(3620) Culture of the Renaissance II (also COM L 362[3620], ENGL 325[3250], HIST 364[3640], MUSIC 390[3940], ART H 351[3420]) # (III or IV) (CA)
Fall. 4 credits. K. Long.
For description, see COM L 362.

FRLIT 372(3720) In Search of the Origin of Language (also COM L 330) (IV) (KCM)
Spring. 4 credits. Conducted in English. T. McNulty.
Where does language come from, and what does it respond to? What is the relationship between the origin of language and the creation of the world, or between language and myth? What distinguishes human language from the structures of communication common to all animals? What is the relationship of language to sexual difference, the death drive, and the prohibition of incest? What do poetry, mathematics and computer science tell us about the function of writing? Why have so many thinkers across history associated language with the virus or with logics of contamination? This course is broadly interdisciplinary in scope, drawing on works of philosophy, anthropology, psychoanalysis, religion, and the biological sciences, in addition to literature and film. Readings include texts from the Bible, Plato, Descartes, Pascal, Rousseau, Shelley, Freud, Saussure, Artaud, Levi-Strauss, Baudrillard, and Derrida. Students may read texts in the original languages or in translation.

FRLIT 333(3330) Contemporary French Thought (IV) (CA)
Spring. 4 credits. Conducted in French. R. Klein.
Surveys the major contemporary post-structuralist, psychoanalytic, and deconstructive theorists in French thought today. Lacan, Foucault, Derrida, Barthes, Bourdieu, Baudrillard and Wittig. Particular emphasis is on the contribution of these theorists to the analysis of sexuality and pedagogy.

FRLIT 334(3340) The Novel as Masterwork (also FRLIT 684[6840]) # (IV) (LA)
Spring. 4 credits. Prerequisites: FRLIT 321, 322, 323, and FRROM 301 or 305, or CASE placement, or permission of instructor. Conducted in French. L. Dubreuil.
Study of three 19th-century novels by masters of the genre: Stendhal's Le rouge et le noir, Flaubert's Madame Bovary, and Zola's Nana.

FRLIT 335(3350) Romance to Revolution: The French Novel before 1789 # (IV) (LA)
Spring. 4 credits. Prerequisite: FRLIT 221 or permission of instructor. Conducted in French. Staff.
In addition to considering formal questions relating to the development of the novel in French, this course examines such problems as the appearance of narrative and historical consciousness, representation of woman, and the relation between literature and society. Texts include such major works as Tristan and Iseult, Perrault's Contes, Mme de Lafayette, Prevost, Rousseau, Diderot, Laclos, and Sade.

FRLIT 362(3620) Culture of the Renaissance II (also COM L 362[3620], ENGL 325[3250], HIST 364[3640], MUSIC 390[3940], ART H 351[3420]) # (III or IV) (CA)
Fall. 4 credits. K. Long.
For description, see COM L 362.
ARTS AND SCIENCES - 2005-2006

FRLIT 370(3700) The French Enlightenment and the Modern Citizen # (IV) (CA) Spring. 4 credits. Prerequisites: FRLIT 321, 322, 323, and FRROM 301 or 305, or CASE placement, or permission of instructor. Conducted in French. M. C. Vallois. Through a reading of various works of the French 18th century (by Montesquieu, Voltaire, Diderot, Rousseau, as well as by other, less canonical authors), this course studies the emergence of new literary discourses and practices aiming at a "secularization" of the literary field, in conjunction with the ideological and epistemological changes that took place under the name of Enlightenment. One of the most important of those changes is often seen as the production of the modern citizen.

FRLIT 391(3910) Fictions of the Self (IV) (LA) Fall. 4 credits. Prerequisite: FRLIT 221 or permission of instructor. Conducted in French. R. Klein. Examines the relationship between the "self" and fiction, or between personhood and the literary personage. How does autobiography, as a "writing of one's own life," shape the relationship between the self and the written word? What is the relationship between the person and the persona (or "mask") from which it derives etymologically? To what extent is the self a fiction? Works studied include selections from Augustine, Montaigne, Descartes, Rousseau, Nietzsche, Freud, Gide, Leiris, Duras, Sarrute, and Jàbes.

FRLIT 404(4040) Troubadours and Heretics (also S HUM 408, ASIAN 461, COM L 404(4040)) Fall. 4 credits. Limited to 15 students. M. Greenberg. Seminar serving as an introduction to reading old Provencal, with discussions of the structure of the language and problems in translation. Readings include some of the greatest examples of troubadour poetry, as well as other medieval and later French material for the purpose of understanding the social and ideological conflicts that shaped the environment in which that poetry arose and declined.

FRLIT 409(4090) Races, Métissage, Hybridity (also FRLIT 609[6090]) Spring. 4 credits. L. Dubreuil. Explores the historical values and the conceptual basis of métissage. Examines the present success of métissage as a theoretical category. In that sense, a confrontation between other close notions (hybridity, creolisation) is necessary. But above all, the course considers the avatar of métissage (since the 19th century) from a philosophical and political anthropological, philosophical, history, politics, criticism and literature; e.g., Anténor Firmin, Lesage, Diderot, Rousseau, beque, Gobineau, and others.

FRLIT 419-420(4190-4200) Special Topics in French Literature 419, fall, spring; 4-2 credits each semester. Prerequisite: permission of instructor. Staff. Guided independent study of special topics.

FRLIT 429-430(4290-4300) Honors Work in French 429, fall; 430, spring (yearlong). 8 credits. Grade given at end of fall semester and final letter grade at end of spring semester. Open to juniors and seniors. Consult director of honors program for more information. M. C. Vallois and staff.

FRLIT 435(4350) Postcolonial Poetics and the Poetics of Relation (also FRLIT 635[6350], SPANL 435/635[4350/6350]) COM L 435/635[4350/6350]) Spring. 4 credits. J. Monroe. For description, see COM L 450.

FRLIT 447(4470) Old French: Theory and Practice Fall. 4 credits. Prerequisite: FRLIT 221 or permission of instructor: some knowledge of modern French. Has a double mission: to serve as an introduction to the extra-literary literature of medieval France for students with little or no familiarity with more archaic forms of French; and to raise a series of questions—questions we might even call "theoretical" or "philosophical"—about what it means to deal with the past, and what kinds of languages and desires emerge in medieval texts and in the medievalists who work with them. Readings in all the major medieval genres—lyric, romance, epic, hagiography, lai—and in modern academic practice (e.g., philology, and scholarly practice (e.g., Zumthor, Gumbrecht, Certeau, Agamben, Jauj).

FRLIT 461(4610) Racine: Mythology and the Politics of Sacrifice (also FRLIT 661[6610]) Fall. 4 credits. Conducted in French. M. Greenberg. Examines the "politics" of Racian tragedy. Explores such questions as "What is the relation of Racian tragedy to (1) Absolutism, (2) the Oedipus myth and complex, (3) to modern-day interpretations and audiences?" Also explores the relation of the theater to both individual fantasy and collective myth. The tragedies of Racine is read in conjunction with material in literary theory, psychoanalysis, anthropology, etc.

FRLIT 470(4700) Contemporary Readings of the Ancients: Derrida (also GOVT 470[4705]) (III or IV) (CA) Fall. 4 credits. Graduate students welcome. D. Rubenstein. For description, see GOVT 470.

FRLIT 472(4730) Religious Violence in France # (IV) (CA) Fall. 4 credits. Prerequisite: FRLIT 221 or permission of instructor. Conducted in French. K. Long. Seminar exploring, by means of literary texts and other documents, representations of religious violence in Western Europe from the Middle Ages to the modern era, with a particular focus on France. From Holy War to religiously motivated resistance, what are the secular mechanisms used to deploy and to deflect rationality? And what is the significance of the ritualistic aspects of such violence for the culture that produces it? How does violence mark the sacred and secular (for example, the dependence of the Catholic Church upon secular authorities for various aspects of enforcement of religious doctrine, from interrogation to execution of heretics)?

FRLIT 608(6080) Proseminar (also ITALL/SPANL 608[6080]) Spring. 2 credits each semester. Staff. The proseminar falls the place for sustained exchanges between graduate students, faculty, and visiting lecturers. Activities include reading and discussion of seminal texts, chapters from dissertations and works in-progress, and articles and essays from visiting lecturers.

FRLIT 609(6090) Races, Métissage, Hybridity Spring. 4 credits. L. Dubreuil. For description, see FRLIT 409.

FRLIT 635(6350) Postcolonial Poetics and the Poetics of Relation (also FRLIT 435[4350], SPANL 435/635[4350/6350]) COM L 435/635[4350/6350]) Spring. 4 credits. J. Monroe. For description, see COM L 435.

FRLIT 639-640(6390-6400) Special Topics in French Literature 639, fall; 640, spring. 2-4 credits each semester. Staff. Guided independent study for graduate students.

FRLIT 641(6410) Sense and Style: Nancy and Agamben Spring. 4 credits. C. Howie. Few contemporary philosophers have given as much attention as Jean Luc Nancy and Giorgio Agamben to the relationship between philosophical discourse, embodiment, and poetic practice. This course is particularly concerned with Nancy's writings on art. Agamben's writings on literature, and the implications that certain modes of exposition might have for the style of philosophy, the style or criticism, and the styles according to which the body's senses apprehend and articulate themselves in and through the world. We'll look at Nancy's "The Birth of Presence," "The Muses," and "Aesthetic Excess and Artistic Practice" and texts by thinkers such as Derrida, Lacoue-Labarthe, and Ferrari, whose work touches upon and exposes itself alongside that of Nancy and Agamben.

FRLIT 661(6610) Racine: Mythology and the Politics of Sacrifice (also FRLIT 461[4610]) Fall. 4 credits. Conducted in French. M. Greenberg. For description, see FRLIT 461.

FRLIT 672(6720) Deleuze and Lyotard: Aesthetic Excess and Artistic Practice (also COM L 634[6340], ENGL 629, VISST 634) Fall. 4 credits. T. Murray. For description, see COM L 634.

FRLIT 675(6750) Politics and Theology Spring. 4 credits. T. McNulty. Examines the link between politics and theology through texts chosen from three critical moments: The handing down of mosaic law and its reception in Pauline Christianity. Enlightenment political thought (Rousseau, Sade, Kant), and modern political theory (Schmitt, Arendt, Freud, Lacan, Badou, Ranciere, Taubes, Zizek).
Students majoring in Italian are expected to become conversant with a fair portion of the masterworks of Italian literature, art, architecture, and cultural figures who have developed rich and varied aesthetic traditions. The track in Italian studies includes a broader progression of courses that entails work in related disciplines. Both are designed to provide students with proficiency in reading, speaking, and writing Italian, to familiarize them with Italian culture, and to assist them in analyzing Italian texts in related fields. For further information, students are asked to consult the acting director of undergraduate studies.

Track 1: Italian Literature and Culture

The Italian section offers a major in Italian with tracks in Italian literature and culture and Italian studies. The first track is designed for students who wish to study Italian language, literature, and culture through the works of writers, artists, and cultural figures who have developed rich and varied aesthetic traditions. The track in Italian studies includes a broader progression of courses that entails work in related disciplines. Both are designed to provide students with proficiency in reading, speaking, and writing Italian, to familiarize them with Italian culture, and to assist them in analyzing Italian texts in related fields. For further information, students are asked to consult the acting director of undergraduate studies.

Track 2: Italian Studies

The Italian studies option is designed primarily for students who wish to pursue individual interests that do not fall within the Italian option of the major. Students select courses from the Italian section as well as courses from other departments that have a substantial Italian component, such as History of Art, Architecture, Government, Music, and Comparative Literature. For the list of approved Italian studies courses, please see the acting director of undergraduate studies.

Admission: By the end of their sophomore year, prospective majors in track 2 should have taken ITALA 219 Intermediate Conversation and Composition or demonstrated the equivalent level of fluency.

To complete the program, students must:

1. Demonstrate competence in the Italian language by completing ITAL 313 Advanced Conversation and Composition or its equivalent;
2. Complete the core series of Italian studies courses: ITALL 290 Perspectives in Italian Culture (fall), ITALL 295 Italian Cinema (spring), and ITALL 297 Introduction to Italian Literature (fall);
3. Complete at least five courses (20 credits) from the approved list of Italian studies courses at the 300 level from no more than three departments. Students planning on studying abroad for a year or a semester in Italy should plan their study abroad program in advance. By the end of their sophomore year, prospective majors in track 2 should have taken ITALA 219 Intermediate Conversation and Composition or demonstrated the equivalent level of fluency.

Concentration in Italian Studies

In order to complete an undergraduate concentration in Italian Studies, students must take at least five courses (a minimum of 15 credits) by selecting courses from the Italian Studies Concentration Course List, one of which must be ITALL 290 Perspectives in Italian Culture. These courses must be selected from the list of approved courses. Students are encouraged to enrich the program by combining this option with other majors in related fields such as history of art, Religious Studies, music, comparative literature, or architecture.

Language

Enrollment in a language course is conditional upon the student's eligibility for the particular level and on attendance at the first scheduled class session. Because of the high demand for language courses, a student who fails to attend the first class meeting will be dropped so others may register.

ITALIA 121-122(1210-1220) Elementary Italian

121, fall, 122, spring. 4 credits each semester. Prerequisite: study of Italian; LPI 45-55 or SAT II 460-580. K. Battig von Wittelsbach. The DUS will take into account the student's interest, preparation, and career goals and assign the student to an adviser. Students majoring in Italian are expected to become conversant with a fair portion of the masterworks of Italian literature, to acquaint themselves with the outlines of Italian literary and cultural history, and to develop some skill in textual and cultural analysis. In conjunction with the major adviser, the student will craft an individualized plan of studies that will meet the minimum requirements for the major in Italian as listed here:

- At least 10 ITALL courses at the 200 level and higher. (The prerequisite may be counted toward this requirement. The 1-credit Italian practicum and the 1- or 2-credit independent study options do not count as full courses.) One of these courses must be at the 400 level and one must focus before the 18th century. With permission of the adviser, the student may substitute for two of these courses other courses that are deemed relevant to the student's study of Italian, e.g., a course in another national literature, a course in critical theory, or a course in European history.
- At least 3 credits in courses conducted entirely in Italian. The Italian practicum may be used to fulfill 3 of these credits.

Twelve of these credits must be in courses in Italian at the 300 level or above:

- Competency in the Italian language (as demonstrated by examination or by course work approved by the DUS).

ITALIA 402 History of the Italian language and ITALIA 403 Linguistic Structure of Italian, may be counted toward the 10 courses required for the major. Note: An introductory linguistics course is a prerequisite for ITALL 402 and 403.

Study Abroad in Italy: Italian studies faculty members strongly encourages students to consider studying abroad in Italy. There students will have the opportunity to immerse themselves in Italian and gain a singular perspective on the Italian cultural context. Students are urged to consider the Bologna Cooperative Studies Program (BCSP), of which Cornell is an associate member. BCSP offers qualified undergraduate students an opportunity to study for a full academic year or a second semester at the University of Bologna for credit. During each semester of the academic year, which begins in October and extends through June, BCSP students enroll in one or two regular University of Bologna courses with Italian students. Students may also take special courses in Italian literature, language, art history, film studies, civilization, and contemporary politics.

Romance Studies 657
ITALA 209(2090) Italian Intermediate Composition and Conversation I
Fall or spring. 3 credits. Provides language proficiency and satisfies Option I.
Prerequisite: ITALA 123 or LPI 56-64, or SAT II 590-680, or CASE Q. Fall: F. Cervesi (conducting in Italian); and M. Baraldi; spring: M. Baraldi.
Provides a guided conversation, composition, reading, pronunciation, and grammar review, emphasizing the development of accurate and idiomatic expression in the language.

ITALA 219(2190) Italian Intermediate Composition and Conversation II
Spring. 3 credits. Provides language proficiency and satisfies Option I.
Prerequisite: ITALA 209 or equivalent. M. Baraldi.
Guided conversation, composition, reading, pronunciation, and grammar review, emphasizing the development of accurate and idiomatic expression in the language.

Note: Students placed in 200-level courses also have the option of taking courses in introductory literature, cultural studies, and cinema; see separate listings under ITALL for descriptions of these courses.

ITALA 300(3000) Directed Studies
Fall or spring. 1-4 credits, variable. Prerequisite: permission of instructor.
Times TBA with instructor. Staff.
Taught on a specialized basis to address particular student needs.

ITALA 313(3130) Advanced Italian: Language in Italian Culture (IV) (LA)
Fall. 3 credits. Prerequisite: ITALA 219 or equivalent or permission of instructor.
Conducted in Italian. P. Swenson.
Focuses on developing oral and written language skills through the study of cultural and social issues of contemporary Italy. Students improve their fluency in the language through oral exercises, compositions, as well as group and individual presentations.
The course also entails a grammar review of selected points and analysis of present-day Italian.

ITALA 300(3000) Italian Practicum
Fall or spring. 1 credit. Conducted in Italian. Staff.
Students enrolled in an Italian literature or culture course conducted in English (e.g., ITALL 290) may opt to take this practicum provided that they have already attained proficiency in the language. Students in the practicum spend one class hour per week discussing selected issues or texts in Italian; they also complete an appropriate amount of written work in Italian.

ITALA 320(3200) Medieval Italy # (IV) (LA)
Spring. 4 credits. Prerequisite: permission of instructor. M. Migiel.
Introduction to 13th- and 14th-century Italy, with particular attention to the cultural, socioeconomic, and political forces that provided the basis for the Italian Renaissance. Units of study are devoted to: changing notions of the individual, politics, and morality; the impact of the new merchant economy and culture; gender-relations; the family; mysticism and popular religious movements; relation to non-Western cultures; the rise of Italian literature in the vernacular; the impact of the Black Death (1348).

ITALA 385(3850) Modern Italian Travel Writing (also ITALL 685[6850]) (IV) (LA)
Spring. 4 credits. Prerequisite: permission of instructor. Conducted in Italian. T. Campbell.
Introduction to modern travel narratives in the Italian context. Students read a range of texts dating from the late 19th to mid-20th centuries that urge travel as their theme, with a particular emphasis placed on Northeast Africa and Latin America. The course begins with missionary accounts from Eritrea, continues with the correspondence of Italian emigrants to Argentina and Brazil, and then turns to minor classic of Italian travel literature: Flaviano’s Tempi de uccidere, Tobino’s Deserto di Libia, Carlo Levi’s Cristo si è fermato a Eboli, and Cecchi’s Messico. Examines the ways in which travel writing produces a space of displacement, considers the relation between technology, travel and aesthetics, and discusses the forms by which the distinction between foreign and Italian is observed.

ITALA 389(3890) Modern Italian Novel (also ITALL 689[6890]) (IV) (LA)
Spring. 4 credits. Provides language proficiency and satisfies Option I.
Prerequisite: permission of instructor.
Students who have taken ITALL 309 previously may retake course for credit, provided that readings are different.
Conducted in Italian. T. Campbell.
Covers the Italian novel from 1895 to 1930. Students develop a critical perspective on both the novel and the concept of reactionary modernism by looking closely at how the Italian novel rewrites modern notions of subjectivity. Significant secondary themes include the discourse of the city and its relation to urban identity, and the concept of the inermo. To this end, the course is designed to give students the necessary critical tools they require in the first weeks of class (theory of the novel, reactionary modernism, dialogic imagination), to be followed by the study of four classic Italian novels from the period: D’Annunzio’s Il piacere, Bontempelli’s La vita intensa, Pirandello’s Il fu Mattia Pascal, and Palazzeschi’s Il codice di Perdà.

ITALA 419-420(4190-4200) Special Topics in Italian Literature
419, fall; 420, spring. 1-4 credits each semester. Prerequisite: permission of instructor. Fall: T. Campbell; spring: T. Campbell and M. Migiel.
Guided independent study of specific topics.

ITALA 423(4230) Dante and Deviance (also ITALL 623[6230], FGSS 523[5230]/623[6230] (IV) (LA)
Fall. 4 credits. Optional disc for students with some Italian proficiency, but no prior knowledge of Italian required. C. Howie.
Dante Alighieri’s 14th-century Comedy, divine or not, tells a story of deviance, of love and road. Through circles and spirals and spheres, through Hell, Purgatory, and Heaven, students have plenty of opportunities to ask whether Dante ever sets himself straight, and to witness the aesthetic and erotic techniques by means of which he bends and burns.

ITALA 608(6080) Proseminar (also FRLIT/SPANL 608[6080]) (IV) (LA)
Fall. 2-4 credits each semester. Prerequisite: senior standing; permission of instructor. T. Campbell and staff.
This course is specifically designed for students who have taken ITALL 389 and want to continue their study of modern Italian literature. The proseminar is the place for sustained exchanges between graduate students, faculty members, and visiting lecturers. Activities include reading and discussion of seminal texts, chapters from dissertations and works in progress, and articles and essays from visiting lecturers.

ITALA 623(6230) Dante and Deviance (also ITALL 423[4230])
Fall. 4 credits. C. Howie.
For description, see ITALL 423.
ITAL 639-640(6390-6400) Special Topics in Italian Literature
639, fall; 640, spring. 4 credits each semester. Fall: T. Campbell; spring: T. Campbell and M. Migiel.

ITAL 685(6850) Modern Italian Travel Writing (also ITALL 385[3850])
Spring. 4 credits. Prerequisite: permission of instructor. Conducted in Italian. T. Campbell.
For description, see ITALL 385.

Portuguese
Faculty: J. Oliveira, M. Sullivan.

PORT 121-122(1210-1220) Elementary Brazilian Portuguese
121, fall; 122, spring. 4 credits each semester. Intended for beginners, those with little or no fluency in Spanish. PORT 122 provides language qualification. J. Oliveira.
Gives a thorough grounding in all the language skills: listening, speaking, reading, and writing.

PORT 209(2090) Intermediate Conversation: Portuguese for Spanish Speakers
Fall or spring. 3 credits. Provides language proficiency and satisfies Option 1.
Prerequisite: PORT 121 or permission of instructor. Fall: J. Oliveira and M. Sullivan; spring: M. Sullivan.

PORT 219(2190) Intermediate Composition: Portuguese for Spanish Speakers
Spring. 3 credits. Provides language proficiency and satisfies Option 1.
Prerequisite: PORT 209. J. Oliveira.
Further refines the development of accurate writing and oral expression. Provides a continuation of grammatical accuracy and on enriching vocabulary. All-skills course designed to establish a groundwork with particular emphasis on Brazilian Portuguese spoken within the context of its culture. Listening comprehension and speaking activities aim at improving oral communication within its cultural context.

PORT 320(3200) Readings in Luso-Brazilian Literature of the 20th Century @ (IV) (LA)
Spring. 4 credits. Prerequisite: permission of instructor. J. Oliveira.
Takes a broad approach to selective writings of contemporary Brazilian and Portuguese authors such as Graciliano Ramos, J. L. do Rego, Jorge Amado, Clarice Lispector, Moacyr Scliar, Fernando Pessoa, João Saramago and others. Divided into small sections. The students may read all works in the Portuguese or in translation. Assignments include short book reports, and students select a topic for in-depth research to the writing of a final term paper.

PORT 630(6300) Portuguese Reading for Graduates
Fall. 3 credits. Prerequisite: graduate standing. L. Rabben.
Designed for those with little or no background in Portuguese and little exposure to written Portuguese. Aims primarily to develop skill in reading Portuguese. Covers grammar basics, extensive vocabulary, and strategies for reading in a foreign language. The choice of texts depends on the interest of the students in the course.

Quechua
Faculty: L. Morató-Peña.

QUECH 121-122(1210-1220) Elementary Quechua
121, fall; 122, spring. 4 credits each semester. Prerequisite: for 122, QUECH 121; L. Morató-Peña.
Beginning conversation course in Quechua.

QUECH 136(1360) Quechua Writing Lab
Spring. 1 credit. Co-requisite: QUECH 122 or permission of instructor. Letter grades only. L. Morató-Peña.
Computer-assisted drill and writing instruction in elementary Quechua.

QUECH 209-219(2090-2190) Continuing Quechua @
Fall; 219, spring. 3 credits each semester. Provides language proficiency and satisfies Option 1 for QUECH 209, QUECH 122 or equivalent; for 219: QUECH 209 or equivalent. L. Morató-Peña.
Intermediate conversation and reading course. Study of the Huarochin manuscript.

QUECH 300(3000) Directed Studies
Fall or spring. 1–4 credits. Variable. Prerequisite: permission of instructor. Times: TBA with instructor. L. Morató-Peña.
Taught on a specialized basis to address particular student needs.

Romance Studies
ROM S 435(4350) Introduction to Literary Theory (also GERST/COM L 436[4360]) (IV) (LA)
Fall. 4 credits. N. Diaz-Insens, E. Dozier.
For description, see GERST 435.

ROM S 507(5070) Methodology of Romance Language Learning and Teaching (IV) (LA)
Fall. 4 credits. N. Diaz-Insens and J. Lucas.
Focuses on language teaching as facilitation of learning, thus on the learner's processing of language acquisition and the promotion of reflective teaching. The sessions are divided into two areas of inquiry. The first, strategies for language learning and teaching, addresses pedagogical issues from a learner-centered perspective involving effective language learning strategies and analysis. The second, language content, promotes development of an analytical grasp of the target language in order to better meet the needs of learners in the understanding and acquisition of linguistic forms, notions, and functions.

Spanish

The Major
The Spanish major is designed to give students proficiency in the oral and written language, to acquaint them with Hispanic culture, and to develop their skill in literary and linguistic analysis. Satisfactory completion of the major should enable students to meet language and literature requirements for teaching, to continue with graduate work in Spanish or other appropriate disciplines, and to satisfy standards for acceptance into the training programs of the government, social agencies, and business concerns. A Spanish major combined with another discipline may also allow a student to undertake preprofessional training for graduate study in law or medicine. Students interested in a Spanish major are encouraged to seek faculty advice as early as possible. For acceptance into the major, students should consult Professor María Antonia Garces (mgc@cornell.edu), director of undergraduate studies, in 315 Morrill Hall, who will admit them to the major, and assign them an adviser from the Spanish faculty. Spanish majors will then work out a plan of study in consultation with their advisers. Spanish majors have great flexibility in devising their programs of study and areas of concentration. Furthermore, previous training and interests as well as vocational goals will be taken into account when the student’s program of courses is determined.

SPAN 218 and 219 (or equivalent) are prerequisite to entering the major in Spanish.
All majors will normally include the following core courses in their programs.
1. SPANR 310, 311, and 312 (two of these three courses).
2. SPAN 316, 318, and 319 (not necessarily in that order).
3. one of the two annually designated senior seminars.

The Spanish Literature Option
The Spanish literature option normally includes at least 15 credits of Spanish literature beyond the core courses. Literature majors are strongly urged to include in their programs courses in all the major periods of Hispanic literature.
Area Studies Option (Spanish, Latin American, or U.S. Latino Studies)

At least 15 credits of courses at the 300 level and above in any of these focus areas beyond the core, all courses to be approved through consultation with the major adviser. Courses should reflect interdisciplinary interests in the area and entail study up to three other academic fields of interest. For example, a student interested in Latin American studies may want to include courses on such topics as Latin American history, government, rural sociology, and environment. Students who want to specialize in U.S. Latino issues may want to include such topics as sociology of Latinos, Latino history, and Latino medical issues in addition to further studies in literature. Students planning on spending a year in Seville may combine Spanish with related fields such as history, philosophy, sociology, anthropology, art, music, classics, English, comparative literature, and other foreign languages and literatures. The interdepartmental programs in Latin American studies and Latino studies sponsor relevant courses in a variety of areas.

The J. G. White Prize and Scholarships are available annually to undergraduate students who achieve excellence in Spanish.

Study Abroad in Spain: Cornell, the University of Michigan, and the University of Pennsylvania cosponsor an academic year in Spain program. Students enrolled in this program spend the first month before the fall semester begins in an orientation session at the University of Seville, where they take coursework in Spanish language and culture and prepare for combined Spanish and field trips in Andalucia. The College of Arts and Sciences awards 3 credits for orientation. Once the semester begins, students enroll in regular classes at the University of Seville and at the program facility. Center courses are designed for the program and include a seminar offered by the resident director, from the faculty of either Cornell, Michigan, or Pennsylvania. Other center courses typically include history of art, history of the Mediterranean region, a literature course, and Spanish composition and syntax. In Seville, students live in private homes and a rich array of cultural activities and excursions are organized every semester.

Applicants are expected to have completed SPANR 219 at least before departure. Completion of SPANR 311 is highly recommended. Students are strongly encouraged to study abroad for the entire year rather than one semester. Students interested in the study abroad program should visit Cornell Abroad in 474 Urs Hall and see the Cornell Abroad web site: www.ciaudi.cornell.edu/abroad.

Study Abroad in Bolivia: The summer program in Cochabamba, Bolivia, is sponsored by the Latin American Studies Program and accepts both undergraduate and graduate students. Students live with Bolivian families and normally take two courses with Cornell faculty who participate in this program. In addition to course work in Bolivian culture, politics, and social movements, the program offers the opportunity to do intensive study in Quechua, the native language spoken by many Bolivians, as well as Spanish, and to participate in research and internships with grass-roots communities, government offices, and businesses.

Honors: Honors in Spanish may be achieved by superior students who want to undertake guided independent reading and research in an area of their choice. Students in the senior year of the major are strongly encouraged to consult the Spanish faculty to supervise their work and direct the writing of their honors essay (see SPANL 429-430).

Language

Enrollment in a language course is conditional upon the student's eligibility for the particular level and on attendance of the first scheduled class session. Because of the high demand for language courses, a student who fails to attend the first class meeting will be dropped so others may register.

SPANR 112(1120) Elementary Spanish: Review and Continuation
Fall only. Prerequisite: LPS 37-44 or SAT II 370-450. Students who have taken SPANR 121 may enroll. S. Amigo-Silvestre (course coordinator). I. Meza-Redewald, and staff. Provides a basic review and then moves on to cover new material for the remainder of the semester. As part of the final exam, students take the LPS and, according to their score, may place into SPANR 123 (score below 56) or into the 200-level courses (score 56 or above).

SPANR 121-122(1210-1220) Elementary Spanish
121, fall and summer; 122, spring, 4 credits each semester. Intended for students with no experience in Spanish; students who have previously studied two or more years of Spanish beyond SPANR 101 unless they have LPS lower than 37 or SAT II lower than 370. Prerequisite: for 122, SPANR 121 or LPS 37-44 or SAT II 370-450. N. Diaz-Incernsé (course coordinator), B. Teutli, and staff. Provides a thorough grounding in all language skills.

SPANR 123(1230) Continuing Spanish
Fall, spring, or summer. 4 credits. Provides language qualification. Prerequisite: SPANR 112 or 122, or LPS 45-55, or SAT II 460-580. Fall: M. K. Redmond (course coordinator). N. Maldonado-Mendez, L. Morató-Peña, and staff; spring: M. K. Redmond (course coordinator), S. Amigo-Silvestre, N. Maldonado-Mendez, L. Morató-Peña; summer: A. Stratosioti-Tio. Lower- to intermediate-level course providing an intensive grammar review in communicative contexts and practice in all skills. After this course, the student may take SPANR 200, 207, or 209.

SPANR 200(2000) Spanish for English/ Spanish Bilinguals (also LSP 202(2020)
Fall or spring. 3 credits. Provides language proficiency and satisfies Option 1. Prerequisite: LPS 56 or higher, SAT II 590 or higher, CASE placement, or permission of instructor. Not open to students who have taken SPANR 207 or 209. N. Maldonado-Mendez.

Designed to expand bilingual students' knowledge of Spanish by providing them with ample opportunities to develop and improve each of the basic language skills.

SPANR 207(2070) Intermediate Spanish for the Medical and Health Professions
Fall or spring. 3 credits. Provides language proficiency and satisfies Option 1. Prerequisite: SPANR 123, LPS 56-64, or SAT II 590-680. Q on CASE exam, or permission of instructor. Students who have taken SPANR 207 should speak to instructor. A. Stratatos-Ti. Provides a conversational grammar review, with dialogues, debates, compositions, and readings on health-related themes. Special attention is given to relevant cultural differences.

SPANR 209(2090) Spanish Intermediate Composition and Conversation I
Fall or spring. 3 credits. Provides language proficiency and satisfies Option 1. Prerequisite: SPANR 123, LPS 56-64, or SAT II 590-680. Not open to students who have taken SPANR 207. Fall: J. Rououter-Pucci (course coordinator), T. Platt, E. Sánchez-Blake, and staff; spring: J. Rououter-Pucci (course coordinator), N. Maldonado-Mendez, L. Meza-Riedewald, T. Platt, B. Teutli, and staff. Provides a conversational grammar review with special attention to the development of accurate and idiomatic oral and written expression. Assignments include composition-writing, reading and discussing Spanish and Spanish American short stories and poetry, and viewing several films.

SPANR 219(2190) Spanish Intermediate Composition and Conversation II
Fall or spring. 4 credits. Provides language proficiency and satisfies Option 1. Prerequisite: SPANR 207 or 209, or CASE Q++. Fall: E. Dozier (course coordinator) and Z. Iguina; spring: Z. Iguina (course coordinator), E. Dozier and N. Maldonado-Mendez. Advanced-intermediate course designed for students who want to further broaden their knowledge of the language and related cultures, as well as improve their comprehensive and communication skills.

SPANR 300(3000) Directed Studies
Fall or spring. 1–4 credits, variable. Prerequisite: permission of instructor. Times TBA with instructor. Staff. Taught on a specialized basis to address particular student needs.

SPANR 302(3020) Spanish in the Disciplines (also LAT A 302[3020] and HIST 301[3010])
Fall. 1 credit. Staff. Spanish language discussion section supplementing the course materials during the lecture section including conversation in Spanish, discussion of course lecture in Spanish and Spanish writing exercises.

SPANR 310(3100) Advanced Spanish Conversation and Pronunciation
Fall or spring. 3 credits. Provides language proficiency and satisfies Option 1. Prerequisite: SPANR 219 or CASE Q++ or permission of instructor. Z. Iguina. Conversation course with intensive oral practice obtained through the production of video programs. Students practice the fundamental aspects of communication in the
standard spoken and written Spanish, with some focus on dialectal variations. There are weekly pronunciation labs.

SPANR 311(3110) Advanced Spanish Composition and Conversation I
Fall or spring. 4 credits. Provides language proficiency and satisfies Option 1.
Prerequisite: SPANR 219 or CASE Q++, or equivalent.
Falls: M. Stycos (course coordinator) and staff; spring: E. Sánchez-Blake (course coordinator) and staff.
Advanced language skills, developed through reading, grammar review, and intensive practice in speaking and writing. Analysis of present-day Spanish usage in a wide variety of oral and written texts.

SPANR 312(3120) Advanced Spanish Composition and Conversation II
Fall or spring. 4 credits. Provides language proficiency and satisfies Option 1.
Prerequisite: SPANR 311 or permission of instructor.
Falls: M. Stycos; spring: E. Sánchez-Blake.
Readings and class discussion focus on the stylistic analysis of modern texts. Increased emphasis, through weekly essays and quizzes, on students' development of an effective Spanish prose style.

SPANR 314(3140) Hispanic Storytelling Workshop
Spring. 3 credits. Prerequisite: SPANR 219, or CASE Q++, or permission of instructor.
C. Castillo.
During the last 20 years, there has been a revitalization of the ancient art of storytelling, taking advantage of the opportunities provided by modern acting and staging techniques. This workshop involves all aspects of storytelling, from writing to the public. As an advanced language course, it provides students with ample opportunities to develop their reading and listening comprehension (with expansion of vocabulary and of the idiomatic aspects of language) as well as their oral expression (diction, pronunciation). There is a natural cultural component in the course, because the assigned readings are stories from the Spanish-speaking world. For writing practice, students work on modifying written stories for oral performance, or create their own stories, or translate stories from English-speaking worlds or from other cultures. The course culminates with a public performance by the class members. In preparation for this final performance, students select and prepare stories, train in body movements and gestures, and work together on the stage settings. All preparation for the performance is conducted exclusively in Spanish.

SPANR 315(3150) Translating from Spanish to Translating from French
(also FRROM 315[3150], COM L 314)
Fall. 4 credits. Prerequisite: SPANR 312 or FRROM 312, or permission of instructor.
A successful completion of highest 300-level language course offered in either Spanish or French.
J. Routier-Pucci and C. Porter.
Seminar-type course focusing on translating from the SL (source language) into the TL (target language). The objective is to learn and practice the skill of translating from one of the SLs into English, and in so doing, investigate the various technical, stylistic, and cultural difficulties encountered in the process. To train this objective, the students are exposed to a series of translation tasks, conducted individually or in groups; they are asked to justify their translations, compare different translations of the same passage, work on different types of texts, and edit each other's translations.

SPANR 630(6300) Spanish for Reading
Spring. 3 credits. Prerequisite: graduate standing. J. Routier-Pucci.
Designed for those with little or no background in Spanish and little exposure to written Spanish. Aims primarily to develop skill in reading Spanish. Covers grammar basics, extensive vocabulary, and strategies for reading in a foreign language. The choice of texts depends on the interests of the students.

Literature

SPANL 218(2180) Introduction to Hispanic Fiction (also LAT A 218[2180])
Fall or spring. 3 credits. Provides language proficiency and satisfies Option 1.
Prerequisite: SPANR 200, or 207, or 209 or CASE Q++. Divided into small sections.
Conducted mainly in Spanish. Literature course that normally follows is 316 or 318.
C. Lawless (course coordinator) and staff.
Intermediate course designed to improve reading, writing, speaking, and comprehension skills in Spanish through the reading and discussion of contemporary literary works of various genres (narrative prose, drama, poetry) from Spain and Spanish America. Emphasizes the development of fluency in reading and of critical and analytical abilities. Considers the cultural, sociological, and aesthetic implications of texts by authors such as Borges, Cortázar, Fuentes, García Márquez, García Lorca, and Cela.

SPANL 230(2300) Sophomore Seminar: Viewing Modern Barcelona (also COM L 226[2260])
Fall. 4 credits. Conducted in English.
J. R. Resina.
Since it hosted the 1992 Olympic Games, Barcelona has quickly become one of the world's most fashionable cities. It not only is a cosmopolitan city, but also it is the capital of Catalonia, home of an old European culture. A bilingual city in which Catalan and Spanish are commonly spoken, Barcelona combines modern architecture and history of the last two millennia. The interdisciplinary seminar acquaints students with salient aspects of the history of this city, emphasizing the modern period. Included are issues relating to the city's expansion in the mid-19th century and involving city planning; the art nouveau architecture of Gaudi and other architects; the painting of Picasso, Miró, Tápies, and other artists like Casas and Nonell; and popular and traditional music. Materials for the course include literary works and films dealing with the city, such as novels by Mercè Rodoreda, Eduardo Mendoza, and others and film directors such as Pedro Almodóvar, Wilt Stillman, and others.

SPANL 245(2450) Cinematic Images of Change
Fall. 3 credits. Prerequisite: SPANR 219, or CASE Q++, or permission of instructor.
E. Sanchez-Blake.
How does film reflect special political change in Latin America? Can cinematic images achieve changes in society? Such questions form the base of our historical and cultural seminar-style discussions of and about three major Latin American film producers - Cuba, Mexico, and Argentina and includes a comparative look at selective Spanish films as well. Examples of films under investigation are: *La bora de los homos*, *Lucia, Amores perros*, and *La vida es silbar*.

SPANL 246(2460) Contemporary Narratives by Latina Writers (also LSP/FGSS 246[2460])
Fall. 3 credits. Conducted in English.
L. Carrillo.
Survey of narratives, including novels, short fiction, essays, political/feminist manifestoes, and memoirs by representative Latina writers of various Latino ethnic groups in the United States and the Americas including, Chicana, Chilena, Cubana, Dominican, and Puerto Rican, among others. Investigates the parallel development of a Latina perspective on personal, social and cultural issues alongside that of the U.S. ethnic liberation/revitalization movements of the 1960s to contemporary feminist activism and the use of colored or color movements. Investigate these works as artistic attempts to deal with issues of culture, language and bilingualism, family, gender, sexuality, and domesticity among others. Regional distinctions and contributions are accounted for. Readings include works by Julia Alvarez, Elena Castedo, Sandra Cisneros, Judith Ortiz Cofer, Cristina Garcia, Ana Lydia Vega, and others.

SPANL 247(2470) Spanish through Media and Culture
Fall. 3 credits. Prerequisite: SPANR 219, CASE Q++, or permission of instructor.
E. Sanchez-Blake.
Offers hands-on media analysis and production. Oriented to students with interest in Spanish and Latin America and uses media to support research on topics in their areas of interest. Emphasizes extensive use of Spanish in a cultural context. Conducted in a computer classroom with access to electronic and sources of information in the Spanish world. Students conduct a research project that is produced and presented as a news media program.

SPANP 234(2340) Faith, Love and Adventure in Medieval Spain
Spring. 4 credits. Conducted in Spanish.
S. Pinet.
Examines a wide variety of cultural objects and practices of Medieval Spain—from art objects to religious practices, from poetry to music—to address questions of identity, faith, institutions, hierarchy, and nation-building in multilingual Iberia. Students are expected to participate actively in class discussion and to prepare written critical analyses. Primary sources constitute the main corpus, but modern perspectives on the Spain and of the Middle Ages are also included.
SPANL 248(2480) Poetry of the Latino Experience (also LSP 248(2480)) (IV) (LA)
Spring. 3 credits. L. Carrillo.
Survey of the central importance of poetry in the modern and contemporary Latin American experience. Readings chart and critique the developments beginning in the civil rights struggles during the 1960s among Chicanos/as in the West and Southwest United States and among Nuyorican writers in the East through to the 1980s development of feminism, lesbian, and gay poetry, the Cuban poets emerging as the "American" generation, and concluding with recent poetry produced in the atmosphere of immigration, labor issues, globalization, and the institutional academy.

SPANL 255(2550) Sophomore Seminar: Maladies of the Soul: Don Quijote (IV) (LA)
Fall. 3 credits. Conducted in English. M. A. Garecs.
The year 2005 marks the 400th anniversary of the publication of the First Part of Don Quijote, a work hailed by the philosopher Michel Foucault as a first modern work of literature. In effect, Foucault claimed that Cervantes developed the arbitrary relation of words and things ushered in the modern age. A revolutionary document of its own age, Don Quijote confronts us with the complex history of multiracial reading of Don Quijote, using various theoretical perspectives. If Cervantes' subversion of deep-rooted Spanish beliefs, his fascination with Islam, and his display of humor, make him a most modern author, his interest in the problem of identity and identity and his explorations of madness in relation to meaning turn him into a forerunner of Freud.

This is a special seminar sponsored by the John S. Knight Institute's Sophomore Seminars Program. Seminars offer discipline-intensive study within an interdisciplinary context. While not restricted to sophomores, the seminars aim at initiating students into the discipline's outlook, discourse community, modes of knowledge, and ways of articulating that knowledge. Limited to 15 students.

SPANL 266(2660) Latin American Art (IV) (LA)
Fall or spring. 4 credits. Prerequisite: SPANL 218 or placement by CASE exam, or permission of instructor. Conducted in Spanish. J. C. Lawless.

SPANL 301(310) Hispanic Theater Production (also LAT A 301(310)) (IV) (LA)
Fall or spring. 1–3 credits. E. Sánchez-Blake.
Students develop a specific dramatic text for full-scale production. The course involves selection of an appropriate text, close analysis of the literary aspects of the play, and group evaluation of its representational value and effectiveness. All students in the course are required to participate in all class discussions and write one research paper in their chosen focus area.

SPANL 313(3130) Creative Writing Workshop (in Spanish)
Spring. 4 credits. Prerequisite: SPANL 218 or 219, or CASE Q++, or permission of instructor. Conducted in Spanish. E. Paz-Soldán.
Focuses on the practice of narrative writing in Spanish. Explores what makes a novel and a short story work, paying close attention to narrative structure, plot, beginnings/endings, character development, etc. Students read classic novels and short stories as points of departure for the discussion. Because the course is a workshop, students are expected to write their own fiction.

SPANL 316(3160) Readings in Modern Spanish Literature (IV) (LA)
Fall or spring. 4 credits. Prerequisite: SPANL 218, and either SPANL 311, or placement by CASE exam, or permission of instructor. Conducted in Spanish. F. C. Lawless.

SPANL 318(3180) Readings in Modern Spanish American Literature (also LAT A 318(3180)) @ (IV) (LA)
Fall or spring. 4 credits. Prerequisite: SPANL 218, and either SPANL 311, or placement by CASE exam, or permission of instructor. Conducted in Spanish. F. C. Lawless; spring: J. R. Resina.
From the aboriginal encounters that marked the 12th-century Spanish conquest of the Americas to the modern, 20th-century Spanish literature from Pérez Galdós to Ray Loriga. Students do close, analytical readings of Spanish novels, poems, short stories, and theater with a focus on questions of national identity and history. Authors may include Carmen Martín Gaite, García Lorca, Carmen Buerba and Miguel de Unamuno, as well as visual stimuli from film and photographs.

SPANL 319(3190) Renaissance Hispanisms (also LAT A 319(3190)) @ (IV) (LA)
Fall or spring. 4 credits. Prerequisite: SPANL 311 or permission of instructor. Conducted in Spanish. M. Roldán.

SPANL 320(3200) Perspectives on Latin America (also LAT A 320(3200)) @ (IV) (GA)
Spring. 3 credits. Highly recommended for Latin American studies concentrators. Conducted in English. M. Roldán and E. Sánchez-Blake.
This interdisciplinary, co-taught course offered every spring through Latin American Program. Topics vary by semester, but readings always focus on current research in various disciplines and regions of Latin America. The range of issues addressed include the economic, social, cultural, and political trends and transitions in the area. In the weekly meetings, instructors and guest lecturers facilitate student discussions. Students taking the course are required to participate in all class discussions and write one research paper in their chosen focus area.

SPANL 323(3230) Perspectives on Spain (IV) (LA)
Fall. 4 credits. Prerequisite: SPANL 311 or permission of instructor. C. Lawless.
The question of a "national" culture versus other types of collective culture: Women's Studies, Religious Studies, etc. Discussions on the identity and the problems of Spanish culture in the 20th century: Unamuno, Ortega y Gasset, Eugenio D'Ors, Lain Enramo. The present construction of Spain: "A nation of nations". From Roman Hispania to the medieval kingdoms, 1492; Don Quixote and Don Juan; the obsession for Europeization since 1713. The main names and trends in Spanish art and music.

SPANL 346(3460) Hispanic Caribbean Culture and Literature (also LAT A 346(3460)) @ (IV) (LA)
Fall. 4 credits. Prerequisite: SPANL 318 or permission of instructor. Conducted in Spanish. J. Hernandez.
Introduction to the politics, culture, and literature of the Hispanic Caribbean, with major emphasis on Cuba, Puerto Rico and the Dominican Republic. Analysis of the cultural and social peculiarities of the Caribbean area. Includes discussion of national identity and the emergence of alternative subjectivities in the literatures of the region. Topics include: racial, generic and sexual otherness, hybridity and translocality in the context of contemporary globalization, and postmodernity in the region. Authors such as Marti, Hostos, Ortíz, Guillén, Palés Matos, Carpentier, Lezama Lima, Piera, Arenas, Sánchez, Ferré, Valdés, Estévez, Vergés, Veloz Meritello, Hernández, and others.

SPANL 392(3920) Latin American Theater (also LAT A 392(3920)) (IV) (LA)
Fall. 4 credits. Prerequisite: SPANL 318 or permission of instructor. M. Sullivan.
Deals with the genesis of contemporary Latin American theater as indirectly reflected and individuated from European movements. The shift in technique from absurdist to Brechtian tendencies is viewed as a necessary
expression on political realities inherent in the Latin American experience. Students engage in close textual analysis of scripts from the following playwrights: Cubans, Virgilio Piñera and José Triana; Puerto Ricans, Rene Marqués and Luis Rafael Sánchez; Argentinian, Griselda Gambaro; and Mexicans, Emilio Carballido and Rosario Castellanos among others. Format: In keeping with the course focus on the direction of performance theorists, such as Augusto Boal, students should be prepared for extensive oral participation in addition to written exams.

SPANL 405(4050) Mappings in Medieval and Modern Hispanisms @ (IV) (CA)
Fall. 4 credits. Prerequisite: SPANL 318 and 319 or permission of instructor. B. Boekest and S. Pinet.
Examines medieval and modern engagements with maps and mapping in Hispanic literatures and culture. Discusses the nature of maps as well as their history as metaphor and as ideology, as an art form, and as a general structuring device. Primary sources may include Libro de Alexandre, Alfonso X's General estoria, Beatus of Liebana, Saint Isidore; J. L. Borges, Belén Gopegui, Julio Cortázar, Guillermo Kuitca; plus theoretical readings by Brian Harley, Denis Cosgrove, situationists, Giordana Brno, Michel de Certeau, Henri Lefebvre.

SPANL 413(4130) Classics of Latino/a Literature (also LSP 413(4130), COM L 434(4340)) (IV) (LA)
Spring. 4 credits. D. Castillo.
What makes a book a "classic"? When does it become a "must-read"? What do we mean when we talk about Latino/a literary canon? This course looks at foundational texts of U.S. latinidad, in Spanish and in English, from colonial times to the present, in all the major literary genres (novel, drama, poetry, short story, essay, translation); genre configuration (sources, techniques, motifs); questions of representation.

SPANL 414(4140) Intertextualities (also SPANL 618(6160)) (IV) (LA)
Spring. 4 credits. J. M. Rodriguez-Garcia.
Survey of 20th-century Spanish and Spanish American poets who engaged in intense intertextual work through one or more exercises: (1) the appropriation and manipulation of medieval and/or Renaissance texts for either literary-historical or political purposes; (2) the practice of intertextual discourse (i.e., the verbal rendition of visual art objects; and (3) the translation of French and Anglo-American poetry and the importation into the Hispanic literary system of the poetics informing those foreign-language texts.

SPANL 419-420(4190-4200) Special Topics in Hispanic Literature
419, fall; 420, spring. 2-4 credits each semester. Prerequisite: permission of instructor.
Guided independent study of specific topics. For undergraduates interested in special problems not covered in courses.

SPANL 422(4220) Late Medieval Devotional Image in Iberia (also ART H 422(4322), NES 422(4722))
Fall. 4 credits. Prerequisite: SPANR 219 or permission of instructor. C. Robinson.
For description, see ART H 422.

SPANL 429-430(4290-4300) Honors Work in Hispanic Literature
429, fall; 430, spring (yearlong). 8 credits. R grade fall semester, letter grade spring semester. Prerequisite: seniors with superior academic record; permission of instructor. M. A. Garces and staff.

SPANL 440(4400) Medieval Spanish Literature # (IV) (LA)
Spring. 4 credits. Conducted in English; readings available in English and Spanish.
S. Pinet.
Explores recurrent themes and problems in the study of Hispanic literatures through the consideration of major texts of the Hispanic tradition from the 11th through the 15th centuries. Discussion of materials in the classroom provides the grounds for an understanding of more general questions, in as of the relationship between literature, history and myth; the "opposition" between high/popular culture (questions of orality, tradition, transmission); genre configuration (sources, techniques, motifs); questions of representation.

SPANL 448(4480) The Mediterranean in the Times of Cervantes (also SPANL 658(6580), HIST 429/458(4290/4580), NES 449/469(4490/4690)) (IV) (LA)
Fall. 4 credits. Prerequisites: SPANL 316, 318, and 319 or permission of instructor.
Conducted in Spanish. M. A. Garces.
Focuses on the twin themes of cultural exchanges and cultural frontiers in the early modern Mediterranean, in which the writer Miguel de Cervantes played an important role as soldier, captive, and spy. Using Baudrillard's classic work on the Mediterranean as a point of departure, the course focuses on the 16th- and 17th-century Ottoman-Habsburg frontiers. Beginning with the fall of Granada in 1492, and the cultural shifts in Spain and the Mediterranean, the historical and literary voyage goes from Algiers in North Africa to Venice, Cyprus, and Istanbul. Readings include historical documents, spy reports, and soldier's autobiographies, as well as plays, novels, and chronicles by Cervantes, Diego Galán, Vicente Espinel, Pérez de Hita, Antonio de Sosa, Cristóbal de Villalón, and the Catalan novelist Carme Riera.

SPANL 451(4510) Spanish Theater of the Golden Age # (IV) (LA)
Spring. 4 credits. Prerequisite: SPANL 316, 318 and 319 or permission of instructor.
Conducted in Spanish. M. A. Garces.
Seminar exploring the rise of Spain's remarkable national theater in the 16th and 17th centuries, from the truly popular comedy, which produced outstanding art, to the highly sophisticated drama of Calderón. Summarizing various interdisciplinary approaches to the Golden Age Spanish drama, such as performance studies, historical and cultural approaches, students read a collection of Spanish comedias, including captivity plays and dramas on the New World. Readings are drawn from Cervantes, Lope de Vega, Tirso de Molina, Ruiz de Alarcón, and Calderón, among others. A trip to New York City's Repertorio español may be added.
RUSSIAN

N. Pollak, chair (226F Morrill Hall, 255-8614), F. Carden, director of undergraduate studies (on leave fall 2005; 226E Morrill Hall), S. Paperno, director of Russian language program (226E Morrill Hall); W. Browne, R. Krivitsky, S. Senderovich (on leave fall 2005), G. Shapiro, V. Tsimberov. Visiting: G. Nehler

For updated information, consult our websites:
- (literature) www.arts.cornell.edu/russian
- (language) http://russian.cornell.edu

The Russian Major

Russian majors study Russian language, literature, and linguistics and emphasize their specific fields of interest. It is desirable, although not necessary, for prospective majors to complete RUSSA 121-122, 203-204, and RUSS 205 as freshmen and sophomores, because these courses are prerequisites to most of the junior and senior courses that count toward the major. Students may be admitted to the major upon satisfactory completion of RUSSA 122 or the equivalent.

Students who elect to major in Russian should consult the director of undergraduate studies as soon as possible. For a major in Russian, students are required to complete:
- (1) RUSSA 303-304 or the equivalent, and
- (2) 12 credits from 300- and 400-level literature and linguistics courses, of which 12 credits must be in literature in the original Russian.

With the permission of the instructor, students may add 1 credit to certain literature courses by registering for RUSSA 491. Such courses involve a one-hour section each week with work in the Russian language. Students may count two 1-hour credits toward the 12 hours of Russian literature in the original language required for the major.

Satisfying the Foreign Language Requirement

1. Under Options 1a and 1b:
 1a. Any Russian-language (RUSSA) course totaling 3 or 4 credits at the 200 level or above (with the exception of RUSS 300 Directed Study) satisfies the Arts and Sciences language requirement under Option 1a.
 1b. Students may complete the language requirement also by taking RUSS 212.

2. Under Option 2:
 - In two semesters: RUSSA 103 and 121 in the fall, RUSSA 104 and 122 in the spring.
 - In three semesters: RUSSA 121 in the fall, 122 in the spring. 205 the following fall.
 - In four semesters: RUSSA 121 in the fall, 122 in the spring, 125 the following fall, 126 the following spring.

Study Abroad

Students from Cornell frequently participate in the Council on International Educational Exchange and the American Council of Teachers programs for language study, as well as other Russian language programs. Opportunities are available for study during the summer, a single semester, or the full year. Further information is available from Professor Wayles Browne in the Department of Linguistics (220 Morrill Hall) and from the Cornell Abroad Office.

Honors. Students taking honors in Russian undertake individual reading and research and write an honors essay. Students planning to take honors should consult the director of undergraduate studies in their junior year.

Russian Language

Detailed information and schedules of the Russian language courses, as well as office hours of the instructors, are available at:
- http://russian.cornell.edu
- www.arts.cornell.edu/russian

Suggested tracks for first- and second-year Russian language study:
- First-year intensive: 103 + 121 in the fall, 104 + 122 in the spring.
- First-year nonintensive: 121 in the fall, 122 in the spring.
- Second-year intensive: 125 + 203 in the fall, 126 + 204 in the spring.
- Second-year nonintensive: 203 in the fall, 204 in the spring.

Second-year "mostly reading, lighter load": 125 in the fall, 126 in the spring

RUSSA 103-104(1103-1104) Conversation Practice
103, fall, 104, spring. 2 credits each semester. Students must enroll in one sec of 103 and one sec of 121 in fall and one sec of 104 and one sec of 122 in spring. R. Krivitsky.

Reinforces the speaking skills learned in RUSSA 121 and 122. Homework includes assignments that must be done in the language lab or on the students' own computers.

RUSSA 121-122(1121-1122) Elementary Russian
121, fall or summer; 122, spring or summer. 4 credits each semester. Prerequisite: for RUSSA 122, RUSSA 121. R. Krivitsky, S. Paperno, and V. Tsimberov. Gives a thorough grounding in all the language skills: listening, speaking, reading and writing. Course materials include clips from original Russian films and TV programs. Homework includes assignments that must be done in the language lab or on the students' own computers.

RUSSA 125-126(1125-1126) Reading Russian Press
125, fall; 126, spring. 2 credits each semester. Sec 1 for non-native speakers of Russian; sec 2 for native speakers of Russian. Prerequisite: for 125 sec 1, RUSSA 122 or placement in department; for 125 sec 1, RUSSA 125 or placement by department, for 126 sec 2, placement by department. Times TBA with instructors.* See starred (*) note at end of RUSSA section.

RUSSA 203-204(2203-2204) Intermediate Composition and Conversation
203, fall; 204, spring. 3 credits each semester. Provides language proficiency. Prerequisite: for RUSSA 203, RUSSA 122 and IELTS 5.0. RUSSA 204 with grade higher than B, or placement by department, for RUSSA 203, 204 or equivalent. R. Krivitsky, S. Paperno, and V. Tsimberov.

Guided conversation, translation, reading, pronunciation, and grammar review, emphasizing the development of accurate and idiomatic expression in the language. Course materials include video clips from an original Russian feature film and work with Russian web sites.

RUSSA 300(3300) Directed Studies
Fall or spring. 1-4 credits, variable. Prerequisite: permission of instructor. Times TBA with instructor.* See starred (*) note at end of RUSSA section.

RUSSA 303-304(3303-3304) Advanced Composition and Conversation
303, fall; 304, spring. 4 credits each semester. Prerequisite: for RUSSA 303, RUSSA 204 or equivalent; for RUSSA 304, RUSSA 305 or equivalent. R. Krivitsky, S. Paperno, and V. Tsimberov.

Reading, writing, and conversation: current Russian films (feature and documentary), newspapers, TV programs, Russian web sites, and other materials supplied. Completing interviews with native speakers of Russian is a component of RUSSA 304.

RUSSA 305-306(3305-3306) Reading and Writing for Heritage Speakers of Russian
305, fall; 306, spring. 2-3 credits, variable. Prerequisite: placement by department. Times TBA with instructor.* Please see starred (*) note at end of RUSSA section. Course may be cancelled if enrollment is insufficient. S. Paperno and R. Krivitsky.

Intended for students who speak grammatically correct Russian at home but do not know Russian grammar and have not learned to read or write Russian well (or have not learned written Russian at all). The two courses are very similar and do not constitute a sequence. Each may be taught slightly faster or slower in a given year, depending on the needs and interests of the students. Two classes a week teach writing and grammar and include related reading. These classes are required, and the students who take them receive 2 credit hours. The third (optional) class teaches reading and discussion and grants an additional credit hour.

RUSSA 308(3308) Russian Through Popular Culture
Spring. 2-3 credits, variable. Prerequisite: RUSSA 304 for non-native speakers of Russian: RUSSA 305 or 306 for "heritage" speakers of Russian; for all others with advanced knowledge of Russian, placement by department. Not open to fluent native speakers of Russian (recommended: RUSSA 309 and RUSSL courses). Conducted in Russian. Times TBA with instructor.* Please see starred (*) note at end of RUSSA section.

Arts and Sciences - 2005-2006
through a mosaic study and discussion of a variety of styles in contemporary Russian popular culture (1970s through the present). Course materials include traditional and urban folklore, film, animation, published texts (prose and poetry), paintings, and recordings of songs. Includes two or three essays or similar writing assignments. Work is distributed so that a student may attend all three weekly meetings for 3 credit hours or only two of the meetings for 2 credit hours.

RUSSA 309-310(3309-3310) Advanced Reading
309, fall; 310, spring. 4 credits each semester. Sec 1 for non-native speakers of Russian; sec 2 for native speakers of Russian. Prerequisites: for sec 1 of RUSSA 309, RUSSA 204; for RUSSA 310, RUSSA 309 or equivalent; for sec 2 of 309 and 310, placement by department. Times TBA with instructors.* See starred (*) note at end of RUSSA section. May be canceled if enrollment is insufficient. S. Paperno and V. Tsimberov.

Designed to teach advanced reading and discussion skills. In section 1, weekly reading assignments include 20–40 pages of untranslated Russian prose or poetry. In section 2, the weekly assignments are 100–130 pages. Discussion of the reading is conducted entirely in Russian and centered on the content of the assigned selection.

RUSSA 401-402(4401-4402) History of the Russian Language (also LING 417-418[4417-4418]) (III) (NA)
401, spring; 402, spring. 4 credits each semester. Prerequisites: for RUSSA 401, permission of instructor; for RUSSA 402, RUSSA 401 or equivalent. Offered alternate years; RUSSA 402 not offered 2005–2006. Times TBA with instructor.** See double-starred (**) note at end of RUSSA section. W. Browne.

For description, see LING 417–418.

RUSSA 403-404(4403-4404) Linguistic Structure of Russian (also LING 443-444[4443-4444]) (III) (KC)
403, fall; 404, spring. 4 credits each semester. Prerequisites: for RUSSA 403, reading knowledge of Russian; for RUSSA 404, RUSSA 403 or equivalent. Offered alternate years; RUSSA 404 not offered 2005–2006. Times TBA with instructor.** See double-starred (**) note at end of RUSSA section. W. Browne.

For description, see LING 443–444.

RUSSA 409(4409) Teaching Russian as a Foreign Language
Fall or spring. 1 credit each semester. Prerequisite: very good command of Russian language. Not offered 2005–2006. Times TBA with instructor.* See starred (*) note at end of RUSSA section. S. Paperno.

Involves discussion of authentic Russian texts and films (fiction or documentary) in a variety of nonliterary styles and genres.

RUSSA 491(4491) Reading Course: Russian Literature in the Original Language
Fall or spring. 1 credit each semester. Prerequisite: permission of instructor. Times TBA with instructor.* Please see starred (*) note at end of RUSSA section. Staff.

To be taken in conjunction with any Russian literature course at the advanced level. Students receive 1 credit for reading and discussing works in Russian in addition to their normal course work.

RUSSA 601(6601) Old Church Slavonic (also LING 661[6661])
Fall. 4 credits. Prerequisite: knowledge of Slavic or ancient Indo-European language. Prerequisite for RUSSA 602 and 651. Offered alternate years. Times TBA with instructor.** Please see double-starred (**) note at end of RUSSA section. W. Browne.

For description, see LING 661.

RUSSA 602(6602) Old Russian Texts (also LING 662[6662])
Spring. 4 credits. Prerequisite: RUSSA 601 or LING 661. Offered alternate years. Times TBA with instructor.** Please see double-starred (**) note at end of RUSSA section. W. Browne.

For description, see LING 662.

RUSSA 633-634(6633-6634) Russian for Russian Specialists
633, fall; 634, spring. 1–4 credits, variable. Prerequisite: four years of college Russian or equivalent; advanced undergraduate or graduate standing. Times TBA with instructor.* See double-starred (**) note at end of RUSSA section. W. Browne.

Designed for students whose areas of study require advanced active control of the language. Fine points of syntax, usage, and style are discussed and practiced. Syllabus varies from year to year.

RUSSA 651-652(6651-6652) Comparative Slavic Linguistics (also LING 671-672[6671-6672])
651, spring; 652, fall. 4 credits each semester. Prerequisites: for RUSSA 651, RUSSA 651 or LING 661 taken previously or simultaneously, or permission of instructor; for RUSSA 652, RUSSA 651 or permission of instructor. Offered alternate years; not offered 2005–2006. Times TBA with instructor.** Please see double-starred (**) note at end of RUSSA section. W. Browne.

For description, see LING 671–672.

RUSSA 700(7700) Seminar in Slavic Linguistics
Offered according to demand. 1–4 credits. Times TBA with instructor.** See double-starred (**) note at end of RUSSA section. W. Browne.

For description, see LING 767–768.

RUSSA 209(2209) Readings in Russian Prose and Poetry # (LA)
Fall. 3 credits. N. Poliak.

Short 19th- to early 20th-century classics including Pushkin, Dostoevsky, Tolstoy, Blok, Pasternak (in Russian). Conducted in English. Prerequisite: two or more semesters of Russian language (121/122 or equivalent). Assignments adjusted for native fluency. May be used as a prerequisite for RUSSL 300–400 courses with reading in Russian.

RUSSL 212(2212) Readings in 20th-Century Russian Literature (IV) (LA)
Spring. 3 credits. Provides language proficiency and satisfies Option 1. G. Shapiro.

Goals are to introduce students to 20th-century Russian literature in the original and to improve their Russian reading and writing skills. Readings are from 20th-century masters such as Burin, Bulgakov, and Nabokov. All reading, writing, and discussion in Russian. Course designed for students with native background needing another course to satisfy the language requirement. May be used as a prerequisite for RUSSL 300–400 courses with reading in Russian.

RUSSL 233(2233) Soviet Social and Family Life, WWII (also HIST 233[2330]) (III) (CA)

For description, see HIST 233.

RUSSL 279(2279) The Russian Connection, 1830 to 1867 (also COM L 279) # (IV) (LA)

As Russian prose began to find its voice, it responded with enthusiasm to the European
prose tradition. One line of development in the Russian novel began with Rousseau’s division between the needs of individual growth, nourished by solitude and introspection, and the demands of society. Tolstoy’s “War and Peace” can be read as a summary and a testing of the novelistic tradition that grew out of the work of Rousseau, in both European and Russian literature. We follow the line that leads to Tolstoy’s multifaceted inquiry, beginning with two short novels that set the tone for the introspective novel in the two traditions, Constant’s Adolphe and Lermontov’s Hero of Our Time. Looking at relevant excerpts from a range of European prose writers, Rousseau, Musset, Goethe, Stendahl, and Thackeray among others, we think about the possibilities and limitations of the introspective novel as a form, especially as manifested in one of the monuments of the genre, War and Peace.

[RUSSL 280(2280) The Russian Connecchic, 1870 to 1960 (also COM L 280) (IV) (LA)]
The European novel of introspection developed a second line of inquiry, in some respects counter to the tradition that grew out of the writings of Rousseau. Diderot’s Rameau’s Nephew may be taken as emblematic of a novel that goes beyond the search for self-understanding to focus on alienation, resentment, and rebellion. Dostoevsky was the inheritor of this line in the European prose tradition. His works, in particular Notes from Underground and The Idiot, are the lineages of our discussion. We follow up the tradition as Dostoevsky’s influence returns the line to Europe in the works of writers like Camus and Sartre.

[RUSSL 331(3331) Introduction to Russian Poetry # (IV) (LA)]
Survey of Russian poetry, with primary emphasis on the analysis of individual poems by major poets.

[RUSSL 332(3332) Russian Drama and Theater (also METR 322(3220), COM L 322 (IV) (LA)]
Covers selected topics. Includes discussion of several of the most representative Russian plays of the 19th and 20th centuries in chronological order. Offers introductions to the historical period, cultural atmosphere, literary trends, and crucial moments in the history of Russian theater. Works studied include Gogol’s Inspector General, Ostrovsky’s The Storm, and Chekhov’s The Cherry Orchard. All readings are in English translation. Additional assignments in critical literature are made for graduate students.

[RUSSL 333(3333) 20th-Century Russian Poetry (IV) (LA)]
Close readings of lyrics by major 20th-century poets. All readings are in Russian.

[RUSSL 334(3334) The Russian Short Story # (IV) (LA)]
Spring. 4 credits. Prerequisite: proficiency in Russian or permission of instructor. May be counted toward 12 credits of Russian literature in original language for Russian major. Not offered 2005–2006. P. Carden.
Surveys two centuries of Russian storytelling. Emphasizes the analysis of individual stories by major writers, on narrative structure, and on related landmarks of Russian literary criticism.

[RUSSL 335(3335) Gogol # (IV) (LA)]
Selected works of Gogol are read closely and viewed in relation to his life and to the literature of his time. Readings are in English translation.

[RUSSL 337(3337) Films of Russian Literary Masterpieces (also COM L 339) (IV)]

[RUSSL 338(3338) Lermontov’s Hero of Our Time # (IV) (LA)]
Focuses on Mikhail Lermontov’s Hero of Our Time, which has been called the first major Russian novel. Readings, including Lermontov’s verse, are in Russian, with attention to linguistic and literary problems.

[RUSSL 350(3350) Education and the Philosophical Fantasies (also COM L 350) (IV) (LA)]
A major philosophical tradition has conceived of education as encompassing the whole of our lives. What we should do or be is seen as the result of every choice we make. The whole of our human context is understood as a school in which we form ourselves. This all-encompassing vision of education has been embodied in the works of the great philosopher-fantasists who use the forms of fiction to explore fundamental issues of education. Students examine several key philosophies: Plato’s Republic, Rousseau’s Emile, and Tolstoy’s War and Peace. The aim is to understand how the discourse on education became a central part of our modern tradition.

[RUSSL 367(3367) The Russian Novel # (IV) (LA)]
Spring. 4 credits; students who read Russian may sign up for disc of Russian text for 1 credit (RUSSA 491). N. Poliak.
The rise of the Russian novel in the 19th century. May include works by Pushkin, Gogol, Turgenev, Dostoevsky, Tolstoy, and Chekhov. Readings in English translation.

[RUSSL 368(3368) Russian Literature from 1917 to the Present (IV) (LA)]

[RUSSL 369(3369) Dostoevsky # (IV) (LA)]
Fall. 4 credits. Limited to 40 students. P. Carden.
Involves close reading of novels and short works by Fyodor Dostoevsky. Dostoevsky’s fiction is in contentuous dialogue with the literature and philosophy of the preceding century and opens out to the literature and philosophy of the following century. His critique of European culture, his searching examination of the interior life, and his bold experiments with narrative make his work seminal in world fiction. Readings include Notes from Underground, Crime and Punishment, The Idiot, and The Brothers Karamazov. Readings in English translation.

[RUSSL 373(3373) Chekhov in the Context of Contemporary European Literature and Art (also COM L 375) # (IV) (LA)]
Reading and discussion of Anton Chekhov’s short stories, in the context of the European art of the short story and the paintings of that era. Course designed for nonspecialists as well as literature majors. All readings in English translation.

[RUSSL 385(3385) Reading Nabokov (also ENGL 379) (IV) (LA)]
Spring. 4 credits. Limited to 18 students; priority given to seniors. G. Shapiro.
Offers an exciting trip into the intricate world of Nabokovian fiction. After establishing himself in Europe as a distinguished Russian writer at the outbreak of World War II, Nabokov came to the United States, where he re-established himself as an American writer of world renown. In our analysis of the Nabokovian artistic universe, we focus on his Russian corpus of works, from Mary (1926) to The Enchanter (writ. 1939), all in English translation, and examine the two widely read novels that he wrote in Lithua while teaching literature at Cornell, Lolita (1955) and Pnin (1957).

[RUSSL 393(3393) Honors Essay Tutorial]
Fall and spring. 8 credits. Must be taken in two consecutive semesters in senior year; credit for first semester is awarded upon completion of second semester. For information, see director of undergraduate studies. Times TBA with instructor. Staff.

[RUSSL 409(4409) Russian Stylistics (IV) (LA)]
Spring. 4 credits. Also open to graduate students. P. Carden.
Examines stylistic theory in Russian or permission of instructor. May be counted toward 12 credits of Russian literature in original language for Russian major. S. Senderovich.

[RUSSL 415(4415) Post-Symbolist Russian Poetry (IV) (LA)]
Fall. 4 credits. Prerequisite: proficiency in Russian or permission of instructor. May be counted toward 12 credits of Russian literature in original language for Russian major. Times TBA with instructor. Not offered 2005–2006. N. Poliak.
Examines works by three poets in the first quarter of the 20th century: Innokentii Annenskii, a Symbolist and a mentor to the next generation; Osip Mandelstam, a founding Acmeist; and Boris Pasternak, associated, at least for a time, with the...
For description, see HIST 485.

Two great novels of the 20th century, Lolita, appeared in October 1958, competing for first place on the bestseller list. Both novels concerned the tragic story of a teenage girl sexually exploited by a mature man. Pasternak's novel was initially unable to be published in Russia, for it was perceived as a pornographic text. Pasternak's novel was initially unable to be published in the United States, for it was perceived as a pornographic text.

RUSSL 427(4427) Russian Formalism (IV) (LA)
Fall. 4 credits. Not offered 2005-2006. N. Pollak.

RUSSL 430(4430) Practice in Translation (IV) (LA)
Spring. 4 credits. Prerequisite: proficiency in Russian or permission of instructor. May be counted toward 12 credits of Russian literature in original language for Russian major. Graduate students may audit. Not offered 2005-2006. Staff. Designed to acquaint students with the way Russian prose has developed during the past 40 years. Emphasis is on comprehension of the text, but we also discuss literary methods, modern literary history, social and political problems, and the ways life in the Soviet Union is reflected in its literature. Course specifically intended for third- and fourth-year Russian majors.

RUSSL 431(4431) Contemporary Russian Prose (IV) (LA)
Spring. 4 credits. Prerequisite: proficiency in Russian or permission of instructor. May be counted toward 12 credits of Russian literature in original language for Russian major. Graduate students may audit. Not offered 2005-2006. Staff. Designed to acquaint students with the way Russian prose has developed during the past 40 years. Emphasis is on comprehension of the text, but we also discuss literary methods, modern literary history, social and political problems, and the ways life in the Soviet Union is reflected in its literature. Course specifically intended for third- and fourth-year Russian majors.

RUSSL 432(4432) Pushkin # (IV) (LA)
Spring. 4 credits. Prerequisite: proficiency in Russian or permission of instructor. May be counted toward 12 credits of Russian literature in original language for Russian major. Not offered 2005-2006. S. Senderovich. Reading in the original language and discussion of selected works by Pushkin: lyrics, narrative poems, and Eugene Onegin.

RUSSL 437(4437) A Moralist and a Pornographer (also COM L 437) (IV) (LA)
Spring. 4 credits. Limited to 15 students. Not offered 2005-2006. S. Senderovich. Two great novels of the 20th century, Dr. Zhivago and Lolita, appeared in October 1958, competing for first place on the bestseller list. Both novels concerned the tragic story of a teenage girl sexually exploited by a mature man. Pasternak's novel was hailed as a highbrow and highly moral work of art, and the author soon received the Nobel Prize for literature. Nabokov's novel initially could not even be published in the United States, for it was perceived as a pornographic text.

RUSSL 485(4485) The World of Anna Karenina (also HIST 485) (III or IV) (CA)
Not offered 2005-2006. P. Holquist. For description, see HIST 485.

RUSSL 492(4492) Supervised Reading in Russian Literature
Fall or spring. 1-4 credits each semester. Independent study. Prerequisite: students must find an adviser and submit a plan before signing up. Times TBA with instructor. Staff.

RUSSL 493(4493) Anton Chekhov # (IV) (LA)
Fall. 4 credits. Prerequisite: proficiency in Russian or permission of instructor. Not offered 2005-2006. S. Senderovich. Reading of major works of Chekhov in Russian, with focus on style and use of language. We examine the works in the context of their time and assess their place in the history of Russian literature. Readings include "Anna on the Neck," "Darling," "Steppe," Uncle Vanya, and Sea gulls.

RUSSL 499(4449) The Avant-Garde in Russian Literature and the Arts (IV) (LA)
Fall. 4 credits. Prerequisite: proficiency in Russian or permission of instructor. May be counted toward 12 credits of Russian literature in original language for Russian major. P. Carden. The first decade of the 20th century was perhaps the richest period ever in Russian literature and the arts, beginning with the brilliant experimentation in poetry and prose of Andrei Bely. Blok, Remizov, and others, then continuing with breakthroughs in painting and sculpture by Malevich, Goncharova, Tatlin, et al. In the second decade, the rambunctious Futurists take over in literature and establish a compact with theater and the visual arts in which all the art forms break down the barriers to produce a new kind of art. During this period Russian artists in every medium were on the cutting edge of the European art scene. After the Revolution, Russian artists and writers of the avant-garde continued their dominance for a time, including the developing medium of film. We read representative Russian texts by the major authors of the period and investigate developments in the theater and visual arts.

Graduate Seminars

RUSSL 605(6605) Russian Analytical Approaches to Literature (also COM L 605)
Fall. 4 credits. Prerequisite: proficiency in Russian or permission of instructor. Not offered 2005-2006. S. Senderovich. Designed for graduate and advanced undergraduate students with sufficient knowledge of Russian literature and a developed interest in the analytical approaches to literary texts. Provides opportunity to study the most sophisticated analytical approaches to literature developed by Russian critics and theorists in the 19th and 20th centuries. Focus is on critical texts with analytical value as opposed to speculative, that is, those that aim at discovering the unforeseeable in the literary texts. Russian sources are studied against the background of contemporary American and European critical theory. Prominently featured are studies by Veselovsky, Tynianov, Jakobson, Bakhtin, and Senderovich.

RUSSL 611(6611) Supervised Reading and Research
Fall or spring. 2-4 credits each semester. Prerequisite: permission of instructor. Times TBA with instructor. Staff.

Related Languages

Czech

RUSSZ 300(3300) Directed Studies
Fall or spring. 1-4 credits, variable. Prerequisite: permission of instructor. Times TBA with instructor.** See double-starred (**) note at end of UKRAN section. W. Browne. Taught on a specialized basis to address particular student needs.

Hungarian

HUNGR 131-132(1131-1132) Elementary Hungarian
[131] Fall; 132, spring. 3 credits each semester. Prerequisite: for 132: HUNGR 131 or permission of instructor. This language series (131-132) is not sufficient to satisfy the language requirement. G. Nehler. Designed to aid the student in all facets of language acquisition: speaking, listening, comprehension, reading, and writing. Second-semester Hungarian (132) teaches more advanced grammar of the language at an intermediate level.

HUNGR 300(3300) Directed Studies
Fall or spring. 1-4 credits, variable. Prerequisite: permission of instructor. Times TBA with instructor.** See double-starred (**) note at end of UKRAN section. W. Browne. Taught on a specialized basis to address particular student needs.

RUSSZ 427(4427) Structure of Hungarian (also LING 427(4427)) (III) (KCM)
Fall. 4 credits. Prerequisite: LING 101 or equivalent. Offered alternate years. Times TBA with instructor.** See double-starred (**) note at end of UKRAN section. Not offered 2005-2006. W. Browne. For description, see LING 427.

Polish

POLSH 131-132(1131-1132) Elementary Polish
[131] Fall; 132, spring. 3 credits each semester. Prerequisite: for POLSH 132, POLSH 131 or equivalent. This language series (131-132) is not sufficient to satisfy the language requirement. Offered alternate years. Not offered 2005-2006. K. Golkowska. Covers all language skills: speaking, listening comprehension, reading, and writing.

POLSH 133-134(1133-1134) Continuing Polish
[133] Fall; 134, spring. 3 credits each semester. POLSH 134 provides language qualification. Prerequisites: for POLSH 133, POLSH 132 or permission of instructor; for POLSH 134, POLSH 133 or equivalent. Offered alternate years. Times TBA with instructor.** See double-starred (**) note at end of UKRAN section. K. Golkowska. An intermediate conversation and reading course.
POLSH 300(3300) Directed Studies
Fall or spring. 1–4 credits variable.
Prerequisite: permission of instructor.
Times TBA with instructor.** See double-starred (*) note at end of UKRAN section.
W. Browne.
Taught on a specialized basis to address particular student needs.

(POLSH 301(3301) Polish through Film and Literature (IV))
Fall. 3 credits. Provides language proficiency and satisfies Option 1.
Prerequisite: POLSH 134 or permission of instructor. Times TBA with instructor.** Not offered 2005–2006.

All-skills course designed to build communicative proficiency in the language and provide insight into Polish culture. Short videos, films, and contemporary texts chosen for their thematic interest and linguistic accessibility provide the basis for practice in listening and reading comprehension, guided conversation, and a grammar review.

Serbo-Croatian

SEBCR 131-132(1131–1132) Elementary Serbo-Croatian
131, fall; 132, spring. 3 credits each semester. Prerequisite for SEBCR 132: SEBCR 131 or equivalent. This language series (131–132) is not sufficient to satisfy language requirement. Offered alternate years. Times TBA with instructor.** See double-starred (*) note at end of UKRAN section. W. Browne.
Covers all language skills: speaking, listening, comprehension, reading, and writing. Includes Bosnian.

SEBCR 133-134(1133–1134) Continuing Serbo-Croatian
133, fall; 134, spring. 3 credits each semester. SEBCR 134 provides language qualification. Prerequisite for SEBCR 133: SEBCR 132 or equivalent; for SEBCR 134: SEBCR 133 or equivalent. Offered alternate years. Times TBA with instructor.** See double-starred (*) note at end of UKRAN section. Not offered 2005–2006.
W. Browne.
An intermediate conversation and reading course.

SEBCR 300(3300) Directed Studies
Fall or spring. 1–4 credits variable.
Prerequisite: permission of instructor.
Times TBA with instructor.** See double-starred (*) note at end of UKRAN section. Staff.
Taught on a specialized basis to address particular student needs.

Ukrainian

UKRAN 300(3300) Directed Studies
Fall or spring. 1–4 credits variable.
Prerequisite: permission of instructor.
Times TBA with instructor.** See double-starred (*) note at end of section.
W. Browne.
Taught on a specialized basis to address particular student needs.

*SANSKRIT
See “Asian Studies.”

SCIENCE AND TECHNOLOGY STUDIES

In today’s world, issues at the intersection of the technical and the social arise continually in all aspects of life, from the role of computers in society, the history of political and ethical implications. S&TS provides a strong liberal arts background from which students can go on to careers in law, medicine, environmental policy, business, and a variety of other professions where the social aspects of science and technology loom large.

The Science and Technology Studies Major

S&TS courses are organized into a set of core courses plus three themes. Students select the theme that best represents their interests. In consultation with a faculty member, students may devise their own set of courses as long as it meets the general criteria of coherence and rigor.

Admission to the Major

Students intending to major in Science and Technology Studies should submit an application during their sophomore year. Juniors are considered on a case-by-case basis. The application includes (1) a one-page statement explaining the student's intellectual interests and why the major is consistent with the student's academic interests and goals; (2) the theme the student wishes to pursue in the major; (3) a tentative plan of courses satisfying S&TS requirements; and (4) an up-to-date transcript of work completed at Cornell University (and elsewhere, if applicable).

Acceptance into the major requires completion of the following prerequisites:

1. two introductory courses from the categories Historical Analysis (HA), Knowledge, Cognition, and Moral Reasoning (KCM), or Social and Behavioral Analysis (SBA), as listed in the distribution requirements for the College of Arts and Sciences.
2. the science and quantitative requirement of the College of Arts and Sciences;
3. the development of a coherent program of study that fulfills the major requirements; and (4) an up-to-date transcript of work completed at Cornell University (and elsewhere, if applicable).

S&TS majors must complete the following requirements:

1. Core: one course in each of the following groups (a–c):
 a. Foundation (S&TS 201)
 b. Ethics (choose from S&TS 205, 206, 360, or 490)
 c. History (choose from S&TS 233, 250, 281, 282, 330, 357, 447, or 475)

2. Theme: Students must elect a theme and take four courses in the theme. Courses taken to satisfy the core course requirements may not be used as part of the required four courses in the theme. At least two of the courses should be at the 300 level or higher, and at least one should be at the 400 level.

Available themes are:

In consultation with an S&TS faculty adviser, students may also devise their own theme as long as it meets the general criteria of coherence and rigor.

3. Additional Science and Technology Studies Courses: additional courses to total 34 credit hours in the major, chosen from the general list of S&TS courses.

4. Science Requirement: in addition to the science requirement of the College of Arts and Sciences, Science and Technology Studies majors are required to take an additional two semesters of a natural science or engineering (including computer science). Mathematics sufficient to provide background for the additional science requirement should be completed before undertaking that requirement. Choice of these courses should be made in consultation with the student’s major adviser and should be related to the theme selected by the student.

Notes:
Students who participate in the program should find the experience intellectually stimulating and rewarding whether or not they intend to pursue a research career. S&TS majors are

The Honors Program

The honors program is designed to provide independent research opportunities for academically talented S&TS majors. Students who enroll in the honors program are expected to do independent study and research, with faculty guidance, on issues in science and technology studies. Students who participate in the program should find the experience intellectually stimulating and rewarding whether or not they intend to pursue a research career. S&TS majors are

For these courses, contact Professor Browne (ewbh2@cornell.edu or 255-0712) for time and place of organizational meetings.

ARTS AND SCIENCES - 2005-2006

688
considered for entry into the honors program at the end of the second semester of their junior year. To qualify for the S&TS honors program, students must have an overall Cornell cumulative grade point average (GPA) of at least 3.60 and a 3.30 cumulative GPA in courses taken for the major. Additionally, the student must have formulated a research topic, and have found a project supervisor and a second faculty member willing to serve as the advisers; at least one of these must be a member of the S&TS department. More information on the honors program is available from the S&TS undergraduate office at 306 Rockefeller Hall (255-6047).

The Biology and Society Major
The Department of Science and Technology Studies also offers the Biology and Society major, which includes faculty from throughout the university. The Biology and Society major is designed for students who wish to combine the study of biology with exposure to perspectives from the social sciences and humanities. In addition to providing a foundation in biology, Biology and Society students obtain background in the social dimensions of modern biology and in the biological dimensions of contemporary social issues.

The Biology and Society major is offered to students enrolled in the College of Arts and Sciences, the College of Human Ecology, and the College of Agriculture and Life Sciences. The major is coordinated for students in all colleges through the Biology and Society office. Students can get information, specific course requirements, and application procedures for the major from the office in 306 Rockefeller Hall, 255-6047.

A full description of the Biology and Society major can be found on p. 477 of this catalog.

The Concentration in Science and Technology Studies

The concentration (or minor) in Science and Technology Studies (S&TS) is designed for students who wish to engage in a systematic, interdisciplinary exploration of the role of science and technology in modern societies. The concentration is intended for students with varied academic interests and career goals. Majors in the natural sciences and engineering have an opportunity to explore the social, political, and ethical implications of their selected fields of specialization, while students majoring in the humanities and social sciences have a chance to study the processes, products, and impacts of science and technology from an S&TS perspective.

To satisfy the requirements for the S&TS concentration, students must complete with letter grades a minimum of four courses selected from the course offerings listed for the major. At least one course must be chosen from the list of core courses. Two courses must be chosen from one of the themes listed below:

1. Minds and Machines
2. Science, Technology, and Public Policy
3. Life in Its Environment
4. Ethics

The concentration is completed with one other course in S&TS. Interested students may obtain further information about courses and a list of course descriptions by contacting the S&TS undergraduate office, 306 Rockefeller Hall (255-6047).

Course Offerings
Introductory Course
Core Courses
Foundation Course
Ethics
History
Theme Courses
Minds and Machines
Science, Technology, and Public Policy
Life in Its Environment
Independent Study
Graduate Seminars

First-Year Writing Seminars and Introductory Courses
Consult the John S. Knight Institute web site for times, instructors, and descriptions. Web site: www.arts.cornell.edu/Knight_institute/index.html.

S&TS 101(1101) Science and Technology in the Public Arena (III) (SBA) Fall. 3 credits. S&TS 101 and 102 may be taken separately or in any order. Recommended as introduction to field; not required and may not be used to fulfill a major requirement. R. Prentice. Introduction to public policy issues involving developments in science and technology. Studies such topics as secrecy and national security, the politics of expertise, public understanding of science, computers and privacy, and the management of risk. Applies concepts from the field of science and technology studies to analyze how issues are framed and public policy produced.

S&TS 102(1102) Histories of the Future (IV) (CA) Spring. 3 credits. Recommended as introduction to field; not required and may not be used to fulfill a major requirement. S&TS 101 and 102 may be taken separately or in any order. R. Prentice and S. Seth. From Frankenstein to The Matrix, science fiction and film have depicted contemporary science, technology, and medicine for almost two centuries. This course introduces students to historical and social studies of science and technology using science fiction films and novels, as well as key readings in science and technology studies. What social questions can fictional accounts raise? How can we apply our understanding of the impact of science and technology to our lives? How do these stories inform our understanding of the present and future of science and technology?

Core Courses

Foundation Course
S&TS 201(2011) What Is Science? An Introduction to the Social Studies of Science and Technology (also SOC 210(2100) (III) (CA)) Spring. 3 credits. F. T. Pinch. Introduces some of the central ideas in the field of Science and Technology Studies (S&TS). As well as serving as an introduction to students who plan to major in Biology and Society or in Science and Technology Studies, the course is aimed at students with backgrounds in either the sciences or the humanities who are challenged to think more critically about what we mean by science, what counts as scientific knowledge and why, and how science and technology intervene in the wider world. The course is a mixture of lecture, discussion, and other activities. The discussion sections are an integral part of the course and attendance is required. In addition, a series of written assignments throughout the semester and a take-home final during exam week compose the majority of the grade.

Ethics
S&TS 205(2051) Ethical Issues in Health and Medicine (also B&SOC 205(2051) (IV) (KCM)) Fall. 4 credits. Limited to 150 students. K. Vogel. For description, see B&SOC 205.

S&TS 206(2061) Ethics and the Environment (also B&SOC 206(2061), PHIL 245(2460) (IV) (KCM)) Spring. 4 credits. Limited to 50 students. J. Turner. For description, see B&SOC 206.

S&TS 360(3601) Ethical Issues in Engineering (also ENGRG 360(3600)) Spring. 3 credits. Limited to juniors and seniors only. P. Doing. For description, see ENGRG 360.

History
S&TS 233(2331) Agriculture, History, and Society: From Squanto to Biotechnology (III) (HA) Fall. 3 credits. M. Rossiter. For description, see "Life in Its Environment" theme.

S&TS 250(2501) Technology in Society (also ENGRG/ECN/MIST 250(2500) (III) (HA)) Fall. 3 credits. Offered alternate years; not offered 2005–2006. R. Kline. For description, see ENGRG 250.

S&TS 281(2811) Science in Western Civilization (also HIST 281(2810) # (III) (HA)) Fall. 4 credits. P. Dear. For description, see HIST 281.
670 ARTS AND SCIENCES - 2005-2006

S&TS 282(2821) Science in Western Civilization (also HIST 282(2820)) # (III) (HA)
Spring. 4 credits. S&TS 281 is not a prerequisite to 282. P. Dear.
For description, see HIST 282.

S&TS 330(3301) Physical Sciences in the Modern Age (III) (HA)
Fall. 4 credits. S. Seth.
Examines the history of the physical sciences in Europe and the United States from 1800 to the present. Students study such topics as the development of the thermodynamics and electrodynamics, the quantum and relativity theories, science during the world wars, and post-war "big science." As well as a history of ideas, the course emphasizes the broad social and cultural contexts in which physical science has been produced, focusing on issues raised in relation to Romanticism, the first and second industrial revolutions, social statistics, train travel, and the military-industrial context of science, complex, among others. Reading for the course ranges from primary source material (original papers by Thomson, Helmholtz, Planck, and Einstein) to extracts from Mary Shelley's Frankenstein and Michael Frayn's Copenhagen.

S&TS 357(3571) Engineering in American Culture (also ENGRG/HIST 357(3570))
Fall. 3 credits. R. Kline.
For description, see ENGRG 357.

S&TS 447(4471) Why Is Evolutionary Biology So Controversial (also BIOEE 467(4670), B&SOC 447(4471), HIST 415(4150))
Summer. 4 credits. W. Provine.
For description, see BIOEE 467.

S&TS 475(4751) Historical Issues of Science, Technology, Race, and Colonialism (also HIST 464(4640))
Fall. 4 credits. S. Seth.
The interrelations between science and technology on the one hand, and colonialism and the construction of the modern nation-state on the other have become topics of increasing scholarly interest and debate in the last two decades. This seminar examines the ways in which specific sciences and technologies were supported and were supported by colonialist and imperialist projects from the early nineteenth to the mid-20th centuries. While texts of broad conception like Michael Ad\'a's Machines as the Measure of Man and Gyan Prakash's recent Another Reason have made an attempt to provide an overview of many of the issues involved, the field awaits a genuinely synthetic treatment. This course provides the framework for such a treatment by looking at a number of key areas of current interest. The first third of the course begins with a survey of the history of ideas of race and the development of race-sciences in the 19th century. The second third considers a sampling of primary materials on Darwinian theories of race and later formulations of social Darwinism. The latter part explores a number of specific sciences, including the importance of social statistics and technologies of identification (fingerprinting), medicine and hygiene, scientific nationalism and nationalist science, the periphery as laboratory, and gender, savagery and criminality. Readings consist of a mixture of primary and secondary sources, and students are encouraged to contribute topics and texts of particular interest.

Theme Courses

Minds and Machines
[S&TS 212(2121) Sophomore Seminar: Sound Studies (III) (CA)]
Fall. 4 credits. Not offered 2005-2006. T. Pitch.

[S&TS 250(2501) Technology in Society (also ECE/ENGRG/HIST 250(2500))]
Fall. 3 credits. Offered alternate years. Not offered 2005-2006. R. Kline.
For description, see ENGRG 250.

S&TS 281(2811) Science in Western Civilization (also HIST 281(2810)) # (III) (HA)
Fall. 4 credits. P. Dear.
For description, see HIST 281.

S&TS 282(2821) Science in Western Civilization (also HIST 282(2820)) # (III) (HA)
Spring. 4 credits. P. Dear.
For description, see HIST 282.

S&TS 286(2861) Science and Human Nature (also PHIL 286(2860)) # (IV) (KCM)
Spring. 3 credits. R. Boyd.
For description, see PHIL 286.

S&TS 292(2921) Inventing an Information Society (also ECE/ENGRG 292(2920), HIST 292(2920)) # (III) (HA)
Spring. 3 credits. R. Kline.
For description, see ENGRG 292.

[S&TS 349(3491) Media Technologies (also INFO 349(3491), COMM 349(3490)) (III) (HA)]

[S&TS 354(3541) The Sociology of Contemporary Culture (also SOC 352(3520)) (III) (CA)]
Introduces concepts to the rapidly expanding body of work at the intersection of sociology, cultural studies, and science and technology studies. Provides an introduction to theoretical debates in cultural studies and to sociological studies of culture. Assesses the emergence of the tourist industry, the significance of consumption in modern life, the culture of music and art, the use of rhetoric in social life, cultural and feminist analyses of knowledge and science, and the social construction of self, bodies, and identities.

[S&TS 355(3551) Computers: From the 17 C. to the Dot.com Boom (also INFO 355(3551), COMM 355) (III) (HA)]
Fall. 4 credits. Not technical knowledge of computer use is presumed or required. S&TS 355 and 356 can be taken separately or in any order. K. Lemberg.
Computers have not always been ubiquitous boxes gracing our desktops: in Victorian London, Charles Babbage tried to build an analytical engine using brass gears and steel rods, and during World War II the Allied governments used sophisticated electro-mechanical and electronic "brains" to break Axis codes. How did computing technology, once useful only to technical specialists, come to dominate industry, academia, the military, and the home? This course explores the history of computing, placing ideas and technologies in social and historical context; for example, it relates Charles Babbage's difference engines to the factory system, IBM to the population census, and feedback systems and Turing machines to the demands of war. Looking at the history of the computer teaches something of how technology, society and knowledge depend on and change one another. It also helps students discover something about the relationship between machines and society. This course is a course in the history of computing; a background in computer science is not required.

S&TS 356(3561) Computing Cultures (also INFO/VISST 356(3560)) # (III) (CA)
Spring. 4 credits. No technical knowledge of computer use presumed or required. S&TS 355 and 356 may be taken separately or in any order. P. Sengers.

Computers are powerful tools for working, playing, thinking, and living. Laptops, PDAs, webcams, cell phones, and iPods are not just devices, they also provide narratives, metaphors, and ways of seeing the world. This course critically examines how computing technology and society shape each other and how this plays out in our daily lives. Identifies how computers, networks, and information technologies reproduce, reinforce, and rework existing cultural trends, norms and values. Looks at the values embodied in the cultures of computing and considers alternative ways to imagine, build, and work with information technologies.

S&TS 381(3811) Philosophy of Science: Knowledge and Objectivity (also PHIL 381(3810)) # (IV) (KCM)
Fall. 4 credits. R. Boyd.
For description, see PHIL 381.

[S&TS 387(3871) The Automatic Lifestyle: Consumer Culture and Technology (also INFO 387(3871)) (III) (CA)]
For description, see M&AE 400.

[S&TS 409(4091) From the Phonograph to Techno (also SOC 409(4090)) (III)]

[S&TS 431(4311) From Surgery to Simulation (III) (BBA)]
Fall. 4 credits. R. Prentice.
A cliche among medical professionals says, "If you have a hammer, every problem looks like a nail." In other words, treatment decisions often are dictated by tools at hand. How has medicine changed and what does it mean to be a doctor in the digital age? This course critically examines how medical professionals look at and practice medicine today. How are the computer and Internet changing the very notion of the patient and the doctor? How does computer use affect the relationship between patient and doctor? What are the implications of medical technology for the ethics of medical practice? How do patients understand the information and technologies that now surround them? What are the new kinds of medical risk that technology has introduced and how do patients and doctors respond to these risks? The course considers these and related questions through historical, cultural, and theoretical lenses. It examines the cultural and social contexts in which medicine, science, and technology are used in the modern medical world. It surveys the histories of the computer and the Internet in medicine and considers the implications of these technologies for the practice of medicine.

S&TS 432(4321) From Surveillance to Virtual Reality (also SOC 432) (III)
Fall. 4 credits. Not offered 2005-2006. Z. Warhaft.
For description, see M&AE 400.

S&TS 440(4401) Components and Systems: Engineering in a Social Context (also M&AE 440(4400)) (III)
Spring. 3 credits. Offered alternate years; not offered 2005-2006. Z. Warhaft.
For description, see M&AE 400.

S&TS 659(6591) From the Microscope to the Megabyte (also SOC 659(6590)) (IV)
For description, see M&AE 400.
[S&TS 438(4381) Minds, Machines, and Intelligence (also COGST 438) (III) (KCM)]

[S&TS 453(4531) Knowledge and Society (also SOC 453[4530]) (III) (CA)]
Fall. 4 credits. Limited to 15 students. C. Leuenberger.
Focuses on the historical evolution of the sociology of knowledge as a theoretical paradigm and an empirical research field. Examines the phenomenological origins of the sociology of knowledge and many of its central texts. Studies how it has been applied to such aspects as personhood, interaction, religion, identity, and the emotions. Also considers epistemological questions that arise, and covers various theoretical and empirical approaches that have been influenced by the sociology of knowledge such as ethnomethodology, conversation analysis, and the sociology of science and technology.

[S&TS 481(4811) Philosophy of Science (also PHIL 481/681[4810/6810]) (IV) (KCM)]
Spring. 4 credits. R. Boyd.
For description, see PHIL 681.

Science, Technology, and Public Policy

[S&TS 281(2811) Science in Western Civilization (also HIST 281[2810]) # (III) (HA)]
Fall. 3 credits. P. Dear.
For description, see HIST 281.

[S&TS 282(2821) Science in Western Civilization (also HIST 282[2820]) # (III) (HA)]
Spring. 4 credits. P. Dear.
For description, see HIST 282.

[S&TS 324(3241) Environment and Society (also D SOC/SOC 324[3240]) (III) (SBA)]
Spring. 3 credits. C. Geisler.
For description, see D SOC 324.

[S&TS 331(3311) Environmental Governance (also B&SOC 331[3311], NTRES 331[3310])]
Spring. 3 credits. S. Wolf.
For description, see NTRES 331.

[S&TS 352(3521) Science Writing for the Mass Media (also COMM 352[3520]) (III)]
Fall. 3 credits. B. Lewenstein.
For description, see COMM 352.

[S&TS 357(3571) Engineering in American Culture (also ENGRG 357[3570], AM ST 357[3570], HIST 357[3570])]
Fall. 4 credits. Offered alternate years. R. Kline.
For description, see ENGRG 357.

[S&TS 360(3601) Ethical Issues in Engineering (also ENGRG 360[3600]) (III)]
Spring. 3 credits. P. Doing.
For description, see ENGRG 360.

[S&TS 390(3901) Science in the American Polity, 1800 to 1960 (also GOVT 308[3081], AM ST 388[3901]) (III)]

[S&TS 391(3911) Science in the American Polity, 1960 to Now (also GOVT 309[3091], AM ST 389[3911]) (III) (SBA)]
Spring. 4 credits. S. Hilgartner.
Reviews the changing political relations between science, technology, and the state in America from 1960 to the present. It focuses on the politics of choices involving science and technology in a variety of institutional settings, from Congress to courts and regulatory agencies. The tensions and contradictions between the concepts of science as an autonomous republic and as just another special interest provide a central theme for the course. Topics addressed include research funding, technological controversies, scientific advice, citizen participation in science policy, and the use of experts in courts.

[S&TS 401(4011) Genomics and Society (also NS 401[4010])]
Fall. 5–4 credits taught in Washington, D.C. D. Pelletier.
For description, see NS 401.

[S&TS 407(4071) Law, Science, and Public Values (also B&SOC 407[4071]) (III) (SBA)]
Spring. 4 credits. M. Lynch.
Examines problems that arise at the interface of law and science. These problems include the regulation of novel technology, the role of technical expertise in public decision-making, and the control over scientific research. The first part of the course covers basic perspectives in science and technology studies (S&TS) and how they relate to legal decisions and processes. The second part covers a series of examples and legal cases on the role of expert judgments in legal and legislative settings, intellectual property considerations in science and medicine, and legal and political oversight of scientific research. The final part examines social processes and practices in legal institutions, and relates these to specific cases of scientific and technological controversy. Lectures and assignments are designed to acquaint students with relevant ideas about the relationship between legal, political, and scientific institutions, and to encourage independent thought and research about specific problems covered in the course.

[S&TS 411(4111) Knowledge, Technology, and Property (III) (SBA)]
Spring. 4 credits. Prerequisite: one course in science and technology studies. S. Hilgartner.
Should the human genome be treated as private property or a public resource? How should copyright be managed in the digital environment of the Internet? Is music “sampling” high-tech theft or artistic expression? These questions are prospering to represent an enlightened strategy for preserving biodiversity or a post-colonial means for transferring resources from the developing world to the North? Debate about the nature and scope of intellectual property is an increasingly salient feature of contemporary politics. This course examines the ownership of knowledge and technology, exploring fundamental tensions that intellectual property systems express and incompletely reconcile. Perspectives from science and technology studies, sociology, law, and economics inform the course. Case studies explore the construction of property in contexts ranging from the early history of copyright to the ownership of life forms, airwaves, algorithms, artistic content, electronic databases, and the personal identities of celebrities.

[S&TS 412(4101) Science, Technology, and Culture (also COM L 410[4100])]
Fall. 4 credits. A. Banerjee.
For description, see COM L 410.

[S&TS 433(4331) International History of Science (III) (HA)]
Spring. 4 credits. M. Rossiter.
Survey of the major scientific events and institutions in several foreign nations, including developing countries. Covers the period 1660 to the present and gives some attention to who in each country becomes a scientist, who rises to the top, and who emigrates. Weekly readings and a research paper.

[S&TS 442(4421) The Sociology of Science (also B&SOC 442[4421], CRP 442[4420], SOC 442[4420]) (III) (SBA)]
A view of science less as an autonomous activity than as a social institution. Discusses such issues as controversies in science, analysis of scientific text, gender, and the social shaping of scientific knowledge.

[S&TS 444(4441) Historical Issues of Gender and Science (also FGSS 444[4440]) (III) (CA)]
Spring. 4 credits. Not open to freshmen. M. Rossiter.
For description, see “Life in Its Environment” theme.

[S&TS 466(4661) Public Communication of Science and Technology (also COMM 466[4660]) (III)]
Fall. 3 credits. Limited to 15 students. B. Lewenstein.
For description, see COMM 466.

[S&TS 467(4671) Innovation: Theory and Policy (III) (SBA)]
Fall. 4 credits. Open to upper-level undergraduates and interested graduate students. Prerequisite: ECON 102 or permission of instructor. Not offered 2005–2006. J. Reppy.
Studies the innovation process (i.e., the introduction of new technology into practice) through the critical analysis of selected theories of innovation and supporting empirical evidence. Economic theories are contrasted to the insights found in science and technology studies. The focus is on the context of interests and ideology in which the various theories have been framed and their differing implications for technology policy. Authors covered include Schumpeter, Solow, Scherer, Nelson and Winter, and Bijker and Pinch.

[S&TS 471(4711) The Dark Side of Biology: Biological Weapons, Bioterrorism, and Biocriminality (also B&SOC 471[4711]) (III) (SBA)]
Fall. 4 credits. K. Vogel.
For description, see B SOC 471.

[S&TS 473(4731) Knowledge and Politics in 17th-Century England (also HIST 473[4730]) # (III) (CA)]
For description, see HIST 473.
S&TS 483(4831) The Military and New Technology (also GOVT 483[4837]) (III) (SBA)
Spring. 4 credits. K. Vogel.
For description, see GOVT 483.

[S&TS 487(4871) Seminar in the History of the Environment (III) (HA)]

[S&TS 490(4901) The Integrity of Scientific Practice (III) (KCM)]

[S&TS 493(4931) Economics Meets Science Studies (III) (CA)]

Life in Its Environment

S&TS 205(2051) Ethical Issues in Health and Medicine (also B&SOC 205[2051]) (IV) (KCM)
Fall. 4 credits. K. Vogel.
For description, see B&SOC 205.

S&TS 206(2061) Ethics and the Environment (also B&SOC 206[2061], PHIL 246[2460]) (IV) (KCM)
Spring. 4 credits. J. Turner.
For description, see B&SOC 206.

S&TS 233(2331) Agriculture, History, and Society: From Squanto to Biotechnology (III) (HA)
Fall. 3 credits. M. Rossiter.
Surveys the major themes in the development of agriculture and agribusiness in the United States in the 19th and 20th centuries. These include particular individuals (e.g., Liberty Hyde Bailey, Luther Burbank, G. W. Carver, Henry A. Wallace, and Norman Borlaug), the rise of government support and institutions (including U.S.D.A. and Cornell), noteworthy events (the dust bowl, World War II, and the environmental movement), and the achievements of the Green and "Gene" Revolutions.

S&TS 281(2811) Science in Western Civilization (also HIST 281[2810]) # (III) (HA)
Fall. 3 credits. P. Dear.
For description, see HIST 281.

S&TS 282(2821) Science in Western Civilization (also HIST 282[2820]) # (III) (HA)
Spring. 4 credits. P. Dear.
For description, see HIST 282.

S&TS 285(2851) Communication in the Life Sciences (also COMM 285[2850]) (III)
Spring. 3 credits. B. Lewenstein.
For description, see COMM 285.

S&TS 286(2861) Science and Human Nature (also PHIL 286[2860]) (IV) (KCM)
Spring. 4 credits. R. Boyd.
For description, see PHIL 286.

S&TS 287(2871) Evolution (also BIOEE 207[2070], HIST 287[2870]) (I or III) (PBS)
Fall. 3 credits. W. Provine.
For description, see BIOEE 207.

S&TS 301(3011) Life Sciences and Society (also B&SOC 301[3011]) (III) (SBA)
Spring. 4 credits. C. Silverman.
For description, see B&SOC 301.

S&TS 311(3110) Sociology of Medicine (III) (SBA)
Spring. 4 credits. C. Leuenberger.
Provides an introduction to the ways in which medical practice, biomedical technology, and the medical profession are embedded in society and shaped by social phenomena. Accountability to patients and the public, and struggles over the control of medical practice in a world where medicine is connected to gender, class, race, and personal autonomy are important overarching themes. This course examines the structure of the medical profession, medical training and professional socialization, the social organization of the hospital, and doctor–patient interactions. Also explores how biomedical knowledge and technology are produced, assessed, and introduced into clinical practice. Topics may include the intensive-care unit, the training of surgeons, the regulation of pharmaceuticals, AIDs and breast cancer activism, genetic testing, and priority setting in biomedical science.

S&TS 324(3241) Environment and Society (also D SOC/SCOC 324[3240]) (III) (SBA)
Spring. 3 credits. C. Geisler.
For description, see D SOC 324.

S&TS 331(3311) Environmental Governance (also B&SOC 331[3311], NTRES 331[3311]) (III) (SBA)
Spring. 3 credits. S. Wolf.
For description, see NTRES 331.

[S&TS 333(3331) Genomics and Society (also D SOC 333[3330]) (III)
Fall. 3 credits. Not offered 2005–2006. Staff.
For description, see D SOC 333.]

S&TS 411(4111) Knowledge, Technology, and Property (III) (SBA)
Spring. 4 credits. Prerequisite: one course in science and technology studies. S. Hilgartner.

S&TS 412(4120) Science, Technology, and Culture (also COM L 410[4100])
Fall. 4 credits. A. Banerjee.
For description, see COM L 410.

S&TS 420(4201) The Darwinian Scientific Revolution (also B&SOC 420[4201])
Fall. 4 credits. Offered only fall 2005. K. Lambert.
For description, see B&SOC 420.

S&TS 425(4251) From "Cold Mothers" to "Autistic Dads"—Autism in 20th-Century America (also B&SOC 425[4251]) (III) (SBA)
Spring. 4 credits. Offered only spring 2006. C. Silverman.
Autism was first characterized as a disorder of affective contact by Leo Kanner in 1943. Since then, this disease category has shifted from a psychogenic illness, caused by cold mothers, to a form of brain damage, to a highly heritable genetic neurological disorder involving possible environmental factors. Treatment has varied according to the dominant theory. Such dramatic shifts are impossible to comprehend outside of the social and historical context in which illnesses and diagnoses are produced and understood. This course uses autism as a lens through which to consider the changing context of psychiatric and developmental disabilities in America, in the late 20th century and the present, paying close attention to the role of interactions between parent groups, medical practitioners, researchers, and legislators.

S&TS 431(4311) From Surgery to Simulation (III) (SBA)
Fall. 4 credits. R. Prentice.
For description, see "Minds and Machines."

S&TS 444(4441) Historical Issues of Gender and Science (also FGSS 444[4440]) (III) (CA)
Spring. 4 credits. Not open to freshmen. M. Rossiter.
A one-semester survey of women's role in science and engineering from antiquity to the 1980s, with special emphasis on the United States in the 20th century. Readings include biographies and autobiographies of prominent women scientists, educational writings and other primary sources, and recent historical and sociological studies. By the end of the semester, students attain a broad view of the problems that have faced women entering science and those that still remain.

[S&TS 446(4461) Biomedical Ethics (also B&SOC 446[4461]) (IV) (KCM)
Recent developments in biomedical science and technology raise a variety of ethical questions. The aim of this course is to critically examine some of these questions and consider their possible answers. Some of the questions considered are: Who has a right to health? What reproductive and genetic controls, if any, ought to be exercised and why? Should sex and race be of concern in medical practice? What is a just health-care system?]

S&TS 447(4471) Seminar in the History of Biology (also B&SOC 447[4471], HIST 415[4150], BIOEE 467[4670]) (I or III) (PBS)
Summer. 4 credits. Limited to 18 students. S–U grades optional. Staff.
For description, see BIOEE 467.

[S&TS 464(4641) Madness to Mental Illness in American Cultural History (also B&SOC 464[4641]) (IV) (CA)
Recent developments in biomedical science and technology raise a variety of ethical questions. The aim of this course is to critically examine some of these questions and consider their possible answers. Some of the questions considered are: Who has a right to health? What reproductive and genetic controls, if any, ought to be exercised and why? Should sex and race be of concern in medical practice? What is a just health-care system?]

[S&TS 471(4711) The Dark Side of Biology: Biological Weapons, Bioterrorism, and Biocriminality (also B&SOC 471[4711]) (III) (SBA)
For description, see B&SOC 471.

[S&TS 487(4871) Seminar in the History of the Environment (III) (HA)

[S&TS 495(4951) Social Studies of the Human Sciences (III) (CA)
Spring. 4 credits. C. Leuenberger.
Explores how the human and social sciences have provided the knowledge and categories we use to make sense of people and their behavior. Looking across a range of disciplines—including sociology, psychology, psychiatry, and economics—the course examines how human beings have become
objects of scientific investigation. Discusses the rise of the human sciences and their role in politics, culture, and society.

Independent Study

S&T 399(3991) Undergraduate Independent Study

Fall, spring. 1–4 credits. No more than 8 hours total of independent study (not including honors) can count toward S&TS major. Prerequisite: permission of instructor. More information and applications available in 306 Rockefeller Hall.

S&T 499(4991/4992) Honors Project

Fall and spring (year-long)*. Prerequisite: senior S&TS students by permission of department; overall Cornell cumulative GPA of 3.00 and 3.30 cumulative GPA in courses taken for major. Apply in 306 Rockefeller Hall.

Students admitted to the honors program are required to complete two semesters of honors project research and to write an honors thesis. The project must include substantial research, and the completed work should be of wider scope and greater originality than is normal for an upper-level course. The student must find a project supervisor and a second faculty member willing to serve as faculty reader; at least one of these must be a member of the S&TS department.

"Students must register for total credits desired for the whole project each semester (e.g., 8 credits for the fall semester and 8 credits for the spring semester). After the fall semester, students will receive a letter grade of "R" for the first semester with a letter grade for both semesters submitted at the end of the second semester whether or not they complete a thesis, and whether or not they are recommended for honors. Minimally, an honors thesis outline and bibliography should be completed during the first semester. In consultation with the advisers, the director of undergraduate studies will evaluate whether the student should continue working on an honors project. Students should note that these courses are to be taken in addition to those courses that meet the regular major requirements. If students do not complete the second semester of the honors project, they must change the first semester to independent study to clear the "R" and receive a grade.

Otherwise, the "R" will remain on their record and prevent them from graduating.

Graduate Seminars

S&T 616(6161) Enlightened Science

Fall. 4 credits. Limited to graduate students. Not offered 2005–2006. P. Dear. For description, see HIST 616.

S&T 620(6201) Intelligibility in Science

(also HIST 620[6200])

S&T 625(6251) Visualization and Discourse in Science

S&T 626(6261) Seminar in the History of Technology

(also HIST 625[6260])

Spring. 4 credits. R. Kline.

Exploration of the history of technology in Europe and the United States from the 18th century to the present. Typical topics include the industrial revolution in Britain, the emergence of engineering as a profession, military support of technological change, labor and technology, the "incorporation" of science and engineering, technological utopias, cultural myths of engineers and inventors, social aspects of urbanization in the city and on the farm, post-war consumerism, and gender and technology. The interests of students and recent literature in the field are considered in selecting the topics for the seminar.

S&T 628(6281) Self and Society

Fall. 4 credits. C. Leuenberger.

How has the self become a political, scientific, and cultural project caught up in the ideological battles of modern times? What roles do cultural institutions, politics and science play in making human beings visible, understandable, and treatable? Students in this course will focus on the ideological battles of modern times and examine the intersection of sociology, cultural studies, history of the human and behavioral sciences, and science and technology studies that treat the self as a social construction. The course focuses on how culture, politics, science, and technology work together to shape modern and postmodern conceptions of the self.

S&T 629(6291) Knowledge and Politics in 17th-Century England

(also HIST 629[6290])

S&T 631(6311) Qualitative Research Methods for Studying Science

(also SOC 631[6310])

Spring. 4 credits. R. Prentice.

Much has been learned about the nature of science by sociologists and anthropologists donning lab coats and studying scientists in action. This course looks at the methods used in this new wave of science studies. Examine what can be learned by interviewing scientists, from videos, and from detailed examinations of scientific texts. Students gain hands-on experience by conducting a mini-project in which they investigate some aspect of scientific culture.

S&T 632(6321) Inside Technology: The Social Construction of Technology

(also SOC 632[6320])

Rather than analyze the social impact of technology upon society, this course investigates how society gets inside technology. In other words, is it possible that the very design of technologies embody assumptions about the nature of society? And, if so, are there methods of technology, which embody different assumptions about society, possible? Do engineers have implicit theories about society? Is technology gendered? How can we understand the interaction of society and technology? Throughout the course the arguments are illustrated by detailed examinations of particular technologies, such as the ballistic missile, the bicycle, the electric car, and the refrigerator.

S&T 644(6441) Topics in the History of Women in Science

(also FGSS 644[6440])

S&T 664(6641) Constructionism in Social Science

S&T 675(6751) Science, Race, and Colonialism

Scholarly work in the last two decades has come increasingly to pay attention to the often-neglected linkages between the sciences and the discourses and practices of colonialism. Texts of broad conception like Michael Adas's Machines as the Measure of Men and Gyan Prakash's recent Another Reason have made an attempt to provide an overview of many of the issues involved, but the field awaits a genuinely synthetic treatment. This course aims to provide the framework for such a treatment by looking at a number of key areas of current interest. Beginning with a survey of the history of ideas of race and the
development of "race science," the course moves on to consider a series of specific topics, including the importance of social statistics and technologies of identification (fingerprinting), medicine, hygiene, technologies of scientific control, scientific nationalism and nationalist science, the periphery as laboratory, gender, and savagery and criminality. Readings comprise a mixture of primary and secondary sources, and students are encouraged to contribute topics and texts of particular interest.

[S&TS 680(6801) Seminar in Historiographical Approaches to Sciences (also HIST 680[6800])]
For description, see HIST 680.

[S&TS 681(6811) Philosophy of Science (also PHIL 681[6810])]
Fall. 4 credits. R. Boyd.
For description, see PHIL 681.

[S&TS 682(6821) Topics in the Scientific Revolution (also HIST 682)]
For description, see HIST 682.

[S&TS 683(6831) From Electric to Electronic Media (also GERST 683[6830], WIST 683[6830], COM L 653[6830])]
Fall. 4 credits. W. Kittler.
For description, see GERST 683.

[S&TS 684(6841) Radio, Radar, Television (also GERST 684[6840], COM L 653[6830])]
Fall. 4 credits. W. Kittler.
For description, see GERST 684.

[S&TS 683(6831) Economics Meets Science Studies]
Fall. 4 credits. J. Reppy.
Covers a variety of possible interactions between the disciplines of economics and science and technology studies. Some economists are interested in science and technology as important components in economic growth, while scholars in science studies often appeal to economic motives and institutions to explain behavior in the production of scientific and technological knowledge. This course explores ways in which economics can provide new questions and theoretical approaches for science and technology studies. From another perspective, economics, as the most "scientific" of the social sciences, is itself a subject for study. Internal critiques by economists are compared to external analyses in the science studies literature. Readings include works on the epistemological and rhetorical in economics and on the "new economics of science," and examples of the use of economic analysis in the science studies literature.

[S&TS 700(7001) Special Topic 1: Science Studies and the Politics of Science]
Fall. 4 credits. Prerequisites: S&T 711 or permission of instructor. M. Rossiter.
Theoretical developments in science and technology studies have called attention to the contingent and socially embodied character of both knowledge claims and technological systems. Drawing on literature from several disciplines, this seminar explores the consequences of these findings for social and political studies of science. Issues and problems considered include trust and skepticism, political and legal agency, reflexive institutions, relativism and social action, science and norms, and the co-production of knowledge and social order.

[S&TS 700(7002) Special Topic 2: Technology Transfer Issues]
The goal of this course is to develop a coherent analytical framework for analyzing technology transfer, using insights from economics, sociology, history, and science and technology studies, and to employ that framework to test current policy issues. Studies the process of technology transfer in different contexts, ranging from intra-firm and intra-industry to technology transfer between civil and military sectors, and between industrialized and less-industrialized countries. The readings include a mix of theoretical writings and case studies.

[S&TS 700(7003) Special Topic 3: Issues in the Social and Cultural History of Technology]

[S&TS 711(7111) Introduction to Science and Technology Studies (also HIST 711[7110])]
Fall. 4 credits. P. Dear.
Provides students with a foundation in the field of science and technology studies. Using classical and contemporary exemplars, seminar participants chart the terrain of this new field. Topics for discussion include, but are not limited to: historiography of science and technology and their relation to social studies of science and technology; laboratory studies; intellectual property; science and the state; the role of instruments; fieldwork; politics and technical knowledge; philosophy of science; sociological studies of science and technology; and popularization.

[S&T 715(7151) Ethnographies of Scientific Practice]
Fall. 4 credits. M. Lynch.

[S&T 720(7201) Emerging Technologies]
Examines the peculiar speculative world of emerging technologies—a social and technical "space" found at the edges of expanding technological systems, where new technologies are being most actively constructed and transformed. In this dynamic world, emerging technologies exist in a state of flux as a mixture of blueprint and hardware, plan and practice, the nearly online and the almost obsolete, surrounded by construction, speculation and skepticism, who make often-contested claims about their promises, perils, and possibilities. Among the characteristics of this space are: the frequent appearance of unverifiable claims about technologies that have yet to materialize; an entrepreneurial drive for commercial implementation; ongoing institutional innovation; frequent public controversies; and problems of political legitimacy. The course examines the epistemic, discursive, institutional, and political dimensions of emerging technologies in an effort to understand the social worlds that shape technological change.

[S&T 721(7211) Archiving Contemporary Science]
Spring. 4 credits. B. Lewenstein.
Methodology course exploring the conceptual and practical issues associated with creating archives of science "as it happens." Readings focus on issues in historiography of contemporary science and on issues in contemporary archival. Practical examples are drawn from several Cornell-based archives (e.g., Cold Fusion, on the role of science in the O. J. Simpson trial, on the "Y2K bug," and on voting technologies in the 2000 presidential election).

Independent Study

[S&T 699(6991) Graduate Independent Study]
Fall or spring. 2–4 credits. Permission of department required.
Applications and information are available in 306 Rockefeller Hall.

SCIENCE OF EARTH SYSTEMS

The full faculty of the Department of Earth and Atmospheric Sciences (see page 515). The science of earth systems (SES) is the study of the interactions among the atmosphere, oceans, biosphere, and solid Earth; those dynamic interactions control the global environment. The interdisciplinary, basic science approach of SES incorporates major components of geology, ocean and atmospheric sciences, terrestrial hydrology, biogeochemistry, and ecology into an integrated study of Earth as a complex system. Earth system science presents one of the outstanding intellectual challenges in modern science and is the primary foundation for the future management of our home planet.

The Major

The major in Science of Earth Systems emphasizes a rigorous, objective study of the Earth and its systems with broad preparation in basic sciences and foundations in Earth and atmospheric sciences, as followed by the choice of an area of concentration for study in greater depth. The SES program seeks to train students in a strong set of fundamental skills that allow them to approach with quantitative rigor a wide range of questions about the Earth and its environment, and to adapt those skills rapidly to new areas of inquiry as they arise. The major in SES is by nature interdisciplinary, and involves faculty from the College of Arts and Sciences, the College of Engineering, and the College of Agriculture and Life Sciences. In the College of Arts and Sciences the program is administered by the Department of Earth and Atmospheric Sciences.

The SES curriculum begins with a series of core courses designed to provide preparation in fundamental science and mathematics necessary for a rigorous study of Earth systems and an introduction to the science of earth systems. This preparation is followed by three SES core courses providing breadth and integration. An additional set of four intermediate to advanced courses is selected to provide depth and a degree of specialization.

Students in the College of Arts and Sciences choosing to pursue the Science of Earth Systems major are required to take the
following courses: PHYS 207–208 (or 112–213), CHEM 207–208, BIO G 101/103–102/104 (or 109–110), and MATH 111–112 (or 121–122, or 190/191–192). The required introductory course is EAS 220. Mathematics at the level of MATH 221 or 293 is strongly recommended for all SES students, and those choosing areas of concentration in atmospheric sciences, environmental geophysics, or hydrology should take MATH 222 or 294.

The three required SES core courses are:

- EAS/ASTRO 331 Climate Dynamics
- EAS 302 Evolution of the Earth System
- EAS/NRES 521 Introduction to Biogeochemistry

Four additional 3- to 4-credit classes selected from 300- and 400-level courses, approved for an SES concentration, are required. These courses are ordinarily organized around one of the SES areas of specialization. Areas of specialization include, but are not limited to Climate Dynamics, Ocean Science, Environmental Geology, Environmental Biophysics, Biogeochemistry, Soil Science, Ecological Systems, and Hydrological Sciences.

For further information and applications contact Professor Bryan L. Isacks, blil@cornell.edu. Also see the SES web site at www.eas.cornell.edu for up-to-date information. Administrative offices are located at 2122 Snee Hall.

SERBO-CROATIAN
See “Department of Russian.”

SINHALA (SINHALESE)
See “Department of Asian Studies.”

SOCIETY FOR THE HUMANITIES
Brett de Bary, Director

Fellows for 2005-2006

Petrine Archer-Straw (Art historian; Curator, Jamaica/United Kingdom)
Natasha Barnes (University of Illinois, Chicago)
Peter Bojanic (Institute for Philosophy and Social Theory, Belgrade)
Michelle Campos (Cornell University)
Walter Cohen (Cornell University)
Oren Falk (Cornell University)
Stefano Jedrkiewicz (Private researcher, diplomat)
Andrew Jewett (University of California, Berkeley)
Nae-hui Kang (Chung-Ang University)
Richard Klein (Cornell University)
Steven Pond (Cornell University)
Jeffrey Rusten (Cornell University)
Dorothea Schulz (Indiana University)
Michael Shin (Cornell University)
Baki Tezcan (University of California, Davis)

The society annually awards fellowships for research in the humanities. The fellows offer, in line with their research, informal seminars intended to be exploratory or interdisciplinary. These seminars are open to graduate students, visiting scholars, undergraduates, and interested auditors. Students who want credit for a seminar should formally register in their own college. Persons other than those officially enrolled may attend as visitors with permission of the fellow. The theme for 2005–2006 is “Culture and Conflict.”

S HUM 403 The Literature of Imperialism (also COM L 407/4070, ENGL 448/4480)
Spring. 4 credits. Limited to 15 students. W. Cohen.
Treats the literary engagement with global imperialism, then and now, moving from Renaissance European expansion to the post-World War II U.S. sphere of influence. Writers include Shakespeare, Cervantes, Kundera, Greene, Garcia Marquez, and Hagedorn.

S HUM 404 The Literature of Revolution (also COM L 440/4440, ENGL 498/4980)
Fall. 4 credits. Limited to 15 students. W. Cohen.

S HUM 408 Troubadours and Heretics (also COM L/FRLIT 404/4040)
Fall. 4 credits. Limited to 15 students. R. Klein.
Serves as an introduction to reading old Provençal with discussions of the structure of the language and problems in translation. Readings include some of the greatest examples of troubadour poetry, as well as extensive historical material for the purpose of understanding the social and ideological conflicts that shaped the environment in which that poetry arose and declined.

S HUM 411 Fascism, Culture, Literature
Fall. 4 credits. Limited to 15 students. M. Shin.
First, examines the major theories of fascism, including works by Nicos Poulantzas, Hannah Arendt, and Wilhelm Reich. Then focuses more specifically on theories of fascist culture and literature. Last, examines specific works of art that have been labeled fascist and some that are anti-fascist. The selection of works depends on the interests of the students, but the aim is to cover fascism in its major historical contexts such as Germany, Italy, and Japan, as well as France.

S HUM 412 Ethnic and Religious Conflict (also NES 407(4607))
Fall. 4 credits. Limited to 15 students. M. Campos.
Examines political, social, religious, and cultural dimensions of ethnic and religious contact and conflict in various sites around the modern Middle East, including Lebanon, Israel/Palestine, and Turkey. Also examines the contours of communal interactions; the impact of colonialism, nationalism, and Islamism on creating or exacerbating conflicts; the implications for social and spatial boundaries between groups; and the ways conflicts are remembered. These studies draw on a wide variety of sources, including memoirs, ethnography, novels, and films.

S HUM 413 Lynching Violence in America (also AS&RC/AM ST 413)
Fall. 4 credits. Limited to 15 students. N. Barnes.
Examines both the history and representation of racial violence that surrounds the post-bellum lynching practices. Students chart its rise during the Reconstruction era and beyond, paying attention to the myriad of ways that lynching became "memorialized" in postcard photography, film, fictional narrative, oral history, and local community activism. Along with the study of some particularly important spectator lynchings, which took place both in both northern as well as southern states, the course shows how organizations such as the NAACP and important black individuals such as Ida B. Wells, Walter White, and W. E. B. Du Bois developed a cogent moral and political opposition to the crime. Also looks at how literary representation by writers as diverse as James Weldon Johnson, Ralph Ellison, William Faulkner, and Lillian Smith, turned the spectacle of racial violence into moral crusades against the treatment of blacks in Jim Crow America. The course makes use of the Allen-Littlefield collection of lynching "trophy" photography, "Without Sanctuary," which has reopened the discussion of lynching and its meanings in our present. An important aspect of this course examines how such efforts roots of the South to engage in "truth and reconciliation" type healing strategies for redress and racial healing.

S HUM 415 Towards a Prehistory of Terrorism (also HST 460(4601))
Spring. 4 credits. Limited to 15 students. O. Falk.
Puts contemporary terrorism in a long-term historical context. Students read modern theoreticians of terror and counter-terrorism, as well as accounts by practitioners and witnesses. One also looks at pre-modern acts of fearsome violence. Does a current perspective on terrorism help us understand pre-modern acts of violence? Can ancient and medieval texts illuminate the current crisis of terror?

S HUM 419 Stop Taking (My) Notes
Spring. 4 credits. Limited to 15 students. S. Pond.
A critical look at some theories of the decadence of states and cultures, and also of the rhetorical or programmatic uses of the discourse of decline itself: describing decadence can serve not merely analytical purposes but also diagnostic, antiquarian, or revolutionary ones. Students observe distinctions between decline-narratives and
Assesses the relevance of transnational, often "mass-mediated" religious communities for anthropological and political theorizing on critical social theory with studies that explore how religious movements articulate with, and contribute to, ongoing transformations in state-society relationships in postcolonial contexts. Combines selected readings in cultural studies and postcolonial nation-state politics. Combines selected readings in cultural studies and postcolonial nation-state politics. Combines selected readings in cultural studies and postcolonial nation-state politics. Combines selected readings in cultural studies and postcolonial nation-state politics.

Rastafarianism is viewed as an aberrant modern paradox, at once a vehicle for racial resistance and a belief system advocating universal equality. At the departmental level, this course explores the relationship between the extension of science's intellectual and cultural authority since the Civil War and changes in how Americans have thought about political democracy. Readings will be interdisciplinarily, introducing concepts from sociology, cultural studies, and political theory within a broadly historical framework.

Selected readings in cultural studies and postcolonial nation-state politics. Combines selected readings in cultural studies and postcolonial nation-state politics. Combines selected readings in cultural studies and postcolonial nation-state politics. Combines selected readings in cultural studies and postcolonial nation-state politics.

S HUM 426 Religion, Conflict, and Media (also RELST 425[4250])
Spring. 4 credits. Limited to 15 students. D. Schulz.
Assesses the relevance of transnational, often "mass-mediated" religious communities for anthropological and political theorizing on the particular dilemmas of contemporary postcolonial nation-state politics. Combines selected readings in cultural studies and critical social theory with studies that explore how religious movements articulate with, and contribute to, ongoing transformations in state-society relationships in postcolonial contexts.

S HUM 427 Race in the Medieval Islamic World (also HIST 472, NES 429)
Spring. 4 credits. Limited to 15 students. B. Teyzcan.
This seminar explores the relationship between ethnicity, masculinity, race, and slavery in the pre-modern Islamic world. It will concentrate on the eventual development of two slave elites, one "white" and the other "black," focusing on the role of ethnicity, masculinity, and slave trade in the creation of these two groups.

S HUM 428 Race in the Medieval Islamic World (also HIST 472, NES 429)
Spring. 4 credits. Limited to 15 students. B. Teyzcan.
This seminar explores the relationship between ethnicity, masculinity, race, and slavery in the pre-modern Islamic world. It will concentrate on the eventual development of two slave elites, one "white" and the other "black," focusing on the role of ethnicity, masculinity, and slave trade in the creation of these two groups.

S HUM 429 Science and Democracy (also GOVT 417, HIST 470)
Spring. 4 credits. Limited to 15 students. A. Jewett.
This course will explore the relationship between the extension of science's intellectual and cultural authority since the Civil War and changes in how Americans have thought about political democracy. Readings will be interdisciplinarily, introducing concepts from sociology, cultural studies, and political theory within a broadly historical framework.

S HUM 431 The Right of Prevention (also GOVT 453)
Spring. 4 credits. Limited to 15 students. P. Bojanic.
Examines how the "institution" of the right of prevention (ius praeventionis)—preventive violence, attack, war—can "cultivate" the law of peoples. Also demonstrates the logic of the construction of different texts, including the form of the "relation" between violence and right. Readings include works of Kant, Schmitt, Heidegger, Benjamin.

S HUM 420 Neoliberalism and Culture (also ASIAN 443[4443])
Spring. 4 credits. Limited to 15 students. N. Kang.
Examines the relationship between neoliberalism and culture in South Korea. Focusses on how the concept and social position of culture has vacillated in the course of neoliberal globalization and how South Korean society has reacted to the changes.

S HUM 424 Socrates (also CLASS 404[4604], GOVT 451[4510], HIST 434[4340])
Spring. 4 credits. Limited to 15 students. S. Jeddrikiwicz.
Seminar focusing on one aspect of the crisis affecting Athens in the final years of the Peloponnesian War: the ideological conflict between Socrates and the Athenian polis. Readings include Aristophanes' Wasps, Xenophon's Apology and Plato's Apology and Crito, together with a choice of connected contemporary works, relevant comments and modern studies.

S HUM 425 Rastafari, Race, and Resistance (also AS&RC 426, VISST 425[4250])
Spring. 4 credits. Limited to 15 students. P. Archer-Straw.
Seminar focusing on Jamaican artists whose images stem from Rastafarianism. Examines how their cultural expression born out of a clash of European and African civilizations challenged Western cultural values and posited new ways of talking about race and spirituality. Rastafarianism is viewed as an aberrant modern paradox, at once a vehicle for racial resistance and a belief system advocating universal equality.

S HUM 426 Race in the Medieval Islamic World (also HIST 472, NES 429)
Spring. 4 credits. Limited to 15 students. B. Teyzcan.
This seminar explores the relationship between ethnicity, masculinity, race, and slavery in the pre-modern Islamic world. It will concentrate on the eventual development of two slave elites, one "white" and the other "black," focusing on the role of ethnicity, masculinity, and slave trade in the creation of these two groups.

S HUM 428 Race in the Medieval Islamic World (also HIST 472, NES 429)
Spring. 4 credits. Limited to 15 students. B. Teyzcan.
This seminar explores the relationship between ethnicity, masculinity, race, and slavery in the pre-modern Islamic world. It will concentrate on the eventual development of two slave elites, one "white" and the other "black," focusing on the role of ethnicity, masculinity, and slave trade in the creation of these two groups.

S HUM 429 Science and Democracy (also GOVT 417, HIST 470)
Spring. 4 credits. Limited to 15 students. A. Jewett.
This course will explore the relationship between the extension of science's intellectual and cultural authority since the Civil War and changes in how Americans have thought about political democracy. Readings will be interdisciplinarily, introducing concepts from sociology, cultural studies, and political theory within a broadly historical framework.

SOCIOLGY

Sociology is the study of human social organization, institutions, and groups. The Department of Sociology offers courses in a number of key areas, including comparative sociology, culture, economy and society, family and the life course, gender inequality, political behavior and public policy, organizations, race and ethnicity, social inequality, social psychology and group processes, social and political movements, and social networks. A particular emphasis of the department is the linkage of sociological theory to issues of public concern such as ethnic conflict, drugs, poverty, and gender and race segregation. Interests of faculty members range from the study of interaction in small groups to the study of change in a number of different countries. The department offers the opportunity for students to develop fundamental theoretical insights and understanding as well as advanced research skills in quantitative and qualitative methods. Graduates of the department take up careers in university, government, and business settings, and enter professions such as law, management, and urban policy.

Sociology Courses for Nonmajors

Sociology provides students with particularly effective ways to understand the complexities of modern life. For many students, the undergraduate years are a last opportunity to gain the insights these fields have to offer. The Department of Sociology is continuing to design an array of beginning and advanced courses that convey a broad and deep understanding of social change in a number of different countries. The department offers the opportunity for students to develop fundamental theoretical insights and understanding as well as advanced research skills in quantitative and qualitative methods. Graduates of the department take up careers in university, government, and business settings, and enter professions such as law, management, and urban policy.

Career Opportunities for Graduates

An undergraduate degree in sociology is one of the most popular degrees with employers. After engineering and computer science, sociology is the most able to place graduates into jobs immediately after completing their bachelor's degree. This is not altogether surprising, since sociology can lead to a rewarding career in any of the following fields:

- **government:** urban/regional planning, affirmative action, foreign service.
- **human rights management:** personnel management.
- **research:** social research, consumer research, data analysis, market research, survey research, census analysis, systems analysis.
- **criminal justice:** corrections, criminology assistance, police work, rehabilitation counseling, criminal investigation, parole management.
- **teaching:** public health education, school domination, college placement.
- **community affairs:** occupational counseling, career counseling, public health administration, hospital administration, public administration.
social assistance advocacy, fund-raising, community organizing, social work...

business: advertising, sales, project management, sales representation, market analysis, real estate management, journalism, public relations, insurance, human resource management, production management, labor relations, quality control management

A large number of sociology majors also go onto graduate school and obtain advanced (i.e., master's and Ph.D.) degrees in such varied fields as sociology, political science, philosophy, economics, and psychology. Many also complete professional degrees in education, law, medicine, social work, and business administration.

Requirements for the Major

In addition to the academic requirements established by the College of Arts and Sciences, students must also fulfill requirements toward a specified major. Ten courses are required in the sociology major.

- **Declaring the Sociology Major**
 - Eleven courses are required in the sociology major.
 - All courses toward the major must be taken for a letter grade, and students must maintain at least a 2.0 grade point average (GPA) while enrolled in the major. The 10 courses required for the major are divided into the following categories:
 - SOC 101
 - SOC 375
 - two research methods courses (SOC 301 and 303)
 - one advanced-level sociology course (400-level or higher)
 - five additional (i.e., elective) courses in sociology

Declaring the Sociology Major

Students in the College of Arts and Sciences who wish to declare a major in sociology should do so as soon as possible. Students who are not currently in the College of Arts and Sciences need to be admitted to A&S before declaring the major. To declare the sociology major, students need to take the following steps:

1. Obtain a **campus copy** of their transcript from Day Hall and bring it to the department office (316 Uris Hall).
2. Obtain a sociology major packet from Susan Meyer, undergraduate assistant, during her office hours (316 Uris Hall). During the meeting, the student fills out a major declaration form.
3. Leave this form and the transcript with the undergraduate assistant. The declaration will be reviewed by the director of undergraduate studies and sent on to the College of Arts and Sciences for official notification that the student has declared a major. Please allow two weeks for the declaration to be approved and entered into the campus computer.
4. A student file will be set up to maintain the student's records in the department. Once the student is officially recognized as a major in sociology, the Sociology Department will receive a copy of the transcript at the end of each semester, which will be kept in the student's file at 316 Uris Hall. Records are maintained until five years after graduation.

Academic Advising in Sociology

Cornell students are ultimately responsible for the policies, procedures, and requirements regarding their degree as stated in the current *Courses of Study*. After reading this document, students may find that they are still confused or unclear about any of the requirements, and may have questions and concerns that pertain to their individual situation. Several sources of academic assistance and advice are available.

College Adviser: Because sociology majors are students in the College of Arts and Sciences, college advising is available by appointment in the Office of Undergraduate Admissions and Academic Advising (Goldwin Smith Hall). It is recommended that students consult with a college adviser sometime before their last semester to discuss the completion of college requirements, graduation, and residency requirements.

Undergraduate Program Coordinator: The undergraduate assistant (Susan Meyer) in the Department of Sociology is located in 316 Uris Hall. She is available to provide assistance with the following:

- the process of declaring the sociology major.
- information about transferring courses from other universities and/or other departments.
- other administrative matters or concerns (e.g., forms, adding and dropping courses).

Director of Undergraduate Studies: The director of undergraduate studies will:

- provide information about departmental curricula and the requirements for the major.
- meet with applicants to the major.
- review applications for sociology majors and accept students into the program.
- assist students in finding an adviser in the sociology department.
- screen sociology classes taken outside Cornell for acceptance as Cornell credit.
- serve as the backup for faculty advisers who are absent during advising periods.

Faculty Advising: Once a student is a declared sociology major, he or she is assigned a faculty adviser within the Sociology Department. The student is asked to name his or her preference for an adviser; however, if he or she is not sufficiently familiar with the program, the director of undergraduate studies can assist in selecting a faculty member. Faculty advisers are there to:

- discuss education, career goals, and graduate school opportunities.
- meet to talk about courses and plan your program of study within the department.
- go over the student's academic program each semester.

Sociology Peer Advisers: Approximately 10 advanced sociology majors serve as peer advisers in the department. These advisers change from year to year, but a complete list of their names and e-mail addresses is available from the undergraduate assistant in the sociology office (316 Uris Hall). Peer advisers do not provide academic counseling; they are there to help students adjust to life in the major, as well as to let them know about the department's many support services and activities.

Research Opportunities

Qualified sociology majors are invited to participate with faculty members in conducting research. Such projects are usually initiated in one of two ways: the student may offer to assist the faculty member in an ongoing project, or the student may request that the faculty member supervise the execution of a project conceived by the student. In either case, the student should enroll in SOC 491 Independent Study.

The Sociology Honors Program

Honors in sociology are awarded for excellence in the major, which includes overall GPA and completion of an honors thesis. In addition to the regular requirements of the major, candidates for honors must maintain a cumulative GPA of at least a B+ in all sociology classes, complete SOC 495 and 496 (in the senior year), and write an honors thesis.

Students are awarded either honors (cum laude), high honors (magna cum laude), or highest honors (summa cum laude) in the program based on the honors advisers' evaluation of the level and the quality of the work completed toward the honors degree. The honors distinction will be noted on the student's official transcript and will also be indicated on the student's diploma.

Admission to the Honors Program

To qualify for entrance into the honors program, students must have at least a B GPA overall and a B+ GPA in the major. In addition, they must secure the permission of a faculty member in the Department of Sociology who will guide their honors thesis.

Students who wish to be considered for honors should apply to the director of undergraduate studies no later than the second semester of their junior year. Honors program application forms are available in 316 Uris Hall. The application must include a copy of the student's undergraduate transcript, a brief description of the proposed research project, and the endorsement of a faculty member in the Sociology Department.

The Honors Thesis

During the senior year, each candidate for honors in sociology enrolls in a yearlong tutorial (SOC 495 and 496) with the faculty member who has agreed to serve as the student's thesis adviser. During the first semester of their senior year, students determine the focus of their honors thesis, and submit a 10- to 15-page overview (or, alternatively, a preliminary draft) of the thesis to their adviser. During the second semester, they complete their honors thesis and submit final copies to the department.

The text of the honors thesis may not exceed 60 pages except by permission of the honors adviser. Two copies of the honors thesis are due to the undergraduate assistant (316 Uris Hall) during the third or fourth week of April. One of these copies will go to the student's thesis adviser and the other will remain on file in the department.
Sociologists believe that human beings are crucially shaped by the associations each person has with others. Other people, groups, and societies influence the way we grow and develop into the selves and persons that we are. What seems "natural" is actually a social construct—patterns of thinking and doing that have evolved over time and that come to be taken for granted. Understanding the social world requires us to ask questions about how society works, and live allows us to be more than just the passive recipients of this "shaping." In this course we will follow the major implications of this way of understanding humans and their behavior. We will study and involving the self—self-preservation, the managing of our behavior to create an intended impression of ourselves in the minds of others, and the integration of the self into the social order.

SOC 104(1104) Race and Ethnicity
Spring. 3 credits. Not offered 2005–2006. E. Brown. Studies the "social construction" of race and ethnicity. Explores key concepts such as prejudice, discrimination, segregation, racism, class, status, migration and immigration, identity, civil rights, and color-blindness. The United States is the product of myriad social forces that have produced a unique nation-state that is "racially" and "ethnically" diverse. This course focuses on the experiences of several groups including: whites, blacks, Native Americans, Asian Americans, and Latinos. Uses the perspective of historical sociology to examine the experiences of these different groups and to understand different outcomes in the preindustrial, industrial, and postindustrial periods of American society. Uncovers the ways in which processes such as settlement, slavery, segregation, immigration and mobility and migration, and mobility and immobility have affected race and ethnic relations in the United States.

SOC 105(1105) Introduction to Economic Sociology (III) (SBA)
Fall. 3 credits. U. Holmgren. Modern social thought arose out of attempts to explain the relationship between economic development and the social transformations that gave rise to the modern world. Classical theorists from Karl Marx and Max Weber to Karl Polanyi focused their writings on emergent capitalist economies and societies. Contemporary social theorists likewise have focused on the interaction between capitalism and the social forces reacting against and emerging from modern economic development. From exchange and rational choice theories to network analysis and institutional theory, a central theme in contemporary social theory has been the relationship between the economy and society, economic action and social structure, and rationality and fundamental social processes. This course provides an introduction to social thought and research seeking to understand and explain the relationship between economy and society in the modern era.

SOC 115(1150) Utopia in Theory and Practice (III) (SBA)
Spring. 3 credits. D. Strong. People have always sought to imagine and realize a better society, with both inspiring and disastrous results. This course discusses the literary utopias of Moore, Huxley, Orwell, and Zamiati. Also examines real social experiments, including 19th-century intentional communities, 20th-century socialisms and religious cults, and modern ecological, political, and millennial movements. Throughout, the emphasis is on two sociological questions: What kinds of social relationships appear as ideal? How can we tell societies that might work from those that cannot?

General Education Courses

SOC 202(2202) Population Dynamics (also D SOC 201[2010]) (III) (CA)
Spring. 3 credits. P. Eloundou-Enyeque. For description, see D SOC 201.

SOC 203(2203) Work and Family in Comparative Perspective
Fall. 4 credits. U. Holtgrewe. Family life is often portrayed in the popular media as a haven away from the harsh realities of public life, suggesting that work and family constitute separate and distinct spheres. By contrast, many sociologists point out the links between work and family, and how these links have different consequences for men and women. This course highlights the responses of individuals, employers, and governments, both in the United States and internationally, to the dilemmas posed by the interface between work and family.

SOC 206(2206) International Development (also D SOC 205[2050]) (III) (HA)
Spring. 3 credits. Staff. For description, see D SOC 205.

SOC 207(2207) Problems in Contemporary Society (III) (SBA)
Fall. 4 credits. D. Heckelhorn. Examines contemporary social problems, with a focus on their sources in the organization of society. Modern societies are based on three fundamental types of institutions—social norms, hierarchies, and markets. Each is subject to distinctive types of failures resulting in problems that include poverty, prejudice and discrimination, intolerance and hate, alcohol and drug abuse, physical and mental illness, crime and delinquency, and urban problems. In analyzing these problems the course emphasizes the institutions through which they are created and perpetuated and the form of institutional change required to address them.

SOC 208(2208) Social Inequality (also D SOC 209[2090]) (III) (SBA)
Fall. 4 credits. K. Weeden. Reviews contemporary approaches to understanding social inequality and the processes by which it comes to be seen as legitimate, natural, or desirable. We address questions of the following kind: What are the major forms of stratification in human history? Are inequality and poverty inevitable? How many social classes are there in advanced industrial societies? Is there an "underclass"? Are lifestyles, attitudes, and personalities shaped fundamentally by class membership? Can individuals born into poverty readily escape their class origins and move upward in the class structure? Are social contacts and "luck" important forces in matching individuals to jobs and class positions? What types of social processes serve to maintain and alter racial, ethnic, and gender discrimination in labor markets? Is there an "underclass"? These and other questions are addressed in light of classical and contemporary theory and research.

SOC 210(2100) What Is Science? (also S&T S 201[2011]) (III) (CA)
Spring. 3 credits. T. Pinch. For description, see S&T S 201.
This course examines the fundamental and pervasive role that organizations play in modern society. From universities, hospitals, banks, factories, prisons and churches to museums, art galleries and NGOs, contemporary society is inconceivable without organizations. Whether one struggles for change, seeks to protect the status quo, or simply wants to get things done in the modern world, it is crucially important to understand how organizations work. This course will focus on the historical origins of complex organizations, the internal structure and dynamics of organizations, organizations interactions with their external environments, and how organizations change over time.

SOC 200(2000) Consumerism and Modernity (III) (SBA)
B. Vasi.

SOC 221(2210) Race, Class, and Gender Research In Practice (III) (SBA)
Spring. 4 credits. Sophomore seminar. K. Weeden.

What are the promises and limitations of social science for understanding the sources and consequences of social inequality? This course introduces the underlying logic of social scientific research in the context of contemporary debates about social inequality: e.g., educational testing and tracking, race-based affirmative action, and the roles of intelligence and parental resources in affecting who gets ahead. Its goals are to encourage students to be critical consumers of social scientific data, evidence, and discourse and to develop their own rigorous, informed explanations of social phenomena.

This is a special seminar sponsored by the John S. Knight Institutes Sophomore Seminars Program. Seminars Program Seminars offer discipline-specific study within and an interdisciplinary context. While not restricted to sophomores, the seminars aim at initiating students into the disciplines outlook, discourse community, modes of knowledge, and ways of articulating the knowledge. Limited to 15 students per class. Spring. Is given to strong thinking and writing and to personalized instruction with top university professors.

SOC 222(2220) Controversies about Inequality (also PAM/LIBOB/D SOC 222(2220), GOVT 222, PHIL 195(1950) (III or IV) (SBA)
Spring. 3 credits. S. Morgan.

Introduces students to contemporary debates and controversies about the underlying structure of inequality, the processes by which it is generated and maintained, the mechanisms through which it comes to be viewed as legitimate, natural, or inevitable, and the forces making for change and stability in inequality regimes. These topics are addressed through readings, class discussion, visiting lecturers and distinguished scholars of inequality, and debates staged between students who take opposing positions on pressing inequality-relevant issues (e.g., welfare reform, school vouchers, immigration policy, affirmative action).

SOC 225(2250) Knowledge and Power (III) (SBA)
Spring. 3 credits. K. Wysienka.

The aim of the course is to familiarize students with historical and contemporary approaches to explaining the forms, content and nature of power and power related processes. Documentary evidence of power have been present in sociology since its beginnings. Therefore, classical positions on power in social systems such as those of Marx and Weber will be discussed. However, most of the course revolves to analyzing power's nature, dimensions, distribution, determinants, and consequences as studied in contemporary sociology. Both organizational and interpersonal theories of power will be presented. Central to class discussion will be such questions as: Is power a characteristic of an individual or a relation? Is the potential to affect others sufficient to talk about power or must the use of power be observed? Is the exercise of power destructive and based on conflict, or constructive and consensual? Emphasis will be placed on applications of the presented approaches to concrete social situations often encountered in everyday life.

SOC 248(2480) Politics and Culture (also GOVT 363) (III) (HA)
Spring. 4 credits. M. Berezin.

Focuses on the ideological themes of nationalism, multiculturalism, and democracy. It explores such questions as who is a citizen; what is a nation; what is a political institution; and how do bonds of solidarity form in modern civil society? Readings are drawn principally from sociology and where appropriate from political science and history. Journalist accounts, films, and web site research supplement readings.

SOC 251(2510) Aging and the Life Course (also HD 251) (III)
Fall. 3 credits. Not offered 2005-2006.
E. Wethington.

For description, see HD 251.

SOC 265(2650) Latinos in the United States (also LSP 201[2010], D SOC 265[2650]) (III) (SBA)
Spring. 3 credits; 4-credit option available. H. Velez.

Exploration and analysis of the Hispanic experience in the United States. Examines the sociohistorical background and economic, psychological, and political factors that converge to shape a Latino group identity in the United States. Perspectives are suggested and developed for understanding Hispanic migrations, the plight of Latinos in urban and rural areas, and the unique problems faced by the diverse Latino groups. Groups studied include Mexican Americans, Dominicans, Cubans, and Puerto Ricans.

SOC 270(2700) Gender: Meanings and Practice (also FGSS 270) (III) (SBA)
Spring. 3 credits. S. Correll.

People have many ideas about gender-—about women, men, femininity, and masculinity. These ideas have the power to shape our lives in important ways and often in ways that we do not even notice. They are often so taken for granted that we simply assume they are part of the "natural" or "normal" way that life works. As part of its focus, sociology investigates and exposes aspects of social life that are usually taken for granted. This course critically examines the ways that gender structures the social world in which we live. After laying the theoretical groundwork, the course examines cultural conceptions about gender, paying special attention to how beliefs about masculinity and femininity create and enforce a system of gender difference and inequality. Next it attempts to reveal the "common sense" world of gender that surrounds us by exposing the workings of institutions, such as the family, the classroom, and the workplace. Next, it explores how gender stereotypes and the interactions between and among women and men create and recreate gender. Then it briefly examines the link between gender, friendship, and sex orientation. Concludes by considering the possibilities of a "degendered" or less-gendered society.

SOC 280(2800) Social Movements (III) (SBA)
Fall. 3 credits. P. McLaughlin.

This course will examine the fundamental and pervasive role played by social movements in contemporary society. From the civil rights, environmental, feminist, and gay rights movements, to the cooperation and anti-globalization movements and Al-Qaeda, social movements have usually challenged our taken-for-granted conceptions of social reality. Participants in this course will become acquainted with the major social movements of our era as well as the various theoretical perspectives that scholars have employed to interpret their dynamics. They will consider how political opportunities shape and constrain social movement activity, how social movements generate new symbols and meanings and how they use those symbols to mobilize constituents and resources in order to redefine the social landscape.

SOC 293(2930) Inequality, Diversity, and Justice (also CRP 293, GOVT 293[2935], PHIL 193[1930]) (III or IV) (KCM)
Fall. 4 credits. Prerequisites: none.

Intended for freshmen and sophomores.

R. Miller.

An interdisciplinary discussion of the nature and moral significance of social inequality, diversity, and poverty and of the search for just responses to them. How unequal are economic opportunities? What are the causes of poverty? To what extent is greater equality a demand of justice? Are traditional welfare programs an appropriate response to poverty? What special significance have race and gender as sources of inequality? Do they merit special remedies such as affirmative action? How should governments deal with religious diversity and other differences in ultimate values? For example, should abortion statutes be neutral toward rival views of the importance of potential human life? What are the causes of worldwide inequality? To what extent do people in per-capita rich countries have a duty to help the foreign poor? Moral argument, investigations of social causes, and legal reasoning interact in the search for answers to these questions. To provide these resources, the course is taught by leading faculty researchers in philosophy, political theory, the social sciences, and law.

Methods and Statistics Courses

SOC 301(3010) Evaluating Statistical Evidence (II) (MGR)
Fall. 4 credits. Prerequisite: Arts and Sciences students only. D. Jung.

First course in statistical evidence in the social sciences, with emphasis on statistical inference and multiple regression models. Theory is supplemented with numerous applications.
SOC 303(3030) Design and Measurement (III) (SBA)
Spring. 4 credits. D. Harris.
Research methods are the foundation upon which all research rests. When there are flaws in the methodology, the whole project usually crumbles. This course uses methods texts, and examples from real research projects, to investigate the research methods and logic employed by sociologists. Topics explored include surveys, experimentation, sampling, observation, causal inference, and ethics. By the end of the course, students are able to identify methodological weaknesses in others' research, and design projects that can withstand a critical eye.

SOC 304(3040) Social Networks and Social Processes (III) (SBA)
Fall. 4 credits. D. Straugh.
How do groups self-segregate? What leads to race and ethnicity. The research methods spread? How do communities form and police themselves on the Internet? This course examines these kinds of issues through the study of fundamental social processes such as exchange, diffusion, and group formation. Focuses on models that can be explored through computer simulation and improved through observation.

Intermediate Courses

(SOC 311(3110) Group Solidarity (also ILROB 321(3210)) (III)
What is the most important group that you belong to today? What makes it important? What holds the group together, and how might it fall apart? How does the group recruit new members? Select leaders? Make and enforce rules? Do some members end up doing most of the work while others get a free ride? This course explores these questions from an interdisciplinary perspective, drawing on sociology, economics, and social psychology, as it applies alternative theories of group solidarity to a series of case studies, such as urban gangs, spiritual communes, the civil rights movement, pro-life activists, athletic teams, work groups, and college fraternities.

SOC 312(3120) Urban Sociology (III) (SBA)
The long, slow march of human populations from rural and agrarian life to the more densely populated patterns of urban life is one of the major, and relatively recent, transformations in human societies. This has brought about changes in terms of social interaction, culture, residence, economic activity, and governance that are particularly "urban." Urban sociology is the study of human social relations in cities and urbanized communities. This course explores key issues including the growth of cities, neighborhood and community life; urban economic development; housing; suburbs and exurbs; gentrification; realigning; residential segregation; the "urban crisis"; slums, barrios, and urban poverty; ethnic competition for jobs; crime; "global cities"; urban ecology; sprawl; and urban policy. Considers the city in its preindustrial, industrial, and postindustrial forms, with primary emphasis on the latter contemporary situation. The focus is primarily, but not exclusively, on urban life in the United States. Particular attention is given to the cities and metropolitan areas of New York, Chicago, Detroit, and Los Angeles.

SOC 324(3240) Environment and Society (also S&S&T 324(3241), D SOC 324(3240)) (III) (SBA)
Spring. 3 credits. P. McLaughlin.
This course will provide an overview of the field of environmental sociology. The course will begin by examining the history of various Western ideas—for example, essentialism, the ideal of progress, the Great Chain of Being and Darwinian evolution—that have shaped understandings of the natural environment and conduct a brief overview of the various theoretical perspectives in the field. The core of the course will be devoted to using these perspectives to illuminate various historical and current environmental problems such as overpopulation, the energy crisis, toxic wastes, the ecological impacts of the green and biotechnological revolutions, rainforest destruction in the Amazon and vulnerability to climate change. In the final section of the course we will examine the origins, growth and diversification of the U.S. environmental movement.

SOC 326(3260) Social Policy (also SOC 526(5260)) (III)
Fall. 4 credits. S. Caldwell.
The dramatic growth of the policy research sector as an institutional and intellectual force signals the changing relationship of social science to social policy in the United States. With an eye on that relationship, this course examines the development of social policy in selected areas, among them welfare, poverty, housing, crime, and health. The policy research sector itself—people, values, and institutions—is also surveyed.

SOC 327(3270) Extremism and Tolerance in Contemporary Society (SBA)
SOC 330(3300) Sociology of Sport (also NES/JWST 389) (III) (SBA)
Fall. 4 credits. T. Sorek.
Sports is popularly considered a sphere separate from "important" aspects of social and political dynamics. Especially in the past two decades, sociologists and anthropologists have proven the opposite. Both active and passive involvements in competitive sports take part in shaping and undermining collective identities and in political mobilization around these identities. This course follows the processes through which national, ethnic, civic, religious, local and gender identities are constructed by sports. The theoretical themes are illustrated through various case studies around the globe, including the United States, Europe, Africa, India and the Middle East.

SOC 341(3410) Modern European Society and Politics (also GOVT 341) (III) (SBA)
Spring. 4 credits. Staff.
For description, see GOVT 341.
SOC 357(3570) Schooling, Racial Inequality, and Public Policy in America (III) (SBA)
Fall. 4 credits. S. Morgan.
After exploring alternative explanations for why individuals obtain different amounts and types of educational training, the course focuses on how an individual's family background and race affect his or her trajectory through the educational system. The course covers the specific challenges that have confronted urban schooling in America since the 1960s, including the classic literature on the effects of school and community resources on student achievement and as well as the development and later evaluation of school desegregation policies. Also considers case studies of current policy debates in the United States, such as housing segregation and school resegregation, voucher programs for school choice, and the motivation for and consequences of the establishment of state-mandated testing requirements. Throughout the course, emphasis is placed upon the alternative modes of inquiry and writing which opposing scholars, policymakers, and journalists use to address these contentious topics.

This is a special seminar sponsored by the John S. Knight Institutes Sophomore Seminars Program. Program Seminars Program Seminars offer discipline-specificity within and an interdisciplinary context. While not restricted to sophomores, the seminars aim at initiating students into the disciplines outlook, discourse, community, modes of knowledge, and ways of articulating the knowledge. Limited to 15 students. Special emphasis is given to strong thinking and writing and to personalized instruction with top university professors.

SOC 359(3590) Sociology of Pseudoscience (III) (SBA)
Fall. 4 credits. K. Wysenska.
Survey data show that nearly 91 percent of adult Americans accept some type of pseudoscientific or paranormal claims. While it is easy to refute astrology, numerology or reports on alien encounters, many other superstitions are widely accepted even by smart people. Why then, paraphrasing Shimer's title, "do we believe weird things?" Numerous explanations have been provided to explain the abundance of irrationality in our everyday life. During the course we will focus on psychological and sociological processes that lead to the widespread acceptance of irrational statements. First, however, we will review judgment and decision-making relevant to our topic, followed by analyses of social influence and social impact theories, attitudes and attribution formation theories and communication processes. Finally we will critically analyze specific cases of pseudoscientific/irrational claims.

SOC 371(3710) Comparative Social Stratification (also D SOC 370(3700)) (III) (SBA)
Fall. 3 credits. Not offered 2005–2006.
For description, see D SOC 370.
SOC 375(3750) Classical Theory (III) (SBA)
Fall. 3 credits. R. Swedberg.
Introduction to the classics in sociology, primarily works by Karl Marx, Max Weber, Emile Durkheim, and Georg Simmel. Students also study the works of Alexis de Tocqueville, Tocqueville, Durkheim, and Joseph Schumpeter. Special emphasis is put on the concepts, ideas, and modes of explanation that characterize the classics. Students also look at these writers' empirical material, and what may be termed the social construction of the classics. Course requirements include active class participation and three tests in class.
Sociology 390/3900: Israeli Society (also NES/JWST 395) @ (III) (SBA)
Spring. 4 credits. T. Sorek.
Introduces students to the major themes in contemporary Israeli society, focusing on the following topics: the politics of the conflict, the definition of Israel as a Jewish state and its aspiration to be democratic, the place of religion in politics, the effects of the long-term occupation of the West Bank and the Gaza Strip, the fragility of the coexistence of the Israeli citizens of Israel, civil-military relations, intra-Jewish ethnic divides, and gender relations.

Sociology 395/3950: Advanced Economic Sociology (III) (SBA)
Spring. 4 credits. R. Swedberg.
Aims at reinforcing and adding to the insights presented in SOC 105 Introduction to Economic Sociology (taught by Professor Victor Nee in the fall). Begins with the theoretical foundation of economic sociology (classical and modern). The contributions by Max Weber, Joseph Schumpeter, Mark Granovetter, and others are presented. This segment is followed by lectures on different types of economic organization, from capitalism and the global economy to the firm and entrepreneurship. Topics such as politics and the economy, the economy and culture, the economy and gender, and the economy and the culture are then discussed. Normative aspects of economic sociology are also on the agenda.

[SO 397/3970]: Israeli-Palestinian Conflict (also NES 397) @ (III) (HA)
Introduces students to the complexity of the Israel–Palestinian conflict in its various dimensions: national, religious, economic, and cultural. It outlines the history of the conflict from the beginning of Zionist immigration to Palestine in the late 19th century until the current day. The course juxtaposes the different subjective points of view and motivations of the various actors involved and analyzes the sociopolitical process as products of these interrelated positions. In addition, it demonstrates how the internal structures of both societies influence and are influenced by the external environment. Special emphasis is given to the significance of interdependency of culture and politics; national symbolism as both product of the conflict and an element that maintains it; the significance of heroism, victimhood, and martyrdom in shaping the conflict and the identities of the parties involved. Requirements: three knowledge quizzes, midterm paper, movie report, active participation in course web site forum, and final exam.

Advanced Courses

The following courses are intended for advanced undergraduate students with substantial preparation, as well as for graduate students in sociology and related disciplines. The normal prerequisite for all 400-level courses is one introductory course plus 301 (or an equivalent statistics course). Students who are not sure whether their background is sufficient for a particular course should consult the professor.

[SO 408/4080]: Qualitative Methods (also SOC 508[5080]) @ (III) (SBA)

Aims to acquaint students with the practice of non-quantitative research methods. Rather than offering a laundry list of techniques, students are asked to think about how particular methods are more or less suited to answering particular types of research questions. The course is divided into four parts: (1) a general discussion of theory, methods, and evidence in social science; (2) a series of readings and exercises on particular methods; (3) an assigned research project to see how these were put together; (4) discussion of student projects.

[SO 410/4100]: Health and Survival Inequalities (also FGSS 410[4100]) @ (III) (SBA)
Fall. 4 credits. A. Basu.
Reviews the ways of measuring such inequalities (life expectancy, age-specific death rates, cause specific morbidity and mortality, disability and so on) and some of the historical and contemporary socioeconomic markers of such inequalities, including region, class, race, gender and age. Then examines some of the determinants of these differences, paying particular attention to notions of biology, poverty, and politics. Also considers the role of medical advances in promoting or reducing health and the economy, the culture, and the economy and gender and the economy are then discussed. Normative aspects of economic sociology are also on the agenda.

[SO 421/4210]: Theories of Reproduction (also FGSS/D SOC 421[4210]) @ (III) (SBA)
Spring. 4 credits. A. Basu.
Examines the changing nature of the debate on what makes populations grow and what makes families have any, few, and many children. The course begins with theories of historical population growth and changing fertility and then moves on to contemporary issues such as the economic, social, cultural, political, and biological theories applied to fertility and changing fertility in contemporary populations. Demographic concepts and factors believed to be important for the fertility of women in the developed world are examined. Emphasis is given to "sociocultural" and "gender-based" explanations of reproductive behavior, which would emphasize the role of the state in population growth and its place in women's lives.

[SO 425/4250]: Artificial Societies (also SOC 528[5280]) @ (III) (SBA)
Seminar introducing computer simulation. Surveys the history of social simulation and introduces students to complex computer programs (including game theory, and evolutionary models of social change. The remainder of the course (nine weeks) teaches students to program in Delphi and gives them simulation programs to modify as a class project.

[SO 430/4300]: Cultural Sociology (also SOC 630) @ (III) (SBA)
Fall. 4 credits. M. Berezin.
Cultural sociology is a flourishing subfield within sociology that incorporates a wide range of substantive topics (art, inequality, family, politics) and uses a wide range of methods from the ethnographic to the textual. This course proposes to explore some of the leading works and ideas in that field and to analyze how culture in social life begins by analyzing the different meanings that sociologists have ascribed to culture. Students begin by reading classics like Durkheim's Elementary Forms of Religious Life and move to contemporary theorists such as Geertz, Bourdieu, Alexander and Swidler. They then read a series of empirically grounded case studies that make culture the basis of the analysis (i.e., Lamont, Money, Manners and Morals). They analyze certain cultural objects such as films, art, etc., to put into practice some of the ideas from the readings.

[SO 442/4420]: Sociology of Science (also S&Ts 442) @ (III) (SBA)
For description, see S&Ts 442.

[SO 446/4460]: Economic Sociology (also SOC 546[5460]) @ (III) (SBA)
Introduces the field of economic sociology and covers major topics addressed by sociologists studying the intersection of economy and society. Begins with classic statements on economic sociology and then moves to the invigoration of the field in recent years, reading works that have been instrumental in this invigoration.

[SO 457/4570]: Health and Social Behavior (also HD 457[4570]) @ (III)
Fall. 3 credits. Prerequisites: HD 250, SOC/D SOC 101, or SOC/SOC 250 statistics course. Letter grades only. Not offered 2005–2006. E. Wethington.
For description, see HD 457.

[SO 491/4910]: Independent Study
Fall or spring. 1–4 credits. For undergraduates who wish to obtain research experience or do extensive reading on a special topic. Prerequisite: acceptable prospectus and agreement of a faculty member to serve as supervisor for project throughout semester. Graduate students should enroll in 891–892.

[SO 492/4920]: Economic Sociology of Entrepreneurship
Spring. 4 credits. V. Nee.
This course introduces the classical and contemporary writings on the rise of entrepreneurial capitalism in the West and the global diffusion of the modern entrepreneurial in its rational orientation to profit-making and innovative drive to apply new technologies and ideas to production. Contemporary approaches shift the emphasis away from the analysis of individual attributes and agency to focus on understanding the role of social networks, institutional forms and institutional environment in facilitating the entrepreneurs and the firm. In the second part of the course, we will examine case studies.
of entrepreneurship, drawing selectively from novels, movies and autobiographies.

SOC 495(4950) Honors Research
Fall or spring. 4 credits. Prerequisite: sociology seniors; permission of instructor.

SOC 496(4960) Honors Thesis: Senior Year
Fall or spring. 4 credits. Prerequisite: SOC 495.

Graduate Core Courses

These courses are primarily for graduate students in sociology but may be taken by other graduate students with permission of the instructor.

(SOC 501(5010) Basic Problems in Sociology I)

Analysis of theory shaping current sociological research. Examination of several central problems in sociological inquiry provides an occasion for understanding tensions and continuities between classical and contemporary approaches, for indicating the prospects for unifying microsociological and macrosociological orientations, and for developing a more critical appreciation of efforts to integrate theory and research.

(SOC 502(5020) Basic Problems in Sociology II)
Fall. 4 credits. D. Heckathorn.

Continuation of SOC 501. Emphasis is on the logical analysis of theoretical perspectives, theories, and theoretical research programs shaping current sociological research. The course includes an introduction to basic concepts used in the logical analysis of theories and examines their application to specific theories and theoretical research programs. Theoretical perspectives include functionalism, social exchange, and interactionism.

(SOC 505(5050) Research Methods I: The Logic of Social Inference)
Spring. 4 credits. D. Heckathorn.

Introduction to techniques of social inference. Covers research methods, sources of evidence, model design, and questions of empirical validity.

(SOC 506(5060) Research Methods II)
Spring. 4 credits. Staff.

Course on advanced linear regression analysis in theory and practice. After a review of classical bivariate regression theory and elementary matrix algebra, the course progresses under the credible assumption that the most important fundamentals of data analysis techniques can be taught in the context of simple multivariate linear models. Accordingly, the course provides a relatively formal treatment of the identification and estimation of single equation OLS and GLS regression models, instrumental variable models, traditional path models, and multiple indicator models. Interspersed with this material, the course addresses complications of regression modeling for the practicing researcher including: missing data problems, measurement error, regression diagnostics, weighting, and inference for surveys. The course concludes with a brief introduction to nonlinear regression, counterfactual models of causality, Bayesian inference, and hierarchical models.

(SOC 507(5070) Research Methods III)
Fall. 4 credits. Staff.

Introduction to the general linear model for discrete outcomes. Discussion of principles of estimation, model selection, coefficient interpretation, specification error, and fit assessment. The first half of the course covers logistic regression, probit, log-linear, and latent class models, while the second half of the course covers event history models. Although the statistical theory underlying these models is reviewed, issues of interpretation and estimation typically take precedence. Emphasis is accordingly placed on the analytic issues that arise in writing research papers with models of this kind.

Graduate Seminars

These seminars are primarily for graduate students but may be taken by qualified advanced undergraduates who have permission of the instructor. The seminars offered in each semester are determined in part by the interests of students, but it is unlikely that any seminar will be offered more frequently than every other year. The list below indicates the seminar topics likely to be offered; but others may be added and some may be deleted. Students should check with the department before each semester.

(SOC 508(5080) Qualitative Methods (also SOC 408(4080))

For description, see SOC 408.

(SOC 510(5100) Seminar on Comparative Societal Analysis)
Spring 3 credits. Prerequisite: advanced graduate students throughout social sciences; permission of instructor. Not offered 2005-2006. M. Beczerin.

Intended for advanced graduate students interested in comparative methods and research in the social sciences. It is offered in conjunction with the Comparative Societal Analysis program in the Einnaud Center for International Studies. Students enrolled for credit write critiques of papers presented at the seminar by faculty members and other graduate students, and work on their own project. Some weeks are devoted to collective reading and analysis of background work. Students may enroll for more than one semester.

(SOC 518(5180) Social Inequality: Contemporary Theories, Debates, and Models)

Serves as an introduction to contemporary theories, debates, and models regarding the structure of social classes, the determinants of social mobility, the sources and causes of racial, ethnic, and gender-based inequality, and the putative rise of postmodern forms of stratification. The twofold objective is to both review contemporary theorizing and to identify areas in which new theories, hypotheses, and research agendas might be fruitfully developed.

(SOC 519(5190) Workshop on Social Inequality)
Spring. 4 credits. Prerequisite: SOC 518; sociology Ph.D. students, or permission of instructor. K. Weeden.

Provides a forum in which students and others can present, discuss, and receive instant feedback on their inequality-related research. Its primary goal is to help students advance their own research; its secondary goal is to introduce selected debates in the contemporary inequality literature in a more comprehensive fashion than is possible in the introductory graduate-level seminar on inequality.

(SOC 526(5260) Social Policy (also SOC 326(3260))
Fall. 4 credits. S. Caldwell.

For description, see SOC 326.

(SOC 527(5270) Artificial Societies (also SOC 427(4270))

For description, see SOC 425.

(SOC 528(5280) Conflict and the Nation-State)
Fall. 4 credits. D. Strang.

The nation-state developed out of conflict, through military competition within Europe and the rise of and response to colonial empires in the Americas, Asia, and Africa. Conflict is just as virulent today, as ethnic cleansing and movement toward American imperialism attest. This course examines these conflicts both in comparative historical terms and in terms of fundamental social processes, with an eye to what they tell us about contemporary issues. Questions include: when and why do groups seek to leave policies through secession or decolonization? When and why do states become imperial powers? How are intra-state and inter-state conflict conditioned by the changing content of nationality and citizenship, global institutions, and inequalities of wealth and power.

(SOC 540(5400) Organizational Research)

Seminar focusing on contemporary sociological research on organizations. It centers theoretically on the interplay of institutional, ecological, and choice-theoretic accounts of organizational structure and action. Subjects include organizational founding and mortality; change in organizational practices over time; the relationship between organizations and their legal, social, and cultural environment; and stratification and mobility within organizations.

(SOC 591(5910) Special Seminars in Sociology)
Fall and spring. 2-4 credits. Staff.

These graduate seminars are offered irregularly. Topics, credit, and instructors vary from semester to semester. Students should look at the Sociology Department bulletin board at the beginning of each semester for current offerings.

(SOC 595(5950) The Sociological Classics)

Primarily intended for graduate students who lack a background in the classics as well as for those who are already familiar with elementary works, such as Weber's
A series of talks representative of current research interests in sociology, given by distinguished visitors and faculty members. Each talk will familiarize students with the concepts, ideas, and modes of reasoning that characterize the mature works of the classics. Each meeting consists of lecture and discussion. The requirements include active class participation and a research paper on some aspect of the classic.

SOC 606-607(6060-6070) Sociology Colloquium

Fall and spring. 0 credits. Requirement for sociology graduate students. Staff. A series of talks representative of current research interests in sociology, given by distinguished visitors and faculty members.

SOC 608(6080) Proseminar in Sociology

Fall. 1 credit. Prerequisite: first-semester sociology graduate students. Staff. Discussion of the current state of sociology and of the research interests of members of the graduate field; taught by all members of the field.

SOC 612(6120) Seminar in Sociology of Gender (also FGSS 613)

Spring. 4 credits. Not offered 2005–2006. S. Cornell. One of the important achievements in gender knowledge in the last decade is the revolution in our theoretical conceptualization of what gender is as a social phenomenon. There is increasing consensus among gender scholars that gender is not primarily an identity or role that is taught in childhood and enacted in family relations. Instead, gender is an institutionalized system of social practices for constituting people as two significantly different categories—men and women—and organizing social relations of inequality on the basis of that difference. This course begins with an examination of the key theoretical sociological frameworks that address this conceptualization. Then it applies these theoretical approaches as it explores the processes by which gender difference and inequality are maintained or changed in contemporary American society. While key social processes are examined at multiple levels of analysis, the primary focus is on processes that occur at the interactional level. The goal is to understand what happens in interaction and how what happens in interaction affects gender difference and inequality. These interactional processes are examined in specific social institutions, including schools, families, and work.

SOC 631(6310) Qualitative Research Methods for Studying Science (also S&TS 631(6311))

Spring. 4 credits. Not offered 2005–2006. T. Pinch. For description, see S&TS 631.1

SOC 632(6320) Inside Technology: The Social Construction of Technology (also S&TS 632(6321))

Fall. 4 credits. Not offered 2005–2006. G. Gillespie. For description, see S&TS 532.1

SOC 646(6460) Economic Sociology (also SOC 446[4460])

Not offered 2005–2006. For description, see SOC 446.1

SOC 660(6600) States and Social Movements (also GOVT 660[6603])

Spring. 4 credits. S. Tarrow. For description, see GOVT 660.

SOC 680(6800) Workshop on Transnational Contention (also GOVT 681[6817])

Spring. 4 credits. S. Tarrow. For description, see GOVT 681.

SOC 691(6910) Independent Study

Fall or spring. 2–4 credits. Prerequisite: graduate status and permission of faculty member willing to supervise project. Staff. For graduates who wish to obtain research experience or to do extensive reading on a special topic. Permission to enroll for independent study is granted only to students who present an acceptable prospectus and secure the agreement of a faculty member to serve as supervisor for the project throughout the semester.

SOC 778(7780) Solidarity in Groups (also ILROB 778[7780])

Fall. 3 credits. Not offered 2005–2006. E. Lawler. For description, see ILROB 778.1

SOC 891–892(8910–8920) Graduate Research

891, fall; 892, spring. Variable to 4 credits each semester. Prerequisite: graduate standing and permission of faculty member willing to supervise project.

SOC 895–896(8950–8960) Thesis Research

895, fall; 896, spring. Variable to 6 credits each semester. Prerequisite: permission of thesis supervisor.

SOUTH ASIA PROGRAM

The South Asia Program coordinates research, teaching, and special campus events relating to Bangladesh, India, Pakistan, Nepal, and Sri Lanka. The program faculty include members from across disciplines, including agricultural economics, agricultural engineering, anthropology, architecture, art, city and regional planning, comparative religion, development sociology, ecology and systematicatics, economics, English, geology, government, history, history of art, human ecology, industrial and labor relations, international agriculture, linguistics, and literature. Undergraduates with a special interest in the region may major in Asian Studies with a South Asia concentration, or complete a South Asia concentration with any other major. Graduate students may pursue the M.A. degree in Asian Studies with a concentration in South Asia.

Languages offered are Bengali, Hindi, Nepali, Sinhala, Sanskrit, and Urdu. Foreign Language and Area Studies scholarships are available to graduate students who are U.S. citizens or permanent residents. Cornell is a member of the American Institutes of Bangladesh, India, Pakistan, and Sri Lankan studies. For details on the major, see the Department of Asian Studies listing in this volume. For courses available in South Asian studies, or for further information on research opportunities, contact questions to the South Asia Program Office, 170 Uris Hall, 255-8493, www.einaudi.cornell.edu/SouthAsia.

SOUTHEAST ASIA PROGRAM

Southeast Asia studies at Cornell is within the framework of the Department of Asian Studies and affiliates with the Einaudi Center for International Studies. Southeast Asian faculty members in the colleges of Arts and Sciences, Business and the Johnson Graduate School of Management, the School of Industrial and Labor Relations, and Agriculture and Life Sciences participate in an interdisciplinary program of teaching and research on the history, culture, and societies of the region stretching from Burma through the Philippines. Courses are offered in such fields as anthropology, Asian studies, economics, finance, government, history, history of art, labor relations, linguistics, music, and development sociology. Instruction is also offered in a wide variety of Southeast Asian languages: Burmese, Cambodian (Khmer), Indonesian, Tagalog, Thai, and Vietnamese. In addition, faculty from other disciplines provide area instruction on Southeast Asia. The formal program of study is enriched by a diverse range of extracurricular activities, including an informal weekly brown bag seminar, art exhibits at the Johnson Museum, and concerts of the Gamelan Ensemble. The George McT. Kahin Center for Advanced Research on Southeast Asia is also the site for public lectures as well as publication and outreach activities related to this area. The John M. Echols Collection on Southeast Asia, in Kroch Library, is the most comprehensive collection on Southeast Asia in the United States.

Undergraduates may major in Asian Studies with a focus on Southeast Asia and its languages, or they may elect to take a concentration in Southeast Asia studies with any other major by completing 18 credits of course work. Graduate students may work toward an M.A. degree in Southeast Asian studies or pursue a Master of Professional Studies in another school with a concentration in Southeast Asian studies. Ph.D. students specializing in Southeast Asia receive a doctorate in a discipline such as history, history of art, anthropology, government, music, economics, or city and regional planning. Academic Year and Summer
Language and Area Studies scholarships are available to graduate students who are U.S. citizens or permanent residents.

For courses available in Southeast Asian studies and details on the major, see the Department of Asian Studies listing in this volume. Additional information is available at www.einaudi.cornell.edu/southeastasia. Inquiries for further information should be directed to the program office, 180 Uris Hall, 255-2378 or SEAP@cornell.edu.

SPANISH
See "Department of Romance Studies."

STATISTICAL SCIENCE DEPARTMENT
The university-wide Department of Statistical Science coordinates undergraduate and graduate study in statistics and probability. A list of suitable courses can be found under "Interdisciplinary Centers, Programs, and Studies" in the front of this catalog.

SWAHILI
See "Africana Studies and Research Center."

SWEDISH
See "Department of German Studies."

TAGALOG
See "Department of Asian Studies."

THAI
See "Department of Asian Studies."

THEATRE, FILM, AND DANCE

Through its courses and production laboratories, the department provides students with a wide range of opportunities in theatre, film, and dance. It also offers bachelor of arts degrees in each of those areas. These majors educate students in accordance with the general liberal arts ethic of the college. The department invites and encourages academic and studio participation by students from all disciplines.

Theatre Arts Major

The theatre major offers studies in the history of theatre, dramatic theory and criticism, playwriting, acting, directing, design/technology, and stage management. Students interested in the theatre arts major should consult with Alison Van Dyke (director of undergraduate studies).

Theatre major requirements
1. THETR 240 and 241, and 242 (three-semester Introduction to World Theatre) 12
2. THETR 250 Introduction to Theatre Design and Technology 4
3. THETR 280 Introduction to Acting 3
4. Four laboratory courses distributed as follows:
 - THETR 151 Production Lab I 1–3
 - THETR 153, 253, or 353 Stage Management Lab I, II, or III 1–3
 - THETR 155 Rehearsal and Performance or THETR 151 in a different area 1–3
5. Three courses in the area of theatre studies (see "Theatre Studies" section of theatre courses) chosen in the following manner:
 - one course must be at 300 level
 - one course must be at 400 level
 - one additional course at the 300 or above level
 - one of the three courses must be pre-20th century.
6. Three courses (at least 9 credits) in other theatre courses chosen in consultation with the faculty adviser. Course taken to qualify for admission to the Advanced Undergraduate Theatre Program (described below) may also be used to fulfill this requirement.
7. Courses in which a student receives a grade below C cannot be used to fulfill the requirements for a Theatre major.

Honors
The theatre honors program is for majors who have demonstrated exceptional ability in the major and who seek an opportunity to explore branches of their subject not represented in the regular curriculum or to gain experience in original research. To be part of the honors program the student must maintain a GPA of 3.5 in classes for the theatre major and an average of 3.0 in all courses. Students must consult with their advisers in the spring of their junior year to enroll in the honors programs.

The Advanced Undergraduate Theatre Program
The department offers advanced study in directing, playwriting, design/technology, and stage management to students who qualify on the basis of outstanding achievement in coursework. Admission to the AUTP is by invitation of the area faculty supervisor and the completion of a recommended "track" of courses or equivalent experience. (For recommended courses of study see listing of courses at end of departmental listings.) Approval process includes a portfolio review and/or interview. The program provides students with intensive study in theatre as well as the opportunity to collaborate with professional faculty and guest artists.

Independent Study, Internships and Honors
THETR 300(3000) Independent Study
Fall, spring, or summer. 1–4 credits. Independent study in theatre allows students the opportunity to pursue special interests not treated in regularly scheduled courses. A faculty member, who becomes the student's instructor for the course, must approve the student's program of study and agree to provide continuing supervision of the work. Students must prepare a proposal for independent study, which is available in 225 Schwartz Center.

THETR 485(4850) Undergraduate Internship
Fall, spring, or summer. 1–3 credits. Prerequisite: majors or concentrators in the department. Students are responsible for arranging their own internships in consultation with the faculty in their area of choice before preregistration for the semester in which the internship is planned to take place. To receive credit for this course, the internship must be unpaid. Students must follow the rules and procedures stated in the departmental internship form.

THETR 495(4950) Honors Research Tutorial
Fall, spring, or summer. 1–3 credits. Prerequisite: honors students in theatre. First of a two-semester sequence (the second is THETR 496) for seniors engaged in an honors project.

THETR 496(4960) Honors Research Tutorial
Fall or spring. 4 credits. Prerequisite: honors students in theatre. Second of a two-semester sequence (the first is THETR 495) for students engaged in an honors project.

First-Year Writing Seminars
Consult the John S. Knight Institute brochure for times, instructors, and descriptions.

Theatre Studies
THETR 496(2060) Introduction to Black Theatre (also AS&RC 206(2052)) (IV) (LA)
Fall. L. Grady-Willis.

For description, see AS&RC 206.
A survey of practices, literatures, and themes of theatrical performance in Africa, America, Asia, and Europe from antiquity to around 1500. Examines case studies from ancient Egypt, Greece, Rome, the Near East, and India; and medieval and feudal Indonesia, China, Japan, and Korea continuing up to the age of European colonialism. Looks at issues of masking and identity, storytelling and ritual, stage and society, tradition and modernity. Lectures are combined with periodic student projects.

THETR 240(2400) Introduction to World Theatre I—Antiquity to 1500 @ # (IV) (LA)
S. Warner.
A survey of practices, literatures, and themes of theatrical performance in Africa, America, Asia, and Europe from antiquity to around 1500. Examines case studies from ancient Egypt, Greece, Rome, the Near East, and India; and medieval and feudal Indonesia, China, Japan, and Korea continuing up to the age of European colonialism. Looks at issues of masking and identity, storytelling and ritual, stage and society, tradition and modernity. Lectures are combined with periodic student projects.

THETR 241(2410) Introduction to World Theatre II—Early Modernity @ # (IV) (LA)
Spring. 4 credits.
S. Warner.
Survey of world theatrical performance from around 1500 to 1800. Examines the development of European and Asian vernacular and national theatrical traditions; recent ethnic and popular performance traditions of Europe, Asia, Africa, and meso-America; recurring issues of realism and theatricalism, innovation and nostalgia, and colonial expansion and marginalization. Lectures are combined with periodic student projects.

THETR 242(2420) Introduction to World Theatre III—1800 to the Present (IV) (LA)
Fall. 4 credits.
S. Warner.
Traces the emergence of theatrical modernity as a global phenomenon. In Europe and North America, traces the progression from romanticism through realism and the modernist avant-garde, to post-modernism and beyond. Traces the emergence of recent performance traditions in Asia and Africa in response to local and global forces, and the emergence of an increasingly global and intercultural economy of world theatre. Lectures are combined with periodic student projects.

THETR 273(2730) Opera (also MUSIC 274[2241]) # (IV) (LA)
Fall. 3 credits.
A. Groos.
For description, see MUSIC 274.

THETR 278(2780) Desire (also ENGL/COM LF/GFS 278[2760]) # (IV) (LA)
Spring. 4 credits.
E. Hanson.
Sexual desire is a series of scripted performances, a set of stories we tell ourselves about ourselves. Through a critical discussion of "these pleasures which we lightly call physical," to borrow a phrase from the French novelist Colette, we might discover a deeper appreciation for the strange narrative of someone else's desire, and perhaps even the strange narrative of our own. This course begins with the theory that desire has a history, even a literary history, and students explore texts in some of its most influential modes: Platonic, Christian, romantic, decadent, psychoanalytic, feminist, and queer. This course is an introductory survey of European dramatic texts from Plato and Aristophanes to Jean Genet and Caryl Churchill; and it is also a survey of the most influential trends in modern sexual theory and sexual politics, including the work of Freud, Foucault, Barthes, and various feminists and queer theorists. Topics for discussion include Greek pederasty, sublimation, hysteria, sadomasochism, homosexuality, pornography, cybersex, feminism, and other literary and performative pleasures, and the focus is always on expanding our critical vocabulary for considering sex and sexual desire as a field of intellectual inquiry.

THETR 319(3190) Music, Dance, and Light (also DANCE 319[3590], VISST 319[3591]) # (IV) (LA)
Fall. 3 credits.
Artistic values, parameters, and concerns of music (sound design), dance, and lighting design are compared and contrasted, and the combination of design elements is analyzed in contemporary dance. Includes writing in response to readings, audio and video recordings, and performances. Some classes devoted to creating sound, movement, and lighting.

THETR 326(3260) Queer Performance (also GFS 325[3250]) # (IV) (LA)
Spring. 3 credits.
Limited to 15 students.
S. Warner.
What constitutes queer performance? Is queer who you are or what you do? Is sexuality all we mean by queer? Has queer been used as a platform for constructing and deconstructing conceptions of identity, community, and nationality? In this course we will examine major trends in American drama from 1960 to the present. Readings for the class focus on theatre that responds directly to or intervenes in moments of social crisis, including: the Vietnam War, the Civil Rights Movement, the Women's Liberation Movement, the Gay and Lesbian Liberation Movement, and AIDS.

THETR 345(3450) The Tragic Tradition (also CLASS 345[3645], COM L 344[3440]) # (IV) (LA)
Spring. 4 credits.
Limited to 40 students.
F. Ahl.
For description, see CLASS 345.

THETR 372(3720) Medieval and Renaissance Drama (also ENGL 372[6770]) # (IV) (LA)
Spring. 4 credits.
M. Raskolnikov.
For description, see ENGL 372.

THETR 373(3730) English Drama from 1700 to the Present (also ENGL 373) # (IV) (LA)
Spring. 4 credits.
S. McMillin.
For description, see ENGL 373.

THETR 403(4030) Ritual, Play, Spectacle, Act: Performing Culture (also ART H 403, THETR 603[6030]) # (IV) (LA)
Spring. 4 credits.
S. Warner.
Takes a broad-spectrum approach to performance. Includes anthropological texts on ritual and play, sociological texts on performances in everyday life, literary studies texts on "performatives" in speech and writing, folklore studies on parades and reenactments, psychological and philosophical studies on the role of performance in the formation of identity, as well as standard texts of the theater. Considers the distinctions between play, ritual, spectacle, festival, theater, and the "visual" arts. Explores the differences between spectating and witnessing and examine studies on audience behavior. At the base of the inquiry is the broad issue of the role of representational practices within culture and artmaking. If, as Barbara Meyerhoff has written, we understand ourselves by showing ourselves to ourselves, what role does "showing" have in construction of the selves we seek to understand? Why is postmodern culture often called the "society of the spectacle" (Debord)? If, as Aristotle claimed, we are mimetic creatures at base, which comes first—representation or reality? Looking closely at the notion of "live" art, students weigh theorists who claim that performance is ephemeral and disappearing against those who claim that performance, such as oral history, is resilient and enduring. Students have the opportunity to do fieldwork, create performative works, and engage in scholarly study.

THETR 404(4040) Mythology and Postmodern Performance (also THETR 604[6040], VISST 404[4040]) # (IV) (LA)
Spring. 4 credits.
Limited to 15 students.
S. Warner.
Why has mythology flourished in performance projects despite the rather marginal position it has occupied in the academy in the past few decades? Does a survey of postmodern performances, especially by so-called "marginal" or "minority" groups, suggest a shift toward a postsecular society? Bringing a variety of divergent discourses into dialogue, this course investigates the critical potentiality.
This course challenges the boundaries of text to discover the possibilities of performance. Asks: How do we translate our complex cultural situations that cannot adequately be conceived of in language or under the law?

[THETR 426(4260) Adaptation: Text/Theatricality (also VIST 426(4260)](IV) (LA)
Spring. 4 credits. Prerequisite: permission of instructor. Not offered 2005-2006. B. Milles.

Mounting a script into a show is a process of adaptation from page to stage. But dramas have also been translations of other media. Sondheim's "Sunday in the Park with George," adapted a painting by Seurat. Stringberg's "Ghost Sonata" translated a symphony by Beethoven. Plays can even be adapted into other media: Goya's "The Disasters of War" while someone builds a frame around you? And there are texts that are exciting as texts that arise in adapting across cultures—such as a Kathakali "Leer" or a Shakespearean "Mahabharata." This course challenges the boundaries of text to discover the possibilities of performance. How do we translate inspiration into tangible (or intangible) theatrical imagery? Working in workshop format as actors and writers, students explore the process of developing theatre pieces based on a variety of sources.

[THETR 431(4310) Theory of the Theatre and Drama (also COM L 406(4060), GERST 431(4310)](IV) (LA)

Surveys dramatic theory and theories of theatricality from Aristotle to the present. Although covering a span of over two thousand years, the point is to focus the analysis on a smaller number of key representative texts from the European, American, and postcolonial traditions. In so doing the goal is to develop a close reading of each text, while at the same time exploring both their reception within the context in which they emerged as well as their importance within the ever-evolving process of the institutions of theatre and drama over greater periods of time. Participants are expected to read carefully the primary and background texts assigned for each session and come to class prepared to raise and answer questions about the material at hand.

[THETR 436(4360) The Female Dramatic Tradition (also FGSS 433(4330)](IV) (LA)

Is there a "female dramaturgy?" What is the female tradition in the theatre? This course explores these questions through an investigation of texts by women dramatists, including Hrotsvitha, Aphra Behn, and Caryl Churchill, as well as theory by such critics as Sue Ellen Case and Jill Dolan.

[THETR 440(4400) Romantic Drama (also THETR 644(6400), ENGL 440(6440)[6440]) (IV) (LA)
Fall. 4 credits. T. 2:30-4:25. R. Parker.

Readings include plays by a range of British writers, such as Balille, Coleridge, Shelley, Byron, and Wordsworth, along with earlier or contemporary plays by writers such as Racine, Goethe, Schiller, and Kleist. This course also studies contemporary adaptations of Shakespeare, and the pantomime and melodrama versions of "Othello, or Three Finger'd Jack." Though some attention focuses on aspects of staging and performance, the primary work is on drama as a literary form and cultural phenomenon.

[THETR 445(4450) Text Analysis for Production: How to Get from the Text onto the Stage (also VIST 445, ENGL 444(4440)]) (IV) (LA)
Spring. 4 credits. Limited to 15 students. Prerequisite: permission of instructor. Not offered 2005-2006. B. Levitt.

Examines the play as the central, essential source for production decisions made by the actor, the director, and the dramaturg. Students "present" their conclusions about the production of studied texts through work project as either an actor, director, designer, or dramaturg, as well as through two to three papers.

[THETR 446(4460) Shakespeare in (Con)text (also THETR 203[2030], VIST 446(4460), ENGL 445(4450)] # (IV) (LA)
Fall. 4 credits. Limited to 15 students. Prerequisite: permission of instructor. B. Levitt.

Examines how collaboration among stage directors, designers, and actors leads to differing interpretations of plays. The course focuses on how the texts themselves are blueprints for productions with particular emphasis on the choices available to the actor inherent in the text.

This is a special seminar sponsored by the John S. Knight Institute's Sophomore Seminars Program. Seminars offer discipline-intensive study within an interdisciplinary context.

[THETR 459(4590) Contemporary British Drama (also ENGL 459(4590)](IV) (LA)

For description, see ENGL 459.

[THETR 472(4720) Sondheim and Musical Theatre (also ENGL 473(4730)](IV) (LA)

For description, see ENGL 473.

[THETR 483(4830) Seminar in Comparative 20th-Century Anglophone Drama (also ENGL 483[4860]) (IV) (LA)
Fall. 4 credits. Recommended: some knowledge of classical and avant-garde theories of drama and theatre. B. Jeyifo.

Explores 20th-century Anglophone drama in diverse areas of the English-speaking world. Through works of Irish, African, Caribbean, and U.S. playwrights like Friel, Soyinka, Fugard, Walcott, and Shange, the seminar is organized around two principal issues: the use of folk, ritual, vernacular, and carnivalesque performance idioms to transform the received genre of Western literary drama to themes of empire, colony, and postcolonial in the making of the modern world.

[THETR 580(5800) Shakespeare in Context (also GERST/COM L 679(6790))] (IV) (LA)
Spring. 4 credits. Prerequisite: permission of instructor. T. Murray.

For description, see ENGL 580.

[THETR 600(6000) Seminar in Theatre Studies Spring. 4 credits. Prerequisite: graduate standing.

An introduction to the theory and methods involved in the study of the theatre. Attention focuses on pedagogy and the profession in Part I. Part II explores current scholarly trends.

[THETR 637(6370) Seminar in Dramatic Theory: Digital Bodies, Virtual Identities (also ENGL 696, ART H 578(5075)) Spring. 4 credits. Prerequisite: permission of instructor. B. Levitt.

For description, see ENGL 696.

Requirements: seminar paper that forms the basis for an oral presentation for class discussion. For description, see GERST 679.

[THETR 680(6800) Brecht, Müller, and Avant-Garde (also GERST 680[6800], COM L 676(6760)] Fall. 4 credits. Not offered 2005-2006. D. Bathrick.

For description, see ENGL 676.

[THETR 454(4540) American Musical Theatre (also ENGL 454(4540), MUSIC 490[3311])] (IV) (LA)
Fall. 4 credits. S. McMillin.

For description, see ENGL 454.

[THETR 459(4590) Contemporary British Drama (also ENGL 459[4590]) (IV) (LA)

For description, see ENGL 459.

[THETR 472(4720) Sondheim and Musical Theatre (also ENGL 473[4730]) (IV) (LA)

For description, see ENGL 473.

[THETR 483(4830) Seminar in Comparative 20th-Century Anglophone Drama (also ENGL 483[4860]) (IV) (LA)
Fall. 4 credits. Recommended: some knowledge of classical and avant-garde theories of drama and theatre. B. Jeyifo.

Explores 20th-century Anglophone drama in diverse areas of the English-speaking world. Through works of Irish, African, Caribbean, and U.S. playwrights like Friel, Soyinka, Fugard, Walcott, and Shange, the seminar is organized around two principal issues: the use of folk, ritual, vernacular, and carnivalesque performance idioms to transform the received genre of Western literary drama to themes of empire, colony, and postcolonial in the making of the modern world.

[THETR 580(5800) Shakespeare in Context (also GERST/COM L 679[6790])] (IV) (LA)
Spring. 4 credits. Prerequisite: permission of instructor. T. Murray.

For description, see ENGL 580.

[THETR 600(6000) Seminar in Theatre Studies Spring. 4 credits. Prerequisite: graduate standing.

An introduction to the theory and methods involved in the study of the theatre. Attention focuses on pedagogy and the profession in Part I. Part II explores current scholarly trends.

[THETR 637(6370) Seminar in Dramatic Theory: Digital Bodies, Virtual Identities (also ENGL 696, ART H 578[5075]) Spring. 4 credits. Prerequisite: permission of instructor. B. Levitt.

For description, see ENGL 696.

Requirements: seminar paper that forms the basis for an oral presentation for class discussion. For description, see GERST 679.

[THETR 680(6800) Brecht, Müller, and Avant-Garde (also GERST 680[6800], COM L 676[6760]) Fall. 4 credits. Not offered 2005-2006. D. Bathrick.

For description, see ENGL 676.
[THETR 703(7030) Theorizing Film (also ENGL 703(7030), FRLIT 695)]
T. Murray.
For description, see ENGL 703.)

THETR 710(7100) The Pedagogy of Theatre
Fall. 4 credits. Co-requisite: relevant undergraduate class and permission of instructor. Staff.
Provides graduate students in the field of theatre an opportunity to work directly with a faculty member to explore pedagogical theory and practice for undergraduate theatre classes in all areas of the curriculum.

Acting

THETR 155(1550) Rehearsal and Performance
Fall or spring. 1–2 credits; 1 credit per production experience per semester up to 2 credits per semester. Students must register for course in semester in which credit is earned. Prerequisite: students who are assigned roles after tryouts at department’s scheduled auditions. Students should add this course only after they have been assigned roles. S-U grades only. The study, development, and performance of roles in departmental theatre or dance productions or the study and practice of directing as experienced in assisting faculty and guest directors.

THETR 205(2050) Rehearsal Workshop
Fall or spring. 2 credits. Limited to 30 students. Prerequisites: participation in a particular drama production and permission of instructor. Staff.
Enables students participating in a particular production to gain expertise and/or knowledge to contribute to that production. The focus of the course depends on the needs of a particular production (e.g., history, choreography, textwork, dramaturgy).

THETR 280(2800) Introduction to Acting (IV) (LA)
Fall or spring. 3 credits. Limited to 16 students per sec. Preregistration and registration only through roster in department office, 225 Schwartz Center. No online registration. Staff.
An introduction to the actor’s technique and performance skills, exploring the elements necessary to begin training as an actor, i.e., observation, concentration, and imagination. Focus is on physical and vocal exercises, improvisation, and text and character. There is required play reading, play attendance, and some scene study.

THETR 281(2810) Acting I (IV) (LA)
Fall or spring. 3 credits. Limited to 14 students per sec. Prerequisites: sophomore standing and above; THETR 280 and auditions. Registration only through roster in department office, 225 Schwartz Center. Practical exploration of the actor’s craft through exercises in physical and psychological action, improvisation and scene study.

THETR 282(2820) Standard American Stage Speech (IV) (LA)
Fall. 3 credits. Limited to 10 students. Prerequisites: THETR 280 and permission of instructor. A. Van Dyke.
Introduction to Standard American Stage Speech. Study of various regional American accents and Standard American Stage Speech using the International Phonetic Alphabet (IPA) as a way to designate the vowel, diphthong, and consonant sounds of spoken English. The goal of this course is to learn speech for use in performing Shakespeare, Shaw, Chekov, Moliere, etc.

[THETR 283(2830) Voice and Speech for Performance (IV) (LA)]
Fall. 3 credits. Limited to 12 students. Primarily for department majors. Prerequisite: permission of instructor. Not offered 2005–2006. Staff.
Registration only through department roster 225 Schwartz Center. Development of the speaking voice with additional emphasis on dramatic interpretation.

THETR 284(2840) Speech and Dialects for Performance (IV) (LA)
Spring. 3 credits. Limited to 10 students. Primarily for department majors. Prerequisite: THETR 280 and permission of instructor. A. Van Dyke.
Development of speech and dialects in dramatic text.

THETR 380(3800) Acting II (IV) (LA)
Fall. 3 credits. Limited to 12 students. Prerequisite: THETR 281 and audition. S. Cole.
Continuation of Acting I. Special consideration is given to a physical approach to characterization.

THETR 381(3810) Acting III: Advanced Scene Study (IV) (LA)
Spring. 3 credits. Limited to 10 students. Prerequisite: audition. Strong preference given to students who have taken THETR 446. B. Levitt.
Focuses on advanced problems for the stage. Monologues and scenes are drawn from Shakespeare and classical sources.

THETR 384(3840) Commedia: A Contemporization of Physical Acting Styles and the Comic Approach (also VISST 384(3864)) (IV) (LA)
Spring. 3 credits. Limited to 10 students. Prerequisite: THETR 281 and permission of instructor. B. Milles.
A wholly physical acting course based in the practices of Commedia dell’arte—stock characters, physical lazzi, improvisation, street theatre—using improvisation, some mask work, clown and viewpoint training. An exploration of how to use the body to illuminate text, and how to mine text to maximize comedy.

THETR 385(3850) Advanced Studies in Acting Techniques (IV) (LA)
Fall. 3 credits. May be repeated for credit. Limited to 8 students. Prerequisites: THETR 281 and permission of instructor.
For fall: solo performance. B. Levitt.

THETR 387(3870) Movement for the Actor
Fall. 3 credits. Limited to 10 students. Prerequisites: THETR 281 and permission of instructor. Not offered 2005–2006.

THETR 388(3880) Stage Combat
Spring 3 credits. Limited to 8 students. Prerequisite: permission of instructor. Not offered 2005–2006.

Course based on movement and physical work for the actor. Students learn body conditioning exercises (a combination of yoga, tai chi, pilates, basic stretching) and basic safety skills for stage movement. A great deal of the course focuses on stage fighting, both unarmed and armed. The Society of American Fight Directors’ guidelines of safety and skills is used.

Directing

THETR 177(1770) Student Laboratory Theatre Company
Spring. 1–2 credits. The Student Laboratory Theatre Company (SLTC) is a group of student-actors who earn credit by acting in three scenes directed by students taking THETR 498. Students enrolling in SLTC for credit earn 1 credit for two projects and 2 credits for three projects. SLTC also meets with directors once a week.

THETR 398(3980) Fundamentals of Directing I (also VISST 398) (IV) (LA)
Fall. 3 credits. Limited to 9 students. Prerequisite: permission of instructor. Special consideration given to students who have completed THETR 280 or are intending to continue in area of stage or screen directing. Students should see instructor one year in advance to sign up for course. D. Feldshuh.
Focused, practical exercises teach the student fundamental staging techniques that bring written text to theatrical life. A core objective is to increase the student’s awareness of why and how certain stage events communicate effectively to an audience. Each student directs a number of exercises as well as a short scene.

THETR 498(4980) Fundamentals of Directing II (IV) (LA)
Spring. 4 credits. Limited enrollment. Prerequisite: THETR 280 and 398, and permission of instructor. Recommended: THETR 250 and 281. D. Feldshuh.
Builds on the staging techniques learned in Fundamentals of Directing I. In this course, each student directs actors from the Student Laboratory Theatre Company in a series of projects and public presentations focusing on specific directorial challenges.

THETR 499(4990) Practicum in Directing
Fall or spring. 1–4 credits. Prerequisites: THETR 240, 250, 280, 398, 498, and permission of instructor. D. Feldshuh.
Allows the student who has completed the appropriate prerequisites the opportunity to direct a full presentation of theatre in conjunction with a faculty mentor. May also involve an internship with a prominent director on campus or the opportunity to assist direct a faculty or guest director.

Playwriting

THETR 348(3480) Playwriting (IV) (LA)
Fall. 4 credits. Limited to 12 students. Prerequisite: permission of instructor. Staff.
Various approaches and techniques are examined as the student is introduced to the art and craft of dramatic writing. The student is required to read dramatic texts, observe theatre productions and rehearsals, and write. The semester culminates in the completion of a 20- to 30-minute one-act play.
Design, Technology, and Stage Management

Design

THETR 250(2500) Fundamentals of Theatre Design and Technology (IV) (LA)
Fall and spring. 4 credits. Limited to 12 students. Not open to first-semester freshmen. Registration only through department roster in 225 Schwartz Center. Highly recommended: concurrent enrollment in 1 credit of Production Lab (THETR 151 or 251). Students required to purchase materials that instructors specify (approx. cost $50). K. Goetz.
Lectures, discussion, and project work introduce the principles of designing scenery, costumes, lighting and sound, and the technical process of realizing designs on stage.

THETR 254(2540) Theatrical Makeup Studio
Spring. 3 credits. Limited to 10 students. Prerequisite: permission of instructor. Students are required to purchase makeup kits that instructor provides (approx. cost $50). It is expected that any interested student will have taken courses within the department in any of the areas of design, acting, dance, or film, or will have completed rehearsal and performance (THETR 155) credit.
Basic technique of makeup design and application for the stage including corrective, old age, likeness, and animals; use of some three-dimensional makeup and false facial hair.

THETR 319(3190) Music, Dance, and Light (also DANCE 319[3590], VISST 319[3519]) (IV) (LA)
Fall. 3 credits. Attendance at dance concerts and music concerts required. Not offered 2005-2006. E. Intemann and A. Fogelbarger. Artistic values, parameters, and concerns of music (sound design), dance, and lighting design are compared and contrasted, and the combination of design elements is analyzed in contemporary dance. Includes writing in response to realizations, audio and video recordings, and performances. Some classes devoted to creating sound, movement, and lighting.

THETR 343(3430) Costume History: From Fig Leaf to Vanity (IV) (LA)
Fall. 3 credits. Limited to 20 students. S. Berstein. Offers an overview of the history of clothing from the first signs of clothing to the early 20th century. It investigates social, political, economic, technological, geographic, ecological, and artistic influences on costume.

THETR 362(3620) Lighting Design Studio I (also VISST 362[3662]) (IV) (LA)
Fall. 4 credits. Limited to 6 students. E. Intemann.
The theory and practice of lighting design as a medium for artistic expression. This course explores the aesthetic and mechanical aspects of light and their application in a variety of disciplines. Emphasis is on understanding lighting's function in an environment and manipulating light effectively. Artistic style and viewpoint are also covered.

THETR 364(3640) Scenic Design Studio (IV) (LA)
Fall. 3 credits. Limited to 10 students. Prerequisite: THETR 250 and 340 or permission of instructor. Recommended: experience in theatre production and graphic skills. Students are required to purchase materials that instructor will specify (approx. cost $50). K. Goetz.
An exploration of the process of designing scenery for the live theatre. Projects employ various media to explore dramatic use of architecture, the scenic space, and elements of interior design.

THETR 365(3650) Automated Lighting and Control Systems
Fall. 3 credits. Limited to 8 students. Prerequisite: permission of instructor. Highly recommended: at least 1 credit of THETR 151 or 251. E. Intemann and F. Sellers.
Covers the understanding and application of light control technologies, including electrical systems, color, optics, dimming protocols, and console programming. Students complete a series of projects culminating in the programming and use of moving fixtures and lighting visualization software.

THETR 366(3660) Costume Design Studio (IV) (LA)
Spring. 3 credits; may be repeated for credit Limited to 10 students. Students are required to purchase materials that instructor will specify (approx. cost $70). S. Berstein.
Design of costumes for the theatre, concentrating on script and character analysis, period research, design elements, figure drawing and rendering skills, and an understanding of production style.

THETR 368(3680) Sound Design and Digital Audio (also MUSIC 368[3431]) (IV) (LA)
Fall. 4 credits. Prerequisite: permission of instructor. Recommended: some experience with audio/video recording or editing; previous enrollment in one of the following: FILM 377, FILM 391, MUSIC 120, MUSIC 320, or THETR 250.
Basics of digital audio, psychoacoustics, and sound design as they apply to theatre, film, and multimedia production. Weekly projects require time spent in the studio outside of class. Students create soundtracks for text and moving image, with final projects in 5.1 surround sound, using Pro Tools and Digital Performer.

THETR 369(3690) Digital Performance (IV) (LA)
Spring. 4 credits. Prerequisites: junior standing and above and permission of instructor. Possible lab performances on selected Fridays. Recommended: previous enrollment in one of the following: FILM 377, FILM 391, MUSIC 120, MUSIC 320, THETR 250, or THETR 368. W. Cross.
Introduction to the multimedia programming languages MAX/MSP and Jitter. There are weekly projects requiring time in the studio, outside of class, and focusing on the input, manipulation, and output of sound and video in live performance and installation. Topics include digital audio/video processing, midi control, sensor use and development, and electroacoustic music. Students must audition a 5- to 10-minute piece—either music, film, theatre, or movement—and clearly indicate how this performance would make use of the technology. These pieces then become the content to be enhanced and performed.

THETR 371(3710) Costume Design Studio II (IV) (LA)
Fall. 3 credits. Limited to 10 students. Prerequisite: THETR 366, or THETR 250 with permission of instructor. Students are required to purchase materials that instructor will specify (approx. cost $50).
E. Intemann.
Explores unconventional costume designs for theatre and dance. Deals with the special considerations found in many plays and performance pieces, such as the theatricalization of nonhuman subjects (e.g., animals, plants, machines, magical creatures), the visualization of music, or the support or enhancement of movement. Also covers alternative (some non-Western) ways to create character through costume, make-up, masks, and wearable forms of puppetry.

THETR 462(4620) Lighting Design Studio II (also VISST 462[4662]) (IV) (LA)
Spring. 4 credits. Limited to 6 students. Prerequisite: THETR 250 or 362 or permission of instructor. E. Intemann. Concentrates on designing lighting for different genres of performance in various venues. Emphasis is placed on developing both the visual sophistication and the technical artistry of the lighting designer. Commitment, personal style, and professional presentation are stressed.

THETR 464(4640) Scene Design Studio II (IV) (LA)
Spring. 3 credits. Prerequisite: THETR 364 or permission of instructor. Students are required to purchase materials that instructor will specify (approx. cost $50). K. Goetz.
Projects and activities are tailored to the creative and developmental needs of the individual student with emphasis on developing professional standards and practices that would prepare the student for a major design assignment in the department production season.

Technology

THETR 252(2520) Technical Production Studio I
Fall. 3 credits. Limited to 6 students. D. Hall and F. Sellers.

Stage Lighting and Sound Technology: the practical aspects of lighting and sound technology, including equipment setup, engineering, electrics, organization, recording techniques, and production paperwork are explored through projects, lectures, and class discussions. In addition to twice-weekly class meetings, the course requires a laboratory commitment of 50 hours for the semester.

THETR 256(2560) Technical Production Studio II
Spring. 3 credits. Limited to 6 students. Students are required to purchase materials that instructor will specify (approx. cost $15). Prerequisite: THETR 250 or permission of instructor. Additional handson-time in prop and paint shops required, to be discussed. C. Seikalz and T. Ostrander.

Scene Painting: introduction to the basic techniques of painting scenery, including but not limited to the layout and painting of bricks, marble, stone, and wood grain for the theatre. Individual projects in scene painting and participation on paint crew for productions are included.

Stage Properties
Introduction to the processes of propmaking, including furniture construction and upholstery techniques, use of shop tools and materials, period research, and painting and finishing.

THETR 340(3400) Theatrical Drafting and Technical Drawing Studio
Fall. 3 credits. Limited to 5 students. Prerequisite: permission of instructor. S. Brookhouse.
Implementation of the fundamentals of drafting and technical drawing. Introduction to the concept of an individual style in the approach to drafting for the theatre. Involves a series of projects to familiarize students with the convention and process of visualization and drafting, using both mechanical drafting techniques and AUTOCAD.

THETR 352(3520) Themed Entertainment: The Technical Perspective
Fall. 3 credits. Limited to 12 students. R. Archer.
Exploration into the integration of art and science in today's theme parks and interactive entertainment attractions. Papers, projects, and discussions deal with planning and development aspects of large-scale entertainment projects including architecture, engineering, construction, and attraction installation. Focus is on the specialized entertainment technologies that make these attractions work: audio and lighting design, ride and show control systems, and special effects.

THETR 354(3540) Stagecraft Studio
Fall. 3 credits. Prerequisite: THETR 250 or permission of instructor. Highly recommended: concurrent enrollment in at least 1 credit of THETR 151 or 251. R. Archer.
Exploration of the techniques and practice of the theatrical scenic aspects of stagecraft, including construction, stage mechanics, rigging, painting, and model building.

THETR 356(3560) Costume Construction Studio
Spring. 3 credits. Highly recommended: concurrent enrollment in at least 1 credit of THETR 151 or 251. Lab fee: $100 (paid in class). R. MacPike.
Project/lecture/discussion class in costume research, patterning, cutting, construction, and fitting.

THETR 360(3600) Costumes: Special Projects
Fall. 3 credits; may be repeated for credit. Prerequisite: permission of instructor. Lab fee: $150 (paid in class). R. MacPike. Designed for students who have completed a basic construction class (in THETR or TXA, or another department). Each fall, this project-oriented course focuses on one of the following areas of costume crafts: millinery, fabric modification, or mask making. Students should check with the instructor to find out each fall which topic is being offered.

Stage Management

THETR 153(1530) Stage Management Production Laboratory I
Fall and spring. 1-2 credits; may be repeated for credit. Before registering, students must attend orientation meeting at 7:30 p.m. in Kiplinger Theatre at Schwartz Center. Prerequisite: permission of instructor. P. Lillard.
Practical experience in theatrical production as assistant stage manager for a dance theatre concert or as a stage manager for readings, Black Box Lab productions, or SLTC under the supervision of the faculty production manager. THETR 370 complements this course.

THETR 253(2530) Stage Management Laboratory II
Fall and spring. 1-4 credits; may be repeated for credit. Before registering, students must attend orientation meeting at 7:30 p.m. in Kiplinger Theatre at Schwartz Center. Prerequisite: permission of instructor. P. Lillard.
Practical experience in theatrical production as assistant stage manager for a season production under the supervision of the faculty production manager. THETR 370 complements this course.

THETR 353(3530) Stage Management Laboratory III
Fall and spring. 1-4 credits; may be repeated for credit. Before registering, students must attend orientation meeting at 7:30 p.m. in Kiplinger Theatre at Schwartz Center. Prerequisite: permission of instructor. P. Lillard.
Practical experience in theatrical production as assistant stage manager for a season production under the supervision of the faculty production manager. THETR 370 complements this course.

THETR 370(3700) Stage Management Studio
Fall. 2 credits. Prerequisite: THETR 250 or 280 or permission of instructor. Students are required to purchase materials that instructor will specify (approx. cost $10). P. Lillard.
Introduction to the concepts and techniques of stage management as they relate to specific areas of production. Development of roles of communication skills and an understanding of the production process as experienced by a working stage manager or assistant stage manager. THETR 153, 253, and 353 complement this course.

THETR 453(4530) Stage Management Laboratory IV
Fall and spring. 1-5 credits; may be repeated for credit. Prerequisite: admission to Advanced Undergraduate Theatre Program. P. Lillard.
Practical experience in theatrical production as stage manager for a season production under the supervision of the faculty production manager.

Production Laboratories

THETR 151(1510) Production Laboratory I
Fall and spring. 1-3 credits; may be repeated for credit. No prerequisites or experience required. Orientation meeting at 7:30 p.m. on first Tuesday of classes each semester in Kiplinger Theatre at Schwartz Center. P. Lillard, S. Brookhouse, and F. Sellers.
Provides practical experiences in theatrical production. Students can work on scenery, costumes, properties, lighting, or stage crew.

THETR 251(2510) Production Laboratory II
Fall and spring. 1-3 credits; may be repeated for credit. Prerequisite: permission of instructor. Orientation meeting at 7:30 p.m. on first Tuesday of classes each semester in Kiplinger Theatre at Schwartz Center. P. Lillard, D. Hall, F. Sellers, and R. MacPike.
Practical experience in theatrical production, as a light board operator, board operator, sound technician, head dresser or scenery/props special project.

THETR 351(3510) Production Laboratory III
Fall and spring. 1-3 credits; may be repeated for credit. Prerequisite: permission of instructor. Orientation meeting at 7:30 p.m. on first Tuesday of classes each semester in Kiplinger Theatre at Schwartz Center. P. Lillard, D. Hall, E. Intemann, and F. Sellers.
Practical experience in theatrical production as a master electrician, assistant technical director, assistant costume shop manager or assistant to a faculty or guest director or designer.

THETR 451(4510) Production Laboratory IV
Fall and spring. 1-4 credits; may be repeated for credit. Prerequisite: admission to Advanced Undergraduate Theatre Program. P. Lillard, R. Archer, S. Brookhouse, K. Goetz, D. Hall, E. Intemann, and F. Sellers.
Practical experience in theatrical production as a master electrician, assistant technical director, assistant costume shop manager or assistant to a faculty or guest director or designer.

Independent Study, Internships, and Honors

THETR 300(3000) Independent Study
Summer, fall, or spring. 1-4 credits. Independent study in the theatre allows students the opportunity to pursue special interests not treated in regularly scheduled courses. A faculty member, who becomes the student's instructor for the course, must approve the student's program of study and agree to provide continuing supervision of the work. Students must prepare a proposal for independent study, which is available in 225 Schwartz Center.
To be eligible to enroll and receive credit for an internship, students must either be majors or be concentrators in the department. Students are responsible for arranging their own internships in consultation with the faculty in their area of choice before preregistration for the semester in which the internship is planned to take place. To receive credit within the course, the internship must be unpaid. Students must follow the rules and procedures stated in the departmental internship form.

THETR 485(4850) Undergraduate Internship

Fall, spring, or summer. 1-3 credits. To be eligible to enroll and receive credit for an internship, students must either be majors or be concentrators in the department. Students are responsible for arranging their own internships in consultation with the faculty in their area of choice before preregistration for the semester in which the internship is planned to take place. To receive credit within the course, the internship must be unpaid. Students must follow the rules and procedures stated in the departmental internship form.

THETR 495(4950) Honors Research Tutorial

Fall or spring. 4 credits. Prerequisite: honors students in theatre.

First of a two-semester sequence (the second is THETR 496) for seniors engaged in an honors project.

THETR 496(4960) Honors Research Tutorial

Fall or spring. 4 credits. Prerequisite: honors students in theatre.

Second of a two-semester sequence (the first is THETR 495) for students engaged in an honors project.

Film

D. Bathrick (on leave spring 2006), D. Fredericksen (director of undergraduate studies in film; on leave spring 2006), S. Harrell (on leave fall 2005), M. Ritchin, A. Villarejo

The study of film began in this department in the 1930s and continues to be based here. In the intervening years, it has also spread into a significant number of other departments in the college: Africana studies, anthropology, art studies, comparative literature, English, German studies, government, history, psychology, romance studies, and women's studies. This proliferation of courses has been accompanied by a comparable proliferation of perspectives and faculty concerns, e.g., the relationship of national cinemas to national literatures and specific cultures, film's relationships to myth and ideology, the use of film as historical evidence, film's efficacy as a rhetorical medium, and film's contribution to perennial issues in aesthetics, the history of the arts, and studies in cognition. The foundational courses in film production and in the history, theory, and criticism of film as an art are centered in this department.

This richness of courses and perspectives is matched by the ways in which students may make film the focus of their undergraduate studies. The three ways currently being offered are: (1) majoring in film within the Department of Theatre, Film, and Dance; (2) constructing an individually tailored Independent Major in film; and (3) focusing on film as a college scholar. Students interested in options 2 or 3 should consult Don Fredericksen (director of undergraduate studies in film) and the director of the College Scholar Program or the director of the Independent Major program. Students interested in the first option should consult Don Fredericksen (director of undergraduate studies in film). In addition, students should be aware that the college has recently approved a five-course concentration in visual studies, which can be taken independently of, or in conjunction with, a major in film. Students interested in the visual studies concentration should contact its director.

Film Major Requirements

The department's film major requires a total of 50 credits in film and related courses. Students should note that a number of film courses—including two required "core" courses: FILM 375 and 376—are offered in alternating years. This means that students cannot fulfill the requirements for the major in less than two years and that they should plan accordingly, in consultation with their major adviser. In particular, students must plan to be in residence at Cornell during the fall semesters of both their junior and senior years to take FILM 375 and 376. Within the "core" required courses, FILM 274, Introduction to Film Analysis, is to be taken during the sophomore year. Note: Prospective majors must earn a grade of B- or higher in FILM 274 to be accepted into the major. Students may not enter the major until they have completed FILM 274 in the fall semester of their sophomore year.

Majors wishing to use the production courses in a substantial manner must plan carefully and work within certain limits. These courses are FILM 324, 377, 383, 422, 477, 478, 493. Enrollment in each of these courses is limited by the nature of the work and by facilities. Enrollment in FILM 477, 478, and 493 depends on the quality of previous work in FILM 377 and/or 383; enrollment is not guaranteed. Majors without a strong interest in production can complete the production requirement with one course: FILM 377, after they have taken FILM 274 in their sophomore year. The total credits in production courses cannot exceed 20 hours; this limit is strictly enforced.

1. A core of four film courses:
 - FILM 274 Introduction to Film Analysis (offered every fall semester)
 - FILM 375 History and Theory of Commercial Narrative Film (offered alternate fall semesters; next offered fall 2006; prerequisite for film majors: FILM 274)
 - FILM 376 History and Theory of Documentary and Experimental Film (offered alternate fall semesters; offered fall 2005) (prerequisite for Film majors: FILM 274)
 - FILM 377 Introduction to 16mm and Digital Filmmaking (offered fall 2005 and spring 2006)

2. One of the following theatre courses:
 - THETR 250 Fundamentals of Theatre Design/Technology (offered every semester)
 - THETR 280 Introduction to Acting (offered every semester)
 - THETR 398 Directing I (prerequisite: permission) (offered every fall semester)

3. Four courses (15–16 credits) in film offered by Theatre, Film and Dance as below, or (with permission of adviser) by other departments:
 - FILM 276 Survey of American Film (offered spring 2006)
 - [FILM 341 French Film (offered occasionally; not offered fall 2005)]
 - [FILM 342 The Cinema and the American City (offered spring 2007)]
 - [FILM 344 American Film Melodrama (offered spring 2007)]
 - [FILM 346 Film Noir (offered occasionally; not offered 2005–2006)]
 - FILM 369 Fast-Talking Dames and Sad Ladies: 1940s and Now (offered yearly; offered fall 2005)
 - [FILM 378 Soviet Film of 20s and French Film of 60s (offered occasionally; Not offered 2005–2006)]
 - [FILM 379 Modern Documentary Film (offered alternate spring semesters; offered spring 2007)]
 - FILM 383 Screenwriting (offered fall 2005)
 - [FILM 386 Cinema and Social Change (offered occasionally; not offered 2005–2006)]
 - FILM 391 Media Arts Studio I (offered occasionally; TBA fall 2005)
 - FILM 393 International Film of the 1970s (offered spring 2006)
 - [FILM 395 Video: Art, Theory, Politics (offered occasionally; Not offered 2005–2006)]
 - FILM 396 German Film (offered occasionally; offered fall 2005)
 - [FILM 422 Cinematography (offered spring 2007)]
 - [ASARC 435 African Cinema (offered alternate years; not offered 2005–2006)]
 - [FILM 450 Rescreening the Holocaust (offered occasionally; Not offered 2005–2006)]
 - [FILM 455 History of Modern Polish Cinema (offered alternate spring semesters; next offered spring 2008)]
 - [FILM 473 Film and Spiritual Questions (offered alternate spring semesters; next offered spring 2007)]
 - [FILM 474 Jung, Film, and the Process of Self-Knowledge (offered alternate years; offered fall 2000)]
 - FILM 475 Seminar in the Cinema I (offered most years; offered fall 2005; topic varies; may be repeated for credit; topic for fall 2005: Ingmar Bergman)
FILM 476 Seminar in the Cinema II (offered occasionally; not offered 2005–2006; topic varies; may be repeated for credit)

FILM 477 Intermediate Film and Video Projects: Documentary and Experimental Workshop (offered alternate years, offered fall 2005)

FILM 478 Intermediate Film and Video Projects: Narrative Workshop (offered alternate years; not offered 2005–2006; next offered fall 2006)

FILM 479 1939 (offered occasionally)

FILM 493 Advanced Film and Video Projects (offered spring 2006)

4. 15 credits of related course work inside or outside the Department of Theatre, Film and Dance (as approved by the major adviser). The courses chosen to fulfill this requirement should reinforce a major’s particular interest in film and will not necessarily be film courses per se. For example, a student interested in the psychology of film, or in ethnographic film, or in film and social change will be encouraged to choose related course work in those areas.

5. Students must earn at least a B– in FILM 274 to enter the major. In all subsequent courses used for the major a grade of C (not C–) must be achieved. Courses in which these minimums are not achieved must be repeated if the student is to receive credit in the major.

6. Course work in production cannot exceed 20 credit hours.

HONORS

Students who have maintained a GPA of 3.5 in their film major courses, and an average of 3.0 in all courses, may elect to work for honors in film during their senior year. They must consult with their adviser in the spring of their junior year about the honors program in film. Honors projects are possible in filmmaking, screenwriting, and film analysis (history, criticism, theory). Projects in filmmaking and screenwriting require an analytical component related to the creative work.

The Advanced Undergraduate Filmmaking Program

The department offers advanced study in filmmaking to students who qualify on the basis of outstanding achievement in film studies and film production courses. Acceptance to the AUFP and admission to the advanced film production course (FILM 493) will be determined by a committee of film faculty in December of each year, based on applications from students who have a proposal (script or treatment) for a film or video project. Up to four such students will be selected to receive the Melville Shavelson Award to help fund their advanced film projects.

Film Study Abroad

The College of Arts and Sciences, through this department and in concert with a number of other American universities and universities, offers up to a full year of study at the Paris Center for Critical Studies and, through the center, at the University of Paris III. The center’s film program is theoretical, critical, and historical. It is most useful to students whose major interest is in the academic study of film and serves as a complement to Cornell’s film courses. Fluency in French is required. FILM 274 and 375 are prerequisites. Inquiries should be addressed to Professor Fredericksen, Cornell’s liaison with the center.

FILM 255(2650) Studies in Film Analysis: Monsters and Misfits: Hollywood Misogynist Myths of Women (also ENGL/FGS 263[2630]) (IV) (LA)

Spring. 4 credits. Prerequisite: permission of instructor. Students must be free to view films late afternoons on Mondays and Tuesdays. Lab fee: $25. L. Bogel.

For description, see ENGL 263.

FILM 274(2740) Introduction to Film Analysis: Meaning and Value (also FILM 674[6740], VISST 274[274]) (IV) (LA)

Fall. 4 credits. Limited to 40 students. Graduate students must enroll in FILM 674.

D. Fredericksen.

Intensive consideration of the ways films generate meaning and of the ways we attribute meaning and value to films. Discussion ranges over commercial narrative, documentary, and personal film modes. Prospective film majors should enroll in their sophomore year.

FILM 276(2760) Survey of American Film (also AM ST 230[230]) (IV) (LA)

Spring. 4 credits. Required film screenings; disc once a week. Offered alternate years.

S. Haenni.

Focusing mostly on Hollywood film, this course surveys some major developments in and approaches to 20th-century American cinema. Traces changes in film aesthetics and film style, the development of the American cinema as an institution that comprises an industrial system of production, social and aesthetic norms and codes, and particular modes of reception. Introduces methodological issues in American film history—especially questions of narrative, genre, star, authorship, and spectator position and affect its spectators? How does it allow space for the representation of marginalized voices (e.g., of women and African Americans)? How does it allow other American colleges and universities, offers up to a full year of study at the Paris Center for Critical Studies and, through the center, at the University of Paris III. The center’s film program is theoretical, critical, and historical. It is most useful to students whose major interest is in the academic study of film and serves as a complement to Cornell’s film courses. Fluency in French is required. FILM 274 and 375 are prerequisites. Inquiries should be addressed to Professor Fredericksen, Cornell’s liaison with the center.

FILM 276(2760) Survey of American Film (also AM ST 230[230]) (IV) (LA)

Spring. 4 credits. Required film screenings; disc once a week. Offered alternate years.

S. Haenni.

Focusing mostly on Hollywood film, this course surveys some major developments in and approaches to 20th-century American cinema. Traces changes in film aesthetics and film style, the development of the American cinema as an institution that comprises an industrial system of production, social and aesthetic norms and codes, and particular modes of reception. Introduces methodological issues in American film history—especially questions of narrative, genre, star, authorship, and spectator position and affect its spectators? How does it allow space for the representation of marginalized voices (e.g., of women and African Americans)? How does it allow

FILM 329(3290) Political Theory and Cinema (also GERST/COM L 330[3300], GOVT 370[3705]) (III or IV) (CA)

Spring. 4 credits. G. Waite.

For description, see GERST 330.

FILM 341(3410) French Film (also FRLIT 336) (IV) (LA)

Fall. 4 credits. Offered occasionally; not offered 2005–2006. T. Murray.

For description, see FRLIT 336.

FILM 342(3420) The Cinema and the American City (also AM ST 309[3090]) (IV)

The emergence of the cinema in the late 19th century coincided with the emergence of a new kind of metropolis, characterized, among other things, by new traffic systems (elevated train, subway, automobile), new racial, ethnic, and sexual regimes, and new urban planning. This course examines how the cinema has participated and intervened in urban transformations by imagining and representing the American city variously as a panorama, a musical symphony, a mystery to be deciphered, a stage for civic theater, a modernist artwork, or a post-apocalyptic wasteland. How does the cinema produce a particularly modern, urban experience? How has it been shaped by urban politics and how, in turn, does it shape the way in which we understand the city? Screenings may include films such as Manhattan, The Crowd, Graveyard Souls, Asphalt Jungle, Just Another Girl on the I.R.T., and Blade Runner, and are supplemented by readings in film history, as well as urban history and urban theory.

FILM 344(3440) American Film Melodrama (also AM ST 338, ENGL 344, VISST 345) (IV) (LA)

Melodrama has often been dismissed as overwrought with emotion, moralizing, and sensationalism. Film studies, however, has reconceptualized melodrama as an intriguing "mode of excess" that powerfully and profoundly affects film audiences. This course examines how and to what purposes melodrama has been used in the U.S. context. Looks at different aspects of melodrama—its inheritance from 19th-century stage melodrama, its pictorialism, acting style, music, and its uses of paranoia, entrapment, and fast-paced action. Considers the form and function of melodrama in different periods—1950s America, the early 20th century, the Jazz Age, the economic depression of the 1930s, World War II, and the contemporary moment. Asks several questions: How does melodrama function in different periods—1950s America, the early 20th century, the Jazz Age, the economic depression of the 1930s, World War II, and the contemporary moment. Asks several questions: How does melodrama position and affect its spectators? How does it allow space for the representation of marginalized voices (e.g., of women and African Americans)? How does it allow space for the representation of marginalized voices (e.g., of women and African Americans)? How does it allow space for the representation of marginalized voices (e.g., of women and African Americans)?
FILM 346/3480 Film Noir (also AM ST 348/3480) (IV) (LA)
At the close of World War II, the French considered the term "noir" to describe a new, "dark," and "glamorous" style of Hollywood films that were populated by females fatales, criminal gangs, private eyes, and lovers on the run, and which centered on issues of violence, crime, paranoia, betrayal, pessimism, and self-doubt. Derived from hard-boiled detective fiction and influenced by German expressionist cinema, film noir has become one of the most acclaimed genres in Hollywood film. This course explores both the stylistic characteristics and thematic and cultural contexts of film noir. Examines the history and function of "noir" as a critical term, the influence of hard-boiled fiction, and the evolution of noir style and noir narratives. Investigates how film noir articulates anxieties about postwar masculinity and the sexual and social roles of women; how it popularizes psychology; how it portrays the city as an "urban jungle"; and how it represents a personal film during its heyday (1940s to the late 1970s).

FILM 377/3770 Introduction to 16mm and Digital Filmmaking (IV) (LA)
Fall and spring. 4 credits. Limited to 12 students. Intended for juniors and seniors (who may need to sign up a year or more in advance) with priority given to film majors. SF 374 or 375 (or higher-level film studies course) and permission of instructor. Equipment fee: $150 (paid in class). Average cost to each student for materials and processing is $500. M. Rivchin.
Creative, hands-on production course in filmmaking, emphasizing the development of original ideas and the acquisition of basic technical skills in both 16mm and miniDV formats: cinematography, lighting, sound recording and editing, and film and non-linear digital editing. Students complete several exercises and two short projects; the final project may be narrative, documentary, experimental, or animation and is shown in a public screening at the end of the semester on campus.

FILM 378/3780 Soviet Film of the 1920s and French Film of the 1960s (IV) (LA)
Intensive treatment of two distinct periods of radical innovation in film theory and history. Emphasis is on the animated relationship between theory and filmmaking during these two decades. Major figures include Eisenstein, Pudovkin, Vertov, Kuleshov, Dovzhenko, and Room in the Soviet Union; Godard, Truffaut, Resnais, Rohmer, Tati, Rouilly, Bresson, and Bazin in the French 1960s.

FILM 379/3790 Modern Documentary Film (IV) (LA)
An intensive consideration of canonical documentary films from 1945 to the present. Emphases are on the documentary film as an artistic form in film theory and history. Filmmakers include Flaherty, Flaherty, Hainsaat, Fraune, Raenais, Wright, Jennings, Rouquier, Sucksdorff, Anderson, Rouch, Malle, Wiseman, Watkins, Guzmann, Trinh, T. Van der Kesen, Gardner, Lanzmann, Pistoowski, Borzechka, Forcagio, and the National Film Board of Canada.

FILM 383/3830 Screening and Writing: Bringing Your Vision to the Page (IV) (LA)
Fall. 3 credits. Limited to 12 students. Prerequisite: completed application, writing sample, and permission of instructor. Students must go to 225 CT to apply. J. Hirschberg.
For those who have ever sat in a movie theater and said, "I can do better," now is their chance. This course explores the fundamentals of traditional Hollywood and independent screenplays—concept, theme, structure, story, dialogue, and characters—and the basics of marketing oneself and the finished script. Students are required to create a pitch for their original idea, treatment, and a first draft of their full-length feature screenplay or short film script(s). The instructor and fellow students critique all work in class. Typical readings: Seger, Making a Good Script Great; Vogler, The Writer's Journey; and selected screenplays, such as The Shawshank Redemption, one of the top-grossing films of all time. Only those who are passionate about their craft need apply.

FILM 391/3910 Media Arts Studio I (also ART/MUSIC/VISST 391) (IV) (LA)
Fall and spring. 4 credits. Limited to 12 students. Intended for juniors and seniors (who may need to sign up a year or more in advance) with priority given to film majors. SF 374 or 277, or dance studio. Fee for screening expenses: $150 (paid in class). Average cost to each student for materials and processing is $500. J. Hirschberg.
Examines the 1970s as a period of enormous innovation and cross-fertilization in film history and style. Film noir.

FILM 393/3930 International Film of the 1970s (also AM ST/VISST 393/3930) (IV) (LA)
Spring. 4 credits. Recommended: some background in film analysis. Offered occasionally. S. Haenni.
More than being characterized by a retreat from political, critical cinema and by the re-emergence of the Hollywood blockbuster such as The Godfather, Star Wars, and Jaws, the seventies was also a period of enormous innovation and cross-fertilization in film history and film style. Profound changes in the film industry and film technology, along with larger social, political, and cultural developments, enabled new ways of understanding—and using—the cinematic image as well as film sound. In this course, we focus on the transnational nature of seventies film: the influence of European art cinema on American film; the reworking and rejuvenation of genre films (neo-noir, western, horror film, road movie); European responses to and appropriation of American film genres, film conventions, and subject matter; Asian influences in the United States, particularly the martial arts film; and the emergence of new film subcultures, such as video and film and blaxploitation. Screenings include work by directors such as Robert Altman, Francis Ford Coppola, Steven Spielberg, Charles Burnett, John Cassavetes, Mario Van Peebles, Michelangelo Antonioni, Linda Weitzmuller, Rainer Werner Fassbinder, Wim Wenders, and Stanley Kubrick and are guided by readings in film criticism and film history.
Jacob the Liar, The Diary of Anne Frank, what are the benefits or potential problems in narrative to deal with such a topic, and, if so, cinematic renderings.

[FIELD 396(3960) German Film (also GERST 396(3960)) (IV) (LA)]
Fall. 4 credits. Offered occasionally. D. Bathrick.
Explores German film from the Weimar and Nazi periods to the present in relation to the cultural and sociopolitical context of which it was a part. Readings and lectures are devoted to formal and cultural developments historically as well as inferential analysis of selected individual films. Screenings in the course include films such as Caligari, Metropolis, Girls in Uniform, Triumph of the Will, The Marriage of Maria Braun, Run, Lola, Run and others.

[FIELD 422(4220) Cinematography (IV) (LA)]
Spring. 4 credits. Limited to 8 students. Pre- or co-requisite to FILM 493. Prerequisite: permission of instructor. Letter grades only. Equipment fee: $150. Advanced camera and lighting techniques, designed for students who have taken at least FILM 377 and/or advanced photographic courses. Not offered 2005-2006. D. Bathrick.
Students work on a series of tests, short exercises, and scene projects using sync and non-sync 16mm cameras, a range of lighting instruments, filters, and gels and digital video cameras to expand their knowledge of the technical and aesthetic aspects of cinematography.

[FIELD 450(4500) Rescreening the Holocaust (also COM L 453(4530), GERST/JWST 449(4490), RELST 450(4500)) (IV) (LA)]
Fall. 4 credits. Offered occasionally, not offered 2005-2006. D. Bathrick.
Rescreening the Holocaust offers a survey of the major films dealing with the Holocaust beginning with Night and Fog (1955) and including such films as Holocaust, Schneider's List, Shoah, Life is Beautiful, Sophie's Choice, Schindler's List, and others.

[FIELD 473(4730) Film and Spiritual Questions (also RELST 473(4730)) (IV) (LA)]
Spring. 4 credits. Limited to 20 students. Offered alternate years; next offered 2006-2007. D. Fredericksen.
The use of film as a medium for the expression of spiritual questions has a long and rich history, although little attention is given to this fact in contemporary film studies. This seminar examines films and writings by filmmakers who are so inclined, including Baillie, Gardner, Bergman, Dreyer, Bresson, Godard, Scorcese, Brakhage, Bax, Whitney, Rouquier, Newby, Kubrick, and Bae Yong-Kyun. Special attention is given to the work of Andrey Tarkovsky, the Russian film director and theorist. Readings include Tarkovsky's Sculpting in Time, Smith's Why Religion Matters, Eliade's The Sacred and the Profane, Edinger's The Christian Archetype, Schrader's Transcendental Style in Film, and Warren and Locke's Women and the Sacred in Film.

[FIELD 474(4740) Jung, Film, and the Process of Self-Knowledge (IV) (LA)]
Fall. 4 credits. Limited to 20 students. Offered alternate years; next offered fall 2006. D. Fredericksen.
"Know thyself" is one of the oldest and most enduring imperatives of the human spirit and the raison d'être for liberal studies. This seminar traces in some detail the Jungian approach to this imperative and then tests its critical capacities with respect to films by Fellini's (8 1/2), Bergman (Persona), and Roeg (Walkabout). Readings include Jung's Memories, Dreams, Reflections, Two Essays in Analytical Psychology, and Archetypes and the Collective Unconscious, and Murray Stein's In Midlife.

[FIELD 475(4750) History of Modern Polish Film (IV) (LA)]
Analysis of Polish film from 1945 to the present, within the context of Poland's postwar history. Topics include the period of socialist realism, the so-called "Polish School" (1956-1962), the cinema of moral anxiety, Solidarity cinema, and the Polish documentary tradition. Key directors considered include Ford, Wajda, Munk, Polanski, Skolimowski, Zamussi, Falk, Pivowski, Bugajskis, Kryszek, Kijowski, Zarecki, Kieslowski, and Lozinski. Some attention is given to the development of Polish film theory. The extra-filmic context is set by such works as Norman Davies' Heart of Europe, Czeslaw Milosz' The Captive Mind, and Eva Hoffman's Exit into History.

[FIELD 477(4770) Intermediate Film and Video Projects: Documentary and Experimental Workshop (also VISST 477(4770)) (IV) (LA)]
Fall. 4 credits. Limited to 8 students. Prerequisites: FILM 377 as minimum production; priority given to those who have taken FILM 376, 379, or 386 and permission of instructor based on project proposals. Equipment fee: $150 (paid in class). Film projects costs: $300-1,500; video: $100-400. M. Rivchin.
Intensive course in 16mm filmmaking and digital video in which each student develops a significant documentary or experimental project both critically and creatively. Readings, discussions, and exercises are designed to increase the student's knowledge and practice of: cinematography, lighting, sync-sound filming, and editing techniques, working with labs; digital video camera; and nonlinear (Final Cut Pro and AVID) digital editing.

[FIELD 478(4780) Intermediate Film and Video Projects: Narrative Workshop (also VISST 478(4778)) (IV) (LA)]
Fall. 4 credits. Limited to 8 students. Prerequisites: FILM 377 as minimum production, priority given to those who have taken FILM 375 or 383; THETR 398 or 413, and permission of instructor based on proposals. Equipment fee: $125 (paid in class). Film projects costs: $500-1,500; video: $100-200. Not offered 2005-2006. M. Rivchin.
Intensive course in 16mm filmmaking and digital video in which each student develops a significant, original narrative script project that he or she then directs, shoots in crews, and edits. Student may opt for narrative documentary or experimental work as well. Readings, discussions, and exercises are designed to increase the student's knowledge and practice of directing, cinematography, lighting, sync-sound filming, and editing techniques; working with labs and sound houses; digital video camera; and digital (Final Cut Pro, AVID, and ProTools) editing.

[FIELD 479(4790) 1939 (also VISST 479(4799)) (IV) (LA)]
Fall. 4 credits. Prerequisite: FILM 274 or course in film analysis. Screening fee: $10 (paid in class). Not offered 2005-2006. A. Villarejo.
1939 is one of the most astonishing and famous years in American cinema: Stagecoach, Gone with the Wind, The Wizard of Oz, Dark Victory, Ninotchka... the list goes on. Television was introduced to the U.S. public at the World's Fair of 1939 in New York. To understand the film industry at its peak, and to understand the context of 1939 political and social terms, this course broadens the horizon to examine the cinema of 1939 worldwide. The seminar covers the works of the most admired innovators from Europe, Asia, and Latin America. Students view narrative films alongside documentaries and experimental films (Bergman meets Porky Pig). They see early television programming and listen to radio broadcasts. Contemporary works of fiction and journalism as well as the visual culture of 1939 supplement readings in film history and theory.
FILM 485(4850) Undergraduate Internship
Fall, spring, or summer. 1-3 credits.
To be eligible to enroll and receive credit for an internship, students must either be majors or concentrators in the department. Students are responsible for arranging their own internships in consultation with the faculty in their area of choice before registration for the semester in which the internship is planned to take place. To receive credit within the course, the internship must be unpaid. Students must follow the rules and procedures stated on the departmental internship form.

FILM 493(4930) Advanced Film and Video Projects (also VISST 493/4978)(IV) (LA)
Spring. 4 credits. Limited to 6-8 students. Prerequisite: minimum FILM 377, priority given to those who have taken 477 or 478. Recommended: FILM 383 and THETR 398. Equipment fee: $150. Project costs: $500-2,000. M. Rivchin.
Intensive training course in which students focus on developing and producing a single, already-proposed (15-30 min.) 16mm film or digital video project over the semester. Students direct and edit their own (or collaborative) projects working in crews for sync-sound dialog narrative films or documentaries and in small groups for technical exercises and assisting in non-sync projects. Readings, discussions, and exercises are designed to increase the student's knowledge and practice of script revision; directing; scene breakdowns, auditions, and casting; cinematography, lighting, sync-sound filming, and editing techniques; working with labs and sound houses; digital video, camera, and Final Cut Pro, AVID, and ProTools editing.

FILM 610(6100) Sexuality and the Politics of Representation (also FGSS 610(6100))
Spring. 4 credits. One weekly screening required. Prerequisite: advanced course in film or critical theory. Intended primarily for seniors and graduate students.
A. Villarejo.
Seminar exploring contexts for critical work on sexuality and film/video. Beginning with the texts of Foucault, Freud, Lacan, Jacqueline Rose, and Jeffrey Weeks, the course examines the uses and abuses of psychoanalytic theory, as well as the regulation of sexuality in the past century. "Sexuality" is not, however, a simple abstraction, and its coherence is put to the test through the dual lenses of Marxism and poststructuralism throughout the second half of the course, with readings from Gramsci, Deleuze and Guattari, Lyotard, and others. Films include Blonde Venus, Trash, The Night Porter, Ali: Fear Eats the Soul, and Written on the Wind.

FILM 722(7220) Independent Study in Film for Graduate Students
Fall or spring. Staff.

Dance
The program offers courses in dance technique, improvisation, composition, performance, analytical analysis of movement, dance technology, music for dance, and the history, theory, and criticism of dance. Technique courses include introductory dance technique, modern dance at three levels, and Western classical dance at three levels. (Other dance forms, such as Indian dance, and javanese dance, are offered periodically. A variety of courses in other dance idioms, taken through the Physical Education program, supplement these offerings.) Technique courses develop strength, flexibility, coordination, and the ability to perceive and reproduce phrases of dance movement with clarity of rhythm, body design, and expression. The more advanced courses require the ability to perform complex phrases in various styles. Students may earn up to 8 academic credits (1 each semester) in technique courses. Students may also satisfy the physical education requirement by taking dance technique courses in the dance program. Students taking technique for academic credit must also register through their own colleges. The schedule for all dance technique courses is available in the main office of the Sheila W. and Richard J. Schwartz Center for the Performing Arts.
The faculty offer rehearsal and performance workshops in which they choreograph and rehearse original dances, performed in public concert. Admission to rehearsal and performance courses is by permission. Students may receive one academic credit per semester (S-U grades only) when performing in student-faculty concerts by registering for DANCE 155.
The music-resources courses DANCE 212 and 323 are being replaced by DANCE 324. Requirements for the dance major have been updated to reflect that students may use either the old courses or the new course to complete the major.
The music-resources courses DANCE 212 and 323 are being replaced by DANCE 324. Requirements for the dance major have been updated to reflect that students may use either the old courses or the new course to complete the major.

Dance Major Requirements
To be admitted to the major, students must have completed two technique courses in modern dance or Western classical at level II or above, and DANCE 210 Beginning Dance Composition. It is recommended that students take DANCE 201 Dance Improvisation, DANCE 324 Music for Choreography, the optional THETR 250 Fundamentals of Theatre Design and Technology, and the optional music course before the junior year. In all courses used for the dance major, a grade of C (not C-) must be achieved. Courses in which this minimum is not achieved must be repeated if the student is to receive credit in the major. The following requirements are expected of the major.

Prerequisites for the Major:

DANCE 210 Beginning Dance Composition 3
Two technique courses in modern dance or Western classical at level II or above 0-2
TOTAL 3-5

Requirements for the Major:

Two semesters of Western classical and modern dance (in addition to the prerequisite) 0-4
One academic or studio course in non-Western form 0-4
DANCE 155 Rehearsal and Performance 1
DANCE 201 Dance Improvisation (offered every spring semester) 1
DANCE 212 Music Resources I. and II 1
DANCE 323 Explorations in Movement and Performance (offered every fall semester) 1

Two courses from the following approved list of five choices selected in consultation with the student's adviser:

- 6-8

One of MUSIC 103 Introduction to World Music: Asia and the Americas, MUSIC 104 Introduction to World Music II: Asia, MUSIC 105 Introduction to Music Theory (or substitute at the appropriate level), MUSIC 107 Hildegard to Handel, MUSIC 108 Mozart to Minimalism,

THETR 250 Fundamentals of Design and Technology;
DANCE 258 Techno Soma Kinesics (offered every spring semester);
DANCE 319 Music, Dance, and Light (offered alternate fall semesters);
[DANCE 413 Film and Performance (offered occasionally)]

DANCE 310-311 Intermediate Dance Composition 6
DANCE 312 The Moving Body (offered every fourth or fifth semester) 3
DANCE 314-315 Western Dance History (offered alternate years) 8
DANCE 418 Seminar in Dance Studies or other 400-level academic dance course (offered alternate years) 4
DANCE 491-492 Senior Project (yearlong course offered every year) 6

Total 39-49

Students will be expected to perform in at least two concerts and to present at least two of their own dances, in addition to the senior project.

Honors
Students who have maintained a GPA of 3.5 in classes for the dance major and an average of 3.0 in all courses may elect to work for honors in dance during their senior year. They must consult with their adviser in the spring of their junior year about the honors program in dance.
DANCE 122(2000) Dance Technique I (also PE 160[1180])
Fall and spring. 0 to 1 credit, may be repeated. Satisfies PF requirement if taken as PE. Attendance at dance concerts required. Fall, J. Chu and J. Self, spring, J. Kovar and J. Self. Entry-level class. Covers the fundamentals of elementary dance training. Movement sequences focusing on rhythm, placement, and vitality. Performance through an anatomically sound dance technique.

DANCE 156(1500) Dance Performance Workshop
Fall and spring. 1 credit. Attendance at dance concerts is required. May be repeated. S-U grades only. Dance faculty. Students learn and perform dances choreographed by Dance Composition students. Course work includes: rehearsing an average of two hours a week with student choreographers, attending dance composition class (fall semester only) for 90 minutes, and possibly performing in departmental dance productions.

Spring. 0 or 1 credit. Limited to 16 students. S-U grades only. Attendance at dance concerts required. J. Self.

THEATRE, FILM, AND DANCE
DANCE 304(3210) Dance Technique III/Classical [also PE 161(1181)]
Fall. 0 to 1 credit, may be repeated. Satisfies PE requirement if taken as PE.
Attendance at dance concerts required. S-U grades only. B. Suher.
Intermediate classical technique. Work is done on strengthening the body through a movement technique emphasizing presence and musicality based on harmonic muscular control.

DANCE 306(3220) Dance Technique III/Modern [also PE 161(1181)]
Fall and spring. 0 to 1 credit; may be repeated. Satisfies PE requirement if taken as PE.
Attendance at dance concerts required. S-U grades only. Fall, J. Morgenroth; spring, J. Chu.
Intermediate modern technique focusing on rhythm, placement, and phrasing for students who are prepared to refine the skills of dancing. Students are challenged by complex phrases and musicality.

DANCE 307(1320) Indian Dance I [also ASIAN 307, PE 163]
Fall. 0, 1, or 3 credits. Satisfies PE requirement if taken as PE. Satisfies @ if taken for 3 credits. 3-credit option not offered 2005-2006. D. Bor.
Designed to give students a working knowledge of Indian classical dance in both movement and theory. The movement section focuses on Odissi classical dance, the indigenous style of Orissa state, starting with basic exercises, to open and strengthen the body and prepare it for the structured form of Odissi. Basic exercises, steps, and a full choreographed piece are taught and performed at the end of the semester. The core material of this class can benefit all forms of dance. For 3-credit students, the theory section focuses on history and development of the main styles of South Asian classical dance, their role in society and distinguishing characteristics. This is done through lectures, videos, and reading assignments.

DANCE 308(4220) Dance Technique IV/Modern [also PE 161(1181), VISST 308]
Fall and spring. 0 to 1 credit; may be repeated. Satisfies PE requirement if taken as PE.
Attendance at dance concerts required. S-U grades only. Fall, J. Chu; spring, B. Suher.
Advanced and pre-professional Modern technique. A continuation of and supplement to DANCE 306.

DANCE 309(4210) Dance Technique IV/Classical [also PE 161(1181)]
Fall. 0 to 1 credit; may be repeated. Satisfies PE requirement if taken as PE.
Attendance at dance concerts required. S-U grades only. B. Suher.
Advanced and pre-professional Western classical. A continuation of and supplement to DANCE 304.

DANCE 316(3240) Writing Dance Criticism
Fall and spring. 1 credit; may be repeated Co-requisite: DANCE 303, 304, 306, 308, or 309. Attendance at two or three concerts required. Dance faculty.
Dance criticism for incorporation with technique. Topics rotate depending on instructor, class focus, and relevance to guest dance companies. Attendance at two or three concerts required (same as for dance technique), additional readings and/or viewing of recorded performances as assigned by instructor, and three five- to seven-page analytic papers.

DANCE 317(2320) Indian Dance II [also ASIAN 308, PE 161(1181)]
Fall. 0, 1, or 3 credits. Prerequisite: DANCE 307 or ASIAN 307 or PE 163 or training in Odissi classical dance. Satisfies PE requirement if taken as PE.
Attendance at dance concerts required. Staff.
Continuation of DANCE 307/ASIAN 307. Emphasis is on choreography as well as continuing to refine and perfect the basic movements learned in the preliminary course. Guru Pradhan explores the uses of rasa and emotions in dramatic dance based on the teaching of the ancient text the "Natyasatya.
Meets twice weekly for movement classes. Students may receive 3 credits for attending an additional Friday lecture and completing additional academic requirements.

[DANCE 355(3250) Repertory]
Spring. 0 or 1 credit. Prerequisite: permission of instructor. Attendance at dance performances required. Not offered 2005-2006. J. Chu.
"Reconstructs a dance by an important modern dance choreographer. Through a close examination of the composition process, and with readings, the course studies the historical and aesthetic role of this work and its continued influence today."

[DANCE 407(4399) Early Dance [also MUSIC 407(4511)]
Fall. 1 credit. Not offered 2005-2006. R. Harris-Warrick.
For description, see MUSIC 407.

Dance Composition
DANCE 210(2500) Beginning Dance Composition [also VISST 211(2711)] (IV) (LA)
Fall and spring. 3 credits. Attendance at dance concerts required. Fall, J. Chu and H. Suber; spring, J. Morgenroth and J. Self.
Weekly assignments in basic elements of choreography. Students compose and present short studies that are discussed and reworked. Problems are defined and explored through class improvisations. Informal showing at end of semester.

DANCE 316(3500) Intermediate Dance Composition I (IV) (LA)
Fall and spring. 3 credits. Prerequisite: DANCE 210. Fall, J. Chu and B. Suher; spring, J. Morgenroth and J. Self.
Intermediate choreographic projects are critiqued in progress by faculty and peers. Consideration of design problems in costuming and lighting.

DANCE 311(3510) Intermediate Dance Composition II (IV) (LA)
Fall and spring. 3 credits. Prerequisite: DANCE 310. Co- or prerequisite: DANCE 323 or 324. Attendance at dance concerts required. Fall, J. Chu and B. Suher; spring, J. Morgenroth and J. Self.
Continuation of DANCE 310.

DANCE 323(3520) Music Resources II
Spring. 2 credits. Prerequisite: DANCE 212. Attendance at dance concerts and music concerts required. DANCE 212 and 323 together count as a course for purposes of graduation and for satisfying humanities of literature and arts distribution requirement. DANCE 323 not offered after spring 2006. A. Fogelsanger.

DANCE 324(3530) Music and Choreography [also MUSIC 408(4512)] (IV) (LA)
Spring. 3 credits. Attendance at dance concerts and music concerts required. A. Fogelsanger.

DANCE 411(4510) Advanced Dance Composition I (IV) (LA)
Fall and spring. 3 credits. Prerequisite: DANCE 311. Attendance at dance concerts required. Fall, J. Chu and B. Suher; spring, J. Morgenroth and J. Self.
Students work on advanced choreographic problems, to be presented in performance. Work in progress is critiqued by faculty members on a regular basis.

DANCE 411(4510) Advanced Dance Composition II (IV) (LA)
Fall and spring. 3 credits. Prerequisite: DANCE 410. Attendance at dance concerts required. Fall, J. Chu and B. Suher; spring, J. Morgenroth and J. Self.
Continuation of DANCE 410.
DANCE 491(4010) Senior Project in Dance
Fall and spring. 6 credits over two semesters. Prerequisite: DANCE 311; senior dance majors.
First of a two-semester sequence (the second is DANCE 492) for senior dance majors. Students create a project in choreography and performance, dance, film or video, dance pedagogy, or other appropriate area agreed on by their senior project advisor and committee. In addition, there is a 15-page paper that expands their work into a historical, theoretical, or aesthetic context. For guidelines see the director of undergraduate studies in dance.

DANCE 492(4020) Senior Project in Dance II
Fall or spring. 6 credits over 2 semesters. Prerequisite: DANCE 491. Second of a two-semester sequence (the first is DANCE 491) for senior dance majors.

History, Criticism, and Theory
[DANCE 204(2090) Sophomore Seminar: Semiotics in Dance Studies (also DANCE 418(4080), VISST 419(4719)] (IV) (CA)
Topic for Fall 2004: Movement in Time and Space. According to modern science, we live in a space-time continuum. The visual arts, including dance, painting, sculpture, film, and theater, create their own spacetimes in which they perform and present their work. While the arts and sciences are often thought of as existing in separate worlds, practitioners of each realm are exploring similar questions within their own modes of inquiry. Thinking about dance performance is pivotal in this course, through looking at the ways artists in the 20th century have warped traditional notions of time and space. We also consider how scientific theories have affected the arts. Viewing of dances and theater pieces by Merce Cunningham, Anna Halprin, Trisha Brown, Elizabeth Streb, Robert Wilson, Eiko, and Koma. Writing assignments are included. A final project asks students to reexamine and renew their assumptions about time and space.

DANCE 312(3120) The Moving Body: Form and Function (UIPBS supplementary list)
Fall. 3 credits. J. Moglenorth.
Examines the role the body plays in human movement with particular attention to dance movement. Readings in texts on human anatomy, physiology, and kinesiology. Emphasizes the relationships between bodily form and function. Includes guest lectures by experts in anatomy and health areas. Practical analyses of human movement. Demonstration of dissection.

DANCE 314(3140) Western Dance History I: Classical Ballet History as a Reflection of Western Ideology # (IV) (LA)
Fall. 4 credits. Attendance at dance concerts required. B. Suher.
Critical survey of the history of classical ballet defining elements of classicism and determining why ballet is defined as classical. Through texts, videotapes, and live performance, the course explores how ballet has perpetuated or confronted social issues of race, class, gender, sexuality, the body, and abuse.

DANCE 315(3150) Western Dance History II: History of Modern Dance (IV) (LA)
Spring. 4 credits. Attendance at dance concerts required. B. Suher.
Studies the course of modern dance in the 20th-century United States. Examines each generation of dancers, starting with Isadora Duncan and ending with performers emerging today. Issues of nature, cultural identity, elitism, and democracy are discussed.

DANCE 418(4080) Seminar in Dance Studies (also DANCE 204, VISST 419(4719)) (IV) (CA)
Fall and spring. 4 credits. Limited to 15 students. Not offered 2005-2006.

DANCE 490(4000) Senior Paper in Dance
Fall and spring. 4 credits. Prerequisite: DANCE 418, senior standing. Attendance at dance concerts is required.
Under faculty direction, the student writes a senior paper in dance history, criticism, or theory.

Interdisciplinary Courses
DANCE 258(3550) Techno Soma Kinesics: Repositioning the Performing Body in Space through the Lenses of Digital Media (also VISST 258[2758]) (IV) (LA)
Fall or spring. 1-4 credits. Independent study in the dance allows students the opportunity to pursue special interests not treated in regularly scheduled courses. A faculty member, who becomes the student's instructor for the course, must approve the student’s program of study and agree to provide continuing supervision of the work. Students must prepare a proposal for independent study, which is available in 225 Schwartz.

[DANCE 319(3590) Music, Dance, and Performance Studies (also THETR 319(3190], VISST 319(3519)] (IV) (LA)
Fall. 3 credits. Attendance at dance concerts and music concerts required. Not offered 2005-2006. E. Intemann and A. Fogelsanger.
Artistic values, parameters, and concerns of music (sound design), dance, and lighting design are compared and contrasted, and the combination of design elements is analyzed in contemporary dance. Includes writing in response to readings, audio and video recordings, and performances. Some classes are devoted to creating sound, movement, and lighting.

DANCE 358(4550) Techno Soma Kinesics II: Re-Positining the Performing Body in Space through the Lenses of Digital Media (also VISST 358[3758]) (IV) (LA)
Spring. 4 credits. B. Suher.
Continuation of DANCE 258. DANCE 358 expands on the topics of DANCE 258 by exploring an additional media lens. Focus on how media are manipulated as performance elements.

DANCE 391(3970) Media Arts Studio I (also ART/MUSIC/FILM 391, ARCH 458[559]) (IV) (LA)
Fall or spring. 3 credits. Prerequisite: permission of instructor and junior standing, minimum FILM 377 or 277, or DANCE 258. Equipment fee: $50 (paid in class). Participating faculty include M. Rivchin, film; M. Lyons, art; D. Borden, music; B. Suher, dance.
A collaborative interdisciplinary studio course in a variety of digital and electronic media, including art, architecture, music, dance, film, and video. Group projects and discussions also investigate the artistic and interactive potential of using arts spaces on campus, including virtual and performative events.

Independent Study, Internships, and Honors
DANCE 300(3000) Independent Study
Summer, fall, or spring. 1-4 credits. Students are allowed to pursue special interests not treated in regularly scheduled courses. A faculty member, who becomes the student's instructor for the course, must approve the student’s program of study and agree to provide continuing supervision of the work. Students must prepare a proposal for independent study, which is available in 225 Schwartz.

DANCE 485(4850) Undergraduate Internship
Fall, spring, or summer. 1-4 credits. To be eligible to enroll and receive credit for an internship, students must be majors in the department. Students are responsible for arranging their own internships in consultation with the faculty in their area of choice before preregistration for the semester in which the internship is planned to take place. To receive credit within this course, the internship must be unpaid. Students must follow the rules and procedures stated in the departmental internship form.

DANCE 495(4050) Honors Research Tutorial
Fall or spring. 4 credits. Prerequisite: honors students in dance.
First of a two-semester sequence (the second is DANCE 496) for seniors engaged in an honors project.

DANCE 406(4060) Honors Research Tutorial
Fall or spring. 4 credits. Prerequisite: honors students in dance.
Second of a two-semester sequence (the first is DANCE 495) for students engaged in an honors project.

Tracks toward admission into the advanced undergraduate theatre program

Design, Technology, and Stage Management
Recommended for individuals interested in a Design, Technology, or Stage Management track:
THETR 250 Fundamentals of Theatre Design and Technology
THETR 351 and 251 Production Lab I and II (at least 1 credit of each)
Recommended for Scenic Design emphasis:
THETR 340 Theatrical Drafting and Technical Drawing Studio
THETR 351 Production Lab III (as design assistant)
THETR 354 Stagecraft Studio
THETR 364 Scene Design Studio
Upon admission to the program:
THETR 451 Production Lab IV (at least 1 credit)

Recommended for costume design or costume shop management emphasis:
THETR 351 Production Lab III (as design assistant)
THETR 356 Costume Construction Studio
THETR 366 Costume Design Studio I
THETR 371 Costume Design Studio II

Upon admission to the program:
THETR 451 Production Lab IV (at least 1 credit)

Recommended for Lighting Design or costume shop management emphasis:
THETR 252 Technical Production Studio I
THETR 351 Production Lab III (as student electrician)
THETR 351 Production Lab III (as design assistant)
THETR 362 Lighting Design Studio I

Upon admission to the program:
THETR 451 Production Lab IV (at least 1 credit)

Recommended for Sound Design emphasis:
THETR 252 Technical Production Studio I
THETR 351 Production Lab III (as design assistant)
THETR 368 Sound Design Studio

Upon admission to the program:
THETR 451 Production Lab IV (at least 1 credit)

Recommended for Technical Direction emphasis:
THETR 252 Technical Production Studio I
THETR 256 Technical Production Studio II
THETR 340 Theatrical Drafting and Technical Drawing Studio
THETR 351 Production Lab III (as assistant technical director)
THETR 354 Stagecraft Studio

Upon admission to the program:
THETR 451 Production Lab IV (at least 1 credit)
Recommended for Stage Management emphasis:
THETR 253 or 353 Stage Management Lab II or III—two assignments
THETR 280 Introduction to Acting
THETR 370 Stage Management Studio
THETR 398 Fundamentals of Directing I

Upon admission to the program:
THETR 453 Stage Management Lab IV

Directing
Recommended for individuals interested in a directing track:
THETR 151 and THETR 251 Production Lab I and II (at least 2 combined credits)
THETR 240/241 Introduction to Western Theatre (one semester only)
THETR 250 Fundamentals of Design and Technology
THETR 280 Introduction to Acting
THETR 398 Directing I
THETR 498 Directing II

Playwriting
Recommended for individuals interested in a playwriting track:
THETR 240/241 Introduction to Western Theatre (one semester only)
THETR 250 Fundamentals of Design and Technology
THETR 280 Introduction to Acting
THETR 348 Playwriting
THETR 349 Advanced Playwriting Students in the advanced undergraduate theatre program may also elect to take FILM 485 (Undergraduate Internship) in addition to or in place of one production assignment.

TURKISH
See “Near Eastern Studies.”

UKRAINIAN
See “Department of Russian.”

URDU
See “Department of Asian Studies.”

VIETNAMESE
See “Department of Asian Studies.”

VISUAL STUDIES UNDERGRADUATE CONCENTRATION

Visual studies is a concentration that provides students with an interdisciplinary approach to visual art, media (including digital works), performance, and perception. Faculty from departments throughout the college offer courses toward the concentration, drawing on such various disciplines as the history of art, film, literary studies, psychology, theatre, and others. Requirements for the concentration include the core course VISST 200 Introduction to Visual Studies, which introduces students to critical thinking about visual studies as well as close textual analysis in social and historical contexts. Responsibility for teaching the core course rotates among faculty affiliated with the concentration, and the course, as much as possible, entails interdepartmental collaboration in the form of team-teaching or visiting lectures. In addition to the core course, students must take one course within the Theory/Practice group plus three additional courses at the 300 level or above. No more than two courses from the concentration may be double-counted toward a student’s major. All courses must be taken for a letter grade.

Students interested in pursuing the concentration should first discuss it with their current advisers, and then either download the form from the visual studies web site (www.arts.cornell.edu/visualstudies/requirements.htm) or contact the visual studies undergraduate coordinator, Chris Capalongo. After completing the form, students should attach a copy of their transcript and submit it to Chris Capalongo, 409 White Hall. Students who have not been in contact with a visual studies adviser will have one selected for them from among the concentration’s affiliated faculty.

Interdisciplinary Graduate Concentration

In the spring of 2004, Cornell began plans for an interdisciplinary graduate concentration in visual studies that will take several years to institutionalize. The concentration in visual studies is not meant to substitute for disciplinary training, which will not be waived by the addition of interdisciplinary courses. The “Course List in Visual Studies for 2005–2006” alerts incoming students to courses that may be relevant to their interests, and aids them in discovering the network of professors working in visual studies, spanning multiple departments and schools at Cornell.

Director
Susan Buck-Mors

Visual Studies Concentration Course List

VISST 101(1101). Visual Literacy and Interior Design (also DEA 101)
Fall. 3 credits. J. Elliott.
For description, see DEA 101.

VISST 104(1704). Introduction to World Music: Asia (also MUSIC 104[1302], ASIAN 192)
For description, see MUSIC 104.

VISST 200(2000). Introduction to Visual Studies (IV) (LA)
Spring. 4 credits. Requirement for undergraduate concentrators. T. Murray.
Provides a broad introduction of modes of vision and the historical impact of visual images, visual structures, and visual space on culture, communication, and politics. The question of “how we see” is discussed in terms of (1) procedures of sight (from optical machines to the psychology of vision and the philosophy of aesthetics); (2) spaces of vision (from landscapes to maps to cities); (3) objects of vision (from sacred sites to illuminated books to digital art); and (4) performances of...
vision (race, sexualities, ethnicities, cultures). Of importance to the course is the practical and conceptual relation of 20th-century visual technologies (photography, cinema, video, and computing) to their historical corollaries in the arts. The course draws on the visual traditions of both Western and non-Western societies and study texts that have defined the premises and analytic vocabularies of the visual. Through viewings, screenings, collaborative writing, and art projects, students develop the critical skills necessary to appreciate how the approaches that define visual studies complicate traditional models of defining and analyzing art objects. Guest lecturers occasionally address the class. Requirements: two objective midterm exams; occasional listserve postings; two five-page papers.

VISST 201(2701) Cognitivo Studies in Context Laboratory (also COGST/PSYCH 201[2650], COM S 201[2710])
For description, see COGST 201.

VISST 202(2020) Introduction to Feminist Theory (also FGSS 202[2200])
Spring. 3 credits. D. Reese.
For description, see FGSS 202.

VISST 211(2711) Beginning Dance Composition (also DANCE 210[2500])
Fall. 3 credits. Concurrent enrollment in DANCE 212 and a dance technique class at appropriate level. Attendance at dance concerts required. J. Self.
For description, see DANCE 210.

VISST 230(2300) Survey of American Film (also FILM 230[2300], AM ST 230[2760])
Spring. 3 credits. S. Haenni.
For description, see AM ST 230.

VISST 233(2533) Explorations in Movement (also DANCE 233[2410])
Fall. 0 to 1 credit. Limited to 16 students. Attendance at dance concerts required. J. Self.
For description, see DANCE 233.

VISST 244(2744) Gamelan in Indonesian History and Cultures (also MUSIC 245[2134], ASIAN 244[2245])
Fall and spring. 3 credits. Prerequisite: permission of instructor. No previous knowledge of musical notation or performance experience required. M. Hatch.
For description, see MUSIC 245.

VISST 245(2645) Renaissance and Baroque (also ART H 245[2400])
Fall. 4 credits. Each student must enroll in a sec. C. Lazzaro.
For description, see ART H 245.

VISST 252(2652) Late 20th-Century Women Writers and Visual Culture (also ENGL 252[2520])
For description, see ENGL 252.

VISST 274/674(2714/6174) Introduction to Film Analysis: Meaning and Value (also FILM 274/674[2740/6740])
Fall. 4 credits. Limited to 40 students. Graduate students should enroll in FILM 674. D. Fredman.
For description, see FILM 274/674.

VISST 293(2193) Middle Eastern Cinema (also NES 293[2793], FILM 293[2930], JWST 291[2793])
Fall. 4 credits. D. Starr.
For description, see NES 293.

VISST 305(NEED #) Virtual Perception (also PSYCH 305)
Fall. 4 credits. Limited to 20 students. Prerequisite: PSYCH 205 or permission of instructor. J. Cutting.
For description, see PSYCH 305.

VISST 308(3508) Modern Dance (also DANCE 308[3420])
Fall and spring. 0 to 1 credit. By placement only; no pre-enrollment. Attendance at dance concerts required. J. Self.
For description, see DANCE 308.

VISST 309(3609) The Cinema and the American City (also AM ST 309[3090])
For description, see AM ST 309.

VISST 336(3136) French Film (also FILM 336, THETR 341[3410])
For description, see FRILIT 336.

VISST 342(3342) Human Perception: Application to Computer Graphics, Art, and Visual Display (also PSYCH/COGST 342[3420])
Fall. 3 or 4 credits; 4-credit option involves term paper. Prerequisite: PSYCH 101 or permission of instructor. PSYCH 205 strongly recommended. D. Field.
For description, see PSYCH 342.

VISST 345(3645) American Film Melodrama (also FILM 345[3440])
For description, see FILM 345.

VISST 356(3550) Computing Cultures (also S&TS 356[3561])
Spring. 4 credits. P. Sengers.
For description, see S&TS 356.

VISST 375(3175) History and Theory of Commercial Narrative Film (also FILM 375[3750])
For description, see FILM 375.

VISST 376(3176) History and Theory of Documentary and Experimental Film (also FILM 376[3760])
4 credits. Fee for screening expenses: $10 (paid in class). A. Villarejo.
For description, see FILM 376.

VISST 385(3850) Comedia: A Contemporization of Physical Acting Styles and the Comic Approach (also THETR 384[3840])
Spring. 4 credits. B. Milles.
For description, see THETR 384.

VISST 387(3870) Literature and Film of South Asia (also COM L 386[3860], ASIAN 386[3386])
Spring. 4 credits. A. Banerjee.
For description, see COM L 386.

VISST 393(3930) International Film of the 1970s (also AM ST 393[3930], FILM 393[3930])
Spring. 4 credits. S. Haenni.
For description, see FILM 393.

VISST 394(3655) The House and the World: Architecture of Asia (also AM H 395[3855], ASIAN 394[3394])
Spring. 4 credits. K. McGowan.
For description, see ART H 395.

VISST 400(4200) Proseminar (also ART H 400[4100])
Fall. 4 credits. Limited enrollment. Prerequisite: History of Art majors only. I. Dadi.
For description, see ART H 400.

VISST 407(4607) The Museum and the Object (also AM H 407[4107])
4 credits. Prerequisites: History of Art majors only. Not open to freshmen or sophomore without permission of instructor. All classes meet in Johnson Art Museum Study Gallery. Not offered 2005–2006. A. Pan.
For description, see ART H 407.

VISST 412(4120) Science, Technology and Culture (also COM L 410[4100], S&TS 412[4101])
Fall. 4 credits. A. Banerjee.
For description, see COM L 410.

VISST 421(4621) The Multicultural Alhambra (also NES 451, SPANL 411, ART H 411[4311])
For description, see ART H 411.

VISST 425(4250) Rastafari, Race and Resistance (also S HUM 425)
Spring. 4 credits. P. Archer-Straw.
For description, see S HUM 425.

VISST 426(4260) Adaptation: Text/Theatrically (also THETR 426[4260])
Spring. 4 credits. B. Milles.
For description, see THETR 426.

VISST 430(4300) Americans at Play (also AM ST 430)
For description, see AM ST 430.

VISST 446(4546) Shakespeare in (Con)Text (also THETR 446[4460])
Fall. 4 credits. B. Levitt.
For description, see THETR 446.
VISST 475(475) Seminar in Cinema: Cognitive Film Theory [also FILM 475(4750), AM ST 475(4750)]
Fall. 4 credits. Limited to 20 students. D. Frederickson.
For description, see FILM 475.

VISST 477(4770) Intermediate Film and Video Projects: Documentary and Experimental Workshop [also FILM 477(4770)]
Fall. 4 credits. M. Rivchin.
For description, see FILM 477.

VISIT 478(4778) Intermediate Film and Video Projects, Narrative Workshop [also FILM 492(4930)]
Spring. 4 credits. Limited to 8 students.
Prerequisites: FILM 377 or 277. As minimum production; and THETR 383 or 396. For description, see COM L 634.

VISST 480(4800) Gender and Visual Culture in Women's Literature [also ENGL/FGSS 480(4870)]
Fall. 4 credits. S. Samuels.
For description, see ENGL 497.

VISST 480(4800) Gender and Visual Culture in Women's Literature [also ENGL/FGSS 480(4870)]

VISST 480(4800) Gender and Visual Culture in Women's Literature [also ENGL/FGSS 480(4870)]

VISST 490(4950) Art and Collecting: East and West [also ART H 490(4950)]

VISST 493(4933) Advanced Film and Video Projects [also FILM 493(4930)]
Spring. 4 credits. Limited to 5-8 students.
Prerequisite: minimum FILM 377 or 277. As minimum production; and THETR 383 or 396. For description, see FILM 475.

VISST 493(4933) Advanced Film and Video Projects [also FILM 493(4930)]
Spring. 4 credits. Limited to 5-8 students.
Prerequisite: minimum FILM 377 or 277. As minimum production; and THETR 383 or 396. For description, see FILM 475.

VISST 506(5060) Contemporary African Diaspora Art [also AS&RC 506(5060)]
Fall. 4 credits. Not offered 2005-2006.

VISST 506(5060) Contemporary African Diaspora Art [also AS&RC 506(5060)]

VISST 580(5830) Dancing the Stone: Body, Memory, and Architecture [also ASIAN/THR 580]

VISST 619(6619) Translation in Theory [also ASIAN 619(6619), COM L 619(66160)]
Spring. 4 credits. B. deBary.
For description, see AS&RC 506.

VISST 634(6340) Delouze and Lycard: Aesthetic Excess and Artistic Practice [also ENGL 629(6290), COM L 634(6340), FRLIT 672]
Spring. 4 credits. T. Murray.
For description, see COM L 634.

VISST 650(6500) Contemporary Aesthetic Theory and Its Discontents [also ART H 651(6501), GERST 651(6510)]
Spring. 4 credits. P. Gilgen.
For description, see GERST 651.
Craib, Raymond, Ph.D., Yale U. Asst. Prof., History
Crane, Brian R., Ph.D., Scripps Research Inst. Asst. Prof., Chemistry and Chemical Biology
cross, Warren Dennis, B.A., SUNY Stony Brook. Lec. Theatre, Film, and Dance
cski, Gad, Ph.D., Massachusetts Inst. of Technology. Asst. Prof., Physics/LEPP

Culler, Jonathan D., D. of Phil., Oxford U. (England). Class of 1916 Professor, English/Comparative Literature
Cutting, James E., Ph.D., Yale U. Prof., Psychology
Dadi, Ifikhar, Ph.D., Cornell U. Asst. Prof., History of Art
Dannhauser, Werner J., Ph.D., U. of Chicago. Prof., Emeritus, Government
Darlington, Richard B., Ph.D., U. of Minnesota. Prof., Psychology
Davis, H. Floyd, Ph.D., U. of California. Berkeley. Prof., Chemistry and Chemical Biology
Davis, Stuart Arrasmith, M.Phil., Yale. U. Sr. Lec., English
Davis, Tom E., Ph.D., Johns Hopkins U. Prof., Emeritus, Economics
Dear, Peter, Ph.D., Princeton U. Prof., History/Science and Technology Studies
deGaetano, Arthur T., Ph.D., Rutgers U. Prof., Mathematics
Debroy, William G., Ph.D., Caltech. Prof., Mathematics
Deinert, Herbert, Ph.D., Yale U. Prof., Emeritus, German Studies
deLoughreaf, Elizabeth, Ph.D., U. of Maryland. Asst. Prof., English
Dennis, R. Keith, Ph.D., Rice U. Prof., Mathematics
Deri, Louis A., Ph.D., Harvard U. Assoc. Prof., Earth and Atmospheric Sciences
Devoogd, Timothy J., Ph.D., U. of Illinois. Prof., Asian Studies/Comparative Literature
Deinert, Herbert, Ph.D., Yale U. Prof., Emeritus, German Studies
D'Elia, John, Ph.D., U. of Massachusetts. Amherst. Prof., Linguistics
Dillhoff, Fairleigh, B.A., Ewha Women's U. (Korea). Sr. Lec., Asian Studies
DiSalvo, Francis J., Jr., Ph.D., Stanford U. John A. Newcomer Professor of Physical Science, Chemistry and Chemical Biology
Divo-Hoare, Stephanie Alison, Ph.D., Cornell U. Sr. Lec., Asian Studies
Donaldson, Laura, Ph.D., Emory U. Assoc. Prof., English
Donatelli, Stephen A., Ph.D., Brown U. Sr. Lec., Comparative Literature/Knight Institute for Writing in the Disciplines
Dorton, Arch T., Ph.D., Harvard U. Prof., English
Dorton, Esther G., Ph.D., New York U. Prof., Emeritus, History of Art
Dzodzor, Norman, M.A., Cornell U. Sr. Lec., Romance Studies
Dugan, Gerald F., Ph.D., Columbia U. Prof., Physics/LEPP
Dunning, David, Ph.D., Stanford U. Prof., Psychology
Durrett, Richard T., Ph.D., Stanford U. Prof., Mathematics
Dynkin, Eugene B., Dr. of Sci., Moscow U. (Russia) Abram R. Bullis Professor of Mathematics
Eckel, Steven, Ph.D., U. of Oklahoma. Prof., Chemistry and Chemical Biology
Earle, Clifford J., Ph.D., Harvard U. Emeritus, Mathematics

Easley, David, Ph.D., Northwestern U. Henry Scarbrough Prof. of Social Sciences, Economics
Eberhard, Carolyn, Ph.D., Boston U. Sr. Lec., Plant Biology
Eddy, Donald D., Ph.D., U. of Chicago. Prof., Emeritus, Economics
Edelman, Shimon, Ph.D., Weizmann Inst. of Science (Israel). Prof., Psychology
Edmonson, Locksley G., Ph.D., Queens U. (Canada). Prof., Africana Studies and Research Center
Ehrenberg, Ronald, Ph.D., Northwestern U. Prof., Industrial and Labor Relations/Economics
Ekland, Matti, Ph.D., Massachusetts Inst. of Technology. Asst. Prof., Philosophy
Elber, Ron, Ph.D., Hebrew U. Professor, Computer Science
Elia, Robert, Ph.D., U. of Pennsylvania. Goldwin Smith Professor of English Language and American Studies
Escobar, Jose A., Ph.D., U. of California. Berkeley. Prof., Philosophy
Esman, Milton J., Ph.D., Princeton U. John S. Knight Professor of International Studies, Emeritus, Government
Evangelista, Matthew, Ph.D., Cornell U. Prof., Government
Ezra, Gregory S., Ph.D., Oxford U. (England). Prof., Chemistry and Chemical Biology
Fajans, Jane, Ph.D., Stanford U. Assoc. Prof., Anthropology
Fang, Wen, Ph.D., U. of Illinois. Prof., Aerospace Engineering
Fan, K-Y Daisy, Ph.D., Cornell U. Asst. Prof., Computer Science
Farrell, Roger H., Ph.D., U. of Illinois. Prof., Emeritus, Mathematics
Fay, Robert C., Ph.D., U. of Illinois. Prof., Chemistry and Chemical Biology
Falk, Oren, Ph.D., Cornell U. Asst. Prof., Philosophy
Falkson, Louis, M.A., Harvard U. Sr. Lec., Economics
Field, David J., Ph.D., U. of Pennsylvania. Assoc. Prof., Psychology
Fine, Gail J., Ph.D., Harvard U. Prof., Philosophy/Classics
Finlay, Barbara L., Ph.D., Massachusetts Inst. of Technology. William R. Kenan, Jr. Professor of Psychology/Neurobiology and Behavior
Fleischer, Magnus, Ph.D., U. of Chicago. Asst. Prof., Anthropology
Fitch, Douglas B., Ph.D., U. of Illinois. Prof., Physics/LASSP
Flanagan, Eanna E., Ph.D., California Inst. of Technology. Assoc. Prof., Physics/Astronomy
Flaminsingh, Allen L., Ph.D., Cornell U. Sr. Lec., Theatre, Film and Dance
Fontaine, Michael, Ph.D., Brown U. Asst. Prof., Classics
Fournier, Joanne, Ph.D., Cornell U. Assoc. Prof., Philosophy/Feminist, Gender, and Sexuality Studies
Francis, Paul, Ph.D., U. Coll. London. Assoc. Prof., Computer Science

Franck, Carl P., Ph.D., Princeton U. Assoc. Prof., Physics/LASSP
Frank, Jason, Ph.D., Johns Hopkins U. Asst. Prof., Government
Frederickson, Donald L., Ph.D., U. of Iowa. Assoc. Prof., Theatre, Film, and Dance
Fried, Jack H., Ph.D., Columbia U. Prof., Chemistry and Chemical Biology
Fried, Debra, Ph.D., Yale U. Assoc. Prof., English
Fullbright, Robert, Ph.D., U. of Michigan. Sr. Lec., Physics
Fulton, Alice, MFA, Cornell U. Prof., English
Furman, Nelly, Ph.D., Columbia U. Prof., Emerita, Romance Studies
Gainor, Ellen J., Ph.D., Princeton U. Prof., Theatre, Film, and Dance
Gair, James W., Ph.D., Cornell U. Prof., Emeritus, Linguistics
Gall, Richard S., Ph.D., Cornell U. Prof., Physics/LEPP
Gallloway, Andrew, Ph.D., U. of California. Berkeley. Assoc. Prof., English
Ganan, Bruce, Ph.D., Columbia U. Franc and Elisabeth Roessler Professor of Chemistry and Chemical Biology
Garcés, María Antonia, Ph.D., Johns Hopkins U. Assoc. Prof., Romance Studies
Garía, María Cristina, Ph.D., U. of Texas, Austin. Assoc. Prof., History/Latino Studies
Gehlke, Johannes, Ph.D., U. of Wisconsin, Madison. Assoc. Prof., Computer Science
Gendler, Tamar, Ph.D., Harvard U. Prof., Philosophy/Cognitive Studies
Giammarotta, Alan G., M.S., Cornell U. Sr. Lec., Physics
Gibbons, Lawrence K., Ph.D., U. of Chicago. Assoc. Prof., Physics/LEPP
Gibson, Eleanor J., Ph.D., Yale U. Susan Linn Sage Professor of Psychology Emeritus, Psychology
Gierasch, Peter J., Ph.D., Harvard U. Prof., Astronomy/CRSR
Gilbert, Roger S., Ph.D., Yale U. Assoc. Prof., English
Gilgen, Peter, Ph.D., Stanford U. Asst. Prof., German Studies
Gilliland, Richard, M.A., U. of Maryland. Asst. Prof., English
Giovanelli, Riccardo, M.S., Cornell U. Sr. Lec., Physics
Girard, Brian, Ph.D., Cornell U. Prof., Emeritus, Philosophy
Ginsberg, Paul, Ph.D., Cornell U. Prof., Physics/CIS
Giovanelli, Riccardo, Ph.D., Indiana U. Prof., Astronomy/NAICS
Gittelman, Bernard, Ph.D., Massachusetts Inst. of Technology. Prof., Emeritus, Physics/LEPP
Gleich, Frederic, Ph.D., Stanford U. Sr. Lec., Anthropology
Gomez, Ignatz, M.F.A., U. of Wisconsin, Madison. Asst. Prof., Theatre, Film and Dance
Gold, Daniel, Ph.D., U. of Chicago Divinity School. Prof., Asian Studies
Goldsmith, Paul, Ph.D., U. of California, Berkeley. James A. Michener Professor of Physical Sciences, Astronomy/NAICS
Goldstein, Michael, Ph.D., Indiana U. Asst. Prof., Psychology
Gottfried, Kurt, Ph.D., Massachusetts Inst. of Technology. Prof., Emeritus, Physics/LEPP
Gottschalk, Katherine Kiblinger, Ph.D., U. of Chicago. Sr. Lec., English and Knight Institute for Writing in the Disciplines
Martin, Shirley, Ph.D., U. of Michigan. Asst. Prof., Government/Feminist, Gender and Sexuality Studies
Maschke, Ute, Ph.D., Brown U. Sr. Lec., German Studies
Masson, Robert T., Ph.D., U. of California, Berkeley. Prof., Economics
Matthews, Jeanna N., Ph.D., U. of California, Berkeley. Asst. Prof., Computer Science
Maxwell, Barry Hamilton, Ph.D., Stanford U. Sr. Lec., Comparative Literature
McCall, Dan E., Ph.D., Columbia U. Prof., English
McCarrick, Thomas Arthur, M.S., Brock U. Sr. Lec., Chemistry
McClelland, Peter D., Ph.D., Harvard U. Prof. Emeritus, Economics
McConkey, James R., Ph.D., State U. of Iowa. Prof. Emeritus, English
McConnell-Ginet, Sally, Ph.D., U. of Rochester. Prof., Linguistics
McCoy, William John Jr., Ph.D., Cornell U. Prof. Emeritus, Modern Languages and Literatures
Mc Coy, Maureen, M.F.A., U. of Iowa. Prof., English
McCullough, M. Kate, Ph.D., U. of California, Berkeley. Assoc. Prof., English/Feminist, Gender, and Sexuality Studies
McCuen, Paul L., Ph.D., Yale U. Prof., Physics, Physics/LASSP
McGinnis, Robert, Ph.D., Northwestern U. Prof. Emeritus, Sociology
McGowan, Kaja, Ph.D., Cornell U. Assoc. Prof., History of Art
McLafler, Fred W., Ph.D., Cornell U. Peter J. W. Debeye Emeritus Professor of Chemistry and Chemical Biology
McMillan, Scott H., Stanford U. Prof., English
McMurry, John E., Ph.D., Columbia U. Prof., Chemistry and Chemical Biology
McNulty, Tracy, Ph.D., U. of California, Irvine. Prof., Romance Studies
McQuade, D. Tyler, Ph.D., U. of Wisconsin. Asst. Prof., Chemistry and Chemical Biology
Mebane, Walter, Ph.D., Yale U. Assoc. Prof., Government
Mehta, Yufen Lee, M.A., National Taiwan Normal U. M.A., Brigham Young U. Sr. Lec., Asian Studies
Mei, Tsu-Lin, Ph.D., Yale U. Hu Shih Prof. Emeritus of Chinese Literature and Philosophy, Asian Studies
Meinwald, Jerrold, Ph.D., Harvard U. Goldwin Smith Professor of Chemistry and Chemical Biology
Merkur, Laura L., Ph.D., Ohio State U. Assoc. Prof., History of Art
Mes, Natalie A., Ph.D., U. of California, Berkeley. Assoc. Prof., Comparative Literature
Mikol, Roman Oleg, Ph.D., Yale U. Asst. Prof., Economics
Mermin, Dorothy M., Ph.D., Harvard U. Goldwin Smith Professor Emerita of English
Mermin, David, Ph.D., Harvard U. Horace Walpole Professor of Physics, Physics/LASSP
Merrill, Paul, M.M., Ithaca Coll. Lec., Music
Migiel, Marilyn, Ph.D., Yale U. Prof., Romance Studies
Miller, James P. M.M., Ithaca Coll. Lec., Music
Miller, Richard W. Ph.D., Harvard U. Prof., Philosophy/Science and Technology Studies
Miller-Ockhuizen, Amanda, Ph.D., Ohio State U. Asst. Prof., Linguistics
Milles, Beth F., M.A., Harvard U. Asst. Prof., Theatre
Minkowski, Christopher, Ph.D., Harvard U. Prof., Asian Studies
Mitra, Tapan, Ph.D., U. of Rochester. Prof., Economics
Miyazaki, Hirokazu, Ph.D., Australian National U. Asst. Prof., Anthropology
Mohler, Devra, Ph.D., Ph.D., U. of Michigan. Asst. Prof., Government
Mohanty, Satya P., Ph.D., U. of Illinois. Prof., English
Molinari, Francesca, Ph.D., Northwestern U. Asst. Prof., Economics
Monosoff-Pascaldo, Sonya, Artists Diploma, Juilliard School of Music. Prof. Emeritus, Music
Monroe, Nathan B., Ph.D., U. of Oregon. Prof., Comparative Literature
Moody-Adams, Michele, Ph.D., Harvard U. W. and William Y. Hutchinson Prof. of Ethics and Public Philosophy
Mukerjee, Sreemati, M.A., Jadaupur U. Asst., Asian Studies
Moore, R. Laurence, Ph.D., Yale U. Howard A. Newman Professor in American Studies, American History
Morató, Luis, B.A., U. San Simone; B.A., National Teachers Coll. Sr. Lec., Romance Studies
Morgan, Stephen L., Ph.D., Harvard U. Assoc. Prof., Sociology
Morgenroth, Joyce M.A., Johns Hopkins U. Assoc. Prof., Theatre, Film and Dance
Morin, Pauline, Ph.D., Georgia Inst. of Technology. Lec., History of Art
Morley, Michael D., Ph.D., U. of Chicago. Prof. Emeritus, Mathematics
Morrison, George H., Ph.D., Princeton U. Emeritus, Chemistry and Chemical Biology
Mueller, Erich, Ph.D., U. of Illinois, Urbana Champaign. Asst. Prof., Physics, Physics/LASSP
Munasinghe, Viranjini R, Ph.D., Johns Hopkins U. Assoc. Prof., Anthropology/Asian American Studies
Murray, Timothy, Ph.D., Johns Hopkins U. Prof., English/Comparative Literature
Muscalu, Camil, Ph.D., Brown U. Asst. Prof., Mathematics
Myers, Andrew, Ph.D., Massachusetts Inst. of Technology. Assoc. Prof., Computer Science
Najemy, John M., Ph.D., Harvard U. Prof., History
Nanj, Abdul, M.A., SUNY New Paltz. Sr. Lec., African Studies Research Center
Nee, Victor, Ph.D., Harvard U. Goldsmith Smith Professor of Sociology
Neisser, Ulric, Ph.D., Harvard U. Prof. Emeritus, Psychology
Nerode, Anil, Ph.D., U. of Chicago. Goldin Smith Professor of Mathematics
Neubert, Matthias, Ph.D., Ruprecht-Karls-U., Heidelberg (Germany). Prof., Physics/LAPP
Ngaté, Jonathan, Ph.D., U. of Washington. Asst. Prof., Romance Studies
Nicholson, Philip, Ph.D., California Inst. of Technology. Prof., Astronomy/CRRS
Nielson, James F., M.A., U. of Aarhus (Denmark). Asst. Prof., Economics
Nordin, Jon, Ph.D., Yale U. Asst. Prof., Chemistry and Chemical Biology
Norton, Mary Beth, Ph.D., Harvard U. Mary Donlon Alger Professor of American History, History
Nussbaum, Alan, Ph.D., Harvard U. Prof., Classics/Linguistics
Nussbaum, Michael, Dr. Sci., Academy of Sciences Berlin (Germany). Prof., Mathematics
O'Connor, Stanley J., Ph.D., Cornell U. Prof. Emeritus, History of Art
O'Donoghue, Ted, Ph.D., U. of California, Berkeley. Assoc. Prof., Economics
Ohadike, Don, Ph.D., U. of Jos (Nigeria). Assoc. Prof., Africana Studies and Research Center
Oliver, Judarind, Ph.D., U. of North Carolina, Chapel Hill. Sr. Lec., Romance Studies
Oliver, Jack E., Ph.D., Columbia U. Prof. Emeritus, Earth and Atmospheric Sciences
Orear, Jay, Ph.D., U. of Chicago. Prof. Emeritus, Physics/LAPP
Orlov, S., Ph.D., Cornell U. Sr. Lec., Knight Institute for Writing in the Disciplines
Owen, David I., Ph.D., Brandeis U. Bernard and Jane Shapiro Professor of Assyriology, Ancient Near Eastern History and Archaeology, Near Eastern Studies
Palmer, Robert M., M.M., Eastman School of Music. Given Foundation Professor Emeritus of Music Composition, Music
Pan, An-yi, Ph.D., U. of Kansas. Assoc. Prof., History of Art
Parker, A. Reeve, Ph.D., Harvard U. Prof., English
Parmenter, Jon, Ph.D., U. of Michigan. Asst. Prof., History
Parpia, Jeevak M., Ph.D., Cornell U. Prof., Physics/LASSP
Parrish, Stephen M., Ph.D., Harvard U. Goldsmith Smith Professor of English Emeritus
Patterson, Lorraine M., Cornell U. Assoc. Prof., History, Asian Studies
Patterson, J. Ritchie, Ph.D., U. of Chicago. Prof., Physics/LAPP
Payne, Lawrence E., Ph.D., Iowa State U. Prof. Emeritus, Mathematics
Paz-Soldán, José E., Ph.D., U. of California, Berkeley. Assoc. Prof., Romance Studies
Peeva, Irena, Ph.D., Brandeis U. Asst. Prof., Mathematics
Pelliccia, Hayden, Ph.D., Yale U. Assoc. Prof., Classics
Peraino, Judith A., Ph.D., U. of California, Berkeley. Assoc. Prof., Music
Perellestein, Maxim, Ph.D., U. of California, Los Angeles. Asst. Prof., Physics/LAPP
Perez del Solar, Pedro, Ph.D., Princeton U. Lec., Romance Studies
Pershing, Andrew J., Ph.D., Cornell U. Asst. Prof., Earth and Atmospheric Sciences
Petersen, Charles A., Ph.D., U. of Washington. Prof., History
Phipps Morgan, Jason, Ph.D., Brown U. Prof., Earth and Atmospheric Sciences
Piedra, Jose, Ph.D., Yale U. Asst. Prof., Romance Studies
Pierpert, Judith M.A., Teachers Coll., Columbia U. Sr. Lec., Knight Institute for Writing in the Disciplines
Pinch, Trevor J., Ph.D., U. of Bath (England). Prof., Science and Technology Studies
Pinet, Simone, Ph.D., Harvard U. Asst. Prof., Romance Studies
Reppy, Judith, Ph.D., Cornell U. Prof., Science and Technology Studies
Resina, Joan Ramon, Ph.D., U. of California, Berkeley. Prof., Romance Studies/Comparative Literature
Rhodes, Frank H. T., Ph.D., U. of Birmingham (England). Prof., Emeritus, Earth and Atmospheric Sciences
Richards, Annette, Ph.D., Stanford U. Assoc. Prof., Music
Richardson, Betty McCarthy, Ph.D., Duke U. Sr. Lec., Philosophy
Richardson, Robert C., Ph.D., Duke U. F.R. Newman Professor of Physics/LASSP*
Rigi, Jakob, Ph.D., U. of London (England). Prof., Anthropology
Riha, Susan J., Ph.D., Washington State U. Prof., Earth and Atmospheric Sciences
Riles, Annelise, Ph.D., Cambridge U. (England). Prof., Anthropology
Rivchin, Marilyn, M.F.A., Cornell U. Sr. Lec., Theatre, Film and Dance
Roberts, Kenneth, Ph.D., Stanford U. Prof., Government
Robinson, Cynthia, Ph.D., U. of Pennsylvania. Asst. Prof., History of Art
Rodriguez-Garcia, Jose, Ph.D., U. of Colorado and Chemistry and Chemical Biology
Roldan, Mary J., Ph.D., Harvard U. Assoc. Prof., History
Rooth, Mass., Ph.D., U. of Massachusetts. Assoc. Prof., Linguistics
Rosen, Bernard C., Ph.D., Cornell U. Prof., Emeritus, Sociology
Rosen, Carol G., Ph.D., Harvard U. Prof., Linguistics
Rosen, David, Ph.D., U. of California, Berkeley. Prof., Music
Rosenberg, Alex, Ph.D., U. of Chicago. Prof., Emeritus, Mathematics
Rosenberg, Edgar, Ph.D., Stanford U. Prof., Emeritus of English/Comparative Literature
Rostow, Margaret, Ph.D., Yale U. Marie Underhill Noller Professor of the History of Science, Science and Technology Studies
Rubenstein, Diane, Ph.D., Yale U. Visiting Assoc. Prof., Government
Rubin, David L., Ph.D., U. of Michigan. Boyce D. McDaniel Professor of Physics, Physics/LEPP
Rugina, Radu, Ph.D., U. of California, Santa Barbara. Asst. Prof., Computer Science
Russell, Bertram, Ph.D., Harvard U. Prof., Government
Russell, Merissa, Ph.D., U. of California, Berkeley. Assoc. Prof., Anthropology
Russo, Steven Albert, Ph.D., Cornell U. Sr. Lec., Chemistry and Chemical Biology
Rusten, Jeffrey S., Ph.D., Harvard U. Prof., Classics
Ryd, Anders, Ph.D., U. of California, Santa Barbara. Asst. Prof., Physics/LEPP
Ryter, Loren, Ph.D., U. of Washington. Asst. Prof., Government
Saccamanno, Neil, Ph.D., Johns Hopkins U. Assoc. Prof., English/Comparative Literature
Sachs, Aaron, Ph.D., Yale U. Asst. Prof., History
Sakai, Naoki, Ph.D., U. of Chicago. Prof., Asian Studies/Comparative Literature
Saloff-Coste, Laurent, Ph.D., U. of Paris VI (France). Prof., Mathematics
Salpeter, Edwin E., Ph.D., Birmingham U. (England). James Gilbert White Distinguished Professor in the Physical Sciences Emeritus, Physics/LEPP/ Astronomy/CSSR
Salvatore, Nicholas, Ph.D., U. of California, Berkeley. Prof., Industrial and Labor Relations/American Studies
Samuels, Shirley, Ph.D., U. of California, Berkeley. Prof., English
Sanchez-Blake, Elvira, Ph.D., Cornell U. SR. Lec., Romance Studies
Sanders, Elizabeth, Ph.D., Cornell U. Prof., Government
Sangren, P. Steven, Ph.D., Stanford U. Prof., Anthropology
Santiago-Irazary, Virma, Ph.D., New York U. Assoc. Prof., Anthropology and Latino Studies
Savella, Maria T. C., M.A., U. of the Philippines-Diliman; M.A., Cornell U. Lec., Asian Studies
Saywer, Paul L., Ph.D., Columbia U. Prof., English
Schaffzin, Sara, M.A., U. of Rochester. Sr. Lec., English for Academic Purposes
Scharf, Nava, M.A., Levinsky Seminary, Tel Aviv (Israel). Sr. Lec., Near Eastern Studies
Schatz, Alfred H., Ph.D., New York U. Prof., Mathematics
Scherraga, Harold A., Ph.D., Duke U. George W. and Grace L. Todd Professor Emeritus of Chemistry and Chemical Biology
Schneider, Fred B., Ph.D., SUNY Stony Brook. Prof., Computer Science
Schoss, Johanna, Ph.D., U. of Chicago. Sr. Lec., Anthropology
Schuler, Richard E., Ph.D., Brown U. Prof., Economics/Engineering
Schwartz, David, Ph.D., SUNY Buffalo. Sr. Lec., Computer Science
Schwarz, Annette, Ph.D., Johns Hopkins U. Assoc. Prof., Romance Studies
Schwarz, Daniel R., Ph.D., Brown U. Prof., English
Segal, Harry, Ph.D., U. of Michigan. Sr. Lec., Psychology
Selby, Katherine, Ph.D., U. of California, Berkeley. Sr. Lec., Physics
Selden, Kyoko Iriye, Ph.D., Yale U. Sr. Lec., Asian Studies
Sel, James T., B.A., Cornell U. Sr. Lec., Theatre, Film and Dance
Selman, Bart, Ph.D., U. of Toronto (Canada). Assoc. Prof., Computer Science
Sen, Shankar, Ph.D., Harvard U. Prof., Mathematics
Sendorovich, Saveli, Ph.D., New York U. Prof., Russian
Sengers, Phoebe, Ph.D., Carnegie-Mellon U. Asst. Prof., Science and Technology Studies/Computing and Information Science
Seth, Suman, Ph.D., Princeton U. Asst. Prof., Science and Technology Studies
Sethli, Neelam, Ph.D., U. of California, San Diego. Lec., Philosophy/Science and Technology Studies
Sethna, James P., Ph.D., Princeton U. Prof., Physics/LASSP*
Sezne, Alain, D.E.S., U. of Paris-Sorbonne (France). Prof., Emeritus, Romance Studies
Sharmaunugsuan, Javalay, Ph.D., U. of Wisconsin, Madison. Asst. Prof., Computer Science
Shapiro, Elliot Hart, Ph.D., U. of Rochester. Lec., Knight Institute for Writing in the Disciplines
Shapiro, Gavriel, Ph.D., U. of Illinois, Urbana-Champaign. Prof., Russian
Shaw, Harry E., Ph.D., U. of California, Berkeley. Prof., English
Shefter, Martin A., Ph.D., Harvard U. Prof., Government
Shell, Karl, Ph.D., Stanford U. Robert Julius Thorne Professor of Economics
Shin, Michael, Ph.D., U. of Chicago. Asst. Prof., Asian Studies
Shirai, Yasuhiro, Ph.D., U. of California, Los Angeles. Assoc. Prof., Asian Studies
Shmeys, David B., Ph.D., U. of California, Berkeley. Prof., Computer Science
Shoemaker, Sydney S., Ph.D., Cornell U. Professor Emeritus, Philosophy
Shoieb, Robert A., Ph.D., Massachusetts Inst. of Technology. Prof., Mathematics
Shue, Henry, Ph.D., Princeton U. Wyn and William Y. Hutchinson Prof. of Ethics and Public Life
Siegel, James T., Ph.D., U. of California, Berkeley. Prof., Anthropology
Siegel, Sandra F., Ph.D., U. of Chicago. Prof., English
Silverman, Albert, Ph.D., U. of California, Berkeley. Prof. Emeritus, Physics/LEPP
Simpson, Audra, Ph.D., McGill U. (Canada). Asst. Prof., Anthropology
Sirit, Emin Gun, Ph.D., U. of Washington. Asst. Prof., Computer Science
Small, Meredith F., Ph.D., U. of California, Davis. Prof., Anthropology
Smilie, John, Ph.D., U. of Chicago. Prof., Mathematics
Smith, Anna Marie, Ph.D., U. of Essex (England). Assoc. Prof., Government
Smith, Robert J., Ph.D., Cornell U. Goldwin Smith Professor of Anthropology Emeritus
Sogah, Doanoi, Ph.D., U. of California, Los Angeles. Prof., Chemistry and Chemical Biology
Sopon, Cristiana, Ph.D., Yale U. Townsend Asst. Prof., Romance Studies
Solok, Thomas A., M.A., George Peabody Coll. Prof Emeritus, Music
Sola, Donald F., Ph.D., Cornell U. Prof., Emeritus, Modern Languages and Literatures
Somkin, Fred, Ph.D., Cornell U. Prof., Emeritus, History
Sparrf, Christine, Mathématiques-Physique I and DEUG. Sr. Lect., Romance Studies
Spire, Irving, Ph.D., Massachusetts Inst. of Technology. Prof., Mathematics
Spillers, Hortense, Ph.D., Brandeis U. Frederick J. Whiton Prof. of English
Spivey, Michael, Ph.D., U. of Rochester. Assoc. Prof., Psychology
SQUIRES, Steven W., Ph.D., Cornell U. Prof., Astronomy/CRSRI
Stacy, Gordon J., Ph.D., Cornell U. Prof., Astronomy/CRSRI
Staller, George J., Ph.D., Cornell U. Prof., Emeritus, Economics
Stein, Peter C., Ph.D., Massachusetts Inst. of Technology. Prof., Physics/LEPP
Steinberg, Michael P., Ph.D., U. of Chicago. Prof., History
Stern, Robert, Ph.D., Vanderbilt U. Prof., Sociology/Industrial and Labor Relations
Stewart-Steinberg, Suzanne, Ph.D., Yale U. Adjunct Asst. Prof., Romance Studies
Stillman, Michael E., Ph.D., Harvard U. Prof., Mathematics
Stith, Marice W., M.A., Ohio State U. Prof., Mathematics
Strang, David, Ph.D., Stanford U. Assoc. Prof., Sociology
Strakos Tio, Amalia, M.S., Syracuse U. Sr. Lect., Romance Languages
Strauss, Barry S., Ph.D., Yale U. Prof., History/Classics
Strichartz, Robert S., Ph.D., Princeton U. Prof., Mathematics
Strout, S. Chasing, Jr., Ph.D., Harvard U. Emeritus, Professor of American Studies and Humane Letters, Emeritus, English
Stucky, Steven, D.M.A., Cornell U. Given Foundation Professor of Music
Sturgeon, Nicholas L., Ph.D., Princeton U. Prof., Philosophy
Sykes, Joseph M., Ph.D., Columbia U. Prof., Rural Sociology/Sociology
Sykes, Maria Nowakowska, Ph.D., Cornell U. Prof., Romance Studies
Suber, Paul Byron, B.A., Cornell U. Sr. Lect., Theatre, Film and Dance
Suh, Jae Jung, Ph.D., U. of Pennsylvania. Asst. Prof., Government
Suter, Margarita A., Ph.D., Indiana U. Prof., Emerita, Linguistics
Swartz, Edward, Ph.D., U. of Maryland, College Park. Prof., Mathematics
Sweedberg, Richard, Ph.D., Boston Coll. Prof., Sociology
SweeLoo, Moss E., Ph.D., Massachusetts Inst. of Technology. Prof., Emeritus, Mathematics
Swezenson, Maria G., Ph.D., Cornell U. Sr. Lect., Romance Studies
Szabo, Zoltan, Ph.D., Massachusetts Inst. of Technology. Assoc. Prof., Philosophy
Taavola, Kristin, Ph.D., Eastman School of Music. Asst. Prof., Music
Tagliacozzo, Eric, Ph.D., Yale U. Asst. Prof., History
Talmay, Richard M., Ph.D., California Inst. of Technology. Prof., Emeritus, Mathematics
Terman, Robert, Ph.D., U. of California, Berkeley. Maxwell M. Upson Professor of Government
Taylor, Keith W., Ph.D., U. of Michigan. Prof., Asian Studies
Teitelbaum, Tim, Ph.D., Carnegie-Mellon U. Assoc. Prof., Computer Science
Teng, Qiuyun, M.A., Cornell U. Sr. Lect., Asian Studies
Terrell, Maria Shea, Ph.D., U. of Virginia. Sr. Lect., Mathematics
Terrell, Robert, Ph.D., U. of Virginia. Sr. Lect., Mathematics
Terzian, Yervant, Ph.D., Indiana U. Prof., Near Eastern Studies
Tolbert, Pamela, Ph.D., U. of California, Los Angeles Assoc. Prof., Sociology/Industrial and Labor Relations
Travers, T. Robert, Ph.D., Gonville and Caius Coll. Asst. Prof., History
Tsimberov, Viktoria, M.S., Lensovet Leningrad Inst. of Chemical Technology (Russia). Sr. Lect., Russian
Tou, Thuy, Ph.D., New York U. Asst. Prof., History of Art/Asian American Studies
Tun, San San Hin, M.A., Rangoon Arts and Sciences U. (Burma).Sr. Lect., Asian Studies
Turcotte, Donald L., Ph.D., California Inst. of Technology. Prof. Emeritus, Earth and Atmospheric Sciences
Tunney, Turner J., Ph.D., Union Graduate School at Antioch Coll. Prof., African Studies and Research Center
Turner, Terrence, Ph.D., Harvard U. Prof., Anthropology
Tyhe, Sze-hoi Henry, Ph.D., Massachusetts Inst. of Technology. Prof., Physics/LSNS
Uphoff, Norman T., Ph.D., U. of California, Berkeley. Prof., Government
Usher, David A., Ph.D., Cambridge U. (England). Assoc. Prof., Chemistry and Chemical Biology
Vallois, Marie-Claire, Ph.D., U. of Nice (France). Assoc. Prof., Romance Studies
Van Clee, Stefanon, Lyrae, M.A., Pennsylvania State U. Prof., English
Van de Walle, Nicolas, Ph.D., Princeton U. Prof., Government
Van Dyke, Alison. Sr. Lect., Theatre, Film and Dance
Vaneck, Jaroslav, Ph.D., Massachusetts Inst. of Technology. Earl Marks Professor of International Studies Emeritus, Economics
Van Loan, Charles F., Ph.D., U. of Michigan. Joseph C. Ford Prof. of Engineering, Computer Science
Vaughn, Stephanie, M.F.A., U. of Iowa. Prof., English
Vavass, Stephen, Ph.D., Stanford U. Prof., Computer Science
Veverka, Joseph F., Ph.D., Harvard U. Prof., Astronomy/CRSRI
Villarejo, Amy, Ph.D., U. of Pittsburgh. Assoc. Prof., Theatre, Film and Dance/Feminist, Gender, and Sexuality Studies
Vranich, Elena M., M.A., U. of California, Irvine. Assoc. Prof., English
Vladimirov, Alexander, Ph.D., U. of California, Berkeley. Asst. Prof., Mathematics
Vogel, Kathleen, Ph.D., Princeton U. Asst. Prof., Science and Technology Studies
Vogelsang, Tim, Ph.D., Princeton U. Prof., Economics
Vogtmann, Karen L., Ph.D., U. of California, Berkeley. Prof., Mathematics
Volman, Thomas P., Ph.D., U. of Chicago. Assoc. Prof., Anthropology
Wagner, Michael, Ph.D., Massachusetts Inst. of Technology. Asst. Prof., Linguistics
Waldbi, Lars B., Ph.D., U. of Göteborg (Sweden). Prof., Mathematics
Waite, Geoffrey C. W., Ph.D., Princeton U. Assoc. Prof., German Studies
Waldron, Colette Denise, M.A. equiv., Faculté De Lettres, Besancon (France). Sr. Lec., Romance Studies
Walogora-Davis, Nicole, Ph.D., Duke U. Asst. Prof., English
Wan, Henry Y., Jr, Ph.D., Massachusetts Inst. of Technology. Prof., Economics
Wang, Michelle D., Ph.D., U. of Michigan. Assoc. Prof., Physics/LASSP*
Warner, Ding Xiang, Ph.D., U. of Washington. Asst. Prof, Asian Studies
Warner, Sara, Ph.D., Rutgers U. Asst. Prof., Comparative Literature
Washington, Margaret, Ph.D., U. of California, Davis. Prof., History
Wasserman, Ira M., Ph.D., Harvard U. Prof., History
Wasserman, Yasuko Nakanishi, B.A., Tamagawa U. (Japan). Sr. Lec., Asian Studies
Way, Christopher, Ph.D., Stanford U. Asst. Prof., Government
Weatherston, Brian, Ph.D., Manash U. (Australia). Asst. Prof., Philosophy
Webster, James, Ph.D., Princeton U. Goldwin Smith Professor of Music
Weeden, Kim, Ph.D., Stanford U. Asst. Prof., Sociology
Weil, Rachel, Ph.D., Princeton U. Assoc. Prof., History
Weiner, Robert, Ph.D., U. of California, Berkeley. Asst. Prof., Government
Weiss, John H., Ph.D., Harvard U. Assoc. Prof., History
Weiss, Michael, Ph.D., Cornell U. Assoc. Prof., Linguistics
West, James E., Ph.D., Louisiana State U. Prof., Mathematics
Wetherbee, Winthrop, Ph.D., U. of California, Berkeley. Avalon Professor of English and Medieval Studies, English/Medieval Studies
Wethington, Elaine, Ph.D., U. of Michigan. Assoc. Prof., Sociology/Human Development
White, William M., Ph.D., U. of Rhode Island. Prof., Earth and Atmospheric Sciences
Whitman, John B., Ph.D., Harvard U. Prof., Linguistics
Whitman, Yasuko Nakanishi, B.A., Tamagawa U. (Japan). Sr. Lec., Asian Studies
Widom, Benjamin, Ph.D., Cornell U. Goldwin Smith Professor of Chemistry and Chemical Biology
Wilcox, Charles F., Jr., Ph.D., U. of California, Los Angeles. Prof. Emeritus, Chemistry and Chemical Biology
Wilks, Daniel S., Ph.D., Oregon State U. Prof., Earth and Atmospheric Sciences
Willford, Andrew C., Ph.D., U. of California, San Diego. Asst. Prof., Anthropology
Williams, L. Pearce, Ph.D., Cornell U. John Stambaugh Professor of the History of Science Emeritus, Science and Technology Studies
Williams, Robin M., Jr, Ph.D., Harvard U. Henry Sciarra Professor of Social Sciences Emeritus, Sociology
Winter, Nicholas, Ph.D., U. of Michigan. Asst. Prof., Government

Wissink, Jennifer Parker, Ph.D., U. of Pennsylvania. Sr. Lec., Economics
Wolczanski, Peter T., Ph.D., California Inst. of Technology. George W. and Grace L. Todd Professor of Chemistry and Chemical Biology
Wolff, John U., Ph.D., Yale U. Prof. Emeritus, Linguistics/Asian Studies
Wong, Shelley, Ph.D., U. of California, Berkeley. Assoc. Prof., English/Asian American Studies
Wyatt, David K., Ph.D., Cornell U. Prof. Emeritus, John Stambaugh Professor of History
Wysocki, Mark W., M.S., Cornell U. Sr. Lec., Earth and Atmospheric Sciences
Yan, Tung-Mow, Ph.D., Harvard U. Prof., Physics/LEPP/
Yearsley, David G., Ph.D., Stanford U. Assoc. Prof., Music
York, James, Ph.D., N. Carolina State U. Prof., Physics/LEPP/Astronomy
Younes, Munther A., Ph.D., U. of Texas, Austin. Sr. Lec., Near Eastern Studies
Zabih, Raman, Ph.D., Stanford U. Assoc. Prof., Computer Science
Zaslav, Neal A., Ph.D., Columbia U. Herbert Gussman Professor of Music
Zax, David B., Ph.D., U. of California, Berkeley. Assoc. Prof., Chemistry and Chemical Biology
Zec, Draga, Ph.D., Stanford U. Prof., Linguistics
Zhu, Tao, Ph.D., Pennsylvania State U. Asst. Prof., Economics
Zimmermann, Hubert, Ph.D., DAAD Prof., Government
Zussman, Asaf, Ph.D., Stanford U. Asst. Prof., Economics

*Laboratory of Atomic and Solid State Physics.
†Center for Radiophysics and Space Research
‡National Astronomy and Ionosphere Center
¶Laboratory of Elementary Particle Physics
#Institute for the Study of the Continents
INDEX

A

| Absence, leave of, 5. See also individual schools and colleges |
| Absences from class, 14 |
| Academic calendar, inside front cover |
| arts and sciences calendar supplement, 434 |
| Academic honors. See Honors under individual schools and colleges, departments, and special programs |
| Academic integrity, 7 |
| Acting, 687 |
| Add/drop/change period and fee, 12 |
| Adding courses. See individual schools and colleges |
| Administration. See individual schools and colleges |
| university, inside back cover |
| Adult education, 46, 202 |
| Advanced placement, 8–12. See also individual schools and colleges |
| Advising. See individual schools and colleges |
| Aerospace engineering, 232, 269 |
| Aerospace studies (ROTC), 394 |
| African history, 559 |
| Africana Studies and Research Center, 435 |
| Agricultural Experiment Station, 30 |
| Agriculture |
| education, 46, 94 |
| international, 49, 109 |
| Agriculture and Life Sciences, College of, 29 |
| Academic Achievement and Petitions, Committee on, 41 |
| academic deficiency, 41 |
| academic honors, 40 |
| academic integrity policy, 40 |
| academic policies and procedures, 40 |
| admission, 30 |
| advising, 29 |
| Albany Programs, 36 |
| Career Development, Office of, 30 |
| Cornell in Washington, 36 |
| Counseling and Advising office, 29 |
| course changes (add/drop/change), 40 |
| course enrollment, 40 |
| courses, 58 |
| degree programs, 31 |
| degree requirements, 37 |
| exemption from requirements, 41 |
| facilities, 30 |
| faculty, 124 |
| interdepartmental/intercollege courses, 54 |
| internships, 36 |
| major fields of study, 41 |
| Multicultural and Diversity Programs, 29 |
| nondepartmental courses, 57 |
| off-campus opportunities, 36 |
| overseas academic programs, 37 |
| petitions procedures, 41 |
| registration, 40 |
| requirements for graduation, 37 |
| research honors program, 32 |
| SEA Semester, 36 |
| Shoals Marine Laboratory, 36 |
| special programs, 54 |
| special students, 30 |
| student services, 29 |
| transfer, 30 |
| withdrawal, 41 |
| Air Force ROTC, 394 |
| Akkadian, 624 |
| Albany Programs, 36, 306, 319 |
| American History, 559 |
| American Indian studies, 54 |
| American studies, 439 |
| Andrew D. White Professors-at-Large, 17 |
| Animal physiology, 156, 162 |
| Animal sciences, 33, 41, 65 |
| Animals, use of for courses, 7 |
| Anthropology, 445 |
| Apparel design, 304 |
| Apparel/textile management, 304 |
| Application fee, 6 |
| Applied and engineering physics, 241 |
| Applied economics and management, 42, 58 |
| Applied mathematics, 226 |
| Applied Mathematics, Center for, 17, 483 |
| Arabic, 622 |
| Aramaic, 624 |
| Archaeology, 454 |
| Architecture, 129 |
| alternative programs, 131 |
| curriculum, 131 |
| dual degree options, 131 |
| overlap program, 129 |
| professional degree program, 129 |
| Rome program, 129 |
| summer term in, 131 |
| transfer students, 131 |
| Architecture, Art, and Planning, College of, 128 |
| academic policies, 129 |
| advisers, 128 |
| architecture, 129 |
| art, 137 |
| city and regional planning, 143 |
| degree programs, 128 |
| landscape architecture, 152 |
| facilities, 128 |
| faculty, 153 |
| libraries, 128 |
| museums and galleries, 128 |
| Rome Program, 128, 138 |
| scholastic standards, 129 |
student work, 129
Army ROTC program, 391
Art, 137
collection, 138
courses, 139
curriculum, 138
master of fine arts program, 139
Rome Program, 138
undergraduate program, 137
Art History, 138
courses, 139
curriculum, 138
master of fine arts program, 139
Rome Program, 138
undergraduate program, 137
Arts and Sciences, College of, 422
academic actions, 433
academic integrity, 431
academic options, 429
academic standing, 433
acceleration, 427
adding and dropping courses, 432
administration, 422
advanced placement, 432, 424, 426
advising, 431
breadth requirements, 426
calendar, 434
college requirements, 422, 424, 426
College Scholar Program, 429, 505
Cornell in Washington, 431
course(s)
noncredit, 428
repeating of, 428
dean's list, 434
distinction (honors), 434
distribution requirements, 424
double majors, 427
double registration, 429
dual-degree programs, 429
electives, 427
enrollment, 432
faculty, 700
faculty advisers, 431
FALCON, 430, 458, 464, 467
fieldwork, 430.
See also individual departments and special programs
foreign language requirement, 422
forgery on forms, 433
grades, 434
graduation requirements, 422
honors, 434.
See also individual departments and special programs
incomplete, grade of, 434
Independent Major Program, 429, 577
independent study, 429
internal transfer, 433
language
course placement and credit, 423, 424
requirement, 422, 424
study, 430
Language House Program, 430
leaves of absence, 432
limits on courses and credits, 432
off-campus programs, 430
prelaw study, 27, 430
premedical study, 28, 430
registration, 432
requirements, 422
residence, 427
R grades, 434
special programs, 429
student advisers, 431
study abroad, 430, 433
S-U grades, 434
summer session credit, 428
Teacher Education Program, 429
transferring credit, 428
transfer within Cornell, 433
Undergraduate Research Program, 429
withdrawal, 433
Asian American Studies Program, 471
Asian studies, 457
concentrations, 458
general education courses, 458
languages. See specific language
literature and religion, 459
study abroad, 458
Astronomy, 472
Athletics, 397
Atmospheric sciences, earth and, 42, 88, 221, 515
Attendance, class, 14.
See also individual schools and colleges
Auditing classes, 12.
See also individual schools and colleges
B
Bengali, 463
Billing and payment information, 6
Biochemistry, molecular and cell biology, 163
Biochemistry, program in, 156
Bioengineering, 227
Biological engineering, 215, 226
Biological and environmental engineering, 43, 69, 243
Biological sciences, 42, 155, 476
advising, 159
curriculum committee, 159
distribution requirement, 155
faculty, 186
general courses, 159
honors program, 33, 159
independent research, 159
major, 155
requirements, 156
sections
animal physiology, 162
biochemistry, molecular and cell biology, 163
ecology and evolutionary biology, 166
general courses, 159
genetics and development, 171
microbiology, 173
neurobiology and behavior, 175
plant biology, 178
Shoals Marine Laboratory, 183
use of animals, 155
Biology and society major, 43, 305, 477
Biomedical engineering, 211, 227, 233, 245
Biometry and statistics, 44, 74
Botany. See Plant biology
Burmese, 463
Bursar information, 5
Business, preprofessional study in, 27

C
Calendar
arts and sciences, 434
Cornell academic, inside front cover
Cambodian (Khmer), 468
Campus Code of Conduct, 5
Capital Semester, 307
Cell biology, biochemistry, molecular, and, 163
Center for Applied Mathematics (CAM), 17, 483
Center for International Studies, the Mario Einaudi, 18
Certification, teacher, 47, 303
Chemical and biomolecular engineering, 246
Chemical engineering, 216, 233
Chemistry and Chemical Biology, department of, 483
courses, 484
laboratory regulations, 484
program for science teachers, 484
Chinese and Asia-Pacific Studies, 489
Chinese, 463
City and regional planning, 143
courses, 146
degree options, 145
degree requirements, 144
graduate program, 145
off-campus opportunities, 145
Program in Urban and Regional Studies, 143
Civil engineering, 217, 233
Civil and environmental engineering, 233, 248
Civil infrastructure, 228
Class meeting times, 14
Classics, department of, 489
Code of Academic Integrity, 7
Cognitive studies, 19, 497
Collective bargaining, 339, 342
College Entrance Examination Board (CEEB), 8
College Scholar Program, 429, 505
Combined degree programs, 27
Communication, 45, 76
Comparative Economic Development, Program on, 18
Comparative literature, 505
Computational biology, 156, 190
Computational science and engineering, 190
Computer science, 190, 193, 217, 233, 256, 511
Computing and Information Science (CIS), 190
courses, 192
Computing in the Arts, 514
Concentrations. See individual schools and colleges, departments, and programs
Continuing education, 202
Continuing Education Information Service, 202
Cornell Abroad, 19. See also individual schools and colleges
Cornell’s Adult University (CAU), 202
Cornell Advanced Standing Examination (CASE), 8–11, 423
Cornell Institute for Public Affairs, 22
Cornell in Washington, 22, 202. See also individual schools and colleges
Cornell Medical College, 5
Cornell Plantations, 23
Course(s). See also Registration, individual schools and colleges
add/drop/change period, 12
auditing, 12
enrollment, 12
extramural, 203
final examinations, 14
information, 12
numbering system, 12
prefixes, 12
Credit
advanced placement, 8–12. See also individual schools and colleges
transfer of. See individual schools and colleges
Crop and soil sciences, 45, 52, 80
CUINFO, 5
Curriculum. See individual schools and colleges
CyberTower, 202
Czech language, 667

D
Dance, 694
Degree programs. See individual schools and colleges
Design
apparel, 304
architectural, 132
interior, 302
theater, 688
Design and environmental analysis, 302, 320
Development sociology, 46, 85
Directing, theater, 687
Distance learning, 202
Distribution requirement. See individual schools and colleges
Drama. See Theater
Drawing, 142
Dropping courses, 12. See also individual schools and colleges
Dual degree programs. See individual schools and colleges

E
East Asia Program, 458, 521
Earth and atmospheric sciences, 42, 88, 259, 515
Ecology and evolutionary biology, 157, 166
Economics, department of (Arts and Sciences), 521
Education, 46, 94
Einaudi, Mario, Center for International Studies, 18
Electrical engineering, 233
Electrical and computer engineering, 218, 228, 261
Empire State students, 302
Engineering, College of, 207
academic standing, 213
advanced placement, 212
advising, 210
affiliation with a major, 210
bioengineering option, 227
career services, 211
common courses, 237
Communications Program, 211, 237
Cooperative Education, 211
cooperative programs with the
Johnson Graduate School of
Management, 212, 232
degree programs, 207, 231
distribution courses, 209, 237
diversity office, 211
double major, 210
dual degree option, 210
facilities, 207
faculty, 282
honors program, 214
independent major, 211, 222
international programs, 211
introduction to engineering courses,
240
leave of absence, 214
Lester Knight Scholarship Program,
212, 232
liberal studies distribution, 209
majors, 215
master of engineering degrees, 232
minors and options, 211, 225
requirements for graduation, 208
residence requirements, 214
special programs, 207, 210
S-U grades, 214
technical writing, 208
transfer credit, 213
withdrawal, 215
Engineering management, 228, 234
Engineering mechanics, 234
Engineering physics, 219, 234, 241
Engineering statistics, 229
English
as a second language, 539
department of, 528
First-Year Writing Seminars, 528
for academic purposes, 539
Enrollment. See also Registration,
individual schools and colleges
course, 12
Entomology, 33, 47, 99
Environmental engineering, 216, 220,
229, 248
Environmental toxicology, 57
Ethics and Public Life, 24
European history
ancient, 565
medieval, 565
modern, 566
Examinations
advanced placement, 8–12
College Entrance Examination Board
(CEEB), 8
Cornell Advanced Standing
Examination (CASE), 8–10, 422
departmental advanced standing, 8
evening, 15
final, 14
Exchange programs. See individual
schools and colleges
Extension courses (ILR), 357
Extension education, 46
Extramural study, 202
F
Facilities. See individual schools and
colleges
Facility planning and management, 302
Faculty roster. See individual schools and
colleges
FALCON (intensive language program),
430, 458, 464, 467
Fees and expenses
to add/drop/change courses, 12
billing and payment, 6
late course enrollment, 12
refund policies, 6
tuition, 6
Feminist, Gender & Sexuality Studies, 539
Fiber science, 305
Fieldwork. See individual schools and
colleges, departments, and special
programs
Film studies, 690
Final examinations, 14
First-Year Writing Seminars, 587. See also
individual schools and colleges
Food science, 47, 102
Foreign language requirement. See
individual schools and colleges,
departments, and special programs
Foreign languages. See specific language
Frank H. T. Rhodes professorship, 17
French
language, 654
literature, 655
Freshman writing seminars. See
individual schools and colleges. See
also First-Year Writing Seminars
G
Gender and Global Change, 18
Genetics and development, 157, 171
Geological sciences, 220, 229, 235, 515
German studies, department of, 543
Gerontology concentration, 305
Government, department of, 550
Grade(s), 15–16. See also individual
schools and colleges
Graduate School, 286
Graduation, requirements for, 16. See also
individual schools and colleges
Greek, 493, 623
H
Health insurance services, 6
Hebrew, 623
Hieroglyphic Egyptian, 624
Hindi, 465
Hindi-Urdu, 623
Hispanic American Studies Program. See
Latino Studies Program
History, department of, 558
History of Art, department of, 571
Ho-Nun-De-Kah, 41
INDEX 713

Honors. See individual schools and colleges, departments, and special programs

Horticulture, 105
Hotel Administration, School of, 287
 curriculum, 287, 289
 facilities, 287
 faculty, 300
 foreign languages, 288
 grading system, 288
 independent study, 288
 management intern program, 288
 practice credit requirement, 288
 requirements for graduation, 287
 study abroad, 288

Human Biology, Health, and Society Program, 303, 383

Human Biology Program, 576
Human development, 303, 323
Human Ecology, College of, 301
 advising, 302, 304, 307
 career planning, 307, 308
 course enrollment, 311, 312
 course loads, 312
 degree programs, 301
 double registration programs, 307
 elective credits, 310
 Empire State students, 302
 facilities, 301
 faculty, 337
 field study, 306
 foreign language study and placement, 311
 grades, 315
 graduation requirements, 309
 honors, 305, 317
 in absentia study, 314
 individual curriculum, 305
 interdepartmental major, 305
 international study, 305
 leave of absence, 314
 majors, 302
 mature students, 301
 multicultural programs, 308

 off-campus programs, 307
 petition process, 313
 registration, 311
 study abroad, 305
 transfer students, 302
 Undergraduate Affairs, 301
 Urban Semester Program, 306, 319
 withdrawal, 314
 Human factors and ergonomics, 302
 Human resource studies, 339, 346
 Human subjects in research, 7
 Humanities, Society for the, 675
 Hungarian, 667

In absentia fees, 6
In absentia study. See individual schools and colleges
Incomplete, grade of, 16. See also individual schools and colleges
Independent Major Program (arts and sciences), 429, 577
Independent study. See individual schools and colleges, departments, and special programs

Indonesian, 466
Industrial and Labor Relations, School of, 339
 academic standing, 341
 advising, 340
 dean's list, 341
 degree programs, 339
 elective courses, 340
 extension courses, 357
 faculty, 358
 grades, 341
 graduation requirements, 340
 honors program, 342
 in absentia study, 340
 interdepartmental courses, 351
 internships, 342
 leave of absence, 340
 minority programs, 340
 required courses, 340
 scheduling and attendance, 341
 special academic programs, 340
 student services, 339
 study abroad, 342
 study options, 339
 withdrawal, 340

Industrial engineering, 276
Industrial systems and information technology, 230
Inequality, Center for Study of, 19, 578
Information science, 48, 111, 190, 199, 230, 581
Information science, systems, and technology, 222, 266
Institute for African Development, 18
Insurance, 6
Interior design, 302
Interdisciplinary centers, programs, and studies, 17
Internal Transfer Division, 16
International agriculture and rural development, 49, 109
International and comparative labor, 339, 349
International Nutrition, Program in, 18
International Political Economy, 18
International relations concentration, 583
International Studies, Mario Einaudi Center for, 18
International Studies in Planning, 18
Internships. See individual schools and colleges
Italian
 language, 657
 literature, 658

Japanese, 466
Jewish studies, 585
John S. Knight Institute for Writing, 587
Johnson Graduate School of Management, 359

Khmer (Cambodian), 468
Knight (John S.) Institute, 587
Korean, 468
INDEX

L

Labor
economics, 339, 351
history, 339, 342
law, 339, 342
relations, 339
Laboratory course regulations, 484
Landscape architecture, 49, 112, 152
Language
course placement and credit (arts and sciences), 423, 424
placement, 8, 423, 424
requirement, 422, 424. See individual schools and colleges, departments, and programs
Language House Program, 430
Latin, 494
Latin American studies, 589
Latino Studies Program, 591
Law and Society program, 594
Law School, 367
Leave of absence, 5. See also individual schools and colleges
Lesbian, Bisexual, and Gay Studies, 597
Linguistics, 598

M

Management, Johnson Graduate School of, 359
Marine option (Navy ROTC), 394
Marine science, 182, 425
Mario Einaudi Center, 18
Materials science and engineering, 223, 231, 235, 267
Mathematics
applied, 226
Center for Applied, 17, 483
department of, 603
Mechanical and aerospace engineering, 269
Mechanical engineering, 224, 231, 235
Mechanics, theoretical and applied, 281
Medical College, 5, 28
Medical insurance, 6
Medicine, veterinary, 403
Medieval studies, 613
Microbiology, 157, 173
Military science, 391
Modern European studies, 614
Molecular and cell biology, 158
Museum of Art, Herbert F. Johnson, 128
Museums and galleries, 128
Music, department of, 615

N

Natural resources, 51, 115
Naval science, 392, 393
Navy ROTC program, 392
Near Eastern history, 570
Near Eastern Studies, department of, 621
Nepali, 468
Neurobiology and behavior, 158, 175
Nuclear engineering, 236
Nuclear science and engineering, 275
Nutritional sciences, 51, 303, 383
Nutritional Sciences, Division of, 383
career options, 383
courses, 384
faculty, 389
global programs, 384
honors program, 384

O

Officer education (ROTC), 391
Operations research and engineering, 225
Operations research and industrial engineering, 236, 276
Operations research and management science, 231
Organizational behavior, 339, 353
Outdoor education program, 399

P

Painting, 140
Pali, 469
Payment of bills, 6
Peace Studies Program, 18
Philosophy, department of, 629
Photography, 142
Physical education and athletics, 397
courses, 397
requirement, 16
swim test, 16
Physics
ingineering, 219, 234, 241
department of, 633
Placement examinations, 8–11
Planning, city and regional, 143
Plant biology, 53, 158, 178
Plant breeding, 53, 119
Plant pathology, 53, 121
Plant sciences, 35, 52
Plantations, Cornell, 23
Playwriting, 687
Policy analysis and management, 304, 329
Polish, 667
Political science. See Government
Population and Development Program, 18
Portuguese, 659
Prefixes, course, 13
Prelaw study, 27, 430
Preliminary examinations, 15
Premedical study, 28, 430
Preveterinary study, 28
Printmaking, 141
Privacy of records, 7
Psychology, department of, 640
Public Affairs, Cornell Institute for, 22

Q

Quechua, 659

R

Real Estate, program in, 24
Records, 6
Refund policies, 6
Registration, 5. See also individual schools and colleges
add/drop/change period, 12
auditing, 12
course enrollment, 12
fees, 12
leaves and withdrawals, 5
Religious studies, 650
Requirements for graduation, 16
Reserve Officer Training Corps (ROTC), 391
Residence requirements. See individual schools and colleges
Rhodes, Frank H. T., professorship, 17
Romance languages. See individual languages
Romance studies, department of, 652
Rome Program, 128, 129, 138
ROTC (officer education), 391
Russian language, 664
literature, 665

S
Sanskrit, 469
Science and technology studies, 668
Science of Earth Systems (SES), 24, 53, 221, 516, 674
Science of Natural and Environmental Systems, 53
Sculpture, 141
SEA Semester, 36, 182
SES (Science of Earth Systems), 24, 53, 221, 516, 674
Serbo-Croatian, 668
Shoals Marine Laboratory, 36, 183
Sinhala (Sinhalese), 469
Social statistics, 339, 356
Society for the Humanities, 675
Sociology, department of, 676
Soil science, 45, 80
Sophomore Seminars, 587
South Asia Program, 458, 683
Southeast Asia Program, 458, 683
Spanish language, 660
literature, 661
major, 659
Stage management, 689
Statistical Science, department of, 25
Student information policy, 6
Student records policy, 6
Study abroad, 19. See also individual schools and colleges
S-U grades, 15
Sumerian, 624
Summer session, 202
courses, 204
Swedish, 550
Systems engineering, 237, 280

T
Tagalog, 469
Teacher certification, 46, 47, 303
Teacher education, 429, 605
Test(s)
advanced placement, 8-12
language placement, 8, 423, 424
Textiles and apparel, 304, 334
Thai, 469
Theatre, film, and dance, 684
Theoretical and applied mechanics, 281
Toxicology, environmental, 57
Transcripts, 16
Transfer, internal, 16
Tuition billing and payment information, 6
Turkish, 624

U
Ugaritic, 624
Ukrainian, 668
Undergraduate admissions, 5
Undergraduate Research Program, 429
Urban and regional studies, 143
Urban Semester Program, 306, 319
Urdu, 470

V
Veterinary Medicine, College of, 403
Vietnamese, 470
Visual studies, 698
W
White (Andrew D.) Professors-at-Large, 17
Winter session, 203
Withdrawal, 5. See also individual schools and colleges
Women's studies (now Feminist, Gender & Sexuality Studies), 539
Writing
Engineering Communications Program, 211, 237
First-Year Writing Seminars, 587
Institute, John S. Knight, 587
Sophomore Seminars, 587
teaching, 588
workshop, 588
Cornell University Officers of the Corporation

Hunter R. Rawlings III, interim president
Carolyn A. (Biddy) Martin, provost
Antonio M. Gotto Jr., provost for medical affairs
Stephen T. Golding, executive vice president of finance and administration
James J. Mingle, university counsel and secretary of the corporation

Vice Presidents, Vice Provosts, and Dean of Faculty

Carolyn N. Ainslie, vice president for planning and budget
Thomas W. Bruce, vice president for communications and media relations
Vanda B. McMurtry, vice president for government and community relations
Polley Ann McClure, vice president for information technologies
Susan H. Murphy, vice president for student and academic services
Mary George Opperman, vice president for human resources
Laura L. Toy, interim vice president for alumni affairs and development
Joanne M. DeStefano, vice president for financial affairs and university controller
Charles Walcott, dean of the university faculty
Joseph A. Burns, vice provost
Richard Colaco, vice provost
Charles R. Fay, vice provost
Robert L. Harris, Jr., vice provost
Stephen Kresovich, vice provost
Michele A. Moody-Adams, vice provost
Robert C. Richardson, senior vice provost
John A. Siliciano, vice provost
David Wippman, vice provost

Cornell University has an enduring commitment to support equality of education and employment based on aspects of diversity protected under federal, state, and local law, including sexual harassment complaints filed by any member of the Cornell community against an academic or nonacademic staff member, as well as complaints arising under Title IX. Members of the Cornell community are strongly encouraged to report immediately any criminal activity and suspicious persons to the Cornell University Police Department. Incidents that may or may not be crimes may also be reported to "campus security authorities," which include, in addition to, the Cornell University Police, those with responsibility for controlling access to buildings or facilities and officials having significant responsibility for students or campus activities. Licensed counselors and campus clergy (pastoral counselors) are exempt from reporting requirements. Cornell University encourages counselors and clergy, if and when they deem it appropriate, to inform those who they counsel of procedures for reporting crimes on a voluntary, confidential basis for inclusion in the Cornell University Police Statistical Crime Record.

For Cornell University directory information or general information, call 607 255-2000 or 607 254-INFO. The 2005–2006 Courses of Study is available on the web at cuinfo.cornell.edu/Academic/Courses/.

To obtain a copy of this catalog, please follow these guidelines:

If you are a prospective undergraduate student and don't have web access, please contact the Undergraduate Admissions Office, Cornell University, 410 Thurston Ave., Ithaca, NY 14850-2801, 607 255-5241.

If you are a prospective graduate student, please contact the listing of the course catalog on the web (see above for address).

If you are a currently enrolled student, please contact your college registrar.

All others please contact the Office of the University Registrar, Cornell University, 105 Day Hall, Ithaca, NY 14853-2801, 607 255-4232, e-mail: dgs18@cornell.edu

Photography by CU Photography and Charles Harrington.

Printed on recycled paper.

8/05 2°SM DGP 09012
To: Reference Desk
Olin Library

from: 201 Olin Library